repo_id
stringlengths 21
96
| file_path
stringlengths 31
155
| content
stringlengths 1
92.9M
| __index_level_0__
int64 0
0
|
---|---|---|---|
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/scalar/factories_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <rmm/cuda_stream_view.hpp>
class ScalarFactoryTest : public cudf::test::BaseFixture {};
template <typename T>
struct NumericScalarFactory : public ScalarFactoryTest {};
TYPED_TEST_SUITE(NumericScalarFactory, cudf::test::NumericTypes);
TYPED_TEST(NumericScalarFactory, FactoryDefault)
{
std::unique_ptr<cudf::scalar> s =
cudf::make_numeric_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(s->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_FALSE(s->is_valid());
}
TYPED_TEST(NumericScalarFactory, TypeCast)
{
std::unique_ptr<cudf::scalar> s =
cudf::make_numeric_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
auto numeric_s = static_cast<cudf::scalar_type_t<TypeParam>*>(s.get());
TypeParam value(37);
numeric_s->set_value(value);
EXPECT_EQ(numeric_s->value(), value);
EXPECT_TRUE(numeric_s->is_valid());
EXPECT_TRUE(s->is_valid());
}
template <typename T>
struct TimestampScalarFactory : public ScalarFactoryTest {};
TYPED_TEST_SUITE(TimestampScalarFactory, cudf::test::TimestampTypes);
TYPED_TEST(TimestampScalarFactory, FactoryDefault)
{
std::unique_ptr<cudf::scalar> s =
cudf::make_timestamp_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(s->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_FALSE(s->is_valid());
}
TYPED_TEST(TimestampScalarFactory, TypeCast)
{
std::unique_ptr<cudf::scalar> s =
cudf::make_timestamp_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
auto numeric_s = static_cast<cudf::scalar_type_t<TypeParam>*>(s.get());
TypeParam value(typename TypeParam::duration{37});
numeric_s->set_value(value);
EXPECT_EQ(numeric_s->value(), value);
EXPECT_TRUE(numeric_s->is_valid());
EXPECT_TRUE(s->is_valid());
}
template <typename T>
struct DefaultScalarFactory : public ScalarFactoryTest {};
using MixedTypes = cudf::test::Concat<cudf::test::AllTypes, cudf::test::StringTypes>;
TYPED_TEST_SUITE(DefaultScalarFactory, MixedTypes);
TYPED_TEST(DefaultScalarFactory, FactoryDefault)
{
std::unique_ptr<cudf::scalar> s =
cudf::make_default_constructed_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(s->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_FALSE(s->is_valid());
}
TYPED_TEST(DefaultScalarFactory, TypeCast)
{
std::unique_ptr<cudf::scalar> s =
cudf::make_default_constructed_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
auto numeric_s = static_cast<cudf::scalar_type_t<TypeParam>*>(s.get());
EXPECT_NO_THROW((void)numeric_s->value());
EXPECT_FALSE(numeric_s->is_valid());
EXPECT_FALSE(s->is_valid());
}
template <typename T>
struct FixedWidthScalarFactory : public ScalarFactoryTest {};
TYPED_TEST_SUITE(FixedWidthScalarFactory, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(FixedWidthScalarFactory, ValueProvided)
{
TypeParam value = cudf::test::make_type_param_scalar<TypeParam>(54);
std::unique_ptr<cudf::scalar> s = cudf::make_fixed_width_scalar<TypeParam>(value);
auto numeric_s = static_cast<cudf::scalar_type_t<TypeParam>*>(s.get());
EXPECT_EQ(s->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(numeric_s->value(), value);
EXPECT_TRUE(numeric_s->is_valid());
EXPECT_TRUE(s->is_valid());
}
template <typename T>
struct FixedPointScalarFactory : public ScalarFactoryTest {};
TYPED_TEST_SUITE(FixedPointScalarFactory, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointScalarFactory, ValueProvided)
{
using namespace numeric;
using decimalXX = TypeParam;
auto const rep_value = static_cast<typename decimalXX::rep>(123);
auto const s = cudf::make_fixed_point_scalar<decimalXX>(123, scale_type{-2});
auto const fp_s = static_cast<cudf::scalar_type_t<decimalXX>*>(s.get());
auto const expected_dtype = cudf::data_type{cudf::type_to_id<decimalXX>(), -2};
EXPECT_EQ(s->type(), expected_dtype);
EXPECT_EQ(fp_s->value(), rep_value);
EXPECT_TRUE(fp_s->is_valid());
EXPECT_TRUE(s->is_valid());
}
struct StructScalarFactory : public ScalarFactoryTest {};
TEST_F(StructScalarFactory, Basic)
{
cudf::test::fixed_width_column_wrapper<int> col0{1};
cudf::test::strings_column_wrapper col1{"abc"};
cudf::test::lists_column_wrapper<int> col2{{1, 2, 3}};
cudf::test::structs_column_wrapper struct_col({col0, col1, col2});
cudf::column_view cv = static_cast<cudf::column_view>(struct_col);
std::vector<cudf::column_view> children(cv.child_begin(), cv.child_end());
// table_view constructor
{
auto sc = cudf::make_struct_scalar(cudf::table_view{children});
auto s = static_cast<cudf::scalar_type_t<cudf::struct_view>*>(sc.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{children}, s->view());
}
// host_span constructor
{
auto sc = cudf::make_struct_scalar(cudf::host_span<cudf::column_view const>{children});
auto s = static_cast<cudf::scalar_type_t<cudf::struct_view>*>(sc.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{children}, s->view());
}
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/scalar/scalar_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/scalar/scalar.hpp>
template <typename T>
struct TypedScalarTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedScalarTestWithoutFixedPoint : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedScalarTest, cudf::test::FixedWidthTypes);
TYPED_TEST_SUITE(TypedScalarTestWithoutFixedPoint, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(TypedScalarTest, DefaultValidity)
{
using Type = cudf::device_storage_type_t<TypeParam>;
Type value = static_cast<Type>(cudf::test::make_type_param_scalar<TypeParam>(7));
cudf::scalar_type_t<TypeParam> s(value);
EXPECT_TRUE(s.is_valid());
EXPECT_EQ(value, s.value());
}
TYPED_TEST(TypedScalarTest, ConstructNull)
{
TypeParam value = cudf::test::make_type_param_scalar<TypeParam>(5);
cudf::scalar_type_t<TypeParam> s(value, false);
EXPECT_FALSE(s.is_valid());
}
TYPED_TEST(TypedScalarTestWithoutFixedPoint, SetValue)
{
TypeParam init = cudf::test::make_type_param_scalar<TypeParam>(0);
TypeParam value = cudf::test::make_type_param_scalar<TypeParam>(9);
cudf::scalar_type_t<TypeParam> s(init, true);
s.set_value(value);
EXPECT_TRUE(s.is_valid());
EXPECT_EQ(value, s.value());
}
TYPED_TEST(TypedScalarTestWithoutFixedPoint, SetNull)
{
TypeParam value = cudf::test::make_type_param_scalar<TypeParam>(6);
cudf::scalar_type_t<TypeParam> s(value, true);
s.set_valid_async(false);
EXPECT_FALSE(s.is_valid());
}
TYPED_TEST(TypedScalarTest, CopyConstructor)
{
using Type = cudf::device_storage_type_t<TypeParam>;
Type value = static_cast<Type>(cudf::test::make_type_param_scalar<TypeParam>(8));
cudf::scalar_type_t<TypeParam> s(value);
auto s2 = s;
EXPECT_TRUE(s2.is_valid());
EXPECT_EQ(value, s2.value());
}
TYPED_TEST(TypedScalarTest, MoveConstructor)
{
TypeParam value = cudf::test::make_type_param_scalar<TypeParam>(8);
cudf::scalar_type_t<TypeParam> s(value);
auto data_ptr = s.data();
auto mask_ptr = s.validity_data();
decltype(s) s2(std::move(s));
EXPECT_EQ(mask_ptr, s2.validity_data());
EXPECT_EQ(data_ptr, s2.data());
}
struct StringScalarTest : public cudf::test::BaseFixture {};
TEST_F(StringScalarTest, DefaultValidity)
{
std::string value = "test string";
auto s = cudf::string_scalar(value);
EXPECT_TRUE(s.is_valid());
EXPECT_EQ(value, s.to_string());
}
TEST_F(StringScalarTest, CopyConstructor)
{
std::string value = "test_string";
auto s = cudf::string_scalar(value);
auto s2 = s;
EXPECT_TRUE(s2.is_valid());
EXPECT_EQ(value, s2.to_string());
}
TEST_F(StringScalarTest, MoveConstructor)
{
std::string value = "another test string";
auto s = cudf::string_scalar(value);
auto data_ptr = s.data();
auto mask_ptr = s.validity_data();
decltype(s) s2(std::move(s));
EXPECT_EQ(mask_ptr, s2.validity_data());
EXPECT_EQ(data_ptr, s2.data());
}
struct ListScalarTest : public cudf::test::BaseFixture {};
TEST_F(ListScalarTest, DefaultValidityNonNested)
{
auto data = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3};
auto s = cudf::list_scalar(data);
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(data, s.view());
}
TEST_F(ListScalarTest, DefaultValidityNested)
{
auto data = cudf::test::lists_column_wrapper<int32_t>{{1, 2}, {2}, {}, {4, 5}};
auto s = cudf::list_scalar(data);
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(data, s.view());
}
TEST_F(ListScalarTest, MoveColumnConstructor)
{
auto data = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3};
auto col = cudf::column(data);
auto ptr = col.view().data<int32_t>();
auto s = cudf::list_scalar(std::move(col));
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(data, s.view());
EXPECT_EQ(ptr, s.view().data<int32_t>());
}
TEST_F(ListScalarTest, CopyConstructorNonNested)
{
auto data = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3};
auto s = cudf::list_scalar(data);
auto s2 = s;
EXPECT_TRUE(s2.is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(data, s2.view());
EXPECT_NE(s.view().data<int32_t>(), s2.view().data<int32_t>());
}
TEST_F(ListScalarTest, CopyConstructorNested)
{
auto data = cudf::test::lists_column_wrapper<int32_t>{{1, 2}, {2}, {}, {4, 5}};
auto s = cudf::list_scalar(data);
auto s2 = s;
EXPECT_TRUE(s2.is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(data, s2.view());
EXPECT_NE(s.view().child(0).data<int32_t>(), s2.view().child(0).data<int32_t>());
EXPECT_NE(s.view().child(1).data<int32_t>(), s2.view().child(1).data<int32_t>());
}
TEST_F(ListScalarTest, MoveConstructorNonNested)
{
auto data = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3};
auto s = cudf::list_scalar(data);
auto data_ptr = s.view().data<int32_t>();
auto mask_ptr = s.validity_data();
decltype(s) s2(std::move(s));
EXPECT_EQ(mask_ptr, s2.validity_data());
EXPECT_EQ(data_ptr, s2.view().data<int32_t>());
EXPECT_EQ(s.view().data<int32_t>(), nullptr);
}
TEST_F(ListScalarTest, MoveConstructorNested)
{
auto data = cudf::test::lists_column_wrapper<int32_t>{{1, 2}, {2}, {}, {4, 5}};
auto s = cudf::list_scalar(data);
auto offset_ptr = s.view().child(0).data<cudf::size_type>();
auto data_ptr = s.view().child(1).data<int32_t>();
auto mask_ptr = s.validity_data();
decltype(s) s2(std::move(s));
EXPECT_EQ(mask_ptr, s2.validity_data());
EXPECT_EQ(offset_ptr, s2.view().child(0).data<cudf::size_type>());
EXPECT_EQ(data_ptr, s2.view().child(1).data<int32_t>());
EXPECT_EQ(s.view().data<int32_t>(), nullptr);
EXPECT_EQ(s.view().num_children(), 0);
}
struct StructScalarTest : public cudf::test::BaseFixture {};
TEST_F(StructScalarTest, Basic)
{
cudf::test::fixed_width_column_wrapper<int> col0{1};
cudf::test::strings_column_wrapper col1{"abc"};
cudf::test::lists_column_wrapper<int> col2{{1, 2, 3}};
cudf::test::structs_column_wrapper struct_col({col0, col1, col2});
cudf::column_view cv = static_cast<cudf::column_view>(struct_col);
std::vector<cudf::column_view> children(cv.child_begin(), cv.child_end());
// table_view constructor
{
auto s = cudf::struct_scalar(children, true);
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{children}, s.view());
}
// host_span constructor
{
auto s = cudf::struct_scalar(cudf::host_span<cudf::column_view const>{children}, true);
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{children}, s.view());
}
}
TEST_F(StructScalarTest, BasicNulls)
{
cudf::test::fixed_width_column_wrapper<int> col0{1};
cudf::test::strings_column_wrapper col1{"abc"};
cudf::test::lists_column_wrapper<int> col2{{1, 2, 3}};
std::vector<cudf::column_view> src_children({col0, col1, col2});
std::vector<std::unique_ptr<cudf::column>> src_columns;
// structs_column_wrapper takes ownership of the incoming columns, so make a copy
src_columns.push_back(std::make_unique<cudf::column>(src_children[0]));
src_columns.push_back(std::make_unique<cudf::column>(src_children[1]));
src_columns.push_back(std::make_unique<cudf::column>(src_children[2]));
cudf::test::structs_column_wrapper valid_struct_col(std::move(src_columns), {1});
cudf::column_view vcv = static_cast<cudf::column_view>(valid_struct_col);
std::vector<cudf::column_view> valid_children(vcv.child_begin(), vcv.child_end());
// structs_column_wrapper takes ownership of the incoming columns, so make a copy
src_columns.push_back(std::make_unique<cudf::column>(src_children[0]));
src_columns.push_back(std::make_unique<cudf::column>(src_children[1]));
src_columns.push_back(std::make_unique<cudf::column>(src_children[2]));
cudf::test::structs_column_wrapper invalid_struct_col(std::move(src_columns), {0});
cudf::column_view icv = static_cast<cudf::column_view>(invalid_struct_col);
std::vector<cudf::column_view> invalid_children(icv.child_begin(), icv.child_end());
// table_view constructor
{
auto s = cudf::struct_scalar(cudf::table_view{src_children}, true);
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{valid_children}, s.view());
}
// host_span constructor
{
auto s = cudf::struct_scalar(cudf::host_span<cudf::column_view const>{src_children}, true);
EXPECT_TRUE(s.is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{valid_children}, s.view());
}
// with nulls, we expect the incoming children to get nullified by passing false to
// the scalar constructor itself. so we use the unmodified `children` as the input, but
// we compare against the modified `invalid_children` produced by the source column as
// proof that the scalar did the validity pushdown.
// table_view constructor
{
auto s = cudf::struct_scalar(cudf::table_view{src_children}, false);
EXPECT_TRUE(!s.is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{invalid_children}, s.view());
}
// host_span constructor
{
auto s = cudf::struct_scalar(cudf::host_span<cudf::column_view const>{src_children}, false);
EXPECT_TRUE(!s.is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(cudf::table_view{invalid_children}, s.view());
}
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/transpose/transpose_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/transpose.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <limits>
#include <random>
#include <string>
namespace {
template <typename T, typename F>
auto generate_vectors(size_t ncols, size_t nrows, F generator)
{
std::vector<std::vector<T>> values(ncols);
std::for_each(values.begin(), values.end(), [generator, nrows](std::vector<T>& col) {
col.resize(nrows);
std::generate(col.begin(), col.end(), generator);
});
return values;
}
template <typename T>
auto transpose_vectors(std::vector<std::vector<T>> const& input)
{
if (input.empty()) { return input; }
size_t ncols = input.size();
size_t nrows = input.front().size();
std::vector<std::vector<T>> transposed(nrows);
std::for_each(
transposed.begin(), transposed.end(), [=](std::vector<T>& col) { col.resize(ncols); });
for (size_t col = 0; col < input.size(); ++col) {
for (size_t row = 0; row < nrows; ++row) {
transposed[row][col] = input[col][row];
}
}
return transposed;
}
template <typename T, typename ColumnWrapper>
auto make_columns(std::vector<std::vector<T>> const& values)
{
std::vector<ColumnWrapper> columns;
columns.reserve(values.size());
for (auto const& value_col : values) {
columns.emplace_back(value_col.begin(), value_col.end());
}
return columns;
}
template <typename T, typename ColumnWrapper>
auto make_columns(std::vector<std::vector<T>> const& values,
std::vector<std::vector<cudf::size_type>> const& valids)
{
std::vector<ColumnWrapper> columns;
columns.reserve(values.size());
for (size_t col = 0; col < values.size(); ++col) {
columns.emplace_back(values[col].begin(), values[col].end(), valids[col].begin());
}
return columns;
}
template <typename ColumnWrapper>
auto make_table_view(std::vector<ColumnWrapper> const& cols)
{
std::vector<cudf::column_view> views(cols.size());
std::transform(cols.begin(), cols.end(), views.begin(), [](auto const& col) {
return static_cast<cudf::column_view>(col);
});
return cudf::table_view(views);
}
template <typename T>
void run_test(size_t ncols, size_t nrows, bool add_nulls)
{
using ColumnWrapper = std::conditional_t<std::is_same_v<T, std::string>,
cudf::test::strings_column_wrapper,
cudf::test::fixed_width_column_wrapper<T>>;
std::mt19937 rng(1);
// Generate values as vector of vectors
auto const values = generate_vectors<T>(
ncols, nrows, [&rng]() { return cudf::test::make_type_param_scalar<T>(rng()); });
auto const valuesT = transpose_vectors(values);
std::vector<ColumnWrapper> input_cols;
std::vector<ColumnWrapper> expected_cols;
std::vector<cudf::size_type> expected_nulls(nrows);
if (add_nulls) {
// Generate null mask as vector of vectors
auto const valids = generate_vectors<cudf::size_type>(
ncols, nrows, [&rng]() { return static_cast<cudf::size_type>(rng() % 3 > 0 ? 1 : 0); });
auto const validsT = transpose_vectors(valids);
// Compute the null counts over each transposed column
std::transform(validsT.begin(),
validsT.end(),
expected_nulls.begin(),
[ncols](std::vector<cudf::size_type> const& vec) {
// num nulls = num elems - num valids
return ncols - std::accumulate(vec.begin(), vec.end(), 0);
});
// Create column wrappers from vector of vectors
input_cols = make_columns<T, ColumnWrapper>(values, valids);
expected_cols = make_columns<T, ColumnWrapper>(valuesT, validsT);
} else {
input_cols = make_columns<T, ColumnWrapper>(values);
expected_cols = make_columns<T, ColumnWrapper>(valuesT);
}
// Create table views from column wrappers
auto input_view = make_table_view(input_cols);
auto expected_view = make_table_view(expected_cols);
auto result = transpose(input_view);
auto result_view = std::get<1>(result);
ASSERT_EQ(result_view.num_columns(), expected_view.num_columns());
for (cudf::size_type i = 0; i < result_view.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result_view.column(i), expected_view.column(i));
EXPECT_EQ(result_view.column(i).null_count(), expected_nulls[i]);
}
}
} // namespace
template <typename T>
class TransposeTest : public cudf::test::BaseFixture {};
// Using std::string here instead of cudf::test::StringTypes allows us to
// use std::vector<T> utilities in this file just like the fixed-width types.
// Should consider changing cudf::test::StringTypes to std::string instead of cudf::string_view.
using StdStringType = cudf::test::Types<std::string>;
using TransposeTypes = cudf::test::Concat<cudf::test::FixedWidthTypes, StdStringType>;
TYPED_TEST_SUITE(TransposeTest, TransposeTypes); // cudf::test::FixedWidthTypes);
TYPED_TEST(TransposeTest, SingleValue) { run_test<TypeParam>(1, 1, false); }
TYPED_TEST(TransposeTest, SingleColumn) { run_test<TypeParam>(1, 1000, false); }
TYPED_TEST(TransposeTest, SingleColumnNulls) { run_test<TypeParam>(1, 1000, true); }
TYPED_TEST(TransposeTest, Square) { run_test<TypeParam>(100, 100, false); }
TYPED_TEST(TransposeTest, SquareNulls) { run_test<TypeParam>(100, 100, true); }
TYPED_TEST(TransposeTest, Slim) { run_test<TypeParam>(10, 1000, false); }
TYPED_TEST(TransposeTest, SlimNulls) { run_test<TypeParam>(10, 1000, true); }
TYPED_TEST(TransposeTest, Fat) { run_test<TypeParam>(1000, 10, false); }
TYPED_TEST(TransposeTest, FatNulls) { run_test<TypeParam>(1000, 10, true); }
TYPED_TEST(TransposeTest, EmptyTable) { run_test<TypeParam>(0, 0, false); }
TYPED_TEST(TransposeTest, EmptyColumns) { run_test<TypeParam>(10, 0, false); }
class TransposeTestError : public cudf::test::BaseFixture {};
TEST_F(TransposeTestError, MismatchedColumns)
{
cudf::test::fixed_width_column_wrapper<uint32_t, int32_t> col1({1, 2, 3});
cudf::test::fixed_width_column_wrapper<int8_t> col2{{4, 5, 6}};
cudf::test::fixed_width_column_wrapper<float> col3{{7, 8, 9}};
cudf::table_view input{{col1, col2, col3}};
EXPECT_THROW(cudf::transpose(input), cudf::logic_error);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/stable_distinct_tests.cpp
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf/copying.hpp>
#include <cudf/sorting.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cmath>
auto constexpr null{0}; // null at current level
auto constexpr XXX{0}; // null pushed down from parent level
auto constexpr NaN = std::numeric_limits<double>::quiet_NaN();
auto constexpr KEEP_ANY = cudf::duplicate_keep_option::KEEP_ANY;
auto constexpr KEEP_FIRST = cudf::duplicate_keep_option::KEEP_FIRST;
auto constexpr KEEP_LAST = cudf::duplicate_keep_option::KEEP_LAST;
auto constexpr KEEP_NONE = cudf::duplicate_keep_option::KEEP_NONE;
auto constexpr NULL_EQUAL = cudf::null_equality::EQUAL;
auto constexpr NULL_UNEQUAL = cudf::null_equality::UNEQUAL;
auto constexpr NAN_EQUAL = cudf::nan_equality::ALL_EQUAL;
auto constexpr NAN_UNEQUAL = cudf::nan_equality::UNEQUAL;
using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using floats_col = cudf::test::fixed_width_column_wrapper<float>;
using lists_col = cudf::test::lists_column_wrapper<int32_t>;
using strings_col = cudf::test::strings_column_wrapper;
using structs_col = cudf::test::structs_column_wrapper;
using cudf::nan_policy;
using cudf::null_equality;
using cudf::null_policy;
using cudf::test::iterators::no_nulls;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
struct StableDistinctKeepAny : public cudf::test::BaseFixture {};
struct StableDistinctKeepFirstLastNone : public cudf::test::BaseFixture {};
TEST_F(StableDistinctKeepAny, StringKeyColumn)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const col = int32s_col{{5, 5, null, null, 5, 8, 1}, nulls_at({2, 3})};
auto const keys =
strings_col{{"all", "all", "new", "new", "" /*NULL*/, "the", "strings"}, null_at(4)};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_col = int32s_col{{5, null, 5, 8, 1}, null_at(1)};
auto const exp_keys = strings_col{{"all", "new", "" /*NULL*/, "the", "strings"}, null_at(2)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(StableDistinctKeepFirstLastNone, StringKeyColumn)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{{0, null, 2, 3, 4, 5, 6}, null_at(1)};
auto const keys =
strings_col{{"all", "new", "new", "all", "" /*NULL*/, "the", "strings"}, null_at(4)};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col = int32s_col{{0, null, 4, 5, 6}, null_at(1)};
auto const exp_keys = strings_col{{"all", "new", "" /*NULL*/, "the", "strings"}, null_at(2)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col = int32s_col{{2, 3, 4, 5, 6}, no_nulls()};
auto const exp_keys = strings_col{{"new", "all", "" /*NULL*/, "the", "strings"}, null_at(2)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col = int32s_col{{4, 5, 6}, no_nulls()};
auto const exp_keys = strings_col{{"" /*NULL*/, "the", "strings"}, null_at(0)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, EmptyInputTable)
{
int32s_col col(std::initializer_list<int32_t>{});
cudf::table_view input{{col}};
std::vector<cudf::size_type> key_idx{0};
auto got = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(StableDistinctKeepAny, NoColumnInputTable)
{
cudf::table_view input{std::vector<cudf::column_view>()};
std::vector<cudf::size_type> key_idx{1, 2};
auto got = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(StableDistinctKeepAny, EmptyKeys)
{
int32s_col col{{5, 4, 3, 5, 8, 1}, {1, 0, 1, 1, 1, 1}};
int32s_col empty_col{};
cudf::table_view input{{col}};
std::vector<cudf::size_type> key_idx{};
auto got = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(cudf::table_view{{empty_col}}, got->view());
}
TEST_F(StableDistinctKeepAny, NoNullsTable)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const col1 = int32s_col{6, 6, 6, 3, 5, 8, 5};
auto const col2 = floats_col{6, 6, 6, 3, 4, 9, 4};
auto const keys1 = int32s_col{20, 20, 20, 20, 19, 21, 9};
auto const keys2 = int32s_col{19, 19, 19, 20, 20, 9, 21};
auto const input = cudf::table_view{{col1, col2, keys1, keys2}};
auto const key_idx = std::vector<cudf::size_type>{2, 3};
auto const exp_col1 = int32s_col{6, 3, 5, 8, 5};
auto const exp_col2 = floats_col{6, 3, 4, 9, 4};
auto const exp_keys1 = int32s_col{20, 20, 19, 21, 9};
auto const exp_keys2 = int32s_col{19, 20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(StableDistinctKeepAny, NoNullsTableWithNaNs)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const col1 = int32s_col{6, 6, 6, 1, 1, 1, 3, 5, 8, 5};
auto const col2 = floats_col{6, 6, 6, 1, 1, 1, 3, 4, 9, 4};
auto const keys1 = int32s_col{20, 20, 20, 15, 15, 15, 20, 19, 21, 9};
auto const keys2 = floats_col{19., 19., 19., NaN, NaN, NaN, 20., 20., 9., 21.};
auto const input = cudf::table_view{{col1, col2, keys1, keys2}};
auto const key_idx = std::vector<cudf::size_type>{2, 3};
// NaNs are unequal.
{
auto const exp_col1 = int32s_col{6, 1, 1, 1, 3, 5, 8, 5};
auto const exp_col2 = floats_col{6, 1, 1, 1, 3, 4, 9, 4};
auto const exp_keys1 = int32s_col{20, 15, 15, 15, 20, 19, 21, 9};
auto const exp_keys2 = floats_col{19., NaN, NaN, NaN, 20., 20., 9., 21.};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// NaNs are equal.
{
auto const exp_col1 = int32s_col{6, 1, 3, 5, 8, 5};
auto const exp_col2 = floats_col{6, 1, 3, 4, 9, 4};
auto const exp_keys1 = int32s_col{20, 15, 20, 19, 21, 9};
auto const exp_keys2 = floats_col{19., NaN, 20., 20., 9., 21.};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, NoNullsTable)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col1 = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const col2 = floats_col{10, 11, 12, 13, 14, 15, 16};
auto const keys1 = int32s_col{20, 20, 20, 20, 19, 21, 9};
auto const keys2 = int32s_col{19, 19, 19, 20, 20, 9, 21};
auto const input = cudf::table_view{{col1, col2, keys1, keys2}};
auto const key_idx = std::vector<cudf::size_type>{2, 3};
// KEEP_FIRST
{
auto const exp_col1 = int32s_col{0, 3, 4, 5, 6};
auto const exp_col2 = floats_col{10, 13, 14, 15, 16};
auto const exp_keys1 = int32s_col{20, 20, 19, 21, 9};
auto const exp_keys2 = int32s_col{19, 20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col1 = int32s_col{2, 3, 4, 5, 6};
auto const exp_col2 = floats_col{12, 13, 14, 15, 16};
auto const exp_keys1 = int32s_col{20, 20, 19, 21, 9};
auto const exp_keys2 = int32s_col{19, 20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col1 = int32s_col{3, 4, 5, 6};
auto const exp_col2 = floats_col{13, 14, 15, 16};
auto const exp_keys1 = int32s_col{20, 19, 21, 9};
auto const exp_keys2 = int32s_col{20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, SlicedNoNullsTable)
{
auto constexpr dont_care = int32_t{0};
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const col1 = int32s_col{dont_care, dont_care, 6, 6, 6, 3, 5, 8, 5, dont_care};
auto const col2 = floats_col{dont_care, dont_care, 6, 6, 6, 3, 4, 9, 4, dont_care};
auto const keys1 = int32s_col{dont_care, dont_care, 20, 20, 20, 20, 19, 21, 9, dont_care};
auto const keys2 = int32s_col{dont_care, dont_care, 19, 19, 19, 20, 20, 9, 21, dont_care};
auto const input_original = cudf::table_view{{col1, col2, keys1, keys2}};
auto const input = cudf::slice(input_original, {2, 9})[0];
auto const key_idx = std::vector<cudf::size_type>{2, 3};
auto const exp_col1 = int32s_col{6, 3, 5, 8, 5};
auto const exp_col2 = floats_col{6, 3, 4, 9, 4};
auto const exp_keys1 = int32s_col{20, 20, 19, 21, 9};
auto const exp_keys2 = int32s_col{19, 20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(StableDistinctKeepFirstLastNone, SlicedNoNullsTable)
{
auto constexpr dont_care = int32_t{0};
// Column(s) used to test needs to have different rows for the same keys.
// clang-format off
auto const col1 = int32s_col{0, 1, 2, // <- don't care
3, 4, 5, 6, 7, 8, 9, dont_care};
auto const col2 = floats_col{10, 11, 12, // <- don't care
13, 14, 15, 16, 17, 18, 19, dont_care};
auto const keys1 = int32s_col{20, 20, 20, // <- don't care
20, 20, 20, 20, 19, 21, 9, dont_care};
auto const keys2 = int32s_col{19, 19, 19, // <- don't care
19, 19, 19, 20, 20, 9, 21, dont_care};
// clang-format on
auto const input_original = cudf::table_view{{col1, col2, keys1, keys2}};
auto const input = cudf::slice(input_original, {3, 10})[0];
auto const key_idx = std::vector<cudf::size_type>{2, 3};
// KEEP_FIRST
{
auto const exp_col1 = int32s_col{3, 6, 7, 8, 9};
auto const exp_col2 = floats_col{13, 16, 17, 18, 19};
auto const exp_keys1 = int32s_col{20, 20, 19, 21, 9};
auto const exp_keys2 = int32s_col{19, 20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col1 = int32s_col{5, 6, 7, 8, 9};
auto const exp_col2 = floats_col{15, 16, 17, 18, 19};
auto const exp_keys1 = int32s_col{20, 20, 19, 21, 9};
auto const exp_keys2 = int32s_col{19, 20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col1 = int32s_col{6, 7, 8, 9};
auto const exp_col2 = floats_col{16, 17, 18, 19};
auto const exp_keys1 = int32s_col{20, 19, 21, 9};
auto const exp_keys2 = int32s_col{20, 20, 9, 21};
auto const expected = cudf::table_view{{exp_col1, exp_col2, exp_keys1, exp_keys2}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, InputWithNulls)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const col = int32s_col{5, 4, 4, 1, 1, 8};
auto const keys = int32s_col{{20, null, null, 19, 19, 21}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const exp_col = int32s_col{5, 4, 1, 8};
auto const exp_keys = int32s_col{{20, null, 19, 21}, null_at(1)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal.
{
auto const exp_col = int32s_col{5, 4, 4, 1, 8};
auto const exp_keys = int32s_col{{20, null, null, 19, 21}, nulls_at({1, 2})};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, InputWithNullsAndNaNs)
{
auto constexpr null{0.0}; // shadow the global `null` variable of type int
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const col = int32s_col{5, 4, 4, 1, 1, 1, 8, 8, 1};
auto const keys = floats_col{{20., null, null, NaN, NaN, NaN, 19., 19., 21.}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal, NaNs are unequal.
{
auto const exp_col = int32s_col{5, 4, 1, 1, 1, 8, 1};
auto const exp_keys = floats_col{{20., null, NaN, NaN, NaN, 19., 21.}, null_at(1)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are equal, NaNs are equal.
{
auto const exp_col = int32s_col{5, 4, 1, 8, 1};
auto const exp_keys = floats_col{{20., null, NaN, 19., 21.}, null_at(1)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal, NaNs are unequal.
{
auto const exp_col = int32s_col{5, 4, 4, 1, 1, 1, 8, 1};
auto const exp_keys = floats_col{{20., null, null, NaN, NaN, NaN, 19., 21.}, nulls_at({1, 2})};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL, NAN_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal, NaNs are equal.
{
auto const exp_col = int32s_col{5, 4, 4, 1, 8, 1};
auto const exp_keys = floats_col{{20., null, null, NaN, 19., 21.}, nulls_at({1, 2})};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL, NAN_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, InputWithNullsEqual)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const keys = int32s_col{{20, null, null, 19, 21, 19, 22}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col = int32s_col{0, 1, 3, 4, 6};
auto const exp_keys = int32s_col{{20, null, 19, 21, 22}, null_at(1)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col = int32s_col{0, 2, 4, 5, 6};
auto const exp_keys = int32s_col{{20, null, 21, 19, 22}, null_at(1)};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col = int32s_col{0, 4, 6};
auto const exp_keys = int32s_col{{20, 21, 22}, no_nulls()};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, InputWithNullsUnequal)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6, 7};
auto const keys = int32s_col{{20, null, null, 19, 21, 19, 22, 20}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col = int32s_col{0, 1, 2, 3, 4, 6};
auto const exp_keys = int32s_col{{20, null, null, 19, 21, 22}, nulls_at({1, 2})};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col = int32s_col{1, 2, 4, 5, 6, 7};
auto const exp_keys = int32s_col{{null, null, 21, 19, 22, 20}, nulls_at({0, 1})};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col = int32s_col{1, 2, 4, 6};
auto const exp_keys = int32s_col{{null, null, 21, 22}, nulls_at({0, 1})};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, InputWithNaNsEqual)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const keys = floats_col{20., NaN, NaN, 19., 21., 19., 22.};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col = int32s_col{0, 1, 3, 4, 6};
auto const exp_keys = floats_col{20., NaN, 19., 21., 22.};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST, NULL_EQUAL, NAN_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col = int32s_col{0, 2, 4, 5, 6};
auto const exp_keys = floats_col{20., NaN, 21., 19., 22.};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST, NULL_EQUAL, NAN_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col = int32s_col{0, 4, 6};
auto const exp_keys = floats_col{20., 21., 22.};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE, NULL_EQUAL, NAN_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, InputWithNaNsUnequal)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6, 7};
auto const keys = floats_col{20., NaN, NaN, 19., 21., 19., 22., 20.};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col = int32s_col{0, 1, 2, 3, 4, 6};
auto const exp_keys = floats_col{20., NaN, NaN, 19., 21., 22.};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result =
cudf::stable_distinct(input, key_idx, KEEP_FIRST, NULL_UNEQUAL, NAN_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_col = int32s_col{1, 2, 4, 5, 6, 7};
auto const exp_keys = floats_col{NaN, NaN, 21., 19., 22., 20.};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST, NULL_UNEQUAL, NAN_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_col = int32s_col{1, 2, 4, 6};
auto const exp_keys = floats_col{NaN, NaN, 21., 22.};
auto const expected = cudf::table_view{{exp_col, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE, NULL_UNEQUAL, NAN_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, BasicLists)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
// clang-format off
auto const idx = int32s_col{ 0, 0, 1, 1, 2, 3, 4, 4, 4, 5, 5, 6};
auto const keys = lists_col{{}, {}, {1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const exp_keys = lists_col{{}, {1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(StableDistinctKeepFirstLastNone, BasicLists)
{
// Column(s) used to test needs to have different rows for the same keys.
// clang-format off
auto const idx = int32s_col{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
auto const keys = lists_col{{}, {}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_idx = int32s_col{0, 2, 3, 5, 6, 7, 9};
auto const exp_keys = lists_col{{}, {1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_idx = int32s_col{1, 3, 4, 5, 8, 9, 11};
auto const exp_keys = lists_col{{}, {1, 1}, {1}, {1, 2}, {2}, {2, 1}, {2, 2}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_idx = int32s_col{3, 5, 9};
auto const exp_keys = lists_col{{1, 1}, {1, 2}, {2, 1}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, SlicedBasicLists)
{
auto constexpr dont_care = int32_t{0};
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const idx = int32s_col{dont_care, dont_care, 1, 1, 2, 3, 4, 4, 4, 5, 5, 6, dont_care};
auto const keys = lists_col{
{0, 0}, {0, 0}, {1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}, {5, 5}};
auto const input_original = cudf::table_view{{idx, keys}};
auto const input = cudf::slice(input_original, {2, 12})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_val = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto const expected = cudf::table_view{{exp_idx, exp_val}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(StableDistinctKeepAny, NullableLists)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const idx = int32s_col{0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4};
auto const keys =
lists_col{{{}, {}, {1}, {1}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {} /*NULL*/, {} /*NULL*/},
nulls_at({9, 10})};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const exp_idx = int32s_col{0, 1, 2, 3, 4};
auto const exp_keys = lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/}, null_at(4)};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal.
{
auto const exp_idx = int32s_col{0, 1, 2, 3, 4, 4};
auto const exp_keys =
lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/, {} /*NULL*/}, nulls_at({4, 5})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, ListsWithNullsEqual)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto const keys =
lists_col{{{}, {}, {1}, {1}, {2, 2}, {2}, {2}, {} /*NULL*/, {2, 2}, {2, 2}, {} /*NULL*/},
nulls_at({7, 10})};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_idx = int32s_col{0, 2, 4, 5, 7};
auto const exp_keys = lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/}, null_at(4)};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_idx = int32s_col{1, 3, 6, 9, 10};
auto const exp_keys = lists_col{{{}, {1}, {2}, {2, 2}, {} /*NULL*/}, null_at(4)};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_idx = int32s_col{};
auto const exp_keys = lists_col{};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, ListsWithNullsUnequal)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto const keys =
lists_col{{{}, {}, {1}, {1}, {2, 2}, {2}, {2}, {} /*NULL*/, {2, 2}, {2, 2}, {} /*NULL*/},
nulls_at({7, 10})};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_idx = int32s_col{0, 2, 4, 5, 7, 10};
auto const exp_keys =
lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/, {} /*NULL*/}, nulls_at({4, 5})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_LAST
{
auto const exp_idx = int32s_col{1, 3, 6, 7, 9, 10};
auto const exp_keys =
lists_col{{{}, {1}, {2}, {} /*NULL*/, {2, 2}, {} /*NULL*/}, nulls_at({3, 5})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP_NONE
{
auto const exp_idx = int32s_col{7, 10};
auto const exp_keys = lists_col{{lists_col{} /*NULL*/, lists_col{} /*NULL*/}, nulls_at({0, 1})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(StableDistinctKeepAny, ListsOfStructs)
{
// Constructing a list of structs of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] ==
// 16. [{Null, 'b'}]
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 4, 5, 8, 9, 10, 11, 13, 15};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepFirstLastNone, ListsOfStructs)
{
// Constructing a list of structs of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] ==
// 16. [{Null, 'b'}]
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const expect_map = int32s_col{0, 2, 4, 5, 8, 9, 10, 11, 13, 15};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_LAST
{
auto const expect_map = int32s_col{1, 3, 4, 7, 8, 9, 10, 12, 14, 16};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_NONE
{
auto const expect_map = int32s_col{4, 8, 9, 10};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, SlicedListsOfStructs)
{
// Constructing a list of struct of two elements
// 0. [] == <- Don't care
// 1. [] != <- Don't care
// 2. Null == <- Don't care
// 3. Null != <- Don't care
// 4. [Null, Null] != <- Don't care
// 5. [Null] == <- Don't care
// 6. [Null] == <- Don't care
// 7. [Null] != <- Don't care
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] == <- Don't care
// 16. [{Null, 'b'}] <- Don't care
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
auto const input_original = cudf::table_view{{idx, keys}};
auto const input = cudf::slice(input_original, {8, 15})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{8, 9, 10, 11, 13};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{8, 9, 10, 11, 13, 14};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, ListsOfEmptyStructs)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] ==
// 5. [Null, Null] ==
// 6. [Null, Null] !=
// 7. [Null] ==
// 8. [Null] !=
// 9. [{}] ==
// 10. [{}] !=
// 11. [{}, {}] ==
// 12. [{}, {}]
auto const structs_null_it = nulls_at({0, 1, 2, 3, 4, 5, 6, 7});
auto [structs_null_mask, structs_null_count] =
cudf::test::detail::make_null_mask(structs_null_it, structs_null_it + 14);
auto const structs =
cudf::column_view(cudf::data_type(cudf::type_id::STRUCT),
14,
nullptr,
static_cast<cudf::bitmask_type const*>(structs_null_mask.data()),
structs_null_count);
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 4, 6, 7, 8, 9, 10, 12, 14};
auto const lists_null_it = nulls_at({2, 3});
auto [lists_null_mask, lists_null_count] =
cudf::test::detail::make_null_mask(lists_null_it, lists_null_it + 13);
auto const keys =
cudf::column_view(cudf::data_type(cudf::type_id::LIST),
13,
nullptr,
static_cast<cudf::bitmask_type const*>(lists_null_mask.data()),
lists_null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 4, 7, 9, 11};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8, 9, 11};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, EmptyDeepList)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
// List<List<int>>, where all lists are empty:
//
// 0. []
// 1. []
// 2. Null
// 3. Null
auto const keys =
lists_col{{lists_col{}, lists_col{}, lists_col{}, lists_col{}}, nulls_at({2, 3})};
auto const idx = int32s_col{1, 1, 2, 2};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, StructsOfStructs)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 1}, 5} | // Same as 0
// 2 | { {1, 2}, 4} |
// 3 | { Null, 6} |
// 4 | { Null, 4} |
// 5 | { Null, 4} | // Same as 4
// 6 | Null |
// 7 | Null | // Same as 6
// 8 | { {2, 1}, 5} |
auto s1 = [&] {
auto a = int32s_col{1, 1, 1, XXX, XXX, XXX, XXX, XXX, 2};
auto b = int32s_col{1, 1, 2, XXX, XXX, XXX, XXX, XXX, 1};
auto s2 = structs_col{{a, b}, nulls_at({3, 4, 5})};
auto c = int32s_col{5, 5, 4, 6, 4, 4, XXX, XXX, 5};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({6, 7});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const idx = int32s_col{0, 0, 2, 3, 4, 4, 6, 6, 8};
auto const input = cudf::table_view{{idx, s1}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 6, 8};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 4, 6, 6, 8};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, SlicedStructsOfStructs)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 1}, 5} | // Same as 0
// 2 | { {1, 2}, 4} |
// 3 | { Null, 6} |
// 4 | { Null, 4} |
// 5 | { Null, 4} | // Same as 4
// 6 | Null |
// 7 | Null | // Same as 6
// 8 | { {2, 1}, 5} |
auto s1 = [&] {
auto a = int32s_col{1, 1, XXX, XXX, XXX, XXX, 1, XXX, 2};
auto b = int32s_col{1, 2, XXX, XXX, XXX, XXX, 1, XXX, 1};
auto s2 = structs_col{{a, b}, nulls_at({3, 4, 5})};
auto c = int32s_col{5, 4, 6, 4, XXX, XXX, 5, 4, 5};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({6, 7});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const idx = int32s_col{0, 0, 2, 3, 4, 4, 6, 6, 8};
auto const input_original = cudf::table_view{{idx, s1}};
auto const input = cudf::slice(input_original, {1, 7})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{1, 2, 3, 4, 6};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{1, 2, 3, 4, 4, 6};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, StructsOfLists)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto const idx = int32s_col{1, 1, 2, 3, 4, 4, 4, 5, 5, 6};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_keys = [] {
auto child1 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(StableDistinctKeepFirstLastNone, StructsOfLists)
{
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto child2 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto child3 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
return structs_col{{child1, child2, child3}};
}();
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const expect_map = int32s_col{0, 1, 3, 4, 5, 7};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_LAST
{
auto const expect_map = int32s_col{1, 2, 3, 6, 7, 9};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_NONE
{
auto const expect_map = int32s_col{1, 3, 7};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::stable_distinct(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(StableDistinctKeepAny, SlicedStructsOfLists)
{
// Column(s) used to test KEEP_ANY needs to have same rows in contiguous
// groups for equivalent keys because KEEP_ANY is nondeterministic.
auto constexpr dont_care = int32_t{0};
auto const idx = int32s_col{dont_care, dont_care, 1, 1, 2, 3, 4, 4, 4, 5, 5, 6, dont_care};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{
{0, 0}, {0, 0}, {1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}, {5, 5}};
auto child2 = lists_col{
{0, 0}, {0, 0}, {1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}, {5, 5}};
auto child3 = lists_col{
{0, 0}, {0, 0}, {1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}, {5, 5}};
return structs_col{{child1, child2, child3}};
}();
auto const input_original = cudf::table_view{{idx, keys}};
auto const input = cudf::slice(input_original, {2, 12})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_keys = [] {
auto child1 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::stable_distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/distinct_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf/copying.hpp>
#include <cudf/sorting.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cmath>
auto constexpr null{0}; // null at current level
auto constexpr XXX{0}; // null pushed down from parent level
auto constexpr NaN = std::numeric_limits<double>::quiet_NaN();
auto constexpr KEEP_ANY = cudf::duplicate_keep_option::KEEP_ANY;
auto constexpr KEEP_FIRST = cudf::duplicate_keep_option::KEEP_FIRST;
auto constexpr KEEP_LAST = cudf::duplicate_keep_option::KEEP_LAST;
auto constexpr KEEP_NONE = cudf::duplicate_keep_option::KEEP_NONE;
auto constexpr NULL_EQUAL = cudf::null_equality::EQUAL;
auto constexpr NULL_UNEQUAL = cudf::null_equality::UNEQUAL;
auto constexpr NAN_EQUAL = cudf::nan_equality::ALL_EQUAL;
auto constexpr NAN_UNEQUAL = cudf::nan_equality::UNEQUAL;
using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using floats_col = cudf::test::fixed_width_column_wrapper<float>;
using lists_col = cudf::test::lists_column_wrapper<int32_t>;
using strings_col = cudf::test::strings_column_wrapper;
using structs_col = cudf::test::structs_column_wrapper;
using cudf::nan_policy;
using cudf::null_equality;
using cudf::null_policy;
using cudf::test::iterators::no_nulls;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
struct DistinctKeepAny : public cudf::test::BaseFixture {};
struct DistinctKeepFirstLastNone : public cudf::test::BaseFixture {};
TEST_F(DistinctKeepAny, StringKeyColumn)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const col = int32s_col{{5, null, null, 5, 5, 8, 1}, nulls_at({1, 2})};
auto const keys =
strings_col{{"all", "new", "new", "all", "" /*NULL*/, "the", "strings"}, null_at(4)};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_col_sort = int32s_col{{5, 5, null, 1, 8}, null_at(2)};
auto const exp_keys_sort = strings_col{{"" /*NULL*/, "all", "new", "strings", "the"}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
TEST_F(DistinctKeepFirstLastNone, StringKeyColumn)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{{0, null, 2, 3, 4, 5, 6}, null_at(1)};
auto const keys =
strings_col{{"all", "new", "new", "all", "" /*NULL*/, "the", "strings"}, null_at(4)};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col_sort = int32s_col{{4, 0, null, 6, 5}, null_at(2)};
auto const exp_keys_sort =
strings_col{{"" /*NULL*/, "all", "new", "strings", "the"}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col_sort = int32s_col{{4, 3, 2, 6, 5}, no_nulls()};
auto const exp_keys_sort =
strings_col{{"" /*NULL*/, "all", "new", "strings", "the"}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col_sort = int32s_col{{4, 6, 5}, no_nulls()};
auto const exp_keys_sort = strings_col{{"" /*NULL*/, "strings", "the"}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, EmptyInputTable)
{
int32s_col col(std::initializer_list<int32_t>{});
cudf::table_view input{{col}};
std::vector<cudf::size_type> key_idx{0};
auto got = cudf::distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(DistinctKeepAny, NoColumnInputTable)
{
cudf::table_view input{std::vector<cudf::column_view>()};
std::vector<cudf::size_type> key_idx{1, 2};
auto got = cudf::distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(DistinctKeepAny, EmptyKeys)
{
int32s_col col{{5, 4, 3, 5, 8, 1}, {1, 0, 1, 1, 1, 1}};
int32s_col empty_col{};
cudf::table_view input{{col}};
std::vector<cudf::size_type> key_idx{};
auto got = cudf::distinct(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(cudf::table_view{{empty_col}}, got->view());
}
TEST_F(DistinctKeepAny, NoNullsTable)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const col1 = int32s_col{6, 6, 6, 3, 5, 8, 5};
auto const col2 = floats_col{6, 6, 6, 3, 4, 9, 4};
auto const keys1 = int32s_col{20, 20, 20, 20, 19, 21, 9};
auto const keys2 = int32s_col{19, 19, 19, 20, 20, 9, 21};
auto const input = cudf::table_view{{col1, col2, keys1, keys2}};
auto const key_idx = std::vector<cudf::size_type>{2, 3};
auto const exp_col1_sort = int32s_col{5, 5, 6, 3, 8};
auto const exp_col2_sort = floats_col{4, 4, 6, 3, 9};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 19, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
TEST_F(DistinctKeepAny, NoNullsTableWithNaNs)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys.
auto const col1 = int32s_col{6, 6, 6, 1, 1, 1, 3, 5, 8, 5};
auto const col2 = floats_col{6, 6, 6, 1, 1, 1, 3, 4, 9, 4};
auto const keys1 = int32s_col{20, 20, 20, 15, 15, 15, 20, 19, 21, 9};
auto const keys2 = floats_col{19., 19., 19., NaN, NaN, NaN, 20., 20., 9., 21.};
auto const input = cudf::table_view{{col1, col2, keys1, keys2}};
auto const key_idx = std::vector<cudf::size_type>{2, 3};
// NaNs are unequal.
{
auto const exp_col1_sort = int32s_col{5, 1, 1, 1, 5, 6, 3, 8};
auto const exp_col2_sort = floats_col{4, 1, 1, 1, 4, 6, 3, 9};
auto const exp_keys1_sort = int32s_col{9, 15, 15, 15, 19, 20, 20, 21};
auto const exp_keys2_sort = floats_col{21., NaN, NaN, NaN, 20., 19., 20., 9.};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// NaNs are equal.
{
auto const exp_col1_sort = int32s_col{5, 1, 5, 6, 3, 8};
auto const exp_col2_sort = floats_col{4, 1, 4, 6, 3, 9};
auto const exp_keys1_sort = int32s_col{9, 15, 19, 20, 20, 21};
auto const exp_keys2_sort = floats_col{21., NaN, 20., 19., 20., 9.};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, NoNullsTable)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col1 = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const col2 = floats_col{10, 11, 12, 13, 14, 15, 16};
auto const keys1 = int32s_col{20, 20, 20, 20, 19, 21, 9};
auto const keys2 = int32s_col{19, 19, 19, 20, 20, 9, 21};
auto const input = cudf::table_view{{col1, col2, keys1, keys2}};
auto const key_idx = std::vector<cudf::size_type>{2, 3};
// KEEP_FIRST
{
auto const exp_col1_sort = int32s_col{6, 4, 0, 3, 5};
auto const exp_col2_sort = floats_col{16, 14, 10, 13, 15};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 19, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col1_sort = int32s_col{6, 4, 2, 3, 5};
auto const exp_col2_sort = floats_col{16, 14, 12, 13, 15};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 19, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col1_sort = int32s_col{6, 4, 3, 5};
auto const exp_col2_sort = floats_col{16, 14, 13, 15};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, SlicedNoNullsTable)
{
auto constexpr dont_care = int32_t{0};
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const col1 = int32s_col{dont_care, dont_care, 6, 6, 6, 3, 5, 8, 5, dont_care};
auto const col2 = floats_col{dont_care, dont_care, 6, 6, 6, 3, 4, 9, 4, dont_care};
auto const keys1 = int32s_col{dont_care, dont_care, 20, 20, 20, 20, 19, 21, 9, dont_care};
auto const keys2 = int32s_col{dont_care, dont_care, 19, 19, 19, 20, 20, 9, 21, dont_care};
auto const input_original = cudf::table_view{{col1, col2, keys1, keys2}};
auto const input = cudf::slice(input_original, {2, 9})[0];
auto const key_idx = std::vector<cudf::size_type>{2, 3};
auto const exp_col1_sort = int32s_col{5, 5, 6, 3, 8};
auto const exp_col2_sort = floats_col{4, 4, 6, 3, 9};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 19, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
TEST_F(DistinctKeepFirstLastNone, SlicedNoNullsTable)
{
auto constexpr dont_care = int32_t{0};
// Column(s) used to test needs to have different rows for the same keys.
// clang-format off
auto const col1 = int32s_col{0, 1, 2, // <- don't care
3, 4, 5, 6, 7, 8, 9, dont_care};
auto const col2 = floats_col{10, 11, 12, // <- don't care
13, 14, 15, 16, 17, 18, 19, dont_care};
auto const keys1 = int32s_col{20, 20, 20, // <- don't care
20, 20, 20, 20, 19, 21, 9, dont_care};
auto const keys2 = int32s_col{19, 19, 19, // <- don't care
19, 19, 19, 20, 20, 9, 21, dont_care};
// clang-format on
auto const input_original = cudf::table_view{{col1, col2, keys1, keys2}};
auto const input = cudf::slice(input_original, {3, 10})[0];
auto const key_idx = std::vector<cudf::size_type>{2, 3};
// KEEP_FIRST
{
auto const exp_col1_sort = int32s_col{9, 7, 3, 6, 8};
auto const exp_col2_sort = floats_col{19, 17, 13, 16, 18};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 19, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col1_sort = int32s_col{9, 7, 5, 6, 8};
auto const exp_col2_sort = floats_col{19, 17, 15, 16, 18};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 19, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col1_sort = int32s_col{9, 7, 6, 8};
auto const exp_col2_sort = floats_col{19, 17, 16, 18};
auto const exp_keys1_sort = int32s_col{9, 19, 20, 21};
auto const exp_keys2_sort = int32s_col{21, 20, 20, 9};
auto const expected_sort =
cudf::table_view{{exp_col1_sort, exp_col2_sort, exp_keys1_sort, exp_keys2_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, InputWithNulls)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const col = int32s_col{5, 4, 4, 1, 8, 1};
auto const keys = int32s_col{{20, null, null, 19, 21, 19}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const exp_col_sort = int32s_col{4, 1, 5, 8};
auto const exp_keys_sort = int32s_col{{null, 19, 20, 21}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// Nulls are unequal.
{
auto const exp_col_sort = int32s_col{4, 4, 1, 5, 8};
auto const exp_keys_sort = int32s_col{{null, null, 19, 20, 21}, nulls_at({0, 1})};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, InputWithNullsAndNaNs)
{
auto constexpr null{0.0}; // shadow the global `null` variable of type int
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const col = int32s_col{5, 4, 1, 1, 1, 4, 1, 8, 1};
auto const keys = floats_col{{20., null, NaN, NaN, NaN, null, 19., 21., 19.}, nulls_at({1, 5})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal, NaNs are unequal.
{
auto const exp_col_sort = int32s_col{4, 1, 5, 8, 1, 1, 1};
auto const exp_keys_sort = floats_col{{null, 19., 20., 21., NaN, NaN, NaN}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// Nulls are equal, NaNs are equal.
{
auto const exp_col_sort = int32s_col{4, 1, 5, 8, 1};
auto const exp_keys_sort = floats_col{{null, 19., 20., 21., NaN}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_EQUAL, NAN_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// Nulls are unequal, NaNs are unequal.
{
auto const exp_col_sort = int32s_col{4, 4, 1, 5, 8, 1, 1, 1};
auto const exp_keys_sort =
floats_col{{null, null, 19., 20., 21., NaN, NaN, NaN}, nulls_at({0, 1})};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL, NAN_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// Nulls are unequal, NaNs are equal.
{
auto const exp_col_sort = int32s_col{4, 4, 1, 5, 8, 1};
auto const exp_keys_sort = floats_col{{null, null, 19., 20., 21., NaN}, nulls_at({0, 1})};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL, NAN_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, InputWithNullsEqual)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const keys = int32s_col{{20, null, null, 19, 21, 19, 22}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col_sort = int32s_col{1, 3, 0, 4, 6};
auto const exp_keys_sort = int32s_col{{null, 19, 20, 21, 22}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST, NULL_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col_sort = int32s_col{2, 5, 0, 4, 6};
auto const exp_keys_sort = int32s_col{{null, 19, 20, 21, 22}, null_at(0)};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST, NULL_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col_sort = int32s_col{0, 4, 6};
auto const exp_keys_sort = int32s_col{{20, 21, 22}, no_nulls()};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE, NULL_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select(key_idx));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, InputWithNullsUnequal)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6, 7};
auto const keys = int32s_col{{20, null, null, 19, 21, 19, 22, 20}, nulls_at({1, 2})};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col_sort = int32s_col{0, 1, 2, 3, 4, 6};
auto const exp_keys_sort = int32s_col{{20, null, null, 19, 21, 22}, nulls_at({1, 2})};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col_sort = int32s_col{1, 2, 4, 5, 6, 7};
auto const exp_keys_sort = int32s_col{{null, null, 21, 19, 22, 20}, nulls_at({0, 1})};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col_sort = int32s_col{1, 2, 4, 6};
auto const exp_keys_sort = int32s_col{{null, null, 21, 22}, nulls_at({0, 1})};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, InputWithNaNsEqual)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const keys = floats_col{20., NaN, NaN, 19., 21., 19., 22.};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col_sort = int32s_col{0, 1, 3, 4, 6};
auto const exp_keys_sort = floats_col{20., NaN, 19., 21., 22.};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST, NULL_EQUAL, NAN_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col_sort = int32s_col{0, 2, 4, 5, 6};
auto const exp_keys_sort = floats_col{20., NaN, 21., 19., 22.};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST, NULL_EQUAL, NAN_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col_sort = int32s_col{0, 4, 6};
auto const exp_keys_sort = floats_col{20., 21., 22.};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE, NULL_EQUAL, NAN_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, InputWithNaNsUnequal)
{
// Column(s) used to test needs to have different rows for the same keys.
auto const col = int32s_col{0, 1, 2, 3, 4, 5, 6, 7};
auto const keys = floats_col{20., NaN, NaN, 19., 21., 19., 22., 20.};
auto const input = cudf::table_view{{col, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_col_sort = int32s_col{0, 1, 2, 3, 4, 6};
auto const exp_keys_sort = floats_col{20., NaN, NaN, 19., 21., 22.};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST, NULL_UNEQUAL, NAN_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_col_sort = int32s_col{1, 2, 4, 5, 6, 7};
auto const exp_keys_sort = floats_col{NaN, NaN, 21., 19., 22., 20.};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST, NULL_UNEQUAL, NAN_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_col_sort = int32s_col{1, 2, 4, 6};
auto const exp_keys_sort = floats_col{NaN, NaN, 21., 22.};
auto const expected_sort = cudf::table_view{{exp_col_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE, NULL_UNEQUAL, NAN_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, BasicLists)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
// clang-format off
auto const idx = int32s_col{ 0, 0, 1, 2, 1, 3, 4, 5, 5, 6, 4, 4};
auto const keys = lists_col{{}, {}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx_sort = int32s_col{0, 1, 2, 3, 4, 5, 6};
auto const exp_keys_sort = lists_col{{}, {1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
TEST_F(DistinctKeepFirstLastNone, BasicLists)
{
// Column(s) used to test needs to have different rows for the same keys.
// clang-format off
auto const idx = int32s_col{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
auto const keys = lists_col{{}, {}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_idx_sort = int32s_col{0, 2, 3, 5, 6, 7, 9};
auto const exp_keys_sort = lists_col{{}, {1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_idx_sort = int32s_col{1, 3, 4, 5, 8, 9, 11};
auto const exp_keys_sort = lists_col{{}, {1, 1}, {1}, {1, 2}, {2}, {2, 1}, {2, 2}};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_idx_sort = int32s_col{3, 5, 9};
auto const exp_keys_sort = lists_col{{1, 1}, {1, 2}, {2, 1}};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, SlicedBasicLists)
{
auto constexpr dont_care = int32_t{0};
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const idx = int32s_col{dont_care, dont_care, 1, 2, 1, 3, 4, 5, 5, 6, 4, 4, dont_care};
auto const keys = lists_col{
{0, 0}, {0, 0}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}, {5, 5}};
auto const input_original = cudf::table_view{{idx, keys}};
auto const input = cudf::slice(input_original, {2, 12})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx_sort = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_val_sort = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_val_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
TEST_F(DistinctKeepAny, NullableLists)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
auto const idx = int32s_col{0, 0, 1, 1, 4, 5, 5, 6, 4, 4, 6};
auto const keys =
lists_col{{{}, {}, {1}, {1}, {2, 2}, {2}, {2}, {} /*NULL*/, {2, 2}, {2, 2}, {} /*NULL*/},
nulls_at({7, 10})};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const exp_idx_sort = int32s_col{0, 1, 4, 5, 6};
auto const exp_keys_sort = lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/}, null_at(4)};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// Nulls are unequal.
{
auto const exp_idx_sort = int32s_col{0, 1, 4, 5, 6, 6};
auto const exp_keys_sort =
lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/, {} /*NULL*/}, nulls_at({4, 5})};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, ListsWithNullsEqual)
{
// Column(s) used to test needs to have different rows for the same keys.
// clang-format off
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto const keys =
lists_col{{{}, {}, {1}, {1}, {2, 2}, {2}, {2}, {} /*NULL*/, {2, 2}, {2, 2}, {} /*NULL*/},
nulls_at({7, 10})};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_idx_sort = int32s_col{0, 2, 4, 5, 7};
auto const exp_keys_sort = lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/}, null_at(4)};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST, NULL_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_idx_sort = int32s_col{1, 3, 6, 9, 10};
auto const exp_keys_sort = lists_col{{{}, {1}, {2}, {2, 2}, {} /*NULL*/}, null_at(4)};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST, NULL_EQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_idx = int32s_col{};
auto const exp_keys = lists_col{};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE, NULL_EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(DistinctKeepFirstLastNone, ListsWithNullsUnequal)
{
// Column(s) used to test needs to have different rows for the same keys.
// clang-format off
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto const keys =
lists_col{{{}, {}, {1}, {1}, {2, 2}, {2}, {2}, {} /*NULL*/, {2, 2}, {2, 2}, {} /*NULL*/},
nulls_at({7, 10})};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const exp_idx_sort = int32s_col{0, 2, 4, 5, 7, 10};
auto const exp_keys_sort =
lists_col{{{}, {1}, {2, 2}, {2}, {} /*NULL*/, {} /*NULL*/}, nulls_at({4, 5})};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_LAST
{
auto const exp_idx_sort = int32s_col{1, 3, 6, 7, 9, 10};
auto const exp_keys_sort =
lists_col{{{}, {1}, {2}, {} /*NULL*/, {2, 2}, {} /*NULL*/}, nulls_at({3, 5})};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_LAST, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
// KEEP_NONE
{
auto const exp_idx_sort = int32s_col{7, 10};
auto const exp_keys_sort =
lists_col{{lists_col{} /*NULL*/, lists_col{} /*NULL*/}, nulls_at({0, 1})};
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_NONE, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
}
TEST_F(DistinctKeepAny, ListsOfStructs)
{
// Constructing a list of structs of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] ==
// 16. [{Null, 'b'}]
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 4, 5, 8, 9, 10, 11, 13, 15};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepFirstLastNone, ListsOfStructs)
{
// Constructing a list of structs of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] ==
// 16. [{Null, 'b'}]
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const expect_map = int32s_col{0, 2, 4, 5, 8, 9, 10, 11, 13, 15};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// KEEP_LAST
{
auto const expect_map = int32s_col{1, 3, 4, 7, 8, 9, 10, 12, 14, 16};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_LAST);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// KEEP_NONE
{
auto const expect_map = int32s_col{4, 8, 9, 10};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_NONE);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, SlicedListsOfStructs)
{
// Constructing a list of struct of two elements
// 0. [] == <- Don't care
// 1. [] != <- Don't care
// 2. Null == <- Don't care
// 3. Null != <- Don't care
// 4. [Null, Null] != <- Don't care
// 5. [Null] == <- Don't care
// 6. [Null] == <- Don't care
// 7. [Null] != <- Don't care
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] == <- Don't care
// 16. [{Null, 'b'}] <- Don't care
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
auto const input_original = cudf::table_view{{idx, keys}};
auto const input = cudf::slice(input_original, {8, 15})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{8, 9, 10, 11, 13};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*expect_table, *result_sort);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{8, 9, 10, 11, 13, 14};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, ListsOfEmptyStructs)
{
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] ==
// 5. [Null, Null] ==
// 6. [Null, Null] !=
// 7. [Null] ==
// 8. [Null] !=
// 9. [{}] ==
// 10. [{}] !=
// 11. [{}, {}] ==
// 12. [{}, {}]
auto const structs_null_it = nulls_at({0, 1, 2, 3, 4, 5, 6, 7});
auto [structs_null_mask, structs_null_count] =
cudf::test::detail::make_null_mask(structs_null_it, structs_null_it + 14);
auto const structs =
cudf::column_view(cudf::data_type(cudf::type_id::STRUCT),
14,
nullptr,
static_cast<cudf::bitmask_type const*>(structs_null_mask.data()),
structs_null_count);
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 4, 6, 7, 8, 9, 10, 12, 14};
auto const lists_null_it = nulls_at({2, 3});
auto [lists_null_mask, lists_null_count] =
cudf::test::detail::make_null_mask(lists_null_it, lists_null_it + 13);
auto const keys =
cudf::column_view(cudf::data_type(cudf::type_id::LIST),
13,
nullptr,
static_cast<cudf::bitmask_type const*>(lists_null_mask.data()),
lists_null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 4, 7, 9, 11};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8, 9, 11};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, EmptyDeepList)
{
// List<List<int>>, where all lists are empty:
//
// 0. []
// 1. []
// 2. Null
// 3. Null
auto const keys =
lists_col{{lists_col{}, lists_col{}, lists_col{}, lists_col{}}, nulls_at({2, 3})};
auto const idx = int32s_col{1, 1, 2, 2};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, StructsOfStructs)
{
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 2}, 4} |
// 2 | { Null, 6} |
// 3 | { Null, 4} |
// 4 | Null |
// 5 | Null | // Same as 4
// 6 | { {1, 1}, 5} | // Same as 0
// 7 | { Null, 4} | // Same as 3
// 8 | { {2, 1}, 5} |
auto s1 = [&] {
auto a = int32s_col{1, 1, XXX, XXX, XXX, XXX, 1, XXX, 2};
auto b = int32s_col{1, 2, XXX, XXX, XXX, XXX, 1, XXX, 1};
auto s2 = structs_col{{a, b}, nulls_at({2, 3, 7})};
auto c = int32s_col{5, 4, 6, 4, XXX, XXX, 5, 4, 5};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({4, 5});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const idx = int32s_col{0, 1, 2, 3, 4, 4, 0, 3, 8};
auto const input = cudf::table_view{{idx, s1}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 1, 2, 3, 4, 8};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 1, 2, 3, 7, 4, 5, 8};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, SlicedStructsOfStructs)
{
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 2}, 4} |
// 2 | { Null, 6} |
// 3 | { Null, 4} |
// 4 | Null |
// 5 | Null | // Same as 4
// 6 | { {1, 1}, 5} | // Same as 0
// 7 | { Null, 4} | // Same as 3
// 8 | { {2, 1}, 5} |
auto s1 = [&] {
auto a = int32s_col{1, 1, XXX, XXX, XXX, XXX, 1, XXX, 2};
auto b = int32s_col{1, 2, XXX, XXX, XXX, XXX, 1, XXX, 1};
auto s2 = structs_col{{a, b}, nulls_at({2, 3, 7})};
auto c = int32s_col{5, 4, 6, 4, XXX, XXX, 5, 4, 5};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({4, 5});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const idx = int32s_col{0, 1, 2, 3, 4, 4, 0, 3, 8};
auto const input_original = cudf::table_view{{idx, s1}};
auto const input = cudf::slice(input_original, {1, 7})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{6, 1, 2, 3, 4};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{6, 1, 2, 3, 4, 5};
auto const expect_table = cudf::gather(input_original, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, StructsOfLists)
{
auto const idx = int32s_col{1, 2, 1, 3, 4, 5, 5, 6, 4, 4};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto child2 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto child3 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
return structs_col{{child1, child2, child3}};
}();
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx_sort = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_keys_sort = [] {
auto child1 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
TEST_F(DistinctKeepFirstLastNone, StructsOfLists)
{
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto child2 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto child3 = lists_col{{1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
return structs_col{{child1, child2, child3}};
}();
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const expect_map = int32s_col{0, 1, 3, 4, 5, 7};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_FIRST);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// KEEP_LAST
{
auto const expect_map = int32s_col{1, 2, 3, 6, 7, 9};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_LAST);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
// KEEP_NONE
{
auto const expect_map = int32s_col{1, 3, 7};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::distinct(input, key_idx, KEEP_NONE);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result_sort);
}
}
TEST_F(DistinctKeepAny, SlicedStructsOfLists)
{
auto const idx = int32s_col{0, 0, 1, 2, 1, 3, 4, 5, 5, 6, 4, 4, 70};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{
{0, 0}, {0, 0}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}, {5, 5}};
auto child2 = lists_col{
{0, 0}, {0, 0}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}, {5, 5}};
auto child3 = lists_col{
{0, 0}, {0, 0}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}, {5, 5}};
return structs_col{{child1, child2, child3}};
}();
auto const input_original = cudf::table_view{{idx, keys}};
auto const input = cudf::slice(input_original, {2, 12})[0];
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx_sort = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_keys_sort = [] {
auto child1 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const expected_sort = cudf::table_view{{exp_idx_sort, exp_keys_sort}};
auto const result = cudf::distinct(input, key_idx, KEEP_ANY);
auto const result_sort = cudf::sort_by_key(*result, result->select({0}));
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort, *result_sort);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/unique_count_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/copying.hpp>
#include <cudf/sorting.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <cmath>
using lists_col = cudf::test::lists_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
using cudf::test::iterators::nulls_at;
using cudf::nan_policy;
using cudf::null_equality;
using cudf::null_policy;
constexpr int32_t XXX{70}; // Mark for null elements
constexpr int32_t YYY{3}; // Mark for null elements
template <typename T>
struct TypedUniqueCount : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedUniqueCount, cudf::test::NumericTypes);
TYPED_TEST(TypedUniqueCount, NoNull)
{
using T = TypeParam;
auto const input = cudf::test::make_type_param_vector<T>(
{1, 3, 3, 4, 31, 1, 8, 2, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4});
cudf::test::fixed_width_column_wrapper<T> input_col(input.begin(), input.end());
// explicit instantiation to one particular type (`double`) to reduce build time
std::vector<double> input_data(input.begin(), input.end());
auto const new_end = std::unique(input_data.begin(), input_data.end());
auto const gold = std::distance(input_data.begin(), new_end);
EXPECT_EQ(gold, cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TYPED_TEST(TypedUniqueCount, TableNoNull)
{
using T = TypeParam;
auto const input1 = cudf::test::make_type_param_vector<T>(
{1, 3, 3, 3, 4, 31, 1, 8, 2, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4});
auto const input2 = cudf::test::make_type_param_vector<T>(
{3, 3, 3, 4, 31, 1, 8, 5, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4, 1});
std::vector<std::pair<T, T>> pair_input;
std::transform(
input1.begin(), input1.end(), input2.begin(), std::back_inserter(pair_input), [](T a, T b) {
return std::pair(a, b);
});
cudf::test::fixed_width_column_wrapper<T> input_col1(input1.begin(), input1.end());
cudf::test::fixed_width_column_wrapper<T> input_col2(input2.begin(), input2.end());
cudf::table_view input_table({input_col1, input_col2});
auto const new_end = std::unique(pair_input.begin(), pair_input.end());
auto const gold = std::distance(pair_input.begin(), new_end);
EXPECT_EQ(gold, cudf::unique_count(input_table, null_equality::EQUAL));
}
struct UniqueCount : public cudf::test::BaseFixture {};
TEST_F(UniqueCount, WithNull)
{
using T = int32_t;
std::vector<T> input = {1, 3, 3, XXX, 31, 1, 8, 2, 0, XXX, XXX,
XXX, 10, 40, 31, 42, 0, 42, 8, 5, XXX};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0};
cudf::test::fixed_width_column_wrapper<T> input_col(input.begin(), input.end(), valid.begin());
auto const new_end = std::unique(input.begin(), input.end());
auto const gold = std::distance(input.begin(), new_end) - 3;
EXPECT_EQ(gold, cudf::unique_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(UniqueCount, IgnoringNull)
{
using T = int32_t;
std::vector<T> input = {1, YYY, YYY, XXX, 31, 1, 8, 2, 0, XXX, 1,
XXX, 10, 40, 31, 42, 0, 42, 8, 5, XXX};
std::vector<cudf::size_type> valid = {1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0};
cudf::test::fixed_width_column_wrapper<T> input_col(input.begin(), input.end(), valid.begin());
auto const new_end = std::unique(input.begin(), input.end());
// -1 since `YYY, YYY, XXX` is in the same group of equivalent rows
auto const gold = std::distance(input.begin(), new_end) - 1;
EXPECT_EQ(gold, cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(UniqueCount, WithNansAndNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, XXX, 31, 1, 8, 2, 0, XXX, 1,
XXX, 10, 40, 31, NAN, 0, NAN, 8, 5, XXX};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
auto const new_end = std::unique(input.begin(), input.end());
auto const gold = std::distance(input.begin(), new_end);
EXPECT_EQ(gold, cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
input = {NAN, NAN, XXX};
valid = {1, 1, 0};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 2;
EXPECT_EQ(expected_all_nan,
cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(UniqueCount, WithNansOnly)
{
using T = float;
std::vector<T> input = {1, 3, NAN, 70, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 1, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 5;
EXPECT_EQ(expected,
cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
input = {NAN, NAN, NAN};
valid = {1, 1, 1};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 1;
EXPECT_EQ(expected_all_nan,
cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(UniqueCount, NansAsNullWithNoNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, 70, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 1, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 5;
EXPECT_EQ(expected, cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
input = {NAN, NAN, NAN};
valid = {1, 1, 1};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 1;
EXPECT_EQ(expected_all_nan,
cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(UniqueCount, NansAsNullWithNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, XXX, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 4;
EXPECT_EQ(expected, cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
input = {NAN, NAN, XXX};
valid = {1, 1, 0};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_null = 1;
EXPECT_EQ(expected_all_null,
cudf::unique_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(UniqueCount, NansAsNullWithIgnoreNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, XXX, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 3;
EXPECT_EQ(expected, cudf::unique_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_NULL));
input = {NAN, NAN, NAN};
valid = {1, 1, 1};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 0;
EXPECT_EQ(expected_all_nan,
cudf::unique_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(UniqueCount, EmptyColumn)
{
using T = float;
cudf::test::fixed_width_column_wrapper<T> input_col{};
constexpr auto expected = 0;
EXPECT_EQ(expected, cudf::unique_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(UniqueCount, NullableLists)
{
auto const keys = lists_col{
{{}, {}, {1, 1}, {1}, {1}, {} /*NULL*/, {} /*NULL*/, {2}, {2}, {2, 1}, {2, 2}, {2, 2}},
nulls_at({5, 6})};
auto const input = cudf::table_view{{keys}};
EXPECT_EQ(7, cudf::unique_count(input, null_equality::EQUAL));
EXPECT_EQ(8, cudf::unique_count(input, null_equality::UNEQUAL));
}
TEST_F(UniqueCount, NullableStructOfStructs)
{
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 1}, 5} | // Same as 0
// 2 | { {1, 2}, 4} |
// 3 | { Null, 6} |
// 4 | { Null, 4} |
// 5 | { Null, 4} | // Same as 4
// 6 | Null |
// 7 | Null | // Same as 6
// 8 | { {2, 1}, 5} |
auto const keys = [&] {
auto a = cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, XXX, XXX, XXX, 2, 1, 2};
auto b = cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 2, XXX, XXX, XXX, 2, 1, 1};
auto s2 = structs_col{{a, b}, nulls_at({3, 4, 5})};
auto c = cudf::test::fixed_width_column_wrapper<int32_t>{5, 5, 4, 6, 4, 4, 3, 3, 5};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({6, 7});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const input = cudf::table_view{{keys}};
EXPECT_EQ(6, cudf::unique_count(input, null_equality::EQUAL));
EXPECT_EQ(8, cudf::unique_count(input, null_equality::UNEQUAL));
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/drop_nans_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <cudf/copying.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
struct DropNANsTest : public cudf::test::BaseFixture {};
TEST_F(DropNANsTest, MixedNANsAndNull)
{
using F = float;
using D = double;
cudf::test::fixed_width_column_wrapper<float> col1{
{F(1.0), F(2.0), F(NAN), F(NAN), F(5.0), F(6.0)}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{D(NAN), 40.0, 70.0, 5.0, 2.0, 10.0},
{1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 2};
cudf::test::fixed_width_column_wrapper<float> col1_expected{{2.0, 3.0, 5.0, 6.0}, {1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{40, 70, 2, 10}, {1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{40.0, 70.0, 2.0, 10.0},
{1, 0, 1, 0}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nans(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNANsTest, NoNANs)
{
cudf::test::fixed_width_column_wrapper<float> col1{{1.0, 2.0, 3.0, 4.0, 5.0, 6.0},
{1, 1, 0, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 1, 1, 0, 1}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 1}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 2};
auto got = cudf::drop_nans(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(DropNANsTest, MixedWithThreshold)
{
using F = float;
using D = double;
cudf::test::fixed_width_column_wrapper<float> col1{
{F(1.0), F(2.0), F(NAN), F(NAN), F(5.0), F(6.0)}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{D(NAN), 40.0, 70.0, D(NAN), 2.0, 10.0},
{1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 2};
cudf::test::fixed_width_column_wrapper<float> col1_expected{{1.0, 2.0, 3.0, 5.0, 6.0},
{1, 1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{10, 40, 70, 2, 10},
{1, 1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{D(NAN), 40.0, 70.0, 2.0, 10.0},
{1, 1, 0, 1, 0}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nans(input, keys, 1);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNANsTest, EmptyTable)
{
cudf::table_view input{std::vector<cudf::column_view>()};
cudf::table_view expected{std::vector<cudf::column_view>()};
std::vector<cudf::size_type> keys{};
auto got = cudf::drop_nans(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNANsTest, EmptyColumns)
{
cudf::test::fixed_width_column_wrapper<float> col1{};
cudf::test::fixed_width_column_wrapper<int32_t> col2{};
cudf::test::fixed_width_column_wrapper<double> col3{};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 2};
cudf::test::fixed_width_column_wrapper<float> col1_expected{};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{};
cudf::test::fixed_width_column_wrapper<double> col3_expected{};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nans(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNANsTest, EmptyKeys)
{
using F = float;
cudf::test::fixed_width_column_wrapper<float> col1{
{F(1.0), F(2.0), F(NAN), F(NAN), F(5.0), F(6.0)}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1}};
std::vector<cudf::size_type> keys{};
auto got = cudf::drop_nans(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(DropNANsTest, NonFloatingKey)
{
cudf::test::fixed_width_column_wrapper<float> col1{{1.0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{2};
cudf::test::fixed_width_column_wrapper<double> col3{{3.0}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 1};
EXPECT_THROW(cudf::drop_nans(input, keys), cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/distinct_count_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/copying.hpp>
#include <cudf/sorting.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <cmath>
using lists_col = cudf::test::lists_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
using cudf::test::iterators::nulls_at;
using cudf::nan_policy;
using cudf::null_equality;
using cudf::null_policy;
constexpr int32_t XXX{70}; // Mark for null elements
constexpr int32_t YYY{3}; // Mark for null elements
template <typename T>
struct TypedDistinctCount : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedDistinctCount, cudf::test::NumericTypes);
TYPED_TEST(TypedDistinctCount, NoNull)
{
using T = TypeParam;
auto const input = cudf::test::make_type_param_vector<T>(
{1, 3, 3, 4, 31, 1, 8, 2, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4});
cudf::test::fixed_width_column_wrapper<T> input_col(input.begin(), input.end());
// explicit instantiation to one particular type (`double`) to reduce build time
auto const expected =
static_cast<cudf::size_type>(std::set<double>(input.begin(), input.end()).size());
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TYPED_TEST(TypedDistinctCount, TableNoNull)
{
using T = TypeParam;
auto const input1 = cudf::test::make_type_param_vector<T>(
{1, 3, 3, 3, 4, 31, 1, 8, 2, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4});
auto const input2 = cudf::test::make_type_param_vector<T>(
{3, 3, 3, 4, 31, 1, 8, 5, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4, 1});
std::vector<std::pair<T, T>> pair_input;
std::transform(
input1.begin(), input1.end(), input2.begin(), std::back_inserter(pair_input), [](T a, T b) {
return std::pair(a, b);
});
cudf::test::fixed_width_column_wrapper<T> input_col1(input1.begin(), input1.end());
cudf::test::fixed_width_column_wrapper<T> input_col2(input2.begin(), input2.end());
cudf::table_view input_table({input_col1, input_col2});
auto const expected = static_cast<cudf::size_type>(
std::set<std::pair<T, T>>(pair_input.begin(), pair_input.end()).size());
EXPECT_EQ(expected, cudf::distinct_count(input_table, null_equality::EQUAL));
}
struct DistinctCount : public cudf::test::BaseFixture {};
TEST_F(DistinctCount, WithNull)
{
using T = int32_t;
std::vector<T> input = {1, 3, 3, XXX, 31, 1, 8, 2, 0, XXX, XXX,
XXX, 10, 40, 31, 42, 0, 42, 8, 5, XXX};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0};
cudf::test::fixed_width_column_wrapper<T> input_col(input.begin(), input.end(), valid.begin());
// explicit instantiation to one particular type (`double`) to reduce build time
auto const expected =
static_cast<cudf::size_type>(std::set<double>(input.begin(), input.end()).size());
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(DistinctCount, IgnoringNull)
{
using T = int32_t;
std::vector<T> input = {1, YYY, YYY, XXX, 31, 1, 8, 2, 0, XXX, 1,
XXX, 10, 40, 31, 42, 0, 42, 8, 5, XXX};
std::vector<cudf::size_type> valid = {1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0};
cudf::test::fixed_width_column_wrapper<T> input_col(input.begin(), input.end(), valid.begin());
auto const expected =
static_cast<cudf::size_type>(std::set<T>(input.begin(), input.end()).size());
// Removing 2 from expected to remove count for `XXX` and `YYY`
EXPECT_EQ(expected - 2,
cudf::distinct_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(DistinctCount, WithNansAndNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, XXX, 31, 1, 8, 2, 0, XXX, 1,
XXX, 10, 40, 31, NAN, 0, NAN, 8, 5, XXX};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
auto const expected =
static_cast<cudf::size_type>(std::set<T>(input.begin(), input.end()).size());
EXPECT_EQ(expected + 1, // +1 since `NAN` is not in std::set
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
input = {NAN, NAN, XXX};
valid = {1, 1, 0};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 2;
EXPECT_EQ(expected_all_nan,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(DistinctCount, WithNansOnly)
{
using T = float;
std::vector<T> input = {1, 3, NAN, 70, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 1, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 5;
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
input = {NAN, NAN, NAN};
valid = {1, 1, 1};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 1;
EXPECT_EQ(expected_all_nan,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(DistinctCount, NansAsNullWithNoNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, 70, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 1, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 5;
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
input = {NAN, NAN, NAN};
valid = {1, 1, 1};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 1;
EXPECT_EQ(expected_all_nan,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(DistinctCount, NansAsNullWithNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, XXX, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 4;
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
input = {NAN, NAN, XXX};
valid = {1, 1, 0};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_null = 1;
EXPECT_EQ(expected_all_null,
cudf::distinct_count(input_col, null_policy::INCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(DistinctCount, NansAsNullWithIgnoreNull)
{
using T = float;
std::vector<T> input = {1, 3, NAN, XXX, 31};
std::vector<cudf::size_type> valid = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<T> input_col{input.begin(), input.end(), valid.begin()};
constexpr auto expected = 3;
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_NULL));
input = {NAN, NAN, NAN};
valid = {1, 1, 1};
input_col = cudf::test::fixed_width_column_wrapper<T>{input.begin(), input.end(), valid.begin()};
constexpr auto expected_all_nan = 0;
EXPECT_EQ(expected_all_nan,
cudf::distinct_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(DistinctCount, EmptyColumn)
{
using T = float;
cudf::test::fixed_width_column_wrapper<T> input_col{};
constexpr auto expected = 0;
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_NULL));
}
TEST_F(DistinctCount, StringColumnWithNull)
{
cudf::test::strings_column_wrapper input_col{
{"", "this", "is", "this", "This", "a", "column", "of", "the", "strings"},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1}};
cudf::size_type const expected =
(std::vector<std::string>{"", "this", "is", "This", "a", "column", "of", "strings"}).size();
EXPECT_EQ(expected,
cudf::distinct_count(input_col, null_policy::EXCLUDE, nan_policy::NAN_IS_VALID));
}
TEST_F(DistinctCount, TableWithNull)
{
cudf::test::fixed_width_column_wrapper<int32_t> col1{{5, 4, 3, 5, 8, 1, 4, 5, 0, 9, -1},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{2, 2, 2, -1, 2, 1, 2, 0, 0, 9, -1},
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0}};
cudf::table_view input{{col1, col2}};
EXPECT_EQ(8, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(10, cudf::distinct_count(input, null_equality::UNEQUAL));
}
TEST_F(DistinctCount, TableWithSomeNull)
{
cudf::test::fixed_width_column_wrapper<int32_t> col1{{1, 2, 3, 4, 5, 6}, {1, 0, 1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{1, 1, 1, 1, 1, 1}};
cudf::table_view input{{col1, col2}};
EXPECT_EQ(4, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(6, cudf::distinct_count(input, null_equality::UNEQUAL));
}
TEST_F(DistinctCount, EmptyColumnedTable)
{
std::vector<cudf::column_view> cols{};
cudf::table_view input(cols);
EXPECT_EQ(0, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(0, cudf::distinct_count(input, null_equality::UNEQUAL));
}
TEST_F(DistinctCount, TableMixedTypes)
{
cudf::test::fixed_width_column_wrapper<int32_t> col1{{5, 4, 3, 5, 8, 1, 4, 5, 0, 9, -1},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col2{{2, 2, 2, -1, 2, 1, 2, 0, 0, 9, -1},
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<uint32_t> col3{{2, 2, 2, -1, 2, 1, 2, 0, 0, 9, -1},
{1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
EXPECT_EQ(9, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(10, cudf::distinct_count(input, null_equality::UNEQUAL));
}
TEST_F(DistinctCount, TableWithStringColumnWithNull)
{
cudf::test::fixed_width_column_wrapper<int32_t> col1{{0, 9, 8, 9, 6, 5, 4, 3, 2, 1, 0},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0}};
cudf::test::strings_column_wrapper col2{
{"", "this", "is", "this", "this", "a", "column", "of", "the", "strings", ""},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0}};
cudf::table_view input{{col1, col2}};
EXPECT_EQ(9, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(10, cudf::distinct_count(input, null_equality::UNEQUAL));
}
TEST_F(DistinctCount, NullableLists)
{
auto const keys = lists_col{
{{}, {1, 1}, {1}, {} /*NULL*/, {1}, {} /*NULL*/, {2}, {2, 1}, {2}, {2, 2}, {}, {2, 2}},
nulls_at({3, 5})};
auto const input = cudf::table_view{{keys}};
EXPECT_EQ(7, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(8, cudf::distinct_count(input, null_equality::UNEQUAL));
}
TEST_F(DistinctCount, NullableStructOfStructs)
{
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { Null, 4} |
// 2 | { {1, 1}, 5} | // Same as 0
// 3 | { {1, 2}, 4} |
// 4 | { Null, 6} |
// 5 | { Null, 4} | // Same as 4
// 6 | Null | // Same as 6
// 7 | { {2, 1}, 5} |
// 8 | Null |
auto const keys = [&] {
auto a = cudf::test::fixed_width_column_wrapper<int32_t>{1, XXX, 1, 1, XXX, XXX, 0, 2, 0};
auto b = cudf::test::fixed_width_column_wrapper<int32_t>{1, XXX, 1, 2, XXX, XXX, 0, 1, 0};
auto s2 = structs_col{{a, b}, nulls_at({1, 4, 5})};
auto c = cudf::test::fixed_width_column_wrapper<int32_t>{5, 4, 5, 4, 6, 4, 0, 5, 0};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({6, 8});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const input = cudf::table_view{{keys}};
EXPECT_EQ(6, cudf::distinct_count(input, null_equality::EQUAL));
EXPECT_EQ(8, cudf::distinct_count(input, null_equality::UNEQUAL));
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/drop_nulls_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/copying.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <numeric>
struct DropNullsTest : public cudf::test::BaseFixture {};
TEST_F(DropNullsTest, WholeRowIsNull)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 1, 2};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{{true, false, false, true},
{1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{10, 40, 5, 2}, {1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{10, 40, 5, 2}, {1, 1, 1, 1}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNullsTest, NoNull)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 1, 1, 1, 1}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 1, 2};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(DropNullsTest, MixedSetOfRows)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 1}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 1, 2};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{{true, false, false, true},
{1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{10, 40, 5, 2}, {1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{10, 40, 5, 2}, {1, 1, 1, 1}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNullsTest, LargeColumn)
{
// This test is a C++ repro of the failing Python in this issue:
// https://github.com/rapidsai/cudf/issues/5456
// Specifically, there are two large columns, one nullable, one non-nullable
using T = int32_t;
using index_T = int64_t;
constexpr cudf::size_type column_size{270000};
std::vector<index_T> index(column_size);
std::vector<T> data(column_size);
std::vector<bool> mask_data(column_size);
std::iota(index.begin(), index.end(), 0);
std::generate_n(data.begin(), column_size, [x = 1]() mutable { return x++ % 3; });
std::transform(data.begin(), data.end(), mask_data.begin(), [](auto const& x) { return x != 0; });
std::vector<T> expected_data(column_size);
// zeros are the null elements, remove them
auto end = std::remove_copy(data.begin(), data.end(), expected_data.begin(), 0);
auto expected_size = std::distance(expected_data.begin(), end);
expected_data.resize(expected_size);
std::vector<index_T> expected_index(expected_size);
std::copy_if(index.begin(), index.end(), expected_index.begin(), [](auto const& x) {
return (x - 2) % 3 != 0;
});
// output null mask is all true
std::vector<bool> expected_mask(expected_size, true);
cudf::test::fixed_width_column_wrapper<T> col1(data.begin(), data.end(), mask_data.begin());
cudf::test::fixed_width_column_wrapper<index_T> index1(index.begin(), index.end());
cudf::table_view input{{index1, col1}};
std::vector<cudf::size_type> keys{1};
cudf::test::fixed_width_column_wrapper<T> exp1(
expected_data.begin(), expected_data.end(), expected_mask.begin());
cudf::test::fixed_width_column_wrapper<index_T> exp_index1(expected_index.begin(),
expected_index.end());
cudf::table_view expected{{exp_index1, exp1}};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNullsTest, MixedSetOfRowsWithThreshold)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 1, 1, 1, 1}};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 1, 2};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{{true, false, false, true, false},
{1, 1, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{10, 40, 5, 2, 10},
{1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{10, 40, 5, 2, 10}, {1, 1, 1, 1, 1}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nulls(input, keys, keys.size() - 1);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNullsTest, EmptyTable)
{
cudf::table_view input{std::vector<cudf::column_view>()};
cudf::table_view expected{std::vector<cudf::column_view>()};
std::vector<cudf::size_type> keys{};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNullsTest, EmptyColumns)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{};
cudf::test::fixed_width_column_wrapper<int32_t> col2{};
cudf::test::fixed_width_column_wrapper<double> col3{};
cudf::table_view input{{col1, col2, col3}};
std::vector<cudf::size_type> keys{0, 1, 2};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{};
cudf::test::fixed_width_column_wrapper<double> col3_expected{};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(DropNullsTest, EmptyKeys)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1}};
std::vector<cudf::size_type> keys{};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(DropNullsTest, StringColWithNull)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{11, 12, 11, 13, 12, 15},
{1, 1, 0, 1, 0, 1}};
cudf::test::strings_column_wrapper col2{{"Hi", "Hello", "Hi", "No", "Hello", "Naive"},
{1, 1, 0, 1, 0, 1}};
cudf::table_view input{{col1, col2}};
std::vector<cudf::size_type> keys{0, 1};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{{11, 12, 13, 15}, {1, 1, 1, 1}};
cudf::test::strings_column_wrapper col2_expected{{"Hi", "Hello", "No", "Naive"}, {1, 1, 1, 1}};
cudf::table_view expected{{col1_expected, col2_expected}};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
template <typename T>
struct DropNullsTestAll : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(DropNullsTestAll, cudf::test::NumericTypes);
TYPED_TEST(DropNullsTestAll, AllNull)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T> key_col{{true, false, true, false, true, false},
{0, 0, 0, 0, 0, 0}};
cudf::test::fixed_width_column_wrapper<T> col{{true, false, true, false, true, false},
{1, 1, 1, 1, 1, 1}};
cudf::table_view input{{key_col, col}};
std::vector<cudf::size_type> keys{0};
cudf::test::fixed_width_column_wrapper<T> expected_col{};
cudf::column_view view = expected_col;
cudf::table_view expected{{expected_col, expected_col}};
auto got = cudf::drop_nulls(input, keys);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/apply_boolean_mask_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/null_mask.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/functional.h>
struct ApplyBooleanMask : public cudf::test::BaseFixture {};
TEST_F(ApplyBooleanMask, NonNullBooleanMask)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
cudf::test::fixed_width_column_wrapper<bool> boolean_mask{
{true, false, true, false, true, false}};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{{true, true, true}, {1, 0, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{10, 70, 2}, {1, 0, 1}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{10, 70, 2}, {1, 0, 1}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::apply_boolean_mask(input, boolean_mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(ApplyBooleanMask, NullBooleanMask)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
cudf::test::fixed_width_column_wrapper<bool> boolean_mask{{true, false, true, false, true, false},
{0, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{{true, true}, {0, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{{70, 2}, {0, 1}};
cudf::test::fixed_width_column_wrapper<double> col3_expected{{70, 2}, {0, 1}};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::apply_boolean_mask(input, boolean_mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(ApplyBooleanMask, EmptyMask)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
cudf::test::fixed_width_column_wrapper<bool> boolean_mask{};
cudf::test::fixed_width_column_wrapper<int16_t> col1_expected{};
cudf::test::fixed_width_column_wrapper<int32_t> col2_expected{};
cudf::test::fixed_width_column_wrapper<double> col3_expected{};
cudf::table_view expected{{col1_expected, col2_expected, col3_expected}};
auto got = cudf::apply_boolean_mask(input, boolean_mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(ApplyBooleanMask, WrongMaskType)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
cudf::test::fixed_width_column_wrapper<int16_t> boolean_mask{
{true, false, true, false, true, false}};
EXPECT_THROW(cudf::apply_boolean_mask(input, boolean_mask), cudf::logic_error);
}
TEST_F(ApplyBooleanMask, MaskAndInputSizeMismatch)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{true, false, true, false, true, false},
{1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col2{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<double> col3{{10, 40, 70, 5, 2, 10}, {1, 1, 0, 1, 1, 0}};
cudf::table_view input{{col1, col2, col3}};
cudf::test::fixed_width_column_wrapper<bool> boolean_mask{{true, false, true, false, true}};
EXPECT_THROW(cudf::apply_boolean_mask(input, boolean_mask), cudf::logic_error);
}
TEST_F(ApplyBooleanMask, StringColumnTest)
{
cudf::test::strings_column_wrapper col1{
{"This", "is", "the", "a", "k12", "string", "table", "column"}, {1, 1, 1, 1, 1, 0, 1, 1}};
cudf::table_view input{{col1}};
cudf::test::fixed_width_column_wrapper<bool> boolean_mask{
{true, true, true, true, false, true, false, true}, {1, 1, 0, 1, 1, 1, 1, 1}};
cudf::test::strings_column_wrapper col1_expected{{"This", "is", "a", "string", "column"},
{1, 1, 1, 0, 1}};
cudf::table_view expected{{col1_expected}};
auto got = cudf::apply_boolean_mask(input, boolean_mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(ApplyBooleanMask, withoutNullString)
{
cudf::test::strings_column_wrapper col1({"d", "e", "a", "d", "k", "d", "l"});
cudf::table_view cudf_table_in_view{{col1}};
cudf::test::fixed_width_column_wrapper<bool> bool_filter{{1, 1, 0, 0, 1, 0, 0}};
cudf::column_view bool_filter_col(bool_filter);
std::unique_ptr<cudf::table> filteredTable =
cudf::apply_boolean_mask(cudf_table_in_view, bool_filter_col);
cudf::table_view tableView = filteredTable->view();
cudf::test::strings_column_wrapper expect_col1({"d", "e", "k"});
cudf::table_view expect_cudf_table_view{{expect_col1}};
CUDF_TEST_EXPECT_TABLES_EQUAL(expect_cudf_table_view, tableView);
}
TEST_F(ApplyBooleanMask, FixedPointColumnTest)
{
using namespace numeric;
using decimal32_wrapper = cudf::test::fixed_point_column_wrapper<int32_t>;
using decimal64_wrapper = cudf::test::fixed_point_column_wrapper<int64_t>;
auto const col1 = decimal32_wrapper{{10, 40, 70, 5, 2, 10, -123}, scale_type{-1}};
auto const col2 = decimal64_wrapper{{10, 40, 70, 5, 2, 10, -123}, scale_type{-10}};
cudf::table_view cudf_table_in_view{{col1, col2}};
cudf::test::fixed_width_column_wrapper<bool> bool_filter{{1, 1, 0, 0, 1, 0, 0}};
cudf::column_view bool_filter_col(bool_filter);
std::unique_ptr<cudf::table> filteredTable =
cudf::apply_boolean_mask(cudf_table_in_view, bool_filter_col);
cudf::table_view tableView = filteredTable->view();
auto const expect_col1 = decimal32_wrapper{{10, 40, 2}, scale_type{-1}};
auto const expect_col2 = decimal64_wrapper{{10, 40, 2}, scale_type{-10}};
cudf::table_view expect_cudf_table_view{{expect_col1, expect_col2}};
CUDF_TEST_EXPECT_TABLES_EQUAL(expect_cudf_table_view, tableView);
}
TEST_F(ApplyBooleanMask, FixedPointLargeColumnTest)
{
cudf::size_type const num_rows = 10000;
using decimal32_wrapper = cudf::test::fixed_point_column_wrapper<int32_t>;
using decimal64_wrapper = cudf::test::fixed_point_column_wrapper<int64_t>;
std::vector<int32_t> dec32_data(num_rows);
std::vector<int64_t> dec64_data(num_rows);
std::vector<bool> mask_data(num_rows);
cudf::test::UniformRandomGenerator<int32_t> rng32(-10000000, 10000000);
cudf::test::UniformRandomGenerator<int64_t> rng64(-1000000000000, 1000000000000);
cudf::test::UniformRandomGenerator<bool> rbg;
std::generate(dec32_data.begin(), dec32_data.end(), [&rng32]() { return rng32.generate(); });
std::generate(dec64_data.begin(), dec64_data.end(), [&rng64]() { return rng64.generate(); });
std::generate(mask_data.begin(), mask_data.end(), [&rbg]() { return rbg.generate(); });
decimal32_wrapper col32(dec32_data.begin(), dec32_data.end(), numeric::scale_type{-3});
decimal64_wrapper col64(dec64_data.begin(), dec64_data.end(), numeric::scale_type{-10});
cudf::table_view cudf_table_in_view{{col32, col64}};
cudf::test::fixed_width_column_wrapper<bool> bool_filter(mask_data.begin(), mask_data.end());
cudf::column_view bool_filter_col(bool_filter);
std::unique_ptr<cudf::table> filteredTable =
cudf::apply_boolean_mask(cudf_table_in_view, bool_filter_col);
cudf::table_view tableView = filteredTable->view();
std::vector<int32_t> expect_dec32_data;
std::vector<int64_t> expect_dec64_data;
thrust::copy_if(thrust::seq,
dec32_data.cbegin(),
dec32_data.cend(),
mask_data.cbegin(),
std::back_inserter(expect_dec32_data),
thrust::identity{});
thrust::copy_if(thrust::seq,
dec64_data.cbegin(),
dec64_data.cend(),
mask_data.cbegin(),
std::back_inserter(expect_dec64_data),
thrust::identity{});
decimal32_wrapper expect_col32(
expect_dec32_data.begin(), expect_dec32_data.end(), numeric::scale_type{-3});
decimal64_wrapper expect_col64(
expect_dec64_data.begin(), expect_dec64_data.end(), numeric::scale_type{-10});
cudf::table_view expect_cudf_table_view{{expect_col32, expect_col64}};
CUDF_TEST_EXPECT_TABLES_EQUAL(expect_cudf_table_view, tableView);
}
TEST_F(ApplyBooleanMask, NoNullInput)
{
cudf::test::fixed_width_column_wrapper<int32_t> col(
{9668, 9590, 9526, 9205, 9434, 9347, 9160, 9569, 9143, 9807, 9606, 9446, 9279, 9822, 9691});
cudf::test::fixed_width_column_wrapper<bool> mask({false,
false,
true,
false,
false,
true,
false,
true,
false,
true,
false,
false,
true,
false,
true});
cudf::table_view input({col});
cudf::test::fixed_width_column_wrapper<int32_t> col_expected(
{9526, 9347, 9569, 9807, 9279, 9691});
cudf::table_view expected({col_expected});
auto got = cudf::apply_boolean_mask(input, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(ApplyBooleanMask, CorrectNullCount)
{
cudf::size_type inputRows = 471234;
auto seq1 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto valid_seq1 =
cudf::detail::make_counting_transform_iterator(0, [](auto row) { return true; });
cudf::test::fixed_width_column_wrapper<int64_t, typename decltype(seq1)::value_type> col1(
seq1, seq1 + inputRows, valid_seq1);
cudf::table_view input{{col1}};
auto seq3 =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 277) == 0; });
cudf::test::fixed_width_column_wrapper<bool> boolean_mask(seq3, seq3 + inputRows);
auto got = cudf::apply_boolean_mask(input, boolean_mask);
auto out_col = got->get_column(0).view();
auto expected_null_count =
cudf::detail::null_count(out_col.null_mask(), 0, out_col.size(), cudf::get_default_stream());
ASSERT_EQ(out_col.null_count(), expected_null_count);
}
TEST_F(ApplyBooleanMask, StructFiltering)
{
using namespace cudf::test;
auto int_member = fixed_width_column_wrapper<int32_t>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 0}};
auto struct_column = structs_column_wrapper{{int_member}, {0, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto filter_mask = fixed_width_column_wrapper<bool>{{1, 1, 1, 1, 1, 0, 0, 0, 0, 0}};
auto filtered_table = cudf::apply_boolean_mask(cudf::table_view({struct_column}), filter_mask);
auto filtered_struct_column = filtered_table->get_column(0);
// Compare against expected results.
