seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
461701069
from django.contrib.auth.tokens import default_token_generator from django.core import mail from rest_framework import status, viewsets from rest_framework.decorators import action, api_view from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework_simplejwt.tokens import RefreshToken from api.permissions import IsAdmin from api.serializers import UserSerializer from api_yamdb.settings import ADMIN_EMAIL from .models import User class UserViewSet(viewsets.ModelViewSet): queryset = User.objects.all() serializer_class = UserSerializer permission_classes = [IsAuthenticated, IsAdmin, ] http_method_names = ['get', 'post', 'patch', 'delete'] lookup_field = 'username' @action(methods=['get', 'patch', ], detail=False, permission_classes=[IsAuthenticated, ]) def me(self, request): user = User.objects.get(username=request.user.username) if request.method == 'GET': serializer = UserSerializer(user) return Response(data=serializer.data, status=status.HTTP_200_OK) if request.method == 'PATCH': serializer = UserSerializer(user, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response(data=serializer.data, status=status.HTTP_200_OK) return Response(data=serializer.errors, status=status.HTTP_200_OK) @api_view(['POST', ]) def signup(request): email = request.POST['email'] if not User.objects.filter(email=email).exists(): username = email.split('@')[0] user = User.objects.create(username=username, email=email) else: user = User.objects.filter(email=email).first() code = default_token_generator.make_token(user) mail.send_mail( subject='Your YaMDb confirmation code', message=f'"confirmation_code": "{code}"', from_email=ADMIN_EMAIL, recipient_list=[email, ], fail_silently=True ) return Response(data={'email': email}, status=status.HTTP_200_OK) @api_view(['POST', ]) def login(request): email = request.POST['email'] confirmation_code = request.POST['confirmation_code'] user = User.objects.filter(email=email).first() data = {'field_name': []} if user is None: data['field_name'].append('email') if not default_token_generator.check_token(user, confirmation_code): data['field_name'].append('confirmation_code') if len(data['field_name']) != 0: return Response(data=data, status=status.HTTP_400_BAD_REQUEST) token = RefreshToken.for_user(user) return Response(data={'token': str(token.access_token)}, status=status.HTTP_200_OK)
null
users/views.py
views.py
py
2,744
python
en
code
null
code-starcoder2
83
[ { "api_name": "rest_framework.viewsets.ModelViewSet", "line_number": 16, "usage_type": "attribute" }, { "api_name": "rest_framework.viewsets", "line_number": 16, "usage_type": "name" }, { "api_name": "models.User.objects.all", "line_number": 17, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 17, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 17, "usage_type": "name" }, { "api_name": "api.serializers.UserSerializer", "line_number": 18, "usage_type": "name" }, { "api_name": "rest_framework.permissions.IsAuthenticated", "line_number": 19, "usage_type": "name" }, { "api_name": "api.permissions.IsAdmin", "line_number": 19, "usage_type": "name" }, { "api_name": "models.User.objects.get", "line_number": 25, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 25, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 25, "usage_type": "name" }, { "api_name": "api.serializers.UserSerializer", "line_number": 27, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 28, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 28, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 28, "usage_type": "name" }, { "api_name": "api.serializers.UserSerializer", "line_number": 30, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 33, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 33, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 33, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 34, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 34, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 34, "usage_type": "name" }, { "api_name": "rest_framework.decorators.action", "line_number": 23, "usage_type": "call" }, { "api_name": "rest_framework.permissions.IsAuthenticated", "line_number": 23, "usage_type": "name" }, { "api_name": "models.User.objects.filter", "line_number": 40, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 40, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 40, "usage_type": "name" }, { "api_name": "models.User.objects.create", "line_number": 42, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 42, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 42, "usage_type": "name" }, { "api_name": "models.User.objects.filter", "line_number": 44, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 44, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 44, "usage_type": "name" }, { "api_name": "django.contrib.auth.tokens.default_token_generator.make_token", "line_number": 45, "usage_type": "call" }, { "api_name": "django.contrib.auth.tokens.default_token_generator", "line_number": 45, "usage_type": "name" }, { "api_name": "django.core.mail.send_mail", "line_number": 46, "usage_type": "call" }, { "api_name": "django.core.mail", "line_number": 46, "usage_type": "name" }, { "api_name": "api_yamdb.settings.ADMIN_EMAIL", "line_number": 49, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 53, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 53, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 53, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 37, "usage_type": "call" }, { "api_name": "models.User.objects.filter", "line_number": 60, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 60, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 60, "usage_type": "name" }, { "api_name": "django.contrib.auth.tokens.default_token_generator.check_token", "line_number": 64, "usage_type": "call" }, { "api_name": "django.contrib.auth.tokens.default_token_generator", "line_number": 64, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 67, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 67, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 67, "usage_type": "name" }, { "api_name": "rest_framework_simplejwt.tokens.RefreshToken.for_user", "line_number": 68, "usage_type": "call" }, { "api_name": "rest_framework_simplejwt.tokens.RefreshToken", "line_number": 68, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 69, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 69, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 69, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 56, "usage_type": "call" } ]
95814644
#--------------------------------------------------------------------- # Basic ePub reader written in Python, using wxPython for the GUI # Author: Michael Stover # # Status: Work in Progress # To-Do: # - Add function that places images into memory # - Add function for placing CSS files into memory # - Add function that "fixes" links so that they point to memory # - Re-add "Day/Night" mode # - Add Text Size adjustments # - Add Help/About # - "Prettify" Toolbar icons #--------------------------------------------------------------------- import os import sys import wx import wx.html import _worker class HtmlWindow(wx.html.HtmlWindow): '''Subclass of wx.html.HtmlWindow. Will allow for users to click to internal chapter links and skip to desired chapter, or open external links in default browser.''' def __init__(self, parent, *arg, **kw): '''Constructor.''' wx.html.HtmlWindow.__init__(self, parent, *arg, **kw) if "gtk2" in wx.PlatformInfo: self.SetStandardFonts() self.parent = parent self.PrimeFrame = wx.GetTopLevelParent(self.parent) def OnLinkClicked(self, link): '''Override default behavior and perform basic check on the link clicked. Attempt to load links in default browser.''' clicked = link.GetHref() if clicked.startswith('http') or clicked.startswith('www'): wx.LaunchDefaultBrowser(link.GetHref()) else: pass class MainFrame(wx.Frame): def __init__(self, parent=None, *arg, **kw): '''Constructor for initialization of gui, variables and MemoryFSHandler''' super(MainFrame, self).__init__(parent, *arg, **kw) self.panel = wx.Panel(self, -1) self.epubFile = [] self.epubBookTitle = [] self.epubInfo = {} self.theBook = [] self.epubImages = [] self.epubContents = [] self.epubChapters = [] self.epubBookmark = {} self.nightMode = False self.currentSection = 0 # Set the filesystem handler wx.FileSystem.AddHandler(wx.MemoryFSHandler()) # Set up our htmlWin object self.htmlWin = HtmlWindow(self.panel) self.TopSizer = wx.BoxSizer(wx.VERTICAL) self.TopSizer.Add(self.htmlWin, 1, wx.EXPAND|wx.ALL, 5) self.panel.SetSizerAndFit(self.TopSizer) self.SetSize((650,400)) self.onInitTB() def onInitTB(self): '''Initialize the Toolbar.''' self.toolBar = self.CreateToolBar( style=wx.TB_NODIVIDER ) self.toolBar.AddSeparator() toolOpen = self.toolBar.AddLabelTool(wx.ID_ANY, 'Open Book', wx.ArtProvider.GetBitmap(wx.ART_FILE_OPEN)) self.toolBar.AddSeparator() self.toolBar.AddSeparator() toolHome = self.toolBar.AddLabelTool(wx.ID_ANY, 'Front Page', wx.ArtProvider.GetBitmap(wx.ART_GO_HOME)) self.toolBar.AddSeparator() toolBack = self.toolBar.AddLabelTool(wx.ID_ANY, 'Back', wx.ArtProvider.GetBitmap(wx.ART_GO_BACK)) toolNext = self.toolBar.AddLabelTool(wx.ID_ANY, 'Next', wx.ArtProvider.GetBitmap(wx.ART_GO_FORWARD)) self.toolBar.AddStretchableSpace() self.toolBar.Realize() self.Bind(wx.EVT_TOOL, self.onSelectEpub, toolOpen) self.Bind(wx.EVT_TOOL, self.onPageHome, toolHome) self.Bind(wx.EVT_TOOL, self.onPageNext, toolNext) self.Bind(wx.EVT_TOOL, self.onPageBack, toolBack) def OnReset(self): '''Reset variables for next book, includes removing previous images from memory.''' for image in self.epubImages: wx.MemoryFSHandler.RemoveFile(image) self.epubChapters = [] self.currentSection = 0 def onSelectEpub(self, event): '''Open FileDialog to select epub file.''' wildcard = 'ePub File (*.epub)|*.epub' dlg = wx.FileDialog(self, 'Choose a file', '', '', wildcard, wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: self.OnReset() self.epubFile = os.path.join( dlg.GetDirectory(), dlg.GetFilename() ) self.onLoadEpub(self.epubFile) dlg.Destroy() def onLoadEpub(self, inFile): '''Function to open epub and run various processing functions on it.''' self.theBook = _worker.open_epub(inFile) content_soup = _worker.get_epub_content_soup(self.theBook) self.epubImages, self.epubText, epubCss = _worker.get_epub_content_lists(content_soup) self.epubInfo = _worker.get_epub_general_info(content_soup) self.onLoadImgsToMem(self.theBook) self.epubBookTitle = self.epubInfo['title'] self.SetTitle('Reading: %s, by: %s' % (self.epubBookTitle, self.epubInfo['creator'])) for chapter in self.epubText: raw_page = _worker.get_epub_section(self.theBook, chapter) new_page = _worker.clean_convert_links(raw_page) self.epubChapters.append(new_page) self.onLoadPages() def onLoadImgsToMem(self, epub_file): for image in self.epubImages: im_img = _worker.preprocess_image(epub_file, image) new_image = wx.EmptyImage(im_img.size[0],im_img.size[1]) new_image.SetData(im_img.convert("RGB").tostring()) finalImg = wx.BitmapFromImage(new_image) wx.MemoryFSHandler.AddFile(image, finalImg, wx.BITMAP_TYPE_BMP) def onLoadPages(self): '''Load page into htmlWin.''' self.htmlWin.SetPage(self.epubChapters[0]) def onPageHome(self, event): '''Sets the current page back to the beginning of the book.''' self.currentSection = 0 content = self.epubChapters[self.currentSection] self.htmlWin.SetPage(content) def onPageNext(self, event): '''Change to next ePub section / chapter. This needs completed.''' if self.currentSection < len(self.epubText)-1: self.currentSection += 1 content = self.epubChapters[self.currentSection] self.htmlWin.SetPage(content) else: dlg = wx.MessageBox('We cannot go further than the end of the book!', 'ERROR: End of the line!', wx.OK|wx.ICON_HAND) event.Skip() def onPageBack(self, event): '''Change to previous ePub section / chapter. This needs completed.''' if self.currentSection > 0: self.currentSection -= 1 content = self.epubChapters[self.currentSection] self.htmlWin.SetPage(content) else: dlg = wx.MessageBox('We cannot go further than the start of the book!', 'ERROR: Front Page Reached!', wx.OK|wx.ICON_HAND) event.Skip() def onQuit(self, event): '''Close the application''' self.Close() def onLoadCSSToMem(self, epub_file): '''Load CCS pages to memory.''' # Needs implemented pass def RunApp(): '''Initialize wxApp, set primary frame and run MainLoop''' app = wx.App(False) frame = MainFrame(title='ePub Reader') frame.Show() app.MainLoop() if __name__ == '__main__': '''''' RunApp()
null
eReader.py
eReader.py
py
7,332
python
en
code
null
code-starcoder2
83
[ { "api_name": "wx.html", "line_number": 24, "usage_type": "attribute" }, { "api_name": "wx.html.HtmlWindow.__init__", "line_number": 30, "usage_type": "call" }, { "api_name": "wx.html", "line_number": 30, "usage_type": "attribute" }, { "api_name": "wx.PlatformInfo", "line_number": 31, "usage_type": "attribute" }, { "api_name": "wx.GetTopLevelParent", "line_number": 34, "usage_type": "call" }, { "api_name": "wx.LaunchDefaultBrowser", "line_number": 41, "usage_type": "call" }, { "api_name": "wx.Frame", "line_number": 45, "usage_type": "attribute" }, { "api_name": "wx.Panel", "line_number": 51, "usage_type": "call" }, { "api_name": "wx.FileSystem.AddHandler", "line_number": 67, "usage_type": "call" }, { "api_name": "wx.FileSystem", "line_number": 67, "usage_type": "attribute" }, { "api_name": "wx.MemoryFSHandler", "line_number": 67, "usage_type": "call" }, { "api_name": "wx.BoxSizer", "line_number": 72, "usage_type": "call" }, { "api_name": "wx.VERTICAL", "line_number": 72, "usage_type": "attribute" }, { "api_name": "wx.EXPAND", "line_number": 73, "usage_type": "attribute" }, { "api_name": "wx.ALL", "line_number": 73, "usage_type": "attribute" }, { "api_name": "wx.TB_NODIVIDER", "line_number": 83, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 88, "usage_type": "attribute" }, { "api_name": "wx.ArtProvider.GetBitmap", "line_number": 89, "usage_type": "call" }, { "api_name": "wx.ArtProvider", "line_number": 89, "usage_type": "attribute" }, { "api_name": "wx.ART_FILE_OPEN", "line_number": 89, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 94, "usage_type": "attribute" }, { "api_name": "wx.ArtProvider.GetBitmap", "line_number": 95, "usage_type": "call" }, { "api_name": "wx.ArtProvider", "line_number": 95, "usage_type": "attribute" }, { "api_name": "wx.ART_GO_HOME", "line_number": 95, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 98, "usage_type": "attribute" }, { "api_name": "wx.ArtProvider.GetBitmap", "line_number": 99, "usage_type": "call" }, { "api_name": "wx.ArtProvider", "line_number": 99, "usage_type": "attribute" }, { "api_name": "wx.ART_GO_BACK", "line_number": 99, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 101, "usage_type": "attribute" }, { "api_name": "wx.ArtProvider.GetBitmap", "line_number": 102, "usage_type": "call" }, { "api_name": "wx.ArtProvider", "line_number": 102, "usage_type": "attribute" }, { "api_name": "wx.ART_GO_FORWARD", "line_number": 102, "usage_type": "attribute" }, { "api_name": "wx.EVT_TOOL", "line_number": 108, "usage_type": "attribute" }, { "api_name": "wx.EVT_TOOL", "line_number": 109, "usage_type": "attribute" }, { "api_name": "wx.EVT_TOOL", "line_number": 110, "usage_type": "attribute" }, { "api_name": "wx.EVT_TOOL", "line_number": 111, "usage_type": "attribute" }, { "api_name": "wx.MemoryFSHandler.RemoveFile", "line_number": 117, "usage_type": "call" }, { "api_name": "wx.MemoryFSHandler", "line_number": 117, "usage_type": "attribute" }, { "api_name": "wx.FileDialog", "line_number": 124, "usage_type": "call" }, { "api_name": "wx.FD_OPEN", "line_number": 125, "usage_type": "attribute" }, { "api_name": "wx.ID_OK", "line_number": 126, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path", "line_number": 128, "usage_type": "attribute" }, { "api_name": "_worker.open_epub", "line_number": 138, "usage_type": "call" }, { "api_name": "_worker.get_epub_content_soup", "line_number": 139, "usage_type": "call" }, { "api_name": "_worker.get_epub_content_lists", "line_number": 140, "usage_type": "call" }, { "api_name": "_worker.get_epub_general_info", "line_number": 141, "usage_type": "call" }, { "api_name": "_worker.get_epub_section", "line_number": 146, "usage_type": "call" }, { "api_name": "_worker.clean_convert_links", "line_number": 147, "usage_type": "call" }, { "api_name": "_worker.preprocess_image", "line_number": 153, "usage_type": "call" }, { "api_name": "wx.EmptyImage", "line_number": 154, "usage_type": "call" }, { "api_name": "wx.BitmapFromImage", "line_number": 156, "usage_type": "call" }, { "api_name": "wx.MemoryFSHandler.AddFile", "line_number": 157, "usage_type": "call" }, { "api_name": "wx.MemoryFSHandler", "line_number": 157, "usage_type": "attribute" }, { "api_name": "wx.BITMAP_TYPE_BMP", "line_number": 157, "usage_type": "attribute" }, { "api_name": "wx.MessageBox", "line_number": 176, "usage_type": "call" }, { "api_name": "wx.OK", "line_number": 177, "usage_type": "attribute" }, { "api_name": "wx.ICON_HAND", "line_number": 177, "usage_type": "attribute" }, { "api_name": "wx.MessageBox", "line_number": 187, "usage_type": "call" }, { "api_name": "wx.OK", "line_number": 188, "usage_type": "attribute" }, { "api_name": "wx.ICON_HAND", "line_number": 188, "usage_type": "attribute" }, { "api_name": "wx.App", "line_number": 202, "usage_type": "call" } ]
166665161
import rubrik_oracle_module as rbk import click import datetime import pytz import json @click.command() @click.argument('host_cluster_db') @click.argument('target_host') @click.option('--time_restore', '-t', type=str, help='Point in time to mount the DB, iso format is YY:MM:DDTHH:MM:SS example 2019-01-01T20:30:15') def cli(host_cluster_db, target_host, time_restore): """Live mount a Rubrik Oracle Backup. \b Gets the backup for the Oracle database on the Oracle database host and will live mount it on the host provided. \b Args: host_cluster_db (str): The hostname the database is running on : The database name target_host (str): The host to live mount the database. (Must be a compatible Oracle host on Rubrik) time_restore: The point in time for the live mount iso 8601 format (2019-04-30T18:23:21) \b Returns: live_mount_info (json); JSON text file with the Rubrik cluster response to the live mount request """ rubrik = rbk.connect_rubrik() cluster_info = rbk.get_cluster_info(rubrik) timezone = cluster_info['timezone']['timezone'] print("Connected to cluster: {}, version: {}, Timezone: {}.".format(cluster_info['name'], cluster_info['version'], timezone)) host_cluster_db = host_cluster_db.split(":") oracle_db_id = rbk.get_oracle_db_id(rubrik, host_cluster_db[1], host_cluster_db[0]) oracle_db_info = rbk.get_oracle_db_info(rubrik, oracle_db_id) # If source DB is RAC then the target for the live mount must be a RAC cluster if 'racName' in oracle_db_info.keys(): if oracle_db_info['racName']: host_id = rbk.get_rac_id(rubrik, cluster_info['id'], target_host) else: host_id = rbk.get_host_id(rubrik, cluster_info['id'], target_host) if time_restore: time_ms = rbk.epoch_time(time_restore, timezone) print("Using {} for mount.". format(time_restore)) else: print("Using most recent recovery point for mount.") oracle_db_info = rbk.get_oracle_db_info(rubrik, oracle_db_id) time_ms = rbk.epoch_time(oracle_db_info['latestRecoveryPoint'], timezone) print("Starting Live Mount of {} on {}.".format(host_cluster_db[1], target_host)) live_mount_info = rbk.live_mount(rubrik, oracle_db_id, host_id, time_ms) # Set the time format for the printed result cluster_timezone = pytz.timezone(timezone) utc = pytz.utc start_time = utc.localize(datetime.datetime.fromisoformat(live_mount_info['startTime'][:-1])).astimezone(cluster_timezone) fmt = '%Y-%m-%d %H:%M:%S %Z' print("Live mount status: {}, Started at {}.".format(live_mount_info['status'], start_time.strftime(fmt))) return json.dumps(live_mount_info) if __name__ == "__main__": cli()
null
rubrik_oracle_db_mount.py
rubrik_oracle_db_mount.py
py
2,757
python
en
code
null
code-starcoder2
83
[ { "api_name": "rubrik_oracle_module.connect_rubrik", "line_number": 26, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.get_cluster_info", "line_number": 27, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.get_oracle_db_id", "line_number": 31, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.get_oracle_db_info", "line_number": 32, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.get_rac_id", "line_number": 36, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.get_host_id", "line_number": 38, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.epoch_time", "line_number": 40, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.get_oracle_db_info", "line_number": 44, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.epoch_time", "line_number": 45, "usage_type": "call" }, { "api_name": "rubrik_oracle_module.live_mount", "line_number": 47, "usage_type": "call" }, { "api_name": "pytz.timezone", "line_number": 49, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 50, "usage_type": "attribute" }, { "api_name": "datetime.datetime.fromisoformat", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 54, "usage_type": "call" }, { "api_name": "click.command", "line_number": 8, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 9, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 10, "usage_type": "call" }, { "api_name": "click.option", "line_number": 11, "usage_type": "call" } ]
645904433
# -*- coding: utf-8 -*- from django.contrib.auth import login,logout,authenticate,get_user_model from django.views.decorators.http import require_POST from django.http import HttpResponse,JsonResponse from .forms import LoginForm,RegisterForm,ChangeUserForm from utils import restful from django.shortcuts import render,reverse,redirect from utils.captcha.xfzcaptcha import Captcha from io import BytesIO from django.core.cache import cache from utils import smssender import random #from .models import User User = get_user_model()#跟导入上面的方式一样 @require_POST def login_view(request): form = LoginForm(request.POST) if form.is_valid(): telephone = form.cleaned_data.get('telephone') password = form.cleaned_data.get('password') remember = form.cleaned_data.get('remember') user1 = authenticate(request,telephone=telephone,password=password)#验证是否存在该用户 if user1: if user1.is_active: login(request,user1) if remember: request.session.set_expiry(None) else: request.session.set_expiry(0) return restful.ok() else: return restful.unauth(message="您的账号已经冻结") else: return restful.params_error(message="您的账号或者密码错误") else: errors = form.get_errors() return restful.params_error(message=errors) def logout_view(request): #退出登录 logout(request) #重定向到index页面 return redirect(reverse('index')) @require_POST def register(request): form = RegisterForm(request.POST) if form.is_valid(): telephone = form.cleaned_data.get('telephone') username = form.cleaned_data.get('username') password = form.cleaned_data.get('password1') user = User.objects.create_user(telephone=telephone,username=username,password=password) login(request,user) return restful.ok() else: print(form.get_errors()) return restful.params_error(message="注册失败") #验证码 def img_captcha(request): text,image = Captcha.gene_code() #BytesIO:相当于一个管道,用来存储图片 out = BytesIO() # 调用image的save方法,将这个image对象保存到BytesIO中 image.save(out, 'png') # 将BytesIO的文件指针移动到最开始的位置 out.seek(0) response = HttpResponse(content_type='image/png') # 从BytesIO的管道中,读取出图片数据,保存到response对象上 response.write(out.read()) response['Content-length'] = out.tell()#获取文件长度 # 12Df:12Df.lower()存储在cache中 cache.set(text.lower(), text.lower(), 5 * 60) return response def sms_captcha(request): telephone = request.GET.get('telephone') #获取一个随机验证码 # code = Captcha.gene_text() code1 = random.randint(1000,9999) code = str(code1) # print(code) # code+='' print(type(code)) #将telephone,code存到memcached,过期时间5分钟 cache.set(telephone,code,5*60) print("验证码",code) # return restful.ok() result = smssender.send(telephone,code) if result: return restful.ok() else: return restful.params_error(message="短信验证码失败") def cache_test(request): cache.set("username",'sunyabo',5*60) result = cache.get("username") print(result) return HttpResponse("success") def save_person(request): form = ChangeUserForm(request.POST) if form.is_valid(): username = form.cleaned_data.get('username') telephone = form.cleaned_data.get('telephone') email = form.cleaned_data.get('email') #uid = form.cleaned_data.get('uid') user1 = request.user#获取当前用户 user1.email = email user1.username = username user1.telephone = telephone user1.save() return restful.ok() else: return restful.params_error(message="保存失败")
null
apps/xfzauth/views.py
views.py
py
4,091
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.contrib.auth.get_user_model", "line_number": 15, "usage_type": "call" }, { "api_name": "forms.LoginForm", "line_number": 18, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 24, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 27, "usage_type": "call" }, { "api_name": "utils.restful.ok", "line_number": 32, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 32, "usage_type": "name" }, { "api_name": "utils.restful.unauth", "line_number": 34, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 34, "usage_type": "name" }, { "api_name": "utils.restful.params_error", "line_number": 36, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 36, "usage_type": "name" }, { "api_name": "utils.restful.params_error", "line_number": 40, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 40, "usage_type": "name" }, { "api_name": "django.views.decorators.http.require_POST", "line_number": 16, "usage_type": "name" }, { "api_name": "django.contrib.auth.logout", "line_number": 44, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 46, "usage_type": "call" }, { "api_name": "django.shortcuts.reverse", "line_number": 46, "usage_type": "call" }, { "api_name": "forms.RegisterForm", "line_number": 52, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 58, "usage_type": "call" }, { "api_name": "utils.restful.ok", "line_number": 59, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 59, "usage_type": "name" }, { "api_name": "utils.restful.params_error", "line_number": 62, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 62, "usage_type": "name" }, { "api_name": "django.views.decorators.http.require_POST", "line_number": 50, "usage_type": "name" }, { "api_name": "utils.captcha.xfzcaptcha.Captcha.gene_code", "line_number": 66, "usage_type": "call" }, { "api_name": "utils.captcha.xfzcaptcha.Captcha", "line_number": 66, "usage_type": "name" }, { "api_name": "io.BytesIO", "line_number": 68, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 74, "usage_type": "call" }, { "api_name": "django.core.cache.cache.set", "line_number": 79, "usage_type": "call" }, { "api_name": "django.core.cache.cache", "line_number": 79, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 87, "usage_type": "call" }, { "api_name": "django.core.cache.cache.set", "line_number": 93, "usage_type": "call" }, { "api_name": "django.core.cache.cache", "line_number": 93, "usage_type": "name" }, { "api_name": "utils.smssender.send", "line_number": 96, "usage_type": "call" }, { "api_name": "utils.smssender", "line_number": 96, "usage_type": "name" }, { "api_name": "utils.restful.ok", "line_number": 98, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 98, "usage_type": "name" }, { "api_name": "utils.restful.params_error", "line_number": 100, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 100, "usage_type": "name" }, { "api_name": "django.core.cache.cache.set", "line_number": 103, "usage_type": "call" }, { "api_name": "django.core.cache.cache", "line_number": 103, "usage_type": "name" }, { "api_name": "django.core.cache.cache.get", "line_number": 104, "usage_type": "call" }, { "api_name": "django.core.cache.cache", "line_number": 104, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 106, "usage_type": "call" }, { "api_name": "forms.ChangeUserForm", "line_number": 109, "usage_type": "call" }, { "api_name": "utils.restful.ok", "line_number": 120, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 120, "usage_type": "name" }, { "api_name": "utils.restful.params_error", "line_number": 122, "usage_type": "call" }, { "api_name": "utils.restful", "line_number": 122, "usage_type": "name" } ]
56017380
import os import random import cv2 import numpy as np from mobilenetv2 import train_L2 import test_Predict_keras from test_Predict_tflite import tflite_predition import argparse ''' This project utilize to classify the automative spare parts images whether spare part is "Healthy" or "Defected". Main logics is in the mobilenetv2 file, where you can further customize. ''' def load_training_data(root_dir,classes_dir): healthy_samples= [] defective_samples= [] for cls in classes_dir: src = root_dir + cls # Folder to copy images from train_FileNames = os.listdir(src) print(cls) if cls=='/YE358311_defects': defective_samples=[src+'/'+ name for name in train_FileNames] print('Images in defective set are: ', len(defective_samples)) else: healthy_samples = [src+'/'+ name for name in train_FileNames] print('Images in healthy set are: ', len(healthy_samples)) return defective_samples,healthy_samples def data_preprocessing(image_path,image_width,image_height): """ Pre-process the data- alligning, and resizing the orignal images """ image=cv2.imread(image_path) image = np.array(image, dtype=np.uint8) #Rotating if image is vertical if image.shape[1]<image.shape[0]: image = np.rot90(image) image=cv2.resize(image, (image_width,image_height), interpolation=cv2.INTER_CUBIC) # cv2.imwrite(image_path,image) return image def training_data_preparation(defective_samples,healthy_samples,image_width,image_height): #Label the dataset- Healthy and Defective y=[] x=[] for image in defective_samples: x.append(data_preprocessing(image,image_width,image_height)) y.append(1) print("defective_samples is ",len(x),len(defective_samples)) for image in healthy_samples: x.append(data_preprocessing(image,image_width,image_height)) y.append(0) print("healthy_samples is ",len(x)) # Shuffle the data samples randomlly and the order of samples and label is remaince same data = list(zip(x, y)) random.shuffle(data) x_rand, y_rand = zip(*data) #list to array x_train = np.array(x_rand) y_train = np.array(y_rand) x_data_size=x_train.shape y_data_size=y_train.shape print("Shape of training dataset is",x_data_size,y_data_size) return x_train,y_train def main(): ###****** This is the main function of Defect-detection-in-automative-parts project ap = argparse.ArgumentParser() ap.add_argument("--opMode", "-mode", default='Test', help="opertation mode test or trained") ap.add_argument("--Data_Directory", "-datadir", default='dataset/YE358311_Fender_apron', help="Path to test data") ap.add_argument("--classes_dir", "-classes_dir", default=['/YE358311_defects', '/YE358311_Healthy'], help="Different data class") ap.add_argument("--classes", "-no_classes", default=2, help="number of classes") ap.add_argument("--epoch", "-no_iterations", default=5, help="number of epoch for learning model") ap.add_argument("--alpha", "-alpha", default=0.5, help="alpha for learning model") ap.add_argument("--batch", "-batchsize", default=8, help="number of images in one batch") args = vars(ap.parse_args()) trained_models = 'Trained_model' Keras_model='MobileNet_model_keras.h5' Tf_model = 'model.pb' tflite_model='converted_model.tflite' image_width = 224 image_height = 224 chanel=3 input_shape = (image_width, image_height, chanel) data_dir = args["Data_Directory"] classes_dir = args['classes_dir'] no_of_classes= args['classes'] epoch = args['epoch'] alpha = args['alpha'] batch = args['batch'] opMode = args["opMode"] ###***************Train deep learnig model****************************## if opMode == 'Train': training_data_dir=data_dir+'/train' train_defective_samples,train_healthy_samples=load_training_data(training_data_dir,classes_dir) x_train,y_train=training_data_preparation(train_defective_samples,train_healthy_samples,image_width,image_height) print("L2-SoftmaxLoss training...") train_L2(x_train, y_train, no_of_classes,input_shape, epoch, alpha,batch, True, True, trained_models, Keras_model, Tf_model, tflite_model) ###***************Test the model performance on test Dataset (unseen samples)****************************## elif opMode == 'Test': test_data_dir=data_dir+'/test' test_defective_samples,test_healthy_samples=load_training_data(test_data_dir,classes_dir) x_test,y_test=training_data_preparation(test_defective_samples,test_healthy_samples,image_width,image_height) ###***************Classify images using Keras model****************************## # test_Predict_keras.predict_images_labels(x_test,y_test) ###***************Classify images using TFLite model****************************## tflite_predition(x_test,y_test,trained_models,tflite_model) if __name__== "__main__": main()
null
main.py
main.py
py
5,149
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.listdir", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 33, "usage_type": "attribute" }, { "api_name": "numpy.rot90", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 37, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 37, "usage_type": "attribute" }, { "api_name": "random.shuffle", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 58, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 66, "usage_type": "call" }, { "api_name": "mobilenetv2.train_L2", "line_number": 106, "usage_type": "call" }, { "api_name": "test_Predict_tflite.tflite_predition", "line_number": 117, "usage_type": "call" } ]
78972637
from django.conf import settings from django.contrib.auth.models import AbstractUser from django.contrib.auth.models import UserManager as AuthUserManager from django.contrib.auth.signals import user_logged_in from django.core.mail import send_mail from django.db.models.signals import post_save from django.db import models class UserManager(AuthUserManager): def create_superuser(self, username, email, password, **extra_fields): extra_fields.setdefault('sex', 'm') return super().create_superuser(username, email, password, **extra_fields) class User(AbstractUser): sex = models.CharField( max_length=1, choices=( ('f', 'female'), ('m', 'male'), )) score = models.CharField(default="", max_length=100, null=True, blank=True) objects = UserManager() class Profile(models.Model): user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) usr_id = models.TextField(blank=True) #website_url = models.URLField(blank=True) #score = models.CharField(default="", max_length=100, null=True, blank=True) def on_post_save_for_user(sender, **kwargs): if kwargs['created']: # 가입시기 user = kwargs['instance'] # 환영 이메일 보내기 send_mail( '환영합니다.', 'Here is the message.', '[email protected]', [user.email], fail_silently=False, ) post_save.connect(on_post_save_for_user, sender=settings.AUTH_USER_MODEL) class UserSession(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, editable=False) session_key = models.CharField(max_length=40, editable=False) created_at = models.DateTimeField(auto_now_add=True) def on_user_logged_in(sender, request, user, **kwargs): user.is_user_logged_in = True user_logged_in.connect(on_user_logged_in)
null
models.py
models.py
py
1,966
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.contrib.auth.models.UserManager", "line_number": 10, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.AbstractUser", "line_number": 16, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 17, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 29, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 29, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 30, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.conf.settings.AUTH_USER_MODEL", "line_number": 30, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 30, "usage_type": "attribute" }, { "api_name": "django.db.models.TextField", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 31, "usage_type": "name" }, { "api_name": "django.core.mail.send_mail", "line_number": 43, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save.connect", "line_number": 51, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 51, "usage_type": "name" }, { "api_name": "django.conf.settings.AUTH_USER_MODEL", "line_number": 51, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 51, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 54, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 54, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 55, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 55, "usage_type": "name" }, { "api_name": "django.conf.settings.AUTH_USER_MODEL", "line_number": 55, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 55, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 55, "usage_type": "attribute" }, { "api_name": "django.db.models.CharField", "line_number": 56, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 56, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 57, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 57, "usage_type": "name" }, { "api_name": "django.contrib.auth.signals.user_logged_in.connect", "line_number": 63, "usage_type": "call" }, { "api_name": "django.contrib.auth.signals.user_logged_in", "line_number": 63, "usage_type": "name" } ]
218548589
import sqlite3 # Setting up the database def connect(): con = sqlite3.connect("movies.db") # reaching for 'movies' database using sqlite3.connection cur = con.cursor() # using .cursor we can write commands in sql to our database cur.execute("CREATE TABLE IF NOT EXISTS movies (ID INTEGER PRIMARY KEY, Title TEXT, Year INTEGER, Director TEXT, Length FLOAT, IMN INTEGER)") con.commit() # submiting changes con.close() # Adding a new row to database def add(t, y, d, l, id): con = sqlite3.connect("movies.db") cur = con.cursor() cur.execute("INSERT INTO movies VALUES (NULL,?,?,?,?,?)", (t, y, d, l, id)) # our NULL value is for the ID column in movies database, # we set it to null because its set as a PRIMARY KEY whose value is beeing generated automaticaly con.commit() con.close() # Deleteing a row from database by its ID def delete(id): con = sqlite3.connect("movies.db") cur = con.cursor() cur.execute("DELETE FROM movies WHERE ID=?",(id,)) con.commit() con.close() # Updateing an existing row in the database and assigning new values to it def update(ID, Title, Year, Director, Length, IMN): con = sqlite3.connect("movies.db") cur = con.cursor() cur.execute("UPDATE movies SET Title=?, Year=?, Director=?, Length=?, IMN=? WHERE ID=?", (Title,Year,Director,Length,IMN,ID)) con.commit() con.close() # Printing out all the rows in the database # no need to commit cause we didnt make no changes def view_all(): con = sqlite3.connect("movies.db") cur = con.cursor() cur.execute("SELECT * FROM movies") rows = cur.fetchall() # we'll need to store the database rows in a list so we can print it later con.close() return rows # Search for a movie by its title # seach a title in the database by lowercase value - makes it easy to search a title without beeing case sensitive... def search(t): con = sqlite3.connect("movies.db") cur = con.cursor() cur.execute("SELECT * FROM movies WHERE LOWER(Title)=lower(?)",(t,)) rows=cur.fetchall() con.close() return rows
null
Application 5 - Desktop Database App/Movies/app5_backend.py
app5_backend.py
py
2,150
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlite3.connect", "line_number": 5, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 13, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 40, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 50, "usage_type": "call" } ]
603776291
import sys from time import sleep import pygame from bullet import Bullet from alien import Alien def check_events(ai_settings, screen, stats, play_button, ship, aliens, bullets,sb): """响应按键和鼠标事件""" for event in pygame.event.get(): if event.type == pygame.QUIT: sb.dump_file() sys.exit() elif event.type == pygame.KEYDOWN: check_keydown_events(event, ai_settings, screen, ship, bullets) elif event.type == pygame.KEYUP: check_keyup_events(event,ai_settings, screen, stats, ship, aliens, bullets,sb) elif event.type == pygame.MOUSEBUTTONDOWN:#检测单击按钮事件 check_mousebuttondown(ai_settings, screen, stats, play_button,ship, aliens, bullets,sb) def check_mousebuttondown(ai_settings, screen, stats, play_button,ship, aliens, bullets,sb): mouse_x, mouse_y = pygame.mouse.get_pos() check_play_button(ai_settings, screen, stats, play_button, ship, aliens, bullets,sb, mouse_x, mouse_y) check_history_button(stats, play_button,sb, mouse_x, mouse_y) check_reset_button(stats, play_button,sb, mouse_x, mouse_y) check_return_button(stats, play_button, mouse_x, mouse_y) def check_keydown_events(event, ai_settings, screen, ship, bullets): """响应按键""" if event.key == pygame.K_RIGHT: ship.moving_right = True elif event.key == pygame.K_LEFT: ship.moving_left = True elif event.key == pygame.K_DOWN: ship.moving_down = True elif event.key == pygame.K_UP: ship.moving_up = True elif event.key == pygame.K_SPACE: fire_bullet(ai_settings, screen, ship, bullets) def check_keyup_events(event,ai_settings, screen, stats, ship, aliens, bullets,sb): """响应松开""" if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False elif event.key == pygame.K_UP: ship.moving_up = False elif event.key == pygame.K_DOWN: ship.moving_down = False elif event.key == pygame.K_ESCAPE: sb.dump_file() sys.exit() elif event.key == pygame.K_p: start_game(ai_settings, screen, stats, ship, aliens, bullets,sb) def start_game(ai_settings, screen, stats, ship, aliens, bullets,sb): # 重置游戏设置 ai_settings.initialize_dynamic_settings() # 隐藏光标 pygame.mouse.set_visible(False) # 重置游戏统计信息 stats.reset_stats() stats.game_active = True # 重置记分牌图像 sb.prep_score() sb.prep_high_score() sb.prep_level() sb.prep_ships() # 清空外星人列表和子弹列表 aliens.empty() bullets.empty() # 创建一群新的外星人,并让飞船居中 create_alien(ai_settings,screen,aliens,stats) ship.center_ship() def check_play_button(ai_settings, screen, stats, play_button, ship, aliens, bullets,sb, mouse_x, mouse_y): """在玩家单击Play按钮时开始新游戏""" button_clicked = play_button.play_rect.collidepoint(mouse_x, mouse_y) if button_clicked and not stats.game_active and not stats.history_button: start_game(ai_settings, screen, stats, ship, aliens, bullets,sb) def check_history_button(stats, play_button,sb,mouse_x, mouse_y): button_clicked = play_button.history_rect.collidepoint(mouse_x, mouse_y) if button_clicked and not stats.game_active: stats.history_button = True sb.load_file() def check_return_button(stats, play_button, mouse_x, mouse_y): button_clicked = play_button.return_rect.collidepoint(mouse_x, mouse_y) if button_clicked and not stats.game_active and stats.history_button: stats.history_button = False def check_reset_button(stats, play_button,sb, mouse_x, mouse_y): button_clicked = play_button.reset_rect.collidepoint(mouse_x, mouse_y) if button_clicked and not stats.game_active and stats.history_button: sb.clearly_ranking() #sb.load_file() def check_aliens_bottom(ai_settings, screen, stats, sb, ship, aliens, bullets): """检查是否有外星人到达了屏幕底端""" screen_rect = screen.get_rect() for alien in aliens.sprites(): if alien.rect.bottom >= screen_rect.bottom: aliens.remove(alien) break def update_aliens(ai_settings, screen, stats, sb, ship, aliens, bullets): """更新整群外星人的位置""" aliens.update() # 检测外星人和飞船之间的碰撞 if pygame.sprite.spritecollideany(ship, aliens): ship_hit(ai_settings, screen, stats, sb, ship, aliens, bullets) # 检查是否有外星人到达屏幕底端 check_aliens_bottom(ai_settings, screen, stats, sb, ship, aliens, bullets) def ship_hit(ai_settings, screen, stats, sb, ship, aliens, bullets): """响应被外星人撞到的飞船""" if stats.ships_left > 0: # 将ships_left减1 stats.ships_left -= 1 # 更新记分牌 sb.prep_ships() else: stats.game_active = False pygame.mouse.set_visible(True)#显示鼠标光标 # 清空外星人列表和子弹列表 aliens.empty() bullets.empty() # 创建一群新的外星人,并将飞船放到屏幕底端中央 create_alien(ai_settings,screen,aliens,stats) ship.center_ship() # 暂停 sleep(0.5) def update_screen(ai_settings, screen, stats, sb, ship, aliens, bullets, play_button): screen.fill(ai_settings.bg_color)#这个方法只接受一个实参:一种颜色 # 在飞船和外星人后面重绘所有子弹 for bullet in bullets.sprites(): bullet.draw_bullet() #让飞船出现在屏幕 ship.blitme() aliens.draw(screen) #alien.blitme() # 显示得分 if stats.history_button:#如果历史按钮活动状态 play_button.draw_score_ranking() sb.history_score() sb.show_score() # 如果游戏处于非活动状态,就绘制Play按钮 if not stats.game_active and not stats.history_button: play_button.draw_button() # 让最近绘制的屏幕可见 pygame.display.flip() #不断更新屏幕,以显示元素的新位置 def fire_bullet(ai_settings,screen,ship,bullets): if len(bullets) < ai_settings.bullets_allowed: """如果还没有到达限制,就发射一颗子弹""" # 创建一颗子弹,并将其加入到编组bullets中 new_bullet = Bullet(ai_settings,screen, ship) bullets.add(new_bullet) def update_bullets(ai_settings, screen, stats, sb, ship, aliens, bullets): """更新子弹的位置,并删除已消失的子弹""" # 更新子弹的位置 bullets.update() # 删除已消失的子弹 for bullet in bullets.copy(): if bullet.rect.bottom <= 0: bullets.remove(bullet) check_bullet_alien_collisions(ai_settings, screen, stats, sb, ship, aliens, bullets) def start_new_level(stats,sb,ai_settings, ship,screen, aliens): if stats.beat_alien*ai_settings.speedup_scale+stats.score_alien<=stats.score: # 如果到达等级条件,就提高一个等级 #bullets.empty() stats.beat_alien += stats.beat_alien*ai_settings.speedup_scale#增加提高等级条件 ai_settings.increase_speed() # 提高等级 stats.level += 1 sb.prep_level() # create_fleet(ai_settings, ship,screen, aliens) def check_bullet_alien_collisions(ai_settings, screen, stats, sb, ship, aliens, bullets): """响应子弹和外星人的碰撞""" # 删除发生碰撞的子弹和外星人 collisions = pygame.sprite.groupcollide(bullets, aliens, True, True) #if collisions: for aliens in collisions.values(): stats.score += ai_settings.alien_points * len(aliens) sb.prep_score() check_high_score(stats, sb) start_new_level(stats,sb,ai_settings, ship,screen, aliens) def check_high_score(stats, sb): """检查是否诞生了新的最高得分""" if stats.score > stats.high_score: stats.high_score = stats.score sb.prep_high_score() def create_alien(ai_settings,screen,aliens,stats): """创建一个外星人并将其放在当前行""" alien = Alien(ai_settings,screen) if len(aliens) < 3+int(stats.level/2): aliens.add(alien)
null
game_functions.py
game_functions.py
py
7,629
python
en
code
null
code-starcoder2
83
[ { "api_name": "pygame.event.get", "line_number": 10, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 10, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 11, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 13, "usage_type": "call" }, { "api_name": "pygame.KEYDOWN", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pygame.KEYUP", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEBUTTONDOWN", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pygame.mouse.get_pos", "line_number": 23, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 23, "usage_type": "attribute" }, { "api_name": "pygame.K_RIGHT", "line_number": 31, "usage_type": "attribute" }, { "api_name": "pygame.K_LEFT", "line_number": 33, "usage_type": "attribute" }, { "api_name": "pygame.K_DOWN", "line_number": 35, "usage_type": "attribute" }, { "api_name": "pygame.K_UP", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pygame.K_SPACE", "line_number": 39, "usage_type": "attribute" }, { "api_name": "pygame.K_RIGHT", "line_number": 43, "usage_type": "attribute" }, { "api_name": "pygame.K_LEFT", "line_number": 45, "usage_type": "attribute" }, { "api_name": "pygame.K_UP", "line_number": 47, "usage_type": "attribute" }, { "api_name": "pygame.K_DOWN", "line_number": 49, "usage_type": "attribute" }, { "api_name": "pygame.K_ESCAPE", "line_number": 51, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 53, "usage_type": "call" }, { "api_name": "pygame.K_p", "line_number": 54, "usage_type": "attribute" }, { "api_name": "pygame.mouse.set_visible", "line_number": 60, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 60, "usage_type": "attribute" }, { "api_name": "alien.rect", "line_number": 99, "usage_type": "attribute" }, { "api_name": "pygame.sprite.spritecollideany", "line_number": 106, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 106, "usage_type": "attribute" }, { "api_name": "pygame.mouse.set_visible", "line_number": 120, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 120, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 128, "usage_type": "call" }, { "api_name": "bullet.draw_bullet", "line_number": 135, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 149, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 149, "usage_type": "attribute" }, { "api_name": "bullet.Bullet", "line_number": 155, "usage_type": "call" }, { "api_name": "bullet.rect", "line_number": 164, "usage_type": "attribute" }, { "api_name": "pygame.sprite.groupcollide", "line_number": 184, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 184, "usage_type": "attribute" }, { "api_name": "alien.Alien", "line_number": 200, "usage_type": "call" } ]
298704684
#!/usr/bin/env python ''' @author Luke Campbell <[email protected]> @file ion/processes/data/replay/replay_process.py @date 06/14/12 13:31 @description Implementation for a replay process. ''' from pyon.core.exception import BadRequest, NotFound from pyon.core.object import IonObjectDeserializer from pyon.core.bootstrap import get_obj_registry from pyon.datastore.datastore import DataStore from pyon.util.arg_check import validate_is_instance from pyon.util.log import log from ion.services.dm.inventory.dataset_management_service import DatasetManagementService from ion.services.dm.utility.granule import RecordDictionaryTool from interface.services.dm.idataset_management_service import DatasetManagementServiceProcessClient, DatasetManagementServiceClient from interface.services.dm.ipubsub_management_service import PubsubManagementServiceProcessClient from interface.services.dm.ireplay_process import BaseReplayProcess from gevent.event import Event from numbers import Number import datetime import dateutil.parser import gevent import netCDF4 import numpy as np import time class ReplayProcess(BaseReplayProcess): ''' ReplayProcess - A process spawned for the purpose of replaying data -------------------------------------------------------------------------------- Configurations ============== process: dataset_id: "" # Dataset to be replayed delivery_format: {} # Delivery format to be replayed back (unused for now) query: start_time: 0 # Start time (index value) to be replayed end_time: 0 # End time (index value) to be replayed parameters: [] # List of parameters to form in the granule ''' process_type = 'standalone' publish_limit = 10 dataset_id = None delivery_format = {} start_time = None end_time = None stride_time = None parameters = None stream_id = '' stream_def_id = '' def __init__(self, *args, **kwargs): super(ReplayProcess,self).__init__(*args,**kwargs) self.deserializer = IonObjectDeserializer(obj_registry=get_obj_registry()) self.publishing = Event() self.play = Event() self.end = Event() def on_start(self): ''' Starts the process ''' log.info('Replay Process Started') super(ReplayProcess,self).on_start() dsm_cli = DatasetManagementServiceProcessClient(process=self) pubsub = PubsubManagementServiceProcessClient(process=self) self.dataset_id = self.CFG.get_safe('process.dataset_id', None) self.delivery_format = self.CFG.get_safe('process.delivery_format',{}) self.start_time = self.CFG.get_safe('process.query.start_time', None) self.end_time = self.CFG.get_safe('process.query.end_time', None) self.stride_time = self.CFG.get_safe('process.query.stride_time', None) self.parameters = self.CFG.get_safe('process.query.parameters',None) self.publish_limit = self.CFG.get_safe('process.query.publish_limit', 10) self.tdoa = self.CFG.get_safe('process.query.tdoa',None) self.stream_id = self.CFG.get_safe('process.publish_streams.output', '') self.stream_def = pubsub.read_stream_definition(stream_id=self.stream_id) self.stream_def_id = self.stream_def._id self.publishing.clear() self.play.set() self.end.clear() if self.dataset_id is None: raise BadRequest('dataset_id not specified') self.dataset = dsm_cli.read_dataset(self.dataset_id) self.pubsub = PubsubManagementServiceProcessClient(process=self) @classmethod def _coverage_to_granule(cls, coverage, start_time=None, end_time=None, stride_time=None, parameters=None, stream_def_id=None, tdoa=None): slice_ = slice(None) # Defaults to all values if tdoa is not None and isinstance(tdoa,slice): slice_ = tdoa elif stride_time is not None: validate_is_instance(start_time, Number, 'start_time must be a number for striding.') validate_is_instance(end_time, Number, 'end_time must be a number for striding.') validate_is_instance(stride_time, Number, 'stride_time must be a number for striding.') ugly_range = np.arange(start_time, end_time, stride_time) idx_values = [cls.get_relative_time(coverage,i) for i in ugly_range] idx_values = list(set(idx_values)) # Removing duplicates slice_ = [idx_values] elif not (start_time is None and end_time is None): time_var = coverage.temporal_parameter_name uom = coverage.get_parameter_context(time_var).uom if start_time is not None: start_units = cls.ts_to_units(uom,start_time) log.info('Units: %s', start_units) start_idx = cls.get_relative_time(coverage,start_units) log.info('Start Index: %s', start_idx) start_time = start_idx if end_time is not None: end_units = cls.ts_to_units(uom,end_time) log.info('End units: %s', end_units) end_idx = cls.get_relative_time(coverage,end_units) log.info('End index: %s', end_idx) end_time = end_idx slice_ = slice(start_time,end_time,stride_time) log.info('Slice: %s', slice_) if stream_def_id: rdt = RecordDictionaryTool(stream_definition_id=stream_def_id) else: rdt = RecordDictionaryTool(param_dictionary=coverage.parameter_dictionary) if parameters is not None: fields = list(set(parameters).intersection(rdt.fields)) else: fields = rdt.fields for field in fields: log.info( 'Slice is %s' , slice_) rdt[field] = coverage.get_parameter_values(field, tdoa=slice_) return rdt def execute_retrieve(self): ''' execute_retrieve Executes a retrieval and returns the result as a value in lieu of publishing it on a stream ''' try: coverage = DatasetManagementService._get_coverage(self.dataset_id) rdt = self._coverage_to_granule(coverage,self.start_time, self.end_time, self.stride_time, self.parameters,tdoa=self.tdoa) coverage.close(timeout=5) except Exception as e: import traceback traceback.print_exc(e) raise BadRequest('Problems reading from the coverage') return rdt.to_granule() def execute_replay(self): ''' execute_replay Performs a replay and publishes the results on a stream. ''' if self.publishing.is_set(): return False gevent.spawn(self.replay) return True def replay(self): self.publishing.set() # Minimal state, supposed to prevent two instances of the same process from replaying on the same stream for rdt in self._replay(): if self.end.is_set(): return self.play.wait() self.output.publish(rdt.to_granule()) self.publishing.clear() return def pause(self): self.play.clear() def resume(self): self.play.set() def stop(self): self.end.set() @classmethod def get_last_granule(cls, container, dataset_id): dsm_cli = DatasetManagementServiceClient() dataset = dsm_cli.read_dataset(dataset_id) cc = container datastore_name = dataset.datastore_name view_name = dataset.view_name datastore = cc.datastore_manager.get_datastore(datastore_name, DataStore.DS_PROFILE.SCIDATA) opts = dict( start_key = [dataset_id, {}], end_key = [dataset_id, 0], descending = True, limit = 1, include_docs = True ) results = datastore.query_view(view_name,opts=opts) if not results: raise NotFound('A granule could not be located.') if results[0] is None: raise NotFound('A granule could not be located.') doc = results[0].get('doc') if doc is None: return None ts = float(doc.get('ts_create',0)) coverage = DatasetManagementService._get_coverage(dataset_id) rdt = cls._coverage_to_granule(coverage,start_time=ts, end_time=None) coverage.close(timeout=5) return rdt.to_granule() @classmethod def get_last_values(cls, dataset_id, number_of_points): coverage = DatasetManagementService._get_coverage(dataset_id) if coverage.num_timesteps < number_of_points: if coverage.num_timesteps == 0: rdt = RecordDictionaryTool(param_dictionary=coverage.parameter_dictionary) return rdt.to_granule() number_of_points = coverage.num_timesteps rdt = cls._coverage_to_granule(coverage,tdoa=slice(-number_of_points,None)) coverage.close(timeout=5) return rdt.to_granule() def _replay(self): coverage = DatasetManagementService._get_coverage(self.dataset_id) rdt = self._coverage_to_granule(coverage, self.start_time, self.end_time, self.stride_time, self.parameters, self.stream_def_id) elements = len(rdt) for i in xrange(elements / self.publish_limit): outgoing = RecordDictionaryTool(stream_definition_id=self.stream_def_id) fields = self.parameters or outgoing.fields for field in fields: outgoing[field] = rdt[field][(i*self.publish_limit) : ((i+1)*self.publish_limit)] yield outgoing coverage.close(timeout=5) return @classmethod def get_relative_time(cls, coverage, time): ''' Determines the relative time in the coverage model based on a given time The time must match the coverage's time units ''' time_name = coverage.temporal_parameter_name pc = coverage.get_parameter_context(time_name) units = pc.uom if 'iso' in units: return None # Not sure how to implement this.... How do you compare iso strings effectively? values = coverage.get_parameter_values(time_name) return cls.find_nearest(values,time) @classmethod def ts_to_units(cls,units, val): ''' Converts a unix timestamp into various formats Example: ts = time.time() CoverageCraft.ts_to_units('days since 2000-01-01', ts) ''' if 'iso' in units: return time.strftime('%Y-%d-%mT%H:%M:%S', time.gmtime(val)) elif 'since' in units: t = netCDF4.netcdftime.utime(units) return t.date2num(datetime.datetime.utcfromtimestamp(val)) else: return val @classmethod def units_to_ts(cls, units, val): ''' Converts known time formats into a unix timestamp Example: ts = CoverageCraft.units_to_ts('days since 2000-01-01', 1200) ''' if 'since' in units: t = netCDF4.netcdftime.utime(units) dtg = t.num2date(val) return time.mktime(dtg.timetuple()) elif 'iso' in units: t = dateutil.parser.parse(val) return time.mktime(t.timetuple()) else: return val @classmethod def find_nearest(cls, arr, val): ''' The sexiest algorithm for finding the best matching value for a numpy array ''' idx = np.abs(arr-val).argmin() return idx
null
ion/processes/data/replay/replay_process.py
replay_process.py
py
11,838
python
en
code
null
code-starcoder2
83
[ { "api_name": "interface.services.dm.ireplay_process.BaseReplayProcess", "line_number": 33, "usage_type": "name" }, { "api_name": "pyon.core.object.IonObjectDeserializer", "line_number": 64, "usage_type": "call" }, { "api_name": "pyon.core.bootstrap.get_obj_registry", "line_number": 64, "usage_type": "call" }, { "api_name": "gevent.event.Event", "line_number": 65, "usage_type": "call" }, { "api_name": "gevent.event.Event", "line_number": 66, "usage_type": "call" }, { "api_name": "gevent.event.Event", "line_number": 67, "usage_type": "call" }, { "api_name": "pyon.util.log.log.info", "line_number": 73, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 73, "usage_type": "name" }, { "api_name": "interface.services.dm.idataset_management_service.DatasetManagementServiceProcessClient", "line_number": 75, "usage_type": "call" }, { "api_name": "interface.services.dm.ipubsub_management_service.PubsubManagementServiceProcessClient", "line_number": 76, "usage_type": "call" }, { "api_name": "pyon.core.exception.BadRequest", "line_number": 95, "usage_type": "call" }, { "api_name": "interface.services.dm.ipubsub_management_service.PubsubManagementServiceProcessClient", "line_number": 98, "usage_type": "call" }, { "api_name": "pyon.util.arg_check.validate_is_instance", "line_number": 107, "usage_type": "call" }, { "api_name": "numbers.Number", "line_number": 107, "usage_type": "argument" }, { "api_name": "pyon.util.arg_check.validate_is_instance", "line_number": 108, "usage_type": "call" }, { "api_name": "numbers.Number", "line_number": 108, "usage_type": "argument" }, { "api_name": "pyon.util.arg_check.validate_is_instance", "line_number": 109, "usage_type": "call" }, { "api_name": "numbers.Number", "line_number": 109, "usage_type": "argument" }, { "api_name": "numpy.arange", "line_number": 110, "usage_type": "call" }, { "api_name": "pyon.util.log.log.info", "line_number": 120, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 120, "usage_type": "name" }, { "api_name": "pyon.util.log.log.info", "line_number": 122, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 122, "usage_type": "name" }, { "api_name": "pyon.util.log.log.info", "line_number": 126, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 126, "usage_type": "name" }, { "api_name": "pyon.util.log.log.info", "line_number": 128, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 128, "usage_type": "name" }, { "api_name": "pyon.util.log.log.info", "line_number": 131, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 131, "usage_type": "name" }, { "api_name": "ion.services.dm.utility.granule.RecordDictionaryTool", "line_number": 134, "usage_type": "call" }, { "api_name": "ion.services.dm.utility.granule.RecordDictionaryTool", "line_number": 136, "usage_type": "call" }, { "api_name": "pyon.util.log.log.info", "line_number": 143, "usage_type": "call" }, { "api_name": "pyon.util.log.log", "line_number": 143, "usage_type": "name" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService._get_coverage", "line_number": 153, "usage_type": "call" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService", "line_number": 153, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 158, "usage_type": "call" }, { "api_name": "pyon.core.exception.BadRequest", "line_number": 159, "usage_type": "call" }, { "api_name": "gevent.spawn", "line_number": 170, "usage_type": "call" }, { "api_name": "interface.services.dm.idataset_management_service.DatasetManagementServiceClient", "line_number": 197, "usage_type": "call" }, { "api_name": "pyon.datastore.datastore.DataStore.DS_PROFILE", "line_number": 203, "usage_type": "attribute" }, { "api_name": "pyon.datastore.datastore.DataStore", "line_number": 203, "usage_type": "name" }, { "api_name": "pyon.core.exception.NotFound", "line_number": 215, "usage_type": "call" }, { "api_name": "pyon.core.exception.NotFound", "line_number": 217, "usage_type": "call" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService._get_coverage", "line_number": 224, "usage_type": "call" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService", "line_number": 224, "usage_type": "name" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService._get_coverage", "line_number": 232, "usage_type": "call" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService", "line_number": 232, "usage_type": "name" }, { "api_name": "ion.services.dm.utility.granule.RecordDictionaryTool", "line_number": 235, "usage_type": "call" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService._get_coverage", "line_number": 244, "usage_type": "call" }, { "api_name": "ion.services.dm.inventory.dataset_management_service.DatasetManagementService", "line_number": 244, "usage_type": "name" }, { "api_name": "ion.services.dm.utility.granule.RecordDictionaryTool", "line_number": 249, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 281, "usage_type": "call" }, { "api_name": "time.gmtime", "line_number": 281, "usage_type": "call" }, { "api_name": "netCDF4.netcdftime.utime", "line_number": 283, "usage_type": "call" }, { "api_name": "netCDF4.netcdftime", "line_number": 283, "usage_type": "attribute" }, { "api_name": "datetime.datetime.utcfromtimestamp", "line_number": 284, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 284, "usage_type": "attribute" }, { "api_name": "netCDF4.netcdftime.utime", "line_number": 297, "usage_type": "call" }, { "api_name": "netCDF4.netcdftime", "line_number": 297, "usage_type": "attribute" }, { "api_name": "time.mktime", "line_number": 299, "usage_type": "call" }, { "api_name": "dateutil.parser.parser.parse", "line_number": 301, "usage_type": "call" }, { "api_name": "dateutil.parser.parser", "line_number": 301, "usage_type": "attribute" }, { "api_name": "dateutil.parser", "line_number": 301, "usage_type": "name" }, { "api_name": "time.mktime", "line_number": 302, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 311, "usage_type": "call" } ]
173229494
# -*- coding: utf-8 -*- import os import json import chardet import urllib2 import common_operations as co DEFAULT_HOSTS_FN = u"DEFAULT.hosts" class Hosts(object): CONFIG_FLAG = "#@SwitchHost!" def __init__(self, index=0, path=None, icon_idx=0): self.index = index self.path = path self.dc_path = co.decode(path) self.folder, self.fn = os.path.split(path) # self.fn = co.decode(self.fn) # if os.name == "nt": # self.fn = self.fn.decode("GB18030") self.title = None self.icon_idx = icon_idx self.content = "" self.is_selected = False self.url = None # 如果是在线hosts方案,则此项不为空 self.last_fetch_dt = None # 如果是在线hosts方案,则此项为最后更新时间 self.read() @property def is_read_only(self): return self.url is not None def read(self): if not self.url: c = open(self.path, "rb").read().strip() if os.path.isfile(self.path) else "" else: c = urllib2.urlopen(self.url).read().strip() if co.httpExists(self.url) else "" # c = co.decode(c) self.setContent(c, save=False) def getConfig(self, ln): u"""从一行内容中取得配置信息""" cfg = None v = ln.partition(self.CONFIG_FLAG)[2].strip() if v: try: cfg = json.loads(v) except Exception: pass if cfg: self.title = cfg.get("title", self.title) self.icon_idx = cfg.get("icon_idx", self.icon_idx) def save(self): if not self.path: return cfg = { "title": self.title, "icon_idx": self.icon_idx, } if self.url: cfg.update({ "url": self.url, }) cfg_ln = u"%s %s" % (self.CONFIG_FLAG, json.dumps(cfg).replace("\n", "").replace("\r", "")) c = self.content if not repr(c).startswith("u"): c = c.decode("utf-8") c = u"%s\n%s" % (cfg_ln, c) open(self.path, "wb").write(c.encode("utf-8")) def getTitle(self): return self.title or self.fn if self.fn != DEFAULT_HOSTS_FN else self.fn def setTitle(self, title): self.title = title self.save() def setIcon(self, icon_idx): self.icon_idx = icon_idx self.save() def setContent(self, c, save=True): self.content = c #co.encode(c) # 查看第一行是否为配置内容 # 第一行以 #SwitchHost 开头表示为配置信息 a = [i.strip() for i in c.split("\n")] if a[0].startswith(self.CONFIG_FLAG): self.getConfig(a[0]) self.content = "\n".join(a[1:]) if save: self.save() def getContent(self): c = self.content if not repr(c).startswith("u"): try: cd = chardet.detect(c) c = c.decode(cd.get("encoding", "utf-8")) except Exception: c = c.decode("utf-8") return c
null
legacy/v1/libs/cls_Hosts.py
cls_Hosts.py
py
3,162
python
en
code
null
code-starcoder2
83
[ { "api_name": "common_operations.decode", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.split", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "common_operations.httpExists", "line_number": 49, "usage_type": "call" }, { "api_name": "urllib2.urlopen", "line_number": 49, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 63, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 85, "usage_type": "call" }, { "api_name": "chardet.detect", "line_number": 132, "usage_type": "call" } ]
24096253
import os import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import config from utils import figure_utils from utils.typical_pair_utils import get_joint_plot_x_y fontsize = 6 mpl.rcParams['font.size'] = fontsize mpl.rcParams['lines.linewidth'] = 1.0 mpl.rcParams['legend.frameon'] = False mpl.rcParams['legend.fontsize'] = 'small' fig = plt.figure(figsize=(6, 6.)) outer_grid = gridspec.GridSpec(3,2, width_ratios=[1,1],wspace=0.3,figure=fig) plt.subplots_adjust(wspace=0.25, hspace=0.6) ex1 = 'Prevotella_copri_61740' # lack of close pairs ex2 = 'Lachnospiraceae_bacterium_51870' # lack of typical pairs # ex2 = 'Roseburia_inulinivorans_61943' # lack of close pairs ex3 = 'Barnesiella_intestinihominis_62208' # minimal spread in joint plot ex4 = 'Bacteroides_caccae_53434' # uneven distribution along cf ex5 = 'Bacteroides_vulgatus_57955' # population structure ex6 = 'Eubacterium_rectale_56927' # population structure species = [ex1, ex2, ex3, ex4, ex5, ex6] for i in range(3): for j in range(2): inner_grid = gridspec.GridSpecFromSubplotSpec(1,2, width_ratios=[4,1],wspace=0.2,subplot_spec=outer_grid[i, j]) scatter_ax = fig.add_subplot(inner_grid[0]) marg_ax = fig.add_subplot(inner_grid[1], sharey=scatter_ax) plt.setp(marg_ax.get_yticklabels(), visible=False) plt.setp(marg_ax.get_yticklabels(minor=True), visible=False) species_name = species[i*2+j] x,y = get_joint_plot_x_y(species_name) y = y * 100 xs = np.linspace(0.01, 1, 100) ys = -np.log(xs) / config.first_pass_block_size * 100 scatter_ax.plot(xs, ys, '--r', zorder=1, label='random mutations') scatter_ax.scatter(x, y, s=0.6, linewidth=0, zorder=2, rasterized=True) marg_ax.hist(y, orientation='horizontal', bins=100, alpha=0.6) marg_ax.set_xscale('log') if ('copri' in species_name) or ('Roseburia' in species_name) or ('Lachnospiraceae' in species_name): marg_ax.set_xticks([1, 10, 100]) else: marg_ax.set_xticks([1, 100]) scatter_ax.set_xlabel('Fraction of identical blocks') scatter_ax.set_ylabel('Pairwise syn divergence (%)') scatter_ax.legend() scatter_ax.set_title(figure_utils.get_pretty_species_name(species_name)) fig.savefig(os.path.join(config.figure_directory, 'supp', 'supp_joint_examples.pdf'), bbox_inches='tight', dpi=600)
null
plotting_for_publication/supp_plot_example_cf_pd_joint.py
supp_plot_example_cf_pd_joint.py
py
2,496
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.rcParams", "line_number": 12, "usage_type": "attribute" }, { "api_name": "matplotlib.rcParams", "line_number": 13, "usage_type": "attribute" }, { "api_name": "matplotlib.rcParams", "line_number": 14, "usage_type": "attribute" }, { "api_name": "matplotlib.rcParams", "line_number": 15, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.gridspec.GridSpec", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.gridspec", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.gridspec.GridSpecFromSubplotSpec", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.gridspec", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.setp", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.setp", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "utils.typical_pair_utils.get_joint_plot_x_y", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 46, "usage_type": "call" }, { "api_name": "config.first_pass_block_size", "line_number": 46, "usage_type": "attribute" }, { "api_name": "utils.figure_utils.get_pretty_species_name", "line_number": 61, "usage_type": "call" }, { "api_name": "utils.figure_utils", "line_number": 61, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 63, "usage_type": "call" }, { "api_name": "os.path", "line_number": 63, "usage_type": "attribute" }, { "api_name": "config.figure_directory", "line_number": 63, "usage_type": "attribute" } ]
207704944