auto expected_int_member =
fixed_width_column_wrapper<int32_t>{{-1, 1, 2, 3, -1}, {0, 1, 1, 1, 0}};
auto expected_struct_column = structs_column_wrapper{{expected_int_member}, {1, 1, 1, 1, 0}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(filtered_struct_column, expected_struct_column);
}
TEST_F(ApplyBooleanMask, ListOfStructsFiltering)
{
using namespace cudf::test;
auto key_member = fixed_width_column_wrapper<int32_t>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 0}};
auto value_member = fixed_width_column_wrapper<int32_t>{{0, 10, 20, 30, 40, 50, 60, 70, 80, 90},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 0}};
auto struct_column =
structs_column_wrapper{{key_member, value_member}, {0, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto list_of_structs_column =
cudf::make_lists_column(5,
fixed_width_column_wrapper<int32_t>{0, 2, 4, 6, 8, 10}.release(),
struct_column.release(),
0,
{});
auto filter_mask = fixed_width_column_wrapper<bool>{{1, 0, 1, 0, 1}};
auto filtered_table =
cudf::apply_boolean_mask(cudf::table_view({list_of_structs_column->view()}), filter_mask);
auto filtered_list_column = filtered_table->get_column(0);
// Compare against expected values.
auto expected_key_column =
fixed_width_column_wrapper<int32_t>{{0, 1, 4, 5, 8, 9}, {0, 1, 0, 0, 1, 0}};
auto expected_value_column =
fixed_width_column_wrapper<int32_t>{{0, 10, 40, 50, 80, 90}, {0, 1, 0, 0, 1, 0}};
auto expected_struct_column =
structs_column_wrapper{{expected_key_column, expected_value_column}, {0, 1, 1, 0, 1, 1}};
auto expected_list_of_structs_column =
cudf::make_lists_column(3,
fixed_width_column_wrapper<int32_t>{0, 2, 4, 6}.release(),
expected_struct_column.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(filtered_list_column,
expected_list_of_structs_column->view());
}
TEST_F(ApplyBooleanMask, StructOfListsFiltering)
{
using namespace cudf::test;
auto lists_column = lists_column_wrapper<int32_t>{
{{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 2; })};
auto structs_column = structs_column_wrapper{{lists_column}};
auto filter_mask = fixed_width_column_wrapper<bool>{{1, 0, 1, 0, 1}};
auto filtered_table = cudf::apply_boolean_mask(cudf::table_view({structs_column}), filter_mask);
auto filtered_lists_column = filtered_table->get_column(0);
// Compare against expected values;
auto expected_lists_column = lists_column_wrapper<int32_t>{
{{0, 0}, {2, 2}, {4, 4}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1; })};
auto expected_structs_column = structs_column_wrapper{{expected_lists_column}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(filtered_lists_column, expected_structs_column);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/stream_compaction/unique_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/copying.hpp>
#include <cudf/sorting.hpp>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <cmath>
using cudf::nan_policy;
using cudf::null_equality;
using cudf::null_policy;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
auto constexpr null{0}; // null at current level
auto constexpr XXX{0}; // null pushed down from parent level
auto constexpr KEEP_ANY = cudf::duplicate_keep_option::KEEP_ANY;
auto constexpr KEEP_FIRST = cudf::duplicate_keep_option::KEEP_FIRST;
auto constexpr KEEP_LAST = cudf::duplicate_keep_option::KEEP_LAST;
auto constexpr KEEP_NONE = cudf::duplicate_keep_option::KEEP_NONE;
auto constexpr NULL_EQUAL = cudf::null_equality::EQUAL;
auto constexpr NULL_UNEQUAL = cudf::null_equality::UNEQUAL;
using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using floats_col = cudf::test::fixed_width_column_wrapper<float>;
using lists_col = cudf::test::lists_column_wrapper<int32_t>;
using strings_col = cudf::test::strings_column_wrapper;
using structs_col = cudf::test::structs_column_wrapper;
struct Unique : public cudf::test::BaseFixture {};
TEST_F(Unique, StringKeyColumn)
{
cudf::test::fixed_width_column_wrapper<int32_t> col{{5, 4, 4, 5, 5, 8, 1}, {1, 0, 0, 1, 1, 1, 1}};
cudf::test::strings_column_wrapper key_col{{"all", "new", "new", "all", "new", "the", "strings"},
{1, 1, 1, 1, 0, 1, 1}};
cudf::table_view input{{col, key_col}};
std::vector<cudf::size_type> keys{1};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col{{5, 4, 5, 5, 8, 1}, {1, 0, 1, 1, 1, 1}};
cudf::test::strings_column_wrapper exp_key_col{{"all", "new", "all", "new", "the", "strings"},
{1, 1, 1, 0, 1, 1}};
cudf::table_view expected{{exp_col, exp_key_col}};
auto got = unique(input, keys, cudf::duplicate_keep_option::KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(Unique, EmptyInputTable)
{
cudf::test::fixed_width_column_wrapper<int32_t> col(std::initializer_list<int32_t>{});
cudf::table_view input{{col}};
std::vector<cudf::size_type> keys{1, 2};
auto got = unique(input, keys, cudf::duplicate_keep_option::KEEP_FIRST, null_equality::EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(Unique, NoColumnInputTable)
{
cudf::table_view input{std::vector<cudf::column_view>()};
std::vector<cudf::size_type> keys{1, 2};
auto got = unique(input, keys, cudf::duplicate_keep_option::KEEP_FIRST, null_equality::EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(input, got->view());
}
TEST_F(Unique, EmptyKeys)
{
cudf::test::fixed_width_column_wrapper<int32_t> col{{5, 4, 3, 5, 8, 1}, {1, 0, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> empty_col{};
cudf::table_view input{{col}};
std::vector<cudf::size_type> keys{};
auto got = unique(input, keys, cudf::duplicate_keep_option::KEEP_FIRST, null_equality::EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(cudf::table_view{{empty_col}}, got->view());
}
TEST_F(Unique, NonNullTable)
{
cudf::test::fixed_width_column_wrapper<int32_t> col1{{5, 4, 3, 5, 8, 5}};
cudf::test::fixed_width_column_wrapper<float> col2{{4, 5, 3, 4, 9, 4}};
cudf::test::fixed_width_column_wrapper<int32_t> col1_key{{20, 20, 20, 19, 21, 9}};
cudf::test::fixed_width_column_wrapper<int32_t> col2_key{{19, 19, 20, 20, 9, 21}};
cudf::table_view input{{col1, col2, col1_key, col2_key}};
std::vector<cudf::size_type> keys{2, 3};
// Keep the first duplicate row
// The expected table would be sorted in ascending order with respect to keys
cudf::test::fixed_width_column_wrapper<int32_t> exp_col1_first{{5, 3, 5, 8, 5}};
cudf::test::fixed_width_column_wrapper<float> exp_col2_first{{4, 3, 4, 9, 4}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col1_key_first{{20, 20, 19, 21, 9}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col2_key_first{{19, 20, 20, 9, 21}};
cudf::table_view expected_first{
{exp_col1_first, exp_col2_first, exp_col1_key_first, exp_col2_key_first}};
auto got_first = unique(input, keys, cudf::duplicate_keep_option::KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_first, got_first->view());
// Keep the last duplicate row
cudf::test::fixed_width_column_wrapper<int32_t> exp_col1_last{{4, 3, 5, 8, 5}};
cudf::test::fixed_width_column_wrapper<float> exp_col2_last{{5, 3, 4, 9, 4}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col1_key_last{{20, 20, 19, 21, 9}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col2_key_last{{19, 20, 20, 9, 21}};
cudf::table_view expected_last{
{exp_col1_last, exp_col2_last, exp_col1_key_last, exp_col2_key_last}};
auto got_last = unique(input, keys, cudf::duplicate_keep_option::KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_last, got_last->view());
// Keep no duplicate rows
cudf::test::fixed_width_column_wrapper<int32_t> exp_col1_unique{{3, 5, 8, 5}};
cudf::test::fixed_width_column_wrapper<float> exp_col2_unique{{3, 4, 9, 4}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col1_key_unique{{20, 19, 21, 9}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_col2_key_unique{{20, 20, 9, 21}};
cudf::table_view expected_unique{
{exp_col1_unique, exp_col2_unique, exp_col1_key_unique, exp_col2_key_unique}};
auto got_unique = unique(input, keys, cudf::duplicate_keep_option::KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_unique, got_unique->view());
}
TEST_F(Unique, KeepFirstWithNull)
{
cudf::test::fixed_width_column_wrapper<int32_t> col{{5, 4, 3, 2, 5, 8, 1}, {1, 0, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> key{{20, 20, 20, 20, 19, 21, 19},
{1, 1, 0, 0, 1, 1, 1}};
cudf::table_view input{{col, key}};
std::vector<cudf::size_type> keys{1};
// nulls are equal
cudf::test::fixed_width_column_wrapper<int32_t> exp_col_first_equal{{5, 3, 5, 8, 1},
{1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_key_col_first_equal{{20, 20, 19, 21, 19},
{1, 0, 1, 1, 1}};
cudf::table_view expected_first_equal{{exp_col_first_equal, exp_key_col_first_equal}};
auto got_first_equal =
unique(input, keys, cudf::duplicate_keep_option::KEEP_FIRST, null_equality::EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_first_equal, got_first_equal->view());
// nulls are unequal
cudf::test::fixed_width_column_wrapper<int32_t> exp_col_first_unequal{{5, 3, 2, 5, 8, 1},
{1, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_key_col_first_unequal{
{20, 20, 20, 19, 21, 19}, {1, 0, 0, 1, 1, 1}};
cudf::table_view expected_first_unequal{{exp_col_first_unequal, exp_key_col_first_unequal}};
auto got_first_unequal =
unique(input, keys, cudf::duplicate_keep_option::KEEP_FIRST, null_equality::UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_first_unequal, got_first_unequal->view());
}
TEST_F(Unique, KeepLastWithNull)
{
cudf::test::fixed_width_column_wrapper<int32_t> col{{5, 4, 3, 2, 5, 8, 1}, {1, 0, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> key{{20, 20, 20, 20, 19, 21, 19},
{1, 1, 0, 0, 1, 1, 1}};
cudf::table_view input{{col, key}};
std::vector<cudf::size_type> keys{1};
// nulls are equal
cudf::test::fixed_width_column_wrapper<int32_t> exp_col_last_equal{{4, 2, 5, 8, 1},
{0, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_key_col_last_equal{{20, 20, 19, 21, 19},
{1, 0, 1, 1, 1}};
cudf::table_view expected_last_equal{{exp_col_last_equal, exp_key_col_last_equal}};
auto got_last_equal =
unique(input, keys, cudf::duplicate_keep_option::KEEP_LAST, null_equality::EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_last_equal, got_last_equal->view());
// nulls are unequal
cudf::test::fixed_width_column_wrapper<int32_t> exp_col_last_unequal{{4, 3, 2, 5, 8, 1},
{0, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_key_col_last_unequal{{20, 20, 20, 19, 21, 19},
{1, 0, 0, 1, 1, 1}};
cudf::table_view expected_last_unequal{{exp_col_last_unequal, exp_key_col_last_unequal}};
auto got_last_unequal =
unique(input, keys, cudf::duplicate_keep_option::KEEP_LAST, null_equality::UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_last_unequal, got_last_unequal->view());
}
TEST_F(Unique, KeepNoneWithNull)
{
cudf::test::fixed_width_column_wrapper<int32_t> col{{5, 4, 3, 2, 5, 8, 1}, {1, 0, 1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> key{{20, 20, 20, 20, 19, 21, 19},
{1, 1, 0, 0, 1, 1, 1}};
cudf::table_view input{{col, key}};
std::vector<cudf::size_type> keys{1};
// nulls are equal
cudf::test::fixed_width_column_wrapper<int32_t> exp_col_unique_equal{{5, 8, 1}, {1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_key_col_unique_equal{{19, 21, 19}, {1, 1, 1}};
cudf::table_view expected_unique_equal{{exp_col_unique_equal, exp_key_col_unique_equal}};
auto got_unique_equal =
unique(input, keys, cudf::duplicate_keep_option::KEEP_NONE, null_equality::EQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_unique_equal, got_unique_equal->view());
// nulls are unequal
cudf::test::fixed_width_column_wrapper<int32_t> exp_col_unique_unequal{{3, 2, 5, 8, 1},
{1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> exp_key_col_unique_unequal{{20, 20, 19, 21, 19},
{0, 0, 1, 1, 1}};
cudf::table_view expected_unique_unequal{{exp_col_unique_unequal, exp_key_col_unique_unequal}};
auto got_unique_unequal =
unique(input, keys, cudf::duplicate_keep_option::KEEP_NONE, null_equality::UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_unique_unequal, got_unique_unequal->view());
}
TEST_F(Unique, ListsKeepAny)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
// clang-format off
auto const idx = int32s_col{0, 0, 2, 1, 1, 3, 5, 5, 6, 4, 4, 4};
auto const keys = lists_col{{}, {}, {1, 1}, {1}, {1}, {1, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}, {2, 2}};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx = int32s_col{0, 2, 1, 3, 5, 6, 4};
auto const exp_keys = lists_col{{}, {1, 1}, {1}, {1, 2}, {2}, {2, 1}, {2, 2}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(Unique, ListsKeepFirstLastNone)
{
// clang-format off
auto const idx = int32s_col{0, 1, 2, 1, 2, 3, 5, 6, 6, 4, 5, 6};
auto const keys = lists_col{{}, {}, {1, 1}, {1}, {1}, {1, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}, {2, 2}};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP FIRST
{
auto const exp_idx = int32s_col{0, 2, 1, 3, 5, 6, 4};
auto const exp_keys = lists_col{{}, {1, 1}, {1}, {1, 2}, {2}, {2, 1}, {2, 2}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP LAST
{
auto const exp_idx = int32s_col{1, 2, 2, 3, 6, 6, 6};
auto const exp_keys = lists_col{{}, {1, 1}, {1}, {1, 2}, {2}, {2, 1}, {2, 2}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// KEEP NONE
{
auto const exp_idx = int32s_col{2, 3, 6};
auto const exp_keys = lists_col{{1, 1}, {1, 2}, {2, 1}};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(Unique, NullableListsKeepAny)
{
// Column(s) used to test KEEP_ANY needs to have same rows for same keys because KEEP_ANY is
// nondeterministic.
// clang-format off
auto const idx = int32s_col{0, 0, 2, 1, 1, 3, 3, 5, 5, 6, 4, 4};
auto const keys = lists_col{{{}, {}, {1, 1}, {1}, {1}, {} /*NULL*/, {} /*NULL*/, {2}, {2}, {2, 1}, {2, 2}, {2, 2}}, nulls_at({5, 6})};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const exp_idx = int32s_col{0, 2, 1, 3, 5, 6, 4};
auto const exp_keys =
lists_col{{{}, {1, 1}, {1}, {} /*NULL*/, {2}, {2, 1}, {2, 2}}, null_at(3)};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal.
{
auto const exp_idx = int32s_col{0, 2, 1, 3, 3, 5, 6, 4};
auto const exp_keys =
lists_col{{{}, {1, 1}, {1}, {} /*NULL*/, {} /*NULL*/, {2}, {2, 1}, {2, 2}}, nulls_at({3, 4})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
TEST_F(Unique, NullableListsKeepFirstLastNone)
{
// clang-format off
auto const idx = int32s_col{0, 1, 2, 1, 2, 3, 4, 5, 6, 6, 4, 5};
auto const keys = lists_col{{{}, {}, {1, 1}, {1}, {1}, {} /*NULL*/, {} /*NULL*/, {2}, {2}, {2, 1}, {2, 2}, {2, 2}}, nulls_at({5, 6})};
// clang-format on
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP FIRST
{// Nulls are equal.
{auto const exp_idx = int32s_col{0, 2, 1, 3, 5, 6, 4};
auto const exp_keys = lists_col{{{}, {1, 1}, {1}, {} /*NULL*/, {2}, {2, 1}, {2, 2}}, null_at(3)};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal.
{
auto const exp_idx = int32s_col{0, 2, 1, 3, 4, 5, 6, 4};
auto const exp_keys =
lists_col{{{}, {1, 1}, {1}, {} /*NULL*/, {} /*NULL*/, {2}, {2, 1}, {2, 2}}, nulls_at({3, 4})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_FIRST, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
// KEEP LAST
{// Nulls are equal.
{auto const exp_idx = int32s_col{1, 2, 2, 4, 6, 6, 5};
auto const exp_keys = lists_col{{{}, {1, 1}, {1}, {} /*NULL*/, {2}, {2, 1}, {2, 2}}, null_at(3)};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal.
{
auto const exp_idx = int32s_col{1, 2, 2, 3, 4, 6, 6, 5};
auto const exp_keys =
lists_col{{{}, {1, 1}, {1}, {} /*NULL*/, {} /*NULL*/, {2}, {2, 1}, {2, 2}}, nulls_at({3, 4})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_LAST, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
// KEEP NONE
{
// Nulls are equal.
{
auto const exp_idx = int32s_col{2, 6};
auto const exp_keys = lists_col{{{1, 1}, {2, 1}}, nulls_at({})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
// Nulls are unequal.
{
auto const exp_idx = int32s_col{2, 3, 4, 6};
auto const exp_keys = lists_col{{{1, 1}, {} /*NULL*/, {} /*NULL*/, {2, 1}}, nulls_at({1, 2})};
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_NONE, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
}
}
TEST_F(Unique, ListsOfStructsKeepAny)
{
// Constructing a list of structs of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] ==
// 16. [{Null, 'b'}]
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 4, 5, 8, 9, 10, 11, 13, 15};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(Unique, ListsOfStructsKeepFirstLastNone)
{
// Constructing a list of structs of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 'b'}] ==
// 16. [{Null, 'b'}]
auto const structs = [] {
auto child1 =
int32s_col{{XXX, XXX, XXX, XXX, XXX, null, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, null, null},
nulls_at({5, 16, 17})};
auto child2 = strings_col{{"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*XXX*/,
"" /*null*/,
"a",
"b",
"a",
"b",
"a",
"c",
"a",
"c",
"" /*null*/,
"" /*null*/,
"b",
"b"},
nulls_at({5, 14, 15})};
return structs_col{{child1, child2}, nulls_at({0, 1, 2, 3, 4})};
}();
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto const null_it = nulls_at({2, 3});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_it, null_it + 17);
auto const keys = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type const*>(null_mask.data()),
null_count,
0,
{offsets, structs});
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const expect_map = int32s_col{0, 2, 4, 5, 8, 9, 10, 11, 13, 15};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_LAST
{
auto const expect_map = int32s_col{1, 3, 4, 7, 8, 9, 10, 12, 14, 16};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_NONE
{
auto const expect_map = int32s_col{4, 8, 9, 10};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(Unique, ListsOfEmptyStructsKeepAny)
{
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] ==
// 5. [Null, Null] ==
// 6. [Null, Null] !=
// 7. [Null] ==
// 8. [Null] !=
// 9. [{}] ==
// 10. [{}] !=
// 11. [{}, {}] ==
// 12. [{}, {}]
auto const structs_null_it = nulls_at({0, 1, 2, 3, 4, 5, 6, 7});
auto [structs_null_mask, structs_null_count] =
cudf::test::detail::make_null_mask(structs_null_it, structs_null_it + 14);
auto const structs =
cudf::column_view(cudf::data_type(cudf::type_id::STRUCT),
14,
nullptr,
static_cast<cudf::bitmask_type const*>(structs_null_mask.data()),
structs_null_count);
auto const offsets = int32s_col{0, 0, 0, 0, 0, 2, 4, 6, 7, 8, 9, 10, 12, 14};
auto const lists_null_it = nulls_at({2, 3});
auto [lists_null_mask, lists_null_count] =
cudf::test::detail::make_null_mask(lists_null_it, lists_null_it + 13);
auto const keys =
cudf::column_view(cudf::data_type(cudf::type_id::LIST),
13,
nullptr,
static_cast<cudf::bitmask_type const*>(lists_null_mask.data()),
lists_null_count,
0,
{offsets, structs});
auto const idx = int32s_col{1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 4, 7, 9, 11};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8, 9, 11};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(Unique, EmptyDeepListKeepAny)
{
// List<List<int>>, where all lists are empty:
//
// 0. []
// 1. []
// 2. Null
// 3. Null
auto const keys =
lists_col{{lists_col{}, lists_col{}, lists_col{}, lists_col{}}, nulls_at({2, 3})};
auto const idx = int32s_col{1, 1, 2, 2};
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(Unique, StructsOfStructsKeepAny)
{
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 1}, 5} | // Same as 0
// 2 | { {1, 2}, 4} |
// 3 | { Null, 6} |
// 4 | { Null, 4} |
// 5 | { Null, 4} | // Same as 4
// 6 | Null |
// 7 | Null | // Same as 6
// 8 | { {2, 1}, 5} |
auto s1 = [&] {
auto a = int32s_col{1, 1, 1, XXX, XXX, XXX, 2, 1, 2};
auto b = int32s_col{1, 1, 2, XXX, XXX, XXX, 2, 1, 1};
auto s2 = structs_col{{a, b}, nulls_at({3, 4, 5})};
auto c = int32s_col{5, 5, 4, 6, 4, 4, 3, 3, 5};
std::vector<std::unique_ptr<cudf::column>> s1_children;
s1_children.emplace_back(s2.release());
s1_children.emplace_back(c.release());
auto const null_it = nulls_at({6, 7});
return structs_col(std::move(s1_children), std::vector<bool>{null_it, null_it + 9});
}();
auto const idx = int32s_col{0, 0, 1, 2, 3, 3, 4, 4, 5};
auto const input = cudf::table_view{{idx, s1}};
auto const key_idx = std::vector<cudf::size_type>{1};
// Nulls are equal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 6, 8};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// Nulls are unequal.
{
auto const expect_map = int32s_col{0, 2, 3, 4, 5, 6, 7, 8};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_ANY, NULL_UNEQUAL);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
TEST_F(Unique, StructsOfListsKeepAny)
{
auto const idx = int32s_col{1, 1, 2, 3, 4, 4, 4, 5, 5, 6};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
auto const exp_idx = int32s_col{1, 2, 3, 4, 5, 6};
auto const exp_keys = [] {
auto child1 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1, 1}, {1, 2}, {2, 2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const expected = cudf::table_view{{exp_idx, exp_keys}};
auto const result = cudf::unique(input, key_idx, KEEP_ANY);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *result);
}
TEST_F(Unique, StructsOfListsKeepFirstLastNone)
{
auto const idx = int32s_col{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const keys = [] {
// All child columns are identical.
auto child1 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
auto child2 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
auto child3 = lists_col{{1}, {1}, {1, 1}, {1, 2}, {2, 2}, {2, 2}, {2, 2}, {2}, {2}, {2, 1}};
return structs_col{{child1, child2, child3}};
}();
auto const input = cudf::table_view{{idx, keys}};
auto const key_idx = std::vector<cudf::size_type>{1};
// KEEP_FIRST
{
auto const expect_map = int32s_col{0, 2, 3, 4, 7, 9};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_FIRST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_LAST
{
auto const expect_map = int32s_col{1, 2, 3, 6, 8, 9};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_LAST);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
// KEEP_NONE
{
auto const expect_map = int32s_col{2, 3, 9};
auto const expect_table = cudf::gather(input, expect_map);
auto const result = cudf::unique(input, key_idx, KEEP_NONE);
CUDF_TEST_EXPECT_TABLES_EQUAL(*expect_table, *result);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/fixed_point/fixed_point_tests.cu
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/detail/utilities/vector_factories.hpp>
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/reduce.h>
#include <thrust/scan.h>
#include <thrust/transform.h>
#include <algorithm>
#include <limits>
#include <vector>
using namespace numeric;
struct FixedPointTest : public cudf::test::BaseFixture {};
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
using RepresentationTypes = ::testing::Types<int32_t, int64_t, __int128_t>;
TYPED_TEST_SUITE(FixedPointTestAllReps, RepresentationTypes);
TYPED_TEST(FixedPointTestAllReps, DecimalXXThrust)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
std::vector<decimalXX> vec1(1000);
std::vector<int32_t> vec2(1000);
std::iota(std::begin(vec1), std::end(vec1), decimalXX{0, scale_type{-2}});
std::iota(std::begin(vec2), std::end(vec2), 0);
auto const res1 =
thrust::reduce(std::cbegin(vec1), std::cend(vec1), decimalXX{0, scale_type{-2}});
auto const res2 = std::accumulate(std::cbegin(vec2), std::cend(vec2), 0);
EXPECT_EQ(static_cast<int32_t>(res1), res2);
std::vector<int32_t> vec3(vec1.size());
thrust::transform(std::cbegin(vec1), std::cend(vec1), std::begin(vec3), [](auto const& e) {
return static_cast<int32_t>(e);
});
EXPECT_EQ(vec2, vec3);
}
struct cast_to_int32_fn {
using decimal32 = fixed_point<int32_t, Radix::BASE_10>;
int32_t __host__ __device__ operator()(decimal32 fp) { return static_cast<int32_t>(fp); }
};
TEST_F(FixedPointTest, DecimalXXThrustOnDevice)
{
using decimal32 = fixed_point<int32_t, Radix::BASE_10>;
std::vector<decimal32> vec1(1000, decimal32{1, scale_type{-2}});
auto d_vec1 = cudf::detail::make_device_uvector_sync(
vec1, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const sum = thrust::reduce(rmm::exec_policy(cudf::get_default_stream()),
std::cbegin(d_vec1),
std::cend(d_vec1),
decimal32{0, scale_type{-2}});
EXPECT_EQ(static_cast<int32_t>(sum), 1000);
// TODO: Once nvbugs/1990211 is fixed (ExclusiveSum initial_value = 0 bug)
// change inclusive scan to run on device (avoid copying to host)
thrust::inclusive_scan(std::cbegin(vec1), std::cend(vec1), std::begin(vec1));
d_vec1 = cudf::detail::make_device_uvector_sync(
vec1, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
std::vector<int32_t> vec2(1000);
std::iota(std::begin(vec2), std::end(vec2), 1);
auto const res1 = thrust::reduce(rmm::exec_policy(cudf::get_default_stream()),
std::cbegin(d_vec1),
std::cend(d_vec1),
decimal32{0, scale_type{-2}});
auto const res2 = std::accumulate(std::cbegin(vec2), std::cend(vec2), 0);
EXPECT_EQ(static_cast<int32_t>(res1), res2);
rmm::device_uvector<int32_t> d_vec3(1000, cudf::get_default_stream());
thrust::transform(rmm::exec_policy(cudf::get_default_stream()),
std::cbegin(d_vec1),
std::cend(d_vec1),
std::begin(d_vec3),
cast_to_int32_fn{});
auto vec3 = cudf::detail::make_std_vector_sync(d_vec3, cudf::get_default_stream());
EXPECT_EQ(vec2, vec3);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/fixed_point/fixed_point_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/binaryop.hpp>
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/null_mask.hpp>
#include <algorithm>
#include <limits>
#include <numeric>
#include <type_traits>
#include <vector>
using namespace numeric;
struct FixedPointTest : public cudf::test::BaseFixture {};
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
using RepresentationTypes = ::testing::Types<int32_t, int64_t>;
TYPED_TEST_SUITE(FixedPointTestAllReps, RepresentationTypes);
TYPED_TEST(FixedPointTestAllReps, SimpleDecimalXXConstruction)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX num0{1.234567, scale_type{0}};
decimalXX num1{1.234567, scale_type{-1}};
decimalXX num2{1.234567, scale_type{-2}};
decimalXX num3{1.234567, scale_type{-3}};
decimalXX num4{1.234567, scale_type{-4}};
decimalXX num5{1.234567, scale_type{-5}};
decimalXX num6{1.234567, scale_type{-6}};
EXPECT_EQ(1, static_cast<double>(num0));
EXPECT_EQ(1.2, static_cast<double>(num1));
EXPECT_EQ(1.23, static_cast<double>(num2));
EXPECT_EQ(1.234, static_cast<double>(num3));
EXPECT_EQ(1.2345, static_cast<double>(num4));
EXPECT_EQ(1.23456, static_cast<double>(num5));
EXPECT_EQ(1.234567, static_cast<double>(num6));
}
TYPED_TEST(FixedPointTestAllReps, SimpleNegativeDecimalXXConstruction)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX num0{-1.234567, scale_type{0}};
decimalXX num1{-1.234567, scale_type{-1}};
decimalXX num2{-1.234567, scale_type{-2}};
decimalXX num3{-1.234567, scale_type{-3}};
decimalXX num4{-1.234567, scale_type{-4}};
decimalXX num5{-1.234567, scale_type{-5}};
decimalXX num6{-1.234567, scale_type{-6}};
EXPECT_EQ(-1, static_cast<double>(num0));
EXPECT_EQ(-1.2, static_cast<double>(num1));
EXPECT_EQ(-1.23, static_cast<double>(num2));
EXPECT_EQ(-1.234, static_cast<double>(num3));
EXPECT_EQ(-1.2345, static_cast<double>(num4));
EXPECT_EQ(-1.23456, static_cast<double>(num5));
EXPECT_EQ(-1.234567, static_cast<double>(num6));
}
TYPED_TEST(FixedPointTestAllReps, PaddedDecimalXXConstruction)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX a{1.1, scale_type{-1}};
decimalXX b{1.01, scale_type{-2}};
decimalXX c{1.001, scale_type{-3}};
decimalXX d{1.0001, scale_type{-4}};
decimalXX e{1.00001, scale_type{-5}};
decimalXX f{1.000001, scale_type{-6}};
decimalXX x{1.000123, scale_type{-8}};
decimalXX y{0.000123, scale_type{-8}};
EXPECT_EQ(1.1, static_cast<double>(a));
EXPECT_EQ(1.01, static_cast<double>(b));
EXPECT_EQ(1, static_cast<double>(c)); // intentional (inherited problem from floating point)
EXPECT_EQ(1.0001, static_cast<double>(d));
EXPECT_EQ(1.00001, static_cast<double>(e));
EXPECT_EQ(1, static_cast<double>(f)); // intentional (inherited problem from floating point)
EXPECT_TRUE(1.000123 - static_cast<double>(x) < std::numeric_limits<double>::epsilon());
EXPECT_EQ(0.000123, static_cast<double>(y));
}
TYPED_TEST(FixedPointTestAllReps, SimpleBinaryFPConstruction)
{
using binary_fp = fixed_point<TypeParam, Radix::BASE_2>;
binary_fp num0{10, scale_type{0}};
binary_fp num1{10, scale_type{1}};
binary_fp num2{10, scale_type{2}};
binary_fp num3{10, scale_type{3}};
binary_fp num4{10, scale_type{4}};
binary_fp num5{1.24, scale_type{0}};
binary_fp num6{1.24, scale_type{-1}};
binary_fp num7{1.32, scale_type{-2}};
binary_fp num8{1.41, scale_type{-3}};
binary_fp num9{1.45, scale_type{-4}};
EXPECT_EQ(10, static_cast<double>(num0));
EXPECT_EQ(10, static_cast<double>(num1));
EXPECT_EQ(8, static_cast<double>(num2));
EXPECT_EQ(8, static_cast<double>(num3));
EXPECT_EQ(0, static_cast<double>(num4));
EXPECT_EQ(1, static_cast<double>(num5));
EXPECT_EQ(1, static_cast<double>(num6));
EXPECT_EQ(1.25, static_cast<double>(num7));
EXPECT_EQ(1.375, static_cast<double>(num8));
EXPECT_EQ(1.4375, static_cast<double>(num9));
}
TYPED_TEST(FixedPointTestAllReps, MoreSimpleBinaryFPConstruction)
{
using binary_fp = fixed_point<TypeParam, Radix::BASE_2>;
binary_fp num0{1.25, scale_type{-2}};
binary_fp num1{2.1, scale_type{-4}};
EXPECT_EQ(1.25, static_cast<double>(num0));
EXPECT_EQ(2.0625, static_cast<double>(num1));
}
TYPED_TEST(FixedPointTestAllReps, SimpleDecimalXXMath)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX ONE{1, scale_type{-2}};
decimalXX TWO{2, scale_type{-2}};
decimalXX THREE{3, scale_type{-2}};
decimalXX SIX{6, scale_type{-2}};
EXPECT_TRUE(ONE + ONE == TWO);
EXPECT_EQ(ONE + ONE, TWO);
EXPECT_EQ(ONE * TWO, TWO);
EXPECT_EQ(THREE * TWO, SIX);
EXPECT_EQ(THREE - TWO, ONE);
EXPECT_EQ(TWO / ONE, TWO);
EXPECT_EQ(SIX / TWO, THREE);
decimalXX a{1.23, scale_type{-2}};
decimalXX b{0, scale_type{0}};
EXPECT_EQ(a + b, a);
EXPECT_EQ(a - b, a);
}
TYPED_TEST(FixedPointTestAllReps, ComparisonOperators)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX ONE{1, scale_type{-1}};
decimalXX TWO{2, scale_type{-2}};
decimalXX THREE{3, scale_type{-3}};
decimalXX SIX{6, scale_type{-4}};
EXPECT_TRUE(ONE + ONE >= TWO);
EXPECT_TRUE(ONE + ONE <= TWO);
EXPECT_TRUE(ONE * TWO < THREE);
EXPECT_TRUE(THREE * TWO > THREE);
EXPECT_TRUE(THREE - TWO >= ONE);
EXPECT_TRUE(TWO / ONE < THREE);
EXPECT_TRUE(SIX / TWO >= ONE);
}
TYPED_TEST(FixedPointTestAllReps, DecimalXXTrickyDivision)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX ONE_1{1, scale_type{1}};
decimalXX SIX_0{6, scale_type{0}};
decimalXX SIX_1{6, scale_type{1}};
decimalXX TEN_0{10, scale_type{0}};
decimalXX TEN_1{10, scale_type{1}};
decimalXX SIXTY_1{60, scale_type{1}};
EXPECT_EQ(static_cast<int32_t>(ONE_1), 0);
EXPECT_EQ(static_cast<int32_t>(SIX_1), 0);
EXPECT_EQ(static_cast<int32_t>(TEN_0), 10);
EXPECT_EQ(static_cast<int32_t>(SIXTY_1), 60);
EXPECT_EQ(SIXTY_1 / TEN_0, ONE_1);
EXPECT_EQ(SIXTY_1 / TEN_1, SIX_0);
decimalXX A{34.56, scale_type{-2}};
decimalXX B{1.234, scale_type{-3}};
decimalXX C{1, scale_type{-2}};
EXPECT_EQ(static_cast<int32_t>(A / B), 20);
EXPECT_EQ(static_cast<int32_t>((A * C) / B), 28);
decimalXX n{28, scale_type{1}};
EXPECT_EQ(static_cast<int32_t>(n), 20);
}
TYPED_TEST(FixedPointTestAllReps, DecimalXXRounding)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX ZERO_0{0, scale_type{0}};
decimalXX ZERO_1{4, scale_type{1}};
decimalXX THREE_0{3, scale_type{0}};
decimalXX FOUR_0{4, scale_type{0}};
decimalXX FIVE_0{5, scale_type{0}};
decimalXX TEN_0{10, scale_type{0}};
decimalXX TEN_1{10, scale_type{1}};
decimalXX FOURTEEN_0{14, scale_type{0}};
decimalXX FIFTEEN_0{15, scale_type{0}};
EXPECT_EQ(ZERO_0, ZERO_1);
EXPECT_EQ(TEN_0, TEN_1);
EXPECT_EQ(ZERO_1 + TEN_1, TEN_1);
EXPECT_EQ(FOUR_0 + TEN_1, FOURTEEN_0);
EXPECT_TRUE(ZERO_0 == ZERO_1);
EXPECT_TRUE(FIVE_0 != TEN_1);
EXPECT_TRUE(FIVE_0 + FIVE_0 + FIVE_0 == FIFTEEN_0);
EXPECT_TRUE(FIVE_0 + FIVE_0 + FIVE_0 != TEN_1);
EXPECT_TRUE(FIVE_0 * THREE_0 == FIFTEEN_0);
EXPECT_TRUE(FIVE_0 * THREE_0 != TEN_1);
}
TYPED_TEST(FixedPointTestAllReps, ArithmeticWithDifferentScales)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX a{1, scale_type{0}};
decimalXX b{1.2, scale_type{-1}};
decimalXX c{1.23, scale_type{-2}};
decimalXX d{1.111, scale_type{-3}};
decimalXX x{2.2, scale_type{-1}};
decimalXX y{3.43, scale_type{-2}};
decimalXX z{4.541, scale_type{-3}};
decimalXX xx{0.2, scale_type{-1}};
decimalXX yy{0.03, scale_type{-2}};
decimalXX zz{0.119, scale_type{-3}};
EXPECT_EQ(a + b, x);
EXPECT_EQ(a + b + c, y);
EXPECT_EQ(a + b + c + d, z);
EXPECT_EQ(b - a, xx);
EXPECT_EQ(c - b, yy);
EXPECT_EQ(c - d, zz);
}
TYPED_TEST(FixedPointTestAllReps, RescaledTest)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX num0{1, scale_type{0}};
decimalXX num1{1.2, scale_type{-1}};
decimalXX num2{1.23, scale_type{-2}};
decimalXX num3{1.234, scale_type{-3}};
decimalXX num4{1.2345, scale_type{-4}};
decimalXX num5{1.23456, scale_type{-5}};
decimalXX num6{1.234567, scale_type{-6}};
EXPECT_EQ(num0, num6.rescaled(scale_type{0}));
EXPECT_EQ(num1, num6.rescaled(scale_type{-1}));
EXPECT_EQ(num2, num6.rescaled(scale_type{-2}));
EXPECT_EQ(num3, num6.rescaled(scale_type{-3}));
EXPECT_EQ(num4, num6.rescaled(scale_type{-4}));
EXPECT_EQ(num5, num6.rescaled(scale_type{-5}));
}
TYPED_TEST(FixedPointTestAllReps, RescaledRounding)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX num0{1500, scale_type{0}};
decimalXX num1{1499, scale_type{0}};
decimalXX num2{-1499, scale_type{0}};
decimalXX num3{-1500, scale_type{0}};
EXPECT_EQ(1000, static_cast<TypeParam>(num0.rescaled(scale_type{3})));
EXPECT_EQ(1000, static_cast<TypeParam>(num1.rescaled(scale_type{3})));
EXPECT_EQ(-1000, static_cast<TypeParam>(num2.rescaled(scale_type{3})));
EXPECT_EQ(-1000, static_cast<TypeParam>(num3.rescaled(scale_type{3})));
}
TYPED_TEST(FixedPointTestAllReps, BoolConversion)
{
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
decimalXX truthy_value{1.234567, scale_type{0}};
decimalXX falsy_value{0, scale_type{0}};
// Test explicit conversions
EXPECT_EQ(static_cast<bool>(truthy_value), true);
EXPECT_EQ(static_cast<bool>(falsy_value), false);
// These operators also *explicitly* convert to bool
EXPECT_EQ(truthy_value && true, true);
EXPECT_EQ(true && truthy_value, true);
EXPECT_EQ(falsy_value || false, false);
EXPECT_EQ(false || falsy_value, false);
EXPECT_EQ(!truthy_value, false);
EXPECT_EQ(!falsy_value, true);
}
// These two overflow tests only work in a Debug build.
// Unfortunately, in a full debug build, the test will each take about
// an hour to run.
// Therefore they are disabled here and can be enabled in an appropriate
// debug build when required.
TEST_F(FixedPointTest, DISABLED_OverflowDecimal32)
{
// This flag is needed to avoid warnings with ASSERT_DEATH
::testing::FLAGS_gtest_death_test_style = "threadsafe";
using decimal32 = fixed_point<int32_t, Radix::BASE_10>;
decimal32 num0{2, scale_type{-9}};
decimal32 num1{-2, scale_type{-9}};
ASSERT_DEATH(num0 + num0, ".*");
ASSERT_DEATH(num1 - num0, ".*");
decimal32 min{std::numeric_limits<int32_t>::min(), scale_type{0}};
decimal32 max{std::numeric_limits<int32_t>::max(), scale_type{0}};
decimal32 NEG_ONE{-1, scale_type{0}};
decimal32 ONE{1, scale_type{0}};
decimal32 TWO{2, scale_type{0}};
ASSERT_DEATH(min / NEG_ONE, ".*");
ASSERT_DEATH(max * TWO, ".*");
ASSERT_DEATH(min * TWO, ".*");
ASSERT_DEATH(max + ONE, ".*");
ASSERT_DEATH(max - NEG_ONE, ".*");
ASSERT_DEATH(min - ONE, ".*");
ASSERT_DEATH(max - NEG_ONE, ".*");
}
// See comment above for OverflowDecimal32 test.
TEST_F(FixedPointTest, DISABLED_OverflowDecimal64)
{
// This flag is needed to avoid warnings with ASSERT_DEATH
::testing::FLAGS_gtest_death_test_style = "threadsafe";
using decimal64 = fixed_point<int64_t, Radix::BASE_10>;
decimal64 num0{5, scale_type{-18}};
decimal64 num1{-5, scale_type{-18}};
ASSERT_DEATH(num0 + num0, ".*");
ASSERT_DEATH(num1 - num0, ".*");
decimal64 min{std::numeric_limits<int64_t>::min(), scale_type{0}};
decimal64 max{std::numeric_limits<int64_t>::max(), scale_type{0}};
decimal64 NEG_ONE{-1, scale_type{0}};
decimal64 ONE{1, scale_type{0}};
decimal64 TWO{2, scale_type{0}};
ASSERT_DEATH(min / NEG_ONE, ".*");
ASSERT_DEATH(max * TWO, ".*");
ASSERT_DEATH(min * TWO, ".*");
ASSERT_DEATH(max + ONE, ".*");
ASSERT_DEATH(max - NEG_ONE, ".*");
ASSERT_DEATH(min - ONE, ".*");
ASSERT_DEATH(max - NEG_ONE, ".*");
}
template <typename ValueType, typename Binop>
void integer_vector_test(ValueType const initial_value,
int32_t const size,
int32_t const scale,
Binop binop)
{
using decimal32 = fixed_point<int32_t, Radix::BASE_10>;
std::vector<decimal32> vec1(size);
std::vector<ValueType> vec2(size);
std::iota(std::begin(vec1), std::end(vec1), decimal32{initial_value, scale_type{scale}});
std::iota(std::begin(vec2), std::end(vec2), initial_value);
auto const res1 =
std::accumulate(std::cbegin(vec1), std::cend(vec1), decimal32{0, scale_type{scale}});
auto const res2 = std::accumulate(std::cbegin(vec2), std::cend(vec2), static_cast<ValueType>(0));
EXPECT_EQ(static_cast<int32_t>(res1), res2);
std::vector<ValueType> vec3(vec1.size());
std::transform(std::cbegin(vec1), std::cend(vec1), std::begin(vec3), [](auto const& e) {
return static_cast<int32_t>(e);
});
EXPECT_EQ(vec2, vec3);
}
TEST_F(FixedPointTest, Decimal32IntVector)
{
integer_vector_test(0, 10, -2, std::plus<>());
integer_vector_test(0, 1000, -2, std::plus<>());
integer_vector_test(1, 10, 0, std::multiplies<>());
integer_vector_test(2, 20, 0, std::multiplies<>());
}
template <typename ValueType, typename Binop>
void float_vector_test(ValueType const initial_value,
int32_t const size,
int32_t const scale,
Binop binop)
{
using decimal32 = fixed_point<int32_t, Radix::BASE_10>;
std::vector<decimal32> vec1(size);
std::vector<ValueType> vec2(size);
std::iota(std::begin(vec1), std::end(vec1), decimal32{initial_value, scale_type{scale}});
std::iota(std::begin(vec2), std::end(vec2), initial_value);
auto equal = std::equal(
std::cbegin(vec1), std::cend(vec1), std::cbegin(vec2), [](auto const& a, auto const& b) {
return static_cast<double>(a) - b <= std::numeric_limits<ValueType>::epsilon();
});
EXPECT_TRUE(equal);
}
TEST_F(FixedPointTest, Decimal32FloatVector)
{
float_vector_test(0.1, 1000, -2, std::plus<>());
float_vector_test(0.15, 1000, -2, std::plus<>());
float_vector_test(0.1, 10, -2, std::multiplies<>());
float_vector_test(0.15, 20, -2, std::multiplies<>());
}
struct cast_to_int32_fn {
using decimal32 = fixed_point<int32_t, Radix::BASE_10>;
int32_t __host__ __device__ operator()(decimal32 fp) { return static_cast<int32_t>(fp); }
};
TYPED_TEST(FixedPointTestAllReps, FixedPointColumnWrapper)
{
using namespace numeric;
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
using RepType = TypeParam;
// fixed_point_column_wrapper
auto const w = cudf::test::fixed_point_column_wrapper<RepType>{{1, 2, 3, 4}, scale_type{0}};
// fixed_width_column_wrapper
auto const ONE = decimalXX{1, scale_type{0}};
auto const TWO = decimalXX{2, scale_type{0}};
auto const THREE = decimalXX{3, scale_type{0}};
auto const FOUR = decimalXX{4, scale_type{0}};
auto const vec = std::vector<decimalXX>{ONE, TWO, THREE, FOUR};
auto const col = cudf::test::fixed_width_column_wrapper<decimalXX>(vec.begin(), vec.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(col, w);
}
TYPED_TEST(FixedPointTestAllReps, NoScaleOrWrongTypeID)
{
EXPECT_THROW(cudf::make_fixed_point_column(cudf::data_type{cudf::type_id::INT32}, 0),
cudf::logic_error);
}
TYPED_TEST(FixedPointTestAllReps, SimpleFixedPointColumnWrapper)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const a = cudf::test::fixed_point_column_wrapper<RepType>{{11, 22, 33}, scale_type{-1}};
auto const b = cudf::test::fixed_point_column_wrapper<RepType>{{110, 220, 330}, scale_type{-2}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(a, b);
}
TEST_F(FixedPointTest, PositiveScaleWithValuesOutsideUnderlyingType32)
{
// This is testing fixed_point values outside the range of its underlying type.
// For example, 100,000,000 with scale of 6 is 100,000,000,000,000 (100 trillion) and this is
// outside the range of a int32_t
using fp_wrapper = cudf::test::fixed_point_column_wrapper<int32_t>;
auto const a = fp_wrapper{{100000000}, scale_type{6}};
auto const b = fp_wrapper{{5000000}, scale_type{7}};
auto const c = fp_wrapper{{2}, scale_type{0}};
auto const expected1 = fp_wrapper{{150000000}, scale_type{6}};
auto const expected2 = fp_wrapper{{50000000}, scale_type{6}};
auto const type = cudf::data_type{cudf::type_id::DECIMAL32, 6};
auto const result1 = cudf::binary_operation(a, b, cudf::binary_operator::ADD, type);
auto const result2 = cudf::binary_operation(a, c, cudf::binary_operator::DIV, type);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, result1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, result2->view());
}
TEST_F(FixedPointTest, PositiveScaleWithValuesOutsideUnderlyingType64)
{
// This is testing fixed_point values outside the range of its underlying type.
// For example, 100,000,000 with scale of 100 is 10 ^ 108 and this is far outside the
// range of a int64_t
using fp_wrapper = cudf::test::fixed_point_column_wrapper<int64_t>;
auto const a = fp_wrapper{{100000000}, scale_type{100}};
auto const b = fp_wrapper{{5000000}, scale_type{101}};
auto const c = fp_wrapper{{2}, scale_type{0}};
auto const expected1 = fp_wrapper{{150000000}, scale_type{100}};
auto const expected2 = fp_wrapper{{50000000}, scale_type{100}};
auto const type = cudf::data_type{cudf::type_id::DECIMAL64, 100};
auto const result1 = cudf::binary_operation(a, b, cudf::binary_operator::ADD, type);
auto const result2 = cudf::binary_operation(a, c, cudf::binary_operator::DIV, type);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, result1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, result2->view());
}
TYPED_TEST(FixedPointTestAllReps, ExtremelyLargeNegativeScale)
{
// This is testing fixed_point values with an extremely large negative scale. The fixed_point
// implementation should be able to handle any scale representable by an int32_t
using decimalXX = fixed_point<TypeParam, Radix::BASE_10>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<TypeParam>;
auto const a = fp_wrapper{{10}, scale_type{-201}};
auto const b = fp_wrapper{{50}, scale_type{-202}};
auto const c = fp_wrapper{{2}, scale_type{0}};
auto const expected1 = fp_wrapper{{150}, scale_type{-202}};
auto const expected2 = fp_wrapper{{5}, scale_type{-201}};
auto const type1 = cudf::data_type{cudf::type_to_id<decimalXX>(), -202};
auto const result1 = cudf::binary_operation(a, b, cudf::binary_operator::ADD, type1);
auto const type2 = cudf::data_type{cudf::type_to_id<decimalXX>(), -201};
auto const result2 = cudf::binary_operation(a, c, cudf::binary_operator::DIV, type2);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, result1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, result2->view());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/round/round_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/round.hpp>
#include <limits>
struct RoundTests : public cudf::test::BaseFixture {};
template <typename T>
struct RoundTestsIntegerTypes : public cudf::test::BaseFixture {};
template <typename T>
struct RoundTestsFixedPointTypes : public cudf::test::BaseFixture {};
template <typename T>
struct RoundTestsFloatingPointTypes : public cudf::test::BaseFixture {};
using IntegerTypes = cudf::test::Types<int16_t, int32_t, int64_t>;
TYPED_TEST_SUITE(RoundTestsIntegerTypes, IntegerTypes);
TYPED_TEST_SUITE(RoundTestsFixedPointTypes, cudf::test::FixedPointTypes);
TYPED_TEST_SUITE(RoundTestsFloatingPointTypes, cudf::test::FloatingPointTypes);
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfUpZero)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{
{1140, 1150, 1160, 1240, 1250, 1260, -1140, -1150, -1160, -1240, -1250, -1260}, scale_type{-2}};
auto const expected =
fp_wrapper{{11, 12, 12, 12, 13, 13, -11, -12, -12, -12, -13, -13}, scale_type{0}};
auto const result = cudf::round(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfUpZeroNoOp)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{
{1125, 1150, 1160, 1240, 1250, 1260, -1125, -1150, -1160, -1240, -1250, -1260}, scale_type{0}};
auto const result = cudf::round(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(input, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfUpZeroNullMask)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const null_mask = std::vector<int>{1, 1, 0, 1};
auto const input = fp_wrapper{{1150, 1160, 1240, 1250}, null_mask.cbegin(), scale_type{-2}};
auto const expected = fp_wrapper{{12, 12, 1240, 13}, null_mask.cbegin(), scale_type{0}};
auto const result = cudf::round(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfEvenZero)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{
{1140, 1150, 1160, 1240, 1250, 1260, -1140, -1150, -1160, -1240, -1250, -1260}, scale_type{-2}};
auto const expected =
fp_wrapper{{11, 12, 12, 12, 12, 13, -11, -12, -12, -12, -12, -13}, scale_type{0}};
auto const result = cudf::round(input, 0, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfUp)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{1140, 1150, 1160, -1140, -1150, -1160}, scale_type{-3}};
auto const expected = fp_wrapper{{11, 12, 12, -11, -12, -12}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfUp2)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{114, 115, 116, -114, -115, -116}, scale_type{-2}};
auto const expected = fp_wrapper{{11, 12, 12, -11, -12, -12}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfUp3)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{1, 2, 3, -1, -2, -3}, scale_type{1}};
auto const expected = fp_wrapper{{100, 200, 300, -100, -200, -300}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfEven)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{
{1140, 1150, 1160, 1240, 1250, 1260, -1140, -1150, -1160, -1240, -1250, -1260}, scale_type{-3}};
auto const expected =
fp_wrapper{{11, 12, 12, 12, 12, 13, -11, -12, -12, -12, -12, -13}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfEven2)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input =
fp_wrapper{{114, 115, 116, 124, 125, 126, -114, -115, -116, -124, -125, -126}, scale_type{-2}};
auto const expected =
fp_wrapper{{11, 12, 12, 12, 12, 13, -11, -12, -12, -12, -12, -13}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfEven3)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{1, 2, 3, -1, -2, -3}, scale_type{1}};
auto const expected = fp_wrapper{{100, 200, 300, -100, -200, -300}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, EmptyFixedPointTypeTest)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{}, scale_type{1}};
auto const expected = fp_wrapper{{}, scale_type{-1}};
auto const expected_type = cudf::data_type{cudf::type_to_id<decimalXX>(), scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
EXPECT_EQ(result->view().type(), expected_type);
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestNegHalfUp)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, scale_type{2}};
auto const expected = fp_wrapper{{1, 2, 2, 2, 3, 3, -1, -2, -2, -2, -3, -3}, scale_type{3}};
auto const result = cudf::round(input, -3, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestNegHalfUp2)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, scale_type{3}};
auto const expected = fp_wrapper{{1, 2, 2, 2, 3, 3, -1, -2, -2, -2, -3, -3}, scale_type{4}};
auto const result = cudf::round(input, -4, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfNegUp3)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{1, 2, 3, -1, -2, -3}, scale_type{2}};
auto const expected = fp_wrapper{{10, 20, 30, -10, -20, -30}, scale_type{1}};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestNegHalfEven)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, scale_type{2}};
auto const expected = fp_wrapper{{1, 2, 2, 2, 2, 3, -1, -2, -2, -2, -2, -3}, scale_type{3}};
auto const result = cudf::round(input, -3, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestNegHalfEven2)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, scale_type{3}};
auto const expected = fp_wrapper{{1, 2, 2, 2, 2, 3, -1, -2, -2, -2, -2, -3}, scale_type{4}};
auto const result = cudf::round(input, -4, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, SimpleFixedPointTestHalfNegEven3)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{1, 2, 3, -1, -2, -3}, scale_type{2}};
auto const expected = fp_wrapper{{10, 20, 30, -10, -20, -30}, scale_type{1}};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, TestForBlog)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper{{25649999}, scale_type{-5}};
auto const expected = fp_wrapper{{256}, scale_type{0}};
auto const result = cudf::round(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFixedPointTypes, TestScaleMovementExceedingMaxPrecision)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
// max precision of int32 = 9
// scale movement = -(-11) -1 = 10 > 9
// max precision of int64 = 18
// scale movement = -(-20) -1 = 19 > 18
// max precision of int128 = 38
// scale movement = -(-40) -1 = 39 > 38
auto const target_scale = cuda::std::numeric_limits<RepType>::digits10 + 1 + 1;
auto const input =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, scale_type{1}};
auto const expected = fp_wrapper{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, scale_type{target_scale}};
auto const result = cudf::round(input, -target_scale, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
auto const input_even =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, scale_type{1}};
auto const expected_even =
fp_wrapper{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, scale_type{target_scale}};
auto const result_even = cudf::round(input, -target_scale, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_even, result_even->view());
const std::initializer_list<bool> validity = {1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0};
auto const input_null =
fp_wrapper{{14, 15, 16, 24, 25, 26, -14, -15, -16, -24, -25, -26}, validity, scale_type{1}};
auto const expected_null =
fp_wrapper{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, validity, scale_type{target_scale}};
auto const result_null = cudf::round(input_null, -target_scale, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_null, result_null->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestHalfUp0)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{1.4, 1.5, 1.6};
auto const expected = fw_wrapper{1, 2, 2};
auto const result = cudf::round(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestHalfUp1)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{1.24, 1.25, 1.26};
auto const expected = fw_wrapper{1.2, 1.3, 1.3};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestHalfEven0)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{1.4, 1.5, 1.6, 2.4, 2.5, 2.6};
auto const expected = fw_wrapper{1, 2, 2, 2, 2, 3};
auto const result = cudf::round(input, 0, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestHalfEven1)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{1.24, 1.25, 1.26, 1.34, 1.35, 1.36};
auto const expected = fw_wrapper{1.2, 1.2, 1.3, 1.3, 1.4, 1.4};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_EVEN);
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestWithNullsHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{{1.24, 1.25, 1.26}, {1, 0, 1}};
auto const expected = fw_wrapper{{1.2, 1.3, 1.3}, {1, 0, 1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestNegHalfUp1)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{5, 12, 15, 135, 1454, 1455, 1456};
auto const expected = fw_wrapper{10, 10, 20, 140, 1450, 1460, 1460};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestNegHalfEven1)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{5, 12, 15, 135, 1454, 1455, 1456};
auto const expected = fw_wrapper{0, 10, 20, 140, 1450, 1460, 1460};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SimpleFloatingPointTestNegHalfUp2)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{12, 135, 1454, 1455, 1500};
auto const expected = fw_wrapper{0, 100, 1500, 1500, 1500};
auto const result = cudf::round(input, -2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, LargeFloatingPointHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto transform = [](int i) -> float { return i % 2 == 0 ? i + 0.44 : i + 0.56; };
auto begin = cudf::detail::make_counting_transform_iterator(0, transform);
auto const input = fw_wrapper(begin, begin + 2000);
auto transform2 = [](int i) { return i % 2 == 0 ? i + 0.4 : i + 0.6; };
auto begin2 = cudf::detail::make_counting_transform_iterator(0, transform2);
auto const expected = fw_wrapper(begin2, begin2 + 2000);
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsIntegerTypes, LargeIntegerHalfEven)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto transform = [](int i) -> float { return 10 * i + 5; };
auto begin = cudf::detail::make_counting_transform_iterator(1, transform);
auto const input = fw_wrapper(begin, begin + 2000);
auto transform2 = [](int i) { return i % 2 == 0 ? 10 * i : 10 + 10 * i; };
auto begin2 = cudf::detail::make_counting_transform_iterator(1, transform2);
auto const expected = fw_wrapper(begin2, begin2 + 2000);
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsFloatingPointTypes, SameSignificatDigitsHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{9.87654321};
auto const expected = fw_wrapper{9.88};
auto const result = cudf::round(input, 2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
auto const input2 = fw_wrapper{987.654321};
auto const expected2 = fw_wrapper{988};
auto const result2 = cudf::round(input2);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, result2->view());
auto const input3 = fw_wrapper{987654.321};
auto const expected3 = fw_wrapper{988000};
auto const result3 = cudf::round(input3, -3, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, result3->view());
auto const input4 = fw_wrapper{9876543.21};
auto const expected4 = fw_wrapper{9880000};
auto const result4 = cudf::round(input4, -4, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected4, result4->view());
auto const input5 = fw_wrapper{0.0000987654321};
auto const expected5 = fw_wrapper{0.0000988};
auto const result5 = cudf::round(input5, 7, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected5, result5->view());
}
TEST_F(RoundTests, FloatMaxTestHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<float>;
auto const input = fw_wrapper{std::numeric_limits<float>::max()}; // 3.40282e+38
auto const expected = fw_wrapper{3.4e+38};
auto const result = cudf::round(input, -37, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TEST_F(RoundTests, DoubleMaxTestHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<double>;
auto const input = fw_wrapper{std::numeric_limits<double>::max() - 5e+306}; // 1.74769e+308
auto const expected = fw_wrapper{1.7e+308};
auto const result = cudf::round(input, -307, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TEST_F(RoundTests, AvoidOverFlowTestHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<double>;
auto const input = fw_wrapper{std::numeric_limits<double>::max()};
auto const expected = fw_wrapper{std::numeric_limits<double>::max()};
auto const result = cudf::round(input, 2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsIntegerTypes, SimpleIntegerTestNegHalfUp2)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{12, 135, 1454, 1455, 1500};
auto const expected = fw_wrapper{0, 100, 1500, 1500, 1500};
auto const result = cudf::round(input, -2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsIntegerTypes, SimpleIntegerTestNegHalfEven)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{12, 135, 1450, 1550, 1650};
auto const expected = fw_wrapper{0, 100, 1400, 1600, 1600};
auto const result = cudf::round(input, -2, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsIntegerTypes, SimpleNegativeIntegerHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{-12, -135, -1454, -1455, -1500, -140, -150, -160};
auto const expected = fw_wrapper{0, -100, -1500, -1500, -1500, -100, -200, -200};
auto const result = cudf::round(input, -2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsIntegerTypes, SimpleNegativeIntegerHalfEven)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{-12, -135, -145, -146, -1454, -1455, -1500};
auto const expected = fw_wrapper{-10, -140, -140, -150, -1450, -1460, -1500};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TEST_F(RoundTests, SimpleNegativeIntegerWithUnsignedNumbersHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<uint32_t>;
auto const input = fw_wrapper{12, 135, 1454, 1455, 1500, 140, 150, 160};
auto const expected = fw_wrapper{0, 100, 1500, 1500, 1500, 100, 200, 200};
auto const result = cudf::round(input, -2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TEST_F(RoundTests, SimpleNegativeInt8HalfEven)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<int8_t>;
auto const input = fw_wrapper{12, 35, 36, 15, 16, 24, 25, 26};
auto const expected = fw_wrapper{10, 40, 40, 20, 20, 20, 20, 30};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TEST_F(RoundTests, SimpleNegativeInt8HalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<int8_t>;
auto const input = fw_wrapper{12, 35, 36, 15, 16, 24, 25, 26};
auto const expected = fw_wrapper{10, 40, 40, 20, 20, 20, 30, 30};
auto const result = cudf::round(input, -1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(RoundTestsIntegerTypes, SimplePositiveIntegerHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto const input = fw_wrapper{-12, -135, -1454, -1455, -1500};
auto const expected = fw_wrapper{-12, -135, -1454, -1455, -1500};
auto const result = cudf::round(input, 2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TEST_F(RoundTests, Int64AtBoundaryHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<int64_t>;
auto const m = std::numeric_limits<int64_t>::max(); // 9223372036854775807
auto const input = fw_wrapper{m};
auto const expected = fw_wrapper{9223372036854775800};
auto const result = cudf::round(input, -2, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
auto const expected2 = fw_wrapper{9223372036850000000};
auto const result2 = cudf::round(input, -7, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, result2->view());
auto const expected3 = fw_wrapper{9223372000000000000};
auto const result3 = cudf::round(input, -11, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, result3->view());
auto const result4 = cudf::round(input, -12, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, result4->view());
auto const expected5 = fw_wrapper{9000000000000000000};
auto const result5 = cudf::round(input, -18, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected5, result5->view());
}
TEST_F(RoundTests, FixedPoint128HalfUp)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
{
auto const input = fp_wrapper{{-160714515306}, scale_type{-13}};
auto const expected = fp_wrapper{{-16071451531}, scale_type{-12}};
auto const result = cudf::round(input, 12, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(RoundTests, FixedPointAtBoundaryTestHalfUp)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const m = std::numeric_limits<RepType>::max(); // 170141183460469231731687303715884105727
{
auto const input = fp_wrapper{{m}, scale_type{0}};
auto const expected = fp_wrapper{{m / 100000}, scale_type{5}};
auto const result = cudf::round(input, -5, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const input = fp_wrapper{{m}, scale_type{0}};
auto const expected = fp_wrapper{{m / 100000000000}, scale_type{11}};
auto const result = cudf::round(input, -11, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const input = fp_wrapper{{m}, scale_type{0}};
auto const expected = fp_wrapper{{m / 1000000000000000}, scale_type{15}};
auto const result = cudf::round(input, -15, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(RoundTests, BoolTestHalfUp)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<bool>;
auto const input = fw_wrapper{0, 1, 0};
EXPECT_THROW(cudf::round(input, -2, cudf::rounding_method::HALF_UP), cudf::logic_error);
}
// Use __uint128_t for demonstration.
constexpr __uint128_t operator""_uint128_t(const char* s)
{
__uint128_t ret = 0;
for (int i = 0; s[i] != '\0'; ++i) {
ret *= 10;
if ('0' <= s[i] && s[i] <= '9') { ret += s[i] - '0'; }
}
return ret;
}
TEST_F(RoundTests, HalfEvenErrorsA)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
{
// 0.5 at scale -37 should round HALF_EVEN to 0, because 0 is an even number
auto const input =
fp_wrapper{{5000000000000000000000000000000000000_uint128_t}, scale_type{-37}};
auto const expected = fp_wrapper{{0}, scale_type{0}};
auto const result = cudf::round(input, 0, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(RoundTests, HalfEvenErrorsB)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
{
// 0.125 at scale -37 should round HALF_EVEN to 0.12, because 2 is an even number
auto const input =
fp_wrapper{{1250000000000000000000000000000000000_uint128_t}, scale_type{-37}};
auto const expected = fp_wrapper{{12}, scale_type{-2}};
auto const result = cudf::round(input, 2, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(RoundTests, HalfEvenErrorsC)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
{
// 0.0625 at scale -37 should round HALF_EVEN to 0.062, because 2 is an even number
auto const input =
fp_wrapper{{0625000000000000000000000000000000000_uint128_t}, scale_type{-37}};
auto const expected = fp_wrapper{{62}, scale_type{-3}};
auto const result = cudf::round(input, 3, cudf::rounding_method::HALF_EVEN);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(RoundTests, HalfUpErrorsA)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
{
// 0.25 at scale -37 should round HALF_UP to 0.3
auto const input =
fp_wrapper{{2500000000000000000000000000000000000_uint128_t}, scale_type{-37}};
auto const expected = fp_wrapper{{3}, scale_type{-1}};
auto const result = cudf::round(input, 1, cudf::rounding_method::HALF_UP);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/sample_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf/column/column.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/sorting.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
struct SampleTest : public cudf::test::BaseFixture {};
TEST_F(SampleTest, FailCaseRowMultipleSampling)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{1, 2, 3, 4, 5};
// size of input table is smaller than number of samples
// and sampling same row multiple times is disallowed,
// this combination can't work.
cudf::size_type const n_samples = 10;
cudf::table_view input({col1});
EXPECT_THROW(cudf::sample(input, n_samples, cudf::sample_with_replacement::FALSE, 0),
cudf::logic_error);
}
TEST_F(SampleTest, RowMultipleSamplingDisallowed)
{
cudf::size_type const n_samples = 1024;
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<int16_t> col1(data, data + n_samples);
cudf::table_view input({col1});
for (int i = 0; i < 10; i++) {
auto out_table = cudf::sample(input, n_samples, cudf::sample_with_replacement::FALSE, i);
auto sorted_out = cudf::sort(out_table->view());
CUDF_TEST_EXPECT_TABLES_EQUAL(input, sorted_out->view());
}
}
TEST_F(SampleTest, TestReproducibilityWithSeed)
{
cudf::size_type const n_samples = 1024;
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<int16_t> col1(data, data + n_samples);
cudf::table_view input({col1});
auto expected_1 = cudf::sample(input, n_samples, cudf::sample_with_replacement::FALSE, 1);
for (int i = 0; i < 2; i++) {
auto out = cudf::sample(input, n_samples, cudf::sample_with_replacement::FALSE, 1);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_1->view(), out->view());
}
auto expected_2 = cudf::sample(input, n_samples, cudf::sample_with_replacement::TRUE, 1);
for (int i = 0; i < 2; i++) {
auto out = cudf::sample(input, n_samples, cudf::sample_with_replacement::TRUE, 1);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_2->view(), out->view());
}
}
struct SampleBasicTest : public SampleTest,
public ::testing::WithParamInterface<
std::tuple<cudf::size_type, cudf::sample_with_replacement>> {};
TEST_P(SampleBasicTest, CombinationOfParameters)
{
cudf::size_type const table_size = 1024;
auto const [n_samples, multi_smpl] = GetParam();
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<int16_t> col1(data, data + table_size);
cudf::test::fixed_width_column_wrapper<float> col2(data, data + table_size);
cudf::table_view input({col1, col2});
auto out_table = cudf::sample(input, n_samples, multi_smpl, 0);
EXPECT_EQ(out_table->num_rows(), n_samples);
}
INSTANTIATE_TEST_CASE_P(
SampleTest,
SampleBasicTest,
::testing::Values(std::make_tuple(0, cudf::sample_with_replacement::TRUE),
std::make_tuple(0, cudf::sample_with_replacement::FALSE),
std::make_tuple(512, cudf::sample_with_replacement::TRUE),
std::make_tuple(512, cudf::sample_with_replacement::FALSE),
std::make_tuple(1024, cudf::sample_with_replacement::TRUE),
std::make_tuple(1024, cudf::sample_with_replacement::FALSE),
std::make_tuple(2048, cudf::sample_with_replacement::TRUE)));
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/reverse_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/scalar/scalar.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <thrust/execution_policy.h>
#include <thrust/host_vector.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/tabulate.h>
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::ALL_ERRORS};
template <typename T>
class ReverseTypedTestFixture : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ReverseTypedTestFixture, cudf::test::AllTypes);
TYPED_TEST(ReverseTypedTestFixture, ReverseTable)
{
using T = TypeParam;
constexpr cudf::size_type num_values{10};
auto input = cudf::test::fixed_width_column_wrapper<T, int32_t>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + num_values);
auto expected_elements = cudf::detail::make_counting_transform_iterator(
0, [num_values] __device__(auto i) { return num_values - i - 1; });
auto expected =
cudf::test::fixed_width_column_wrapper<T, typename decltype(expected_elements)::value_type>(
expected_elements, expected_elements + num_values);
auto input_table = cudf::table_view{{input}};
auto const p_ret = cudf::reverse(input_table);
EXPECT_EQ(p_ret->num_columns(), 1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(p_ret->view().column(0), expected, verbosity);
}
TYPED_TEST(ReverseTypedTestFixture, ReverseColumn)
{
using T = TypeParam;
constexpr cudf::size_type num_values{10};
auto input = cudf::test::fixed_width_column_wrapper<T, int32_t>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + num_values);
auto expected_elements = cudf::detail::make_counting_transform_iterator(
0, [num_values] __device__(auto i) { return num_values - i - 1; });
auto expected =
cudf::test::fixed_width_column_wrapper<T, typename decltype(expected_elements)::value_type>(
expected_elements, expected_elements + num_values);
auto const column_ret = cudf::reverse(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(column_ret->view(), expected, verbosity);
}
TYPED_TEST(ReverseTypedTestFixture, ReverseNullable)
{
using T = TypeParam;
constexpr cudf::size_type num_values{20};
std::vector<int64_t> input_values(num_values);
std::iota(input_values.begin(), input_values.end(), 1);
thrust::host_vector<bool> input_valids(num_values);
thrust::tabulate(
thrust::seq, input_valids.begin(), input_valids.end(), [](auto i) { return not(i % 2); });
std::vector<T> expected_values(input_values.size());
thrust::host_vector<bool> expected_valids(input_valids.size());
std::transform(std::make_reverse_iterator(input_values.end()),
std::make_reverse_iterator(input_values.begin()),
expected_values.begin(),
[](auto i) { return cudf::test::make_type_param_scalar<T>(i); });
std::reverse_copy(input_valids.begin(), input_valids.end(), expected_valids.begin());
cudf::test::fixed_width_column_wrapper<T, int64_t> input(
input_values.begin(), input_values.end(), input_valids.begin());
cudf::test::fixed_width_column_wrapper<T> expected(
expected_values.begin(), expected_values.end(), expected_valids.begin());
cudf::table_view input_table{{input}};
auto p_ret = cudf::reverse(input_table);
EXPECT_EQ(p_ret->num_columns(), 1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(p_ret->view().column(0), expected);
}
TYPED_TEST(ReverseTypedTestFixture, ZeroSizeInput)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> input(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0));
cudf::test::fixed_width_column_wrapper<T, int32_t> expected(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0));
cudf::table_view input_table{{input}};
auto p_ret = cudf::reverse(input_table);
EXPECT_EQ(p_ret->num_columns(), 1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(p_ret->view().column(0), expected);
}
class ReverseStringTestFixture : public cudf::test::BaseFixture {};
TEST_F(ReverseStringTestFixture, ReverseNullable)
{
constexpr cudf::size_type num_values{20};
std::vector<std::string> input_values(num_values);
thrust::host_vector<bool> input_valids(num_values);
thrust::tabulate(thrust::seq, input_values.begin(), input_values.end(), [](auto i) {
return "#" + std::to_string(i);
});
thrust::tabulate(
thrust::seq, input_valids.begin(), input_valids.end(), [](auto i) { return not(i % 2); });
std::vector<std::string> expected_values(input_values.size());
thrust::host_vector<bool> expected_valids(input_valids.size());
std::reverse_copy(input_values.begin(), input_values.end(), expected_values.begin());
std::reverse_copy(input_valids.begin(), input_valids.end(), expected_valids.begin());
auto input = cudf::test::strings_column_wrapper(
input_values.begin(), input_values.end(), input_valids.begin());
auto expected = cudf::test::strings_column_wrapper(
expected_values.begin(), expected_values.end(), expected_valids.begin());
cudf::table_view input_table{{input}};
auto p_ret = cudf::reverse(input_table);
EXPECT_EQ(p_ret->num_columns(), 1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(p_ret->view().column(0), expected);
}
TEST_F(ReverseStringTestFixture, ZeroSizeInput)
{
std::vector<std::string> input_values{};
auto input = cudf::test::strings_column_wrapper(input_values.begin(), input_values.end());
auto count = cudf::test::fixed_width_column_wrapper<cudf::size_type>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0));
auto expected = cudf::test::strings_column_wrapper(input_values.begin(), input_values.end());
cudf::table_view input_table{{input}};
auto p_ret = cudf::reverse(input_table);
EXPECT_EQ(p_ret->num_columns(), 1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(p_ret->view().column(0), expected);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/segmented_gather_list_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/null_mask.hpp>
#include <cudf/lists/gather.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <stdexcept>
template <typename T>
class SegmentedGatherTest : public cudf::test::BaseFixture {};
using FixedWidthTypesNotBool = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(SegmentedGatherTest, FixedWidthTypesNotBool);
// to disambiguate between {} == 0 and {} == List{0}
// Also, see note about compiler issues when declaring nested
// empty lists in lists_column_wrapper documentation
template <typename T>
using LCW = cudf::test::lists_column_wrapper<T, int32_t>;
using namespace cudf::test::iterators;
auto constexpr NULLIFY = cudf::out_of_bounds_policy::NULLIFY;
TYPED_TEST(SegmentedGatherTest, Gather)
{
using T = TypeParam;
// List<T>
LCW<T> list{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}};
{
// Straight-line case.
auto const gather_map = LCW<int>{{3, 2, 1, 0}, {0}, {0, 1}, {0, 2, 1}};
auto const expected = LCW<T>{{4, 3, 2, 1}, {5}, {6, 7}, {8, 10, 9}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
{
// Nullify out-of-bounds values.
auto const gather_map = LCW<int>{{3, 2, 4, 0}, {0}, {0, -3}, {0, 2, 1}};
auto const expected = LCW<T>{{{4, 3, 2, 1}, null_at(2)}, {5}, {{6, 7}, null_at(1)}, {8, 10, 9}};
auto const results = cudf::lists::segmented_gather(
cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
}
TYPED_TEST(SegmentedGatherTest, GatherNothing)
{
using T = TypeParam;
// List<T>
{
auto const list = LCW<T>{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}};
auto const gather_map = LCW<int>{LCW<int>{}, LCW<int>{}, LCW<int>{}, LCW<int>{}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{LCW<T>{}, LCW<T>{}, LCW<T>{}, LCW<T>{}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
// List<List<T>>
{
auto const list = LCW<T>{{{1, 2, 3, 4}, {5}}, {{6, 7}}, {{}, {8, 9, 10}}};
auto const gather_map = LCW<int>{LCW<int>{}, LCW<int>{}, LCW<int>{}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
// hack to get column of empty list of list
auto const expected_dummy = LCW<T>{{{1, 2, 3, 4}, {5}}, LCW<T>{}, LCW<T>{}, LCW<T>{}};
auto const expected = cudf::split(expected_dummy, {1})[1];
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
// List<List<List<T>>>
{
auto const list = LCW<T>{{{{1, 2, 3, 4}, {5}}}, {{{6, 7}, {8, 9, 10}}}};
auto const gather_map = LCW<int>{LCW<int>{}, LCW<int>{}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
// hack to get column of empty list of list of list
auto const expected_dummy = LCW<T>{{{{1, 2, 3, 4}}}, LCW<T>{}, LCW<T>{}};
auto const expected = cudf::split(expected_dummy, {1})[1];
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
// the result should preserve the full List<List<List<int>>> hierarchy
// even though it is empty past the first level
cudf::lists_column_view lcv(results->view());
EXPECT_EQ(lcv.size(), 2);
EXPECT_EQ(lcv.child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(lcv.child().size(), 0);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().size(), 0);
EXPECT_EQ(
cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().type().id(),
cudf::type_to_id<T>());
EXPECT_EQ(cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().size(),
0);
}
}
TYPED_TEST(SegmentedGatherTest, GatherNulls)
{
using T = TypeParam;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// List<T>
auto const list = LCW<T>{{{1, 2, 3, 4}, valids}, {5}, {{6, 7}, valids}, {{8, 9, 10}, valids}};
{
// Test gathering on lists that contain nulls.
auto const gather_map = LCW<int>{{0, 1}, LCW<int>{}, {1}, {2, 1, 0}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
auto const expected =
LCW<T>{{{1, 2}, valids}, LCW<T>{}, {{7}, valids + 1}, {{10, 9, 8}, valids}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
{
// Test gathering on lists that contain nulls, with out-of-bounds indices.
auto const gather_map = LCW<int>{{10, -10}, LCW<int>{}, {1}, {2, -10, 0}};
auto const results = cudf::lists::segmented_gather(
cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
auto const expected =
LCW<T>{{{0, 0}, nulls_at({0, 1})}, LCW<T>{}, {{7}, valids + 1}, {{10, 0, 8}, null_at(1)}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
}
TYPED_TEST(SegmentedGatherTest, GatherNested)
{
using T = TypeParam;
// List<List<T>>
{
// clang-format off
auto const list = LCW<T>{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {-17, -18}}};
auto const gather_map = LCW<int>{{0, -2, -2}, {1}, {1, 0, -1, -5}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{{{2, 3}, {2, 3}, {2, 3}},
{{9, 10, 11}},
{{17, 18}, {15, 16}, {-17, -18}, {15, 16}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
// List<List<T>>, with out-of-bounds gather indices.
{
// clang-format off
auto const list = LCW<T>{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {-17, -18}}};
auto const gather_map = LCW<int>{{0, 2, -2}, {1}, {1, 0, -1, -6}};
auto const results =
cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
auto const expected = LCW<T>{{{{2, 3}, LCW<T>{}, {2, 3}}, null_at(1)},
{{9, 10, 11}},
{{{17, 18}, {15, 16}, {-17, -18}, LCW<T>{}}, null_at(3)}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
// List<List<List<T>>>
{
// clang-format off
auto const list = LCW<T>{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}},
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{10, 20}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}};
auto const gather_map = LCW<int>{{1}, LCW<int>{}, {0}, {1}, {0, -1, 1}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{{{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
LCW<T>{},
{{LCW<T>{0}}},
{{{0, 1, 3}, {5}}},
{{{10, 20}}, {{40, 50}, {60, 70, 80}}, {LCW<T>{30}}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
// List<List<List<T>>>, with out-of-bounds gather indices.
{
auto const list = LCW<T>{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}},
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{10, 20}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}};
auto const gather_map = LCW<int>{{1}, LCW<int>{}, {0}, {1}, {0, -1, 3, -4}};
auto const results = cudf::lists::segmented_gather(
cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
auto const expected =
LCW<T>{{{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
LCW<T>{},
{{LCW<T>{0}}},
{{{0, 1, 3}, {5}}},
{{{{10, 20}}, {{40, 50}, {60, 70, 80}}, LCW<T>{}, LCW<T>{}}, nulls_at({2, 3})}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
}
TYPED_TEST(SegmentedGatherTest, GatherOutOfOrder)
{
using T = TypeParam;
// List<List<T>>
{
// clang-format off
auto const list = LCW<T>{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
auto const gather_map = LCW<int>{{1, 0}, {1, 2, 0}, {4, 3, 2, 1, 0}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{{{4, 5}, {2, 3}},
{{9, 10, 11}, {12, 13, 14}, {6, 7, 8}},
{{17, 18}, {17, 18}, {17, 18}, {17, 18}, {15, 16}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
// List<List<T>>, with out-of-bounds gather indices.
{
// clang-format off
auto const list = LCW<T>{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
auto const gather_map = LCW<int>{{1, 0}, {3, -1, -4}, {5, 4, 3, 2, 1, 0}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
auto const expected = LCW<T>{{{4, 5}, {2, 3}},
{{LCW<T>{}, {12, 13, 14}, LCW<T>{}}, nulls_at({0, 2})},
{{LCW<T>{}, {17, 18}, {17, 18}, {17, 18}, {17, 18}, {15, 16}}, null_at(0)}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
}
TYPED_TEST(SegmentedGatherTest, GatherNegatives)
{
using T = TypeParam;
// List<List<T>>
{
// clang-format off
auto const list = LCW<T>{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
auto const gather_map = LCW<int>{{-1, 0}, {-2, -1, 0}, {-5, -4, -3, -2, -1, 0}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{{{4, 5}, {2, 3}},
{{9, 10, 11}, {12, 13, 14}, {6, 7, 8}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}, {15, 16}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
// List<List<T>>, with out-of-bounds gather indices.
{
// clang-format off
auto const list = LCW<T>{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
auto const gather_map = LCW<int>{{-1, 0}, {-2, -1, -4}, {-6, -4, -3, -2, -1, 0}};
auto const results =
cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
auto const expected = LCW<T>{{{4, 5}, {2, 3}},
{{{9, 10, 11}, {12, 13, 14}, LCW<T>{}}, null_at(2)},
{{LCW<T>{}, {17, 18}, {17, 18}, {17, 18}, {17, 18}, {15, 16}}, null_at(0)}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
}
TYPED_TEST(SegmentedGatherTest, GatherOnNonCompactedNullLists)
{
using T = TypeParam;
auto constexpr X = -1; // Signifies null value.