import os import numpy as np import sys import urllib import math from pyspark import SparkConf from pyspark.context import SparkContext from pyspark.sql import SparkSession from pyspark import SparkContext, SparkConf sc = SparkContext.getOrCreate() import re from collections import Counter from string import punctuation #To run this code type python3 naive_bayes.py <train_url_location> <test_url_location> <dataset_size> <1> #The following code preprocess the text and lables set for the large/small/vsmall sets. #It stores it under X_train_clean.txt, y_train_clean.txt, X_train_clean.txt and y_test_clean.txt (Optional) #in the same folder where it is called. It will automatically collect the data and create these four files ######################################################################################################################## def fix_doc(x): #basic preprocessing - removing the same stuff from project 0 but later we will add more #example we can import punctuations from string and use it but later :> #https://docs.python.org/2/library/re.html read more here x=re.sub('\.|,|:|;|\'|\!|\?|"','',x) #x=re.sub('!|"|#|$|%|&|\'|(|)|*|+|,|-|.|/|:|;|<|=|>|?|@|[|\|]|^|_|`|{|||}|~','',x) #x=x.strip(".,:;'!?") # next we will do maulik's stuff before making it lower # uncomment to use also maybe verify my logic #x=re.sub("[ ([A-Z][a-zA-Z]*\s*)+]","",x) #next we change to lower case #and remove quote and amp x=x.lower() x=re.sub('&quot|&amp','',x) #last step remove everything which is not a letter and x=re.sub('[^a-z]',' ',x) x=re.sub("\s\s+|\+"," ", x) a="" x=x.split(" ") for i in range(0,len(x)): if(x[i] not in stopWords.value and (len(x[i])>2)): a=a+x[i]+" " a=a.strip() return a ####################################################################################################################### def getcats(x): #This function scans the preprocessed files and returns data containing all the four classes or all the adta containing CAT #which is the suffix of the four classes. x=str(x, "utf-8") x=x.split(",") fitered_data=[] for i in x: if ("CAT" or "cat") in i: fitered_data.append(i.lower()) return fitered_data ###################################################################################################################### def split_data(x): #splits the key value pair into multiple rows if the value has multiple values eg, #input [0,(first,second)] --> [[0,first],[0,second]] #Some words in the text belong to two different classes.In such a case, the data is saved twice as belonging to a different #in each case. combined=[] for j in range(0,len(x)): key=x[j][0] value=x[j][1] for i in range(0,len(value)): single_row=[] single_row.append(key) single_row.append(value[i]) combined.append(single_row) return (combined) ###################################################################################################################### ###################################################################################################################### #def create_array(x): # ccat= ###################################################################################################################### def create_array1(x,a,b,c,d): #calculates the log of the word frequencies ccat=1 ecat=1 gcat=1 mcat=1 for k in range(0,len(x)): if((x[k])=='c'): ccat=ccat+(float)(x[k+1]) elif((x[k])=='e'): ecat=ecat+(float)(x[k+1]) elif((x[k])=='m'): mcat=mcat+(float)(x[k+1]) elif((x[k])=='g'): gcat=gcat+(float)(x[k+1]) ccat=math.log(ccat/(a+vocab.value)) ecat=math.log(ecat/(c+vocab.value)) mcat=math.log(mcat/(b+vocab.value)) gcat=math.log(gcat/(d+vocab.value)) return [ccat,mcat,ecat,gcat] def predict_class(x,a,b,c,d): #returns a prediction for the X_test tokens by using naive-bayes model class_values=group_by_class.value product=[0,0,0,0] for cc,v in x.items(): word=cc ccat=0 ecat=0 gcat=0 mcat=0 for j in range(0,1): if(word in class_values): ccat=(float)(class_values[word][0]) mcat=(float)(class_values[word][1]) ecat=(float)(class_values[word][2]) gcat=(float)(class_values[word][3]) product[0]=product[0]+(ccat*((float)(v))) product[1]=product[1]+(mcat*((float)(v))) product[2]=product[2]+(ecat*((float)(v))) product[3]=product[3]+(gcat*((float)(v))) product[0]=product[0]+a product[1]=product[1]+b product[2]=product[2]+c product[3]=product[3]+d best=np.argmax(product) if(best==0): return "CCAT" #return str(product[0]) elif(best==1): return "MCAT" #return str(product[1]) elif(best==2): return "ECAT" #return str(product[2]) else: return "GCAT" #return str(product[3]) ##################################################################################### #This function reads the Stop Words from the file containing stopwords. "stopWords.txt" def read_stop_words(): with open("stopWordList.txt") as f: readStopWords = [x.strip('\n').encode("utf-8") for x in f.readlines()] for i in range(0,len(readStopWords)): readStopWords[i]=str(readStopWords[i], "utf-8") return readStopWords if __name__ == "__main__": if len(sys.argv) != 5: print("Usage: project_1.py <url_train> <url_test> <vsmall/small/large> <1>", file=sys.stderr) exit(-1) spark = SparkSession\ .builder\ .appName("naive_bayes")\ .getOrCreate() #create stopwords later stopWords = sc.broadcast(read_stop_words()) #print(stopWords.value) base_url_train=(sys.argv[1]) base_url_test=(sys.argv[2]) dataset_size=(sys.argv[3]) flag=((int)(sys.argv[4])) #make local copy these are the raw files x=(str("wget "+base_url_train+"X_train_"+dataset_size+" -O X_to_train.txt")) os.system(x) x=(str("wget "+base_url_train+"y_train_"+dataset_size+" -O y_to_train.txt")) os.system(x) x=(str("wget "+base_url_test+"X_test_"+dataset_size+" -O X_to_test.txt")) os.system(x) #we convert the text to utf-8 "the common unicode scheme" according to python docs X_train=(sc.textFile("X_to_train.txt").map(lambda x:x.encode("utf-8"))) y_train=(sc.textFile("y_to_train.txt").map(lambda x:x.encode("utf-8"))) X_test=(sc.textFile("X_to_test.txt").map(lambda x:x.encode("utf-8"))) X_train=X_train.zipWithIndex().map(lambda x:(x[1],fix_doc(str(x[0], "utf-8")))) X_test=X_test.zipWithIndex().map(lambda x:(x[1],fix_doc(str(x[0], "utf-8")))) y_train=(y_train.map(getcats)\ .zipWithIndex().map(lambda x:(x[1],x[0]))).collect() #splitting the X_train and y train's with multiple copies y_train=sc.parallelize(split_data(y_train)) train_complete=X_train.join(y_train).map(lambda x:(x[1][0],x[1][1])) #seperates the X_train and y_train X_train=train_complete.map(lambda x:x[0]) y_train=train_complete.map(lambda x:x[1]) #calculates the total number of documents in different document class temp=y_train.map(lambda x:(x,1)).reduceByKey(lambda a,b:a+b).collect() print (temp) tot_ccat=temp[0][1] tot_mcat=temp[1][1] tot_ecat=temp[2][1] tot_gcat=temp[3][1] #calculates the probability of a document belonging to a single class prior_ccat=(math.log(((float)(tot_ccat))/((float)(tot_ccat+tot_gcat+tot_mcat+tot_ecat)))) prior_gcat=(math.log(((float)(tot_gcat))/((float)(tot_ccat+tot_gcat+tot_mcat+tot_ecat)))) prior_ecat=(math.log(((float)(tot_ecat))/((float)(tot_ccat+tot_gcat+tot_mcat+tot_ecat)))) prior_mcat=(math.log(((float)(tot_mcat))/((float)(tot_ccat+tot_gcat+tot_mcat+tot_ecat)))) #del(temp) #generates the vocab by collecting all the unique words from all the documents of the training set vocab=(X_train.flatMap(lambda x:x.split(" ")).map(lambda x:re.sub(",","", x)).distinct().map(lambda x:(1,1)).reduceByKey(lambda a,b:a+b).collect())[0][1] #print(vocab) vocab=sc.broadcast(vocab) #splits the words from X_train dataset into tuples like (hello ccat,1) and (hello gcat,1) and then reduces and finds individual word count perclass group_by_class=train_complete.map(lambda x:(x[1],x[0])).reduceByKey(lambda a,b:a+b).map(lambda x:([(x[0],z) for z in x[1].split(" ")]))\ .flatMap(lambda x:(x)).map(lambda x:(x,1)).reduceByKey(lambda a,b:a+b) temp=group_by_class.map(lambda x:(x[0][0],1)).reduceByKey(lambda a,b:a+b).collect() print (temp) tot_ccat=temp[0][1] tot_mcat=temp[1][1] tot_ecat=temp[2][1] tot_gcat=temp[3][1] #converts the string doc matrix eg (hello, ccat 1 gcat 1) to hello,[1,1,0,0] group_by_class=group_by_class.map(lambda x:(x[0][1],(str(x[0][0])+" "+str(x[1])+" "))).reduceByKey(lambda a,b:str(a)+str(b))\ .map(lambda x:(x[0],str(x[1]).replace("cat","").split(" "))).map(lambda x:(x[0],create_array1(x[1],tot_ccat,tot_mcat,tot_ecat,tot_gcat))).collect() group_by_class=sc.broadcast(dict(group_by_class)) #predicts on the testing set y_test=X_test.map(lambda x:Counter(x[1].split(" "))).map(lambda x:predict_class(x,prior_ccat,prior_mcat,prior_ecat,prior_gcat)) #saveing to file submit=open('y_test.txt',"w") y_test=y_test.collect() counter=0 for i in y_test: counter=counter+1 #print(counter) submit.write("%s\n" % i) submit.close()
null
gru/p1/naive_bayes.py
naive_bayes.py
py
10,266
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyspark.SparkContext.getOrCreate", "line_number": 10, "usage_type": "call" }, { "api_name": "pyspark.SparkContext", "line_number": 10, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 27, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 39, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 41, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 42, "usage_type": "call" }, { "api_name": "math.log", "line_number": 110, "usage_type": "call" }, { "api_name": "math.log", "line_number": 112, "usage_type": "call" }, { "api_name": "math.log", "line_number": 114, "usage_type": "call" }, { "api_name": "math.log", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 155, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 188, "usage_type": "attribute" }, { "api_name": "sys.stderr", "line_number": 189, "usage_type": "attribute" }, { "api_name": "pyspark.sql.SparkSession.builder.appName", "line_number": 191, "usage_type": "call" }, { "api_name": "pyspark.sql.SparkSession.builder", "line_number": 191, "usage_type": "attribute" }, { "api_name": "pyspark.sql.SparkSession", "line_number": 191, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 199, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 200, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 201, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 202, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 206, "usage_type": "call" }, { "api_name": "os.system", "line_number": 209, "usage_type": "call" }, { "api_name": "os.system", "line_number": 212, "usage_type": "call" }, { "api_name": "math.log", "line_number": 253, "usage_type": "call" }, { "api_name": "math.log", "line_number": 254, "usage_type": "call" }, { "api_name": "math.log", "line_number": 255, "usage_type": "call" }, { "api_name": "math.log", "line_number": 256, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 260, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 299, "usage_type": "call" } ]
531398356
""" * ProjectBio v1.0 * Copyright 2014-2015 Web2all. * Licensed under Share2Create * Author: Senthilkumar M <allaboutsenthil.appspot.com> */ """ import jinja2 import os import webapp2 from datetime import datetime TEMPLATE_DIR = os.path.join(os.path.dirname(__file__), 'templates') jinja_environment = \ jinja2.Environment(loader=jinja2.FileSystemLoader(TEMPLATE_DIR)) class BaseHandler(webapp2.RequestHandler): @webapp2.cached_property def jinja2(self): return jinja2.get_jinja2(app=self.app) def render_template( self, filename, template_values, **template_args ): template = jinja_environment.get_template(filename) self.response.out.write(template.render(template_values)) class MainPage(BaseHandler): def get(self): self.render_template('index.html', {}) app = webapp2.WSGIApplication([ ('/', MainPage) ], debug=True)
null
main.py
main.py
py
957
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 15, "usage_type": "call" }, { "api_name": "jinja2.Environment", "line_number": 17, "usage_type": "call" }, { "api_name": "jinja2.FileSystemLoader", "line_number": 17, "usage_type": "call" }, { "api_name": "webapp2.RequestHandler", "line_number": 20, "usage_type": "attribute" }, { "api_name": "jinja2.get_jinja2", "line_number": 24, "usage_type": "call" }, { "api_name": "webapp2.cached_property", "line_number": 22, "usage_type": "attribute" }, { "api_name": "webapp2.WSGIApplication", "line_number": 42, "usage_type": "call" } ]
286486033
################################################################## # Experiments for event-enhanced knowledge graph embeddings # # How to run: # # To train the embeddings for a given knowledge graph and event dataset # python ekl_experiment.py --dir 'path/to/dir' --... # Up to now there is no flag to switch to GPU support, but this should be # easy to change when needed # # Requirements: # # - Python 2.7 # - Tensorflow 0.12.1 # - numpy 1.12 # - rdflib 4.1.2 # - pandas import csv import numpy as np import tensorflow as tf from rdflib import URIRef, RDFS from models.RESCAL import RESCAL from models.TEKE import TEKE from models.TransE import TransE from models.TransH import TransH from models.model import ranking_error_triples, l2_similarity, bernoulli_probs from models.pre_training import EmbeddingPreTrainer, TEKEPreparation from event_models.LinearEventModel import Skipgram, ConcatenationFull, ConcatenationCause, Average from event_models.Autoencoder import ConvolutionalAutoEncoder, LSTMAutoencoder from prep.batch_generators import SkipgramBatchGenerator, TripleBatchGenerator, PredictiveEventBatchGenerator, FuturePredictiveBatchGenerator, AutoEncoderBatchGenerator from prep.etl import prepare_sequences, message_index from prep.preprocessing import PreProcessor from experiments.experiment_helper import slice_ontology, get_kg_statistics, get_low_dim_embs, get_zero_shot_scenario, \ cross_parameter_eval, TranslationModels, embs_to_df, Parameters, evaluate_on_test if __name__ == '__main__': ####### PATH PARAMETERS ######## base_path = "../traffic_data/" path_to_store_model = base_path + "Embeddings/" path_to_events = base_path + "Sequences/" path_to_kg = base_path + "Ontology/traffic_individuals.xml" path_to_store_sequences = base_path + "Sequences/" path_to_store_embeddings = base_path + "Embeddings/" traffic_data = True path_to_sequence = base_path + 'Sequences/sequence.txt' preprocessor = PreProcessor(path_to_kg) tk = None bern_probs = None num_sequences = None if traffic_data: max_events = 4000 exclude_rels = [RDFS.comment] preprocessor = PreProcessor(path_to_kg) excluded_events = preprocessor.load_unique_msgs_from_txt(base_path + 'unique_msgs.txt', max_events=max_events) excluded_events = [URIRef(('http://www.siemens.com/citypulse#' + e)) for e in excluded_events] amberg_params = None else: exclude_rels = ['http://www.siemens.com/ontology/demonstrator#tagAlias'] max_events = None max_seq = None # sequence window size in minutes window_size = 1.0 amberg_params = (path_to_events, max_events) for event_layer in [ConcatenationCause]: #[ConcatenationFull, ConcatenationCause, ConvolutionalAutoEncoder]: for shared in [True]: # set fixed random seed rnd = np.random.RandomState(43) preprocessor.load_knowledge_graph(format='xml', exclude_rels=exclude_rels, amberg_params=amberg_params, excluded_entities=excluded_events, clean_schema=False) vocab_size = preprocessor.get_vocab_size() unique_msgs = preprocessor.get_unique_msgs() ent_dict = preprocessor.get_ent_dict() rel_dict = preprocessor.get_rel_dict() g = preprocessor.get_kg() print("Read {0} number of triples".format(len(g))) get_kg_statistics(g) # zero_shot_prop = 0.25 # zero_shot_entity = URIRef('http://www.siemens.com/ontology/demonstrator#Event') #URIRef('http://purl.oclc.org/NET/ssnx/ssn#Device') # zero_shot_relation = URIRef(RDF.type) # URIRef('http://www.loa-cnr.it/ontologies/DUL.owl#follows') # URIRef('http://www.siemens.com/ontology/demonstrator#involvedEquipment') URIRef('http://www.loa-cnr.it/ontologies/DUL.owl#hasPart') # zero_shot_triples, kg_prop = get_zero_shot_scenario(rnd, g, zero_shot_entity, zero_shot_relation, zero_shot_prop) zero_shot_triples = [] ######### Model selection ########## model_type = TranslationModels.TEKE # "Skipgram", "Concat", "RNN" # event_layer = ConvolutionalAutoEncoder store_embeddings = False ######### Hyper-Parameters ######### param_dict = {} param_dict['embedding_size'] = [80] param_dict['seq_data_size'] = [1.0] param_dict['batch_size'] = [32] # [32, 64, 128] param_dict['learning_rate'] = [0.01] # [0.5, 0.8, 1.0] param_dict['lambd'] = [0.001] # regularizer (RESCAL) param_dict['alpha'] = [1.0] # event embedding weighting eval_step_size = 2000 num_epochs = 80 num_negative_triples = 2 test_proportion = 0.08 validation_proportion = 0.05 bernoulli = True fnsim = l2_similarity # Train dev test splitting g_train, g_valid, g_test = slice_ontology(rnd, g, validation_proportion, test_proportion, zero_shot_triples) train_size = len(g_train) valid_size = len(g_valid) test_size = len(g_test) print("Train size: ", train_size) print("Valid size: ", valid_size) print("Test size: ", test_size) # Event layer parameters if event_layer is not None: param_dict['num_skips'] = [4] # [2, 4] param_dict['num_sampled'] = [10] # [5, 9] # shared = True # param_dict['batch_size_sg'] = [2] # [128, 512] pre_train = False # also used for TEKE pre_train_steps = 30000 pre_train_embeddings = base_path + "Embeddings/supplied_embeddings" if traffic_data: sequences = preprocessor.prepare_sequences(path_to_sequence, use_dict=True) else: merged = preprocessor.get_merged() sequences = prepare_sequences(merged, message_index, unique_msgs, window_size, max_seq, g_train) num_sequences = len(sequences) num_entities = len(ent_dict) num_relations = len(rel_dict) print("Num entities:", num_entities) print("Num relations:", num_relations) print("Event entity percentage: {0} prct".format(100.0 * vocab_size / num_entities)) if bernoulli: bern_probs = bernoulli_probs(g, rel_dict) # free some memory g = None model_name = TranslationModels.get_model_name(event_layer, model_type) overall_best_performance = np.inf best_param_list = [] train_tg = TripleBatchGenerator(g_train, ent_dict, rel_dict, num_negative_triples, rnd, bern_probs=bern_probs) valid_tg = TripleBatchGenerator(g_valid, ent_dict, rel_dict, 1, rnd, sample_negative=False) test_tg = TripleBatchGenerator(g_test, ent_dict, rel_dict, 1, rnd, sample_negative=False) print(test_tg.next(5)) # Loop trough all hyper-paramter combinations param_combs = cross_parameter_eval(param_dict) for comb_num, tmp_param_dict in enumerate(param_combs): params = Parameters(**tmp_param_dict) num_steps = (train_size / params.batch_size) * num_epochs print("Progress: {0} prct".format(int((100.0 * comb_num) / len(param_combs)))) print("Embedding size: ", params.embedding_size) print("Batch size: ", params.batch_size) filter_triples = valid_tg.all_triples if event_layer is not None: if traffic_data: batch_size_sg = 32 # (len(sequences[0]) * num_epochs) / num_steps else: batch_size_sg = 11 # (sum([len(sequences[i]) for i in range(num_sequences)]) * num_epochs) / num_steps print("Batch size sg:", batch_size_sg) num_skips = params.num_skips num_sampled = params.num_sampled if event_layer == Skipgram: sg = SkipgramBatchGenerator(sequences, num_skips, rnd) elif event_layer == ConvolutionalAutoEncoder: sg = AutoEncoderBatchGenerator(sequences, num_skips, rnd) elif event_layer == ConcatenationFull: sg = FuturePredictiveBatchGenerator(sequences, num_skips, rnd) num_skips = 2 * num_skips elif event_layer == ConcatenationCause: sg = PredictiveEventBatchGenerator(sequences, num_skips, rnd) event_model = event_layer(num_entities, vocab_size, params.embedding_size, num_skips, shared=shared, alpha=params.alpha) else: batch_size_sg = 0 num_sampled = 0 event_model = None pre_train = False # Model Selection if model_type == TranslationModels.Trans_E: param_list = [num_entities, num_relations, params.embedding_size, params.batch_size, batch_size_sg, num_sampled, vocab_size, fnsim, params.learning_rate, event_model] model = TransE(*param_list) elif model_type == TranslationModels.Trans_H: param_list = [num_entities, num_relations, params.embedding_size, params.batch_size, batch_size_sg, num_sampled, vocab_size, params.learning_rate, event_model, params.lambd] model = TransH(*param_list) elif model_type == TranslationModels.RESCAL: param_list = [num_entities, num_relations, params.embedding_size, params.batch_size, batch_size_sg, num_sampled, vocab_size, params.learning_rate, event_model, params.lambd] model = RESCAL(*param_list) elif model_type == TranslationModels.TEKE: pre_trainer = EmbeddingPreTrainer(unique_msgs, SkipgramBatchGenerator(sequences, num_skips, rnd), pre_train_embeddings) initE = pre_trainer.get(pre_train_steps, params.embedding_size, batch_size_sg, num_sampled, vocab_size, num_entities) tk = TEKEPreparation(sequences, initE, num_entities) param_list = [num_entities, num_relations, params.embedding_size, params.batch_size, fnsim, tk] model = TEKE(*param_list) # Build tensorflow computation graph tf.reset_default_graph() # tf.set_random_seed(23) with tf.Session() as session: model.create_graph() saver = tf.train.Saver(model.variables()) tf.global_variables_initializer().run() if event_model is not None and not event_model.shared and model_type != TranslationModels.TEKE: # set the non-event entities in the non-shared event embeddings to zero session.run([event_model.update]) print('Initialized graph') average_loss = 0 mean_rank_list = [] hits_10_list = [] loss_list = [] # Initialize some / event entities with supplied embeddings if pre_train and model_type != TranslationModels.TEKE: # TODO: adapt to selected event_model for pre-training pre_trainer = EmbeddingPreTrainer(unique_msgs, SkipgramBatchGenerator(sequences, num_skips, rnd), pre_train_embeddings) initE = pre_trainer.get(pre_train_steps, params.embedding_size, batch_size_sg, num_sampled, vocab_size, num_entities) session.run(model.assign_initial(initE)) if store_embeddings: entity_embs = [] relation_embs = [] # Steps loop for b in range(1, num_steps + 1): # triple batches batch_pos, batch_neg = train_tg.next(params.batch_size) valid_batch_pos, _ = valid_tg.next(valid_size) feed_dict = { model.inpl: batch_pos[1, :], model.inpr: batch_pos[0, :], model.inpo: batch_pos[2, :], model.inpln: batch_neg[1, :], model.inprn: batch_neg[0, :], model.inpon: batch_neg[2, :], model.global_step: b } if event_model is not None and not model_type == TranslationModels.TEKE: # Event batches batch_x, batch_y = sg.next(batch_size_sg) batch_y = np.array(batch_y).reshape((batch_size_sg, 1)) feed_dict[model.train_inputs] = batch_x feed_dict[model.train_labels] = batch_y # One train step in mini-batch _, l = session.run(model.train(), feed_dict=feed_dict) average_loss += l # Run post-ops: regularization etc. session.run(model.post_ops()) # Evaluate on validation set if b % eval_step_size == 0: # get valid batches for scoring valid_inpl = valid_batch_pos[1, :] valid_inpr = valid_batch_pos[0, :] valid_inpo = valid_batch_pos[2, :] scores_l, scores_r = model.scores(session, valid_inpl, valid_inpr, valid_inpo) errl, errr = ranking_error_triples(filter_triples, scores_l, scores_r, valid_inpl, valid_inpo, valid_inpr) hits_10 = np.mean(np.asarray(errl + errr) <= 10) * 100 mean_rank = np.mean(np.asarray(errl + errr)) mean_rank_list.append(mean_rank) hits_10_list.append(hits_10) if b > 0: average_loss = average_loss / eval_step_size loss_list.append(average_loss) if store_embeddings: entity_embs.append(session.run(model.E)) relation_embs.append(session.run(model.R)) # The average loss is an estimate of the loss over the last eval_step_size batches. print('Average loss at step {0}: {1}'.format(b, average_loss)) print('\t Validation Hits10: ', hits_10) print('\t Validation MeanRank: ', mean_rank) average_loss = 0 if overall_best_performance > mean_rank: overall_best_performance = mean_rank print("Saving overall best model with MeanRank: {0} and hits {1}".format(mean_rank, hits_10)) save_path_global = saver.save(session, path_to_store_model + 'tf_model') best_param_list = param_list reverse_entity_dictionary = dict(zip(ent_dict.values(), ent_dict.keys())) reverse_relation_dictionary = dict(zip(rel_dict.values(), rel_dict.keys())) # save embeddings to disk if store_embeddings: for i in range(len(entity_embs)): if i % 50 == 0: df_embs = get_low_dim_embs(entity_embs[i], reverse_entity_dictionary) df_embs.to_csv(path_to_store_embeddings + "entity_embeddings_low" + str(i) + ".csv", sep=',', encoding='utf-8') df_r_embs = get_low_dim_embs(relation_embs[i], reverse_relation_dictionary) df_r_embs.to_csv(path_to_store_embeddings + "relation_embeddings" + str(i) + ".csv", sep=',', encoding='utf-8') # TODO: only of best model (not last) df_embs = embs_to_df(entity_embs[len(entity_embs)-1], reverse_entity_dictionary) df_embs.to_csv(path_to_store_embeddings + "entity_embeddings" + '_last_cleaned' + ".csv", sep=',', encoding='utf-8') # Reset graph, load best model and apply to test data set with open(base_path + 'evaluation_parameters_' + model_name + str(shared) + '_best.csv', "wb") as eval_file: writer = csv.writer(eval_file) results, relation_results = evaluate_on_test(model_type, best_param_list, test_tg, save_path_global, test_size, reverse_relation_dictionary) writer.writerow ( ["relation", "embedding_size", "batch_size", "learning_rate", "num_skips", "num_sampled", "batch_size_sg", "mean_rank", "mrr", "hits_top_10", "hits_top_3", "hits_top_1"] ) writer.writerow( ['all', params.embedding_size, params.batch_size, params.learning_rate, num_skips, num_sampled, batch_size_sg, results[0], results[1], results[2], results[3], results[4]] ) for rel in relation_results: writer.writerow ( [rel, params.embedding_size, params.batch_size, params.learning_rate, num_skips, num_sampled, batch_size_sg, relation_results[rel]['MeanRank'], relation_results[rel]['MRR'], relation_results[rel]['Hits@10'], relation_results[rel]['Hits@3'], relation_results[rel]['Hits@1']] )
null
experiments/experiment_loop.py
experiment_loop.py
py
19,069
python
en
code
null
code-starcoder2
83
[ { "api_name": "prep.preprocessing.PreProcessor", "line_number": 53, "usage_type": "call" }, { "api_name": "rdflib.RDFS.comment", "line_number": 60, "usage_type": "attribute" }, { "api_name": "rdflib.RDFS", "line_number": 60, "usage_type": "name" }, { "api_name": "prep.preprocessing.PreProcessor", "line_number": 61, "usage_type": "call" }, { "api_name": "rdflib.URIRef", "line_number": 63, "usage_type": "call" }, { "api_name": "event_models.LinearEventModel.ConcatenationCause", "line_number": 73, "usage_type": "name" }, { "api_name": "numpy.random.RandomState", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 76, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.get_kg_statistics", "line_number": 87, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.TEKE", "line_number": 96, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 96, "usage_type": "name" }, { "api_name": "models.model.l2_similarity", "line_number": 115, "usage_type": "name" }, { "api_name": "experiments.experiment_helper.slice_ontology", "line_number": 118, "usage_type": "call" }, { "api_name": "prep.etl.prepare_sequences", "line_number": 141, "usage_type": "call" }, { "api_name": "prep.etl.message_index", "line_number": 141, "usage_type": "argument" }, { "api_name": "models.model.bernoulli_probs", "line_number": 152, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.get_model_name", "line_number": 156, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 156, "usage_type": "name" }, { "api_name": "numpy.inf", "line_number": 157, "usage_type": "attribute" }, { "api_name": "prep.batch_generators.TripleBatchGenerator", "line_number": 160, "usage_type": "call" }, { "api_name": "prep.batch_generators.TripleBatchGenerator", "line_number": 161, "usage_type": "call" }, { "api_name": "prep.batch_generators.TripleBatchGenerator", "line_number": 162, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.cross_parameter_eval", "line_number": 167, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.Parameters", "line_number": 169, "usage_type": "call" }, { "api_name": "event_models.LinearEventModel.Skipgram", "line_number": 186, "usage_type": "name" }, { "api_name": "prep.batch_generators.SkipgramBatchGenerator", "line_number": 187, "usage_type": "call" }, { "api_name": "event_models.Autoencoder.ConvolutionalAutoEncoder", "line_number": 188, "usage_type": "name" }, { "api_name": "prep.batch_generators.AutoEncoderBatchGenerator", "line_number": 189, "usage_type": "call" }, { "api_name": "event_models.LinearEventModel.ConcatenationFull", "line_number": 190, "usage_type": "name" }, { "api_name": "prep.batch_generators.FuturePredictiveBatchGenerator", "line_number": 191, "usage_type": "call" }, { "api_name": "event_models.LinearEventModel.ConcatenationCause", "line_number": 193, "usage_type": "name" }, { "api_name": "prep.batch_generators.PredictiveEventBatchGenerator", "line_number": 194, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.Trans_E", "line_number": 204, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 204, "usage_type": "name" }, { "api_name": "models.TransE.TransE", "line_number": 208, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.Trans_H", "line_number": 209, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 209, "usage_type": "name" }, { "api_name": "models.TransH.TransH", "line_number": 213, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.RESCAL", "line_number": 214, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 214, "usage_type": "name" }, { "api_name": "models.RESCAL.RESCAL", "line_number": 218, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.TEKE", "line_number": 219, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 219, "usage_type": "name" }, { "api_name": "models.pre_training.EmbeddingPreTrainer", "line_number": 220, "usage_type": "call" }, { "api_name": "prep.batch_generators.SkipgramBatchGenerator", "line_number": 220, "usage_type": "call" }, { "api_name": "models.pre_training.TEKEPreparation", "line_number": 224, "usage_type": "call" }, { "api_name": "models.TEKE.TEKE", "line_number": 226, "usage_type": "call" }, { "api_name": "tensorflow.reset_default_graph", "line_number": 229, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 231, "usage_type": "call" }, { "api_name": "tensorflow.train.Saver", "line_number": 233, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 233, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 234, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.TEKE", "line_number": 235, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 235, "usage_type": "name" }, { "api_name": "experiments.experiment_helper.TranslationModels.TEKE", "line_number": 246, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 246, "usage_type": "name" }, { "api_name": "models.pre_training.EmbeddingPreTrainer", "line_number": 248, "usage_type": "call" }, { "api_name": "prep.batch_generators.SkipgramBatchGenerator", "line_number": 248, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.TranslationModels.TEKE", "line_number": 270, "usage_type": "attribute" }, { "api_name": "experiments.experiment_helper.TranslationModels", "line_number": 270, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 273, "usage_type": "call" }, { "api_name": "models.model.ranking_error_triples", "line_number": 290, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 293, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 293, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 294, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 294, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.get_low_dim_embs", "line_number": 325, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.get_low_dim_embs", "line_number": 329, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.embs_to_df", "line_number": 334, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 341, "usage_type": "call" }, { "api_name": "experiments.experiment_helper.evaluate_on_test", "line_number": 342, "usage_type": "call" } ]
554186201
import pymongo from pymongo import MongoClient import datetime import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from string import Template MY_ADDRESS = "[email protected]" ## Current template email could remove username or replace it with identikey emailText = "Hey $name!! Come back and finish your quiz on $subject. Enter your email: $email into the box on the Day 2 return page to resume your quiz!!! quiz-me.co/#/returnPage" emailText2 = "Hey $name!! Come back and finish the final section of the tutorial. Enter your email: $email into the box on the day 3 return page to resume your quiz!!! quiz-me.co/#/day3" ## Connect to the email server server=smtplib.SMTP() server.connect('localhost') ## function to send email def sendEmail(fromaddr, toaddr, body): msg = MIMEMultipart() msg['From'] = fromaddr msg['To'] = toaddr msg['Subject'] = "Come Back to QuizMe!!!" msg.attach(MIMEText(body, 'plain')) server.send_message(msg) del msg ## Get the time renage of when users should be sent a email. Currently an hour but prod will be 24 hours lastDay = datetime.datetime.utcnow() - datetime.timedelta(hours = 23) lastWeek = datetime.datetime.utcnow() - datetime.timedelta(days = 8) client = MongoClient() db = client.quizme ## Old code being kept here for reference currently will delete before prod ##for dic in db.test.find({ 'date' : {"$lte" : lastHour }}): ## print(dic['user']) ## print("Fin") ## db.test.findAndModify({query: {user: "testUser2"}, update: {$set : {emailSent : 1}}}) ## Find all users who took a quiz over the alloted time ago and send those users an email if they haven't been sent one yet. Might want to check if the user has already returned for user in db.tutorial.find({ "$and" : [ {'date' : {"$lte" : lastDay }}, {'emailSent' : 0}] }): print(user['name']) email = Template(emailText) sendEmail(MY_ADDRESS, user['identikey'], email.substitute(name =user['name'], subject=user['subject'], email=user['identikey'])) db.tutorial.update({"_id" : user['_id']},{"$set" : {'emailSent' : 1}}) for user in db.tutorial.find({ "$and" : [ {'date' : {"$lte" : lastWeek }}, {'oneWeekEmail' : 0}] }): print(user['name']) email2 = Template(emailText2) sendEmail(MY_ADDRESS, user['identikey'], email2.substitute(name =user['name'], email=user['identikey'])) db.tutorial.update({"_id" : user['_id']},{"$set" : {'oneWeekEmail' : 1}}) print("Fin") server.quit()
null
Email.py
Email.py
py
2,493
python
en
code
null
code-starcoder2
83
[ { "api_name": "smtplib.SMTP", "line_number": 17, "usage_type": "call" }, { "api_name": "email.mime.multipart.MIMEMultipart", "line_number": 22, "usage_type": "call" }, { "api_name": "email.mime.text.MIMEText", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 31, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 31, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 31, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 32, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 32, "usage_type": "call" }, { "api_name": "pymongo.MongoClient", "line_number": 33, "usage_type": "call" }, { "api_name": "email.mime.multipart", "line_number": 46, "usage_type": "name" }, { "api_name": "string.Template", "line_number": 46, "usage_type": "call" }, { "api_name": "email.mime.multipart.substitute", "line_number": 47, "usage_type": "call" }, { "api_name": "email.mime.multipart", "line_number": 47, "usage_type": "name" }, { "api_name": "string.Template", "line_number": 52, "usage_type": "call" } ]
342626607
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. """ Entrypoint utility for launching distributed torch jobs. NOTE: All command line arguments are forwarded to the child script, including those relevant to only this script. If the dependent script uses argparse, then you can parse command line arguments using `args = parser.parse_known_args()[0]` instead of `args = parser.parse_args()`. Usage: dist_run --nproc_per_node=<num allocated GPUs> <path to script> <script args>... """ import argparse import importlib import logging import logging.config import os import psutil import signal import sys import torch import torch.multiprocessing as mp from utils import configure_logging class SignalHandler: def __init__(self, child_procs): self.child_procs = child_procs def __call__(self, incoming_signal, frame): print("Signal %d detected in process %d " % ( incoming_signal, os.getpid() )) print("Forwarding to children " ) for child in self.child_procs: print("Will now pass the signal %d to child process %d" % ( incoming_signal, child.pid ) ) os.kill( child.pid, incoming_signal) if incoming_signal in [ signal.SIGUSR1,signal.SIGUSR2 ]: # This is the most important part - we return silently and will be allowed to keep running. return else: sys.exit(1) def _set_signal_handlers(child_procs): signal_handler = SignalHandler(child_procs) print("Setting signal handlers in process %d" % os.getpid()) signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGUSR1, signal_handler) signal.signal(signal.SIGUSR2, signal_handler) signal.signal(signal.SIGTERM, signal_handler) def _run_function(rank, world_size, script_path): """ Entrypoint for the GPU worker process. Args: rank (int): The rank of the current worker process. world_size (int): The total number of worker processes. script_path (str): Path to the python script to execute. """ os.environ['RANK'] = str(rank) os.environ['LOCAL_RANK'] = str(rank) configure_logging(rank) logger = logging.getLogger(__name__) # Get the name of the script without the extension script_name = os.path.splitext(os.path.basename(script_path))[0] script_dir = os.path.dirname(script_path).replace('/', '.') logger.info('Loading script "{}" as module "{}" and package "{}".' .format(script_path, script_name, script_dir)) module = importlib.import_module('{}'.format(script_name), package=script_dir) module.main() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Distributed launcher for pytorch.") parser.add_argument('-n', '--nproc_per_node', type=int, default=-1, help="The number of processes to launch.") # positional parser.add_argument("launch_script", type=str, help="The full path to the single GPU module to run.") # rest of the arguments for the dest script #parser.add_argument('training_script_args', nargs=argparse.REMAINDER) args, rest = parser.parse_known_args() world_size = args.nproc_per_node if world_size == -1: world_size = torch.cuda.device_count() os.environ['WORLD_SIZE'] = str(world_size) # Low level parallel constructs actually hurt the performance fairly significantly # because we already employ a high level of parallelism at higher API layers. So, # this disables most forms of bad parallelism. FPS improvement for default experiments # is somewhere around 100-300 fps just with this. os.environ['OMP_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' script_path = args.launch_script sys.argv = [script_path] + rest spawn_context = mp.spawn(_run_function, nprocs=world_size, args=(world_size, script_path), join=False) _set_signal_handlers(spawn_context.processes) # Wait for the child processes to exit while not spawn_context.join(): pass sys.exit(0)
null
dist_run.py
dist_run.py
py
4,163
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.getpid", "line_number": 34, "usage_type": "call" }, { "api_name": "os.kill", "line_number": 38, "usage_type": "call" }, { "api_name": "signal.SIGUSR1", "line_number": 39, "usage_type": "attribute" }, { "api_name": "signal.SIGUSR2", "line_number": 39, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 43, "usage_type": "call" }, { "api_name": "os.getpid", "line_number": 48, "usage_type": "call" }, { "api_name": "signal.signal", "line_number": 49, "usage_type": "call" }, { "api_name": "signal.SIGINT", "line_number": 49, "usage_type": "attribute" }, { "api_name": "signal.signal", "line_number": 50, "usage_type": "call" }, { "api_name": "signal.SIGUSR1", "line_number": 50, "usage_type": "attribute" }, { "api_name": "signal.signal", "line_number": 51, "usage_type": "call" }, { "api_name": "signal.SIGUSR2", "line_number": 51, "usage_type": "attribute" }, { "api_name": "signal.signal", "line_number": 52, "usage_type": "call" }, { "api_name": "signal.SIGTERM", "line_number": 52, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 64, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 65, "usage_type": "attribute" }, { "api_name": "utils.configure_logging", "line_number": 67, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 69, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path", "line_number": 72, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path", "line_number": 74, "usage_type": "attribute" }, { "api_name": "importlib.import_module", "line_number": 79, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.cuda.device_count", "line_number": 102, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 102, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 104, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 109, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 110, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 113, "usage_type": "attribute" }, { "api_name": "torch.multiprocessing.spawn", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.multiprocessing", "line_number": 115, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 123, "usage_type": "call" } ]
299064716
import nibabel as nib import glob import pandas as pd import numpy as np from nilearn import datasets as ds from nilearn.image import resample_img from nilearn.input_data import NiftiLabelsMasker import psutil from matplotlib import pylab as plt import time from nilearn.signal import clean from nilearn import plotting, image from sklearn.covariance import LedoitWolf import seaborn as sns from statsmodels.formula.api import ols from sklearn.preprocessing import StandardScaler import community import networkx as nx np.random.seed(0) def dataframize_nii_paths(files): ''' Sort and store nifti paths of gm, wm, and lcr into a dataframe Parameters ---------- files : list of path to nifti images ''' # Sort cortex, white matter and LCR file files_per_sub = {} for file in files: split_name = file.split('_') sub_nb = split_name[3] + '_' + split_name[4] + '_' + split_name[5] assert '_S_' in sub_nb, "Problem with splitting path" for file in files: if sub_nb in file: if 'smwc1' in file: smwc1 = file elif 'smwc2' in file: smwc2 = file elif 'smwc3' in file: smwc3 = file else: print('pb with ', file) Stop files_per_sub[sub_nb] = [smwc1, smwc2, smwc3] # store it in a dataframe df = pd.DataFrame.from_dict(files_per_sub, orient='index') df.rename(columns={ 0: 'greyMatter_path', 1: 'whiteMatter_path', 2: 'LCR_path'}, inplace=True) # delete duplicates nb_duplicates = (df.index.duplicated() == True).sum() df = df[df.index.duplicated() == False] print('{} duplicates were removed. Df shape = {}'.format(nb_duplicates, df.shape)) return df def merge_df_by_index(df, df_2, method='outer'): ''' merge 2 dataframe together on index, while making sure that there are no duplicates. Parameters ---------- df : pandas dataframe df_2 : pandas dataframe ''' df_merged = df.join(df_2, how=method) # delete nan if exists len1 = df_merged.__len__() df_merged = df_merged.dropna(axis=0, how='any') len2 = df_merged.__len__() print('{} nan were removed'.format(len1 - len2)) # delete duplicates nb_duplicates = (df_merged.index.duplicated() == True).sum() df_merged = df_merged[df_merged.index.duplicated() == False] print('{} duplicates were removed. Df shape = {}'.format(nb_duplicates, df_merged.shape)) return df_merged def compute_store_tiv(df): ''' compute TIV and store it in the df Parameters ---------- df : dataframe including the path of gm, wm and lcr per subject ''' # create new columns to store the tiv df['TIV'] = '*' df['TIV_gm'] = '*' df['TIV_wm'] = '*' df['TIV_lcr'] = '*' # store the voxel size for future checking dim_expected = nib.load(df['greyMatter_path'].iloc[0]).header.values()[15] # iterate across subject to extract, compute and store the TIV for ind, row in enumerate(df.index): # load nifti images smwc1 = nib.load(df['greyMatter_path'].loc[row]) smwc2 = nib.load(df['whiteMatter_path'].loc[row]) smwc3 = nib.load(df['LCR_path'].loc[row]) # check voxel dimension assert smwc1.header.values()[15].sum() == dim_expected.sum() assert smwc2.header.values()[15].sum() == dim_expected.sum() assert smwc3.header.values()[15].sum() == dim_expected.sum() # compute TIV tiv1 = smwc1.get_data().sum()/1000 # grey matter tiv2 = smwc2.get_data().sum()/1000 # white matter tiv3 = smwc3.get_data().sum()/1000 # LCR TIV = tiv1 + tiv2 + tiv3 # total assert TIV != 0, "Problem with participant {}".format(row) assert tiv1 != 0, "Problem with participant {}".format(row) assert tiv2 != 0, "Problem with participant {}".format(row) assert tiv3 != 0, "Problem with participant {}".format(row) # online checking print(ind, ' / ', len(df.index)) print("Sub ", row, " TIV = ", TIV) # store TIV in df df['TIV_gm'].loc[row] = tiv1 df['TIV_wm'].loc[row] = tiv2 df['TIV_lcr'].loc[row] = tiv3 df['TIV'].loc[row] = TIV assert '*' not in df.values, "A tiv value seems to be missing" return df def list_outliers(df, percentile=5): ''' list participants with the lowest and highest tiv total, tiv gm, tiv wm and tiv lcr for manual checking of the volumes. Parameters ---------- df : dataframe including the TIV + the TIV of gm, wm and lcr per subject. percentile : int, optional percentile to which extract the most extreme TIV values Default=5. ''' outliers = {} limit_above = 100 - percentile limit_below = percentile outliers['above_TIV'] = df['TIV'][df['TIV'] < np.percentile(df['TIV'], limit_below, interpolation = 'midpoint')] outliers['below_TIV'] = df['TIV'][df['TIV'] > np.percentile(df['TIV'], limit_above, interpolation = 'midpoint')] outliers['above_TIV_lcr'] = df['TIV_lcr'][df['TIV_lcr'] < np.percentile(df['TIV_lcr'], limit_below, interpolation = 'midpoint')] outliers['below_TIV_lcr'] = df['TIV_lcr'][df['TIV_lcr'] > np.percentile(df['TIV_lcr'], limit_above, interpolation = 'midpoint')] outliers['above_TIV_gm'] = df['TIV_gm'][df['TIV_gm'] < np.percentile(df['TIV_gm'], limit_below, interpolation = 'midpoint')] outliers['below_TIV_gm'] = df['TIV_gm'][df['TIV_gm'] > np.percentile(df['TIV_gm'], limit_above, interpolation = 'midpoint')] outliers['above_TIV_wm'] = df['TIV_wm'][df['TIV_wm'] < np.percentile(df['TIV_wm'], limit_below, interpolation = 'midpoint')] outliers['below_TIV_wm'] = df['TIV_wm'][df['TIV_wm'] > np.percentile(df['TIV_wm'], limit_above, interpolation = 'midpoint')] print(outliers) return outliers ################################ CLASSICAL STATISTICS TIV AGE AND SEX ######################### def plot_tif_info(df): ''' Check and plot age/sex/tiv relationships. Parameters ---------- df : dataframe including TIV, TIV_gm, TIV_wm, TIV_lcr, Sex, and Age. ''' age = df['Age'] sex = df['Sex'] sex[sex == 'M'] = 1 sex[sex == 'F'] = 0 tiv = df['TIV'] tiv_gm = df['TIV_gm'] tiv_wm = df['TIV_wm'] tiv_lcr = df['TIV_lcr'] # check age // tiv X = age.values.astype('float64') Y = tiv.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ x", data).fit() # print(model.summary()) pvalAgeTIV = model.f_pvalue # check age // tiv_gm X = age.values.astype('float64') Y = tiv_gm.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ x", data).fit() # print(model.summary()) pvalAgeTIVgm = model.f_pvalue # check age // tiv_wm X = age.values.astype('float64') Y = tiv_wm.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ x", data).fit() # print(model.summary()) pvalAgeTIVwm = model.f_pvalue # check age // tiv_lcr X = age.values.astype('float64') Y = tiv_lcr.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ x", data).fit() # print(model.summary()) pvalAgeTIVlcr = model.f_pvalue # check sex // tiv X = sex.values.astype(str) Y = tiv.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ C(x)", data).fit() # print(model.summary()) pvalSexTIV = model.f_pvalue # check sex // tiv_gm X = sex.values.astype(str) Y = tiv_gm.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ C(x)", data).fit() # print(model.summary()) pvalSexTIVgm = model.f_pvalue # check sex // tiv_wm X = sex.values.astype(str) Y = tiv_wm.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ C(x)", data).fit() # print(model.summary()) pvalSexTIVwm = model.f_pvalue # check sex // tiv_lcr X = sex.values.astype(str) Y = tiv_lcr.values.astype('float64') # Create a data frame containing all the relevant variables data = pd.DataFrame({'x': X, 'y': Y}) model = ols("y ~ C(x)", data).fit() # print(model.summary()) pvalSexTIVlcr = model.f_pvalue # only age and TIV df['Sex'][df['Sex'] == 1] = 'M' df['Sex'][df['Sex'] == 0] = 'F' data = pd.DataFrame({'sex': df['Sex'].values.astype(str), 'Age':df['Age'].values.astype('float64'), 'TIV': df['TIV'].values.astype('float64')}) fig, ax = plt.subplots() ax = sns.pairplot(data, hue='sex', kind='reg') ax.fig.text(0.65, 0.85,"Age-TIV p={}".format(pvalAgeTIV), fontsize=9) ax.fig.text(0.65, 0.77,"Sex-TIV p={}".format(pvalSexTIV), fontsize=9) plt.savefig("lMCI/lMCI_agesextiv.png") plt.show() ax = sns.violinplot(x="sex", y="TIV", data=data, palette="Set2", split=True, scale="count", inner="stick", scale_hue=False) plt.savefig("lMCI/lMCI_sextiv.png") plt.show() # all in df['Sex'][df['Sex'] == 1] = 'M' df['Sex'][df['Sex'] == 0] = 'F' data = pd.DataFrame({'sex': df['Sex'].values.astype(str), 'Age':df['Age'].values.astype('float64'), 'TIV_gm': df['TIV_gm'].values.astype('float64'), 'TIV_wm': df['TIV_wm'].values.astype('float64'), 'TIV_lcr': df['TIV_lcr'].values.astype('float64')}) fig, ax = plt.subplots() ax = sns.pairplot(data, hue='sex', kind='reg') ax.fig.text(0.65, 0.83,"Age-TIV_gm p={}".format(pvalAgeTIVgm), fontsize=9) ax.fig.text(0.65, 0.81,"Age-TIV_wm p={}".format(pvalAgeTIVwm), fontsize=9) ax.fig.text(0.65, 0.79,"Age-TIV_lcr p={}".format(pvalAgeTIVlcr), fontsize=9) ax.fig.text(0.65, 0.75,"Sex-TIV_gm p={}".format(pvalSexTIVgm), fontsize=9) ax.fig.text(0.65, 0.73,"Sex-TIV_wm p={}".format(pvalSexTIVwm), fontsize=9) ax.fig.text(0.65, 0.71,"Sex-TIV_lcr p={}".format(pvalSexTIVlcr), fontsize=9) plt.savefig("lMCI/lMCI_agesextiv_details.png") plt.show() def fit_atlas(atlas, df, saving_path=None, strategy='sum', show=0, labels=None): ''' masking of the nifti of the participant cortex to extract ROI from atlas. Parameters ---------- atlas : mask used to extract ROIs must be file from nilearn.datasets.fetch_atlas_[...]. df : dataframe including a 'greyMatter_path' column per subject (path to nifti cortex file). saving_path : str, optional if not None, save the dataframe with grey matter quantity per ROI per subject. strategy : define how the quantity of grey matter per voxel is summarized for each ROI Must be one of: sum, mean, median, minimum, maximum, variance, standard_deviation Default='sum'. show : 0 or 1 plot the atlas onto the grey matter nifti file of the first subject to check the fit Default=0 ''' # extract grey matter volume for atlas ROI atlas_filename = atlas.maps # first subject nifti load to get affine and check mask fit tmp_nii = nib.load(df["greyMatter_path"].values[0]) # show the mask fit onto a participant brain if show == 1: plotting.plot_img(tmp_nii).add_overlay(atlas_filename, cmap=plotting.cm.black_blue) plt.show() # shared affine for mask and cortex scan ratlas_nii = resample_img( atlas.maps, target_affine=tmp_nii.affine, interpolation='nearest') # the grey matter volume will be stored in the FS list FS = [] # iterate through each subject for i_nii, nii_path in enumerate(df["greyMatter_path"].values): # check memory print('The CPU usage is: ', psutil.cpu_percent(4)) print(i_nii, ' / ', df["greyMatter_path"].__len__()) # summarize grey matter quantity into each ROI nii = nib.load(nii_path) masker = NiftiLabelsMasker(labels_img=ratlas_nii, standardize=False, strategy=strategy) # extract each roi grey matter quantity as list (of length the number of ROIs) cur_FS = masker.fit_transform(nii) FS.append(cur_FS) print(cur_FS) FS = np.array(FS).squeeze() df_FS = pd.DataFrame(index=df.index, columns=labels, data=FS) # check quality of dataframization assert df_FS.iloc[-1].values.sum() == FS[-1].sum() # remove duplicates assert (df_FS.index.duplicated() == True).sum() == 0 # save if asked if saving_path != None: df_FS.to_excel(saving_path) FS = None # empty memory return df_FS def clean_signal(df, nb_rois, labels): ''' clean signal using nilearn.signal.clean function. Regressed out variance that could be explained by the factors “age” and "TIV". Parameters ---------- df : pandas dataframe including the signal with ROIs numbered from 0 to len(nb_rois) plus a column for 'TIV' and for 'Age'. It should also include a column for 'TIV_gm', 'TIV_wm', 'TIV_lcr', 'Group', 'Sex'. nb_rois : the number of ROIs from the used atlas. ''' # extract signal FS = df[labels].values # extract confound confounds = df[['TIV', 'Age']].values # clean signal from confound explained variance FS_cleaned = clean(FS, confounds=confounds, detrend=False) # restore into a dataframe df_cleaned = pd.DataFrame(columns=labels, index=df.index, data=FS_cleaned) info = df[['TIV', 'TIV_gm', 'TIV_wm', 'TIV_lcr', 'Group', 'Sex', 'Age', 'ADNI_MEM', 'ADNI_EF']] df_cleaned = merge_df_by_index(info, df_cleaned) # check quality of dataframization assert FS_cleaned[0][10] == df_cleaned[labels[10]].iloc[0] return df_cleaned def plot_matrice(df, labels, title, saving_path=None, show=1): ''' Plot the matrices Parameters ---------- df : pandas dataframe including the signal with ROIs numbered from 0 to len(nb_rois) labels : lst atlas ROIs name title : str Title for the plot saving_path : str Path to save the covariance matrix plot show : 0 or 1 plot the matrices Default=1 ''' sns.set_theme(style="white") mask = np.triu(np.ones_like(df, dtype=bool)) f, ax = plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = sns.diverging_palette(230, 20, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(df, mask=mask, cmap=cmap, center=0, square=True, linewidths=.5, xticklabels=True, yticklabels=True, cbar_kws={"shrink": .5}) plt.title(title) plt.tight_layout() if saving_path != None: plt.savefig(saving_path) if show == 1: plt.show() def permutation_testing(df1, df2, model, nb_rois, prec=False, n_perm = 1000): ''' Permutation testing to check for significance between two covariation matrices Parameters ---------- df1 : pandas dataframe including the signal with ROIs numbered from 0 to len(nb_rois) df2 : pandas dataframe including the signal with ROIs numbered from 0 to len(nb_rois) model: function to apply to get the covariance, must be a .fit() method nb_rois : the number of ROIs from the used atlas. labels : lst atlas ROIs name prec : Boolean Compute the significance test for the precision matrix if set to True, output contains 2 matrices, the cov and the prec significance matrix Default=True n_perm : int Permutation iteration number Default=1000 ''' np.random.seed(0) h_precs, h_covs = [], [] FS_1 = df1[range(nb_rois+1)].values # h0 distribution FS_2 = df2[range(nb_rois+1)].values n_low_samples = len(FS_1) for p in range(n_perm): print('Bootstrapping iteration: {}/{}'.format(p + 1, n_perm)) new_inds = np.random.randint(0, n_low_samples, n_low_samples) bs_sample = FS_1[new_inds] gsc_1 = model.fit(bs_sample) h_covs.append(gsc_1.covariance_) if prec==True: h_precs.append(gsc_1.precision_) tril_inds = np.tril_indices_from(h_covs[0]) margin = (1. / n_perm) * 100 / 2 covs_ravel = np.array([cov[tril_inds] for cov in h_covs]) cov_test_high = cov_high[tril_inds] cov_sign1 = cov_test_high < np.percentile(covs_ravel, margin, axis=0) cov_sign2 = cov_test_high > np.percentile(covs_ravel, 100 - margin, axis=0) cov_sign = np.zeros_like(cov_high) cov_sign[tril_inds] = np.logical_or(cov_sign1, cov_sign2) if prec==True: precs_ravel = np.array([prec[tril_inds] for prec in h_precs]) prec_test_high = prec_high[tril_inds] prec_sign1 = prec_test_high < np.percentile(precs_ravel, margin, axis=0) prec_sign2 = prec_test_high > np.percentile(precs_ravel, 100 - margin, axis=0) prec_sign = np.zeros_like(prec_high) prec_sign[tril_inds] = np.logical_or(prec_sign1, prec_sign2) return cov_sign, prec_sign return cov_sign def louvainize(df_cov, title,saving_path=None): ''' Compute network graph, then louvain community and reorganized it into a matrix, and plot it Parameters ---------- df_cov : pandas dataframe of the covariance matrix (n_roi*n_roi) saving_path : str if not None, saved at the given path title : str title for thz final matrix ''' # compute the best partition G = nx.from_numpy_matrix(df_cov.values) nx.draw(G, with_labels=True) partition = community.best_partition(G, random_state=0) louvain = np.zeros(df_cov.values.shape).astype(df_cov.values.dtype) labels = df_cov.columns labels_new_order = [] i = 0 # iterate through all created community for values in np.unique(list(partition.values())): # iterate through each ROI for key in partition: if partition[key] == values: louvain[i] = df_cov.values[key] labels_new_order.append(labels[key]) i += 1 # check positionning from original matrix to louvain matri # get index of first roi linked to community 0 index_roi_com0_louvain = list(partition.values()).index(0) # get nb of roi in community 0 nb_com0 = np.unique(list(partition.values()), return_counts=True)[1][0] # # get index of first roi linked to community 1 index_roi_com1_louvain = list(partition.values()).index(1) assert louvain[0].sum() == df_cov.values[index_roi_com0_louvain].sum() assert louvain[nb_com0].sum() == df_cov.values[index_roi_com1_louvain].sum() df_louvain = pd.DataFrame(index=labels_new_order, columns=labels_new_order, data=louvain) df_louvain.to_excel("lMCI/df_{}.xlsx".format(title)) plot_matrice(df_louvain, labels_new_order, title, saving_path=saving_path, show=0) def return_all_plot(df_FS): ''' Compute covariance matrices and plot them Parameters ---------- df_FS : dataframe of the time series per ROI per subject. ''' # # clean for age and tiv # df_FS_cleaned = clean_signal(df_FS, nb_rois, labels) # ledoiwolf covariance labels = df_FS.columns matrix = LedoitWolf().fit(df_FS) cov = matrix.covariance_ df_ledoit_cov = pd.DataFrame(index=labels, columns=labels, data=cov) df_ledoit_cov.to_excel("lMCI/ledoiwolf_cov.xlsx") plot_matrice(df_ledoit_cov, labels, "ledoiwolf_cov", saving_path="lMCI/ledoiwolf_cov.png", show=0) louvainize(df_ledoit_cov, "Louvain_LedoitWolf", "lMCI/Louvain_LedoitWolf.png") prec = matrix.precision_ df_prec = pd.DataFrame(index=labels, columns=labels, data=prec) df_prec.to_excel("lMCI/ledoiwolf_prec.xlsx") plot_matrice(df_prec, labels, "ledoiwolf_prec", saving_path="lMCI/ledoiwolf_prec.png", show=0) louvainize(df_prec, "Louvain_LedoitWolf_prec", "lMCI/Louvain_LedoitWolf_prec.png") # pearson pearson = np.corrcoef(df_FS.values.T) df_pearson = pd.DataFrame(index=labels, columns=labels, data=pearson) df_pearson.to_excel("lMCI/pearson.xlsx") plot_matrice(df_pearson, labels, "pearson", saving_path="lMCI/pearson.png", show=0) louvainize(df_pearson, "Louvain_Pearson", "lMCI/Louvain_Pearson.png") # covariance cov = np.cov(df_FS.values.T) df_cov = pd.DataFrame(index=labels, columns=labels, data=cov) df_cov.to_excel("lMCI/cov.xlsx") plot_matrice(df_cov, labels, "cov", saving_path="lMCI/cov.png", show=0) louvainize(df_cov, "Louvain_cov", "lMCI/Louvain_cov.png") # extract all file from folder files = glob.glob('C:\\Users\\lefortb211\\Downloads\\ADNI_lMCI_smwc\\*') # Sort and store nifti paths of gm, wm, and lcr into a dataframe df = dataframize_nii_paths(files) # compute TIV and store it in the df df = compute_store_tiv(df) # list most extrame values for TIV, tiv gm, tiv wm, tiv lcr outliers = list_outliers(df) # add age group and sex information df_demog = pd.read_csv("lMCI/lMCI_3T_6_23_2021.csv") df_demog = df_demog[['Subject', 'Group', 'Sex', 'Age']] # subject, group, sex, age df_demog = df_demog.set_index('Subject') df = merge_df_by_index(df, df_demog) # add executive scores (file -containing each diag info- in CN folder to avoid duplicates) df_executive = pd.read_excel("CN/score_ex.xlsx") df_executive = df_executive.set_index('PTID') df = merge_df_by_index(df, df_executive) df_high = df[df['ADNI_EF'] >= df['ADNI_EF'].median()] df_low = df[df['ADNI_EF'] < df['ADNI_EF'].median()] dic['lMCI'] = [df_high['ADNI_EF'].values, df_low['ADNI_EF'].values] # plot relationships between tiv age and sex plot_tif_info(df) atlas = ds.fetch_atlas_harvard_oxford('cort-maxprob-thr25-2mm', symmetric_split=True) labels = atlas.labels[1:] nb_rois = len(labels) df_FS = fit_atlas(atlas, df, saving_path='lMCI/df_FS.xlsx', labels=labels) # standardize values df_FS_ss = pd.DataFrame(columns=df_FS.columns, index=df_FS.index, data=StandardScaler().fit_transform(df_FS.values)) info = df[['TIV', 'TIV_gm', 'TIV_wm', 'TIV_lcr', 'Group', 'Sex', 'Age', 'ADNI_MEM', 'ADNI_EF']] df = merge_df_by_index(info, df_FS_ss) return_all_plot(df_FS_ss) plt.close('all') ############################### ### CHECKING LOUVAIN COMMUs ### ############################### def niftiise_louvain_community(df_cov, saving_path=None): ''' Compute network graph, then louvain community and save as nifti image Parameters ---------- df_cov : pandas dataframe of the covariance matrix (n_roi*n_roi) saving_path : str if not None, saved at the given path as .nii ''' # reload atlas atlas = ds.fetch_atlas_harvard_oxford('cort-maxprob-thr25-2mm', symmetric_split=True) labels = atlas.labels[1:] # compute the best partition G = nx.from_numpy_matrix(df_cov.values) nx.draw(G, with_labels=True) partition = community.best_partition(G, random_state=0) atlas_nii = atlas.maps voxelData = atlas_nii.get_data() for ind, label in enumerate(labels): voxelData[voxelData == ind + 1] = partition[ind] + 100 # +100 to prevent from mix between roi value and partition number nb_partition = np.unique(list(partition.values())).__len__() for nb in range(nb_partition): voxelData[voxelData == 100 + nb] = nb + 1 # get back to partition number from 1 to nb of partition # save a nifiti image partition_nifti = nib.Nifti1Image( voxelData, affine=atlas_nii.affine) partition_nifti.to_filename(saving_path) # transform as nii and save print("nb of partition = ", nb_partition) print("unique partition in final nifti file = ", np.unique(voxelData)) df_ledoiwolf_cov = pd.read_excel("lMCI/ledoiwolf_cov.xlsx") df_ledoiwolf_cov = df_ledoiwolf_cov.set_index('Unnamed: 0') niftiise_louvain_community(df_ledoiwolf_cov, saving_path="lMCI/ledoiwolf_cov_partition_nifti.nii") df_ledoiwolf_prec = pd.read_excel("lMCI/ledoiwolf_prec.xlsx") df_ledoiwolf_prec = df_ledoiwolf_prec.set_index('Unnamed: 0') niftiise_louvain_community(df_ledoiwolf_prec, saving_path="lMCI/ledoiwolf_prec_partition_nifti.nii") df_pearson = pd.read_excel("lMCI/pearson.xlsx") df_pearson = df_pearson.set_index('Unnamed: 0') niftiise_louvain_community(df_pearson, saving_path="lMCI/pearson_partition_nifti.nii") df_cov = pd.read_excel("lMCI/cov.xlsx") df_cov = df_cov.set_index('Unnamed: 0') niftiise_louvain_community(df_cov, saving_path="lMCI/cov_partition_nifti.nii")
null
v0.1/lMCI/ADNI_lMCI_matrix_refactorized.py
ADNI_lMCI_matrix_refactorized.py
py
23,183
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.random.seed", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 50, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 50, "usage_type": "attribute" }, { "api_name": "nibabel.load", "line_number": 100, "usage_type": "call" }, { "api_name": "nibabel.load", "line_number": 105, "usage_type": "call" }, { "api_name": "nibabel.load", "line_number": 106, "usage_type": "call" }, { "api_name": "nibabel.load", "line_number": 107, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 148, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 153, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 154, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 185, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 186, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 195, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 196, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 204, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 205, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 213, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 214, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 222, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 223, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 231, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 232, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 240, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 241, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 249, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.ols", "line_number": 250, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 259, "usage_type": "call" }, { "api_name": "matplotlib.pylab.subplots", "line_number": 262, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 262, "usage_type": "name" }, { "api_name": "seaborn.pairplot", "line_number": 263, "usage_type": "call" }, { "api_name": "matplotlib.pylab.savefig", "line_number": 266, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 266, "usage_type": "name" }, { "api_name": "matplotlib.pylab.show", "line_number": 267, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 267, "usage_type": "name" }, { "api_name": "seaborn.violinplot", "line_number": 269, "usage_type": "call" }, { "api_name": "matplotlib.pylab.savefig", "line_number": 272, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 272, "usage_type": "name" }, { "api_name": "matplotlib.pylab.show", "line_number": 273, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 273, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 278, "usage_type": "call" }, { "api_name": "matplotlib.pylab.subplots", "line_number": 283, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 283, "usage_type": "name" }, { "api_name": "seaborn.pairplot", "line_number": 284, "usage_type": "call" }, { "api_name": "matplotlib.pylab.savefig", "line_number": 291, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 291, "usage_type": "name" }, { "api_name": "matplotlib.pylab.show", "line_number": 292, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 292, "usage_type": "name" }, { "api_name": "nibabel.load", "line_number": 322, "usage_type": "call" }, { "api_name": "nilearn.plotting.plot_img", "line_number": 325, "usage_type": "call" }, { "api_name": "nilearn.plotting", "line_number": 325, "usage_type": "name" }, { "api_name": "nilearn.plotting.cm", "line_number": 325, "usage_type": "attribute" }, { "api_name": "matplotlib.pylab.show", "line_number": 326, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 326, "usage_type": "name" }, { "api_name": "nilearn.image.resample_img", "line_number": 328, "usage_type": "call" }, { "api_name": "psutil.cpu_percent", "line_number": 335, "usage_type": "call" }, { "api_name": "nibabel.load", "line_number": 338, "usage_type": "call" }, { "api_name": "nilearn.input_data.NiftiLabelsMasker", "line_number": 339, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 344, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 345, "usage_type": "call" }, { "api_name": "nilearn.signal.clean", "line_number": 376, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 378, "usage_type": "call" }, { "api_name": "seaborn.set_theme", "line_number": 410, "usage_type": "call" }, { "api_name": "numpy.triu", "line_number": 411, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 411, "usage_type": "call" }, { "api_name": "matplotlib.pylab.subplots", "line_number": 412, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 412, "usage_type": "name" }, { "api_name": "seaborn.diverging_palette", "line_number": 414, "usage_type": "call" }, { "api_name": "seaborn.heatmap", "line_number": 416, "usage_type": "call" }, { "api_name": "matplotlib.pylab.title", "line_number": 418, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 418, "usage_type": "name" }, { "api_name": "matplotlib.pylab.tight_layout", "line_number": 419, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 419, "usage_type": "name" }, { "api_name": "matplotlib.pylab.savefig", "line_number": 421, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 421, "usage_type": "name" }, { "api_name": "matplotlib.pylab.show", "line_number": 423, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 423, "usage_type": "name" }, { "api_name": "numpy.random.seed", "line_number": 451, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 451, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 458, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 458, "usage_type": "attribute" }, { "api_name": "numpy.tril_indices_from", "line_number": 465, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 467, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 469, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 470, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 471, "usage_type": "call" }, { "api_name": "numpy.logical_or", "line_number": 472, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 475, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 477, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 478, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 479, "usage_type": "call" }, { "api_name": "numpy.logical_or", "line_number": 480, "usage_type": "call" }, { "api_name": "networkx.from_numpy_matrix", "line_number": 501, "usage_type": "call" }, { "api_name": "networkx.draw", "line_number": 502, "usage_type": "call" }, { "api_name": "community.best_partition", "line_number": 503, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 504, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 509, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 520, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 526, "usage_type": "call" }, { "api_name": "sklearn.covariance.LedoitWolf", "line_number": 545, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 547, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 555, "usage_type": "call" }, { "api_name": "numpy.corrcoef", "line_number": 561, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 562, "usage_type": "call" }, { "api_name": "numpy.cov", "line_number": 568, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 569, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 576, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 584, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 589, "usage_type": "call" }, { "api_name": "nilearn.datasets.fetch_atlas_harvard_oxford", "line_number": 602, "usage_type": "call" }, { "api_name": "nilearn.datasets", "line_number": 602, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 607, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 607, "usage_type": "call" }, { "api_name": "matplotlib.pylab.close", "line_number": 611, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 611, "usage_type": "name" }, { "api_name": "nilearn.datasets.fetch_atlas_harvard_oxford", "line_number": 632, "usage_type": "call" }, { "api_name": "nilearn.datasets", "line_number": 632, "usage_type": "name" }, { "api_name": "networkx.from_numpy_matrix", "line_number": 635, "usage_type": "call" }, { "api_name": "networkx.draw", "line_number": 636, "usage_type": "call" }, { "api_name": "community.best_partition", "line_number": 637, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 642, "usage_type": "call" }, { "api_name": "nibabel.Nifti1Image", "line_number": 646, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 651, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 653, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 657, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 661, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 665, "usage_type": "call" } ]
419445144
from typing import List, Union, Tuple import numpy as np import random from tqdm import tqdm class Variable: def __init__(self, value=None, grad=None): self.value = value self.grad = grad class Polynomial: def __init__(self, a: List = None): self.coef = np.array(a) def __call__(self, x: Union[float, int]) -> Variable: x = np.array(x) base = np.repeat(x, len(self.coef)).reshape(x.size, len(self.coef)) exponent = np.arange(0, len(self.coef)) # get the power from base and exponent, power=base^exponent power = np.power(base, exponent) # get the result of the polynomial y = np.sum(np.multiply(self.coef, power), axis=1) # get the coefficient of the differential polynomial coef_diff = np.multiply(self.coef[1:], np.arange(1, len(self.coef))) base_diff = np.repeat(x, len(coef_diff)).reshape( x.size, len(coef_diff)) exponent_diff = np.arange(0, len(coef_diff)) # get power power_diff = np.power(base_diff, exponent_diff) # get the result of the polynomial y_diff = np.sum(np.multiply(coef_diff, power_diff), axis=1) return Variable(y, y_diff) def regression_sgd(x, y, num_samples, num_iterations, batch_size, learning_rate) -> Tuple[np.ndarray, np.ndarray]: # declare m and b m = np.empty(num_iterations + 1, dtype=np.float64) b = np.empty(num_iterations + 1, dtype=np.float64) # init m and b m[0] = random.random() b[0] = random.random() for iteration in tqdm(range(num_iterations)): # randomly select batch_size data batch_index = random.sample(range(0, num_samples), batch_size) batch_x, batch_y = x[batch_index], y[batch_index] # get gradient of m and b m_gradient = 1/num_samples * \ np.sum(2*batch_x*(m[iteration]*batch_x+b[iteration]-batch_y)) b_gradient = 1/num_samples * \ np.sum(2*(m[iteration]*batch_x+b[iteration]-batch_y)) # update parameters by SGD m[iteration+1] = m[iteration] - learning_rate * m_gradient b[iteration+1] = b[iteration] - learning_rate * b_gradient print(f"the final parameters: (m, b)=({m[-1]}, {b[-1]})") return m, b
null
libs/functional.py
functional.py
py
2,287
python
en
code
null
code-starcoder2
83
[ { "api_name": "typing.List", "line_number": 17, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 18, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 20, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.repeat", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.power", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.repeat", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.power", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 51, "usage_type": "attribute" }, { "api_name": "numpy.empty", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 52, "usage_type": "attribute" }, { "api_name": "random.random", "line_number": 55, "usage_type": "call" }, { "api_name": "random.random", "line_number": 56, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 58, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 68, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 48, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 48, "usage_type": "attribute" } ]
168255906
from time import time, sleep from enum import Enum from sqlalchemy import update from flask_sqlalchemy import SQLAlchemy from celery import Celery import matplotlib.pyplot as plt import io import http import numpy as np import redis from helper import * from forms import * from models import * # How to start workers # celery -A app.celery worker --loglevel=info import sys # sys.path.append('/mnt/c/peter_abaqus/Summer-Research-Project/') # from my_meep.main import wsl_main # from my_meep.configs import config celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL']) celery.conf.update(app.config) class ReusableForm(Form): name = TextField('Name:', validators=[validators.DataRequired()]) @app.route("/", methods=['GET', 'POST']) def index(): form = ReusableForm(request.form) print(form.errors) if request.method == 'POST': name = request.form['name'] print(name) if form.validate(): # Save the comment here. #load the model and create script message = 'long_task peter' flash(message) else: flash('Error: All the form fields are required. ') return render_template('index.jinja', form=form) @celery.task(bind=True) def long_task(self, sections): _config = create_configs(sections, config=config) message = '' print('hello') # for i, total, res in wsl_main(web_config=_config): # i = int(i+1) # total = int(total) # if not message: # message = str(res) # self.update_state(state='PROGRESS', # meta={'current': i, 'total': total, # 'status': message}) # total = np.random.randint(10, 50) # for i in range(total): # if not message or np.random.random() < 0.25: # message = 'hi' # self.update_state(state='PROGRESS', # meta={'current': i, 'total': total, # 'status': message}) # sleep(0.2) return {'current': i, 'total': total, 'status': 'Task completed!', 'result': 42} @app.route('/longtask', methods=['POST']) def longtask(): sections = ['Visualization', 'General', 'Geometry', 'Simulation', 'Source'] task = long_task.apply_async(kwargs={'sections': sections}) return jsonify({}), 202, {'Location': url_for('taskstatus', task_id=task.id)} @app.route('/status/<task_id>') def taskstatus(task_id): task = long_task.AsyncResult(task_id) if task.state == 'PENDING': response = { 'state': task.state, 'current': 0, 'total': 1, 'status': 'Pending...' } elif task.state != 'FAILURE': response = { 'state': task.state, 'current': task.info.get('current', 0), 'total': task.info.get('total', 1), 'status': task.info.get('status', '') } if 'result' in task.info: response['result'] = task.info['result'] else: # something went wrong in the background job response = { 'state': task.state, 'current': 1, 'total': 1, 'status': str(task.info), # this is the exception raised } return jsonify(response) @app.route('/home') def home(): return render_template('home.html') def create_configs(sections, config): for s in sections: _input_data_list = input_data_list.query.filter_by(section=s).first() _radio_check_data_list = radio_check_data_list.query.filter_by( section=s).first() sections_code_web = ['Visualization', 'General', 'Geometry', 'Simulation', 'Source'] sections_code_config = ['visualization', 'general', 'geo', 'sim', 'source'] index = sections_code_web.index(s) s = sections_code_config[index] for v in _input_data_list.values: config.set(s, v.spec, ', '.join( [str(v.start), str(v.stop), str(v.steps)])) for v in _input_data_list.values1: config.set(s, v.spec, str(v.val)) for v in _radio_check_data_list.radio: config.set(s, v.spec, v.default) for v in _radio_check_data_list.check: config.set(s, v.spec, v.default) return config def process(section, _fields): _input_data_list = input_data_list.query.filter_by(section=section).first() _radio_check_data_list = radio_check_data_list.query.filter_by( section=section).first() if len(_input_data_list.values) == 0: for key, val in _fields['input_range'].items(): _input_data_list.values.append(input_data( spec=key, start=val[0], stop=val[1], steps=val[2])) for key, val in _fields['input'].items(): _input_data_list.values1.append(input_data1(spec=key, val=val)) for key, val in _fields['radio'].items(): _radio_check_data_list.radio.append( radio_data(spec=key, default=val[0])) for key, val in _fields['check'].items(): _radio_check_data_list.check.append( check_data(spec=key, default=val[0])) form = input_form_list(request.form, obj=_input_data_list) form.active = section radio_list = [] if request.method != 'POST': for i, iter in enumerate(_fields['radio'].items()): key, val = iter class f(Form): name = key setattr(f, key, fields.RadioField( label=key, default=_radio_check_data_list.radio[i].default, choices=val[1], _name=key)) f_obj = f() # f_obj.a.default = val[0] # f_obj.__init__() radio_list.append(f_obj) elif form.validate(): for i, iter in enumerate(_fields['radio'].items()): key, val = iter class f(Form): name = key setattr(f, key, fields.RadioField( label=key, default=request.form[key], choices=val[1], _name=key)) f_obj = f() # f_obj.a.default = val[0] # f_obj.__init__() radio_list.append(f_obj) if request.method == 'POST' and form.validate(): for i, d in enumerate(_radio_check_data_list.radio): _radio_check_data_list.radio[i].default = request.form[_radio_check_data_list.radio[i].spec] form.populate_obj(_input_data_list) db.session.commit() # print('form is: ') # for key in form: # print(key) # print('Val form is:') # for key in request.form: # print(key, request.form[key]) # print(_input_data_list.values[0].start) # flash("Saved Changes") elif request.method == 'POST': print('error is', form.errors) # print('Val form is:') # for key in request.form: # print(key, request.form[key]) # for k in request.form['radio-0']: # print('error', k) if request.method == 'POST' and form.validate() and request.form['action'] == 'Simulate': return ('', http.HTTPStatus.NO_CONTENT) return render_template('features.html', title=section, form=form, radio_list=radio_list) @app.route('/visualization', methods=['GET', 'POST']) def visualization(): info = { 'check': { }, 'radio': { 'structure': ('False', ('True', 'False')), 'transiant': ('False', ('True', 'False')), 'rms': ('True', ('True', 'False')), 'view_only_particles': ('True', ('True', 'False')), 'log_res': ('False', ('True', 'False')), }, 'input_range': { 'viz_offset': [0, 0, 0] }, 'input': { '3d_plotting_axis': 1, 'frame_speed': 200, } } return process('Visualization', info) @app.route('/geometry', methods=['GET', 'POST']) def geometry(): info = { 'check': { }, 'radio': { # 'shape_types_dummy': ('cube', ('sphere', 'triangle', 'hexagon', 'cube')) }, 'input_range': { 'particle_size': [0.05, 0.12, 1], 'x_loc': [0, -3.4, 1], 'distance': [1, 3, 1], 'fill_factor': [0.5, 0.7, 1], 'std': [0.1, 0.3, 1], 'solid_center': [-2, 0, 0], 'cell_size': [10, 10, 10], 'rotation': [0, 60, 1] }, 'input': { 'pml_thick': 0.5, 'num_particles': 2, } } return process('Geometry', info) @app.route('/simulation', methods=['GET', 'POST']) def simulation(): info = { 'check': { }, 'radio': { 'sim': ('checker', ('checker', 'simple shape', 'voronoi')) }, 'input_range': { }, 'input': { 'dimension': 2, 'resolution': 60, 'change_res': 1, 'time': 1000, 'out_every': 0.2, 'save_every': 30 } } return process('Simulation', info) @app.route('/general', methods=['GET', 'POST']) def general(): info = { 'check': { }, 'radio': { 'verbals': ('True', ('True', 'False')), 'gen vor': ('False', ('True', 'False')), 'meep sim': ('True', ('True', 'False')), 'gen gmsh': ('False', ('True', 'False')), 'process inp': ('False', ('True', 'False')), 'clean array': ('False', ('True', 'False')), 'sim abq': ('True', ('True', 'False')), }, 'input_range': { }, 'input': { } } return process('General', info) @app.route('/source', methods=['GET', 'POST']) def source(): info = { 'check': { }, 'radio': { 'mode': ('normal', ('normal', 'gaussian', 'far_field_transform', 'waveguide')), }, "input_range": { 'size': [0, 10, 0], 'center': [4, 0, 0], 'near_flux_loc': [3.5, 0, 0], 'far_flux_loc': [-4.5, 0, 0], 'flux_size': [0, 9, 0], }, 'input': { 'fcen': 0.8167, 'tilt_angle': 0, 'sigma': 2, 'amp': 100, 'flux_nfreq': 100, 'fwidth': 2, 'flux_width': 0.8, } } return process('Source', info) @app.route('/pricing', methods=['GET', 'POST']) def pricing(): return render_template('pricing.html') @app.route('/sim_image_data', methods=['GET']) def sim_image_data(): # a = [1,2,3] # b = [4,5,6] # plt.plot(a, b) # bytes_image = io.BytesIO() # plt.savefig(bytes_image, format='png') # bytes_image.seek(0) # return bytes_image # bytes_obj = get_correlation_matrix_as_bytes() r = redis.Redis(host = 'localhost', port = 6379, db=0) bytes_obj = io.BytesIO(r.get('RMS image')) bytes_obj.seek(0) return send_file(bytes_obj, attachment_filename='plot.png', mimetype='image/png') @app.route('/result', methods=['GET']) def result(): r = redis.Redis(host = 'localhost', port = 6379, db=0) bytes_obj = io.BytesIO(r.get('Current result')) bytes_obj.seek(0) return send_file(bytes_obj, attachment_filename='result.xlsx', as_attachment=True) # - - - Execute - - - def prep_db(): db.drop_all() db.create_all() sections = ['Visualization', 'General', 'Geometry', 'Simulation', 'Source'] for s in sections: _input_data_list = input_data_list(section=s) _radio_check_data_list = radio_check_data_list(section=s) db.session.add(_input_data_list) db.session.add(_radio_check_data_list) db.session.commit() if __name__ == '__main__': prep_db() app.run(debug=True, host='0.0.0.0')
null
webapp/app.py
app.py
py
12,512
python
en
code
null
code-starcoder2
83
[ { "api_name": "celery.Celery", "line_number": 26, "usage_type": "call" }, { "api_name": "celery.conf.update", "line_number": 27, "usage_type": "call" }, { "api_name": "celery.conf", "line_number": 27, "usage_type": "attribute" }, { "api_name": "celery.task", "line_number": 54, "usage_type": "call" }, { "api_name": "http.HTTPStatus", "line_number": 233, "usage_type": "attribute" }, { "api_name": "redis.Redis", "line_number": 392, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 393, "usage_type": "call" }, { "api_name": "redis.Redis", "line_number": 402, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 403, "usage_type": "call" } ]
95173720
import requests from PIL import Image import numpy as np ENDPOINT_URL = "http://0.0.0.0:80/infer" def infer(): image = np.asarray(Image.open('resources/yorkshire_terrier.jpg')).astype(np.float32) data ={'image': image.tolist()} response = requests.post(ENDPOINT_URL, json = data) response.raise_for_status() print(response.json()) if __name__ =="__main__": infer()
null
9. How to use uWSGI and Nginx to serve a Deep Learning model/app/client.py
client.py
py
393
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.asarray", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 8, "usage_type": "name" }, { "api_name": "numpy.float32", "line_number": 8, "usage_type": "attribute" }, { "api_name": "requests.post", "line_number": 10, "usage_type": "call" } ]
457015893
#!/usr/bin/env python # Copyright (c) 2014, Palo Alto Networks # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # Author: Brian Torres-Gil <[email protected]> """Panorama object For functions specific to Panorama """ # import modules import logging # import other parts of this pandevice package import pandevice.base class Panorama(pandevice.base.PanDevice): def __init__(self, hostname, api_username=None, api_password=None, api_key=None, port=443, serial=None, classify_exceptions=False): super(Panorama, self).__init__(hostname, api_username, api_password, api_key, classify_exceptions=classify_exceptions) # create a class logger self._logger = logging.getLogger(__name__ + "." + self.__class__.__name__) def commit_all(self, sync=False, sync_all=True, exception=False, cmd=None): self._logger.debug("Commit-all initiated on device: %s" % (self.hostname,)) return self._commit(sync=sync, sync_all=sync_all, commit_all=True, exception=exception, cmd=cmd) # XXX: I don't think this method is even needed def create_device_group(self, devicegroup, devices=None): """ Create a device-group and optionally add devices to it :param devicegroup: String, The device-group name :param devices: PanDevice or List of PanDevices to add to the device-group :return: None """ self._logger.debug("Create device-group: %s" % (devicegroup,)) if devices is not None: self.set_device_group(devicegroup, devices, exclusive=True) else: self.xapi.set(pandevice.XPATH_DEVICE_GROUPS + "/entry[@name='%s']" % (devicegroup,)) def set_device_group(self, devicegroup, devices, exclusive=False): """ For Panorama, set the device group for a device :param devicegroup: String, Device-group to set devices to :param devices: PanDevice or List of PanDevices :param exclusive: Device-group should contain ONLY these devices :return: None """ # TODO: Implement 'exclusive' self._logger.debug("Set device-group to '%s'" % (devicegroup)) if issubclass(devices.__class__, pandevice.base.PanDevice): devices = [devices] device_refresh_needed = False for device in devices: if device.serial is None or device.devicegroup is None: device_refresh_needed = True break if device_refresh_needed: self.refresh_devices_from_panorama(devices) # All devices have serial numbers now, so start setting devicegroup for device in devices: # If the device was in a group, and that group changed, pull it out of the current group if device.devicegroup != devicegroup and \ device.devicegroup is not None: self._logger.debug("Moving device %s out of device-group %s" % (device.hostname, device.devicegroup)) self.set_config_changed() self.xapi.delete( pandevice.XPATH_DEVICE_GROUPS + "/entry[@name='%s']/devices" "/entry[@name='%s']" % (device.devicegroup, device.serial) ) device.devicegroup = None # If assigning device to a new group if devicegroup is not None: self.set_config_changed() self._logger.debug("Moving device %s into device-group %s" % (device.hostname, devicegroup)) self.xapi.set( pandevice.XPATH_DEVICE_GROUPS + "/entry[@name='%s']/devices" % (devicegroup,), "<entry name='%s'/>" % (device.serial,) ) device.devicegroup = devicegroup
null
bin/lib/pandevice/pandevice/panorama.py
panorama.py
py
4,741
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandevice.base.base", "line_number": 33, "usage_type": "attribute" }, { "api_name": "pandevice.base", "line_number": 33, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 45, "usage_type": "call" }, { "api_name": "pandevice.base.XPATH_DEVICE_GROUPS", "line_number": 67, "usage_type": "attribute" }, { "api_name": "pandevice.base", "line_number": 67, "usage_type": "name" }, { "api_name": "pandevice.base.base", "line_number": 79, "usage_type": "attribute" }, { "api_name": "pandevice.base", "line_number": 79, "usage_type": "name" }, { "api_name": "pandevice.base.XPATH_DEVICE_GROUPS", "line_number": 96, "usage_type": "attribute" }, { "api_name": "pandevice.base", "line_number": 96, "usage_type": "name" }, { "api_name": "pandevice.base.XPATH_DEVICE_GROUPS", "line_number": 107, "usage_type": "attribute" }, { "api_name": "pandevice.base", "line_number": 107, "usage_type": "name" } ]
21859955
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import postgres.fields import decimal import django.db.models.deletion import django.core.serializers.json class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='Crawl', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('notes', models.TextField(blank=True)), ], options={ 'verbose_name': 'Crawl', 'verbose_name_plural': 'Crawls', }, ), migrations.CreateModel( name='RelatedObject', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('object_id', models.PositiveIntegerField()), ('content_type', models.ForeignKey(to='contenttypes.ContentType')), ], options={ 'verbose_name': 'Related Object', 'verbose_name_plural': 'Related Objects', }, ), migrations.CreateModel( name='URLInspection', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('url', models.URLField(max_length=500)), ('response_meta', postgres.fields.JSONField(default={}, decode_kwargs={'parse_float': decimal.Decimal}, encode_kwargs={'cls': django.core.serializers.json.DjangoJSONEncoder})), ('exists', models.NullBooleanField(help_text='URL resource exists')), ('last_visited', models.DateTimeField(null=True, blank=True, help_text='Datetime when the URL was last visited')), ('crawl', models.ForeignKey(null=True, blank=True, on_delete=django.db.models.deletion.SET_NULL, to='crawler.Crawl')), ], options={ 'verbose_name': 'URL Inspection', 'verbose_name_plural': 'URL Inspections', }, ), migrations.AddField( model_name='relatedobject', name='inspection', field=models.OneToOneField(related_name='related', to='crawler.URLInspection'), ), ]
null
crawler/migrations/0001_initial.py
0001_initial.py
py
2,753
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.db.migrations.Migration", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 18, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 18, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 21, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 21, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 31, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 34, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 34, "usage_type": "name" }, { "api_name": "django.db.models.PositiveIntegerField", "line_number": 35, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 35, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 36, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 36, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 43, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 43, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 46, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 46, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 47, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 47, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 48, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 48, "usage_type": "name" }, { "api_name": "django.db.models.URLField", "line_number": 49, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 49, "usage_type": "name" }, { "api_name": "postgres.fields.fields.JSONField", "line_number": 50, "usage_type": "call" }, { "api_name": "postgres.fields.fields", "line_number": 50, "usage_type": "attribute" }, { "api_name": "postgres.fields", "line_number": 50, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 50, "usage_type": "attribute" }, { "api_name": "django.db.core", "line_number": 50, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 50, "usage_type": "name" }, { "api_name": "django.db.models.NullBooleanField", "line_number": 51, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 51, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 52, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 52, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 53, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 53, "usage_type": "name" }, { "api_name": "django.db.db", "line_number": 53, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 53, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 60, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 60, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 63, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 63, "usage_type": "name" } ]
121250594
import logging import re from datetime import date from marcottimls.etl.base import BaseCSV from marcottimls.models import (Countries, Clubs, Competitions, DomesticCompetitions, InternationalCompetitions, Seasons, CompetitionSeasons, Persons, Players, NameOrderType, PositionType, ConfederationType) logger = logging.getLogger(__name__) class CountryIngest(BaseCSV): BATCH_SIZE = 50 def parse_file(self, rows): insertion_list = [] inserts = 0 logger.info("Ingesting Countries...") for keys in rows: country_name = "{Name}".format(**keys).strip().decode('utf-8') confederation = "{Confederation}".format(**keys).strip() if not self.record_exists(Countries, name=country_name): country_dict = dict(name=country_name, confederation=ConfederationType.from_string(confederation)) insertion_list.append(Countries(**country_dict)) inserted, insertion_list = self.bulk_insert(insertion_list, CountryIngest.BATCH_SIZE) inserts += inserted self.session.add_all(insertion_list) inserts += len(insertion_list) logger.info("Total of {0} Country records inserted and committed to database".format(inserts)) logger.info("Country Ingestion complete.") class CompetitionIngest(BaseCSV): BATCH_SIZE = 20 def parse_file(self, rows): inserts = 0 insertion_list = [] logger.info("Ingesting Competitions...") for keys in rows: competition_name = self.column_unicode("Name", **keys) level = self.column_int("Level", **keys) country_name = self.column_unicode("Country", **keys) confederation_name = self.column_unicode("Confederation", **keys) if all(var is not None for var in [country_name, confederation_name]): logger.error(u"Cannot insert Competition record for {}: " u"Country and Confederation defined".format(competition_name)) continue else: comp_record = None if country_name is not None: country_id = self.get_id(Countries, name=country_name) comp_dict = dict(name=competition_name, level=level, country_id=country_id) if country_id is None: logger.error(u"Cannot insert Domestic Competition record for {}: " u"Country {} not found".format(competition_name, country_name)) continue elif not self.record_exists(DomesticCompetitions, **comp_dict): comp_record = DomesticCompetitions(**comp_dict) elif confederation_name is not None: try: confederation = ConfederationType.from_string(confederation_name) except ValueError: logger.error(u"Cannot insert International Competition record for {}: " u"Confederation {} not found".format(competition_name, confederation_name)) continue comp_dict = dict(name=competition_name, level=level, confederation=confederation) if not self.record_exists(InternationalCompetitions, **comp_dict): comp_record = InternationalCompetitions(**comp_dict) else: logger.error(u"Cannot insert Competition record: Neither Country nor Confederation defined") continue if comp_record is not None: insertion_list.append(comp_record) logger.debug(u"Adding Competition record: {}".format(comp_dict)) inserted, insertion_list = self.bulk_insert(insertion_list, CompetitionIngest.BATCH_SIZE) inserts += inserted self.session.add_all(insertion_list) self.session.commit() inserts += len(insertion_list) logger.info("Total {} Competition records inserted and committed to database".format(inserts)) logger.info("Competition Ingestion complete.") class CompetitionSeasonIngest(BaseCSV): BATCH_SIZE = 10 def parse_file(self, rows): inserts = 0 insertion_list = [] for keys in rows: competition_name = self.column_unicode("Competition", **keys) season_name = self.column("Season", **keys) start_date_iso = self.column("Start", **keys) end_date_iso = self.column("End", **keys) matchdays = self.column_int("Matchdays", **keys) start_date = date(*tuple(int(x) for x in start_date_iso.split('-'))) if start_date_iso else None end_date = date(*tuple(int(x) for x in end_date_iso.split('-'))) if end_date_iso else None competition_id = self.get_id(Competitions, name=competition_name) if competition_id is None: logger.error(u"Cannot insert Competition Season record: " u"Competition {} not in database".format(competition_name)) continue season_id = self.get_id(Seasons, name=season_name) if season_id is None: logger.error(u"Cannot insert Competition Season record: " u"Season {} not in database".format(season_name)) continue compseason_dict = dict(competition_id=competition_id, season_id=season_id, start_date=start_date, end_date=end_date, matchdays=matchdays) if not self.record_exists(CompetitionSeasons, **compseason_dict): insertion_list.append(CompetitionSeasons(**compseason_dict)) inserted, insertion_list = self.bulk_insert(insertion_list, CompetitionSeasonIngest.BATCH_SIZE) inserts += inserted if inserted and not inserts % CompetitionSeasonIngest.BATCH_SIZE: logger.info("{} records inserted".format(inserts)) self.session.add_all(insertion_list) self.session.commit() inserts += len(insertion_list) logger.info("Total {} Competition Season records inserted and committed to database".format(inserts)) logger.info("Competition Season Ingestion complete.") class ClubIngest(BaseCSV): BATCH_SIZE = 50 def parse_file(self, rows): inserts = 0 insertion_list = [] logger.info("Ingesting Clubs...") for keys in rows: club_name = self.column_unicode("Name", **keys) club_symbol = self.column("Symbol", **keys) country_name = self.column_unicode("Country", **keys) if country_name is None: logger.error(u"Cannot insert Club record for {}: Country required".format(club_name)) continue else: country_id = self.get_id(Countries, name=country_name) club_dict = dict(name=club_name, symbol=club_symbol, country_id=country_id) if country_id is None: logger.error(u"Cannot insert Club record {}: " u"Country {} not in database".format(club_dict, country_name)) elif not self.record_exists(Clubs, **club_dict): insertion_list.append(Clubs(**club_dict)) inserted, insertion_list = self.bulk_insert(insertion_list, ClubIngest.BATCH_SIZE) inserts += inserted if inserted and not inserts % ClubIngest.BATCH_SIZE: logger.info("{} records inserted".format(inserts)) self.session.add_all(insertion_list) self.session.commit() inserts += len(insertion_list) logger.info("Total {} Club records inserted and committed to database".format(inserts)) logger.info("Club Ingestion complete.") class PersonIngest(BaseCSV): def parse_file(self, rows): raise NotImplementedError def get_person_data(self, **keys): first_name = self.column_unicode("First Name", **keys) known_first_name = self.column_unicode("Known First Name", **keys) middle_name = self.column_unicode("Middle Name", **keys) last_name = self.column_unicode("Last Name", **keys) second_last_name = self.column_unicode("Second Last Name", **keys) nickname = self.column_unicode("Nickname", **keys) date_of_birth = self.column("Birthdate", **keys) order = self.column("Name Order", **keys) or "Western" name_order = NameOrderType.from_string(order) birth_date = date(*tuple(int(x) for x in date_of_birth.split('-'))) if date_of_birth else None person_dict = {field: value for (field, value) in zip( ['first_name', 'known_first_name', 'middle_name', 'last_name', 'second_last_name', 'nick_name', 'birth_date', 'order'], [first_name, known_first_name, middle_name, last_name, second_last_name, nickname, birth_date, name_order]) if value is not None} return person_dict class PlayerIngest(PersonIngest): BATCH_SIZE = 200 def parse_file(self, rows): inserts = 0 logger.info("Ingesting Players...") for keys in rows: person_dict = self.get_person_data(**keys) position_chars = self.column("Position", **keys) country_name = self.column_unicode("Country", **keys) country_id = self.get_id(Countries, name=country_name) if country_id is None: logger.error(u"Cannot insert Player record {}: " u"Country {} not in database".format(person_dict, country_name)) continue position = [PositionType.unknown, None] if position_chars is not None: position_codes = re.split(r'[;,:\-/]', position_chars) for i, code in enumerate(position_codes): position[i] = PositionType.from_string(code) person_dict = dict(country_id=country_id, **person_dict) if not self.record_exists(Players, **person_dict): if not self.record_exists(Persons, **person_dict): player_record = Players(primary_position=position[0], secondary_position=position[1], **person_dict) else: person_id = self.get_id(Persons, **person_dict) player_record = Players(person_id=person_id, primary_position=position[0], secondary_position=position[1]) self.session.add(player_record) self.session.commit() inserts += 1 if inserts % PlayerIngest.BATCH_SIZE == 0: logger.info("{} records inserted".format(inserts)) logger.info("Total {} Player records inserted and committed to database".format(inserts)) logger.info("Player Ingestion complete.")
null
marcottimls/etl/overview.py
overview.py
py
11,271
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "marcottimls.etl.base.BaseCSV", "line_number": 13, "usage_type": "name" }, { "api_name": "marcottimls.models.Countries", "line_number": 24, "usage_type": "argument" }, { "api_name": "marcottimls.models.ConfederationType.from_string", "line_number": 25, "usage_type": "call" }, { "api_name": "marcottimls.models.ConfederationType", "line_number": 25, "usage_type": "name" }, { "api_name": "marcottimls.models.Countries", "line_number": 26, "usage_type": "call" }, { "api_name": "marcottimls.etl.base.BaseCSV", "line_number": 35, "usage_type": "name" }, { "api_name": "marcottimls.models.Countries", "line_number": 56, "usage_type": "argument" }, { "api_name": "marcottimls.models.DomesticCompetitions", "line_number": 62, "usage_type": "argument" }, { "api_name": "marcottimls.models.DomesticCompetitions", "line_number": 63, "usage_type": "call" }, { "api_name": "marcottimls.models.ConfederationType.from_string", "line_number": 66, "usage_type": "call" }, { "api_name": "marcottimls.models.ConfederationType", "line_number": 66, "usage_type": "name" }, { "api_name": "marcottimls.models.InternationalCompetitions", "line_number": 72, "usage_type": "argument" }, { "api_name": "marcottimls.models.InternationalCompetitions", "line_number": 73, "usage_type": "call" }, { "api_name": "marcottimls.etl.base.BaseCSV", "line_number": 89, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 103, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 104, "usage_type": "call" }, { "api_name": "marcottimls.models.Competitions", "line_number": 106, "usage_type": "argument" }, { "api_name": "marcottimls.models.Seasons", "line_number": 111, "usage_type": "argument" }, { "api_name": "marcottimls.models.CompetitionSeasons", "line_number": 118, "usage_type": "argument" }, { "api_name": "marcottimls.models.CompetitionSeasons", "line_number": 119, "usage_type": "call" }, { "api_name": "marcottimls.etl.base.BaseCSV", "line_number": 131, "usage_type": "name" }, { "api_name": "marcottimls.models.Countries", "line_number": 148, "usage_type": "argument" }, { "api_name": "marcottimls.models.Clubs", "line_number": 153, "usage_type": "argument" }, { "api_name": "marcottimls.models.Clubs", "line_number": 154, "usage_type": "call" }, { "api_name": "marcottimls.etl.base.BaseCSV", "line_number": 166, "usage_type": "name" }, { "api_name": "marcottimls.models.NameOrderType.from_string", "line_number": 181, "usage_type": "call" }, { "api_name": "marcottimls.models.NameOrderType", "line_number": 181, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 182, "usage_type": "call" }, { "api_name": "marcottimls.models.Countries", "line_number": 204, "usage_type": "argument" }, { "api_name": "marcottimls.models.PositionType.unknown", "line_number": 210, "usage_type": "attribute" }, { "api_name": "marcottimls.models.PositionType", "line_number": 210, "usage_type": "name" }, { "api_name": "re.split", "line_number": 212, "usage_type": "call" }, { "api_name": "marcottimls.models.PositionType.from_string", "line_number": 214, "usage_type": "call" }, { "api_name": "marcottimls.models.PositionType", "line_number": 214, "usage_type": "name" }, { "api_name": "marcottimls.models.Players", "line_number": 217, "usage_type": "argument" }, { "api_name": "marcottimls.models.Persons", "line_number": 218, "usage_type": "argument" }, { "api_name": "marcottimls.models.Players", "line_number": 219, "usage_type": "call" }, { "api_name": "marcottimls.models.Persons", "line_number": 222, "usage_type": "argument" }, { "api_name": "marcottimls.models.Players", "line_number": 223, "usage_type": "call" } ]
124396611
""" :py:mod:`pymco.listeners` ------------------------- stomp.py listeners for python-mcollective. """ import functools import threading import time from stomp import listener class CurrentHostPortListener(listener.ConnectionListener): """Listener tracking current host and port. Some connectors, like ActiveMQ connector, may provide different user and password for each host, so we need track the current host and port in order to be able to get the right user and password when logging. """ def __init__(self, *args, **kwargs): self.current_host = None self.curent_port = None def on_connecting(self, host_and_port): """Track current host and port. :arg host_and_port: A two-tuple with host as first element and port as the second. """ self.current_host, self.current_port = host_and_port def get_host(self): """Return current host. :return: current host. """ return self.current_host def get_port(self): """Return current host. :return: current port. """ return self.current_port class ResponseListener(listener.ConnectionListener): """Listener that waits for a message response. :arg config: :py:class:`pymco.config.Config` instance. :arg count: number of expected messages. :arg timeout: seconds we should wait for messages. :arg condition: by default a :py:class:`threading.Condition` object for synchronization purposes, but you can use any object implementing the :py:meth:`wait` method and accepting a ``timeout`` argument. """ def __init__(self, config, count, timeout=30, condition=None): self.config = config self._security = None self.timeout = timeout if not condition: condition = threading.Condition() self.condition = condition self.received = 0 self.responses = [] self.count = count @property def security(self): """Security provider property""" if not self._security: self._security = self.config.get_security() return self._security def on_message(self, headers, body): """Received messages hook. :arg headers: message headers. :arg body: message body. """ self.condition.acquire() self.responses.append(self.security.decode(body)) self.received += 1 self.condition.notify() self.condition.release() def wait_on_message(self): """Wait until we get a message. :return: ``self``. """ self.condition.acquire() self._wait_loop(self.timeout) self.condition.release() self.received = 0 return self def _wait_loop(self, timeout): while self.received < self.count: init_time = time.time() self.condition.wait(timeout) current_time = time.time() timeout -= (current_time - init_time) if timeout <= 0: break SingleResponseListener = functools.partial(ResponseListener, count=1)
null
pymco/listener.py
listener.py
py
3,180
python
en
code
null
code-starcoder2
83
[ { "api_name": "stomp.listener.ConnectionListener", "line_number": 13, "usage_type": "attribute" }, { "api_name": "stomp.listener", "line_number": 13, "usage_type": "name" }, { "api_name": "stomp.listener.ConnectionListener", "line_number": 47, "usage_type": "attribute" }, { "api_name": "stomp.listener", "line_number": 47, "usage_type": "name" }, { "api_name": "threading.Condition", "line_number": 63, "usage_type": "call" }, { "api_name": "time.time", "line_number": 103, "usage_type": "call" }, { "api_name": "time.time", "line_number": 105, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 111, "usage_type": "call" } ]
260602147
# -*- coding: utf-8 -*- import dpkt,sys,json,time,socket from collections import OrderedDict # packets = { # port_number: [ # { syn_flag_time: num, syn_flag_ack_time: num, delay: num }, # ... # port_number: [ ... ], # } packets = OrderedDict() MAIN_IP = "202.229.23.46" before_time = 0 diff_time = 0 time_minute = 0 count = 1 pcr = dpkt.pcap.Reader(sys.stdin) ip_src_list = [] ip_dst_list = [] for t, buf in pcr: eth = dpkt.ethernet.Ethernet(buf) ip = eth.data tcp = ip.data ip_src_addr = socket.inet_ntoa(ip.src) ip_dst_addr = socket.inet_ntoa(ip.dst) syn_flag = (tcp.flags & dpkt.tcp.TH_SYN) != 0 ack_flag = (tcp.flags & dpkt.tcp.TH_ACK) != 0 if not syn_flag: continue # デバッグ用 ip_src_list.append(ip_src_addr) # IP分布が一番高いものをMAIN_IPにセット if (ip_src_addr != MAIN_IP) and (ip_dst_addr != MAIN_IP) : continue port_number = tcp.dport if ack_flag else tcp.sport if port_number not in packets: packets[port_number] = [] contents = packets[port_number] if not ack_flag: # SYN contents.append({'syn_flag_time': t }) else: # SYN ACK try: content = contents[-1] content['syn_flag_ack_time'] = t content['ack_ip_src_addr'] = ip_src_addr content['delay'] = content['syn_flag_ack_time'] - content['syn_flag_time'] except IndexError: pass if before_time: try: #print ("t: {}".format(t)) #print ("before_time: {}".format(before_time)) content['time_minute'] = time_minute diff_time = t - before_time #print ("diff_time: {}".format(diff_time)) if diff_time > 100: time_minute += 2 except NameError: pass before_time = t # IPアドレスの分布 # 一番多いIPアドレスをMAIN_IPに代入 """ ip_and_counts = {} for word in ip_src_list: if ip_and_counts.has_key(word): ip_and_counts[word] += 1 else: ip_and_counts[word] = 1 for w, c in sorted(ip_and_counts.iteritems(), key=lambda x: x[1], reverse=True): print ("{}: {}".format(w,c)) """ print (json.dumps(packets, indent=4)) # Set all delays to the variable `all_delays` all_time = [] ip_src_dict = OrderedDict() for contents in packets.values(): for content in contents: try: if content['ack_ip_src_addr'] not in ip_src_dict: ip_src_dict[content['ack_ip_src_addr']] = [] except: pass if 'delay' in content: all_delay = ip_src_dict[content['ack_ip_src_addr']] all_delay.append({'delay':content['delay']}) all_time = all_delay[-1] all_time['access_time'] = content['time_minute'] #print json.dumps(ip_src_dict,indent=4)
null
calculate.py
calculate.py
py
2,984
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.OrderedDict", "line_number": 13, "usage_type": "call" }, { "api_name": "dpkt.pcap.Reader", "line_number": 19, "usage_type": "call" }, { "api_name": "dpkt.pcap", "line_number": 19, "usage_type": "attribute" }, { "api_name": "sys.stdin", "line_number": 19, "usage_type": "attribute" }, { "api_name": "dpkt.ethernet.Ethernet", "line_number": 24, "usage_type": "call" }, { "api_name": "dpkt.ethernet", "line_number": 24, "usage_type": "attribute" }, { "api_name": "socket.inet_ntoa", "line_number": 27, "usage_type": "call" }, { "api_name": "socket.inet_ntoa", "line_number": 28, "usage_type": "call" }, { "api_name": "dpkt.tcp", "line_number": 29, "usage_type": "attribute" }, { "api_name": "dpkt.tcp", "line_number": 30, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 83, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 87, "usage_type": "call" } ]
541020941
#!/usr/bin/env python3 # coding: utf8 import datetime from collections import namedtuple import cardiologs.common.model.wave as wave import cardiologs.common.math.streamstatistics as cardiomath def ms_to_secs(ms): """ Convert milliseconds to seconds """ return ms / 1000 def ms_to_days(ms): """ Convert milliseconds to days """ return ms_to_secs(ms) / (3600 * 24) Max = namedtuple('Max', ['value', 'time']) Min = namedtuple('Min', ['value', 'time']) Summary = namedtuple('Summary', ['average', 'min', 'max']) class Measurements(object): """ Aggregate various measures together """ _P = list() _QRS = list() _INV = list() _T = list() _heartbit_periods = list() def __init__(self, timeoffset): self._period = cardiomath.PeriodComputer() self._average = cardiomath.MovingAverage() self._max = cardiomath.MovingMax() self._min = cardiomath.MovingMin() self._timeoffset = timeoffset self._time_last_sampling = timeoffset self._time_max = None self._time_min = None def update(self, w): if w.type == wave.WaveType.QRS: last_sampling = datetime.timedelta(days=ms_to_days(w.timing.onset), seconds=ms_to_secs(w.timing.onset), milliseconds=w.timing.onset) self._time_last_sampling = self._timeoffset + last_sampling period = self._period(w.timing.onset) if period != 0: self._average(period) if self._min(period): sample_date = datetime.timedelta(days=ms_to_days(w.timing.onset), seconds=ms_to_secs(w.timing.onset), milliseconds=w.timing.onset) self._time_min = self._timeoffset + sample_date if self._max(period): sample_date = datetime.timedelta(days=ms_to_days(w.timing.onset), seconds=ms_to_secs(w.timing.onset), milliseconds=w.timing.onset) self._time_max = self._timeoffset + sample_date self._heartbit_periods.append((period, w.timing.onset)) if w.type == wave.WaveType.P: self._P.append(w) elif w.type == wave.WaveType.QRS: self._QRS.append(w) elif w.type == wave.WaveType.INV: self._INV.append(w) elif w.type == wave.WaveType.T: self._T.append(w) @property def summary(self): return Summary(average=self._average.value, min=Min(value=self._min.value, time=self._time_min), max=Max(value=self._max.value, time=self._time_max)) @property def P(self): return self._P @property def QRS(self): return self._QRS @property def INV(self): return self._INV @property def T(self): return self._T @property def time_last_sampling(self): return self._time_last_sampling @property def heartbit_periods(self): return self._heartbit_periods
null
cardiologs/measure.py
measure.py
py
3,327
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.namedtuple", "line_number": 25, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 26, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 27, "usage_type": "call" }, { "api_name": "cardiologs.common.math.streamstatistics.PeriodComputer", "line_number": 41, "usage_type": "call" }, { "api_name": "cardiologs.common.math.streamstatistics", "line_number": 41, "usage_type": "name" }, { "api_name": "cardiologs.common.math.streamstatistics.MovingAverage", "line_number": 42, "usage_type": "call" }, { "api_name": "cardiologs.common.math.streamstatistics", "line_number": 42, "usage_type": "name" }, { "api_name": "cardiologs.common.math.streamstatistics.MovingMax", "line_number": 43, "usage_type": "call" }, { "api_name": "cardiologs.common.math.streamstatistics", "line_number": 43, "usage_type": "name" }, { "api_name": "cardiologs.common.math.streamstatistics.MovingMin", "line_number": 44, "usage_type": "call" }, { "api_name": "cardiologs.common.math.streamstatistics", "line_number": 44, "usage_type": "name" }, { "api_name": "cardiologs.common.model.wave.WaveType", "line_number": 52, "usage_type": "attribute" }, { "api_name": "cardiologs.common.model.wave", "line_number": 52, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 53, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 62, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 67, "usage_type": "call" }, { "api_name": "cardiologs.common.model.wave.WaveType", "line_number": 73, "usage_type": "attribute" }, { "api_name": "cardiologs.common.model.wave", "line_number": 73, "usage_type": "name" }, { "api_name": "cardiologs.common.model.wave.WaveType", "line_number": 75, "usage_type": "attribute" }, { "api_name": "cardiologs.common.model.wave", "line_number": 75, "usage_type": "name" }, { "api_name": "cardiologs.common.model.wave.WaveType", "line_number": 77, "usage_type": "attribute" }, { "api_name": "cardiologs.common.model.wave", "line_number": 77, "usage_type": "name" }, { "api_name": "cardiologs.common.model.wave.WaveType", "line_number": 79, "usage_type": "attribute" }, { "api_name": "cardiologs.common.model.wave", "line_number": 79, "usage_type": "name" } ]
342113249
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class MatchRecord(Model): """MatchRecord. :param wikipedia_score: (optional) If a well-known item with Wikipedia link is recognized, a decimal number denoting the confidence level of the Wikipedia info will be returned. :type wikipedia_score: float :param entity_type_score: (optional) If an entity type is recognized, a decimal number denoting the confidence level of the entity type will be returned. :type entity_type_score: float :param text: Entity text as appears in the request. :type text: str :param offset: Start position (in Unicode characters) for the entity match text. :type offset: int :param length: Length (in Unicode characters) for the entity match text. :type length: int """ _attribute_map = { 'wikipedia_score': {'key': 'wikipediaScore', 'type': 'float'}, 'entity_type_score': {'key': 'entityTypeScore', 'type': 'float'}, 'text': {'key': 'text', 'type': 'str'}, 'offset': {'key': 'offset', 'type': 'int'}, 'length': {'key': 'length', 'type': 'int'}, } def __init__(self, *, wikipedia_score: float=None, entity_type_score: float=None, text: str=None, offset: int=None, length: int=None, **kwargs) -> None: super(MatchRecord, self).__init__(**kwargs) self.wikipedia_score = wikipedia_score self.entity_type_score = entity_type_score self.text = text self.offset = offset self.length = length
null
sdk/cognitiveservices/azure-cognitiveservices-language-textanalytics/azure/cognitiveservices/language/textanalytics/models/match_record_py3.py
match_record_py3.py
py
2,003
python
en
code
null
code-starcoder2
83
[ { "api_name": "msrest.serialization.Model", "line_number": 15, "usage_type": "name" } ]
651561274
def load_data(): import pandas as pd import os import ujson df = pd.read_csv('data/dataset_1/Video_Games_Sales_as_at_22_Dec_2016.csv') #print df #genres = df.transpose().groupby('Global_Sales')[['Action','Adventure','Fighting','Misc','Platform','Puzzle','Racing','Role-Playing','Shooter','Simulation','Sports','Strategy']].sum() regions = df.groupby('Genre')[['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum() systems = df.groupby('Platform')[['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum() publishers = df.groupby('Publisher')[['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum() years = df.groupby('Year_of_Release')[['NA_Sales','EU_Sales','JP_Sales','Other_Sales','Global_Sales']].sum() names = df.groupby('Name')[['NA_Sales','EU_Sales','JP_Sales','Other_Sales','Global_Sales']].sum() #print years output = {} output['regions'] = regions.to_dict() output['genres'] = regions.transpose().to_dict() output['systems'] = systems.transpose().to_dict() output['publishers'] = publishers.transpose().to_dict() #output['genres'] = genres.to_dict() output['years'] = years.to_dict() output['names'] = names.to_dict() nameKeys = output['names']['Global_Sales'].keys() #output['namesearchlist'] = [n + ' | ' + ','.join(df[df['Name'].isin([n])].dropna()['Platform'].unique()) + ' | ' + ','.join(df[df['Name'].isin([n])].dropna()['Publisher'].unique()) + ' | ' + ','.join(df[df['Name'].isin([n])].dropna()['Genre'].unique()) for n in nameKeys] output['namelist'] = nameKeys output['genrelist'] = output['genres'].keys() output['publisherlist'] = output['publishers'].keys() output['systemlist'] = output['systems'].keys() #ourput['name_list'] = output['names']['Global_Sales'].keys() return ujson.dumps(output) def update_data(req): import pandas as pd import os import ujson df = pd.read_csv('data/dataset_1/Video_Games_Sales_as_at_22_Dec_2016.csv') genre = existsOrEmptyList(req.args.get('genre'),req.args.get('splitter')) system = existsOrEmptyList(req.args.get('system'),req.args.get('splitter')) publisher = existsOrEmptyList(req.args.get('publisher'),req.args.get('splitter')) game = existsOrEmptyList(req.args.get('game'),req.args.get('splitter')) udf = df tag_total = len(genre) + len(system) + len(publisher) + len(game) if tag_total > 0: udf = df[df['Genre'].isin(genre) | df['Platform'].isin(system) | df['Publisher'].isin(publisher) | df['Name'].isin(game)] sdf = udf.fillna(0) sales = {n : sdf[sdf['Genre'].isin([n])][['Global_Sales']].sum() for n in [g for g in sdf['Genre'].unique() if str(g) != '0']} #sales = udf[['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum().to_dict() years = udf.groupby('Year_of_Release')[['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum() output = {} output['subset'] = {} output['ratings'] = {} if tag_total > 0: for g in genre: output['subset'][g] = udf[udf['Genre'].isin([g])][['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum().to_dict() output['ratings'][g] = udf[udf['Genre'].isin([g])][['Critic_Score','User_Score']].mean().dropna().to_dict() for g in system: output['subset'][g] = udf[udf['Platform'].isin([g])][['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum().to_dict() output['ratings'][g] = udf[udf['Platform'].isin([g])][['Critic_Score','User_Score']].mean().dropna().to_dict() for g in publisher: output['subset'][g] = udf[udf['Publisher'].isin([g])][['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum().to_dict() output['ratings'][g] = udf[udf['Publisher'].isin([g])][['Critic_Score','User_Score']].mean().dropna().to_dict() for g in game: output['subset'][g] = udf[udf['Name'].isin([g])][['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum().to_dict() output['ratings'][g] = udf[udf['Name'].isin([g])][['Critic_Score','User_Score']].mean().dropna().to_dict() else: output['subset']['Total'] = udf[['NA_Sales','EU_Sales','JP_Sales','Other_Sales']].sum().to_dict() output['sales'] = sales output['years'] = years.to_dict() #print udf[['Critic_Score']].dropna().sum() #print output return ujson.dumps(output) def existsOrEmptyList(v,d): output = [] if v is not None: output = str(v).split(d) return output
null
gamedata.py
gamedata.py
py
4,518
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.read_csv", "line_number": 5, "usage_type": "call" }, { "api_name": "ujson.dumps", "line_number": 33, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 40, "usage_type": "call" }, { "api_name": "ujson.dumps", "line_number": 93, "usage_type": "call" } ]
206839824
from tm1637 import TM1637 import RPi.GPIO as GPIO import multiprocessing, time class WorkoutBuddy(): REST_TIME = 90 CLK_PIN = 24 DIO_PIN = 23 INPUT_PIN = 17 MAX_SETS = 5 _time = 0 _set = 1 _thread = None _tm = None _gpio = None # Debouncing _accept_input = True def __init__(self): # Use board numbering scheme GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self.INPUT_PIN, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.add_event_detect( self.INPUT_PIN, GPIO.FALLING, callback=self.set_completed, bouncetime=200 ) # Write and init display self._tm = TM1637(clk=self.CLK_PIN, dio=self.DIO_PIN) self._time = self.REST_TIME self.display() def __str__(self): return f"{self._time}, {self._set}" def display(self): self._tm.numbers(self._time, self._set) def set_completed(self, channel): if self._thread is not None: self._thread.terminate() # Press button to reset to 1st set if self._set == self.MAX_SETS: self._set = 1 self._time = self.REST_TIME self.display() else: self._set += 1 self.rest_between_sets() def stop_thread(self): self._thread.terminate() def rest_between_sets(self): self._time = self.REST_TIME self._thread = multiprocessing.Process(target=self.countdown_thread) self._thread.start() def countdown_thread(self): self.display() while self._time > 0: time.sleep(1) self._time -= 1 self.display() if __name__ == "__main__": wb = WorkoutBuddy() while True: pass # Spinlock
null
main.py
main.py
py
1,870
python
en
code
null
code-starcoder2
83
[ { "api_name": "RPi.GPIO.setmode", "line_number": 25, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 25, "usage_type": "name" }, { "api_name": "RPi.GPIO.BCM", "line_number": 25, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.setwarnings", "line_number": 26, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 26, "usage_type": "name" }, { "api_name": "RPi.GPIO.setup", "line_number": 27, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 27, "usage_type": "name" }, { "api_name": "RPi.GPIO.IN", "line_number": 27, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.PUD_UP", "line_number": 27, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.add_event_detect", "line_number": 28, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 28, "usage_type": "name" }, { "api_name": "RPi.GPIO.FALLING", "line_number": 30, "usage_type": "attribute" }, { "api_name": "RPi.GPIO", "line_number": 30, "usage_type": "name" }, { "api_name": "tm1637.TM1637", "line_number": 36, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 65, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 71, "usage_type": "call" } ]
287768271
import sys, os, argparse from os.path import join, isdir, isfile, split sys.path.insert(0, 'caffe/python') import caffe from caffe import layers as L, params as P from caffe.coord_map import crop import numpy as np from math import ceil parser = argparse.ArgumentParser(description='Training hed.') parser.add_argument('--nfeat', type=int, help='number features', default=11) parser.add_argument('--bias', type=bool, default=True) args = parser.parse_args() tmp_dir = 'tmp' if not isdir(tmp_dir): os.makedirs(tmp_dir) def conv_relu(bottom, nout, ks=3, stride=1, pad=1, mult=[1,1,2,0]): conv = L.Convolution(bottom, kernel_size=ks, stride=stride, num_output=nout, pad=pad, weight_filler=dict(type='msra'), param=[dict(lr_mult=mult[0], decay_mult=mult[1]), dict(lr_mult=mult[2], decay_mult=mult[3])]) return conv, L.ReLU(conv, in_place=True) def max_pool(bottom, ks=2, stride=2): return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride) def conv1x1(bottom, nout=1, lr=[0.01, 1, 0.02, 0], wf=dict(type="constant")): if args.bias: return L.Convolution(bottom, kernel_size=1, num_output=nout, weight_filler=wf, param=[dict(lr_mult=lr[0], decay_mult=lr[1]), dict(lr_mult=lr[2], decay_mult=lr[3])]) else: return L.Convolution(bottom, kernel_size=1, num_output=nout, weight_filler=wf, bias_term=False, param=[dict(lr_mult=lr[0], decay_mult=lr[1])]) def upsample(bottom, stride, nout=1, name=None): s, k, pad = stride, 2 * stride, int(ceil(stride-1)/2) if not name: name = "upsample%d"%s return L.Deconvolution(bottom, name=name, convolution_param=dict(num_output=nout, bias_term=False, kernel_size=k, stride=s, pad=pad, weight_filler = dict(type="bilinear"), group=nout), param=[dict(lr_mult=0, decay_mult=0)]) def net(split): n = caffe.NetSpec() # loss_param = dict(normalization=P.Loss.VALID) loss_param = dict(normalize=False) if split=='train': data_params = dict(mean=(104.00699, 116.66877, 122.67892)) data_params['root'] = 'data/HED-BSDS_PASCAL' data_params['source'] = "bsds_pascal_train_pair.lst" data_params['shuffle'] = True data_params['ignore_label'] = -1 n.data, n.label = L.Python(module='pylayer', layer='ImageLabelmapDataLayer', ntop=2, \ param_str=str(data_params)) if data_params.has_key('ignore_label'): loss_param['ignore_label'] = int(data_params['ignore_label']) elif split == 'test': n.data = L.Input(name = 'data', input_param=dict(shape=dict(dim=[1,3,200,200]))) else: raise Exception("Invalid phase") n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=1) n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64) n.pool1 = max_pool(n.relu1_2) n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128) n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128) n.pool2 = max_pool(n.relu2_2) n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256) n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256) n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256) n.pool3 = max_pool(n.relu3_3) n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512) n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 512) n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2, 512) n.pool4 = max_pool(n.relu4_3) n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512, mult=[100,1,200,0]) n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512, mult=[100,1,200,0]) n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512, mult=[100,1,200,0]) ## w1 n.w1_1top = conv1x1(n.conv1_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w1_2top = conv1x1(n.conv1_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) ## w2 n.w2_1top = conv1x1(n.conv2_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w2_2top = conv1x1(n.conv2_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w2_1down = conv1x1(n.conv2_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w2_2down = conv1x1(n.conv2_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) ## w3 n.w3_1top = conv1x1(n.conv3_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w3_2top = conv1x1(n.conv3_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w3_3top = conv1x1(n.conv3_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w3_1down = conv1x1(n.conv3_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w3_2down = conv1x1(n.conv3_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w3_3down = conv1x1(n.conv3_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) ## w4 n.w4_1top = conv1x1(n.conv4_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w4_2top = conv1x1(n.conv4_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w4_3top = conv1x1(n.conv4_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w4_1down = conv1x1(n.conv4_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w4_2down = conv1x1(n.conv4_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w4_3down = conv1x1(n.conv4_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) ## w5 n.w5_1down = conv1x1(n.conv5_1, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w5_2down = conv1x1(n.conv5_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.w5_3down = conv1x1(n.conv5_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) ## upsample wx_xdown n.w2_1down_up = upsample(n.w2_1down, nout=args.nfeat, stride=2, name='upsample2_1') n.w2_2down_up = upsample(n.w2_2down, nout=args.nfeat, stride=2, name='upsample2_2') n.w3_1down_up = upsample(n.w3_1down, nout=args.nfeat, stride=2, name='upsample3_1') n.w3_2down_up = upsample(n.w3_2down, nout=args.nfeat, stride=2, name='upsample3_2') n.w3_3down_up = upsample(n.w3_3down, nout=args.nfeat, stride=2, name='upsample3_3') n.w4_1down_up = upsample(n.w4_1down, nout=args.nfeat, stride=2, name='upsample4_1') n.w4_2down_up = upsample(n.w4_2down, nout=args.nfeat, stride=2, name='upsample4_2') n.w4_3down_up = upsample(n.w4_3down, nout=args.nfeat, stride=2, name='upsample4_3') n.w5_1down_up = upsample(n.w5_1down, nout=args.nfeat, stride=2, name='upsample5_1') n.w5_2down_up = upsample(n.w5_2down, nout=args.nfeat, stride=2, name='upsample5_2') n.w5_3down_up = upsample(n.w5_3down, nout=args.nfeat, stride=2, name='upsample5_3') ## crop wx_xdown_up n.w2_1down_up_crop = crop(n.w2_1down_up, n.w1_1top) n.w2_2down_up_crop = crop(n.w2_2down_up, n.w1_1top) n.w3_1down_up_crop = crop(n.w3_1down_up, n.w2_1top) n.w3_2down_up_crop = crop(n.w3_2down_up, n.w2_1top) n.w3_3down_up_crop = crop(n.w3_3down_up, n.w2_1top) n.w4_1down_up_crop = crop(n.w4_1down_up, n.w3_1top) n.w4_2down_up_crop = crop(n.w4_2down_up, n.w3_1top) n.w4_3down_up_crop = crop(n.w4_3down_up, n.w3_1top) n.w5_1down_up_crop = crop(n.w5_1down_up, n.w4_1top) n.w5_2down_up_crop = crop(n.w5_2down_up, n.w4_1top) n.w5_3down_up_crop = crop(n.w5_3down_up, n.w4_1top) ## fuse n.h1s1_2 = L.Eltwise(n.w1_1top, n.w1_2top, n.w2_1down_up_crop, n.w2_2down_up_crop) n.h1s2_3 = L.Eltwise(n.w2_1top, n.w2_2top, n.w3_1down_up_crop, n.w3_2down_up_crop, n.w3_3down_up_crop) n.h1s3_4 = L.Eltwise(n.w3_1top, n.w3_2top, n.w3_3top, \ n.w4_1down_up_crop, n.w4_2down_up_crop, n.w4_3down_up_crop) n.h1s4_5 = L.Eltwise(n.w4_1top, n.w4_2top, n.w4_3top, \ n.w5_1down_up_crop, n.w5_2down_up_crop, n.w5_3down_up_crop) ## score h1sx_x n.score_h1s1_2 = conv1x1(n.h1s1_2, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) n.score_h1s2_3 = conv1x1(n.h1s2_3, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) n.score_h1s3_4 = conv1x1(n.h1s3_4, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) n.score_h1s4_5 = conv1x1(n.h1s4_5, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) ## upsample score n.upscore_h1s2_3 = upsample(n.score_h1s2_3, stride=2, name='upscore_h1s2_3') n.upscore_h1s3_4 = upsample(n.score_h1s3_4, stride=4, name='upscore_h1s2_4') n.upscore_h1s4_5 = upsample(n.score_h1s4_5, stride=8, name='upscore_h1s4_5') ## crop upscore_h1sx_x n.crop_h1s1_2 = crop(n.score_h1s1_2, n.data) n.crop_h1s2_3 = crop(n.upscore_h1s2_3, n.data) n.crop_h1s3_4 = crop(n.upscore_h1s3_4, n.data) n.crop_h1s4_5 = crop(n.upscore_h1s4_5, n.data) ## fuse n.h1_concat = L.Concat(n.crop_h1s1_2, n.crop_h1s2_3, n.crop_h1s3_4, n.crop_h1s4_5, concat_param=dict({'concat_dim':1})) n.h1_fuse = conv1x1(n.h1_concat, lr=[0.001, 1, 0.002, 0], wf=dict(type='constant', value=float(1)/4)) if split == 'train': n.loss_h1s1_2 = L.SigmoidCrossEntropyLoss(n.crop_h1s1_2, n.label, loss_param=loss_param) n.loss_h1s2_3 = L.SigmoidCrossEntropyLoss(n.crop_h1s2_3, n.label, loss_param=loss_param) n.loss_h1s3_4 = L.SigmoidCrossEntropyLoss(n.crop_h1s3_4, n.label, loss_param=loss_param) n.loss_h1s4_5 = L.SigmoidCrossEntropyLoss(n.crop_h1s4_5, n.label, loss_param=loss_param) n.loss_h1_fuse = L.SigmoidCrossEntropyLoss(n.h1_fuse, n.label, loss_param=loss_param) else: n.sigmoid_h1s1_2 = L.Sigmoid(n.crop_h1s1_2) n.sigmoid_h1s2_3 = L.Sigmoid(n.crop_h1s2_3) n.sigmoid_h1s3_4 = L.Sigmoid(n.crop_h1s3_4) n.sigmoid_h1s4_5 = L.Sigmoid(n.crop_h1s4_5) n.sigmoid_h1_fuse = L.Sigmoid(n.h1_fuse) ## H2: conv h1sx_x for H2 fusing n.h1s1_2top = conv1x1(n.h1s1_2, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.h1s2_3top = conv1x1(n.h1s2_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.h1s2_3down = conv1x1(n.h1s2_3, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.h1s3_4top = conv1x1(n.h1s3_4, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.h1s3_4down = conv1x1(n.h1s3_4, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) n.h1s4_5down = conv1x1(n.h1s4_5, nout=args.nfeat, lr=[0.1, 1, 0.2, 0], wf=dict(type='gaussian', std=0.001)) ## upsample H2 n.h1s2_3upsample = upsample(n.h1s2_3down, nout=args.nfeat, stride=2, name='upsample_h1s2_3') n.h1s3_4upsample = upsample(n.h1s3_4down, nout=args.nfeat, stride=2, name='upsample_h1s3_4') n.h1s4_5upsample = upsample(n.h1s4_5down, nout=args.nfeat, stride=2, name='upsample_h1s4_5') ## Crop H2 n.h1s2_3crop = crop(n.h1s2_3upsample, n.h1s1_2top) n.h1s3_4crop = crop(n.h1s3_4upsample, n.h1s2_3top) n.h1s4_5crop = crop(n.h1s4_5upsample, n.h1s3_4top) ## fuse H2 n.h2s1_2_3 = L.Eltwise(n.h1s1_2top, n.h1s2_3crop) n.h2s2_3_4 = L.Eltwise(n.h1s2_3top, n.h1s3_4crop) n.h2s3_4_5 = L.Eltwise(n.h1s3_4top, n.h1s4_5crop) ## score H2 n.score_h2s1_2_3 = conv1x1(n.h2s1_2_3, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) n.score_h2s2_3_4 = conv1x1(n.h2s2_3_4, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) n.score_h2s3_4_5 = conv1x1(n.h2s3_4_5, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.001)) ## upsample H2 score n.score_h2s2_3_4upsample = upsample(n.score_h2s2_3_4, stride=2, name='upscore_h2s2_3_4') n.score_h2s3_4_5upsample = upsample(n.score_h2s3_4_5, stride=4, name='upscore_h2s3_4_5') ## Crop H2 score n.score_h2s1_2_3crop = crop(n.score_h2s1_2_3, n.data) n.score_h2s2_3_4crop = crop(n.score_h2s2_3_4upsample, n.data) n.score_h2s3_4_5crop = crop(n.score_h2s3_4_5upsample, n.data) # concat H2 n.h2_concat = L.Concat(n.score_h2s1_2_3crop, n.score_h2s2_3_4crop, n.score_h2s3_4_5crop,\ concat_param=dict({'concat_dim':1})) n.h2_fuse = conv1x1(n.h2_concat, lr=[0.001, 1, 0.002, 0], wf=dict(type='constant', value=0.333)) if split == 'train': n.loss_h2s1_2_3 = L.SigmoidCrossEntropyLoss(n.score_h2s1_2_3crop, n.label, loss_param=loss_param) n.loss_h2s2_3_4 = L.SigmoidCrossEntropyLoss(n.score_h2s2_3_4crop, n.label, loss_param=loss_param) n.loss_h2s3_4_5 = L.SigmoidCrossEntropyLoss(n.score_h2s3_4_5crop, n.label, loss_param=loss_param) n.loss_h2_fuse = L.SigmoidCrossEntropyLoss(n.h2_fuse, n.label, loss_param=loss_param) else: n.sigmoid_h2s1_2_3 = L.Sigmoid(n.score_h2s1_2_3crop) n.sigmoid_h2s2_3_4 = L.Sigmoid(n.score_h2s2_3_4crop) n.sigmoid_h2s3_4_5 = L.Sigmoid(n.score_h2s3_4_5crop) n.sigmoid_h2_fuse = L.Sigmoid(n.h2_fuse) # Concat H1 and H2 n.h1h2_concat = L.Concat(n.score_h2s1_2_3crop, n.score_h2s2_3_4crop, n.score_h2s3_4_5crop, n.crop_h1s1_2, n.crop_h1s2_3, n.crop_h1s3_4, n.crop_h1s4_5, concat_param=dict({'concat_dim': 1})) n.h1h2_fuse = conv1x1(n.h1h2_concat, lr=[0.001, 1, 0.002, 0], wf=dict(type='constant', value=float(1)/7)) if split == 'train': n.loss_h1h2_fuse = L.SigmoidCrossEntropyLoss(n.h1h2_fuse, n.label, loss_param=loss_param) else: n.sigmoid_h1h2_fuse = L.Sigmoid(n.h1h2_fuse) return n.to_proto() def make_net(): fpath = join(tmp_dir, "h2feat%d_train.pt"%args.nfeat) with open(fpath, 'w') as f: f.write(str(net('train'))) fpath = join(tmp_dir, "h2feat%d_test.pt"%args.nfeat) with open(fpath, 'w') as f: f.write(str(net('test'))) def make_solver(): sp = {} fpath = join(tmp_dir, "h1feat%d_train.pt"%args.nfeat) sp['net'] = '"' + fpath + '"' sp['base_lr'] = '0.000001' sp['lr_policy'] = '"step"' sp['momentum'] = '0.9' sp['weight_decay'] = '0.0002' sp['iter_size'] = '10' sp['stepsize'] = '20000' sp['display'] = '10' sp['snapshot'] = '2000' sp['snapshot_prefix'] = '"snapshot/h2feat%d"'%args.nfeat sp['gamma'] = '0.1' sp['max_iter'] = '40000' sp['solver_mode'] = 'GPU' fpath = join(tmp_dir, "h2feat%d_solver.pt"%args.nfeat) f = open(fpath, 'w') for k, v in sorted(sp.items()): if not(type(v) is str): raise TypeError('All solver parameters must be strings') f.write('%s: %s\n'%(k, v)) f.close() def make_all(): make_net() make_solver() if __name__ == '__main__': make_all()
null
zeaky/model/h2.py
h2.py
py
14,338
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.insert", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 14, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 15, "usage_type": "call" }, { "api_name": "caffe.layers.Convolution", "line_number": 18, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 18, "usage_type": "name" }, { "api_name": "caffe.layers.ReLU", "line_number": 21, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 21, "usage_type": "name" }, { "api_name": "caffe.layers.Pooling", "line_number": 24, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 24, "usage_type": "name" }, { "api_name": "caffe.params.Pooling", "line_number": 24, "usage_type": "attribute" }, { "api_name": "caffe.params", "line_number": 24, "usage_type": "name" }, { "api_name": "caffe.layers.Convolution", "line_number": 28, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 28, "usage_type": "name" }, { "api_name": "caffe.layers.Convolution", "line_number": 31, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 31, "usage_type": "name" }, { "api_name": "math.ceil", "line_number": 35, "usage_type": "call" }, { "api_name": "caffe.layers.Deconvolution", "line_number": 38, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 38, "usage_type": "name" }, { "api_name": "caffe.NetSpec", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path.split", "line_number": 46, "usage_type": "name" }, { "api_name": "caffe.layers.Python", "line_number": 52, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 52, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 56, "usage_type": "name" }, { "api_name": "caffe.layers.Input", "line_number": 57, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 57, "usage_type": "name" }, { "api_name": "caffe.coord_map.crop", "line_number": 126, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 127, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 129, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 130, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 131, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 133, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 134, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 135, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 137, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 138, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 139, "usage_type": "call" }, { "api_name": "caffe.layers.Eltwise", "line_number": 142, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 142, "usage_type": "name" }, { "api_name": "caffe.layers.Eltwise", "line_number": 144, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 144, "usage_type": "name" }, { "api_name": "caffe.layers.Eltwise", "line_number": 146, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 146, "usage_type": "name" }, { "api_name": "caffe.layers.Eltwise", "line_number": 149, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 149, "usage_type": "name" }, { "api_name": "caffe.coord_map.crop", "line_number": 162, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 163, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 164, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 165, "usage_type": "call" }, { "api_name": "caffe.layers.Concat", "line_number": 167, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 167, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 173, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 174, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 174, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 175, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 175, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 176, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 176, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 177, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 177, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 178, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 178, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 180, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 180, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 181, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 181, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 182, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 182, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 183, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 183, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 184, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 184, "usage_type": "name" }, { "api_name": "caffe.coord_map.crop", "line_number": 197, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 198, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 199, "usage_type": "call" }, { "api_name": "caffe.layers.Eltwise", "line_number": 201, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 201, "usage_type": "name" }, { "api_name": "caffe.layers.Eltwise", "line_number": 202, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 202, "usage_type": "name" }, { "api_name": "caffe.layers.Eltwise", "line_number": 203, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 203, "usage_type": "name" }, { "api_name": "caffe.coord_map.crop", "line_number": 212, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 213, "usage_type": "call" }, { "api_name": "caffe.coord_map.crop", "line_number": 214, "usage_type": "call" }, { "api_name": "caffe.layers.Concat", "line_number": 216, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 216, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 219, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 220, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 220, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 221, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 221, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 222, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 222, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 223, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 223, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 225, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 225, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 226, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 226, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 227, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 227, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 228, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 228, "usage_type": "name" }, { "api_name": "caffe.layers.Concat", "line_number": 230, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 230, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 234, "usage_type": "name" }, { "api_name": "caffe.layers.SigmoidCrossEntropyLoss", "line_number": 235, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 235, "usage_type": "name" }, { "api_name": "caffe.layers.Sigmoid", "line_number": 237, "usage_type": "call" }, { "api_name": "caffe.layers", "line_number": 237, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 241, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 244, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 249, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 263, "usage_type": "call" } ]
262500749
# uncompyle6 version 3.6.7 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 23:03:10) [MSC v.1916 64 bit (AMD64)] # Embedded file name: build/bdist.linux-x86_64/egg/pyp_beagle/beagle_pdf.py # Compiled at: 2019-07-16 04:25:49 import logging, numpy as np, os, json from matplotlib import rc from matplotlib.colors import colorConverter from matplotlib.patches import Rectangle import matplotlib.pyplot as plt from collections import OrderedDict from astropy.io import fits from getdist import plots, MCSamples from beagle_utils import BeagleDirectories, prepare_plot_saving, plot_exists class PDF(object): def __init__(self, params_file, **kwargs): with open(params_file) as (f): self.adjust_params = json.load(f, object_pairs_hook=OrderedDict) self.mock_catalogue = kwargs.get('mock_catalogue') self.single_solutions = None if kwargs.get('plot_single_solution') is not None: self.single_solutions = OrderedDict() with fits.open(kwargs.get('plot_single_solution')) as (f): self.single_solutions['ID'] = f[1].data['ID'] self.single_solutions['row'] = f[1].data['row_index'] self.triangle_font_size = kwargs.get('fontsize') return def plot_triangle(self, ID, params_to_plot=None, suffix=None, replot=False, M_star=False, show=False): """ Draw a "triangle plot" with the 1D and 2D posterior probability Parameters ---------- ID : str or int Object ID M_star : bool, optional If set, the routine will plot the mass currenly locked into stars instead of the mass of star formed (i.e., the plotted mass will accout for the return fraction) """ if suffix is None: plot_name = str(ID) + '_BEAGLE_triangle.pdf' else: plot_name = str(ID) + '_BEAGLE_triangle_' + suffix + '.pdf' if plot_exists(plot_name) and not replot and not show: logging.warning('The plot "' + plot_name + '" already exists. \n Exiting the function.') return else: fits_file = os.path.join(BeagleDirectories.results_dir, str(ID) + '_' + BeagleDirectories.suffix + '.fits.gz') hdulist = fits.open(fits_file) param_values = OrderedDict() for key, value in self.adjust_params.iteritems(): extName = 'POSTERIOR PDF' if 'extName' in value: extName = value['extName'] colName = key if 'colName' in value: colName = value['colName'] param_values[key] = hdulist[extName].data[colName] probability = hdulist['posterior pdf'].data['probability'] n_rows = probability.size if params_to_plot is None: _params_to_plot = list() for key, value in self.adjust_params.iteritems(): _params_to_plot.append(key) else: _params_to_plot = params_to_plot if M_star and 'mass' in _params_to_plot: param_values['mass'][:] = np.log10(hdulist['galaxy properties'].data['M_star'][:]) nParamsToPlot = len(_params_to_plot) names = list() labels = list() ranges = dict() samps = np.zeros((n_rows, nParamsToPlot)) keys = list() j = 0 for key, par in self.adjust_params.iteritems(): keys.append(key) for par_name in _params_to_plot: if key == par_name: names.append(key) label = par['label'].replace('$', '') labels.append(label) samps[:, j] = param_values[key] ranges.update({key: par['range']}) if 'log' in par: if par['log']: samps[:, j] = np.log10(param_values[key]) ranges.update({key: np.log10(par['range'])}) j += 1 break settings = {'contours': [ 0.68, 0.95, 0.99], 'range_ND_contour': 1, 'range_confidence': 0.001, 'fine_bins': 200, 'fine_bins_2d': 80, 'smooth_scale_1D': 0.3, 'smooth_scale_2D': 0.5, 'tight_gap_fraction': 0.15} samples = MCSamples(samples=samps, names=names, ranges=ranges, weights=probability, labels=labels, settings=settings) g = plots.getSubplotPlotter() g.settings.num_plot_contours = 3 g.settings.prob_y_ticks = True if self.triangle_font_size is None: g.settings.lab_fontsize = 7 + 4 * g.settings.subplot_size_inch g.settings.axes_fontsize = 4 + 4 * g.settings.subplot_size_inch else: g.settings.lab_fontsize = self.triangle_font_size g.settings.axes_fontsize = self.triangle_font_size line_args = {'lw': 2, 'color': colorConverter.to_rgb('#006FED')} g.triangle_plot(samples, filled=True, line_args=line_args) g.fig.subplots_adjust(wspace=0.1, hspace=0.1) prune = 'both' for i in range(len(names)): for i2 in range(i, len(names)): _ax = g._subplot(i, i2) _ax.xaxis.set_major_locator(plt.MaxNLocator(3, prune=prune)) _ax.yaxis.set_major_locator(plt.MaxNLocator(3, prune=prune)) for i, ax in enumerate([ g.subplots[(i, i)] for i in range(nParamsToPlot) ]): par_name = keys[i] if i < nParamsToPlot - 1: ax.tick_params(which='both', labelbottom=False, top=True, labeltop=True, left=False, labelleft=False) else: ax.tick_params(which='both', labelbottom=True, top=True, labeltop=False, left=False, labelleft=False) y0, y1 = ax.get_ylim() lev = samples.get1DDensity(par_name).getLimits(settings['contours'][0]) ax.add_patch(Rectangle((lev[0], y0), lev[1] - lev[0], y1 - y0, facecolor='grey', alpha=0.5)) if self.mock_catalogue is not None: name = names[i] value = self.mock_catalogue.get_param_values(ID, (name,)) if 'log' in self.adjust_params[name]: if self.adjust_params[name]['log']: value = np.log10(value) ax.plot(value, y0 + (y1 - y0) * 0.05, marker='D', ms=8, color='green') if self.single_solutions is not None: row = self.single_solutions['row'][(self.single_solutions['ID'] == ID)] for i in range(nParamsToPlot): parX = keys[i] valueX = param_values[parX][row] if 'log' in self.adjust_params[parX]: if self.adjust_params[parX]['log']: valueX = np.log10(valueX) for j in range(nParamsToPlot): ax = g.subplots[(i, j)] if ax is None: continue if i == j: ax.plot(valueX, y0 + (y1 - y0) * 0.05, marker='*', ms=12, color='darkorange') else: parY = keys[j] valueY = param_values[parY][row] if 'log' in self.adjust_params[parY]: if self.adjust_params[parY]['log']: valueY = np.log10(valueY) ax.plot(valueY, valueX, marker='*', ms=12, color='darkorange') if show: plt.show() else: name = prepare_plot_saving(plot_name) g.export(name) plt.close() hdulist.close() return
null
pycfiles/pyq-4.2.1.tar/beagle_pdf.py
beagle_pdf.py
py
8,269