// List<T>
auto list = LCW<T>{{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 0}, {}, {1, 2}, {3, 4, 5}}, no_nulls()};
auto const input = list.release();
// Set non-empty list row at index 5 to null.
cudf::detail::set_null_mask(
input->mutable_view().null_mask(), 5, 6, false, cudf::get_default_stream());
auto const gather_map = LCW<int>{{-1, 2, 1, -4}, {0}, {-2, 1}, {0, 2, 1}, {}, {0}, {1, 2}};
auto const expected =
LCW<T>{{{4, 3, 2, 1}, {5}, {6, 7}, {8, 0, 9}, {}, {{X}, all_nulls()}, {4, 5}}, null_at(5)};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{*input},
cudf::lists_column_view{gather_map});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected);
}
TYPED_TEST(SegmentedGatherTest, GatherNestedNulls)
{
using T = TypeParam;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// List<List<T>>
{
// clang-format off
auto const list = LCW<T>{{{{2, 3}, valids}, {4, 5}},
{{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}, valids},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}},
{{{{25, 26}, valids}, {27, 28}, {{29, 30}, valids}, {31, 32}, {33, 34}}, valids}};
auto const gather_map = LCW<int>{{0, 1}, {0, 2}, LCW<int>{}, {0, 1, 4}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{{{{2, 3}, valids}, {4, 5}},
{{{6, 7, 8}, {12, 13, 14}}, no_nulls()},
LCW<T>{},
{{{{25, 26}, valids}, {27, 28}, {33, 34}}, valids}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
// List<List<List<List<T>>>>
{
// clang-format off
auto const list = LCW<T>{{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {{27, 28}, valids}, {{37, 38}, valids}, {47, 48}, {57, 58}}},
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids}}};
auto const gather_map = LCW<int>{{1, 2, 4}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list}, cudf::lists_column_view{gather_map});
auto const expected = LCW<T>{{{{{15, 16}, {{27, 28}, valids}, {{37, 38}, valids}, {47, 48}, {57, 58}}},
{{LCW<T>{0}}},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
// clang-format on
}
}
TYPED_TEST(SegmentedGatherTest, GatherNestedWithEmpties)
{
using T = TypeParam;
auto const list = LCW<T>{{{2, 3}, LCW<T>{}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}, {LCW<T>{}}};
auto const gather_map = LCW<int>{LCW<int>{0}, LCW<int>{0}, LCW<int>{0}};
auto results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
auto const expected =
LCW<T>{{{2, 3}}, {{6, 7, 8}}, {LCW<T>{}}}; // skip one null, gather one null.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
TYPED_TEST(SegmentedGatherTest, GatherSliced)
{
using T = TypeParam;
{
auto const a = LCW<T>{
{{1, 1, 1}, {2, 2}, {3, 3}},
{{4, 4, 4}, {5, 5}, {6, 6}},
{{7, 7, 7}, {8, 8}, {9, 9}},
{{10, 10, 10}, {11, 11}, {12, 12}},
{{20, 20, 20, 20}, {25}},
{{30, 30, 30, 30}, {40}},
{{50, 50, 50, 50}, {6, 13}},
{{70, 70, 70, 70}, {80}},
};
auto const split_a = cudf::split(a, {3});
{
auto const list = LCW<int>{{1, 2}, {0, 2}, {0, 1}};
auto const gather_map = cudf::lists_column_view{list};
auto const result =
cudf::lists::segmented_gather(cudf::lists_column_view{split_a[0]}, gather_map);
auto const expected = LCW<T>{
{{2, 2}, {3, 3}},
{{4, 4, 4}, {6, 6}},
{{7, 7, 7}, {8, 8}},
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const list = LCW<int>{{0, 1}, LCW<int>{}, LCW<int>{}, {0, 1}, LCW<int>{}};
auto const gather_map = cudf::lists_column_view{list};
auto const result =
cudf::lists::segmented_gather(cudf::lists_column_view{split_a[1]}, gather_map);
auto const expected =
LCW<T>{{{10, 10, 10}, {11, 11}}, LCW<T>{}, LCW<T>{}, {{50, 50, 50, 50}, {6, 13}}, LCW<T>{}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// List<List<List<T>>>
{
LCW<T> list{
// slice 0
{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {{27, 28}, valids}, {{37, 38}, valids}, {47, 48}, {57, 58}},
{{11, 12}, {{42, 43, 44}, valids}, {{77, 78}, valids}}},
// slice 1
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{{1, 6}, {60, 70, 80, 100}}, {{10, 11, 13}, {15}}, {{11, 12, 13, 14, 15}}}, valids},
// slice 2
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids},
{{{{10, 20, 30}}, {LCW<T>{30}}, {{{20, 30}, valids}, {62, 72, 82}}}, valids}};
auto sliced = cudf::slice(list, {0, 1, 2, 5, 5, 7});
// gather from slice 0
{
LCW<int> map{{0, 1}};
auto result = cudf::lists::segmented_gather(cudf::lists_column_view{sliced[0]},
cudf::lists_column_view{map});
LCW<T> expected{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result->view());
}
// gather from slice 1
{
LCW<int16_t> map{{0}, {1, 2, 0, 1}, {0, 1, 2}};
auto result = cudf::lists::segmented_gather(cudf::lists_column_view{sliced[1]},
cudf::lists_column_view{map});
LCW<T> expected{
{{LCW<T>{0}}},
{{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}},
{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}}},
{{{{1, 6}, {60, 70, 80, 100}}, {{10, 11, 13}, {15}}, {{11, 12, 13, 14, 15}}}, valids},
};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result->view());
}
// gather from slice 2
{
LCW<int> map{{1, 0, 0, 1, 1, 0}, {1, 0, 0, 1, 1, 2}};
auto result = cudf::lists::segmented_gather(cudf::lists_column_view{sliced[2]},
cudf::lists_column_view{map});
std::vector<bool> expected_valids = {false, true, true, false, false, true};
LCW<T> expected{{{{LCW<T>{30}},
{{{10, 20}, valids}},
{{{10, 20}, valids}},
{LCW<T>{30}},
{LCW<T>{30}},
{{{10, 20}, valids}}},
expected_valids.begin()},
{{{LCW<T>{30}},
{{10, 20, 30}},
{{10, 20, 30}},
{LCW<T>{30}},
{LCW<T>{30}},
{{{20, 30}, valids}, {62, 72, 82}}},
expected_valids.begin()}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result->view());
}
}
}
using SegmentedGatherTestString = SegmentedGatherTest<cudf::string_view>;
TEST_F(SegmentedGatherTestString, StringGather)
{
using T = cudf::string_view;
// List<T>
{
auto const list = LCW<T>{{"a", "b", "c", "d"}, {"1", "22", "333", "4"}, {"x", "y", "z"}};
auto const gather_map = LCW<int8_t>{{0, 1, 3, 2}, {1, 0, 3, 2}, LCW<int8_t>{}};
auto const expected = LCW<T>{{"a", "b", "d", "c"}, {"22", "1", "4", "333"}, LCW<T>{}};
auto const result = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
// List<T>, with out-of-order gather indices.
{
auto const list = LCW<T>{{"a", "b", "c", "d"}, {"1", "22", "333", "4"}, {"x", "y", "z"}};
auto const gather_map = LCW<int8_t>{{0, 1, 3, 4}, {1, -5, 3, 2}, LCW<int8_t>{}};
auto const expected = LCW<T>{{{"a", "b", "d", "c"}, cudf::test::iterators::null_at(3)},
{{"22", "1", "4", "333"}, cudf::test::iterators::null_at(1)},
LCW<T>{}};
auto result = cudf::lists::segmented_gather(
cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
using SegmentedGatherTestFloat = SegmentedGatherTest<float>;
TEST_F(SegmentedGatherTestFloat, GatherMapSliced)
{
using T = float;
// List<T>
{
auto const list = LCW<T>{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}, {11, 12}, {13, 14, 15, 16}};
auto const gather_map = LCW<int>{{3, 2, 1, 0}, {0}, {0, 1}, {0, 2, 1}, {0}, {1}};
// gather_map.offset: 0, 4, 5, 7, 10, 11, 12
auto const expected = LCW<T>{{4, 3, 2, 1}, {5}, {6, 7}, {8, 10, 9}, {11}, {14}};
auto const results = cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{gather_map});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
auto const sliced = cudf::split(list, {1, 4});
auto const split_m = cudf::split(gather_map, {1, 4});
auto const split_e = cudf::split(expected, {1, 4});
auto result0 = cudf::lists::segmented_gather(cudf::lists_column_view{sliced[0]},
cudf::lists_column_view{split_m[0]});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(split_e[0], result0->view());
auto result1 = cudf::lists::segmented_gather(cudf::lists_column_view{sliced[1]},
cudf::lists_column_view{split_m[1]});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(split_e[1], result1->view());
auto result2 = cudf::lists::segmented_gather(cudf::lists_column_view{sliced[2]},
cudf::lists_column_view{split_m[2]});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(split_e[2], result2->view());
}
// List<T>, with out-of-bounds gather indices.
{
auto const list = LCW<T>{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}, {11, 12}, {13, 14, 15, 16}};
auto const gather_map = LCW<int>{{3, -5, 1, 0}, {0}, {0, 1}, {0, 2, 3}, {0}, {1}};
// gather_map.offset: 0, 4, 5, 7, 10, 11, 12
auto const expected =
LCW<T>{{{4, 0, 2, 1}, null_at(1)}, {5}, {6, 7}, {{8, 10, 9}, null_at(2)}, {11}, {14}};
auto results = cudf::lists::segmented_gather(
cudf::lists_column_view{list}, cudf::lists_column_view{gather_map}, NULLIFY);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
auto const sliced = cudf::split(list, {1, 4});
auto const split_m = cudf::split(gather_map, {1, 4});
auto const split_e = cudf::split(expected, {1, 4});
auto const result0 = cudf::lists::segmented_gather(
cudf::lists_column_view{sliced[0]}, cudf::lists_column_view{split_m[0]}, NULLIFY);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(split_e[0], result0->view());
auto const result1 = cudf::lists::segmented_gather(
cudf::lists_column_view{sliced[1]}, cudf::lists_column_view{split_m[1]}, NULLIFY);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(split_e[1], result1->view());
auto const result2 = cudf::lists::segmented_gather(
cudf::lists_column_view{sliced[2]}, cudf::lists_column_view{split_m[2]}, NULLIFY);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(split_e[2], result2->view());
}
}
TEST_F(SegmentedGatherTestFloat, Fails)
{
using T = float;
// List<T>
LCW<T> list{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}};
LCW<int8_t> size_mismatch_map{{3, 2, 1, 0}, {0}, {0, 1}};
cudf::test::fixed_width_column_wrapper<int> nonlist_map0{1, 2, 0, 1};
cudf::test::strings_column_wrapper nonlist_map1{"1", "2", "0", "1"};
LCW<cudf::string_view> nonlist_map2{{"1", "2", "0", "1"}};
// Input must be a list of integer indices. It should fail for integers,
// strings, or lists containing anything other than integers.
EXPECT_THROW(cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{nonlist_map0}),
cudf::logic_error);
EXPECT_THROW(cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{nonlist_map1}),
cudf::logic_error);
EXPECT_THROW(cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{nonlist_map2}),
cudf::logic_error);
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
LCW<int8_t> nulls_map{{{3, 2, 1, 0}, {0}, {0}, {0, 1}}, valids};
// Nulls are not supported in the gather map.
EXPECT_THROW(cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{nulls_map}),
std::invalid_argument);
// Gather map and list column sizes must be the same.
EXPECT_THROW(cudf::lists::segmented_gather(cudf::lists_column_view{list},
cudf::lists_column_view{size_mismatch_map}),
cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/utility_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/copying.hpp>
#include <cudf/strings/detail/utilities.hpp>
#include <cudf/table/table.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/iterator/transform_iterator.h>
#include <string>
template <typename T>
struct EmptyLikeTest : public cudf::test::BaseFixture {};
using numeric_types = cudf::test::NumericTypes;
TYPED_TEST_SUITE(EmptyLikeTest, numeric_types);
TYPED_TEST(EmptyLikeTest, ColumnNumericTests)
{
cudf::size_type size = 10;
cudf::mask_state state = cudf::mask_state::ALL_VALID;
auto input = make_numeric_column(cudf::data_type{cudf::type_to_id<TypeParam>()}, size, state);
auto expected = make_numeric_column(cudf::data_type{cudf::type_to_id<TypeParam>()}, 0);
auto got = cudf::empty_like(input->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected, *got);
}
struct EmptyLikeStringTest : public EmptyLikeTest<std::string> {};
void check_empty_string_columns(cudf::column_view lhs, cudf::column_view rhs)
{
EXPECT_EQ(lhs.type(), rhs.type());
EXPECT_EQ(lhs.size(), 0);
EXPECT_EQ(lhs.null_count(), 0);
EXPECT_EQ(lhs.nullable(), false);
EXPECT_EQ(lhs.has_nulls(), false);
// An empty column is not required to have children
}
TEST_F(EmptyLikeStringTest, ColumnStringTest)
{
std::vector<char const*> h_strings{"the quick brown fox jumps over the lazy dog",
"thé result does not include the value in the sum in",
"",
nullptr,
"absent stop words"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
auto got = cudf::empty_like(strings);
check_empty_string_columns(got->view(), strings);
}
template <typename T>
struct EmptyLikeScalarTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(EmptyLikeScalarTest, cudf::test::FixedWidthTypes);
TYPED_TEST(EmptyLikeScalarTest, FixedWidth)
{
// make a column
auto input = make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 1, rmm::device_buffer{}, 0);
// get a scalar out of it
std::unique_ptr<cudf::scalar> sc = cudf::get_element(*input, 0);
// empty_like(column) -> column
auto expected = cudf::empty_like(*input);
// empty_like(scalar) -> column
auto result = cudf::empty_like(*sc);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *result);
}
struct EmptyLikeScalarStringTest : public EmptyLikeScalarTest<std::string> {};
TEST_F(EmptyLikeScalarStringTest, String)
{
// make a column
cudf::test::strings_column_wrapper input{"abc"};
// get a scalar out of it
std::unique_ptr<cudf::scalar> sc = cudf::get_element(input, 0);
// empty_like(column) -> column
auto expected = cudf::empty_like(input);
// empty_like(scalar) -> column
auto result = cudf::empty_like(*sc);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *result);
}
struct EmptyLikeScalarListTest : public EmptyLikeScalarTest<cudf::list_view> {};
TEST_F(EmptyLikeScalarListTest, List)
{
// make a column
cudf::test::lists_column_wrapper<cudf::string_view> input{{{"abc", "def"}, {"h", "ijk"}},
{{"123", "456"}, {"78"}}};
// get a scalar out of it
std::unique_ptr<cudf::scalar> sc = cudf::get_element(input, 0);
// empty_like(column) -> column
auto expected = cudf::empty_like(input);
// empty_like(scalar) -> column
auto result = cudf::empty_like(*sc);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *result);
}
struct EmptyLikeScalarStructTest : public EmptyLikeScalarTest<cudf::struct_view> {};
TEST_F(EmptyLikeScalarStructTest, Struct)
{
cudf::test::lists_column_wrapper<cudf::string_view> col0{{{"abc", "def"}, {"h", "ijk"}}};
cudf::test::strings_column_wrapper col1{"abc"};
cudf::test::fixed_width_column_wrapper<float> col2{1.0f};
// scalar. TODO: make cudf::get_element() work for struct scalars
cudf::table_view tbl({col0, col1, col2});
cudf::struct_scalar sc(tbl);
// column
cudf::test::structs_column_wrapper input({col0, col1, col2});
// empty_like(column) -> column
auto expected = cudf::empty_like(input);
// empty_like(scalar) -> column
auto result = cudf::empty_like(sc);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *result);
}
std::unique_ptr<cudf::table> create_table(cudf::size_type size, cudf::mask_state state)
{
auto num_column_1 = make_numeric_column(cudf::data_type{cudf::type_id::INT64}, size, state);
auto num_column_2 = make_numeric_column(cudf::data_type{cudf::type_id::INT32}, size, state);
auto num_column_3 = make_numeric_column(cudf::data_type{cudf::type_id::FLOAT64}, size, state);
auto num_column_4 = make_numeric_column(cudf::data_type{cudf::type_id::FLOAT32}, size, state);
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(std::move(num_column_1));
columns.push_back(std::move(num_column_2));
columns.push_back(std::move(num_column_3));
columns.push_back(std::move(num_column_4));
return std::make_unique<cudf::table>(std::move(columns));
}
struct EmptyLikeTableTest : public cudf::test::BaseFixture {};
TEST_F(EmptyLikeTableTest, TableTest)
{
cudf::mask_state state = cudf::mask_state::ALL_VALID;
cudf::size_type size = 10;
auto input = create_table(size, state);
auto expected = create_table(0, cudf::mask_state::ALL_VALID);
auto got = cudf::empty_like(input->view());
CUDF_TEST_EXPECT_TABLES_EQUAL(got->view(), expected->view());
}
template <typename T>
struct AllocateLikeTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(AllocateLikeTest, numeric_types);
TYPED_TEST(AllocateLikeTest, ColumnNumericTestSameSize)
{
// For same size as input
cudf::size_type size = 10;
auto input = make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, size, cudf::mask_state::UNALLOCATED);
auto got = cudf::allocate_like(input->view());
CUDF_TEST_EXPECT_COLUMN_PROPERTIES_EQUAL(*input, *got);
input = make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, size, cudf::mask_state::ALL_VALID);
got = cudf::allocate_like(input->view());
CUDF_TEST_EXPECT_COLUMN_PROPERTIES_EQUAL(*input, *got);
}
TYPED_TEST(AllocateLikeTest, ColumnNumericTestSpecifiedSize)
{
// For different size as input
cudf::size_type size = 10;
cudf::size_type specified_size = 5;
auto state = cudf::mask_state::UNALLOCATED;
auto input = make_numeric_column(cudf::data_type{cudf::type_to_id<TypeParam>()}, size, state);
auto expected =
make_numeric_column(cudf::data_type{cudf::type_to_id<TypeParam>()}, specified_size, state);
auto got = cudf::allocate_like(input->view(), specified_size);
CUDF_TEST_EXPECT_COLUMN_PROPERTIES_EQUAL(*expected, *got);
input = make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, size, cudf::mask_state::ALL_VALID);
got = cudf::allocate_like(input->view(), specified_size);
// Can't use CUDF_TEST_EXPECT_COLUMN_PROPERTIES_EQUAL because the sizes of
// the two columns are different.
EXPECT_EQ(input->type(), got->type());
EXPECT_EQ(specified_size, got->size());
EXPECT_EQ(0, got->null_count());
EXPECT_EQ(input->nullable(), got->nullable());
EXPECT_EQ(input->num_children(), got->num_children());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/detail_gather_tests.cu
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/gather.cuh>
#include <cudf/detail/gather.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/device_uvector.hpp>
#include <thrust/execution_policy.h>
#include <thrust/sequence.h>
template <typename T>
class GatherTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(GatherTest, cudf::test::NumericTypes);
// This test exercises using different iterator types as gather map inputs
// to cudf::detail::gather -- device_uvector and raw pointers.
TYPED_TEST(GatherTest, GatherDetailDeviceVectorTest)
{
constexpr cudf::size_type source_size{1000};
rmm::device_uvector<cudf::size_type> gather_map(source_size, cudf::get_default_stream());
thrust::sequence(
rmm::exec_policy_nosync(cudf::get_default_stream()), gather_map.begin(), gather_map.end());
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<TypeParam> source_column(data, data + source_size);
cudf::table_view source_table({source_column});
// test with device vector iterators
{
std::unique_ptr<cudf::table> result =
cudf::detail::gather(source_table,
gather_map.begin(),
gather_map.end(),
cudf::out_of_bounds_policy::DONT_CHECK,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(source_table.column(i), result->view().column(i));
}
CUDF_TEST_EXPECT_TABLES_EQUAL(source_table, result->view());
}
// test with raw pointers
{
std::unique_ptr<cudf::table> result =
cudf::detail::gather(source_table,
gather_map.begin(),
gather_map.data() + gather_map.size(),
cudf::out_of_bounds_policy::DONT_CHECK,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(source_table.column(i), result->view().column(i));
}
CUDF_TEST_EXPECT_TABLES_EQUAL(source_table, result->view());
}
}
TYPED_TEST(GatherTest, GatherDetailInvalidIndexTest)
{
constexpr cudf::size_type source_size{1000};
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<TypeParam> source_column(data, data + source_size);
auto gather_map_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2) ? -1 : i; });
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(gather_map_data,
gather_map_data + (source_size * 2));
cudf::table_view source_table({source_column});
std::unique_ptr<cudf::table> result =
cudf::detail::gather(source_table,
gather_map,
cudf::out_of_bounds_policy::NULLIFY,
cudf::detail::negative_index_policy::NOT_ALLOWED,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
auto expect_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2) ? 0 : i; });
auto expect_valid = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return (i % 2) || (i >= source_size) ? 0 : 1; });
cudf::test::fixed_width_column_wrapper<TypeParam> expect_column(
expect_data, expect_data + (source_size * 2), expect_valid);
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect_column, result->view().column(i));
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/scatter_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/stream_compaction.hpp>
class ScatterUntypedTests : public cudf::test::BaseFixture {};
// Throw logic error if scatter map is longer than source
TEST_F(ScatterUntypedTests, ScatterMapTooLong)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1, 0, 2, 4, 6});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
EXPECT_THROW(cudf::scatter(source_table, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if scatter map has nulls
TEST_F(ScatterUntypedTests, ScatterMapNulls)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1}, {0, 1, 1, 1});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
EXPECT_THROW(cudf::scatter(source_table, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if scatter map has nulls
TEST_F(ScatterUntypedTests, ScatterScalarMapNulls)
{
auto const source = cudf::scalar_type_t<int32_t>{100};
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1}, {0, 1, 1, 1});
auto const target_table = cudf::table_view({target});
EXPECT_THROW(cudf::scatter(source_vector, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if source and target have different number of columns
TEST_F(ScatterUntypedTests, ScatterColumnNumberMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
auto const source_table = cudf::table_view({source});
auto const target_table = cudf::table_view({target, target});
EXPECT_THROW(cudf::scatter(source_table, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if number of scalars doesn't match number of columns
TEST_F(ScatterUntypedTests, ScatterScalarColumnNumberMismatch)
{
auto const source = cudf::scalar_type_t<int32_t>(100);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
auto const target_table = cudf::table_view({target, target});
EXPECT_THROW(cudf::scatter(source_vector, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if source and target have different data types
TEST_F(ScatterUntypedTests, ScatterDataTypeMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<float> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
auto const source_table = cudf::table_view({source});
auto const target_table = cudf::table_view({target});
EXPECT_THROW(cudf::scatter(source_table, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if source and target have different data types
TEST_F(ScatterUntypedTests, ScatterScalarDataTypeMismatch)
{
auto const source = cudf::scalar_type_t<int32_t>(100);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<float> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
auto const target_table = cudf::table_view({target});
EXPECT_THROW(cudf::scatter(source_vector, scatter_map, target_table), cudf::logic_error);
}
template <typename T>
class ScatterIndexTypeTests : public cudf::test::BaseFixture {};
using IndexTypes = cudf::test::Types<int8_t, int16_t, int32_t, int64_t>;
TYPED_TEST_SUITE(ScatterIndexTypeTests, IndexTypes);
// Validate that each of the index types work
TYPED_TEST(ScatterIndexTypeTests, ScatterIndexType)
{
cudf::test::fixed_width_column_wrapper<TypeParam> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<TypeParam> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<TypeParam> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam> expected({10, 3, 30, 2, 50, 1, 70, 4});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
// Validate that each of the index types work
TYPED_TEST(ScatterIndexTypeTests, ScatterScalarIndexType)
{
auto const source = cudf::scalar_type_t<TypeParam>(100, true);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<TypeParam> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<TypeParam> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam> expected({10, 100, 30, 100, 50, 100, 70, 100});
auto const target_table = cudf::table_view({target});
auto const expected_table = cudf::table_view({expected});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
template <typename T>
class ScatterInvalidIndexTypeTests : public cudf::test::BaseFixture {};
// NOTE string types hit static assert in fixed_width_column_wrapper
using InvalidIndexTypes = cudf::test::Concat<cudf::test::Types<float, double, bool>,
cudf::test::ChronoTypes,
cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(ScatterInvalidIndexTypeTests, InvalidIndexTypes);
// Throw logic error if scatter map column has invalid data type
TYPED_TEST(ScatterInvalidIndexTypeTests, ScatterInvalidIndexType)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> scatter_map({-3, 3, 1, -1});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
EXPECT_THROW(cudf::scatter(source_table, scatter_map, target_table), cudf::logic_error);
}
// Throw logic error if scatter map column has invalid data type
TYPED_TEST(ScatterInvalidIndexTypeTests, ScatterScalarInvalidIndexType)
{
auto const source = cudf::scalar_type_t<int32_t>(100, true);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<int32_t> target({10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> scatter_map({-3, 3, 1, -1});
auto const target_table = cudf::table_view({target});
EXPECT_THROW(cudf::scatter(source_vector, scatter_map, target_table), cudf::logic_error);
}
template <typename T>
class ScatterDataTypeTests : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ScatterDataTypeTests, cudf::test::FixedWidthTypes);
// Empty scatter map returns copy of input
TYPED_TEST(ScatterDataTypeTests, EmptyScatterMap)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
// Expect a copy of the input table
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), target_table);
}
// Empty scatter map returns copy of input
TYPED_TEST(ScatterDataTypeTests, EmptyScalarScatterMap)
{
auto const source =
cudf::scalar_type_t<TypeParam>(cudf::test::make_type_param_scalar<TypeParam>(100), true);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({});
auto const target_table = cudf::table_view({target});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
// Expect a copy of the input table
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), target_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterNoNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> source({1, 2, 3, 4, 5, 6});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected({10, 3, 30, 2, 50, 1, 70, 4});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterBothNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> source({2, 4, 6, 8}, {1, 1, 0, 0});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80}, {0, 0, 0, 0, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({1, 3, -3, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected({10, 2, 30, 4, 50, 6, 70, 8},
{0, 1, 0, 1, 1, 0, 1, 0});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterSourceNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> source({2, 4, 6, 8}, {1, 1, 0, 0});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({1, 3, -3, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected({10, 2, 30, 4, 50, 6, 70, 8},
{1, 1, 1, 1, 1, 0, 1, 0});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterTargetNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> source({2, 4, 6, 8});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80}, {0, 0, 0, 0, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({1, 3, -3, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected({10, 2, 30, 4, 50, 6, 70, 8},
{0, 1, 0, 1, 1, 1, 1, 1});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterScalarNoNulls)
{
using Type = cudf::device_storage_type_t<TypeParam>;
auto const source =
cudf::scalar_type_t<TypeParam>(cudf::test::make_type_param_scalar<Type>(100), true);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected(
{10, 100, 30, 100, 50, 100, 70, 100});
auto const target_table = cudf::table_view({target});
auto const expected_table = cudf::table_view({expected});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterScalarTargetNulls)
{
using Type = cudf::device_storage_type_t<TypeParam>;
auto const source =
cudf::scalar_type_t<TypeParam>(cudf::test::make_type_param_scalar<Type>(100), true);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80}, {0, 0, 0, 0, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected(
{10, 100, 30, 100, 50, 100, 70, 100}, {0, 1, 0, 1, 1, 1, 1, 1});
auto const target_table = cudf::table_view({target});
auto const expected_table = cudf::table_view({expected});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterScalarSourceNulls)
{
using Type = cudf::device_storage_type_t<TypeParam>;
auto const source =
cudf::scalar_type_t<TypeParam>(cudf::test::make_type_param_scalar<Type>(100), false);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected(
{10, 100, 30, 100, 50, 100, 70, 100}, {1, 0, 1, 0, 1, 0, 1, 0});
auto const target_table = cudf::table_view({target});
auto const expected_table = cudf::table_view({expected});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterScalarBothNulls)
{
using Type = cudf::device_storage_type_t<TypeParam>;
auto const source =
cudf::scalar_type_t<TypeParam>(cudf::test::make_type_param_scalar<Type>(100), false);
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> target(
{10, 20, 30, 40, 50, 60, 70, 80}, {0, 0, 0, 0, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-3, 3, 1, -1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected(
{10, 100, 30, 100, 50, 100, 70, 100}, {0, 0, 0, 0, 1, 0, 1, 0});
auto const target_table = cudf::table_view({target});
auto const expected_table = cudf::table_view({expected});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TYPED_TEST(ScatterDataTypeTests, ScatterSourceNullsLarge)
{
constexpr cudf::size_type N{513};
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> source({0, 0, 0, 0}, {0, 0, 0, 0});
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({0, 1, 2, 3});
auto target_data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(target_data)::value_type>
target(target_data, target_data + N);
auto expect_data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto expect_valid =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i > 3; });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(expect_data)::value_type>
expected(expect_data, expect_data + N, expect_valid);
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
class ScatterStringsTests : public cudf::test::BaseFixture {};
TEST_F(ScatterStringsTests, ScatterNoNulls)
{
std::vector<char const*> h_source{"dog", "the", "jumps", "brown", "the"};
cudf::test::strings_column_wrapper source(h_source.begin(), h_source.end());
std::vector<char const*> h_target{
"a", "quick", "fire", "fox", "browses", "over", "a", "lazy", "web"};
cudf::test::strings_column_wrapper target(h_target.begin(), h_target.end());
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({-1, -3, -5, 2, 0});
std::vector<char const*> h_expected{
"the", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"};
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end());
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TEST_F(ScatterStringsTests, ScatterScalarNoNulls)
{
auto const source = cudf::string_scalar("buffalo");
std::reference_wrapper<const cudf::scalar> slr_ref{source};
std::vector<std::reference_wrapper<const cudf::scalar>> source_vector{slr_ref};
std::vector<char const*> h_target{
"Buffalo", "bison", "Buffalo", "bison", "bully", "bully", "Buffalo", "bison"};
cudf::test::strings_column_wrapper target(h_target.begin(), h_target.end());
cudf::test::fixed_width_column_wrapper<int32_t> scatter_map({1, 3, -4, -3, -1});
std::vector<char const*> h_expected{
"Buffalo", "buffalo", "Buffalo", "buffalo", "buffalo", "buffalo", "Buffalo", "buffalo"};
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end());
auto const target_table = cudf::table_view({target});
auto const expected_table = cudf::table_view({expected});
auto const result = cudf::scatter(source_vector, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), expected_table);
}
TEST_F(ScatterStringsTests, EmptyStrings)
{
cudf::test::strings_column_wrapper input{"", "", ""};
cudf::table_view t({input});
// Test for issue 10717: all-empty-string column scatter
auto map = cudf::test::fixed_width_column_wrapper<int32_t>({0});
auto result = cudf::scatter(t, map, t);
CUDF_TEST_EXPECT_TABLES_EQUAL(result->view(), t);
}
template <typename T>
class BooleanMaskScatter : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(BooleanMaskScatter, cudf::test::FixedWidthTypes);
TYPED_TEST(BooleanMaskScatter, WithNoNullElementsInTarget)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> source({1, 5, 6, 8, 9});
cudf::test::fixed_width_column_wrapper<T, int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true, false});
cudf::test::fixed_width_column_wrapper<T, int32_t> expected({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
auto source_table = cudf::table_view({source});
auto target_table = cudf::table_view({target});
auto expected_table = cudf::table_view({expected});
auto got = cudf::boolean_mask_scatter(source_table, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
TYPED_TEST(BooleanMaskScatter, WithNull)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> source_col1({1, 5, 6, 8, 9}, {1, 0, 1, 0, 1});
cudf::test::strings_column_wrapper source_col2({"This", "is", "cudf", "test", "column"},
{1, 0, 0, 1, 0});
cudf::test::fixed_width_column_wrapper<T, int32_t> target_col1({2, 2, 3, 4, 11, 12, 7, 7, 10, 10},
{1, 1, 0, 1, 1, 1, 1, 1, 1, 0});
cudf::test::strings_column_wrapper target_col2(
{"a", "bc", "cd", "ef", "gh", "ij", "jk", "lm", "no", "pq"}, {1, 1, 0, 1, 1, 1, 1, 1, 1, 0});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true, false});
cudf::test::fixed_width_column_wrapper<T, int32_t> expected_col1({1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
{1, 1, 0, 1, 0, 1, 1, 0, 1, 0});
cudf::test::strings_column_wrapper expected_col2(
{"This", "bc", "cd", "ef", "is", "cudf", "jk", "test", "column", "pq"},
{1, 1, 0, 1, 0, 0, 1, 1, 0, 0});
auto source_table = cudf::table_view({source_col1, source_col2});
auto target_table = cudf::table_view({target_col1, target_col2});
auto expected_table = cudf::table_view({expected_col1, expected_col2});
auto got = cudf::boolean_mask_scatter(source_table, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
class BooleanMaskScatterString : public cudf::test::BaseFixture {};
TEST_F(BooleanMaskScatterString, NoNUll)
{
cudf::test::strings_column_wrapper source({"This", "cudf"});
cudf::test::strings_column_wrapper target({"is", "is", "a", "udf", "api"});
cudf::test::fixed_width_column_wrapper<bool> mask({true, false, false, true, false});
cudf::test::strings_column_wrapper expected({"This", "is", "a", "cudf", "api"});
auto source_table = cudf::table_view({source});
auto target_table = cudf::table_view({target});
auto expected_table = cudf::table_view({expected});
auto got = cudf::boolean_mask_scatter(source_table, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
TEST_F(BooleanMaskScatterString, WithNUll)
{
cudf::test::strings_column_wrapper source({"This", "cudf"}, {0, 1});
cudf::test::strings_column_wrapper target({"is", "is", "a", "udf", "api"}, {1, 0, 0, 1, 1});
cudf::test::fixed_width_column_wrapper<bool> mask({true, false, false, true, false});
cudf::test::strings_column_wrapper expected({"This", "is", "a", "cudf", "api"}, {0, 0, 0, 1, 1});
auto source_table = cudf::table_view({source});
auto target_table = cudf::table_view({target});
auto expected_table = cudf::table_view({expected});
auto got = cudf::boolean_mask_scatter(source_table, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
class BooleanMaskScatterFails : public cudf::test::BaseFixture {};
TEST_F(BooleanMaskScatterFails, SourceAndTargetTypeMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 5, 6, 8, 9});
cudf::test::fixed_width_column_wrapper<int64_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true, false});
auto source_table = cudf::table_view({source});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(source_table, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterFails, BooleanMaskTypeMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 5, 6, 8, 9});
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<int8_t> mask(
{true, false, false, false, true, true, false, true, true, false});
auto source_table = cudf::table_view({source});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(source_table, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterFails, BooleanMaskTargetSizeMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 5, 6, 8, 9});
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true});
auto source_table = cudf::table_view({source});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(source_table, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterFails, NumberOfColumnMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 5, 6, 8, 9});
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true});
auto source_table = cudf::table_view({source, source});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(source_table, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterFails, MoreTruesInMaskThanSourceSize)
{
cudf::test::fixed_width_column_wrapper<int32_t> source({1, 5, 6, 8, 9});
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, true, false, true, true, false, true, true});
auto source_table = cudf::table_view({source, source});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(source_table, target_table, mask), cudf::logic_error);
}
template <typename T>
struct BooleanMaskScalarScatter : public cudf::test::BaseFixture {
std::unique_ptr<cudf::scalar> form_scalar(T value, bool validity = true)
{
using ScalarType = cudf::scalar_type_t<T>;
std::unique_ptr<cudf::scalar> scalar{nullptr};
if (cudf::is_numeric<T>()) {
scalar = cudf::make_numeric_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<T>()}));
} else if (cudf::is_timestamp<T>()) {
scalar = cudf::make_timestamp_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<T>()}));
} else if (cudf::is_duration<T>()) {
scalar = cudf::make_duration_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<T>()}));
}
static_cast<ScalarType*>(scalar.get())->set_value(value);
static_cast<ScalarType*>(scalar.get())->set_valid_async(validity);
return scalar;
}
};
TYPED_TEST_SUITE(BooleanMaskScalarScatter, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(BooleanMaskScalarScatter, WithNoNullElementsInTarget)
{
using T = TypeParam;
T source = cudf::test::make_type_param_scalar<T>(11);
bool validity = true;
auto scalar = this->form_scalar(source, validity);
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
cudf::test::fixed_width_column_wrapper<T, int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true, false});
cudf::test::fixed_width_column_wrapper<T, int32_t> expected({11, 2, 3, 4, 11, 11, 7, 11, 11, 10});
auto target_table = cudf::table_view({target});
auto expected_table = cudf::table_view({expected});
auto got = cudf::boolean_mask_scatter(scalar_vect, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
TYPED_TEST(BooleanMaskScalarScatter, WithNull)
{
using T = TypeParam;
T source = cudf::test::make_type_param_scalar<T>(11);
bool validity = false;
auto scalar_1 = this->form_scalar(source, validity);
auto scalar_2 = cudf::make_string_scalar("cudf");
scalar_2->set_valid_async(true);
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar_1);
scalar_vect.push_back(*scalar_2);
cudf::test::fixed_width_column_wrapper<T, int32_t> target_col1({2, 2, 3, 4, 11, 12, 7, 7, 10, 10},
{1, 1, 0, 1, 1, 1, 1, 1, 1, 0});
cudf::test::strings_column_wrapper target_col2(
{"a", "bc", "cd", "ef", "gh", "ij", "jk", "lm", "no", "pq"}, {1, 1, 0, 1, 1, 1, 1, 1, 1, 0});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true, false});
cudf::test::fixed_width_column_wrapper<T, int32_t> expected_col1(
{11, 2, 3, 4, 11, 11, 7, 11, 11, 10}, {0, 1, 0, 1, 0, 0, 1, 0, 0, 0});
cudf::test::strings_column_wrapper expected_col2(
{"cudf", "bc", "cd", "ef", "cudf", "cudf", "jk", "cudf", "cudf", "pq"},
{1, 1, 0, 1, 1, 1, 1, 1, 1, 0});
auto target_table = cudf::table_view({target_col1, target_col2});
auto expected_table = cudf::table_view({expected_col1, expected_col2});
auto got = cudf::boolean_mask_scatter(scalar_vect, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
class BooleanMaskScatterScalarString : public cudf::test::BaseFixture {};
TEST_F(BooleanMaskScatterScalarString, NoNUll)
{
auto scalar = cudf::make_string_scalar("cudf");
scalar->set_valid_async(true);
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
cudf::test::strings_column_wrapper target({"is", "is", "a", "udf", "api"});
cudf::test::fixed_width_column_wrapper<bool> mask({true, false, false, true, false});
cudf::test::strings_column_wrapper expected({"cudf", "is", "a", "cudf", "api"});
auto target_table = cudf::table_view({target});
auto expected_table = cudf::table_view({expected});
auto got = cudf::boolean_mask_scatter(scalar_vect, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
TEST_F(BooleanMaskScatterScalarString, WithNUll)
{
auto scalar = cudf::make_string_scalar("cudf");
scalar->set_valid_async(true);
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
cudf::test::strings_column_wrapper target({"is", "is", "a", "udf", "api"}, {1, 0, 0, 1, 1});
cudf::test::fixed_width_column_wrapper<bool> mask({true, false, true, true, false});
cudf::test::strings_column_wrapper expected({"cudf", "is", "cudf", "cudf", "api"},
{1, 0, 1, 1, 1});
auto target_table = cudf::table_view({target});
auto expected_table = cudf::table_view({expected});
auto got = cudf::boolean_mask_scatter(scalar_vect, target_table, mask);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, got->view());
}
class BooleanMaskScatterScalarFails : public cudf::test::BaseFixture {};
TEST_F(BooleanMaskScatterScalarFails, SourceAndTargetTypeMismatch)
{
auto scalar =
cudf::make_numeric_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<int32_t>()}));
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
cudf::test::fixed_width_column_wrapper<int64_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true, false});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(scalar_vect, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterScalarFails, BooleanMaskTypeMismatch)
{
auto scalar =
cudf::make_numeric_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<int32_t>()}));
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<int8_t> mask(
{true, false, false, false, true, true, false, true, true, false});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(scalar_vect, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterScalarFails, BooleanMaskTargetSizeMismatch)
{
auto scalar =
cudf::make_numeric_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<int32_t>()}));
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(scalar_vect, target_table, mask), cudf::logic_error);
}
TEST_F(BooleanMaskScatterScalarFails, NumberOfColumnAndScalarMismatch)
{
auto scalar =
cudf::make_numeric_scalar(cudf::data_type(cudf::data_type{cudf::type_to_id<int32_t>()}));
std::vector<std::reference_wrapper<const cudf::scalar>> scalar_vect;
scalar_vect.push_back(*scalar);
scalar_vect.push_back(*scalar);
cudf::test::fixed_width_column_wrapper<int32_t> target({2, 2, 3, 4, 11, 12, 7, 7, 10, 10});
cudf::test::fixed_width_column_wrapper<bool> mask(
{true, false, false, false, true, true, false, true, true});
auto target_table = cudf::table_view({target});
EXPECT_THROW(cudf::boolean_mask_scatter(scalar_vect, target_table, mask), cudf::logic_error);
}
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
template <typename T>
using wrapper = cudf::test::fixed_width_column_wrapper<T>;
TYPED_TEST_SUITE(FixedPointTestAllReps, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTestAllReps, FixedPointScatter)
{
using namespace numeric;
using decimalXX = TypeParam;
auto const ONE = decimalXX{1, scale_type{0}};
auto const TWO = decimalXX{2, scale_type{0}};
auto const THREE = decimalXX{3, scale_type{0}};
auto const FOUR = decimalXX{4, scale_type{0}};
auto const FIVE = decimalXX{5, scale_type{0}};
auto const source = wrapper<decimalXX>({ONE, TWO, THREE, FOUR, FIVE});
auto const target = wrapper<decimalXX>({ONE, TWO, THREE, FOUR, FIVE, FOUR, THREE, TWO, ONE});
auto const scatter_map = wrapper<int32_t>({1, 2, -1, -3, -4});
auto const expected = wrapper<decimalXX>({ONE, ONE, TWO, FOUR, FIVE, FIVE, FOUR, TWO, THREE});
auto const source_table = cudf::table_view({source, source});
auto const target_table = cudf::table_view({target, target});
auto const expected_table = cudf::table_view({expected, expected});
auto const result = cudf::scatter(source_table, scatter_map, target_table);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected_table, result->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/slice_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <cudf/wrappers/timestamps.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <tests/copying/slice_tests.cuh>
#include <string>
#include <vector>
template <typename T>
struct SliceTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(SliceTest, cudf::test::NumericTypes);
TYPED_TEST(SliceTest, NumericColumnsWithNulls)
{
using T = TypeParam;
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<T> col = create_fixed_columns<T>(start, size, valids);
std::vector<cudf::size_type> indices{1, 3, 2, 2, 5, 9};
std::vector<cudf::test::fixed_width_column_wrapper<T>> expected =
create_expected_columns<T>(indices, true);
std::vector<cudf::column_view> result = cudf::slice(col, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], result[index]);
}
}
TYPED_TEST(SliceTest, NumericColumnsWithNullsAsColumn)
{
using T = TypeParam;
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<T> input = create_fixed_columns<T>(start, size, valids);
std::vector<cudf::size_type> indices{1, 3, 2, 2, 5, 9};
std::vector<cudf::test::fixed_width_column_wrapper<T>> expected =
create_expected_columns<T>(indices, true);
std::vector<cudf::column_view> result = cudf::slice(input, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
auto col = cudf::column(result[index]);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], col);
}
}
struct SliceStringTest : public SliceTest<std::string> {};
TEST_F(SliceStringTest, StringWithNulls)
{
std::vector<std::string> strings{
"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"};
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
cudf::test::strings_column_wrapper s(strings.begin(), strings.end(), valids);
std::vector<cudf::size_type> indices{1, 3, 2, 4, 1, 9};
std::vector<cudf::test::strings_column_wrapper> expected =
create_expected_string_columns(strings, indices, true);
std::vector<cudf::column_view> result = cudf::slice(s, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], result[index]);
}
}
TEST_F(SliceStringTest, StringWithNullsAsColumn)
{
std::vector<std::string> strings{
"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"};
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
cudf::test::strings_column_wrapper s(strings.begin(), strings.end(), valids);
std::vector<cudf::size_type> indices{1, 3, 2, 4, 1, 9};
std::vector<cudf::test::strings_column_wrapper> expected =
create_expected_string_columns(strings, indices, true);
std::vector<cudf::column_view> result = cudf::slice(s, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
// this materializes a column to test slicing + materialization
auto result_col = cudf::column(result[index]);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], result_col);
}
}
struct SliceListTest : public SliceTest<int> {};
TEST_F(SliceListTest, Lists)
{
using LCW = cudf::test::lists_column_wrapper<int>;
{
cudf::test::lists_column_wrapper<int> list{{1, 2, 3},
{4, 5},
{6},
{7, 8},
{9, 10, 11},
LCW{},
LCW{},
{-1, -2, -3, -4, -5},
{-10},
{-100, -200}};
std::vector<cudf::size_type> indices{1, 3, 2, 4, 1, 9};
std::vector<cudf::test::lists_column_wrapper<int>> expected;
expected.push_back(LCW{{4, 5}, {6}});
expected.push_back(LCW{{6}, {7, 8}});
expected.push_back(
LCW{{4, 5}, {6}, {7, 8}, {9, 10, 11}, LCW{}, LCW{}, {-1, -2, -3, -4, -5}, {-10}});
std::vector<cudf::column_view> result = cudf::slice(list, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected[index], result[index]);
}
}
{
cudf::test::lists_column_wrapper<int> list{{{1, 2, 3}, {4, 5}},
{LCW{}, LCW{}, {7, 8}, LCW{}},
{{{6}}},
{{7, 8}, {9, 10, 11}, LCW{}},
{LCW{}, {-1, -2, -3, -4, -5}},
{LCW{}},
{{-10}, {-100, -200}}};
std::vector<cudf::size_type> indices{1, 3, 3, 6};
std::vector<cudf::test::lists_column_wrapper<int>> expected;
expected.push_back(LCW{{LCW{}, LCW{}, {7, 8}, LCW{}}, {{{6}}}});
expected.push_back(LCW{{{7, 8}, {9, 10, 11}, LCW{}}, {LCW{}, {-1, -2, -3, -4, -5}}, {LCW{}}});
std::vector<cudf::column_view> result = cudf::slice(list, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected[index], result[index]);
}
}
}
TEST_F(SliceListTest, ListsWithNulls)
{
using LCW = cudf::test::lists_column_wrapper<int>;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
{
cudf::test::lists_column_wrapper<int> list{{1, 2, 3},
{4, 5},
{6},
{{7, 8}, valids},
{9, 10, 11},
LCW{},
LCW{},
{{-1, -2, -3, -4, -5}, valids},
{-10},
{{-100, -200}, valids}};
std::vector<cudf::size_type> indices{1, 3, 2, 4, 1, 9};
std::vector<cudf::test::lists_column_wrapper<int>> expected;
expected.push_back(LCW{{4, 5}, {6}});
expected.push_back(LCW{{6}, {{7, 8}, valids}});
expected.push_back(LCW{{4, 5},
{6},
{{7, 8}, valids},
{9, 10, 11},
LCW{},
LCW{},
{{-1, -2, -3, -4, -5}, valids},
{-10}});
std::vector<cudf::column_view> result = cudf::slice(list, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected[index], result[index]);
}
}
{
cudf::test::lists_column_wrapper<int> list{{{{1, 2, 3}, valids}, {4, 5}},
{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids},
{{{6}}},
{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids},
{{LCW{}, {-1, -2, -3, -4, -5}}, valids},
{LCW{}},
{{-10}, {-100, -200}}};
std::vector<cudf::size_type> indices{1, 3, 3, 6};
std::vector<cudf::test::lists_column_wrapper<int>> expected;
expected.push_back(LCW{{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids}, {{{6}}}});
expected.push_back(LCW{{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids},
{{LCW{}, {-1, -2, -3, -4, -5}}, valids},
{LCW{}}});
std::vector<cudf::column_view> result = cudf::slice(list, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected[index], result[index]);
}
}
}
struct SliceCornerCases : public SliceTest<int8_t> {};
TEST_F(SliceCornerCases, EmptyColumn)
{
cudf::column col{};
std::vector<cudf::size_type> indices{0, 0, 0, 0, 0, 0};
std::vector<cudf::column_view> result = cudf::slice(col.view(), indices);
unsigned long expected = 3;
EXPECT_EQ(expected, result.size());
auto type_match_count = std::count_if(result.cbegin(), result.cend(), [](auto const& col) {
return col.type().id() == cudf::type_id::EMPTY;
});
EXPECT_EQ(static_cast<std::size_t>(type_match_count), expected);
}
TEST_F(SliceCornerCases, EmptyIndices)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> indices{};
std::vector<cudf::column_view> result = cudf::slice(col, indices);
unsigned long expected = 0;
EXPECT_EQ(expected, result.size());
}
TEST_F(SliceCornerCases, InvalidSetOfIndices)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> indices{11, 12};
EXPECT_THROW(cudf::slice(col, indices), cudf::logic_error);
}
TEST_F(SliceCornerCases, ImproperRange)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> indices{5, 4};
EXPECT_THROW(cudf::slice(col, indices), cudf::logic_error);
}
TEST_F(SliceCornerCases, NegativeOffset)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> indices{-1, 4};
EXPECT_THROW(cudf::slice(col, indices), cudf::logic_error);
}
template <typename T>
struct SliceTableTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(SliceTableTest, cudf::test::NumericTypes);
TYPED_TEST(SliceTableTest, NumericColumnsWithNulls)
{
using T = TypeParam;
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<T>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> indices{1, 3, 2, 2, 5, 9};
std::vector<cudf::table> expected = create_expected_tables<T>(num_cols, indices, true);
std::vector<cudf::table_view> result = cudf::slice(src_table, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected[index], result[index]);
}
}
struct SliceStringTableTest : public SliceTableTest<std::string> {};
TEST_F(SliceStringTableTest, StringWithNulls)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<std::string> strings[2] = {
{"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"},
{"", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}};
cudf::test::strings_column_wrapper sw[2] = {{strings[0].begin(), strings[0].end(), valids},
{strings[1].begin(), strings[1].end(), valids}};
std::vector<std::unique_ptr<cudf::column>> scols;
scols.push_back(sw[0].release());
scols.push_back(sw[1].release());
cudf::table src_table(std::move(scols));
std::vector<cudf::size_type> indices{1, 3, 2, 4, 1, 9};
std::vector<cudf::table> expected = create_expected_string_tables(strings, indices, true);
std::vector<cudf::table_view> result = cudf::slice(src_table, indices);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_TABLE_PROPERTIES_EQUAL(expected[index], result[index]);
}
}
struct SliceTableCornerCases : public SliceTableTest<int8_t> {};
TEST_F(SliceTableCornerCases, EmptyTable)
{
std::vector<cudf::size_type> indices{1, 3, 2, 4, 5, 9};
cudf::table src_table{};
std::vector<cudf::table_view> result = cudf::slice(src_table.view(), indices);
unsigned long expected = 3;
EXPECT_EQ(expected, result.size());
}
TEST_F(SliceTableCornerCases, EmptyIndices)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> indices{};
std::vector<cudf::table_view> result = cudf::slice(src_table, indices);
unsigned long expected = 0;
EXPECT_EQ(expected, result.size());
}
TEST_F(SliceTableCornerCases, InvalidSetOfIndices)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> indices{11, 12};
EXPECT_THROW(cudf::slice(src_table, indices), cudf::logic_error);
}
TEST_F(SliceTableCornerCases, ImproperRange)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> indices{5, 4};
EXPECT_THROW(cudf::slice(src_table, indices), cudf::logic_error);
}
TEST_F(SliceTableCornerCases, NegativeOffset)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> indices{-1, 4};
EXPECT_THROW(cudf::slice(src_table, indices), cudf::logic_error);
}
TEST_F(SliceTableCornerCases, MiscOffset)
{
cudf::test::fixed_width_column_wrapper<int32_t> col2{
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}};
cudf::test::fixed_width_column_wrapper<int32_t> col3{
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}};
std::vector<cudf::size_type> indices{19, 38};
std::vector<cudf::column_view> result = cudf::slice(col2, indices);
cudf::column result_column(result[0]);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(col3, result_column);
}
TEST_F(SliceTableCornerCases, PreSlicedInputs)
{
{
using LCW = cudf::test::lists_column_wrapper<float>;
cudf::test::fixed_width_column_wrapper<int> a{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 0, 1, 1, 1, 0, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<int> b{{0, -1, -2, -3, -4, -5, -6, -7, -8, -9},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
cudf::test::strings_column_wrapper c{{"aa", "b", "", "ccc", "ddd", "e", "ff", "", "", "gggg"},
{0, 0, 1, 1, 0, 0, 1, 1, 1, 0}};
std::vector<bool> list_validity{1, 0, 1, 0, 1, 1, 0, 0, 1, 1};
cudf::test::lists_column_wrapper<float> d{
{{0, 1}, {2}, {3, 4, 5}, {6}, {7, 7}, {8, 9}, {10, 11}, {12, 13}, {}, {14, 15, 16}},
list_validity.begin()};
cudf::table_view t({a, b, c, d});
auto pre_sliced = cudf::slice(t, {0, 4, 4, 10});
auto result = cudf::slice(pre_sliced[1], {0, 1, 1, 6});
cudf::test::fixed_width_column_wrapper<int> e0_a({4}, {1});
cudf::test::fixed_width_column_wrapper<int> e0_b({-4}, {0});
cudf::test::strings_column_wrapper e0_c({""}, {0});
std::vector<bool> e0_list_validity{1};
cudf::test::lists_column_wrapper<float> e0_d({LCW{7, 7}}, e0_list_validity.begin());
cudf::table_view expected0({e0_a, e0_b, e0_c, e0_d});
CUDF_TEST_EXPECT_TABLES_EQUAL(result[0], expected0);
cudf::test::fixed_width_column_wrapper<int> e1_a{{5, 6, 7, 8, 9}, {1, 0, 0, 1, 0}};
cudf::test::fixed_width_column_wrapper<int> e1_b{{-5, -6, -7, -8, -9}, {0, 0, 0, 0, 0}};
cudf::test::strings_column_wrapper e1_c{{"e", "ff", "", "", "gggg"}, {0, 1, 1, 1, 0}};
std::vector<bool> e1_list_validity{1, 0, 0, 1, 1};
cudf::test::lists_column_wrapper<float> e1_d{{{8, 9}, {10, 11}, {12, 13}, {}, {14, 15, 16}},
e1_list_validity.begin()};
cudf::table_view expected1({e1_a, e1_b, e1_c, e1_d});
CUDF_TEST_EXPECT_TABLES_EQUAL(result[1], expected1);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/scatter_struct_scalar_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/copying.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/scalar/scalar_factories.hpp>
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::ALL_ERRORS};
constexpr int32_t null{0}; // Mark for null child elements
constexpr int32_t XXX{0}; // Mark for null struct elements
using structs_col = cudf::test::structs_column_wrapper;
template <typename T>
struct TypedStructScalarScatterTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedStructScalarScatterTest, cudf::test::FixedWidthTypes);
cudf::column scatter_single_scalar(cudf::scalar const& slr,
cudf::column_view scatter_map,
cudf::column_view target)
{
auto result = cudf::scatter({slr}, scatter_map, cudf::table_view{{target}});
return result->get_column(0);
}
TYPED_TEST(TypedStructScalarScatterTest, Basic)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
cudf::test::strings_column_wrapper slr_f1{"hello"};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0, slr_f1}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{2};
// Target column
fixed_width_wrapper field0{11, 11, 22, 22, 33};
cudf::test::strings_column_wrapper field1{"aa", "aa", "bb", "bb", "cc"};
structs_col target{field0, field1};
// Expect column
fixed_width_wrapper ef0{11, 11, 777, 22, 33};
cudf::test::strings_column_wrapper ef1{"aa", "aa", "hello", "bb", "cc"};
structs_col expected{ef0, ef1};
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, FillNulls)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{3, 4};
// Target column
fixed_width_wrapper field0({11, 11, 22, null, XXX}, cudf::test::iterators::null_at(3));
structs_col target({field0}, cudf::test::iterators::null_at(4));
// Expect column
fixed_width_wrapper ef0{11, 11, 22, 777, 777};
structs_col expected{ef0};
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, ScatterNullElements)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
std::vector<cudf::column_view> source_fields{slr_f0};
auto slr = std::make_unique<cudf::struct_scalar>(source_fields, false);
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{0, 3, 4};
// Target column
fixed_width_wrapper field0({11, 11, 22, null, XXX}, cudf::test::iterators::null_at(3));
structs_col target({field0}, cudf::test::iterators::null_at(4));
// Expect column
fixed_width_wrapper ef0{XXX, 11, 22, XXX, XXX};
structs_col expected({ef0}, {false, true, true, false, false});
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, ScatterNullFields)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0({null}, {false});
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{0, 2};
// Target column
fixed_width_wrapper field0({11, 11, 22, null, XXX}, cudf::test::iterators::null_at(3));
structs_col target({field0}, cudf::test::iterators::null_at(4));
// Expect column
fixed_width_wrapper ef0({null, 11, null, null, XXX}, {false, true, false, false, true});
structs_col expected({ef0}, cudf::test::iterators::null_at(4));
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, NegativeIndices)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{-1, -5};
// Target column
fixed_width_wrapper field0({11, 11, 22, null, XXX}, cudf::test::iterators::null_at(3));
structs_col target({field0}, cudf::test::iterators::null_at(4));
// Expect column
fixed_width_wrapper ef0({777, 11, 22, null, 777}, cudf::test::iterators::null_at(3));
structs_col expected{ef0};
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, EmptyInputTest)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{};
// Target column
fixed_width_wrapper field0{};
structs_col target{field0};
// Expect column
fixed_width_wrapper ef0{};
structs_col expected{ef0};
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, EmptyScatterMapTest)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{};
// Target column
fixed_width_wrapper field0({11, 11, 22, null, XXX}, cudf::test::iterators::null_at(3));
structs_col target({field0}, cudf::test::iterators::null_at(4));
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(target, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, FixedWidthStringTypes)
{
using fixed_width_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
// Source scalar
fixed_width_wrapper slr_f0{777};
cudf::test::strings_column_wrapper slr_f1{"hello"};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0, slr_f1}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{0, 2, 4};
// Target column
fixed_width_wrapper field0({11, 11, 22, null, XXX}, cudf::test::iterators::null_at(3));
cudf::test::strings_column_wrapper field1({"aa", "null", "ccc", "null", "XXX"},
{true, false, true, false, true});
structs_col target({field0, field1}, cudf::test::iterators::null_at(4));
// Expect column
fixed_width_wrapper ef0({777, 11, 777, null, 777}, cudf::test::iterators::null_at(3));
cudf::test::strings_column_wrapper ef1({"hello", "null", "hello", "null", "hello"},
{true, false, true, false, true});
structs_col expected{ef0, ef1};
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, got, verbosity);
}
TYPED_TEST(TypedStructScalarScatterTest, StructOfLists)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// Source scalar
LCW slr_f0{777};
auto slr = cudf::make_struct_scalar(cudf::table_view{{slr_f0}});
// Scatter map
cudf::test::fixed_width_column_wrapper<cudf::size_type> scatter_map{0, 1, 4};
// Target column
LCW field0({LCW{XXX}, LCW{22}, LCW{33, 44}, LCW{null}, LCW{55}},
cudf::test::iterators::null_at(3));
structs_col target({field0}, cudf::test::iterators::null_at(0));
// Expect column
LCW ef0({LCW{777}, LCW{777}, LCW{33, 44}, LCW{null}, LCW{777}},
cudf::test::iterators::null_at(3));
structs_col expected{ef0};
auto got = scatter_single_scalar(*slr, scatter_map, target);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, got, verbosity);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/scatter_list_scalar_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/scalar/scalar_factories.hpp>
using mask_vector = std::vector<cudf::valid_type>;
using size_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
class ScatterListScalarTests : public cudf::test::BaseFixture {};
std::unique_ptr<cudf::column> single_scalar_scatter(cudf::column_view const& target,
cudf::scalar const& slr,
cudf::column_view const& scatter_map)
{
std::vector<std::reference_wrapper<const cudf::scalar>> slrs{slr};
cudf::table_view targets{{target}};
auto result = cudf::scatter(slrs, scatter_map, targets);
return std::move(result->release()[0]);
}
template <typename T>
class ScatterListOfFixedWidthScalarTest : public ScatterListScalarTests {};
TYPED_TEST_SUITE(ScatterListOfFixedWidthScalarTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
// Test grid
// Dim1 : {Fixed width, strings, lists, structs}
// Dim2 : {Null scalar, Non-null empty scalar, Non-null non-empty scalar}
// Dim3 : {Nullable target, non-nullable target row}
TYPED_TEST(ScatterListOfFixedWidthScalarTest, Basic)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto slr = std::make_unique<cudf::list_scalar>(FCW({2, 2, 2}, {1, 0, 1}), true);
LCW col{LCW{1, 1, 1}, LCW{8, 8}, LCW{10, 10, 10, 10}, LCW{5}};
size_column scatter_map{3, 1, 0};
LCW expected{LCW({2, 2, 2}, mask_vector{1, 0, 1}.begin()),
LCW({2, 2, 2}, mask_vector{1, 0, 1}.begin()),
LCW{10, 10, 10, 10},
LCW({2, 2, 2}, mask_vector{1, 0, 1}.begin())};
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TYPED_TEST(ScatterListOfFixedWidthScalarTest, EmptyValidScalar)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto slr = std::make_unique<cudf::list_scalar>(FCW{}, true);
LCW col{LCW{1, 1, 1},
LCW{8, 8},
LCW({10, 10, 10, 10}, mask_vector{1, 0, 1, 0}.begin()),
LCW{5},
LCW{42, 42}};
size_column scatter_map{1, 0};
LCW expected{
LCW{}, LCW{}, LCW({10, 10, 10, 10}, mask_vector{1, 0, 1, 0}.begin()), LCW{5}, LCW{42, 42}};
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TYPED_TEST(ScatterListOfFixedWidthScalarTest, NullScalar)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto slr = std::make_unique<cudf::list_scalar>(FCW{}, false);
LCW col{LCW({1, 1, 1}, mask_vector{0, 0, 1}.begin()), LCW{8, 8}, LCW{10, 10, 10, 10}, LCW{5}};
size_column scatter_map{3, 1};
LCW expected({LCW({1, 1, 1}, mask_vector{0, 0, 1}.begin()), LCW{}, LCW{10, 10, 10, 10}, LCW{}},
mask_vector{1, 0, 1, 0}.begin());
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TYPED_TEST(ScatterListOfFixedWidthScalarTest, NullableTargetRow)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
auto slr = std::make_unique<cudf::list_scalar>(FCW{9, 9}, true);
LCW col({LCW{4, 4}, LCW{}, LCW{8, 8, 8}, LCW{}, LCW{9, 9, 9}},
mask_vector{1, 0, 1, 0, 1}.begin());
size_column scatter_map{0, 1};
LCW expected({LCW{9, 9}, LCW{9, 9}, LCW{8, 8, 8}, LCW{}, LCW{9, 9, 9}},
mask_vector{1, 1, 1, 0, 1}.begin());
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
class ScatterListOfStringScalarTest : public ScatterListScalarTests {};
TEST_F(ScatterListOfStringScalarTest, Basic)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view, int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
auto slr = std::make_unique<cudf::list_scalar>(
StringCW({"Hello!", "", "你好!", "صباح الخير!", "", "こんにちは!"},
{true, false, true, true, false, true}),
true);
LCW col{LCW({"xx", "yy"}, mask_vector{0, 1}.begin()), LCW{""}, LCW{"a", "bab", "bacab"}};
size_column scatter_map{2, 1};
LCW expected{LCW({"xx", "yy"}, mask_vector{0, 1}.begin()),
LCW({"Hello!", "", "你好!", "صباح الخير!", "", "こんにちは!"},
mask_vector{1, 0, 1, 1, 0, 1}.begin()),
LCW({"Hello!", "", "你好!", "صباح الخير!", "", "こんにちは!"},
mask_vector{1, 0, 1, 1, 0, 1}.begin())};
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(ScatterListOfStringScalarTest, EmptyValidScalar)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view, int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
auto slr = std::make_unique<cudf::list_scalar>(StringCW{}, true);
LCW col{LCW({"xx", "yy"}, mask_vector{0, 1}.begin()),
LCW{""},
LCW{"a", "bab", "bacab"},
LCW{"888", "777"}};
size_column scatter_map{0, 3};
LCW expected{LCW{}, LCW{""}, LCW{"a", "bab", "bacab"}, LCW{}};
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(ScatterListOfStringScalarTest, NullScalar)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view, int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
auto slr = std::make_unique<cudf::list_scalar>(StringCW{}, false);
LCW col{LCW{"xx", "yy"},
LCW({""}, mask_vector{0}.begin()),
LCW{"a", "bab", "bacab"},
LCW{"888", "777"}};
size_column scatter_map{1, 2};
LCW expected({LCW{"xx", "yy"}, LCW{}, LCW{}, LCW{"888", "777"}}, mask_vector{1, 0, 0, 1}.begin());
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(ScatterListOfStringScalarTest, NullableTargetRow)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view, int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
auto slr = std::make_unique<cudf::list_scalar>(
StringCW({"Hello!", "", "こんにちは!"}, {true, false, true}), true);
LCW col({LCW{"xx", "yy"}, LCW({""}, mask_vector{0}.begin()), LCW{}, LCW{"888", "777"}},
mask_vector{1, 1, 0, 1}.begin());
size_column scatter_map{3, 2};
LCW expected({LCW{"xx", "yy"},
LCW({""}, mask_vector{0}.begin()),
LCW({"Hello!", "", "こんにちは!"}, mask_vector{1, 0, 1}.begin()),
LCW({"Hello!", "", "こんにちは!"}, mask_vector{1, 0, 1}.begin())},
mask_vector{1, 1, 1, 1}.begin());
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
template <typename T>
class ScatterListOfListScalarTest : public ScatterListScalarTests {};
TYPED_TEST_SUITE(ScatterListOfListScalarTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(ScatterListOfListScalarTest, Basic)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto slr = std::make_unique<cudf::list_scalar>(
LCW({LCW{1, 2, 3}, LCW{4}, LCW{}, LCW{5, 6}}, mask_vector{1, 1, 0, 1}.begin()), true);
LCW col({LCW({LCW{88, 88}, LCW{}, LCW{9, 9, 9}}, mask_vector{1, 0, 1}.begin()),
LCW{LCW{66}, LCW{}, LCW({77, 77, 77, 77}, mask_vector{1, 0, 0, 1}.begin())},
LCW{LCW{55, 55}, LCW{}, LCW{10, 10, 10}},
LCW{LCW{44, 44}}});
size_column scatter_map{1, 2, 3};
LCW expected({LCW({LCW{88, 88}, LCW{}, LCW{9, 9, 9}}, mask_vector{1, 0, 1}.begin()),
LCW({LCW{1, 2, 3}, LCW{4}, LCW{}, LCW{5, 6}}, mask_vector{1, 1, 0, 1}.begin()),
LCW({LCW{1, 2, 3}, LCW{4}, LCW{}, LCW{5, 6}}, mask_vector{1, 1, 0, 1}.begin()),
LCW({LCW{1, 2, 3}, LCW{4}, LCW{}, LCW{5, 6}}, mask_vector{1, 1, 0, 1}.begin())});
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TYPED_TEST(ScatterListOfListScalarTest, EmptyValidScalar)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto slr = std::make_unique<cudf::list_scalar>(LCW{}, true);
LCW col({LCW({LCW{88, 88}, LCW{}, LCW{9, 9, 9}}, mask_vector{1, 0, 1}.begin()),
LCW{LCW{66}, LCW{}, LCW({77, 77, 77, 77}, mask_vector{1, 0, 0, 1}.begin())},
LCW{LCW{55, 55}, LCW{}, LCW{10, 10, 10}},
LCW{LCW{44, 44}}});
size_column scatter_map{3, 0};
LCW expected({LCW{},
LCW{LCW{66}, LCW{}, LCW({77, 77, 77, 77}, mask_vector{1, 0, 0, 1}.begin())},
LCW{LCW{55, 55}, LCW{}, LCW{10, 10, 10}},
LCW{}});
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TYPED_TEST(ScatterListOfListScalarTest, NullScalar)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto slr = std::make_unique<cudf::list_scalar>(LCW{}, false);
LCW col({LCW({LCW{88, 88}, LCW{}, LCW{9, 9, 9}}, mask_vector{1, 0, 1}.begin()),
LCW{LCW{66}, LCW{}, LCW({77, 77, 77, 77}, mask_vector{1, 0, 0, 1}.begin())},
LCW{LCW{44, 44}}});
size_column scatter_map{1, 0};
LCW expected({LCW{}, LCW{}, LCW{LCW{44, 44}}}, mask_vector{0, 0, 1}.begin());
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TYPED_TEST(ScatterListOfListScalarTest, NullableTargetRows)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto slr = std::make_unique<cudf::list_scalar>(
LCW({LCW{1, 1, 1}, LCW{3, 3}, LCW{}, LCW{4}}, mask_vector{1, 1, 0, 1}.begin()), true);
LCW col({LCW({LCW{88, 88}, LCW{}, LCW{9, 9, 9}}, mask_vector{1, 0, 1}.begin()),
LCW{LCW{66}, LCW{}, LCW({77, 77, 77, 77}, mask_vector{1, 0, 0, 1}.begin())},
LCW{LCW{44, 44}}},
mask_vector{1, 0, 1}.begin());
size_column scatter_map{1};
LCW expected({LCW({LCW{88, 88}, LCW{}, LCW{9, 9, 9}}, mask_vector{1, 0, 1}.begin()),
LCW({LCW{1, 1, 1}, LCW{3, 3}, LCW{}, LCW{4}}, mask_vector{1, 1, 0, 1}.begin()),
LCW{LCW{44, 44}}},
mask_vector{1, 1, 1}.begin());
auto result = single_scalar_scatter(col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
template <typename T>
class ScatterListOfStructScalarTest : public ScatterListScalarTests {
protected:
cudf::test::structs_column_wrapper make_test_structs(
cudf::test::fixed_width_column_wrapper<T> field0,
cudf::test::strings_column_wrapper field1,
cudf::test::lists_column_wrapper<T, int32_t> field2,
std::vector<cudf::valid_type> mask)
{
return cudf::test::structs_column_wrapper({field0, field1, field2}, mask.begin());
}
};
TYPED_TEST_SUITE(ScatterListOfStructScalarTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(ScatterListOfStructScalarTest, Basic)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto data =
this->make_test_structs({{42, 42, 42}, {1, 0, 1}},
{{"hello", "你好!", "bonjour!"}, {false, true, true}},
LCW({LCW{88}, LCW{}, LCW{99, 99}}, mask_vector{1, 0, 1}.begin()),
{1, 1, 0});
auto slr = std::make_unique<cudf::list_scalar>(data, true);
auto child = this->make_test_structs(
{{1, 1, 2, 3, 3, 3}, {0, 1, 1, 1, 0, 0}},
{{"x", "x", "yy", "", "zzz", "zzz"}, {true, true, true, false, true, true}},
LCW({LCW{10, 10}, LCW{}, LCW{10}, LCW{20, 20}, LCW{}, LCW{30, 30}},
mask_vector{1, 0, 1, 1, 0, 1}.begin()),
{1, 1, 0, 0, 1, 1});
offset_t offsets{0, 2, 2, 3, 6};
auto col =
cudf::make_lists_column(4, offsets.release(), child.release(), 0, rmm::device_buffer{});
size_column scatter_map{1, 3};
auto ex_child = this->make_test_structs(
{{1, 1, 42, 42, 42, 2, 42, 42, 42}, {0, 1, 1, 0, 1, 1, 1, 0, 1}},
{{"x", "x", "hello", "你好!", "bonjour!", "yy", "hello", "你好!", "bonjour!"},
{true, true, false, true, true, true, false, true, true}},
LCW({LCW{10, 10}, LCW{}, LCW{88}, LCW{}, LCW{99, 99}, LCW{10}, LCW{88}, LCW{}, LCW{99, 99}},
mask_vector{1, 0, 1, 0, 1, 1, 1, 0, 1}.begin()),
{1, 1, 1, 1, 0, 0, 1, 1, 0});
offset_t ex_offsets{0, 2, 5, 6, 9};
auto expected =
cudf::make_lists_column(4, ex_offsets.release(), ex_child.release(), 0, rmm::device_buffer{});
auto result = single_scalar_scatter(*col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TYPED_TEST(ScatterListOfStructScalarTest, EmptyValidScalar)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto data = this->make_test_structs({}, {}, LCW{}, {});
auto slr = std::make_unique<cudf::list_scalar>(data, true);
auto child = this->make_test_structs(
{{1, 1, 2, 3, 3, 3}, {0, 1, 1, 1, 0, 0}},
{{"x", "x", "yy", "", "zzz", "zzz"}, {true, true, true, false, true, true}},
LCW({LCW{10, 10}, LCW{}, LCW{10}, LCW{20, 20}, LCW{}, LCW{30, 30}},
mask_vector{1, 0, 1, 1, 0, 1}.begin()),
{1, 1, 0, 0, 1, 1});
offset_t offsets{0, 2, 2, 3, 6};
auto col =
cudf::make_lists_column(4, offsets.release(), child.release(), 0, rmm::device_buffer{});
size_column scatter_map{0, 2};
auto ex_child =
this->make_test_structs({{3, 3, 3}, {1, 0, 0}},
{{"", "zzz", "zzz"}, {false, true, true}},
LCW({LCW{20, 20}, LCW{}, LCW{30, 30}}, mask_vector{1, 0, 1}.begin()),
{0, 1, 1});
offset_t ex_offsets{0, 0, 0, 0, 3};
auto expected =
cudf::make_lists_column(4, ex_offsets.release(), ex_child.release(), 0, rmm::device_buffer{});
auto result = single_scalar_scatter(*col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TYPED_TEST(ScatterListOfStructScalarTest, NullScalar)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto data = this->make_test_structs({}, {}, {}, {});
auto slr = std::make_unique<cudf::list_scalar>(data, false);
auto child = this->make_test_structs(
{{1, 1, 2, 3, 3, 3}, {0, 1, 1, 1, 0, 0}},
{{"x", "x", "yy", "", "zzz", "zzz"}, {true, true, true, false, true, true}},
LCW({LCW{10, 10}, LCW{}, LCW{10}, LCW{20, 20}, LCW{}, LCW{30, 30}},
mask_vector{1, 0, 1, 1, 0, 1}.begin()),
{1, 1, 1, 0, 1, 1});
offset_t offsets{0, 2, 2, 3, 6};
auto col =
cudf::make_lists_column(4, offsets.release(), child.release(), 0, rmm::device_buffer{});
size_column scatter_map{3, 1, 0};
auto ex_child = this->make_test_structs({2}, {"yy"}, LCW({10}, mask_vector{1}.begin()), {1});
offset_t ex_offsets{0, 0, 0, 1, 1};
auto null_mask = cudf::create_null_mask(4, cudf::mask_state::ALL_NULL);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(null_mask.data()), 2, 3, true);
auto expected =
cudf::make_lists_column(4, ex_offsets.release(), ex_child.release(), 3, std::move(null_mask));
auto result = single_scalar_scatter(*col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TYPED_TEST(ScatterListOfStructScalarTest, NullableTargetRow)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto data =
this->make_test_structs({{42, 42, 42}, {1, 0, 1}},
{{"hello", "你好!", "bonjour!"}, {false, true, true}},
LCW({LCW{88}, LCW{}, LCW{99, 99}}, mask_vector{1, 0, 1}.begin()),
{1, 1, 0});
auto slr = std::make_unique<cudf::list_scalar>(data, true);
auto child = this->make_test_structs(
{{1, 1, 2, 3, 3, 3}, {0, 1, 1, 1, 0, 0}},
{{"x", "x", "yy", "", "zzz", "zzz"}, {true, true, true, false, true, true}},
LCW({LCW{10, 10}, LCW{}, LCW{10}, LCW{20, 20}, LCW{}, LCW{30, 30}},
mask_vector{1, 0, 1, 1, 0, 1}.begin()),
{1, 1, 1, 0, 1, 1});
offset_t offsets{0, 2, 2, 3, 6};
auto null_mask = cudf::create_null_mask(4, cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(null_mask.data()), 1, 3, false);
auto col =
cudf::make_lists_column(4, offsets.release(), child.release(), 2, std::move(null_mask));
size_column scatter_map{3, 2};
auto ex_child = this->make_test_structs(
{{1, 1, 42, 42, 42, 42, 42, 42}, {0, 1, 1, 0, 1, 1, 0, 1}},
{{"x", "x", "hello", "你好!", "bonjour!", "hello", "你好!", "bonjour!"},
{true, true, false, true, true, false, true, true}},
LCW({LCW{10, 10}, LCW{}, LCW{88}, LCW{}, LCW{99, 99}, LCW{88}, LCW{}, LCW{99, 99}},
mask_vector{1, 0, 1, 0, 1, 1, 0, 1}.begin()),
{1, 1, 1, 1, 0, 1, 1, 0});
offset_t ex_offsets{0, 2, 2, 5, 8};
auto ex_null_mask = cudf::create_null_mask(4, cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(ex_null_mask.data()), 1, 2, false);
auto expected = cudf::make_lists_column(
4, ex_offsets.release(), ex_child.release(), 1, std::move(ex_null_mask));
auto result = single_scalar_scatter(*col, *slr, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/slice_tests.cuh
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
template <typename T, typename InputIterator>
cudf::test::fixed_width_column_wrapper<T> create_fixed_columns(cudf::size_type start,
cudf::size_type size,
InputIterator valids)
{
auto iter = cudf::detail::make_counting_transform_iterator(start, [](auto i) { return T(i); });
return cudf::test::fixed_width_column_wrapper<T>(iter, iter + size, valids);
}
template <typename T, typename InputIterator>
cudf::table create_fixed_table(cudf::size_type num_cols,
cudf::size_type start,
cudf::size_type col_size,
InputIterator valids)
{
std::vector<std::unique_ptr<cudf::column>> cols;
for (int idx = 0; idx < num_cols; idx++) {
cudf::test::fixed_width_column_wrapper<T> wrap =
create_fixed_columns<T>(start + (idx * num_cols), col_size, valids);
cols.push_back(wrap.release());
}
return cudf::table(std::move(cols));
}
template <typename T>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns(
std::vector<cudf::size_type> const& indices, bool nullable)
{
std::vector<cudf::test::fixed_width_column_wrapper<T>> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
auto iter =
cudf::detail::make_counting_transform_iterator(indices[index], [](auto i) { return T(i); });
if (not nullable) {
result.push_back(cudf::test::fixed_width_column_wrapper<T>(
iter, iter + (indices[index + 1] - indices[index])));
} else {
auto valids = cudf::detail::make_counting_transform_iterator(
indices[index], [](auto i) { return i % 2 == 0; });
result.push_back(cudf::test::fixed_width_column_wrapper<T>(
iter, iter + (indices[index + 1] - indices[index]), valids));
}
}
return result;
}
template <typename T>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns(
std::vector<cudf::size_type> const& indices, std::vector<bool> const& validity)
{
std::vector<cudf::test::fixed_width_column_wrapper<T>> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
auto iter =
cudf::detail::make_counting_transform_iterator(indices[index], [](auto i) { return T(i); });
result.push_back(cudf::test::fixed_width_column_wrapper<T>(
iter, iter + (indices[index + 1] - indices[index]), validity.begin() + indices[index]));
}
return result;
}
template <typename T, typename ElementIter>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns(
std::vector<cudf::size_type> const& indices, ElementIter begin, bool nullable)
{
std::vector<cudf::test::fixed_width_column_wrapper<T>> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
auto iter = begin + indices[index];
if (not nullable) {
result.push_back(cudf::test::fixed_width_column_wrapper<T>(
iter, iter + (indices[index + 1] - indices[index])));
} else {
auto valids = cudf::detail::make_counting_transform_iterator(
indices[index], [](auto i) { return i % 2 == 0; });
result.push_back(cudf::test::fixed_width_column_wrapper<T>(
iter, iter + (indices[index + 1] - indices[index]), valids));
}
}
return result;
}
template <typename T, typename ElementIter>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns(
std::vector<cudf::size_type> const& indices, ElementIter begin, std::vector<bool> const& validity)
{
std::vector<cudf::test::fixed_width_column_wrapper<T>> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
auto iter = begin + indices[index];
result.push_back(cudf::test::fixed_width_column_wrapper<T>(
iter, iter + (indices[index + 1] - indices[index]), validity.begin() + indices[index]));
}
return result;
}
template <typename T>
std::vector<cudf::table> create_expected_tables(cudf::size_type num_cols,
std::vector<cudf::size_type> const& indices,
bool nullable)
{
std::vector<cudf::table> result;
for (unsigned long index = 0; index < indices.size(); index += 2) {
std::vector<std::unique_ptr<cudf::column>> cols = {};
for (int idx = 0; idx < num_cols; idx++) {
auto iter = cudf::detail::make_counting_transform_iterator(indices[index] + (idx * num_cols),
[](auto i) { return T(i); });
if (not nullable) {
cudf::test::fixed_width_column_wrapper<T> wrap(
iter, iter + (indices[index + 1] - indices[index]));
cols.push_back(wrap.release());
} else {
auto valids = cudf::detail::make_counting_transform_iterator(
indices[index], [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<T> wrap(
iter, iter + (indices[index + 1] - indices[index]), valids);
cols.push_back(wrap.release());
}
}
result.push_back(cudf::table(std::move(cols)));
}
return result;
}
inline std::vector<cudf::test::strings_column_wrapper> create_expected_string_columns(
std::vector<std::string> const& strings,
std::vector<cudf::size_type> const& indices,
bool nullable)
{
std::vector<cudf::test::strings_column_wrapper> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
if (not nullable) {
result.push_back(cudf::test::strings_column_wrapper(strings.begin() + indices[index],
strings.begin() + indices[index + 1]));
} else {
auto valids = cudf::detail::make_counting_transform_iterator(
indices[index], [](auto i) { return i % 2 == 0; });
result.push_back(cudf::test::strings_column_wrapper(
strings.begin() + indices[index], strings.begin() + indices[index + 1], valids));
}
}
return result;
}
inline std::vector<cudf::test::strings_column_wrapper> create_expected_string_columns(
std::vector<std::string> const& strings,
std::vector<cudf::size_type> const& indices,
std::vector<bool> const& validity)
{
std::vector<cudf::test::strings_column_wrapper> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
result.push_back(cudf::test::strings_column_wrapper(strings.begin() + indices[index],
strings.begin() + indices[index + 1],
validity.begin() + indices[index]));
}
return result;
}
inline std::vector<cudf::table> create_expected_string_tables(
std::vector<std::string> const strings[2],
std::vector<cudf::size_type> const& indices,
bool nullable)
{
std::vector<cudf::table> result = {};
for (unsigned long index = 0; index < indices.size(); index += 2) {
std::vector<std::unique_ptr<cudf::column>> cols = {};
for (int idx = 0; idx < 2; idx++) {
if (not nullable) {
cudf::test::strings_column_wrapper wrap(strings[idx].begin() + indices[index],
strings[idx].begin() + indices[index + 1]);
cols.push_back(wrap.release());
} else {
auto valids = cudf::detail::make_counting_transform_iterator(
indices[index], [](auto i) { return i % 2 == 0; });
cudf::test::strings_column_wrapper wrap(
strings[idx].begin() + indices[index], strings[idx].begin() + indices[index + 1], valids);
cols.push_back(wrap.release());
}
}
result.push_back(cudf::table(std::move(cols)));
}
return result;
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/scatter_struct_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/table/table_view.hpp>
using namespace cudf::test::iterators;
using bools_col = cudf::test::fixed_width_column_wrapper<bool>;
using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
using strings_col = cudf::test::strings_column_wrapper;
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::FIRST_ERROR};
constexpr int32_t null{0}; // Mark for null child elements
constexpr int32_t XXX{0}; // Mark for null struct elements
template <typename T>
struct TypedStructScatterTest : public cudf::test::BaseFixture {};
using TestTypes = cudf::test::Concat<cudf::test::IntegralTypes,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(TypedStructScatterTest, TestTypes);
namespace {
auto scatter_structs(std::unique_ptr<cudf::column> const& structs_src,
std::unique_ptr<cudf::column> const& structs_tgt,
std::unique_ptr<cudf::column> const& scatter_map)
{
auto const source = cudf::table_view{std::vector<cudf::column_view>{structs_src->view()}};
auto const target = cudf::table_view{std::vector<cudf::column_view>{structs_tgt->view()}};
auto const result = cudf::scatter(source, scatter_map->view(), target);
return result->get_column(0);
}
} // namespace
// Test case when all input columns are empty
TYPED_TEST(TypedStructScatterTest, EmptyInputTest)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_src = col_wrapper{};
auto const structs_src = structs_col{{child_col_src}}.release();
auto child_col_tgt = col_wrapper{};
auto const structs_tgt = structs_col{{child_col_tgt}}.release();
auto const scatter_map = int32s_col{}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_src, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
// Test case when only the scatter map is empty
TYPED_TEST(TypedStructScatterTest, EmptyScatterMapTest)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_src = col_wrapper{{0, 1, 2, 3, null, XXX}, null_at(4)};
auto const structs_src = structs_col{{child_col_src}, null_at(5)}.release();
auto child_col_tgt = col_wrapper{{50, null, 70, XXX, 90, 100}, null_at(1)};
auto const structs_tgt = structs_col{{child_col_tgt}, null_at(3)}.release();
auto const scatter_map = int32s_col{}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_tgt, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
TYPED_TEST(TypedStructScatterTest, ScatterAsCopyTest)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_src = col_wrapper{{0, 1, 2, 3, null, XXX}, null_at(4)};
auto const structs_src = structs_col{{child_col_src}, null_at(5)}.release();
auto child_col_tgt = col_wrapper{{50, null, 70, XXX, 90, 100}, null_at(1)};
auto const structs_tgt = structs_col{{child_col_tgt}, null_at(3)}.release();
// Scatter as copy: the target should be the same as source
auto const scatter_map = int32s_col{0, 1, 2, 3, 4, 5}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_src, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
TYPED_TEST(TypedStructScatterTest, ScatterAsLeftShiftTest)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_src = col_wrapper{{0, 1, 2, 3, null, XXX}, null_at(4)};
auto const structs_src = structs_col{{child_col_src}, null_at(5)}.release();
auto child_col_tgt = col_wrapper{{50, null, 70, XXX, 90, 100}, null_at(1)};
auto const structs_tgt = structs_col{{child_col_tgt}, null_at(3)}.release();
auto child_col_expected = col_wrapper{{2, 3, null, XXX, 0, 1}, null_at(2)};
auto structs_expected = structs_col{{child_col_expected}, null_at(3)}.release();
auto const scatter_map = int32s_col{-2, -1, 0, 1, 2, 3}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_expected, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
TYPED_TEST(TypedStructScatterTest, SimpleScatterTests)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
// Source data
auto child_col_src = col_wrapper{{0, 1, 2, 3, null, XXX}, null_at(4)};
auto const structs_src = structs_col{{child_col_src}, null_at(5)}.release();
// Target data
auto child_col_tgt = col_wrapper{{50, null, 70, XXX, 90, 100}, null_at(1)};
auto const structs_tgt = structs_col{{child_col_tgt}, null_at(3)}.release();
// Expected data
auto child_col_expected1 = col_wrapper{{1, null, 70, XXX, 0, 2}, null_at(1)};
auto const structs_expected1 = structs_col{{child_col_expected1}, null_at(3)}.release();
auto const scatter_map1 = int32s_col{-2, 0, 5}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_expected1, scatter_structs(structs_src, structs_tgt, scatter_map1), verbosity);
// Expected data
auto child_col_expected2 = col_wrapper{{1, null, 70, 3, 0, 2}, null_at(1)};
auto const structs_expected2 = structs_col{{child_col_expected2}, no_nulls()}.release();
auto const scatter_map2 = int32s_col{-2, 0, 5, 3}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_expected2, scatter_structs(structs_src, structs_tgt, scatter_map2), verbosity);
}
TYPED_TEST(TypedStructScatterTest, ComplexDataScatterTest)
{
// Testing scatter() on struct<string, numeric, bool>.
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
// Source data
auto names_column_src =
strings_col{{"Newton", "Washington", "Cherry", "Kiwi", "Lemon", "Tomato" /*XXX*/}, no_nulls()};
auto ages_column_src = col_wrapper{{5, 10, 15, 20, null, XXX}, null_at(4)};
auto is_human_col_src =
bools_col{{true, true, false, false /*null*/, false, false /*XXX*/}, null_at(3)};
auto const structs_src =
structs_col{{names_column_src, ages_column_src, is_human_col_src}, null_at(5)}.release();
// Target data
auto names_column_tgt = strings_col{
{"String 0" /*null*/, "String 1", "String 2" /*XXX*/, "String 3", "String 4", "String 5"},
null_at(0)};
auto ages_column_tgt = col_wrapper{{50, null, XXX, 80, 90, 100}, null_at(1)};
auto is_human_col_tgt = bools_col{{true, true, true /*XXX*/, true, true, true}, no_nulls()};
auto const structs_tgt =
structs_col{{names_column_tgt, ages_column_tgt, is_human_col_tgt}, null_at(2)}.release();
// Expected data
auto names_column_expected = strings_col{
{"String 0" /*null*/, "Lemon", "Kiwi", "Cherry", "Washington", "Newton"}, null_at(0)};
auto ages_column_expected = col_wrapper{{50, null, 20, 15, 10, 5}, null_at(1)};
auto is_human_col_expected =
bools_col{{true, false, false /*null*/, false, true, true}, null_at(2)};
auto const structs_expected =
structs_col{{names_column_expected, ages_column_expected, is_human_col_expected}, no_nulls()}
.release();
// The first element of the target is not overwritten
auto const scatter_map = int32s_col{-1, 4, 3, 2, 1}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_expected, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
TYPED_TEST(TypedStructScatterTest, ScatterStructOfListsTest)
{
// Testing scatter() on struct<list<numeric>>
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// Source data
auto lists_col_src =
lists_col{{{5}, {10, 15}, {20, 25, 30}, {35, 40, 45, 50}, {55, 60, 65}, {70, 75}, {80}, {}, {}},
// Valid for elements 0, 3, 6,...
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return !(i % 3); })};
auto const structs_src = structs_col{{lists_col_src}}.release();
// Target data
auto lists_col_tgt =
lists_col{{{1}, {2, 3}, {4, 5, 6}, {7, 8}, {9}, {10, 11, 12, 13}, {}, {14}, {15, 16}},
// Valid for elements 1, 3, 5, 7,...