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.load", "line_number": 20, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 20, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 24, "usage_type": "call" }, { "api_name": "astropy.io.fits.open", "line_number": 25, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 25, "usage_type": "name" }, { "api_name": "beagle_utils.plot_exists", "line_number": 50, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path", "line_number": 54, "usage_type": "attribute" }, { "api_name": "beagle_utils.BeagleDirectories.results_dir", "line_number": 54, "usage_type": "attribute" }, { "api_name": "beagle_utils.BeagleDirectories", "line_number": 54, "usage_type": "name" }, { "api_name": "beagle_utils.BeagleDirectories.suffix", "line_number": 54, "usage_type": "attribute" }, { "api_name": "astropy.io.fits.open", "line_number": 55, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 55, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 96, "usage_type": "call" }, { "api_name": "getdist.MCSamples", "line_number": 109, "usage_type": "call" }, { "api_name": "getdist.plots.getSubplotPlotter", "line_number": 110, "usage_type": "call" }, { "api_name": "getdist.plots", "line_number": 110, "usage_type": "name" }, { "api_name": "matplotlib.colors.colorConverter.to_rgb", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.colors.colorConverter", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.MaxNLocator", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.MaxNLocator", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.patches.Rectangle", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 153, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 169, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 169, "usage_type": "name" }, { "api_name": "beagle_utils.prepare_plot_saving", "line_number": 171, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.close", "line_number": 173, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 173, "usage_type": "name" } ]
198475545
""" This program is free software. Feel free to fix, modify, or remake it. https://github.com/lk-lkaz/ldr4pov """ import bpy import math import mathutils from bpy.props import ( FloatProperty, IntProperty, EnumProperty, ) bl_info = { "name": "ldr4pov_Tools_AssemblyAnimation", "description": "Make a assembly animation by Rigid Body simulation", "author": "lk.lkaz", "version": (0, 0, 1), "blender": (2, 67, 0), "location": "View3D > Tools", #"warning": "", #"wiki_url": "http://", #"tracker_url": "http://", "category": "3D View"} class panel_layout(bpy.types.Panel): bl_label = "Assembly Animation Tool" #bl_idname = "" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" #bl_context = "" def draw(self, context): scn = bpy.context.scene layout = self.layout layout.label(text="Step0:") col = layout.column() col.operator("object.initial_setup", text="Set indicators") layout.label(text="Step1:") col = layout.column(align=True) col.operator("object.set_passive", text="Add PASSIVE") layout.label(text="Step2:") col = layout.column(align=True) col.prop(scn, "ldr4pov_gravity_strength", text="Gravity Strength") #col.prop(scn, "ldr4pov_sort_vector") col.prop(scn, "ldr4pov_interval", text="Interval") col.prop(scn, "ldr4pov_bake_quality", text="Accuracy") if scn.ldr4pov_bake_quality == "0": # Custom col.prop(scn.rigidbody_world, "steps_per_second", text="steps_per_second") col.prop(scn, "ldr4pov_simulation_frames", text="Frames") col.prop(scn, "ldr4pov_bake_step", text="Frame Step") """ #lk? Doesn't work. "AttributeError: Writing to ID classes in this context is not allowed:..." #lk? Moved to fall_simulation() elif scn.ldr4pov_bake_quality == "1": # Default scn.rigidbody_world.steps_per_second = 60 scn.ldr4pov_simulation_frames = 48 # 2sec in 24fps scn.ldr4pov_bake_step = 2 elif scn.ldr4pov_bake_quality == "2": # Low scn.rigidbody_world.steps_per_second = 30 scn.ldr4pov_simulation_frames = 24 # 1sec in 24fps scn.ldr4pov_bake_step = 3 """ layout.label(text="Step3:") row = layout.row(align=True) row.scale_y = 3.0 row.operator("object.fall_simulation", text="Start") """ layout.label(text="Step4:") col = layout.column(align=True) col.operator("object.reverse_frames", text="Reverse Frames") """ class initial_setup(bpy.types.Operator): bl_idname = "object.initial_setup" bl_label = "initial_setup" bl_description = "..." bl_option = ("REGISTER", "UNDO") def execute(self, context): # Make indicators of gravity and sort vector. if "ldr4pov_gravity_indicator" not in bpy.data.objects: # Avoid conflict #lk? if "Cone" in bpy.data.objects: bpy.data.objects["Cone"].name = "ldr4pov_cone" # Cone as ldr4pov_gravity_indicator bpy.ops.mesh.primitive_cone_add(vertices=6, radius1=1, radius2=0, depth=2, enter_editmode=True, location=(0,0,0)) bpy.ops.transform.translate(value=(0,0,10)) # Edit mode bpy.ops.object.editmode_toggle() o = bpy.data.objects["Cone"] o.name = "ldr4pov_gravity_indicator" o.lock_location = (True,True,True) #lk? material? # Avoid conflict #lk? if "ldr4pov_cone" in bpy.data.objects: bpy.data.objects["ldr4pov_cone"].name = "Cone" else: # Reset location and rotation o = bpy.data.objects["ldr4pov_gravity_indicator"] o.location = (0,0,0) o.rotation_euler = (0,0,0) if "ldr4pov_sort_indicator" not in bpy.data.objects: # Avoid conflict #lk? if "Icosphere" in bpy.data.objects: bpy.data.objects["Icosphere"].name = "ldr4pov_icosphere" # Ico_Sphere as ldr4pov_sort_indicator bpy.ops.mesh.primitive_ico_sphere_add(subdivisions=1, size=1, enter_editmode=True, location=(0,0,0)) bpy.ops.transform.translate(value=(0,0,8)) # Edit mode bpy.ops.object.editmode_toggle() o = bpy.data.objects["Icosphere"] o.name = "ldr4pov_sort_indicator" o.lock_location=(True,True,True) #lk? material? # Avoid conflict #lk? if "ldr4pov_icosphere" in bpy.data.objects: bpy.data.objects["ldr4pov_icosphere"].name = "Icosphere" else: # Reset location and rotation o = bpy.data.objects["ldr4pov_sort_indicator"] o.location = (0,0,0) o.rotation_euler = (0,0,0) # Select indicators bpy.ops.object.select_all(action="DESELECT") bpy.data.objects["ldr4pov_gravity_indicator"].select = True bpy.data.objects["ldr4pov_sort_indicator"].select = True return{"FINISHED"} class set_passive(bpy.types.Operator): bl_idname = "object.set_passive" bl_label = "set_passive" bl_description = "Add selected objects as PASSIVE (collision_shape = 'CONVEX_HULL')" bl_option = ("REGISTER", "UNDO") def execute(self, context): scn = bpy.context.scene # Deselect indicators if "ldr4pov_gravity_indicator" in bpy.data.objects: bpy.data.objects["ldr4pov_gravity_indicator"].select = False if "ldr4pov_sort_indicator" in bpy.data.objects: bpy.data.objects["ldr4pov_sort_indicator"].select = False # Deselect non-mesh object, and no-polygon object list1 = [o for o in bpy.context.selected_objects if o.type == "MESH" and len(o.data.polygons) != 0] if len(list1) == 0: return{"FINISHED"} bpy.ops.object.select_all(action="DESELECT") for o in list1: o.select = True # Add "PASSIVE" scn.objects.active = list1[0] #bpy.ops.object.origin_set(type="ORIGIN_CENTER_OF_MASS") bpy.ops.rigidbody.objects_add(type="PASSIVE") bpy.context.object.rigid_body.collision_shape = "CONVEX_HULL" bpy.ops.rigidbody.object_settings_copy() return{"FINISHED"} class fall_simulation(bpy.types.Operator): bl_idname = "object.fall_simulation" bl_label = "fall_simulation" bl_description = "..." bl_option = ("REGISTER", "UNDO") def execute(self, context): scn = bpy.context.scene # step1-------------------------------------------------------------------------------------------------------------- # Initial settings # Set accuracy if scn.ldr4pov_bake_quality == "1": # Default scn.rigidbody_world.steps_per_second = 60 scn.ldr4pov_simulation_frames = 48 # 2sec in 24fps scn.ldr4pov_bake_step = 2 elif scn.ldr4pov_bake_quality == "2": # Low scn.rigidbody_world.steps_per_second = 30 scn.ldr4pov_simulation_frames = 24 # 1sec in 24fps scn.ldr4pov_bake_step = 3 # Get vector settings from indicators if "ldr4pov_gravity_indicator" in bpy.data.objects: o = bpy.data.objects["ldr4pov_gravity_indicator"] o.location = (0,0,0) ldr4pov_gravity_vector = o.matrix_world * mathutils.Vector((0,0,1)) / o.scale[2] scn.gravity = ldr4pov_gravity_vector * scn.ldr4pov_gravity_strength # Deselect indicator o.select = False if "ldr4pov_sort_indicator" in bpy.data.objects: o = bpy.data.objects["ldr4pov_sort_indicator"] o.location = (0,0,0) ldr4pov_sort_vector = o.matrix_world * mathutils.Vector((0,0,1)) # Deselect indicator o.select = False else: ldr4pov_sort_vector = scn.gravity # step2-------------------------------------------------------------------------------------------------------------- # Make a sorted list # Make a list of passive objects list1 = [o for o in bpy.context.selected_objects if o.rigid_body is not None and o.rigid_body.type == "PASSIVE"] if len(list1) == 0: return{"FINISHED"} # Sort the list by ldr4pov_sort_vector list1.sort(key=lambda o: o.location * ldr4pov_sort_vector, reverse = True) # step3-------------------------------------------------------------------------------------------------------------- # Rigid body simulation bpy.ops.object.select_all(action="DESELECT") frame_start = scn.frame_current +1 frame_end = scn.frame_current + scn.ldr4pov_simulation_frames -1 for o in list1: o.select = True scn.objects.active = o o.rigid_body.type = "ACTIVE" # Save current location to keyframe bpy.ops.anim.keyframe_insert_menu(type="LocRotScale") # Start simulation scn.rigidbody_world.point_cache.frame_start = frame_start scn.rigidbody_world.point_cache.frame_end = frame_end bpy.ops.rigidbody.bake_to_keyframes(frame_start=frame_start, frame_end=frame_end, step=scn.ldr4pov_bake_step) #bpy.ops.ptcache.free_bake_all() #lk? add passive? #scn.objects.active.rigid_body.type = "PASSIVE" #scn.objects.active.rigid_body.kinematic = True o.select = False # Move frames for next scn.frame_current += scn.ldr4pov_interval frame_start += scn.ldr4pov_interval frame_end += scn.ldr4pov_interval # step4-------------------------------------------------------------------------------------------------------------- # Correct f-curve for eternal falling # Select objects #bpy.ops.object.select_all(action="DESELECT") for o in list1: o.select = True # Set f-curve extrapolation_type to "LINEAR" bpy.context.area.type="GRAPH_EDITOR" bpy.ops.graph.extrapolation_type(type="LINEAR") bpy.context.area.type="VIEW_3D" # step5-------------------------------------------------------------------------------------------------------------- scn.frame_end = frame_end - scn.ldr4pov_interval scn.frame_current = frame_start -1 return{"FINISHED"} # Make a reverse movie #lk? class reverse_frames(bpy.types.Operator): bl_idname = "object.reverse_frames" bl_label = "reverse_frames" bl_description = "..." bl_option = ("REGISTER", "UNDO") def execute(self, context): scn = bpy.context.scene #scn.frame_start = 1 return{"FINISHED"} def register(): bpy.utils.register_class(panel_layout) bpy.utils.register_class(initial_setup) bpy.utils.register_class(set_passive) bpy.utils.register_class(fall_simulation) bpy.utils.register_class(reverse_frames) # Parameters bpy.types.Scene.ldr4pov_gravity_strength = FloatProperty(name="gravity_strength", description="...", default = 10.0, min=0.0) #bpy.types.Scene.ldr4pov_sort_vector = FloatVectorProperty(name="sort_vector", description="...", default = (0.0, 0.0, 1.0)) bpy.types.Scene.ldr4pov_interval = IntProperty(name="interval", description="...", default=5, min=0, step=1) bpy.types.Scene.ldr4pov_simulation_frames = IntProperty(name="simulation_frames", description="...", default=48, min=3, step=1) bpy.types.Scene.ldr4pov_bake_step = IntProperty(name="bake_step", description="\"Frame Step\" of Bake To Kyeframes", default=2, min=1, step=1) bpy.types.Scene.ldr4pov_bake_quality = EnumProperty( name="", description="...", items=[("1","Default","..."), ("2","Low","..."), ("0","Custom","...")], default="1") def unregister(): bpy.utils.unregister_class(panel_layout) bpy.utils.unregister_class(initial_setup) bpy.utils.unregister_class(set_passive) bpy.utils.unregister_class(fall_simulation) bpy.utils.unregister_class(reverse_frames) # Parameters del bpy.types.Scene.ldr4pov_gravity_strength #del bpy.types.Scene.ldr4pov_sort_vector del bpy.types.Scene.ldr4pov_interval del bpy.types.Scene.ldr4pov_simulation_frames del bpy.types.Scene.ldr4pov_bake_step del bpy.types.Scene.ldr4pov_bake_quality if __name__ == "__main__": register()
null
ldr4pov_Tools_AssemblyAnimation.py
ldr4pov_Tools_AssemblyAnimation.py
py
12,728
python
en
code
null
code-starcoder2
83
[ { "api_name": "bpy.types", "line_number": 29, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 37, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 84, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 92, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 94, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 95, "usage_type": "attribute" }, { "api_name": "bpy.ops.mesh.primitive_cone_add", "line_number": 98, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 98, "usage_type": "attribute" }, { "api_name": "bpy.ops.transform.translate", "line_number": 99, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 99, "usage_type": "attribute" }, { "api_name": "bpy.ops.object.editmode_toggle", "line_number": 100, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 100, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 101, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 107, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 108, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 112, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 117, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 119, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 120, "usage_type": "attribute" }, { "api_name": "bpy.ops.mesh.primitive_ico_sphere_add", "line_number": 123, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 123, "usage_type": "attribute" }, { "api_name": "bpy.ops.transform.translate", "line_number": 124, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 124, "usage_type": "attribute" }, { "api_name": "bpy.ops.object.editmode_toggle", "line_number": 125, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 125, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 126, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 132, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 133, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 137, "usage_type": "attribute" }, { "api_name": "bpy.ops.object.select_all", "line_number": 143, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 143, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 144, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 145, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 152, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 159, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 162, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 163, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 165, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 166, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 169, "usage_type": "attribute" }, { "api_name": "bpy.ops.object.select_all", "line_number": 173, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 173, "usage_type": "attribute" }, { "api_name": "bpy.ops.rigidbody.objects_add", "line_number": 180, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 180, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 181, "usage_type": "attribute" }, { "api_name": "bpy.ops.rigidbody.object_settings_copy", "line_number": 182, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 182, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 189, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 196, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 211, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 212, "usage_type": "attribute" }, { "api_name": "mathutils.Vector", "line_number": 214, "usage_type": "call" }, { "api_name": "bpy.data", "line_number": 220, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 221, "usage_type": "attribute" }, { "api_name": "mathutils.Vector", "line_number": 223, "usage_type": "call" }, { "api_name": "bpy.context", "line_number": 235, "usage_type": "attribute" }, { "api_name": "bpy.ops.object.select_all", "line_number": 245, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 245, "usage_type": "attribute" }, { "api_name": "bpy.ops.anim.keyframe_insert_menu", "line_number": 254, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 254, "usage_type": "attribute" }, { "api_name": "bpy.ops.rigidbody.bake_to_keyframes", "line_number": 259, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 259, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 282, "usage_type": "attribute" }, { "api_name": "bpy.ops.graph.extrapolation_type", "line_number": 283, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 283, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 284, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 297, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 304, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 314, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 314, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 315, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 315, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 316, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 316, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 317, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 317, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 318, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 318, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 321, "usage_type": "attribute" }, { "api_name": "bpy.props.FloatProperty", "line_number": 321, "usage_type": "call" }, { "api_name": "bpy.types", "line_number": 323, "usage_type": "attribute" }, { "api_name": "bpy.props.IntProperty", "line_number": 323, "usage_type": "call" }, { "api_name": "bpy.types", "line_number": 324, "usage_type": "attribute" }, { "api_name": "bpy.props.IntProperty", "line_number": 324, "usage_type": "call" }, { "api_name": "bpy.types", "line_number": 325, "usage_type": "attribute" }, { "api_name": "bpy.props.IntProperty", "line_number": 325, "usage_type": "call" }, { "api_name": "bpy.types", "line_number": 326, "usage_type": "attribute" }, { "api_name": "bpy.props.EnumProperty", "line_number": 326, "usage_type": "call" }, { "api_name": "bpy.utils.unregister_class", "line_number": 336, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 336, "usage_type": "attribute" }, { "api_name": "bpy.utils.unregister_class", "line_number": 337, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 337, "usage_type": "attribute" }, { "api_name": "bpy.utils.unregister_class", "line_number": 338, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 338, "usage_type": "attribute" }, { "api_name": "bpy.utils.unregister_class", "line_number": 339, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 339, "usage_type": "attribute" }, { "api_name": "bpy.utils.unregister_class", "line_number": 340, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 340, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 343, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 345, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 346, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 347, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 348, "usage_type": "attribute" } ]
398176661
import datetime import pytz import julian from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord import numpy as np from collections import OrderedDict # maping from attributes of Image Class (as named in the fits file header) to names which will be displayed in html dict_attributes = OrderedDict() dict_attributes['date_observed'] = 'Date Observed' dict_attributes['jd'] = 'JD' dict_attributes['filter_used'] = 'Filter' dict_attributes['exposure'] = 'Exposure' dict_attributes['air_mass'] = 'Air Mass' dict_attributes['ccd_temp'] = 'CCD Temp' dict_attributes['image_type'] = 'Image Type' dict_attributes['focus_value'] = 'Focus Value' dict_attributes['fwhm'] = 'FWHM' dict_attributes['lim_mag'] = 'Lim Mag' dict_attributes['psf_mag'] = 'PSF Mag' dict_attributes['psf_merr'] = 'PSF Error' dict_attributes['apr_mag'] = 'Apr Mag' dict_attributes['apr_merr'] = 'Apr Error' dict_attributes['tel_alt'] = 'Tel Alt' dict_attributes['tel_az'] = 'Tel Az' dict_attributes['ref_ra'] = 'Ref RA' dict_attributes['ref_dec'] = 'Ref DEC' dict_attributes['tar_ra'] = 'Tar RA' dict_attributes['tar_dec'] = 'Tar DEC' dict_attributes['tar_name'] = 'Target' real_valued_attributes = ['jd', 'exposure', 'air_mass', 'ccd_temp'] string_valued_attributes = ['tar_name','date_observed', 'filter_used'] #attributes in the query form form_attributes = { 'String Valued' : string_valued_attributes, 'Real Valued' : real_valued_attributes } # given a date observed give the max_jd and min jd corresponding to it def date_in_ist2min_max_jd(date_observed): date_time_object_ist = datetime.datetime.strptime(date_observed,"%Y-%m-%d") date_time_object_ist = date_time_object_ist.replace(tzinfo=pytz.timezone('Asia/Calcutta')) date_time_object_ist_noon = date_time_object_ist.replace(hour=12, minute=00) date_time_object_utc = date_time_object_ist_noon.astimezone(pytz.timezone('UTC')) min_jd = julian.to_jd(date_time_object_utc, fmt = 'jd') max_jd = min_jd+1 return min_jd,max_jd def list_images2list_filepaths(list_images): list_filepaths = [] for image in list_images: list_filepaths.append(image.filepath) return list_filepaths def rect2polygon(x_end,y_end,n_of_div): n = n_of_div corners = np.array([[0,0],[x_end,0],[x_end,y_end],[0,y_end]]) output = np.zeros((4*n,2)) for i in range(4): x_points = np.linspace(corners[i][0], corners[(i+1)%4][0], n+1)[:-1] y_points = np.linspace(corners[i][1], corners[(i+1)%4][1], n+1)[:-1] output[i*n:(i+1)*n] = np.concatenate((x_points.reshape((n,1)) ,y_points.reshape((n,1))) ,axis=1) return output def boundry_points(x_end, y_end, wcs, n_of_div): polygon_pixel_points = rect2polygon(x_end, y_end, n_of_div) sky_coords = SkyCoord.from_pixel(polygon_pixel_points[:,0], polygon_pixel_points[:,1], wcs) ra = np.array(sky_coords.ra.value) dec = np.array(sky_coords.dec.value) l = 4*n_of_div coords = (np.concatenate((ra.reshape((l,1)) ,dec.reshape((l,1))) ,axis=1) ).tolist() return(str(coords))
null
images_query_interface/common_utils.py
common_utils.py
py
3,079
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.OrderedDict", "line_number": 13, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "attribute" }, { "api_name": "pytz.timezone", "line_number": 52, "usage_type": "call" }, { "api_name": "pytz.timezone", "line_number": 54, "usage_type": "call" }, { "api_name": "julian.to_jd", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 72, "usage_type": "call" }, { "api_name": "astropy.coordinates.SkyCoord.from_pixel", "line_number": 77, "usage_type": "call" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 77, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 81, "usage_type": "call" } ]
309401901
# Copyright 2013 – present by the SalishSeaCast Project contributors # and The University of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # SPDX-License-Identifier: Apache-2.0 """SalishSeaCast worker that creates a tarball of a month's run results and moves it to remote archival storage. Compression is *not* used for the tarball because the netCDF files that compose most of it are already highly compressed. A .index text file containing a list of the files in the tarball is also created and moved to the remote storage. """ import argparse import functools import logging import os import stat import tarfile from pathlib import Path import arrow import sysrsync from nemo_nowcast import NowcastWorker NAME = "archive_tarball" logger = logging.getLogger(NAME) def main(): worker = NowcastWorker(NAME, description=__doc__) worker.init_cli() worker.cli.add_argument( "run_type", choices={ "nowcast", "nowcast-green", "nowcast-agrif", "hindcast", }, help="Type of run to archive results files from.", ) worker.cli.add_argument( "yyyy_mmm", type=_arrow_yyyy_mmm, help="Year and month of run results to archive. Use YYYY-MMM format.", ) worker.cli.add_argument( "dest_host", default="graham-dtn", help="Name of the host to move tarball and index files to. Default is :kbd:`graham-dtn`.", ) worker.run(archive_tarball, success, failure) return worker def _arrow_yyyy_mmm(string): """Convert a YYYY-MMM string to a UTC arrow object or raise :py:exc:`argparse.ArgumentTypeError`. The day part of the resulting arrow object is set to 01, and the time part is set to 00:00:00. :arg str string: YYYY-MMM string to convert. :returns: Year-month string converted to a UTC :py:class:`arrow.Arrow` object. :raises: :py:exc:`argparse.ArgumentTypeError` """ try: return arrow.get(string, "YYYY-MMM") except arrow.parser.ParserError: msg = f"unrecognized year-month format: {string} - please use YYYY-MMM" raise argparse.ArgumentTypeError(msg) def success(parsed_args): logger.info( f'{parsed_args.run_type} {parsed_args.yyyy_mmm.format("*MMMYY").lower()} ' f"results files archived to {parsed_args.dest_host}" ) msg_type = f"success {parsed_args.run_type}" return msg_type def failure(parsed_args): logger.critical( f'{parsed_args.run_type} {parsed_args.yyyy_mmm.format("*MMMYY").lower()} ' f"results files archiving to {parsed_args.dest_host} failed" ) msg_type = f"failure {parsed_args.run_type}" return msg_type def archive_tarball(parsed_args, config, *args): run_type = parsed_args.run_type yyyy_mmm = parsed_args.yyyy_mmm.format("MMMYY").lower() dest_host = parsed_args.dest_host tmp_tarball_dir = Path(config["results tarballs"]["temporary tarball dir"]) run_type_results = ( Path(config["results archive"]["hindcast"]["localhost"]) if run_type == "hindcast" else Path(config["results archive"][run_type]) ) tarball = tmp_tarball_dir / f"{run_type_results.parts[-1]}-{yyyy_mmm}.tar" results_path_pattern = run_type_results / f"*{yyyy_mmm}" logger.info(f"creating {tarball} from {results_path_pattern}/") _create_tarball(tarball, results_path_pattern) logger.info(f"creating {tarball.with_suffix('.index')} from {tarball}") _create_tarball_index(tarball) dest_dir = Path(config["results tarballs"][dest_host]) / run_type_results.parts[-1] logger.info(f"rsync-ing {tarball} and index to {dest_host}:{dest_dir}/") _rsync_to_remote(tarball, dest_host, dest_dir) _delete_tmp_files(tarball) return { "tarball archived": { "tarball": os.fspath(tarball), "index": os.fspath(tarball.with_suffix(".index")), "destination": f"{dest_host}:{dest_dir}/", } } def _create_tarball(tarball, results_path_pattern): """ :param :py:class:`pathlib.Path` tarball: :param :py:class:`pathlib.Path` results_path_pattern: """ with tarfile.open(tarball, "w") as tar: results_dir = results_path_pattern.parent.parent os.chdir(results_dir) for p in sorted( results_path_pattern.parent.glob(results_path_pattern.parts[-1]) ): logger.debug(f"adding {p}/ to {tarball}") tar.add(p.relative_to(results_dir)) def _create_tarball_index(tarball): """ :param :py:class:`pathlib.Path` tarball: """ with tarball.with_suffix(".index").open("wt") as f: with tarfile.open(tarball, "r") as tar: for m in tar.getmembers(): mode_str = stat.filemode(m.mode)[1:] mode = f"d{mode_str}" if m.isdir() else f"-{mode_str}" name = f"{m.name}/" if m.isdir() else m.name f.write( f"{mode} {m.gname}/{m.uname} {m.size:>10} " f"{arrow.get(m.mtime).format('YYYY-MM-DD HH:mm')} {name}\n" ) def _rsync_to_remote(tarball, dest_host, dest_dir): """ :param :py:class:`pathlib.Path` tarball: :param str dest_host: :param :py:class:`pathlib.Path` dest_dir: """ rsync = functools.partial( sysrsync.run, destination_ssh=dest_host, destination=os.fspath(dest_dir), options=["-t"], ) logger.debug(f"rsync-ing {tarball} to {dest_host}:{dest_dir}/") rsync(source=os.fspath(tarball)) logger.debug( f"rsync-ing {tarball.with_suffix('.index')} to {dest_host}:{dest_dir}/" ) rsync(source=os.fspath(tarball.with_suffix(".index"))) def _delete_tmp_files(tarball): """ :param :py:class:`pathlib.Path` tarball: """ logger.debug(f"deleting {tarball}") tarball.unlink() logger.debug(f"deleting {tarball.with_suffix('.index')}") tarball.with_suffix(".index").unlink() if __name__ == "__main__": main() # pragma: no cover
null
nowcast/workers/archive_tarball.py
archive_tarball.py
py
6,602
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 38, "usage_type": "call" }, { "api_name": "nemo_nowcast.NowcastWorker", "line_number": 42, "usage_type": "call" }, { "api_name": "arrow.get", "line_number": 82, "usage_type": "call" }, { "api_name": "arrow.parser", "line_number": 83, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 85, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 110, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 112, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 114, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 122, "usage_type": "call" }, { "api_name": "os.fspath", "line_number": 128, "usage_type": "call" }, { "api_name": "os.fspath", "line_number": 129, "usage_type": "call" }, { "api_name": "tarfile.open", "line_number": 140, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 142, "usage_type": "call" }, { "api_name": "tarfile.open", "line_number": 155, "usage_type": "call" }, { "api_name": "stat.filemode", "line_number": 157, "usage_type": "call" }, { "api_name": "arrow.get", "line_number": 162, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 172, "usage_type": "call" }, { "api_name": "sysrsync.run", "line_number": 173, "usage_type": "attribute" }, { "api_name": "os.fspath", "line_number": 175, "usage_type": "call" }, { "api_name": "os.fspath", "line_number": 179, "usage_type": "call" }, { "api_name": "os.fspath", "line_number": 183, "usage_type": "call" } ]
122876062
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ============================= BRENDA Enzyme Database Parser ============================= :Author: Moritz Emanuel Beber :Date: 2011-01-27 :Copyright: Copyright(c) 2011 Jacobs University of Bremen. All rights reserved. :File: errors.py """ import re import errno import codecs from StringIO import StringIO from collections import defaultdict class ArgumentError(StandardError): """ Error class that is meant to be raised when the arguments provided to a function are incorrect. """ def __init__(self, msg, *args, **kw_args): """ Parameters ---------- msg : An unformatted string, i.e., it may contain multiple string format markers. Returns ------- An ArgumentError instance. Notes ----- A variable number of arguments may be passed. They will all be used to format msg. So take care that the number and type of additional arguments matches the format markers in msg. Examples -------- >>> err = errors.ArgumentError("It's too %s outside!", "rainy") >>> print(err) It's too rainy outside! >>> print(err.errno) 22 """ StandardError.__init__(self, *args, **kw_args) self.args = (msg,) + args self.errno = errno.EINVAL self.strerror = msg % args def __str__(self): """ Returns ------- strerror : Simply returns the formatted string. """ return self.strerror class Enzyme(object): """ An object that encompasses all information about a kind of enzyme uniquely identified by its EC number. """ def __init__(self, ec_number, *args, **kw_args): """ Initialisation of an Enzyme instance. """ object.__init__(self) self.ec_number = ec_number self.organisms = dict() self.references = dict() self.entries = dict() def __str__(self): return self.ec_number def __repr__(self): return self.ec_number class BRENDAEntryComment(object): """ Encapsulates a comment to an entry in a BRENDA information field. """ def __init__(self, message, organisms=None, references=None, *args,\ **kw_args): """ Initialisation of a BRENDAEntryComment instance. """ object.__init__(self) self.msg = message self.organisms = organisms self.references = references def __str__(self): return self.msg def _repr__(self): return self.msg class BRENDAEntry(BRENDAEntryComment): """ Encapsulates an entry in a BRENDA information field. """ def __init__(self, message, organisms=None, references=None,\ information=None, comment=None, *args, **kw_args): """ Initialisation of a BRENDAEntryComment instance. """ BRENDAEntryComment.__init__(self, message=message, organisms=organisms, references=references, *args, **kw_args) self.information = information self.comment = comment class BRENDAOrganism(object): """ Encapsulates an entry in a BRENDA information field. """ _counter = 1 _memory = dict() def __new__(cls, name, identifier, references, information, comment, *args, **kw_args): """ Ensures the unique instance policy of all organisms. """ if cls._memory.has_key((cls, name)): return cls._memory[(cls, name)] else: return object.__new__(cls) def __init__(self, name, identifier, references, information, comment, *args, **kw_args): """ Initialisation of a BRENDAOrganism instance. """ if self.__class__._memory.has_key((self.__class__, name)): return object.__init__(self) self._index = self.__class__._counter self.__class__._counter += 1 self.name = name self.identifier = identifier self.references = references self.information = information self.comment = comment self.__class__._memory[(self.__class__, self.name)] = self def __str__(self): return self.name def __repr__(self): return "<%s.%s, %d>" % (self.__module__, self.__class__.__name__, self._index) class BRENDAParser(object): """ Encapsulation of parsing a BRENDA database plain text file. """ _subsections = { "ACTIVATING_COMPOUND": "AC", "APPLICATION": "AP", "COFACTOR": "CF", "CLONED": "CL", "CRYSTALLIZATION": "CR", "CAS_REGISTRY_NUMBER": "CR", "ENGINEERING": "EN", "GENERAL_STABILITY": "GS", "IC50_VALUE": "IC50", "INHIBITORS": "IN", "KI_VALUE": "KI", "KM_VALUE": "KM", "LOCALIZATION": "LO", "METALS_IONS": "ME", "MOLECULAR_WEIGHT": "MW", "NATURAL_SUBSTRATE_PRODUCT": "NSP", "OXIDATION_STABILITY": "OS", "ORGANIC_SOLVENT_STABILITY": "OSS", "PH_OPTIMUM": "PHO", "PH_RANGE": "PHR", "PH_STABILITY": "PHS", "PI_VALUE": "PI", "POSTTRANSLATIONAL_MODIFICATION": "PM", "PROTEIN": "PR", "PURIFICATION": "PU", "REACTION": "RE", "REFERENCE": "RF", "RENATURED": "RN", "RECOMMENDED_NAME": "RN", "REACTION_TYPE": "RT", "SPECIFIC_ACTIVITY": "SA", "SYSTEMATIC_NAME": "SN", "SUBSTRATE_PRODUCT": "SP", "STORAGE_STABILITY": "SS", "SOURCE_TISSUE": "ST", "SUBUNITS": "SU", "SYNONYMS": "SY", "TURNOVER_NUMBER": "TN", "TEMPERATURE_OPTIMUM": "TO", "TEMPERATURE_RANGE": "TR", "TEMPERATURE_STABILITY": "TS" } def __init__(self, filename, encoding="iso-8859-1", low_memory=False, *args, **kw_args): """ Initialisation of a BRENDAParser instance. """ object.__init__(self) self._filename = filename self._file_handle = None self._low_memory = low_memory self._encoding = encoding self._white_space = re.compile(r"\s", re.UNICODE) self._organisms_tag = re.compile(r"\#(.+?)\#", re.UNICODE) self._comment_tag = re.compile(r" \((.*)\)", re.UNICODE) self._reference_tag = re.compile(r"\<(.+?)\>", re.UNICODE) self._information_pattern = re.compile(r"\{(.*?)\}", re.UNICODE) self._numbers_pattern = re.compile(r"\d+", re.UNICODE) self._prot_qualifier = re.compile(r" (\w+) (?=UniProt|Uniprot|"\ "SwissProt|Swissprot|GenBank|Genbank)", re.UNICODE) self._current = None self.enzymes = None self._line_number = None def __enter__(self): self._file_handle = codecs.open(self._filename, mode="rb", encoding=self._encoding) if not self._low_memory: tmp = StringIO(self._file_handle.read()) self._file_handle.close() self._file_handle = tmp self.enzymes = defaultdict(list) self._line_number = 0 return self def __exit__(self, exc_type, exc_val, exc_tb): """ Close the file handle. """ if not self._file_handle.closed: self._file_handle.close() def parse(self): """ Parse multiple Enzyme sections. """ for line in self._file_handle: self._line_number += 1 line = line.strip("\n") if not line: continue elif line.startswith("*"): continue elif line.startswith("ID"): self._parse_id(line[2:].strip()) elif line == "PROTEIN": self._parse_information_field(line, parser=self._parse_protein) elif line == "REFERENCE": self._parse_information_field(line, parser=self._parse_reference) elif line == "///": # end one enzyme entry self._current = None elif line: self._current.entries[line.lower()] =\ self._parse_information_field(line) # convert to normal dictionary again res = dict(self.enzymes) res["file_encoding"] = self._encoding return res def _parse_information_field(self, line, parser=None): """ Parse an information field of an enzyme. """ field_identifier = self.__class__._subsections.get(line, False) if not field_identifier: raise ArgumentError("unrecognised entry: '%s' @ #%d", line,\ self._line_number) if not parser: parser = self._parse_generic_entry entries = list() record = list() for line in self._file_handle: self._line_number += 1 line = line.strip("\n") mobj = self._white_space.match(line) if not line: if record: entries.append(parser(" ".join(record))) break elif line.startswith(field_identifier): if record: entries.append(parser(" ".join(record))) record = list() record.append(line[len(field_identifier):].strip()) elif mobj: record.append(line.strip()) else: raise ArgumentError("unrecognised line: '%s' @ #%d", line,\ self._line_number) return entries def _parse_generic_entry(self, text): """ Parse an entry of a specific information field. """ mobj = self._information_pattern.search(text) if mobj: information = mobj.group(1) text = text[:mobj.start()] + text[mobj.end():] else: information = None mobj = self._comment_tag.search(text) if mobj: comment = self._parse_comment(mobj.group(1)) text = text[:mobj.start()] + text[mobj.end():] else: comment = None mobj = self._organisms_tag.search(text) if mobj: organisms = [int(match_num.group(0)) for match_num in\ self._numbers_pattern.finditer(mobj.group(1))] text = text[:mobj.start()] + text[mobj.end():] else: organisms = None mobj = self._reference_tag.search(text) if mobj: references = [int(match_num.group(0)) for match_num in\ self._numbers_pattern.finditer(mobj.group(1))] text = text[:mobj.start()] + text[mobj.end():] else: references = None return BRENDAEntry(text.strip(), organisms, references, information,\ comment) def _parse_comment(self, text): """ Parse an entry of a specific information field. """ mobj = self._organisms_tag.search(text) if mobj: organisms = [int(match_num.group(0)) for match_num in\ self._numbers_pattern.finditer(mobj.group(1))] text = text[:mobj.start()] + text[mobj.end():] else: organisms = None mobj = self._reference_tag.search(text) if mobj: references = [int(match_num.group(0)) for match_num in\ self._numbers_pattern.finditer(mobj.group(1))] text = text[:mobj.start()] + text[mobj.end():] else: references = None return BRENDAEntryComment(text.strip(), organisms, references) def _parse_id(self, text): """ """ mobj = self._comment_tag.search(text) # for now we ignore comments to the id if mobj: comment = self._parse_comment(mobj.group(1)) text = text[:mobj.start()] + text[mobj.end():] else: comment = None text = text.strip() self._current = Enzyme(text) ec_num = text.split(".") for i in range(1, len(ec_num) + 1): self.enzymes[".".join(ec_num[:i])].append(self._current) def _parse_protein(self, text): """ """ mobj = self._information_pattern.search(text) if mobj: information = mobj.group(1) text = text[:mobj.start()] + text[mobj.end():] else: information = None mobj = self._comment_tag.search(text) if mobj: comment = self._parse_comment(mobj.group(1)) text = text[:mobj.start()] + text[mobj.end():] else: comment = None mobj = self._organisms_tag.search(text) if mobj: organism = int(mobj.group(1)) text = text[:mobj.start()] + text[mobj.end():] else: raise ArgumentError("organism reference missing: '%s' @ #%d", text,\ self._line_number) #TODO: remove databank qualifier somehow capture multiple accessors mobj = self._prot_qualifier.search(text) if mobj: identifier = mobj.group(1) text = text[:mobj.start()] + text[mobj.end():] else: identifier = None mobj = self._reference_tag.search(text) if mobj: references = [int(match_num.group(0)) for match_num in\ self._numbers_pattern.finditer(mobj.group(1))] text = text[:mobj.start()] + text[mobj.end():] else: references = None self._current.organisms[organism] = BRENDAOrganism(text.strip(), identifier, references, information, comment) def _parse_reference(self, text): """ """ pass
null
brenda_parser.py
brenda_parser.py
py
14,080
python
en
code
null
code-starcoder2
83
[ { "api_name": "errno.EINVAL", "line_number": 63, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 237, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 237, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 238, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 238, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 239, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 239, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 240, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 240, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 241, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 241, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 242, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 242, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 243, "usage_type": "call" }, { "api_name": "re.UNICODE", "line_number": 244, "usage_type": "attribute" }, { "api_name": "codecs.open", "line_number": 250, "usage_type": "call" }, { "api_name": "StringIO.StringIO", "line_number": 253, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 256, "usage_type": "call" } ]
71326390
from django.shortcuts import render, redirect from django.utils.timezone import localtime, now from django.contrib import auth from django.contrib.auth.models import User from prueba.models import * from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import UserCreationForm from prueba.forms import UserForm,UsuarioForm from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect, HttpResponse import os from django.conf import settings import random # from models.py import Usuario # Create your views here. def inicio(request): user = request.user money = "" if request.user.is_authenticated: print(ProfilePic.objects.filter(owner= user).first()) try: queryCheck = ProfilePic.objects.filter(owner= user).first() print("queryCheck funciona") except: queryCheck = None print("nada de nada") try: queryMoney = Money.objects.filter(owner= user).first() if request.method == 'POST': # Agregar money chance = random.choice(range(10)) queryMoney.money += chance queryMoney.save() money = queryMoney.money except: a = 1 else: queryCheck = None return render(request, 'inicio.html', {'profile_pic': queryCheck, 'money': money}) def descripcion(request): context = {'nombre':localtime(now())} return render(request, 'descripcion.html', context) def loginn(request): #logea super user if request.method == 'POST': if ("username" in request.POST.keys()) and ("password" in request.POST.keys()): user = auth.authenticate(username=request.POST['username'], password=request.POST['password']) if user is not None and user.is_active: auth.login(request, user) return redirect("/inicio/logueado/") else: contexto={"error":"error"} return render(request,"login.html",contexto) else: contexto={"error":"error"} return render(request,"login.html",contexto) return render(request,"login.html") """ def register(request): if request.method == 'POST': form = UserCreationForm(request.POST) if form.is_valid(): form.save() return redirect('/perfil') else: form = UserCreationForm() args = {'form': form} return render(request, 'register.html', args) """ """ def register(request): registered = False if request.method == 'POST': username = request.POST.get('username') pwd = request.POST.get('password') confirm_pwd =request.POST.get('confirm') user_form = UserForm(data=request.POST) profile_form = UsuarioForm(data=request.POST) fieldvalue_dict = {} fieldvalue_dict["username"] = username fieldvalue_dict["pwd"] = pwd can_proceed = True error_message = '' # Revisa que no esten en blanco if not username.strip() and can_proceed == True: can_proceed = False error_message = 'Please enter Username.' if not pwd.strip() and can_proceed == True: can_proceed = False error_message = 'Please enter password.' if not confirm_pwd.strip() and can_proceed == True: can_proceed = False error_message = 'Please confirm password.' # Revisa que haya imagen profile_picture = request.FILES print(profile_picture) if 'profile_pic' in profile_picture.keys(): print('profile pic exists.') else: print('no pic.') profile_picture = None can_proceed = False if can_proceed == True : # Revisa si el usuario ya existe user_by_user_name = None try: user_by_user_name = User.objects.get(username=username) except: can_proceed = True if user_by_user_name: can_proceed = False error_message = 'Username already exists.' # Si todo va bien, crea el usuario usando el modelo de django y crea un userProfilo usando el modelo definido en models if can_proceed == True: pic = request.FILES['profile_pic'] user = User.objects.create_user(username=username,password=pwd) user_profile = UserProfile.objects.create(profile_pic= pic,user =user) #user_profile = UserProfile(user, pic) registered = True return render(request,"registration.html", {'user':user, 'user_profile':user_profile, 'registered':registered}) else: print(user_form.errors,profile_form.errors) else: user_form = UserForm() profile_form = UsuarioForm() return render(request,"registration.html", {'user_form':user_form, 'profile_form':profile_form, 'registered':registered}) """ def register(request): registered = False money = "" profile_pic = "" if request.method == 'POST': user_form = UserForm(data=request.POST) profile_form = UsuarioForm(data=request.POST) if user_form.is_valid() and profile_form.is_valid(): user = user_form.save() user.set_password(user.password) user.save() registered = True usuario = request.POST.get('username') # Se le añade dinero al usuario queryUser = User.objects.filter(username = usuario).first() dinero = Money(owner=queryUser, money = 50) dinero.save() # User money queryMoney = Money.objects.filter(owner= queryUser).first() if request.method == 'POST': # Agregar money print(request.POST) if request.POST.get('moneymaker.y'): chance = random.choice(range(10)) queryMoney.money += chance queryMoney.save() # Se le agrega foto al usuario: if 'profile_pic' in request.FILES: print('found it') profile_pic = request.FILES['profile_pic'] ext = profile_pic.name.split('.')[-1] profile_pic.name = "%s.%s" % (queryUser.username, ext) try: os.remove(settings.MEDIA_ROOT + "/perfil/profile_pics/"+ profile_pic.name) except: a = 1 ProfilePic.objects.filter(owner=queryUser).delete() foto = ProfilePic(owner=queryUser, title = profile_pic.name, cover=profile_pic) foto.save() # Prepara la imagen para mostrar en html try: profile_pic = ProfilePic.objects.filter(owner= queryUser).first() except: profile_pic = None money = queryMoney.money else: print(user_form.errors) else: user_form = UserForm() profile_form = UsuarioForm() return render(request,"registration.html", {'user_form':user_form, 'profile_form':profile_form, 'registered':registered, 'money': money, 'profile_pic' : profile_pic }) def user_login(request): queryCheck = None if request.method == 'POST': if request.POST.get('Login'): print(request.method) username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user: if user.is_active: login(request,user) print(ProfilePic.objects.filter(owner= user).first()) try: queryCheck = ProfilePic.objects.filter(owner= user).first() print("queryCheck funciona") except: queryCheck = None print("nada de nada") if request.user.is_authenticated: nombre = request.user # User money queryMoney = Money.objects.filter(owner= nombre).first() # Agregar money print(request.POST) if request.POST.get('moneymaker.y'): chance = random.choice(range(10)) queryMoney.money += chance queryMoney.save() money = queryMoney.money return render(request, "login2.html", {'profile_pic': queryCheck, 'money':money}) else: print("Someone tried to login and failed.") print("They used username: {} and password: {}".format(username,password)) return HttpResponse("Los datos ingresados no son validos") else: return render(request, "login2.html", {'profile_pic': queryCheck}) @login_required def user_logout(request): logout(request) return HttpResponseRedirect('/inicio') @login_required(login_url='/login') def vista_perfil(request): user = request.user friendAdd = False try: queryFriends = Friendship.objects.filter(creator=username) except: queryFriends = None try: queryWaifus = Owned.objects.filter(creator=username) except: queryWaifus = None if request.method == 'POST': #Friend request friend_req = request.POST.get('friend') try: queryUser = User.objects.filter(username = friend_req).first() try: queryFriend = Friendship.objects.filter(creator = user, friend = queryUser).first() print("queryCheck funciona: "+ queryFriend.username) except: queryCheck = None print("aun no son amigos, pero ahora lo seran") amistad = Friendship(creator=user, friend = queryUser) amistad.save() except: print("fail, amigo no existe, forever alone") #Profile pic if 'profile_pic' in request.FILES: print('found it') profile_pic = request.FILES['profile_pic'] ext = profile_pic.name.split('.')[-1] profile_pic.name = "%s.%s" % (user.username, ext) try: os.remove(settings.MEDIA_ROOT + "/perfil/profile_pics/"+ profile_pic.name) except: a = 1 ProfilePic.objects.filter(owner=user).delete() foto = ProfilePic(owner=user, title = profile_pic.name, cover=profile_pic) foto.save() # Prepara la imagen para mostrar en html try: queryCheck = ProfilePic.objects.filter(owner= user).first() except: queryCheck = None # Prepara para mostrar amigos en html queryFriend = Friendship.objects.filter(creator = user) amistad = [] amigos = [] if queryFriend is not None: for amigo in queryFriend: if len(amigos) < 5: amigos.append(amigo.friend.username) else: amistad.append(amigos) amigos = [] amigos.append(amigo.friend.username) if len(amigos) > 0: amistad.append(amigos) # Prepara para mostrar waifus en html queryWaifu = Owned.objects.filter(creator = user) coleccion = [] waifus = [] if queryWaifu is not None: for waifu in queryWaifu: if len(waifus) < 5: waifus.append(waifu.waifu.nombre) else: coleccion.append(waifus) waifus = [] waifus.append(waifu.waifu.nombre) if len(waifus) > 0: coleccion.append(waifus) # User money queryMoney = Money.objects.filter(owner= user).first() if request.method == 'POST': # Agregar money print(request.POST) if request.POST.get('moneymaker.y'): chance = random.choice(range(10)) queryMoney.money += chance queryMoney.save() money = queryMoney.money print(coleccion) return render(request, "perfil.html", {'amigos':amistad, 'waifus':coleccion, 'profile_pic':queryCheck, 'money':money}) @login_required(login_url='/login') def gacha(request): # User money user = request.user elegida = "" queryMoney = Money.objects.filter(owner= user).first() if request.method == 'POST': # Agregar money print(request.POST) money = queryMoney.money if request.POST.get('moneymaker.y'): chance = random.choice(range(10)) queryMoney.money += chance queryMoney.save() money = queryMoney.money if request.POST.get('gacha'): if money >= 50: todasLasWaifus = Waifus.objects.all() print(todasLasWaifus) elegida = random.choice(todasLasWaifus) print(elegida) #Genera waifu felicidad = Owned(creator = user, waifu = elegida) felicidad.save() queryMoney.money -= 50 queryMoney.save() money = queryMoney.money money = queryMoney.money return render(request, 'gacha.html', {'money': money, 'waifu': elegida})
null
teamWaifu/prueba/views.py
views.py
py
14,583
python
en
code
null
code-starcoder2
83
[ { "api_name": "random.choice", "line_number": 39, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 49, "usage_type": "call" }, { "api_name": "django.utils.timezone.localtime", "line_number": 52, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 52, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 53, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 58, "usage_type": "call" }, { "api_name": "django.contrib.auth", "line_number": 58, "usage_type": "name" }, { "api_name": "django.contrib.auth.login", "line_number": 60, "usage_type": "call" }, { "api_name": "django.contrib.auth", "line_number": 60, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 61, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 64, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 67, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 68, "usage_type": "call" }, { "api_name": "prueba.forms.UserForm", "line_number": 177, "usage_type": "call" }, { "api_name": "prueba.forms.UsuarioForm", "line_number": 178, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects.filter", "line_number": 187, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 187, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 187, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 196, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 209, "usage_type": "call" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 209, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 209, "usage_type": "name" }, { "api_name": "prueba.forms.UserForm", "line_number": 226, "usage_type": "call" }, { "api_name": "prueba.forms.UsuarioForm", "line_number": 227, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 228, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 242, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 245, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 261, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 265, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 270, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 272, "usage_type": "call" }, { "api_name": "django.contrib.auth.logout", "line_number": 276, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 277, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 274, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.User.objects.filter", "line_number": 299, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 299, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 299, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 321, "usage_type": "call" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 321, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 321, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 377, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 383, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 281, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 403, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 414, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 426, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 390, "usage_type": "call" } ]
276492671
import cv2 import numpy as np from helpers import apply_clahe def add_circle_mask(image,x=None,y=None,r=None,type=None): h,w = image.shape if x is None or y is None: y,x = h//2,w//2 Y,X = np.ogrid[:h,:w] if r is None: r = min(h//2,w//2) mask = (X-x)**2+(Y-y)**2<=r**2 if type==0: image[mask] = 0 elif type==1: image[~mask] = 0 return image def segment(image): height,width,_ = image.shape g_channel = image[:,:,1] hls_image = cv2.cvtColor(image,cv2.COLOR_BGR2HLS) l_channel = hls_image[:,:,1] clahe_img = apply_clahe(l_channel) norm_img = cv2.normalize(clahe_img,None,0,255,cv2.NORM_MINMAX) _,thresh_img = cv2.threshold(norm_img,150,255,cv2.THRESH_BINARY,) thresh_img = add_circle_mask(thresh_img,r=350,type=1) thresh_img = np.multiply(l_channel,np.clip(thresh_img,0,1)) thresh_img = cv2.medianBlur(thresh_img,19) norm_img = cv2.normalize(g_channel,None,0,255,cv2.NORM_MINMAX) mark_img = cv2.medianBlur(norm_img,11) mask_img = cv2.max(norm_img,mark_img) exudates_img = cv2.subtract(mask_img,mark_img) exudates_img = cv2.multiply(exudates_img,10) _, exudates_img = cv2.threshold(exudates_img,150,255,cv2.THRESH_BINARY) x,y,w,h = 0,30,800,740 mask = np.ones(exudates_img.shape,np.uint8) mask[y:y+h,x:x+w] = exudates_img[y:y+h,x:x+w] exudates_img = mask exudates_img = add_circle_mask(exudates_img,r=390,type=1) exudates_img = cv2.erode(exudates_img,(9,9)) exudates_img = cv2.dilate(exudates_img,(9,9)) optic_disk = cv2.HoughCircles(thresh_img,cv2.HOUGH_GRADIENT,1,thresh_img.size,param1=200,param2=5,maxRadius=100) (x,y,r) = np.uint16(np.around(optic_disk))[0][0] r = r+r//4 # temp_img = g_channel.copy() # cv2.circle(temp_img, (x, y), r, 255, 5) exudates_img = add_circle_mask(exudates_img,x,y,r,0) return exudates_img
null
exudates.py
exudates.py
py
1,886
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.ogrid", "line_number": 11, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 21, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2HLS", "line_number": 21, "usage_type": "attribute" }, { "api_name": "helpers.apply_clahe", "line_number": 24, "usage_type": "call" }, { "api_name": "cv2.normalize", "line_number": 25, "usage_type": "call" }, { "api_name": "cv2.NORM_MINMAX", "line_number": 25, "usage_type": "attribute" }, { "api_name": "cv2.threshold", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 26, "usage_type": "attribute" }, { "api_name": "numpy.multiply", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.medianBlur", "line_number": 29, "usage_type": "call" }, { "api_name": "cv2.normalize", "line_number": 31, "usage_type": "call" }, { "api_name": "cv2.NORM_MINMAX", "line_number": 31, "usage_type": "attribute" }, { "api_name": "cv2.medianBlur", "line_number": 32, "usage_type": "call" }, { "api_name": "cv2.max", "line_number": 33, "usage_type": "call" }, { "api_name": "cv2.subtract", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.multiply", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 36, "usage_type": "attribute" }, { "api_name": "numpy.ones", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 38, "usage_type": "attribute" }, { "api_name": "cv2.erode", "line_number": 42, "usage_type": "call" }, { "api_name": "cv2.dilate", "line_number": 43, "usage_type": "call" }, { "api_name": "cv2.HoughCircles", "line_number": 45, "usage_type": "call" }, { "api_name": "cv2.HOUGH_GRADIENT", "line_number": 45, "usage_type": "attribute" }, { "api_name": "numpy.uint16", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.around", "line_number": 46, "usage_type": "call" } ]
330762448
import logging import asyncio from sechome_conf import HOST if HOST == 'pi': import RPi.GPIO as gpio else: import mock_gpio as gpio gpio.setwarnings(False) def setup_gpio(pin): gpio.setmode(gpio.BOARD) gpio.setup(pin, gpio.IN) def cleanup_gpio(): gpio.cleanup() # 0 == open, 1 == closed def is_door_open(pin): return gpio.input(pin) == 0 async def read_door_sensor(pin=18, interval=1): setup_gpio(pin) door_state = is_door_open(pin) print("initial door state: {}".format(door_state)) yield door_state try: while True: await asyncio.sleep(interval) new_door_state = is_door_open(pin) if door_state == new_door_state: continue else: door_state = new_door_state yield door_state finally: cleanup_gpio()
null
door_sensor.py
door_sensor.py
py
872
python
en
code
null
code-starcoder2
83
[ { "api_name": "sechome_conf.HOST", "line_number": 6, "usage_type": "name" }, { "api_name": "mock_gpio.setwarnings", "line_number": 10, "usage_type": "call" }, { "api_name": "mock_gpio.setmode", "line_number": 14, "usage_type": "call" }, { "api_name": "mock_gpio.BOARD", "line_number": 14, "usage_type": "attribute" }, { "api_name": "mock_gpio.setup", "line_number": 15, "usage_type": "call" }, { "api_name": "mock_gpio.IN", "line_number": 15, "usage_type": "attribute" }, { "api_name": "mock_gpio.cleanup", "line_number": 18, "usage_type": "call" }, { "api_name": "mock_gpio.input", "line_number": 22, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 31, "usage_type": "call" } ]
264069367
from flask import Flask, render_template, request from flask_restful import Resource, Api import sys DEBUG = True TEMPLATE_FOLDER = './frontend/dist/' STATIC_URL_PATH = '' STATIC_FOLDER = './frontend/dist/' app = Flask(__name__, template_folder=TEMPLATE_FOLDER, static_url_path=STATIC_URL_PATH, static_folder=STATIC_FOLDER) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///data.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False api = Api(app) # Create the database file if DEBUG: @app.before_first_request def create_tables(): db.create_all() # Create the base route to serve the index.html template @app.route('/') @app.route('/<sid>') def home(sid=''): # skanban_id = request.args.get('sid') # Print to flask console via stdout: # print('skanban id in URL variable: {}'.format(sid), file=sys.stdout) # print('skanban id in URL params: {}'.format(skanban_id), file=sys.stdout) return render_template("index.html") # Add resource imports after app is created to resolve possible import conflicts from api.resources.boards import Board, BoardCollection from api.resources.lists import List, ListCollection from api.resources.cards import Card, CardCollection from api.resources.skanban import Skanban, SkanbanCollection # Add resources api.add_resource(BoardCollection, '/boards', '/boards/', '/boards/all/', endpoint='boards_ep') api.add_resource(Board, '/boards/<int:id>', endpoint='board_ep') api.add_resource(ListCollection, '/lists', '/lists/', '/lists/all/', endpoint='lists_ep') api.add_resource(List, '/lists/<int:id>', endpoint='list_ep') api.add_resource(CardCollection, '/cards', '/cards/', endpoint='cards_ep') api.add_resource(Card, '/cards/<int:id>', endpoint='card_ep') api.add_resource(Skanban, '/skanban/<string:sid>', endpoint='skanban_ep') api.add_resource(SkanbanCollection, '/skanban', '/skanban/', endpoint='skanbans_ep') # Run main app if __name__ == "__main__": from db import db db.init_app(app) app.run(port=5000, debug=DEBUG)
null
app.py
app.py
py
2,017
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 11, "usage_type": "call" }, { "api_name": "flask_restful.Api", "line_number": 14, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 30, "usage_type": "call" }, { "api_name": "api.resources.boards.add_resource", "line_number": 39, "usage_type": "call" }, { "api_name": "api.resources.boards.BoardCollection", "line_number": 39, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 39, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 40, "usage_type": "call" }, { "api_name": "api.resources.boards.Board", "line_number": 40, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 40, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 41, "usage_type": "call" }, { "api_name": "api.resources.lists.ListCollection", "line_number": 41, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 41, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 42, "usage_type": "call" }, { "api_name": "api.resources.lists.List", "line_number": 42, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 42, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 43, "usage_type": "call" }, { "api_name": "api.resources.cards.CardCollection", "line_number": 43, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 43, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 44, "usage_type": "call" }, { "api_name": "api.resources.cards.Card", "line_number": 44, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 44, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 45, "usage_type": "call" }, { "api_name": "api.resources.skanban.Skanban", "line_number": 45, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 45, "usage_type": "name" }, { "api_name": "api.resources.boards.add_resource", "line_number": 46, "usage_type": "call" }, { "api_name": "api.resources.skanban.SkanbanCollection", "line_number": 46, "usage_type": "argument" }, { "api_name": "api.resources.boards", "line_number": 46, "usage_type": "name" }, { "api_name": "db.db.init_app", "line_number": 51, "usage_type": "call" }, { "api_name": "db.db", "line_number": 51, "usage_type": "name" } ]
254716357
# -*- coding: utf-8 -*- #FABIEN GENTY #2017/10 #PROJET LONG VISUALISATEUR DE PROTEINES # importing librairy from bokeh.plotting import figure, output_file, show,ColumnDataSource from bokeh import * from bokeh.models import HoverTool,Span,Slider, CustomJS,CategoricalColorMapper,Button, DataTable, TableColumn from bokeh.layouts import row, widgetbox from bokeh.models.widgets import * from bokeh.embed import components,autoload_static import opening_csv as cs import pandas as pd import numpy as np from os.path import dirname, join def volcano_plot(data_sans): index = data_sans['access'] x = data_sans['logfc'] y = data_sans['pvalue'] pos = data_sans['pos'] source = ColumnDataSource( data=dict( x = x, y = y, accession = index, position = pos )) color_mapper = CategoricalColorMapper(factors=["up","normal","down"], palette=['yellow', 'green','blue']) # dictionnary for the hoover tool hover = HoverTool(tooltips=[ ("accession", "@accession"), ("x","@x"), ("y","@y") ]) yrange=[min(y)-0.1,max(y)+0.1] xrange = [min(x)-1,max(x)+0.1] # setting the tools TOOLS=",pan,wheel_zoom,box_zoom,reset,box_select,lasso_select,previewsave" # create a new plot with a title and axis labels p = figure( y_range=yrange, x_range = xrange, x_axis_label = 'log(fc)', y_axis_label = '-log(pvalue)', tools = TOOLS, plot_width = 800, plot_height = 800) p.add_tools(hover) # title modification p.title.text = "pvalue versus fold-change" p.title.align = "center" p.title.text_color = "blue" p.title.text_font_size = "25px" #p.title.background_fill_color = "#aaaaee" #setting the widgets slider h_slider = Slider(start=yrange[0],end=yrange[1], value=1, step=.1, title="variation of log(pvalue)") v_slider_right = Slider(start = 0, end = xrange[1], value=0.5, step=.01,title="right fold change") v_slider_left = Slider(start =xrange[0], end=0, value=-0.5, step=.01,title="left log fold change") # Horizontal line hline = Span(location=h_slider.value, dimension='width', line_color='green', line_width=2) # Vertical line vline1 = Span(location =v_slider_right.value , dimension='height', line_color='blue', line_width=2) vline2 = Span(location=v_slider_left.value, dimension='height', line_color='black', line_width=2) #setting the widgets slider h_slider = Slider(start=yrange[0],end=yrange[1], value=1, step=.1, title="variation of log(pvalue)") v_slider_right = Slider(start = 0, end = xrange[1], value=0.5, step=.01,title="right fold change") v_slider_left = Slider(start =xrange[0], end=0, value=-0.5, step=.01,title="left log fold change") p.renderers.extend([vline1,vline2, hline]) # add a circle points p.circle('x','y',source = source, color=dict(field='position', transform=color_mapper), legend='position' ) #setting the code to obain a real time ajustement of value and color #on th plot code=""" var data = source.data; var low = v_slider_left.value; var up = v_slider_right.value var back_value = h_slider.value; x = data['x'] y = data['y'] pos = data['position'] span.location = slider.value for (i = 0; i < x.length; i++) { if( (x[i] < low) && (y[i] > back_value)) { pos[i] = 'down' } else if ((x[i] > up) && (y[i] > back_value)){ pos[i] = 'up' } else { pos[i] = 'normal' } } console.log(source.data) source.change.emit() """ # callback of the sliders h_slider.callback = CustomJS(args=dict(source=source, span=hline, slider=h_slider, v_slider_left=v_slider_left,h_slider=h_slider,v_slider_right=v_slider_right), code=code) v_slider_right.callback = CustomJS(args=dict(source=source, span=vline1, slider=v_slider_right, v_slider_left=v_slider_left,h_slider=h_slider,v_slider_right=v_slider_right), code=code) v_slider_left.callback = CustomJS(args=dict(source=source, span=vline2, slider=v_slider_left, v_slider_left=v_slider_left,h_slider=h_slider,v_slider_right=v_slider_right), code=code) # creating du tableau des résulats de la selection datacolumn columns = [TableColumn(field="accession", title="numero d'accession"), TableColumn(field="x", title="log(fc)"), TableColumn(field="y", title="-log(pvalue)"), TableColumn(field="position", title="position"), ] data_table = DataTable(source=source, columns=columns, width=400, height=280) # creating of the download button button = Button(label="Download", button_type="success") button.callback = CustomJS(args=dict(source=source),code=open(join(dirname(__file__),"static/js/download.js")).read()) layout = row(p, widgetbox(v_slider_left,v_slider_right,h_slider,data_table,button)) return layout if __name__ == "__main__": main()
null
app/plot.py
plot.py
py
5,123
python
en
code
null
code-starcoder2
83
[ { "api_name": "bokeh.plotting.ColumnDataSource", "line_number": 26, "usage_type": "call" }, { "api_name": "bokeh.models.CategoricalColorMapper", "line_number": 34, "usage_type": "call" }, { "api_name": "bokeh.models.HoverTool", "line_number": 37, "usage_type": "call" }, { "api_name": "bokeh.plotting.figure", "line_number": 50, "usage_type": "call" }, { "api_name": "bokeh.models.Slider", "line_number": 70, "usage_type": "call" }, { "api_name": "bokeh.models.Slider", "line_number": 71, "usage_type": "call" }, { "api_name": "bokeh.models.Slider", "line_number": 72, "usage_type": "call" }, { "api_name": "bokeh.models.Span", "line_number": 75, "usage_type": "call" }, { "api_name": "bokeh.models.Span", "line_number": 77, "usage_type": "call" }, { "api_name": "bokeh.models.Span", "line_number": 78, "usage_type": "call" }, { "api_name": "bokeh.models.Slider", "line_number": 82, "usage_type": "call" }, { "api_name": "bokeh.models.Slider", "line_number": 83, "usage_type": "call" }, { "api_name": "bokeh.models.Slider", "line_number": 84, "usage_type": "call" }, { "api_name": "bokeh.models.CustomJS", "line_number": 119, "usage_type": "call" }, { "api_name": "bokeh.models.CustomJS", "line_number": 120, "usage_type": "call" }, { "api_name": "bokeh.models.CustomJS", "line_number": 121, "usage_type": "call" }, { "api_name": "bokeh.models.TableColumn", "line_number": 124, "usage_type": "call" }, { "api_name": "bokeh.models.TableColumn", "line_number": 125, "usage_type": "call" }, { "api_name": "bokeh.models.TableColumn", "line_number": 126, "usage_type": "call" }, { "api_name": "bokeh.models.TableColumn", "line_number": 127, "usage_type": "call" }, { "api_name": "bokeh.models.DataTable", "line_number": 130, "usage_type": "call" }, { "api_name": "bokeh.models.Button", "line_number": 132, "usage_type": "call" }, { "api_name": "bokeh.models.CustomJS", "line_number": 133, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 133, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 133, "usage_type": "call" }, { "api_name": "bokeh.layouts.row", "line_number": 134, "usage_type": "call" }, { "api_name": "bokeh.layouts.widgetbox", "line_number": 134, "usage_type": "call" } ]
190273067
import base64 import io import random import string from PIL import Image, ImageFont, ImageDraw class CaptchaTool(object): """ 生成图片验证码 """ def __init__(self, width=50, height=12): self.width = width self.height = height # 新图片对象 RGBA,第四通道为透明图片 self.im = Image.new('RGBA', (width, height), 12) # 字体 self.font = ImageFont.load_default() # draw对象 self.draw = ImageDraw.Draw(self.im) def draw_lines(self, num=3): """ 划线 """ for num in range(num): x1 = random.randint(0, self.width / 2) y1 = random.randint(0, self.height / 2) x2 = random.randint(0, self.width) y2 = random.randint(self.height / 2, self.height) self.draw.line(((x1, y1), (x2, y2)), fill='white', width=1) def get_verify_code(self): """ 生成验证码图形 """ # 设置随机4位数字验证码 # code = ''.join(random.sample(string.digits, 4)) #code = '0123456789'+string.ascii_letters+'9876543210' #code = random.sample('0123456789'+string.ascii_letters+'9876543210', 4) code = '' code_len = 5 for i in range(code_len): add = random.choice([random.randrange(10), chr(random.randrange(65, 91)), chr(random.randrange(97, 122))]) code += str(add) # 绘制字符串 for item in range(code_len): self.draw.text((2 + random.randint(-2, 2) + 10 * item, 2 + random.randint(-2, 2)), text=code[item], fill=(random.randint(160, 200), random.randint(180, 220), random.randint(190, 250)) , font=self.font) # 划线 # self.draw_lines() # 重新设置图片大小 self.im = self.im.resize((100, 35)) # 图片转为base64字符串 buffered = io.BytesIO() self.im.save(buffered, format="PNG") img_str = b"data:image/png;base64," + base64.b64encode(buffered.getvalue()) return img_str, code.lower()
null
flaskapp/common/captcha.py
captcha.py
py
2,221
python
en
code
null
code-starcoder2
83
[ { "api_name": "PIL.Image.new", "line_number": 17, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 17, "usage_type": "name" }, { "api_name": "PIL.ImageFont.load_default", "line_number": 19, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 19, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 21, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 21, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 28, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 29, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 30, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 31, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 45, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 45, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 50, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 52, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 53, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 54, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 61, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 63, "usage_type": "call" } ]
520011733
import numpy as np import cv2 capture = cv2.VideoCapture(0) while (1): val, frame = capture.read() abu = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) negative = (255 - abu) cv2.imshow('Gambar Negatif', negative) if cv2.waitKey(1) & 0xFF == ord('c'): break cv2.destroyAllWindows() capture.release()
null
negative.py
negative.py
py
326
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.VideoCapture", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 10, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 17, "usage_type": "call" } ]
478624247