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; })};
auto const structs_tgt = structs_col{{lists_col_tgt}}.release();
// Expected data
auto const validity_expected = std::vector<bool>{0, 1, 1, 0, 0, 1, 1, 0, 0};
auto lists_col_expected = lists_col{
{{1}, {2, 3}, {80}, {70, 75}, {55, 60, 65}, {35, 40, 45, 50}, {5}, {10, 15}, {20, 25, 30}},
validity_expected.begin()};
auto const structs_expected = structs_col{{lists_col_expected}}.release();
// The first 2 elements of the target is not overwritten
auto const scatter_map = int32s_col{-3, -2, -1, 5, 4, 3, 2}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_expected, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
TYPED_TEST(TypedStructScatterTest, SourceSmallerThanTargetScatterTest)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_src = col_wrapper{22, 55};
auto const structs_src = structs_col{{child_col_src}}.release();
auto child_col_tgt = col_wrapper{0, 1, 2, 3, 4, 5, 6};
auto const structs_tgt = structs_col{{child_col_tgt}}.release();
auto child_col_expected = col_wrapper{0, 1, 22, 3, 4, 55, 6};
auto const structs_expected = structs_col{{child_col_expected}}.release();
auto const scatter_map = int32s_col{2, 5}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*structs_expected, scatter_structs(structs_src, structs_tgt, scatter_map), verbosity);
}
TYPED_TEST(TypedStructScatterTest, IntStructNullMaskRegression)
{
using col_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_tgt = col_wrapper({0, null, 2}, null_at(1));
auto struct_col_tgt = structs_col({child_tgt}).release();
auto child_src = col_wrapper{20};
auto struct_col_src = structs_col({child_src}).release();
auto scatter_map = int32s_col{2}.release();
auto expected_child = col_wrapper({0, null, 20}, null_at(1));
auto expected_struct = structs_col({expected_child}).release();
auto const result = scatter_structs(struct_col_src, struct_col_tgt, scatter_map);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_struct, result, verbosity);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/copy_if_else_nested_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/scalar/scalar_factories.hpp>
using namespace cudf::test::iterators;
struct CopyIfElseNestedTest : cudf::test::BaseFixture {};
template <typename T>
struct TypedCopyIfElseNestedTest : CopyIfElseNestedTest {};
TYPED_TEST_SUITE(TypedCopyIfElseNestedTest, cudf::test::FixedWidthTypes);
TYPED_TEST(TypedCopyIfElseNestedTest, Structs)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto lhs_ints_child = ints{0, 1, 2, 3, 4, 5, 6};
auto lhs_strings_child = strings{"0", "1", "2", "3", "4", "5", "6"};
auto lhs_structs_column = structs{{lhs_ints_child, lhs_strings_child}}.release();
auto rhs_ints_child = ints{0, 11, 22, 33, 44, 55, 66};
auto rhs_strings_child = strings{"00", "11", "22", "33", "44", "55", "66"};
auto rhs_structs_column = structs{{rhs_ints_child, rhs_strings_child}}.release();
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto result_column = cudf::copy_if_else(
lhs_structs_column->view(), rhs_structs_column->view(), selector_column->view());
auto expected_ints = ints{0, 1, 22, 3, 4, 55, 6};
auto expected_strings = strings{"0", "1", "22", "3", "4", "55", "6"};
auto expected_result = structs{{expected_ints, expected_strings}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result_column->view(), expected_result->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, StructsWithNulls)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto null_at_0 = null_at(0);
auto null_at_3 = null_at(3);
auto null_at_5 = null_at(5);
auto lhs_ints_child = ints{{0, 1, 2, 3, 4, 5, 6}, null_at_0};
auto lhs_strings_child = strings{"0", "1", "2", "3", "4", "5", "6"};
auto lhs_structs_column = structs{{lhs_ints_child, lhs_strings_child}, null_at_3}.release();
auto rhs_ints_child = ints{0, 11, 22, 33, 44, 55, 66};
auto rhs_strings_child = strings{{"00", "11", "22", "33", "44", "55", "66"}, null_at_5};
auto rhs_structs_column = structs{{rhs_ints_child, rhs_strings_child}}.release();
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto result_column = cudf::copy_if_else(
lhs_structs_column->view(), rhs_structs_column->view(), selector_column->view());
auto null_at_0_3 = nulls_at(std::vector<cudf::size_type>{0, 3});
auto null_at_3_5 = nulls_at(std::vector<cudf::size_type>{3, 5});
auto expected_ints = ints{{-1, 1, 22, 3, 4, 55, 6}, null_at_0_3};
auto expected_strings = strings{{"0", "1", "22", "", "4", "", "6"}, null_at_3_5};
auto expected_result = structs{{expected_ints, expected_strings}, null_at_3}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result_column->view(), expected_result->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, LongerStructsWithNulls)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto selector_column = bools{1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0}
.release();
auto lhs_child_1 =
ints{{27, -80, -24, 76, -56, 42, 5, 13, -69, -77, 61, -77, 72, 0, 31, 118, -30,
86, 125, 0, 0, 0, 75, -49, 125, 60, 116, 118, 64, 20, -70, -18, 0, -25,
22, -46, -89, -9, 27, -56, -77, 123, 0, -90, 87, -113, -37, 22, -22, -53, 73,
99, 113, -2, -24, 113, 75, 6, 82, -58, 122, -123, -127, 19, -62, -24},
nulls_at(std::vector<cudf::size_type>{13, 19, 20, 21, 32, 42})};
auto lhs_structs_column = structs{{lhs_child_1}}.release();
auto result_column = cudf::copy_if_else(
lhs_structs_column->view(), lhs_structs_column->view(), selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result_column->view(), lhs_structs_column->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarStructBothInvalid)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto lhs_child_ints = ints{11};
auto lhs_child_strings = strings{"11"};
auto lhs_children = std::vector<cudf::column_view>{{lhs_child_ints, lhs_child_strings}};
auto lhs_scalar = cudf::struct_scalar{lhs_children, false};
auto rhs_child_ints = ints{{22}, null_at(0)};
auto rhs_child_strings = strings{"22"};
auto rhs_children = std::vector<cudf::column_view>{{rhs_child_ints, rhs_child_strings}};
auto rhs_scalar = cudf::struct_scalar{rhs_children, false};
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto expected_ints = ints{-11, -11, -22, -11, -11, -22, -11};
auto expected_strings = strings{"-11", "-11", "-22", "-11", "-22", "-11", "-11"};
auto expected_result = structs{{expected_ints, expected_strings}, all_nulls()}.release();
auto result_column = cudf::copy_if_else(lhs_scalar, rhs_scalar, selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarStructBothValid)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto lhs_child_ints = ints{11};
auto lhs_child_strings = strings{{"11"}, null_at(0)};
auto lhs_children = std::vector<cudf::column_view>{{lhs_child_ints, lhs_child_strings}};
auto lhs_scalar = cudf::make_struct_scalar(lhs_children);
auto rhs_child_ints = ints{{22}, null_at(0)};
auto rhs_child_strings = strings{"22"};
auto rhs_children = std::vector<cudf::column_view>{{rhs_child_ints, rhs_child_strings}};
auto rhs_scalar = cudf::make_struct_scalar(rhs_children);
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto expected_ints =
ints{{11, 11, -22, 11, 11, -22, 11}, nulls_at(std::vector<cudf::size_type>{2, 5})};
auto expected_strings = strings{{"NA", "NA", "22", "NA", "NA", "22", "NA"},
nulls_at(std::vector<cudf::size_type>{0, 1, 3, 4, 6})};
auto expected_result = structs{{expected_ints, expected_strings}}.release();
auto result_column = cudf::copy_if_else(*lhs_scalar, *rhs_scalar, selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarStructLeft)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto lhs_child_ints = ints{11};
auto lhs_child_strings = strings{{"11"}, null_at(0)};
auto lhs_children = std::vector<cudf::column_view>{{lhs_child_ints, lhs_child_strings}};
auto lhs_scalar = cudf::make_struct_scalar(lhs_children);
auto rhs_child_ints = ints{{22, 22, 22, 22, 22, 22, 22}, null_at(2)};
auto rhs_child_strings = strings{"22", "22", "22", "22", "22", "22", "22"};
auto rhs_column = structs{{rhs_child_ints, rhs_child_strings}, null_at(5)}.release();
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto lhs_column = cudf::make_column_from_scalar(*lhs_scalar, selector_column->size());
auto expected_ints = ints{{11, 11, -22, 11, 11, 22, 11}, null_at(2)};
auto expected_strings = strings{{"NA", "NA", "22", "NA", "NA", "22", "NA"},
nulls_at(std::vector<cudf::size_type>{0, 1, 3, 4, 6})};
auto expected_result = structs{{expected_ints, expected_strings}, null_at(5)}.release();
auto result_column = cudf::copy_if_else(*lhs_scalar, rhs_column->view(), selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarStructRight)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
auto lhs_child_ints =
ints{{11, 11, 11, 11, 11, 11, 11}, nulls_at(std::vector<cudf::size_type>{1, 4})};
auto lhs_child_strings = strings{"11", "11", "11", "11", "11", "11", "11"};
auto lhs_column = structs{{lhs_child_ints, lhs_child_strings}, null_at(6)}.release();
auto rhs_child_ints = ints{{22}, null_at(0)};
auto rhs_child_strings = strings{"22"};
auto rhs_children = std::vector<cudf::column_view>{{rhs_child_ints, rhs_child_strings}};
auto rhs_scalar = cudf::make_struct_scalar(rhs_children);
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto expected_ints =
ints{{11, 11, -22, 11, 11, -22, 11}, nulls_at(std::vector<cudf::size_type>{1, 2, 4, 5})};
auto expected_strings = strings{"11", "11", "22", "11", "11", "22", "11"};
auto expected_result = structs{{expected_ints, expected_strings}, null_at(6)}.release();
auto result_column = cudf::copy_if_else(lhs_column->view(), *rhs_scalar, selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, Lists)
{
using T = TypeParam;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto lhs =
lcw{{0, 0}, {1, 1}, {2, 2}, {3, 3, 3}, {4, 4, 4, 4}, {5, 5, 5, 5, 5}, {6, 6, 6, 6, 6, 6}}
.release();
auto rhs = lcw{{0, 0},
{11, 11},
{22, 22},
{33, 33, 33},
{44, 44, 44, 44},
{55, 55, 55, 55, 55},
{66, 66, 66, 66, 66, 66}}
.release();
auto selector_column =
cudf::test::fixed_width_column_wrapper<bool, int32_t>{1, 1, 0, 1, 1, 0, 1}.release();
auto result_column = cudf::copy_if_else(lhs->view(), rhs->view(), selector_column->view());
auto expected_output =
lcw{{0, 0}, {1, 1}, {22, 22}, {3, 3, 3}, {4, 4, 4, 4}, {55, 55, 55, 55, 55}, {6, 6, 6, 6, 6, 6}}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result_column->view(), expected_output->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ListsWithNulls)
{
using T = TypeParam;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto null_at_0 = null_at(0);
auto null_at_4 = null_at(4);
auto null_at_5 = null_at(5);
auto lhs = lcw{{{0, 0},
{1, 1},
lcw{{2, 2}, null_at_0},
lcw{{3, 3, 3}, null_at_0},
{4, 4, 4, 4},
{5, 5, 5, 5, 5},
{6, 6, 6, 6, 6, 6}},
null_at_4}
.release();
auto rhs = lcw{{{0, 0},
{11, 11},
{22, 22},
{33, 33, 33},
{44, 44, 44, 44},
{55, 55, 55, 55, 55},
{66, 66, 66, 66, 66, 66}},
null_at_5}
.release();
auto selector_column =
cudf::test::fixed_width_column_wrapper<bool, int32_t>{1, 1, 0, 1, 1, 0, 1}.release();
auto result_column = cudf::copy_if_else(lhs->view(), rhs->view(), selector_column->view());
auto null_at_4_5 = nulls_at(std::vector{4, 5});
auto expected_output =
lcw{{{0, 0}, {1, 1}, {22, 22}, lcw{{3, 3, 3}, null_at_0}, {}, {}, {6, 6, 6, 6, 6, 6}},
null_at_4_5}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result_column->view(), expected_output->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ListsWithStructs)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using strings = cudf::test::strings_column_wrapper;
using structs = cudf::test::structs_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
using offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type, int32_t>;
auto const null_at_0 = null_at(0);
auto const null_at_3 = null_at(3);
auto const null_at_4 = null_at(4);
auto const null_at_6 = null_at(6);
auto const null_at_7 = null_at(7);
auto const null_at_8 = null_at(8);
auto lhs_ints = ints{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, null_at_3};
auto lhs_strings = strings{{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}, null_at_4};
auto lhs_structs = structs{{lhs_ints, lhs_strings}}.release();
auto lhs_offsets = offsets{0, 2, 4, 6, 10, 10}.release();
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(null_at_4, null_at_4 + 5);
auto const lhs = cudf::make_lists_column(
5, std::move(lhs_offsets), std::move(lhs_structs), null_count, std::move(null_mask));
auto rhs_ints = ints{{0, 11, 22, 33, 44, 55, 66, 77, 88, 99}, null_at_6};
auto rhs_strings =
strings{{"00", "11", "22", "33", "44", "55", "66", "77", "88", "99"}, null_at_7};
auto rhs_structs = structs{{rhs_ints, rhs_strings}, null_at_8};
auto rhs_offsets = offsets{0, 0, 4, 6, 8, 10};
std::tie(null_mask, null_count) = cudf::test::detail::make_null_mask(null_at_0, null_at_0 + 5);
auto const rhs = cudf::make_lists_column(
5, rhs_offsets.release(), rhs_structs.release(), null_count, std::move(null_mask));
auto selector_column = bools{1, 0, 1, 0, 1}.release();
auto result_column = cudf::copy_if_else(lhs->view(), rhs->view(), selector_column->view());
auto const null_at_6_9 = nulls_at(std::vector{6, 9});
auto expected_ints = ints{{0, 1, 0, 11, 22, 33, 4, 5, -1, 77}, null_at_8};
auto expected_strings =
strings{{"0", "1", "00", "11", "22", "33", "", "5", "66", ""}, null_at_6_9};
auto expected_structs = structs{{expected_ints, expected_strings}};
auto expected_offsets = offsets{0, 2, 6, 8, 10, 10};
std::tie(null_mask, null_count) = cudf::test::detail::make_null_mask(null_at_4, null_at_4 + 5);
auto const expected = cudf::make_lists_column(
5, expected_offsets.release(), expected_structs.release(), null_count, std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result_column->view(), expected->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarListBothInvalid)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto lhs_scalar = cudf::list_scalar{ints{33, 33, 33}, false};
auto rhs_scalar = cudf::list_scalar{ints{22, 22}, false};
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto expected = lcw{{
{-33, -33, -33},
{-33, -33, -33},
{-22, -22},
{-33, -33, -33},
{-33, -33, -33},
{-22, -22},
{-33, -33, -33},
},
all_nulls()}
.release();
auto result = cudf::copy_if_else(lhs_scalar, rhs_scalar, selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected->view(), result->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarListBothValid)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto lhs_scalar = cudf::make_list_scalar(ints{{33, 33, 33}, null_at(1)});
auto rhs_scalar = cudf::make_list_scalar(ints{{22, 22}, null_at(0)});
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto expected =
lcw{
lcw{{33, 33, 33}, null_at(1)},
lcw{{33, 33, 33}, null_at(1)},
lcw{{22, 22}, null_at(0)},
lcw{{33, 33, 33}, null_at(1)},
lcw{{33, 33, 33}, null_at(1)},
lcw{{22, 22}, null_at(0)},
lcw{{33, 33, 33}, null_at(1)},
}
.release();
auto result = cudf::copy_if_else(*lhs_scalar, *rhs_scalar, selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected->view(), result->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarListLeft)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto lhs_scalar = cudf::make_list_scalar(ints{{33, 33, 33}, null_at(1)});
auto rhs_column = lcw{{{-2, -1},
{-2, -1, 0},
{21, 22},
{-20, -10, 0},
{-200, -100, 0, 100},
lcw{{23, 24, 25, 26, 27, 28}, null_at(1)},
{-400}},
null_at(2)}
.release();
auto selector_column = bools{1, 1, 0, 1, 1, 0, 1}.release();
auto expected = lcw{{lcw{{33, 33, 33}, null_at(1)},
lcw{{33, -33, 33}, null_at(1)},
{-21, -22},
lcw{{33, -33, 33}, null_at(1)},
lcw{{33, -33, 33}, null_at(1)},
lcw{{23, -24, 25, 26, 27, 28}, null_at(1)},
lcw{{33, -33, 33}, null_at(1)}},
null_at(2)}
.release();
auto result = cudf::copy_if_else(*lhs_scalar, rhs_column->view(), selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected->view(), result->view());
}
TYPED_TEST(TypedCopyIfElseNestedTest, ScalarListRight)
{
using T = TypeParam;
using ints = cudf::test::fixed_width_column_wrapper<T, int32_t>;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto lhs_column = lcw{{{-2, -1},
{-2, -1, 0},
{21, 22},
{-20, -10, 0},
{-200, -100, 0, 100},
lcw{{23, 24, 25, 26, 27, 28}, null_at(1)},
{-400}},
null_at(2)}
.release();
auto rhs_scalar = cudf::make_list_scalar(ints{{33, 33, 33}, null_at(1)});
auto selector_column = bools{0, 0, 1, 0, 0, 1, 0}.release();
auto expected = lcw{{
lcw{{33, -33, 33}, null_at(1)},
lcw{{33, -33, 33}, null_at(1)},
{-21, -22},
lcw{{33, -33, 33}, null_at(1)},
lcw{{33, -33, 33}, null_at(1)},
lcw{{23, -24, 25, 26, 27, 28}, null_at(1)},
lcw{{33, -33, 33}, null_at(1)},
},
null_at(2)}
.release();
auto result = cudf::copy_if_else(lhs_column->view(), *rhs_scalar, selector_column->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected->view(), result->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/shift_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/traits.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <limits>
#include <memory>
using TestTypes = cudf::test::Types<int32_t>;
template <typename T, typename ScalarType = cudf::scalar_type_t<T>>
std::unique_ptr<cudf::scalar> make_scalar(
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource())
{
auto s = new ScalarType(cudf::test::make_type_param_scalar<T>(0), false, stream, mr);
return std::unique_ptr<cudf::scalar>(s);
}
template <typename T, typename ScalarType = cudf::scalar_type_t<T>>
std::unique_ptr<cudf::scalar> make_scalar(
T value,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource())
{
auto s = new ScalarType(value, true, stream, mr);
return std::unique_ptr<cudf::scalar>(s);
}
template <typename T>
constexpr auto highest()
{
// chrono types do not have std::numeric_limits specializations and should use T::max()
// https://eel.is/c++draft/numeric.limits.general#6
if constexpr (cudf::is_chrono<T>()) return T::max();
return std::numeric_limits<T>::max();
}
template <typename T>
constexpr auto lowest()
{
// chrono types do not have std::numeric_limits specializations and should use T::min()
// https://eel.is/c++draft/numeric.limits.general#6
if constexpr (cudf::is_chrono<T>()) return T::min();
return std::numeric_limits<T>::lowest();
}
template <typename T>
struct ShiftTestsTyped : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ShiftTestsTyped, cudf::test::FixedWidthTypes);
TYPED_TEST(ShiftTestsTyped, ColumnEmpty)
{
using T = TypeParam;
std::vector<T> vals{};
std::vector<bool> mask{};
auto input = cudf::test::fixed_width_column_wrapper<T>(vals.begin(), vals.end(), mask.begin());
auto expected = cudf::test::fixed_width_column_wrapper<T>(vals.begin(), vals.end(), mask.begin());
auto fill = make_scalar<T>();
auto actual = cudf::shift(input, 5, *fill);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *actual);
}
TYPED_TEST(ShiftTestsTyped, NonNullColumn)
{
using T = TypeParam;
auto input = cudf::test::fixed_width_column_wrapper<T>{lowest<T>(),
cudf::test::make_type_param_scalar<T>(1),
cudf::test::make_type_param_scalar<T>(2),
cudf::test::make_type_param_scalar<T>(3),
cudf::test::make_type_param_scalar<T>(4),
cudf::test::make_type_param_scalar<T>(5),
highest<T>()};
auto expected =
cudf::test::fixed_width_column_wrapper<T>{cudf::test::make_type_param_scalar<T>(7),
cudf::test::make_type_param_scalar<T>(7),
lowest<T>(),
cudf::test::make_type_param_scalar<T>(1),
cudf::test::make_type_param_scalar<T>(2),
cudf::test::make_type_param_scalar<T>(3),
cudf::test::make_type_param_scalar<T>(4)};
auto fill = make_scalar<T>(cudf::test::make_type_param_scalar<T>(7));
auto actual = cudf::shift(input, 2, *fill);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *actual);
}
TYPED_TEST(ShiftTestsTyped, NegativeShift)
{
using T = TypeParam;
auto input = cudf::test::fixed_width_column_wrapper<T>{lowest<T>(),
cudf::test::make_type_param_scalar<T>(1),
cudf::test::make_type_param_scalar<T>(2),
cudf::test::make_type_param_scalar<T>(3),
cudf::test::make_type_param_scalar<T>(4),
cudf::test::make_type_param_scalar<T>(5),
highest<T>()};
auto expected =
cudf::test::fixed_width_column_wrapper<T>{cudf::test::make_type_param_scalar<T>(4),
cudf::test::make_type_param_scalar<T>(5),
highest<T>(),
cudf::test::make_type_param_scalar<T>(7),
cudf::test::make_type_param_scalar<T>(7),
cudf::test::make_type_param_scalar<T>(7),
cudf::test::make_type_param_scalar<T>(7)};
auto fill = make_scalar<T>(cudf::test::make_type_param_scalar<T>(7));
auto actual = cudf::shift(input, -4, *fill);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *actual);
}
TYPED_TEST(ShiftTestsTyped, NullScalar)
{
using T = TypeParam;
auto input = cudf::test::fixed_width_column_wrapper<T>{lowest<T>(),
cudf::test::make_type_param_scalar<T>(5),
cudf::test::make_type_param_scalar<T>(0),
cudf::test::make_type_param_scalar<T>(3),
cudf::test::make_type_param_scalar<T>(0),
cudf::test::make_type_param_scalar<T>(1),
highest<T>()};
auto expected =
cudf::test::fixed_width_column_wrapper<T>({cudf::test::make_type_param_scalar<T>(0),
cudf::test::make_type_param_scalar<T>(0),
lowest<T>(),
cudf::test::make_type_param_scalar<T>(5),
cudf::test::make_type_param_scalar<T>(0),
cudf::test::make_type_param_scalar<T>(3),
cudf::test::make_type_param_scalar<T>(0)},
{0, 0, 1, 1, 1, 1, 1});
auto fill = make_scalar<T>();
auto actual = cudf::shift(input, 2, *fill);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *actual);
}
TYPED_TEST(ShiftTestsTyped, NullableColumn)
{
using T = TypeParam;
auto input = cudf::test::fixed_width_column_wrapper<T, int32_t>({1, 2, 3, 4, 5}, {0, 1, 1, 1, 0});
auto expected =
cudf::test::fixed_width_column_wrapper<T, int32_t>({7, 7, 1, 2, 3}, {1, 1, 0, 1, 1});
auto fill = make_scalar<T>(cudf::test::make_type_param_scalar<T>(7));
auto actual = cudf::shift(input, 2, *fill);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *actual);
}
TYPED_TEST(ShiftTestsTyped, MismatchFillValueDtypes)
{
using T = TypeParam;
auto input = cudf::test::fixed_width_column_wrapper<T>{};
auto fill = cudf::string_scalar("");
EXPECT_THROW(cudf::shift(input, 5, fill), cudf::logic_error);
}
struct ShiftTests : public cudf::test::BaseFixture {};
TEST_F(ShiftTests, StringsShiftTest)
{
auto input =
cudf::test::strings_column_wrapper({"", "bb", "ccc", "ddddddé", ""}, {0, 1, 1, 1, 0});
auto fill = cudf::string_scalar("xx");
auto results = cudf::shift(input, 2, fill);
auto expected_right =
cudf::test::strings_column_wrapper({"xx", "xx", "", "bb", "ccc"}, {1, 1, 0, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_right, *results);
results = cudf::shift(input, -2, fill);
auto expected_left =
cudf::test::strings_column_wrapper({"ccc", "ddddddé", "", "xx", "xx"}, {1, 1, 0, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_left, *results);
auto sliced = cudf::slice(input, {1, 4}).front();
results = cudf::shift(sliced, 1, fill);
auto sliced_right = cudf::test::strings_column_wrapper({"xx", "bb", "ccc"}, {1, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(sliced_right, *results);
results = cudf::shift(sliced, -1, fill);
auto sliced_left = cudf::test::strings_column_wrapper({"ccc", "ddddddé", "xx"}, {1, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(sliced_left, *results);
}
TEST_F(ShiftTests, StringsShiftNullFillTest)
{
auto input = cudf::test::strings_column_wrapper(
{"a", "b", "c", "d", "e", "ff", "ggg", "hhhh", "iii", "jjjjj"});
auto phil = cudf::string_scalar("", false);
auto results = cudf::shift(input, -1, phil);
auto expected = cudf::test::strings_column_wrapper(
{"b", "c", "d", "e", "ff", "ggg", "hhhh", "iii", "jjjjj", ""}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
results = cudf::shift(input, 1, phil);
expected = cudf::test::strings_column_wrapper(
{"", "a", "b", "c", "d", "e", "ff", "ggg", "hhhh", "iii"}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
auto sliced = cudf::slice(input, {5, 10}).front();
results = cudf::shift(sliced, -2, phil);
expected = cudf::test::strings_column_wrapper({"hhhh", "iii", "jjjjj", "", ""}, {1, 1, 1, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
results = cudf::shift(sliced, 2, phil);
expected = cudf::test::strings_column_wrapper({"", "", "ff", "ggg", "hhhh"}, {0, 0, 1, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(ShiftTests, OffsetGreaterThanSize)
{
auto const input_str =
cudf::test::strings_column_wrapper({"", "bb", "ccc", "ddé", ""}, {0, 1, 1, 1, 0});
auto results = cudf::shift(input_str, 6, cudf::string_scalar("xx"));
auto expected_str = cudf::test::strings_column_wrapper({"xx", "xx", "xx", "xx", "xx"});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_str, *results);
results = cudf::shift(input_str, -6, cudf::string_scalar("xx"));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_str, *results);
results = cudf::shift(input_str, 6, cudf::string_scalar("", false));
expected_str = cudf::test::strings_column_wrapper({"", "", "", "", ""}, {0, 0, 0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_str, *results);
results = cudf::shift(input_str, -6, cudf::string_scalar("", false));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_str, *results);
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>({0, 2, 3, 4, 0}, {0, 1, 1, 1, 0});
results = cudf::shift(input, 6, cudf::numeric_scalar<int32_t>(9));
auto expected = cudf::test::fixed_width_column_wrapper<int32_t>({9, 9, 9, 9, 9});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results);
results = cudf::shift(input, -6, cudf::numeric_scalar<int32_t>(9));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results);
results = cudf::shift(input, 6, cudf::numeric_scalar<int32_t>(0, false));
expected = cudf::test::fixed_width_column_wrapper<int32_t>({0, 0, 0, 0, 0}, {0, 0, 0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results);
results = cudf::shift(input, -6, cudf::numeric_scalar<int32_t>(0, false));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/gather_list_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
template <typename T>
class GatherTestListTyped : public cudf::test::BaseFixture {};
using FixedWidthTypesNotBool = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FixedPointTypes,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(GatherTestListTyped, FixedWidthTypesNotBool);
class GatherTestList : public cudf::test::BaseFixture {};
// to disambiguate between {} == 0 and {} == List{0}
// Also, see note about compiler issues when declaring nested
// empty lists in lists_column_wrapper documentation
template <typename T>
using LCW = cudf::test::lists_column_wrapper<T, int32_t>;
TYPED_TEST(GatherTestListTyped, Gather)
{
using T = TypeParam;
// List<T>
LCW<T> list{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}};
cudf::test::fixed_width_column_wrapper<int> gather_map{0, 2};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{1, 2, 3, 4}, {6, 7}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
TYPED_TEST(GatherTestListTyped, GatherNothing)
{
using T = TypeParam;
// List<T>
{
LCW<T> list{{1, 2, 3, 4}, {5}, {6, 7}, {8, 9, 10}};
cudf::test::fixed_width_column_wrapper<int> gather_map{};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected;
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
// List<T>
{
cudf::test::lists_column_wrapper<int> list{{{{1, 2, 3, 4}, {5}}}, {{{6, 7}, {8, 9, 10}}}};
cudf::test::fixed_width_column_wrapper<int> gather_map{};
cudf::table_view source_table({list});
auto result = cudf::gather(source_table, gather_map);
// the result should preserve the full List<List<List<int>>> hierarchy
// even though it is empty past the first level
cudf::lists_column_view lcv(result->view().column(0));
EXPECT_EQ(lcv.size(), 0);
EXPECT_EQ(lcv.child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(lcv.child().size(), 0);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().size(), 0);
EXPECT_EQ(
cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().type().id(),
cudf::type_id::INT32);
EXPECT_EQ(cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().size(),
0);
}
}
TYPED_TEST(GatherTestListTyped, GatherNulls)
{
using T = TypeParam;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// List<T>
LCW<T> list{{{1, 2, 3, 4}, valids}, {5}, {{6, 7}, valids}, {{8, 9, 10}, valids}};
cudf::test::fixed_width_column_wrapper<int> gather_map{0, 2};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{{1, 2, 3, 4}, valids}, {{6, 7}, valids}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
TYPED_TEST(GatherTestListTyped, GatherNested)
{
using T = TypeParam;
// List<List<T>>
{
LCW<T> list{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
cudf::test::fixed_width_column_wrapper<int> gather_map{0, 2};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{{2, 3}, {4, 5}}, {{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
// List<List<List<T>>>
{
LCW<T> list{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}},
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{10, 20}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}};
cudf::test::fixed_width_column_wrapper<int> gather_map{1, 2, 4};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}},
{{LCW<T>{0}}},
{{{10, 20}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
}
TYPED_TEST(GatherTestListTyped, GatherOutOfOrder)
{
using T = TypeParam;
// List<List<T>>
{
LCW<T> list{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
cudf::test::fixed_width_column_wrapper<int> gather_map{1, 2, 0};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}},
{{2, 3}, {4, 5}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
}
TYPED_TEST(GatherTestListTyped, GatherNestedNulls)
{
using T = TypeParam;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// List<List<T>>
{
LCW<T> list{{{{2, 3}, valids}, {4, 5}},
{{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}, valids},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}},
{{{{25, 26}, valids}, {27, 28}, {{29, 30}, valids}, {31, 32}, {33, 34}}, valids}};
cudf::test::fixed_width_column_wrapper<int> gather_map{0, 1, 3};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{
{{{2, 3}, valids}, {4, 5}},
{{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}, valids},
{{{{25, 26}, valids}, {27, 28}, {{29, 30}, valids}, {31, 32}, {33, 34}}, valids}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
// List<List<List<T>>>
{
LCW<T> list{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {{27, 28}, valids}, {{37, 38}, valids}, {47, 48}, {57, 58}}},
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids}};
cudf::test::fixed_width_column_wrapper<int> gather_map{1, 2, 4};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{{{15, 16}, {{27, 28}, valids}, {{37, 38}, valids}, {47, 48}, {57, 58}}},
{{LCW<T>{0}}},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
}
TYPED_TEST(GatherTestListTyped, GatherNestedWithEmpties)
{
using T = TypeParam;
LCW<T> list{{{2, 3}, LCW<T>{}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}, {LCW<T>{}}};
cudf::test::fixed_width_column_wrapper<int> gather_map{0, 2};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map);
LCW<T> expected{{{2, 3}, LCW<T>{}}, {LCW<T>{}}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
TYPED_TEST(GatherTestListTyped, GatherDetailInvalidIndex)
{
using T = TypeParam;
// List<List<T>>
{
LCW<T> list{{{2, 3}, {4, 5}},
{{6, 7, 8}, {9, 10, 11}, {12, 13, 14}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}};
cudf::test::fixed_width_column_wrapper<int> gather_map{0, 15, 16, 2};
cudf::table_view source_table({list});
auto results = cudf::gather(source_table, gather_map, cudf::out_of_bounds_policy::NULLIFY);
std::vector<int32_t> expected_validity{1, 0, 0, 1};
LCW<T> expected{{{{2, 3}, {4, 5}},
{LCW<T>{}},
{LCW<T>{}},
{{15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}}},
expected_validity.begin()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
}
TEST_F(GatherTestList, GatherIncompleteHierarchies)
{
using LCW = cudf::test::lists_column_wrapper<int32_t>;
{
// List<List<List<int>, but rows 1 and 2 are empty at the very top.
// We expect to get back a "full" hierarchy of type List<List<List<int>> anyway.
cudf::test::lists_column_wrapper<int32_t> list{{{{1, 2}}}, LCW{}, LCW{}};
cudf::table_view source_table({list});
cudf::test::fixed_width_column_wrapper<int32_t> row1_map{1};
auto result = cudf::gather(source_table, row1_map);
// the result should preserve the full List<List<List<int>>> hierarchy
// even though it is empty past the first level
cudf::lists_column_view lcv(result->view().column(0));
EXPECT_EQ(lcv.size(), 1);
EXPECT_EQ(lcv.child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(lcv.child().size(), 0);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().size(), 0);
EXPECT_EQ(
cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().type().id(),
cudf::type_id::INT32);
EXPECT_EQ(cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().size(),
0);
}
{
// List<List<List<int>, gathering nothing.
// We expect to get back a "full" hierarchy of type List<List<List<int>> anyway.
cudf::test::lists_column_wrapper<int32_t> list{{{{1, 2}}}, LCW{}};
cudf::table_view source_table({list});
cudf::test::fixed_width_column_wrapper<int32_t> empty_map{};
auto result = cudf::gather(source_table, empty_map);
// the result should preserve the full List<List<List<int>>> hierarchy
// even though it is empty past the first level
cudf::lists_column_view lcv(result->view().column(0));
EXPECT_EQ(lcv.size(), 0);
EXPECT_EQ(lcv.child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(lcv.child().size(), 0);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().type().id(), cudf::type_id::LIST);
EXPECT_EQ(cudf::lists_column_view(lcv.child()).child().size(), 0);
EXPECT_EQ(
cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().type().id(),
cudf::type_id::INT32);
EXPECT_EQ(cudf::lists_column_view(cudf::lists_column_view(lcv.child()).child()).child().size(),
0);
}
}
TYPED_TEST(GatherTestListTyped, GatherSliced)
{
using T = TypeParam;
{
LCW<T> a{
{{1, 1, 1}, {2, 2}, {3, 3}},
{{4, 4, 4}, {5, 5}, {6, 6}},
{{7, 7, 7}, {8, 8}, {9, 9}},
{{10, 10, 10}, {11, 11}, {12, 12}},
{{20, 20, 20, 20}, {25}},
{{30, 30, 30, 30}, {40}},
{{50, 50, 50, 50}, {6, 13}},
{{70, 70, 70, 70}, {80}},
};
auto split_a = cudf::split(a, {3});
cudf::table_view tbl0({split_a[0]});
cudf::table_view tbl1({split_a[1]});
auto result0 = cudf::gather(tbl0, cudf::test::fixed_width_column_wrapper<int>{1, 2});
LCW<T> expected0{
{{4, 4, 4}, {5, 5}, {6, 6}},
{{7, 7, 7}, {8, 8}, {9, 9}},
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected0, result0->get_column(0).view());
auto result1 = cudf::gather(tbl1, cudf::test::fixed_width_column_wrapper<int>{0, 3});
LCW<T> expected1{
{{10, 10, 10}, {11, 11}, {12, 12}},
{{50, 50, 50, 50}, {6, 13}},
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, result1->get_column(0).view());
}
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// List<List<List<T>>>
{
LCW<T> list{
// slice 0
{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}},
{{{15, 16}, {{27, 28}, valids}, {{37, 38}, valids}, {47, 48}, {57, 58}},
{{11, 12}, {{42, 43, 44}, valids}, {{77, 78}, valids}}},
// slice 1
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{{1, 6}, {60, 70, 80, 100}}, {{10, 11, 13}, {15}}, {{11, 12, 13, 14, 15}}}, valids},
// slice 2
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids},
{{{{10, 20, 30}}, {LCW<T>{30}}, {{{20, 30}, valids}, {62, 72, 82}}}, valids}};
auto sliced = cudf::slice(list, {0, 1, 2, 5, 5, 7});
// gather from slice 0
{
cudf::table_view tbl({sliced[0]});
cudf::test::fixed_width_column_wrapper<int> map{0};
auto result = cudf::gather(tbl, map);
LCW<T> expected{{{{2, 3}, {4, 5}}, {{6, 7, 8}, {9, 10, 11}, {12, 13, 14}}}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result->get_column(0).view());
}
// gather from slice 1
{
cudf::table_view tbl({sliced[1]});
cudf::test::fixed_width_column_wrapper<int> map{1, 2, 0, 1};
auto result = cudf::gather(tbl, map);
LCW<T> expected{
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
{{{{1, 6}, {60, 70, 80, 100}}, {{10, 11, 13}, {15}}, {{11, 12, 13, 14, 15}}}, valids},
{{LCW<T>{0}}},
{{{10}, {20, 30, 40, 50}, {60, 70, 80}},
{{0, 1, 3}, {5}},
{{11, 12, 13, 14, 15}, {16, 17}, {0}}},
};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result->get_column(0).view());
}
// gather from slice 2
{
cudf::table_view tbl({sliced[2]});
cudf::test::fixed_width_column_wrapper<int> map{1, 0, 0, 1, 1, 0};
auto result = cudf::gather(tbl, map);
LCW<T> expected{{{{{10, 20, 30}}, {LCW<T>{30}}, {{{20, 30}, valids}, {62, 72, 82}}}, valids},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids},
{{{{10, 20, 30}}, {LCW<T>{30}}, {{{20, 30}, valids}, {62, 72, 82}}}, valids},
{{{{10, 20, 30}}, {LCW<T>{30}}, {{{20, 30}, valids}, {62, 72, 82}}}, valids},
{{{{{10, 20}, valids}}, {LCW<T>{30}}, {{40, 50}, {60, 70, 80}}}, valids}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result->get_column(0).view());
}
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/gather_struct_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/structs/structs_column_view.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/error.hpp>
#include <rmm/device_buffer.hpp>
#include <memory>
using vector_of_columns = std::vector<std::unique_ptr<cudf::column>>;
using gather_map_t = std::vector<cudf::size_type>;
using offsets = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs = cudf::test::structs_column_wrapper;
using strings = cudf::test::strings_column_wrapper;
using bools = cudf::test::fixed_width_column_wrapper<bool, int32_t>;
// Test validity iterator utilities.
using cudf::test::iterators::no_nulls;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
template <typename T>
using numerics = cudf::test::fixed_width_column_wrapper<T, int32_t>;
template <typename T>
using lists = cudf::test::lists_column_wrapper<T, int32_t>;
auto constexpr null_index = std::numeric_limits<cudf::size_type>::max();
struct StructGatherTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedStructGatherTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedStructGatherTest, cudf::test::FixedWidthTypes);
namespace {
template <typename ElementTo, typename SourceElementT = ElementTo>
struct column_wrapper_constructor {
template <typename ValueIter, typename ValidityIter>
auto operator()(ValueIter begin, ValueIter end, ValidityIter validity_begin) const
{
return cudf::test::fixed_width_column_wrapper<ElementTo, SourceElementT>{
begin, end, validity_begin};
}
};
template <>
struct column_wrapper_constructor<std::string, std::string> {
template <typename ValueIter, typename ValidityIter>
cudf::test::strings_column_wrapper operator()(ValueIter begin,
ValueIter end,
ValidityIter validity_begin) const
{
return cudf::test::strings_column_wrapper{begin, end, validity_begin};
}
};
template <typename ElementTo,
typename SourceElementT = ElementTo,
typename InputValidityIter = decltype(null_at(0)),
typename StructValidityIter = InputValidityIter>
auto get_expected_column(std::vector<SourceElementT> const& input_values,
InputValidityIter input_validity,
StructValidityIter struct_validity,
std::vector<int32_t> const& gather_map)
{
auto is_valid = // Validity predicate.
[&input_values, &input_validity, &struct_validity, &gather_map](auto gather_index) {
assert(
(gather_index >= 0 && gather_index < static_cast<cudf::size_type>(gather_map.size())) &&
"Gather-index out of range.");
auto i = gather_map[gather_index]; // Index into input_values.
return (i >= 0 && i < static_cast<int>(input_values.size())) && struct_validity[i] &&
input_validity[i];
};
auto expected_row_count = gather_map.size();
auto gather_iter = cudf::detail::make_counting_transform_iterator(
0, [is_valid, &input_values, &gather_map](auto i) {
return is_valid(i) ? input_values[gather_map[i]] : SourceElementT{};
});
return column_wrapper_constructor<ElementTo, SourceElementT>()(
gather_iter,
gather_iter + expected_row_count,
cudf::detail::make_counting_transform_iterator(0, is_valid));
}
auto do_gather(cudf::column_view const& input, gather_map_t const& gather_map)
{
auto result = cudf::gather(cudf::table_view{{input}},
offsets(gather_map.begin(), gather_map.end()),
cudf::out_of_bounds_policy::NULLIFY);
return std::move(result->release()[0]);
}
} // namespace
TYPED_TEST(TypedStructGatherTest, TestSimpleStructGather)
{
// Testing gather() on struct<string, numeric, bool>.
// 1. String "names" column.
auto const names =
std::vector<std::string>{"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant"};
auto const names_validity = no_nulls();
// 2. Numeric "ages" column.
auto const ages = std::vector<int32_t>{5, 10, 15, 20, 25, 30};
auto const ages_validity = null_at(4);
// 3. Boolean "is_human" column.
auto const is_human = {true, true, false, false, false, false};
auto const is_human_validity = null_at(3);
// Assemble struct column.
auto const struct_validity = null_at(5);
auto const struct_column = [&] {
auto names_member = ::strings(names.begin(), names.end(), names_validity);
auto ages_member = ::numerics<TypeParam>(ages.begin(), ages.end(), ages_validity);
auto is_human_member = ::bools(is_human.begin(), is_human.end(), is_human_validity);
return structs{{names_member, ages_member, is_human_member}, struct_validity};
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1};
auto const output = do_gather(struct_column, gather_map);
auto const expected_output = [&] {
auto names_member =
get_expected_column<std::string>(names, names_validity, struct_validity, gather_map);
auto ages_member =
get_expected_column<TypeParam, int32_t>(ages, ages_validity, struct_validity, gather_map);
auto is_human_member =
get_expected_column<bool>(std::vector<bool>(is_human.begin(), is_human.end()),
is_human_validity,
struct_validity,
gather_map);
return structs{{names_member, ages_member, is_human_member}, null_at(0)};
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output->view(), expected_output);
}
TYPED_TEST(TypedStructGatherTest, TestSlicedStructsColumnGatherNoNulls)
{
auto const structs_original = [] {
auto child1 =
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto child2 = cudf::test::strings_column_wrapper{
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten"};
return cudf::test::structs_column_wrapper{{child1, child2}};
}();
auto const expected = [] {
auto child1 = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{6, 10, 8};
auto child2 = cudf::test::strings_column_wrapper{"Six", "Ten", "Eight"};
return cudf::test::structs_column_wrapper{{child1, child2}};
}();
auto const structs = cudf::slice(structs_original, {4, 10})[0];
auto const gather_map = cudf::test::fixed_width_column_wrapper<int32_t>{1, 5, 3};
auto const result = cudf::gather(cudf::table_view{{structs}}, gather_map)->get_column(0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.view(), expected);
}
TYPED_TEST(TypedStructGatherTest, TestSlicedStructsColumnGatherWithNulls)
{
auto constexpr null = int32_t{0}; // null at child
auto constexpr XXX = int32_t{0}; // null at parent
auto const structs_original = [] {
auto child1 = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{
{null, XXX, 3, null, null, 6, XXX, null, null, 10}, nulls_at({0, 3, 4, 7, 8})};
auto child2 = cudf::test::strings_column_wrapper{{"One",
"" /*NULL at both parent and child*/,
"Three",
"" /*NULL*/,
"Five",
"" /*NULL*/,
"" /*NULL at parent*/,
"" /*NULL*/,
"Nine",
"" /*NULL*/},
nulls_at({1, 3, 5, 7, 9})};
return cudf::test::structs_column_wrapper{{child1, child2}, nulls_at({1, 6})};
}();
auto const expected = [] {
auto child1 =
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{{6, 10, null, XXX}, null_at(2)};
auto child2 =
cudf::test::strings_column_wrapper{{
"" /*NULL*/, "" /*NULL*/, "Nine", "" /*NULL at parent*/
},
nulls_at({0, 1})};
return cudf::test::structs_column_wrapper{{child1, child2}, null_at(3)};
}();
auto const structs = cudf::slice(structs_original, {4, 10})[0];
auto const gather_map = cudf::test::fixed_width_column_wrapper<int32_t>{1, 5, 4, 2};
auto const result = cudf::gather(cudf::table_view{{structs}}, gather_map)->get_column(0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.view(), expected);
}
TYPED_TEST(TypedStructGatherTest, TestNullifyOnNonNullInput)
{
// Test that the null masks of the struct output (and its children) are set correctly,
// for an input struct column whose members are not nullable.
// 1. String "names" column.
auto const names =
std::vector<std::string>{"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant"};
// 2. Numeric "ages" column.
auto const ages = std::vector<int32_t>{5, 10, 15, 20, 25, 30};
// 3. Boolean "is_human" column.
auto const is_human = {true, true, false, false, false, false};
// Assemble struct column.
auto const struct_column = [&] {
auto names_member = ::strings(names.begin(), names.end());
auto ages_member = ::numerics<TypeParam>(ages.begin(), ages.end());
auto is_human_member = ::bools(is_human.begin(), is_human.end());
return structs({names_member, ages_member, is_human_member});
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1};
auto const output = do_gather(struct_column, gather_map);
auto const expected_output = [&] {
auto names_member = get_expected_column<std::string>(names, no_nulls(), no_nulls(), gather_map);
auto ages_member =
get_expected_column<TypeParam, int32_t>(ages, no_nulls(), no_nulls(), gather_map);
auto is_human_member = get_expected_column<bool>(
std::vector<bool>(is_human.begin(), is_human.end()), no_nulls(), no_nulls(), gather_map);
return cudf::test::structs_column_wrapper{{names_member, ages_member, is_human_member},
null_at(0)};
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output->view(), expected_output);
}
TYPED_TEST(TypedStructGatherTest, TestGatherStructOfLists)
{
// Testing gather() on struct<list<numeric>>
auto lists_column_exemplar = [] {
return lists<TypeParam>{
{{5}, {10, 15}, {20, 25, 30}, {35, 40, 45, 50}, {55, 60, 65}, {70, 75}, {80}, {}, {}},
nulls_at({0, 3, 6, 9})};
};
// Assemble struct column.
auto const structs_column = [&] {
auto lists_column = lists_column_exemplar();
return cudf::test::structs_column_wrapper{{lists_column}};
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1, 7, 3};
auto const gathered_structs = do_gather(structs_column, gather_map);
// Verify that the gathered struct column's list member presents as if
// it had itself been gathered individually.
auto const expected_gathered_list_column = [&] {
auto const list_column_before_gathering = lists_column_exemplar();
return do_gather(list_column_before_gathering, gather_map);
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_gathered_list_column->view(),
gathered_structs->view().child(0));
}
TYPED_TEST(TypedStructGatherTest, TestGatherStructOfListsOfLists)
{
// Testing gather() on struct<list<list<numeric>>>
auto const lists_column_exemplar = []() {
return lists<TypeParam>{{{{5, 5}},
{{10, 15}},
{{20, 25}, {30}},
{{35, 40}, {45, 50}},
{{55}, {60, 65}},
{{70, 75}},
{{80, 80}},
{},
{}},
nulls_at({0, 3, 6, 9})};
};
auto const structs_column = [&] {
auto lists_column = lists_column_exemplar();
return cudf::test::structs_column_wrapper{{lists_column}};
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1, 7, 3};
auto const gathered_structs = do_gather(structs_column, gather_map);
// Verify that the gathered struct column's list member presents as if
// it had itself been gathered individually.
auto const expected_gathered_list_column = [&] {
auto const list_column_before_gathering = lists_column_exemplar();
return do_gather(list_column_before_gathering, gather_map);
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_gathered_list_column->view(),
gathered_structs->view().child(0));
}
TYPED_TEST(TypedStructGatherTest, TestGatherStructOfStructs)
{
// Testing gather() on struct<struct<numeric>>
auto const numeric_column_exemplar = []() {
return numerics<TypeParam>{{5, 10, 15, 20, 25, 30, 35, 45, 50, 55, 60, 65, 70, 75},
nulls_at({0, 3, 6, 9, 12, 15})};
};
auto const struct_of_structs_column = [&] {
auto numeric_column = numeric_column_exemplar();
auto structs_column = cudf::test::structs_column_wrapper{{numeric_column}};
return cudf::test::structs_column_wrapper{{structs_column}};
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1, 7, 3};
auto const gathered_structs = do_gather(struct_of_structs_column, gather_map);
// Verify that the underlying numeric column presents as if
// it had itself been gathered individually.
auto const expected_gathered_column = [&] {
auto const numeric_column_before_gathering = numeric_column_exemplar();
return do_gather(numeric_column_before_gathering, gather_map);
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_gathered_column->view(),
gathered_structs->view().child(0).child(0));
}
TYPED_TEST(TypedStructGatherTest, TestGatherStructOfListOfStructs)
{
// Testing gather() on struct<list<struct<numeric>>>
auto const struct_of_list_of_structs = [&] {
auto numeric_column =
numerics<TypeParam>{{5, 10, 15, 20, 25, 30, 35, 45, 50, 55, 60, 65, 70, 75}};
auto structs_column = structs{{numeric_column}}.release();
auto list_of_structs_column = cudf::make_lists_column(
7, offsets{0, 2, 4, 6, 8, 10, 12, 14}.release(), std::move(structs_column), 0, {});
std::vector<std::unique_ptr<cudf::column>> vector_of_columns;
vector_of_columns.push_back(std::move(list_of_structs_column));
return structs{std::move(vector_of_columns)};
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1};
auto const gathered_structs = do_gather(struct_of_list_of_structs, gather_map);
// Construct expected gather result.
auto expected_gather_result = [&] {
auto expected_numeric_col = numerics<TypeParam>{{70, 75, 50, 55, 35, 45, 25, 30, 15, 20}};
auto expected_struct_col = structs{{expected_numeric_col}}.release();
auto expected_list_of_structs_column = cudf::make_lists_column(
5, offsets{0, 2, 4, 6, 8, 10}.release(), std::move(expected_struct_col), 0, {});
std::vector<std::unique_ptr<cudf::column>> expected_vector_of_columns;
expected_vector_of_columns.push_back(std::move(expected_list_of_structs_column));
return structs{std::move(expected_vector_of_columns), {0, 1, 1, 1, 1}};
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_gather_result, gathered_structs->view());
}
TYPED_TEST(TypedStructGatherTest, TestGatherStructOfStructsWithValidity)
{
// Testing gather() on struct<struct<numeric>>
using validity_iter_t = decltype(nulls_at({0}));
// Factory to construct numeric column with configurable null-mask.
auto const numeric_column_exemplar = [](validity_iter_t validity) {
return numerics<TypeParam>{{5, 10, 15, 20, 25, 30, 35, 45, 50, 55, 60, 65, 70, 75}, validity};
};
// Construct struct-of-struct-of-numerics.
auto struct_of_structs_column = [&] {
// Every 3rd element is null.
auto numeric_column = numeric_column_exemplar(nulls_at({0, 3, 6, 9, 12, 15}));
// 12th element is null.
auto structs_column = cudf::test::structs_column_wrapper{{numeric_column}, nulls_at({11})};
return cudf::test::structs_column_wrapper{{structs_column}};
}();
// Gather to new struct column.
auto const gather_map = gather_map_t{null_index, 4, 3, 2, 1, 7, 3};
auto const gathered_structs = do_gather(struct_of_structs_column, gather_map);
// Verify that the underlying numeric column presents as if
// it had itself been gathered individually.
auto const expected_gathered_column = [&] {
// Every 3rd element *and* the 12th element are null.
auto const final_validity = nulls_at({0, 3, 6, 9, 11, 12, 15});
auto const numeric_column_before_gathering = numeric_column_exemplar(final_validity);
return do_gather(numeric_column_before_gathering, gather_map);
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_gathered_column->view(),
gathered_structs->view().child(0).child(0));
}
TYPED_TEST(TypedStructGatherTest, TestEmptyGather)
{
auto const struct_column = [&] {
auto ages = numerics<TypeParam>{{5, 10, 15, 20, 25, 30}, null_at(4)};
return cudf::test::structs_column_wrapper{{ages}, null_at(5)};
}();
auto const empty_gather_map = gather_map_t{};
auto const gathered_structs = do_gather(struct_column, empty_gather_map);
// Expect empty struct column gathered.
auto const expected_empty_column = [&] {
auto expected_empty_numerics = numerics<TypeParam>{};
return cudf::test::structs_column_wrapper{{expected_empty_numerics}};
}();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_empty_column, gathered_structs->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/get_value_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_list_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/concatenate.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/dictionary_factories.hpp>
#include <cudf/dictionary/update_keys.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/types.hpp>
#include <thrust/iterator/counting_iterator.h>
using namespace cudf::test::iterators;
template <typename T>
struct FixedWidthGetValueTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedWidthGetValueTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(FixedWidthGetValueTest, BasicGet)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> col({9, 8, 7, 6});
auto s = cudf::get_element(col, 0);
using ScalarType = cudf::scalar_type_t<TypeParam>;
auto typed_s = static_cast<ScalarType const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ(cudf::test::make_type_param_scalar<TypeParam>(9), typed_s->value());
}
TYPED_TEST(FixedWidthGetValueTest, GetFromNullable)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> col({9, 8, 7, 6}, {0, 1, 0, 1});
auto s = cudf::get_element(col, 1);
using ScalarType = cudf::scalar_type_t<TypeParam>;
auto typed_s = static_cast<ScalarType const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ(cudf::test::make_type_param_scalar<TypeParam>(8), typed_s->value());
}
TYPED_TEST(FixedWidthGetValueTest, GetNull)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> col({9, 8, 7, 6}, {0, 1, 0, 1});
auto s = cudf::get_element(col, 2);
EXPECT_FALSE(s->is_valid());
}
TYPED_TEST(FixedWidthGetValueTest, IndexOutOfBounds)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> col({9, 8, 7, 6}, {0, 1, 0, 1});
// Test for out of bounds indexes in both directions.
EXPECT_THROW(cudf::get_element(col, -1), cudf::logic_error);
EXPECT_THROW(cudf::get_element(col, 4), cudf::logic_error);
}
struct StringGetValueTest : public cudf::test::BaseFixture {};
TEST_F(StringGetValueTest, BasicGet)
{
cudf::test::strings_column_wrapper col{"this", "is", "a", "test"};
auto s = cudf::get_element(col, 3);
auto typed_s = static_cast<cudf::string_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ("test", typed_s->to_string());
}
TEST_F(StringGetValueTest, GetEmpty)
{
cudf::test::strings_column_wrapper col{"this", "is", "", "test"};
auto s = cudf::get_element(col, 2);
auto typed_s = static_cast<cudf::string_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ("", typed_s->to_string());
}
TEST_F(StringGetValueTest, GetFromNullable)
{
cudf::test::strings_column_wrapper col({"this", "is", "a", "test"}, {0, 1, 0, 1});
auto s = cudf::get_element(col, 1);
auto typed_s = static_cast<cudf::string_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ("is", typed_s->to_string());
}
TEST_F(StringGetValueTest, GetNull)
{
cudf::test::strings_column_wrapper col({"this", "is", "a", "test"}, {0, 1, 0, 1});
auto s = cudf::get_element(col, 2);
EXPECT_FALSE(s->is_valid());
}
template <typename T>
struct DictionaryGetValueTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(DictionaryGetValueTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(DictionaryGetValueTest, BasicGet)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> keys({6, 7, 8, 9});
cudf::test::fixed_width_column_wrapper<uint32_t> indices{0, 0, 1, 2, 1, 3, 3, 2};
auto col = cudf::make_dictionary_column(keys, indices);
auto s = cudf::get_element(*col, 2);
using ScalarType = cudf::scalar_type_t<TypeParam>;
auto typed_s = static_cast<ScalarType const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ(cudf::test::make_type_param_scalar<TypeParam>(7), typed_s->value());
}
TYPED_TEST(DictionaryGetValueTest, GetFromNullable)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> keys({6, 7, 8, 9});
cudf::test::fixed_width_column_wrapper<uint32_t> indices({0, 0, 1, 2, 1, 3, 3, 2},
{0, 1, 0, 1, 1, 1, 0, 0});
auto col = cudf::make_dictionary_column(keys, indices);
auto s = cudf::get_element(*col, 3);
using ScalarType = cudf::scalar_type_t<TypeParam>;
auto typed_s = static_cast<ScalarType const*>(s.get());
EXPECT_TRUE(s->is_valid());
EXPECT_EQ(cudf::test::make_type_param_scalar<TypeParam>(8), typed_s->value());
}
TYPED_TEST(DictionaryGetValueTest, GetNull)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> keys({6, 7, 8, 9});
cudf::test::fixed_width_column_wrapper<uint32_t> indices({0, 0, 1, 2, 1, 3, 3, 2},
{0, 1, 0, 1, 1, 1, 0, 0});
auto col = cudf::make_dictionary_column(keys, indices);
auto s = cudf::get_element(*col, 2);
EXPECT_FALSE(s->is_valid());
}
/*
* Lists test grid:
* Dim1 nestedness: {Nested, Non-nested}
* Dim2 validity, emptiness: {Null element, Non-null non-empty list, Non-null empty list}
* Dim3 leaf data type: {Fixed-width, string, struct}
*/
template <typename T>
struct ListGetFixedWidthValueTest : public cudf::test::BaseFixture {
auto odds_valid()
{
return cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
}
auto nth_valid(cudf::size_type x)
{
return cudf::detail::make_counting_transform_iterator(0, [=](auto i) { return x == i; });
}
};
TYPED_TEST_SUITE(ListGetFixedWidthValueTest, cudf::test::FixedWidthTypes);
TYPED_TEST(ListGetFixedWidthValueTest, NonNestedGetNonNullNonEmpty)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
LCW col{LCW({1, 2, 34}, this->odds_valid()), LCW{}, LCW{1}, LCW{}};
cudf::test::fixed_width_column_wrapper<TypeParam> expected_data({1, 2, 34}, this->odds_valid());
cudf::size_type index = 0;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TYPED_TEST(ListGetFixedWidthValueTest, NonNestedGetNonNullEmpty)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
LCW col{LCW{1, 2, 34}, LCW{}, LCW{1}, LCW{}};
cudf::test::fixed_width_column_wrapper<TypeParam> expected_data{};
cudf::size_type index = 1;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TYPED_TEST(ListGetFixedWidthValueTest, NonNestedGetNull)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
LCW col({LCW{1, 2, 34}, LCW{}, LCW{1}, LCW{}}, this->odds_valid());
cudf::size_type index = 2;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_FALSE(s->is_valid());
// Test preserve column hierarchy
CUDF_TEST_EXPECT_COLUMNS_EQUAL(typed_s->view(), FCW{});
}
TYPED_TEST(ListGetFixedWidthValueTest, NestedGetNonNullNonEmpty)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// clang-format off
LCW col{
LCW{LCW{1, 2}, LCW{34}},
LCW{},
LCW{LCW{1}},
LCW{LCW{42}, LCW{10}}
};
// clang-format on
LCW expected_data{LCW{42}, LCW{10}};
cudf::size_type index = 3;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TYPED_TEST(ListGetFixedWidthValueTest, NestedGetNonNullNonEmptyPreserveNull)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
std::vector<cudf::valid_type> valid{0, 1, 1};
// clang-format off
LCW col{
LCW{LCW{1, 2}, LCW{34}},
LCW{},
LCW{LCW{1}},
LCW({LCW{42}, LCW{10}, LCW({1, 3, 2}, this->nth_valid(1))}, valid.begin())
};
// clang-format on
LCW expected_data({LCW{42}, LCW{10}, LCW({1, 3, 2}, this->nth_valid(1))}, valid.begin());
cudf::size_type index = 3;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TYPED_TEST(ListGetFixedWidthValueTest, NestedGetNonNullEmpty)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// clang-format off
LCW col{
LCW{LCW{1, 2}, LCW{34}},
LCW{},
LCW{LCW{1}},
LCW{LCW{42}, LCW{10}}
};
// clang-format on
LCW expected_data{};
cudf::size_type index = 1;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TYPED_TEST(ListGetFixedWidthValueTest, NestedGetNull)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
std::vector<cudf::valid_type> valid{1, 0, 1, 0};
// clang-format off
LCW col(
{
LCW{LCW{1, 2}, LCW{34}},
LCW{},
LCW{LCW{1}},
LCW{LCW{42}, LCW{10}}
}, valid.begin());
// clang-format on
cudf::size_type index = 1;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
auto expected_data =
cudf::make_lists_column(0, offset_t{}.release(), FCW{}.release(), 0, rmm::device_buffer{});
EXPECT_FALSE(s->is_valid());
// Test preserve column hierarchy
CUDF_TEST_EXPECT_COLUMNS_EQUAL(typed_s->view(), *expected_data);
}
struct ListGetStringValueTest : public cudf::test::BaseFixture {
auto odds_valid()
{
return cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
}
auto nth_valid(cudf::size_type x)
{
return cudf::detail::make_counting_transform_iterator(0, [=](auto i) { return x == i; });
}
};
TEST_F(ListGetStringValueTest, NonNestedGetNonNullNonEmpty)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
LCW col{LCW({"aaa", "Héllo"}, this->odds_valid()), LCW{}, LCW{""}, LCW{"42"}};
cudf::test::strings_column_wrapper expected_data({"aaa", "Héllo"}, this->odds_valid());
cudf::size_type index = 0;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TEST_F(ListGetStringValueTest, NonNestedGetNonNullEmpty)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
LCW col{LCW{"aaa", "Héllo"}, LCW{}, LCW{""}, LCW{"42"}};
cudf::test::strings_column_wrapper expected_data{};
cudf::size_type index = 1;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TEST_F(ListGetStringValueTest, NonNestedGetNull)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
using StringCW = cudf::test::strings_column_wrapper;
std::vector<cudf::valid_type> valid{1, 0, 0, 1};
LCW col({LCW{"aaa", "Héllo"}, LCW{}, LCW{""}, LCW{"42"}}, valid.begin());
cudf::size_type index = 2;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_FALSE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(typed_s->view(), StringCW{});
}
TEST_F(ListGetStringValueTest, NestedGetNonNullNonEmpty)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
// clang-format off
LCW col{
LCW{LCW{"aaa", "Héllo"}},
LCW{},
LCW{LCW{""}, LCW({"string", "str2", "xyz"}, this->nth_valid(0))},
LCW{LCW{"42"}, LCW{"21"}}
};
// clang-format on
LCW expected_data{LCW{""}, LCW({"string", "str2", "xyz"}, this->nth_valid(0))};
cudf::size_type index = 2;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TEST_F(ListGetStringValueTest, NestedGetNonNullNonEmptyPreserveNull)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
std::vector<cudf::valid_type> valid{0, 1, 1};
// clang-format off
LCW col{
LCW{LCW{"aaa", "Héllo"}},
LCW{},
LCW({LCW{""}, LCW{"cc"}, LCW({"string", "str2", "xyz"}, this->nth_valid(0))}, valid.begin()),
LCW{LCW{"42"}, LCW{"21"}}
};
// clang-format on
LCW expected_data({LCW{""}, LCW{"cc"}, LCW({"string", "str2", "xyz"}, this->nth_valid(0))},
valid.begin());
cudf::size_type index = 2;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_data, typed_s->view());
}
TEST_F(ListGetStringValueTest, NestedGetNonNullEmpty)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
// clang-format off
LCW col{
LCW{LCW{"aaa", "Héllo"}},
LCW{LCW{""}},
LCW{LCW{"42"}, LCW{"21"}},
LCW{}
};
// clang-format on
LCW expected_data{};
cudf::size_type index = 3;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
// Relax to equivalent. `expected_data` leaf string column does not
// allocate offset and byte array, but `typed_s` does.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_data, typed_s->view());
}
TEST_F(ListGetStringValueTest, NestedGetNull)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using StringCW = cudf::test::strings_column_wrapper;
std::vector<cudf::valid_type> valid{0, 0, 1, 1};
// clang-format off
LCW col(
{
LCW{LCW{"aaa", "Héllo"}},
LCW{LCW{""}},
LCW{LCW{"42"}, LCW{"21"}},
LCW{}
}, valid.begin());
// clang-format on
cudf::size_type index = 0;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
auto expected_data =
cudf::make_lists_column(0, offset_t{}.release(), StringCW{}.release(), 0, rmm::device_buffer{});
EXPECT_FALSE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_data, typed_s->view());
}
/**
* @brief Some shared helper functions used by lists of structs test.
*/
template <typename T>
struct ListGetStructValueTest : public cudf::test::BaseFixture {
using SCW = cudf::test::structs_column_wrapper;
using LCWinner_t = cudf::test::lists_column_wrapper<T, int32_t>;
/**
* @brief Create a lists column
*
* @note Different from `cudf::make_lists_column`, this allows setting the `null_mask`
* in `initializer_list`. However this is an expensive function because it repeatedly
* calls `cudf::set_null_mask` for each row.
*/
std::unique_ptr<cudf::column> make_test_lists_column(
cudf::size_type num_lists,
cudf::test::fixed_width_column_wrapper<cudf::size_type> offsets,
std::unique_ptr<cudf::column> child,
std::initializer_list<cudf::valid_type> null_mask)
{
cudf::size_type null_count = num_lists - std::accumulate(null_mask.begin(), null_mask.end(), 0);
auto d_null_mask = cudf::create_null_mask(
num_lists, null_count == 0 ? cudf::mask_state::UNALLOCATED : cudf::mask_state::ALL_NULL);
if (null_count > 0) {
std::for_each(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(num_lists), [&](auto i) {
if (*(null_mask.begin() + i)) {
cudf::set_null_mask(
static_cast<cudf::bitmask_type*>(d_null_mask.data()), i, i + 1, true);
}
});
}
return cudf::make_lists_column(
num_lists, offsets.release(), std::move(child), null_count, std::move(d_null_mask));
}
/**
* @brief Create a structs column that contains 3 fields: int, string, List<int>
*/
template <typename MaskIterator>
SCW make_test_structs_column(cudf::test::fixed_width_column_wrapper<T> field1,
cudf::test::strings_column_wrapper field2,
cudf::test::lists_column_wrapper<T, int32_t> field3,
MaskIterator mask)
{
return SCW{{field1, field2, field3}, mask};
}
/**
* @brief Create a 0-length structs column
*/
SCW zero_length_struct() { return SCW{}; }
/**
* @brief Concatenate structs columns, allow specifying inputs in `initializer_list`
*/
std::unique_ptr<cudf::column> concat(std::initializer_list<SCW> rows)
{
std::vector<cudf::column_view> views;
std::transform(rows.begin(), rows.end(), std::back_inserter(views), [](auto& r) {
return cudf::column_view(r);
});
return cudf::concatenate(views);
}
/**
* @brief Test data setup: row 0 of structs column
*/
SCW row0()
{
// {int: 1, string: NULL, list: NULL}
return this->make_test_structs_column({{1}, {1}},
cudf::test::strings_column_wrapper({"aa"}, {false}),
LCWinner_t({{}}, all_nulls()),
no_nulls());
}
/**
* @brief Test data setup: row 1 of structs column
*/
SCW row1()
{
// NULL
return this->make_test_structs_column({-1}, {""}, LCWinner_t{-1}, all_nulls());
}
/**
* @brief Test data setup: row 2 of structs column
*/
SCW row2()
{
// {int: 3, string: "xyz", list: [3, 8, 4]}
return this->make_test_structs_column({{3}, {1}},
cudf::test::strings_column_wrapper({"xyz"}, {true}),
LCWinner_t({{3, 8, 4}}, no_nulls()),
no_nulls());
}
/**
* @brief Test data setup: a 3-row structs column
*/
std::unique_ptr<cudf::column> leaf_data()
{
// 3 rows:
// {int: 1, string: NULL, list: NULL}
// NULL
// {int: 3, string: "xyz", list: [3, 8, 4]}
return this->concat({row0(), row1(), row2()});
}
};
TYPED_TEST_SUITE(ListGetStructValueTest, cudf::test::FixedWidthTypes);
TYPED_TEST(ListGetStructValueTest, NonNestedGetNonNullNonEmpty)
{
// 2-rows
// [{1, NULL, NULL}, NULL]
// [{3, "xyz", [3, 8, 4]}] <- cudf::get_element(1)
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
cudf::size_type index = 1;
auto expected_data = this->row2();
auto s = cudf::get_element(list_column->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
// Relax to equivalent. The nested list column in struct allocates `null_mask`.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NonNestedGetNonNullNonEmpty2)
{
// 2-rows
// [{1, NULL, NULL}, NULL] <- cudf::get_element(0)
// [{3, "xyz", [3, 8, 4]}]
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
cudf::size_type index = 0;
auto expected_data = this->concat({this->row0(), this->row1()});
auto s = cudf::get_element(list_column->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NonNestedGetNonNullEmpty)
{
// 3-rows
// [{1, NULL, NULL}, NULL]
// [{3, "xyz", [3, 8, 4]}]
// [] <- cudf::get_element(2)
auto list_column = this->make_test_lists_column(3, {0, 2, 3, 3}, this->leaf_data(), {1, 1, 1});
cudf::size_type index = 2;
// For well-formed list column, an empty list still holds the complete structure of
// a 0-length structs column
auto expected_data = this->zero_length_struct();
auto s = cudf::get_element(list_column->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
// Relax to equivalent. The nested list column in struct allocates `null_mask`.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NonNestedGetNull)
{
// 2-rows
// NULL <- cudf::get_element(0)
// [{3, "xyz", [3, 8, 4]}]
using valid_t = std::vector<cudf::valid_type>;
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {0, 1});
cudf::size_type index = 0;
auto s = cudf::get_element(list_column->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
auto expected_data = this->make_test_structs_column({}, {}, {}, valid_t{}.begin());
EXPECT_FALSE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(typed_s->view(), expected_data);
}
TYPED_TEST(ListGetStructValueTest, NestedGetNonNullNonEmpty)
{
// 2-rows
// [[{1, NULL, NULL}, NULL], [{3, "xyz", [3, 8, 4]}]] <- cudf::get_element(0)
// []
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
auto expected_data = std::make_unique<cudf::column>(*list_column);
auto list_column_nested =
this->make_test_lists_column(2, {0, 2, 2}, std::move(list_column), {1, 1});
cudf::size_type index = 0;
auto s = cudf::get_element(list_column_nested->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NestedGetNonNullNonEmpty2)
{
// 2-rows
// [[{1, NULL, NULL}, NULL]] <- cudf::get_element(0)
// [[{3, "xyz", [3, 8, 4]}]]
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
auto list_column_nested =
this->make_test_lists_column(2, {0, 1, 2}, std::move(list_column), {1, 1});
auto expected_data =
this->make_test_lists_column(1, {0, 2}, this->concat({this->row0(), this->row1()}), {1});
cudf::size_type index = 0;
auto s = cudf::get_element(list_column_nested->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NestedGetNonNullNonEmpty3)
{
// 2-rows
// [[{1, NULL, NULL}, NULL]]
// [[{3, "xyz", [3, 8, 4]}]] <- cudf::get_element(1)
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
auto list_column_nested =
this->make_test_lists_column(2, {0, 1, 2}, std::move(list_column), {1, 1});
auto expected_data = this->make_test_lists_column(1, {0, 1}, this->row2().release(), {1});
cudf::size_type index = 1;
auto s = cudf::get_element(list_column_nested->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
// Relax to equivalent. For `get_element`, the nested list column in struct
// allocates `null_mask`.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NestedGetNonNullEmpty)
{
// 3-rows
// [[{1, NULL, NULL}, NULL]]
// [] <- cudf::get_element(1)
// [[{3, "xyz", [3, 8, 4]}]]
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
auto list_column_nested =
this->make_test_lists_column(3, {0, 1, 1, 2}, std::move(list_column), {1, 1, 1});
auto expected_data =
this->make_test_lists_column(0, {0}, this->zero_length_struct().release(), {1});
cudf::size_type index = 1;
auto s = cudf::get_element(list_column_nested->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
EXPECT_TRUE(s->is_valid());
// Relax to equivalent. The sliced version still has the array for fields
// allocated.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_data, typed_s->view());
}
TYPED_TEST(ListGetStructValueTest, NestedGetNull)
{
// 3-rows
// [[{1, NULL, NULL}, NULL]]
// []
// NULL <- cudf::get_element(2)
using valid_t = std::vector<cudf::valid_type>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto list_column = this->make_test_lists_column(2, {0, 2, 3}, this->leaf_data(), {1, 1});
auto list_column_nested =
this->make_test_lists_column(3, {0, 1, 1, 2}, std::move(list_column), {1, 1, 0});
cudf::size_type index = 2;
auto s = cudf::get_element(list_column_nested->view(), index);
auto typed_s = static_cast<cudf::list_scalar const*>(s.get());
auto nested = this->make_test_structs_column({}, {}, {}, valid_t{}.begin());
auto expected_data =
cudf::make_lists_column(0, offset_t{}.release(), nested.release(), 0, rmm::device_buffer{});
EXPECT_FALSE(s->is_valid());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_data, typed_s->view());
}
struct StructGetValueTest : public cudf::test::BaseFixture {};
template <typename T>
struct StructGetValueTestTyped : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(StructGetValueTestTyped, cudf::test::FixedWidthTypes);
TYPED_TEST(StructGetValueTestTyped, mixed_types_valid)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// col fields
cudf::test::fixed_width_column_wrapper<TypeParam> f1{1, 2, 3};
cudf::test::strings_column_wrapper f2{"aa", "bbb", "c"};
cudf::test::dictionary_column_wrapper<TypeParam, int32_t> f3{42, 42, 24};
LCW f4{LCW{8, 8, 8}, LCW{9, 9}, LCW{10}};
cudf::test::structs_column_wrapper col{f1, f2, f3, f4};
cudf::size_type index = 2;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::struct_scalar const*>(s.get());
// expect fields
cudf::test::fixed_width_column_wrapper<TypeParam> ef1{3};
cudf::test::strings_column_wrapper ef2{"c"};
cudf::test::dictionary_column_wrapper<TypeParam, int32_t> ef3{24};
LCW ef4{LCW{10}};
cudf::table_view expect_data{{ef1, ef2, ef3, ef4}};
EXPECT_TRUE(typed_s->is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expect_data, typed_s->view());
}
TYPED_TEST(StructGetValueTestTyped, mixed_types_valid_with_nulls)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using validity_mask_t = std::vector<cudf::valid_type>;
// col fields
cudf::test::fixed_width_column_wrapper<TypeParam> f1({1, 2, 3}, {true, false, true});
cudf::test::strings_column_wrapper f2({"aa", "bbb", "c"}, {false, false, true});
cudf::test::dictionary_column_wrapper<TypeParam, uint32_t> f3(
{42, 42, 24}, validity_mask_t{true, true, true}.begin());
LCW f4({LCW{8, 8, 8}, LCW{9, 9}, LCW{10}}, validity_mask_t{false, false, false}.begin());
cudf::test::structs_column_wrapper col{f1, f2, f3, f4};
cudf::size_type index = 1;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::struct_scalar const*>(s.get());
// expect fields
cudf::test::fixed_width_column_wrapper<TypeParam> ef1({-1}, {false});
cudf::test::strings_column_wrapper ef2({""}, {false});
cudf::test::dictionary_column_wrapper<TypeParam, uint32_t> x({42}, {true});
cudf::dictionary_column_view dict_col(x);
cudf::test::fixed_width_column_wrapper<TypeParam> new_key{24};
auto ef3 = cudf::dictionary::add_keys(dict_col, new_key);
LCW ef4({LCW{10}}, validity_mask_t{false}.begin());
cudf::table_view expect_data{{ef1, ef2, *ef3, ef4}};
EXPECT_TRUE(typed_s->is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expect_data, typed_s->view());
}
TYPED_TEST(StructGetValueTestTyped, mixed_types_invalid)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using validity_mask_t = std::vector<cudf::valid_type>;
// col fields
cudf::test::fixed_width_column_wrapper<TypeParam> f1{1, 2, 3};
cudf::test::strings_column_wrapper f2{"aa", "bbb", "c"};
cudf::test::dictionary_column_wrapper<TypeParam, uint32_t> f3{42, 42, 24};
LCW f4{LCW{8, 8, 8}, LCW{9, 9}, LCW{10}};
cudf::test::structs_column_wrapper col({f1, f2, f3, f4},
validity_mask_t{false, true, true}.begin());
cudf::size_type index = 0;
auto s = cudf::get_element(col, index);
auto typed_s = static_cast<cudf::struct_scalar const*>(s.get());
EXPECT_FALSE(typed_s->is_valid());
// expect to preserve types along column hierarchy.
EXPECT_EQ(typed_s->view().column(0).type().id(), cudf::type_to_id<TypeParam>());
EXPECT_EQ(typed_s->view().column(1).type().id(), cudf::type_id::STRING);
EXPECT_EQ(typed_s->view().column(2).type().id(), cudf::type_id::DICTIONARY32);
EXPECT_EQ(typed_s->view().column(2).child(1).type().id(), cudf::type_to_id<TypeParam>());
EXPECT_EQ(typed_s->view().column(3).type().id(), cudf::type_id::LIST);
EXPECT_EQ(typed_s->view().column(3).child(1).type().id(), cudf::type_to_id<TypeParam>());
}
TEST_F(StructGetValueTest, multi_level_nested)
{
using LCW = cudf::test::lists_column_wrapper<int32_t, int32_t>;
using validity_mask_t = std::vector<cudf::valid_type>;
// col fields
LCW l3({LCW{1, 1, 1}, LCW{2, 2}, LCW{3}}, validity_mask_t{false, true, true}.begin());
cudf::test::structs_column_wrapper l2{l3};
auto l1 =
cudf::make_lists_column(1,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 3}.release(),
l2.release(),
0,
cudf::create_null_mask(1, cudf::mask_state::UNALLOCATED));
std::vector<std::unique_ptr<cudf::column>> l0_fields;
l0_fields.emplace_back(std::move(l1));
cudf::test::structs_column_wrapper l0(std::move(l0_fields));
cudf::size_type index = 0;
auto s = cudf::get_element(l0, index);
auto typed_s = static_cast<cudf::struct_scalar const*>(s.get());
// Expect fields
cudf::column_view cv = cudf::column_view(l0);
cudf::table_view fields(std::vector<cudf::column_view>(cv.child_begin(), cv.child_end()));
EXPECT_TRUE(typed_s->is_valid());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(fields, typed_s->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/purge_nonempty_nulls_tests.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/gather.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/null_mask.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
using cudf::test::iterators::no_nulls;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
using T = int32_t; // The actual type of the leaf node isn't really important.
using values_col_t = cudf::test::fixed_width_column_wrapper<T>;
using offsets_col_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using gather_map_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
template <typename T>
using LCW = cudf::test::lists_column_wrapper<T, int32_t>;
struct HasNonEmptyNullsTest : public cudf::test::BaseFixture {};
TEST_F(HasNonEmptyNullsTest, TrivialTest)
{
auto const input = LCW<T>{{{{1, 2, 3, 4}, null_at(2)},
{5},
{6, 7}, // <--- Will be set to NULL. Unsanitized row.
{8, 9, 10}},
no_nulls()}
.release();
EXPECT_FALSE(cudf::may_have_nonempty_nulls(*input));
EXPECT_FALSE(cudf::has_nonempty_nulls(*input));
// Set nullmask, post construction.
cudf::detail::set_null_mask(
input->mutable_view().null_mask(), 2, 3, false, cudf::get_default_stream());
input->set_null_count(1);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*input));
EXPECT_TRUE(cudf::has_nonempty_nulls(*input));
}
TEST_F(HasNonEmptyNullsTest, SlicedInputTest)
{
auto const input = cudf::test::strings_column_wrapper{
{"" /*NULL*/, "111", "222", "333", "444", "" /*NULL*/, "", "777", "888", "" /*NULL*/, "101010"},
cudf::test::iterators::nulls_at({0, 5, 9})};
// Split into 2 columns from rows [0, 2) and [2, 10).
auto const result = cudf::split(input, {2});
for (auto const& col : result) {
EXPECT_TRUE(cudf::may_have_nonempty_nulls(col));
EXPECT_FALSE(cudf::has_nonempty_nulls(col));
}
}
struct PurgeNonEmptyNullsTest : public cudf::test::BaseFixture {
/// Helper to run gather() on a single column, and extract the single column from the result.
std::unique_ptr<cudf::column> gather(cudf::column_view const& input,
gather_map_t const& gather_map)
{
auto gathered =
cudf::gather(cudf::table_view{{input}}, gather_map, cudf::out_of_bounds_policy::NULLIFY);
return std::move(gathered->release()[0]);
}
/// Verify that the result of `sanitize()` is equivalent to the unsanitized input,
/// except that the null rows are also empty.
void test_purge(cudf::column_view const& unpurged)
{
auto const purged = cudf::purge_nonempty_nulls(unpurged);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(unpurged, *purged);
EXPECT_FALSE(cudf::has_nonempty_nulls(*purged));
}
};
// List<T>.
TEST_F(PurgeNonEmptyNullsTest, SingleLevelList)
{
auto const input = LCW<T>{{{{1, 2, 3, 4}, null_at(2)},
{5},
{6, 7}, // <--- Will be set to NULL. Unsanitized row.
{8, 9, 10}},
no_nulls()}
.release();
// Set nullmask, post construction.
cudf::detail::set_null_mask(
input->mutable_view().null_mask(), 2, 3, false, cudf::get_default_stream());
input->set_null_count(1);
test_purge(*input);
{
// Selecting all rows from input, in different order.
auto const results = gather(input->view(), {1, 2, 0, 3});
auto const results_list_view = cudf::lists_column_view(*results);
auto const expected = LCW<T>{{{5},
{}, // NULL.
{{1, 2, 3, 4}, null_at(2)},
{8, 9, 10}},
null_at(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_list_view.offsets(), offsets_col_t{0, 1, 1, 5, 8});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_list_view.child(),
values_col_t{{5, 1, 2, 3, 4, 8, 9, 10}, null_at(3)});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
{
// Test when gather selects rows preceded by unsanitized rows.
auto const results = gather(input->view(), {3, 100, 0});
auto const expected = LCW<T>{{
{8, 9, 10},
{}, // NULL.
{{1, 2, 3, 4}, null_at(2)},
},
null_at(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
{
// Test when gather selects rows followed by unsanitized rows.
auto const results = gather(input->view(), {1, 100, 0});
auto const expected = LCW<T>{{
{5},
{}, // NULL.
{{1, 2, 3, 4}, null_at(2)},
},
null_at(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
{
// Test when gather selects unsanitized row specifically.
auto const results = gather(input->view(), {2});
auto const results_lists_view = cudf::lists_column_view(*results);
auto const expected = LCW<T>{{
LCW<T>{} // NULL.
},
null_at(0)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_lists_view.offsets(), offsets_col_t{0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_lists_view.child(), values_col_t{});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
}
// List<List<T>>.
TEST_F(PurgeNonEmptyNullsTest, TwoLevelList)
{
auto const input =
LCW<T>{
{{{1, 2, 3}, {4, 5, 6, 7}, {8}, {9, 1}, {2}},
{{11, 12}, {13, 14, 15}, {16, 17, 18}, {19}},
{{21}, {22, 23}, {24, 25, 26}},
{{31, 32}, {33, 34, 35, 36}, {}, {37, 38}}, //<--- Will be set to NULL. Unsanitized row.
{{41}, {42, 43}}},
no_nulls()}
.release();
EXPECT_FALSE(cudf::may_have_nonempty_nulls(*input));
EXPECT_FALSE(cudf::has_nonempty_nulls(*input));
// Set nullmask, post construction.
cudf::detail::set_null_mask(
input->mutable_view().null_mask(), 3, 4, false, cudf::get_default_stream());
input->set_null_count(1);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*input));
EXPECT_TRUE(cudf::has_nonempty_nulls(*input));
test_purge(*input);
{
// Verify that gather() output is sanitized.
auto const results = gather(input->view(), {100, 3, 0, 1});
auto const results_lists_view = cudf::lists_column_view(*results);
auto const expected = LCW<T>{{
LCW<T>{}, // NULL, because of out of bounds.
LCW<T>{}, // NULL, because input row was null.
{{1, 2, 3}, {4, 5, 6, 7}, {8}, {9, 1}, {2}}, // i.e. input[0]
{{11, 12}, {13, 14, 15}, {16, 17, 18}, {19}} // i.e. input[1]
},
nulls_at({0, 1})};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_lists_view.offsets(), offsets_col_t{0, 0, 0, 5, 9});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
results_lists_view.child(),
LCW<T>{
{1, 2, 3}, {4, 5, 6, 7}, {8}, {9, 1}, {2}, {11, 12}, {13, 14, 15}, {16, 17, 18}, {19}});
auto const child_lists_view = cudf::lists_column_view(results_lists_view.child());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(child_lists_view.offsets(),
offsets_col_t{0, 3, 7, 8, 10, 11, 13, 16, 19, 20});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
child_lists_view.child(),
values_col_t{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
}
// List<List<List<T>>>.
TEST_F(PurgeNonEmptyNullsTest, ThreeLevelList)
{
auto const input = LCW<T>{{{{{1, 2}, {3}}, {{4, 5}, {6, 7}}, {{8, 8}, {}}, {{9, 1}}, {{2, 3}}},
{{{11, 12}}, {{13}, {14, 15}}, {{16, 17, 18}}, {{19, 19}, {}}},
{{{21, 21}}, {{22, 23}, {}}, {{24, 25}, {26}}},
{{{31, 32}, {}},
{{33, 34, 35}, {36}},
{},
{{37, 38}}}, //<--- Will be set to NULL. Unsanitized row.
{{{41, 41, 41}}, {{42, 43}}}},
no_nulls()}
.release();
EXPECT_FALSE(cudf::may_have_nonempty_nulls(*input));
EXPECT_FALSE(cudf::has_nonempty_nulls(*input));
// Set nullmask, post construction.
cudf::detail::set_null_mask(
input->mutable_view().null_mask(), 3, 4, false, cudf::get_default_stream());
input->set_null_count(1);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*input));
EXPECT_TRUE(cudf::has_nonempty_nulls(*input));
test_purge(*input);
{
auto const results = gather(input->view(), {100, 3, 0, 1});
auto const results_lists_view = cudf::lists_column_view(*results);
auto const expected = LCW<T>{
{
LCW<T>{}, // NULL, because of out of bounds.
LCW<T>{}, // NULL, because input row was null.
{{{1, 2}, {3}}, {{4, 5}, {6, 7}}, {{8, 8}, {}}, {{9, 1}}, {{2, 3}}}, // i.e. input[0]
{{{11, 12}}, {{13}, {14, 15}}, {{16, 17, 18}}, {{19, 19}, {}}} // i.e. input[1]
},
nulls_at({0, 1})};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_lists_view.offsets(), offsets_col_t{0, 0, 0, 5, 9});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_lists_view.child(),
LCW<T>{{{1, 2}, {3}},
{{4, 5}, {6, 7}},
{{8, 8}, {}},
{{9, 1}},
{{2, 3}},
{{11, 12}},
{{13}, {14, 15}},
{{16, 17, 18}},
{{19, 19}, {}}});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
}
// List<string>.
TEST_F(PurgeNonEmptyNullsTest, ListOfStrings)
{
using T = cudf::string_view;
auto const input = LCW<T>{{{{"1", "22", "", "4444"}, null_at(2)},
{"55555"},
{"666666", "7777777"}, // <--- Will be set to NULL. Unsanitized row.
{"88888888", "999999999", "1010101010"},
{"11", "22", "33", "44"},
{"55", "66", "77", "88"}},
no_nulls()}
.release();
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*input));
EXPECT_FALSE(cudf::has_nonempty_nulls(*input));
// Set nullmask, post construction.
cudf::detail::set_null_mask(
input->mutable_view().null_mask(), 2, 3, false, cudf::get_default_stream());
input->set_null_count(1);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*input));
EXPECT_TRUE(cudf::has_nonempty_nulls(*input));
test_purge(*input);
{
// Selecting all rows from input, in different order.
auto const results = gather(input->view(), {1, 2, 0, 3});
auto const results_list_view = cudf::lists_column_view(*results);
auto const expected = LCW<T>{{{"55555"},
{}, // NULL.
{{"1", "22", "", "4444"}, null_at(2)},
{"88888888", "999999999", "1010101010"}},
null_at(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_list_view.offsets(), offsets_col_t{0, 1, 1, 5, 8});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
results_list_view.child(),
cudf::test::strings_column_wrapper{
{"55555", "1", "22", "", "4444", "88888888", "999999999", "1010101010"}, null_at(3)});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
{
// Gathering from a sliced column.
auto const sliced = cudf::slice({input->view()}, {1, 5})[0]; // Lop off 1 row at each end.
EXPECT_TRUE(cudf::may_have_nonempty_nulls(sliced));
EXPECT_TRUE(cudf::has_nonempty_nulls(sliced));
auto const results = gather(sliced, {1, 2, 0, 3});
auto const results_list_view = cudf::lists_column_view(*results);
auto const expected = LCW<T>{{
{},
{"88888888", "999999999", "1010101010"},
{"55555"},
{"11", "22", "33", "44"},
},
null_at(0)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_list_view.offsets(), offsets_col_t{0, 0, 3, 4, 8});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
results_list_view.child(),
cudf::test::strings_column_wrapper{
"88888888", "999999999", "1010101010", "55555", "11", "22", "33", "44"});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*results));
EXPECT_FALSE(cudf::has_nonempty_nulls(*results));
}
}
// List<string>.
TEST_F(PurgeNonEmptyNullsTest, UnsanitizedListOfUnsanitizedStrings)
{
auto strings =
cudf::test::strings_column_wrapper{
{"1", "22", "3", "44", "5", "66", "7", "8888", "9", "1010"}, //<--- "8888" will be
// unsanitized.
no_nulls()}
.release();
EXPECT_FALSE(cudf::may_have_nonempty_nulls(*strings));
EXPECT_FALSE(cudf::has_nonempty_nulls(*strings));
// Set strings nullmask, post construction.
cudf::set_null_mask(strings->mutable_view().null_mask(), 7, 8, false);
strings->set_null_count(1);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*strings));
EXPECT_TRUE(cudf::has_nonempty_nulls(*strings));
test_purge(*strings);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(cudf::strings_column_view(*strings).offsets(),
offsets_col_t{0, 1, 3, 4, 6, 7, 9, 10, 14, 15, 19}
// 10-14 indicates that "8888" is unsanitized.
);
// Construct a list column from the strings column.
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(no_nulls(), no_nulls() + 4);
auto const lists = cudf::make_lists_column(4,
offsets_col_t{0, 4, 5, 7, 10}.release(),
std::move(strings),
null_count,
std::move(null_mask));
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*lists));
// The child column has non-empty nulls but it has already been sanitized during lists column
// construction.
EXPECT_FALSE(cudf::has_nonempty_nulls(*lists));
// Set lists nullmask, post construction.
cudf::detail::set_null_mask(
lists->mutable_view().null_mask(), 2, 3, false, cudf::get_default_stream());
lists->set_null_count(1);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*lists));
EXPECT_TRUE(cudf::has_nonempty_nulls(*lists));
test_purge(*lists);
// At this point,
// 1. {"66", "7"} will be unsanitized.
// 2. {"8888", "9", "1010"} will be actually be {NULL, "9", "1010"}.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
cudf::lists_column_view(*lists).offsets(),
offsets_col_t{0, 4, 5, 7, 10}); // 5-7 indicates that list row#2 is unsanitized.
auto const result = gather(lists->view(), {1, 2, 0, 3});
auto const expected = LCW<cudf::string_view>{{{"5"},
{}, // NULL.
{"1", "22", "3", "44"},
{{"", "9", "1010"}, null_at(0)}},
null_at(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
// Ensure row#2 has been sanitized.
auto const results_lists_view = cudf::lists_column_view(*result);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_lists_view.offsets(), offsets_col_t{0, 1, 1, 5, 8}
// 1-1 indicates that row#2 is sanitized.
);
// Ensure that "8888" has been sanitized, and stored as "".
auto const child_strings_view = cudf::strings_column_view(results_lists_view.child());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(child_strings_view.offsets(),
offsets_col_t{0, 1, 2, 4, 5, 7, 7, 8, 12});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*result));
EXPECT_FALSE(cudf::has_nonempty_nulls(*result));
}
// Struct<List<T>>.
TEST_F(PurgeNonEmptyNullsTest, StructOfList)
{
auto const structs_input = [] {
auto child = LCW<T>{{{{1, 2, 3, 4}, null_at(2)},
{5},
{6, 7}, //<--- Unsanitized row.
{8, 9, 10}},
no_nulls()};
EXPECT_FALSE(cudf::has_nonempty_nulls(child));
return cudf::test::structs_column_wrapper{{child}}.release();
}();
auto [null_mask, null_count] = [&] {
auto const valid_iter = null_at(2);
return cudf::test::detail::make_null_mask(valid_iter, valid_iter + structs_input->size());
}();
// Manually set the null mask for the columns, leaving the null at list index 2 unsanitized.
structs_input->child(0).set_null_mask(null_mask, null_count, cudf::get_default_stream());
structs_input->set_null_mask(std::move(null_mask), null_count);
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*structs_input));
EXPECT_TRUE(cudf::has_nonempty_nulls(*structs_input));
test_purge(*structs_input);
// At this point, even though the structs column has a null at index 2,
// the child column has a non-empty list row at index 2: {6, 7}.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(cudf::lists_column_view(structs_input->child(0)).child(),
values_col_t{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, null_at(2)});
{
// Test rearrange.
auto const gather_map = gather_map_t{1, 2, 0, 3};
auto const result = gather(structs_input->view(), gather_map);
auto const expected_result = [] {
auto child = LCW<T>{{{5},
LCW<T>{}, //<--- Now, sanitized.
{{1, 2, 3, 4}, null_at(2)},
{8, 9, 10}},
null_at(1)};
return cudf::test::structs_column_wrapper{{child}, null_at(1)};
}();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result->view(), expected_result);
auto const results_child = cudf::lists_column_view(result->child(0));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_child.offsets(), offsets_col_t{0, 1, 1, 5, 8});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results_child.child(),
values_col_t{{5, 1, 2, 3, 4, 8, 9, 10}, null_at(3)});
EXPECT_TRUE(cudf::may_have_nonempty_nulls(*result));
EXPECT_FALSE(cudf::has_nonempty_nulls(*result));
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/copy_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/encode.hpp>
#include <cudf/scalar/scalar.hpp>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
template <typename T>
struct CopyTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(CopyTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
#define wrapper cudf::test::fixed_width_column_wrapper
TYPED_TEST(CopyTest, CopyIfElseTestShort)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 0, 0, 0};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5}, {1, 1, 1, 1});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6}, {1, 1, 1, 1});
wrapper<T, int32_t> expected_w({5, 6, 6, 6});
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseTestManyNulls)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{{1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 0}};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5, 5, 5, 5}, {1, 1, 1, 1, 1, 1, 1});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6, 6, 6, 6}, {1, 0, 0, 0, 0, 0, 1});
wrapper<T, int32_t> expected_w({5, 6, 6, 6, 6, 6, 6}, {1, 0, 0, 0, 0, 0, 1});
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseTestLong)
{
using T = TypeParam;
// make sure we span at least 2 warps
int num_els = 64;
bool mask[] = {true, false, true, false, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, false, false, false, false, true, true, true,
true, true, true, true, true, true, false, false, false, false, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els);
bool lhs_v[] = {true, true, true, true, false, false, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5},
lhs_v);
bool rhs_v[] = {true, true, true, true, true, true, false, false, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true};
wrapper<T, int32_t> rhs_w({6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6},
rhs_v);
bool exp_v[] = {true, true, true, true, false, false, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true};
wrapper<T, int32_t> expected_w({5, 6, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6,
6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5},
exp_v);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseTestMultipleBlocks)
{
using T = TypeParam;
int num = 1000; // larger than a single block
std::vector<int32_t> h_lhs(num, 5);
std::vector<int32_t> h_rhs(num, 6);
std::vector<bool> h_mask(num, false);
std::vector<bool> h_validity(num, true);
h_validity[0] = 0;
cudf::test::fixed_width_column_wrapper<T, int32_t> lhs_w(
h_lhs.begin(), h_lhs.end(), h_validity.begin());
cudf::test::fixed_width_column_wrapper<T, int32_t> rhs_w(
h_rhs.begin(), h_rhs.end(), h_validity.begin());
cudf::test::fixed_width_column_wrapper<bool> mask_w(h_mask.begin(), h_mask.end());
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), rhs_w);
}
TYPED_TEST(CopyTest, CopyIfElseTestEmptyInputs)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{};
wrapper<T> lhs_w{};
wrapper<T> rhs_w{};
wrapper<T> expected_w{};
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseMixedInputValidity)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 0, 1, 1};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5}, {1, 1, 1, 0});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6}, {1, 0, 1, 1});
wrapper<T, int32_t> expected_w({5, 6, 5, 5}, {1, 0, 1, 0});
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseMixedInputValidity2)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 0, 1, 1};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5}, {1, 1, 1, 0});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6});
wrapper<T, int32_t> expected_w({5, 6, 5, 5}, {1, 1, 1, 0});
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseMixedInputValidity3)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 0, 1, 1};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6}, {1, 0, 1, 1});
wrapper<T, int32_t> expected_w({5, 6, 5, 5}, {1, 0, 1, 1});
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseMixedInputValidity4)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 0, 1, 1};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6});
wrapper<T, int32_t> expected_w({5, 6, 5, 5});
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTest, CopyIfElseBadInputLength)
{
using T = TypeParam;
// mask length mismatch
{
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 1, 1};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6});
EXPECT_THROW(cudf::copy_if_else(lhs_w, rhs_w, mask_w), cudf::logic_error);
}
// column length mismatch
{
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 1, 1, 1};
wrapper<T, int32_t> lhs_w({5, 5, 5});
wrapper<T, int32_t> rhs_w({6, 6, 6, 6});
EXPECT_THROW(cudf::copy_if_else(lhs_w, rhs_w, mask_w), cudf::logic_error);
}
}
struct CopyEmptyNested : public cudf::test::BaseFixture {};
TEST_F(CopyEmptyNested, CopyIfElseTestEmptyNestedColumns)
{
// lists
{
cudf::test::lists_column_wrapper<cudf::string_view> col{{{"abc", "def"}, {"xyz"}}};
auto lhs = cudf::empty_like(col);
auto rhs = cudf::empty_like(col);
cudf::test::fixed_width_column_wrapper<bool> mask{};
auto expected = empty_like(col);
auto out = cudf::copy_if_else(*lhs, *rhs, mask);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), *expected);
}
// structs
{
cudf::test::lists_column_wrapper<cudf::string_view> _col0{{{"abc", "def"}, {"xyz"}}};
auto col0 = cudf::empty_like(_col0);
cudf::test::fixed_width_column_wrapper<int> col1;
std::vector<std::unique_ptr<cudf::column>> cols;
cols.push_back(std::move(col0));
cols.push_back(col1.release());
cudf::test::structs_column_wrapper struct_col(std::move(cols));
auto lhs = cudf::empty_like(struct_col);
auto rhs = cudf::empty_like(struct_col);
cudf::test::fixed_width_column_wrapper<bool> mask{};
auto expected = cudf::empty_like(struct_col);
auto out = cudf::copy_if_else(*lhs, *rhs, mask);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), *expected);
}
}
TEST_F(CopyEmptyNested, CopyIfElseTestEmptyNestedScalars)
{
// lists
{
cudf::test::lists_column_wrapper<cudf::string_view> _col{{{"abc", "def"}, {"xyz"}}};
std::unique_ptr<cudf::scalar> lhs = cudf::get_element(_col, 0);
std::unique_ptr<cudf::scalar> rhs = cudf::get_element(_col, 0);
cudf::test::fixed_width_column_wrapper<bool> mask{};
auto expected = empty_like(_col);
auto out = cudf::copy_if_else(*lhs, *rhs, mask);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), *expected);
}
// structs
{
cudf::test::lists_column_wrapper<cudf::string_view> col0{{{"abc", "def"}, {"xyz"}}};
cudf::test::fixed_width_column_wrapper<int> col1{1};
cudf::table_view tbl({col0, col1});
cudf::struct_scalar lhs(tbl);
cudf::struct_scalar rhs(tbl);
std::vector<std::unique_ptr<cudf::column>> cols;
cols.push_back(col0.release());
cols.push_back(col1.release());
cudf::test::structs_column_wrapper struct_col(std::move(cols));
cudf::test::fixed_width_column_wrapper<bool> mask{};
auto expected = cudf::empty_like(struct_col);
auto out = cudf::copy_if_else(lhs, rhs, mask);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), *expected);
}
}
template <typename T>
struct CopyTestNumeric : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(CopyTestNumeric, cudf::test::NumericTypes);
TYPED_TEST(CopyTestNumeric, CopyIfElseTestScalarColumn)
{
using T = TypeParam;
int num_els = 4;
bool mask[] = {true, false, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els);
cudf::numeric_scalar<T> lhs_w(5);
auto const rhs = cudf::test::make_type_param_vector<T>({6, 6, 6, 6});
bool rhs_v[] = {true, false, true, true};
wrapper<T> rhs_w(rhs.begin(), rhs.end(), rhs_v);
auto const expected = cudf::test::make_type_param_vector<T>({5, 6, 6, 5});
wrapper<T> expected_w(expected.begin(), expected.end(), rhs_v);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTestNumeric, CopyIfElseTestColumnScalar)
{
using T = TypeParam;
int num_els = 4;
bool mask[] = {true, false, false, true};
bool mask_v[] = {true, true, true, false};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els, mask_v);
auto const lhs = cudf::test::make_type_param_vector<T>({5, 5, 5, 5});
bool lhs_v[] = {false, true, true, true};
wrapper<T> lhs_w(lhs.begin(), lhs.end(), lhs_v);
cudf::numeric_scalar<T> rhs_w(6);
auto const expected = cudf::test::make_type_param_vector<T>({5, 6, 6, 6});
wrapper<T> expected_w(expected.begin(), expected.end(), lhs_v);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTestNumeric, CopyIfElseTestScalarScalar)
{
using T = TypeParam;
int num_els = 4;
bool mask[] = {true, false, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els);
cudf::numeric_scalar<T> lhs_w(5);
cudf::numeric_scalar<T> rhs_w(6, false);
auto const expected = cudf::test::make_type_param_vector<T>({5, 6, 6, 5});
wrapper<T> expected_w(expected.begin(), expected.end(), mask);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
template <typename T>
struct create_chrono_scalar {
template <typename ChronoT = T, typename... Args>
std::enable_if_t<std::is_same_v<typename cudf::is_timestamp_t<ChronoT>::type, std::true_type>,
cudf::timestamp_scalar<ChronoT>>
operator()(Args&&... args) const
{
return cudf::timestamp_scalar<T>(std::forward<Args>(args)...);
}
template <typename ChronoT = T, typename... Args>
std::enable_if_t<std::is_same_v<typename cudf::is_duration_t<ChronoT>::type, std::true_type>,
cudf::duration_scalar<ChronoT>>
operator()(Args&&... args) const
{
return cudf::duration_scalar<T>(std::forward<Args>(args)...);
}
};
template <typename T>
struct CopyTestChrono : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(CopyTestChrono, cudf::test::ChronoTypes);
TYPED_TEST(CopyTestChrono, CopyIfElseTestScalarColumn)
{
using T = TypeParam;
int num_els = 4;
bool mask[] = {true, false, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els);
auto lhs_w = create_chrono_scalar<T>{}(cudf::test::make_type_param_scalar<T>(5), true);
bool rhs_v[] = {true, false, true, true};
wrapper<T, int32_t> rhs_w({6, 6, 6, 6}, rhs_v);
wrapper<T, int32_t> expected_w({5, 6, 6, 5}, rhs_v);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTestChrono, CopyIfElseTestColumnScalar)
{
using T = TypeParam;
int num_els = 4;
bool mask[] = {true, false, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els);
bool lhs_v[] = {false, true, true, true};
wrapper<T, int32_t> lhs_w({5, 5, 5, 5}, lhs_v);
auto rhs_w = create_chrono_scalar<T>{}(cudf::test::make_type_param_scalar<T>(6), true);
wrapper<T, int32_t> expected_w({5, 6, 6, 5}, lhs_v);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
TYPED_TEST(CopyTestChrono, CopyIfElseTestScalarScalar)
{
using T = TypeParam;
int num_els = 4;
bool mask[] = {true, false, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + num_els);
auto lhs_w = create_chrono_scalar<T>{}(cudf::test::make_type_param_scalar<T>(5), true);
auto rhs_w = create_chrono_scalar<T>{}(cudf::test::make_type_param_scalar<T>(6), false);
wrapper<T, int32_t> expected_w({5, 6, 6, 5}, mask);
auto out = cudf::copy_if_else(lhs_w, rhs_w, mask_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(out->view(), expected_w);
}
struct CopyTestUntyped : public cudf::test::BaseFixture {};
TEST_F(CopyTestUntyped, CopyIfElseTypeMismatch)
{
cudf::test::fixed_width_column_wrapper<bool> mask_w{1, 1, 1, 1};
wrapper<float> lhs_w{5, 5, 5, 5};
wrapper<int32_t> rhs_w{6, 6, 6, 6};
EXPECT_THROW(cudf::copy_if_else(lhs_w, rhs_w, mask_w), cudf::logic_error);
}
struct StringsCopyIfElseTest : public cudf::test::BaseFixture {};
TEST_F(StringsCopyIfElseTest, CopyIfElse)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<char const*> h_strings1{"eee", "bb", "", "aa", "bbb", "ééé"};
cudf::test::strings_column_wrapper strings1(h_strings1.begin(), h_strings1.end(), valids);
std::vector<char const*> h_strings2{"zz", "", "yyy", "w", "ééé", "ooo"};
cudf::test::strings_column_wrapper strings2(h_strings2.begin(), h_strings2.end(), valids);
bool mask[] = {true, true, false, true, false, true};
bool mask_v[] = {true, true, true, true, true, false};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + 6, mask_v);
auto results = cudf::copy_if_else(strings1, strings2, mask_w);
std::vector<char const*> h_expected;
for (cudf::size_type idx = 0; idx < static_cast<cudf::size_type>(h_strings1.size()); ++idx) {
if (mask[idx] and mask_v[idx])
h_expected.push_back(h_strings1[idx]);
else
h_expected.push_back(h_strings2[idx]);
}
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end(), valids);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(StringsCopyIfElseTest, CopyIfElseScalarColumn)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<char const*> h_string1{"eee"};
cudf::string_scalar strings1{h_string1[0]};
std::vector<char const*> h_strings2{"zz", "", "yyy", "w", "ééé", "ooo"};
cudf::test::strings_column_wrapper strings2(h_strings2.begin(), h_strings2.end(), valids);
bool mask[] = {true, false, true, false, true, false};
bool mask_v[] = {true, true, true, true, true, false};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + 6, mask_v);
auto results = cudf::copy_if_else(strings1, strings2, mask_w);
std::vector<char const*> h_expected;
for (cudf::size_type idx = 0; idx < static_cast<cudf::size_type>(h_strings2.size()); ++idx) {
if (mask[idx] and mask_v[idx]) {
h_expected.push_back(h_string1[0]);
} else {
h_expected.push_back(h_strings2[idx]);
}
}
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end(), valids);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(StringsCopyIfElseTest, CopyIfElseColumnScalar)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<char const*> h_string1{"eee"};
cudf::string_scalar strings1{h_string1[0]};
std::vector<char const*> h_strings2{"zz", "", "yyy", "w", "ééé", "ooo"};
cudf::test::strings_column_wrapper strings2(h_strings2.begin(), h_strings2.end(), valids);
bool mask[] = {false, true, true, true, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + 6);
auto results = cudf::copy_if_else(strings2, strings1, mask_w);
std::vector<char const*> h_expected;
for (cudf::size_type idx = 0; idx < static_cast<cudf::size_type>(h_strings2.size()); ++idx) {
if (mask[idx]) {
h_expected.push_back(h_strings2[idx]);
} else {
h_expected.push_back(h_string1[0]);
}
}
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end(), valids);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(StringsCopyIfElseTest, CopyIfElseScalarScalar)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<char const*> h_string1{"eee"};
cudf::string_scalar string1{h_string1[0]};
std::vector<char const*> h_string2{"aaa"};
cudf::string_scalar string2{h_string2[0], false};
constexpr cudf::size_type mask_size = 6;
bool mask[] = {true, false, true, false, true, false};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + mask_size);
auto results = cudf::copy_if_else(string1, string2, mask_w);
std::vector<char const*> h_expected;
for (bool idx : mask) {
if (idx) {
h_expected.push_back(h_string1[0]);
} else {
h_expected.push_back(h_string2[0]);
}
}
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end(), valids);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
template <typename T>
struct FixedPointTypes : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTypes, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTypes, FixedPointSimple)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const mask = cudf::test::fixed_width_column_wrapper<bool>{0, 1, 1, 1, 0, 0};
auto const a = fp_wrapper{{110, 220, 330, 440, 550, 660}, scale_type{-2}};
auto const b = fp_wrapper{{0, 0, 0, 0, 0, 0}, scale_type{-2}};
auto const expected = fp_wrapper{{0, 220, 330, 440, 0, 0}, scale_type{-2}};
auto const result = cudf::copy_if_else(a, b, mask);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(FixedPointTypes, FixedPointLarge)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto a = thrust::make_counting_iterator(-1000);
auto b = thrust::make_constant_iterator(0);
auto m = cudf::detail::make_counting_transform_iterator(-1000, [](int i) { return i > 0; });
auto e =
cudf::detail::make_counting_transform_iterator(-1000, [](int i) { return std::max(0, i); });
auto const mask = cudf::test::fixed_width_column_wrapper<bool>(m, m + 2000);
auto const A = fp_wrapper{a, a + 2000, scale_type{-3}};
auto const B = fp_wrapper{b, b + 2000, scale_type{-3}};
auto const expected = fp_wrapper{e, e + 2000, scale_type{-3}};
auto const result = cudf::copy_if_else(A, B, mask);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(FixedPointTypes, FixedPointScaleMismatch)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const mask = cudf::test::fixed_width_column_wrapper<bool>{0, 1, 1, 1, 0, 0};
auto const a = fp_wrapper{{110, 220, 330, 440, 550, 660}, scale_type{-2}};
auto const b = fp_wrapper{{0, 0, 0, 0, 0, 0}, scale_type{-1}};
EXPECT_THROW(cudf::copy_if_else(a, b, mask), cudf::logic_error);
}
struct DictionaryCopyIfElseTest : public cudf::test::BaseFixture {};
TEST_F(DictionaryCopyIfElseTest, ColumnColumn)
{
auto valids = cudf::test::iterators::null_at(2);
std::vector<char const*> h_strings1{"eee", "bb", "", "aa", "bb", "ééé"};
cudf::test::dictionary_column_wrapper<std::string> input1(
h_strings1.begin(), h_strings1.end(), valids);
std::vector<char const*> h_strings2{"zz", "bb", "", "aa", "ééé", "ooo"};
cudf::test::dictionary_column_wrapper<std::string> input2(
h_strings2.begin(), h_strings2.end(), valids);
bool mask[] = {true, true, false, true, false, true};
bool mask_v[] = {true, true, true, true, true, false};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + 6, mask_v);
auto results = cudf::copy_if_else(input1, input2, mask_w);
auto decoded = cudf::dictionary::decode(cudf::dictionary_column_view(results->view()));
std::vector<char const*> h_expected;
for (cudf::size_type idx = 0; idx < static_cast<cudf::size_type>(h_strings1.size()); ++idx) {
if (mask[idx] and mask_v[idx])
h_expected.push_back(h_strings1[idx]);
else
h_expected.push_back(h_strings2[idx]);
}
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end(), valids);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(decoded->view(), expected);
}
TEST_F(DictionaryCopyIfElseTest, ColumnScalar)
{
std::string h_string{"eee"};
cudf::string_scalar input1{h_string};
std::vector<char const*> h_strings{"zz", "", "yyy", "w", "ééé", "ooo"};
auto valids = cudf::test::iterators::null_at(1);
cudf::test::dictionary_column_wrapper<std::string> input2(
h_strings.begin(), h_strings.end(), valids);
bool mask[] = {false, true, true, true, false, true};
cudf::test::fixed_width_column_wrapper<bool> mask_w(mask, mask + 6);
auto results = cudf::copy_if_else(input2, input1, mask_w);
auto decoded = cudf::dictionary::decode(cudf::dictionary_column_view(results->view()));
std::vector<char const*> h_expected1;
std::vector<char const*> h_expected2;
for (cudf::size_type idx = 0; idx < static_cast<cudf::size_type>(h_strings.size()); ++idx) {
if (mask[idx]) {
h_expected1.push_back(h_strings[idx]);
h_expected2.push_back(h_string.c_str());
} else {
h_expected1.push_back(h_string.c_str());
h_expected2.push_back(h_strings[idx]);
}
}
cudf::test::strings_column_wrapper expected1(h_expected1.begin(), h_expected1.end(), valids);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(decoded->view(), expected1);
results = cudf::copy_if_else(input1, input2, mask_w);
decoded = cudf::dictionary::decode(cudf::dictionary_column_view(results->view()));
cudf::test::strings_column_wrapper expected2(h_expected2.begin(), h_expected2.end());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(decoded->view(), expected2);
}
TEST_F(DictionaryCopyIfElseTest, TypeMismatch)
{
cudf::test::dictionary_column_wrapper<int32_t> input1({1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<double> input2({1.0, 1.0, 1.0, 1.0});
cudf::test::fixed_width_column_wrapper<bool> mask({1, 0, 0, 1});
EXPECT_THROW(cudf::copy_if_else(input1, input2, mask), cudf::logic_error);
cudf::string_scalar input3{"1"};
EXPECT_THROW(cudf::copy_if_else(input1, input3, mask), cudf::logic_error);
EXPECT_THROW(cudf::copy_if_else(input3, input2, mask), cudf::logic_error);
EXPECT_THROW(cudf::copy_if_else(input2, input3, mask), cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/scatter_list_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
template <typename T>
class TypedScatterListsTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedScatterListsTest, cudf::test::FixedWidthTypes);
class ScatterListsTest : public cudf::test::BaseFixture {};
TYPED_TEST(TypedScatterListsTest, ListsOfFixedWidth)
{
using T = TypeParam;
auto src_list_column = cudf::test::lists_column_wrapper<T, int32_t>{{9, 9, 9, 9}, {8, 8, 8}};
auto target_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0};
auto ret = cudf::scatter(
cudf::table_view({src_list_column}), scatter_map, cudf::table_view({target_list_column}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
ret->get_column(0),
cudf::test::lists_column_wrapper<T, int32_t>{
{8, 8, 8}, {1, 1}, {9, 9, 9, 9}, {3, 3}, {4, 4}, {5, 5}, {6, 6}});
}
TYPED_TEST(TypedScatterListsTest, SlicedInputLists)
{
using T = TypeParam;
auto src_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{0, 0, 0, 0},
{9, 9, 9, 9},
{8, 8, 8},
{7, 7, 7}}.release();
auto src_sliced = cudf::slice(src_list_column->view(), {1, 3}).front();
auto target_list_column =
cudf::test::lists_column_wrapper<T, int32_t>{
{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}}
.release();
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0};
auto ret_1 = cudf::scatter(
cudf::table_view({src_sliced}), scatter_map, cudf::table_view({target_list_column->view()}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
ret_1->get_column(0),
cudf::test::lists_column_wrapper<T, int32_t>{
{8, 8, 8}, {1, 1}, {9, 9, 9, 9}, {3, 3}, {4, 4}, {5, 5}, {6, 6}});
auto target_sliced = cudf::slice(target_list_column->view(), {1, 6});
auto ret_2 =
cudf::scatter(cudf::table_view({src_sliced}), scatter_map, cudf::table_view({target_sliced}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
ret_2->get_column(0),
cudf::test::lists_column_wrapper<T, int32_t>{{8, 8, 8}, {2, 2}, {9, 9, 9, 9}, {4, 4}, {5, 5}});
}
TYPED_TEST(TypedScatterListsTest, EmptyListsOfFixedWidth)
{
using T = TypeParam;
auto src_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{9, 9, 9, 9, 8, 8, 8},
};
// One null list row, and one row with nulls.
auto src_list_column = cudf::make_lists_column(
3,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 7, 7}.release(),
src_child.release(),
0,
{});
auto target_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0, 5};
auto ret = cudf::scatter(cudf::table_view({src_list_column->view()}),
scatter_map,
cudf::table_view({target_list_column}));
auto expected_child_ints = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{8, 8, 8, 1, 1, 9, 9, 9, 9, 3, 3, 4, 4, 6, 6}};
auto expected_lists_column = cudf::make_lists_column(
7,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 3, 5, 9, 11, 13, 13, 15}.release(),
expected_child_ints.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists_column->view(), ret->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, EmptyListsOfNullableFixedWidth)
{
using T = TypeParam;
auto src_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{{9, 9, 9, 9, 8, 8, 8},
{1, 1, 1, 0, 1, 1, 1}};
// One null list row, and one row with nulls.
auto src_list_column = cudf::make_lists_column(
3,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 7, 7}.release(),
src_child.release(),
0,
{});
auto target_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0, 5};
auto ret = cudf::scatter(cudf::table_view({src_list_column->view()}),
scatter_map,
cudf::table_view({target_list_column}));
auto expected_child_ints = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{8, 8, 8, 1, 1, 9, 9, 9, 9, 3, 3, 4, 4, 6, 6}, {1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1}};
auto expected_lists_column = cudf::make_lists_column(
7,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 3, 5, 9, 11, 13, 13, 15}.release(),
expected_child_ints.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists_column->view(), ret->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, NullableListsOfNullableFixedWidth)
{
using T = TypeParam;
auto src_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{{9, 9, 9, 9, 8, 8, 8},
{1, 1, 1, 0, 1, 1, 1}};
auto src_list_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 2; });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(src_list_validity, src_list_validity + 3);
// One null list row, and one row with nulls.
auto src_list_column = cudf::make_lists_column(
3,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 7, 7}.release(),
src_child.release(),
null_count,
std::move(null_mask));
auto target_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0, 5};
auto ret = cudf::scatter(cudf::table_view({src_list_column->view()}),
scatter_map,
cudf::table_view({target_list_column}));
auto expected_child_ints = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{8, 8, 8, 1, 1, 9, 9, 9, 9, 3, 3, 4, 4, 6, 6}, {1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1}};
auto expected_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 5; });
std::tie(null_mask, null_count) =
cudf::test::detail::make_null_mask(expected_validity, expected_validity + 7);
auto expected_lists_column = cudf::make_lists_column(
7,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 3, 5, 9, 11, 13, 13, 15}.release(),
expected_child_ints.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists_column->view(), ret->get_column(0));
}
TEST_F(ScatterListsTest, ListsOfStrings)
{
auto src_list_column = cudf::test::lists_column_wrapper<cudf::string_view>{
{"all", "the", "leaves", "are", "brown"}, {"california", "dreaming"}};
auto target_list_column =
cudf::test::lists_column_wrapper<cudf::string_view>{{"zero"},
{"one", "one"},
{"two", "two"},
{"three", "three", "three"},
{"four", "four", "four", "four"}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<int32_t>{2, 0};
auto ret = cudf::scatter(
cudf::table_view({src_list_column}), scatter_map, cudf::table_view({target_list_column}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
cudf::test::lists_column_wrapper<cudf::string_view>{{"california", "dreaming"},
{"one", "one"},
{"all", "the", "leaves", "are", "brown"},
{"three", "three", "three"},
{"four", "four", "four", "four"}},
ret->get_column(0));
}
TEST_F(ScatterListsTest, ListsOfNullableStrings)
{
auto src_strings_column = cudf::test::strings_column_wrapper{
{"all", "the", "leaves", "are", "brown", "california", "dreaming"}, {1, 1, 1, 0, 1, 0, 1}};
auto src_list_column = cudf::make_lists_column(
2,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 5, 7}.release(),
src_strings_column.release(),
0,
{});
auto target_list_column = cudf::test::lists_column_wrapper<cudf::string_view>{{"zero"},
{"one", "one"},
{"two", "two"},
{"three", "three"},
{"four", "four"},
{"five", "five"}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<int32_t>{2, 0};
auto ret = cudf::scatter(cudf::table_view({src_list_column->view()}),
scatter_map,
cudf::table_view({target_list_column}));
auto expected_strings = cudf::test::strings_column_wrapper{
{"california",
"dreaming",
"one",
"one",
"all",
"the",
"leaves",
"are",
"brown",
"three",
"three",
"four",
"four",
"five",
"five"},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 0 && i != 7; })};
auto expected_lists = cudf::make_lists_column(
6,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 4, 9, 11, 13, 15}.release(),
expected_strings.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), ret->get_column(0));
}
TEST_F(ScatterListsTest, EmptyListsOfNullableStrings)
{
auto src_strings_column = cudf::test::strings_column_wrapper{
{"all", "the", "leaves", "are", "brown", "california", "dreaming"}, {1, 1, 1, 0, 1, 0, 1}};
auto src_list_column = cudf::make_lists_column(
3,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 5, 5, 7}.release(),
src_strings_column.release(),
0,
{});
auto target_list_column = cudf::test::lists_column_wrapper<cudf::string_view>{{"zero"},
{"one", "one"},
{"two", "two"},
{"three", "three"},
{"four", "four"},
{"five", "five"}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<int32_t>{2, 4, 0};
auto ret = cudf::scatter(cudf::table_view({src_list_column->view()}),
scatter_map,
cudf::table_view({target_list_column}));
auto expected_strings = cudf::test::strings_column_wrapper{
{"california",
"dreaming",
"one",
"one",
"all",
"the",
"leaves",
"are",
"brown",
"three",
"three",
"five",
"five"},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 0 && i != 7; })};
auto expected_lists = cudf::make_lists_column(
6,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 4, 9, 11, 11, 13}.release(),
expected_strings.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), ret->get_column(0));
}
TEST_F(ScatterListsTest, NullableListsOfNullableStrings)
{
auto src_strings_column = cudf::test::strings_column_wrapper{
{"all", "the", "leaves", "are", "brown", "california", "dreaming"}, {1, 1, 1, 0, 1, 0, 1}};
auto src_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1; });
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(src_validity, src_validity + 3);
auto src_list_column = cudf::make_lists_column(
3,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 5, 5, 7}.release(),
src_strings_column.release(),
null_count,
std::move(null_mask));
auto target_list_column = cudf::test::lists_column_wrapper<cudf::string_view>{{"zero"},
{"one", "one"},
{"two", "two"},
{"three", "three"},
{"four", "four"},
{"five", "five"}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<int32_t>{2, 4, 0};
auto ret = cudf::scatter(cudf::table_view({src_list_column->view()}),
scatter_map,
cudf::table_view({target_list_column}));
auto expected_strings = cudf::test::strings_column_wrapper{
{"california",
"dreaming",
"one",
"one",
"all",
"the",
"leaves",
"are",
"brown",
"three",
"three",
"five",
"five"},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 0 && i != 7; })};
auto expected_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 4; });
std::tie(null_mask, null_count) =
cudf::test::detail::make_null_mask(expected_validity, expected_validity + 6);
auto expected_lists = cudf::make_lists_column(
6,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 4, 9, 11, 11, 13}.release(),
expected_strings.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), ret->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, ListsOfLists)
{
using T = TypeParam;
auto src_list_column = cudf::test::lists_column_wrapper<T, int32_t>{{{1, 1, 1, 1}, {2, 2, 2, 2}},
{{3, 3, 3, 3}, {4, 4, 4, 4}}};
auto target_list_column =
cudf::test::lists_column_wrapper<T, int32_t>{{{9, 9, 9}, {8, 8, 8}, {7, 7, 7}},
{{6, 6, 6}, {5, 5, 5}, {4, 4, 4}},
{{3, 3, 3}, {2, 2, 2}, {1, 1, 1}},
{{9, 9}, {8, 8}, {7, 7}},
{{6, 6}, {5, 5}, {4, 4}},
{{3, 3}, {2, 2}, {1, 1}}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0};
auto ret = cudf::scatter(
cudf::table_view({src_list_column}), scatter_map, cudf::table_view({target_list_column}));
auto expected = cudf::test::lists_column_wrapper<T, int32_t>{{{3, 3, 3, 3}, {4, 4, 4, 4}},
{{6, 6, 6}, {5, 5, 5}, {4, 4, 4}},
{{1, 1, 1, 1}, {2, 2, 2, 2}},
{{9, 9}, {8, 8}, {7, 7}},
{{6, 6}, {5, 5}, {4, 4}},
{{3, 3}, {2, 2}, {1, 1}}};
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, ret->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, EmptyListsOfLists)
{
using T = TypeParam;
auto src_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{{1, 1, 1, 1}, {2, 2, 2, 2}}, {{3, 3, 3, 3}, {}}, {}};
auto target_list_column =
cudf::test::lists_column_wrapper<T, int32_t>{{{9, 9, 9}, {8, 8, 8}, {7, 7, 7}},
{{6, 6, 6}, {5, 5, 5}, {4, 4, 4}},
{{3, 3, 3}, {2, 2, 2}, {1, 1, 1}},
{{9, 9}, {8, 8}, {7, 7}},
{{6, 6}, {5, 5}, {4, 4}},
{{3, 3}, {2, 2}, {1, 1}}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0, 4};
auto ret = cudf::scatter(
cudf::table_view({src_list_column}), scatter_map, cudf::table_view({target_list_column}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
cudf::test::lists_column_wrapper<T, int32_t>{{{3, 3, 3, 3}, {}},
{{6, 6, 6}, {5, 5, 5}, {4, 4, 4}},
{{1, 1, 1, 1}, {2, 2, 2, 2}},
{{9, 9}, {8, 8}, {7, 7}},
{},
{{3, 3}, {2, 2}, {1, 1}}},
ret->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, NullListsOfLists)
{
using T = TypeParam;
auto src_list_column = cudf::test::lists_column_wrapper<T, int32_t>{
{{{1, 1, 1, 1}, {2, 2, 2, 2}}, {{3, 3, 3, 3}, {}}, {}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 2; })};
auto target_list_column =
cudf::test::lists_column_wrapper<T, int32_t>{{{9, 9, 9}, {8, 8, 8}, {7, 7, 7}},
{{6, 6, 6}, {5, 5, 5}, {4, 4, 4}},
{{3, 3, 3}, {2, 2, 2}, {1, 1, 1}},
{{9, 9}, {8, 8}, {7, 7}},
{{6, 6}, {5, 5}, {4, 4}},
{{3, 3}, {2, 2}, {1, 1}}};
auto scatter_map = cudf::test::fixed_width_column_wrapper<cudf::size_type>{2, 0, 4};
auto ret = cudf::scatter(
cudf::table_view({src_list_column}), scatter_map, cudf::table_view({target_list_column}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
cudf::test::lists_column_wrapper<T, int32_t>{
{{{3, 3, 3, 3}, {}},
{{6, 6, 6}, {5, 5, 5}, {4, 4, 4}},
{{1, 1, 1, 1}, {2, 2, 2, 2}},
{{9, 9}, {8, 8}, {7, 7}},
{},
{{3, 3}, {2, 2}, {1, 1}}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 4; })},
ret->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, ListsOfStructs)
{
using T = TypeParam;
using offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using numerics_column = cudf::test::fixed_width_column_wrapper<T>;
// clang-format off
auto source_numerics = numerics_column{
9, 9, 9, 9,
8, 8, 8
};
auto source_strings = cudf::test::strings_column_wrapper{
"nine", "nine", "nine", "nine",
"eight", "eight", "eight"
};
// clang-format on
auto source_structs = cudf::test::structs_column_wrapper{{source_numerics, source_strings}};
auto source_lists =
cudf::make_lists_column(2, offsets_column{0, 4, 7}.release(), source_structs.release(), 0, {});
// clang-format off
auto target_ints = numerics_column{
0, 0,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5
};
auto target_strings = cudf::test::strings_column_wrapper{
"zero", "zero",
"one", "one",
"two", "two",
"three", "three",
"four", "four",
"five", "five"
};
// clang-format on
auto target_structs = cudf::test::structs_column_wrapper{{target_ints, target_strings}};
auto target_lists = cudf::make_lists_column(
6, offsets_column{0, 2, 4, 6, 8, 10, 12}.release(), target_structs.release(), 0, {});
auto scatter_map = offsets_column{2, 0};
auto scatter_result = cudf::scatter(cudf::table_view({source_lists->view()}),
scatter_map,
cudf::table_view({target_lists->view()}));
// clang-format off
auto expected_numerics = numerics_column{
8, 8, 8,
1, 1,
9, 9, 9, 9,
3, 3, 4, 4, 5, 5
};
auto expected_strings = cudf::test::strings_column_wrapper{
"eight", "eight", "eight",
"one", "one",
"nine", "nine", "nine", "nine",
"three", "three",
"four", "four",
"five", "five"
};
// clang-format on
auto expected_structs = cudf::test::structs_column_wrapper{{expected_numerics, expected_strings}};
auto expected_lists = cudf::make_lists_column(
6, offsets_column{0, 3, 5, 9, 11, 13, 15}.release(), expected_structs.release(), 0, {});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), scatter_result->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, ListsOfStructsWithNullMembers)
{
using T = TypeParam;
using offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using numerics_column = cudf::test::fixed_width_column_wrapper<T>;
// clang-format off
auto source_numerics = numerics_column{
{
9, 9, 9, 9,
8, 8, 8
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; })
};
auto source_strings = cudf::test::strings_column_wrapper{
{
"nine", "nine", "nine", "nine",
"eight", "eight", "eight"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 5; })
};
// clang-format on
auto source_structs = cudf::test::structs_column_wrapper{{source_numerics, source_strings}};
auto source_lists =
cudf::make_lists_column(2, offsets_column{0, 4, 7}.release(), source_structs.release(), 0, {});
// clang-format off
auto target_ints = numerics_column{
0, 0,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5
};
auto target_strings = cudf::test::strings_column_wrapper{
"zero", "zero",
"one", "one",
"two", "two",
"three","three",
"four", "four",
"five", "five"
};
// clang-format on
auto target_structs = cudf::test::structs_column_wrapper{{target_ints, target_strings}};
auto target_lists = cudf::make_lists_column(
6, offsets_column{0, 2, 4, 6, 8, 10, 12}.release(), target_structs.release(), 0, {});
// clang-format on
auto scatter_map = offsets_column{2, 0};
auto scatter_result = cudf::scatter(cudf::table_view({source_lists->view()}),
scatter_map,
cudf::table_view({target_lists->view()}));
// clang-format off
auto expected_numerics = numerics_column{
{
8, 8, 8,
1, 1,
9, 9, 9, 9,
3, 3,
4, 4,
5, 5
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 8; })
};
auto expected_strings = cudf::test::strings_column_wrapper{
{
"eight", "eight", "eight",
"one", "one",
"nine", "nine", "nine", "nine",
"three", "three",
"four", "four",
"five", "five"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1; })
};
// clang-format on
auto expected_structs = cudf::test::structs_column_wrapper{{expected_numerics, expected_strings}};
auto expected_lists = cudf::make_lists_column(
6, offsets_column{0, 3, 5, 9, 11, 13, 15}.release(), expected_structs.release(), 0, {});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), scatter_result->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, ListsOfNullStructs)
{
using T = TypeParam;
using offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using numerics_column = cudf::test::fixed_width_column_wrapper<T>;
// clang-format off
auto source_numerics = numerics_column{
{
9, 9, 9, 9,
8, 8, 8
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; })
};
auto source_strings = cudf::test::strings_column_wrapper{
{
"nine", "nine", "nine", "nine",
"eight", "eight", "eight"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 5; })
};
// clang-format on
auto source_structs = cudf::test::structs_column_wrapper{
{source_numerics, source_strings},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1; })};
auto source_lists =
cudf::make_lists_column(2, offsets_column{0, 4, 7}.release(), source_structs.release(), 0, {});
// clang-format off
auto target_ints = numerics_column{
0, 0,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5
};
auto target_strings = cudf::test::strings_column_wrapper{
"zero", "zero",
"one", "one",
"two", "two",
"three", "three",
"four", "four",
"five", "five"
};
// clang-format on
auto target_structs = cudf::test::structs_column_wrapper{{target_ints, target_strings}};
auto target_lists = cudf::make_lists_column(
6, offsets_column{0, 2, 4, 6, 8, 10, 12}.release(), target_structs.release(), 0, {});
auto scatter_map = offsets_column{2, 0};
auto scatter_result = cudf::scatter(cudf::table_view({source_lists->view()}),
scatter_map,
cudf::table_view({target_lists->view()}));
// clang-format off
auto expected_numerics = numerics_column{
{
8, 8, 8,
1, 1,
9, 9, 9, 9,
3, 3,
4, 4,
5, 5
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i != 6) && (i != 8); })
};
auto expected_strings = cudf::test::strings_column_wrapper{
{
"eight", "eight", "eight",
"one", "one",
"nine", "nine", "nine", "nine",
"three", "three",
"four", "four",
"five", "five"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i != 1) && (i != 6); })
};
// clang-format on
auto expected_structs = cudf::test::structs_column_wrapper{
{expected_numerics, expected_strings},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 6; })};
auto expected_lists = cudf::make_lists_column(
6, offsets_column{0, 3, 5, 9, 11, 13, 15}.release(), expected_structs.release(), 0, {});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), scatter_result->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, EmptyListsOfStructs)
{
using T = TypeParam;
using offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using numerics_column = cudf::test::fixed_width_column_wrapper<T>;
// clang-format off
auto source_numerics = numerics_column{
{
9, 9, 9, 9,
8, 8, 8
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; })
};
auto source_strings = cudf::test::strings_column_wrapper{
{
"nine", "nine", "nine", "nine",
"eight", "eight", "eight"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 5; })
};
// clang-format on
auto source_structs = cudf::test::structs_column_wrapper{
{source_numerics, source_strings},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1; })};
auto source_lists = cudf::make_lists_column(
3, offsets_column{0, 4, 7, 7}.release(), source_structs.release(), 0, {});
// clang-format off
auto target_ints = numerics_column{
0, 0,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5
};
auto target_strings = cudf::test::strings_column_wrapper{
"zero", "zero",
"one", "one",
"two", "two",
"three", "three",
"four", "four",
"five", "five"
};
// clang-format on
auto target_structs = cudf::test::structs_column_wrapper{{target_ints, target_strings}};
auto target_lists = cudf::make_lists_column(
6, offsets_column{0, 2, 4, 6, 8, 10, 12}.release(), target_structs.release(), 0, {});
auto scatter_map = offsets_column{2, 0, 4};
auto scatter_result = cudf::scatter(cudf::table_view({source_lists->view()}),
scatter_map,
cudf::table_view({target_lists->view()}));
// clang-format off
auto expected_numerics = numerics_column{
{
8, 8, 8,
1, 1,
9, 9, 9, 9,
3, 3,
5, 5
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i != 6) && (i != 8); })
};
auto expected_strings = cudf::test::strings_column_wrapper{
{
"eight", "eight", "eight",
"one", "one",
"nine", "nine", "nine", "nine",
"three", "three",
"five", "five"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i != 1) && (i != 6); })
};
// clang-format on
auto expected_structs = cudf::test::structs_column_wrapper{
{expected_numerics, expected_strings},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 6; })};
auto expected_lists = cudf::make_lists_column(
6, offsets_column{0, 3, 5, 9, 11, 11, 13}.release(), expected_structs.release(), 0, {});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), scatter_result->get_column(0));
}
TYPED_TEST(TypedScatterListsTest, NullListsOfStructs)
{
using T = TypeParam;
using offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using numerics_column = cudf::test::fixed_width_column_wrapper<T>;
// clang-format off
auto source_numerics = numerics_column{
{
9, 9, 9, 9,
8, 8, 8
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; })
};
auto source_strings = cudf::test::strings_column_wrapper{
{
"nine", "nine", "nine", "nine",
"eight", "eight", "eight"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 5; })
};
// clang-format on
auto source_structs = cudf::test::structs_column_wrapper{
{source_numerics, source_strings},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1; })};
auto source_list_null_mask_begin =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 2; });
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(
source_list_null_mask_begin, source_list_null_mask_begin + 3);
auto source_lists = cudf::make_lists_column(3,
offsets_column{0, 4, 7, 7}.release(),
source_structs.release(),
null_count,
std::move(null_mask));
// clang-format off
auto target_ints = numerics_column{
0, 0,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5
};
auto target_strings = cudf::test::strings_column_wrapper{
"zero", "zero",
"one", "one",
"two", "two",
"three", "three",
"four", "four",
"five", "five"
};
// clang-format on
auto target_structs = cudf::test::structs_column_wrapper{{target_ints, target_strings}};
auto target_lists = cudf::make_lists_column(
6, offsets_column{0, 2, 4, 6, 8, 10, 12}.release(), target_structs.release(), 0, {});
auto scatter_map = offsets_column{2, 0, 4};
auto scatter_result = cudf::scatter(cudf::table_view({source_lists->view()}),
scatter_map,
cudf::table_view({target_lists->view()}));
// clang-format off
auto expected_numerics = numerics_column{
{
8, 8, 8,
1, 1,
9, 9, 9, 9,
3, 3,
5, 5
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i != 6) && (i != 8); })
};
auto expected_strings = cudf::test::strings_column_wrapper{
{
"eight", "eight", "eight",
"one", "one",
"nine", "nine", "nine", "nine",
"three", "three",
"five", "five"
},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 1 && i != 6; })
};
// clang-format on
auto expected_structs = cudf::test::structs_column_wrapper{
{expected_numerics, expected_strings},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 6; })};
auto expected_lists_null_mask_begin =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 4; });
std::tie(null_mask, null_count) = cudf::test::detail::make_null_mask(
expected_lists_null_mask_begin, expected_lists_null_mask_begin + 6);
auto expected_lists = cudf::make_lists_column(6,
offsets_column{0, 3, 5, 9, 11, 11, 13}.release(),
expected_structs.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_lists->view(), scatter_result->get_column(0));
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/concatenate_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column.hpp>
#include <cudf/concatenate.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/null_mask.hpp>
#include <cudf/dictionary/encode.hpp>
#include <cudf/filling.hpp>
#include <cudf/table/table.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <numeric>
#include <stdexcept>
#include <string>
template <typename T>
using column_wrapper = cudf::test::fixed_width_column_wrapper<T>;
using s_col_wrapper = cudf::test::strings_column_wrapper;
using CVector = std::vector<std::unique_ptr<cudf::column>>;
using column = cudf::column;
using column_view = cudf::column_view;
using TView = cudf::table_view;
using Table = cudf::table;
template <typename T>
struct TypedColumnTest : public cudf::test::BaseFixture {
cudf::data_type type() { return cudf::data_type{cudf::type_to_id<T>()}; }
TypedColumnTest(rmm::cuda_stream_view stream = cudf::get_default_stream())
: data{_num_elements * cudf::size_of(type()), stream},
mask{cudf::bitmask_allocation_size_bytes(_num_elements), stream}
{
auto typed_data = static_cast<char*>(data.data());
auto typed_mask = static_cast<char*>(mask.data());
std::vector<char> h_data(data.size());
std::iota(h_data.begin(), h_data.end(), char{0});
std::vector<char> h_mask(mask.size());
std::iota(h_mask.begin(), h_mask.end(), char{0});
CUDF_CUDA_TRY(
cudaMemcpyAsync(typed_data, h_data.data(), data.size(), cudaMemcpyDefault, stream.value()));
CUDF_CUDA_TRY(
cudaMemcpyAsync(typed_mask, h_mask.data(), mask.size(), cudaMemcpyDefault, stream.value()));
_null_count = cudf::detail::null_count(
static_cast<cudf::bitmask_type*>(mask.data()), 0, _num_elements, stream);
stream.synchronize();
}
cudf::size_type num_elements() const { return _num_elements; }
cudf::size_type null_count() const { return _null_count; }
std::random_device r;
std::default_random_engine generator{r()};
std::uniform_int_distribution<cudf::size_type> distribution{200, 1000};
cudf::size_type _num_elements{distribution(generator)};
rmm::device_buffer data{};
rmm::device_buffer mask{};
cudf::size_type _null_count{};
rmm::device_buffer all_valid_mask{create_null_mask(num_elements(), cudf::mask_state::ALL_VALID)};
rmm::device_buffer all_null_mask{create_null_mask(num_elements(), cudf::mask_state::ALL_NULL)};
};
TYPED_TEST_SUITE(TypedColumnTest, cudf::test::Types<int32_t>);
TYPED_TEST(TypedColumnTest, ConcatenateEmptyColumns)
{
cudf::test::fixed_width_column_wrapper<TypeParam> empty_first{};
cudf::test::fixed_width_column_wrapper<TypeParam> empty_second{};
cudf::test::fixed_width_column_wrapper<TypeParam> empty_third{};
std::vector<column_view> columns_to_concat({empty_first, empty_second, empty_third});
auto concat = cudf::concatenate(columns_to_concat);
auto expected_type = cudf::column_view(empty_first).type();
EXPECT_EQ(concat->size(), 0);
EXPECT_EQ(concat->type(), expected_type);
}
TYPED_TEST(TypedColumnTest, ConcatenateNoColumns)
{
std::vector<column_view> columns_to_concat{};
EXPECT_THROW(cudf::concatenate(columns_to_concat), cudf::logic_error);
}
TYPED_TEST(TypedColumnTest, ConcatenateColumnView)
{
column original{this->type(),
this->num_elements(),
std::move(this->data),
std::move(this->mask),
this->null_count()};
std::vector<cudf::size_type> indices{0,
this->num_elements() / 3,
this->num_elements() / 3,
this->num_elements() / 2,
this->num_elements() / 2,
this->num_elements()};
std::vector<cudf::column_view> views = cudf::slice(original, indices);
auto concatenated_col = cudf::concatenate(views);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(original, *concatenated_col);
}
struct StringColumnTest : public cudf::test::BaseFixture {};
TEST_F(StringColumnTest, ConcatenateColumnView)
{
std::vector<char const*> h_strings{"aaa",
"bb",
"",
"cccc",
"d",
"ééé",
"ff",
"gggg",
"",
"h",
"iiii",
"jjj",
"k",
"lllllll",
"mmmmm",
"n",
"oo",
"ppp"};
cudf::test::strings_column_wrapper strings1(h_strings.data(), h_strings.data() + 6);
cudf::test::strings_column_wrapper strings2(h_strings.data() + 6, h_strings.data() + 10);
cudf::test::strings_column_wrapper strings3(h_strings.data() + 10,
h_strings.data() + h_strings.size());
std::vector<cudf::column_view> strings_columns;
strings_columns.push_back(strings1);
strings_columns.push_back(strings2);
strings_columns.push_back(strings3);
auto results = cudf::concatenate(strings_columns);
cudf::test::strings_column_wrapper expected(h_strings.begin(), h_strings.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(StringColumnTest, ConcatenateColumnViewLarge)
{
// Test large concatenate, causes out of bound device memory errors if kernel
// indexing is not int64_t.
// 1.5GB bytes, 5k columns
constexpr size_t num_strings = 10000;
constexpr size_t string_length = 150000;
constexpr size_t strings_per_column = 2;
constexpr size_t num_columns = num_strings / strings_per_column;
std::vector<std::string> strings;
std::vector<char const*> h_strings;
std::vector<cudf::test::strings_column_wrapper> strings_column_wrappers;
std::vector<cudf::column_view> strings_columns;
std::string s(string_length, 'a');
for (size_t i = 0; i < num_strings; ++i)
h_strings.push_back(s.data());
for (size_t i = 0; i < num_columns; ++i)
strings_column_wrappers.push_back(cudf::test::strings_column_wrapper(
h_strings.data() + i * strings_per_column, h_strings.data() + (i + 1) * strings_per_column));
for (auto& wrapper : strings_column_wrappers)
strings_columns.push_back(wrapper);
auto results = cudf::concatenate(strings_columns);
cudf::test::strings_column_wrapper expected(h_strings.begin(), h_strings.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(StringColumnTest, ConcatenateTooManyColumns)
{
std::vector<char const*> h_strings{"aaa",
"bb",
"",
"cccc",
"d",
"ééé",
"ff",
"gggg",
"",
"h",
"iiii",
"jjj",
"k",
"lllllll",
"mmmmm",
"n",
"oo",
"ppp"};
std::vector<char const*> expected_strings;
std::vector<cudf::test::strings_column_wrapper> wrappers;
std::vector<cudf::column_view> strings_columns;
for (int i = 0; i < 200; ++i) {
wrappers.emplace_back(h_strings.data(), h_strings.data() + h_strings.size());
strings_columns.push_back(wrappers[i]);
expected_strings.insert(expected_strings.end(), h_strings.begin(), h_strings.end());
}
cudf::test::strings_column_wrapper expected(expected_strings.data(),
expected_strings.data() + expected_strings.size());
auto results = cudf::concatenate(strings_columns);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
struct TableTest : public cudf::test::BaseFixture {};
TEST_F(TableTest, ConcatenateTables)
{
std::vector<char const*> h_strings{
"Lorem", "ipsum", "dolor", "sit", "amet", "consectetur", "adipiscing", "elit"};
CVector cols_gold;
column_wrapper<int8_t> col1_gold{{1, 2, 3, 4, 5, 6, 7, 8}};
column_wrapper<int16_t> col2_gold{{1, 2, 3, 4, 5, 6, 7, 8}};
s_col_wrapper col3_gold(h_strings.data(), h_strings.data() + h_strings.size());
cols_gold.push_back(col1_gold.release());
cols_gold.push_back(col2_gold.release());
cols_gold.push_back(col3_gold.release());
Table gold_table(std::move(cols_gold));
CVector cols_table1;
column_wrapper<int8_t> col1_table1{{1, 2, 3, 4}};
column_wrapper<int16_t> col2_table1{{1, 2, 3, 4}};
s_col_wrapper col3_table1(h_strings.data(), h_strings.data() + 4);
cols_table1.push_back(col1_table1.release());
cols_table1.push_back(col2_table1.release());
cols_table1.push_back(col3_table1.release());
Table t1(std::move(cols_table1));
CVector cols_table2;
column_wrapper<int8_t> col1_table2{{5, 6, 7, 8}};
column_wrapper<int16_t> col2_table2{{5, 6, 7, 8}};
s_col_wrapper col3_table2(h_strings.data() + 4, h_strings.data() + h_strings.size());
cols_table2.push_back(col1_table2.release());
cols_table2.push_back(col2_table2.release());
cols_table2.push_back(col3_table2.release());
Table t2(std::move(cols_table2));
auto concat_table = cudf::concatenate(std::vector<TView>({t1, t2}));
CUDF_TEST_EXPECT_TABLES_EQUAL(*concat_table, gold_table);
}
TEST_F(TableTest, ConcatenateTablesWithOffsets)
{
column_wrapper<int32_t> col1_1{{5, 4, 3, 5, 8, 5, 6}};
cudf::test::strings_column_wrapper col2_1(
{"dada", "egg", "avocado", "dada", "kite", "dog", "ln"});
cudf::table_view table_view_in1{{col1_1, col2_1}};
column_wrapper<int32_t> col1_2{{5, 8, 5, 6, 15, 14, 13}};
cudf::test::strings_column_wrapper col2_2(
{"dada", "kite", "dog", "ln", "dado", "greg", "spinach"});
cudf::table_view table_view_in2{{col1_2, col2_2}};
std::vector<cudf::size_type> split_indexes1{3};
std::vector<cudf::table_view> partitioned1 = cudf::split(table_view_in1, split_indexes1);
std::vector<cudf::size_type> split_indexes2{3};
std::vector<cudf::table_view> partitioned2 = cudf::split(table_view_in2, split_indexes2);
{
std::vector<cudf::table_view> table_views_to_concat;
table_views_to_concat.push_back(partitioned1[1]);
table_views_to_concat.push_back(partitioned2[1]);
std::unique_ptr<cudf::table> concatenated_tables = cudf::concatenate(table_views_to_concat);
column_wrapper<int32_t> exp1_1{{5, 8, 5, 6, 6, 15, 14, 13}};
cudf::test::strings_column_wrapper exp2_1(
{"dada", "kite", "dog", "ln", "ln", "dado", "greg", "spinach"});
cudf::table_view table_view_exp1{{exp1_1, exp2_1}};
CUDF_TEST_EXPECT_TABLES_EQUAL(concatenated_tables->view(), table_view_exp1);
}
{
std::vector<cudf::table_view> table_views_to_concat;
table_views_to_concat.push_back(partitioned1[0]);
table_views_to_concat.push_back(partitioned2[1]);
std::unique_ptr<cudf::table> concatenated_tables = cudf::concatenate(table_views_to_concat);
column_wrapper<int32_t> exp1_1{{5, 4, 3, 6, 15, 14, 13}};
cudf::test::strings_column_wrapper exp2_1(
{"dada", "egg", "avocado", "ln", "dado", "greg", "spinach"});
cudf::table_view table_view_exp1{{exp1_1, exp2_1}};
CUDF_TEST_EXPECT_TABLES_EQUAL(concatenated_tables->view(), table_view_exp1);
}
{
std::vector<cudf::table_view> table_views_to_concat;
table_views_to_concat.push_back(partitioned1[1]);
table_views_to_concat.push_back(partitioned2[0]);
std::unique_ptr<cudf::table> concatenated_tables = cudf::concatenate(table_views_to_concat);
column_wrapper<int32_t> exp1_1{{5, 8, 5, 6, 5, 8, 5}};
cudf::test::strings_column_wrapper exp2_1({"dada", "kite", "dog", "ln", "dada", "kite", "dog"});
cudf::table_view table_view_exp{{exp1_1, exp2_1}};
CUDF_TEST_EXPECT_TABLES_EQUAL(concatenated_tables->view(), table_view_exp);
}
}
TEST_F(TableTest, ConcatenateTablesWithOffsetsAndNulls)
{
cudf::test::fixed_width_column_wrapper<int32_t> col1_1{{5, 4, 3, 5, 8, 5, 6},
{0, 1, 1, 1, 1, 1, 1}};
cudf::test::strings_column_wrapper col2_1({"dada", "egg", "avocado", "dada", "kite", "dog", "ln"},
{1, 1, 1, 0, 1, 1, 1});
cudf::table_view table_view_in1{{col1_1, col2_1}};
cudf::test::fixed_width_column_wrapper<int32_t> col1_2{{5, 8, 5, 6, 15, 14, 13},
{1, 1, 1, 1, 1, 1, 0}};
cudf::test::strings_column_wrapper col2_2(
{"dada", "kite", "dog", "ln", "dado", "greg", "spinach"}, {1, 0, 1, 1, 1, 1, 1});
cudf::table_view table_view_in2{{col1_2, col2_2}};
std::vector<cudf::size_type> split_indexes1{3};
std::vector<cudf::table_view> partitioned1 = cudf::split(table_view_in1, split_indexes1);
std::vector<cudf::size_type> split_indexes2{3};
std::vector<cudf::table_view> partitioned2 = cudf::split(table_view_in2, split_indexes2);
{
std::vector<cudf::table_view> table_views_to_concat;
table_views_to_concat.push_back(partitioned1[1]);
table_views_to_concat.push_back(partitioned2[1]);
std::unique_ptr<cudf::table> concatenated_tables = cudf::concatenate(table_views_to_concat);
cudf::test::fixed_width_column_wrapper<int32_t> exp1_1{{5, 8, 5, 6, 6, 15, 14, 13},
{1, 1, 1, 1, 1, 1, 1, 0}};
cudf::test::strings_column_wrapper exp2_1(
{"dada", "kite", "dog", "ln", "ln", "dado", "greg", "spinach"}, {0, 1, 1, 1, 1, 1, 1, 1});
cudf::table_view table_view_exp1{{exp1_1, exp2_1}};
CUDF_TEST_EXPECT_TABLES_EQUAL(concatenated_tables->view(), table_view_exp1);
}
{
std::vector<cudf::table_view> table_views_to_concat;
table_views_to_concat.push_back(partitioned1[1]);
table_views_to_concat.push_back(partitioned2[0]);
std::unique_ptr<cudf::table> concatenated_tables = cudf::concatenate(table_views_to_concat);
cudf::test::fixed_width_column_wrapper<int32_t> exp1_1{5, 8, 5, 6, 5, 8, 5};
cudf::test::strings_column_wrapper exp2_1({"dada", "kite", "dog", "ln", "dada", "kite", "dog"},
{0, 1, 1, 1, 1, 0, 1});
cudf::table_view table_view_exp1{{exp1_1, exp2_1}};
CUDF_TEST_EXPECT_TABLES_EQUAL(concatenated_tables->view(), table_view_exp1);
}
}
struct OverflowTest : public cudf::test::BaseFixture {};
TEST_F(OverflowTest, OverflowTest)
{
// should concatenate up to size_type::max rows.
{
// 5 x size + size_last adds to size_type::max
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(250) * 1024 * 1024);
constexpr auto size_last = static_cast<cudf::size_type>(836763647);
auto many_chars = cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size);
auto many_chars_last =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size_last);
cudf::table_view tbl({*many_chars});
cudf::table_view tbl_last({*many_chars_last});
std::vector<cudf::table_view> table_views_to_concat({tbl, tbl, tbl, tbl, tbl, tbl_last});
std::unique_ptr<cudf::table> concatenated_tables = cudf::concatenate(table_views_to_concat);
EXPECT_NO_THROW(cudf::get_default_stream().synchronize());
ASSERT_EQ(concatenated_tables->num_rows(), std::numeric_limits<cudf::size_type>::max());
}
// primitive column
{
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
// try and concatenate 6 char columns of size 1 billion each
auto many_chars = cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size);
cudf::table_view tbl({*many_chars});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({tbl, tbl, tbl, tbl, tbl, tbl})),
std::overflow_error);
}
// string column, overflow on chars
{
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
// try and concatenate 6 string columns of with 1 billion chars in each
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, size};
auto many_chars = cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size);
auto col = cudf::make_strings_column(
1, offsets.release(), std::move(many_chars), 0, rmm::device_buffer{});
cudf::table_view tbl({*col});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({tbl, tbl, tbl, tbl, tbl, tbl})),
std::overflow_error);
}
// string column, overflow on offsets (rows)
{
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
// try and concatenate 6 string columns 1 billion rows each
auto many_offsets =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT32}, size + 1);
auto chars = cudf::test::fixed_width_column_wrapper<int8_t>{0, 1, 2};
auto col = cudf::make_strings_column(
size, std::move(many_offsets), chars.release(), 0, rmm::device_buffer{});
cudf::table_view tbl({*col});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({tbl, tbl, tbl, tbl, tbl, tbl})),
std::overflow_error);
}
// list<struct>, structs too long
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(512) * 1024 * 1024);
// struct
std::vector<std::unique_ptr<column>> children;
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size));
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size));
auto struct_col =
cudf::make_structs_column(inner_size, std::move(children), 0, rmm::device_buffer{});
// list
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, inner_size};
auto col =
cudf::make_lists_column(1, offsets.release(), std::move(struct_col), 0, rmm::device_buffer{});
cudf::table_view tbl({*col});
auto tables =
std::vector<cudf::table_view>({tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl});
EXPECT_THROW(cudf::concatenate(tables), std::overflow_error);
}
// struct<int, list>, list child too long
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(512) * 1024 * 1024);
constexpr cudf::size_type size = 3;
// list
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 0, inner_size};
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size);
auto list_col =
cudf::make_lists_column(3, offsets.release(), std::move(many_chars), 0, rmm::device_buffer{});
// struct
std::vector<std::unique_ptr<column>> children;
children.push_back(cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT32}, size));
children.push_back(std::move(list_col));
auto col = cudf::make_structs_column(size, std::move(children), 0, rmm::device_buffer{});
cudf::table_view tbl({*col});
auto tables =
std::vector<cudf::table_view>({tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl, tbl});
EXPECT_THROW(cudf::concatenate(tables), std::overflow_error);
}
}
TEST_F(OverflowTest, Presliced)
{
// primitive column
{
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
// try and concatenate 4 char columns of size ~1/2 billion each
auto many_chars = cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size);
auto sliced = cudf::split(*many_chars, {511 * 1024 * 1024});
// 511 * 1024 * 1024, should succeed
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a}));
// 513 * 1024 * 1024, should fail
cudf::table_view b({sliced[1]});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({b, b, b, b})),
std::overflow_error);
}
// struct<int8> column
{
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
// try and concatenate 4 char columns of size ~1/2 billion each
std::vector<std::unique_ptr<column>> children;
children.push_back(cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size));
auto struct_col = cudf::make_structs_column(size, std::move(children), 0, rmm::device_buffer{});
auto sliced = cudf::split(*struct_col, {511 * 1024 * 1024});
// 511 * 1024 * 1024, should succeed
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a}));
// 513 * 1024 * 1024, should fail
cudf::table_view b({sliced[1]});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({b, b, b, b})),
std::overflow_error);
}
// strings, overflow on chars
{
constexpr cudf::size_type total_chars_size = 1024 * 1024 * 1024;
constexpr cudf::size_type string_size = 64;
constexpr cudf::size_type num_rows = total_chars_size / string_size;
// try and concatenate 4 string columns of with ~1/2 billion chars in each
auto offset_gen = cudf::detail::make_counting_transform_iterator(
0, [string_size](cudf::size_type index) { return index * string_size; });
cudf::test::fixed_width_column_wrapper<int> offsets(offset_gen, offset_gen + num_rows + 1);
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, total_chars_size);
auto col = cudf::make_strings_column(
num_rows, offsets.release(), std::move(many_chars), 0, rmm::device_buffer{});
auto sliced = cudf::split(*col, {(num_rows / 2) - 1});
// (num_rows / 2) - 1 should succeed
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a}));
// (num_rows / 2) + 1 should fail
cudf::table_view b({sliced[1]});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({b, b, b, b})),
std::overflow_error);
}
// strings, overflow on offsets
{
constexpr cudf::size_type total_chars_size = 1024 * 1024 * 1024;
constexpr cudf::size_type string_size = 1;
constexpr cudf::size_type num_rows = total_chars_size / string_size;
// try and concatenate 4 string columns of with ~1/2 billion chars in each
auto offsets = cudf::sequence(num_rows + 1,
cudf::numeric_scalar<cudf::size_type>(0),
cudf::numeric_scalar<cudf::size_type>(string_size));
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, total_chars_size);
auto col = cudf::make_strings_column(
num_rows, std::move(offsets), std::move(many_chars), 0, rmm::device_buffer{});
// should pass (with 2 rows to spare)
// leaving this disabled as it typically runs out of memory on a T4
/*
{
auto sliced = cudf::split(*col, {(num_rows / 2) + 1});
cudf::table_view b({sliced[1]});
cudf::concatenate(std::vector<cudf::table_view>({b, b, b, b}));
}
*/
// should fail by 1 row (2,147,483,647 rows which is fine, but that requires 2,147,483,648
// offsets, which is not)
{
auto a = cudf::split(*col, {(num_rows / 2)});
cudf::table_view ta({a[1]});
auto b = cudf::split(*col, {(num_rows / 2) + 1});
cudf::table_view tb({b[1]});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({ta, ta, ta, tb})),
std::overflow_error);
}
}
// list<struct>, structs too long
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
// struct
std::vector<std::unique_ptr<column>> children;
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size));
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size));
auto struct_col =
cudf::make_structs_column(inner_size, std::move(children), 0, rmm::device_buffer{});
// list
constexpr cudf::size_type list_size = inner_size / 4;
auto offsets = cudf::test::fixed_width_column_wrapper<int>{
0, list_size, list_size * 2, list_size * 3, inner_size};
auto col =
cudf::make_lists_column(4, offsets.release(), std::move(struct_col), 0, rmm::device_buffer{});
auto sliced = cudf::split(*col, {2});
cudf::table_view tbl({sliced[1]});
auto tables = std::vector<cudf::table_view>({tbl, tbl, tbl, tbl});
EXPECT_THROW(cudf::concatenate(tables), std::overflow_error);
}
// list<struct>, overflow on offsets
{
constexpr cudf::size_type inner_size = 1024 * 1024 * 1024;
constexpr cudf::size_type list_size = 1;
constexpr cudf::size_type num_rows = inner_size / list_size;
// struct
std::vector<std::unique_ptr<column>> children;
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size));
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size));
auto struct_col =
cudf::make_structs_column(inner_size, std::move(children), 0, rmm::device_buffer{});
// try and concatenate 4 struct columns of with ~1/2 billion elements in each
auto offsets = cudf::sequence(num_rows + 1,
cudf::numeric_scalar<cudf::size_type>(0),
cudf::numeric_scalar<cudf::size_type>(list_size));
auto col = cudf::make_strings_column(
num_rows, std::move(offsets), std::move(struct_col), 0, rmm::device_buffer{});
// should pass (with 2 rows to spare)
// leaving this disabled as it typically runs out of memory on a T4
/*
{
auto sliced = cudf::split(*col, {(num_rows / 2) + 1});
cudf::table_view b({sliced[1]});
cudf::concatenate(std::vector<cudf::table_view>({b, b, b, b}));
}
*/
// should fail by 1 row (2,147,483,647 rows which is fine, but that requires 2,147,483,648
// offsets, which is not)
{
auto a = cudf::split(*col, {(num_rows / 2)});
cudf::table_view ta({a[1]});
auto b = cudf::split(*col, {(num_rows / 2) + 1});
cudf::table_view tb({b[1]});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({ta, ta, ta, tb})),
std::overflow_error);
}
}
// struct<int8, list>, list child elements too long
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
constexpr cudf::size_type num_rows = 4;
constexpr cudf::size_type list_size = inner_size / num_rows;
// list
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{
0, list_size, (list_size * 2) - 1, list_size * 3, inner_size};
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size);
auto list_col = cudf::make_lists_column(
num_rows, offsets.release(), std::move(many_chars), 0, rmm::device_buffer{});
// struct
std::vector<std::unique_ptr<column>> children;
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, num_rows));
children.push_back(std::move(list_col));
auto struct_col =
cudf::make_structs_column(num_rows, std::move(children), 0, rmm::device_buffer{});
auto sliced = cudf::split(*struct_col, {2});
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a}));
cudf::table_view b({sliced[1]});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::table_view>({b, b, b, b})),
std::overflow_error);
}
}
TEST_F(OverflowTest, BigColumnsSmallSlices)
{
// test : many small slices of large columns. the idea is to make sure
// that we are respecting the offset/sizes of the slices and not attempting to
// concatenate the entire large initial columns
// primitive column
{
constexpr auto size = static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
auto many_chars = cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, size);
auto sliced = cudf::slice(*many_chars, {16, 32});
// 192 total rows
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a, a, a, a, a, a, a, a, a}));
}
// strings column
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
constexpr cudf::size_type num_rows = 1024;
constexpr cudf::size_type string_size = inner_size / num_rows;
auto offsets = cudf::sequence(num_rows + 1,
cudf::numeric_scalar<cudf::size_type>(0),
cudf::numeric_scalar<cudf::size_type>(string_size));
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size);
auto col = cudf::make_strings_column(
num_rows, std::move(offsets), std::move(many_chars), 0, rmm::device_buffer{});
auto sliced = cudf::slice(*col, {16, 32});
// 192 outer rows
// 201,326,592 inner rows
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a, a, a, a, a, a, a, a, a}));
}
// list<int8> column
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
constexpr cudf::size_type num_rows = 1024;
constexpr cudf::size_type list_size = inner_size / num_rows;
auto offsets = cudf::sequence(num_rows + 1,
cudf::numeric_scalar<cudf::size_type>(0),
cudf::numeric_scalar<cudf::size_type>(list_size));
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size);
auto col = cudf::make_lists_column(
num_rows, std::move(offsets), std::move(many_chars), 0, rmm::device_buffer{});
auto sliced = cudf::slice(*col, {16, 32});
// 192 outer rows
// 201,326,592 inner rows
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a, a, a, a, a, a, a, a, a}));
}
// struct<int8, list>
{
constexpr auto inner_size =
static_cast<cudf::size_type>(static_cast<uint32_t>(1024) * 1024 * 1024);
constexpr cudf::size_type num_rows = 1024;
constexpr cudf::size_type list_size = inner_size / num_rows;
auto offsets = cudf::sequence(num_rows + 1,
cudf::numeric_scalar<cudf::size_type>(0),
cudf::numeric_scalar<cudf::size_type>(list_size));
auto many_chars =
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, inner_size);
auto list_col = cudf::make_lists_column(
num_rows, std::move(offsets), std::move(many_chars), 0, rmm::device_buffer{});
// struct
std::vector<std::unique_ptr<column>> children;
children.push_back(
cudf::make_fixed_width_column(cudf::data_type{cudf::type_id::INT8}, num_rows));
children.push_back(std::move(list_col));
auto struct_col =
cudf::make_structs_column(num_rows, std::move(children), 0, rmm::device_buffer{});
auto sliced = cudf::slice(*struct_col, {16, 32});
// 192 outer rows
// 201,326,592 inner rows
cudf::table_view a({sliced[0]});
cudf::concatenate(std::vector<cudf::table_view>({a, a, a, a, a, a, a, a, a, a, a, a}));
}
}
struct StructsColumnTest : public cudf::test::BaseFixture {};
TEST_F(StructsColumnTest, ConcatenateStructs)
{
auto count_iter = thrust::make_counting_iterator(0);
// 1. String "names" column.
std::vector<std::vector<std::string>> names(
{{"Vimes", "Carrot"}, {"Angua", "Cheery"}, {}, {"Detritus", "Slant"}});
std::vector<std::vector<bool>> names_validity({{1, 1}, {1, 1}, {}, {1, 1}});
std::vector<cudf::test::strings_column_wrapper> name_cols;
std::transform(count_iter, count_iter + names.size(), std::back_inserter(name_cols), [&](int i) {
return cudf::test::strings_column_wrapper(
names[i].begin(), names[i].end(), names_validity[i].begin());
});
// 2. Numeric "ages" column.
std::vector<std::vector<int>> ages({{5, 10}, {15, 20}, {}, {25, 30}});
std::vector<std::vector<bool>> ages_validity({{1, 1}, {1, 1}, {}, {0, 1}});
std::vector<cudf::test::fixed_width_column_wrapper<int>> age_cols;
std::transform(count_iter, count_iter + ages.size(), std::back_inserter(age_cols), [&](int i) {
return cudf::test::fixed_width_column_wrapper<int>(
ages[i].begin(), ages[i].end(), ages_validity[i].begin());
});
// 3. Boolean "is_human" column.
std::vector<std::vector<bool>> is_human({{true, true}, {false, false}, {}, {false, false}});
std::vector<std::vector<bool>> is_human_validity({{1, 1}, {1, 0}, {}, {1, 1}});
std::vector<cudf::test::fixed_width_column_wrapper<bool>> is_human_cols;
std::transform(
count_iter, count_iter + is_human.size(), std::back_inserter(is_human_cols), [&](int i) {
return cudf::test::fixed_width_column_wrapper<bool>(
is_human[i].begin(), is_human[i].end(), is_human_validity[i].begin());
});
// build expected output
std::vector<std::unique_ptr<column>> expected_children;
auto name_col_vec =
std::vector<column_view>({name_cols[0], name_cols[1], name_cols[2], name_cols[3]});
auto age_col_vec = std::vector<column_view>({age_cols[0], age_cols[1], age_cols[2], age_cols[3]});
auto is_human_col_vec = std::vector<column_view>(
{is_human_cols[0], is_human_cols[1], is_human_cols[2], is_human_cols[3]});
expected_children.push_back(cudf::concatenate(name_col_vec));
expected_children.push_back(cudf::concatenate(age_col_vec));
expected_children.push_back(cudf::concatenate(is_human_col_vec));
std::vector<bool> struct_validity({1, 0, 1, 1, 1, 0});
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(struct_validity.begin(), struct_validity.end());
auto expected =
make_structs_column(6, std::move(expected_children), null_count, std::move(null_mask));
// concatenate as structs
std::vector<cudf::test::structs_column_wrapper> src;
src.push_back(
cudf::test::structs_column_wrapper({name_cols[0], age_cols[0], is_human_cols[0]}, {1, 0}));
src.push_back(
cudf::test::structs_column_wrapper({name_cols[1], age_cols[1], is_human_cols[1]}, {1, 1}));
src.push_back(
cudf::test::structs_column_wrapper({name_cols[2], age_cols[2], is_human_cols[2]}, {}));
src.push_back(
cudf::test::structs_column_wrapper({name_cols[3], age_cols[3], is_human_cols[3]}, {1, 0}));
// concatenate
auto result = cudf::concatenate(std::vector<column_view>({src[0], src[1], src[2], src[3]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TEST_F(StructsColumnTest, ConcatenateEmptyStructs)
{
auto expected = cudf::make_structs_column(10, {}, 0, rmm::device_buffer());
auto first = cudf::make_structs_column(5, {}, 0, rmm::device_buffer());
auto second = cudf::make_structs_column(2, {}, 0, rmm::device_buffer());
auto third = cudf::make_structs_column(0, {}, 0, rmm::device_buffer());
auto fourth = cudf::make_structs_column(3, {}, 0, rmm::device_buffer());
// concatenate
auto result = cudf::concatenate(std::vector<column_view>({*first, *second, *third, *fourth}));
ASSERT_EQ(result->size(), expected->size());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TEST_F(StructsColumnTest, ConcatenateSplitStructs)
{
auto count_iter = thrust::make_counting_iterator(0);
std::vector<int> splits({2});
// 1. String "names" column.
std::vector<std::vector<std::string>> names(
{{"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant"},
{"Bill", "Bob", "Sam", "Fred", "Tom"}});
std::vector<std::vector<bool>> names_validity({{1, 1, 1, 1, 1, 1}, {0, 1, 0, 1, 0}});
std::vector<cudf::test::strings_column_wrapper> name_cols;
std::transform(count_iter, count_iter + names.size(), std::back_inserter(name_cols), [&](int i) {
return cudf::test::strings_column_wrapper(
names[i].begin(), names[i].end(), names_validity[i].begin());
});
// 2. Numeric "ages" column.
std::vector<std::vector<int>> ages({{5, 10, 15, 20, 25, 30}, {11, 16, 17, 41, 42}});
std::vector<std::vector<bool>> ages_validity({{1, 1, 1, 1, 0, 1}, {1, 1, 1, 0, 0}});
std::vector<cudf::test::fixed_width_column_wrapper<int>> age_cols;
std::transform(count_iter, count_iter + ages.size(), std::back_inserter(age_cols), [&](int i) {
return cudf::test::fixed_width_column_wrapper<int>(
ages[i].begin(), ages[i].end(), ages_validity[i].begin());
});
// 3. Boolean "is_human" column.
std::vector<std::vector<bool>> is_human(
{{true, true, false, false, false, false}, {true, true, true, false, true}});
std::vector<std::vector<bool>> is_human_validity({{1, 1, 1, 0, 1, 1}, {0, 0, 0, 1, 1}});
std::vector<cudf::test::fixed_width_column_wrapper<bool>> is_human_cols;
std::transform(
count_iter, count_iter + is_human.size(), std::back_inserter(is_human_cols), [&](int i) {
return cudf::test::fixed_width_column_wrapper<bool>(
is_human[i].begin(), is_human[i].end(), is_human_validity[i].begin());
});
// split the columns, keep the one on the end
std::vector<column_view> split_names_cols(
{cudf::split(name_cols[0], splits)[1], cudf::split(name_cols[1], splits)[1]});
std::vector<column_view> split_ages_cols(
{cudf::split(age_cols[0], splits)[1], cudf::split(age_cols[1], splits)[1]});
std::vector<column_view> split_is_human_cols(
{cudf::split(is_human_cols[0], splits)[1], cudf::split(is_human_cols[1], splits)[1]});
// build expected output
std::vector<std::unique_ptr<column>> expected_children;
auto expected_names = std::vector<column_view>({split_names_cols[0], split_names_cols[1]});
auto expected_ages = std::vector<column_view>({split_ages_cols[0], split_ages_cols[1]});
auto expected_is_human =
std::vector<column_view>({split_is_human_cols[0], split_is_human_cols[1]});
expected_children.push_back(cudf::concatenate(expected_names));
expected_children.push_back(cudf::concatenate(expected_ages));
expected_children.push_back(cudf::concatenate(expected_is_human));
auto expected = make_structs_column(7, std::move(expected_children), 0, rmm::device_buffer{});
// concatenate as structs
std::vector<cudf::test::structs_column_wrapper> src;
for (size_t idx = 0; idx < split_names_cols.size(); idx++) {
std::vector<std::unique_ptr<column>> inputs;
inputs.push_back(std::make_unique<column>(split_names_cols[idx]));
inputs.push_back(std::make_unique<column>(split_ages_cols[idx]));
inputs.push_back(std::make_unique<column>(split_is_human_cols[idx]));
src.push_back(cudf::test::structs_column_wrapper(std::move(inputs)));
}
// concatenate
auto result = cudf::concatenate(std::vector<column_view>({src[0], src[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TEST_F(StructsColumnTest, ConcatenateStructsNested)
{
// includes Struct<Struct> and Struct<List>
auto count_iter = thrust::make_counting_iterator(0);
// inner structs
std::vector<cudf::test::structs_column_wrapper> inner_structs;
{
// 1. String "names" column.
std::vector<std::vector<std::string>> names(
{{"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant"},
{"Bill", "Bob", "Sam", "Fred", "Tom"}});
std::vector<std::vector<bool>> names_validity({{1, 1, 1, 1, 1, 1}, {0, 1, 0, 1, 0}});
std::vector<cudf::test::strings_column_wrapper> name_cols;
std::transform(
count_iter, count_iter + names.size(), std::back_inserter(name_cols), [&](int i) {
return cudf::test::strings_column_wrapper(
names[i].begin(), names[i].end(), names_validity[i].begin());
});
// 2. Numeric "ages" column.
std::vector<std::vector<int>> ages({{5, 10, 15, 20, 25, 30}, {11, 16, 17, 41, 42}});
std::vector<std::vector<bool>> ages_validity({{1, 1, 1, 1, 0, 1}, {1, 1, 1, 0, 0}});
std::vector<cudf::test::fixed_width_column_wrapper<int>> age_cols;
std::transform(count_iter, count_iter + ages.size(), std::back_inserter(age_cols), [&](int i) {
return cudf::test::fixed_width_column_wrapper<int>(
ages[i].begin(), ages[i].end(), ages_validity[i].begin());
});
for (size_t idx = 0; idx < names.size(); idx++) {
std::vector<std::unique_ptr<column>> children;
children.push_back(name_cols[idx].release());
children.push_back(age_cols[idx].release());
inner_structs.push_back(cudf::test::structs_column_wrapper(std::move(children)));
}
}
// inner lists
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
std::vector<cudf::test::lists_column_wrapper<cudf::string_view>> inner_lists;
{
inner_lists.push_back(cudf::test::lists_column_wrapper<cudf::string_view>{
{"abc", "d"}, {"ef", "ghi", "j"}, {"klm", "no"}, LCW{}, LCW{"whee"}, {"xyz", "ab", "g"}});
inner_lists.push_back(cudf::test::lists_column_wrapper<cudf::string_view>{
{"er", "hyj"}, {"", "", "uvw"}, LCW{}, LCW{"oipq", "te"}, LCW{"yay", "bonk"}});
}
// build expected output
std::vector<std::unique_ptr<column>> expected_children;
expected_children.push_back(
cudf::concatenate(std::vector<column_view>({inner_structs[0], inner_structs[1]})));
expected_children.push_back(
cudf::concatenate(std::vector<column_view>({inner_lists[0], inner_lists[1]})));
auto expected = make_structs_column(11, std::move(expected_children), 0, rmm::device_buffer{});
// concatenate as structs
std::vector<cudf::test::structs_column_wrapper> src;
for (size_t idx = 0; idx < inner_structs.size(); idx++) {
std::vector<std::unique_ptr<column>> inputs;
inputs.push_back(std::make_unique<column>(inner_structs[idx]));
inputs.push_back(std::make_unique<column>(inner_lists[idx]));
src.push_back(cudf::test::structs_column_wrapper(std::move(inputs)));
}
// concatenate
auto result = cudf::concatenate(std::vector<column_view>({src[0], src[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
struct ListsColumnTest : public cudf::test::BaseFixture {};
TEST_F(ListsColumnTest, ConcatenateLists)
{
{
cudf::test::lists_column_wrapper<int> a{0, 1, 2, 3};
cudf::test::lists_column_wrapper<int> b{4, 5, 6, 7, 8, 9, 10};
cudf::test::lists_column_wrapper<int> expected{{0, 1, 2, 3}, {4, 5, 6, 7, 8, 9, 10}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{{0, 1, 1}, {2, 3}, {4, 5}};
cudf::test::lists_column_wrapper<int> b{{6}, {8, 9, 9, 9}, {10, 11}};
cudf::test::lists_column_wrapper<int> expected{
{0, 1, 1}, {2, 3}, {4, 5}, {6}, {8, 9, 9, 9}, {10, 11}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{{0, 1}, {2, 3, 4, 5}, {6, 7, 8}};
cudf::test::lists_column_wrapper<int> b{{9}, {10, 11}, {12, 13, 14, 15}};
cudf::test::lists_column_wrapper<int> expected{
{0, 1}, {2, 3, 4, 5}, {6, 7, 8}, {9}, {10, 11}, {12, 13, 14, 15}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
}
TEST_F(ListsColumnTest, ConcatenateEmptyLists)
{
// to disambiguate between {} == 0 and {} == List{0}
// Also, see note about compiler issues when declaring nested
// empty lists in lists_column_wrapper documentation
using LCW = cudf::test::lists_column_wrapper<int>;
{
cudf::test::lists_column_wrapper<int> a;
cudf::test::lists_column_wrapper<int> b{4, 5, 6, 7};
cudf::test::lists_column_wrapper<int> expected{4, 5, 6, 7};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a, b, c;
cudf::test::lists_column_wrapper<int> d{4, 5, 6, 7};
cudf::test::lists_column_wrapper<int> expected{4, 5, 6, 7};
auto result = cudf::concatenate(std::vector<column_view>({a, b, c, d}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{LCW{}};
cudf::test::lists_column_wrapper<int> b{4, 5, 6, 7};
cudf::test::lists_column_wrapper<int> expected{LCW{}, {4, 5, 6, 7}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{LCW{}}, b{LCW{}}, c{LCW{}};
cudf::test::lists_column_wrapper<int> d{4, 5, 6, 7};
cudf::test::lists_column_wrapper<int> expected{LCW{}, LCW{}, LCW{}, {4, 5, 6, 7}};
auto result = cudf::concatenate(std::vector<column_view>({a, b, c, d}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{1, 2};
cudf::test::lists_column_wrapper<int> b{LCW{}}, c{LCW{}};
cudf::test::lists_column_wrapper<int> d{4, 5, 6, 7};
cudf::test::lists_column_wrapper<int> expected{{1, 2}, LCW{}, LCW{}, {4, 5, 6, 7}};
auto result = cudf::concatenate(std::vector<column_view>({a, b, c, d}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
}
TEST_F(ListsColumnTest, ConcatenateListsWithNulls)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// nulls in the leaves
{
cudf::test::lists_column_wrapper<int> a{{{0, 1, 2, 3}, valids}};
cudf::test::lists_column_wrapper<int> b{{{4, 6, 7}, valids}};
cudf::test::lists_column_wrapper<int> expected{{{0, 1, 2, 3}, valids}, {{4, 6, 7}, valids}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
}
TEST_F(ListsColumnTest, ConcatenateNestedLists)
{
{
cudf::test::lists_column_wrapper<int> a{{{0, 1}, {2}}, {{4, 5, 6, 7, 8, 9, 10}}};
cudf::test::lists_column_wrapper<int> b{{{6, 7}}, {{8, 9, 10}, {11, 12}}};
cudf::test::lists_column_wrapper<int> expected{
{{0, 1}, {2}}, {{4, 5, 6, 7, 8, 9, 10}}, {{6, 7}}, {{8, 9, 10}, {11, 12}}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{
{{{0, 1, 2}, {3, 4}}, {{5}, {6, 7}}, {{8, 9}}},
{{{10}, {11, 12}}, {{13, 14, 15, 16}, {15, 16}}, {{17, 18}, {19, 20}}},
{{{50}, {51, 52}}, {{54}, {55, 16}}, {{57, 18}, {59, 60}}}};
cudf::test::lists_column_wrapper<int> b{
{{{21, 22}, {23, 24}}, {{25}, {26, 27}}, {{28, 29, 30}}},
{{{31, 32}, {33, 34}}, {{35, 36}, {37, 38}}, {{39, 40}}},
{{{71, 72}, {74}}, {{75, 76, 77, 78}, {77, 78}}, {{79, 80, 81}}}};
cudf::test::lists_column_wrapper<int> expected{
{{{0, 1, 2}, {3, 4}}, {{5}, {6, 7}}, {{8, 9}}},
{{{10}, {11, 12}}, {{13, 14, 15, 16}, {15, 16}}, {{17, 18}, {19, 20}}},
{{{50}, {51, 52}}, {{54}, {55, 16}}, {{57, 18}, {59, 60}}},
{{{21, 22}, {23, 24}}, {{25}, {26, 27}}, {{28, 29, 30}}},
{{{31, 32}, {33, 34}}, {{35, 36}, {37, 38}}, {{39, 40}}},
{{{71, 72}, {74}}, {{75, 76, 77, 78}, {77, 78}}, {{79, 80, 81}}}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
}
TEST_F(ListsColumnTest, ConcatenateNestedEmptyLists)
{
using T = int;
// to disambiguate between {} == 0 and {} == List{0}
// Also, see note about compiler issues when declaring nested
// empty lists in lists_column_wrapper documentation
using LCW = cudf::test::lists_column_wrapper<T>;
{
cudf::test::lists_column_wrapper<T> a{{LCW{}}, {{0, 1}, {2, 3}}};
cudf::test::lists_column_wrapper<int> b{{{6, 7}}, {LCW{}, {11, 12}}};
cudf::test::lists_column_wrapper<int> expected{
{LCW{}}, {{0, 1}, {2, 3}}, {{6, 7}}, {LCW{}, {11, 12}}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
{
cudf::test::lists_column_wrapper<int> a{
{{{0, 1, 2}, LCW{}}, {{5}, {6, 7}}, {{8, 9}}},
{{LCW{}}, {{17, 18}, {19, 20}}},
{{LCW{}}},
{{{50}, {51, 52}}, {{53, 54}, {55, 16, 17}}, {{59, 60}}}};
cudf::test::lists_column_wrapper<int> b{
{{{21, 22}, {23, 24}}, {LCW{}, {26, 27}}, {{28, 29, 30}}},
{{{31, 32}, {33, 34}}, {{35, 36}, {37, 38}, {1, 2}}, {{39, 40}}},
{{LCW{}}}};
cudf::test::lists_column_wrapper<int> expected{
{{{0, 1, 2}, LCW{}}, {{5}, {6, 7}}, {{8, 9}}},
{{LCW{}}, {{17, 18}, {19, 20}}},
{{LCW{}}},
{{{50}, {51, 52}}, {{53, 54}, {55, 16, 17}}, {{59, 60}}},
{{{21, 22}, {23, 24}}, {LCW{}, {26, 27}}, {{28, 29, 30}}},
{{{31, 32}, {33, 34}}, {{35, 36}, {37, 38}, {1, 2}}, {{39, 40}}},
{{LCW{}}}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
}
TEST_F(ListsColumnTest, ConcatenateNestedListsWithNulls)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
// nulls in the lists
{
cudf::test::lists_column_wrapper<int> a{{{{0, 1}, {2, 3}}, valids}};
cudf::test::lists_column_wrapper<int> b{{{{4}, {6, 7}}, valids}};
cudf::test::lists_column_wrapper<int> expected{{{{0, 1}, {2, 3}}, valids},
{{{4}, {6, 7}}, valids}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
// nulls in the lists -and- the values
{
cudf::test::lists_column_wrapper<int> a{{{{{0}, valids}, {2, 3}}, valids}, {{4, 5}}};
cudf::test::lists_column_wrapper<int> b{{{6, 7}}, {{{{8, 9, 10}, valids}, {11, 12}}, valids}};
cudf::test::lists_column_wrapper<int> expected{{{{{0}, valids}, {2, 3}}, valids},
{{4, 5}},
{{6, 7}},
{{{{8, 9, 10}, valids}, {11, 12}}, valids}};
auto result = cudf::concatenate(std::vector<column_view>({a, b}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expected);
}
}
TEST_F(ListsColumnTest, ConcatenateMismatchedHierarchies)
{
// to disambiguate between {} == 0 and {} == List{0}
// Also, see note about compiler issues when declaring nested
// empty lists in lists_column_wrapper documentation
using LCW = cudf::test::lists_column_wrapper<int>;
{
cudf::test::lists_column_wrapper<int> a{{{{LCW{}}}}};
cudf::test::lists_column_wrapper<int> b{{{LCW{}}}};
cudf::test::lists_column_wrapper<int> c{{LCW{}}};
EXPECT_THROW(cudf::concatenate(std::vector<column_view>({a, b, c})), cudf::logic_error);
}
{
std::vector<bool> valids{false};
cudf::test::lists_column_wrapper<int> a{{{{{LCW{}}}}, valids.begin()}};
cudf::test::lists_column_wrapper<int> b{{{LCW{}}}};
cudf::test::lists_column_wrapper<int> c{{LCW{}}};
EXPECT_THROW(cudf::concatenate(std::vector<column_view>({a, b, c})), cudf::logic_error);
}
{
cudf::test::lists_column_wrapper<int> a{{{{LCW{}}}}};
cudf::test::lists_column_wrapper<int> b{1, 2, 3};
cudf::test::lists_column_wrapper<int> c{{3, 4, 5}};
EXPECT_THROW(cudf::concatenate(std::vector<column_view>({a, b, c})), cudf::logic_error);
}
{
cudf::test::lists_column_wrapper<int> a{{{1, 2, 3}}};
cudf::test::lists_column_wrapper<int> b{{4, 5}};
EXPECT_THROW(cudf::concatenate(std::vector<column_view>({a, b})), cudf::logic_error);
}
}
TEST_F(ListsColumnTest, SlicedColumns)
{
using LCW = cudf::test::lists_column_wrapper<int>;
{
cudf::test::lists_column_wrapper<int> a{{{1, 1, 1}, {2, 2}, {3, 3}},
{{4, 4, 4}, {5, 5}, {6, 6}},
{{7, 7, 7}, {8, 8}, {9, 9}},
{{10, 10, 10}, {11, 11}, {12, 12}}};
auto split_a = cudf::split(a, {2});
cudf::test::lists_column_wrapper<int> b{{{-1, -1, -1, -1}, {-2}},
{{-3, -3, -3, -3}, {-4}},
{{-5, -5, -5, -5}, {-6}},
{{-7, -7, -7, -7}, {-8}}};
auto split_b = cudf::split(b, {2});
cudf::test::lists_column_wrapper<int> expected0{{{1, 1, 1}, {2, 2}, {3, 3}},
{{4, 4, 4}, {5, 5}, {6, 6}},
{{-1, -1, -1, -1}, {-2}},
{{-3, -3, -3, -3}, {-4}}};
auto result0 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result0, expected0);
cudf::test::lists_column_wrapper<int> expected1{{{1, 1, 1}, {2, 2}, {3, 3}},
{{4, 4, 4}, {5, 5}, {6, 6}},
{{-5, -5, -5, -5}, {-6}},
{{-7, -7, -7, -7}, {-8}}};
auto result1 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result1, expected1);
cudf::test::lists_column_wrapper<int> expected2{
{{7, 7, 7}, {8, 8}, {9, 9}},
{{10, 10, 10}, {11, 11}, {12, 12}},
{{-1, -1, -1, -1}, {-2}},
{{-3, -3, -3, -3}, {-4}},
};
auto result2 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result2, expected2);
cudf::test::lists_column_wrapper<int> expected3{{{7, 7, 7}, {8, 8}, {9, 9}},
{{10, 10, 10}, {11, 11}, {12, 12}},
{{-5, -5, -5, -5}, {-6}},
{{-7, -7, -7, -7}, {-8}}};
auto result3 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result3, expected3);
}
{
cudf::test::lists_column_wrapper<int> a{
{{{1, 1, 1}, {2, 2}}, {{3, 3}}, {{10, 9, 16}, {8, 7, 1}, {6, 8, 2}}},
{LCW{}, {LCW{}}, {{6, 6}, {2}}},
{LCW{}, LCW{}},
{LCW{}, LCW{}, {{10, 10, 10}, {11, 11}, {12, 12}}, LCW{}}};
auto split_a = cudf::split(a, {2});
cudf::test::lists_column_wrapper<int> b{
{{LCW{}}},
{LCW{}, {LCW{}}},
{{{1, 2, 9}, LCW{}}, {{5, 6, 7, 8, 9}, {0}, {15, 17}}},
{{LCW{}}},
};
auto split_b = cudf::split(b, {2});
cudf::test::lists_column_wrapper<int> expected0{
{{{1, 1, 1}, {2, 2}}, {{3, 3}}, {{10, 9, 16}, {8, 7, 1}, {6, 8, 2}}},
{LCW{}, {LCW{}}, {{6, 6}, {2}}},
{{LCW{}}},
{LCW{}, {LCW{}}}};
auto result0 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result0, expected0);
cudf::test::lists_column_wrapper<int> expected1{
{{{1, 1, 1}, {2, 2}}, {{3, 3}}, {{10, 9, 16}, {8, 7, 1}, {6, 8, 2}}},
{LCW{}, {LCW{}}, {{6, 6}, {2}}},
{{{1, 2, 9}, LCW{}}, {{5, 6, 7, 8, 9}, {0}, {15, 17}}},
{{LCW{}}},
};
auto result1 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result1, expected1);
cudf::test::lists_column_wrapper<int> expected2{
{LCW{}, LCW{}},
{LCW{}, LCW{}, {{10, 10, 10}, {11, 11}, {12, 12}}, LCW{}},
{{LCW{}}},
{LCW{}, {LCW{}}}};
auto result2 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result2, expected2);
cudf::test::lists_column_wrapper<int> expected3{
{LCW{}, LCW{}},
{LCW{}, LCW{}, {{10, 10, 10}, {11, 11}, {12, 12}}, LCW{}},
{{{1, 2, 9}, LCW{}}, {{5, 6, 7, 8, 9}, {0}, {15, 17}}},
{{LCW{}}},
};
auto result3 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result3, expected3);
}
}
TEST_F(ListsColumnTest, SlicedColumnsWithNulls)
{
using LCW = cudf::test::lists_column_wrapper<int>;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
{
cudf::test::lists_column_wrapper<int> a{{{{1, 1, 1}, valids}, {2, 2}, {{3, 3}, valids}},
{{{4, 4, 4}, {{5, 5}, valids}, {6, 6}}, valids},
{{7, 7, 7}, {8, 8}, {9, 9}},
{{{10, 10, 10}, {11, 11}, {{12, 12}, valids}}, valids}};
auto split_a = cudf::split(a, {3});
cudf::test::lists_column_wrapper<int> b{{{{{-1, -1, -1, -1}, valids}, {-2}}, valids},
{{{{-3, -3, -3, -3}, valids}, {-4}}, valids},
{{{{-5, -5, -5, -5}, valids}, {-6}}, valids},
{{{{-7, -7, -7, -7}, valids}, {-8}}, valids}};
auto split_b = cudf::split(b, {3});
cudf::test::lists_column_wrapper<int> expected0{{{{1, 1, 1}, valids}, {2, 2}, {{3, 3}, valids}},
{{{4, 4, 4}, {{5, 5}, valids}, {6, 6}}, valids},
{{7, 7, 7}, {8, 8}, {9, 9}},
{{{{-1, -1, -1, -1}, valids}, {-2}}, valids},
{{{{-3, -3, -3, -3}, valids}, {-4}}, valids},
{{{{-5, -5, -5, -5}, valids}, {-6}}, valids}};
auto result0 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result0, expected0);
cudf::test::lists_column_wrapper<int> expected1{{{{1, 1, 1}, valids}, {2, 2}, {{3, 3}, valids}},
{{{4, 4, 4}, {{5, 5}, valids}, {6, 6}}, valids},
{{7, 7, 7}, {8, 8}, {9, 9}},
{{{{-7, -7, -7, -7}, valids}, {-8}}, valids}};
auto result1 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result1, expected1);
cudf::test::lists_column_wrapper<int> expected2{
{{{10, 10, 10}, {11, 11}, {{12, 12}, valids}}, valids},
{{{{-1, -1, -1, -1}, valids}, {-2}}, valids},
{{{{-3, -3, -3, -3}, valids}, {-4}}, valids},
{{{{-5, -5, -5, -5}, valids}, {-6}}, valids}};
auto result2 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result2, expected2);
cudf::test::lists_column_wrapper<int> expected3{
{{{10, 10, 10}, {11, 11}, {{12, 12}, valids}}, valids},
{{{{-7, -7, -7, -7}, valids}, {-8}}, valids}};
auto result3 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result3, expected3);
}
{
cudf::test::lists_column_wrapper<int> a{
{{{{1, 1, 1}, valids}, {2, 2}},
{{{3, 3}}, valids},
{{{10, 9, 16}, valids}, {8, 7, 1}, {{6, 8, 2}, valids}}},
{{LCW{}, {{LCW{}}, valids}, {{6, 6}, {2}}}, valids},
{{{LCW{}, LCW{}}, valids}},
{LCW{}, LCW{}, {{{10, 10, 10}, {{11, 11}, valids}, {12, 12}}, valids}, LCW{}}};
auto split_a = cudf::split(a, {3});
cudf::test::lists_column_wrapper<int> b{
{{{LCW{}}, valids}},
{{LCW{}, {{LCW{}}, valids}}, valids},
{{{{1, 2, 9}, LCW{}}, {{5, 6, 7, 8, 9}, {0}, {15, 17}}}, valids},
{{LCW{}}},
};
auto split_b = cudf::split(b, {3});
cudf::test::lists_column_wrapper<int> expected0{
{{{{1, 1, 1}, valids}, {2, 2}},
{{{3, 3}}, valids},
{{{10, 9, 16}, valids}, {8, 7, 1}, {{6, 8, 2}, valids}}},
{{LCW{}, {{LCW{}}, valids}, {{6, 6}, {2}}}, valids},
{{{LCW{}, LCW{}}, valids}},
{{{LCW{}}, valids}},
{{LCW{}, {{LCW{}}, valids}}, valids},
{{{{1, 2, 9}, LCW{}}, {{5, 6, 7, 8, 9}, {0}, {15, 17}}}, valids},
};
auto result0 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result0, expected0);
cudf::test::lists_column_wrapper<int> expected1{
{{{{1, 1, 1}, valids}, {2, 2}},
{{{3, 3}}, valids},
{{{10, 9, 16}, valids}, {8, 7, 1}, {{6, 8, 2}, valids}}},
{{LCW{}, {{LCW{}}, valids}, {{6, 6}, {2}}}, valids},
{{{LCW{}, LCW{}}, valids}},
{{LCW{}}},
};
auto result1 = cudf::concatenate(std::vector<column_view>({split_a[0], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result1, expected1);
cudf::test::lists_column_wrapper<int> expected2{
{LCW{}, LCW{}, {{{10, 10, 10}, {{11, 11}, valids}, {12, 12}}, valids}, LCW{}},
{{{LCW{}}, valids}},
{{LCW{}, {{LCW{}}, valids}}, valids},
{{{{1, 2, 9}, LCW{}}, {{5, 6, 7, 8, 9}, {0}, {15, 17}}}, valids},
};
auto result2 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[0]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result2, expected2);
cudf::test::lists_column_wrapper<int> expected3{
{LCW{}, LCW{}, {{{10, 10, 10}, {{11, 11}, valids}, {12, 12}}, valids}, LCW{}},
{{LCW{}}},
};
auto result3 = cudf::concatenate(std::vector<column_view>({split_a[1], split_b[1]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result3, expected3);
}
}
TEST_F(ListsColumnTest, ListOfStructs)
{
auto count_iter = thrust::make_counting_iterator(0);
// inner structs
std::vector<cudf::test::structs_column_wrapper> inner_structs;
{
// 1. String "names" column.