from __future__ import annotations from typing import TYPE_CHECKING, List, Optional, Set from blspy import G1Element from typing_extensions import Protocol from chia.server.ws_connection import WSChiaConnection from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.sized_bytes import bytes32 from chia.util.ints import uint32, uint64, uint128 from chia.wallet.util.wallet_types import WalletType from chia.wallet.wallet_coin_record import WalletCoinRecord from chia.wallet.wallet_info import WalletInfo if TYPE_CHECKING: from chia.wallet.wallet_state_manager import WalletStateManager class WalletProtocol(Protocol): @classmethod def type(cls) -> WalletType: ... def id(self) -> uint32: ... async def coin_added(self, coin: Coin, height: uint32, peer: WSChiaConnection) -> None: ... async def select_coins( self, amount: uint64, exclude: Optional[List[Coin]] = None, min_coin_amount: Optional[uint64] = None, max_coin_amount: Optional[uint64] = None, excluded_coin_amounts: Optional[List[uint64]] = None, ) -> Set[Coin]: ... async def get_confirmed_balance(self, record_list: Optional[Set[WalletCoinRecord]] = None) -> uint128: ... async def get_unconfirmed_balance(self, unspent_records: Optional[Set[WalletCoinRecord]] = None) -> uint128: ... async def get_spendable_balance(self, unspent_records: Optional[Set[WalletCoinRecord]] = None) -> uint128: ... async def get_pending_change_balance(self) -> uint64: ... async def get_max_send_amount(self, records: Optional[Set[WalletCoinRecord]] = None) -> uint128: ... # not all wallet supports this. To signal support, make # require_derivation_paths() return true def puzzle_hash_for_pk(self, pubkey: G1Element) -> bytes32: ... def require_derivation_paths(self) -> bool: ... def get_name(self) -> str: ... wallet_info: WalletInfo # WalletStateManager is only imported for type hinting thus leaving pylint # unable to process this wallet_state_manager: WalletStateManager # pylint: disable=used-before-assignment
null
chia/wallet/wallet_protocol.py
wallet_protocol.py
py
2,239
python
en
code
null
code-starcoder2
83
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 16, "usage_type": "name" }, { "api_name": "typing_extensions.Protocol", "line_number": 20, "usage_type": "name" }, { "api_name": "chia.wallet.util.wallet_types.WalletType", "line_number": 22, "usage_type": "name" }, { "api_name": "chia.util.ints.uint32", "line_number": 25, "usage_type": "name" }, { "api_name": "chia.types.blockchain_format.coin.Coin", "line_number": 28, "usage_type": "name" }, { "api_name": "chia.util.ints.uint32", "line_number": 28, "usage_type": "name" }, { "api_name": "chia.server.ws_connection.WSChiaConnection", "line_number": 28, "usage_type": "name" }, { "api_name": "chia.util.ints.uint64", "line_number": 33, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 34, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 34, "usage_type": "name" }, { "api_name": "chia.types.blockchain_format.coin.Coin", "line_number": 34, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 35, "usage_type": "name" }, { "api_name": "chia.util.ints.uint64", "line_number": 35, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 36, "usage_type": "name" }, { "api_name": "chia.util.ints.uint64", "line_number": 36, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 37, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 37, "usage_type": "name" }, { "api_name": "chia.util.ints.uint64", "line_number": 37, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 38, "usage_type": "name" }, { "api_name": "chia.types.blockchain_format.coin.Coin", "line_number": 38, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 41, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 41, "usage_type": "name" }, { "api_name": "chia.wallet.wallet_coin_record.WalletCoinRecord", "line_number": 41, "usage_type": "name" }, { "api_name": "chia.util.ints.uint128", "line_number": 41, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 44, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 44, "usage_type": "name" }, { "api_name": "chia.wallet.wallet_coin_record.WalletCoinRecord", "line_number": 44, "usage_type": "name" }, { "api_name": "chia.util.ints.uint128", "line_number": 44, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 47, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 47, "usage_type": "name" }, { "api_name": "chia.wallet.wallet_coin_record.WalletCoinRecord", "line_number": 47, "usage_type": "name" }, { "api_name": "chia.util.ints.uint128", "line_number": 47, "usage_type": "name" }, { "api_name": "chia.util.ints.uint64", "line_number": 50, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 53, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 53, "usage_type": "name" }, { "api_name": "chia.wallet.wallet_coin_record.WalletCoinRecord", "line_number": 53, "usage_type": "name" }, { "api_name": "chia.util.ints.uint128", "line_number": 53, "usage_type": "name" }, { "api_name": "blspy.G1Element", "line_number": 58, "usage_type": "name" }, { "api_name": "chia.types.blockchain_format.sized_bytes.bytes32", "line_number": 58, "usage_type": "name" }, { "api_name": "chia.wallet.wallet_info.WalletInfo", "line_number": 67, "usage_type": "name" }, { "api_name": "chia.wallet.wallet_state_manager.WalletStateManager", "line_number": 70, "usage_type": "name" } ]
34445111
from pprint import pprint import requests TEST_USER_DATA = { "first_name": "Ash", "last_name": "Ketchum", "hobbies": "Catching em all!" } URL = 'http://127.0.0.1:5000/users/2' def update_user(): out = requests.put(URL, json=TEST_USER_DATA) if out.status_code == 200: pprint(out.json()) else: print("Something went wrong while trying to update") if __name__ == "__main__": update_user()
null
tests/manual/update_users.py
update_users.py
py
435
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.put", "line_number": 14, "usage_type": "call" }, { "api_name": "pprint.pprint", "line_number": 16, "usage_type": "call" } ]
352961069
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys import time from .base.exchange import * from .errors import * import requests from datetime import datetime from urllib.parse import urlencode import time import calendar import hmac import hashlib import http.client POLONIEX_REST_URL = 'poloniex.com' class Poloniex(Exchange): def __init__(self, apikey, secretkey): def httpPost(url, resource, params, apikey, sign, *args, **kwargs): params['nonce'] = int("{:.6f}".format( time.time()).replace('.', '')) headers = { "Key": apikey, "Sign": hmac.new(sign.encode("utf8"), urlencode(params).encode("utf8"), hashlib.sha512).hexdigest(), } return self.session.post('https://' + url + resource, headers=headers, data=params).json() super().__init__(apikey, secretkey) self.session = requests.session() self.httpPost = httpPost def markets(self): print("not implemented!") def ticker(self, item='USDT_BTC'): TICKER_RESOURCE = "/public?command=returnTicker" json = self.session.get('https://' + POLONIEX_REST_URL + TICKER_RESOURCE).json() utc = datetime.utcfromtimestamp(time.time()) return Ticker( timestamp=calendar.timegm(utc.timetuple()), last=float(json[item]["last"]), high=float(json[item]["high24hr"]), low=float(json[item]["low24hr"]), bid=float(json[item]["highestBid"]), ask=float(json[item]["lowestAsk"]), volume=float(json[item]["baseVolume"]) ) def board(self, item='USDT_BTC'): print("not implemented!") def order(self, item, order_type, side, price, size, *args, **kwargs): ORDER_RESOURCE = "/tradingApi" params = { "command": side.lower(), "currencyPair": item, "rate": str(price), "amount": str(size), } if order_type == "fillOrKill": params["fillOrKill"] = "1" json = self.httpPost(POLONIEX_REST_URL, ORDER_RESOURCE, params, self._apikey, self._secretkey) return json['orderNumber'] def balance(self): BALANCE_RESOURCE = "/tradingApi" params = { "command": "returnCompleteBalances" } json = self.httpPost(POLONIEX_REST_URL, BALANCE_RESOURCE, params, self._apikey, self._secretkey) balances = {} for key in sorted(json.keys()): balances[key] = [float(json[key]['onOrders']) + float( json[key]['available']), float(json[key]['available'])] return balances
null
exchanges/poloniex.py
poloniex.py
py
2,810
python
en
code
null
code-starcoder2
83
[ { "api_name": "time.time", "line_number": 23, "usage_type": "call" }, { "api_name": "hmac.new", "line_number": 26, "usage_type": "call" }, { "api_name": "urllib.parse.urlencode", "line_number": 26, "usage_type": "call" }, { "api_name": "hashlib.sha512", "line_number": 26, "usage_type": "attribute" }, { "api_name": "requests.session", "line_number": 31, "usage_type": "call" }, { "api_name": "datetime.datetime.utcfromtimestamp", "line_number": 41, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 41, "usage_type": "name" }, { "api_name": "time.time", "line_number": 41, "usage_type": "call" }, { "api_name": "calendar.timegm", "line_number": 43, "usage_type": "call" } ]
126852498
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('clientes', '0001_initial'), ('locacion', '0001_initial'), ('personas', '__first__'), ('proveedores', '__first__'), ] operations = [ migrations.CreateModel( name='Domicilio', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('descripcion', models.CharField(max_length=200, null=True, blank=True)), ('barrio', models.ForeignKey(blank=True, to='locacion.Barrio', null=True)), ('cliente', models.ForeignKey(blank=True, to='clientes.Cliente', null=True)), ('persona', models.ForeignKey(blank=True, to='personas.Persona', null=True)), ('proveedor', models.ForeignKey(blank=True, to='proveedores.Proveedor', null=True)), ], options={ 'verbose_name_plural': 'Domicilios de las Personas', }, ), migrations.CreateModel( name='TipoDomicilio', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('nombre', models.CharField(max_length=70)), ], options={ 'verbose_name_plural': 'Tipos de Domicilios', }, ), migrations.AddField( model_name='domicilio', name='tipo', field=models.ForeignKey(blank=True, to='domicilios.TipoDomicilio', unique=True), ), ]
null
apps/domicilios/migrations/0001_initial.py
0001_initial.py
py
1,733
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.db.migrations.Migration", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 7, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 17, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 20, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 20, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 21, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 21, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 25, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 25, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 31, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 34, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 34, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 35, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 35, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 41, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 41, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 44, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 44, "usage_type": "name" } ]
496466706
from datetime import datetime from django.views.generic import TemplateView from django.contrib.auth.models import User from articles.models import Article from blog.models import Post from events.models import Event from frontpage.models import CarouselItem from songs.models import Annotation, Song class SiteIndex(TemplateView): template_name = "frontpage/index.html" POST_COUNT = 1 SONG_COUNT = 8 ANNOTATION_COUNT = 8 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['carousel_items'] = CarouselItem.objects.filter(archived=False) context['events'] = (Event.items_visible_to(self.request.user) .filter(datetime__gte=datetime.now()) .order_by('datetime')) context['posts'] = (Post.items_visible_to(self.request.user) .order_by('-pub_date')[:SiteIndex.POST_COUNT]) context['songs'] = (Song.items_visible_to(self.request.user) .order_by('-pub_date')[:SiteIndex.SONG_COUNT]) context['annotation'] = (Annotation.items_visible_to(self.request.user) .order_by('-pub_date').first()) context['annotations'] = (Annotation.items_visible_to(self.request.user) .order_by('-pub_date') [:SiteIndex.ANNOTATION_COUNT]) return context class About(TemplateView): ARTICLE_FACTOR = 5 template_name = "about.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) authors = [] for user in User.objects.filter(is_active=True): author = {} author['user'] = user author['annotations'] = Annotation.items_live().filter( author=user).count() author['songs'] = Song.items_live().filter(author=user).count() author['articles'] = Article.items_live().filter( author=user).count() author['events'] = Event.items_live().filter(author=user).count() author['total'] = (author['annotations'] + author['songs'] + self.ARTICLE_FACTOR * author['articles'] + author['events']) if author['total']: authors.append(author) context['authors'] = sorted(authors, key=lambda k: k['total'], reverse=True) return context class Format(TemplateView): template_name = "format.generated"
null
piosenka/views.py
views.py
py
2,622
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.views.generic.TemplateView", "line_number": 13, "usage_type": "name" }, { "api_name": "frontpage.models.CarouselItem.objects.filter", "line_number": 21, "usage_type": "call" }, { "api_name": "frontpage.models.CarouselItem.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "frontpage.models.CarouselItem", "line_number": 21, "usage_type": "name" }, { "api_name": "events.models.Event.items_visible_to", "line_number": 22, "usage_type": "call" }, { "api_name": "events.models.Event", "line_number": 22, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 23, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 23, "usage_type": "name" }, { "api_name": "blog.models.Post.items_visible_to", "line_number": 25, "usage_type": "call" }, { "api_name": "blog.models.Post", "line_number": 25, "usage_type": "name" }, { "api_name": "songs.models.Song.items_visible_to", "line_number": 27, "usage_type": "call" }, { "api_name": "songs.models.Song", "line_number": 27, "usage_type": "name" }, { "api_name": "songs.models.Annotation.items_visible_to", "line_number": 29, "usage_type": "call" }, { "api_name": "songs.models.Annotation", "line_number": 29, "usage_type": "name" }, { "api_name": "songs.models.Annotation.items_visible_to", "line_number": 31, "usage_type": "call" }, { "api_name": "songs.models.Annotation", "line_number": 31, "usage_type": "name" }, { "api_name": "django.views.generic.TemplateView", "line_number": 37, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.User.objects.filter", "line_number": 44, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 44, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 44, "usage_type": "name" }, { "api_name": "songs.models.Annotation.items_live", "line_number": 47, "usage_type": "call" }, { "api_name": "songs.models.Annotation", "line_number": 47, "usage_type": "name" }, { "api_name": "songs.models.Song.items_live", "line_number": 49, "usage_type": "call" }, { "api_name": "songs.models.Song", "line_number": 49, "usage_type": "name" }, { "api_name": "articles.models.Article.items_live", "line_number": 50, "usage_type": "call" }, { "api_name": "articles.models.Article", "line_number": 50, "usage_type": "name" }, { "api_name": "events.models.Event.items_live", "line_number": 52, "usage_type": "call" }, { "api_name": "events.models.Event", "line_number": 52, "usage_type": "name" }, { "api_name": "django.views.generic.TemplateView", "line_number": 63, "usage_type": "name" } ]
384049578
import csv from datetime import datetime from dataset.freeze.format.common import Serializer def value_to_str(value): if isinstance(value, datetime): return value.isoformat() if hasattr(value, 'encode'): return value.encode('utf-8') if value is None: return '' return value class CSVSerializer(Serializer): def init(self): self.handles = {} def write(self, path, result): keys = list(result.keys()) if not path in self.handles: fh = open(path, 'wb') writer = csv.writer(fh) writer.writerow([k.encode('utf-8') for k in keys]) self.handles[path] = (writer, fh) writer, fh = self.handles[path] values = [value_to_str(result.get(k)) for k in keys] writer.writerow(values) def close(self): for writer, fh in self.handles.values(): fh.close()
null
dataset/freeze/format/fcsv.py
fcsv.py
py
913
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime", "line_number": 8, "usage_type": "argument" }, { "api_name": "dataset.freeze.format.common.Serializer", "line_number": 17, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 26, "usage_type": "call" } ]
140710146
import sys import os import numpy as np import torch import torch.utils.data as du from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import util from util import * from drugcell_NN import * import argparse import gc # build mask: matrix (nrows = number of relevant gene set, ncols = number all genes) # elements of matrix are 1 if the corresponding gene is one of the relevant genes def create_term_mask(term_direct_gene_map, gene_dim): term_mask_map = {} for term, gene_set in term_direct_gene_map.items(): mask = torch.zeros(len(gene_set), gene_dim) for i, gene_id in enumerate(gene_set): mask[i, gene_id] = 1 mask_gpu = torch.autograd.Variable(mask.cuda(CUDA_ID)) term_mask_map[term] = mask_gpu return term_mask_map # solution for 1/2||x-y||^2_2 + c||x||_0 def proximal_l0(yvec, c): yvec_abs = torch.abs(yvec) csqrt = torch.sqrt(2*c) xvec = (yvec_abs>=csqrt)*yvec return xvec # solution for 1/2||x-y||^2_2 + c||x||_g def proximal_glasso_nonoverlap(yvec, c): ynorm = torch.norm(yvec, p='fro') if ynorm > c: xvec = (yvec/ynorm)*(ynorm-c) else: xvec = torch.zeros_like(yvec) return xvec # solution for ||x-y||^2_2 + c||x||_2^2 def proximal_l2(yvec, c): return (1./(1.+c))*yvec # prune the structure by palm def optimize_palm(model, dG, root, reg_l0, reg_glasso, reg_decay, lr=0.001, lip=0.001): dG_prune = dG.copy() for name, param in model.named_parameters(): if "direct" in name: # mutation side # l0 for direct edge from gene to term param_tmp = param.data - lip*param.grad.data param_tmp2 = proximal_l0(param_tmp, torch.tensor(reg_l0*lip)) #("%s: before #0 is %d, after #0 is %d, threshold: %f" %(name, len(torch.nonzero(param.data, as_tuple =False)), len(torch.nonzero(param_tmp2, as_tuple =False)), reg_l0*lip)) param.data = param_tmp2 elif "GO_linear_layer" in name: # group lasso for dim = model.num_hiddens_genotype term_name = name.split('_')[0] child = model.term_neighbor_map[term_name] for i in range(len(child)): #dim = model.num_hiddens_genotype term_input = param.data[:,i*dim:(i+1)*dim] term_input_grad = param.grad.data[:,i*dim:(i+1)*dim] term_input_tmp = term_input - lip*term_input_grad term_input_update = proximal_glasso_nonoverlap(term_input_tmp, reg_glasso*lip) #print("%s child %d: before norm is %f, after #0 is %f, threshold %f" %(name, i, torch.norm(term_input, p='fro'), torch.norm(term_input_update, p='fro'), reg_glasso*lip)) param.data[:,i*dim:(i+1)*dim] = term_input_update num_n0 = len(torch.nonzero(term_input_update, as_tuple =False)) if num_n0 == 0 : dG_prune.remove_edge(term_name, child[i]) # weight decay for direct direct_input = param.data[:,len(child)*dim:] direct_input_grad = param.grad.data[:,len(child)*dim:] direct_input_tmp = direct_input - lr*direct_input_grad direct_input_update = proximal_l2(direct_input_tmp, reg_decay) param.data[:,len(child)*dim:] = direct_input_update else: # other param weigth decay param_tmp = param.data - lr*param.grad.data param.data = proximal_l2(param_tmp, 2*reg_decay*lr) #sub_dG_prune = dG_prune.subgraph(nx.shortest_path(dG_prune.to_undirected(),root)) #print("Original graph has %d nodes and %d edges" % (dG.number_of_nodes(), dG.number_of_edges())) #NodesLeft = list() #for nodetmp in dG_prune.nodes: # for path in nx.all_simple_paths(dG_prune, source=root, target=nodetmp): # #print(path) # NodesLeft.extend(path) #NodesLeft = list(set(NodesLeft)) #sub_dG_prune = dG_prune.subgraph(NodesLeft) #print("Pruned graph has %d nodes and %d edges" % (sub_dG_prune.number_of_nodes(), sub_dG_prune.number_of_edges())) del param_tmp, param_tmp2, child, term_input, term_input_grad, term_input_tmp, term_input_update del direct_input, direct_input_grad, direct_input_tmp, direct_input_update # check network statisics def check_network(model, dG, root): dG_prune = dG.copy() for name, param in model.named_parameters(): if "GO_linear_layer" in name: # group lasso for dim = model.num_hiddens_genotype term_name = name.split('_')[0] child = model.term_neighbor_map[term_name] for i in range(len(child)): #dim = model.num_hiddens_genotype term_input = param.data[:,i*dim:(i+1)*dim] num_n0 = len(torch.nonzero(term_input, as_tuple =False)) if num_n0 == 0 : dG_prune.remove_edge(term_name, child[i]) print("Original graph has %d nodes and %d edges" % (dG.number_of_nodes(), dG.number_of_edges())) #sub_dG_prune = dG_prune.subgraph(nx.shortest_path(dG_prune.to_undirected(),root)) NodesLeft = list() for nodetmp in dG_prune.nodes: for path in nx.all_simple_paths(dG_prune, source=root, target=nodetmp): #print(path) NodesLeft.extend(path) NodesLeft = list(set(NodesLeft)) #print(Nodes) sub_dG_prune = dG_prune.subgraph(NodesLeft) print("Pruned graph has %d nodes and %d edges" % (sub_dG_prune.number_of_nodes(), sub_dG_prune.number_of_edges())) num_node = sub_dG_prune.number_of_nodes() num_edge = sub_dG_prune.number_of_edges() return sub_dG_prune, num_node, num_edge def check_parameter(model, CUDA_ID): count = torch.tensor([0]).cuda(CUDA_ID) for name, param in model.named_parameters(): if "GO_linear_layer" in name: print(name) print(param.data) count = count + 1 if count >= 10: break def training_acc(model, optimizer, train_loader, train_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID): #Train model.train() train_predict = torch.zeros(0,0).cuda(CUDA_ID) for i, (inputdata, labels) in enumerate(train_loader): cuda_labels = torch.autograd.Variable(labels.cuda(CUDA_ID)) # Forward + Backward + Optimize optimizer.zero_grad() # zero the gradient buffer cuda_cell_features = build_input_vector(inputdata.narrow(1, 0, 1).tolist(), gene_dim, cuda_cells) cuda_drug_features = build_input_vector(inputdata.narrow(1, 1, 1).tolist(), drug_dim, cuda_drugs) print(i) # Here term_NN_out_map is a dictionary aux_out_map, _ = model(cuda_cell_features, cuda_drug_features) if train_predict.size()[0] == 0: train_predict = aux_out_map['final'].data else: train_predict = torch.cat([train_predict, aux_out_map['final'].data], dim=0) total_loss = 0 for name, output in aux_out_map.items(): loss = nn.MSELoss() if name == 'final': total_loss += loss(output, cuda_labels) else: # change 0.2 to smaller one for big terms total_loss += 0.2 * loss(output, cuda_labels) print(i, total_loss) train_corr = spearman_corr(train_predict, train_label_gpu) print("pretrained model %f total loss, %f training acc" % (total_loss, train_corr)) def test_acc(model, test_loader, test_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID): model.eval() test_predict = torch.zeros(0,0).cuda(CUDA_ID) for i, (inputdata, labels) in enumerate(test_loader): # Convert torch tensor to Variable cuda_cell_features = build_input_vector(inputdata.narrow(1, 0, 1).tolist(), gene_dim, cuda_cells) cuda_drug_features = build_input_vector(inputdata.narrow(1, 1, 1).tolist(), drug_dim, cuda_drugs) cuda_cell_features.cuda(CUDA_ID) cuda_drug_features.cuda(CUDA_ID) aux_out_map, _ = model(cuda_cell_features, cuda_drug_features) if test_predict.size()[0] == 0: test_predict = aux_out_map['final'].data else: test_predict = torch.cat([test_predict, aux_out_map['final'].data], dim=0) test_corr = spearman_corr(test_predict, test_label_gpu) del aux_out_map, inputdata, labels, test_predict, cuda_cell_features, cuda_drug_features torch.cuda.empty_cache() #print("pretrained model %f test acc" % (test_corr)) return test_corr def retrain(model, train_loader, train_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID, learning_rate): for name, param in model.named_parameters(): if "direct" in name: # mutation side # l0 for direct edge from gene to term mask = torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())) param.register_hook(lambda grad: grad.mul_(mask)) if "GO_linear_layer" in name: # group lasso for mask = torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())) param.register_hook(lambda grad: grad.mul_(mask)) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e-05) for retain_epoch in range(1): model.train() train_predict = torch.zeros(0,0).cuda(CUDA_ID) best_acc = [0] for i, (inputdata, labels) in enumerate(train_loader): cuda_labels = torch.autograd.Variable(labels.cuda(CUDA_ID)) # Forward + Backward + Optimize optimizer.zero_grad() # zero the gradient buffer cuda_cell_features = build_input_vector(inputdata.narrow(1, 0, 1).tolist(), gene_dim, cuda_cells) cuda_drug_features = build_input_vector(inputdata.narrow(1, 1, 1).tolist(), drug_dim, cuda_drugs) # Here term_NN_out_map is a dictionary aux_out_map, _ = model(cuda_cell_features, cuda_drug_features) if train_predict.size()[0] == 0: train_predict = aux_out_map['final'].data else: train_predict = torch.cat([train_predict, aux_out_map['final'].data], dim=0) total_loss = 0 for name, output in aux_out_map.items(): loss = nn.MSELoss() if name == 'final': total_loss += loss(output, cuda_labels) else: # change 0.2 to smaller one for big terms total_loss += 0.2 * loss(output, cuda_labels) optimizer.zero_grad() print("Retrain %d: total loss %f" % (i, total_loss.item())) total_loss.backward() optimizer.step() print("Retrain %d: total loss %f" % (i, total_loss.item())) train_corr = spearman_corr(train_predict, train_label_gpu) retrain_test_corr = test_acc(model, test_loader, test_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) print(">>>>>Retraining step %d: model test acc %f" % (retain_epoch, prune_test_corr)) if retrain_test_corr > best_acc[-1]: best_acc.append(accuracy) torch.save(model.state_dict(), model_save_folder + 'prune_final/drugcell_retrain_lung_best'+str(epoch)+'_'+str(retain_epoch)+'.pkl') best_model = model.state_dict() model.load_state_dict(best_model) return model def grad_hook_masking(grad, mask): grad = grad.mul_(mask) del mask #return grad.mul_(mask) def sparse_direct_gene(model, GOlist): GO_direct_spare_gene = {} for go in GOlist: GO_direct_spare_gene[go] = list() preserved_gene = list() for name, param in model.named_parameters(): if "direct" in name: GOname = name.split('_')[0] if GOname in GOlist: param_tmp = torch.sum(param.data, dim=0) #print(param_tmp.shape) indn0 = torch.nonzero(param_tmp, as_tuple=True)[0] #param_tmp = np.sum(param.data.numpy(), axis=0) #print(param_tmp.shape) #indn0 = np.nonzero(param_tmp)[0] #print(np.count_nonzero(param_tmp)) GO_direct_spare_gene[GOname].extend(indn0) preserved_gene.extend(indn0) return GO_direct_spare_gene, preserved_gene # train a DrugCell model def train_model(pretrained_model, root, term_size_map, term_direct_gene_map, dG, train_data, gene_dim, drug_dim, model_save_folder, train_epochs, batch_size, learning_rate, num_hiddens_genotype, num_hiddens_drug, num_hiddens_final, cell_features, drug_features): ''' # arguments: # 1) root: the root of the hierarchy embedded in one side of the model # 2) term_size_map: dictionary mapping the name of subsystem in the hierarchy to the number of genes contained in the subsystem # 3) term_direct_gene_map: dictionary mapping each subsystem in the hierarchy to the set of genes directly contained in the subsystem (i.e., children subsystems would not have the genes in the set) # 4) dG: the hierarchy loaded as a networkx DiGraph object # 5) train_data: torch Tensor object containing training data (features and labels) # 6) gene_dim: the size of input vector for the genomic side of neural network (visible neural network) embedding cell features # 7) drug_dim: the size of input vector for the fully-connected neural network embedding drug structure # 8) model_save_folder: the location where the trained model will be saved # 9) train_epochs: the maximum number of epochs to run during the training phase # 10) batch_size: the number of data points that the model will see at each iteration during training phase (i.e., #training_data_points < #iterations x batch_size) # 11) learning_rate: learning rate of the model training # 12) num_hiddens_genotype: number of neurons assigned to each subsystem in the hierarchy # 13) num_hiddens_drugs: number of neurons assigned to the fully-connected neural network embedding drug structure - one string containing number of neurons at each layer delimited by comma(,) (i.e. for 3 layer of fully-connected neural network containing 100, 50, 20 neurons from bottom - '100,50,20') # 14) num_hiddens_final: number of neurons assigned to the fully-connected neural network combining the genomic side with the drug side. Same format as 13). # 15) cell_features: a list containing the features of each cell line in tranining data. The index should match with cell2id list. # 16) drug_features: a list containing the morgan fingerprint (or other embedding) of each drug in training data. The index should match with drug2id list. ''' #print("Original graph has %d nodes and %d edges" % (dG.number_of_nodes(), dG.number_of_edges())) # initialization of variables best_model = 0 #best_model = 0 max_corr = 0 dGc = dG.copy() # driver gene DgeneId = [51,125,128,140,171,184,214,261,281,283,287,372,378,468 ,498,620,712,801,822,834,846,850,871,872,879,950,951,1082 ,1131,1212,1247,1265,1305,1466,1497,1514,1516,1517,1520,1561,1607,1610 ,1611,1657,1767,1790,1836,1885,1887,2016,2017,2062,2066,2113,2186,2197 ,2207,2263,2289,2291,2344,2351,2357,2366,2465,2469,2612,2618,2829,2832] # separate the whole data into training and test data train_feature, train_label, test_feature, test_label = train_data # copy labels (observation) to GPU - will be used to train_label_gpu = torch.autograd.Variable(train_label.cuda(CUDA_ID)) test_label_gpu = torch.autograd.Variable(test_label.cuda(CUDA_ID)) # create dataloader for training/test data train_loader = du.DataLoader(du.TensorDataset(train_feature,train_label), batch_size=batch_size, shuffle=False) test_loader = du.DataLoader(du.TensorDataset(test_feature,test_label), batch_size=batch_size, shuffle=False) # create a torch objects containing input features for cell lines and drugs cuda_cells = torch.from_numpy(cell_features) cuda_drugs = torch.from_numpy(drug_features) # dcell neural network model = drugcell_nn(term_size_map, term_direct_gene_map, dG, gene_dim, drug_dim, root, num_hiddens_genotype, num_hiddens_drug, num_hiddens_final, CUDA_ID) # load model to GPU model.cuda(CUDA_ID) # define optimizer # optimize drug NN optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e-05) term_mask_map = create_term_mask(model.term_direct_gene_map, gene_dim) # load pretrain model if os.path.isfile(pretrained_model): print("Pre-trained model exists:" + pretrained_model) model.load_state_dict(torch.load(pretrained_model,map_location=torch.device('cuda', CUDA_ID))) #param_file #base_test_acc = test(model,val_loader,device) else: print("Pre-trained model does not exist, so before pruning we have to pre-train a model.") sys.exit() #training_acc(model, optimizer, train_loader, train_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) #test_acc(model, test_loader, test_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) '''optimizer.zero_grad() for name, param in model.named_parameters(): term_name = name.split('_')[0] if '_direct_gene_layer.weight' in name: #print(name, param.size(), term_mask_map[term_name].size()) param.data = torch.mul(param.data, term_mask_map[term_name]) * 0.1 #param.data = torch.mul(param.data, term_mask_map[term_name]) else: param.data = param.data * 0.1 ''' #training_acc(model, optimizer, train_loader, train_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) #test_acc(model, test_loader, test_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) #best_prune_acc = torch.tensor(0.0) for epoch in range(train_epochs): # prune step for prune_epoch in range(10): #Train model.train() train_predict = torch.zeros(0,0).cuda(CUDA_ID) for i, (inputdata, labels) in enumerate(train_loader): cuda_labels = torch.autograd.Variable(labels.cuda(CUDA_ID)) # Forward + Backward + Optimize optimizer.zero_grad() # zero the gradient buffer cuda_cell_features = build_input_vector(inputdata.narrow(1, 0, 1).tolist(), gene_dim, cuda_cells) cuda_drug_features = build_input_vector(inputdata.narrow(1, 1, 1).tolist(), drug_dim, cuda_drugs) cuda_cell_features.cuda(CUDA_ID) cuda_drug_features.cuda(CUDA_ID) # Here term_NN_out_map is a dictionary aux_out_map, _ = model(cuda_cell_features, cuda_drug_features) if train_predict.size()[0] == 0: train_predict = aux_out_map['final'].data else: train_predict = torch.cat([train_predict, aux_out_map['final'].data], dim=0) total_loss = 0 for name, output in aux_out_map.items(): loss = nn.MSELoss() if name == 'final': total_loss += loss(output, cuda_labels) else: # change 0.2 to smaller one for big terms total_loss += 0.2 * loss(output, cuda_labels) total_loss.backward() for name, param in model.named_parameters(): if '_direct_gene_layer.weight' not in name: continue term_name = name.split('_')[0] #print(name, param.grad.data.size(), term_mask_map[term_name].size()) param.grad.data = torch.mul(param.grad.data, term_mask_map[term_name]) #print("Original graph has %d nodes and %d edges" % (dGc.number_of_nodes(), dGc.number_of_edges())) optimize_palm(model, dGc, root, reg_l0=0.0001, reg_glasso=0.1, reg_decay=0.001, lr=0.001, lip=0.001) print("check network:") #check_network(model, dGc, root) #optimizer.step() print("Prune %d: total loss %f" % (i,total_loss.item())) del total_loss, cuda_cell_features, cuda_drug_features del aux_out_map, inputdata, labels torch.cuda.empty_cache() train_corr = spearman_corr(train_predict, train_label_gpu) prune_test_corr = test_acc(model, test_loader, test_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) print(">>>>>%d epoch run Pruning step %d: model train acc %f test acc %f" % (epoch, prune_epoch, train_corr, prune_test_corr)) del train_predict, prune_test_corr torch.cuda.empty_cache() # retraining step #retrain(model, train_loader, train_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID, learning_rate) # masking ''' print("check network before masking:") check_network(model, dGc, root) handle_list = list() with torch.no_grad(): for name, param in model.named_parameters(): if "direct" in name: # mutation side # l0 for direct edge from gene to term mask = torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())) handle = param.register_hook(lambda grad, mask=mask: grad_hook_masking(grad, mask)) #handle = param.register_hook(lambda grad: grad.mul_(torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())))) handle_list.append(handle) if "GO_linear_layer" in name: # group lasso for mask = torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())) handle = param.register_hook(lambda grad, mask=mask: grad_hook_masking(grad, mask)) #handle = param.register_hook(lambda grad: grad.mul_(torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())))) handle_list.append(handle) torch.cuda.empty_cache() ''' #print("check network after masking:") #check_network(model, dGc, root) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e-05) #print("check network after optimizer:") #check_network(model, dGc, root) best_retrain_corr = torch.tensor(0.0).cuda(CUDA_ID) for retain_epoch in range(10): #print("check network before train:") #check_network(model, dGc, root) print("check network before masking:") #check_network(model, dGc, root) # add hooks handle_list = list() with torch.no_grad(): for name, param in model.named_parameters(): if "direct" in name: # mutation side # l0 for direct edge from gene to term mask = torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())) handle = param.register_hook(lambda grad, mask=mask: grad_hook_masking(grad, mask)) #handle = param.register_hook(lambda grad: grad.mul_(torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())))) handle_list.append(handle) if "GO_linear_layer" in name: # group lasso for mask = torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())) handle = param.register_hook(lambda grad, mask=mask: grad_hook_masking(grad, mask)) #handle = param.register_hook(lambda grad: grad.mul_(torch.where(param.data.detach()!=0, torch.ones_like(param.data.detach()), torch.zeros_like(param.data.detach())))) handle_list.append(handle) model.train() train_predict = torch.zeros(0,0).cuda(CUDA_ID) #print("check network before retrain:") #check_network(model, dGc, root) best_acc = torch.tensor([0]).cuda(CUDA_ID) for i, (inputdata, labels) in enumerate(train_loader): cuda_labels = torch.autograd.Variable(labels.cuda(CUDA_ID)) # Forward + Backward + Optimize optimizer.zero_grad() # zero the gradient buffer cuda_cell_features = build_input_vector(inputdata.narrow(1, 0, 1).tolist(), gene_dim, cuda_cells) cuda_drug_features = build_input_vector(inputdata.narrow(1, 1, 1).tolist(), drug_dim, cuda_drugs) cuda_cell_features.cuda(CUDA_ID) cuda_drug_features.cuda(CUDA_ID) # Here term_NN_out_map is a dictionary aux_out_map, _ = model(cuda_cell_features, cuda_drug_features) if train_predict.size()[0] == 0: train_predict = aux_out_map['final'].data else: train_predict = torch.cat([train_predict, aux_out_map['final'].data], dim=0) total_loss = 0 for name, output in aux_out_map.items(): loss = nn.MSELoss() if name == 'final': total_loss += loss(output, cuda_labels) else: # change 0.2 to smaller one for big terms total_loss += 0.2 * loss(output, cuda_labels) optimizer.zero_grad() #print("Retrain %d: total loss %f" % (i, total_loss.item())) total_loss.backward() print("@check network before step:") #check_network(model, dGc, root) #check_parameter(model, CUDA_ID) optimizer.step() #check_parameter(model, CUDA_ID) print("@check network after step:") #check_network(model, dGc, root) print("Retrain %d: total loss %f" % (i, total_loss.item())) del total_loss, cuda_cell_features, cuda_drug_features del aux_out_map, inputdata, labels torch.cuda.empty_cache() # remove hooks for handle in handle_list: handle.remove() torch.cuda.empty_cache() gc.collect() train_corr = spearman_corr(train_predict, train_label_gpu) retrain_test_corr = test_acc(model, test_loader, test_label_gpu, gene_dim, cuda_cells, drug_dim, cuda_drugs, CUDA_ID) print(">>>>>%d epoch Retraining step %d: model training acc %f test acc %f" % (epoch, retain_epoch, train_corr, retrain_test_corr)) # save models if best_retrain_corr < retrain_test_corr: best_retrain_corr = retrain_test_corr PrunedG, NumNode_left, NumEdge_left = check_network(model, dGc, root) GOLeft = list(PrunedG.nodes) GO_direct_gene, Prev_gene_tmp = sparse_direct_gene(model, GOLeft) Prev_gene = [Prev_gene_tmp[i].item() for i in range(len(Prev_gene_tmp))] Prev_gene_unique = list(set(Prev_gene)) NumGeneLeft = len(Prev_gene_unique) Overlap = list(set(Prev_gene_unique) & set(DgeneId)) NumOverlap = len(Overlap) fname = model_save_folder + 'st_gl_0.1_epoch_'+str(epoch)+'_trainacc_'+str(train_corr.item())+'_testacc_'+str(retrain_test_corr.item())+'_nodeleft_'+str(NumNode_left)+'_edgeleft_'+str(NumEdge_left)+'_geneleft_'+str(NumGeneLeft)+'_overlap_'+str(NumOverlap)+'.pkl' torch.save(model.state_dict(), fname) #if retrain_test_corr > best_acc: # best_acc = retrain_test_corr #best_acc.append(retrain_test_corr) #torch.save(model.state_dict(), model_save_folder + 'prune_final/drugcell_retrain_lung_best'+str(epoch)+'_'+str(retain_epoch)+'.pkl') # best_model_para = model.state_dict() #model.load_state_dict(best_model_para) #del best_model_para parser = argparse.ArgumentParser(description='Train dcell') parser.add_argument('-onto', help='Ontology file used to guide the neural network', type=str) parser.add_argument('-train', help='Training dataset', type=str) parser.add_argument('-test', help='Validation dataset', type=str) parser.add_argument('-epoch', help='Training epochs for training', type=int, default=300) parser.add_argument('-lr', help='Learning rate', type=float, default=0.001) parser.add_argument('-batchsize', help='Batchsize', type=int, default=3000) parser.add_argument('-modeldir', help='Folder for trained models', type=str, default='MODEL/') parser.add_argument('-cuda', help='Specify GPU', type=int, default=0) parser.add_argument('-gene2id', help='Gene to ID mapping file', type=str) parser.add_argument('-drug2id', help='Drug to ID mapping file', type=str) parser.add_argument('-cell2id', help='Cell to ID mapping file', type=str) parser.add_argument('-genotype_hiddens', help='Mapping for the number of neurons in each term in genotype parts', type=int, default=3) parser.add_argument('-drug_hiddens', help='Mapping for the number of neurons in each layer', type=str, default='100,50,3') parser.add_argument('-final_hiddens', help='The number of neurons in the top layer', type=int, default=3) parser.add_argument('-cellline', help='Mutation information for cell lines', type=str) parser.add_argument('-fingerprint', help='Morgan fingerprint representation for drugs', type=str) parser.add_argument('-pretrained_model', help='Pre-trained drugcell baseline model', type=str) print("Start....") # call functions opt = parser.parse_args() torch.set_printoptions(precision=3) # load input data train_data, cell2id_mapping, drug2id_mapping = prepare_train_data(opt.train, opt.test, opt.cell2id, opt.drug2id) gene2id_mapping = load_mapping(opt.gene2id) print('Total number of genes = %d' % len(gene2id_mapping)) cell_features = np.genfromtxt(opt.cellline, delimiter=',') drug_features = np.genfromtxt(opt.fingerprint, delimiter=',') num_cells = len(cell2id_mapping) num_drugs = len(drug2id_mapping) num_genes = len(gene2id_mapping) drug_dim = len(drug_features[0,:]) # load ontology dG, root, term_size_map, term_direct_gene_map = load_ontology(opt.onto, gene2id_mapping) #print("Original graph has %d nodes and %d edges" % (dG.number_of_nodes(), dG.number_of_edges())) # load the number of hiddens ####### num_hiddens_genotype = opt.genotype_hiddens num_hiddens_drug = list(map(int, opt.drug_hiddens.split(','))) num_hiddens_final = opt.final_hiddens # load pretrain model pretrained_model = opt.pretrained_model ###################################### # driver gene #Dgene = [ 214, 1082, 1466, 1520, 1531, 1607, 2062, 2773, 2832] CUDA_ID = opt.cuda #print(">>>>>>>>>>>>Original graph has %d nodes and %d edges" % (dG.number_of_nodes(), dG.number_of_edges())) train_model(pretrained_model, root, term_size_map, term_direct_gene_map, dG, train_data, num_genes, drug_dim, opt.modeldir, opt.epoch, opt.batchsize, opt.lr, num_hiddens_genotype, num_hiddens_drug, num_hiddens_final, cell_features, drug_features)
null
train_drugcell_prune_st.py
train_drugcell_prune_st.py
py
32,384
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.zeros", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 29, "usage_type": "attribute" }, { "api_name": "torch.abs", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.sqrt", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.norm", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.nonzero", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.nonzero", "line_number": 119, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 140, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 154, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 157, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 157, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 172, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 176, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 176, "usage_type": "name" }, { "api_name": "torch.zeros", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 206, "usage_type": "call" }, { "api_name": "torch.cuda.empty_cache", "line_number": 210, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 210, "usage_type": "attribute" }, { "api_name": "torch.where", "line_number": 221, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 221, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 221, "usage_type": "call" }, { "api_name": "torch.where", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 229, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 229, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 232, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 236, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 236, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 250, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 254, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 254, "usage_type": "name" }, { "api_name": "torch.save", "line_number": 272, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 293, "usage_type": "call" }, { "api_name": "torch.nonzero", "line_number": 295, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 345, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 345, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 346, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 346, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 349, "usage_type": "call" }, { "api_name": "torch.utils.data", "line_number": 349, "usage_type": "name" }, { "api_name": "torch.utils.data.TensorDataset", "line_number": 349, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 350, "usage_type": "call" }, { "api_name": "torch.utils.data", "line_number": 350, "usage_type": "name" }, { "api_name": "torch.utils.data.TensorDataset", "line_number": 350, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 353, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 354, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 364, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 364, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 368, "usage_type": "call" }, { "api_name": "os.path", "line_number": 368, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 370, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 370, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 374, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 403, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 406, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 406, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 423, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 427, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 427, "usage_type": "name" }, { "api_name": "torch.mul", "line_number": 440, "usage_type": "call" }, { "api_name": "torch.cuda.empty_cache", "line_number": 450, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 450, "usage_type": "attribute" }, { "api_name": "torch.cuda.empty_cache", "line_number": 456, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 456, "usage_type": "attribute" }, { "api_name": "torch.optim.Adam", "line_number": 487, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 487, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 492, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 502, "usage_type": "call" }, { "api_name": "torch.where", "line_number": 507, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 507, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 507, "usage_type": "call" }, { "api_name": "torch.where", "line_number": 513, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 513, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 513, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 520, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 525, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 527, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 527, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 544, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 548, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 548, "usage_type": "name" }, { "api_name": "torch.cuda.empty_cache", "line_number": 568, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 568, "usage_type": "attribute" }, { "api_name": "torch.cuda.empty_cache", "line_number": 573, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 573, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 575, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 593, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 614, "usage_type": "call" }, { "api_name": "torch.set_printoptions", "line_number": 639, "usage_type": "call" }, { "api_name": "numpy.genfromtxt", "line_number": 646, "usage_type": "call" }, { "api_name": "numpy.genfromtxt", "line_number": 647, "usage_type": "call" } ]
236905313
import json import os import requests from urllib3.util import parse_url class Zodiac(object): def __init__(self, username, password, company=None, api=None, api_version=None): self.api = api or 'https://dashboard.zodiacmetrics.com/api' self.api_version = api_version or 'v1' self.login_as(username, password) self.company = company or self.company def _format_url(self, url, **kwargs): kwargs['api'] = self.api kwargs['version'] = self.api_version return url.format(**kwargs) def _post(self, url, values): headers = { "Content-Type": "application/json" } resp = self.session.post(url, json=values, headers=headers) try: return json.loads(resp.text) except Exception as e: print(resp.text) raise e def _put(self, url, filepath, filename): headers = { "Content-Type": "multipart/form-data", "Content-Disposition": "attachment; filename=\"" + filename + "\"" } with open(filepath, 'rb') as data: resp = self.session.put(url, data=data, headers=headers) return resp def _get(self, url): return self.session.get(url) def login_as(self, username, password): self.session = requests.Session() url = self._format_url('{api}/{version}/auth/login') body = self._post(url, {'email': username, 'password': password, 'rememberMe': True}) self.company = body['mask'] self.session.headers.update({'User-Authorization-Token': 'Bearer ' + body['token']}) def _create_upload(self, path, filename): url = self._format_url( path, company=self.company ) body = self._post(url, {'filename': filename}) return body['url'] def _create_record(self, path, filename, upload_url, description): s3_path = parse_url(upload_url).path url = self._format_url(path, company=self.company) self._post( url, {'filename': filename, 's3_path': s3_path, 'description': description} ) return s3_path def _create_upload_location(self, filename): return self._create_upload('{api}/{version}/{company}/datasets/upload_url', filename) def upload_file(self, filepath, description): filename = filepath.split('/')[-1] if os.name == 'nt': filename = filepath.split('\\')[-1] upload_url = self._create_upload_location(filename) self._put(upload_url, filepath, filename) return self._create_record( '{api}/{version}/{company}/datasets/create', filename, upload_url, description ) def _create_email_upload_location(self, filename): return self._create_upload('{api}/{version}/{company}/email/upload_url', filename) def upload_emails(self, filepath): filename = filepath.split('/')[-1] upload_url = self._create_email_upload_location(filename) self._put(upload_url, filepath, filename) return self._create_record( '{api}/{version}/{company}/email/create', filename, upload_url, '' ) def submit_job(self, args): txlogs = [] attrfiles = [] for trans_log in args.transactions: txlogs.append(self.upload_file(trans_log, trans_log)) for attr_file in args.attributes or []: attrfiles.append(self.upload_file(attr_file, attr_file)) url = self._format_url( '{api}/{version}/{company}/models/{model_group_hash}/execute', company=self.company, model_group_hash=args.model_group_hash ) self._post( url, {'transaction_logs': txlogs, 'attributes': attrfiles} ) def _list_datasets(self): url = self._format_url('{api}/{version}/{company}/datasets/list', company=self.company) return json.loads(self._get(url).text) def list_datasets(self): data = self._list_datasets() return [d['filename'] for d in data] def get_latest_output(self, args): mgh = args.model_group_hash url = self._format_url( '{api}/{version}/{company}/datasets/{mgh}/modeling_output', company=self.company, mgh=mgh ) api_text = self._get(url).text filename = json.loads(api_text)['id'] resp = self._get( self._format_url( "{api}/{version}/{company}/datasets/{inst}/download_url", company=self.company, inst=filename) ) download = json.loads(resp.text)['url'] print("Download url %s" % download) return download def get_download_url(self, filename): datasets = self._list_datasets() inst = [d['id'] for d in datasets if d['filename'] == filename][-1] if not inst: raise Exception("Unknown file") resp = self._get( self._format_url( "{api}/{version}/{company}/datasets/{inst}/download_url", company=self.company, inst=inst) ) return json.loads(resp.text)['url']
null
zodiac/api.py
api.py
py
5,237
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.loads", "line_number": 28, "usage_type": "call" }, { "api_name": "requests.Session", "line_number": 46, "usage_type": "call" }, { "api_name": "urllib3.util.parse_url", "line_number": 61, "usage_type": "call" }, { "api_name": "os.name", "line_number": 74, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 111, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 126, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 133, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 148, "usage_type": "call" } ]
13191767
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html import pymongo import re import os class DoubanPipeline(object): """ 清洗过滤数据 """ def process_item(self, item, spider): """ 删除多余的空白行 :param item: :param spider: :return: """ for key, value in item.items(): if isinstance(value, str): item[key] = value.strip() elif isinstance(value, (tuple, list)): item[key] = [i.strip() for i in value] return item class MongoPipeline(object): """ 保存爬虫数据到Mongodb """ def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db self.client = None self.db = None @classmethod def from_crawler(cls, crawler): """ 使用类方法,返回带有MONGO_URI和MONGO_DB值的类实例 :param crawler: :return: 类实例 """ return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DB') ) def open_spider(self, spider): """ 打开Mongodb连接 :param spider: :return: """ self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def process_item(self, item, spider): """ 保存所有数据到Mongodb :param item: :param spider: :return: """ name = item.__class__.__name__ items = dict(item) self.db[name].update_one(items, {"$set": items}, upsert=True) # 数据去重 return item def close_spider(self, spider): """ 关闭Mongodb连接 :param spider: :return: """ self.client.close() class SaveDataPipeline(object): """ 保存爬虫数据到本地 """ def __init__(self): self.record_folder = os.getcwd() + '\\' + 'result' def process_item(self, item, spider): """ 保存所有文章到result目录下 :param item: :param spider: :return: """ items = dict(item) title = re.match('[\u4e00-\u9fa5a-zA-Z0-9]+', items['title']) # 只匹配字符串中的中文,字母,数字 with open(r'{}\{}.txt'.format(self.record_folder, title.group()), 'w', encoding='utf-8') as wf: wf.write(item['article']) return item
null
scrapy_crawler/douban/douban/pipelines.py
pipelines.py
py
2,668
python
en
code
null
code-starcoder2
83
[ { "api_name": "pymongo.MongoClient", "line_number": 59, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 88, "usage_type": "call" }, { "api_name": "re.match", "line_number": 98, "usage_type": "call" } ]
647361015
""" TextWin, the window showing the text messages and info messages in poezio. Can be locked, scrolled, has a separator, etc… """ import logging from typing import Optional, List, Union from poezio.windows.base_wins import Win from poezio.text_buffer import TextBuffer from poezio.config import config from poezio.theming import to_curses_attr, get_theme from poezio.ui.types import Message, BaseMessage from poezio.ui.render import Line, build_lines, write_pre log = logging.getLogger(__name__) class TextWin(Win): __slots__ = ('lines_nb_limit', 'pos', 'built_lines', 'lock', 'lock_buffer', 'separator_after', 'highlights', 'hl_pos', 'nb_of_highlights_after_separator') hl_pos: Optional[int] def __init__(self, lines_nb_limit: Optional[int] = None) -> None: Win.__init__(self) if lines_nb_limit is None: lines_nb_limit = config.getint('max_lines_in_memory') self.lines_nb_limit: int = lines_nb_limit self.pos = 0 # Each new message is built and kept here. # on resize, we rebuild all the messages self.built_lines: List[Union[None, Line]] = [] self.lock = False self.lock_buffer: List[Union[None, Line]] = [] self.separator_after: Optional[BaseMessage] = None # the Lines of the highlights in that buffer self.highlights: List[Line] = [] # the current HL position in that list NaN means that we’re not on # an hl. -1 is a valid position (it's before the first hl of the # list. i.e the separator, in the case where there’s no hl before # it.) self.hl_pos = None # Keep track of the number of hl after the separator. # This is useful to make “go to next highlight“ work after a “move to separator”. self.nb_of_highlights_after_separator = 0 def toggle_lock(self) -> bool: if self.lock: self.release_lock() else: self.acquire_lock() return self.lock def acquire_lock(self) -> None: self.lock = True def release_lock(self) -> None: for line in self.lock_buffer: self.built_lines.append(line) self.lock = False def scroll_up(self, dist: int = 14) -> bool: pos = self.pos self.pos += dist if self.pos + self.height > len(self.built_lines): self.pos = len(self.built_lines) - self.height if self.pos < 0: self.pos = 0 return self.pos != pos def scroll_down(self, dist: int = 14) -> bool: pos = self.pos self.pos -= dist if self.pos <= 0: self.pos = 0 return self.pos != pos def build_new_message(self, message: BaseMessage, clean: bool = True, timestamp: bool = False, nick_size: int = 10) -> int: """ Take one message, build it and add it to the list Return the number of lines that are built for the given message. """ lines = build_lines( message, self.width, timestamp=timestamp, nick_size=nick_size ) if self.lock: self.lock_buffer.extend(lines) else: self.built_lines.extend(lines) if not lines or not lines[0]: return 0 if isinstance(message, Message) and message.highlight: self.highlights.append(lines[0]) self.nb_of_highlights_after_separator += 1 log.debug("Number of highlights after separator is now %s", self.nb_of_highlights_after_separator) if clean: while len(self.built_lines) > self.lines_nb_limit: self.built_lines.pop(0) return len(lines) def refresh(self) -> None: log.debug('Refresh: %s', self.__class__.__name__) if self.height <= 0: return if self.pos == 0: lines = self.built_lines[-self.height:] else: lines = self.built_lines[-self.height - self.pos:-self.pos] with_timestamps = config.getbool("show_timestamps") nick_size = config.getint("max_nick_length") self._win.move(0, 0) self._win.erase() offset = 0 for y, line in enumerate(lines): if line: msg = line.msg if line.start_pos == 0: offset = write_pre(msg, self, with_timestamps, nick_size) elif y == 0: offset = msg.compute_offset(with_timestamps, nick_size) self.write_text( y, offset, line.prepend + line.msg.txt[line.start_pos:line.end_pos]) else: self.write_line_separator(y) if y != self.height - 1: self.addstr('\n') self._win.attrset(0) self._refresh() def write_text(self, y: int, x: int, txt: str) -> None: """ write the text of a line. """ self.addstr_colored(txt, y, x) def resize(self, height: int, width: int, y: int, x: int, room: Optional[TextBuffer] = None, force: bool = False) -> None: old_width: Optional[int] if hasattr(self, 'width'): old_width = self.width else: old_width = None self._resize(height, width, y, x) if room and (self.width != old_width or force): self.rebuild_everything(room) # reposition the scrolling after resize # (see #2450) buf_size = len(self.built_lines) if buf_size - self.pos < self.height: self.pos = buf_size - self.height if self.pos < 0: self.pos = 0 def rebuild_everything(self, room: TextBuffer) -> None: self.built_lines = [] with_timestamps = config.getbool('show_timestamps') nick_size = config.getint('max_nick_length') for message in room.messages: self.build_new_message( message, clean=False, timestamp=with_timestamps, nick_size=nick_size) if self.separator_after is message: self.built_lines.append(None) while len(self.built_lines) > self.lines_nb_limit: self.built_lines.pop(0) def remove_line_separator(self) -> None: """ Remove the line separator """ log.debug('remove_line_separator') if None in self.built_lines: self.built_lines.remove(None) self.separator_after = None def add_line_separator(self, room: TextBuffer = None) -> None: """ add a line separator at the end of messages list room is a textbuffer that is needed to get the previous message (in case of resize) """ if None not in self.built_lines: self.built_lines.append(None) self.nb_of_highlights_after_separator = 0 log.debug("Resetting number of highlights after separator") if room and room.messages: self.separator_after = room.messages[-1] def write_line_separator(self, y) -> None: theme = get_theme() char = theme.CHAR_NEW_TEXT_SEPARATOR self.addnstr(y, 0, char * (self.width // len(char) - 1), self.width, to_curses_attr(theme.COLOR_NEW_TEXT_SEPARATOR)) def __del__(self) -> None: log.debug('** TextWin: deleting %s built lines', (len(self.built_lines))) del self.built_lines def next_highlight(self) -> None: """ Go to the next highlight in the buffer. (depending on which highlight was selected before) if the buffer is already positioned on the last, of if there are no highlights, scroll to the end of the buffer. """ log.debug('Going to the next highlight…') if (not self.highlights or self.hl_pos is None or self.hl_pos >= len(self.highlights) - 1): self.hl_pos = None self.pos = 0 return hl_size = len(self.highlights) - 1 if self.hl_pos is not None and self.hl_pos < hl_size: self.hl_pos += 1 else: self.hl_pos = hl_size log.debug("self.hl_pos = %s", self.hl_pos) hl = self.highlights[self.hl_pos] pos = None while not pos: try: pos = self.built_lines.index(hl) except ValueError: if isinstance(self.hl_pos, int): del self.highlights[self.hl_pos] if not self.highlights: self.hl_pos = None self.pos = 0 return self.hl_pos = 0 hl = self.highlights[0] self.pos = len(self.built_lines) - pos - self.height if self.pos < 0 or self.pos >= len(self.built_lines): self.pos = 0 def previous_highlight(self) -> None: """ Go to the previous highlight in the buffer. (depending on which highlight was selected before) if the buffer is already positioned on the first, or if there are no highlights, scroll to the end of the buffer. """ log.debug('Going to the previous highlight…') if not self.highlights or self.hl_pos and self.hl_pos <= 0: self.hl_pos = None self.pos = 0 return if self.hl_pos is None: self.hl_pos = len(self.highlights) - 1 else: self.hl_pos -= 1 log.debug("self.hl_pos = %s", self.hl_pos) hl = self.highlights[self.hl_pos] pos = None while not pos: try: pos = self.built_lines.index(hl) except ValueError: if self.hl_pos is not None: del self.highlights[self.hl_pos] if not self.highlights: self.hl_pos = None self.pos = 0 return self.hl_pos = 0 hl = self.highlights[0] self.pos = len(self.built_lines) - pos - self.height if self.pos < 0 or self.pos >= len(self.built_lines): self.pos = 0 def scroll_to_separator(self) -> None: """ Scroll to the first message after the separator. If no separator is present, scroll to the first message of the window """ if None in self.built_lines: self.pos = len(self.built_lines) - self.built_lines.index( None) - self.height + 1 if self.pos < 0: self.pos = 0 else: self.pos = len(self.built_lines) - self.height + 1 # Chose a proper position (not too high) self.scroll_up(0) # Make “next highlight” work afterwards. This makes it easy to # review all the highlights since the separator was placed, in # the correct order. self.hl_pos = len( self.highlights) - self.nb_of_highlights_after_separator - 1 log.debug("self.hl_pos = %s", self.hl_pos) def modify_message(self, old_id, message) -> None: """ Find a message, and replace it with a new one (instead of rebuilding everything in order to correct a message) """ with_timestamps = config.getbool('show_timestamps') nick_size = config.getint('max_nick_length') for i in range(len(self.built_lines) - 1, -1, -1): current = self.built_lines[i] if current is not None and current.msg.identifier == old_id: index = i while ( index >= 0 and current is not None and current.msg.identifier == old_id ): self.built_lines.pop(index) index -= 1 if index >= 0: current = self.built_lines[index] index += 1 lines = build_lines( message, self.width, timestamp=with_timestamps, nick_size=nick_size ) for line in lines: self.built_lines.insert(index, line) index += 1 break
null
poezio/windows/text_win.py
text_win.py
py
12,577
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 17, "usage_type": "call" }, { "api_name": "poezio.windows.base_wins.Win", "line_number": 20, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 27, "usage_type": "name" }, { "api_name": "poezio.windows.base_wins.Win.__init__", "line_number": 28, "usage_type": "call" }, { "api_name": "poezio.windows.base_wins.Win", "line_number": 28, "usage_type": "name" }, { "api_name": "poezio.config.config.getint", "line_number": 30, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 35, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 35, "usage_type": "name" }, { "api_name": "poezio.ui.render.Line", "line_number": 35, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 38, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 38, "usage_type": "name" }, { "api_name": "poezio.ui.render.Line", "line_number": 38, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 39, "usage_type": "name" }, { "api_name": "poezio.ui.types.BaseMessage", "line_number": 39, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 41, "usage_type": "name" }, { "api_name": "poezio.ui.render.Line", "line_number": 41, "usage_type": "name" }, { "api_name": "poezio.ui.types.BaseMessage", "line_number": 84, "usage_type": "name" }, { "api_name": "poezio.ui.render.build_lines", "line_number": 93, "usage_type": "call" }, { "api_name": "poezio.ui.types.Message", "line_number": 102, "usage_type": "argument" }, { "api_name": "poezio.config.config.getbool", "line_number": 120, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 120, "usage_type": "name" }, { "api_name": "poezio.config.config.getint", "line_number": 121, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 121, "usage_type": "name" }, { "api_name": "poezio.ui.render.write_pre", "line_number": 129, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 150, "usage_type": "name" }, { "api_name": "poezio.text_buffer.TextBuffer", "line_number": 150, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 151, "usage_type": "name" }, { "api_name": "poezio.text_buffer.TextBuffer", "line_number": 168, "usage_type": "name" }, { "api_name": "poezio.config.config.getbool", "line_number": 170, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 170, "usage_type": "name" }, { "api_name": "poezio.config.config.getint", "line_number": 171, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 171, "usage_type": "name" }, { "api_name": "poezio.text_buffer.TextBuffer", "line_number": 192, "usage_type": "name" }, { "api_name": "poezio.theming.get_theme", "line_number": 206, "usage_type": "call" }, { "api_name": "poezio.theming.to_curses_attr", "line_number": 209, "usage_type": "call" }, { "api_name": "poezio.config.config.getbool", "line_number": 314, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 314, "usage_type": "name" }, { "api_name": "poezio.config.config.getint", "line_number": 315, "usage_type": "call" }, { "api_name": "poezio.config.config", "line_number": 315, "usage_type": "name" }, { "api_name": "poezio.ui.render.build_lines", "line_number": 330, "usage_type": "call" } ]
578065990
import argparse import sys import libvh PARSER = argparse.ArgumentParser() PARSER.add_argument("api", help="The api file to work on") PARSER.add_argument("-v", "--version", help="Explicitly sets version to the specified version number.") PARSER.add_argument("-d", "--directory", help="Specify a directory where the source code lives, if different from the location of the api file") PARSER.add_argument("-p", "--prerelease", help="Specify a pre-release string to be included after the patch number") PARSER.add_argument("-b", "--build_metadata", help="Specify build metadata string to be included after the patch number") PARSER.add_argument("-db", "--database", help="Specify the database file that stores the prior API version") PARSER.add_argument("-c", "--checker", help="Specify (comma separated) file(s) that should provide the `check_api_item` functionality") PARSER.add_argument("-x", "--extensions", help="Specify the file extensions of possible source files") PARSER.add_argument("-nic", "--no_invariant_check", help="Specify that the invariant checker should not be run", action="store_true") PARSER.add_argument("-dry", "--dry_run", help="Perform a dry run; Does not write to DB or API file", action="store_true") PARSER.add_argument("-s", "--silent", help="Do not display any information to stdout", action="store_true") def main(): if "--site_config" in sys.argv: sys.argv.remove("--site_config") sys.argv.remove("Alert_Handler.defaults={\'parse_args\':False}") args = PARSER.parse_args() libvh.version_helper(args.api, args.directory, args.version, args.prerelease, args.build_metadata, args.database, args.checker, args.extensions, args.no_invariant_check, args.dry_run, args.silent) if __name__ == "__main__": if "-m" in sys.argv: sys.argv.remote("-m") # disables the pride Alert_Handler from displaying when --help is used #if "--site_config" not in sys.argv: sys.argv.insert(1, "--site_config") sys.argv.insert(2, "Alert_Handler.defaults={\'parse_args\':False}") main()
null
versionhelper/main.py
main.py
py
2,128
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 6, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 20, "usage_type": "attribute" }, { "api_name": "sys.argv.remove", "line_number": 21, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 21, "usage_type": "attribute" }, { "api_name": "sys.argv.remove", "line_number": 22, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 22, "usage_type": "attribute" }, { "api_name": "libvh.version_helper", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 30, "usage_type": "attribute" }, { "api_name": "sys.argv.remote", "line_number": 31, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 31, "usage_type": "attribute" }, { "api_name": "sys.argv.insert", "line_number": 34, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 34, "usage_type": "attribute" }, { "api_name": "sys.argv.insert", "line_number": 35, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 35, "usage_type": "attribute" } ]
580036407