std::vector<std::vector<std::string>> names(
{{"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant"},
{},
{},
{"Bill", "Bob", "Sam", "Fred", "Tom"}});
std::vector<std::vector<bool>> names_validity({{1, 1, 1, 1, 1, 1}, {}, {}, {0, 1, 0, 1, 0}});
std::vector<cudf::test::strings_column_wrapper> name_cols;
std::transform(
count_iter, count_iter + names.size(), std::back_inserter(name_cols), [&](int i) {
return cudf::test::strings_column_wrapper(
names[i].begin(), names[i].end(), names_validity[i].begin());
});
// 2. Numeric "ages" column.
std::vector<std::vector<int>> ages({{5, 10, 15, 20, 25, 30}, {}, {}, {11, 16, 17, 41, 42}});
std::vector<std::vector<bool>> ages_validity({{1, 1, 1, 1, 0, 1}, {}, {}, {1, 1, 1, 0, 0}});
std::vector<cudf::test::fixed_width_column_wrapper<int>> age_cols;
std::transform(count_iter, count_iter + ages.size(), std::back_inserter(age_cols), [&](int i) {
return cudf::test::fixed_width_column_wrapper<int>(
ages[i].begin(), ages[i].end(), ages_validity[i].begin());
});
for (size_t idx = 0; idx < names.size(); idx++) {
std::vector<std::unique_ptr<column>> children;
children.push_back(name_cols[idx].release());
children.push_back(age_cols[idx].release());
inner_structs.push_back(cudf::test::structs_column_wrapper(std::move(children)));
}
}
// build expected output
auto struct_views = std::vector<column_view>(
{inner_structs[0], inner_structs[1], inner_structs[2], inner_structs[3]});
auto expected_child = cudf::concatenate(struct_views);
cudf::test::fixed_width_column_wrapper<int> offsets_w{0, 1, 1, 1, 1, 4, 6, 6, 6, 10, 11};
auto expected =
make_lists_column(10, offsets_w.release(), std::move(expected_child), 0, rmm::device_buffer{});
// lists
std::vector<cudf::test::fixed_width_column_wrapper<int>> offsets;
offsets.push_back({0, 1, 1, 1, 1, 4, 6, 6});
offsets.push_back({0});
offsets.push_back({0});
offsets.push_back({0, 0, 4, 5});
// concatenate as lists
std::vector<std::unique_ptr<column>> src;
for (size_t idx = 0; idx < inner_structs.size(); idx++) {
int size = static_cast<column_view>(offsets[idx]).size() - 1;
src.push_back(make_lists_column(
size, offsets[idx].release(), inner_structs[idx].release(), 0, rmm::device_buffer{}));
}
// concatenate
auto result = cudf::concatenate(std::vector<column_view>({*src[0], *src[1], *src[2], *src[3]}));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
struct FixedPointTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTestAllReps, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTestAllReps, FixedPointConcatentate)
{
using namespace numeric;
using decimalXX = TypeParam;
using fw_wrapper = cudf::test::fixed_width_column_wrapper<decimalXX>;
auto begin =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return decimalXX{i}; });
auto const vec = std::vector<decimalXX>(begin, begin + 1000);
auto const a = fw_wrapper(vec.begin(), /***/ vec.begin() + 300);
auto const b = fw_wrapper(vec.begin() + 300, vec.begin() + 700);
auto const c = fw_wrapper(vec.begin() + 700, vec.end());
auto const results = cudf::concatenate(std::vector<cudf::column_view>{a, b, c});
auto const expected = fw_wrapper(vec.begin(), vec.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(FixedPointTest, FixedPointConcatentate)
{
using namespace numeric;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<int32_t>;
auto begin = thrust::make_counting_iterator(0);
auto const vec = std::vector<int32_t>(begin, begin + 1000);
auto const a = fp_wrapper(vec.begin(), /***/ vec.begin() + 300, scale_type{-2});
auto const b = fp_wrapper(vec.begin() + 300, vec.begin() + 700, scale_type{-2});
auto const c = fp_wrapper(vec.begin() + 700, vec.end(), /*****/ scale_type{-2});
auto const results = cudf::concatenate(std::vector<cudf::column_view>{a, b, c});
auto const expected = fp_wrapper(vec.begin(), vec.end(), scale_type{-2});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(FixedPointTest, FixedPointScaleMismatch)
{
using namespace numeric;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<int32_t>;
auto begin = thrust::make_counting_iterator(0);
auto const vec = std::vector<int32_t>(begin, begin + 1000);
auto const a = fp_wrapper(vec.begin(), /***/ vec.begin() + 300, scale_type{-1});
auto const b = fp_wrapper(vec.begin() + 300, vec.begin() + 700, scale_type{-2});
auto const c = fp_wrapper(vec.begin() + 700, vec.end(), /*****/ scale_type{-3});
EXPECT_THROW(cudf::concatenate(std::vector<cudf::column_view>{a, b, c}), cudf::logic_error);
}
struct DictionaryConcatTest : public cudf::test::BaseFixture {};
TEST_F(DictionaryConcatTest, StringsKeys)
{
cudf::test::strings_column_wrapper strings(
{"eee", "aaa", "ddd", "bbb", "", "", "ccc", "ccc", "ccc", "eee", "aaa"},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1});
auto dictionary = cudf::dictionary::encode(strings);
std::vector<cudf::size_type> splits{0, 2, 2, 5, 5, 7, 7, 7, 7, 11};
std::vector<cudf::column_view> views = cudf::slice(dictionary->view(), splits);
// concatenate should recreate the original column
auto result = cudf::concatenate(views);
auto decoded = cudf::dictionary::decode(result->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*decoded, strings);
}
template <typename T>
struct DictionaryConcatTestFW : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(DictionaryConcatTestFW, cudf::test::FixedWidthTypes);
TYPED_TEST(DictionaryConcatTestFW, FixedWidthKeys)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> original(
{20, 10, 0, 5, 15, 15, 10, 5, 20}, {1, 1, 0, 1, 1, 1, 1, 1, 1});
auto dictionary = cudf::dictionary::encode(original);
std::vector<cudf::size_type> splits{0, 3, 3, 5, 5, 9};
std::vector<cudf::column_view> views = cudf::slice(dictionary->view(), splits);
// concatenated result should equal the original column
auto result = cudf::concatenate(views);
auto decoded = cudf::dictionary::decode(result->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*decoded, original);
}
TEST_F(DictionaryConcatTest, ErrorsTest)
{
cudf::test::strings_column_wrapper strings({"aaa", "ddd", "bbb"});
auto dictionary1 = cudf::dictionary::encode(strings);
cudf::test::fixed_width_column_wrapper<int32_t> integers({10, 30, 20});
auto dictionary2 = cudf::dictionary::encode(integers);
std::vector<cudf::column_view> views({dictionary1->view(), dictionary2->view()});
EXPECT_THROW(cudf::concatenate(views), cudf::logic_error);
std::vector<cudf::column_view> empty;
EXPECT_THROW(cudf::concatenate(empty), cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/gather_str_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/gather.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
class GatherTestStr : public cudf::test::BaseFixture {};
TEST_F(GatherTestStr, StringColumn)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1{{1, 2, 3, 4, 5, 6}, {1, 1, 0, 1, 0, 1}};
cudf::test::strings_column_wrapper col2{{"This", "is", "not", "a", "string", "type"},
{1, 1, 1, 1, 1, 0}};
cudf::table_view source_table{{col1, col2}};
cudf::test::fixed_width_column_wrapper<int16_t> gather_map{{0, 1, 3, 4}};
cudf::test::fixed_width_column_wrapper<int16_t> exp_col1{{1, 2, 4, 5}, {1, 1, 1, 0}};
cudf::test::strings_column_wrapper exp_col2{{"This", "is", "a", "string"}, {1, 1, 1, 1}};
cudf::table_view expected{{exp_col1, exp_col2}};
auto got = cudf::gather(source_table, gather_map);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, got->view());
}
TEST_F(GatherTestStr, GatherSlicedStringsColumn)
{
cudf::test::strings_column_wrapper strings{{"This", "is", "not", "a", "string", "type"},
{1, 1, 1, 1, 1, 0}};
std::vector<cudf::size_type> slice_indices{0, 2, 2, 3, 3, 6};
auto sliced_strings = cudf::slice(strings, slice_indices);
{
cudf::test::fixed_width_column_wrapper<int16_t> gather_map{{1, 0, 1}};
cudf::test::strings_column_wrapper expected_strings{{"is", "This", "is"}, {1, 1, 1}};
cudf::table_view expected{{expected_strings}};
auto result = cudf::gather(cudf::table_view{{sliced_strings[0]}}, gather_map);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result->view());
}
{
cudf::test::fixed_width_column_wrapper<int16_t> gather_map{{0, 0, 0}};
cudf::test::strings_column_wrapper expected_strings{{"not", "not", "not"}, {1, 1, 1}};
cudf::table_view expected{{expected_strings}};
auto result = cudf::gather(cudf::table_view{{sliced_strings[1]}}, gather_map);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result->view());
}
{
cudf::test::fixed_width_column_wrapper<int16_t> gather_map{{2, 1, 0}};
cudf::test::strings_column_wrapper expected_strings{{"", "string", "a"}, {0, 1, 1}};
cudf::table_view expected{{expected_strings}};
auto result = cudf::gather(cudf::table_view{{sliced_strings[2]}}, gather_map);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result->view());
}
}
TEST_F(GatherTestStr, Gather)
{
std::vector<char const*> h_strings{"eee", "bb", "", "aa", "bbb", "ééé"};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
cudf::table_view source_table({strings});
std::vector<int32_t> h_map{4, 1, 5, 2, 7};
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(h_map.begin(), h_map.end());
auto results = cudf::detail::gather(source_table,
gather_map,
cudf::out_of_bounds_policy::NULLIFY,
cudf::detail::negative_index_policy::NOT_ALLOWED,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
std::vector<char const*> h_expected;
std::vector<int32_t> expected_validity;
for (auto itr = h_map.begin(); itr != h_map.end(); ++itr) {
auto index = *itr;
if ((0 <= index) && (index < static_cast<decltype(index)>(h_strings.size()))) {
h_expected.push_back(h_strings[index]);
expected_validity.push_back(1);
} else {
h_expected.push_back("");
expected_validity.push_back(0);
}
}
cudf::test::strings_column_wrapper expected(
h_expected.begin(), h_expected.end(), expected_validity.begin());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
TEST_F(GatherTestStr, GatherDontCheckOutOfBounds)
{
std::vector<char const*> h_strings{"eee", "bb", "", "aa", "bbb", "ééé"};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
cudf::table_view source_table({strings});
std::vector<int32_t> h_map{3, 4, 0, 0};
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(h_map.begin(), h_map.end());
auto results = cudf::detail::gather(source_table,
gather_map,
cudf::out_of_bounds_policy::DONT_CHECK,
cudf::detail::negative_index_policy::NOT_ALLOWED,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
std::vector<char const*> h_expected;
for (auto itr = h_map.begin(); itr != h_map.end(); ++itr) {
h_expected.push_back(h_strings[*itr]);
}
cudf::test::strings_column_wrapper expected(h_expected.begin(), h_expected.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view().column(0), expected);
}
TEST_F(GatherTestStr, GatherEmptyMapStringsColumn)
{
auto const zero_size_strings_column = cudf::make_empty_column(cudf::type_id::STRING);
cudf::test::fixed_width_column_wrapper<cudf::size_type> gather_map;
auto results = cudf::detail::gather(cudf::table_view({zero_size_strings_column->view()}),
gather_map,
cudf::out_of_bounds_policy::NULLIFY,
cudf::detail::negative_index_policy::NOT_ALLOWED,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
cudf::test::expect_column_empty(results->get_column(0).view());
}
TEST_F(GatherTestStr, GatherZeroSizeStringsColumn)
{
auto const zero_size_strings_column = cudf::make_empty_column(cudf::type_id::STRING);
cudf::test::fixed_width_column_wrapper<int32_t> gather_map({0});
cudf::test::strings_column_wrapper expected{std::pair<std::string, bool>{"", false}};
auto results = cudf::detail::gather(cudf::table_view({zero_size_strings_column->view()}),
gather_map,
cudf::out_of_bounds_policy::NULLIFY,
cudf::detail::negative_index_policy::NOT_ALLOWED,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, results->get_column(0).view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/copy_range_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/encode.hpp>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
auto all_valid = [](cudf::size_type row) { return true; };
auto even_valid = [](cudf::size_type row) { return (row % 2 == 0); };
template <typename T>
class CopyRangeTypedTestFixture : public cudf::test::BaseFixture {
public:
static constexpr cudf::size_type column_size{1000};
void test(cudf::column_view const& source,
cudf::column_view const& expected,
cudf::mutable_column_view& target,
cudf::size_type source_begin,
cudf::size_type source_end,
cudf::size_type target_begin)
{
static_assert(cudf::is_fixed_width<T>(), "this code assumes fixed-width types.");
// test the out-of-place version first
const cudf::column_view immutable_view{target};
auto p_ret = cudf::copy_range(source, immutable_view, source_begin, source_end, target_begin);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*p_ret, expected);
// test the in-place version second
EXPECT_NO_THROW(
cudf::copy_range_in_place(source, target, source_begin, source_end, target_begin));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(target, expected);
}
};
TYPED_TEST_SUITE(CopyRangeTypedTestFixture, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(CopyRangeTypedTestFixture, CopyWithNulls)
{
using T = TypeParam;
cudf::size_type size{CopyRangeTypedTestFixture<T>::column_size};
cudf::size_type source_begin{9};
cudf::size_type source_end{size - 50};
cudf::size_type target_begin{30};
auto target_end = target_begin + (source_end - source_begin);
auto row_diff = source_begin - target_begin;
cudf::test::fixed_width_column_wrapper<T, int32_t> target(
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0) + size,
cudf::detail::make_counting_transform_iterator(0, all_valid));
auto source_elements =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
cudf::test::fixed_width_column_wrapper<T, typename decltype(source_elements)::value_type> source(
source_elements,
source_elements + size,
cudf::detail::make_counting_transform_iterator(0, even_valid));
auto expected_elements =
cudf::detail::make_counting_transform_iterator(0, [target_begin, target_end, row_diff](auto i) {
return ((i >= target_begin) && (i < target_end)) ? (i + row_diff) * 2 : i;
});
cudf::test::fixed_width_column_wrapper<T, typename decltype(expected_elements)::value_type>
expected(expected_elements,
expected_elements + size,
cudf::detail::make_counting_transform_iterator(
0, [target_begin, target_end, row_diff](auto i) {
return ((i >= target_begin) && (i < target_end)) ? even_valid(i + row_diff)
: all_valid(i);
}));
cudf::mutable_column_view target_view{target};
this->test(source, expected, target_view, source_begin, source_end, target_begin);
}
TYPED_TEST(CopyRangeTypedTestFixture, CopyNoNulls)
{
using T = TypeParam;
cudf::size_type size{CopyRangeTypedTestFixture<T>::column_size};
cudf::size_type source_begin{9};
cudf::size_type source_end{size - 50};
cudf::size_type target_begin{30};
auto target_end = target_begin + (source_end - source_begin);
auto row_diff = source_begin - target_begin;
cudf::test::fixed_width_column_wrapper<T, int32_t> target(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + size);
auto source_elements =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
cudf::test::fixed_width_column_wrapper<T, typename decltype(source_elements)::value_type> source(
source_elements, source_elements + size);
auto expected_elements =
cudf::detail::make_counting_transform_iterator(0, [target_begin, target_end, row_diff](auto i) {
return ((i >= target_begin) && (i < target_end)) ? (i + row_diff) * 2 : i;
});
cudf::test::fixed_width_column_wrapper<T, typename decltype(expected_elements)::value_type>
expected(expected_elements, expected_elements + size);
cudf::mutable_column_view target_view{target};
this->test(source, expected, target_view, source_begin, source_end, target_begin);
}
TYPED_TEST(CopyRangeTypedTestFixture, CopyWithNullsNonzeroOffset)
{
using T = TypeParam;
cudf::size_type size{CopyRangeTypedTestFixture<T>::column_size};
cudf::size_type source_offset{27};
cudf::size_type source_begin{9};
cudf::size_type source_end{50};
cudf::size_type target_offset{58};
cudf::size_type target_begin{30};
auto target_end = target_begin + (source_end - source_begin);
auto row_diff = (source_offset + source_begin) - (target_offset + target_begin);
cudf::test::fixed_width_column_wrapper<T, int32_t> target(
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0) + size,
cudf::detail::make_counting_transform_iterator(0, all_valid));
cudf::mutable_column_view tmp = target;
cudf::mutable_column_view target_slice(tmp.type(),
tmp.size() - target_offset,
tmp.head<T>(),
tmp.null_mask(),
tmp.null_count(),
target_offset);
auto source_elements =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
cudf::test::fixed_width_column_wrapper<T, typename decltype(source_elements)::value_type> source(
source_elements,
source_elements + size,
cudf::detail::make_counting_transform_iterator(0, even_valid));
auto source_slice = cudf::slice(source, std::vector<cudf::size_type>{source_offset, size})[0];
auto expected_elements = cudf::detail::make_counting_transform_iterator(
0, [target_offset, target_begin, target_end, row_diff](auto i) {
return ((i >= target_offset + target_begin) && (i < target_offset + target_end))
? (i + row_diff) * 2
: i;
});
cudf::test::fixed_width_column_wrapper<T, typename decltype(expected_elements)::value_type>
expected(expected_elements,
expected_elements + size,
cudf::detail::make_counting_transform_iterator(
0, [target_offset, target_begin, target_end, row_diff](auto i) {
return ((i >= target_offset + target_begin) && (i < target_offset + target_end))
? even_valid(i + row_diff)
: all_valid(i);
}));
auto expected_slice = cudf::slice(expected, std::vector<cudf::size_type>{target_offset, size})[0];
this->test(source_slice, expected_slice, target_slice, source_begin, source_end, target_begin);
}
class CopyRangeTestFixture : public cudf::test::BaseFixture {};
TEST_F(CopyRangeTestFixture, CopyWithNullsString)
{
cudf::size_type size{100};
cudf::size_type source_begin{9};
cudf::size_type source_end{50};
cudf::size_type target_begin{30};
auto target_end = target_begin + (source_end - source_begin);
auto row_diff = source_begin - target_begin;
auto target_elements = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return "#" + std::to_string(i); });
auto target = cudf::test::strings_column_wrapper(
target_elements,
target_elements + size,
cudf::detail::make_counting_transform_iterator(0, all_valid));
auto source_elements = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return "#" + std::to_string(i * 2); });
auto source = cudf::test::strings_column_wrapper(
source_elements,
source_elements + size,
cudf::detail::make_counting_transform_iterator(0, even_valid));
auto expected_elements =
cudf::detail::make_counting_transform_iterator(0, [target_begin, target_end, row_diff](auto i) {
auto num = std::to_string(((i >= target_begin) && (i < target_end)) ? (i + row_diff) * 2 : i);
return "#" + num;
});
auto expected = cudf::test::strings_column_wrapper(
expected_elements,
expected_elements + size,
cudf::detail::make_counting_transform_iterator(0, [target_begin, target_end, row_diff](auto i) {
return ((i >= target_begin) && (i < target_end)) ? even_valid(i + row_diff) : all_valid(i);
}));
auto p_ret = cudf::copy_range(source, target, source_begin, source_end, target_begin);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*p_ret, expected);
}
TEST_F(CopyRangeTestFixture, CopyNoNullsString)
{
cudf::size_type size{100};
cudf::size_type source_begin{9};
cudf::size_type source_end{50};
cudf::size_type target_begin{30};
auto target_end = target_begin + (source_end - source_begin);
auto row_diff = source_begin - target_begin;
auto target_elements = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return "#" + std::to_string(i); });
auto target = cudf::test::strings_column_wrapper(target_elements, target_elements + size);
auto source_elements = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return "#" + std::to_string(i * 2); });
auto source = cudf::test::strings_column_wrapper(source_elements, source_elements + size);
auto expected_elements =
cudf::detail::make_counting_transform_iterator(0, [target_begin, target_end, row_diff](auto i) {
auto num = std::to_string(((i >= target_begin) && (i < target_end)) ? (i + row_diff) * 2 : i);
return "#" + num;
});
auto expected = cudf::test::strings_column_wrapper(expected_elements, expected_elements + size);
auto p_ret = cudf::copy_range(source, target, source_begin, source_end, target_begin);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*p_ret, expected);
}
TEST_F(CopyRangeTestFixture, CopyWithNullsNonzeroOffsetString)
{
cudf::size_type size{200};
cudf::size_type source_offset{27};
cudf::size_type source_begin{9};
cudf::size_type source_end{50};
cudf::size_type target_offset{58};
cudf::size_type target_begin{30};
auto target_end = target_begin + (source_end - source_begin);
auto row_diff = (source_offset + source_begin) - (target_offset + target_begin);
auto target_elements = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return "#" + std::to_string(i); });
auto target = cudf::test::strings_column_wrapper(
target_elements,
target_elements + size,
cudf::detail::make_counting_transform_iterator(0, all_valid));
auto target_slice = cudf::slice(target, std::vector<cudf::size_type>{target_offset, size})[0];
auto source_elements = cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return "#" + std::to_string(i * 2); });
auto source = cudf::test::strings_column_wrapper(
source_elements,
source_elements + size,
cudf::detail::make_counting_transform_iterator(0, even_valid));
auto source_slice = cudf::slice(source, std::vector<cudf::size_type>{source_offset, size})[0];
auto expected_elements = cudf::detail::make_counting_transform_iterator(
0, [target_offset, target_begin, target_end, row_diff](auto i) {
auto num =
std::to_string(((i >= target_offset + target_begin) && (i < target_offset + target_end))
? (i + row_diff) * 2
: i);
return "#" + num;
});
auto expected = cudf::test::strings_column_wrapper(
expected_elements,
expected_elements + size,
cudf::detail::make_counting_transform_iterator(
0, [target_offset, target_begin, target_end, row_diff](auto i) {
return ((i >= target_offset + target_begin) && (i < target_offset + target_end))
? even_valid(i + row_diff)
: all_valid(i);
}));
auto expected_slice = cudf::slice(expected, std::vector<cudf::size_type>{target_offset, size})[0];
auto p_ret = cudf::copy_range(source_slice, target_slice, source_begin, source_end, target_begin);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*p_ret, expected_slice);
}
TEST_F(CopyRangeTestFixture, CopyDictionary)
{
cudf::size_type source_begin{1};
cudf::size_type source_end{5};
cudf::size_type target_begin{3};
std::vector<std::string> source_elements({"e", "b", "a", "c", "c", "e", "b", "c", "e", "b"});
std::vector<std::string> target_elements({"a", "e", "d", "c", "c", "b", "b", "a", "f", "f"});
std::vector<std::string> expected_elements(target_elements);
std::copy(source_elements.begin() + source_begin,
source_elements.begin() + source_end,
expected_elements.begin() + target_begin);
{
auto source = cudf::dictionary::encode(
cudf::test::strings_column_wrapper(source_elements.begin(), source_elements.end()));
auto target = cudf::dictionary::encode(
cudf::test::strings_column_wrapper(target_elements.begin(), target_elements.end()));
auto result =
cudf::copy_range(source->view(), target->view(), source_begin, source_end, target_begin);
auto decoded = cudf::dictionary::decode(cudf::dictionary_column_view(result->view()));
auto expected =
cudf::test::strings_column_wrapper(expected_elements.begin(), expected_elements.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*decoded, expected);
}
auto source_validity = thrust::make_transform_iterator(
thrust::make_counting_iterator<cudf::size_type>(0), [](auto i) { return i != 3; });
auto target_validity = thrust::make_transform_iterator(
thrust::make_counting_iterator<cudf::size_type>(0), [](auto i) { return i != 3 && i != 9; });
auto expected_validity = thrust::make_transform_iterator(
thrust::make_counting_iterator<cudf::size_type>(0), [](auto i) { return i != 5 && i != 9; });
{
auto source = cudf::dictionary::encode(cudf::test::strings_column_wrapper(
source_elements.begin(), source_elements.end(), source_validity));
auto target = cudf::dictionary::encode(cudf::test::strings_column_wrapper(
target_elements.begin(), target_elements.end(), target_validity));
auto result =
cudf::copy_range(source->view(), target->view(), source_begin, source_end, target_begin);
auto decoded = cudf::dictionary::decode(cudf::dictionary_column_view(result->view()));
auto expected = cudf::test::strings_column_wrapper(
expected_elements.begin(), expected_elements.end(), expected_validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*decoded, expected);
}
}
class CopyRangeErrorTestFixture : public cudf::test::BaseFixture {};
TEST_F(CopyRangeErrorTestFixture, InvalidInplaceCall)
{
cudf::size_type size{100};
auto target = cudf::test::fixed_width_column_wrapper<int32_t>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + size);
auto source = cudf::test::fixed_width_column_wrapper<int32_t>(
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0) + size,
cudf::detail::make_counting_transform_iterator(0, even_valid));
cudf::mutable_column_view target_view{target};
// source has null values but target is not nullable.
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 0, size, 0), cudf::logic_error);
std::vector<std::string> strings{"", "this", "is", "a", "column", "of", "strings"};
auto target_string = cudf::test::strings_column_wrapper(strings.begin(), strings.end());
auto source_string = cudf::test::strings_column_wrapper(strings.begin(), strings.end());
cudf::mutable_column_view target_view_string{target_string};
EXPECT_THROW(cudf::copy_range_in_place(source_string, target_view_string, 0, size, 0),
cudf::logic_error);
}
TEST_F(CopyRangeErrorTestFixture, InvalidRange)
{
cudf::size_type size{100};
auto target = cudf::test::fixed_width_column_wrapper<int32_t>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + size);
auto source = cudf::test::fixed_width_column_wrapper<int32_t>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + size);
cudf::mutable_column_view target_view{target};
cudf::column_view source_view{source};
// empty_range == no-op, this is valid
EXPECT_NO_THROW(cudf::copy_range_in_place(source, target_view, 0, 0, 0));
EXPECT_NO_THROW(auto p_ret = cudf::copy_range(source, target, 0, 0, 0));
// source_begin is negative
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, -1, size, 0), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, -1, size, 0), cudf::logic_error);
// source_begin > source_end
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 10, 5, 0), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, 10, 5, 0), cudf::logic_error);
// source_begin >= source.size()
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 101, 100, 0), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, 101, 100, 0), cudf::logic_error);
// source_end > source.size()
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 99, 101, 0), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, 99, 101, 0), cudf::logic_error);
// target_begin < 0
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 50, 100, -5), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, 50, 100, -5), cudf::logic_error);
// target_begin >= target.size()
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 50, 100, 100), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, 50, 100, 100), cudf::logic_error);
// target_begin + (source_end - source_begin) > target.size()
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 50, 100, 80), cudf::logic_error);
EXPECT_THROW(auto p_ret = cudf::copy_range(source, target, 50, 100, 80), cudf::logic_error);
// Empty column
target = cudf::test::fixed_width_column_wrapper<int32_t>{};
source = cudf::test::fixed_width_column_wrapper<int32_t>{};
target_view = target;
source_view = source;
// empty column == no-op, this is valid
EXPECT_NO_THROW(cudf::copy_range_in_place(source_view, target_view, 0, source_view.size(), 0));
EXPECT_NO_THROW(auto p_ret = cudf::copy_range(source_view, target, 0, source_view.size(), 0));
}
TEST_F(CopyRangeErrorTestFixture, DTypeMismatch)
{
cudf::size_type size{100};
auto target = cudf::test::fixed_width_column_wrapper<int32_t>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + size);
auto source = cudf::test::fixed_width_column_wrapper<float>(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + size);
cudf::mutable_column_view target_view{target};
EXPECT_THROW(cudf::copy_range_in_place(source, target_view, 0, 100, 0), cudf::logic_error);
EXPECT_THROW(cudf::copy_range(source, target, 0, 100, 0), cudf::logic_error);
auto dict_target = cudf::dictionary::encode(target);
auto dict_source = cudf::dictionary::encode(source);
EXPECT_THROW(cudf::copy_range(dict_source->view(), dict_target->view(), 0, 100, 0),
cudf::logic_error);
}
template <typename T>
struct FixedPointTypesCopyRange : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTypesCopyRange, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTypesCopyRange, FixedPointSimple)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const source = fp_wrapper{{110, 220, 330, 440, 550, 660}, scale_type{-2}};
auto const target = fp_wrapper{{0, 0, 0, 0, 0, 0}, scale_type{-2}};
auto const expected = fp_wrapper{{0, 220, 330, 440, 0, 0}, scale_type{-2}};
auto const result = cudf::copy_range(source, target, 1, 4, 1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(FixedPointTypesCopyRange, FixedPointLarge)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto s = thrust::make_counting_iterator(-1000);
auto t = thrust::make_constant_iterator(0);
auto e =
cudf::detail::make_counting_transform_iterator(500, [](int i) { return i < 1000 ? i : 0; });
auto const source = fp_wrapper{s, s + 2000, scale_type{-1}};
auto const target = fp_wrapper{t, t + 2000, scale_type{-1}};
auto const expected = fp_wrapper{e, e + 2000, scale_type{-1}};
auto const result = cudf::copy_range(source, target, 1500, 2000, 0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
TYPED_TEST(FixedPointTypesCopyRange, FixedPointScaleMismatch)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const source = fp_wrapper{{110, 220, 330, 440, 550, 660}, scale_type{-2}};
auto const target = fp_wrapper{{0, 0, 0, 0, 0, 0}, scale_type{-3}};
EXPECT_THROW(cudf::copy_range(source, target, 1, 4, 1), cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/split_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <tests/copying/slice_tests.cuh>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_list_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/contiguous_split.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/filling.hpp>
#include <rmm/device_buffer.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <string>
#include <vector>
std::vector<cudf::size_type> splits_to_indices(std::vector<cudf::size_type> splits,
cudf::size_type size)
{
std::vector<cudf::size_type> indices{0};
std::for_each(splits.begin(), splits.end(), [&indices](auto split) {
indices.push_back(split); // This for end
indices.push_back(split); // This for the start
});
indices.push_back(size); // This to include rest of the elements
return indices;
}
template <typename T>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns_for_splits(
std::vector<cudf::size_type> const& splits, cudf::size_type size, bool nullable)
{
// convert splits to slice indices
std::vector<cudf::size_type> indices = splits_to_indices(splits, size);
return create_expected_columns<T>(indices, nullable);
}
template <typename T>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns_for_splits(
std::vector<cudf::size_type> const& splits, std::vector<T> const& elements, bool nullable)
{
// convert splits to slice indices
std::vector<cudf::size_type> indices = splits_to_indices(splits, elements.size());
return create_expected_columns<T>(indices, elements.begin(), nullable);
}
template <typename T>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns_for_splits(
std::vector<cudf::size_type> const& splits,
cudf::size_type size,
std::vector<bool> const& validity)
{
// convert splits to slice indices
std::vector<cudf::size_type> indices = splits_to_indices(splits, size);
return create_expected_columns<T>(indices, validity);
}
template <typename T>
std::vector<cudf::test::fixed_width_column_wrapper<T>> create_expected_columns_for_splits(
std::vector<cudf::size_type> const& splits,
std::vector<T> const& elements,
std::vector<bool> const& validity)
{
// convert splits to slice indices
std::vector<cudf::size_type> indices = splits_to_indices(splits, elements.size());
return create_expected_columns<T>(indices, elements.begin(), validity);
}
std::vector<cudf::test::strings_column_wrapper> create_expected_string_columns_for_splits(
std::vector<std::string> strings, std::vector<cudf::size_type> const& splits, bool nullable)
{
std::vector<cudf::size_type> indices = splits_to_indices(splits, strings.size());
return create_expected_string_columns(strings, indices, nullable);
}
std::vector<cudf::test::strings_column_wrapper> create_expected_string_columns_for_splits(
std::vector<std::string> strings,
std::vector<cudf::size_type> const& splits,
std::vector<bool> const& validity)
{
std::vector<cudf::size_type> indices = splits_to_indices(splits, strings.size());
return create_expected_string_columns(strings, indices, validity);
}
std::vector<std::vector<bool>> create_expected_validity(std::vector<cudf::size_type> const& splits,
std::vector<bool> const& validity)
{
std::vector<std::vector<bool>> result = {};
std::vector<cudf::size_type> indices = splits_to_indices(splits, validity.size());
for (unsigned long index = 0; index < indices.size(); index += 2) {
result.push_back(
std::vector<bool>(validity.begin() + indices[index], validity.begin() + indices[index + 1]));
}
return result;
}
template <typename T>
std::vector<cudf::table> create_expected_tables_for_splits(
cudf::size_type num_cols,
std::vector<cudf::size_type> const& splits,
cudf::size_type col_size,
bool nullable)
{
std::vector<cudf::size_type> indices = splits_to_indices(splits, col_size);
return create_expected_tables<T>(num_cols, indices, nullable);
}
std::vector<cudf::table> create_expected_string_tables_for_splits(
std::vector<std::string> const strings[2],
std::vector<cudf::size_type> const& splits,
bool nullable)
{
std::vector<cudf::size_type> indices = splits_to_indices(splits, strings[0].size());
return create_expected_string_tables(strings, indices, nullable);
}
std::vector<cudf::table> create_expected_string_tables_for_splits(
std::vector<std::string> const strings[2],
std::vector<bool> const validity[2],
std::vector<cudf::size_type> const& splits)
{
std::vector<cudf::size_type> indices = splits_to_indices(splits, strings[0].size());
auto ret_cols_0 = create_expected_string_columns(strings[0], indices, validity[0]);
auto ret_cols_1 = create_expected_string_columns(strings[1], indices, validity[1]);
std::vector<cudf::table> ret_tables;
for (std::size_t i = 0; i < ret_cols_0.size(); ++i) {
std::vector<std::unique_ptr<cudf::column>> scols;
scols.push_back(ret_cols_0[i].release());
scols.push_back(ret_cols_1[i].release());
ret_tables.emplace_back(std::move(scols));
}
return ret_tables;
}
template <typename T>
struct SplitTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(SplitTest, cudf::test::NumericTypes);
TYPED_TEST(SplitTest, SplitEndLessThanSize)
{
using T = TypeParam;
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<T> col = create_fixed_columns<T>(start, size, valids);
std::vector<cudf::size_type> splits{2, 5, 7};
std::vector<cudf::test::fixed_width_column_wrapper<T>> expected =
create_expected_columns_for_splits<T>(splits, size, true);
std::vector<cudf::column_view> result = cudf::split(col, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], result[index]);
}
}
TYPED_TEST(SplitTest, SplitEndToSize)
{
using T = TypeParam;
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<T> col = create_fixed_columns<T>(start, size, valids);
std::vector<cudf::size_type> splits{2, 5, 10, 10, 10, 10};
std::vector<cudf::test::fixed_width_column_wrapper<T>> expected =
create_expected_columns_for_splits<T>(splits, size, true);
std::vector<cudf::column_view> result = cudf::split(col, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], result[index]);
}
}
// common functions for testing split/contiguous_split
template <typename T, typename SplitFunc, typename CompareFunc>
void split_custom_column(SplitFunc Split,
CompareFunc Compare,
int size,
std::vector<cudf::size_type> const& splits,
bool include_validity)
{
// the intent here is to stress the various boundary conditions in contiguous_split -
// especially the validity copying code.
cudf::size_type start = 0;
srand(824);
std::vector<std::string> base_strings(
{"banana", "pear", "apple", "pecans", "vanilla", "cat", "mouse", "green"});
auto string_randomizer = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
[&base_strings](cudf::size_type i) { return base_strings[rand() % base_strings.size()]; });
auto rvalids = cudf::detail::make_counting_transform_iterator(start, [include_validity](auto i) {
return include_validity
? (static_cast<float>(rand()) / static_cast<float>(RAND_MAX) < 0.5f ? 0 : 1)
: 0;
});
std::vector<bool> valids{rvalids, rvalids + size};
cudf::test::fixed_width_column_wrapper<T> col =
create_fixed_columns<T>(start, size, valids.begin());
std::vector<bool> valids2{rvalids, rvalids + size};
std::vector<std::string> strings(string_randomizer, string_randomizer + size);
cudf::test::strings_column_wrapper col2(strings.begin(), strings.end(), valids2.begin());
std::vector<cudf::table_view> expected;
std::vector<cudf::test::fixed_width_column_wrapper<T>> expected_fixed =
create_expected_columns_for_splits<T>(splits, size, valids);
std::vector<cudf::test::strings_column_wrapper> expected_strings =
create_expected_string_columns_for_splits(strings, splits, valids2);
std::transform(thrust::make_counting_iterator(static_cast<size_t>(0)),
thrust::make_counting_iterator(expected_fixed.size()),
std::back_inserter(expected),
[&expected_fixed, &expected_strings](size_t i) {
return cudf::table_view({expected_fixed[i], expected_strings[i]});
});
cudf::table_view tbl({col, col2});
auto result = Split(tbl, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
}
TYPED_TEST(SplitTest, LongColumn)
{
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& expected, cudf::table_view const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i), result.column(i));
});
},
10002,
std::vector<cudf::size_type>{
2, 16, 31, 35, 64, 97, 158, 190, 638, 899, 900, 901, 996, 4200, 7131, 8111},
true);
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& expected, cudf::table_view const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i), result.column(i));
});
},
10002,
std::vector<cudf::size_type>{
2, 16, 31, 35, 64, 97, 158, 190, 638, 899, 900, 901, 996, 4200, 7131, 8111},
false);
}
struct SplitStringTest : public SplitTest<std::string> {};
TEST_F(SplitStringTest, StringWithInvalids)
{
std::vector<std::string> strings{
"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"};
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
cudf::test::strings_column_wrapper s(strings.begin(), strings.end(), valids);
std::vector<cudf::size_type> splits{2, 5, 9};
std::vector<cudf::test::strings_column_wrapper> expected =
create_expected_string_columns_for_splits(strings, splits, true);
std::vector<cudf::column_view> result = cudf::split(s, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected[index], result[index]);
}
}
struct SplitCornerCases : public SplitTest<int8_t> {};
TEST_F(SplitCornerCases, EmptyColumn)
{
cudf::column col{};
std::vector<cudf::size_type> splits{2, 5, 9};
std::vector<cudf::column_view> result = cudf::split(col.view(), splits);
unsigned long expected = 1;
EXPECT_EQ(expected, result.size());
}
TEST_F(SplitCornerCases, EmptyIndices)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> splits{};
std::vector<cudf::column_view> result = cudf::split(col, splits);
unsigned long expected = 1;
EXPECT_EQ(expected, result.size());
}
TEST_F(SplitCornerCases, InvalidSetOfIndices)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> splits{11, 12};
EXPECT_THROW(cudf::split(col, splits), cudf::logic_error);
}
TEST_F(SplitCornerCases, ImproperRange)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> splits{5, 4};
EXPECT_THROW(cudf::split(col, splits), cudf::logic_error);
}
TEST_F(SplitCornerCases, NegativeValue)
{
cudf::size_type start = 0;
cudf::size_type size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::test::fixed_width_column_wrapper<int8_t> col =
create_fixed_columns<int8_t>(start, size, valids);
std::vector<cudf::size_type> splits{-1, 4};
EXPECT_THROW(cudf::split(col, splits), cudf::logic_error);
}
// common functions for testing split/contiguous_split
template <typename T, typename SplitFunc, typename CompareFunc>
void split_end_less_than_size(SplitFunc Split, CompareFunc Compare)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<T>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> splits{2, 5, 7};
std::vector<cudf::table> expected =
create_expected_tables_for_splits<T>(num_cols, splits, col_size, true);
auto result = Split(src_table, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
}
template <typename T, typename SplitFunc, typename CompareFunc>
void split_end_to_size(SplitFunc Split, CompareFunc Compare)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<T>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> splits{2, 5, 10};
std::vector<cudf::table> expected =
create_expected_tables_for_splits<T>(num_cols, splits, col_size, true);
auto result = Split(src_table, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
}
template <typename SplitFunc>
void split_empty_table(SplitFunc Split, std::vector<cudf::size_type> const& splits = {2, 5, 6})
{
cudf::table src_table{};
auto result = Split(src_table, splits);
unsigned long expected = 0;
EXPECT_EQ(expected, result.size());
}
template <typename SplitFunc>
void split_empty_indices(SplitFunc Split)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> splits{};
auto result = Split(src_table, splits);
unsigned long expected = 1;
EXPECT_EQ(expected, result.size());
}
template <typename SplitFunc>
void split_invalid_indices(SplitFunc Split)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> splits{11, 12};
EXPECT_THROW(Split(src_table, splits), cudf::logic_error);
}
template <typename SplitFunc>
void split_improper_range(SplitFunc Split)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> splits{5, 4};
EXPECT_THROW(Split(src_table, splits), cudf::logic_error);
}
template <typename SplitFunc>
void split_negative_value(SplitFunc Split)
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
std::vector<cudf::size_type> splits{-1, 4};
EXPECT_THROW(Split(src_table, splits), cudf::logic_error);
}
template <typename SplitFunc, typename CompareFunc>
void split_empty_output_column_value(SplitFunc Split,
CompareFunc Compare,
std::vector<cudf::size_type> const& splits = {0, 2, 2})
{
cudf::size_type start = 0;
cudf::size_type col_size = 10;
auto valids =
cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i % 2 == 0; });
cudf::size_type num_cols = 5;
cudf::table src_table = create_fixed_table<int8_t>(num_cols, start, col_size, valids);
EXPECT_NO_THROW(Split(src_table, splits));
auto result = Split(src_table, splits);
EXPECT_NO_THROW(Compare(result[0], num_cols));
}
// regular splits
template <typename T>
struct SplitTableTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(SplitTableTest, cudf::test::NumericTypes);
TYPED_TEST(SplitTableTest, SplitEndLessThanSize)
{
split_end_less_than_size<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& expected, cudf::table_view const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result);
});
}
TYPED_TEST(SplitTableTest, SplitEndToSize)
{
split_end_to_size<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& expected, cudf::table_view const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result);
});
}
struct SplitTableCornerCases : public SplitTest<int8_t> {};
TEST_F(SplitTableCornerCases, EmptyTable)
{
split_empty_table([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
});
}
TEST_F(SplitTableCornerCases, EmptyIndices)
{
split_empty_indices([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
});
}
TEST_F(SplitTableCornerCases, InvalidSetOfIndices)
{
split_invalid_indices([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
});
}
TEST_F(SplitTableCornerCases, ImproperRange)
{
split_improper_range([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
});
}
TEST_F(SplitTableCornerCases, NegativeValue)
{
split_negative_value([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
});
}
TEST_F(SplitTableCornerCases, EmptyOutputColumn)
{
split_empty_output_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& t, int num_cols) { EXPECT_EQ(t.num_columns(), num_cols); });
}
template <typename SplitFunc, typename CompareFunc>
void split_string_with_invalids(SplitFunc Split,
CompareFunc Compare,
std::vector<cudf::size_type> splits = {2, 5, 9})
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<std::string> strings[2] = {
{"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"},
{"", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}};
cudf::test::strings_column_wrapper sw[2] = {{strings[0].begin(), strings[0].end(), valids},
{strings[1].begin(), strings[1].end(), valids}};
std::vector<std::unique_ptr<cudf::column>> scols;
scols.push_back(sw[0].release());
scols.push_back(sw[1].release());
cudf::table src_table(std::move(scols));
std::vector<cudf::table> expected =
create_expected_string_tables_for_splits(strings, splits, true);
auto result = Split(src_table, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
}
template <typename SplitFunc, typename CompareFunc>
void split_empty_output_strings_column_value(SplitFunc Split,
CompareFunc Compare,
std::vector<cudf::size_type> const& splits = {0, 2, 2})
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<std::string> strings[2] = {
{"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"},
{"", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}};
cudf::test::strings_column_wrapper sw[2] = {{strings[0].begin(), strings[0].end(), valids},
{strings[1].begin(), strings[1].end(), valids}};
std::vector<std::unique_ptr<cudf::column>> scols;
scols.push_back(sw[0].release());
scols.push_back(sw[1].release());
cudf::table src_table(std::move(scols));
cudf::size_type num_cols = 2;
EXPECT_NO_THROW(Split(src_table, splits));
auto result = Split(src_table, splits);
EXPECT_NO_THROW(Compare(result[0], num_cols));
}
template <typename SplitFunc, typename CompareFunc>
void split_null_input_strings_column_value(SplitFunc Split, CompareFunc Compare)
{
auto no_valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return false; });
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
std::vector<std::string> strings[2] = {
{"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"},
{"", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}};
std::vector<cudf::size_type> splits{2, 5, 9};
{
cudf::test::strings_column_wrapper empty_str_col{
strings[0].begin(), strings[0].end(), no_valids};
std::vector<std::unique_ptr<cudf::column>> scols;
scols.push_back(empty_str_col.release());
cudf::table empty_table(std::move(scols));
EXPECT_NO_THROW(Split(empty_table, splits));
}
cudf::test::strings_column_wrapper sw[2] = {{strings[0].begin(), strings[0].end(), no_valids},
{strings[1].begin(), strings[1].end(), valids}};
std::vector<std::unique_ptr<cudf::column>> scols;
scols.push_back(sw[0].release());
scols.push_back(sw[1].release());
cudf::table src_table(std::move(scols));
auto result = Split(src_table, splits);
std::vector<bool> validity_masks[2] = {std::vector<bool>(strings[0].size()),
std::vector<bool>(strings[0].size())};
std::generate(
validity_masks[1].begin(), validity_masks[1].end(), [i = 0]() mutable { return i++ % 2 == 0; });
auto expected = create_expected_string_tables_for_splits(strings, validity_masks, splits);
for (std::size_t i = 0; i < result.size(); ++i) {
Compare(expected[i], result[i]);
}
}
// split with strings
struct SplitStringTableTest : public SplitTest<std::string> {};
TEST_F(SplitStringTableTest, StringWithInvalids)
{
split_string_with_invalids(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& expected, cudf::table_view const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result);
});
}
TEST_F(SplitStringTableTest, EmptyOutputColumn)
{
split_empty_output_strings_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table_view const& t, int num_cols) { EXPECT_EQ(t.num_columns(), num_cols); });
}
TEST_F(SplitStringTableTest, NullStringColumn)
{
split_null_input_strings_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::table const& expected, cudf::table_view const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected.view(), result);
});
}
struct SplitNestedTypesTest : public cudf::test::BaseFixture {};
// common functions for testing split/contiguous_split
template <typename T, typename SplitFunc, typename CompareFunc>
void split_lists(SplitFunc Split, CompareFunc Compare, bool split = true)
{
using LCW = cudf::test::lists_column_wrapper<T>;
{
cudf::test::lists_column_wrapper<T> list{{1, 2, 3},
{4, 5},
{6},
{7, 8},
{9, 10, 11},
LCW{},
LCW{},
{-1, -2, -3, -4, -5},
{-10},
{-100, -200}};
if (split) {
std::vector<cudf::size_type> splits{0, 1, 4, 5, 6, 9};
std::vector<cudf::test::lists_column_wrapper<T>> expected;
expected.push_back(LCW{});
expected.push_back(LCW{{1, 2, 3}});
expected.push_back(LCW{{4, 5}, {6}, {7, 8}});
expected.push_back(LCW{{9, 10, 11}});
expected.push_back(LCW{LCW{}});
expected.push_back(LCW{LCW{}, {-1, -2, -3, -4, -5}, {-10}});
expected.push_back(LCW{{-100, -200}});
auto result = Split(list, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
} else {
auto result = Split(list, {});
EXPECT_EQ(1, result.size());
Compare(list, result[0]);
}
}
{
cudf::test::lists_column_wrapper<T> list{{{1, 2, 3}, {4, 5}},
{LCW{}, LCW{}, {7, 8}, LCW{}},
{LCW{6}},
{{7, 8}, {9, 10, 11}, LCW{}},
{LCW{}, {-1, -2, -3, -4, -5}},
{LCW{}},
{{-10}, {-100, -200}}};
if (split) {
std::vector<cudf::size_type> splits{1, 3, 4};
std::vector<cudf::test::lists_column_wrapper<T>> expected;
expected.push_back(LCW{{{1, 2, 3}, {4, 5}}});
expected.push_back(LCW{{LCW{}, LCW{}, {7, 8}, LCW{}}, {LCW{6}}});
expected.push_back(LCW{{{7, 8}, {9, 10, 11}, LCW{}}});
expected.push_back(LCW{{LCW{}, {-1, -2, -3, -4, -5}}, {LCW{}}, {{-10}, {-100, -200}}});
auto result = Split(list, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
} else {
auto result = Split(list, {});
EXPECT_EQ(1, result.size());
Compare(list, result[0]);
}
}
}
template <typename T, typename SplitFunc, typename CompareFunc>
void split_lists_with_nulls(SplitFunc Split, CompareFunc Compare, bool split = true)
{
using LCW = cudf::test::lists_column_wrapper<int>;
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
{
cudf::test::lists_column_wrapper<T> list{{1, 2, 3},
{4, 5},
{6},
{{7, 8}, valids},
{9, 10, 11},
LCW{},
LCW{},
{{-1, -2, -3, -4, -5}, valids},
{-10},
{{-100, -200}, valids}};
if (split) {
std::vector<cudf::size_type> splits{0, 1, 4, 5, 6, 9};
std::vector<cudf::test::lists_column_wrapper<T>> expected;
expected.push_back(LCW{});
expected.push_back(LCW{{1, 2, 3}});
expected.push_back(LCW{{4, 5}, {6}, {{7, 8}, valids}});
expected.push_back(LCW{{9, 10, 11}});
expected.push_back(LCW{LCW{}});
expected.push_back(LCW{LCW{}, {{-1, -2, -3, -4, -5}, valids}, {-10}});
expected.push_back(LCW{{{-100, -200}, valids}});
auto result = Split(list, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
} else {
auto result = Split(list, {});
EXPECT_EQ(1, result.size());
Compare(list, result[0]);
}
}
{
cudf::test::lists_column_wrapper<T> list{{{{1, 2, 3}, valids}, {4, 5}},
{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids},
{{{6}}},
{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids},
{{LCW{}, {-1, -2, -3, -4, -5}}, valids},
{LCW{}},
{{-10}, {-100, -200}}};
if (split) {
std::vector<cudf::size_type> splits{1, 3, 4};
std::vector<cudf::test::lists_column_wrapper<T>> expected;
expected.push_back(LCW{{{{1, 2, 3}, valids}, {4, 5}}});
expected.push_back(LCW{{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids}, {{{6}}}});
expected.push_back(LCW{{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids}});
expected.push_back(
LCW{{{LCW{}, {-1, -2, -3, -4, -5}}, valids}, {LCW{}}, {{-10}, {-100, -200}}});
auto result = Split(list, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
} else {
auto result = Split(list, {});
EXPECT_EQ(1, result.size());
Compare(list, result[0]);
}
}
}
template <typename SplitFunc, typename CompareFunc>
void split_structs(bool include_validity, SplitFunc Split, CompareFunc Compare, bool split = true)
{
// 1. String "names" column.
std::vector<std::string> names{
"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant", "Fred", "Todd", "Kevin"};
std::vector<bool> names_validity{1, 1, 1, 1, 1, 1, 1, 1, 1};
cudf::test::strings_column_wrapper names_column(names.begin(), names.end());
// 2. Numeric "ages" column.
std::vector<int> ages{5, 10, 15, 20, 25, 30, 100, 101, 102};
std::vector<bool> ages_validity = {1, 1, 1, 1, 0, 1, 0, 0, 1};
auto ages_column =
include_validity
? cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end(), ages_validity.begin())
: cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end());
// 3. Boolean "is_human" column.
std::vector<bool> is_human{true, true, false, false, false, false, true, true, true};
std::vector<bool> is_human_validity{1, 1, 1, 0, 1, 1, 1, 1, 0};
auto is_human_col =
include_validity
? cudf::test::fixed_width_column_wrapper<bool>(
is_human.begin(), is_human.end(), is_human_validity.begin())
: cudf::test::fixed_width_column_wrapper<bool>(is_human.begin(), is_human.end());
// Assemble struct column.
auto const struct_validity = std::vector<bool>{1, 1, 1, 1, 1, 0, 0, 1, 0};
auto struct_column =
include_validity
? cudf::test::structs_column_wrapper({names_column, ages_column, is_human_col},
struct_validity.begin())
: cudf::test::structs_column_wrapper({names_column, ages_column, is_human_col});
// split
std::vector<cudf::size_type> splits;
if (split) { splits = std::vector<cudf::size_type>({0, 1, 3, 8}); }
auto result = Split(struct_column, splits);
// expected outputs
auto expected_names = include_validity
? create_expected_string_columns_for_splits(names, splits, names_validity)
: create_expected_string_columns_for_splits(names, splits, false);
auto expected_ages = include_validity
? create_expected_columns_for_splits<int>(splits, ages, ages_validity)
: create_expected_columns_for_splits<int>(splits, ages, false);
auto expected_is_human =
include_validity ? create_expected_columns_for_splits<bool>(splits, is_human, is_human_validity)
: create_expected_columns_for_splits<bool>(splits, is_human, false);
auto expected_struct_validity = create_expected_validity(splits, struct_validity);
EXPECT_EQ(expected_names.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
auto expected = include_validity
? cudf::test::structs_column_wrapper(
{expected_names[index], expected_ages[index], expected_is_human[index]},
expected_struct_validity[index])
: cudf::test::structs_column_wrapper(
{expected_names[index], expected_ages[index], expected_is_human[index]});
Compare(expected, result[index]);
}
}
template <typename SplitFunc, typename CompareFunc>
void split_structs_no_children(SplitFunc Split, CompareFunc Compare, bool split = true)
{
// no nulls
{
auto struct_column = cudf::make_structs_column(4, {}, 0, rmm::device_buffer{});
if (split) {
auto expected = cudf::make_structs_column(2, {}, 0, rmm::device_buffer{});
// split
std::vector<cudf::size_type> splits{2};
auto result = Split(*struct_column, splits);
EXPECT_EQ(result.size(), 2ul);
Compare(*expected, result[0]);
Compare(*expected, result[1]);
} else {
auto result = Split(*struct_column, {});
EXPECT_EQ(1, result.size());
Compare(*struct_column, result[0]);
}
}
// all nulls
{
std::vector<bool> struct_validity{false, false, false, false};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(struct_validity.begin(), struct_validity.end());
auto struct_column = cudf::make_structs_column(4, {}, null_count, std::move(null_mask));
if (split) {
std::vector<bool> expected_validity{false, false};
std::tie(null_mask, null_count) =
cudf::test::detail::make_null_mask(expected_validity.begin(), expected_validity.end());
auto expected = cudf::make_structs_column(2, {}, null_count, std::move(null_mask));
// split
std::vector<cudf::size_type> splits{2};
auto result = Split(*struct_column, splits);
EXPECT_EQ(result.size(), 2ul);
Compare(*expected, result[0]);
Compare(*expected, result[1]);
} else {
auto result = Split(*struct_column, {});
EXPECT_EQ(1, result.size());
Compare(*struct_column, result[0]);
}
}
// no nulls, empty output column
{
auto struct_column = cudf::make_structs_column(4, {}, 0, rmm::device_buffer{});
if (split) {
auto expected0 = cudf::make_structs_column(4, {}, 0, rmm::device_buffer{});
auto expected1 = cudf::make_structs_column(0, {}, 0, rmm::device_buffer{});
// split
std::vector<cudf::size_type> splits{4};
auto result = Split(*struct_column, splits);
EXPECT_EQ(result.size(), 2ul);
Compare(*expected0, result[0]);
Compare(*expected1, result[1]);
} else {
auto result = Split(*struct_column, {});
EXPECT_EQ(1, result.size());
Compare(*struct_column, result[0]);
}
}
// all nulls, empty output column
{
std::vector<bool> struct_validity{false, false, false, false};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(struct_validity.begin(), struct_validity.end());
auto struct_column = cudf::make_structs_column(4, {}, null_count, std::move(null_mask));
if (split) {
std::vector<bool> expected_validity0{false, false, false, false};
std::tie(null_mask, null_count) =
cudf::test::detail::make_null_mask(expected_validity0.begin(), expected_validity0.end());
auto expected0 = cudf::make_structs_column(4, {}, null_count, std::move(null_mask));
auto expected1 = cudf::make_structs_column(0, {}, 0, rmm::device_buffer{});
// split
std::vector<cudf::size_type> splits{4};
auto result = Split(*struct_column, splits);
EXPECT_EQ(result.size(), 2ul);
Compare(*expected0, result[0]);
Compare(*expected1, result[1]);
} else {
auto result = Split(*struct_column, {});
EXPECT_EQ(1, result.size());
Compare(*struct_column, result[0]);
}
}
}
template <typename SplitFunc, typename CompareFunc>
void split_nested_struct_of_list(SplitFunc Split, CompareFunc Compare, bool split = true)
{
// Struct<List<List>>
using LCW = cudf::test::lists_column_wrapper<float>;
// 1. String "names" column.
std::vector<std::string> names{
"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant", "Fred", "Todd", "Kevin"};
std::vector<bool> names_validity{1, 1, 1, 1, 1, 1, 1, 1, 1};
cudf::test::strings_column_wrapper names_column(names.begin(), names.end());
// 2. Numeric "ages" column.
std::vector<int> ages{5, 10, 15, 20, 25, 30, 100, 101, 102};
std::vector<bool> ages_validity = {1, 1, 1, 1, 0, 1, 0, 0, 1};
auto ages_column =
cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end(), ages_validity.begin());
// 3. List column
std::vector<bool> list_validity{1, 1, 1, 1, 1, 0, 1, 0, 1};
cudf::test::lists_column_wrapper<float> list({{{1, 2, 3}, {4}},
{{-1, -2}, LCW{}},
LCW{},
{{10}, {20, 30, 40}, {100, -100}},
{LCW{}, LCW{}, {8, 9}},
LCW{},
{{8}, {10, 9, 8, 7, 6, 5}},
{{5, 6}, LCW{}, {8}},
{LCW{-3, 4, -5}}},
list_validity.begin());
// Assemble struct column.
auto const struct_validity = std::vector<bool>{1, 1, 1, 1, 1, 0, 0, 1, 0};
auto struct_column =
cudf::test::structs_column_wrapper({names_column, ages_column, list}, struct_validity.begin());
if (split) {
std::vector<cudf::size_type> splits{1, 3, 8};
auto result = Split(struct_column, splits);
// expected results
auto expected_names = create_expected_string_columns_for_splits(names, splits, names_validity);
auto expected_ages = create_expected_columns_for_splits<int>(splits, ages, ages_validity);
std::vector<cudf::test::lists_column_wrapper<float>> expected_lists;
expected_lists.push_back(LCW({{{1, 2, 3}, {4}}}));
expected_lists.push_back(LCW({{{-1, -2}, LCW{}}, LCW{}}));
std::vector<bool> ex_v{1, 1, 0, 1, 0};
expected_lists.push_back(LCW({{{10}, {20, 30, 40}, {100, -100}},
{LCW{}, LCW{}, {8, 9}},
LCW{},
{{8}, {10, 9, 8, 7, 6, 5}},
{{5, 6}, LCW{}, {8}}},
ex_v.begin()));
expected_lists.push_back(LCW({{LCW{-3, 4, -5}}}));
auto expected_struct_validity = create_expected_validity(splits, struct_validity);
EXPECT_EQ(expected_names.size(), result.size());
for (std::size_t index = 0; index < result.size(); index++) {
auto expected = cudf::test::structs_column_wrapper(
{expected_names[index], expected_ages[index], expected_lists[index]},
expected_struct_validity[index]);
Compare(expected, result[index]);
}
} else {
auto result = Split(struct_column, {});
Compare(struct_column, result[0]);
}
}
template <typename SplitFunc, typename CompareFunc>
void split_nested_list_of_structs(SplitFunc Split, CompareFunc Compare, bool split = true)
{
// List<Struct<List<>>
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
// 1. String "names" column.
std::vector<std::string> names{"Vimes",
"Carrot",
"Angua",
"Cheery",
"Detritus",
"Slant",
"Fred",
"Todd",
"Kevin",
"Jason",
"Clark",
"Bob",
"Mithun",
"Sameer",
"Tim",
"Mark",
"Herman",
"Will"};
std::vector<bool> names_validity{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
cudf::test::strings_column_wrapper names_column(names.begin(), names.end());
// 2. Numeric "ages" column.
std::vector<int> ages{5, 10, 15, 20, 25, 30, 100, 101, 102, 26, 64, 12, 17, 16, 120, 44, 23, 50};
std::vector<bool> ages_validity = {1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0};
auto ages_column =
cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end(), ages_validity.begin());
// 3. List column
std::vector<bool> list_validity{1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1};
cudf::test::lists_column_wrapper<cudf::string_view> list(
{{"ab", "cd", "ef"},
LCW{"gh"},
{"ijk", "lmn"},
LCW{},
LCW{"o"},
{"pqr", "stu", "vwx"},
{"yz", "aaaa"},
LCW{"bbbb"},
{"cccc", "ddd", "eee", "fff", "ggg", "hh"},
{"b", "cdr", "efh", "um"},
LCW{"gh", "iu"},
{"lmn"},
LCW{"org"},
LCW{},
{"stu", "vwx"},
{"yz", "aaaa", "kem"},
LCW{"bbbb"},
{"cccc", "eee", "faff", "jiea", "fff", "ggg", "hh"}},
list_validity.begin());
// Assembly struct column
auto const struct_validity =
std::vector<bool>{1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1};
auto struct_column =
cudf::test::structs_column_wrapper({names_column, ages_column, list}, struct_validity.begin());
// wrap in a list
std::vector<int> outer_offsets{0, 3, 4, 8, 13, 16, 17, 18};
cudf::test::fixed_width_column_wrapper<int> outer_offsets_col(outer_offsets.begin(),
outer_offsets.end());
std::vector<bool> outer_validity{1, 1, 1, 0, 1, 1, 0};
auto [outer_null_mask, outer_null_count] =
cudf::test::detail::make_null_mask(outer_validity.begin(), outer_validity.end());
auto outer_list = make_lists_column(static_cast<cudf::size_type>(outer_validity.size()),
outer_offsets_col.release(),
struct_column.release(),
outer_null_count,
std::move(outer_null_mask));
if (split) {
std::vector<cudf::size_type> splits{1, 3, 7};
cudf::table_view tbl({static_cast<cudf::column_view>(*outer_list)});
// we are testing the results of contiguous_split against regular cudf::split, which may seem
// weird. however, cudf::split() is a simple operation that just sets offsets at the topmost
// output column, whereas contiguous_split is a deep copy of the data to contiguous output
// buffers. so as long as we believe the comparison code (expect_columns_equivalent) can compare
// these outputs correctly, this should be safe.
auto result = Split(*outer_list, splits);
auto expected = cudf::split(static_cast<cudf::column_view>(*outer_list), splits);
ASSERT_EQ(result.size(), expected.size());
for (std::size_t index = 0; index < result.size(); index++) {
Compare(expected[index], result[index]);
}
} else {
auto result = Split(*outer_list, {});
EXPECT_EQ(1, result.size());
Compare(*outer_list, result[0]);
}
}
TEST_F(SplitNestedTypesTest, Lists)
{
split_lists<int>(
[](cudf::column_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::column_view const& expected, cudf::column_view const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result);
});
}
TEST_F(SplitNestedTypesTest, ListsWithNulls)
{
split_lists_with_nulls<int>(
[](cudf::column_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::column_view const& expected, cudf::column_view const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result);
});
}
TEST_F(SplitNestedTypesTest, Structs)
{
split_structs(
false,
[](cudf::column_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::column_view const& expected, cudf::column_view const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result);
});
}
TEST_F(SplitNestedTypesTest, StructsWithNulls)
{
split_structs(
true,
[](cudf::column_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::column_view const& expected, cudf::column_view const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result);
});
}
TEST_F(SplitNestedTypesTest, StructsNoChildren)
{
split_structs_no_children(
[](cudf::column_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::column_view const& expected, cudf::column_view const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result);
});
}
TEST_F(SplitNestedTypesTest, StructsOfList)
{
split_nested_struct_of_list(
[](cudf::column_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::split(t, splits);
},
[](cudf::column_view const& expected, cudf::column_view const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result);
});
}
template <typename T>
struct ContiguousSplitTest : public cudf::test::BaseFixture {};
std::vector<cudf::packed_table> do_chunked_pack(cudf::table_view const& input)
{
auto mr = rmm::mr::get_current_device_resource();
rmm::device_buffer bounce_buff(1 * 1024 * 1024, cudf::get_default_stream(), mr);
auto bounce_buff_span =
cudf::device_span<uint8_t>(static_cast<uint8_t*>(bounce_buff.data()), bounce_buff.size());
auto chunked_pack = cudf::chunked_pack::create(input, bounce_buff_span.size(), mr);
// right size the final buffer
rmm::device_buffer final_buff(
chunked_pack->get_total_contiguous_size(), cudf::get_default_stream(), mr);
std::size_t final_buff_offset = 0;
while (chunked_pack->has_next()) {
auto bytes_copied = chunked_pack->next(bounce_buff_span);
cudaMemcpyAsync((uint8_t*)final_buff.data() + final_buff_offset,
bounce_buff.data(),
bytes_copied,
cudaMemcpyDefault,
cudf::get_default_stream());
final_buff_offset += bytes_copied;
}
auto packed_column_metas = chunked_pack->build_metadata();
// for chunked contig split, this is going to be a size 1 vector if we have
// results, or a size 0 if the original table was empty (no columns)
std::vector<cudf::packed_table> result;
if (packed_column_metas) {
result = std::vector<cudf::packed_table>(1);
auto pc = cudf::packed_columns(std::move(packed_column_metas),
std::make_unique<rmm::device_buffer>(std::move(final_buff)));
auto unpacked = cudf::unpack(pc);
cudf::packed_table pt{std::move(unpacked), std::move(pc)};
result[0] = std::move(pt);
}
return result;
}
// the various utility functions in slice_tests.cuh don't like the chrono types
using FixedWidthTypesWithoutChrono =
cudf::test::Concat<cudf::test::NumericTypes, cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(ContiguousSplitTest, FixedWidthTypesWithoutChrono);
TYPED_TEST(ContiguousSplitTest, LongColumn)
{
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
10002,
std::vector<cudf::size_type>{
2, 16, 31, 35, 64, 97, 158, 190, 638, 899, 900, 901, 996, 4200, 7131, 8111},
true);
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
10002,
std::vector<cudf::size_type>{
2, 16, 31, 35, 64, 97, 158, 190, 638, 899, 900, 901, 996, 4200, 7131, 8111},
false);
}
TYPED_TEST(ContiguousSplitTest, LongColumnChunked)
{
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
100002,
{},
true);
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
100002,
{},
false);
}
TYPED_TEST(ContiguousSplitTest, LongColumnBigSplits)
{
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
10007,
std::vector<cudf::size_type>{0, 3613, 7777, 10005, 10007},
true);
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
10007,
std::vector<cudf::size_type>{0, 3613, 7777, 10005, 10007},
false);
}
// this is a useful test but a little too expensive to run all the time
/*
TYPED_TEST(ContiguousSplitTest, LongColumnTinySplits)
{
std::vector<cudf::size_type> splits(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(10000));
split_custom_column<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i){
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i), result.table.column(i));
});
},
10002,
splits
);
}
*/
struct ContiguousSplitUntypedTest : public cudf::test::BaseFixture {};
TEST_F(ContiguousSplitUntypedTest, ProgressiveSizes)
{
constexpr int col_size = 256;
// stress test copying a wide amount of bytes.
for (int idx = 0; idx < col_size; idx++) {
split_custom_column<uint8_t>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
col_size,
std::vector<cudf::size_type>{idx},
true);
split_custom_column<uint8_t>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
col_size,
std::vector<cudf::size_type>{idx},
false);
}
}
TEST_F(ContiguousSplitUntypedTest, ProgressiveSizesChunked)
{
constexpr int col_size = 4096;
// stress test copying a wide amount of bytes.
for (int idx = 2048; idx < col_size; idx += 128) {
split_custom_column<uint64_t>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
col_size,
{},
true);
split_custom_column<uint64_t>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(expected.num_columns()),
[&expected, &result](cudf::size_type i) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected.column(i),
result.table.column(i));
});
},
col_size,
{},
false);
}
}
TEST_F(ContiguousSplitUntypedTest, ValidityRepartition)
{
// it is tricky to actually get the internal repartitioning/load-balancing code to add new splits
// inside a validity buffer. Under almost all situations, the fraction of bytes that validity
// represents is so small compared to the bytes for all other data, that those buffers end up not
// getting subdivided. this test forces it happen by using a small, single column of int8's, which
// keeps the overall fraction that validity takes up large enough to cause a repartition.
srand(0);
auto rvalids = cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX) < 0.5f ? 0 : 1;
});
cudf::size_type const num_rows = 2000000;
auto col = cudf::sequence(num_rows, cudf::numeric_scalar<int8_t>{0});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(rvalids, rvalids + num_rows);
col->set_null_mask(std::move(null_mask), null_count);
cudf::table_view t({*col});
auto result = cudf::contiguous_split(t, {num_rows / 2});
auto expected = cudf::split(t, {num_rows / 2});
ASSERT_EQ(result.size(), expected.size());
for (size_t idx = 0; idx < result.size(); idx++) {
CUDF_TEST_EXPECT_TABLES_EQUAL(result[idx].table, expected[idx]);
}
}
TEST_F(ContiguousSplitUntypedTest, ValidityRepartitionChunked)
{
srand(0);
auto rvalids = cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX) < 0.5f ? 0 : 1;
});
cudf::size_type const num_rows = 2000000;
auto col = cudf::sequence(num_rows, cudf::numeric_scalar<int8_t>{0});
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(rvalids, rvalids + num_rows);
col->set_null_mask(std::move(null_mask), null_count);
cudf::table_view t({*col});
auto result = do_chunked_pack(t);
auto& expected = t;
EXPECT_EQ(1, result.size());
CUDF_TEST_EXPECT_TABLES_EQUAL(result[0].table, expected);
}
TEST_F(ContiguousSplitUntypedTest, ValidityEdgeCase)
{
// tests an edge case where the splits cause the final validity data to be copied
// to be < 32 full bits, making sure we don't unintentionally read past the end of the input
auto col = cudf::make_numeric_column(
cudf::data_type{cudf::type_id::INT32}, 512, cudf::mask_state::ALL_VALID);
auto result = cudf::contiguous_split(cudf::table_view{{*col}}, {510});
auto expected = cudf::split(cudf::table_view{{*col}}, {510});
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected[index].column(0), result[index].table.column(0));
}
}
// This test requires about 25GB of device memory when used with the arena allocator
TEST_F(ContiguousSplitUntypedTest, DISABLED_VeryLargeColumnTest)
{
// tests an edge case where buf.elements * buf.element_size overflows an INT32.
auto col = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_id::INT64}, 400 * 1024 * 1024, cudf::mask_state::UNALLOCATED);
auto result = cudf::contiguous_split(cudf::table_view{{*col}}, {});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*col, result[0].table.column(0));
}
// This test requires about 25GB of device memory when used with the arena allocator
TEST_F(ContiguousSplitUntypedTest, DISABLED_VeryLargeColumnTestChunked)
{
// tests an edge case where buf.elements * buf.element_size overflows an INT32.
auto col = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_id::INT64}, 400 * 1024 * 1024, cudf::mask_state::UNALLOCATED);
auto result = do_chunked_pack(cudf::table_view{{*col}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*col, result[0].table.column(0));
}
// contiguous split with strings
struct ContiguousSplitStringTableTest : public SplitTest<std::string> {};
TEST_F(ContiguousSplitStringTableTest, StringWithInvalids)
{
split_string_with_invalids(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.table);
});
}
TEST_F(ContiguousSplitStringTableTest, StringWithInvalidsChunked)
{
split_string_with_invalids(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.table);
},
{});
}
TEST_F(ContiguousSplitStringTableTest, EmptyInputColumn)
{
// build a bunch of empty stuff
cudf::test::strings_column_wrapper sw;
cudf::test::lists_column_wrapper<int> lw;
cudf::test::fixed_width_column_wrapper<float> fw;
//
cudf::test::strings_column_wrapper ssw;
cudf::test::lists_column_wrapper<int> slw;
cudf::test::fixed_width_column_wrapper<float> sfw;
cudf::test::structs_column_wrapper st_w({sfw, ssw, slw});
cudf::table_view src_table({sw, lw, fw, st_w});
{
std::vector<cudf::size_type> splits;
auto result = cudf::contiguous_split(src_table, splits);
ASSERT_EQ(result.size(), 1);
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(src_table, result[0].table);
}
{
auto result = do_chunked_pack(src_table);
ASSERT_EQ(result.size(), 1);
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(src_table, result[0].table);
}
{
std::vector<cudf::size_type> splits{0, 0, 0, 0};
auto result = cudf::contiguous_split(src_table, splits);
ASSERT_EQ(result.size(), 5);
for (size_t idx = 0; idx < result.size(); idx++) {
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(src_table, result[idx].table);
}
}
}
TEST_F(ContiguousSplitStringTableTest, EmptyOutputColumn)
{
split_empty_output_strings_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::packed_table const& t, int num_cols) { EXPECT_EQ(t.table.num_columns(), num_cols); });
}
TEST_F(ContiguousSplitStringTableTest, EmptyOutputColumnChunked)
{
split_empty_output_strings_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::packed_table const& t, int num_cols) { EXPECT_EQ(t.table.num_columns(), num_cols); },
{});
}
TEST_F(ContiguousSplitStringTableTest, NullStringColumn)
{
split_null_input_strings_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected.view(), result.table);
});
}
// contiguous splits
template <typename T>
struct ContiguousSplitTableTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ContiguousSplitTableTest, FixedWidthTypesWithoutChrono);
TYPED_TEST(ContiguousSplitTableTest, SplitEndLessThanSize)
{
split_end_less_than_size<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.table);
});
}
TYPED_TEST(ContiguousSplitTableTest, SplitEndToSize)
{
split_end_to_size<TypeParam>(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::table_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.table);
});
}
struct ContiguousSplitTableCornerCases : public SplitTest<int8_t> {};
TEST_F(ContiguousSplitTableCornerCases, EmptyTable)
{
split_empty_table([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
});
}
TEST_F(ContiguousSplitTableCornerCases, EmptyTableChunked)
{
split_empty_table([](cudf::table_view const& t,
std::vector<cudf::size_type> const&) { return do_chunked_pack(t); },
{});
}
TEST_F(ContiguousSplitTableCornerCases, EmptyIndices)
{
split_empty_indices([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
});
}
TEST_F(ContiguousSplitTableCornerCases, InvalidSetOfIndices)
{
split_invalid_indices([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
});
}
TEST_F(ContiguousSplitTableCornerCases, ImproperRange)
{
split_improper_range([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
});
}
TEST_F(ContiguousSplitTableCornerCases, NegativeValue)
{
split_negative_value([](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
});
}
TEST_F(ContiguousSplitTableCornerCases, EmptyOutputColumn)
{
split_empty_output_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const& splits) {
return cudf::contiguous_split(t, splits);
},
[](cudf::packed_table const& t, int num_cols) { EXPECT_EQ(t.table.num_columns(), num_cols); });
}
TEST_F(ContiguousSplitTableCornerCases, EmptyOutputColumnChunked)
{
split_empty_output_column_value(
[](cudf::table_view const& t, std::vector<cudf::size_type> const&) {
return do_chunked_pack(t);
},
[](cudf::packed_table const& t, int num_cols) { EXPECT_EQ(t.table.num_columns(), num_cols); },
{});
}
TEST_F(ContiguousSplitTableCornerCases, MixedColumnTypes)
{
cudf::size_type start = 0;
auto valids = cudf::detail::make_counting_transform_iterator(start, [](auto i) { return true; });
std::vector<std::string> strings[2] = {
{"", "this", "is", "a", "column", "of", "strings", "with", "in", "valid"},
{"", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}};
std::vector<std::unique_ptr<cudf::column>> cols;
auto iter0 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i); });
auto c0 = cudf::test::fixed_width_column_wrapper<int>(iter0, iter0 + 10, valids);
cols.push_back(c0.release());
auto iter1 = cudf::detail::make_counting_transform_iterator(10, [](auto i) { return (i); });
auto c1 = cudf::test::fixed_width_column_wrapper<int>(iter1, iter1 + 10, valids);
cols.push_back(c1.release());
auto c2 = cudf::test::strings_column_wrapper(strings[0].begin(), strings[0].end(), valids);
cols.push_back(c2.release());
auto c3 = cudf::test::strings_column_wrapper(strings[1].begin(), strings[1].end(), valids);
cols.push_back(c3.release());
auto iter4 = cudf::detail::make_counting_transform_iterator(20, [](auto i) { return (i); });
auto c4 = cudf::test::fixed_width_column_wrapper<int>(iter4, iter4 + 10, valids);
cols.push_back(c4.release());
auto tbl = cudf::table(std::move(cols));
std::vector<cudf::size_type> splits{5};
auto result = cudf::contiguous_split(tbl, splits);
auto expected = cudf::split(tbl, splits);
for (unsigned long index = 0; index < expected.size(); index++) {
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected[index], result[index].table);
}
}
TEST_F(ContiguousSplitTableCornerCases, MixedColumnTypesChunked)
{
cudf::size_type start = 0;
auto valids = cudf::detail::make_counting_transform_iterator(start, [](auto i) { return true; });
std::size_t num_rows = 1000000;
std::vector<std::string> strings1(num_rows);
std::vector<std::string> strings2(num_rows);
strings1[0] = "";
strings2[0] = "";
for (std::size_t i = 1; i < num_rows; ++i) {
auto str = std::to_string(i);
strings1[i] = str;
strings2[i] = str;
}
std::vector<std::unique_ptr<cudf::column>> cols;
auto iter0 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i); });
auto c0 = cudf::test::fixed_width_column_wrapper<int>(iter0, iter0 + num_rows, valids);
cols.push_back(c0.release());
auto iter1 = cudf::detail::make_counting_transform_iterator(10, [](auto i) { return (i); });
auto c1 = cudf::test::fixed_width_column_wrapper<int>(iter1, iter1 + num_rows, valids);
cols.push_back(c1.release());
auto c2 = cudf::test::strings_column_wrapper(strings1.begin(), strings1.end(), valids);
cols.push_back(c2.release());
auto c3 = cudf::test::strings_column_wrapper(strings2.begin(), strings2.end(), valids);
cols.push_back(c3.release());
auto iter4 = cudf::detail::make_counting_transform_iterator(20, [](auto i) { return (i); });
auto c4 = cudf::test::fixed_width_column_wrapper<int>(iter4, iter4 + num_rows, valids);
cols.push_back(c4.release());
auto tbl = cudf::table(std::move(cols));
auto results = do_chunked_pack(tbl.view());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(tbl, results[0].table);
}
TEST_F(ContiguousSplitTableCornerCases, MixedColumnTypesSingleRowChunked)
{
cudf::size_type start = 0;
auto valids = cudf::detail::make_counting_transform_iterator(start, [](auto i) { return true; });
std::size_t num_rows = 1;
std::vector<std::unique_ptr<cudf::column>> cols;
auto iter0 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i); });
auto c0 = cudf::test::fixed_width_column_wrapper<int32_t>(iter0, iter0 + num_rows, valids);
cols.push_back(c0.release());
auto iter1 = cudf::detail::make_counting_transform_iterator(1, [](auto i) { return (i); });
auto c1 = cudf::test::fixed_width_column_wrapper<int64_t>(iter1, iter1 + num_rows);
cols.push_back(c1.release());
auto tbl = cudf::table(std::move(cols));
auto results = do_chunked_pack(tbl.view());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(tbl, results[0].table);
}
TEST_F(ContiguousSplitTableCornerCases, PreSplitTable)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
using LCW = cudf::test::lists_column_wrapper<int>;
cudf::test::lists_column_wrapper<int> col0{{{{1, 2, 3}, valids}, {4, 5}},
{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids},
{{{6}}},
{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids},
{{LCW{}, {-1, -2, -3, -4, -5}}, valids},
{LCW{}},
{{-10}, {-100, -200}}};
cudf::test::strings_column_wrapper col1{
"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant", "Fred"};
cudf::test::fixed_width_column_wrapper<float> col2{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
std::vector<std::unique_ptr<cudf::column>> children;
children.push_back(std::make_unique<cudf::column>(col2));
children.push_back(std::make_unique<cudf::column>(col0));
children.push_back(std::make_unique<cudf::column>(col1));
auto col3 = cudf::make_structs_column(
static_cast<cudf::column_view>(col0).size(), std::move(children), 0, rmm::device_buffer{});
cudf::table_view t({col0, col1, col2, *col3});
auto pre_split = cudf::split(t, {1});
{
std::vector<cudf::size_type> splits{1, 4};
auto result = cudf::contiguous_split(pre_split[1], splits);
auto expected = cudf::split(pre_split[1], splits);
for (size_t index = 0; index < expected.size(); index++) {
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected[index], result[index].table);
}
}
{
std::vector<cudf::size_type> splits{0, 5};
auto result = cudf::contiguous_split(pre_split[1], splits);
auto expected = cudf::split(pre_split[1], splits);
for (size_t index = 0; index < expected.size(); index++) {
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected[index], result[index].table);
}
}
{
auto result = do_chunked_pack(pre_split[1]);
EXPECT_EQ(1, result.size());
auto expected = pre_split[1];
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected, result[0].table);
}
}
TEST_F(ContiguousSplitTableCornerCases, PreSplitTableLarge)
{
// test splitting a table that is already split (has an offset)
cudf::size_type start = 0;
cudf::size_type presplit_pos = 47;
cudf::size_type size = 10002;
srand(824);
auto rvalids = cudf::detail::make_counting_transform_iterator(start, [](auto i) {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX) < 0.5f ? 0 : 1;
});
std::vector<bool> pre_split_valids{rvalids, rvalids + size};
cudf::test::fixed_width_column_wrapper<int> pre_split =
create_fixed_columns<int>(start, size, pre_split_valids.begin());
// pre-split this column
auto split_cols = cudf::split(pre_split, {47});
std::vector<cudf::size_type> splits{
2, 16, 31, 35, 64, 97, 158, 190, 638, 899, 900, 901, 996, 4200, 7131, 8111};
auto const post_split_start = start + presplit_pos;
auto const post_split_size = size - presplit_pos;
auto el_iter = thrust::make_counting_iterator(post_split_start);
std::vector<int> post_split_elements{el_iter, el_iter + post_split_size};
std::vector<bool> post_split_valids{
pre_split_valids.begin() + post_split_start,
pre_split_valids.begin() + post_split_start + post_split_size};
std::vector<cudf::test::fixed_width_column_wrapper<int>> expected =
create_expected_columns_for_splits<int>(splits, post_split_elements, post_split_valids);
cudf::table_view t({split_cols[1]});
auto result = cudf::contiguous_split(t, splits);
EXPECT_EQ(expected.size(), result.size());
for (unsigned long index = 0; index < result.size(); index++) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected[index], result[index].table.column(0));
}
}
TEST_F(ContiguousSplitTableCornerCases, PreSplitList)
{
// list<list<int>>
{
cudf::test::lists_column_wrapper<int> list{{{1, 2}, {3, 4}},
{{5, 6}, {7}, {8, 9, 10}},
{{11, 12}, {13}},
{{14, 15, 16}, {17, 18}, {}},
{{-1, -2, -3}, {-4, -5, -6, -7}},
{{-8, -9}, {-10, -11}},
{{-12, -13}, {-14}, {-15, -16}},
{{-17, -18}, {}, {-19, -20}}};
auto pre_split = cudf::split(list, {2});
cudf::table_view t({pre_split[1]});
auto result = cudf::contiguous_split(t, {3, 4});
auto expected = cudf::split(t, {3, 4});
auto iter = thrust::make_counting_iterator(0);
std::for_each(iter, iter + expected.size(), [&](cudf::size_type index) {
CUDF_TEST_EXPECT_TABLES_EQUAL(result[index].table, expected[index]);
});
}
// list<struct<float>>
{
cudf::test::fixed_width_column_wrapper<cudf::size_type> offsets{0, 2, 5, 7, 10, 12, 14, 17, 20};
cudf::test::fixed_width_column_wrapper<float> floats{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
cudf::test::structs_column_wrapper data({floats});
auto list =
cudf::make_lists_column(8, offsets.release(), data.release(), 0, rmm::device_buffer{});
auto pre_split = cudf::split(*list, {2});
cudf::table_view t({pre_split[1]});
auto result = cudf::contiguous_split(t, {3, 4});
auto expected = cudf::split(t, {3, 4});
auto iter = thrust::make_counting_iterator(0);
std::for_each(iter, iter + expected.size(), [&](cudf::size_type index) {
CUDF_TEST_EXPECT_TABLES_EQUAL(result[index].table, expected[index]);
});
}
}
TEST_F(ContiguousSplitTableCornerCases, PreSplitStructs)
{
// includes struct<list>
{
cudf::test::fixed_width_column_wrapper<int> a{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
cudf::test::fixed_width_column_wrapper<float> b{{0, -1, -2, -3, -4, -5, -6, -7, -8, -9},
{1, 1, 1, 0, 0, 0, 0, 1, 1, 1}};
cudf::test::strings_column_wrapper c{
{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx", "yy", "zzzz"},
{0, 0, 1, 1, 1, 1, 1, 1, 1, 1}};
std::vector<bool> list_validity{1, 0, 1, 0, 1, 0, 1, 1, 1, 1};
cudf::test::lists_column_wrapper<int16_t> d{
{{0, 1}, {2, 3, 4}, {5, 6}, {7}, {8, 9, 10}, {11, 12}, {}, {15, 16, 17}, {18, 19}, {20}},
list_validity.begin()};
cudf::test::fixed_width_column_wrapper<int> _a{10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
cudf::test::fixed_width_column_wrapper<float> _b{
-10, -20, -30, -40, -50, -60, -70, -80, -90, -100};
cudf::test::strings_column_wrapper _c{
"aa", "", "ccc", "dddd", "eeeee", "f", "gg", "hhh", "i", "jjj"};
cudf::test::structs_column_wrapper e({_a, _b, _c}, {1, 1, 1, 0, 1, 1, 1, 0, 1, 1});
cudf::test::structs_column_wrapper s({a, b, c, d, e}, {1, 1, 0, 1, 1, 1, 1, 1, 1, 1});
auto pre_split = cudf::split(s, {4});
auto iter = thrust::make_counting_iterator(0);
std::for_each(iter, iter + pre_split.size(), [&](cudf::size_type index) {
cudf::table_view t({pre_split[index]});
auto result = cudf::contiguous_split(t, {1});
auto expected = cudf::split(t, {1});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(result[0].table, expected[0]);
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(result[1].table, expected[1]);
});
}
// struct<list<struct>>
{
cudf::test::fixed_width_column_wrapper<cudf::size_type> offsets{0, 2, 5, 7, 10, 12, 14, 17, 20};
cudf::test::fixed_width_column_wrapper<float> floats{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
cudf::test::structs_column_wrapper data({floats});
auto list =
cudf::make_lists_column(8, offsets.release(), data.release(), 0, rmm::device_buffer{});
cudf::test::strings_column_wrapper strings{"a", "bb", "ccc", "dddd", "", "e", "ff", "ggg"};
std::vector<std::unique_ptr<cudf::column>> struct_children;
struct_children.push_back(std::move(list));
struct_children.push_back(strings.release());
cudf::test::structs_column_wrapper col(std::move(struct_children));
auto pre_split = cudf::split(col, {2});
cudf::table_view t({pre_split[1]});
auto result = cudf::contiguous_split(t, {3, 4});
auto expected = cudf::split(t, {3, 4});
auto iter = thrust::make_counting_iterator(0);
std::for_each(iter, iter + expected.size(), [&](cudf::size_type index) {
CUDF_TEST_EXPECT_TABLES_EQUAL(result[index].table, expected[index]);
});
}
}
TEST_F(ContiguousSplitTableCornerCases, NestedEmpty)
{
// this produces an empty strings column with no children,
// nested inside a list
{
auto empty_string = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list = cudf::make_lists_column(
1, offsets.release(), std::move(empty_string), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
std::vector<cudf::size_type> splits({0});
EXPECT_NO_THROW(contiguous_split(src_table, splits));
std::vector<cudf::size_type> splits2({1});
EXPECT_NO_THROW(contiguous_split(src_table, splits2));
EXPECT_NO_THROW(do_chunked_pack(src_table));
}
// this produces an empty strings column with children that have no data,
// nested inside a list
{
cudf::test::strings_column_wrapper str{"abc"};
auto empty_string = cudf::empty_like(str);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list = cudf::make_lists_column(
1, offsets.release(), std::move(empty_string), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
std::vector<cudf::size_type> splits({0});
EXPECT_NO_THROW(contiguous_split(src_table, splits));
std::vector<cudf::size_type> splits2({1});
EXPECT_NO_THROW(contiguous_split(src_table, splits2));
EXPECT_NO_THROW(do_chunked_pack(src_table));
}
// this produces an empty lists column with children that have no data,
// nested inside a list
{
cudf::test::lists_column_wrapper<float> listw{{1.0f, 2.0f}, {3.0f, 4.0f}};
auto empty_list = cudf::empty_like(listw);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list =
cudf::make_lists_column(1, offsets.release(), std::move(empty_list), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
std::vector<cudf::size_type> splits({0});
EXPECT_NO_THROW(contiguous_split(src_table, splits));
std::vector<cudf::size_type> splits2({1});
EXPECT_NO_THROW(contiguous_split(src_table, splits2));
EXPECT_NO_THROW(do_chunked_pack(src_table));
}
// this produces an empty lists column with children that have no data,
// nested inside a list
{
cudf::test::lists_column_wrapper<float> listw{{1.0f, 2.0f}, {3.0f, 4.0f}};
auto empty_list = cudf::empty_like(listw);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list =
cudf::make_lists_column(1, offsets.release(), std::move(empty_list), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
std::vector<cudf::size_type> splits({0});
EXPECT_NO_THROW(contiguous_split(src_table, splits));
std::vector<cudf::size_type> splits2({1});
EXPECT_NO_THROW(contiguous_split(src_table, splits2));
EXPECT_NO_THROW(do_chunked_pack(src_table));
}
// this produces an empty struct column with children that have no data,
// nested inside a list
{
cudf::test::fixed_width_column_wrapper<int> ints{0, 1, 2, 3, 4};
cudf::test::fixed_width_column_wrapper<float> floats{4, 3, 2, 1, 0};
auto struct_column = cudf::test::structs_column_wrapper({ints, floats});
auto empty_struct = cudf::empty_like(struct_column);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list = cudf::make_lists_column(
1, offsets.release(), std::move(empty_struct), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
std::vector<cudf::size_type> splits({0});
EXPECT_NO_THROW(contiguous_split(src_table, splits));
std::vector<cudf::size_type> splits2({1});
EXPECT_NO_THROW(contiguous_split(src_table, splits2));
EXPECT_NO_THROW(do_chunked_pack(src_table));
}
}
TEST_F(ContiguousSplitTableCornerCases, SplitEmpty)
{
// empty sliced column. this is specifically testing the corner case:
// - a sliced column of size 0
// - having children that are of size > 0
//
cudf::test::strings_column_wrapper a{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx"};
cudf::test::lists_column_wrapper<int> b{
{0, 1}, {2}, {3, 4, 5}, {6, 7}, {8, 9}, {10}, {11, 12}, {13, 14}};
cudf::test::fixed_width_column_wrapper<float> c{0, 1, 2, 3, 4, 5, 6, 7};
cudf::test::strings_column_wrapper _a{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx"};
cudf::test::lists_column_wrapper<float> _b{
{0, 1}, {2}, {3, 4, 5}, {6, 7}, {8, 9}, {10}, {11, 12}, {13, 14}};
cudf::test::fixed_width_column_wrapper<float> _c{0, 1, 2, 3, 4, 5, 6, 7};
cudf::test::structs_column_wrapper d({_a, _b, _c});
cudf::table_view t({a, b, c, d});
auto sliced = cudf::split(t, {0});
{
auto result = cudf::contiguous_split(sliced[0], {});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(sliced[0], result[0].table);
}
{
auto result = do_chunked_pack(sliced[0]);
EXPECT_EQ(1, result.size());
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(sliced[0], result[0].table);
}
{
auto result = cudf::contiguous_split(sliced[0], {0});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(sliced[0], result[0].table);
}
{
EXPECT_THROW(cudf::contiguous_split(sliced[0], {1}), cudf::logic_error);
}
}
TEST_F(ContiguousSplitTableCornerCases, OutBufferToSmall)
{
// internally, contiguous split chunks GPU work in 1MB contiguous copies
// so the output buffer must be 1MB or larger.