# -*- coding: utf-8 -*- """ Created on Sun Feb 21 16:07:23 2021 @author: Peter """ #Import Packages import cv2 from skimage.color import rgb2gray from skimage.feature import blob_log import numpy as np import matplotlib.pyplot as plt import seaborn as sns from math import sqrt from math import hypot import scipy.spatial import warnings import matplotlib as mpl mpl.rcParams['figure.dpi'] = 600 #Changes DPI of in-line figures. plt.rcParams['font.family'] = "Arial" import os file_extension = "C:/Users/Peter/Desktop/Github/Calculation of Interparticle Distance for Direct Neighbors/Github/Data/" filename_load = "Original Image.tif" filepath = file_extension + filename_load image = cv2.imread(filepath, 0) #Defined for later use. The '(,0)' makes the image grayscale. def plot_original_image(filepath): """Plot full-color version of original image""" plt.imshow(cv2.imread(filepath)) plt.title("Original Image") plt.xticks([]) plt.yticks([]) plt.show() #Plot input image with original colors plot_original_image(filepath) def extract_LOG_coordinates(image): """Extracts Coordinates of Nanoparticle Centers.""" with warnings.catch_warnings(): #Ignore warnings given by 'blob_log' warnings.simplefilter("ignore") image_gray = rgb2gray(image) laplace_coords = blob_log(image_gray, min_sigma = 1, max_sigma=50, num_sigma=50, threshold=0.06, overlap = 0.1) laplace_coords[:, 2] = laplace_coords[:, 2] * sqrt(2) # Compute radii in the 3rd column. return laplace_coords # Extract Coordinates from where NP's are. laplace_coords = extract_LOG_coordinates(image) def plot_overlaid_coordinates(image, laplace_coords): """Plots Original Image vs. Original Image with overlaid locations of nanoparticles, identified by laplace_coords.""" #Plot Subplots fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3), sharex=True, sharey=True) ax1.imshow(image, cmap = 'binary_r') ax2.imshow(image, cmap = 'binary_r') ax1.set_title("Original") ax2.set_title("Points ID'd by Laplacian of Gaussian") plt.xticks([]) plt.yticks([]) for blob in laplace_coords: y, x, r = blob c = plt.Circle((x, y), r, color="yellow", linewidth=1, fill=False) ax2.add_patch(c) plt.tight_layout() plt.show() # Visualize Coords overlaid on image. plot_overlaid_coordinates(image, laplace_coords) #Plot All Identified Coordinates def plot_connected_delaunay(laplace_coords): """Plots Delaunay Tessellation of all laplace_coords. """ dela = scipy.spatial.Delaunay points = np.array(column(laplace_coords, [0 , 1])) #note np.array object is used for plt.triplot() triang = dela(points) # #Plot Tessellation. plt.triplot(points[:,0], points[:,1], triang.simplices, lw = 0.5, alpha = 0.6) plt.plot(points[:,0], points[:,1], 'o', markersize = 0.5) plt.xticks([]) plt.yticks([]) plt.box(False) plt.show() def column(matrix, i): #select i columns of array. """Select ith column of np.array object""" return [row[i] for row in matrix] # Visualize Delaunay Tessellation at all laplace_coords. plot_connected_delaunay(laplace_coords) def find_neighbors(pindex, triang): #pindex = point index. """Finds direct neighbors of Delaunay Tessellation. pindex: int : point index of 'laplace_coords', for which neighbors are found relative to. triang: Delaunay object containing info on which points are vertices of connecting triangles """ neighbors = [] for simplex in triang.vertices: if pindex in simplex: neighbors.extend([simplex[i] for i in range(len(simplex)) if simplex[i] != pindex]) ''' this is a one liner for if a simplex contains the point we`re interested in, extend the neighbors list by appending all the *other* point indices in the simplex ''' #now we just have to strip out all the dulicate indices and return the neighbors list: return list(set(neighbors)) def plot_direct_neighbors(image, laplace_coords, plot_examples = 6): """Plots Original Image with overlaid central NP's (red) and direct neighbors (yellow). Intended to show effectiveness of identifying direct neighbors with Delaunay tessellation. """ #Re-instantiate Delaunay Tessellation dela = scipy.spatial.Delaunay triang = dela(column(laplace_coords, [0 , 1])) #select only x,y columns. #Plot Delaunay neighbor examples: #Select the # of examples to plot defined with 'plot_examples' indexes = list(range(int(0.25 * len(laplace_coords)), int(0.75 * len(laplace_coords)), int(0.5 * len(laplace_coords)) // (plot_examples-1))) for index in indexes: #else, cycle through range(len(laplace_coords)) to plot all neighbors. center = laplace_coords[index] neighbors = laplace_coords[find_neighbors(index, triang)] #Plot center in red, and direct neighbors in yellow. fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharex=True, sharey=True) ax1.imshow(image, cmap = "binary_r") ax2.imshow(image, cmap = "binary_r") ax1.set_title("Neighbors Overlaid on LOG", fontsize = 10) ax2.set_title("Neighbors Overlaid on Grayscale", fontsize = 10) ax1.tick_params(axis='both', labelsize= 8) ax2.tick_params(axis='both', labelsize= 8) #Left Plot (ax1) #Plot all non-neighbors in faint yellow color. (Left Plot) laplace_no_neighbor = np.delete(laplace_coords, find_neighbors(index, triang), 0) for blob in laplace_no_neighbor: #plot all circles y, x, r = blob c = plt.Circle((x, y), r, color="yellow", linewidth=1, fill=False, alpha = 0.15) ax1.add_patch(c) #Plot neighbors in strong yellow color. (Left Plot) for blob in neighbors: y, x, r = blob c = plt.Circle((x, y), r, color="yellow", linewidth=1, fill=False) ax1.add_patch(c) #Plot central point in red. (Left Plot) y2, x2, r2 = center c2 = plt.Circle((x2, y2), r2, color="red", linewidth=1, fill=False) ax1.add_patch(c2) #Right Plot (ax2) #Plot central point in red. (Right Plot) y2, x2, r2 = center c2 = plt.Circle((x2, y2), r2, color="red", linewidth=1, fill=False) ax2.add_patch(c2) #Plot direct neighbors in yellow (Right Plot) for blob in neighbors: y, x, r = blob c = plt.Circle((x, y), r, color="yellow", linewidth=1, fill=False) ax2.add_patch(c) plt.xticks([]) plt.yticks([]) plt.tight_layout() plt.show() # Visualize Examples of identified neighbors plot_direct_neighbors(image, laplace_coords, plot_examples = 6) def euclidean_distance(p1,p2): """Calculates Euclidean distance between two points.""" x1,y1 = p1 x2,y2 = p2 return hypot(x2 - x1, y2 - y1) def direct_neighbor_distance(laplace_coords, max_distance = 100): """Creates list of euclidean distances between points, only considering direct neighbors found with Delaunay tessellation. Max_distance = 100 pixels to avoid non-representative large spacing on edge of image. Optional scale_bar in units of: distance (um) / pixel : (Converts distance unit)""" #re-instantiate Delaunay Tessellation dela = scipy.spatial.Delaunay triang = dela(column(laplace_coords, [0 , 1])) # #Find euclidean distance to neighbors. distances = [] for index in range(len(laplace_coords)): center_coords = tuple(laplace_coords[index][:2]) neighbors = laplace_coords[find_neighbors(index, triang)] #Find Euclidean distances for neighbor in neighbors: neighbor_coords = tuple(neighbor[:2]) neighbor_distance = euclidean_distance(center_coords, neighbor_coords) if neighbor_distance < max_distance: #implement max_distance for edge of image examples distances.append(neighbor_distance) else: continue count = len(laplace_coords) #Total # of NP's return distances, count # Extract list of distances between direct neighbors only. distances, count = direct_neighbor_distance(laplace_coords, max_distance = 100) def plot_neighbor_histogram(distances, count, scale_bar = 1, scale_bar_unit = "Pixels"): """Plots histogram of euclidean distance between neighbors. Overlays Mean, Median, Std on plot. Optional scale_bar in units of: distance (um) / pixel : Included to scale location of text on plot.""" import pandas as pd if scale_bar: distances = [x * scale_bar for x in distances] if scale_bar_unit == "um": scale_bar_unit = '\u03BCm' #Plot with warnings.catch_warnings(): #Ignore warnings given by 'blob_log' warnings.simplefilter("ignore") sns.distplot(distances, norm_hist = True) #plt.title(str(file), fontsize=12) plt.xlabel("Euclidean Distance / " + str(scale_bar_unit), fontsize = 14, labelpad = 10) plt.ylabel("Density", fontsize = 14, labelpad = 10) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.xlim(0, 50) plt.ylim(0, 0.25) #Overlay mean, median, std as immediate readout. Else could output in txt. plt.text(80 * scale_bar, 0.21 , "Scale (" + scale_bar_unit + "/Pixel)" + " = " + str(scale_bar), fontsize = 12) plt.text(80 * scale_bar, 0.18 , "Mean = " + str(round(float(np.mean(distances)), 1)) + " " + str(scale_bar_unit), fontsize = 12) plt.text(80 * scale_bar, 0.15 , "Median = " + str(round(float(np.median(distances)), 1)) + " " + str(scale_bar_unit), fontsize = 12) plt.text(80 * scale_bar, 0.12 , "Stdev = " + str(round(float(np.std(distances)), 1)) + " " + str(scale_bar_unit), fontsize = 12) plt.text(80 * scale_bar, 0.09 , "Total # NP's = " + str(count), fontsize = 12) plt.text(80 * scale_bar, 0.06 , "Total # Distances = " + str(len(distances)), fontsize = 12) plt.show() # Plot histogram of neighboring Euclidean distances plot_neighbor_histogram(distances, count, scale_bar = 0.32, scale_bar_unit = "um")
null
Scripts/Interparticle Distance of Direct Neighbors.py
Interparticle Distance of Direct Neighbors.py
py
11,082
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.rcParams", "line_number": 20, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 21, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "cv2.imread", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "cv2.imread", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "warnings.catch_warnings", "line_number": 57, "usage_type": "call" }, { "api_name": "warnings.simplefilter", "line_number": 58, "usage_type": "call" }, { "api_name": "skimage.color.rgb2gray", "line_number": 60, "usage_type": "call" }, { "api_name": "skimage.feature.blob_log", "line_number": 62, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 87, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Circle", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 91, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 95, "usage_type": "name" }, { "api_name": "scipy.spatial.spatial", "line_number": 106, "usage_type": "attribute" }, { "api_name": "scipy.spatial", "line_number": 106, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.triplot", "line_number": 112, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 112, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 113, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 113, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 115, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 115, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.box", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "scipy.spatial.spatial", "line_number": 157, "usage_type": "attribute" }, { "api_name": "scipy.spatial", "line_number": 157, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 171, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 171, "usage_type": "name" }, { "api_name": "numpy.delete", "line_number": 185, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.Circle", "line_number": 188, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 188, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Circle", "line_number": 194, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 194, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Circle", "line_number": 199, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 199, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Circle", "line_number": 208, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 208, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Circle", "line_number": 214, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 214, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 217, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 217, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 218, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 218, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 220, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 220, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 221, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 221, "usage_type": "name" }, { "api_name": "math.hypot", "line_number": 235, "usage_type": "call" }, { "api_name": "scipy.spatial.spatial", "line_number": 246, "usage_type": "attribute" }, { "api_name": "scipy.spatial", "line_number": 246, "usage_type": "name" }, { "api_name": "warnings.catch_warnings", "line_number": 291, "usage_type": "call" }, { "api_name": "warnings.simplefilter", "line_number": 292, "usage_type": "call" }, { "api_name": "seaborn.distplot", "line_number": 294, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 297, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 297, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 298, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 298, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 300, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 300, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 301, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 301, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 303, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 303, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 304, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 304, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 307, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 307, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 308, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 308, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 308, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.text", "line_number": 309, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 309, "usage_type": "name" }, { "api_name": "numpy.median", "line_number": 309, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.text", "line_number": 310, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 310, "usage_type": "name" }, { "api_name": "numpy.std", "line_number": 310, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.text", "line_number": 311, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 311, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 312, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 312, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 314, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 314, "usage_type": "name" } ]
449420169
import torch from torch import nn from torch.nn import functional as F from model.layers import ConvNorm, LinearNorm from hparams import hparams as hps class Prenet(nn.Module): def __init__(self): super(Prenet, self).__init__() out_sizes = hps.prenet_out_sizes in_sizes = [hps.prenet_input_dim] + out_sizes[:-1] self.layers = nn.ModuleList( [LinearNorm(in_size, out_size, bias=False, w_init_gain='relu') for (in_size, out_size) in zip(in_sizes, out_sizes)] ) def forward(self, x): for linear in self.layers: x = F.dropout(F.relu(linear(x)), hps.prenet_dropout_p, self.training) # print('prenet linear size : ', x.size()) return x if __name__ == '__main__': prenet = Prenet()
null
model/modules.py
modules.py
py
789
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.nn.Module", "line_number": 8, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 8, "usage_type": "name" }, { "api_name": "hparams.hparams.prenet_out_sizes", "line_number": 11, "usage_type": "attribute" }, { "api_name": "hparams.hparams", "line_number": 11, "usage_type": "name" }, { "api_name": "hparams.hparams.prenet_input_dim", "line_number": 12, "usage_type": "attribute" }, { "api_name": "hparams.hparams", "line_number": 12, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "name" }, { "api_name": "model.layers.LinearNorm", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.nn.functional.dropout", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 19, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 19, "usage_type": "call" }, { "api_name": "hparams.hparams.prenet_dropout_p", "line_number": 19, "usage_type": "attribute" }, { "api_name": "hparams.hparams", "line_number": 19, "usage_type": "name" } ]
535235433
from user_auth.models import DeviceToken import datetime class DeviceTokenHelper(object): def __init__(self, username): self.username = username timestamp_str = datetime.datetime.now().strftime('%s') self.datetime_now = int(timestamp_str) def add_update_device_token(self, device_token): try: row = DeviceToken.objects.get(username=self.username) row.token = device_token row.updated_time = self.datetime_now row.save() except DeviceToken.DoesNotExist: DeviceToken( username=self.username, token=device_token, updated_time=self.datetime_now ).save() def get_device_token(self): try: row = DeviceToken.objects.get(username=self.username) device_token = row.token return device_token except DeviceToken.DoesNotExist: return None
null
user_auth/functions/device_token_helper.py
device_token_helper.py
py
966
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime.now", "line_number": 8, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 8, "usage_type": "attribute" }, { "api_name": "user_auth.models.DeviceToken.objects.get", "line_number": 13, "usage_type": "call" }, { "api_name": "user_auth.models.DeviceToken.objects", "line_number": 13, "usage_type": "attribute" }, { "api_name": "user_auth.models.DeviceToken", "line_number": 13, "usage_type": "name" }, { "api_name": "user_auth.models.DeviceToken.DoesNotExist", "line_number": 17, "usage_type": "attribute" }, { "api_name": "user_auth.models.DeviceToken", "line_number": 17, "usage_type": "name" }, { "api_name": "user_auth.models.DeviceToken", "line_number": 18, "usage_type": "call" }, { "api_name": "user_auth.models.DeviceToken.objects.get", "line_number": 26, "usage_type": "call" }, { "api_name": "user_auth.models.DeviceToken.objects", "line_number": 26, "usage_type": "attribute" }, { "api_name": "user_auth.models.DeviceToken", "line_number": 26, "usage_type": "name" }, { "api_name": "user_auth.models.DeviceToken.DoesNotExist", "line_number": 29, "usage_type": "attribute" }, { "api_name": "user_auth.models.DeviceToken", "line_number": 29, "usage_type": "name" } ]
600825962
import numpy as np import cv2 import time import win32api, win32con cap = cv2.VideoCapture(0) time.sleep(2) ret, frame = cap.read() lower=[157,69,119] upper=[179,255,255] while(1): ret, frame = cap.read() frame = cv2.resize(frame,(1360, 750), interpolation = cv2.INTER_CUBIC) frame=cv2.flip(frame,1) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) lower = np.array(lower) upper = np.array(upper) mask = cv2.inRange(hsv, lower, upper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) mask = cv2.medianBlur(mask,5) cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] center = None if len(cnts) > 0: c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) if radius > 10: cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) win32api.SetCursorPos((int(x), int(y))) cv2.circle(frame, center, 5, (0, 0, 255), -1) cv2.imshow("Frame", frame) if cv2.waitKey(1) == 27: break cap.release() cv2.destroyAllWindows()
null
cursor_movement_detection.py
cursor_movement_detection.py
py
1,267
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.VideoCapture", "line_number": 6, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 15, "usage_type": "attribute" }, { "api_name": "cv2.flip", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2HSV", "line_number": 17, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.inRange", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.erode", "line_number": 21, "usage_type": "call" }, { "api_name": "cv2.dilate", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.medianBlur", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 24, "usage_type": "call" }, { "api_name": "cv2.RETR_EXTERNAL", "line_number": 24, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 25, "usage_type": "attribute" }, { "api_name": "cv2.contourArea", "line_number": 28, "usage_type": "attribute" }, { "api_name": "cv2.minEnclosingCircle", "line_number": 29, "usage_type": "call" }, { "api_name": "cv2.moments", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 33, "usage_type": "call" }, { "api_name": "win32api.SetCursorPos", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 37, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 41, "usage_type": "call" } ]
392091634
from flask_caching import Cache from collections import OrderedDict import pandas as pd import sys import os from traffic_analysis.d00_utils.data_loader_s3 import DataLoaderS3 from traffic_analysis.d00_utils.data_loader_sql import DataLoaderSQL from traffic_viz.d06_visualisation.dash_object_detection.server import server from traffic_analysis.d00_utils.load_confs import load_app_parameters, load_parameters, load_paths, load_credentials from traffic_analysis.d00_utils.get_project_directory import get_project_directory project_dir = get_project_directory() src_dir = f"{project_dir}/src" sys.path.append(src_dir) TIMEOUT = 60 cache = Cache( server, config={"CACHE_TYPE": "filesystem", "CACHE_DIR": "cache-directory"} ) app_params = load_app_parameters() params = load_parameters() paths = load_paths() creds = load_credentials() s3_credentials = creds[paths["s3_creds"]] DEBUG = app_params["debug"] def get_vehicle_types(): return params["selected_labels"] def get_cams(): dl = DataLoaderS3(s3_credentials, bucket_name=paths["bucket_name"]) camera_meta_data_path = paths["s3_camera_details"] data = dict(dl.read_json(camera_meta_data_path)) values = data.values() cam_dict = {item["id"]: item["commonName"] for item in values} # [{'label': item['commonName'], 'value': item['id']} # for item in values] cam_dict = OrderedDict(sorted(cam_dict.items(), key=lambda x: x[1])) return cam_dict def load_camera_statistics(camera_id): output = pd.DataFrame() dl = DataLoaderSQL(creds, paths) sql = f"select * from {paths['db_video_level']} where camera_id = '{camera_id}';" df = dl.select_from_table(sql) if df is None: return output df["video_upload_datetime"] = pd.to_datetime(df.video_upload_datetime) output = df[df.camera_id == camera_id] return output def load_vehicle_type_statistics(df, vehicle_type, start_date, end_date): df_vehicle_type = df[df.vehicle_type == vehicle_type] df_vehicle_type.sort_values("video_upload_datetime", inplace=True) df_vehicle_type = df_vehicle_type[ ((start_date <= df_vehicle_type.video_upload_datetime) & (df_vehicle_type.video_upload_datetime <= end_date)) ] return df_vehicle_type
null
src/traffic_viz/d06_visualisation/dash_object_detection/helper.py
helper.py
py
2,254
python
en
code
null
code-starcoder2
83
[ { "api_name": "traffic_analysis.d00_utils.get_project_directory.get_project_directory", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.path.append", "line_number": 14, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "flask_caching.Cache", "line_number": 16, "usage_type": "call" }, { "api_name": "traffic_viz.d06_visualisation.dash_object_detection.server.server", "line_number": 17, "usage_type": "argument" }, { "api_name": "traffic_analysis.d00_utils.load_confs.load_app_parameters", "line_number": 20, "usage_type": "call" }, { "api_name": "traffic_analysis.d00_utils.load_confs.load_parameters", "line_number": 21, "usage_type": "call" }, { "api_name": "traffic_analysis.d00_utils.load_confs.load_paths", "line_number": 22, "usage_type": "call" }, { "api_name": "traffic_analysis.d00_utils.load_confs.load_credentials", "line_number": 23, "usage_type": "call" }, { "api_name": "traffic_analysis.d00_utils.data_loader_s3.DataLoaderS3", "line_number": 33, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 42, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 47, "usage_type": "call" }, { "api_name": "traffic_analysis.d00_utils.data_loader_sql.DataLoaderSQL", "line_number": 48, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 54, "usage_type": "call" } ]
269344995
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import matplotlib.pyplot as plt from matplotlib.artist import setp as setprop from matplotlib.backends.backend_pdf import PdfPages import datetime as dt import matplotlib.cm as cm from mpl_toolkits.axes_grid.anchored_artists import AnchoredText as anctext import config_file as sp import master_plot as mp """ description """ __author__ = "Fanger1.Yunis" __copyright__ = "Copyright 2012, Fanger1.Yunis" __credits__ = ["Fanger1.Yunis"] __license__ = "GPL" __version__ = "$Rev$" __status__ = "Alpha" class ScatterPlot: def draw_scatterplot_on_axis(self, x=[], y=[], labels=[], colors=[], alphas=[], exclude=None, sizes=[], markers=[], edgecolors=[], scatcmaps=[], facecolors=[], norms=[], vmaxes=[], vmins=[], synclabels=False, linewidthslist=[], vertslist=[], faceteds=[], ymajorticks=[], xmajorticks=[], title='', cmap=cm.get_cmap(), legendloc=1, xminorticks=(-1), legendfontsize=9, xtickrotation=None, source='', description=False, descriptionloc=1, valuesaspercent=(-1), yboundlow=0, yboundup=None, xboundleft=None, xboundright=None, ax=None, xscale=None, yscale=None, ymarginup=None, ymarginlow=None, fixedinterval=False, xticks=10, yticks=10, majorticks='auto', xtickformat=None, minorticks=False, weekday=(-1), decimal_places=4, save=False, show=False, shadow=True, fancybox=True, showxaxis=True, showyaxis=True, showxticklabels=True, showyticklabels=True, xticklabelha='right', yticklabelha='right', xticklabelva='top', yticklabelva='bottom', xlabel=None, ylabel=None, xgrid=False, ygrid=False, gridcolor='lightgrey', xlabelrotation='horizontal', ylabelrotation='vertical', sourcecolor='k', titlecolor='k', subtitlecolor='k', xlabelcolor='k', ylabelcolor='k', sourcebackgroundcolor='w', titlebackgroundcolor='w', subtitlebackgroundcolor='w', xlabelbackgroundcolor='w', ylabelbackgroundcolor='w', ticklabelfontsize=8, xlabelfontsize=12, ylabelfontsize=12, titlefontsize=13, ystepwidth=None, vertical_line=None, vertical_line_color='k', vertical_line_width=2.0, horizontal_line=None, horizontal_line_color='k', horizontal_line_width=2.0, **dump): mp.warnigs(dump=dump, of='ScatterPlot') pp = None fig = None if(save): pp = PdfPages(sp.savepath + save + '.pdf') fig = ax.get_figure() fig.set_size_inches((29.7 / 2, 21.0 / 2)) x, y = mp.check_if_list(x, y) dates = True mp.set_scale(xscale, yscale, ax) x, y = mp.fixedinterval(fixedinterval, x, y) sortinglist = [] variables = [labels, x, y, colors, alphas, sizes, markers, edgecolors, scatcmaps, facecolors, norms, vmaxes, vmins, linewidthslist, vertslist, faceteds] checkifnone = mp.checkifnone for n in range(len(x)): sortinglist.append([checkifnone(var[0], var[1], var[2]) for var in ((labels, n, ''), (x, n, None), (y, n, None), (colors, n, None), (alphas, n, 1), (sizes, n, 30), (markers, n, None), (edgecolors, n, 'k'), (scatcmaps, n, None), (facecolors, n, None), (norms, n, None), (vmaxes, n, None), (vmins, n, None), (linewidthslist, n, None), (vertslist, n, None), (faceteds, n, None))]) sortinglist = sorted(sortinglist, key=lambda sortbylabels: sortbylabels[0]) sortinglist.reverse() for e in range(len(sortinglist)): if sortinglist[e][0] is None: sortinglist.insert(0, sortinglist.pop(e)) for var in range(len(variables)): variables[var] = [sortedrow[var] for sortedrow in sortinglist] if exclude: x, y, labels = mp.exclude1(x, y, labels, exclude) for i in range(len(x)): x[i], y[i] = mp.cut_off_out_of_bound_data(x[i], y[i], xboundleft, xboundright) if colors is not None and len(colors) > i and colors[i]is not None: color = colors[i] else: color = cmap(float(i) / (len(x))) if colors is None: colors = [color] elif not len(colors) > i: colors.append(color) elif(colors[i] is None): colors[i] = color if len(labels) > i: if labels[i] is None: label = 'None' else: label = labels[i] else: label = '' if len(markers) > i: marker = markers[i] else: marker = None if len(norms) > i: norm = norms[i] else: norm = None if len(alphas) > i: alpha = alphas[i] else: alpha = 1 if len(edgecolors) > i: edgecolor = edgecolors[i] else: edgecolor = None if len(scatcmaps) > i: cmap2 = scatcmaps[i] else: cmap2 = None if len(sizes) > i: size = sizes[i] else: size = 30 if len(vmins) > i: vmin = vmins[i] else: vmin = None if len(vmaxes) > i: vmax = vmaxes[i] else: vmax = None if len(linewidthslist) > i: linewidths = linewidthslist[i] else: linewidths = None if len(faceteds) > i: faceted = faceteds[i] else: faceted = None if len(vertslist) > i: verts = vertslist[i] else: verts = None xy = zip(x[i], y[i]) xy = sorted(xy, key=lambda xyt: xyt[0]) cx = [] cy = [] for j in range(len(xy)): cx.append(xy[j][0]) cy.append(xy[j][1]) x[i] = cx y[i] = cy if exclude: x[i], y[i], label = mp.exclude2(x[i], y[i], label, exclude) if not isinstance(x[i][0], dt.date): dates = False ax.scatter(x=x[i], y=y[i], s=size, c=color, marker=marker, cmap=cmap2, norm=norm, vmin=vmin, vmax=vmax, edgecolor=edgecolor, alpha=alpha, linewidths=linewidths, faceted=faceted, verts=verts, label=label) highestvalue = None lowestvalue = None for a in range(len(y)): for b in y[a]: if highestvalue == None or highestvalue < b: highestvalue = b if lowestvalue == None or lowestvalue > b: lowestvalue = b if ymarginup != None: if yboundup == None: yboundup = ax.get_ybound()[1] yboundup = highestvalue + ymarginup ax.set_ybound(upper=yboundup) if ymarginlow != None: if yboundlow == None: yboundlow = ax.get_ybound()[0] yboundlow = lowestvalue - ymarginlow ax.set_ybound(lower=yboundlow) mp.set_bounds(yboundup, yboundlow, xboundright, xboundleft, ax) tickinterval = mp.set_majortick_loc_form(dates, weekday, x, xticks, majorticks, ax, xtickformat) mp.set_minortick_loc_form(dates, minorticks, majorticks, ax, xminorticks, xticks, tickinterval) valuesaspercent = mp.check_if_valuesaspercent(valuesaspercent, y) integer = mp.check_if_integer(y) mp.set_yticks(yticks, ax, ystepwidth, integer) mp.check_if_kw(dates, majorticks, ax) fontP = mp.set_ticklabel_props(dates, ax, xticklabelha, xticklabelva, legendfontsize, yticklabelha, yticklabelva, showxticklabels, showyticklabels, ticklabelfontsize) mp.set_visible(showxaxis, showyaxis, ax) mp.formatlabels(ax) mp.valuesaspercent(valuesaspercent, ax, decimal_places) if ymajorticks: ax.set_yticklabels(ymajorticks) if xmajorticks: ax.set_xticklabels(xmajorticks) if xtickrotation: setprop(ax.get_xmajorticklabels(), rotation=xtickrotation, ha=xticklabelha, va=xticklabelva) if xgrid: if xgrid not in ['major', 'minor', 'both']: xgrid = 'both' ax.xaxis.grid(b=True, which=xgrid, color=gridcolor) if ygrid: if ygrid not in ['major', 'minor', 'both']: ygrid = 'both' ax.yaxis.grid(b=True, which=ygrid, color=gridcolor) if xgrid or ygrid: ax.set_axisbelow(True) if xlabel: ax.set_xlabel(unicode(xlabel), rotation=xlabelrotation, color=xlabelcolor, fontsize=xlabelfontsize, backgroundcolor=xlabelbackgroundcolor) if ylabel: ax.set_ylabel(unicode(ylabel), rotation=ylabelrotation, fontsize=ylabelfontsize, color=ylabelcolor, backgroundcolor=ylabelbackgroundcolor) if(source): ax.text(s=unicode(source), verticalalignment='bottom', horizontalalignment='right', fontsize=9, color=sourcecolor, x=0.98, y=0.02, backgroundcolor=sourcebackgroundcolor, transform=ax.transAxes) if (description): at = anctext(description, prop=dict(size=11), frameon=False, loc=descriptionloc, ) at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) if(title): plt.title(unicode(title), color=titlecolor, backgroundcolor=titlebackgroundcolor, x=0.5, y=1.01, fontsize=titlefontsize) if vertical_line: plt.hold (tmp1, tmp2, vertical_line_low, vertical_line_high) = plt.axis() for vertical_point in vertical_line: plt.plot([vertical_point, vertical_point], [vertical_line_low, vertical_line_high], vertical_line_color + '-', linewidth=vertical_line_width) plt.axis([tmp1, tmp2, vertical_line_low, vertical_line_high]) if horizontal_line: plt.hold (tmp1, tmp2, tmp3, tmp4) = plt.axis() for horizontal_point in horizontal_line: plt.plot([tmp1, tmp2], [horizontal_point, horizontal_point], horizontal_line_color + '-', linewidth=horizontal_line_width) plt.axis([tmp1, tmp2, tmp3, tmp4]) return mp.returnvalues(labels, show, plt, save, pp, fig, ax, legendloc, xlabel, ylabel, title, source, fontP, fancybox, shadow, synclabels, cmap) if __name__ == '__main__': ScatterPlot().draw_scatterplot_on_axis(x=[[5, 4, 3, 2, 1, 0], [5, 4, 3, 2, 1, 0], [5, 4, 3, 2, 1, 0]], y=[[0.5, 0.4, 0.3, 0.2, 0.1, 0], [0.10, 0.5, 0.9, 0.4, 0.8, 0.3], [0.0, 0.4, 0.6, 0.6, 0.4, 0.0]], ax=plt.axes(), labels=['asd', 'sad', 'dsa'], markers=['o', '^', '*'], colors=['r', 'y', 'g'], legendloc=1, ymarginup=0.16, vertical_line=[3.5, 2.5], horizontal_line=[0.05, 0.3], fancybox=False, show=True)
null
naos-python/Library/Graphics/scatter_plot.py
scatter_plot.py
py
15,439
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.cm.get_cmap", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.cm", "line_number": 51, "usage_type": "name" }, { "api_name": "master_plot.warnigs", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.backends.backend_pdf.PdfPages", "line_number": 123, "usage_type": "call" }, { "api_name": "config_file.savepath", "line_number": 123, "usage_type": "attribute" }, { "api_name": "master_plot.check_if_list", "line_number": 127, "usage_type": "call" }, { "api_name": "master_plot.set_scale", "line_number": 130, "usage_type": "call" }, { "api_name": "master_plot.fixedinterval", "line_number": 132, "usage_type": "call" }, { "api_name": "master_plot.checkifnone", "line_number": 141, "usage_type": "attribute" }, { "api_name": "master_plot.exclude1", "line_number": 172, "usage_type": "call" }, { "api_name": "master_plot.cut_off_out_of_bound_data", "line_number": 176, "usage_type": "call" }, { "api_name": "master_plot.exclude2", "line_number": 263, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 265, "usage_type": "attribute" }, { "api_name": "master_plot.set_bounds", "line_number": 304, "usage_type": "call" }, { "api_name": "master_plot.set_majortick_loc_form", "line_number": 306, "usage_type": "call" }, { "api_name": "master_plot.set_minortick_loc_form", "line_number": 308, "usage_type": "call" }, { "api_name": "master_plot.check_if_valuesaspercent", "line_number": 310, "usage_type": "call" }, { "api_name": "master_plot.check_if_integer", "line_number": 312, "usage_type": "call" }, { "api_name": "master_plot.set_yticks", "line_number": 314, "usage_type": "call" }, { "api_name": "master_plot.check_if_kw", "line_number": 316, "usage_type": "call" }, { "api_name": "master_plot.set_ticklabel_props", "line_number": 318, "usage_type": "call" }, { "api_name": "master_plot.set_visible", "line_number": 321, "usage_type": "call" }, { "api_name": "master_plot.formatlabels", "line_number": 323, "usage_type": "call" }, { "api_name": "master_plot.valuesaspercent", "line_number": 325, "usage_type": "call" }, { "api_name": "matplotlib.artist.setp", "line_number": 334, "usage_type": "call" }, { "api_name": "mpl_toolkits.axes_grid.anchored_artists.AnchoredText", "line_number": 370, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 378, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 378, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hold", "line_number": 385, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 385, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 386, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 386, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 388, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 388, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 390, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 390, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hold", "line_number": 393, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 393, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 394, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 394, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 396, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 396, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 398, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 398, "usage_type": "name" }, { "api_name": "master_plot.returnvalues", "line_number": 400, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 400, "usage_type": "argument" }, { "api_name": "matplotlib.pyplot.axes", "line_number": 406, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 406, "usage_type": "name" } ]
616446930
from django.test.testcases import TestCase from 試驗.書面表.書面試驗表 import 書面試驗表 class 字數試驗(TestCase): def test_一句(self): 漢字 = '一場無練習' 臺羅 = 'Tsi̍t tiûnn bô liān-si̍p ê pí-sài' 書面 = 書面試驗表.新增一筆書面(編號='3', 文章名='一場無練習的比賽', 作者='33') 資料 = 書面.新增資料(None, 漢字=漢字, 臺羅=臺羅) 漢字字數, 臺羅字數 = 資料.字數() self.assertEqual(漢字字數, 5) self.assertEqual(臺羅字數, 8) def test_換逝(self): 漢字 = '一場無練習的比賽 \n\n車' 臺羅 = 'Tsi̍t tiûnn bô liān-si̍p ê pí-sài\n\nTshia sái-kuè\n' 書面 = 書面試驗表.新增一筆書面(編號='3', 文章名='一場無練習的比賽', 作者='33') 資料 = 書面.新增資料(None, 漢字=漢字, 臺羅=臺羅) 漢字字數, 臺羅字數 = 資料.字數() self.assertEqual(漢字字數, 9 + 2) # -1 for rstrip tail self.assertEqual(臺羅字數, 11 + 3 - 1)
null
試驗/書面表/test字數試驗.py
test字數試驗.py
py
1,114
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.test.testcases.TestCase", "line_number": 5, "usage_type": "name" }, { "api_name": "試驗.書面表.書面試驗表.書面試驗表.新增一筆書面", "line_number": 10, "usage_type": "call" }, { "api_name": "試驗.書面表.書面試驗表.書面試驗表", "line_number": 10, "usage_type": "name" }, { "api_name": "試驗.書面表.書面試驗表.書面試驗表.新增一筆書面", "line_number": 19, "usage_type": "call" }, { "api_name": "試驗.書面表.書面試驗表.書面試驗表", "line_number": 19, "usage_type": "name" } ]
317478873
from django.shortcuts import render from django.http import HttpResponseRedirect, HttpResponse from django.contrib.auth.models import User from django.shortcuts import get_object_or_404, render, redirect # from .models import related models from .models import CarModel # from .restapis import related methods # from .restapis import get_dealers_from_cf, get_dealers_by_state_from_cf, get_dealer_reviews_from_cf, post_request, get_request from .restapis import get_dealers_from_cf, get_dealer_reviews_from_cf, post_request, get_request from django.contrib.auth import login, logout, authenticate from django.contrib import messages from datetime import datetime import logging import json from datetime import datetime # Get an instance of a logger logger = logging.getLogger(__name__) # Create your views here. # Create an `about` view to render a static about page def about(request): context = {} if request.method == "GET": return render(request, 'djangoapp/about.html', context) # Create a `contact` view to return a static contact page def contact(request): context = {} if request.method == "GET": return render(request, 'djangoapp/contact.html', context) # Create a `login_request` view to handle sign in request def login_request(request): if request.method == "POST": username = request.POST['usernameInput'] password = request.POST['passwordInput'] user = authenticate(username=username, password=password) if user is not None: login(request, user) return redirect("djangoapp:index") # Create a `logout_request` view to handle sign out request def logout_request(request): if request.method == "GET": logout(request) return redirect("djangoapp:index") # Create a `registration_request` view to handle sign up request def registration_request(request): context = {} # If it is a GET request, just render the registration page if request.method == 'GET': return render(request, 'djangoapp/registration.html', context) # If it is a POST request, then create the user and return to the main page elif request.method == 'POST': # Get user information from request.POST username = request.POST['username'] password = request.POST['password'] first_name = request.POST['firstname'] last_name = request.POST['lastname'] user_exist = False try: # Check if user already exists User.objects.get(username=username) user_exist = True except: # If not, simply log this is a new user logger.debug("{} is new user".format(username)) # If it is a new user if (user_exist == False): # Create user in auth_user table user = User.objects.create_user(username=username, first_name=first_name, last_name=last_name, password=password) # Login the user and redirect to course list page login(request, user) return redirect("djangoapp/index.html") else: # context = {"ErrorMessage":"Username already exists in the system. Please register a different username."} return render(request, 'djangoapp/registration.html', context) # ... # Update the `get_dealerships` view to render the index page with a list of dealerships def get_dealerships(request): context = {} if request.method == "GET": # return render(request, 'djangoapp/index.html', context) url = "https://d480556a.us-south.apigw.appdomain.cloud/api/dealership" #get dealers from the URL #if state was given as a parameter then get the entries related to that 'state' if "state" in request.GET: print(">>>> state was found in GET request") dealerships = get_dealer_by_state(url, state=request.GET["state"]) #else, get all dealerships else: print(">>> getting all dealerships") dealerships = get_dealers_from_cf(url) print(">>> SUCCESS, got all dealerships") # dealer_names = ' '.join([dealer.short_name for dealer in dealerships]) # # Return a list of dealer short name # return HttpResponse(dealer_names) context['dealerships'] = dealerships return render(request, 'djangoapp/index.html', context) # Create a `get_dealer_details` view to render the reviews of a dealer def get_dealer_details(request, dealer_id): context = {} if request.method == "GET": url = "https://d480556a.us-south.apigw.appdomain.cloud/api/reviews" reviews = get_dealer_reviews_from_cf(url, dealerId=dealer_id) # # If response does not have error message # if "msg" not in reviews: # # review_text = " ".join([review.review + ": " + " \n" for review in reviews]) # review_text = " ".join([review.review + ": " + review.sentiment + " | " for review in reviews]) # return HttpResponse(review_text) # else: # # Return response error # return HttpResponse(str(reviews)) print(">>>>reviews: ", reviews) context = { "dealer": dealer_id, "reviews": reviews, } return render(request, 'djangoapp/dealer_details.html', context) # Create a `add_review` view to submit a review def add_review(request, dealer_id): if request.method == "GET": url = f"https://d480556a.us-south.apigw.appdomain.cloud/api/dealership?dealerId={dealer_id}" context = { "cars": CarModel.objects.all(), "dealer": get_dealers_from_cf(url)[0], # "dealer": get_dealers_from_cf(url, dealerId=dealer_id), } print(">>>>>>>>>>>>> context.dealer: ", context["dealer"]) return render(request, 'djangoapp/add_review.html', context) if request.method == "POST": url = "https://d480556a.us-south.apigw.appdomain.cloud/api/reviews" totalreviews = get_request(url) print("totalreviews['entries'] = ", totalreviews["entries"]) new_id = len(totalreviews["entries"]) print("\n\n\n\n\n len(totalReviews) = "+ str(len(totalreviews["entries"])) +"\n\n\n\n\n") form = request.POST review = { "name": f"{request.user.first_name} {request.user.last_name}", "dealership": dealer_id, "review": form["content"], "id":new_id, "purchase": form.get("purchasecheck"), } if form.get("purchasecheck"): review["purchasedate"] = datetime.strptime(form.get("purchasedate"), "%Y-%m-%d").isoformat() car = CarModel.objects.get(pk=form["car"]) review["car_make"] = car.car_make.name review["car_model"] = car.name review["car_year"]= car.year.strftime("%Y") json_payload = {"review":review} response = post_request(url, json_payload, dealerId=dealer_id) # return HttpResponse(str(response)) # else: # return HttpResponse("Only authenticated users can submit reviews") print(">>>>>>>>>>>>>>>>> Redirect to dealer details") return redirect("djangoapp:dealer_details", dealer_id=dealer_id)
null
server/djangoapp/views.py
views.py
py
7,329
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 34, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 42, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 44, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 46, "usage_type": "call" }, { "api_name": "django.contrib.auth.logout", "line_number": 51, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 52, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 60, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects.get", "line_number": 72, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 72, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 72, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.User.objects.create_user", "line_number": 81, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 81, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 81, "usage_type": "name" }, { "api_name": "django.contrib.auth.login", "line_number": 84, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 85, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 88, "usage_type": "call" }, { "api_name": "restapis.get_dealers_from_cf", "line_number": 108, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 116, "usage_type": "call" }, { "api_name": "restapis.get_dealer_reviews_from_cf", "line_number": 125, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 141, "usage_type": "call" }, { "api_name": "models.CarModel.objects.all", "line_number": 151, "usage_type": "call" }, { "api_name": "models.CarModel.objects", "line_number": 151, "usage_type": "attribute" }, { "api_name": "models.CarModel", "line_number": 151, "usage_type": "name" }, { "api_name": "restapis.get_dealers_from_cf", "line_number": 152, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 156, "usage_type": "call" }, { "api_name": "restapis.get_request", "line_number": 161, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 175, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 175, "usage_type": "name" }, { "api_name": "models.CarModel.objects.get", "line_number": 176, "usage_type": "call" }, { "api_name": "models.CarModel.objects", "line_number": 176, "usage_type": "attribute" }, { "api_name": "models.CarModel", "line_number": 176, "usage_type": "name" }, { "api_name": "restapis.post_request", "line_number": 182, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 188, "usage_type": "call" } ]
465221981
# # Copyright 2017-2018 Amazon.com, Inc. and its affiliates. All Rights Reserved. # # Licensed under the MIT License. See the LICENSE accompanying this file # for the specific language governing permissions and limitations under # the License. # import mount_efs import socket import pytest from mock import MagicMock FS_ID = 'fs-deadbeef' DEFAULT_REGION = 'us-east-1' @pytest.fixture(autouse=True) def setup(mocker): mocker.patch('mount_efs.get_region', return_value=DEFAULT_REGION) mocker.patch('socket.gethostbyname') def _get_mock_config(dns_name_format='{fs_id}.efs.{region}.amazonaws.com'): mock_config = MagicMock() mock_config.get.return_value = dns_name_format return mock_config def test_get_dns_name(mocker): config = _get_mock_config() dns_name = mount_efs.get_dns_name(config, FS_ID) assert '%s.efs.%s.amazonaws.com' % (FS_ID, DEFAULT_REGION) == dns_name def test_get_dns_name_other_format(mocker): config = _get_mock_config('{fs_id}.elastic-file-system.{region}.amazonaws.com') dns_name = mount_efs.get_dns_name(config, FS_ID) assert '%s.elastic-file-system.%s.amazonaws.com' % (FS_ID, DEFAULT_REGION) == dns_name def test_get_dns_name_region_hardcoded(mocker): get_region_mock = mocker.patch('mount_efs.get_region') config = _get_mock_config('{fs_id}.elastic-file-system.us-west-2.amazonaws.com') dns_name = mount_efs.get_dns_name(config, FS_ID) get_region_mock.assert_not_called() assert '%s.elastic-file-system.us-west-2.amazonaws.com' % FS_ID == dns_name def test_get_dns_name_bad_format_wrong_specifiers(mocker): config = _get_mock_config('{foo}.efs.{bar}') with pytest.raises(ValueError) as ex: mount_efs.get_dns_name(config, FS_ID) assert 'must include' in str(ex.value) def test_get_dns_name_bad_format_too_many_specifiers_1(mocker): config = _get_mock_config('{fs_id}.efs.{foo}') with pytest.raises(ValueError) as ex: mount_efs.get_dns_name(config, FS_ID) assert 'incorrect number' in str(ex.value) def test_get_dns_name_bad_format_too_many_specifiers_2(mocker): config = _get_mock_config('{fs_id}.efs.{region}.{foo}') with pytest.raises(ValueError) as ex: mount_efs.get_dns_name(config, FS_ID) assert 'incorrect number' in str(ex.value) def test_get_dns_name_unresolvable(mocker, capsys): config = _get_mock_config() mocker.patch('socket.gethostbyname', side_effect=socket.gaierror) with pytest.raises(SystemExit) as ex: mount_efs.get_dns_name(config, FS_ID) assert 0 != ex.value.code out, err = capsys.readouterr() assert 'Failed to resolve' in err
null
test/mount_efs_test/test_get_dns_name.py
test_get_dns_name.py
py
2,670
python
en
code
null
code-starcoder2
83
[ { "api_name": "pytest.fixture", "line_number": 20, "usage_type": "call" }, { "api_name": "mock.MagicMock", "line_number": 27, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 35, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 43, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 53, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 63, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 64, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 72, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 73, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 81, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 82, "usage_type": "call" }, { "api_name": "socket.gaierror", "line_number": 90, "usage_type": "attribute" }, { "api_name": "pytest.raises", "line_number": 92, "usage_type": "call" }, { "api_name": "mount_efs.get_dns_name", "line_number": 93, "usage_type": "call" } ]
319525318
from sklearn.datasets import load_breast_cancer import sklearn.preprocessing from Ridge_Lasso_model.Ridge_Lasso import RidgeClassifier, LassoClassifier import torch x, y = load_breast_cancer(return_X_y=True) x = sklearn.preprocessing.scale(x) x_train, y_train = torch.from_numpy(x[:400]), torch.from_numpy(y[:400]) x_test, y_test = torch.from_numpy(x[400:]), torch.from_numpy(y[400:]) ridge = RidgeClassifier(alpha=10, lr=1e-4, random_state=123, max_iter=5000) lasso = LassoClassifier(alpha=10, lr=1e-4, random_state=123, max_iter=5000) print('*****Ridge*****') ridge.fit(x_train, y_train) y_pred = ridge.predict(x_test) print((y_test == y_pred).sum().item() / len(y_pred)) print('*****Lasso*****') lasso.fit(x_train, y_train) y_pred = lasso.predict(x_test) print((y_test == y_pred).sum().item() / len(y_pred))
null
Ridge_Lasso_model/test_classification.py
test_classification.py
py
843
python
en
code
null
code-starcoder2
83
[ { "api_name": "sklearn.datasets.load_breast_cancer", "line_number": 7, "usage_type": "call" }, { "api_name": "sklearn.datasets.preprocessing.scale", "line_number": 8, "usage_type": "call" }, { "api_name": "sklearn.datasets.preprocessing", "line_number": 8, "usage_type": "attribute" }, { "api_name": "sklearn.datasets", "line_number": 8, "usage_type": "name" }, { "api_name": "torch.from_numpy", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 11, "usage_type": "call" }, { "api_name": "Ridge_Lasso_model.Ridge_Lasso.RidgeClassifier", "line_number": 13, "usage_type": "call" }, { "api_name": "Ridge_Lasso_model.Ridge_Lasso.LassoClassifier", "line_number": 14, "usage_type": "call" } ]
579590404
""" rex.widget.port_support ======================= :copyright: 2015, Prometheus Research, LLC """ from contextlib import contextmanager from werkzeug.local import LocalStack from rex.port import Port __all__ = ('PortSupport',) _stack = LocalStack() _default_parameters = {} def get_parameters(): parameters = _stack.top return parameters if parameters is not None else _default_parameters @contextmanager def set_parameters(parameters): try: _stack.push(parameters) yield finally: _stack.pop() class PortSupport(object): def __init__(self): super(PortSupport, self).__init__() self.port_parameters = get_parameters() @staticmethod def parameters(*args, **kwargs): parameters = {} for arg in args: parameters.update(arg) parameters.update(kwargs) return set_parameters(parameters) def create_port(self, port): parameters = [{'parameter': parameter, 'default': default} for parameter, default in list(self.port_parameters.items())] return Port(parameters + [port])
null
src/rex.widget/src/rex/widget/port_support.py
port_support.py
py
1,168
python
en
code
null
code-starcoder2
83
[ { "api_name": "werkzeug.local.LocalStack", "line_number": 17, "usage_type": "call" }, { "api_name": "contextlib.contextmanager", "line_number": 26, "usage_type": "name" }, { "api_name": "rex.port.Port", "line_number": 53, "usage_type": "call" } ]
642226255
#!/usr/bin/env python3 # Copyright 2017 SchedMD LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import logging import os import sys import shutil import time from pathlib import Path from subprocess import DEVNULL from functools import reduce, partialmethod from concurrent.futures import ThreadPoolExecutor import googleapiclient.discovery import requests import yaml # get util.py from metadata UTIL_FILE = Path('/tmp/util.py') try: resp = requests.get('http://metadata.google.internal/computeMetadata/v1/instance/attributes/util-script', headers={'Metadata-Flavor': 'Google'}) resp.raise_for_status() UTIL_FILE.write_text(resp.text) except requests.exceptions.RequestException: print("util.py script not found in metadata") if not UTIL_FILE.exists(): print(f"{UTIL_FILE} also does not exist, aborting") sys.exit(1) spec = importlib.util.spec_from_file_location('util', UTIL_FILE) util = importlib.util.module_from_spec(spec) sys.modules[spec.name] = util spec.loader.exec_module(util) cd = util.cd # import util.cd into local namespace NSDict = util.NSDict Path.mkdirp = partialmethod(Path.mkdir, parents=True, exist_ok=True) util.config_root_logger(logfile='/tmp/setup.log') log = logging.getLogger(Path(__file__).name) sys.excepthook = util.handle_exception # get setup config from metadata config_yaml = yaml.safe_load(util.get_metadata('attributes/config')) cfg = util.Config.new_config(config_yaml) # load all directories as Paths into a dict-like namespace dirs = NSDict({n: Path(p) for n, p in dict.items({ 'home': '/home', 'apps': '/apps', 'scripts': '/slurm/scripts', 'prefix': '/usr/local', 'secdisk': '/mnt/disks/sec', 'apps_sec': '/mnt/disks/sec/apps', })}) RESUME_TIMEOUT = 300 SUSPEND_TIMEOUT = 300 CONTROL_MACHINE = cfg.cluster_name + '-controller' def start_motd(): """ advise in motd that slurm is currently configuring """ msg = """ *** Slurm is currently being configured in the background. *** """ Path('/etc/motd').write_text(msg) # END start_motd() def end_motd(broadcast=True): """ modify motd to signal that setup is complete """ Path('/etc/motd').write_text("") if not broadcast: return util.run("wall -n '*** Slurm {} setup complete ***'" .format(cfg.instance_type)) if cfg.instance_type != 'controller': util.run("""wall -n ' /home on the controller was mounted over the existing /home. Log back in to ensure your home directory is correct. '""") # END start_motd() def expand_instance_templates(): """ Expand instance template into instance_defs """ compute = googleapiclient.discovery.build('compute', 'v1', cache_discovery=False) for pid, instance_def in cfg.instance_defs.items(): if (instance_def.instance_template and (not instance_def.machine_type or not instance_def.gpu_count)): template_resp = util.ensure_execute( compute.instanceTemplates().get( project=cfg.project, instanceTemplate=instance_def.instance_template)) if template_resp: template_props = template_resp['properties'] if not instance_def.machine_type: instance_def.machine_type = template_props['machineType'] if (not instance_def.gpu_count and 'guestAccelerators' in template_props): accel_props = template_props['guestAccelerators'][0] instance_def.gpu_count = accel_props['acceleratorCount'] instance_def.gpu_type = accel_props['acceleratorType'] # END expand_instance_templates() def expand_machine_type(): """ get machine type specs from api """ machines = {} compute = googleapiclient.discovery.build('compute', 'v1', cache_discovery=False) for pid, part in cfg.instance_defs.items(): machine = {'cpus': 1, 'memory': 1} machines[pid] = machine if not part.machine_type: log.error("No machine type to get configuration from") continue type_resp = None if part.regional_capacity: filter = f"(zone={part.region}-*) AND (name={part.machine_type})" list_resp = util.ensure_execute( compute.machineTypes().aggregatedList( project=cfg.project, filter=filter)) if 'items' in list_resp: zone_types = list_resp['items'] for k, v in zone_types.items(): if part.region in k and 'machineTypes' in v: type_resp = v['machineTypes'][0] break else: type_resp = util.ensure_execute( compute.machineTypes().get( project=cfg.project, zone=part.zone, machineType=part.machine_type)) if type_resp: cpus = type_resp['guestCpus'] machine['cpus'] = cpus // (1 if part.image_hyperthreads else 2) # Because the actual memory on the host will be different than # what is configured (e.g. kernel will take it). From # experiments, about 16 MB per GB are used (plus about 400 MB # buffer for the first couple of GB's. Using 30 MB to be safe. gb = type_resp['memoryMb'] // 1024 machine['memory'] = type_resp['memoryMb'] - (400 + (gb * 30)) return machines # END expand_machine_type() def install_meta_files(): """ save config.yaml and download all scripts from metadata """ Path(dirs.scripts).mkdirp() cfg.save_config(dirs.scripts/'config.yaml') meta_entries = [ ('util.py', 'util-script'), ('setup.py', 'setup-script'), ('startup.sh', 'startup-script'), ('custom-compute-install', 'custom-compute-install'), ('custom-controller-install', 'custom-controller-install'), ] def install_metafile(filename, metaname): text = util.get_metadata('attributes/' + metaname) if not text: return path = dirs.scripts/filename path.write_text(text) path.chmod(0o755) with ThreadPoolExecutor() as exe: exe.map(lambda x: install_metafile(*x), meta_entries) # END install_meta_files() def prepare_network_mounts(hostname, instance_type): """ Prepare separate lists of cluster-internal and external mounts for the given host instance, returning (external_mounts, internal_mounts) """ log.info("Set up network storage") default_mounts = ( dirs.home, dirs.apps, dirs.apps_sec, ) # create dict of mounts, local_mount: mount_info CONTROL_NFS = { 'server_ip': CONTROL_MACHINE, 'remote_mount': 'none', 'local_mount': 'none', 'fs_type': 'nfs', 'mount_options': 'defaults,hard,intr', } # seed the non-controller mounts with the default controller mounts mounts = { path: util.Config(CONTROL_NFS, local_mount=path, remote_mount=path) for path in default_mounts } # convert network_storage list of mounts to dict of mounts, # local_mount as key def listtodict(mountlist): return {Path(d['local_mount']).resolve(): d for d in mountlist} # On non-controller instances, entries in network_storage could overwrite # default exports from the controller. Be careful, of course mounts.update(listtodict(cfg.network_storage)) if instance_type == 'compute': pid = util.get_pid(hostname) mounts.update(listtodict(cfg.instance_defs[pid].network_storage)) else: # login_network_storage is mounted on controller and login instances mounts.update(listtodict(cfg.login_network_storage)) # filter mounts into two dicts, cluster-internal and external mounts, and # return both. (external_mounts, internal_mounts) def internal_mount(mount): return mount[1].server_ip == CONTROL_MACHINE def partition(pred, coll): """ filter into 2 lists based on pred returning True or False returns ([False], [True]) """ return reduce( lambda acc, el: acc[pred(el)].append(el) or acc, coll, ([], []) ) return tuple(map(dict, partition(internal_mount, mounts.items()))) # END prepare_network_mounts def setup_network_storage(): """ prepare network fs mounts and add them to fstab """ global mounts ext_mounts, int_mounts = prepare_network_mounts(cfg.hostname, cfg.instance_type) mounts = ext_mounts if cfg.instance_type != 'controller': mounts.update(int_mounts) # Determine fstab entries and write them out fstab_entries = [] for local_mount, mount in mounts.items(): remote_mount = mount.remote_mount fs_type = mount.fs_type server_ip = mount.server_ip # do not mount controller mounts to itself if server_ip == CONTROL_MACHINE and cfg.instance_type == 'controller': continue log.info("Setting up mount ({}) {}{} to {}".format( fs_type, server_ip+':' if fs_type != 'gcsfuse' else "", remote_mount, local_mount)) local_mount.mkdirp() mount_options = (mount.mount_options.split(',') if mount.mount_options else []) if not mount_options or '_netdev' not in mount_options: mount_options += ['_netdev'] if fs_type == 'gcsfuse': if 'nonempty' not in mount_options: mount_options += ['nonempty'] fstab_entries.append( "{0} {1} {2} {3} 0 0" .format(remote_mount, local_mount, fs_type, ','.join(mount_options))) else: remote_mount = Path(remote_mount).resolve() fstab_entries.append( "{0}:{1} {2} {3} {4} 0 0" .format(server_ip, remote_mount, local_mount, fs_type, ','.join(mount_options))) for mount in mounts: Path(mount).mkdirp() with open('/etc/fstab', 'a') as f: f.write('\n') for entry in fstab_entries: f.write(entry) f.write('\n') # END setup_network_storage() def mount_fstab(): """ Wait on each mount, then make sure all fstab is mounted """ global mounts def mount_path(path): while not os.path.ismount(path): log.info(f"Waiting for {path} to be mounted") util.run(f"mount {path}", wait=5) with ThreadPoolExecutor() as exe: exe.map(mount_path, mounts.keys()) util.run("mount -a", wait=1) # END mount_external def setup_nfs_exports(): """ nfs export all needed directories """ # The controller only needs to set up exports for cluster-internal mounts # switch the key to remote mount path since that is what needs exporting _, con_mounts = prepare_network_mounts(cfg.hostname, cfg.instance_type) con_mounts = {m.remote_mount: m for m in con_mounts.values()} for pid, _ in cfg.instance_defs.items(): # get internal mounts for each partition by calling # prepare_network_mounts as from a node in each partition _, part_mounts = prepare_network_mounts(f'{pid}-n', 'compute') part_mounts = {m.remote_mount: m for m in part_mounts.values()} con_mounts.update(part_mounts) # export path if corresponding selector boolean is True exports = [] for path in con_mounts: Path(path).mkdirp() util.run(rf"sed -i '\#{path}#d' /etc/exports") exports.append(f"{path} *(rw,no_subtree_check,no_root_squash)") exportsd = Path('/etc/exports.d') exportsd.mkdirp() with (exportsd/'cluster.exports').open('w') as f: f.write('\n') f.write('\n'.join(exports)) util.run("exportfs -a") # END setup_nfs_exports() def setup_secondary_disks(): """ Format and mount secondary disk """ util.run( "sudo mkfs.ext4 -m 0 -F -E lazy_itable_init=0,lazy_journal_init=0,discard /dev/sdb") Path(dirs.secdisk).mkdirp() with open('/etc/fstab', 'a') as f: f.write( "\n/dev/sdb {0} ext4 discard,defaults,nofail 0 2" .format(dirs.secdisk)) # END setup_secondary_disks() def setup_controller(): """ Run controller setup """ expand_instance_templates() if cfg.controller_secondary_disk: setup_secondary_disks() setup_network_storage() mount_fstab() try: util.run(str(dirs.scripts/'custom-controller-install')) except Exception: # Ignore blank files with no shell magic. pass # Export at the end to signal that everything is up util.run("systemctl enable nfs-server") util.run("systemctl start nfs-server") setup_nfs_exports() log.info("Done setting up controller") pass def setup_login(): """ run login node setup """ setup_network_storage() mount_fstab() try: util.run(str(dirs.scripts/'custom-compute-install')) except Exception: # Ignore blank files with no shell magic. pass log.info("Done setting up login") def setup_compute(): """ run compute node setup """ setup_network_storage() mount_fstab() pid = util.get_pid(cfg.hostname) if cfg.instance_defs[pid].gpu_count: retries = n = 50 while util.run("nvidia-smi").returncode != 0 and n > 0: n -= 1 log.info(f"Nvidia driver not yet loaded, try {retries-n}") time.sleep(5) try: util.run(str(dirs.scripts/'custom-compute-install')) except Exception: # Ignore blank files with no shell magic. pass log.info("Done setting up compute") def main(): start_motd() install_meta_files() # call the setup function for the instance type setup = dict.get( { 'controller': setup_controller, 'compute': setup_compute, 'login': setup_login }, cfg.instance_type, lambda: log.fatal(f"Unknown instance type: {cfg.instance_type}") ) setup() end_motd() # END main() if __name__ == '__main__': main()
null
dm/scripts/setup.py
setup.py
py
15,000
python
en
code
null
code-starcoder2
83
[ { "api_name": "pathlib.Path", "line_number": 34, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 40, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 44, "usage_type": "call" }, { "api_name": "importlib.util.spec_from_file_location", "line_number": 46, "usage_type": "call" }, { "api_name": "importlib.util", "line_number": 46, "usage_type": "attribute" }, { "api_name": "importlib.util.module_from_spec", "line_number": 47, "usage_type": "call" }, { "api_name": "importlib.util", "line_number": 47, "usage_type": "attribute" }, { "api_name": "sys.modules", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pathlib.Path.mkdirp", "line_number": 53, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 53, "usage_type": "name" }, { "api_name": "functools.partialmethod", "line_number": 53, "usage_type": "call" }, { "api_name": "pathlib.Path.mkdir", "line_number": 53, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 56, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 56, "usage_type": "call" }, { "api_name": "sys.excepthook", "line_number": 57, "usage_type": "attribute" }, { "api_name": "yaml.safe_load", "line_number": 60, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 64, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 85, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 91, "usage_type": "call" }, { "api_name": "googleapiclient.discovery.discovery.build", "line_number": 109, "usage_type": "call" }, { "api_name": "googleapiclient.discovery.discovery", "line_number": 109, "usage_type": "attribute" }, { "api_name": "googleapiclient.discovery", "line_number": 109, "usage_type": "name" }, { "api_name": "googleapiclient.discovery.discovery.build", "line_number": 133, "usage_type": "call" }, { "api_name": "googleapiclient.discovery.discovery", "line_number": 133, "usage_type": "attribute" }, { "api_name": "googleapiclient.discovery", "line_number": 133, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 179, "usage_type": "call" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 198, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 233, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 255, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 304, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 311, "usage_type": "call" }, { "api_name": "os.path.ismount", "line_number": 325, "usage_type": "call" }, { "api_name": "os.path", "line_number": 325, "usage_type": "attribute" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 329, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 352, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 356, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 369, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 428, "usage_type": "call" } ]
78156344
from nltk.corpus import names from nltk import NaiveBayesClassifier from nltk import classify from nltk import MaxentClassifier import random names = ([(name, 'male') for name in names.words('male.txt')] + [(name, 'female') for name in names.words('female.txt')]) random.shuffle(names) print(names[0:10]) def gender_features(word): return {'last_letter': word[-1]} print(gender_features('Gary')) featuresets = [(gender_features(n), g) for (n, g) in names] print(featuresets[0:10]) train_set, test_set = featuresets[500:], featuresets[:500] print(len(train_set), len(test_set)) nb_classifier = NaiveBayesClassifier.train(train_set) print(nb_classifier.classify(gender_features('Gary'))) print(nb_classifier.classify(gender_features('Grace'))) print(classify.accuracy(nb_classifier, test_set)) nb_classifier.show_most_informative_features(5) me_classifier = MaxentClassifier.train(train_set) me_classifier.classify(gender_features('Gary')) me_classifier.classify(gender_features('Grace')) print(classify.accuracy(me_classifier, test_set)) me_classifier.show_most_informative_features(5) def gender_features2(name): features = {} features["firstletter"] = name[0].lower() features["lastletter"] = name[-1].lower() for letter in 'abcdefghijklmnopqrstuvwxyz': features["count(%s)" % letter] = name.lower().count(letter) features["has(%s)" % letter] = (letter in name.lower()) return features print(gender_features2('Gary')) featuresets = [(gender_features2(n), g) for (n, g) in names] train_set, test_set = featuresets[500:], featuresets[:500] nb2_classifier = NaiveBayesClassifier.train(train_set) classify.accuracy(nb2_classifier, test_set) me2_classifier = MaxentClassifier.train(train_set) print(classify.accuracy(me2_classifier, test_set)) def gender_features3(name): features = {} features["fl"] = name[0].lower() features["ll"] = name[-1].lower() features["fw"] = name[:2].lower() features["lw"] = name[-2:].lower() return features print(gender_features3('Gary')) featuresets = [(gender_features3(n), g) for (n, g) in names] train_set, test_set = featuresets[500:], featuresets[:500] nb3_classifier = NaiveBayesClassifier.train(train_set) print(classify.accuracy(nb3_classifier, test_set)) me3_classifier = MaxentClassifier.train(train_set) print(classify.accuracy(me3_classifier, test_set))
null
nltk/practice/gender_identification_classifier.py
gender_identification_classifier.py
py
2,378
python
en
code
null
code-starcoder2
83
[ { "api_name": "nltk.corpus.names", "line_number": 8, "usage_type": "name" }, { "api_name": "nltk.corpus.names.words", "line_number": 8, "usage_type": "call" }, { "api_name": "random.shuffle", "line_number": 10, "usage_type": "call" }, { "api_name": "nltk.corpus.names", "line_number": 10, "usage_type": "argument" }, { "api_name": "nltk.corpus.names", "line_number": 12, "usage_type": "name" }, { "api_name": "nltk.corpus.names", "line_number": 19, "usage_type": "name" }, { "api_name": "nltk.NaiveBayesClassifier.train", "line_number": 25, "usage_type": "call" }, { "api_name": "nltk.NaiveBayesClassifier", "line_number": 25, "usage_type": "name" }, { "api_name": "nltk.classify.accuracy", "line_number": 29, "usage_type": "call" }, { "api_name": "nltk.classify", "line_number": 29, "usage_type": "name" }, { "api_name": "nltk.MaxentClassifier.train", "line_number": 32, "usage_type": "call" }, { "api_name": "nltk.MaxentClassifier", "line_number": 32, "usage_type": "name" }, { "api_name": "nltk.classify.accuracy", "line_number": 36, "usage_type": "call" }, { "api_name": "nltk.classify", "line_number": 36, "usage_type": "name" }, { "api_name": "nltk.corpus.names", "line_number": 51, "usage_type": "name" }, { "api_name": "nltk.NaiveBayesClassifier.train", "line_number": 53, "usage_type": "call" }, { "api_name": "nltk.NaiveBayesClassifier", "line_number": 53, "usage_type": "name" }, { "api_name": "nltk.classify.accuracy", "line_number": 54, "usage_type": "call" }, { "api_name": "nltk.classify", "line_number": 54, "usage_type": "name" }, { "api_name": "nltk.MaxentClassifier.train", "line_number": 56, "usage_type": "call" }, { "api_name": "nltk.MaxentClassifier", "line_number": 56, "usage_type": "name" }, { "api_name": "nltk.classify.accuracy", "line_number": 57, "usage_type": "call" }, { "api_name": "nltk.classify", "line_number": 57, "usage_type": "name" }, { "api_name": "nltk.corpus.names", "line_number": 68, "usage_type": "name" }, { "api_name": "nltk.NaiveBayesClassifier.train", "line_number": 71, "usage_type": "call" }, { "api_name": "nltk.NaiveBayesClassifier", "line_number": 71, "usage_type": "name" }, { "api_name": "nltk.classify.accuracy", "line_number": 72, "usage_type": "call" }, { "api_name": "nltk.classify", "line_number": 72, "usage_type": "name" }, { "api_name": "nltk.MaxentClassifier.train", "line_number": 74, "usage_type": "call" }, { "api_name": "nltk.MaxentClassifier", "line_number": 74, "usage_type": "name" }, { "api_name": "nltk.classify.accuracy", "line_number": 75, "usage_type": "call" }, { "api_name": "nltk.classify", "line_number": 75, "usage_type": "name" } ]
49160889
from collections import OrderedDict import inspect import numpy as np import os from Assignment6.Code import kDataPath, report_path from model.NeuralNetworkModel import NeuralNetwork from model.RandomForestsModel import RandomForestModel from utils.Assignment4Support import draw_accuracies from utils.Assignment5Support import Featurize, TrainTestSplit, LoadRawData from utils.EvaluationsStub import Evaluation prob2_report_path = os.path.join(report_path, 'prob2') def compare_roc_curves_nn_rf(xTrainRaw, yTrainRaw, xTestRaw, yTestRaw, config, thresholds, num_hidden_layer=2, num_nodes=15, step_size=0.08, iterations=200): graphs = [] legends = [] (xTrain, xTest) = Featurize(xTrainRaw, xTestRaw, includeGradients=False, includeRawPixels=False, includeIntensities=True) yTrain = yTrainRaw yTest = yTestRaw print("Running RandomForest") legends.append("RandomForest") model = RandomForestModel(numTrees=config['num_trees'], bagging_w_replacement=config['bagging_w_replacement']) model.fit(xTrain, yTrain, min_to_split=config['min_to_split']) yTestPredicted_prob = model.predict_probabilities(xTest) cont_length_fpr_fnr = [] for threshold in thresholds: yTestPredicted = [int(p >= threshold) for p in yTestPredicted_prob] # featured = [int(y < threshold) for y in yTestPredicted] ev = Evaluation(yTest, yTestPredicted) # if threshold == 0: # assert (ev.fpr == 0.0), ev print(ev) cont_length_fpr_fnr.append((ev.fpr, ev.fnr)) graphs.append(cont_length_fpr_fnr) # print("NeuralNetwork") legends.append("NeuralNetwork") xTrains = np.array([[1] + x for x in xTrain]) xTests = np.array([[1] + x for x in xTest]) yTrains = np.array([[y] for y in yTrainRaw]) yTests = np.array([[y] for y in yTestRaw]) case = (num_hidden_layer, num_nodes) NN = NeuralNetwork(xTrains, yTrains, num_hidden_layer=num_hidden_layer, num_nodes=num_nodes, step_size=step_size) predictions = np.zeros(yTrains.shape) for i in range(iterations): # outputs = NN.feedforward() # loss = np.mean(np.square(yTrains - outputs)) # training_loss_data[case].append((i, loss)) # if i % 50 == 0: # mean sum squared loss # print("Case: " + str(case) + " Loss: \n" + str(loss)) # print("\n") # NN.train(xTrains, yTrains) predictions = NN.predict() loss = np.mean(np.square(yTrains - predictions)) predictions = NN.predict(xTests) # test_loss = np.mean(np.square(yTests - predictions)) test_loss = np.sum(np.square(yTests - predictions)) / 2. test_ev = Evaluation([x[0] for x in yTests], [1 if x[0] >= 0.5 else 0 for x in predictions]) if i % 10 == 0: print("Loss: " + str(loss)) # mean sum squared loss print("Test Loss: " + str(test_loss)) print("Accuracy: {}".format(test_ev.accuracy)) NN.train() yTestPredicted_prob = [x[0] for x in predictions] cont_length_fpr_fnr = [] for threshold in thresholds: yTestPredicted = [int(p >= threshold) for p in yTestPredicted_prob] # featured = [int(y < threshold) for y in yTestPredicted] ev = Evaluation(yTest, yTestPredicted) # if threshold == 0: # assert (ev.fpr == 0.0), ev print(ev) cont_length_fpr_fnr.append((ev.fpr, ev.fnr)) graphs.append(cont_length_fpr_fnr) # plotting start = thresholds[0] end = thresholds[-1] step = thresholds[1] - thresholds[0] fname = 'prob2{}_{}_{}_{}.png'.format(inspect.stack()[0][3], start, end, step) img_fname = os.path.join(prob2_report_path, fname) draw_accuracies(graphs, 'False Positive Rate', 'False Negative Rate', 'ROC Curve Comparision', img_fname, legends=legends, invert_yaxis=True, data_pt='-', title_y=1.05) if __name__ == '__main__': (xRaw, yRaw) = LoadRawData(kDataPath, includeLeftEye=True, includeRightEye=True) (xTrainRaw, yTrainRaw, xTestRaw, yTestRaw) = TrainTestSplit(xRaw, yRaw, percentTest=.25) config = {'min_to_split': 2, 'bagging_w_replacement': True, 'num_trees': 40, 'feature_restriction': 0} start = 0 end = 1 N = 100 thresholds = [x / N for x in range(N + 1)] compare_roc_curves_nn_rf(xTrainRaw, yTrainRaw, xTestRaw, yTestRaw, config, thresholds, num_hidden_layer=2, num_nodes=15, step_size=0.08, iterations=200)
null
Assignment8/Code/assignments/previous/hw6/prob2_roc_curves.py
prob2_roc_curves.py
py
5,173
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "Assignment6.Code.report_path", "line_number": 12, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "utils.Assignment5Support.Featurize", "line_number": 27, "usage_type": "call" }, { "api_name": "model.NeuralNetworkModel", "line_number": 36, "usage_type": "name" }, { "api_name": "model.RandomForestsModel.RandomForestModel", "line_number": 36, "usage_type": "call" }, { "api_name": "model.NeuralNetworkModel.fit", "line_number": 38, "usage_type": "call" }, { "api_name": "model.NeuralNetworkModel", "line_number": 38, "usage_type": "name" }, { "api_name": "model.NeuralNetworkModel.predict_probabilities", "line_number": 39, "usage_type": "call" }, { "api_name": "model.NeuralNetworkModel", "line_number": 39, "usage_type": "name" }, { "api_name": "utils.EvaluationsStub.Evaluation", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 58, "usage_type": "call" }, { "api_name": "model.NeuralNetworkModel.NeuralNetwork", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 81, "usage_type": "call" }, { "api_name": "utils.EvaluationsStub.Evaluation", "line_number": 82, "usage_type": "call" }, { "api_name": "utils.EvaluationsStub.Evaluation", "line_number": 95, "usage_type": "call" }, { "api_name": "inspect.stack", "line_number": 107, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 108, "usage_type": "call" }, { "api_name": "os.path", "line_number": 108, "usage_type": "attribute" }, { "api_name": "utils.Assignment4Support.draw_accuracies", "line_number": 109, "usage_type": "call" }, { "api_name": "utils.Assignment5Support.LoadRawData", "line_number": 120, "usage_type": "call" }, { "api_name": "Assignment6.Code.kDataPath", "line_number": 120, "usage_type": "argument" }, { "api_name": "utils.Assignment5Support.TrainTestSplit", "line_number": 121, "usage_type": "call" } ]
308717504
import os import numpy as np from glob import glob import random # image data import SimpleITK as sitk from ops.preprocessing import Preprocessing # Learning import torch import torch.nn as nn from ops.data_loader import Create_Batch from train import training from validation import validation from test import testing from ops.util import init_model import argparse import warnings warnings.filterwarnings("ignore") parser = argparse.ArgumentParser() parser.add_argument("--gpu_idx",type=int,default=0) parser.add_argument("--n_epoch",type=int,default=100) parser.add_argument("--patch_size",type=int,default=64) parser.add_argument("--n_patch",type=int,default=10000000) parser.add_argument("--batch_size",type=int,default=3072) parser.add_argument("--root",type=str,default='/mnt/disk1/data/MRI_Data/') parser.add_argument("--data_name",type=str,default='YS') parser.add_argument("--n_class",type=int,default=2) parser.add_argument("--n_mode",type=int,default=2) parser.add_argument("--volume_size",type=int,default=512) parser.add_argument("--learning_rate",type=float,default=0.0002) parser.add_argument("--tr_dim",type=int,default=2) parser.add_argument("--tr_bl",type=int,default=1) args = parser.parse_args() use_gpu = '{},{}'.format(args.gpu_idx,args.gpu_idx+1) os.environ["CUDA_VISIBLE_DEVICES"]=use_gpu n_channel = 1 out_dim = 2 n4b = False # Whether to use or not N4 bias correction image n4b_apply = True # Perform N4 bias correction (if not is_exist corrected image: do this) print('----------------------------------------------') print(args) print('----------------------------------------------') # Init models models, model_path = init_model(args, n4b) # Init optimizer, loss function optimizer = torch.optim.Adam(models[2].parameters(), lr=args.learning_rate) # classifier optimizer loss_func = nn.BCEWithLogitsLoss().cuda() # Preprocessing pp = Preprocessing(args, n4b, n4b_apply) p_path, all_len = pp.preprocess() if args.tr_bl == 1 and args.data_name != 'YS': # Create data batch tr_bc = Create_Batch(args.batch_size, int(args.patch_size/2), args.n_mode-1, p_path+'/train') tr_batch = tr_bc.db_load() val_path = glob(p_path+'/validation/**') val_batch = [] for path in val_path: val_bc = Create_Batch(args.batch_size, int(args.patch_size/2), args.n_mode-1, path) val_batch.append(val_bc.db_load()) # Training & Validation cnt = 1 for ep in range(args.n_epoch): # Training models, cnt = training(args, tr_batch, models, loss_func, optimizer, cnt, model_path) # Training validation(args, tr_batch, models, ep) # Validation for b in val_batch: validation(args, b, models, ep) else: # Real MR data test (Segmentation) if args.data_name == 'YS': test_bc = Create_Batch(args.batch_size, int(args.patch_size/2), args.n_mode-1, p_path+'/test_ys/0') test_batch = test_bc.db_load() testing(args, test_batch, models, 0) # MICCAI MR data test (Segmentation) else: val_path = glob(p_path+'/validation/**') val_batch = [] for path in val_path: val_bc = Create_Batch(args.batch_size, int(args.patch_size/2), args.n_mode-1, path) val_batch.append(val_bc.db_load()) idx = 2 for b in val_batch: testing(args, b, models, idx) idx += 1
null
main.py
main.py
py
3,408
python
en
code
null
code-starcoder2
83
[ { "api_name": "warnings.filterwarnings", "line_number": 24, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 26, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 43, "usage_type": "attribute" }, { "api_name": "ops.util.init_model", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 60, "usage_type": "attribute" }, { "api_name": "torch.nn.BCEWithLogitsLoss", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "ops.preprocessing.Preprocessing", "line_number": 64, "usage_type": "call" }, { "api_name": "ops.data_loader.Create_Batch", "line_number": 72, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 75, "usage_type": "call" }, { "api_name": "ops.data_loader.Create_Batch", "line_number": 78, "usage_type": "call" }, { "api_name": "train.training", "line_number": 86, "usage_type": "call" }, { "api_name": "validation.validation", "line_number": 89, "usage_type": "call" }, { "api_name": "validation.validation", "line_number": 93, "usage_type": "call" }, { "api_name": "ops.data_loader.Create_Batch", "line_number": 100, "usage_type": "call" }, { "api_name": "test.testing", "line_number": 102, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 106, "usage_type": "call" }, { "api_name": "ops.data_loader.Create_Batch", "line_number": 109, "usage_type": "call" }, { "api_name": "test.testing", "line_number": 113, "usage_type": "call" } ]
534070130
# -*- coding:utf-8 -*- from .sortbase import ConditionWithSort import psutil class FreeSpaceCondition(ConditionWithSort): def __init__(self, settings): ConditionWithSort.__init__(self, settings['action']) self._min = settings['min'] * 1073741824 # limit = limit * 1GiB self._path = settings['path'] def apply(self, torrents): torrents = list(torrents) ConditionWithSort.sort_torrents(self, torrents) _, _, free_space, _ = psutil.disk_usage(self._path) for torrent in torrents: if free_space < self._min: free_space += torrent.size self.remove.add(torrent) else: self.remain.add(torrent)
null
autoremovetorrents/condition/freespace.py
freespace.py
py
728
python
en
code
null
code-starcoder2
83
[ { "api_name": "sortbase.ConditionWithSort", "line_number": 7, "usage_type": "name" }, { "api_name": "sortbase.ConditionWithSort.__init__", "line_number": 9, "usage_type": "call" }, { "api_name": "sortbase.ConditionWithSort", "line_number": 9, "usage_type": "name" }, { "api_name": "sortbase.ConditionWithSort.sort_torrents", "line_number": 15, "usage_type": "call" }, { "api_name": "sortbase.ConditionWithSort", "line_number": 15, "usage_type": "name" }, { "api_name": "psutil.disk_usage", "line_number": 16, "usage_type": "call" } ]
90738847
import os import time import shutil from uuid import getnode from abc import ABC, abstractmethod from recording.src.coding_framework.BDAConfigParser import g_config from recording.src.speech_recognition.BDAVideoAudioUtilities import BDAVideoToAudio from google.cloud import speech from google.cloud import storage from google.cloud.speech import types # Class hierarchy # --------------- # +---------------------+ # | GoogleStorageBase | # +----------+----------+ # ^ # | # | # | # +-----------------------------+-----------------------------+ # | | # +---------------+--------------------+ +-------------------+------------------+ # | BDAGoogleStorageUploadAbstractBase | | BDAGoogleStorageUploadAbstractBase | # +---------------+--------------------+ +--------------------------------------+ # ^ # | # | # +-------------------+-------------------+ # | | # +-------------+-------------------+ +---------------+-----------+ # | BDAGoogleStorageConvertUpload | | BDAGoogleStorageConsume | # +---------------------------------+ +---------------------------+ # class GoogleStorageBase(ABC): def __init__(self): """ Constructor :param path_to_file: Absolute path to video file. Tested on MP4 video format. """ super().__init__() self.__load_env_variables() self.__ensure_bucket_availability() def __load_env_variables(self): """ Google Speech Recognition requires a 'GOOGLE_APPLICATION_CREDENTIALS' environment variable, pointing to the JSON file containing the relevant credentials. In case the mentioned environment variable is not present, this method creates it by extracting the relevant information from the main config file through BDAConfigParser. :return: None """ google_speech_env_var = g_config.get_value('SpeechRecognition', 'GoogleCredentials_EnvVarName') if os.environ.get(google_speech_env_var) is None: os.environ[google_speech_env_var] = g_config.get_value('SpeechRecognition', 'GoogleCredentials_FilePath') def __ensure_bucket_availability(self): """ Ensures the relevant bucket is available on Google Storage. :return: None """ bucket_name = g_config.get_value('SpeechRecognition', 'GoogleStorage_BucketName') if bucket_name is None: raise ValueError('Key not found in config file: SpeechRecognition::GoogleStorage_BucketName') storage_client = storage.Client() if storage_client.lookup_bucket(bucket_name) is None: # Create the new bucket storage_client.create_bucket(bucket_name) class BDAGoogleStorageUploadAbstractBase(GoogleStorageBase): #################### # Private members __session_id = None __bucket_name = None __blob_path = None #################### # Protected members _path_to_file = None _working_dir = None #################### def __init__(self, path_to_file): """ Constructor :param path_to_file: Absolute path to video file. Tested on MP4 video format. """ super().__init__() self.__initialization(path_to_file) def __del__(self): """ Destructor """ self.__clean_up() @abstractmethod def upload_file(self): pass def _upload_blob(self, path_to_file): """ Uploads the audio file to the appropriate bucket on Google Storage. :return: None """ storage_client = storage.Client() bucket = storage_client.get_bucket(self.__bucket_name) blob = bucket.blob(self.__blob_path) print("Beginning Upload on [" + path_to_file + "]") blob.upload_from_filename(path_to_file) print("Video Uploaded!") return self.__bucket_name, self.__blob_path def __initialization(self, path_to_file): """ Validation, clean-up and initialization :param path_to_file: Absolute path to video file. :return: None :raises ValueError in case validation fails. """ if not os.path.isfile(path_to_file): raise ValueError('File not found.') idx_last_slash = path_to_file.rfind('/') if idx_last_slash < 0: raise ValueError('Invalid file path specified: %s' % path_to_file) self.__bucket_name = g_config.get_value('SpeechRecognition', 'GoogleStorage_BucketName') if self.__bucket_name is None: raise ValueError('Key not found in config file: SpeechRecognition::GoogleStorage_BucketName') self.__clean_up() self._path_to_file = path_to_file # Session ID --> MACAddress_TimestampInMS self.__session_id = str(getnode()) + '_' + str(int(time.time() * 1000)) self.__blob_path = self.__session_id + '/audioFile.flac' self._working_dir = path_to_file[: idx_last_slash + 1] + self.__session_id + '/' if not os.path.exists(self._working_dir): os.makedirs(self._working_dir) def __clean_up(self): """ Delete working with its contents. :return: None """ if self._working_dir is not None and os.path.isdir(self._working_dir): shutil.rmtree(self._working_dir) class BDAGoogleStorageUpload(BDAGoogleStorageUploadAbstractBase): def __init__(self, path_to_file): """ Constructor :param path_to_file: Absolute path to file. """ super().__init__(path_to_file) def upload_file(self): """ Upload file to Google Storage platform, without FLAC file format validation. :return: (bucket_name, blob_path) """ return self._upload_blob(self._path_to_file) def upload_file_debug(self): """ Upload file to Google Storage platform, with FLAC file format validation. :return: (bucket_name, blob_path) """ is_valid, result = BDAVideoToAudio.verify_audio_flac_format(self._path_to_file) if is_valid is False: raise ValueError('Input audio file does not meet the FLAC format requirements.') return self._upload_blob(self._path_to_file) class BDAGoogleStorageConvertUpload(BDAGoogleStorageUploadAbstractBase): def __init__(self, path_to_file): """ Constructor :param path_to_file: Absolute path to file. """ super().__init__(path_to_file) def upload_file(self): """ Convert media file to FLAC and upload to Google Storage platform. :return: (bucket_name, blob_path) """ path_to_flac_file = BDAVideoToAudio.video_to_audio(self._path_to_file, self._working_dir, 48000, 'flac') return self._upload_blob(path_to_flac_file) class BDAGoogleStorageConsume(GoogleStorageBase): def __init__(self): """ Constructor """ super().__init__() def transcribe_file(self, bucket_name, blob_path): """ Transcribe file on Google Storage. Deletes file when transcription is complete. :param bucket_name: Bucket name on Google Storage :param blob_path: Path to FLAC file on Google Storage :return: Transcribed string """ client = speech.SpeechClient() audio = types.RecognitionAudio(uri='gs://' + bucket_name + '/' + blob_path) config = types.RecognitionConfig( encoding="FLAC", sample_rate_hertz=48000, language_code='en-US') operation = client.long_running_recognize(config, audio) transcription_results = operation.result() self.__delete_blob(bucket_name, blob_path) transcribed_result = '' for idx in range(len(transcription_results.results)): if len(transcription_results.results[idx].alternatives) > 0: transcribed_result += ' ' transcribed_result += transcription_results.results[idx].alternatives[0].transcript return transcribed_result def __delete_blob(self, bucket_name, blob_path): """ Deletes the FLAC file from the bucket on Google Storage. :return: None """ storage_client = storage.Client() bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(blob_path) if blob.exists(): blob.delete() ############################################################ # path_to_file_invalid = '/home/niki/Desktop/deleteMe/FFmpy/aaa/JohnOliver.mp4.Stereo.flac' # path_to_file_valid = '/home/niki/Desktop/deleteMe/FFmpy/aaa/000_split_JohnOliver.mp4.flac' # # try: # x = BDAGoogleStorageUpload(path_to_file_valid) # bucket_name, path_to_blob = x.upload_file() # print(bucket_name) # print(path_to_blob) # # except ValueError as e: # print(str(e)) ############################################################ # path_to_video_file = '/home/niki/Desktop/deleteMe/FFmpy/aaa/JohnOliver.mp4' # try: # x = BDAGoogleStorageConvertUpload(path_to_video_file) # bucket_name, path_to_blob = x.upload_file() # print(bucket_name) # print(path_to_blob) # # except ValueError as e: # print(str(e)) ############################################################ # bucket_name = 'big_data_assignment_bucket' # blob_path = '44883553471107_1522595041002/audioFile.flac' # try: # x = BDAGoogleStorageConsume() # result = x.transcribe_file(bucket_name, blob_path) # print(result) # # except ValueError as e: # print(str(e)) ############################################################
null
recording/src/speech_recognition/BDAGoogleStorage.py
BDAGoogleStorage.py
py
10,566
python
en
code
null
code-starcoder2
83
[ { "api_name": "abc.ABC", "line_number": 40, "usage_type": "name" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config.get_value", "line_number": 58, "usage_type": "call" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config", "line_number": 58, "usage_type": "name" }, { "api_name": "os.environ.get", "line_number": 59, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 59, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 60, "usage_type": "attribute" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config.get_value", "line_number": 60, "usage_type": "call" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config", "line_number": 60, "usage_type": "name" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config.get_value", "line_number": 68, "usage_type": "call" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config", "line_number": 68, "usage_type": "name" }, { "api_name": "google.cloud.storage.Client", "line_number": 72, "usage_type": "call" }, { "api_name": "google.cloud.storage", "line_number": 72, "usage_type": "name" }, { "api_name": "abc.abstractmethod", "line_number": 104, "usage_type": "name" }, { "api_name": "google.cloud.storage.Client", "line_number": 113, "usage_type": "call" }, { "api_name": "google.cloud.storage", "line_number": 113, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path", "line_number": 128, "usage_type": "attribute" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config.get_value", "line_number": 135, "usage_type": "call" }, { "api_name": "recording.src.coding_framework.BDAConfigParser.g_config", "line_number": 135, "usage_type": "name" }, { "api_name": "uuid.getnode", "line_number": 143, "usage_type": "call" }, { "api_name": "time.time", "line_number": 143, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 146, "usage_type": "call" }, { "api_name": "os.path", "line_number": 146, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 147, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 154, "usage_type": "call" }, { "api_name": "os.path", "line_number": 154, "usage_type": "attribute" }, { "api_name": "shutil.rmtree", "line_number": 155, "usage_type": "call" }, { "api_name": "recording.src.speech_recognition.BDAVideoAudioUtilities.BDAVideoToAudio.verify_audio_flac_format", "line_number": 178, "usage_type": "call" }, { "api_name": "recording.src.speech_recognition.BDAVideoAudioUtilities.BDAVideoToAudio", "line_number": 178, "usage_type": "name" }, { "api_name": "recording.src.speech_recognition.BDAVideoAudioUtilities.BDAVideoToAudio.video_to_audio", "line_number": 198, "usage_type": "call" }, { "api_name": "recording.src.speech_recognition.BDAVideoAudioUtilities.BDAVideoToAudio", "line_number": 198, "usage_type": "name" }, { "api_name": "google.cloud.speech.SpeechClient", "line_number": 216, "usage_type": "call" }, { "api_name": "google.cloud.speech", "line_number": 216, "usage_type": "name" }, { "api_name": "google.cloud.speech.types.RecognitionAudio", "line_number": 217, "usage_type": "call" }, { "api_name": "google.cloud.speech.types", "line_number": 217, "usage_type": "name" }, { "api_name": "google.cloud.speech.types.RecognitionConfig", "line_number": 219, "usage_type": "call" }, { "api_name": "google.cloud.speech.types", "line_number": 219, "usage_type": "name" }, { "api_name": "google.cloud.storage.Client", "line_number": 241, "usage_type": "call" }, { "api_name": "google.cloud.storage", "line_number": 241, "usage_type": "name" } ]
379746640
import numpy as np import torch, torchvision import torch.nn as nn from torchvision import datasets import torchvision.transforms as transforms import matplotlib.pyplot as plt from PIL import Image from dataset_3 import CatAndDogsDataset class net(nn.Module): def __init__(self): super(net, self).__init__() self.net = nn.Sequential(nn.Conv2d(3, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1, bias=False), nn.MaxPool2d((2, 2)), nn.BatchNorm2d(10), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1, bias=False), nn.MaxPool2d((2, 2)), nn.BatchNorm2d(10), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1, bias=False), nn.MaxPool2d((2, 2)), nn.BatchNorm2d(10), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1), nn.ReLU(), nn.Conv2d(10, 10, 3, padding=1), nn.MaxPool2d((2, 2)), nn.Flatten(), # out is 10*2*2 dims nn.Linear(40, 20), nn.LeakyReLU(), nn.Dropout(), nn.Linear(20, 10), nn.LeakyReLU(), nn.Dropout(), nn.Linear(10, 5), nn.LeakyReLU(), nn.Linear(5, 2)) def forward(self, x): return self.net(x) transform = transforms.Compose([transforms.Resize((32, 32)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) my_dataset = CatAndDogsDataset('data/PetImages/', transform=transform) train_weight = 0.7 train_size = int(train_weight * len(my_dataset)) test_size = len(my_dataset) - train_size train_set, test_set = torch.utils.data.random_split(my_dataset, [train_size, test_size]) train_ldr = torch.utils.data.DataLoader( train_set, batch_size=64, shuffle=True, num_workers=4, pin_memory=True) test_ldr = torch.utils.data.DataLoader( test_set, batch_size=64, shuffle=False, num_workers=4, pin_memory=True) device = 'cuda:0' model = net() # model.load_state_dict(torch.load("net.pth")) model = model.cuda() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) def train(num_epochs): train_loss = torch.zeros((num_epochs), device=device) test_loss = torch.zeros((num_epochs), device=device) test_acc = torch.zeros((num_epochs), device=device) for i in range(num_epochs): model.train() for (x, y) in train_ldr: outputs = model(x.cuda()) loss = criterion(outputs, y.cuda()) train_loss[i] += loss.detach().sum() optimizer.zero_grad() loss.backward() optimizer.step() with torch.no_grad(): model.eval() for inputs, targets in test_ldr: outputs = model(inputs.to(device)) targets = targets.to(device) loss = criterion(outputs, targets) test_loss[i] += loss.sum() _, predicted = outputs.max(1) predicted = (predicted > 0.5).float() test_acc[i] += (predicted == targets).sum().float() print(f"{i+1}/{num_epochs}") train_loss /= (train_ldr.batch_size * len(train_ldr)) test_loss /= (test_ldr.batch_size * len(test_ldr)) test_acc /= (test_ldr.batch_size * len(test_ldr)) return train_loss.cpu(), test_loss.cpu(), test_acc.cpu() if __name__ == "__main__": num_epochs=30 epochs_train_loss, epochs_test_loss, test_acc = train(num_epochs) # plt.plot(epochs_train_loss, label='training loss') # plt.plot(epochs_test_loss, label='testing loss') # plt.plot(test_acc, label='testing accuracy') # plt.legend() # plt.show() fig, ax1 = plt.subplots() idx = range(num_epochs) ax1.set_xlabel('epoch') ax1.set_ylabel('loss') ax1.plot(idx, epochs_train_loss, label='training loss') ax1.plot(idx, epochs_test_loss, label='testing loss') ax1.legend(loc='upper left') ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis ax2.set_ylabel('accuracy') # we already handled the x-label with ax1 ax2.plot(idx, test_acc, 'k', label='testing accuracy') ax2.legend(loc='upper right') fig.tight_layout() # otherwise the right y-label is slightly clipped plt.show() torch.save(model.state_dict(), "net.pth")
null
homeworks/homework2/cnn_4.py
cnn_4.py
py
5,143
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.nn.Module", "line_number": 12, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 12, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 15, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 19, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 20, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 22, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 28, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn.Flatten", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn.Dropout", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn.Dropout", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 34, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 35, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 36, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 42, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 42, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 42, "usage_type": "call" }, { "api_name": "torchvision.transforms.RandomHorizontalFlip", "line_number": 43, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 43, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 44, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 44, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 45, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 45, "usage_type": "name" }, { "api_name": "dataset_3.CatAndDogsDataset", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.utils.data.random_split", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 52, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 54, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 56, "usage_type": "attribute" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 64, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 132, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.save", "line_number": 134, "usage_type": "call" } ]
631303399
from serial import Serial class StepperMotor(): """Stepper Motor with Serial""" def __init__(self, serial_port, baud_rate): self.serial_port = serial_port self.baud_rate = baud_rate self.serial = None self.connected = False def connect(self): try: self.serial = Serial(serial_port,self.baud_rate) except: print("Failed connect to serial port",self.serial_port) self.connected = True def disconnect(self): try: if(self.connected): self.serial.close() except: print("Failed disconnect to serial port",self.serial_port) self.connected = False def move(self,angle): if(self.serial is None or not self.connected): print("Device is not connected") return angle = int(angle) data = str(angle)+'\r\n' self.serial.write(data.encode)
null
Python/StepperMotor.py
StepperMotor.py
py
970
python
en
code
null
code-starcoder2
83
[ { "api_name": "serial.Serial", "line_number": 14, "usage_type": "call" } ]
306191441
''' MIT License Copyright (c) 2019 Arshdeep Bahga and Vijay Madisetti Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import os import boto.s3 conn = boto.connect_s3(aws_access_key_id='<enter>', aws_secret_access_key='<enter>') def percent_cb(complete, total): print ('.') def upload_to_s3_bucket_path(bucketname, path, filename): mybucket = conn.get_bucket(bucketname) fullkeyname=os.path.join(path,filename) key = mybucket.new_key(fullkeyname) key.set_contents_from_filename(filename, cb=percent_cb, num_cb=10) #key.make_public(recursive=False) def upload_to_s3_bucket_root(bucketname, filename): mybucket = conn.get_bucket(bucketname) key = mybucket.new_key(filename) key.set_contents_from_filename(filename, cb=percent_cb, num_cb=10) def getuserfiles(bucketname,username): mybucket = conn.get_bucket(bucketname) keys = mybucket.list(username) totalsize=0.0 userfiles = {} for key in keys: value=[] #value.append(key.name) filename = key.name filename=filename.replace(username+'/media/','') value.append(key.last_modified) keysize = float(key.size)/1000.0 value.append(str(keysize)) userfiles[filename]=value totalsize = totalsize + float(key.size) totalsize = totalsize/1000000.0 return userfiles,totalsize def delete_from_s3(bucketname, username,filename): mybucket = conn.get_bucket(bucketname) mybucket.delete_key(username+'/media/'+filename)
null
imagepro/myapp/s3upload.py
s3upload.py
py
2,384
python
en
code
null
code-starcoder2
83
[ { "api_name": "boto.s3.connect_s3", "line_number": 28, "usage_type": "call" }, { "api_name": "boto.s3", "line_number": 28, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" } ]
166454965
import sys from tensorflow.examples.tutorials.mnist import input_data # mnist = input_data.read_data_sets(".", one_hot=True, reshape=False) mnist = input_data.read_data_sets('K:\datasets\MNIST', one_hot=True, reshape=False) #MNIST数据集已经可以用one-hot编码的形式提供 import tensorflow as tf save_file = './train_model.ckpt' saving = False restored = False if len(sys.argv) > 1: if sys.argv[1] == '-s' or sys.argv[1] == '-S': saving =True elif sys.argv[1] == '-r' or sys.argv[1] == '-R': restored=True else: pass else: pass # 学习的参数大家可以自行调节 learning_rate = 0.001 training_epochs = 20 batch_size = 128 # Decrease batch size if you don't have enough memory display_step = 1 n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) #隐藏层的数量也就是我们上一节中讲的ReLU的数量H,这个值也可以调节 n_hidden_layer = 256 # layer number of features # 权重和偏置需要有两份,一份是wx+b;另一份是w1*ReLU输出+b1 weights = { 'hidden_layer': tf.Variable(tf.random_normal([n_input, n_hidden_layer])), 'hidden_layer2': tf.Variable(tf.random_normal([n_hidden_layer, n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_hidden_layer, n_classes])) } biases = { 'hidden_layer': tf.Variable(tf.random_normal([n_hidden_layer])), 'hidden_layer2': tf.Variable(tf.random_normal([n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_classes])) } # tf Graph input x = tf.placeholder("float", [None, 28, 28, 1]) y = tf.placeholder("float", [None, n_classes]) #由于输入的是28*28*1的图像,需要将它转变为784的一维数组输入 x_flat = tf.reshape(x, [-1, n_input]) #建立两层神经网络 # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x_flat, weights['hidden_layer']), biases['hidden_layer']) layer_1 = tf.nn.relu(layer_1) # layer_1 = tf.nn.sigmoid(layer_1) # Output layer with linear activation layer_2= tf.add(tf.matmul(layer_1, weights['hidden_layer2']), biases['hidden_layer2']) logits = tf.matmul(layer_2, weights['out']) + biases['out'] #GradientDescentOptimizer在TensorFlow入门那一章节讲过 # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() loss_plot=[] x_axis=[] saver = tf.train.Saver() # Launch the graph with tf.Session() as sess: if not restored: sess.run(init) # Training cycle for epoch in range(training_epochs): total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): #mnist.train.next_batch()每次返回一个训练集的子集 batch_x, batch_y = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) # Display logs per epoch step if epoch % display_step == 0: c = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print("Epoch:", '%04d' % (epoch+1), "cost=", \ "{:.9f}".format(c)) loss_plot.append(c) x_axis.append(epoch) print("Optimization Finished!") # Test model correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # Decrease test_size if you don't have enough memory test_size = 256 total_accuracy=accuracy.eval({x: mnist.test.images[:test_size], y: mnist.test.labels[:test_size]}) print("Accuracy:", total_accuracy) if not saving: pass else: saver.save(sess, save_file) print('Trained Model Saved.') else: saver.restore(sess, save_file) # Test model correct_prediction = tf.equal(tf.argmax(logits, 1),tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) test_accuracy = sess.run(accuracy,feed_dict={x: mnist.test.images, y: mnist.test.labels}) print('Test Accuracy: {}'.format(test_accuracy)) print("Model loaded!") import matplotlib.pyplot as plt import numpy as np plt.xlabel('epoch') plt.ylabel('loss') my_x_ticks = np.arange(0,training_epochs,10) plt.xticks(my_x_ticks) plt.title('sigmoid:learning_rate = 0.001,training_epochs = 20,batch_size = 128,3layers') plt.plot(x_axis,loss_plot,'r') plt.annotate("accuracy=%s , Loss= %s" %(total_accuracy,loss_plot[-1]), xy=(training_epochs-1,loss_plot[-1]), xytext=(-40, 10), textcoords='offset points') plt.show()
null
Class1/4-02_Save_and_restore_tensorflow_models/multilayer_perceptron.py
multilayer_perceptron.py
py
4,805
python
en
code
null
code-starcoder2
83
[ { "api_name": "tensorflow.examples.tutorials.mnist.input_data.read_data_sets", "line_number": 5, "usage_type": "call" }, { "api_name": "tensorflow.examples.tutorials.mnist.input_data", "line_number": 5, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 13, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 14, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 17, "usage_type": "attribute" }, { "api_name": "tensorflow.Variable", "line_number": 38, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 38, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 39, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 39, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 44, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 44, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 45, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 45, "usage_type": "call" }, { "api_name": "tensorflow.placeholder", "line_number": 49, "usage_type": "call" }, { "api_name": "tensorflow.placeholder", "line_number": 50, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 53, "usage_type": "call" }, { "api_name": "tensorflow.add", "line_number": 57, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 57, "usage_type": "call" }, { "api_name": "tensorflow.nn.relu", "line_number": 58, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 58, "usage_type": "attribute" }, { "api_name": "tensorflow.add", "line_number": 61, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 61, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 62, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 66, "usage_type": "call" }, { "api_name": "tensorflow.nn.softmax_cross_entropy_with_logits", "line_number": 66, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 66, "usage_type": "attribute" }, { "api_name": "tensorflow.train.GradientDescentOptimizer", "line_number": 67, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 67, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 70, "usage_type": "call" }, { "api_name": "tensorflow.train.Saver", "line_number": 74, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 74, "usage_type": "attribute" }, { "api_name": "tensorflow.Session", "line_number": 77, "usage_type": "call" }, { "api_name": "tensorflow.equal", "line_number": 99, "usage_type": "call" }, { "api_name": "tensorflow.argmax", "line_number": 99, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 101, "usage_type": "call" }, { "api_name": "tensorflow.cast", "line_number": 101, "usage_type": "call" }, { "api_name": "tensorflow.equal", "line_number": 114, "usage_type": "call" }, { "api_name": "tensorflow.argmax", "line_number": 114, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 116, "usage_type": "call" }, { "api_name": "tensorflow.cast", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 123, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 123, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 124, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 124, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 129, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 130, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 130, "usage_type": "name" } ]
58415856
#!/user/bin/env python '''viewStructures.py Simple wrapper functions that uses ipywidgets and py3Dmol to view a list of protein structures. ''' __author__ = "Mars (Shih-Cheng) Huang" __maintainer__ = "Mars (Shih-Cheng) Huang" __email__ = "[email protected]" __version__ = "0.2.0" __status__ = "Done" from ipywidgets import interact, IntSlider, Dropdown import matplotlib.pyplot as plt import seaborn as sns import numpy as np import py3Dmol def view_structure(pdbIds, bioAssembly = False, style='cartoon', color='spectrum'): '''A wrapper function that simply displays a list of protein structures using ipywidgets and py3Dmol Parameters ---------- pdbIds : list A list of PDBIDs to display bioAssembly : bool display bioAssembly style : str, optional Style of 3D structure (stick line cross sphere cartoon VDW MS) color : str, optional Color of 3D structure ''' if type(pdbIds) == str: pdbIds = [pdbIds] def view3d(i=0): '''Simple structure viewer that uses py3Dmol to view PDB structure by indexing the list of PDBids Parameters ---------- i (int): index of the protein if a list of PDBids ''' print(f"PdbID: {pdbIds[i]}, Style: {style}") if '.' not in pdbIds[i]: viewer = py3Dmol.view(query='pdb:' + pdbIds[i], options={'doAssembly': bioAssembly}) viewer.setStyle({style: {'color': color}}) viewer.setStyle({'hetflag': True},{'stick':{'singleBond':False}}) else: pdbid,chainid = pdbIds[i].split('.') viewer = py3Dmol.view(query='pdb:' + pdbid, options={'doAssembly': bioAssembly}) viewer.setStyle({}) viewer.setStyle({'chain': chainid}, {style: {'color': color}}) viewer.setStyle({'chain': chainid, 'hetflag': True},{'stick':{'singleBond':False}}) viewer.zoomTo({'chain': chainid}) return viewer.show() s_widget = IntSlider(min=0, max=len(pdbIds)-1, description='Structure', continuous_update=False) return interact(view3d, i=s_widget) def view_group_interaction(pdbIds, interacting_group='None', style='cartoon', color='spectrum'): '''A wrapper function that simply displays a list of protein structures using ipywidgets and py3Dmol and highlight specified interacting groups Parameters ---------- pdbIds : list A list of PDBIDs to display interacting_atom : str, optional The interacting atom to highlight style : str, optional Style of 3D structure (stick line cross sphere cartoon VDW MS) color : str, optional Color of 3D structure ''' if type(pdbIds) == str: pdbIds = [pdbIds] def view3d(i=0): '''Simple structure viewer that uses py3Dmol to view PDB structure by indexing the list of PDBids Parameters ---------- i (int): index of the protein if a list of PDBids ''' print( f"PdbID: {pdbIds[i]}, Interactions: {interacting_group}, Style: {style}") viewer = py3Dmol.view(query='pdb:' + pdbIds[i]) viewer.setStyle({style: {'color': color}}) if interacting_group != "None": viewer.setStyle({'resn': interacting_group}, { 'sphere': {}}) return viewer.show() s_widget = IntSlider(min=0, max=len(pdbIds)-1, description='Structure', continuous_update=False) return interact(view3d, i=s_widget) def view_binding_site(pdbIds=None, groups=None, chains=None, distance=3.0): '''A wrapper function that zooms in to a group of a protein structure and highlight its neighbors within a certain distance. Parameters ---------- pdbIds : list, optional A list of PDBIDs to display groups : list, optional A list of groups to center at for each protein structure chains : list, optional A list of chains specified for each protein structure. If no chains is specified, chain 'A' will be default to all structures. cutoffDistance : float, optional The cutoff distance use the find the neighbors of specified group ''' if pdbIds is None or groups is None: raise ValueError("PdbIds and groups need to be specified") if len(pdbIds) != len(groups): raise ValueError( "Number of structures should match with number of groups") if type(pdbIds) == str and groups == str: pdbIds, groups = [pdbIds], [groups] if chains is None: chains = ['A'] * len(pdbIds) def view3d(i=0): '''Simple structure viewer that zooms into a specified group and highlight its neighbors Parameters ---------- i (int): index of the protein if a list of PDBids ''' print( f"PDB: {pdbIds[i]}, group: {groups[i]}, chain: {chains[i]}, cutoffDistance: {distance}") if type(groups[i]) == int: center = {'resi': groups[i], 'chain': chains[i]} neighbors = {'resi': groups[i], 'chain': chains[i], 'byres': 'true', 'expand': distance} else: center = {'resn': groups[i], 'chain': chains[i]} neighbors = {'resn': groups[i], 'chain': chains[i], 'byres': 'true', 'expand': distance} viewer = py3Dmol.view(query='pdb:' + pdbIds[i]) viewer.setStyle(neighbors, {'stick': {}}); viewer.setStyle(center, {'sphere': {'colorscheme': 'orangeCarbon'}}) viewer.zoomTo(neighbors) return viewer.show() s_widget = IntSlider(min=0, max=len(pdbIds)-1, description='Structure', continuous_update=False) return interact(view3d, i=s_widget) def group_interaction_viewer(df, sortBy, metal=None): '''A wrapper function that zooms in to a group in a protein structure and highlight its interacting atoms. The input dataframe should be generated from the GroupInteractionExtractor class. References ---------- GroupInteractionExtractor: https://github.com/sbl-sdsc/mmtf-pyspark/blob/master/mmtfPyspark/interactions/groupInteractionExtractor.py Parameters ---------- df : dataframe the dataframe generated from GroupIneteractionExtractor sort_by : str the q value to sort by ['q4','q5','q6'] ''' # Filter by metal if metal is not None: df = df[df["element0"] == metal] # Sort dataframe based on sortBy parameter (q4-6 values) df = df.sort_values([sortBy], ascending = False).dropna(subset=[sortBy]) if sortBy in ['q4','q5']: q = 'q' + str(int(sortBy[-1]) + 1) df = df[df[q] != np.nan] i_widget = IntSlider( min=0, max=df.shape[0] - 1, description='Structure', continuous_update=False) def get_neighbors_chain(i): return [df[f'chain{j}'].iloc[i] for j in range(1, 7) if df[f'element{j}'] is not None] def get_neighbors_group(i): return [df[f'groupNum{j}'].iloc[i] for j in range(1, 7) if df[f'element{j}'] is not None] def get_neighbors_elements(i): elements = [df[f'element{j}'].iloc[i] for j in range(1, 7) if df[f'element{j}'] is not None] return [str(e).upper() for e in elements] def view3d(i=0): '''Simple structure viewer that uses py3Dmol to view PDB structure by indexing the list of PDBids Parameters ---------- i : int index of the protein if a list of PDBids ''' structures = df['pdbId'].iloc groups = df['groupNum0'].iloc chains = df['chain0'].iloc elements = df['element0'].iloc ori = str(df[sortBy].iloc[i])[:5] print(f"PDBId: {structures[i]} chain: {chains[i]} element: {elements[i]}") print(f"{sortBy}: {ori}") viewer = py3Dmol.view(query='pdb:' + structures[i], width=700, height=700) neighbors = {'resi': get_neighbors_group(i), 'chain': get_neighbors_chain(i)} metal = {'resi': groups[i], 'atom': str(elements[i]).upper(), 'chain': chains[i]} viewer.setStyle(neighbors, {'stick': {'colorscheme': 'orangeCarbon'}}) viewer.setStyle(metal, {'sphere': {'radius': 0.5, 'color': 'gray'}}) viewer.zoomTo(neighbors) return viewer.show() return interact(view3d, i=i_widget) def metal_distance_widget(df_concat): '''Plot an violinplot of metal-element distances with ipywidgets Parameters ---------- df_concat : Dataframe dataframe of metal-elements distances ''' metals = df_concat['Metal'].unique().tolist() m_widget = Dropdown(options = metals, description = "Metals") def metal_distance_violinplot(metal): df_metal = df_concat[df_concat["Metal"] == metal].copy() df_metal['Element'] = df_metal['Element'].apply(lambda x: metal+"-"+x) # Set fonts fig, ax = plt.subplots() fig.set_size_inches(15,6) subplot = sns.violinplot(x="Element", y="Distance", palette="muted", data=df_metal, ax=ax) subplot.set(xlabel="Metal Interactions", ylabel="Distance", title=f"{metal} to Elements Distances Violin Plot") return interact(metal_distance_violinplot, metal=m_widget);
null
mmtfPyspark/structureViewer.py
structureViewer.py
py
9,318
python
en
code
null
code-starcoder2
83
[ { "api_name": "py3Dmol.view", "line_number": 52, "usage_type": "call" }, { "api_name": "py3Dmol.view", "line_number": 58, "usage_type": "call" }, { "api_name": "ipywidgets.IntSlider", "line_number": 66, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 67, "usage_type": "call" }, { "api_name": "py3Dmol.view", "line_number": 101, "usage_type": "call" }, { "api_name": "ipywidgets.IntSlider", "line_number": 111, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 112, "usage_type": "call" }, { "api_name": "py3Dmol.view", "line_number": 169, "usage_type": "call" }, { "api_name": "ipywidgets.IntSlider", "line_number": 176, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 177, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 206, "usage_type": "attribute" }, { "api_name": "ipywidgets.IntSlider", "line_number": 208, "usage_type": "call" }, { "api_name": "py3Dmol.view", "line_number": 241, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 251, "usage_type": "call" }, { "api_name": "ipywidgets.Dropdown", "line_number": 264, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 271, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 271, "usage_type": "name" }, { "api_name": "seaborn.violinplot", "line_number": 273, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 276, "usage_type": "call" } ]
72923834
# -*- coding: utf-8 -*- import scrapy from scrapy import Request from urllib import parse class SteamSpider(scrapy.Spider): name = 'steam' # allowed_domains = ["lab.scrapyd.cn"] start_urls = ['http://lab.scrapyd.cn/'] def parse(self, response): # 1.获取当前页所有文章列表url,并对文章进行解析 # 2.获取下一页url post_url = response.css("#main .quote.post span:nth-child(2) a::attr(href)").extract() for post_url in post_url: print(post_url) yield Request(url=parse.urljoin(response.url, post_url), callback=self.parse_detail) # main > ol > li.next > a next_url = response.css("#main .page-navigator .next a::attr(href)").extract_first("") if next_url: yield Request(url=parse.urljoin(response.url, next_url), callback=self.parse) def parse_detail(self, response): # 通过CSS选择器获取文章的具体字段 # main > article > h1 > a title = response.css("#main .post .post-title a::text").extract()[0] # main > article > div > p:nth-child(1) content = response.css("#main .post .post-content p::text").extract()[0] # main > article > p > a:nth-child(1) tag_list = response.css("#main .post .tags a::text").extract() print(title) print(content) print(tag_list[0], tag_list[1])
null
demo1/spiders/steam.py
steam.py
py
1,401
python
en
code
null
code-starcoder2
83
[ { "api_name": "scrapy.Spider", "line_number": 7, "usage_type": "attribute" }, { "api_name": "scrapy.Request", "line_number": 18, "usage_type": "call" }, { "api_name": "urllib.parse.urljoin", "line_number": 18, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 18, "usage_type": "name" }, { "api_name": "scrapy.Request", "line_number": 22, "usage_type": "call" }, { "api_name": "urllib.parse.urljoin", "line_number": 22, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 22, "usage_type": "name" } ]
178609921
import argparse import json import os import requests from google.oauth2 import service_account from google.cloud.iot import DeviceManagerClient, types, enums from google.api_core.exceptions import NotFound WOTT_ENDPOINT = os.getenv('WOTT_ENDPOINT', 'https://api.wott.io') PROJECT = 'wott-244904' LOCATION = 'europe-west1' REGISTRY = 'wott_registry' PUBSUB = 'wott-pubsub' def create_client(): # iot.DeviceManagerClient doesn't do this himself, unlike other Google libs. if 'GOOGLE_APPLICATION_CREDENTIALS' in os.environ: with open(os.environ['GOOGLE_APPLICATION_CREDENTIALS']) as key: key_json = json.load(key) credentials = service_account.Credentials.from_service_account_info(key_json) else: credentials = None client = DeviceManagerClient(credentials=credentials) return client def create_registry(client, project_name, location, registry_name, pubsub_topic, ca_cert): location_path = client.location_path(project_name, location) registry_path = client.registry_path(project_name, location, registry_name) try: registry = client.get_device_registry(registry_path) except NotFound: print(f'Registry "{registry_path}" not found, creating.') registry = types.DeviceRegistry( id = registry_name, # name should be empty mqtt_config = types.MqttConfig( mqtt_enabled_state = enums.MqttState.MQTT_ENABLED ), state_notification_config = types.StateNotificationConfig( pubsub_topic_name = f"projects/{project_name}/topics/{pubsub_topic}" ), credentials = [types.RegistryCredential( public_key_certificate=types.PublicKeyCertificate( format=enums.PublicKeyCertificateFormat.X509_CERTIFICATE_PEM, certificate=ca_cert ) )], http_config = types.HttpConfig( http_enabled_state=enums.HttpState.HTTP_DISABLED ) ) registry = client.create_device_registry(location_path, registry) return registry def create_or_update_device(client, project_name, location_name, registry_name, device_id, device_cert): device_name = client.device_path(project_name, location_name, registry_name, 'wott-' + device_id) try: device = client.get_device(device_name) except NotFound: print(f'Creating new device {device_name}') device = types.Device( id='wott-' + device_id, # name should be empty credentials=[ types.DeviceCredential( public_key=types.PublicKeyCredential( format=enums.PublicKeyFormat.ES256_X509_PEM, key=device_cert ) ) ] ) registry_path = client.registry_path(project_name, location_name, registry_name) device = client.create_device(registry_path, device) else: print(f'Updating device {device_name}') device = types.Device( name = device_name, credentials=[ types.DeviceCredential( public_key=types.PublicKeyCredential( format=enums.PublicKeyFormat.ES256_X509_PEM, key=device_cert ) ) ] ) client.update_device(device, types.FieldMask(paths=['credentials'])) return device def get_ca_cert(debug): ca = requests.get(f'{WOTT_ENDPOINT}/v0.2/ca-bundle') if debug: print("[RECEIVED] Get CA Cert: {}".format(ca.status_code)) print("[RECEIVED] Get CA Cert: {}".format(ca.content)) if not ca.ok: print('Failed to get CA...') print(ca.status_code) print(ca.content) return return ca.json()['ca_bundle'] def get_device_cert(device_id, debug): cert_request = requests.get(f'{WOTT_ENDPOINT}/v0.2/device-cert/{device_id}') if debug: print("[RECEIVED] Get CA Cert: {}".format(cert_request.status_code)) print("[RECEIVED] Get CA Cert: {}".format(cert_request.content)) if not cert_request.ok: print('Failed to get CA...') print(cert_request.status_code) print(cert_request.content) return return cert_request.content if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--project', required=True, help="IoT Project name.") parser.add_argument( '--location', required=True, help="IoT location region.") parser.add_argument( '--registry', required=False, default=REGISTRY, help="IoT Registry name.") parser.add_argument( '--pubsub', required=False, default=PUBSUB, help="pubsub name.") parser.add_argument( '--device', required=False, default='', help="device id.") parser.add_argument( '--debug', action="store_true", help="debug mode.") args = parser.parse_args() ca_cert = get_ca_cert(args.debug) client = create_client() registry = create_registry(client, args.project, args.location, args.registry, args.pubsub, ca_cert) device_cert = get_device_cert(args.device, args.debug) device = create_or_update_device(client, args.project, args.location, args.registry, args.device, device_cert)
null
wott.py
wott.py
py
5,549
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.getenv", "line_number": 12, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 22, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 23, "usage_type": "call" }, { "api_name": "google.oauth2.service_account.Credentials.from_service_account_info", "line_number": 24, "usage_type": "call" }, { "api_name": "google.oauth2.service_account.Credentials", "line_number": 24, "usage_type": "attribute" }, { "api_name": "google.oauth2.service_account", "line_number": 24, "usage_type": "name" }, { "api_name": "google.cloud.iot.DeviceManagerClient", "line_number": 28, "usage_type": "call" }, { "api_name": "google.api_core.exceptions.NotFound", "line_number": 37, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.DeviceRegistry", "line_number": 39, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 39, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.MqttConfig", "line_number": 42, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 42, "usage_type": "name" }, { "api_name": "google.cloud.iot.enums.MqttState", "line_number": 43, "usage_type": "attribute" }, { "api_name": "google.cloud.iot.enums", "line_number": 43, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.StateNotificationConfig", "line_number": 45, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 45, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.RegistryCredential", "line_number": 48, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 48, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.PublicKeyCertificate", "line_number": 49, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 49, "usage_type": "name" }, { "api_name": "google.cloud.iot.enums.PublicKeyCertificateFormat", "line_number": 50, "usage_type": "attribute" }, { "api_name": "google.cloud.iot.enums", "line_number": 50, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.HttpConfig", "line_number": 54, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 54, "usage_type": "name" }, { "api_name": "google.cloud.iot.enums.HttpState", "line_number": 55, "usage_type": "attribute" }, { "api_name": "google.cloud.iot.enums", "line_number": 55, "usage_type": "name" }, { "api_name": "google.api_core.exceptions.NotFound", "line_number": 66, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.Device", "line_number": 68, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 68, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.DeviceCredential", "line_number": 72, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 72, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.PublicKeyCredential", "line_number": 73, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 73, "usage_type": "name" }, { "api_name": "google.cloud.iot.enums.PublicKeyFormat", "line_number": 74, "usage_type": "attribute" }, { "api_name": "google.cloud.iot.enums", "line_number": 74, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.Device", "line_number": 84, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 84, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.DeviceCredential", "line_number": 87, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 87, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.PublicKeyCredential", "line_number": 88, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 88, "usage_type": "name" }, { "api_name": "google.cloud.iot.enums.PublicKeyFormat", "line_number": 89, "usage_type": "attribute" }, { "api_name": "google.cloud.iot.enums", "line_number": 89, "usage_type": "name" }, { "api_name": "google.cloud.iot.types.FieldMask", "line_number": 95, "usage_type": "call" }, { "api_name": "google.cloud.iot.types", "line_number": 95, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 100, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 116, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 133, "usage_type": "call" } ]
165654780
# -*- coding: utf-8 -*- # @Time : 2018-04-05 16:26 # @Author : Dingzh.tobest # 文件描述 :计算指数相关数据的算法 from scada.db_data.index_db_data import * from scada.util import global_var as gv import pandas as pd import json # 计算指数PE数据 def compute_index_pe_ttm(index_code, trade_date): df = get_index_cons(index_code, trade_date) symbols = ",".join(df['symbol']) df_data = get_daily_stock_info(symbols, trade_date) df_data.set_index('symbol', inplace=True) index_pe_ttm = df_data[df_data.pe_ttm > 0]['pe_ttm'].sum() / len(df_data[df_data.pe_ttm > 0]) return index_pe_ttm, len(df_data[df_data.pe_ttm > 0]), len(df_data[df_data.pe_ttm <= 0]) # 获取从开始日期至今的指数PE数据 def get_index_pe_ttm(index_code, start_date): import time today = time.strftime('%Y%m%d', time.localtime(time.time())) trade_date_df = get_trade_cal(start_date, today) ittm_pe_df = pd.DataFrame(columns=['code', 'date', 'pe_ttm', 'profit', 'loss']) for index, row in trade_date_df.iterrows(): index_pe_ttm, profit, loss = compute_index_pe_ttm(index_code, row['trade_date']) trade_date = row['trade_date'][0:4] + "-" + row['trade_date'][4:6] + "-" + row['trade_date'][6:8] if index_code.endswith('.SH'): index_code_change = index_code[:6] + ".XSHG" else: index_code_change = index_code[:6] + ".XSHE" ittm_pe_df = ittm_pe_df.append( {"code": index_code_change, "date": trade_date, "pe_ttm": index_pe_ttm, "profit": profit,"loss": loss}, ignore_index=True) print(index_code_change + "==>" + trade_date + " : " + str(index_pe_ttm)) gv.getMongoConnection().indexdata.pe_ttm.insert(json.loads(ittm_pe_df.to_json(orient='records')))
null
scada/algo_module/index_data_algo.py
index_data_algo.py
py
1,786
python
en
code
null
code-starcoder2
83
[ { "api_name": "time.strftime", "line_number": 24, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 24, "usage_type": "call" }, { "api_name": "time.time", "line_number": 24, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 27, "usage_type": "call" }, { "api_name": "scada.util.global_var.getMongoConnection", "line_number": 40, "usage_type": "call" }, { "api_name": "scada.util.global_var", "line_number": 40, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 40, "usage_type": "call" } ]
499899601
""" Loader for SDSS individual spectrum files: spec_ files. .. _spec: https://data.sdss.org/datamodel/files/BOSS_SPECTRO_REDUX/RUN2D/spectra/PLATE4/spec.html """ import os import re import _io from astropy.io import fits from astropy.table import Table from astropy.wcs import WCS from astropy.units import Unit, def_unit from astropy.nddata import StdDevUncertainty, InverseVariance import numpy as np from ...spectra import Spectrum1D from ..registers import data_loader, custom_writer from ..parsing_utils import read_fileobj_or_hdulist __all__ = ['spec_identify', 'spSpec_identify', 'spec_loader', 'spSpec_loader'] _spSpec_pattern = re.compile(r'spSpec-\d{5}-\d{4}-\d{3}\.fit') _spec_pattern = re.compile(r'spec-\d{4,5}-\d{5}-\d{4}\.fits') def spec_identify(origin, *args, **kwargs): """ Check whether given input is FITS and has SDSS-III/IV spec type BINTABLE in first extension. This is used for Astropy I/O Registry. """ # Test if fits has extension of type BinTable and check for spec-specific keys with read_fileobj_or_hdulist(*args, **kwargs) as hdulist: return (hdulist[0].header.get('TELESCOP') == 'SDSS 2.5-M' and hdulist[0].header.get('FIBERID', 0) > 0 and len(hdulist) > 1 and (isinstance(hdulist[1], fits.BinTableHDU) and hdulist[1].header.get('TTYPE3') == 'ivar')) def spSpec_identify(origin, *args, **kwargs): """ Check whether given input is FITS with SDSS-I/II spSpec tyamepe data. This is used for Astropy I/O Registry. """ # Test telescope keyword and check if primary HDU contains data # consistent with spSpec format with read_fileobj_or_hdulist(*args, **kwargs) as hdulist: return (hdulist[0].header.get('TELESCOP') == 'SDSS 2.5-M' and hdulist[0].header.get('FIBERID', 0) > 0 and isinstance(hdulist[0].data, np.ndarray) and hdulist[0].data.shape[0] == 5) def spPlate_identify(origin, *args, **kwargs): """ Check whether given input is FITS with SDSS spPlate fibre spectral data. This is used for Astropy I/O Registry. """ # Test telescope keyword and check if primary HDU contains data # consistent with spSpec format with read_fileobj_or_hdulist(*args, **kwargs) as hdulist: return (hdulist[0].header.get('TELESCOP') == 'SDSS 2.5-M' and hdulist[0].header.get('FIBERID', 0) <= 0 and isinstance(hdulist[0].data, np.ndarray) and hdulist[0].data.shape[0] > 5) @data_loader(label="SDSS-III/IV spec", identifier=spec_identify, extensions=['fits']) def spec_loader(file_obj, **kwargs): """ Loader for SDSS-III/IV optical spectrum "spec" files. Parameters ---------- file_obj: str, file-like, or HDUList FITS file name, object (provided from name by Astropy I/O Registry), or HDUList (as resulting from astropy.io.fits.open()). Returns ------- data: Spectrum1D The spectrum that is represented by the 'loglam' (wavelength) and 'flux' data columns in the BINTABLE extension of the FITS `file_obj`. """ with read_fileobj_or_hdulist(file_obj, **kwargs) as hdulist: header = hdulist[0].header name = header.get('NAME') meta = {'header': header} bunit = header.get('BUNIT', '1e-17 erg / (Angstrom cm2 s)') if 'Ang' in bunit and 'strom' not in bunit: bunit = bunit.replace('Ang', 'Angstrom') flux_unit = Unit(bunit) # spectrum is in HDU 1 flux = hdulist[1].data['flux'] * flux_unit uncertainty = InverseVariance(hdulist[1].data['ivar'] / flux_unit**2) dispersion = 10**hdulist[1].data['loglam'] dispersion_unit = Unit('Angstrom') mask = hdulist[1].data['and_mask'] != 0 return Spectrum1D(flux=flux, spectral_axis=dispersion * dispersion_unit, uncertainty=uncertainty, meta=meta, mask=mask) @data_loader(label="SDSS-I/II spSpec", identifier=spSpec_identify, extensions=['fit', 'fits']) def spSpec_loader(file_obj, **kwargs): """ Loader for SDSS-I/II spSpec files. Parameters ---------- file_obj: str, file-like, or HDUList FITS file name, object (provided from name by Astropy I/O Registry), or HDUList (as resulting from astropy.io.fits.open()). Returns ------- data: Spectrum1D The spectrum that is represented by the wavelength solution from the header WCS and data array of the primary HDU. """ with read_fileobj_or_hdulist(file_obj, **kwargs) as hdulist: header = hdulist[0].header # name = header.get('NAME') meta = {'header': header} wcs = WCS(header).dropaxis(1) bunit = header.get('BUNIT', '1e-17 erg / (Angstrom cm2 s)') # fix mutilated flux unit bunit = bunit.replace('/cm/s/Ang', '/ (Angstrom cm2 s)') if 'Ang' in bunit and 'strom' not in bunit: bunit = bunit.replace('Ang', 'Angstrom') flux_unit = Unit(bunit) flux = hdulist[0].data[0, :] * flux_unit uncertainty = StdDevUncertainty(hdulist[0].data[2, :] * flux_unit) # dispersion along NAXIS1 from the WCS dispersion = wcs.pixel_to_world(np.arange(flux.shape[0])) # convert out of logspace (default for spSpec/spPlate spectra)? if header.get('DC-Flag', 1) == 1: dispersion = 10**dispersion dispersion_unit = Unit('Angstrom') mask = hdulist[0].data[3, :] != 0 return Spectrum1D(flux=flux, spectral_axis=dispersion * dispersion_unit, uncertainty=uncertainty, meta=meta, mask=mask) @data_loader(label="SDSS spPlate", identifier=spPlate_identify, extensions=['fits']) def spPlate_loader(file_obj, limit=None, **kwargs): """ Loader for SDSS spPlate files, reading flux spectra from all fibres into single array. Parameters ---------- file_obj: str, file-like, or HDUList FITS file name, object (provided from name by Astropy I/O Registry), or HDUList (as resulting from astropy.io.fits.open()). limit : :class:`int`, optional If set, only return the first `limit` spectra in `flux` array. Returns ------- Spectrum1D The spectra represented by the wavelength solution from the header WCS and the data array of the primary HDU (typically 640 along dimension 1). """ with read_fileobj_or_hdulist(file_obj, **kwargs) as hdulist: header = hdulist[0].header meta = {'header': header} wcs = WCS(header).dropaxis(1) if limit is None: limit = header['NAXIS2'] bunit = header.get('BUNIT', '1e-17 erg / (Angstrom cm2 s)') if 'Ang' in bunit and 'strom' not in bunit: bunit = bunit.replace('Ang', 'Angstrom') flux_unit = Unit(bunit) flux = hdulist[0].data[0:limit, :] * flux_unit uncertainty = InverseVariance(hdulist[1].data[0:limit, :] / flux_unit**2) # dispersion along NAXIS1 from the WCS wcs = WCS(header).dropaxis(1) dispersion = wcs.pixel_to_world(np.arange(flux.shape[-1])) # convert out of logspace (default for spSpec/spPlate spectra)? if header.get('DC-Flag', 1) == 1: dispersion = 10**dispersion dispersion_unit = Unit('Angstrom') mask = hdulist[2].data[0:limit, :] != 0 meta['plugmap'] = Table.read(hdulist[5])[0:limit] return Spectrum1D(flux=flux, spectral_axis=dispersion*dispersion_unit, uncertainty=uncertainty, meta=meta, mask=mask)
null
specutils/io/default_loaders/sdss.py
sdss.py
py
7,686
python
en
code
null
code-starcoder2
83
[ { "api_name": "re.compile", "line_number": 25, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 26, "usage_type": "call" }, { "api_name": "parsing_utils.read_fileobj_or_hdulist", "line_number": 35, "usage_type": "call" }, { "api_name": "astropy.io.fits.BinTableHDU", "line_number": 39, "usage_type": "attribute" }, { "api_name": "astropy.io.fits", "line_number": 39, "usage_type": "name" }, { "api_name": "parsing_utils.read_fileobj_or_hdulist", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 53, "usage_type": "attribute" }, { "api_name": "parsing_utils.read_fileobj_or_hdulist", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 67, "usage_type": "attribute" }, { "api_name": "parsing_utils.read_fileobj_or_hdulist", "line_number": 88, "usage_type": "call" }, { "api_name": "astropy.units.Unit", "line_number": 96, "usage_type": "call" }, { "api_name": "astropy.nddata.InverseVariance", "line_number": 101, "usage_type": "call" }, { "api_name": "astropy.units.Unit", "line_number": 104, "usage_type": "call" }, { "api_name": "spectra.Spectrum1D", "line_number": 108, "usage_type": "call" }, { "api_name": "registers.data_loader", "line_number": 71, "usage_type": "call" }, { "api_name": "parsing_utils.read_fileobj_or_hdulist", "line_number": 129, "usage_type": "call" }, { "api_name": "astropy.wcs.WCS", "line_number": 133, "usage_type": "call" }, { "api_name": "astropy.units.Unit", "line_number": 140, "usage_type": "call" }, { "api_name": "astropy.nddata.StdDevUncertainty", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 146, "usage_type": "call" }, { "api_name": "astropy.units.Unit", "line_number": 150, "usage_type": "call" }, { "api_name": "spectra.Spectrum1D", "line_number": 154, "usage_type": "call" }, { "api_name": "registers.data_loader", "line_number": 112, "usage_type": "call" }, { "api_name": "parsing_utils.read_fileobj_or_hdulist", "line_number": 178, "usage_type": "call" }, { "api_name": "astropy.wcs.WCS", "line_number": 181, "usage_type": "call" }, { "api_name": "astropy.units.Unit", "line_number": 188, "usage_type": "call" }, { "api_name": "astropy.nddata.InverseVariance", "line_number": 190, "usage_type": "call" }, { "api_name": "astropy.wcs.WCS", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 194, "usage_type": "call" }, { "api_name": "astropy.units.Unit", "line_number": 198, "usage_type": "call" }, { "api_name": "astropy.table.Table.read", "line_number": 201, "usage_type": "call" }, { "api_name": "astropy.table.Table", "line_number": 201, "usage_type": "name" }, { "api_name": "spectra.Spectrum1D", "line_number": 203, "usage_type": "call" }, { "api_name": "registers.data_loader", "line_number": 158, "usage_type": "call" } ]
456618904
# Copyright (c) 2014, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. import unittest from cybox.test import EntityTestCase from stix.extensions.identity.ciq_identity_3_0 import CIQIdentity3_0Instance class CIQIdentity3_0InstanceTests(EntityTestCase, unittest.TestCase): klass = CIQIdentity3_0Instance _full_dict = {'id': 'example:ciqidentity-1', 'name': 'John Smith', 'roles': ['Programmer', 'Analyst'], 'specification': {'party_name': {'name_lines': [{'value': 'Foo'}, {'value': 'Bar'}], 'organisation_names': [{'name_elements': [{'element_type': 'FullName', 'value': 'Foo Inc.'}], 'subdivision_names': [{'type': 'Department', 'value': 'InfoSec'}]}], 'person_names': [{'name_elements': [{'value': 'John Smith'}]}, {'name_elements': [{'value': 'Jill Smith'}]}]}}, 'xsi:type': 'ciqIdentity:CIQIdentity3.0InstanceType'} if __name__ == "__main__": unittest.main()
null
stix-1.1.1.0/stix/test/extensions/identity/ciq_identity_3_0_test.py
ciq_identity_3_0_test.py
py
1,424
python
en
code
null
code-starcoder2
83
[ { "api_name": "cybox.test.EntityTestCase", "line_number": 9, "usage_type": "name" }, { "api_name": "unittest.TestCase", "line_number": 9, "usage_type": "attribute" }, { "api_name": "stix.extensions.identity.ciq_identity_3_0.CIQIdentity3_0Instance", "line_number": 10, "usage_type": "name" }, { "api_name": "unittest.main", "line_number": 26, "usage_type": "call" } ]
240944477
from dotenv import load_dotenv import os from selenium import webdriver from selenium.webdriver.chrome.options import Options as ChromeOptions from selenium.webdriver.firefox.options import Options as FirefoxOptions from selenium.webdriver.safari.options import Options as SafariOptions from selenium.webdriver.edge.options import Options as EdgeOptions from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException from threading import Thread import time # This array 'capabilities' defines the capabilities browser, device and OS combinations where the test will run load_dotenv() BUILD_NAME = "browserstack-mypkfitTest" capabilities = [ { "browserName": "chrome", "browserVersion": "103.0", "os": "Windows", "osVersion": "11", "sessionName": "ChromeBrowser", # test name "buildName": BUILD_NAME, # Your tests will be organized within this build }, { "browserName": "firefox", "browserVersion": "102.0", "os": "Windows", "osVersion": "10", "sessionName": "FirefoxBrowser", "buildName": BUILD_NAME, }, ] def get_browser_option(browser): switcher = { "chrome": ChromeOptions(), "firefox": FirefoxOptions(), "edge": EdgeOptions(), "safari": SafariOptions(), } return switcher.get(browser, ChromeOptions()) # run_session function searches for 'BrowserStack' on duckduckgo.com def run_session(cap): cap["userName"] = os.environ.get("BROWSERSTACK_USERNAME") or "balrajbemainboin_ZgOJfw" cap["accessKey"] = os.environ.get("BROWSERSTACK_ACCESS_KEY") or "dPV5U2AqsKuLbBpvwqfT" options = get_browser_option(cap["browserName"].lower()) options.set_capability("browserName", cap["browserName"].lower()) options.set_capability("bstack:options", cap) driver = webdriver.Remote( command_executor="https://hub.browserstack.com/wd/hub", options=options ) driver.get("https://sg-prd-hema.mypkfit.com") if not "myPKFiT" in driver.title: raise Exception("Unable to load myPKFiT page!") driver.maximize_window() elem = driver.find_element(By.LINK_TEXT, "India (English)") elem.click() driver.find_element_by_css_selector("button[ng-click='vm.confirm(vm.selectedCountry)']").click() time.sleep(20) driver.find_element_by_css_selector("button[ng-click='vm.close()']").click() try: WebDriverWait(driver, 5).until(EC.title_contains("myPKFiT")) driver.execute_script( 'browserstack_executor: {"action": "setSessionStatus", "arguments": {"status":"passed", "reason": "Title matched!"}}' ) except TimeoutException: driver.execute_script( 'browserstack_executor: {"action": "setSessionStatus", "arguments": {"status":"failed", "reason": "Title not matched"}}' ) print(driver.title) driver.quit() # The Thread function takes run_session function and each set of capability from the caps array as an argument to run each session parallelly for cap in capabilities: Thread(target=run_session, args=(cap,)).start()
null
samplebrowsertest.py
samplebrowsertest.py
py
3,262
python
en
code
null
code-starcoder2
83
[ { "api_name": "dotenv.load_dotenv", "line_number": 15, "usage_type": "call" }, { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver.firefox.options.Options", "line_number": 38, "usage_type": "call" }, { "api_name": "selenium.webdriver.edge.options.Options", "line_number": 39, "usage_type": "call" }, { "api_name": "selenium.webdriver.safari.options.Options", "line_number": 40, "usage_type": "call" }, { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 42, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 45, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 45, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 46, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 46, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.Remote", "line_number": 50, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 50, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.LINK_TEXT", "line_number": 57, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 57, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 60, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 63, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.title_contains", "line_number": 63, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 63, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.TimeoutException", "line_number": 67, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 75, "usage_type": "call" } ]
474958326
import docx from diot import Diot from docx.shared import Inches, Pt from docx.enum.dml import MSO_COLOR_TYPE, MSO_THEME_COLOR from docx.enum.text import WD_ALIGN_PARAGRAPH, WD_LINE_SPACING, WD_BREAK_TYPE, WD_COLOR, WD_TAB_ALIGNMENT, WD_TAB_LEADER, WD_UNDERLINE from docx.enum.style import WD_STYLE, WD_STYLE_TYPE from docx.enum.section import WD_ORIENT, WD_SECTION from docx.enum.table import WD_TABLE_ALIGNMENT, WD_TABLE_DIRECTION from docx.enum.shape import WD_INLINE_SHAPE_TYPE from os import path from runpy import run_path from bioprocs.utils import log2pyppl infile = {{i.infile | quote}} outfile = {{o.outfile | quote}} codefiles = {{i.codes | repr}} error = {{args.error | repr}} bcode = {{args.bcode | repr}} if not isinstance(bcode, list): bcode = [bcode] bcode = '\n'.join(bcode) + '\n' acode = {{args.acode | repr}} if not isinstance(acode, list): acode = [acode] acode = '\n'.join(acode) + '\n' section = {{args.section | repr}} if section: section['type'] = section.get('type', 'NEW_PAGE') section['orient'] = section.get('orient', 'PORTRAIT') section['margin'] = section.get('margin', [36] * 4) if isinstance(section['margin'], int): section['margin'] = [section['margin']] * 4 elif len(section['margin']) == 2: section['margin'].extend(section['margin']) elif len(section['margin']) == 3: section['margin'].append(section['margin'][1]) def doSection(doc, section = section, new = True): if not section: return sec = doc.add_section() if new else doc.sections[0] sec.type = getattr(WD_SECTION, section['type']) sec.orientation = getattr(WD_ORIENT, section['orient']) _new_width, _new_height = sec.page_height, sec.page_width sec.page_width, sec.page_height = _new_width, _new_height sec.top_margin, sec.right_margin, sec.bottom_margin, sec.left_margin = (Pt(x) for x in section['margin']) return sec if infile and path.isfile(infile): doc = docx.Document(infile) # do section sec = doSection(doc, new = True) exec(bcode, globals()) else: doc = docx.Document() sec = doSection(doc, new = False) if infile: doc.add_heading(infile, 0) exec(bcode, globals()) for codefile in codefiles: log2pyppl('Doing: {}'.format(path.basename(codefile)), level = 'Info') try: _ = run_path(codefile, globals()) except Exception as ex: if error == 'exit': raise else: log2pyppl('Failed to run: {}'.format(codefile), level = 'Error') for line in str(ex).splitlines(): log2pyppl('\t' + line) exec(acode, globals()) doc.save(outfile)
null
bioprocs/scripts/docx/pDocx.py
pDocx.py
py
2,509
python
en
code
null
code-starcoder2
83
[ { "api_name": "docx.enum.section.WD_SECTION", "line_number": 42, "usage_type": "argument" }, { "api_name": "docx.enum.section.WD_ORIENT", "line_number": 43, "usage_type": "argument" }, { "api_name": "docx.shared.Pt", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 49, "usage_type": "call" }, { "api_name": "os.path", "line_number": 49, "usage_type": "name" }, { "api_name": "docx.Document", "line_number": 50, "usage_type": "call" }, { "api_name": "docx.Document", "line_number": 55, "usage_type": "call" }, { "api_name": "bioprocs.utils.log2pyppl", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "name" }, { "api_name": "runpy.run_path", "line_number": 64, "usage_type": "call" }, { "api_name": "bioprocs.utils.log2pyppl", "line_number": 69, "usage_type": "call" }, { "api_name": "bioprocs.utils.log2pyppl", "line_number": 71, "usage_type": "call" } ]
504289676
# coding=UTF8 import requests URL = "https://www.madailicai.com/p2p/service/" def count_for_each(product_type, service_type): params = {"productType": product_type} result = requests.head(url=URL + service_type, params=params) return result.headers.get('X-Record-Count') def list_of_each(start, size, product_type, service_type): params = {"from": start, "productType": product_type, "size": size} result = requests.get(url=URL + service_type, params=params) return result.json() def count_for_car_loan(): all_size = count_for_each("CAR_LOAN_REQUEST", "carLoans") sum_of_money = 0 for each_page in range(0, int(all_size), 10): one_page = list_of_each(each_page, 10, "CAR_LOAN_REQUEST", "carLoans") for each_item in one_page: sum_of_money += each_item['currentInvestmentAmount'] sum_of_money = sum_of_money return sum_of_money print("融车宝: ", count_for_car_loan()) def count_for_loans(): all_size = count_for_each("", "products") sum_of_money = 0 for each_page in range(0, int(all_size), 10): one_page = list_of_each(each_page, 10, "", "products") for each_item in one_page: sum_of_money += each_item['currentInvestmentAmount'] sum_of_money = sum_of_money return sum_of_money print("腾信宝: ", count_for_loans()) def count_for_enterpriseLoans(): all_size = count_for_each("ENTERPRISE_ACCOUNTS_RECEIVABLE", "enterpriseLoans") sum_of_money = 0 for each_page in range(0, int(all_size), 10): one_page = list_of_each(each_page, 10, "ENTERPRISE_ACCOUNTS_RECEIVABLE", "enterpriseLoans") for each_item in one_page: sum_of_money += each_item['currentInvestmentAmount'] sum_of_money = sum_of_money return sum_of_money print("融企宝: ", count_for_enterpriseLoans()) all_money = count_for_loans() + count_for_car_loan() + count_for_enterpriseLoans() print("总放款金额: ", all_money)
null
week-1/zhangqing.py
zhangqing.py
py
1,982
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.head", "line_number": 10, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 16, "usage_type": "call" } ]
463580579