EXPECT_THROW(cudf::chunked_pack::create({}, 1 * 1024), cudf::logic_error);
}
TEST_F(ContiguousSplitTableCornerCases, ChunkSpanTooSmall)
{
auto chunked_pack = cudf::chunked_pack::create({}, 1 * 1024 * 1024);
rmm::device_buffer buff(
1 * 1024, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource());
cudf::device_span<uint8_t> too_small(static_cast<uint8_t*>(buff.data()), buff.size());
std::size_t copied = 0;
// throws because we created chunked_contig_split with 1MB, but we are giving
// it a 1KB span here
EXPECT_THROW(copied = chunked_pack->next(too_small), cudf::logic_error);
EXPECT_EQ(copied, 0);
}
TEST_F(ContiguousSplitTableCornerCases, EmptyTableHasNextFalse)
{
auto chunked_pack = cudf::chunked_pack::create({}, 1 * 1024 * 1024);
rmm::device_buffer buff(
1 * 1024 * 1024, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource());
cudf::device_span<uint8_t> bounce_buff(static_cast<uint8_t*>(buff.data()), buff.size());
EXPECT_EQ(chunked_pack->has_next(), false); // empty input table
std::size_t copied = 0;
EXPECT_THROW(copied = chunked_pack->next(bounce_buff), cudf::logic_error);
EXPECT_EQ(copied, 0);
}
TEST_F(ContiguousSplitTableCornerCases, ExhaustedHasNextFalse)
{
cudf::test::strings_column_wrapper a{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx"};
cudf::table_view t({a});
rmm::device_buffer buff(
1 * 1024 * 1024, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource());
cudf::device_span<uint8_t> bounce_buff(static_cast<uint8_t*>(buff.data()), buff.size());
auto chunked_pack = cudf::chunked_pack::create(t, buff.size());
EXPECT_EQ(chunked_pack->has_next(), true);
std::size_t copied = chunked_pack->next(bounce_buff);
EXPECT_EQ(copied, chunked_pack->get_total_contiguous_size());
EXPECT_EQ(chunked_pack->has_next(), false);
copied = 0;
EXPECT_THROW(copied = chunked_pack->next(bounce_buff), cudf::logic_error);
EXPECT_EQ(copied, 0);
}
struct ContiguousSplitNestedTypesTest : public cudf::test::BaseFixture {};
TEST_F(ContiguousSplitNestedTypesTest, Lists)
{
split_lists<int>(
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, ListsChunked)
{
split_lists<int>(
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
/*split*/ false);
}
TEST_F(ContiguousSplitNestedTypesTest, ListsWithNulls)
{
split_lists_with_nulls<int>(
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, ListsWithNullsChunked)
{
split_lists_with_nulls<int>(
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
/*split*/ false);
}
TEST_F(ContiguousSplitNestedTypesTest, Structs)
{
split_structs(
false,
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, StructsChunked)
{
split_structs(
false,
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
/*split*/ false);
}
TEST_F(ContiguousSplitNestedTypesTest, StructsWithNulls)
{
split_structs(
true,
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, StructsWithNullsChunked)
{
split_structs(
true,
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
{});
}
TEST_F(ContiguousSplitNestedTypesTest, StructsNoChildren)
{
split_structs_no_children(
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, StructsNoChildrenChunked)
{
split_structs_no_children(
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
/*split*/ false);
}
TEST_F(ContiguousSplitNestedTypesTest, StructsOfList)
{
split_nested_struct_of_list(
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, StructsOfListChunked)
{
split_nested_struct_of_list(
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
/*split*/ false);
}
TEST_F(ContiguousSplitNestedTypesTest, ListOfStruct)
{
split_nested_list_of_structs(
[](cudf::column_view const& c, std::vector<cudf::size_type> const& splits) {
cudf::table_view t({c});
return cudf::contiguous_split(t, splits);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
});
}
TEST_F(ContiguousSplitNestedTypesTest, ListOfStructChunked)
{
split_nested_list_of_structs(
[](cudf::column_view const& c, std::vector<cudf::size_type> const&) {
cudf::table_view t({c});
return do_chunked_pack(t);
},
[](cudf::column_view const& expected, cudf::packed_table const& result) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, result.table.column(0));
},
/*split*/ false);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/pack_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf/contiguous_split.hpp>
struct PackUnpackTest : public cudf::test::BaseFixture {
void run_test(cudf::table_view const& t)
{
// verify pack/unpack works
auto packed = cudf::pack(t);
auto unpacked = cudf::unpack(packed);
CUDF_TEST_EXPECT_TABLES_EQUAL(t, unpacked);
// verify pack_metadata itself works
auto metadata = cudf::pack_metadata(
unpacked, reinterpret_cast<uint8_t const*>(packed.gpu_data->data()), packed.gpu_data->size());
EXPECT_EQ(metadata.size(), packed.metadata->size());
EXPECT_EQ(
std::equal(metadata.data(), metadata.data() + metadata.size(), packed.metadata->data()),
true);
}
void run_test(std::vector<cudf::column_view> const& t) { run_test(cudf::table_view{t}); }
};
TEST_F(PackUnpackTest, SingleColumnFixedWidth)
{
cudf::test::fixed_width_column_wrapper<int64_t> col1({1, 2, 3, 4, 5, 6, 7},
{1, 1, 1, 0, 1, 0, 1});
this->run_test({col1});
}
TEST_F(PackUnpackTest, SingleColumnFixedWidthNonNullable)
{
cudf::test::fixed_width_column_wrapper<int64_t> col1({1, 2, 3, 4, 5, 6, 7});
this->run_test({col1});
}
TEST_F(PackUnpackTest, MultiColumnFixedWidth)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1({1, 2, 3, 4, 5, 6, 7},
{1, 1, 1, 0, 1, 0, 1});
cudf::test::fixed_width_column_wrapper<float> col2({7, 8, 6, 5, 4, 3, 2}, {1, 0, 1, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<double> col3({8, 4, 2, 0, 7, 1, 3}, {0, 1, 1, 1, 1, 1, 1});
this->run_test({col1, col2, col3});
}
TEST_F(PackUnpackTest, MultiColumnWithStrings)
{
cudf::test::fixed_width_column_wrapper<int16_t> col1({1, 2, 3, 4, 5, 6, 7},
{1, 1, 1, 0, 1, 0, 1});
cudf::test::strings_column_wrapper col2({"Lorem", "ipsum", "dolor", "sit", "amet", "ort", "ral"},
{1, 0, 1, 1, 1, 0, 1});
cudf::test::strings_column_wrapper col3({"", "this", "is", "a", "column", "of", "strings"});
this->run_test({col1, col2, col3});
}
// clang-format on
TEST_F(PackUnpackTest, EmptyColumns)
{
{
auto empty_string = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
cudf::table_view src_table({static_cast<cudf::column_view>(*empty_string)});
this->run_test(src_table);
}
{
cudf::test::strings_column_wrapper str{"abc"};
auto empty_string = cudf::empty_like(str);
cudf::table_view src_table({static_cast<cudf::column_view>(*empty_string)});
this->run_test(src_table);
}
{
cudf::test::fixed_width_column_wrapper<int> col0;
cudf::test::dictionary_column_wrapper<int> col1;
cudf::test::strings_column_wrapper col2;
cudf::test::lists_column_wrapper<int> col3;
cudf::test::structs_column_wrapper col4({});
cudf::table_view src_table({col0, col1, col2, col3, col4});
this->run_test(src_table);
}
}
std::vector<std::unique_ptr<cudf::column>> generate_lists(bool include_validity)
{
using LCW = cudf::test::lists_column_wrapper<int>;
if (include_validity) {
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
cudf::test::lists_column_wrapper<int> list0{{1, 2, 3},
{4, 5},
{6},
{{7, 8}, valids},
{9, 10, 11},
LCW{},
LCW{},
{{-1, -2, -3, -4, -5}, valids},
{{100, -200}, valids}};
cudf::test::lists_column_wrapper<int> list1{{{{1, 2, 3}, valids}, {4, 5}},
{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids},
{LCW{6}},
{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids},
{{LCW{}, {-1, -2, -3, -4, -5}}, valids},
{LCW{}},
{LCW{-10}, {-100, -200}},
{{-10, -200}, LCW{}, {8, 9}},
{LCW{8}, LCW{}, LCW{9}, {5, 6}}};
std::vector<std::unique_ptr<cudf::column>> out;
out.push_back(list0.release());
out.push_back(list1.release());
return out;
}
cudf::test::lists_column_wrapper<int> list0{
{1, 2, 3}, {4, 5}, {6}, {7, 8}, {9, 10, 11}, LCW{}, LCW{}, {-1, -2, -3, -4, -5}, {-100, -200}};
cudf::test::lists_column_wrapper<int> list1{{{1, 2, 3}, {4, 5}},
{LCW{}, LCW{}, {7, 8}, LCW{}},
{LCW{6}},
{{7, 8}, {9, 10, 11}, LCW{}},
{LCW{}, {-1, -2, -3, -4, -5}},
{LCW{}},
{{-10}, {-100, -200}},
{{-10, -200}, LCW{}, {8, 9}},
{LCW{8}, LCW{}, LCW{9}, {5, 6}}};
std::vector<std::unique_ptr<cudf::column>> out;
out.push_back(list0.release());
out.push_back(list1.release());
return out;
}
std::vector<std::unique_ptr<cudf::column>> generate_structs(bool include_validity)
{
// 1. String "names" column.
std::vector<std::string> names{
"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant", "Fred", "Todd", "Kevin"};
cudf::test::strings_column_wrapper names_column(names.begin(), names.end());
// 2. Numeric "ages" column.
std::vector<int> ages{5, 10, 15, 20, 25, 30, 100, 101, 102};
std::vector<bool> ages_validity = {1, 1, 1, 1, 0, 1, 0, 0, 1};
auto ages_column =
include_validity
? cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end(), ages_validity.begin())
: cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end());
// 3. Boolean "is_human" column.
std::vector<bool> is_human{true, true, false, false, false, false, true, true, true};
std::vector<bool> is_human_validity{1, 1, 1, 0, 1, 1, 1, 1, 0};
auto is_human_col =
include_validity
? cudf::test::fixed_width_column_wrapper<bool>(
is_human.begin(), is_human.end(), is_human_validity.begin())
: cudf::test::fixed_width_column_wrapper<bool>(is_human.begin(), is_human.end());
// Assemble struct column.
auto const struct_validity = std::vector<bool>{1, 1, 1, 1, 1, 0, 0, 1, 0};
auto struct_column =
include_validity
? cudf::test::structs_column_wrapper({names_column, ages_column, is_human_col},
struct_validity.begin())
: cudf::test::structs_column_wrapper({names_column, ages_column, is_human_col});
std::vector<std::unique_ptr<cudf::column>> out;
out.push_back(struct_column.release());
return out;
}
std::vector<std::unique_ptr<cudf::column>> generate_struct_of_list()
{
// 1. String "names" column.
std::vector<std::string> names{
"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant", "Fred", "Todd", "Kevin"};
cudf::test::strings_column_wrapper names_column(names.begin(), names.end());
// 2. Numeric "ages" column.
std::vector<int> ages{5, 10, 15, 20, 25, 30, 100, 101, 102};
std::vector<bool> ages_validity = {1, 1, 1, 1, 0, 1, 0, 0, 1};
auto ages_column =
cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end(), ages_validity.begin());
// 3. List column
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
std::vector<bool> list_validity{1, 1, 1, 1, 1, 0, 1, 0, 1};
cudf::test::lists_column_wrapper<cudf::string_view> list(
{{{"abc", "d", "edf"}, {"jjj"}},
{{"dgaer", "-7"}, LCW{}},
{LCW{}},
{{"qwerty"}, {"ral", "ort", "tal"}, {"five", "six"}},
{LCW{}, LCW{}, {"eight", "nine"}},
{LCW{}},
{{"fun"}, {"a", "bc", "def", "ghij", "klmno", "pqrstu"}},
{{"seven", "zz"}, LCW{}, {"xyzzy"}},
{LCW{"negative 3", " ", "cleveland"}}},
list_validity.begin());
// Assemble struct column.
auto const struct_validity = std::vector<bool>{1, 1, 1, 1, 1, 0, 0, 1, 0};
auto struct_column =
cudf::test::structs_column_wrapper({names_column, ages_column, list}, struct_validity.begin());
std::vector<std::unique_ptr<cudf::column>> out;
out.push_back(struct_column.release());
return out;
}
std::vector<std::unique_ptr<cudf::column>> generate_list_of_struct()
{
// 1. String "names" column.
std::vector<std::string> names{"Vimes",
"Carrot",
"Angua",
"Cheery",
"Detritus",
"Slant",
"Fred",
"Todd",
"Kevin",
"Abc",
"Def",
"Xyz",
"Five",
"Seventeen",
"Dol",
"Est"};
cudf::test::strings_column_wrapper names_column(names.begin(), names.end());
// 2. Numeric "ages" column.
std::vector<int> ages{5, 10, 15, 20, 25, 30, 100, 101, 102, -1, -2, -3, -4, -5, -6, -7};
std::vector<bool> ages_validity = {1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1};
auto ages_column =
cudf::test::fixed_width_column_wrapper<int>(ages.begin(), ages.end(), ages_validity.begin());
// Assemble struct column.
auto const struct_validity = std::vector<bool>{1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1};
auto struct_column =
cudf::test::structs_column_wrapper({names_column, ages_column}, struct_validity.begin());
// 3. List column
std::vector<bool> list_validity{1, 1, 1, 1, 1, 0, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<int> offsets{0, 1, 4, 5, 7, 7, 10, 13, 14, 16};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(list_validity.begin(), list_validity.begin() + 9);
auto list = cudf::make_lists_column(
9, offsets.release(), struct_column.release(), null_count, std::move(null_mask));
std::vector<std::unique_ptr<cudf::column>> out;
out.push_back(std::move(list));
return out;
}
TEST_F(PackUnpackTest, Lists)
{
// lists
{
auto cols = generate_lists(false);
std::vector<cudf::column_view> col_views;
std::transform(cols.begin(),
cols.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) {
return static_cast<cudf::column_view>(*col);
});
cudf::table_view src_table(col_views);
this->run_test(src_table);
}
// lists with validity
{
auto cols = generate_lists(true);
std::vector<cudf::column_view> col_views;
std::transform(cols.begin(),
cols.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) {
return static_cast<cudf::column_view>(*col);
});
cudf::table_view src_table(col_views);
this->run_test(src_table);
}
}
TEST_F(PackUnpackTest, Structs)
{
// structs
{
auto cols = generate_structs(false);
std::vector<cudf::column_view> col_views;
std::transform(cols.begin(),
cols.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) {
return static_cast<cudf::column_view>(*col);
});
cudf::table_view src_table(col_views);
this->run_test(src_table);
}
// structs with validity
{
auto cols = generate_structs(true);
std::vector<cudf::column_view> col_views;
std::transform(cols.begin(),
cols.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) {
return static_cast<cudf::column_view>(*col);
});
cudf::table_view src_table(col_views);
this->run_test(src_table);
}
}
TEST_F(PackUnpackTest, NestedTypes)
{
// build one big table containing, lists, structs, structs<list>, list<struct>
std::vector<cudf::column_view> col_views;
auto lists = generate_lists(true);
std::transform(
lists.begin(),
lists.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) { return static_cast<cudf::column_view>(*col); });
auto structs = generate_structs(true);
std::transform(
structs.begin(),
structs.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) { return static_cast<cudf::column_view>(*col); });
auto struct_of_list = generate_struct_of_list();
std::transform(
struct_of_list.begin(),
struct_of_list.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) { return static_cast<cudf::column_view>(*col); });
auto list_of_struct = generate_list_of_struct();
std::transform(
list_of_struct.begin(),
list_of_struct.end(),
std::back_inserter(col_views),
[](std::unique_ptr<cudf::column> const& col) { return static_cast<cudf::column_view>(*col); });
cudf::table_view src_table(col_views);
this->run_test(src_table);
}
TEST_F(PackUnpackTest, NestedEmpty)
{
// this produces an empty strings column with no children,
// nested inside a list
{
auto empty_string = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list = cudf::make_lists_column(
1, offsets.release(), std::move(empty_string), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
this->run_test(src_table);
}
// this produces an empty strings column with children that have no data,
// nested inside a list
{
cudf::test::strings_column_wrapper str{"abc"};
auto empty_string = cudf::empty_like(str);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list = cudf::make_lists_column(
1, offsets.release(), std::move(empty_string), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
this->run_test(src_table);
}
// this produces an empty lists column with children that have no data,
// nested inside a list
{
cudf::test::lists_column_wrapper<float> listw{{1.0f, 2.0f}, {3.0f, 4.0f}};
auto empty_list = cudf::empty_like(listw);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list =
cudf::make_lists_column(1, offsets.release(), std::move(empty_list), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
this->run_test(src_table);
}
// this produces an empty lists column with children that have no data,
// nested inside a list
{
cudf::test::lists_column_wrapper<float> listw{{1.0f, 2.0f}, {3.0f, 4.0f}};
auto empty_list = cudf::empty_like(listw);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list =
cudf::make_lists_column(1, offsets.release(), std::move(empty_list), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
this->run_test(src_table);
}
// this produces an empty struct column with children that have no data,
// nested inside a list
{
cudf::test::fixed_width_column_wrapper<int> ints{0, 1, 2, 3, 4};
cudf::test::fixed_width_column_wrapper<float> floats{4, 3, 2, 1, 0};
auto struct_column = cudf::test::structs_column_wrapper({ints, floats});
auto empty_struct = cudf::empty_like(struct_column);
auto offsets = cudf::test::fixed_width_column_wrapper<int>({0, 0});
auto list = cudf::make_lists_column(
1, offsets.release(), std::move(empty_struct), 0, rmm::device_buffer{});
cudf::table_view src_table({static_cast<cudf::column_view>(*list)});
this->run_test(src_table);
}
}
TEST_F(PackUnpackTest, NestedSliced)
{
// list
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
using LCW = cudf::test::lists_column_wrapper<int>;
cudf::test::lists_column_wrapper<int> col0{{{{1, 2, 3}, valids}, {4, 5}},
{{LCW{}, LCW{}, {7, 8}, LCW{}}, valids},
{{6, 12}},
{{{7, 8}, {{9, 10, 11}, valids}, LCW{}}, valids},
{{LCW{}, {-1, -2, -3, -4, -5}}, valids},
{LCW{}},
{{-10}, {-100, -200}}};
cudf::test::strings_column_wrapper col1{
"Vimes", "Carrot", "Angua", "Cheery", "Detritus", "Slant", "Fred"};
cudf::test::fixed_width_column_wrapper<float> col2{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
std::vector<std::unique_ptr<cudf::column>> children;
children.push_back(std::make_unique<cudf::column>(col2));
children.push_back(std::make_unique<cudf::column>(col0));
children.push_back(std::make_unique<cudf::column>(col1));
auto col3 = cudf::make_structs_column(
static_cast<cudf::column_view>(col0).size(), std::move(children), 0, rmm::device_buffer{});
cudf::table_view t({col0, col1, col2, *col3});
this->run_test(t);
}
// struct
{
cudf::test::fixed_width_column_wrapper<int> a{0, 1, 2, 3, 4, 5, 6, 7};
cudf::test::fixed_width_column_wrapper<float> b{{0, -1, -2, -3, -4, -5, -6, -7},
{1, 1, 1, 0, 0, 0, 0, 1}};
cudf::test::strings_column_wrapper c{{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx"},
{0, 0, 1, 1, 1, 1, 1, 1}};
std::vector<bool> list_validity{1, 0, 1, 0, 1, 0, 1, 1};
cudf::test::lists_column_wrapper<int16_t> d{
{{0, 1}, {2, 3, 4}, {5, 6}, {7}, {8, 9, 10}, {11, 12}, {}, {15, 16, 17}},
list_validity.begin()};
cudf::test::fixed_width_column_wrapper<int> _a{10, 20, 30, 40, 50, 60, 70, 80};
cudf::test::fixed_width_column_wrapper<float> _b{-10, -20, -30, -40, -50, -60, -70, -80};
cudf::test::strings_column_wrapper _c{"aa", "", "ccc", "dddd", "eeeee", "f", "gg", "hhh"};
cudf::test::structs_column_wrapper e({_a, _b, _c}, {1, 1, 1, 0, 1, 1, 1, 0});
cudf::test::structs_column_wrapper s({a, b, c, d, e}, {1, 1, 0, 1, 1, 1, 1, 1});
auto split = cudf::split(s, {2, 5});
this->run_test(cudf::table_view({split[0]}));
this->run_test(cudf::table_view({split[1]}));
this->run_test(cudf::table_view({split[2]}));
}
}
TEST_F(PackUnpackTest, EmptyTable)
{
// no columns
{
cudf::table_view t;
this->run_test(t);
}
// no rows
{
cudf::test::fixed_width_column_wrapper<int> a;
cudf::test::strings_column_wrapper b;
cudf::test::lists_column_wrapper<float> c;
cudf::table_view t({a, b, c});
this->run_test(t);
}
}
TEST_F(PackUnpackTest, SlicedEmpty)
{
// empty sliced column. this is specifically testing the corner case:
// - a sliced column of size 0
// - having children that are of size > 0
//
cudf::test::strings_column_wrapper a{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx"};
cudf::test::lists_column_wrapper<int> b{
{0, 1}, {2}, {3, 4, 5}, {6, 7}, {8, 9}, {10}, {11, 12}, {13, 14}};
cudf::test::fixed_width_column_wrapper<float> c{0, 1, 2, 3, 4, 5, 6, 7};
cudf::test::strings_column_wrapper _a{"abc", "def", "ghi", "jkl", "mno", "", "st", "uvwx"};
cudf::test::lists_column_wrapper<float> _b{
{0, 1}, {2}, {3, 4, 5}, {6, 7}, {8, 9}, {10}, {11, 12}, {13, 14}};
cudf::test::fixed_width_column_wrapper<float> _c{0, 1, 2, 3, 4, 5, 6, 7};
cudf::test::structs_column_wrapper d({_a, _b, _c});
cudf::table_view t({a, b, c, d});
auto sliced = cudf::split(t, {0});
this->run_test(sliced[0]);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/copying/gather_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
template <typename T>
class GatherTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(GatherTest, cudf::test::NumericTypes);
TYPED_TEST(GatherTest, IdentityTest)
{
constexpr cudf::size_type source_size{1000};
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<TypeParam> source_column(data, data + source_size);
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(data, data + source_size);
cudf::table_view source_table({source_column});
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(source_table.column(i), result->view().column(i));
}
CUDF_TEST_EXPECT_TABLES_EQUAL(source_table, result->view());
}
TYPED_TEST(GatherTest, ReverseIdentityTest)
{
constexpr cudf::size_type source_size{1000};
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto reversed_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return source_size - 1 - i; });
cudf::test::fixed_width_column_wrapper<TypeParam> source_column(data, data + source_size);
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(reversed_data,
reversed_data + source_size);
cudf::table_view source_table({source_column});
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
cudf::test::fixed_width_column_wrapper<TypeParam> expect_column(reversed_data,
reversed_data + source_size);
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect_column, result->view().column(i));
}
}
TYPED_TEST(GatherTest, EveryOtherNullOdds)
{
constexpr cudf::size_type source_size{1000};
// Every other element is valid
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
cudf::test::fixed_width_column_wrapper<TypeParam> source_column(
data, data + source_size, validity);
// Gather odd-valued indices
auto map_data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(map_data,
map_data + (source_size / 2));
cudf::table_view source_table({source_column});
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
auto expect_data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 0; });
auto expect_valid = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 0; });
cudf::test::fixed_width_column_wrapper<TypeParam> expect_column(
expect_data, expect_data + source_size / 2, expect_valid);
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect_column, result->view().column(i));
}
}
TYPED_TEST(GatherTest, EveryOtherNullEvens)
{
constexpr cudf::size_type source_size{1000};
// Every other element is valid
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
cudf::test::fixed_width_column_wrapper<TypeParam> source_column(
data, data + source_size, validity);
// Gather even-valued indices
auto map_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2 + 1; });
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(map_data,
map_data + (source_size / 2));
cudf::table_view source_table({source_column});
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
auto expect_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2 + 1; });
auto expect_valid = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 1; });
cudf::test::fixed_width_column_wrapper<TypeParam> expect_column(
expect_data, expect_data + source_size / 2, expect_valid);
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect_column, result->view().column(i));
}
}
TYPED_TEST(GatherTest, AllNull)
{
constexpr cudf::size_type source_size{1000};
// Every element is invalid
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 0; });
// Create a gather map that gathers to random locations
std::vector<cudf::size_type> host_map_data(source_size);
std::iota(host_map_data.begin(), host_map_data.end(), 0);
std::mt19937 g(0);
std::shuffle(host_map_data.begin(), host_map_data.end(), g);
cudf::test::fixed_width_column_wrapper<TypeParam> source_column{
data, data + source_size, validity};
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(host_map_data.begin(),
host_map_data.end());
cudf::table_view source_table({source_column});
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
// Check that the result is also all invalid
CUDF_TEST_EXPECT_TABLES_EQUAL(source_table, result->view());
}
TYPED_TEST(GatherTest, MultiColReverseIdentityTest)
{
constexpr cudf::size_type source_size{1000};
constexpr cudf::size_type n_cols = 3;
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto reversed_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return source_size - 1 - i; });
std::vector<cudf::test::fixed_width_column_wrapper<TypeParam>> source_column_wrappers;
std::vector<cudf::column_view> source_columns;
for (int i = 0; i < n_cols; ++i) {
source_column_wrappers.push_back(
cudf::test::fixed_width_column_wrapper<TypeParam>(data, data + source_size));
source_columns.push_back(source_column_wrappers[i]);
}
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(reversed_data,
reversed_data + source_size);
cudf::table_view source_table{source_columns};
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
cudf::test::fixed_width_column_wrapper<TypeParam> expect_column(reversed_data,
reversed_data + source_size);
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect_column, result->view().column(i));
}
}
TYPED_TEST(GatherTest, MultiColNulls)
{
constexpr cudf::size_type source_size{1000};
static_assert(0 == source_size % 2, "Size of source data must be a multiple of 2.");
constexpr cudf::size_type n_cols = 3;
auto data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
std::vector<cudf::test::fixed_width_column_wrapper<TypeParam>> source_column_wrappers;
std::vector<cudf::column_view> source_columns;
for (int i = 0; i < n_cols; ++i) {
source_column_wrappers.push_back(
cudf::test::fixed_width_column_wrapper<TypeParam>(data, data + source_size, validity));
source_columns.push_back(source_column_wrappers[i]);
}
auto reversed_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return source_size - 1 - i; });
cudf::test::fixed_width_column_wrapper<int32_t> gather_map(reversed_data,
reversed_data + source_size);
cudf::table_view source_table{source_columns};
std::unique_ptr<cudf::table> result = std::move(cudf::gather(source_table, gather_map));
// Expected data
auto expect_data =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return source_size - i - 1; });
auto expect_valid =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i + 1) % 2; });
cudf::test::fixed_width_column_wrapper<TypeParam> expect_column(
expect_data, expect_data + source_size, expect_valid);
for (auto i = 0; i < source_table.num_columns(); ++i) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect_column, result->view().column(i));
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/encode/encode_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/table/table.hpp>
#include <cudf/transform.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
template <typename T>
class EncodeNumericTests : public cudf::test::BaseFixture {};
using NumericTypesNotBool =
cudf::test::Concat<cudf::test::IntegralTypesNotBool, cudf::test::FloatingPointTypes>;
TYPED_TEST_SUITE(EncodeNumericTests, NumericTypesNotBool);
TYPED_TEST(EncodeNumericTests, SingleNullEncode)
{
cudf::test::fixed_width_column_wrapper<TypeParam> input({1}, {0});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect({0});
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TYPED_TEST(EncodeNumericTests, EmptyEncode)
{
cudf::test::fixed_width_column_wrapper<TypeParam> input({});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect({});
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TYPED_TEST(EncodeNumericTests, SimpleNoNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam> input{{1, 2, 3, 2, 3, 2, 1}};
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect{{0, 1, 2, 1, 2, 1, 0}};
cudf::test::fixed_width_column_wrapper<TypeParam> expect_keys{{1, 2, 3}};
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.first->view().column(0), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TYPED_TEST(EncodeNumericTests, SimpleWithNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam> input{{1, 2, 3, 2, 3, 2, 1},
{1, 1, 1, 0, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect{{0, 1, 2, 3, 2, 1, 0}};
cudf::test::fixed_width_column_wrapper<TypeParam> expect_keys{{1, 2, 3, 0}, {1, 1, 1, 0}};
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.first->view().column(0), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TYPED_TEST(EncodeNumericTests, UnorderedWithNulls)
{
cudf::test::fixed_width_column_wrapper<TypeParam> input{{2, 1, 5, 1, 1, 3, 2},
{0, 1, 1, 1, 0, 1, 1}};
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect{{4, 0, 3, 0, 4, 2, 1}};
cudf::test::fixed_width_column_wrapper<TypeParam> expect_keys{{1, 2, 3, 5, 0}, {1, 1, 1, 1, 0}};
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.first->view().column(0), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
struct EncodeStringTest : public cudf::test::BaseFixture {};
TEST_F(EncodeStringTest, SimpleNoNulls)
{
cudf::test::strings_column_wrapper input{"a", "b", "c", "d", "a"};
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect{0, 1, 2, 3, 0};
cudf::test::strings_column_wrapper expect_keys{"a", "b", "c", "d"};
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.first->view().column(0), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TEST_F(EncodeStringTest, SimpleWithNulls)
{
cudf::test::strings_column_wrapper input{{"a", "b", "c", "d", "a"}, {1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect{0, 3, 1, 2, 3};
cudf::test::strings_column_wrapper expect_keys{{"a", "c", "d", "0"}, {1, 1, 1, 0}};
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.first->view().column(0), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TEST_F(EncodeStringTest, UnorderedWithNulls)
{
cudf::test::strings_column_wrapper input{{"ef", "a", "c", "d", "ef", "a"}, {1, 0, 1, 1, 0, 1}};
cudf::test::fixed_width_column_wrapper<cudf::size_type> expect{3, 4, 1, 2, 4, 0};
cudf::test::strings_column_wrapper expect_keys{{"a", "c", "d", "ef", "0"}, {1, 1, 1, 1, 0}};
auto const result = cudf::encode(cudf::table_view({input}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.first->view().column(0), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
TYPED_TEST(EncodeNumericTests, TableEncodeWithNulls)
{
auto col_1 = cudf::test::fixed_width_column_wrapper<TypeParam>({1, 0, 2, 0, 1}, {1, 0, 1, 0, 1});
auto col_2 = cudf::test::fixed_width_column_wrapper<TypeParam>({1, 3, 2, 0, 1}, {1, 1, 1, 0, 1});
auto input = cudf::table_view({col_1, col_2});
auto expect_keys_col1 =
cudf::test::fixed_width_column_wrapper<TypeParam>({1, 2, 0, 0}, {1, 1, 0, 0});
auto expect_keys_col2 =
cudf::test::fixed_width_column_wrapper<TypeParam>({1, 2, 3, 0}, {1, 1, 1, 0});
auto expect_keys = cudf::table_view({expect_keys_col1, expect_keys_col2});
auto expect = cudf::test::fixed_width_column_wrapper<cudf::size_type>({0, 2, 1, 3, 0});
auto const result = cudf::encode(input);
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(result.first->view(), expect_keys);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.second->view(), expect);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/search/search_list_test.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/search.hpp>
#include <cudf/table/table_view.hpp>
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
using bools_col = cudf::test::fixed_width_column_wrapper<bool>;
using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
using strings_col = cudf::test::strings_column_wrapper;
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::FIRST_ERROR};
constexpr int32_t null{0}; // Mark for null child elements at the current level
constexpr int32_t XXX{0}; // Mark for null elements at all levels
using TestTypes = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
template <typename T>
struct TypedListsContainsTestScalarNeedle : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedListsContainsTestScalarNeedle, TestTypes);
TYPED_TEST(TypedListsContainsTestScalarNeedle, EmptyInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack = lists_col{};
auto const needle1 = [] {
auto child = tdata_col{};
return cudf::list_scalar(child);
}();
auto const needle2 = [] {
auto child = tdata_col{1, 2, 3};
return cudf::list_scalar(child);
}();
EXPECT_FALSE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
TYPED_TEST(TypedListsContainsTestScalarNeedle, TrivialInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack = lists_col{{1, 2}, {1}, {}, {1, 3}, {4}, {1, 1}};
auto const needle1 = [] {
auto child = tdata_col{1, 2};
return cudf::list_scalar(child);
}();
auto const needle2 = [] {
auto child = tdata_col{2, 1};
return cudf::list_scalar(child);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
// Lists are order-sensitive.
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
TYPED_TEST(TypedListsContainsTestScalarNeedle, SlicedColumnInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack_original = lists_col{{0, 0}, {0}, {1, 2}, {1}, {}, {1, 3}, {0, 0}};
auto const haystack = cudf::slice(haystack_original, {2, 6})[0];
auto const needle1 = [] {
auto child = tdata_col{1, 2};
return cudf::list_scalar(child);
}();
auto const needle2 = [] {
auto child = tdata_col{};
return cudf::list_scalar(child);
}();
auto const needle3 = [] {
auto child = tdata_col{0, 0};
return cudf::list_scalar(child);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_TRUE(cudf::contains(haystack, needle2));
EXPECT_FALSE(cudf::contains(haystack, needle3));
}
TYPED_TEST(TypedListsContainsTestScalarNeedle, SimpleInputWithNulls)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// Test with invalid scalar.
{
auto const haystack = lists_col{{1, 2}, {1}, {}, {1, 3}, {4}, {}, {1, 1}};
auto const needle = [] {
auto child = tdata_col{};
return cudf::list_scalar(child, false);
}();
EXPECT_FALSE(cudf::contains(haystack, needle));
}
// Test with nulls at the top level.
{
auto const haystack =
lists_col{{{1, 2}, {1}, {} /*NULL*/, {1, 3}, {4}, {} /*NULL*/, {1, 1}}, nulls_at({2, 5})};
auto const needle1 = [] {
auto child = tdata_col{1, 2};
return cudf::list_scalar(child);
}();
auto const needle2 = [] {
auto child = tdata_col{};
return cudf::list_scalar(child, false);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_TRUE(cudf::contains(haystack, needle2));
}
// Test with nulls at the children level.
{
auto const haystack = lists_col{{lists_col{1, 2},
lists_col{1},
lists_col{{1, null}, null_at(1)},
lists_col{} /*NULL*/,
lists_col{1, 3},
lists_col{1, 4},
lists_col{4},
lists_col{} /*NULL*/,
lists_col{1, 1}},
nulls_at({3, 7})};
auto const needle1 = [] {
auto child = tdata_col{{1, null}, null_at(1)};
return cudf::list_scalar(child);
}();
auto const needle2 = [] {
auto child = tdata_col{{null, 1}, null_at(0)};
return cudf::list_scalar(child);
}();
auto const needle3 = [] {
auto child = tdata_col{1, 0};
return cudf::list_scalar(child);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
EXPECT_FALSE(cudf::contains(haystack, needle3));
}
}
TYPED_TEST(TypedListsContainsTestScalarNeedle, SlicedInputHavingNulls)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack_original = lists_col{{{0, 0},
{0} /*NULL*/,
lists_col{{1, null}, null_at(1)},
{1},
{} /*NULL*/,
{1, 3},
{4},
{} /*NULL*/,
{1, 1},
{0}},
nulls_at({1, 4, 7})};
auto const haystack = cudf::slice(haystack_original, {2, 9})[0];
auto const needle1 = [] {
auto child = tdata_col{{1, null}, null_at(1)};
return cudf::list_scalar(child);
}();
auto const needle2 = [] {
auto child = tdata_col{};
return cudf::list_scalar(child);
}();
auto const needle3 = [] {
auto child = tdata_col{0, 0};
return cudf::list_scalar(child);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
EXPECT_FALSE(cudf::contains(haystack, needle3));
}
template <typename T>
struct TypedListContainsTestColumnNeedles : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedListContainsTestColumnNeedles, TestTypes);
TYPED_TEST(TypedListContainsTestColumnNeedles, EmptyInput)
{
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack = lists_col{};
auto const needles = lists_col{};
auto const expected = bools_col{};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedListContainsTestColumnNeedles, TrivialInput)
{
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack = lists_col{{0, 1}, {2}, {3, 4, 5}, {2, 3, 4}, {}, {0, 2, 0}};
auto const needles = lists_col{{0, 1}, {1}, {3, 5, 4}, {}};
auto const expected = bools_col{1, 0, 0, 1};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedListContainsTestColumnNeedles, SlicedInputNoNulls)
{
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack_original =
lists_col{{0, 0}, {0}, {0, 1}, {2}, {3, 4, 5}, {2, 3, 4}, {}, {0, 2, 0}};
auto const haystack = cudf::slice(haystack_original, {2, 8})[0];
auto const needles_original = lists_col{{0}, {0, 1}, {0, 0}, {3, 5, 4}, {}, {0, 0}, {} /*0*/};
auto const needles = cudf::slice(needles_original, {1, 5})[0];
auto const expected = bools_col{1, 0, 0, 1};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedListContainsTestColumnNeedles, SlicedInputHavingNulls)
{
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack_original = lists_col{{{0, 0},
{0} /*NULL*/,
lists_col{{1, null}, null_at(1)},
{1},
{} /*NULL*/,
{1, 3},
{4},
{} /*NULL*/,
{1, 1},
{0}},
nulls_at({1, 4, 7})};
auto const haystack = cudf::slice(haystack_original, {2, 9})[0];
auto const needles_original = lists_col{{{0, 0},
{0} /*NULL*/,
lists_col{{1, null}, null_at(1)},
{1},
{} /*NULL*/,
{1, 3, 1},
{4},
{} /*NULL*/,
{},
{0}},
nulls_at({1, 4, 7})};
auto const needles = cudf::slice(needles_original, {2, 9})[0];
auto const expected = bools_col{{1, 1, null, 0, 1, null, 0}, nulls_at({2, 5})};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedListContainsTestColumnNeedles, ListsOfStructs)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack = [] {
auto offsets = int32s_col{0, 2, 3, 5, 8, 10};
// clang-format off
auto data1 = tdata_col{1, 2, //
1, //
0, 1, //
1, 3, 4, //
0, 0 //
};
auto data2 = tdata_col{1, 3, //
2, //
1, 1, //
0, 2, 0, //
1, 2 //
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(5, offsets.release(), child.release(), 0, {});
}();
auto const needles = [] {
auto offsets = int32s_col{0, 3, 4, 6, 9, 11};
// clang-format off
auto data1 = tdata_col{1, 2, 1, //
1, //
0, 1, //
1, 3, 4, //
0, 0 //
};
auto data2 = tdata_col{1, 3, 0, //
2, //
1, 1, //
0, 2, 2, //
1, 1 //
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(5, offsets.release(), child.release(), 0, {});
}();
auto const expected = bools_col{0, 1, 1, 0, 0};
auto const result = cudf::contains(*haystack, *needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
auto search_bounds(cudf::table_view const& t,
cudf::table_view const& values,
std::vector<cudf::order> const& column_order,
std::vector<cudf::null_order> const& null_precedence = {
cudf::null_order::BEFORE})
{
auto result_lower_bound = cudf::lower_bound(t, values, column_order, null_precedence);
auto result_upper_bound = cudf::upper_bound(t, values, column_order, null_precedence);
return std::pair(std::move(result_lower_bound), std::move(result_upper_bound));
}
struct ListBinarySearch : public cudf::test::BaseFixture {};
TEST_F(ListBinarySearch, ListWithNulls)
{
{
using lcw = cudf::test::lists_column_wrapper<double>;
auto const haystack = lcw{
lcw{-3.45967821e+12}, // 0
lcw{-3.6912186e-32}, // 1
lcw{9.721175}, // 2
};
auto const needles = lcw{
lcw{{null, 4.22671e+32}, null_at(0)},
};
auto const expected = int32s_col{0};
auto const [result_lower_bound, result_upper_bound] =
search_bounds(cudf::table_view{{haystack}},
cudf::table_view{{needles}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result_lower_bound, verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result_upper_bound, verbosity);
}
{
using lcw = cudf::test::lists_column_wrapper<int32_t, int32_t>;
auto const col1 = lcw{
lcw{{null}, null_at(0)}, // 0
lcw{-80}, // 1
lcw{-17}, // 2
};
auto const col2 = lcw{
lcw{27}, // 0
lcw{{null}, null_at(0)}, // 1
lcw{}, // 2
};
auto const val1 = lcw{
lcw{87},
};
auto const val2 = lcw{
lcw{},
};
cudf::table_view input{{col1, col2}};
cudf::table_view values{{val1, val2}};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_order_flags{cudf::null_order::BEFORE,
cudf::null_order::BEFORE};
auto const expected = int32s_col{3};
auto const [result_lower_bound, result_upper_bound] = search_bounds(
cudf::table_view{{input}}, cudf::table_view{{values}}, column_order, null_order_flags);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result_lower_bound, verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result_upper_bound, verbosity);
}
}
TEST_F(ListBinarySearch, ListsOfStructs)
{
// Haystack must be pre-sorted.
auto const haystack = [] {
auto offsets = int32s_col{0, 2, 3, 4, 5, 7, 10, 13, 16, 18};
// clang-format off
auto data1 = int32s_col{1, 2,
3,
3,
3,
4, 5,
4, 5, 4,
4, 5, 4,
4, 5, 4,
4, 6
};
auto data2 = int32s_col{1, 2,
3,
3,
3,
4, 5,
4, 5, 4,
4, 5, 4,
4, 5, 4,
5, 1
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(9, offsets.release(), child.release(), 0, {});
}();
auto const needles = [] {
auto offsets = int32s_col{0, 3, 4, 6, 8, 10, 13, 14, 15};
// clang-format off
auto data1 = int32s_col{1, 2, 1,
3,
4, 1,
0, 1,
1, 0,
1, 3, 5,
3,
3
};
auto data2 = int32s_col{1, 3, 0,
3,
1, 2,
1, 1,
1, 2,
0, 2, 2,
3,
3
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(8, offsets.release(), child.release(), 0, {});
}();
auto const [result_lower_bound, result_upper_bound] = search_bounds(
cudf::table_view{{*haystack}}, cudf::table_view{{*needles}}, {cudf::order::ASCENDING});
auto const expected_lower_bound = int32s_col{1, 1, 4, 0, 0, 0, 1, 1};
auto const expected_upper_bound = int32s_col{1, 4, 4, 0, 0, 0, 4, 4};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, *result_lower_bound, verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, *result_upper_bound, verbosity);
}
TEST_F(ListBinarySearch, ListsOfEqualStructsInTwoTables)
{
// Haystack must be pre-sorted.
auto const haystack = [] {
auto offsets = int32s_col{0, 2, 3, 4, 5, 7, 10, 13, 16, 18};
// clang-format off
auto data1 = int32s_col{1, 2,
3,
3,
3,
4, 5,
4, 5, 4,
4, 5, 4,
4, 5, 4,
4, 6
};
auto data2 = int32s_col{1, 2,
3,
3,
3,
4, 5,
4, 5, 4,
4, 5, 4,
4, 5, 4,
5, 1
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(9, offsets.release(), child.release(), 0, {});
}();
auto const needles = [] {
auto offsets = int32s_col{0, 2, 3, 4, 5, 7, 10, 13, 15, 17};
// clang-format off
auto data1 = int32s_col{1, 2,
3,
4,
5,
4, 5,
5, 5, 4,
4, 5, 4,
4, 4,
4, 6
};
auto data2 = int32s_col{1, 2,
3,
4,
5,
4, 5,
5, 5, 4,
4, 5, 4,
4, 4,
5, 1
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(9, offsets.release(), child.release(), 0, {});
}();
// In this search, the two table have many equal structs.
// This help to verify the internal implementation of two-table lex comparator in which the
// structs column of two input tables are concatenated, ranked, then split.
auto const [result_lower_bound, result_upper_bound] = search_bounds(
cudf::table_view{{*haystack}}, cudf::table_view{{*needles}}, {cudf::order::ASCENDING});
auto const expected_lower_bound = int32s_col{0, 1, 4, 9, 4, 9, 5, 4, 8};
auto const expected_upper_bound = int32s_col{1, 4, 4, 9, 5, 9, 8, 4, 9};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, *result_lower_bound, verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, *result_upper_bound, verbosity);
}
TEST_F(ListBinarySearch, CrazyListTest)
{
// Data type: List<List<Struct<Struct<List<Struct<int, int>>>>>>
// Haystack must be pre-sorted.
auto const haystack = [] {
auto lists_of_structs_of_ints = [] {
auto offsets = int32s_col{0, 2, 3, 4, 5, 7, 10, 13, 16, 18};
// clang-format off
auto data1 = int32s_col{1, 2,
3,
3,
3,
4, 5,
4, 5, 4,
4, 5, 4,
4, 5, 4,
4, 6
};
auto data2 = int32s_col{1, 2,
3,
3,
3,
4, 5,
4, 5, 4,
4, 5, 4,
4, 5, 4,
5, 1
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(9, offsets.release(), child.release(), 0, {});
}();
auto struct_nested0 = [&] {
std::vector<std::unique_ptr<cudf::column>> child_columns;
child_columns.emplace_back(std::move(lists_of_structs_of_ints));
return cudf::make_structs_column(9, std::move(child_columns), 0, {});
}();
auto struct_nested1 = [&] {
std::vector<std::unique_ptr<cudf::column>> child_columns;
child_columns.emplace_back(std::move(struct_nested0));
return cudf::make_structs_column(9, std::move(child_columns), 0, {});
}();
auto list_nested0 = [&] {
auto offsets = int32s_col{0, 3, 3, 4, 6, 9};
return cudf::make_lists_column(5, offsets.release(), std::move(struct_nested1), 0, {});
}();
auto offsets = int32s_col{0, 0, 2, 4, 5, 5};
return cudf::make_lists_column(5, offsets.release(), std::move(list_nested0), 0, {});
}();
auto const needles = [] {
auto lists_of_structs_of_ints = [] {
auto offsets = int32s_col{0, 2, 3, 4, 5, 7, 10, 13, 15, 17};
// clang-format off
auto data1 = int32s_col{1, 2,
3,
4,
5,
4, 5,
5, 5, 4,
4, 5, 4,
4, 4,
4, 6
};
auto data2 = int32s_col{1, 2,
3,
4,
5,
4, 5,
5, 5, 4,
4, 5, 4,
4, 4,
5, 1
};
// clang-format on
auto child = structs_col{{data1, data2}};
return cudf::make_lists_column(9, offsets.release(), child.release(), 0, {});
}();
auto struct_nested0 = [&] {
std::vector<std::unique_ptr<cudf::column>> child_columns;
child_columns.emplace_back(std::move(lists_of_structs_of_ints));
return cudf::make_structs_column(9, std::move(child_columns), 0, {});
}();
auto struct_nested1 = [&] {
std::vector<std::unique_ptr<cudf::column>> child_columns;
child_columns.emplace_back(std::move(struct_nested0));
return cudf::make_structs_column(9, std::move(child_columns), 0, {});
}();
auto list_nested0 = [&] {
auto offsets = int32s_col{0, 3, 3, 4, 6, 9};
return cudf::make_lists_column(5, offsets.release(), std::move(struct_nested1), 0, {});
}();
auto offsets = int32s_col{0, 2, 2, 4, 4, 5};
return cudf::make_lists_column(5, offsets.release(), std::move(list_nested0), 0, {});
}();
// In this search, the two table have many equal structs.
// This help to verify the internal implementation of two-table lex comparator in which the
// structs column of two input tables are concatenated, ranked, then split.
auto const [result_lower_bound, result_upper_bound] = search_bounds(
cudf::table_view{{*haystack}}, cudf::table_view{{*needles}}, {cudf::order::ASCENDING});
auto const expected_lower_bound = int32s_col{2, 0, 5, 0, 5};
auto const expected_upper_bound = int32s_col{2, 1, 5, 1, 5};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, *result_lower_bound, verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, *result_upper_bound, verbosity);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/search/search_struct_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/search.hpp>
#include <cudf/table/table_view.hpp>
using namespace cudf::test::iterators;
using bools_col = cudf::test::fixed_width_column_wrapper<bool>;
using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
using strings_col = cudf::test::strings_column_wrapper;
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::FIRST_ERROR};
constexpr int32_t null{0}; // Mark for null child elements at the current level
constexpr int32_t XXX{0}; // Mark for null elements at all levels
constexpr int32_t dont_care{0}; // Mark for elements that will be sliced off
using TestTypes = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
template <typename T>
struct TypedStructSearchTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedStructSearchTest, TestTypes);
namespace {
auto search_bounds(cudf::column_view const& t_col_view,
std::unique_ptr<cudf::column> const& values_col,
std::vector<cudf::order> const& column_orders = {cudf::order::ASCENDING},
std::vector<cudf::null_order> const& null_precedence = {
cudf::null_order::BEFORE})
{
auto const t = cudf::table_view{std::vector<cudf::column_view>{t_col_view}};
auto const values = cudf::table_view{std::vector<cudf::column_view>{values_col->view()}};
auto result_lower_bound = cudf::lower_bound(t, values, column_orders, null_precedence);
auto result_upper_bound = cudf::upper_bound(t, values, column_orders, null_precedence);
return std::pair(std::move(result_lower_bound), std::move(result_upper_bound));
}
auto search_bounds(std::unique_ptr<cudf::column> const& t_col,
std::unique_ptr<cudf::column> const& values_col,
std::vector<cudf::order> const& column_orders = {cudf::order::ASCENDING},
std::vector<cudf::null_order> const& null_precedence = {
cudf::null_order::BEFORE})
{
return search_bounds(t_col->view(), values_col, column_orders, null_precedence);
}
template <typename... Args>
auto make_struct_scalar(Args&&... args)
{
return cudf::struct_scalar(std::vector<cudf::column_view>{std::forward<Args>(args)...});
}
} // namespace
// Test case when all input columns are empty
TYPED_TEST(TypedStructSearchTest, EmptyInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_t = tdata_col{};
auto const structs_t = structs_col{{child_col_t}, std::vector<bool>{}}.release();
auto child_col_values = tdata_col{};
auto const structs_values = structs_col{{child_col_values}, std::vector<bool>{}}.release();
auto const results = search_bounds(structs_t, structs_values);
auto const expected = int32s_col{};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, results.second->view(), verbosity);
}
TYPED_TEST(TypedStructSearchTest, TrivialInputTests)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_t = tdata_col{10, 20, 30, 40, 50};
auto const structs_t = structs_col{{child_col_t}}.release();
auto child_col_values1 = tdata_col{0, 1, 2, 3, 4};
auto const structs_values1 = structs_col{{child_col_values1}}.release();
auto child_col_values2 = tdata_col{100, 101, 102, 103, 104};
auto const structs_values2 = structs_col{{child_col_values2}}.release();
auto const results1 = search_bounds(structs_t, structs_values1);
auto const expected1 = int32s_col{0, 0, 0, 0, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, results1.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, results1.second->view(), verbosity);
auto const results2 = search_bounds(structs_t, structs_values2);
auto const expected2 = int32s_col{5, 5, 5, 5, 5};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, results2.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, results2.second->view(), verbosity);
}
TYPED_TEST(TypedStructSearchTest, SlicedColumnInputTests)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_values = tdata_col{0, 1, 2, 3, 4, 5};
auto const structs_values = structs_col{child_col_values}.release();
auto child_col_t = tdata_col{0, 1, 2, 2, 2, 2, 3, 3, 4, 4};
auto const structs_t_original = structs_col{child_col_t}.release();
auto structs_t = cudf::slice(structs_t_original->view(), {0, 10})[0]; // the entire column t
auto results = search_bounds(structs_t, structs_values);
auto expected_lower_bound = int32s_col{0, 1, 2, 6, 8, 10};
auto expected_upper_bound = int32s_col{1, 2, 6, 8, 10, 10};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
structs_t = cudf::slice(structs_t_original->view(), {0, 5})[0];
results = search_bounds(structs_t, structs_values);
expected_lower_bound = int32s_col{0, 1, 2, 5, 5, 5};
expected_upper_bound = int32s_col{1, 2, 5, 5, 5, 5};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
structs_t = cudf::slice(structs_t_original->view(), {5, 10})[0];
results = search_bounds(structs_t, structs_values);
expected_lower_bound = int32s_col{0, 0, 0, 1, 3, 5};
expected_upper_bound = int32s_col{0, 0, 1, 3, 5, 5};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
}
TYPED_TEST(TypedStructSearchTest, SimpleInputWithNullsTests)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_values = tdata_col{{1, null, 70, XXX, 2, 100}, null_at(1)};
auto const structs_values = structs_col{{child_col_values}, null_at(3)}.release();
// Sorted asc, nulls first
auto child_col_t = tdata_col{{XXX, null, 0, 1, 2, 2, 2, 2, 3, 3, 4}, null_at(1)};
auto structs_t = structs_col{{child_col_t}, null_at(0)}.release();
auto results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::BEFORE});
auto expected_lower_bound = int32s_col{3, 1, 11, 0, 4, 11};
auto expected_upper_bound = int32s_col{4, 2, 11, 1, 8, 11};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted asc, nulls last
child_col_t = tdata_col{{0, 1, 2, 2, 2, 2, 3, 3, 4, null, XXX}, null_at(9)};
structs_t = structs_col{{child_col_t}, null_at(10)}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::AFTER});
expected_lower_bound = int32s_col{1, 9, 9, 10, 2, 9};
expected_upper_bound = int32s_col{2, 10, 9, 11, 6, 9};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted dsc, nulls first
child_col_t = tdata_col{{XXX, null, 4, 3, 3, 2, 2, 2, 2, 1, 0}, null_at(1)};
structs_t = structs_col{{child_col_t}, null_at(0)}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::DESCENDING}, {cudf::null_order::BEFORE});
expected_lower_bound = int32s_col{9, 11, 0, 11, 5, 0};
expected_upper_bound = int32s_col{10, 11, 0, 11, 9, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted dsc, nulls last
child_col_t = tdata_col{{4, 3, 3, 2, 2, 2, 2, 1, 0, null, XXX}, null_at(9)};
structs_t = structs_col{{child_col_t}, null_at(10)}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::DESCENDING}, {cudf::null_order::AFTER});
expected_lower_bound = int32s_col{7, 0, 0, 0, 3, 0};
expected_upper_bound = int32s_col{8, 0, 0, 0, 7, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
}
TYPED_TEST(TypedStructSearchTest, SimpleInputWithValuesHavingNullsTests)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_values = tdata_col{{1, null, 70, XXX, 2, 100}, null_at(1)};
auto const structs_values = structs_col{{child_col_values}, null_at(3)}.release();
// Sorted asc, search nulls first
auto child_col_t = tdata_col{0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 4};
auto structs_t = structs_col{{child_col_t}}.release();
auto results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::BEFORE});
auto expected_lower_bound = int32s_col{3, 0, 11, 0, 4, 11};
auto expected_upper_bound = int32s_col{4, 0, 11, 0, 8, 11};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted asc, search nulls last
results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::AFTER});
expected_lower_bound = int32s_col{3, 11, 11, 11, 4, 11};
expected_upper_bound = int32s_col{4, 11, 11, 11, 8, 11};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted dsc, search nulls first
child_col_t = tdata_col{4, 3, 3, 2, 2, 2, 2, 1, 0, 0, 0};
structs_t = structs_col{{child_col_t}}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::DESCENDING}, {cudf::null_order::BEFORE});
expected_lower_bound = int32s_col{7, 11, 0, 11, 3, 0};
expected_upper_bound = int32s_col{8, 11, 0, 11, 7, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted dsc, search nulls last
results =
search_bounds(structs_t, structs_values, {cudf::order::DESCENDING}, {cudf::null_order::AFTER});
expected_lower_bound = int32s_col{7, 0, 0, 0, 3, 0};
expected_upper_bound = int32s_col{8, 0, 0, 0, 7, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
}
TYPED_TEST(TypedStructSearchTest, SimpleInputWithTargetHavingNullsTests)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col_values = tdata_col{1, 0, 70, 0, 2, 100};
auto const structs_values = structs_col{{child_col_values}}.release();
// Sorted asc, nulls first
auto child_col_t = tdata_col{{XXX, null, 0, 1, 2, 2, 2, 2, 3, 3, 4}, null_at(1)};
auto structs_t = structs_col{{child_col_t}, null_at(0)}.release();
auto results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::BEFORE});
auto expected_lower_bound = int32s_col{3, 2, 11, 2, 4, 11};
auto expected_upper_bound = int32s_col{4, 3, 11, 3, 8, 11};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted asc, nulls last
child_col_t = tdata_col{{0, 1, 2, 2, 2, 2, 3, 3, 4, null, XXX}, null_at(9)};
structs_t = structs_col{{child_col_t}, null_at(10)}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::AFTER});
expected_lower_bound = int32s_col{1, 0, 9, 0, 2, 9};
expected_upper_bound = int32s_col{2, 1, 9, 1, 6, 9};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted dsc, nulls first
child_col_t = tdata_col{{XXX, null, 4, 3, 3, 2, 2, 2, 2, 1, 0}, null_at(1)};
structs_t = structs_col{{child_col_t}, null_at(0)}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::DESCENDING}, {cudf::null_order::BEFORE});
expected_lower_bound = int32s_col{9, 10, 0, 10, 5, 0};
expected_upper_bound = int32s_col{10, 11, 0, 11, 9, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
// Sorted dsc, nulls last
child_col_t = tdata_col{{4, 3, 3, 2, 2, 2, 2, 1, 0, null, XXX}, null_at(9)};
structs_t = structs_col{{child_col_t}, null_at(10)}.release();
results =
search_bounds(structs_t, structs_values, {cudf::order::DESCENDING}, {cudf::null_order::AFTER});
expected_lower_bound = int32s_col{7, 8, 0, 8, 3, 0};
expected_upper_bound = int32s_col{8, 11, 0, 11, 7, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
}
TYPED_TEST(TypedStructSearchTest, OneColumnHasNullMaskButNoNullElementTest)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto child_col1 = tdata_col{1, 20, 30};
auto const structs_col1 = structs_col{{child_col1}}.release();
auto child_col2 = tdata_col{0, 10, 10};
auto const structs_col2 = structs_col{child_col2}.release();
// structs_col3 (and its child column) will have a null mask but no null element
auto child_col3 = tdata_col{{0, 10, 10}, no_nulls()};
auto const structs_col3 = structs_col{{child_col3}, no_nulls()}.release();
// Search struct elements of structs_col2 and structs_col3 in the column structs_col1
{
auto const results1 = search_bounds(structs_col1, structs_col2);
auto const results2 = search_bounds(structs_col1, structs_col3);
auto const expected_lower_bound = int32s_col{0, 1, 1};
auto const expected_upper_bound = int32s_col{0, 1, 1};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results1.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results2.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results1.second->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results2.second->view(), verbosity);
}
// Search struct elements of structs_col1 in the columns structs_col2 and structs_col3
{
auto const results1 = search_bounds(structs_col2, structs_col1);
auto const results2 = search_bounds(structs_col3, structs_col1);
auto const expected_lower_bound = int32s_col{1, 3, 3};
auto const expected_upper_bound = int32s_col{1, 3, 3};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results1.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results2.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results1.second->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results2.second->view(), verbosity);
}
}
TYPED_TEST(TypedStructSearchTest, ComplexStructTest)
{
// Testing on struct<string, numeric, bool>.
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto names_column_t =
strings_col{"Cherry", "Kiwi", "Lemon", "Newton", "Tomato", /*NULL*/ "Washington"};
auto ages_column_t = tdata_col{{5, 10, 15, 20, null, XXX}, null_at(4)};
auto is_human_col_t = bools_col{false, false, false, false, false, /*NULL*/ true};
auto const structs_t =
structs_col{{names_column_t, ages_column_t, is_human_col_t}, null_at(5)}.release();
auto names_column_values = strings_col{"Bagel", "Tomato", "Lemonade", /*NULL*/ "Donut", "Butter"};
auto ages_column_values = tdata_col{{10, null, 15, XXX, 17}, null_at(1)};
auto is_human_col_values = bools_col{false, false, true, /*NULL*/ true, true};
auto const structs_values =
structs_col{{names_column_values, ages_column_values, is_human_col_values}, null_at(3)}
.release();
auto const results =
search_bounds(structs_t, structs_values, {cudf::order::ASCENDING}, {cudf::null_order::AFTER});
auto const expected_lower_bound = int32s_col{0, 4, 3, 5, 0};
auto const expected_upper_bound = int32s_col{0, 5, 3, 6, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lower_bound, results.first->view(), verbosity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_upper_bound, results.second->view(), verbosity);
}
template <typename T>
struct TypedStructContainsTestScalarNeedle : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedStructContainsTestScalarNeedle, TestTypes);
TYPED_TEST(TypedStructContainsTestScalarNeedle, EmptyInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack = [] {
auto child = tdata_col{};
return structs_col{{child}};
}();
auto const needle1 = [] {
auto child = tdata_col{1};
return make_struct_scalar(child);
}();
auto const needle2 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{1};
return make_struct_scalar(child1, child2);
}();
EXPECT_FALSE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
TYPED_TEST(TypedStructContainsTestScalarNeedle, TrivialInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack = [] {
auto child1 = tdata_col{1, 2, 3};
auto child2 = tdata_col{4, 5, 6};
auto child3 = strings_col{"x", "y", "z"};
return structs_col{{child1, child2, child3}};
}();
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"x"};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"a"};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
TYPED_TEST(TypedStructContainsTestScalarNeedle, SlicedColumnInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack_original = [] {
auto child1 = tdata_col{dont_care, dont_care, 1, 2, 3, dont_care};
auto child2 = tdata_col{dont_care, dont_care, 4, 5, 6, dont_care};
auto child3 = strings_col{"dont_care", "dont_care", "x", "y", "z", "dont_care"};
return structs_col{{child1, child2, child3}};
}();
auto const haystack = cudf::slice(haystack_original, {2, 5})[0];
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"x"};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{dont_care};
auto child2 = tdata_col{dont_care};
auto child3 = strings_col{"dont_care"};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
TYPED_TEST(TypedStructContainsTestScalarNeedle, SimpleInputWithNulls)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
constexpr int32_t null{0};
// Test with nulls at the top level.
{
auto const col1 = [] {
auto child1 = tdata_col{1, null, 3};
auto child2 = tdata_col{4, null, 6};
auto child3 = strings_col{"x", "" /*NULL*/, "z"};
return structs_col{{child1, child2, child3}, null_at(1)};
}();
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"x"};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"a"};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle3 = [] {
auto child1 = tdata_col{{null}, null_at(0)};
auto child2 = tdata_col{{null}, null_at(0)};
auto child3 = strings_col{{""}, null_at(0)};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(col1, needle1));
EXPECT_FALSE(cudf::contains(col1, needle2));
EXPECT_FALSE(cudf::contains(col1, needle3));
}
// Test with nulls at the children level.
{
auto const col = [] {
auto child1 = tdata_col{{1, null, 3}, null_at(1)};
auto child2 = tdata_col{{4, null, 6}, null_at(1)};
auto child3 = strings_col{{"" /*NULL*/, "" /*NULL*/, "z"}, nulls_at({0, 1})};
return structs_col{{child1, child2, child3}};
}();
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{{"" /*NULL*/}, null_at(0)};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{""};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle3 = [] {
auto child1 = tdata_col{{null}, null_at(0)};
auto child2 = tdata_col{{null}, null_at(0)};
auto child3 = strings_col{{""}, null_at(0)};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(col, needle1));
EXPECT_FALSE(cudf::contains(col, needle2));
EXPECT_TRUE(cudf::contains(col, needle3));
}
// Test with nulls in the input scalar.
{
auto const haystack = [] {
auto child1 = tdata_col{1, 2, 3};
auto child2 = tdata_col{4, 5, 6};
auto child3 = strings_col{"x", "y", "z"};
return structs_col{{child1, child2, child3}};
}();
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"x"};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{{"" /*NULL*/}, null_at(0)};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
}
TYPED_TEST(TypedStructContainsTestScalarNeedle, SlicedInputWithNulls)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
// Test with nulls at the top level.
{
auto const haystack_original = [] {
auto child1 = tdata_col{dont_care, dont_care, 1, null, 3, dont_care};
auto child2 = tdata_col{dont_care, dont_care, 4, null, 6, dont_care};
auto child3 = strings_col{"dont_care", "dont_care", "x", "" /*NULL*/, "z", "dont_care"};
return structs_col{{child1, child2, child3}, null_at(3)};
}();
auto const col = cudf::slice(haystack_original, {2, 5})[0];
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"x"};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{"a"};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(col, needle1));
EXPECT_FALSE(cudf::contains(col, needle2));
}
// Test with nulls at the children level.
{
auto const haystack_original = [] {
auto child1 =
tdata_col{{dont_care, dont_care /*also NULL*/, 1, null, 3, dont_care}, null_at(3)};
auto child2 =
tdata_col{{dont_care, dont_care /*also NULL*/, 4, null, 6, dont_care}, null_at(3)};
auto child3 = strings_col{
{"dont_care", "dont_care" /*also NULL*/, "" /*NULL*/, "y", "z", "dont_care"}, null_at(2)};
return structs_col{{child1, child2, child3}, null_at(1)};
}();
auto const haystack = cudf::slice(haystack_original, {2, 5})[0];
auto const needle1 = [] {
auto child1 = tdata_col{1};
auto child2 = tdata_col{4};
auto child3 = strings_col{{"x"}, null_at(0)};
return make_struct_scalar(child1, child2, child3);
}();
auto const needle2 = [] {
auto child1 = tdata_col{dont_care};
auto child2 = tdata_col{dont_care};
auto child3 = strings_col{"dont_care"};
return make_struct_scalar(child1, child2, child3);
}();
EXPECT_TRUE(cudf::contains(haystack, needle1));
EXPECT_FALSE(cudf::contains(haystack, needle2));
}
}
template <typename T>
struct TypedStructContainsTestColumnNeedles : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedStructContainsTestColumnNeedles, TestTypes);
TYPED_TEST(TypedStructContainsTestColumnNeedles, EmptyInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack = [] {
auto child1 = tdata_col{};
auto child2 = tdata_col{};
auto child3 = strings_col{};
return structs_col{{child1, child2, child3}};
}();
{
auto const needles = [] {
auto child1 = tdata_col{};
auto child2 = tdata_col{};
auto child3 = strings_col{};
return structs_col{{child1, child2, child3}};
}();
auto const expected = bools_col{};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
{
auto const needles = [] {
auto child1 = tdata_col{1, 2};
auto child2 = tdata_col{0, 2};
auto child3 = strings_col{"x", "y"};
return structs_col{{child1, child2, child3}};
}();
auto const result = cudf::contains(haystack, needles);
auto const expected = bools_col{0, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
}
TYPED_TEST(TypedStructContainsTestColumnNeedles, TrivialInput)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack = [] {
auto child1 = tdata_col{1, 3, 1, 1, 2, 1, 2, 2, 1, 2};
auto child2 = tdata_col{1, 0, 0, 0, 1, 0, 1, 2, 1, 1};
return structs_col{{child1, child2}};
}();
auto const needles = [] {
auto child1 = tdata_col{1, 3, 1, 1, 2, 1, 0, 0, 1, 0};
auto child2 = tdata_col{1, 0, 2, 3, 2, 1, 0, 0, 1, 0};
return structs_col{{child1, child2}};
}();
auto const expected = bools_col{1, 1, 0, 0, 1, 1, 0, 0, 1, 0};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedStructContainsTestColumnNeedles, SlicedInputNoNulls)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack_original = [] {
auto child1 = tdata_col{dont_care, dont_care, 1, 3, 1, 1, 2, dont_care};
auto child2 = tdata_col{dont_care, dont_care, 1, 0, 0, 0, 1, dont_care};
auto child3 = strings_col{"dont_care", "dont_care", "x", "y", "z", "a", "b", "dont_care"};
return structs_col{{child1, child2, child3}};
}();
auto const haystack = cudf::slice(haystack_original, {2, 7})[0];
auto const needles_original = [] {
auto child1 = tdata_col{dont_care, 1, 1, 1, 1, 2, dont_care, dont_care};
auto child2 = tdata_col{dont_care, 0, 1, 2, 3, 1, dont_care, dont_care};
auto child3 = strings_col{"dont_care", "z", "x", "z", "a", "b", "dont_care", "dont_care"};
return structs_col{{child1, child2, child3}};
}();
auto const needles = cudf::slice(needles_original, {1, 6})[0];
auto const expected = bools_col{1, 1, 0, 0, 1};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedStructContainsTestColumnNeedles, SlicedInputHavingNulls)
{
using tdata_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const haystack_original = [] {
auto child1 =
tdata_col{{dont_care /*null*/, dont_care, 1, null, XXX, 1, 2, null, 2, 2, null, 2, dont_care},
nulls_at({0, 3, 7, 10})};
auto child2 =
tdata_col{{dont_care /*null*/, dont_care, 1, null, XXX, 0, null, 0, 1, 2, 1, 1, dont_care},
nulls_at({0, 3, 6})};
return structs_col{{child1, child2}, nulls_at({1, 4})};
}();
auto const haystack = cudf::slice(haystack_original, {2, 12})[0];
auto const needles_original = [] {
auto child1 =
tdata_col{{dont_care, XXX, null, 1, 1, 2, XXX, null, 1, 1, null, dont_care, dont_care},
nulls_at({2, 7, 10})};
auto child2 =
tdata_col{{dont_care, XXX, null, 2, 3, 2, XXX, null, null, 1, 0, dont_care, dont_care},
nulls_at({2, 7, 8})};
return structs_col{{child1, child2}, nulls_at({1, 6})};
}();
auto const needles = cudf::slice(needles_original, {1, 11})[0];
auto const expected = bools_col{{null, 1, 0, 0, 1, null, 1, 0, 1, 1}, nulls_at({0, 5})};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
TYPED_TEST(TypedStructContainsTestColumnNeedles, StructOfLists)
{
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
auto const haystack = [] {
// clang-format off
auto child1 = lists_col{{1, 2}, {1}, {}, {1, 3}};
auto child2 = lists_col{{1, 3, 4}, {2, 3, 4}, {}, {}};
// clang-format on
return structs_col{{child1, child2}};
}();
auto const needles = [] {
// clang-format off
auto child1 = lists_col{{1, 2}, {1}, {}, {1, 3}, {}};
auto child2 = lists_col{{1, 3, 4}, {2, 3}, {1, 2}, {}, {}};
// clang-format on
return structs_col{{child1, child2}};
}();
auto const expected = bools_col{1, 0, 0, 1, 1};
auto const result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result, verbosity);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/search/search_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/search.hpp>
#include <thrust/iterator/transform_iterator.h>
struct SearchTest : public cudf::test::BaseFixture {};
using cudf::numeric_scalar;
using cudf::size_type;
using cudf::string_scalar;
using cudf::test::fixed_width_column_wrapper;
TEST_F(SearchTest, empty_table)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{};
fixed_width_column_wrapper<element_type> values{0, 7, 10, 11, 30, 32, 40, 47, 50, 90};
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, empty_values)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{10, 20, 30, 40, 50};
fixed_width_column_wrapper<element_type> values{};
fixed_width_column_wrapper<size_type> expect{};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column__find_first)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{10, 20, 30, 40, 50};
fixed_width_column_wrapper<element_type> values{0, 7, 10, 11, 30, 32, 40, 47, 50, 90};
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 1, 2, 3, 3, 4, 4, 5};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column__find_last)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{10, 20, 30, 40, 50};
fixed_width_column_wrapper<element_type> values{0, 7, 10, 11, 30, 32, 40, 47, 50, 90};
fixed_width_column_wrapper<size_type> expect{0, 0, 1, 1, 3, 3, 4, 4, 5, 5};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column_desc__find_first)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{50, 40, 30, 20, 10};
fixed_width_column_wrapper<element_type> values{0, 7, 10, 11, 30, 32, 40, 47, 50, 90};
fixed_width_column_wrapper<size_type> expect{5, 5, 4, 4, 2, 2, 1, 1, 0, 0};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::DESCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column_desc__find_last)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{50, 40, 30, 20, 10};
fixed_width_column_wrapper<element_type> values{0, 7, 10, 11, 30, 32, 40, 47, 50, 90};
fixed_width_column_wrapper<size_type> expect{5, 5, 5, 4, 3, 2, 2, 1, 1, 0};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::DESCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_last__nulls_as_smallest)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{{10, 60, 10, 20, 30, 40, 50},
{0, 0, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<element_type> values{{8, 8, 10, 11, 30, 32, 40, 47, 50, 90},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<size_type> expect{2, 2, 3, 3, 5, 5, 6, 6, 7, 7};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_first__nulls_as_smallest)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{{10, 60, 10, 20, 30, 40, 50},
{0, 0, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<element_type> values{{8, 8, 10, 11, 30, 32, 40, 47, 50, 90},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<size_type> expect{0, 2, 2, 3, 4, 5, 5, 6, 6, 7};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_last__nulls_as_largest)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{{10, 20, 30, 40, 50, 10, 60},
{1, 1, 1, 1, 1, 0, 0}};
fixed_width_column_wrapper<element_type> values{{8, 10, 11, 30, 32, 40, 47, 50, 90, 8},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
fixed_width_column_wrapper<size_type> expect{0, 1, 1, 3, 3, 4, 4, 5, 5, 7};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::AFTER}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_first__nulls_as_largest)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> column{{10, 20, 30, 40, 50, 10, 60},
{1, 1, 1, 1, 1, 0, 0}};
fixed_width_column_wrapper<element_type> values{{8, 10, 11, 30, 32, 40, 47, 50, 90, 8},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
fixed_width_column_wrapper<size_type> expect{0, 0, 1, 2, 3, 3, 4, 4, 5, 5};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::AFTER}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_first)
{
fixed_width_column_wrapper<int32_t> column_0{10, 20, 20, 20, 20, 20, 50};
fixed_width_column_wrapper<float> column_1{5.0, .5, .5, .7, .7, .7, .7};
fixed_width_column_wrapper<int8_t> column_2{90, 77, 78, 61, 62, 63, 41};
fixed_width_column_wrapper<int32_t> values_0{0, 0, 0, 0, 10, 10, 10, 10, 10,
10, 10, 10, 11, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 30, 50, 60};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<int8_t> values_2{0, 91, 0, 91, 0, 79, 90, 91, 77, 80, 90, 91, 91, 0,
76, 77, 78, 30, 65, 77, 78, 80, 62, 78, 64, 41, 20};
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,
1, 1, 2, 1, 3, 3, 3, 6, 4, 6, 6, 6, 7};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_last)
{
fixed_width_column_wrapper<int32_t> column_0{10, 20, 20, 20, 20, 20, 50};
fixed_width_column_wrapper<float> column_1{5.0, .5, .5, .7, .7, .7, .7};
fixed_width_column_wrapper<int8_t> column_2{90, 77, 78, 61, 62, 63, 41};
fixed_width_column_wrapper<int32_t> values_0{0, 0, 0, 0, 10, 10, 10, 10, 10,
10, 10, 10, 11, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 30, 50, 60};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<int8_t> values_2{0, 91, 0, 91, 0, 79, 90, 91, 77, 80, 90, 91, 91, 0,
76, 77, 78, 30, 65, 77, 78, 80, 62, 78, 64, 41, 20};
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 2, 3, 1, 3, 3, 3, 6, 5, 6, 6, 7, 7};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table_partial_desc__find_first)
{
fixed_width_column_wrapper<int32_t> column_0{50, 20, 20, 20, 20, 20, 10};
fixed_width_column_wrapper<float> column_1{.7, .5, .5, .7, .7, .7, 5.0};
fixed_width_column_wrapper<int8_t> column_2{41, 78, 77, 63, 62, 61, 90};
fixed_width_column_wrapper<int32_t> values_0{0, 0, 0, 0, 10, 10, 10, 10, 10,
10, 10, 10, 11, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 30, 50, 60};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<int8_t> values_2{0, 91, 0, 91, 0, 79, 90, 91, 77, 80, 90, 91, 91, 0,
76, 77, 78, 30, 65, 77, 78, 80, 62, 78, 64, 41, 20};
fixed_width_column_wrapper<size_type> expect{7, 7, 7, 7, 6, 7, 6, 6, 7, 7, 7, 7, 6, 1,
3, 2, 1, 3, 3, 3, 3, 3, 4, 3, 1, 0, 0};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::DESCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table_partial_desc__find_last)
{
fixed_width_column_wrapper<int32_t> column_0{50, 20, 20, 20, 20, 20, 10};
fixed_width_column_wrapper<float> column_1{.7, .5, .5, .7, .7, .7, 5.0};
fixed_width_column_wrapper<int8_t> column_2{41, 78, 77, 63, 62, 61, 90};
fixed_width_column_wrapper<int32_t> values_0{0, 0, 0, 0, 10, 10, 10, 10, 10,
10, 10, 10, 11, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 30, 50, 60};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<int8_t> values_2{0, 91, 0, 91, 0, 79, 90, 91, 77, 80, 90, 91, 91, 0,
76, 77, 78, 30, 65, 77, 78, 80, 62, 78, 64, 41, 20};
fixed_width_column_wrapper<size_type> expect{7, 7, 7, 7, 6, 7, 7, 6, 7, 7, 7, 7, 6, 1,
3, 3, 2, 3, 3, 3, 3, 3, 5, 3, 1, 1, 0};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::DESCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_first__nulls_as_smallest)
{
fixed_width_column_wrapper<int32_t> column_0{{30, 10, 10, 20, 20, 20, 20, 20, 20, 20, 50},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<float> column_1{{.5, 6.0, 5.0, .5, .5, .5, .5, .7, .7, .7, .7},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int8_t> column_2{{50, 95, 90, 79, 76, 77, 78, 61, 62, 63, 41},
{1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int32_t> values_0{{10, 40, 20}, {1, 0, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<int8_t> values_2{{95, 50, 77}, {1, 1, 0}};
fixed_width_column_wrapper<size_type> expect{1, 0, 3};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_last__nulls_as_smallest)
{
fixed_width_column_wrapper<int32_t> column_0{{30, 10, 10, 20, 20, 20, 20, 20, 20, 20, 50},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<float> column_1{{.5, 6.0, 5.0, .5, .5, .5, .5, .7, .7, .7, .7},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int8_t> column_2{{50, 90, 95, 79, 76, 77, 78, 61, 62, 63, 41},
{1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int32_t> values_0{{10, 40, 20}, {1, 0, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<int8_t> values_2{{95, 50, 77}, {1, 1, 0}};
fixed_width_column_wrapper<size_type> expect{2, 1, 5};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_first__nulls_as_largest)
{
fixed_width_column_wrapper<int32_t> column_0{{10, 10, 20, 20, 20, 20, 20, 20, 20, 50, 30},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
fixed_width_column_wrapper<float> column_1{{5.0, 6.0, .5, .5, .5, .5, .7, .7, .7, .7, .5},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int8_t> column_2{{90, 95, 77, 78, 79, 76, 61, 62, 63, 41, 50},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int32_t> values_0{{10, 40, 20}, {1, 0, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<int8_t> values_2{{95, 50, 77}, {1, 1, 0}};
fixed_width_column_wrapper<size_type> expect{1, 10, 4};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::AFTER, cudf::null_order::AFTER, cudf::null_order::AFTER}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_last__nulls_as_largest)
{
fixed_width_column_wrapper<int32_t> column_0{{10, 10, 20, 20, 20, 20, 20, 20, 20, 50, 30},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
fixed_width_column_wrapper<float> column_1{{5.0, 6.0, .5, .5, .5, .5, .7, .7, .7, .7, .5},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int8_t> column_2{{90, 95, 77, 78, 79, 76, 61, 62, 63, 41, 50},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<int32_t> values_0{{10, 40, 20}, {1, 0, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<int8_t> values_2{{95, 50, 77}, {1, 1, 0}};
fixed_width_column_wrapper<size_type> expect{2, 11, 6};
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::AFTER, cudf::null_order::AFTER, cudf::null_order::AFTER}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, contains_true)
{
using element_type = int64_t;
bool expect = true;
bool result = false;
fixed_width_column_wrapper<element_type> column{0, 1, 17, 19, 23, 29, 71};
numeric_scalar<element_type> scalar{23};
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_false)
{
using element_type = int64_t;
bool expect = false;
bool result = false;
fixed_width_column_wrapper<element_type> column{0, 1, 17, 19, 23, 29, 71};
numeric_scalar<element_type> scalar{24};
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_empty_value)
{
using element_type = int64_t;
bool expect = false;
bool result = false;
fixed_width_column_wrapper<element_type> column{0, 1, 17, 19, 23, 29, 71};
numeric_scalar<element_type> scalar{23, false};
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_empty_column)
{
using element_type = int64_t;
bool expect = false;
bool result = false;
fixed_width_column_wrapper<element_type> column{};
numeric_scalar<element_type> scalar{24};
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_nullable_column_true)
{
using element_type = int64_t;
bool result = false;
bool expect = true;
fixed_width_column_wrapper<element_type> column{{0, 1, 17, 19, 23, 29, 71},
{0, 0, 1, 1, 1, 1, 1}};
numeric_scalar<element_type> scalar{23};
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_nullable_column_false)
{
using element_type = int64_t;
bool result = false;
bool expect = false;
fixed_width_column_wrapper<element_type> column{{0, 1, 17, 19, 23, 29, 71},
{0, 0, 1, 1, 0, 1, 1}};
numeric_scalar<element_type> scalar{23};
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, empty_table_string)
{
std::vector<char const*> h_col_strings{};
std::vector<char const*> h_val_strings{"0", "10", "11", "30", "32", "40", "47", "50", "7", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, empty_values_string)
{
std::vector<char const*> h_col_strings{"10", "20", "30", "40", "50"};
std::vector<char const*> h_val_strings{};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column__find_first_string)
{
std::vector<char const*> h_col_strings{"10", "20", "30", "40", "50"};
std::vector<char const*> h_val_strings{
"00", "07", "10", "11", "30", "32", "40", "47", "50", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 1, 2, 3, 3, 4, 4, 5};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column__find_last_string)
{
std::vector<char const*> h_col_strings{"10", "20", "30", "40", "50"};
std::vector<char const*> h_val_strings{
"00", "07", "10", "11", "30", "32", "40", "47", "50", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{0, 0, 1, 1, 3, 3, 4, 4, 5, 5};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column_desc__find_first_string)
{
std::vector<char const*> h_col_strings{"50", "40", "30", "20", "10"};
std::vector<char const*> h_val_strings{
"00", "07", "10", "11", "30", "32", "40", "47", "50", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{5, 5, 4, 4, 2, 2, 1, 1, 0, 0};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::DESCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column_desc__find_last_string)
{
std::vector<char const*> h_col_strings{"50", "40", "30", "20", "10"};
std::vector<char const*> h_val_strings{
"00", "07", "10", "11", "30", "32", "40", "47", "50", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{5, 5, 5, 4, 3, 2, 2, 1, 1, 0};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::DESCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_last__nulls_as_smallest_string)
{
std::vector<char const*> h_col_strings{nullptr, nullptr, "10", "20", "30", "40", "50"};
std::vector<char const*> h_val_strings{
nullptr, "08", "10", "11", "30", "32", "40", "47", "50", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{2, 2, 3, 3, 5, 5, 6, 6, 7, 7};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_first__nulls_as_smallest_string)
{
std::vector<char const*> h_col_strings{nullptr, nullptr, "10", "20", "30", "40", "50"};
std::vector<char const*> h_val_strings{
nullptr, "08", "10", "11", "30", "32", "40", "47", "50", "90"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{0, 2, 2, 3, 4, 5, 5, 6, 6, 7};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_last__nulls_as_largest_string)
{
std::vector<char const*> h_col_strings{"10", "20", "30", "40", "50", nullptr, nullptr};
std::vector<char const*> h_val_strings{
"08", "10", "11", "30", "32", "40", "47", "50", "90", nullptr};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{0, 1, 1, 3, 3, 4, 4, 5, 5, 7};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::AFTER}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, non_null_column__nullable_values__find_last__nulls_as_largest_string)
{
cudf::test::strings_column_wrapper column({"N", "N", "N", "N", "Y", "Y", "Y", "Y"},
{1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::strings_column_wrapper values({"Y", "Z", "N"}, {1, 0, 1});
fixed_width_column_wrapper<size_type> expect{8, 8, 4};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::AFTER}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, nullable_column__find_first__nulls_as_largest_string)
{
std::vector<char const*> h_col_strings{"10", "20", "30", "40", "50", nullptr, nullptr};
std::vector<char const*> h_val_strings{
"08", "10", "11", "30", "32", "40", "47", "50", "90", nullptr};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values(
h_val_strings.begin(),
h_val_strings.end(),
thrust::make_transform_iterator(h_val_strings.begin(),
[](auto str) { return str != nullptr; }));
fixed_width_column_wrapper<size_type> expect{0, 0, 1, 2, 3, 3, 4, 4, 5, 5};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::AFTER}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_first_string)
{
std::vector<char const*> h_col_0_strings{"10", "20", "20", "20", "20", "20", "50"};
std::vector<char const*> h_col_2_strings{"90", "77", "78", "61", "62", "63", "41"};
std::vector<char const*> h_val_0_strings{"0", "0", "0", "0", "10", "10", "10", "10", "10",
"10", "10", "10", "11", "20", "20", "20", "20", "20",
"20", "20", "20", "20", "20", "20", "30", "50", "60"};
std::vector<char const*> h_val_2_strings{"0", "91", "0", "91", "0", "79", "90", "91", "77",
"80", "90", "91", "91", "00", "76", "77", "78", "30",
"65", "77", "78", "80", "62", "78", "64", "41", "20"};
fixed_width_column_wrapper<float> column_1{5.0, .5, .5, .7, .7, .7, .7};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,
1, 1, 2, 1, 3, 3, 3, 6, 4, 6, 6, 6, 7};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_last_string)
{
std::vector<char const*> h_col_0_strings{"10", "20", "20", "20", "20", "20", "50"};
std::vector<char const*> h_col_2_strings{"90", "77", "78", "61", "62", "63", "41"};
std::vector<char const*> h_val_0_strings{"0", "0", "0", "0", "10", "10", "10", "10", "10",
"10", "10", "10", "11", "20", "20", "20", "20", "20",
"20", "20", "20", "20", "20", "20", "30", "50", "60"};
std::vector<char const*> h_val_2_strings{"0", "91", "0", "91", "0", "79", "90", "91", "77",
"80", "90", "91", "91", "00", "76", "77", "78", "30",
"65", "77", "78", "80", "62", "78", "64", "41", "20"};
fixed_width_column_wrapper<float> column_1{5.0, .5, .5, .7, .7, .7, .7};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<size_type> expect{0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 2, 3, 1, 3, 3, 3, 6, 5, 6, 6, 7, 7};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table_partial_desc__find_first_string)
{
std::vector<char const*> h_col_0_strings{"50", "20", "20", "20", "20", "20", "10"};
std::vector<char const*> h_col_2_strings{"41", "78", "77", "63", "62", "61", "90"};
std::vector<char const*> h_val_0_strings{"0", "0", "0", "0", "10", "10", "10", "10", "10",
"10", "10", "10", "11", "20", "20", "20", "20", "20",
"20", "20", "20", "20", "20", "20", "30", "50", "60"};
std::vector<char const*> h_val_2_strings{"0", "91", "0", "91", "0", "79", "90", "91", "77",
"80", "90", "91", "91", "00", "76", "77", "78", "30",
"65", "77", "78", "80", "62", "78", "64", "41", "20"};
fixed_width_column_wrapper<float> column_1{.7, .5, .5, .7, .7, .7, 5.0};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<size_type> expect{7, 7, 7, 7, 6, 7, 6, 6, 7, 7, 7, 7, 6, 1,
3, 2, 1, 3, 3, 3, 3, 3, 4, 3, 1, 0, 0};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::DESCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table_partial_desc__find_last_string)
{
std::vector<char const*> h_col_0_strings{"50", "20", "20", "20", "20", "20", "10"};
std::vector<char const*> h_col_2_strings{"41", "78", "77", "63", "62", "61", "90"};
std::vector<char const*> h_val_0_strings{"0", "0", "0", "0", "10", "10", "10", "10", "10",
"10", "10", "10", "11", "20", "20", "20", "20", "20",
"20", "20", "20", "20", "20", "20", "30", "50", "60"};
std::vector<char const*> h_val_2_strings{"0", "91", "0", "91", "0", "79", "90", "91", "77",
"80", "90", "91", "91", "00", "76", "77", "78", "30",
"65", "77", "78", "80", "62", "78", "64", "41", "20"};
fixed_width_column_wrapper<float> column_1{.7, .5, .5, .7, .7, .7, 5.0};
fixed_width_column_wrapper<float> values_1{0., 0., 6., 5., 0., 5., 5., 5., 5., 6., 6., 6., 9., 0.,
.5, .5, .5, .5, .6, .6, .6, .7, .7, .7, .7, .7, .5};
fixed_width_column_wrapper<size_type> expect{7, 7, 7, 7, 6, 7, 7, 6, 7, 7, 7, 7, 6, 1,
3, 3, 2, 3, 3, 3, 3, 3, 5, 3, 1, 1, 0};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::DESCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_first__nulls_as_smallest_string)
{
std::vector<char const*> h_col_0_strings{
nullptr, "10", "10", "20", "20", "20", "20", "20", "20", "20", "50"};
std::vector<char const*> h_col_2_strings{
"50", "95", "90", nullptr, nullptr, "77", "78", "61", "62", "63", "41"};
std::vector<char const*> h_val_0_strings{"10", nullptr, "20"};
std::vector<char const*> h_val_2_strings{"95", "50", nullptr};
fixed_width_column_wrapper<float> column_1{{.5, 6.0, 5.0, .5, .5, .5, .5, .7, .7, .7, .7},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<size_type> expect{1, 0, 3};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_last__nulls_as_smallest_string)
{
std::vector<char const*> h_col_0_strings{
nullptr, "10", "10", "20", "20", "20", "20", "20", "20", "20", "50"};
std::vector<char const*> h_col_2_strings{
"50", "90", "95", nullptr, nullptr, "77", "78", "61", "62", "63", "41"};
std::vector<char const*> h_val_0_strings{"10", nullptr, "20"};
std::vector<char const*> h_val_2_strings{"95", "50", nullptr};
fixed_width_column_wrapper<float> column_1{{.5, 6.0, 5.0, .5, .5, .5, .5, .7, .7, .7, .7},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<size_type> expect{2, 1, 5};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::BEFORE, cudf::null_order::BEFORE, cudf::null_order::BEFORE}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_first__nulls_as_largest_string)
{
std::vector<char const*> h_col_0_strings{
"10", "10", "20", "20", "20", "20", "20", "20", "20", "50", nullptr};
std::vector<char const*> h_col_2_strings{
"90", "95", "77", "78", nullptr, nullptr, "61", "62", "63", "41", "50"};
std::vector<char const*> h_val_0_strings{"10", nullptr, "20"};
std::vector<char const*> h_val_2_strings{"95", "50", nullptr};
fixed_width_column_wrapper<float> column_1{{5.0, 6.0, .5, .5, .5, .5, .7, .7, .7, .7, .5},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<size_type> expect{1, 10, 4};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::AFTER, cudf::null_order::AFTER, cudf::null_order::AFTER}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::lower_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, table__find_last__nulls_as_largest_string)
{
std::vector<char const*> h_col_0_strings{
"10", "10", "20", "20", "20", "20", "20", "20", "20", "50", nullptr};
std::vector<char const*> h_col_2_strings{
"90", "95", "77", "78", nullptr, nullptr, "61", "62", "63", "41", "50"};
std::vector<char const*> h_val_0_strings{"10", nullptr, "20"};
std::vector<char const*> h_val_2_strings{"95", "50", nullptr};
fixed_width_column_wrapper<float> column_1{{5.0, 6.0, .5, .5, .5, .5, .7, .7, .7, .7, .5},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
fixed_width_column_wrapper<size_type> expect{2, 11, 6};
cudf::test::strings_column_wrapper column_0(
h_col_0_strings.begin(),
h_col_0_strings.end(),
thrust::make_transform_iterator(h_col_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper column_2(
h_col_2_strings.begin(),
h_col_2_strings.end(),
thrust::make_transform_iterator(h_col_2_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_0(
h_val_0_strings.begin(),
h_val_0_strings.end(),
thrust::make_transform_iterator(h_val_0_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper values_2(
h_val_2_strings.begin(),
h_val_2_strings.end(),
thrust::make_transform_iterator(h_val_2_strings.begin(),
[](auto str) { return str != nullptr; }));
std::vector<std::unique_ptr<cudf::column>> columns;
columns.push_back(column_0.release());
columns.push_back(column_1.release());
columns.push_back(column_2.release());
std::vector<std::unique_ptr<cudf::column>> values;
values.push_back(values_0.release());
values.push_back(values_1.release());
values.push_back(values_2.release());
cudf::table input_table(std::move(columns));
cudf::table values_table(std::move(values));
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::ASCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::AFTER, cudf::null_order::AFTER, cudf::null_order::AFTER}};
std::unique_ptr<cudf::column> result{};
EXPECT_NO_THROW(result =
cudf::upper_bound(input_table, values_table, order_flags, null_order_flags));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, contains_true_string)
{
std::vector<char const*> h_col_strings{"00", "01", "17", "19", "23", "29", "71"};
string_scalar scalar{"23"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
bool expect = true;
bool result = false;
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_false_string)
{
std::vector<char const*> h_col_strings{"0", "1", "17", "19", "23", "29", "71"};
string_scalar scalar{"24"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
bool expect = false;
bool result = false;
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_empty_value_string)
{
std::vector<char const*> h_col_strings{"0", "1", "17", "19", "23", "29", "71"};
string_scalar scalar{"23", false};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
bool expect = false;
bool result = false;
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_empty_column_string)
{
std::vector<char const*> h_col_strings{};
string_scalar scalar{"24"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
bool expect = false;
bool result = false;
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_nullable_column_true_string)
{
std::vector<char const*> h_col_strings{nullptr, nullptr, "17", "19", "23", "29", "71"};
string_scalar scalar{"23"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
bool result = false;
bool expect = true;
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, contains_nullable_column_false_string)
{
std::vector<char const*> h_col_strings{nullptr, nullptr, "17", "19", nullptr, "29", "71"};
string_scalar scalar{"23"};
cudf::test::strings_column_wrapper column(
h_col_strings.begin(),
h_col_strings.end(),
thrust::make_transform_iterator(h_col_strings.begin(),
[](auto str) { return str != nullptr; }));
bool result = false;
bool expect = false;
result = cudf::contains(column, scalar);
ASSERT_EQ(result, expect);
}
TEST_F(SearchTest, multi_contains_some)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> haystack{0, 1, 17, 19, 23, 29, 71};
fixed_width_column_wrapper<element_type> needles{17, 19, 45, 72};
fixed_width_column_wrapper<bool> expect{1, 1, 0, 0};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_none)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> haystack{0, 1, 17, 19, 23, 29, 71};
fixed_width_column_wrapper<element_type> needles{2, 3};
fixed_width_column_wrapper<bool> expect{0, 0};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_some_string)
{
std::vector<char const*> h_haystack_strings{"0", "1", "17", "19", "23", "29", "71"};
std::vector<char const*> h_needles_strings{"17", "19", "45", "72"};
cudf::test::strings_column_wrapper haystack(h_haystack_strings.begin(), h_haystack_strings.end());
cudf::test::strings_column_wrapper needles(h_needles_strings.begin(), h_needles_strings.end());
fixed_width_column_wrapper<bool> expect{1, 1, 0, 0};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_none_string)
{
std::vector<char const*> h_haystack_strings{"0", "1", "17", "19", "23", "29", "71"};
std::vector<char const*> h_needles_strings{"2", "3"};
cudf::test::strings_column_wrapper haystack(h_haystack_strings.begin(), h_haystack_strings.end());
cudf::test::strings_column_wrapper needles(h_needles_strings.begin(), h_needles_strings.end());
fixed_width_column_wrapper<bool> expect{0, 0};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_some_with_nulls)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> haystack{{0, 1, 17, 19, 23, 29, 71},
{1, 1, 0, 1, 1, 1, 1}};
fixed_width_column_wrapper<element_type> needles{{17, 19, 23, 72}, {1, 0, 1, 1}};
fixed_width_column_wrapper<bool> expect{{0, 0, 1, 0}, {1, 0, 1, 1}};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_none_with_nulls)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> haystack{{0, 1, 17, 19, 23, 29, 71},
{1, 1, 0, 1, 1, 1, 1}};
fixed_width_column_wrapper<element_type> needles{{17, 19, 24, 72}, {1, 0, 1, 1}};
fixed_width_column_wrapper<bool> expect{{0, 0, 0, 0}, {1, 0, 1, 1}};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_some_string_with_nulls)
{
std::vector<char const*> h_haystack_strings{"0", "1", nullptr, "19", "23", "29", "71"};
std::vector<char const*> h_needles_strings{"17", "23", nullptr, "72"};
fixed_width_column_wrapper<bool> expect{{0, 1, 0, 0}, {1, 1, 0, 1}};
cudf::test::strings_column_wrapper haystack(
h_haystack_strings.begin(),
h_haystack_strings.end(),
thrust::make_transform_iterator(h_haystack_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper needles(
h_needles_strings.begin(),
h_needles_strings.end(),
thrust::make_transform_iterator(h_needles_strings.begin(),
[](auto str) { return str != nullptr; }));
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_none_string_with_nulls)
{
std::vector<char const*> h_haystack_strings{"0", "1", nullptr, "19", "23", "29", "71"};
std::vector<char const*> h_needles_strings{"2", nullptr};
fixed_width_column_wrapper<bool> expect{{0, 0}, {1, 0}};
cudf::test::strings_column_wrapper haystack(
h_haystack_strings.begin(),
h_haystack_strings.end(),
thrust::make_transform_iterator(h_haystack_strings.begin(),
[](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper needles(
h_needles_strings.begin(),
h_needles_strings.end(),
thrust::make_transform_iterator(h_needles_strings.begin(),
[](auto str) { return str != nullptr; }));
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_empty_column)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> haystack{};
fixed_width_column_wrapper<element_type> needles{2, 3};
fixed_width_column_wrapper<bool> expect{0, 0};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_empty_column_string)
{
std::vector<char const*> h_haystack_strings{};
std::vector<char const*> h_needles_strings{"17", "19", "45", "72"};
cudf::test::strings_column_wrapper haystack(h_haystack_strings.begin(), h_haystack_strings.end());
cudf::test::strings_column_wrapper needles(h_needles_strings.begin(), h_needles_strings.end());
fixed_width_column_wrapper<bool> expect{0, 0, 0, 0};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_empty_input_set)
{
using element_type = int64_t;
fixed_width_column_wrapper<element_type> haystack{0, 1, 17, 19, 23, 29, 71};
fixed_width_column_wrapper<element_type> needles{};
fixed_width_column_wrapper<bool> expect{};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(SearchTest, multi_contains_empty_input_set_string)
{
std::vector<char const*> h_haystack_strings{"0", "1", "17", "19", "23", "29", "71"};
std::vector<char const*> h_needles_strings{};
cudf::test::strings_column_wrapper haystack(h_haystack_strings.begin(), h_haystack_strings.end());
cudf::test::strings_column_wrapper needles(h_needles_strings.begin(), h_needles_strings.end());
fixed_width_column_wrapper<bool> expect{};
auto result = cudf::contains(haystack, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTestAllReps, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTestAllReps, FixedPointLowerBound)
{
using namespace numeric;
using decimalXX = TypeParam;
auto vec = std::vector<decimalXX>(1000);
std::iota(std::begin(vec), std::end(vec), decimalXX{});
auto const values =
cudf::test::fixed_width_column_wrapper<decimalXX>{decimalXX{200, scale_type{0}},
decimalXX{400, scale_type{0}},
decimalXX{600, scale_type{0}},
decimalXX{800, scale_type{0}}};
auto const expect = cudf::test::fixed_width_column_wrapper<cudf::size_type>{200, 400, 600, 800};
auto const column = cudf::test::fixed_width_column_wrapper<decimalXX>(vec.begin(), vec.end());
auto result = cudf::lower_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TYPED_TEST(FixedPointTestAllReps, FixedPointUpperBound)
{
using namespace numeric;
using decimalXX = TypeParam;
auto vec = std::vector<decimalXX>(1000);
std::iota(std::begin(vec), std::end(vec), decimalXX{});
auto const values =
cudf::test::fixed_width_column_wrapper<decimalXX>{decimalXX{200, scale_type{0}},
decimalXX{400, scale_type{0}},
decimalXX{600, scale_type{0}},
decimalXX{800, scale_type{0}}};
auto const expect = cudf::test::fixed_width_column_wrapper<cudf::size_type>{201, 401, 601, 801};
auto const column = cudf::test::fixed_width_column_wrapper<decimalXX>(vec.begin(), vec.end());
auto result = cudf::upper_bound({cudf::table_view{{column}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/search/search_dictionary_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/search.hpp>
struct DictionarySearchTest : public cudf::test::BaseFixture {};
using cudf::numeric_scalar;
using cudf::size_type;
using cudf::string_scalar;
using cudf::test::fixed_width_column_wrapper;
TEST_F(DictionarySearchTest, search_dictionary)
{
cudf::test::dictionary_column_wrapper<std::string> input(
{"", "", "10", "10", "20", "20", "30", "40"}, {0, 0, 1, 1, 1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<std::string> values(
{"", "08", "10", "11", "30", "32", "90"}, {0, 1, 1, 1, 1, 1, 1});
auto result = cudf::upper_bound({cudf::table_view{{input}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE});
fixed_width_column_wrapper<size_type> expect_upper{2, 2, 4, 4, 7, 7, 8};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect_upper);
result = cudf::lower_bound({cudf::table_view{{input}}},
{cudf::table_view{{values}}},
{cudf::order::ASCENDING},
{cudf::null_order::BEFORE});
fixed_width_column_wrapper<size_type> expect_lower{0, 2, 2, 4, 6, 7, 8};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect_lower);
}
TEST_F(DictionarySearchTest, search_table_dictionary)
{
fixed_width_column_wrapper<int32_t> column_0{{10, 10, 20, 20, 20, 20, 20, 20, 20, 50, 30},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
fixed_width_column_wrapper<float> column_1{{5.0, 6.0, .5, .5, .5, .5, .7, .7, .7, .7, .5},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
cudf::test::dictionary_column_wrapper<int16_t> column_2{
{90, 95, 77, 78, 79, 76, 61, 62, 63, 41, 50}, {1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1}};
cudf::table_view input({column_0, column_1, column_2});
fixed_width_column_wrapper<int32_t> values_0{{10, 40, 20}, {1, 0, 1}};
fixed_width_column_wrapper<float> values_1{{6., .5, .5}, {0, 1, 1}};
cudf::test::dictionary_column_wrapper<int16_t> values_2{{95, 50, 77}, {1, 1, 0}};
cudf::table_view values({values_0, values_1, values_2});
std::vector<cudf::order> order_flags{
{cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING}};
std::vector<cudf::null_order> null_order_flags{
{cudf::null_order::AFTER, cudf::null_order::AFTER, cudf::null_order::AFTER}};
auto result = cudf::lower_bound(input, values, order_flags, null_order_flags);
fixed_width_column_wrapper<size_type> expect_lower{1, 10, 2};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect_lower);
result = cudf::upper_bound(input, values, order_flags, null_order_flags);
fixed_width_column_wrapper<size_type> expect_upper{2, 11, 6};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect_upper);
}
TEST_F(DictionarySearchTest, contains_dictionary)
{
cudf::test::dictionary_column_wrapper<std::string> column(
{"00", "00", "17", "17", "23", "23", "29"});
EXPECT_TRUE(cudf::contains(column, string_scalar{"23"}));
EXPECT_FALSE(cudf::contains(column, string_scalar{"28"}));
cudf::test::dictionary_column_wrapper<std::string> needles({"00", "17", "23", "27"});
fixed_width_column_wrapper<bool> expect{1, 1, 1, 0};
auto result = cudf::contains(column, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
TEST_F(DictionarySearchTest, contains_nullable_dictionary)
{
cudf::test::dictionary_column_wrapper<int64_t> column({0, 0, 17, 17, 23, 23, 29},
{1, 0, 1, 1, 1, 1, 1});
EXPECT_TRUE(cudf::contains(column, numeric_scalar<int64_t>{23}));
EXPECT_FALSE(cudf::contains(column, numeric_scalar<int64_t>{28}));
cudf::test::dictionary_column_wrapper<int64_t> needles({0, 17, 23, 27});
fixed_width_column_wrapper<bool> expect{1, 1, 1, 0};
auto result = cudf::contains(column, needles);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/wrappers/timestamps_test.cu
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/timestamp_utilities.cuh>
#include <cudf_test/type_lists.hpp>
#include <cudf/binaryop.hpp>
#include <cudf/column/column_device_view.cuh>
#include <cudf/column/column_factories.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/wrappers/durations.hpp>
#include <cudf/wrappers/timestamps.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/logical.h>
#include <thrust/sequence.h>
template <typename T>
struct ChronoColumnTest : public cudf::test::BaseFixture {
cudf::size_type size() { return cudf::size_type(100); }
cudf::data_type type() { return cudf::data_type{cudf::type_to_id<T>()}; }
};
template <typename ChronoT>
struct compare_chrono_elements_to_primitive_representation {
cudf::column_device_view primitives;
cudf::column_device_view chronos;
compare_chrono_elements_to_primitive_representation(cudf::column_device_view& _primitives,
cudf::column_device_view& _chronos)
: primitives(_primitives), chronos(_chronos)
{
}
template <typename T = ChronoT, std::enable_if_t<cudf::is_timestamp<T>()>* = nullptr>
__host__ __device__ bool operator()(const int32_t element_index)
{
using Primitive = typename ChronoT::rep;
auto primitive = primitives.element<Primitive>(element_index);
auto timestamp = chronos.element<ChronoT>(element_index);
return primitive == timestamp.time_since_epoch().count();
}
template <typename T = ChronoT, std::enable_if_t<cudf::is_duration<T>()>* = nullptr>
__host__ __device__ bool operator()(const int32_t element_index)
{
using Primitive = typename ChronoT::rep;
auto primitive = primitives.element<Primitive>(element_index);
auto dur = chronos.element<ChronoT>(element_index);
return primitive == dur.count();
}
};
TYPED_TEST_SUITE(ChronoColumnTest, cudf::test::ChronoTypes);
TYPED_TEST(ChronoColumnTest, ChronoDurationsMatchPrimitiveRepresentation)
{
using T = TypeParam;
using Rep = typename T::rep;
using namespace cuda::std::chrono;
auto start = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto stop = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto chrono_col = cudf::test::generate_timestamps<T>(
this->size(), cudf::test::time_point_ms(start), cudf::test::time_point_ms(stop));
// round-trip through the host to copy `chrono_col` values
// to a new fixed_width_column_wrapper `primitive_col`
auto const [chrono_col_data, chrono_col_mask] = cudf::test::to_host<Rep>(chrono_col);
auto primitive_col =
cudf::test::fixed_width_column_wrapper<Rep>(chrono_col_data.begin(), chrono_col_data.end());
rmm::device_uvector<int32_t> indices(this->size(), cudf::get_default_stream());
thrust::sequence(rmm::exec_policy(cudf::get_default_stream()), indices.begin(), indices.end());
EXPECT_TRUE(thrust::all_of(rmm::exec_policy(cudf::get_default_stream()),
indices.begin(),
indices.end(),
compare_chrono_elements_to_primitive_representation<T>{
*cudf::column_device_view::create(primitive_col),
*cudf::column_device_view::create(chrono_col)}));
}
template <typename ChronoT>
struct compare_chrono_elements {
cudf::binary_operator comp;
cudf::column_device_view lhs;
cudf::column_device_view rhs;
compare_chrono_elements(cudf::binary_operator _comp,
cudf::column_device_view& _lhs,
cudf::column_device_view& _rhs)
: comp(_comp), lhs(_lhs), rhs(_rhs)
{
}
__host__ __device__ bool operator()(const int32_t element_index)
{
auto lhs_elt = lhs.element<ChronoT>(element_index);
auto rhs_elt = rhs.element<ChronoT>(element_index);
switch (comp) {
case cudf::binary_operator::LESS: return lhs_elt < rhs_elt;
case cudf::binary_operator::GREATER: return lhs_elt > rhs_elt;
case cudf::binary_operator::LESS_EQUAL: return lhs_elt <= rhs_elt;
case cudf::binary_operator::GREATER_EQUAL: return lhs_elt >= rhs_elt;
default: return false;
}
}
};
TYPED_TEST(ChronoColumnTest, ChronosCanBeComparedInDeviceCode)
{
using T = TypeParam;
using namespace cuda::std::chrono;
auto start_lhs = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto start_rhs = milliseconds(-2400000000000); // Tue, 12 Dec 1893 05:20:00 GMT
auto stop_lhs = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto stop_rhs = milliseconds(2600000000000); // Wed, 22 May 2052 14:13:20 GMT
auto chrono_lhs_col = cudf::test::generate_timestamps<T>(
this->size(), cudf::test::time_point_ms(start_lhs), cudf::test::time_point_ms(stop_lhs));
auto chrono_rhs_col = cudf::test::generate_timestamps<T>(
this->size(), cudf::test::time_point_ms(start_rhs), cudf::test::time_point_ms(stop_rhs));
rmm::device_uvector<int32_t> indices(this->size(), cudf::get_default_stream());
thrust::sequence(rmm::exec_policy(cudf::get_default_stream()), indices.begin(), indices.end());
EXPECT_TRUE(thrust::all_of(
rmm::exec_policy(cudf::get_default_stream()),
indices.begin(),
indices.end(),
compare_chrono_elements<TypeParam>{cudf::binary_operator::LESS,
*cudf::column_device_view::create(chrono_lhs_col),
*cudf::column_device_view::create(chrono_rhs_col)}));
EXPECT_TRUE(thrust::all_of(
rmm::exec_policy(cudf::get_default_stream()),
indices.begin(),
indices.end(),
compare_chrono_elements<TypeParam>{cudf::binary_operator::GREATER,
*cudf::column_device_view::create(chrono_rhs_col),
*cudf::column_device_view::create(chrono_lhs_col)}));
EXPECT_TRUE(thrust::all_of(
rmm::exec_policy(cudf::get_default_stream()),
indices.begin(),
indices.end(),
compare_chrono_elements<TypeParam>{cudf::binary_operator::LESS_EQUAL,
*cudf::column_device_view::create(chrono_lhs_col),
*cudf::column_device_view::create(chrono_lhs_col)}));
EXPECT_TRUE(thrust::all_of(
rmm::exec_policy(cudf::get_default_stream()),
indices.begin(),
indices.end(),
compare_chrono_elements<TypeParam>{cudf::binary_operator::GREATER_EQUAL,
*cudf::column_device_view::create(chrono_rhs_col),
*cudf::column_device_view::create(chrono_rhs_col)}));
}
TYPED_TEST(ChronoColumnTest, ChronoFactoryNullMaskAsParm)
{
rmm::device_buffer null_mask{create_null_mask(this->size(), cudf::mask_state::ALL_NULL)};
auto column = make_fixed_width_column(cudf::data_type{cudf::type_to_id<TypeParam>()},
this->size(),
std::move(null_mask),
this->size());
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(this->size(), column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(ChronoColumnTest, ChronoFactoryNullMaskAsEmptyParm)
{
rmm::device_buffer null_mask{};
auto column = make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), std::move(null_mask), 0);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/range_comparator_test.cu
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <src/rolling/detail/range_comparator_utils.cuh>
struct RangeComparatorTest : cudf::test::BaseFixture {};
template <typename T>
struct RangeComparatorTypedTest : RangeComparatorTest {};
using TestTypes =
cudf::test::Concat<cudf::test::IntegralTypesNotBool, cudf::test::FloatingPointTypes>;
TYPED_TEST_SUITE(RangeComparatorTypedTest, TestTypes);
TYPED_TEST(RangeComparatorTypedTest, TestLessComparator)
{
auto const less = cudf::detail::nan_aware_less{};
auto constexpr nine = TypeParam{9};
auto constexpr ten = TypeParam{10};
EXPECT_TRUE(less(nine, ten));
EXPECT_FALSE(less(ten, nine));
EXPECT_FALSE(less(ten, ten));
if constexpr (std::is_floating_point_v<TypeParam>) {
auto constexpr NaN = std::numeric_limits<TypeParam>::quiet_NaN();
auto constexpr Inf = std::numeric_limits<TypeParam>::infinity();
// NaN.