from datetime import datetime import pytest from unittest.mock import MagicMock from pytz import utc from sccc_contestbot.models import Contest, ContestData from sccc_contestbot.contest_manager import RenewalFlag from .conftest import temp_db_data def test_renewal_contest(contest_manager, db_session, event_loop): """ renewal_contest 테스트 """ # renewal_call_back을 임시로 Mock로 바꿉니다. temporary_call_back = contest_manager.renewal_call_back # 컨테스트 추가 테스트 contest_manager.renewal_call_back = MagicMock() test_contest = ContestData("A", "A", datetime.now(utc), "A") event_loop.run_until_complete(contest_manager.renewal_contest(test_contest)) contest_manager.renewal_call_back.assert_called_with( test_contest, RenewalFlag.CREATED ) assert ( db_session.query(Contest).filter(Contest.contest_id == "A").first() is not None ) # 똑같은 컨테스트 중복 테스트 contest_manager.renewal_call_back = MagicMock() event_loop.run_until_complete(contest_manager.renewal_contest(test_contest)) assert not contest_manager.renewal_call_back.called # 콘테스트 변경 테스트 new_contest = ContestData("A", "B", datetime.now(utc), "BB") event_loop.run_until_complete(contest_manager.renewal_contest(new_contest)) contest_manager.renewal_call_back.assert_called_with( new_contest, RenewalFlag.CHANGED ) db_session.query(Contest).filter(Contest.contest_id == "A").delete() db_session.commit() db_session.close() contest_manager.renewal_call_back = temporary_call_back def test_delete_contest(contest_manager, db_session, event_loop): """ 콘테스트 삭제 테스트 """ test_data = ContestData("A", "A", datetime.now(utc), "A") # 데이터가 없으니 삭제되지 않고, 예외도 뜨면 안된다. event_loop.run_until_complete(contest_manager.delete_contest(test_data)) with temp_db_data(db_session, (Contest(test_data),)): event_loop.run_until_complete(contest_manager.delete_contest(test_data)) assert ( db_session.query(Contest).filter(Contest.contest_id == "A").first() is None ) def test_is_latest(contest_manager, db_session_maker, event_loop): """ 특정한 콘테스트가 최신인지 확인하는 기능을 테스트합니다. """ test_contest = ContestData("ID", "A", datetime.now(utc), "B") assert False == event_loop.run_until_complete( contest_manager.is_latest(test_contest) ) # 첫번째 세션, 콘테스트 추가 후, 검사 db_session = db_session_maker() db_session.add(Contest(test_contest)) db_session.commit() assert True == event_loop.run_until_complete( contest_manager.is_latest(test_contest) ) db_session.close() # 두번째 세션, 콘테스트 변경 후, 검사 db_session = db_session_maker() changed_contest = ContestData("ID", "AA", datetime.now(utc), "BB") db_session.query(Contest).filter(Contest.contest_id == "ID").update( { Contest.contest_name: changed_contest.contest_name, Contest.start_date: changed_contest.start_date, Contest.URL: changed_contest.URL, Contest.hash_value: changed_contest.hash_value, } ) db_session.commit() assert test_contest.contest_name != changed_contest.contest_name assert False == event_loop.run_until_complete( contest_manager.is_latest(test_contest) ) db_session.query(Contest).filter(Contest.contest_id == "ID").delete() db_session.commit() db_session.close()
null
tests/test_contest_manager.py
test_contest_manager.py
py
3,678
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.mock.MagicMock", "line_number": 20, "usage_type": "call" }, { "api_name": "sccc_contestbot.models.ContestData", "line_number": 22, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 22, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 22, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 22, "usage_type": "name" }, { "api_name": "sccc_contestbot.contest_manager.RenewalFlag.CREATED", "line_number": 26, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.contest_manager.RenewalFlag", "line_number": 26, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 29, "usage_type": "argument" }, { "api_name": "sccc_contestbot.models.Contest.contest_id", "line_number": 29, "usage_type": "attribute" }, { "api_name": "unittest.mock.MagicMock", "line_number": 34, "usage_type": "call" }, { "api_name": "sccc_contestbot.models.ContestData", "line_number": 39, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 39, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 39, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 39, "usage_type": "name" }, { "api_name": "sccc_contestbot.contest_manager.RenewalFlag.CHANGED", "line_number": 42, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.contest_manager.RenewalFlag", "line_number": 42, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 45, "usage_type": "argument" }, { "api_name": "sccc_contestbot.models.Contest.contest_id", "line_number": 45, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.ContestData", "line_number": 57, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 57, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 57, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 57, "usage_type": "name" }, { "api_name": "conftest.temp_db_data", "line_number": 62, "usage_type": "call" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 62, "usage_type": "call" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 65, "usage_type": "argument" }, { "api_name": "sccc_contestbot.models.Contest.contest_id", "line_number": 65, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.ContestData", "line_number": 73, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 73, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 73, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 73, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 80, "usage_type": "call" }, { "api_name": "sccc_contestbot.models.ContestData", "line_number": 92, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 92, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 92, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 92, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 93, "usage_type": "argument" }, { "api_name": "sccc_contestbot.models.Contest.contest_id", "line_number": 93, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.Contest.contest_name", "line_number": 95, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 95, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest.start_date", "line_number": 96, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 96, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest.URL", "line_number": 97, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 97, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest.hash_value", "line_number": 98, "usage_type": "attribute" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 98, "usage_type": "name" }, { "api_name": "sccc_contestbot.models.Contest", "line_number": 109, "usage_type": "argument" }, { "api_name": "sccc_contestbot.models.Contest.contest_id", "line_number": 109, "usage_type": "attribute" } ]
543168364
# code taken and modified from: # https://github.com/aaron-xichen/pytorch-playground/blob/master/cifar/model.py import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo from collections import OrderedDict model_urls = { 'cifar10': 'http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar10-d875770b.pth', } classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') class CIFAR(nn.Module): def __init__(self, features, n_channel, num_classes): super(CIFAR, self).__init__() assert isinstance(features, nn.Sequential), type(features) self.features = features self.classifier = nn.Sequential( nn.Linear(n_channel, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for i, v in enumerate(cfg): if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: padding = v[1] if isinstance(v, tuple) else 1 out_channels = v[0] if isinstance(v, tuple) else v conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=padding) if batch_norm: layers += [conv2d, nn.BatchNorm2d(out_channels, affine=False), nn.ReLU()] else: layers += [conv2d, nn.ReLU()] in_channels = out_channels return nn.Sequential(*layers) def cifar10(dev_id=None): n_channel = 128 if dev_id is None: dev_id = "cuda" if torch.cuda.is_available() else "cpu" cfg = [n_channel, n_channel, 'M', 2*n_channel, 2*n_channel, 'M', 4*n_channel, 4*n_channel, 'M', (8*n_channel, 0), 'M'] layers = make_layers(cfg, batch_norm=True) model = CIFAR(layers, n_channel=8*n_channel, num_classes=10) m = model_zoo.load_url(model_urls['cifar10'], model_dir='.', map_location=dev_id) model.load_state_dict(m,) return model
null
oppel/demos/cifar10model.py
cifar10model.py
py
2,076
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.nn.Module", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 21, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 39, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 43, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 47, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 49, "usage_type": "name" }, { "api_name": "torch.cuda.is_available", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 57, "usage_type": "attribute" }, { "api_name": "torch.utils.model_zoo.load_url", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.utils.model_zoo", "line_number": 63, "usage_type": "name" } ]
556508327
import logging import numpy as np from sklearn.linear_model import LinearRegression, ElasticNet, Ridge from sklearn.utils import check_random_state from csrank.objectranking.object_ranker import ObjectRanker from csrank.tunable import Tunable from csrank.util import normalize, print_dictionary from ..dataset_reader.objectranking.util import \ complete_linear_regression_dataset __all__ = ['ExpectedRankRegression'] class ExpectedRankRegression(ObjectRanker, Tunable): _tunable = None def __init__(self, n_features, alpha=0.0, l1_ratio=0.5, tol=1e-4, normalize=True, fit_intercept=True, random_state=None, **kwargs): """Create an expected rank regression model. This model normalizes the ranks to [0, 1] and treats them as regression target. For α = 0 we employ simple linear regression. For α > 0 the model becomes ridge regression (when l1_ratio = 0) or elastic net (when l1_ratio > 0). Parameters ---------- n_features : int Number of features of the object space alpha : float, optional Regularization strength l1_ratio : float, optional Ratio between pure L2 (=0) or pure L1 (=1) regularization. tol : float, optional Optimization tolerance normalize : bool, optional If True, the regressors will be normalized before fitting. fit_intercept : bool, optional If True, the linear model will also fit an intercept. random_state : int, RandomState instance or None, optional Seed of the pseudorandom generator or a RandomState instance **kwargs Keyword arguments for the algorithms References ---------- .. [1] Kamishima, T., Kazawa, H., & Akaho, S. (2005, November). "Supervised ordering-an empirical survey.", Fifth IEEE International Conference on Data Mining. """ self.normalize = normalize self.n_features = n_features self.alpha = alpha self.l1_ratio = l1_ratio self.tol = tol self.logger = logging.getLogger('ERR') self.fit_intercept = fit_intercept self.random_state = check_random_state(random_state) def fit(self, X, Y, **kwargs): self.logger.debug('Creating the Dataset') X_train, Y_train = complete_linear_regression_dataset(X, Y) assert X_train.shape[1] == self.n_features self.logger.debug('Finished the Dataset') if self.alpha == 0: self.model = LinearRegression(normalize=self.normalize, fit_intercept=self.fit_intercept) else: if self.l1_ratio >= 0.01: self.model = ElasticNet(alpha=self.alpha, l1_ratio=self.l1_ratio, normalize=self.normalize, tol=self.tol, fit_intercept=self.fit_intercept, random_state=self.random_state) else: self.model = Ridge(alpha=self.alpha, normalize=self.normalize, tol=self.tol, fit_intercept=self.fit_intercept, random_state=self.random_state) self.logger.debug('Finished Creating the model, now fitting started') self.model.fit(X_train, Y_train) self.weights = self.model.coef_.flatten() if (self.fit_intercept): self.weights = np.append(self.weights, self.model.intercept_) self.logger.debug('Fitting Complete') def _predict_scores_fixed(self, X, **kwargs): n_instances, n_objects, n_features = X.shape self.logger.info( "For Test instances {} objects {} features {}".format(n_instances, n_objects, n_features)) scores = np.empty([n_instances, n_objects]) for i, data_test in enumerate(X): assert data_test.shape[1] == self.n_features score = self.model.predict(data_test) * -1 normalize(np.array(score)) scores[i] = score self.logger.info("Done predicting scores") return np.array(scores) def predict_scores(self, X, **kwargs): return super().predict_scores(X, **kwargs) def predict(self, X, **kwargs): return super().predict(X, **kwargs) def predict_pair(self, a, b, **kwargs): score_a = self.model.predict(a, **kwargs) * -1 score_b = self.model.predict(b, **kwargs) * -1 return [score_a / (score_a + score_b), score_b / (score_a + score_b)] def set_tunable_parameters(self, alpha=1.0, l1_ratio=0.5, tol=1e-4, **point): self.tol = tol self.alpha = alpha self.l1_ratio = l1_ratio if len(point) > 0: self.logger.warning('This ranking algorithm does not support' ' tunable parameters' ' called: {}'.format(print_dictionary(point)))
null
csrank/objectranking/expected_rank_regression.py
expected_rank_regression.py
py
5,315
python
en
code
null
code-starcoder2
83
[ { "api_name": "csrank.objectranking.object_ranker.ObjectRanker", "line_number": 16, "usage_type": "name" }, { "api_name": "csrank.tunable.Tunable", "line_number": 16, "usage_type": "name" }, { "api_name": "csrank.util.normalize", "line_number": 54, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 59, "usage_type": "call" }, { "api_name": "sklearn.utils.check_random_state", "line_number": 61, "usage_type": "call" }, { "api_name": "dataset_reader.objectranking.util.complete_linear_regression_dataset", "line_number": 65, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 69, "usage_type": "call" }, { "api_name": "sklearn.linear_model.ElasticNet", "line_number": 74, "usage_type": "call" }, { "api_name": "sklearn.linear_model.Ridge", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 98, "usage_type": "call" }, { "api_name": "csrank.util.normalize", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 105, "usage_type": "call" }, { "api_name": "csrank.util.print_dictionary", "line_number": 125, "usage_type": "call" } ]
512908971
import json class Hotel: def __init__(self, a_name, a_adress, a_description, a_services, a_apartments): self.name = a_name self.adress = a_adress self.description = a_description self.services = a_services self.apartments = a_apartments def to_JSON(self): return json.dumps(self, default=lambda o: o.__dict__, ensure_ascii=False)
null
Model/hotel.py
hotel.py
py
389
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.dumps", "line_number": 13, "usage_type": "call" } ]
132326671
"""solve_problem6.py: Assignment 1, Problem 6. """ __author__ = "Dilawar Singh" __copyright__ = "Copyright 2016, Dilawar Singh " __credits__ = ["NCBS Bangalore"] __license__ = "GNU GPL" __version__ = "1.0.0" __maintainer__ = "Dilawar Singh" __email__ = "[email protected]" __status__ = "Development" import numpy as np import scipy as sp import scipy.integrate as spi import pylab import sys from collections import defaultdict pylab.style.use('seaborn-whitegrid') def prob( t, p): return 1.0 - np.exp(p) def system( init ): # Build system using prob with initial conditions. r = spi.ode( prob ) # y at value t print('\tSetting x(%s) = %s' % (init[1], init[0] )) r.set_integrator( 'lsode' ) r.set_initial_value(init[0], init[1]) return r def main(): t1 = 10 dt = 0.01 # pylab.figure( figsize = (15, 10) ) for j, init in enumerate([ (-1,0), (1, 0), (4, 0) ] ): r = system(init) result, tvec = [], [] while r.successful() and r.t < t1: result.append( r.integrate( r.t + dt ) ) tvec.append( r.t ) pylab.subplot(3, 1, j+1) pylab.plot( tvec, result ) # pylab.yscale( 'symlog' ) title = '(x,t)=(%s, %s)' % init pylab.title( title ) # pylab.tight_layout( ) # pylab.show() pylab.savefig( '%s.png' % sys.argv[0].replace('.', '_') ) if __name__ == '__main__': main()
null
DifferentialEquations2016/Assignment1/solve_problem6.py
solve_problem6.py
py
1,503
python
en
code
null
code-starcoder2
83
[ { "api_name": "pylab.style.use", "line_number": 22, "usage_type": "call" }, { "api_name": "pylab.style", "line_number": 22, "usage_type": "attribute" }, { "api_name": "numpy.exp", "line_number": 25, "usage_type": "call" }, { "api_name": "scipy.integrate.ode", "line_number": 29, "usage_type": "call" }, { "api_name": "scipy.integrate", "line_number": 29, "usage_type": "name" }, { "api_name": "pylab.subplot", "line_number": 46, "usage_type": "call" }, { "api_name": "pylab.plot", "line_number": 47, "usage_type": "call" }, { "api_name": "pylab.title", "line_number": 50, "usage_type": "call" }, { "api_name": "pylab.savefig", "line_number": 53, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 53, "usage_type": "attribute" } ]
241579253
#!/usr/bin/env python # -----------------------\ n------------------------------------- # lexer.py # # ------------------------------------------------------------ import ply.lex as lex from ply.lex import TOKEN import sys from table import Table # List of token names. tokens = ( # KEYWORDS 'IMPORT', 'CLASS', 'INHERITS', 'PUBLIC', 'PRIVATE', 'SEMICOLON', 'COLON', 'ID', 'LSQRBRACKET', 'RSQRBRACKET', 'LPAREN', 'RPAREN', 'LBRACE', 'RBRACE', 'PERIOD', 'MAIN', 'OBJECT', # # DATA TYPES 'CLASS_TYPE', 'INTEGER', 'INTEGER_TYPE', 'BOOL_TYPE', 'STRING_TYPE', 'SELF_TYPE', 'STRING', 'TRUE', 'FALSE', 'MOD', 'TILDA', 'GT', 'LT', 'EQUAL', 'LTEQ', 'GTEQ', 'GETS', 'OR', 'AND', 'NOT', # # LOOP AND CONDITIONAL 'IF', 'THEN', 'ELSE', 'FI', 'WHILE', 'LOOP', 'POOL', 'FOR', 'LET', 'IN', 'SELF', 'BREAK', 'CONTINUE', 'ISVOID', 'NEW', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'COMMA', # At 'AT' ) # reserved Keyword reserved = { 'import' : 'IMPORT', 'class' : 'CLASS', 'inherits' : 'INHERITS', 'public' : 'PUBLIC', 'private' : 'PRIVATE', 'main' : 'MAIN', 'Object' : 'OBJECT', 'while' : 'WHILE', 'loop' : 'LOOP', 'pool' : 'POOL', 'for' : 'FOR', 'let' : 'LET', 'in' : 'IN', 'self' : 'SELF', 'break' : 'BREAK', 'continue' : 'CONTINUE', 'isvoid' : 'ISVOID', 'new' : 'NEW', 'if' : 'IF', 'then' : 'THEN', 'else' : 'ELSE', 'fi' : 'FI', 'and' : 'AND', 'not' : 'NOT', 'or' : 'OR', 'Int' : 'INTEGER_TYPE', 'Bool' : 'BOOL_TYPE', 'String' : 'STRING_TYPE', 'TRUE' : 'TRUE', 'FALSE' : 'FALSE', 'SELF_TYPE' : 'SELF_TYPE', 'CLASS_TYPE' : 'CLASS_TYPE' } # Regular expression rules for simple tokens t_PLUS = r'\+' t_MINUS = r'-' t_TIMES = r'\*' t_DIVIDE = r'/' t_MOD = r'%' t_LPAREN = r'\(' t_RPAREN = r'\)' t_LBRACE = r'\{' t_RBRACE = r'\}' t_LSQRBRACKET = r'\[' t_RSQRBRACKET = r'\]' t_SEMICOLON = r';' t_COLON = r':' t_TILDA = r'~' t_GT = r'>' t_LT = r'<' t_EQUAL = r'=' t_LTEQ = r'<=' t_GTEQ = r'>=' t_GETS = r'<-' t_PERIOD = r'\.' t_COMMA = r',' t_AT = r'@' # A regular expression rule with some action code # REgular expression for Identifier def t_ID(t): r'[a-z_][a-zA-Z_0-9]*' t.type = reserved.get(t.value,'ID') # Check for reserved words return t # Regex for Class Name def t_CLASS_TYPE(t): r'[A-Z][a-zA-Z_0-9]*' t.type = reserved.get(t.value, 'CLASS_TYPE') return t #ssion for integer def t_INTEGER(t): r'\d+' t.value = int(t.value) return t # Define a rule so we can track line numbers def t_newline(t): r'\n+' t.lexer.lineno += len(t.value) # A string containing ignored characters (spaces and tabs) t_ignore = ' \t' # Error handling rule def t_error(t): print("Illegal character '%s' at line %d" % (t.value[0],t.lineno)) t.lexer.skip(1) print("Exiting due to lexing error.....Abort!") exit() states = ( ('STRING','exclusive'), ('COMMENT','exclusive'), ) def t_start_string(t): # try removing start -> begin r'\"' t.lexer.push_state("STRING") t.lexer.string_backslashed = False t.lexer.stringbuffer='' def t_start_comment(t): r'\(\*' t.lexer.push_state("COMMENT") # t.lexer.no_comment = t.lexer.no_comment + 1 def t_COMMENT_end(t): r'\*\)' t.lexer.pop_state() def t_COMMENT_anything(t): r'.|\n' # r'[^(\*\))]' t_COMMENT_ignore="" def t_COMMENT_error(t): print("Illegal COMMENT in line no. {0}, character {1}".format(t.lineno,t.value[0])) def t_STRING_end(t): r'\"' if t.lexer.string_backslashed : t.lexer.stringbuffer += '"' t.lexer.string_backslashed = False else: t.lexer.pop_state() t.lexer.stringbuffer += '' t.value = t.lexer.stringbuffer t.type = "STRING" return t def t_STRING_anything(t): r'.' if(t=='\n'): t.lexer.lineno += 1 if not t.lexer.string_backslashed: dummy=0 else: t.lexer.string_backslashed = False else: if t.lexer.string_backslashed: if t.value == 'b': t.lexer.stringbuffer += '\b' elif t.value == 'n': t.lexer.stringbuffer += '\n' elif t.value == 't': t.lexer.stringbuffer += '\t' elif t.value == '\\': t.lexer.stringbuffer += '\\' elif t.value == 'f': t.lexer.stringbuffer += '\f' else: t.lexer.stringbuffer += t.value t.lexer.string_backslashed = False else: if t.value != '\\': t.lexer.stringbuffer += t.value else: t.lexer.string_backslashed = True t_STRING_ignore = '' def t_STRING_error(t): print("Illegal character in line no. {0}, character {1}".format(t.lineno,t.value[0])) lexer = lex.lex() input_file = sys.argv[1] with open(input_file) as file: data = file.read() # Give the lexer some input lexer.input(data) collect = [] # Tokenize while True: tok = lexer.token() if not tok: break # print(tok) #TOKEN HAS TYPE AND VALUE collect.append(tok) print_list = [] for single_token in tokens: print_list_element = [] token_list = [] token_str = "" token_count = 0 for lex_tokens in collect: if(single_token == lex_tokens.type): token_count = token_count + 1 if(lex_tokens.value not in token_list): token_list.append(lex_tokens.value) if(token_count > 1): token_str = token_str + ' ' token_str = token_str + str(lex_tokens.value) #print(token_str) if(token_count == 0): continue if(single_token in reserved.values()): print_list.append(["Keyword_"+single_token, str(token_count), token_str]) else: print_list.append([single_token, str(token_count), token_str]) # print(single_token + ':' + str(token_count)) # print(str(token_list)) # print (single_token in reserved.values()) # print("--------------------------------------------") #print(print_list) # print("------------------------------------------------------") header = Table([["Tokens", "Occurences", "Lexemes"]],20,True) print(header) print("------------------------------------------------------") table = Table(print_list, 20, True) print(table)
null
asgn1/src/lexer.py
lexer.py
py
6,289
python
en
code
null
code-starcoder2
83
[ { "api_name": "ply.lex.lex", "line_number": 260, "usage_type": "call" }, { "api_name": "ply.lex", "line_number": 260, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 262, "usage_type": "attribute" }, { "api_name": "table.Table", "line_number": 311, "usage_type": "call" }, { "api_name": "table.Table", "line_number": 315, "usage_type": "call" } ]
353080772
import logging def init(options): logging.addLevelName(5, 'TRACE') logging.addLevelName(3, 'MICROTRACE') log_format = '%(asctime)s - [%(module)s] %(levelname)s - %(message)s' logging.basicConfig(level=logging.getLevelName(options.log_level), format=log_format, datefmt='%H:%M:%S') if options.log_file: log('INFO', 'Writing log to file: %s at level %s', options.log_file, options.log_file_level) hdlr = logging.FileHandler(options.log_file, mode='w') hdlr.setLevel(logging.getLevelName(options.log_file_level)) hdlr.setFormatter(logging.Formatter(log_format, datefmt='%H:%M:%S')) logging.root.addHandler(hdlr) else: log('INFO', 'No log file specified.') def loglevel(as_int=False): level = logging.root.level if as_int: return level return logging.getLevelName(level) def is_lower(than, le=True): if le: return loglevel(as_int=True) <= logging.getLevelName(than) return loglevel(as_int=True) < logging.getLevelName(than) def log(lvl, msg, *args, **kwargs): logging.log(logging.getLevelName(lvl), msg, *args, **kwargs)
null
old/Pipeline/logger.py
logger.py
py
1,162
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.addLevelName", "line_number": 5, "usage_type": "call" }, { "api_name": "logging.addLevelName", "line_number": 6, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 14, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 15, "usage_type": "call" }, { "api_name": "logging.root.addHandler", "line_number": 16, "usage_type": "call" }, { "api_name": "logging.root", "line_number": 16, "usage_type": "attribute" }, { "api_name": "logging.root", "line_number": 22, "usage_type": "attribute" }, { "api_name": "logging.getLevelName", "line_number": 25, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 30, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 31, "usage_type": "call" }, { "api_name": "logging.log", "line_number": 35, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 35, "usage_type": "call" } ]
473785587
__author__ = "Nikhil Bharadwaj Gosala" __version__ = 'Python 2.7' import os from PIL import Image, ExifTags def preprocessImages(image_path, wm_path): "Open the images and resize the watermark to the required size" is_landscape = False is_potrait = False wm = {} #Open the images try: image = Image.open(image_path) except: print("Please check the path of the image to be watermarked") raw_input("Press any key to continue.\n") quit() for i in range(len(wm_path)): try: wm[i] = Image.open(wm_path[i]) except: print("Please check the path of the watermark") raw_input("Press any key to continue.\n") quit() #Rotate the image if it was in potrait mode. Use the EXIF tags stored by the camera in the JPEG file if hasattr(image, '_getexif'): # only present in JPEGs for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation]=='Orientation': #Find where the Orientation header is break e = image._getexif() # returns None if no EXIF data if e is not None: exif=dict(e.items()) if(orientation in exif): orientation = exif[orientation] if orientation == 3: image = image.transpose(Image.ROTATE_180) elif orientation == 6: image = image.transpose(Image.ROTATE_270) elif orientation == 8: image = image.transpose(Image.ROTATE_90) wm_width = {} wm_height = {} #Get the dimensions of the images image_width, image_height = image.size for i in range(len(wm)): wm_width[i], wm_height[i] = wm[i].size #Check if the image is a landscape or a potrait image if image_width >= image_height: is_landscape = True else: is_potrait = True wm_height_new = {} wm_width_new = {} #Get the dimensions of the watermark to 10% of the width(In case of potrait) and 10% of the height(In case of landscape) for i in range(len(wm)): if(is_landscape): wm_height_new[i] = 0.08*image_height wm_width_new[i] = (wm_height_new[i]/wm_height[i])*wm_width[i] wm_height[i], wm_width[i] = wm_height_new[i], wm_width_new[i] elif(is_potrait): wm_height_new[i] = 0.1*image_width wm_width_new[i] = (wm_height_new[i]/wm_height[i])*wm_width[i] wm_height[i], wm_width[i] = wm_height_new[i], wm_width_new[i] #Resize the watermark wm[i].thumbnail((wm_width[i], wm_height[i]), Image.ANTIALIAS) return image, wm def overlay(image, wm, pos): "Overlay the watermark over the image" wm_width = {} wm_height = {} overlay = image image_width, image_height = image.size for i in range(len(wm)): wm_width[i], wm_height[i] = wm[i].size if pos[i] == 'TL': overlay.paste(wm[i], (40, 40), wm[i]) elif pos[i] == 'TR': overlay.paste(wm[i], (image_width-wm_width[i]-40, 40), wm[i]) elif pos[i] == 'BL': overlay.paste(wm[i], (40, image_height-wm_height[i]-40), wm[i]) elif pos[i] == 'BR': overlay.paste(wm[i],(image_width-wm_width[i]-40, image_height-wm_height[i]-40), wm[i]) #overlay.show() return overlay #overlay.save(imagename + "_edit.jpg", "JPEG") if __name__ == '__main__': num = int(input("Enter the number of watermarks\n")) watermark_path = {} watermark_pos = {} for i in range(num): path = raw_input("Enter the path of the watermark\n") pos = raw_input("Enter location of watermark(TL, TR, BL, BR)\n").upper() watermark_path[i] = path watermark_pos[i] = pos path = os.getcwd() images = os.listdir(path) if not os.path.isdir("Watermarked"): os.mkdir("Watermarked") for imagename in images: #if(imagename.endswith('.jpg') or imagename.endswith('.JPG') and not imagename.startswith('w_')): if not imagename.startswith('w_') and not imagename.endswith('.py') and not imagename.endswith('.exe') and not os.path.isdir(imagename): print(imagename) image_path = imagename image, wm = preprocessImages(os.path.join(path,image_path), watermark_path) overlay_image = overlay(image,wm,watermark_pos) save_path = path + '\\Watermarked' overlay_image.save(os.path.join(save_path,imagename.split('.')[0]) + '_wm.jpg', 'JPEG') #image_path = input("Enter the path of the image to be watermarked\n") #watermark_path = input("Enter the path of the watermark\n") #pos = input("Enter location of watermark(TL, TR, BL, BR)\n").upper() raw_input("Press any key to continue.\n")
null
auto_watermark_multiple_27.py
auto_watermark_multiple_27.py
py
4,825
python
en
code
null
code-starcoder2
83
[ { "api_name": "PIL.Image.open", "line_number": 15, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 15, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 23, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 23, "usage_type": "name" }, { "api_name": "PIL.ExifTags.TAGS.keys", "line_number": 31, "usage_type": "call" }, { "api_name": "PIL.ExifTags.TAGS", "line_number": 31, "usage_type": "attribute" }, { "api_name": "PIL.ExifTags", "line_number": 31, "usage_type": "name" }, { "api_name": "PIL.ExifTags.TAGS", "line_number": 32, "usage_type": "attribute" }, { "api_name": "PIL.ExifTags", "line_number": 32, "usage_type": "name" }, { "api_name": "PIL.Image.ROTATE_180", "line_number": 40, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 40, "usage_type": "name" }, { "api_name": "PIL.Image.ROTATE_270", "line_number": 41, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 41, "usage_type": "name" }, { "api_name": "PIL.Image.ROTATE_90", "line_number": 42, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 42, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 71, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 71, "usage_type": "name" }, { "api_name": "os.getcwd", "line_number": 108, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 109, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 115, "usage_type": "call" }, { "api_name": "os.path", "line_number": 115, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 118, "usage_type": "call" }, { "api_name": "os.path", "line_number": 118, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 121, "usage_type": "call" }, { "api_name": "os.path", "line_number": 121, "usage_type": "attribute" } ]
344098503
import os import functools from .utils import printProgressBar from randomness_testsuite.ApproximateEntropy import ApproximateEntropy as aet from randomness_testsuite.Complexity import ComplexityTest as ct from randomness_testsuite.CumulativeSum import CumulativeSums as cst from randomness_testsuite.FrequencyTest import FrequencyTest as ft from randomness_testsuite.BinaryMatrix import BinaryMatrix as bm from randomness_testsuite.Matrix import Matrix as mt from randomness_testsuite.RandomExcursions import RandomExcursions as ret from randomness_testsuite.RunTest import RunTest as rt from randomness_testsuite.Serial import Serial as serial from randomness_testsuite.Spectral import SpectralTest as st from randomness_testsuite.TemplateMatching import TemplateMatching as tm from randomness_testsuite.Universal import Universal as ut def test_all(): path_to_input = './maximos/Binarizados' test_function = { 0:ft.monobit_test, 1:ft.block_frequency, 2:rt.run_test, 3:rt.longest_one_block_test, 4:mt.binary_matrix_rank_text, 5:st.sepctral_test, 6:tm.non_overlapping_test, 7:tm.overlapping_patterns, 8:ut.statistical_test, 9:ct.linear_complexity_test, 10:serial.serial_test, 11:aet.approximate_entropy_test, 12:cst.cumulative_sums_test, 13:functools.partial(cst.cumulative_sums_test, mode=1), 14:ret.random_excursions_test, 15:ret.variant_test } all_results = {} for dirpath,dirname, files in os.walk(path_to_input):#Direcion de los archivos binarizados printProgressBar(0, len(files), prefix = 'Progress:', suffix = 'Complete', length = 50) for i,archivo in enumerate(files): #print(archivo) input_file = open(os.path.join(path_to_input,archivo), 'r')#Direcion de los archivos binarizados data = input_file.read() results = [] for test in test_function.values(): results.append(test(data)) all_results[f'{archivo}']= results printProgressBar(i+1, len(files), prefix = 'Progress:', suffix = 'Complete', length = 50) output = "Archivo;01. Frequency Test (Monobit);02. Frequency Test within a Block;03. Run Test;04. Longest Run of Ones in a Block;05. Binary Matrix Rank Test;06. Discrete Fourier Transform (Spectral) Test;07. Non-Overlapping Template Matching Test;08. Overlapping Template Matching Test;09. Maurer\s Universal Statistical test;10. Linear Complexity Test;11. Serial test;12. Approximate Entropy Test;13. Cummulative Sums (Forward) Test;14. Cummulative Sums (Reverse) Test;15. Random Excursions Test;16. Random Excursions Variant Test\n" for result in all_results.keys(): resultados = f"{result}" for rr in all_results[result]: resultados += f";{rr}" output += resultados + "\n" output_file = open(f'resultados_{archivo}.csv', 'w') output_file.write(output) output_file.close()
null
scripts/test_all.py
test_all.py
py
3,025
python
en
code
null
code-starcoder2
83
[ { "api_name": "randomness_testsuite.FrequencyTest.FrequencyTest.monobit_test", "line_number": 28, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.FrequencyTest.FrequencyTest", "line_number": 28, "usage_type": "name" }, { "api_name": "randomness_testsuite.FrequencyTest.FrequencyTest.block_frequency", "line_number": 29, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.FrequencyTest.FrequencyTest", "line_number": 29, "usage_type": "name" }, { "api_name": "randomness_testsuite.RunTest.RunTest.run_test", "line_number": 30, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.RunTest.RunTest", "line_number": 30, "usage_type": "name" }, { "api_name": "randomness_testsuite.RunTest.RunTest.longest_one_block_test", "line_number": 31, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.RunTest.RunTest", "line_number": 31, "usage_type": "name" }, { "api_name": "randomness_testsuite.Matrix.Matrix.binary_matrix_rank_text", "line_number": 32, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.Matrix.Matrix", "line_number": 32, "usage_type": "name" }, { "api_name": "randomness_testsuite.Spectral.SpectralTest.sepctral_test", "line_number": 33, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.Spectral.SpectralTest", "line_number": 33, "usage_type": "name" }, { "api_name": "randomness_testsuite.TemplateMatching.TemplateMatching.non_overlapping_test", "line_number": 34, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.TemplateMatching.TemplateMatching", "line_number": 34, "usage_type": "name" }, { "api_name": "randomness_testsuite.TemplateMatching.TemplateMatching.overlapping_patterns", "line_number": 35, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.TemplateMatching.TemplateMatching", "line_number": 35, "usage_type": "name" }, { "api_name": "randomness_testsuite.Universal.Universal.statistical_test", "line_number": 36, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.Universal.Universal", "line_number": 36, "usage_type": "name" }, { "api_name": "randomness_testsuite.Complexity.ComplexityTest.linear_complexity_test", "line_number": 37, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.Complexity.ComplexityTest", "line_number": 37, "usage_type": "name" }, { "api_name": "randomness_testsuite.Serial.Serial.serial_test", "line_number": 38, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.Serial.Serial", "line_number": 38, "usage_type": "name" }, { "api_name": "randomness_testsuite.ApproximateEntropy.ApproximateEntropy.approximate_entropy_test", "line_number": 39, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.ApproximateEntropy.ApproximateEntropy", "line_number": 39, "usage_type": "name" }, { "api_name": "randomness_testsuite.CumulativeSum.CumulativeSums.cumulative_sums_test", "line_number": 40, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.CumulativeSum.CumulativeSums", "line_number": 40, "usage_type": "name" }, { "api_name": "functools.partial", "line_number": 41, "usage_type": "call" }, { "api_name": "randomness_testsuite.CumulativeSum.CumulativeSums.cumulative_sums_test", "line_number": 41, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.CumulativeSum.CumulativeSums", "line_number": 41, "usage_type": "name" }, { "api_name": "randomness_testsuite.RandomExcursions.RandomExcursions.random_excursions_test", "line_number": 42, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.RandomExcursions.RandomExcursions", "line_number": 42, "usage_type": "name" }, { "api_name": "randomness_testsuite.RandomExcursions.RandomExcursions.variant_test", "line_number": 43, "usage_type": "attribute" }, { "api_name": "randomness_testsuite.RandomExcursions.RandomExcursions", "line_number": 43, "usage_type": "name" }, { "api_name": "os.walk", "line_number": 47, "usage_type": "call" }, { "api_name": "utils.printProgressBar", "line_number": 48, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path", "line_number": 51, "usage_type": "attribute" }, { "api_name": "utils.printProgressBar", "line_number": 57, "usage_type": "call" } ]
602877261
# ======================================== # [] File Name : network.py # # [] Creation Date : Februray 2018 # # [] Created By : Ali Gholami ([email protected]) # ======================================== """ Kaggle competition, predicting the survivals of the Titanic! """ # coding: utf-8 # Import Pandas and Numpy libraries. These are the main libraries for array computations. # In[1]: import pandas as pd import numpy as np get_ipython().run_line_magic('matplotlib', 'inline') # Define the data root to be take train data from. # In[2]: DATA_ROOT = './data/' # Load the train and test data using read_csv function in the Pandas library. # In[3]: train_data = pd.read_csv(DATA_ROOT + 'train.csv') test_data = pd.read_csv(DATA_ROOT + 'test.csv') # A function to separate the different outputs of each section. This will be used to display the data in the terminal in a readable way. # In[4]: def separate_output(str): ''' Displays an string as an argument in a clear form ''' SHARP_COUNT = 100 print('\n') for i in range(SHARP_COUNT): if(i == SHARP_COUNT-1): print("#") else: print("#", end="") # Display info at the center for i in range(int((SHARP_COUNT/2-len(str)/2))): print("",end=" ") print(str) for i in range(SHARP_COUNT): print("#", end="") print('\n') # Find out how the data looks like. This helps us to get an intuition of features inside the datasets. This is done using the shape class member of a Pandas dataframe. # In[5]: separate_output("Train/Test Shapes") print(train_data.shape) print(test_data.shape) # This will provide some statistical knowledge about the data. We can observe the mean, variance, max and minimum of data for each feature. This can be used for data normalization and preprocessing. We have used the describe method from the Pandas dataframe class. # In[6]: separate_output("General Data Knowledge") train_data.describe() # Some features like PassengerId, Name, Ticket, Cavbin and Embarked can be removed from the dataset. # In[7]: # These columns will be dropped DROPPED_COLS = ['PassengerId', 'Ticket', 'Cabin', 'Embarked'] # Drop the PassengerId column train_data.drop(DROPPED_COLS, axis=1, inplace=True) # In[8]: # Get the shape of data separate_output("Train/Test Shapes -- Dropped 5 Columns") print(train_data.shape) print(test_data.shape) # Let's plot the pie chart of the sex. We want to analyze if the gender affects the survivals or not. At the first glance, it seems that gender could be a good feature for prediction. These plots confirm this idea. # In[9]: import matplotlib.pyplot as plt # Check if the gender affect the survivals # Plot the figures for male and female fig = plt.figure(figsize=(8, 4), dpi=120, facecolor='w', edgecolor='k') fig.canvas.set_window_title("Analaysis of Gender Effect on Survivals") male_survival = fig.add_subplot(121) train_data.Survived[train_data['Sex'] == 'male'].value_counts().plot(kind='pie') male_survival.set_title("Male Survivals") female_survival = fig.add_subplot(122) train_data.Survived[train_data['Sex'] == 'female'].value_counts().plot(kind='pie') female_survival.set_title("Female Survivals") plt.show() # Let's check the datatypes to make sure there are no more objects left in the dataset. Objects are representing a text most of the times(Categorical Data). We obtain this using select_dtypes from the Pandas Dataframe class. # In[10]: # Let's see if there are any more categorical data left separate_output("Datatypes") print(train_data.select_dtypes(include=[object])) # We use LabelEncoder to convert the categorical data into the numerical form. To do this, simply create an object of the LabelEncoder class and call the fit_transform function on the desired data column in the dataset. # In[11]: from sklearn.preprocessing import LabelEncoder, StandardScaler # Convert the categorical data into numerical form train_data['Sex'] = LabelEncoder().fit_transform(train_data['Sex']) # Split the titles from the passenger names which is itself a feature but also help in calculating missing median age values. # In[12]: train_data['Name'] = train_data['Name'].map(lambda x: x.split(',')[1].split('.')[0].strip()) titles = train_data['Name'].unique() titles # Sneaking into the Age column, we can see there are some NaN numbers. These are called missing values. In order to increase the number of data samples, we need to fill these NaN values with an appropriate values. Fill the NaN values of Age using median values related to its title. # In[13]: train_data['Age'].fillna(-1, inplace=True) medians = dict() for title in titles: median = train_data.Age[(train_data["Age"] != -1) & (train_data['Name'] == title)].median() medians[title] = median for index, row in train_data.iterrows(): if row['Age'] == -1: train_data.loc[index, 'Age'] = medians[row['Name']] train_data.head() # Before transforming the Name column into the numerical form, we'll be excavating the distribution of our training data with respect to the Names. We will assign the numbers to these Names according to the distribution of each of these titles shown below. # In[14]: fig = plt.figure(figsize=(15,6)) i=1 for title in train_data['Name'].unique(): fig.add_subplot(3, 6, i) plt.title('Title : {}'.format(title)) train_data.Survived[train_data['Name'] == title].value_counts().plot(kind='pie') i += 1 # In[15]: REPLACEMENTS = { 'Don': 0, 'Rev': 0, 'Jonkheer': 0, 'Capt': 0, 'Mr': 1, 'Dr': 2, 'Col': 3, 'Major': 3, 'Master': 4, 'Miss': 5, 'Mrs': 6, 'Mme': 7, 'Ms': 7, 'Mlle': 7, 'Sir': 7, 'Lady': 7, 'the Countess': 7 } train_data['Name'] = train_data['Name'].apply(lambda x: REPLACEMENTS.get(x)) # We can also fill the NaN values of Fare using by its correlation with Ticket Class. # In[16]: train_data['Fare'].fillna(-1, inplace=True) medians = dict() for pclass in train_data['Pclass'].unique(): median = train_data.Fare[(train_data["Fare"] != -1) & (train_data['Pclass'] == pclass)].median() medians[pclass] = median for index, row in train_data.iterrows(): if row['Fare'] == -1: train_data.loc[index, 'Fare'] = medians[row['Pclass']] # Plot the distribution of our data with respect to each class of tickets. # In[17]: fig = plt.figure(figsize=(15,4)) i=1 for pclass in train_data['Pclass'].unique(): fig.add_subplot(1, 3, i) plt.title('Class : {}'.format(pclass)) train_data.Survived[train_data['Pclass'] == pclass].value_counts().plot(kind='pie') i += 1 # The classes are numeric already. Let's analyze the next feature. # In[18]: fig = plt.figure(figsize=(15,8)) i = 0 for parch in train_data['Parch'].unique(): fig.add_subplot(2, 4, i+1) plt.title('Parents / Child : {}'.format(parch)) train_data.Survived[train_data['Parch'] == parch].value_counts().plot(kind='pie') i += 1 # In[19]: CP_REPLACEMENTS = { 6: 0, 4: 0, 5: 1, 0: 2, 2: 3, 1: 4, 3: 5 } train_data['Parch'] = train_data['Parch'].apply(lambda x: CP_REPLACEMENTS.get(x)) # In[20]: train_data.head() # Now the data is almost ready to be trained. We can start training using the predefined models in sklearn library. Following models are used in this example. # In[21]: from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis # An array containing models MODELS = [ MLPClassifier(), AdaBoostClassifier(), SVC(), QuadraticDiscriminantAnalysis(), GaussianProcessClassifier() ] # Since the labels for the test_data is not available, we use train_data for both training and testing. We can use the function train_test_split to split 20% of data for test and 80% for training. The actual labels for the training set is first extracted. The Survived column is dropped. Finally, the train_test_split is called on the tranining data with respective labels. # In[22]: from sklearn.model_selection import train_test_split # Split the train and test data train_labels = train_data['Survived'] train_data.drop('Survived', axis=1, inplace=True) X_train, X_test, y_train, y_test = train_test_split(train_data, train_labels, test_size=0.2, random_state=42) # We have used the recall score and the f1 score to represent the performance of each of these classifiers. The fit functon can be called from each classifier object. It is used to train some data on that specific classifier. The predict function returns the predicted labels. # In[23]: from sklearn.metrics import recall_score from sklearn.metrics import f1_score for model in MODELS: model.fit(X_train, y_train) prediction = model.predict(X_test) rscore = recall_score(y_test, prediction) f1score = f1_score(y_test, prediction) score = model.score(X_test, y_test) print(score) print("Recall: ", rscore) print("F-1 Score: ", f1score)
null
docs/assignment-1/src/network.py
network.py
py
9,256
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.read_csv", "line_number": 38, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 122, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 122, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 132, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 132, "usage_type": "name" }, { "api_name": "sklearn.preprocessing.LabelEncoder", "line_number": 153, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 189, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 189, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 194, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 194, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 245, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 245, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 250, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 250, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 260, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 260, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 264, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 264, "usage_type": "name" }, { "api_name": "sklearn.neural_network.MLPClassifier", "line_number": 303, "usage_type": "call" }, { "api_name": "sklearn.ensemble.AdaBoostClassifier", "line_number": 304, "usage_type": "call" }, { "api_name": "sklearn.svm.SVC", "line_number": 305, "usage_type": "call" }, { "api_name": "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis", "line_number": 306, "usage_type": "call" }, { "api_name": "sklearn.gaussian_process.GaussianProcessClassifier", "line_number": 307, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 321, "usage_type": "call" }, { "api_name": "sklearn.metrics.recall_score", "line_number": 335, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 336, "usage_type": "call" } ]
363043962
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Sep 21 14:48:16 2019 @author: zoe """ """ #import matplotlib from tkinter import * main=Tk() main.title('RoboTeam_RRT_GUI') #renames the title of the main window mainFrame= Frame(main) mainFrame.pack() """ import numpy as np import random, math import pygame.locals import pygame.draw #import matplotlib.pyplot as plt #from matplotlib.path import Path #import matplotlib.patches as patches """ class Shortest_Path(): def __init__(self, vertices, start, end): self.start = start self.end = end self.vertices = vertices self.sptSet = [self.end] self.dist_from_end = [float("inf")]*vertices.len() self.dist_from_end = """ class Node(): def __init__(self,location,parent): self.location = location self.parent= parent class Boundaries(): def __init__(self,x1,y1,x2,y2): self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 class RRT(): def __init__(self,start,end,min_length,max_length,node_number,boundaries): self.start= start self.startNode = Node(start,None) self.end=end self.min_length = min_length self.max_length=max_length self.node_number = node_number self.screen_size=(800,800) self.color = (255,255,0) self.color1 = (0,0,255) self.colorRect= (255,0,255) self.radius = 20 self.nodes = [] self.nodes.append(start) #self.node_pairs=[] #self.node_dict = {} #self.node_dict[self.start] = [] self.boundaries = boundaries def dist(self,p1,p2): return math.sqrt((p2[0]-p1[0])**2 + (p2[1]-p1[1])**2) def find_closest(self, p1): closest = self.nodes[0] for node in self.nodes: if self.dist(node,p1) < self.dist(closest,p1): closest = node return closest def isValid(self,p1): for i in self.boundaries: if (p1[0] > i.x1 and p1[0] < i.x2) and (p1[1] > i.y1 and p1[1] < i.y2): return False return True def new_node(self): x = int(random.randint(0,self.screen_size[0]+1)) y= int(random.randint(0,self.screen_size[1]+1)) nn=(x,y) closest = self.find_closest(nn) if self.dist(closest,nn) > self.max_length: length = self.dist(closest,nn) x = closest[0]+int(self.max_length*(x-closest[0])/length) y = closest[1]+int(self.max_length*(y-closest[1])/length) nn=(x,y) closest = self.find_closest(nn) if self.dist(closest,nn) < self.min_length: length = self.dist(closest,nn) while length == 0: nn = self.new_node() x = closest[0]+int(self.min_length*(x-closest[0])/length) y = closest[1]+int(self.min_length*(y-closest[1])/length) if not self.isValid(nn): closest,nn = self.new_node() return closest,nn def main(self): pygame.init() #sets screen size screen = pygame.display.set_mode(self.screen_size) #sets the title of the screen pygame.display.set_caption("RRT Algorithm") #filles the screen with the color white white = (255,255,255) screen.fill(white) #draws a circle around the startpoint pygame.draw.circle(screen,self.color1,self.start,self.radius) #draws a circle around the endpoint pygame.draw.circle(screen, self.color, self.end, self.radius) for i in self.boundaries: pygame.draw.rect(screen,self.colorRect,pygame.Rect(i.x1,i.y1,abs(i.x2-i.x1),abs(i.y2-i.y1))) #pygame.draw.rect(screen,self.colorRect,) for n in range(self.node_number): cl, nn = self.new_node() """ x = int(random.randint(0,480+1)) y= int(random.randint(0,640+1)) nn=(x,y) closest = self.find_closest(nn) if self.dist(closest,nn) > self.max_length: angle = math.atan((nn[1]-closest[1])/(nn[0]-closest[0])) x=int(closest[0]+self.max_length*math.cos(angle)) y = int(closest[1]+self.max_length*math.sin(angle)) nn=(x,y) closest = self.find_closest(nn) """ self.nodes.append(nn) #self.node_pairs.append((cl,nn)) #self.node_dict[cl].append(nn) #self.node_dict[nn]=[] red = (255,0,0) pygame.draw.circle(screen,red,nn,3) pygame.draw.line(screen,red,cl,nn,2) #updates the screen when you add a new node pygame.display.update() if (self.dist(nn,self.end) <= self.radius): break if (pygame.event.poll().type == pygame.QUIT): break while True: # gets a single event from the event queue event = pygame.event.poll() # if the 'close' button of the window is pressed if event.type == pygame.QUIT: # stops the application #print(self.node_dict) break if __name__ == '__main__': boundaries = [Boundaries(100,100,200,200), Boundaries(101,202,303,404)] RRT((375,375),(500,500),5,20,500,boundaries).main()
null
RoboTeam_RRT_Gui.py
RoboTeam_RRT_Gui.py
py
5,473
python
en
code
null
code-starcoder2
83
[ { "api_name": "math.sqrt", "line_number": 72, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 88, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 89, "usage_type": "call" }, { "api_name": "pygame.locals.init", "line_number": 115, "usage_type": "call" }, { "api_name": "pygame.locals", "line_number": 115, "usage_type": "name" }, { "api_name": "pygame.locals.display.set_mode", "line_number": 118, "usage_type": "call" }, { "api_name": "pygame.locals.display", "line_number": 118, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 118, "usage_type": "name" }, { "api_name": "pygame.locals.display.set_caption", "line_number": 121, "usage_type": "call" }, { "api_name": "pygame.locals.display", "line_number": 121, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 121, "usage_type": "name" }, { "api_name": "pygame.locals.draw.circle", "line_number": 128, "usage_type": "call" }, { "api_name": "pygame.locals.draw", "line_number": 128, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 128, "usage_type": "name" }, { "api_name": "pygame.locals.draw.circle", "line_number": 131, "usage_type": "call" }, { "api_name": "pygame.locals.draw", "line_number": 131, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 131, "usage_type": "name" }, { "api_name": "pygame.locals.draw.rect", "line_number": 134, "usage_type": "call" }, { "api_name": "pygame.locals.draw", "line_number": 134, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 134, "usage_type": "name" }, { "api_name": "pygame.locals.Rect", "line_number": 134, "usage_type": "call" }, { "api_name": "pygame.locals.draw.circle", "line_number": 165, "usage_type": "call" }, { "api_name": "pygame.locals.draw", "line_number": 165, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 165, "usage_type": "name" }, { "api_name": "pygame.locals.draw.line", "line_number": 166, "usage_type": "call" }, { "api_name": "pygame.locals.draw", "line_number": 166, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 166, "usage_type": "name" }, { "api_name": "pygame.locals.display.update", "line_number": 169, "usage_type": "call" }, { "api_name": "pygame.locals.display", "line_number": 169, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 169, "usage_type": "name" }, { "api_name": "pygame.locals.event.poll", "line_number": 174, "usage_type": "call" }, { "api_name": "pygame.locals.event", "line_number": 174, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 174, "usage_type": "name" }, { "api_name": "pygame.locals.QUIT", "line_number": 174, "usage_type": "attribute" }, { "api_name": "pygame.locals.event.poll", "line_number": 178, "usage_type": "call" }, { "api_name": "pygame.locals.event", "line_number": 178, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 178, "usage_type": "name" }, { "api_name": "pygame.locals.QUIT", "line_number": 181, "usage_type": "attribute" }, { "api_name": "pygame.locals", "line_number": 181, "usage_type": "name" } ]
99877906
""" MIT License Copyright (c) 2020 Airbyte Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json from pathlib import Path import pytest from source_file.client import Client HERE = Path(__file__).parent.absolute() def check_read(config, expected_columns=10, expected_rows=42): client = Client(**config) rows = list(client.read()) assert len(rows) == expected_rows assert len(rows[0]) == expected_columns @pytest.mark.parametrize( "provider_name,file_path,file_format", [ ("ssh", "files/test.csv", "csv"), ("scp", "files/test.csv", "csv"), ("sftp", "files/test.csv", "csv"), ("ssh", "files/test.csv.gz", "csv"), # text in binary ("ssh", "files/test.pkl", "pickle"), # binary ("sftp", "files/test.pkl.gz", "pickle"), # binary in binary ], ) def test__read_from_private_ssh(provider_config, provider_name, file_path, file_format): client = Client(dataset_name="output", format=file_format, url=file_path, provider=provider_config(provider_name)) result = next(client.read()) assert result == {"header1": "text", "header2": 1, "header3": 0.2} @pytest.mark.parametrize( "provider_name,file_path,file_format", [ ("ssh", "files/file_does_not_exist.csv", "csv"), ("gcs", "gs://gcp-public-data-landsat/file_does_not_exist.csv", "csv"), ], ) def test__read_file_not_found(provider_config, provider_name, file_path, file_format): client = Client(dataset_name="output", format=file_format, url=file_path, provider=provider_config(provider_name)) with pytest.raises(FileNotFoundError): next(client.read()) @pytest.mark.parametrize( "provider_name, file_path, file_format", [ ("ssh", "files/test.csv", "csv"), ("ssh", "files/test.pkl", "pickle"), ("sftp", "files/test.pkl.gz", "pickle"), ], ) def test__streams_from_ssh_providers(provider_config, provider_name, file_path, file_format): client = Client(dataset_name="output", format=file_format, url=file_path, provider=provider_config(provider_name)) streams = list(client.streams) assert len(streams) == 1 assert streams[0].json_schema["properties"] == { "header1": {"type": "string"}, "header2": {"type": "number"}, "header3": {"type": "number"}, } @pytest.mark.parametrize( "storage_provider, url, columns_nb, separator, has_header", [ # epidemiology csv ("HTTPS", "https://storage.googleapis.com/covid19-open-data/v2/latest/epidemiology.csv", 10, ",", True), ("HTTPS", "storage.googleapis.com/covid19-open-data/v2/latest/epidemiology.csv", 10, ",", True), ("local", "injected by tests", 10, ",", True), # landsat compressed csv ("GCS", "gs://gcp-public-data-landsat/index.csv.gz", 18, ",", True), ("GCS", "gs://gcp-public-data-landsat/index.csv.gz", 18, ",", True), # GDELT csv ("S3", "s3://gdelt-open-data/events/20190914.export.csv", 58, "\\t", False), ("S3", "s3://gdelt-open-data/events/20190914.export.csv", 58, "\\t", False), ], ) def test__read_from_public_provider(download_gcs_public_data, storage_provider, url, columns_nb, separator, has_header): # inject temp file path that was downloaded by the test as URL url = download_gcs_public_data if storage_provider == "local" else url config = { "format": "csv", "dataset_name": "output", "reader_options": json.dumps({"sep": separator, "nrows": 42}), "provider": {"storage": storage_provider}, "url": url, } check_read(config, expected_columns=columns_nb) def test__read_from_private_gcs(google_cloud_service_credentials, private_google_cloud_file): config = { "dataset_name": "output", "format": "csv", "url": private_google_cloud_file, "reader_options": json.dumps({"sep": ",", "nrows": 42}), "provider": { "storage": "GCS", "service_account_json": json.dumps(google_cloud_service_credentials), }, } check_read(config) def test__read_from_private_aws(aws_credentials, private_aws_file): config = { "dataset_name": "output", "format": "csv", "url": private_aws_file, "reader_options": json.dumps({"sep": ",", "nrows": 42}), "provider": { "storage": "S3", "aws_access_key_id": aws_credentials["aws_access_key_id"], "aws_secret_access_key": aws_credentials["aws_secret_access_key"], }, } check_read(config)
null
airbyte-integrations/connectors/source-file/integration_tests/client_storage_providers_test.py
client_storage_providers_test.py
py
5,557
python
en
code
null
code-starcoder2
83
[ { "api_name": "pathlib.Path", "line_number": 31, "usage_type": "call" }, { "api_name": "source_file.client.Client", "line_number": 35, "usage_type": "call" }, { "api_name": "source_file.client.Client", "line_number": 53, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 41, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 41, "usage_type": "attribute" }, { "api_name": "source_file.client.Client", "line_number": 66, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 67, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 58, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 58, "usage_type": "attribute" }, { "api_name": "source_file.client.Client", "line_number": 80, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 71, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 71, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 111, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 90, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 90, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 124, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 127, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 138, "usage_type": "call" } ]
607013936
# # github Repo: https://github.com/clejae # ------------------------------------------ LOAD PACKAGES ---------------------------------------------------# import os import time import pandas as pd import matplotlib.pyplot as plt from matplotlib.patches import Patch import numpy as np # ------------------------------------------ DEFINE FUNCTIONS ------------------------------------------------# def cm2inch(*tupl): inch = 2.54 if isinstance(tupl[0], tuple): return tuple(i/inch for i in tupl[0]) else: return tuple(i/inch for i in tupl) def prepareDataFrame(bl_lst, per, sheet, df_descr): df_lst = [] for b, bl, in enumerate(bl_lst): df_pth = r"data\tables\crop_sequence_types\{0}\{0}_{1}_{2}.xlsx".format(bl, per, df_descr) df = pd.read_excel(df_pth, sheet) t_area = df['SUM'].sum() for i in range(1, 10): df[str(i)] = round(df[str(i)] / t_area * 100, 2) df_lst.append(df) mt_lst = [] for mt in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']: for df in df_lst: df_mt = df[df['MainType'] == mt] mt_lst.append(df_mt) cols = ['MainType', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'SUM'] if mt != 'I': df_dummy = pd.DataFrame(np.zeros((1, 11)), columns=cols) mt_lst.append(df_dummy) df_plt = pd.concat(mt_lst) return df_plt def plot_grouped_stacked_bars(df_plt, axs, ix, axs_title): ## plot stacked bars colors = ['#ffd37f','#e69600','#a87000','#d1ff73','#7aab00','#4c7300','#bee8ff','#73b2ff','#004da8'] df_plt[[str(i)for i in range(1,10)]].plot(kind="bar", stacked=True, color=colors, ax = axs[ix], legend=False) ## set x and label them axs[ix].set_yticks(np.arange(0, 36, step=5)) axs[ix].set_yticklabels(range(0, 36, 5), fontdict={'size': 10}) x_ticks = list(np.arange(0,26,1)) del x_ticks[2::3] axs[ix].set_xticks(x_ticks) # axs[ix].set_xticklabels(9 * ["BB","LS"],fontdict={'size': 10}) axs[ix].set_xticklabels(18 * [""],fontdict={'size': 10}) ## add y-grid, adjust tick colors, remove frame axs[ix].grid(b=True, which='major', axis='y', color='grey', linewidth=0.5) axs[ix].tick_params(axis='x', colors='white', labelcolor ='black') axs[ix].tick_params(axis='y', colors='grey', labelcolor ='black') axs[ix].spines['bottom'].set_color('white') axs[ix].spines['right'].set_visible(False) axs[ix].spines['left'].set_visible(False) axs[ix].spines['top'].set_visible(False) axs[ix].set_axisbelow(True) ## set title of subplot (name of federl state) axs[ix].set_title(axs_title, loc='center',fontdict={'size':12})# , 'weight':'semibold'}) # ------------------------------------------ START TIME ------------------------------------------------------# stime = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime()) print("start: " + stime) # ------------------------------------------ USER VARIABLES ------------------------------------------------# wd = r'\\141.20.140.91\SAN_Projects\FORLand\Clemens\\' out_pth = r"figures\poster\Landscape21 - farm characteristics.png" # ------------------------------------------ LOAD DATA & PROCESSING ------------------------------------------# os.chdir(wd) ## define lists to access data and datasheets ## and to provide federal state names for annotation bl_lst = ['BB','LS'] strata_cattle = [[0, 1], [1, 50000]] strata_oeko = [[0, 1], [7, 8]] per = '2012-2018' name_lst = [ "Conventional", "Organic"] #"Without cattle","With cattle", ## set plotting parameters plt.rcParams['legend.handlelength'] = 1 plt.rcParams['legend.handleheight'] = 1.125 plt.rcParams['legend.title_fontsize'] = '10' plt.rcParams["font.family"] = "Calibri" ## Create plot ncol = 2 nrow = 1 fig, axs = plt.subplots(nrows=nrow, ncols=ncol, sharey=True, figsize=cm2inch(15, 9)) s = 0 # index for subplot (axs) title # ## Plot cattle vs. no cattle husbandry # for strat in strata_cattle: # sheet = 'Collapsed>={}<{}'.format(strat[0], strat[1]) # ix = np.unravel_index(s, axs.shape) # # ## Prepare data frame # df_descr = 'CSTArea-CattleNumbers_binary' # df_plt = prepareDataFrame(bl_lst, per, sheet, df_descr) # # ## Plot stacked bars # axs_title = name_lst[s] # plot_grouped_stacked_bars(df_plt, axs, ix, axs_title) # # s += 1 ## Plot conventional vs. organic for strat in strata_oeko: sheet = 'Collapsed>={}<{}'.format(strat[0], strat[1]) ix = np.unravel_index(s, axs.shape) ## Prepare data frame df_descr = 'CSTArea-Oeko_AFSD' df_plt = prepareDataFrame(bl_lst, per, sheet, df_descr) ## Plot stacked bars axs_title = name_lst[s] plot_grouped_stacked_bars(df_plt, axs, ix, axs_title) s += 1 # for ix in [(0,0),(0,1)]: for s in range(2): ix = np.unravel_index(s, axs.shape) ## set y ticks and label them axs[ix].set_yticks(np.arange(-5, 36, step=5)) y_labels = [str(i) for i in range(0, 36, 5)] y_labels.insert(0,'') axs[ix].set_yticklabels(y_labels, fontdict={'size': 10}) ## annotate main types in top subplot bbox = dict(facecolor='white', edgecolor='black', boxstyle='round') x = .5 # for mt in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']: # axs[ix].annotate(mt, xy=(x, -2.2), fontsize=8) # 35.5 - # x += 3 for mt in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']: axs[ix].annotate(mt, xy=(x, 35.5), fontsize=10) x += 4 ## create bbox = dict(facecolor='white', edgecolor='black', boxstyle='round') xs = list(np.arange(0, 26, 1)) del xs[2::3] for i in range(0,len(xs),2): x = xs[i] label = 'BB' axs[ix].annotate(label, xy=(x - .4, -2), fontsize=8, rotation=90) # 35.5 - for j in range(1,len(xs),2): x = xs[j] label = 'LS' axs[ix].annotate(label, xy=(x - .4, -2), fontsize=8, rotation=90) ## Label x-axis in lower axis axs[0].set_xlabel('Structural diversity', fontdict={'size': 10}) axs[1].set_xlabel('Structural diversity', fontdict={'size': 10}) ## label y axis in lower axes axs[0].set_ylabel('Share of cropland [%]', fontdict={'size': 10}) # axs[(1,0)].set_ylabel('Share of cropland [%]', fontdict={'size': 10}) # pad = 5 # for ax, row in zip(axs[:,0], ['a\n','b\n']): # ax.annotate(row, xy=(2.0, 1.55), xytext=(-ax.yaxis.labelpad - pad, 0), # xycoords=ax.yaxis.label, textcoords='offset points', # size='large', ha='center', va='center', fontsize=12, fontweight = 'semibold') # create custom legend legend_elements = [Patch(facecolor='#ffd37f', edgecolor='#ffd37f', label='1'), Patch(facecolor='#e69600', edgecolor='#e69600', label='2'), Patch(facecolor='#a87000', edgecolor='#a87000', label='3'), Patch(facecolor='#d1ff73', edgecolor='#d1ff73', label='4'), Patch(facecolor='#7aab00', edgecolor='#7aab00', label='5'), Patch(facecolor='#4c7300', edgecolor='#4c7300', label='6'), Patch(facecolor='#bee8ff', edgecolor='#bee8ff', label='7'), Patch(facecolor='#73b2ff', edgecolor='#73b2ff', label='8'), Patch(facecolor='#004da8', edgecolor='#004da8', label='9')] fig.legend(handles=legend_elements, loc='lower center', ncol=9, title='Functional diversity', fontsize=8, frameon=False)# bbox_to_anchor= (0.00, 0.00, 0.1, 0.1)) fig.tight_layout() fig.subplots_adjust(bottom=0.17) plt.savefig(out_pth, dpi=300) # ------------------------------------------ END TIME --------------------------------------------------------# etime = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime()) print("start: " + stime) print("end: " + etime) # ------------------------------------------ UNUSED BUT USEFUL CODE SNIPPETS ---------------------------------#
null
figures_in_paper/Landscape21_grouped_stacked_bars_farm_characteristics.py
Landscape21_grouped_stacked_bars_farm_characteristics.py
py
8,095
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.read_excel", "line_number": 24, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 52, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 73, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 73, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 91, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 91, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 92, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 92, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 93, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 93, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 94, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "numpy.unravel_index", "line_number": 120, "usage_type": "call" }, { "api_name": "numpy.unravel_index", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 153, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 180, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 182, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 184, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 186, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 188, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 190, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 192, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 194, "usage_type": "call" }, { "api_name": "matplotlib.patches.Patch", "line_number": 196, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 202, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 202, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 205, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 205, "usage_type": "call" } ]
116665284
from setuptools import setup, find_packages import sys, os version = '0.1' setup(name='updater', version=version, description="Consistent update for OpenFlow Networks", long_description="""\ This package provides update commands to satisfy requirement.""", classifiers=[], # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers keywords='OpenFlow', author='Satoshi Yamazaki', author_email='', url='', license='', packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), include_package_data=True, zip_safe=False, install_requires=[ # -*- Extra requirements: -*- ], entry_points=""" # -*- Entry points: -*- [paste.paster_command] updater = updater.commands:Updater """, )
null
updater/setup.py
setup.py
py
820
python
en
code
null
code-starcoder2
83
[ { "api_name": "setuptools.setup", "line_number": 6, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 17, "usage_type": "call" } ]
483445797
#!python3 """ Hi there. This file doesn't contain any code. It's just here to give an example of the file naming scheme. Cheers! """ import validators def isurl(link): value=validators.url(link) if(value==True): print("It is a URL") else: print("It is not a URL") def main(): string=str(input("ENTER THE URL TO CHECK:")) isurl(string) if __name__ == '__main__': main()
null
December-09/python_Raahul46_IS_THIS_URL.py
python_Raahul46_IS_THIS_URL.py
py
409
python
en
code
null
code-starcoder2
83
[ { "api_name": "validators.url", "line_number": 12, "usage_type": "call" } ]
696818
#!/usr/bin/env python """ lib/reykjavik/deps.py A simple dependency manager that does NOT implement atomicity and concurrency. What we do not implement here is the textbook semaphore behaviour: * atomic behaviour * decrementing and blocking * incrementing and unblocking one waiting thread * notification of schedulers that threads are blocked Instead we just mimic half of the behaviour of a classic semaphore that we need here. We do this to achieve a barebone distributed locking mechanism for our installation containers. """ import os import time import memcache class DependencyManager(object): """ Uses a central memcached to implement distributed waiting in containers. """ def __init__(self): return @classmethod def get_key(cls, server, service): """ Returns the memcache key """ return "server-{0}-service-{1}".format(server, service) def unblock(self, server=os.environ["SERVER"], service=os.environ["SERVICE"], barrier=os.environ["BARRIER"]): """ Unblocks a barrier for a given server, service and timestamp. """ key = self.get_key(server, service) print("Unblocking [{0}:{1}]".format(key, barrier)) memcache.Client(['memcache:11211'], debug=0).set(key, barrier) return 0 def block(self, server=os.environ["SERVER"], service="220-install", barrier=os.environ["BARRIER"]): """ Blocks until a service becomes available. """ key = self.get_key(server, service) while True: print("Blocking on [{0}:{1}]".format(key, barrier)) mcx = memcache.Client(['memcache:11211'], debug=0) value = mcx.get(key) if value: if value == barrier: print("Barrier [{0}:{1}] has been unlocked.".format(key, barrier)) return 0 print("Sleeping.") time.sleep(10)
null
docker/reykjavik/110-library/opt/reykjavik/lib/reykjavik/deps.py
deps.py
py
2,047
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 39, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 40, "usage_type": "attribute" }, { "api_name": "memcache.Client", "line_number": 47, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 52, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 54, "usage_type": "attribute" }, { "api_name": "memcache.Client", "line_number": 62, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 69, "usage_type": "call" } ]
628385208
from django.conf import settings import numpy as np import time def get_arrangement_permutation( dist, mode, model=None, clusters=None, init_perm=None): start_time = time.time() if mode == "none": return [i for i in range(dist.shape[0])] if mode == "hamilton": from .hamilton_path import HamiltonPath hp = HamiltonPath(dist, caller=model) hp.solve() perm = hp.path elif mode == "hamilton_annealing": from .hamilton_path import HamiltonPath hp = HamiltonPath(dist, caller=model) hp.solve_annealing() perm = hp.path elif mode == "tsne": from sklearn.manifold import TSNE tsne_model = TSNE(n_components=1, random_state=0, metric="precomputed") tsne_result = tsne_model.fit_transform(dist).reshape(-1) perm = np.argsort(tsne_result) elif mode == "mds": from sklearn.manifold import MDS mds = MDS( n_components=1, max_iter=3000, eps=1e-9, random_state=0, dissimilarity="precomputed", n_jobs=4) result = mds.fit_transform(dist).reshape(-1) perm = np.argsort(result) elif mode == "dendro": from algo.arranging.dendro_arranger import DendroArranger da = DendroArranger(dist) perm = da.arrange() else: raise ValueError("Unknown mode: %s" % mode) if model: from .quality import NDS, MNR model.NDS = NDS(dist, perm) model.log("NDS=%f" % model.NDS) model.log("MNR=%f" % MNR(dist, perm)) model.log("Time=%f" % (time.time() - start_time)) return perm
null
algo/arranging/base.py
base.py
py
1,702
python
en
code
null
code-starcoder2
83
[ { "api_name": "time.time", "line_number": 12, "usage_type": "call" }, { "api_name": "hamilton_path.HamiltonPath", "line_number": 18, "usage_type": "call" }, { "api_name": "hamilton_path.HamiltonPath", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.manifold.TSNE", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 30, "usage_type": "call" }, { "api_name": "sklearn.manifold.MDS", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 41, "usage_type": "call" }, { "api_name": "algo.arranging.dendro_arranger.DendroArranger", "line_number": 44, "usage_type": "call" }, { "api_name": "quality.NDS", "line_number": 51, "usage_type": "call" }, { "api_name": "quality.MNR", "line_number": 53, "usage_type": "call" }, { "api_name": "time.time", "line_number": 54, "usage_type": "call" } ]