EXPECT_FALSE(less(NaN, ten));
EXPECT_FALSE(less(NaN, NaN));
EXPECT_FALSE(less(NaN, Inf));
EXPECT_FALSE(less(NaN, -Inf));
// Infinity.
EXPECT_TRUE(less(Inf, NaN));
EXPECT_FALSE(less(Inf, Inf));
EXPECT_FALSE(less(Inf, ten));
EXPECT_FALSE(less(Inf, -Inf));
// -Infinity.
EXPECT_TRUE(less(-Inf, NaN));
EXPECT_TRUE(less(-Inf, Inf));
EXPECT_TRUE(less(-Inf, ten));
EXPECT_FALSE(less(-Inf, -Inf));
// Finite.
EXPECT_TRUE(less(ten, NaN));
EXPECT_TRUE(less(ten, Inf));
EXPECT_FALSE(less(ten, -Inf));
}
}
TYPED_TEST(RangeComparatorTypedTest, TestGreaterComparator)
{
auto const greater = cudf::detail::nan_aware_greater{};
auto constexpr nine = TypeParam{9};
auto constexpr ten = TypeParam{10};
EXPECT_FALSE(greater(nine, ten));
EXPECT_TRUE(greater(ten, nine));
EXPECT_FALSE(greater(ten, ten));
if constexpr (std::is_floating_point_v<TypeParam>) {
auto constexpr NaN = std::numeric_limits<TypeParam>::quiet_NaN();
auto constexpr Inf = std::numeric_limits<TypeParam>::infinity();
// NaN.
EXPECT_TRUE(greater(NaN, ten));
EXPECT_FALSE(greater(NaN, NaN));
EXPECT_TRUE(greater(NaN, Inf));
EXPECT_TRUE(greater(NaN, -Inf));
// Infinity.
EXPECT_FALSE(greater(Inf, NaN));
EXPECT_FALSE(greater(Inf, Inf));
EXPECT_TRUE(greater(Inf, ten));
EXPECT_TRUE(greater(Inf, -Inf));
// -Infinity.
EXPECT_FALSE(greater(-Inf, NaN));
EXPECT_FALSE(greater(-Inf, Inf));
EXPECT_FALSE(greater(-Inf, ten));
EXPECT_FALSE(greater(-Inf, -Inf));
// Finite.
EXPECT_FALSE(greater(ten, NaN));
EXPECT_FALSE(greater(ten, Inf));
EXPECT_TRUE(greater(ten, -Inf));
}
}
TYPED_TEST(RangeComparatorTypedTest, TestAddSafe)
{
using T = TypeParam;
EXPECT_EQ(cudf::detail::add_safe(T{3}, T{4}), T{7});
if constexpr (cuda::std::numeric_limits<T>::is_signed) {
EXPECT_EQ(cudf::detail::add_safe(T{-3}, T{4}), T{1});
}
auto constexpr max = cuda::std::numeric_limits<T>::max();
EXPECT_EQ(cudf::detail::add_safe(T{max - 5}, T{4}), max - 1);
EXPECT_EQ(cudf::detail::add_safe(T{max - 4}, T{4}), max);
EXPECT_EQ(cudf::detail::add_safe(T{max - 3}, T{4}), max);
EXPECT_EQ(cudf::detail::add_safe(max, T{4}), max);
if constexpr (std::is_floating_point_v<T>) {
auto const NaN = std::numeric_limits<T>::quiet_NaN();
auto const Inf = std::numeric_limits<T>::infinity();
EXPECT_TRUE(std::isnan(cudf::detail::add_safe(NaN, T{4})));
EXPECT_EQ(cudf::detail::add_safe(Inf, T{4}), Inf);
}
}
TYPED_TEST(RangeComparatorTypedTest, TestSubtractSafe)
{
using T = TypeParam;
EXPECT_EQ(cudf::detail::subtract_safe(T{4}, T{3}), T{1});
if constexpr (cuda::std::numeric_limits<T>::is_signed) {
EXPECT_EQ(cudf::detail::subtract_safe(T{3}, T{4}), T{-1});
}
auto constexpr min = cuda::std::numeric_limits<T>::lowest();
EXPECT_EQ(cudf::detail::subtract_safe(T{min + 5}, T{4}), min + 1);
EXPECT_EQ(cudf::detail::subtract_safe(T{min + 4}, T{4}), min);
EXPECT_EQ(cudf::detail::subtract_safe(T{min + 3}, T{4}), min);
EXPECT_EQ(cudf::detail::subtract_safe(min, T{4}), min);
if constexpr (std::is_floating_point_v<T>) {
auto const NaN = std::numeric_limits<T>::quiet_NaN();
auto const Inf = std::numeric_limits<T>::infinity();
EXPECT_TRUE(std::isnan(cudf::detail::subtract_safe(NaN, T{4})));
EXPECT_EQ(cudf::detail::subtract_safe(-Inf, T{4}), -Inf);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/offset_row_window_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/groupby.hpp>
#include <cudf/lists/explode.hpp>
#include <cudf/rolling.hpp>
#include <cudf/utilities/default_stream.hpp>
template <typename T>
using fwcw = cudf::test::fixed_width_column_wrapper<T>;
template <typename T>
using decimals_column = cudf::test::fixed_point_column_wrapper<T>;
using ints_column = fwcw<int32_t>;
using bigints_column = fwcw<int64_t>;
using strings_column = cudf::test::strings_column_wrapper;
using lists_column = cudf::test::lists_column_wrapper<int32_t>;
using column_ptr = std::unique_ptr<cudf::column>;
using cudf::test::iterators::all_nulls;
using cudf::test::iterators::no_nulls;
using cudf::test::iterators::nulls_at;
auto constexpr null = int32_t{0}; // NULL representation for int32_t;
struct OffsetRowWindowTest : public cudf::test::BaseFixture {
static ints_column const _keys; // {0, 0, 0, 0, 0, 0, 1, 1, 1, 1};
static ints_column const _values; // {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
struct rolling_runner {
cudf::window_bounds _preceding, _following;
cudf::size_type _min_periods;
bool _grouped = true;
rolling_runner(cudf::window_bounds const& preceding,
cudf::window_bounds const& following,
cudf::size_type min_periods_ = 1)
: _preceding{preceding}, _following{following}, _min_periods{min_periods_}
{
}
rolling_runner& min_periods(cudf::size_type min_periods_)
{
_min_periods = min_periods_;
return *this;
}
rolling_runner& grouped(bool grouped_)
{
_grouped = grouped_;
return *this;
}
std::unique_ptr<cudf::column> operator()(cudf::rolling_aggregation const& agg) const
{
auto const grouping_keys =
_grouped ? std::vector<cudf::column_view>{_keys} : std::vector<cudf::column_view>{};
return cudf::grouped_rolling_window(
cudf::table_view{grouping_keys}, _values, _preceding, _following, _min_periods, agg);
}
};
};
ints_column const OffsetRowWindowTest::_keys{0, 0, 0, 0, 0, 0, 1, 1, 1, 1};
ints_column const OffsetRowWindowTest::_values{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const AGG_COUNT_NON_NULL =
cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE);
auto const AGG_COUNT_ALL =
cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE);
auto const AGG_MIN = cudf::make_min_aggregation<cudf::rolling_aggregation>();
auto const AGG_MAX = cudf::make_max_aggregation<cudf::rolling_aggregation>();
auto const AGG_SUM = cudf::make_sum_aggregation<cudf::rolling_aggregation>();
auto const AGG_COLLECT_LIST = cudf::make_collect_list_aggregation<cudf::rolling_aggregation>();
TEST_F(OffsetRowWindowTest, OffsetRowWindow_Grouped_3_to_Minus_1)
{
auto const preceding = cudf::window_bounds::get(3);
auto const following = cudf::window_bounds::get(-1);
auto run_rolling = rolling_runner{preceding, following}.min_periods(1).grouped(true);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{0, 1, 2, 2, 2, 2, 0, 1, 2, 2}, nulls_at({0, 6})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{0, 1, 2, 2, 2, 2, 0, 1, 2, 2}, nulls_at({0, 6})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_MIN), ints_column{{null, 0, 0, 1, 2, 3, null, 6, 6, 7}, nulls_at({0, 6})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_MAX), ints_column{{null, 0, 1, 2, 3, 4, null, 6, 7, 8}, nulls_at({0, 6})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_SUM),
bigints_column{{null, 0, 1, 3, 5, 7, null, 6, 13, 15}, nulls_at({0, 6})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{}, {0}, {0, 1}, {1, 2}, {2, 3}, {3, 4}, {}, {6}, {6, 7}, {7, 8}},
nulls_at({0, 6})});
run_rolling.min_periods(0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{0, 1, 2, 2, 2, 2, 0, 1, 2, 2}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{0, 1, 2, 2, 2, 2, 0, 1, 2, 2}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{}, {0}, {0, 1}, {1, 2}, {2, 3}, {3, 4}, {}, {6}, {6, 7}, {7, 8}}, no_nulls()});
}
TEST_F(OffsetRowWindowTest, OffsetRowWindow_Ungrouped_3_to_Minus_1)
{
auto const preceding = cudf::window_bounds::get(3);
auto const following = cudf::window_bounds::get(-1);
auto run_rolling = rolling_runner{preceding, following}.min_periods(1).grouped(false);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{0, 1, 2, 2, 2, 2, 2, 2, 2, 2}, nulls_at({0})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{0, 1, 2, 2, 2, 2, 2, 2, 2, 2}, nulls_at({0})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_MIN),
ints_column{{null, 0, 0, 1, 2, 3, 4, 5, 6, 7}, nulls_at({0})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_MAX),
ints_column{{null, 0, 1, 2, 3, 4, 5, 6, 7, 8}, nulls_at({0})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_SUM), bigints_column{{null, 0, 1, 3, 5, 7, 9, 11, 13, 15}, nulls_at({0})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{}, {0}, {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}},
nulls_at({0})});
run_rolling.min_periods(0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{0, 1, 2, 2, 2, 2, 2, 2, 2, 2}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{0, 1, 2, 2, 2, 2, 2, 2, 2, 2}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{}, {0}, {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}},
no_nulls()});
}
TEST_F(OffsetRowWindowTest, OffsetRowWindow_Grouped_0_to_2)
{
auto const preceding = cudf::window_bounds::get(0);
auto const following = cudf::window_bounds::get(2);
auto run_rolling = rolling_runner{preceding, following}.min_periods(1).grouped(true);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{2, 2, 2, 2, 1, null, 2, 2, 1, null}, nulls_at({5, 9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COUNT_ALL),
ints_column{{2, 2, 2, 2, 1, null, 2, 2, 1, null}, nulls_at({5, 9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_MIN), ints_column{{1, 2, 3, 4, 5, null, 7, 8, 9, null}, nulls_at({5, 9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_MAX), ints_column{{2, 3, 4, 5, 5, null, 8, 9, 9, null}, nulls_at({5, 9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_SUM),
bigints_column{{3, 5, 7, 9, 5, null, 15, 17, 9, null}, nulls_at({5, 9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5}, {}, {7, 8}, {8, 9}, {9}, {}},
nulls_at({5, 9})});
run_rolling.min_periods(0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{2, 2, 2, 2, 1, 0, 2, 2, 1, 0}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{2, 2, 2, 2, 1, 0, 2, 2, 1, 0}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5}, {}, {7, 8}, {8, 9}, {9}, {}}, no_nulls});
}
TEST_F(OffsetRowWindowTest, OffsetRowWindow_Ungrouped_0_to_2)
{
auto const preceding = cudf::window_bounds::get(0);
auto const following = cudf::window_bounds::get(2);
auto run_rolling = rolling_runner{preceding, following}.min_periods(1).grouped(false);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{2, 2, 2, 2, 2, 2, 2, 2, 1, null}, nulls_at({9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{2, 2, 2, 2, 2, 2, 2, 2, 1, null}, nulls_at({9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_MIN),
ints_column{{1, 2, 3, 4, 5, 6, 7, 8, 9, null}, nulls_at({9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_MAX),
ints_column{{2, 3, 4, 5, 6, 7, 8, 9, 9, null}, nulls_at({9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_SUM), bigints_column{{3, 5, 7, 9, 11, 13, 15, 17, 9, null}, nulls_at({9})});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9}, {}},
nulls_at({9})});
run_rolling.min_periods(0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_NON_NULL),
ints_column{{2, 2, 2, 2, 2, 2, 2, 2, 1, 0}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*run_rolling(*AGG_COUNT_ALL),
ints_column{{2, 2, 2, 2, 2, 2, 2, 2, 1, 0}, no_nulls()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*run_rolling(*AGG_COLLECT_LIST),
lists_column{{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9}, {}},
no_nulls});
}
// To test that preceding bounds are clamped correctly at group boundaries.
TEST_F(OffsetRowWindowTest, TestNegativeBoundsClamp)
{
auto const grp_iter =
thrust::make_transform_iterator(thrust::make_counting_iterator(0), [](auto const& i) {
return i / 10; // 0-9 in the first group, 10-19 in the second, etc.
});
auto const agg_iter = thrust::make_constant_iterator(1);
auto const grp = ints_column(grp_iter, grp_iter + 30);
auto const agg = ints_column(agg_iter, agg_iter + 30);
auto const min_periods = 0;
auto const rolling_sum = [&](auto const preceding, auto const following) {
return cudf::grouped_rolling_window(
cudf::table_view{{grp}}, agg, preceding, following, min_periods, *AGG_SUM);
};
// Testing negative preceding.
for (auto const preceding : {0, -1, -2, -5, -10, -20, -50}) {
auto const results = rolling_sum(preceding, 100);
auto const expected_fun = [&](auto const& i) {
assert(preceding < 1);
auto const index_in_group = i % 10;
auto const start = std::min(-(preceding - 1) + index_in_group, 10);
return int64_t{10 - start};
};
auto const expected_iter =
thrust::make_transform_iterator(thrust::make_counting_iterator(0), expected_fun);
auto const expected = bigints_column(expected_iter, expected_iter + 30, no_nulls());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
// Testing negative following.
for (auto const following : {-1, -2, -5, -10, -20, -50}) {
auto const results = rolling_sum(100, following);
auto const expected_fun = [&](auto const& i) {
assert(following < 0);
auto const index_in_group = i % 10;
auto const end = std::max(index_in_group + following, -1);
return int64_t{end + 1};
};
auto const expected_iter =
thrust::make_transform_iterator(thrust::make_counting_iterator(0), expected_fun);
auto const expected = bigints_column(expected_iter, expected_iter + 30, no_nulls());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(OffsetRowWindowTest, CheckGroupBoundaries)
{
auto grp_iter =
thrust::make_transform_iterator(thrust::make_counting_iterator(0), [](auto const& i) {
if (i < 10) return 1;
if (i < 20) return 2;
return 3;
});
auto const grp = ints_column(grp_iter, grp_iter + 30);
auto const agg = ints_column(grp_iter, grp_iter + 30);
{
auto const results =
cudf::grouped_rolling_window(cudf::table_view{{grp}},
agg,
-80,
100,
1,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto const null_iter = thrust::make_constant_iterator<int32_t>(null);
auto const expected = ints_column(null_iter, null_iter + 30, all_nulls());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
{
auto const results =
cudf::grouped_rolling_window(cudf::table_view{{grp}},
agg,
-1,
4,
1,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto const expected =
ints_column{{1, 1, 1, 1, 1, 1, 1, 1, null, null, 2, 2, 2, 2, 2,
2, 2, 2, null, null, 3, 3, 3, 3, 3, 3, 3, 3, null, null},
nulls_at({8, 9, 18, 19, 28, 29})};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(results->view(), expected);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/nth_element_test.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/groupby.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/rolling.hpp>
#include <gtest/gtest-typed-test.h>
#include <rmm/device_buffer.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <memory>
#include <optional>
auto constexpr X = int32_t{0}; // Placeholder for null.
template <typename T>
using fwcw = cudf::test::fixed_width_column_wrapper<T>;
using grouping_keys_column = fwcw<int32_t>;
/// Rolling test executor with fluent interface.
class rolling_exec {
cudf::size_type _preceding{1};
cudf::size_type _following{0};
cudf::size_type _min_periods{1};
cudf::column_view _grouping;
cudf::column_view _input;
cudf::null_policy _null_handling = cudf::null_policy::INCLUDE;
public:
rolling_exec& preceding(cudf::size_type preceding)
{
_preceding = preceding;
return *this;
}
rolling_exec& following(cudf::size_type following)
{
_following = following;
return *this;
}
rolling_exec& min_periods(cudf::size_type min_periods)
{
_min_periods = min_periods;
return *this;
}
rolling_exec& grouping(cudf::column_view grouping)
{
_grouping = grouping;
return *this;
}
rolling_exec& input(cudf::column_view input)
{
_input = input;
return *this;
}
rolling_exec& null_handling(cudf::null_policy null_handling)
{
_null_handling = null_handling;
return *this;
}
std::unique_ptr<cudf::column> test_grouped_nth_element(
cudf::size_type n, std::optional<cudf::null_policy> null_handling = std::nullopt) const
{
return cudf::grouped_rolling_window(
cudf::table_view{{_grouping}},
_input,
_preceding,
_following,
_min_periods,
*cudf::make_nth_element_aggregation<cudf::rolling_aggregation>(
n, null_handling.value_or(_null_handling)));
}
std::unique_ptr<cudf::column> test_nth_element(
cudf::size_type n, std::optional<cudf::null_policy> null_handling = std::nullopt) const
{
return cudf::rolling_window(_input,
_preceding,
_following,
_min_periods,
*cudf::make_nth_element_aggregation<cudf::rolling_aggregation>(
n, null_handling.value_or(_null_handling)));
}
};
struct NthElementTest : public cudf::test::BaseFixture {};
template <typename T>
struct NthElementTypedTest : public NthElementTest {};
using TypesForTest = cudf::test::Concat<cudf::test::IntegralTypes,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(NthElementTypedTest, TypesForTest);
TYPED_TEST(NthElementTypedTest, RollingWindow)
{
using T = TypeParam;
auto const input_col =
fwcw<T>{{0, 1, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, 20}, cudf::test::iterators::null_at(5)};
auto tester = rolling_exec{}.input(input_col);
{
// Window of 5 elements, min-periods == 1.
tester.preceding(3).following(2).min_periods(1);
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element,
fwcw<T>{{0, 0, 0, 1, 2, 3, 4, X, 10, 11, 12, 13, 14, 15}, cudf::test::iterators::null_at(7)});
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element,
fwcw<T>{{2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, 20, 20, 20},
cudf::test::iterators::null_at(3)});
auto const third_element = tester.test_nth_element(2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*third_element,
fwcw<T>{{2, 2, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, 20},
cudf::test::iterators::null_at(5)});
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element,
fwcw<T>{{1, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, 16, 16},
cudf::test::iterators::null_at(4)});
}
{
// Window of 3 elements, min-periods == 3. Expect null elements at column margins.
tester.preceding(2).following(1).min_periods(3);
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element,
fwcw<T>{{X, 0, 1, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, X},
cudf::test::iterators::nulls_at({0, 6, 13})});
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element,
fwcw<T>{{X, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, 20, X},
cudf::test::iterators::nulls_at({0, 4, 13})});
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element,
fwcw<T>{{X, 1, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, X},
cudf::test::iterators::nulls_at({0, 5, 13})});
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element,
fwcw<T>{{X, 1, 2, 3, 4, X, 10, 11, 12, 13, 14, 15, 16, X},
cudf::test::iterators::nulls_at({0, 5, 13})});
}
{
// Too large values for `min_periods`. No window has enough periods.
tester.preceding(2).following(1).min_periods(4);
auto const all_null_values =
fwcw<T>{{X, X, X, X, X, X, X, X, X, X, X, X, X, X}, cudf::test::iterators::all_nulls()};
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element, all_null_values);
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element, all_null_values);
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element, all_null_values);
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element, all_null_values);
}
}
TYPED_TEST(NthElementTypedTest, RollingWindowExcludeNulls)
{
using T = TypeParam;
auto const input_col =
fwcw<T>{{0, X, X, X, 4, X, 6, 7}, cudf::test::iterators::nulls_at({1, 2, 3, 5})};
auto tester = rolling_exec{}.input(input_col);
{
// Window of 5 elements, min-periods == 2.
tester.preceding(3).following(2).min_periods(1).null_handling(cudf::null_policy::EXCLUDE);
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element, fwcw<T>{{0, 0, 0, 4, 4, 4, 4, 6}, cudf::test::iterators::no_nulls()});
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element, fwcw<T>{{0, 0, 4, 4, 6, 7, 7, 7}, cudf::test::iterators::no_nulls()});
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_element,
fwcw<T>{{X, X, 4, X, 6, 6, 6, 7}, cudf::test::iterators::nulls_at({0, 1, 3})});
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_last_element,
fwcw<T>{{X, X, 0, X, 4, 6, 6, 6}, cudf::test::iterators::nulls_at({0, 1, 3})});
}
{
// Window of 3 elements, min-periods == 1.
tester.preceding(2).following(1).min_periods(1).null_handling(cudf::null_policy::EXCLUDE);
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element, fwcw<T>{{0, 0, X, 4, 4, 4, 6, 6}, cudf::test::iterators::null_at(2)});
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element, fwcw<T>{{0, 0, X, 4, 4, 6, 7, 7}, cudf::test::iterators::null_at(2)});
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_element,
fwcw<T>{{X, X, X, X, X, 6, 7, 7}, cudf::test::iterators::nulls_at({0, 1, 2, 3, 4})});
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_last_element,
fwcw<T>{{X, X, X, X, X, 4, 6, 6}, cudf::test::iterators::nulls_at({0, 1, 2, 3, 4})});
}
{
// Too large values for `min_periods`. No window has enough periods.
tester.preceding(2).following(1).min_periods(4);
auto const all_null_values =
fwcw<T>{{X, X, X, X, X, X, X, X}, cudf::test::iterators::all_nulls()};
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element, all_null_values);
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element, all_null_values);
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element, all_null_values);
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element, all_null_values);
}
}
TYPED_TEST(NthElementTypedTest, GroupedRollingWindow)
{
using T = TypeParam;
// clang-format off
auto const group_col = fwcw<int32_t>{0, 0, 0, 0, 0, 0,
10, 10, 10, 10, 10, 10, 10,
20};
auto const input_col = fwcw<T> {0, 1, 2, 3, 4, 5, // Group 0
10, 11, 12, 13, 14, 15, 16, // Group 10
20}; // Group 20
// clang-format on
auto tester = rolling_exec{}.grouping(group_col).input(input_col);
{
// Window of 5 elements, min-periods == 1.
tester.preceding(3).following(2).min_periods(1);
auto const first_element = tester.test_grouped_nth_element(0);
// clang-format off
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element,
fwcw<T>{{0, 0, 0, 1, 2, 3, // Group 0
10, 10, 10, 11, 12, 13, 14, // Group 10
20}, // Group 20
cudf::test::iterators::no_nulls()});
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element,
fwcw<T>{{2, 3, 4, 5, 5, 5, // Group 0
12, 13, 14, 15, 16, 16, 16, // Group 10
20}, // Group 20
cudf::test::iterators::no_nulls()});
auto const third_element = tester.test_grouped_nth_element(2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*third_element,
fwcw<T>{{2, 2, 2, 3, 4, 5, // Group 0
12, 12, 12, 13, 14, 15, 16, // Group 10
X}, // Group 20
cudf::test::iterators::null_at(13)});
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element,
fwcw<T>{{1, 2, 3, 4, 4, 4, // Group 0
11, 12, 13, 14, 15, 15, 15, // Group 10
X}, // Group 20
cudf::test::iterators::null_at(13)});
// clang-format on
}
{
// Window of 3 elements, min-periods == 3. Expect null elements at group margins.
tester.preceding(2).following(1).min_periods(3);
auto const first_element = tester.test_grouped_nth_element(0);
// clang-format off
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element,
fwcw<T>{{X, 0, 1, 2, 3, X, // Group 0
X, 10, 11, 12, 13, 14, X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element,
fwcw<T>{{X, 2, 3, 4, 5, X, // Group 0
X, 12, 13, 14, 15, 16, X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
auto const second_element = tester.test_grouped_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element,
fwcw<T>{{X, 1, 2, 3, 4, X, // Group 0
X, 11, 12, 13, 14, 15, X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element,
fwcw<T>{{X, 1, 2, 3, 4, X, // Group 0
X, 11, 12, 13, 14, 15, X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
// clang-format on
}
{
// Too large values for `min_periods`. No window has enough periods.
tester.preceding(2).following(1).min_periods(4);
auto const all_null_values =
fwcw<T>{{X, X, X, X, X, X, X, X, X, X, X, X, X, X}, cudf::test::iterators::all_nulls()};
auto const first_element = tester.test_grouped_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element, all_null_values);
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element, all_null_values);
auto const second_element = tester.test_grouped_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element, all_null_values);
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element, all_null_values);
}
}
TYPED_TEST(NthElementTypedTest, GroupedRollingWindowExcludeNulls)
{
using T = TypeParam;
// clang-format off
auto const group_col = fwcw<int32_t>{0, 0, 0, 0, 0, 0,
10, 10, 10, 10, 10, 10, 10,
20,
30};
auto const input_col = fwcw<T> {{0, 1, X, 3, X, 5, // Group 0
10, X, X, 13, 14, 15, 16, // Group 10
20, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({2, 4, 7, 8, 14})};
// clang-format on
auto tester = rolling_exec{}.grouping(group_col).input(input_col);
{
// Window of 5 elements, min-periods == 1.
tester.preceding(3).following(2).min_periods(1).null_handling(cudf::null_policy::EXCLUDE);
auto const first_element = tester.test_grouped_nth_element(0);
// clang-format off
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element,
fwcw<T>{{0, 0, 0, 1, 3, 3, // Group 0
10, 10, 10, 13, 13, 13, 14, // Group 10
20, // Group 20
X}, // Group 30
cudf::test::iterators::null_at(14)});
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element,
fwcw<T>{{1, 3, 3, 5, 5, 5, // Group 0
10, 13, 14, 15, 16, 16, 16, // Group 10
20, // Group 20
X}, // Group 30
cudf::test::iterators::null_at(14)});
auto const third_element = tester.test_grouped_nth_element(2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*third_element,
fwcw<T>{{X, 3, 3, 5, X, X, // Group 0
X, X, 14, 15, 15, 15, 16, // Group 10
X, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({0, 4, 5, 6, 7, 13, 14})});
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element,
fwcw<T>{{0, 1, 1, 3, 3, 3, // Group 0
X, 10, 13, 14, 15, 15, 15, // Group 10
X, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({6, 13, 14})});
// clang-format on
}
{
// Window of 3 elements, min-periods == 3. Expect null elements at group margins.
tester.preceding(2).following(1).min_periods(3);
auto const first_element = tester.test_grouped_nth_element(0);
// clang-format off
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element,
fwcw<T>{{X, 0, 1, 3, 3, X, // Group 0
X, 10, 13, 13, 13, 14, X, // Group 10
X, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13, 14})});
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element,
fwcw<T>{{X, 1, 3, 3, 5, X, // Group 0
X, 10, 13, 14, 15, 16, X, // Group 10
X, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13, 14})});
auto const second_element = tester.test_grouped_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element,
fwcw<T>{{X, 1, 3, X, 5, X, // Group 0
X, X, X, 14, 14, 15, X, // Group 10
X, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({0, 3, 5, 6, 7, 8, 12, 13, 14})});
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element,
fwcw<T>{{X, 0, 1, X, 3, X, // Group 0
X, X, X, 13, 14, 15, X, // Group 10
X, // Group 20
X}, // Group 30
cudf::test::iterators::nulls_at({0, 3, 5, 6, 7, 8, 12, 13, 14})});
// clang-format on
}
{
// Too large values for `min_periods`. No window has enough periods.
tester.preceding(2).following(1).min_periods(4);
auto const all_null_values =
fwcw<T>{{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X}, cudf::test::iterators::all_nulls()};
auto const first_element = tester.test_grouped_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element, all_null_values);
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element, all_null_values);
auto const second_element = tester.test_grouped_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element, all_null_values);
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element, all_null_values);
}
}
TYPED_TEST(NthElementTypedTest, EmptyInput)
{
using T = TypeParam;
auto const group_col = fwcw<int32_t>{};
auto const input_col = fwcw<T>{};
auto tester = rolling_exec{}.grouping(group_col).input(input_col).preceding(3).following(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*tester.test_grouped_nth_element(0), fwcw<T>{});
}
TEST_F(NthElementTest, RollingWindowOnStrings)
{
using strings = cudf::test::strings_column_wrapper;
auto constexpr X = ""; // Placeholder for null string.
auto const input_col =
strings{{"", "1", "22", "333", "4444", "", "10", "11", "12", "13", "14", "15", "16", "20"},
cudf::test::iterators::null_at(5)};
auto tester = rolling_exec{}.input(input_col);
{
// Window of 5 elements, min-periods == 1.
tester.preceding(3).following(2).min_periods(1);
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element,
strings{{"", "", "", "1", "22", "333", "4444", X, "10", "11", "12", "13", "14", "15"},
cudf::test::iterators::null_at(7)});
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element,
strings{{"22", "333", "4444", X, "10", "11", "12", "13", "14", "15", "16", "20", "20", "20"},
cudf::test::iterators::null_at(3)});
auto const third_element = tester.test_nth_element(2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*third_element,
strings{{"22", "22", "22", "333", "4444", X, "10", "11", "12", "13", "14", "15", "16", "20"},
cudf::test::iterators::null_at(5)});
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_last_element,
strings{{"1", "22", "333", "4444", X, "10", "11", "12", "13", "14", "15", "16", "16", "16"},
cudf::test::iterators::null_at(4)});
}
{
// Window of 3 elements, min-periods == 3. Expect null elements at column margins.
tester.preceding(2).following(1).min_periods(3);
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element,
strings{{X, "", "1", "22", "333", "4444", X, "10", "11", "12", "13", "14", "15", X},
cudf::test::iterators::nulls_at({0, 6, 13})});
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element,
strings{{X, "22", "333", "4444", X, "10", "11", "12", "13", "14", "15", "16", "20", X},
cudf::test::iterators::nulls_at({0, 4, 13})});
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_element,
strings{{X, "1", "22", "333", "4444", X, "10", "11", "12", "13", "14", "15", "16", X},
cudf::test::iterators::nulls_at({0, 5, 13})});
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_last_element,
strings{{X, "1", "22", "333", "4444", X, "10", "11", "12", "13", "14", "15", "16", X},
cudf::test::iterators::nulls_at({0, 5, 13})});
}
{
// Too large values for `min_periods`. No window has enough periods.
tester.preceding(2).following(1).min_periods(4);
auto const all_null_values =
strings{{X, X, X, X, X, X, X, X, X, X, X, X, X, X}, cudf::test::iterators::all_nulls()};
auto const first_element = tester.test_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element, all_null_values);
auto const last_element = tester.test_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element, all_null_values);
auto const second_element = tester.test_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element, all_null_values);
auto const second_last_element = tester.test_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element, all_null_values);
}
}
TEST_F(NthElementTest, GroupedRollingWindowForStrings)
{
using strings = cudf::test::strings_column_wrapper;
auto constexpr X = ""; // Placeholder for null strings.
// clang-format off
auto const group_col = fwcw<int32_t>{0, 0, 0, 0, 0, 0,
10, 10, 10, 10, 10, 10, 10,
20};
auto const input_col = strings{{"", "1", "22", "333", "4444", X, // Group 0
"10", "11", "12", "13", "14", "15", "16", // Group 10
"20"}, // Group 20
cudf::test::iterators::null_at(5)};
// clang-format on
auto tester = rolling_exec{}.grouping(group_col).input(input_col);
{
// Window of 5 elements, min-periods == 1.
tester.preceding(3).following(2).min_periods(1);
auto const first_element = tester.test_grouped_nth_element(0);
// clang-format off
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element,
strings{{"", "", "", "1", "22", "333", // Group 0
"10", "10", "10", "11", "12", "13", "14", // Group 10
"20"}, // Group 20
cudf::test::iterators::no_nulls()});
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element,
strings{{"22", "333", "4444", X, X, X, // Group 0
"12", "13", "14", "15", "16", "16", "16", // Group 10
"20"}, // Group 20
cudf::test::iterators::nulls_at({3, 4, 5})});
auto const third_element = tester.test_grouped_nth_element(2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*third_element,
strings{{"22", "22", "22", "333", "4444", X, // Group 0
"12", "12", "12", "13", "14", "15", "16", // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({5, 13})});
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_last_element,
strings{{"1", "22", "333", "4444", "4444", "4444", // Group 0
"11", "12", "13", "14", "15", "15", "15", // Group 10
X}, // Group 20
cudf::test::iterators::null_at(13)});
// clang-format on
}
{
// Window of 3 elements, min-periods == 3. Expect null elements at group margins.
tester.preceding(2).following(1).min_periods(3);
auto const first_element = tester.test_grouped_nth_element(0);
// clang-format off
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*first_element,
strings{{X, "", "1", "22", "333", X, // Group 0
X, "10", "11", "12", "13", "14", X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*last_element,
strings{{X, "22", "333", "4444", X, X, // Group 0
X, "12", "13", "14", "15", "16", X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 4, 5, 6, 12, 13})});
auto const second_element = tester.test_grouped_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_element,
strings{{X, "1", "22", "333", "4444", X, // Group 0
X, "11", "12", "13", "14", "15", X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*second_last_element,
strings{{X, "1", "22", "333", "4444", X, // Group 0
X, "11", "12", "13", "14", "15", X, // Group 10
X}, // Group 20
cudf::test::iterators::nulls_at({0, 5, 6, 12, 13})});
// clang-format on
}
{
// Too large values for `min_periods`. No window has enough periods.
tester.preceding(2).following(1).min_periods(4);
auto const all_null_strings =
strings{{X, X, X, X, X, X, X, X, X, X, X, X, X, X}, cudf::test::iterators::all_nulls()};
auto const first_element = tester.test_grouped_nth_element(0);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*first_element, all_null_strings);
auto const last_element = tester.test_grouped_nth_element(-1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*last_element, all_null_strings);
auto const second_element = tester.test_grouped_nth_element(1);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_element, all_null_strings);
auto const second_last_element = tester.test_grouped_nth_element(-2);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*second_last_element, all_null_strings);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/grouped_rolling_range_test.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/column/column.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/rolling.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/bit.hpp>
#include <thrust/host_vector.h>
#include <thrust/iterator/counting_iterator.h>
#include <algorithm>
#include <vector>
template <typename T>
using fwcw = cudf::test::fixed_width_column_wrapper<T>;
template <typename T>
using decimals_column = cudf::test::fixed_point_column_wrapper<T>;
using ints_column = fwcw<int32_t>;
using bigints_column = fwcw<int64_t>;
using strings_column = cudf::test::strings_column_wrapper;
using column_ptr = std::unique_ptr<cudf::column>;
template <typename T>
struct BaseGroupedRollingRangeOrderByTest : cudf::test::BaseFixture {
// Stand-in for std::pow(10, n), but for integral return.
static constexpr std::array<int32_t, 6> pow10{1, 10, 100, 1000, 10000, 100000};
// Test data.
column_ptr const grouping_keys = ints_column{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}.release();
column_ptr const agg_values = ints_column{1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3}.release();
cudf::size_type const num_rows = grouping_keys->size();
/**
* @brief Get grouped rolling results for specified order-by column and range bounds.
*/
[[nodiscard]] column_ptr get_grouped_range_rolling_result(
cudf::range_window_bounds const& preceding,
cudf::range_window_bounds const& following,
cudf::column_view const& order_by_column,
cudf::rolling_aggregation const& agg,
cudf::order const& order = cudf::order::ASCENDING) const
{
return cudf::grouped_range_rolling_window(cudf::table_view{{grouping_keys->view()}},
order_by_column,
order,
agg_values->view(),
preceding,
following,
1, // min_periods
agg);
}
[[nodiscard]] column_ptr get_grouped_range_rolling_sum_result(
cudf::range_window_bounds const& preceding,
cudf::range_window_bounds const& following,
cudf::column_view const& order_by_column,
cudf::order const& order = cudf::order::ASCENDING) const
{
return get_grouped_range_rolling_result(
preceding,
following,
order_by_column,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>(),
order);
}
};
template <typename T>
struct GroupedRollingRangeOrderByNumericTest : public BaseGroupedRollingRangeOrderByTest<T> {
using base = BaseGroupedRollingRangeOrderByTest<T>;
using base::agg_values;
using base::get_grouped_range_rolling_sum_result;
using base::grouping_keys;
using base::num_rows;
static auto constexpr inf = std::numeric_limits<T>::infinity();
static auto constexpr nan = std::numeric_limits<T>::quiet_NaN();
[[nodiscard]] auto make_range_bounds(T const& value) const
{
return cudf::range_window_bounds::get(*cudf::make_fixed_width_scalar(value));
}
[[nodiscard]] auto make_unbounded_range_bounds() const
{
return cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<T>()});
}
/// Generate order-by column with values: [0, 100, 200, 300, ... 1100, 1200, 1300]
[[nodiscard]] column_ptr generate_order_by_column() const
{
auto const begin = thrust::make_transform_iterator(
thrust::make_counting_iterator<cudf::size_type>(0), [&](T const& i) -> T { return i * 100; });
return fwcw<T>(begin, begin + num_rows).release();
}
/// Generate order-by column with values: [-1400, -1300, -1200 ... -300, -200, -100]
[[nodiscard]] column_ptr generate_negative_order_by_column() const
{
auto const begin =
thrust::make_transform_iterator(thrust::make_counting_iterator<cudf::size_type>(0),
[&](T const& i) -> T { return (i - num_rows) * 100; });
return fwcw<T>(begin, begin + num_rows).release();
}
/**
* @brief Run grouped_rolling test with no nulls in the order-by column
*/
void run_test_no_null_oby() const
{
auto const preceding = make_range_bounds(T{200});
auto const following = make_range_bounds(T{100});
auto const order_by = generate_order_by_column();
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results = bigints_column{{2, 3, 4, 4, 4, 3, 4, 6, 8, 6, 6, 9, 12, 9},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
/**
* @brief Run grouped_rolling test with no nulls in the order-by column
*/
void run_test_negative_oby() const
{
auto const preceding = make_range_bounds(T{200});
auto const following = make_range_bounds(T{100});
auto const order_by = generate_negative_order_by_column();
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results = bigints_column{{2, 3, 4, 4, 4, 3, 4, 6, 8, 6, 6, 9, 12, 9},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
/**
* @brief Run grouped_rolling test with nulls in the order-by column
* (i.e. 2 nulls at the beginning of each group)
*
*/
void run_test_nulls_in_oby() const
{
auto const preceding = make_range_bounds(T{200});
auto const following = make_range_bounds(T{100});
// Nullify the first two rows of each group in the order_by column.
auto const nulled_order_by = [&] {
auto col = generate_order_by_column();
auto new_null_mask = create_null_mask(col->size(), cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(new_null_mask.data()),
0,
2,
false); // Nulls in first group.
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(new_null_mask.data()),
6,
8,
false); // Nulls in second group.
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(new_null_mask.data()),
10,
12,
false); // Nulls in third group.
col->set_null_mask(std::move(new_null_mask), 6);
return col;
}();
auto const results =
get_grouped_range_rolling_sum_result(preceding, following, *nulled_order_by);
auto const expected_results =
bigints_column{{2, 2, 2, 3, 4, 3, 4, 4, 4, 4, 6, 6, 6, 6}, cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
/**
* @brief Run grouped_rolling test with unbounded preceding and unbounded following.
*/
void run_test_unbounded_preceding_to_unbounded_following()
{
auto const order_by = generate_order_by_column();
auto const preceding = make_unbounded_range_bounds();
auto const following = make_unbounded_range_bounds();
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results = bigints_column{6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 12};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
/**
* @brief Run grouped_rolling test with unbounded preceding and current row.
*/
void run_test_unbounded_preceding_to_current_row()
{
auto const order_by = generate_order_by_column();
auto const unbounded_preceding = make_unbounded_range_bounds();
auto const current_row = make_range_bounds(T{0});
auto const results =
get_grouped_range_rolling_sum_result(unbounded_preceding, current_row, *order_by);
auto const expected_results = bigints_column{{1, 2, 3, 4, 5, 6, 2, 4, 6, 8, 3, 6, 9, 12},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
/**
* @brief Run grouped_rolling test with current row and unbounded following.
*/
void run_test_current_row_to_unbounded_following()
{
auto const order_by = generate_order_by_column();
auto const unbounded_following = make_unbounded_range_bounds();
auto const current_row = make_range_bounds(T{0});
auto const results =
get_grouped_range_rolling_sum_result(current_row, unbounded_following, *order_by);
auto const expected_results = bigints_column{{6, 5, 4, 3, 2, 1, 8, 6, 4, 2, 12, 9, 6, 3},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
[[nodiscard]] column_ptr generate_ascending_order_by_NaNs_infinity()
{
auto const vec =
std::vector<T>{-inf, -inf, -50, 0, 7, nan, -inf, 0, inf, nan, 0, inf, nan, nan};
return fwcw<T>(vec.begin(), vec.end()).release();
}
void run_test_bounded_ascending_order_by_NaNs_infinity()
{
auto const order_by = generate_ascending_order_by_NaNs_infinity();
auto const preceding = make_range_bounds(T{200});
auto const following = make_range_bounds(T{100});
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results =
bigints_column{{2, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 6, 6}, cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
void run_test_unbounded_ascending_order_by_NaNs_infinity()
{
auto const order_by = generate_ascending_order_by_NaNs_infinity();
{
// UNBOUNDED PRECEDING to CURRENT ROW.
auto const preceding = make_unbounded_range_bounds();
auto const following = make_range_bounds(T{0});
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results = bigints_column{{2, 2, 3, 4, 5, 6, 2, 4, 6, 8, 3, 6, 12, 12},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
{
// CURRENT ROW to UNBOUNDED FOLLOWING
auto const preceding = make_range_bounds(T{0});
auto const following = make_unbounded_range_bounds();
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results = bigints_column{{6, 6, 4, 3, 2, 1, 8, 6, 4, 2, 12, 9, 6, 6},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
{
// UNBOUNDED PRECEDING to UNBOUNDED FOLLOWING
auto const preceding = make_unbounded_range_bounds();
auto const following = make_unbounded_range_bounds();
auto const results = get_grouped_range_rolling_sum_result(preceding, following, *order_by);
auto const expected_results = bigints_column{6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 12};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
}
[[nodiscard]] column_ptr generate_descending_order_by_NaNs_infinity()
{
auto const vec =
std::vector<T>{nan, 7, 0, -50, -inf, -inf, nan, inf, 0, -inf, nan, nan, inf, 0};
return fwcw<T>(vec.begin(), vec.end()).release();
}
void run_test_bounded_descending_order_by_NaNs_infinity()
{
auto const order_by = generate_descending_order_by_NaNs_infinity();
auto const preceding = make_range_bounds(T{200});
auto const following = make_range_bounds(T{100});
auto const results = get_grouped_range_rolling_sum_result(
preceding, following, *order_by, cudf::order::DESCENDING);
auto const expected_results =
bigints_column{{1, 3, 3, 3, 2, 2, 2, 2, 2, 2, 6, 6, 3, 3}, cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
void run_test_unbounded_descending_order_by_NaNs_infinity()
{
auto const order_by = generate_descending_order_by_NaNs_infinity();
{
// UNBOUNDED PRECEDING to CURRENT ROW.
auto const preceding = make_unbounded_range_bounds();
auto const following = make_range_bounds(T{0});
auto const results = get_grouped_range_rolling_sum_result(
preceding, following, *order_by, cudf::order::DESCENDING);
auto const expected_results = bigints_column{{1, 2, 3, 4, 6, 6, 2, 4, 6, 8, 6, 6, 9, 12},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
{
// CURRENT ROW to UNBOUNDED FOLLOWING
auto const preceding = make_range_bounds(T{0});
auto const following = make_unbounded_range_bounds();
auto const results = get_grouped_range_rolling_sum_result(
preceding, following, *order_by, cudf::order::DESCENDING);
auto const expected_results = bigints_column{{6, 5, 4, 3, 2, 2, 8, 6, 4, 2, 12, 12, 6, 3},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
{
// UNBOUNDED PRECEDING to UNBOUNDED FOLLOWING
auto const preceding = make_unbounded_range_bounds();
auto const following = make_unbounded_range_bounds();
auto const results = get_grouped_range_rolling_sum_result(
preceding, following, *order_by, cudf::order::DESCENDING);
auto const expected_results = bigints_column{6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 12};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
}
};
template <typename FloatingPointType>
struct GroupedRollingRangeOrderByFloatingPointTest
: GroupedRollingRangeOrderByNumericTest<FloatingPointType> {};
TYPED_TEST_SUITE(GroupedRollingRangeOrderByFloatingPointTest, cudf::test::FloatingPointTypes);
TYPED_TEST(GroupedRollingRangeOrderByFloatingPointTest, BoundedRanges)
{
this->run_test_no_null_oby();
this->run_test_negative_oby();
this->run_test_nulls_in_oby();
this->run_test_bounded_ascending_order_by_NaNs_infinity();
this->run_test_bounded_descending_order_by_NaNs_infinity();
}
TYPED_TEST(GroupedRollingRangeOrderByFloatingPointTest, UnboundedRanges)
{
this->run_test_unbounded_preceding_to_unbounded_following();
this->run_test_unbounded_preceding_to_current_row();
this->run_test_current_row_to_unbounded_following();
this->run_test_unbounded_ascending_order_by_NaNs_infinity();
this->run_test_unbounded_descending_order_by_NaNs_infinity();
}
template <typename DecimalT>
struct GroupedRollingRangeOrderByDecimalTypedTest
: BaseGroupedRollingRangeOrderByTest<typename DecimalT::rep> {
using Rep = typename DecimalT::rep;
using base = BaseGroupedRollingRangeOrderByTest<Rep>;
using base::agg_values;
using base::grouping_keys;
using base::num_rows;
[[nodiscard]] auto make_fixed_point_range_bounds(typename DecimalT::rep value,
numeric::scale_type scale) const
{
return cudf::range_window_bounds::get(*cudf::make_fixed_point_scalar<DecimalT>(value, scale));
}
[[nodiscard]] auto make_unbounded_fixed_point_range_bounds() const
{
return cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<DecimalT>()});
}
/// For different scales, generate order_by column with
/// the same effective values: [0, 100, 200, 300, ... 1100, 1200, 1300]
/// For scale == -2, the rep values are: [0, 10000, 20000, 30000, ... 110000, 120000, 130000]
/// For scale == 2, the rep values are: [0, 1, 2, 3, ... 11, 12, 13]
[[nodiscard]] column_ptr generate_order_by_column(numeric::scale_type scale) const
{
auto const begin = thrust::make_transform_iterator(
thrust::make_counting_iterator<Rep>(0),
[&](auto i) -> Rep { return (i * 10000) / base::pow10[scale + 2]; });
return decimals_column<Rep>{begin, begin + num_rows, numeric::scale_type{scale}}.release();
}
/**
* @brief Scale the range bounds value to new scale, so that effective
* value remains identical.
*
* Keeping the effective range bounds value identical ensures that
* the expected result from grouped_rolling remains the same.
*/
[[nodiscard]] Rep rescale_range_value(Rep const& value_at_scale_0,
numeric::scale_type new_scale) const
{
// Scale -> Rep (for value == 200)
// -2 -> 20000
// -1 -> 2000
// 0 -> 200
// 1 -> 20
// 2 -> 2
return (value_at_scale_0 * 100) / base::pow10[new_scale + 2];
}
/**
* @brief Get grouped rolling results for specified order-by column and range scale
*
*/
[[nodiscard]] column_ptr get_grouped_range_rolling_result(
cudf::column_view const& order_by_column, numeric::scale_type const& range_scale) const
{
auto const preceding =
this->make_fixed_point_range_bounds(rescale_range_value(Rep{200}, range_scale), range_scale);
auto const following =
this->make_fixed_point_range_bounds(rescale_range_value(Rep{100}, range_scale), range_scale);
return base::get_grouped_range_rolling_sum_result(preceding, following, order_by_column);
}
/**
* @brief Run grouped_rolling test for specified order-by column scale with
* no nulls in the order-by column
*
*/
void run_test_no_null_oby(numeric::scale_type const& order_by_column_scale) const
{
auto const order_by = generate_order_by_column(order_by_column_scale);
// Run tests for range bounds generated for all scales >= oby_column_scale.
for (int32_t range_scale = order_by_column_scale; range_scale <= 2; ++range_scale) {
auto const results =
get_grouped_range_rolling_result(*order_by, numeric::scale_type{range_scale});
auto const expected_results = bigints_column{{2, 3, 4, 4, 4, 3, 4, 6, 8, 6, 6, 9, 12, 9},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
}
/**
* @brief Run grouped_rolling test for specified order-by column scale with
* nulls in the order-by column (i.e. 2 nulls at the beginning of each group)
*
*/
void run_test_nulls_in_oby(numeric::scale_type const& order_by_column_scale) const
{
// Nullify the first two rows of each group in the order_by column.
auto const nulled_order_by = [&] {
auto col = generate_order_by_column(order_by_column_scale);
auto new_null_mask = create_null_mask(col->size(), cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(new_null_mask.data()),
0,
2,
false); // Nulls in first group.
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(new_null_mask.data()),
6,
8,
false); // Nulls in second group.
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(new_null_mask.data()),
10,
12,
false); // Nulls in third group.
col->set_null_mask(std::move(new_null_mask), 6);
return col;
}();
// Run tests for range bounds generated for all scales >= oby_column_scale.
for (auto range_scale = int32_t{order_by_column_scale}; range_scale <= 2; ++range_scale) {
auto const results =
get_grouped_range_rolling_result(*nulled_order_by, numeric::scale_type{range_scale});
auto const expected_results = bigints_column{{2, 2, 2, 3, 4, 3, 4, 4, 4, 4, 6, 6, 6, 6},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
}
/**
* @brief Run grouped_rolling test for specified order-by column scale with
* unbounded preceding and unbounded following.
*
*/
void run_test_unbounded_preceding_to_unbounded_following(numeric::scale_type oby_column_scale)
{
auto const order_by = generate_order_by_column(oby_column_scale);
auto const preceding = make_unbounded_fixed_point_range_bounds();
auto const following = make_unbounded_fixed_point_range_bounds();
auto results =
cudf::grouped_range_rolling_window(cudf::table_view{{grouping_keys->view()}},
order_by->view(),
cudf::order::ASCENDING,
agg_values->view(),
preceding,
following,
1, // min_periods
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
auto expected_results = bigints_column{6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 12};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
/**
* @brief Run grouped_rolling test for specified order-by column scale with
* unbounded preceding and current row.
*
*/
void run_test_unbounded_preceding_to_current_row(numeric::scale_type oby_column_scale)
{
auto const order_by = generate_order_by_column(oby_column_scale);
auto const unbounded_preceding = make_unbounded_fixed_point_range_bounds();
for (int32_t range_scale = oby_column_scale; range_scale <= 2; ++range_scale) {
auto const current_row =
make_fixed_point_range_bounds(rescale_range_value(Rep{0}, numeric::scale_type{range_scale}),
numeric::scale_type{range_scale});
auto const results = cudf::grouped_range_rolling_window(
cudf::table_view{{grouping_keys->view()}},
order_by->view(),
cudf::order::ASCENDING,
agg_values->view(),
unbounded_preceding,
current_row,
1, // min_periods
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
auto expected_results = bigints_column{{1, 2, 3, 4, 5, 6, 2, 4, 6, 8, 3, 6, 9, 12},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
}
/**
* @brief Run grouped_rolling test for specified order-by column scale with
* current row and unbounded following.
*
*/
void run_test_current_row_to_unbounded_following(numeric::scale_type oby_column_scale)
{
auto const order_by = generate_order_by_column(oby_column_scale);
auto const unbounded_following = make_unbounded_fixed_point_range_bounds();
for (int32_t range_scale = oby_column_scale; range_scale <= 2; ++range_scale) {
auto const current_row =
make_fixed_point_range_bounds(rescale_range_value(Rep{0}, numeric::scale_type{range_scale}),
numeric::scale_type{range_scale});
auto const results = cudf::grouped_range_rolling_window(
cudf::table_view{{grouping_keys->view()}},
order_by->view(),
cudf::order::ASCENDING,
agg_values->view(),
current_row,
unbounded_following,
1, // min_periods
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
auto expected_results = bigints_column{{6, 5, 4, 3, 2, 1, 8, 6, 4, 2, 12, 9, 6, 3},
cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_results);
}
}
};
TYPED_TEST_SUITE(GroupedRollingRangeOrderByDecimalTypedTest, cudf::test::FixedPointTypes);
TYPED_TEST(GroupedRollingRangeOrderByDecimalTypedTest, BoundedRanges)
{
for (auto const order_by_column_scale : {-2, -1, 0, 1, 2}) {
auto const oby_scale = numeric::scale_type{order_by_column_scale};
this->run_test_no_null_oby(oby_scale);
this->run_test_nulls_in_oby(oby_scale);
}
}
TYPED_TEST(GroupedRollingRangeOrderByDecimalTypedTest, UnboundedRanges)
{
for (auto const order_by_scale : {-2, -1, 0, 1, 2}) {
auto const order_by_column_scale = numeric::scale_type{order_by_scale};
this->run_test_unbounded_preceding_to_unbounded_following(order_by_column_scale);
this->run_test_unbounded_preceding_to_current_row(order_by_column_scale);
this->run_test_current_row_to_unbounded_following(order_by_column_scale);
}
}
struct GroupedRollingRangeOrderByStringTest : public cudf::test::BaseFixture {
// Test data.
column_ptr const grouping_keys = ints_column{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}.release();
column_ptr const agg_values = ints_column{1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3}.release();
cudf::size_type const num_rows = grouping_keys->size();
cudf::size_type const min_periods = 1;
cudf::data_type const string_type{cudf::type_id::STRING};
cudf::range_window_bounds const unbounded_preceding =
cudf::range_window_bounds::unbounded(string_type);
cudf::range_window_bounds const unbounded_following =
cudf::range_window_bounds::unbounded(string_type);
cudf::range_window_bounds const current_row = cudf::range_window_bounds::current_row(string_type);
[[nodiscard]] static auto nullable_ints_column(std::initializer_list<int> const& ints)
{
return ints_column{ints, cudf::test::iterators::no_nulls()};
}
[[nodiscard]] auto get_count_over_partitioned_window(
cudf::column_view const& order_by,
cudf::order const& order,
cudf::range_window_bounds const& preceding,
cudf::range_window_bounds const& following) const
{
return cudf::grouped_range_rolling_window(
cudf::table_view{{*grouping_keys}},
order_by,
order,
*agg_values,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
}
[[nodiscard]] auto get_count_over_unpartitioned_window(
cudf::column_view const& order_by,
cudf::order const& order,
cudf::range_window_bounds const& preceding,
cudf::range_window_bounds const& following) const
{
return cudf::grouped_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{}},
order_by,
order,
*agg_values,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
}
};
TEST_F(GroupedRollingRangeOrderByStringTest, Ascending_Partitioned_NoNulls)
{
// clang-format off
auto const orderby =
strings_column{
"A", "A", "A", "B", "B", "B", // Group 0.
"C", "C", "C", "C", // Group 1.
"D", "D", "E", "E" // Group 2.
}.release();
// clang-format on
// Partitioned cases.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 4, 4, 4, 4, 2, 2, 4, 4}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::ASCENDING, current_row, unbounded_following),
nullable_ints_column({6, 6, 6, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, unbounded_following),
ints_column{6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(*orderby, cudf::order::ASCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Ascending_NoParts_NoNulls)
{
// clang-format off
auto const orderby =
strings_column{
"A", "A", "A", "B", "B", "B",
"C", "C", "C", "C",
"D", "D", "E", "E"
}.release();
// clang-format on
// Un-partitioned cases.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 10, 10, 10, 10, 12, 12, 14, 14}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, current_row, unbounded_following),
nullable_ints_column({14, 14, 14, 11, 11, 11, 8, 8, 8, 8, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, unbounded_following),
ints_column{14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Ascending_Partitioned_WithNulls)
{
// clang-format off
auto const orderby =
strings_column{
{
"X", "X", "X", "B", "B", "B", // Group 0.
"C", "C", "C", "C", // Group 1.
"X", "X", "E", "E" // Group 2.
},
cudf::test::iterators::nulls_at({0, 1, 2, 10, 11})
}.release();
// clang-format on
// Partitioned cases.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 4, 4, 4, 4, 2, 2, 4, 4}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::ASCENDING, current_row, unbounded_following),
nullable_ints_column({6, 6, 6, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, unbounded_following),
ints_column{6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(*orderby, cudf::order::ASCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Ascending_NoParts_WithNulls)
{
// Un-partitioned cases. Null values have to be clustered together.
// clang-format off
auto const orderby =
strings_column{
{
"X", "X", "X", "B", "B", "B",
"C", "C", "C", "C",
"D", "D", "E", "E"
},
cudf::test::iterators::nulls_at({0, 1, 2})
}.release();
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 10, 10, 10, 10, 12, 12, 14, 14}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, current_row, unbounded_following),
nullable_ints_column({14, 14, 14, 11, 11, 11, 8, 8, 8, 8, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, unbounded_preceding, unbounded_following),
ints_column{14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*get_count_over_unpartitioned_window(
*orderby, cudf::order::ASCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Descending_Partitioned_NoNulls)
{
// clang-format off
auto const orderby =
strings_column{
"B", "B", "B", "A", "A", "A", // Group 0.
"C", "C", "C", "C", // Group 1.
"E", "E", "D", "D" // Group 2.
}.release();
// clang-format on
// Partitioned cases.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 4, 4, 4, 4, 2, 2, 4, 4}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::DESCENDING, current_row, unbounded_following),
nullable_ints_column({6, 6, 6, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, unbounded_following),
ints_column{6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(*orderby, cudf::order::DESCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Descending_NoParts_NoNulls)
{
// Un-partitioned cases. Order-by column must be entirely in descending order.
// clang-format off
auto const orderby =
strings_column{
"E", "E", "E", "D", "D", "D",
"C", "C", "C", "C",
"B", "B", "A", "A"
}.release();
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 10, 10, 10, 10, 12, 12, 14, 14}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, current_row, unbounded_following),
nullable_ints_column({14, 14, 14, 11, 11, 11, 8, 8, 8, 8, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, unbounded_following),
ints_column{14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Descending_Partitioned_WithNulls)
{
// clang-format off
auto const orderby =
strings_column{
{
"X", "X", "X", "A", "A", "A", // Group 0.
"C", "C", "C", "C", // Group 1.
"X", "X", "D", "D" // Group 2.
},
cudf::test::iterators::nulls_at({0, 1, 2, 10, 11})
}.release();
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 4, 4, 4, 4, 2, 2, 4, 4}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::DESCENDING, current_row, unbounded_following),
nullable_ints_column({6, 6, 6, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, unbounded_following),
ints_column{6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_partitioned_window(*orderby, cudf::order::DESCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
TEST_F(GroupedRollingRangeOrderByStringTest, Descending_NoParts_WithNulls)
{
// Order-by column must be ordered completely in descending.
// clang-format off
auto const orderby =
strings_column{
{
"X", "X", "X", "D", "D", "D",
"C", "C", "C", "C",
"B", "B", "A", "A"
},
cudf::test::iterators::nulls_at({0, 1, 2})
}.release();
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, current_row),
nullable_ints_column({3, 3, 3, 6, 6, 6, 10, 10, 10, 10, 12, 12, 14, 14}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, current_row, unbounded_following),
nullable_ints_column({14, 14, 14, 11, 11, 11, 8, 8, 8, 8, 4, 4, 2, 2}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, unbounded_preceding, unbounded_following),
ints_column{14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*get_count_over_unpartitioned_window(
*orderby, cudf::order::DESCENDING, current_row, current_row),
nullable_ints_column({3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2}));
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/range_rolling_window_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/rolling.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/unary.hpp>
#include <cudf/utilities/bit.hpp>
#include <src/rolling/detail/range_window_bounds.hpp>
#include <src/rolling/detail/rolling.hpp>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <vector>
template <typename T, typename R = int32_t>
using fwcw = cudf::test::fixed_width_column_wrapper<T>;
using int_col = fwcw<int32_t>;
using size_col = fwcw<cudf::size_type>;
template <typename T, typename R = typename T::rep>
using time_col = fwcw<T, R>;
using lists_col = cudf::test::lists_column_wrapper<int32_t>;
template <typename ScalarT>
struct window_exec {
public:
window_exec(cudf::column_view gby,
cudf::column_view oby,
cudf::order ordering,
cudf::column_view agg,
ScalarT preceding_scalar,
ScalarT following_scalar,
cudf::size_type min_periods = 1)
: gby_column(gby),
oby_column(oby),
order(ordering),
agg_column(agg),
preceding(preceding_scalar),
following(following_scalar),
min_periods(min_periods)
{
}
cudf::size_type num_rows() { return gby_column.size(); }
std::unique_ptr<cudf::column> operator()(
std::unique_ptr<cudf::rolling_aggregation> const& agg) const
{
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{gby_column}};
return cudf::grouped_range_rolling_window(grouping_keys,
oby_column,
order,
agg_column,
cudf::range_window_bounds::get(preceding),
cudf::range_window_bounds::get(following),
min_periods,
*agg);
}
private:
cudf::column_view gby_column; // Groupby column.
cudf::column_view oby_column; // Orderby column.
cudf::order order; // Ordering for `oby_column`.
cudf::column_view agg_column; // Aggregation column.
ScalarT preceding; // Preceding window scalar.
ScalarT following; // Following window scalar.
cudf::size_type min_periods = 1;
}; // struct window_exec;
struct RangeRollingTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedTimeRangeRollingTest : RangeRollingTest {};
TYPED_TEST_SUITE(TypedTimeRangeRollingTest, cudf::test::TimestampTypes);
template <typename WindowExecT>
void verify_results_for_ascending(WindowExecT exec)
{
auto const n_rows = exec.num_rows();
auto const all_valid = thrust::make_constant_iterator<bool>(true);
auto const all_invalid = thrust::make_constant_iterator<bool>(false);
auto const last_invalid = thrust::make_transform_iterator(
thrust::make_counting_iterator(0), [&n_rows](auto i) { return i != (n_rows - 1); });
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE))
->view(),
size_col{{1, 2, 2, 3, 2, 3, 3, 4, 4, 1}, all_valid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_count_aggregation<cudf::rolling_aggregation>())->view(),
size_col{{1, 2, 2, 3, 2, 3, 3, 4, 4, 0}, all_valid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_sum_aggregation<cudf::rolling_aggregation>())->view(),
fwcw<int64_t>{{0, 12, 12, 12, 8, 17, 17, 18, 18, 1}, last_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_min_aggregation<cudf::rolling_aggregation>())->view(),
int_col{{0, 4, 4, 2, 2, 3, 3, 1, 1, 1}, last_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_max_aggregation<cudf::rolling_aggregation>())->view(),
int_col{{0, 8, 8, 6, 6, 9, 9, 9, 9, 1}, last_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_mean_aggregation<cudf::rolling_aggregation>())->view(),
fwcw<double>{{0.0, 6.0, 6.0, 4.0, 4.0, 17.0 / 3, 17.0 / 3, 4.5, 4.5, 1.0}, last_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
exec(cudf::make_collect_list_aggregation<cudf::rolling_aggregation>())->view(),
lists_col{{{0},
{8, 4},
{8, 4},
{4, 6, 2},
{6, 2},
{9, 3, 5},
{9, 3, 5},
{9, 3, 5, 1},
{9, 3, 5, 1},
{{0}, all_invalid}},
all_valid});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
exec(cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE))
->view(),
lists_col{{{0},
{8, 4},
{8, 4},
{4, 6, 2},
{6, 2},
{9, 3, 5},
{9, 3, 5},
{9, 3, 5, 1},
{9, 3, 5, 1},
{}},
all_valid});
}
TYPED_TEST(TypedTimeRangeRollingTest, TimestampASC)
{
// Confirm that timestamp columns can be used in range queries
// at all resolutions, given the right duration column type.
using TimeT = TypeParam;
using DurationT = cudf::detail::range_type<TimeT>;
using time_col = fwcw<TimeT>;
// clang-format off
auto gby_column = int_col { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto agg_column = int_col {{0, 8, 4, 6, 2, 9, 3, 5, 1, 7},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
auto time_column = time_col{ 1, 5, 6, 8, 9, 2, 2, 3, 4, 9};
// clang-format on
auto exec =
window_exec(gby_column,
time_column,
cudf::order::ASCENDING,
agg_column,
cudf::duration_scalar<DurationT>{DurationT{2}, true}, // 2 "durations" preceding.
cudf::duration_scalar<DurationT>{DurationT{1}, true}); // 1 "durations" following.
verify_results_for_ascending(exec);
}
template <typename WindowExecT>
void verify_results_for_descending(WindowExecT exec)
{
auto const all_valid = thrust::make_constant_iterator<bool>(true);
auto const all_invalid = thrust::make_constant_iterator<bool>(false);
auto const first_invalid = thrust::make_transform_iterator(thrust::make_counting_iterator(0),
[](auto i) { return i != 0; });
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE))
->view(),
size_col{{1, 4, 4, 3, 3, 2, 3, 2, 2, 1}, all_valid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_count_aggregation<cudf::rolling_aggregation>())->view(),
size_col{{0, 4, 4, 3, 3, 2, 3, 2, 2, 1}, all_valid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_sum_aggregation<cudf::rolling_aggregation>())->view(),
fwcw<int64_t>{{1, 18, 18, 17, 17, 8, 12, 12, 12, 0}, first_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_min_aggregation<cudf::rolling_aggregation>())->view(),
int_col{{1, 1, 1, 3, 3, 2, 2, 4, 4, 0}, first_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_max_aggregation<cudf::rolling_aggregation>())->view(),
int_col{{1, 9, 9, 9, 9, 6, 6, 8, 8, 0}, first_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
exec(cudf::make_mean_aggregation<cudf::rolling_aggregation>())->view(),
fwcw<double>{{1.0, 4.5, 4.5, 17.0 / 3, 17.0 / 3, 4.0, 4.0, 6.0, 6.0, 0.0}, first_invalid});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
exec(cudf::make_collect_list_aggregation<cudf::rolling_aggregation>())->view(),
lists_col{{{{0}, all_invalid},
{1, 5, 3, 9},
{1, 5, 3, 9},
{5, 3, 9},
{5, 3, 9},
{2, 6},
{2, 6, 4},
{4, 8},
{4, 8},
{0}},
all_valid});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
exec(cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE))
->view(),
lists_col{{{},
{1, 5, 3, 9},
{1, 5, 3, 9},
{5, 3, 9},
{5, 3, 9},
{2, 6},
{2, 6, 4},
{4, 8},
{4, 8},
{0}},
all_valid});
}
TYPED_TEST(TypedTimeRangeRollingTest, TimestampDESC)
{
// Confirm that timestamp columns can be used in range queries
// at all resolutions, given the right duration column type.
using TimeT = TypeParam;
using DurationT = cudf::detail::range_type<TimeT>;
using time_col = fwcw<TimeT>;
// clang-format off
auto gby_column = int_col { 5, 5, 5, 5, 5, 1, 1, 1, 1, 1};
auto agg_column = int_col {{7, 1, 5, 3, 9, 2, 6, 4, 8, 0},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
auto time_column = time_col{ 9, 4, 3, 2, 2, 9, 8, 6, 5, 1};
// clang-format on
auto exec =
window_exec(gby_column,
time_column,
cudf::order::DESCENDING,
agg_column,
cudf::duration_scalar<DurationT>{DurationT{1}, true}, // 1 "durations" preceding.
cudf::duration_scalar<DurationT>{DurationT{2}, true}); // 2 "durations" following.
verify_results_for_descending(exec);
}
template <typename T>
struct TypedIntegralRangeRollingTest : RangeRollingTest {};
TYPED_TEST_SUITE(TypedIntegralRangeRollingTest, cudf::test::IntegralTypesNotBool);
TYPED_TEST(TypedIntegralRangeRollingTest, OrderByASC)
{
// Confirm that integral ranges work with integral orderby columns,
// in ascending order.
using T = TypeParam;
// clang-format off
auto gby_column = int_col { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto agg_column = int_col {{0, 8, 4, 6, 2, 9, 3, 5, 1, 7},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0}};
auto oby_column = fwcw<T>{ 1, 5, 6, 8, 9, 2, 2, 3, 4, 9};
// clang-format on
auto exec = window_exec(gby_column,
oby_column,
cudf::order::ASCENDING,
agg_column,
cudf::numeric_scalar<T>(2), // 2 preceding.
cudf::numeric_scalar<T>(1)); // 1 following.
verify_results_for_ascending(exec);
}
TYPED_TEST(TypedIntegralRangeRollingTest, OrderByDesc)
{
// Confirm that integral ranges work with integral orderby columns,
// in descending order.
using T = TypeParam;
// clang-format off
auto gby_column = int_col { 5, 5, 5, 5, 5, 1, 1, 1, 1, 1};
auto agg_column = int_col {{7, 1, 5, 3, 9, 2, 6, 4, 8, 0},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
auto oby_column = fwcw<T>{ 9, 4, 3, 2, 2, 9, 8, 6, 5, 1};
// clang-format on
auto exec = window_exec(gby_column,
oby_column,
cudf::order::DESCENDING,
agg_column,
cudf::numeric_scalar<T>(1), // 1 preceding.
cudf::numeric_scalar<T>(2)); // 2 following.
verify_results_for_descending(exec);
}
template <typename T>
struct TypedRangeRollingNullsTest : public RangeRollingTest {};
using TypesUnderTest = cudf::test::IntegralTypesNotBool;
TYPED_TEST_SUITE(TypedRangeRollingNullsTest, TypesUnderTest);
template <typename T>
auto do_count_over_window(cudf::column_view grouping_col,
cudf::column_view order_by,
cudf::order order,
cudf::column_view aggregation_col,
cudf::range_window_bounds&& preceding =
cudf::range_window_bounds::get(cudf::numeric_scalar<T>{T{1}, true}),
cudf::range_window_bounds&& following =
cudf::range_window_bounds::get(cudf::numeric_scalar<T>{T{1}, true}))
{
auto const min_periods = cudf::size_type{1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_col}};
return cudf::grouped_range_rolling_window(
grouping_keys,
order_by,
order,
aggregation_col,
std::move(preceding),
std::move(following),
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
}
TYPED_TEST(TypedRangeRollingNullsTest, CountSingleGroupOrderByASCNullsFirst)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::ASCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 1, 2, 2, 3, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountSingleGroupOrderByASCNullsLast)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::ASCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 3, 2, 1, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountMultiGroupOrderByASCNullsFirst)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{1, 2, 2, 1, 2, 1, 2, 3, 4, 5},
{0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::ASCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 2, 2, 2, 2, 2, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountMultiGroupOrderByASCNullsLast)
{
using T = int32_t;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{1, 2, 2, 1, 3, 1, 2, 3, 4, 5},
{1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::ASCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 2, 2, 2, 3, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountSingleGroupOrderByDESCNullsFirst)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
{0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::DESCENDING, agg_col);
;
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 1, 2, 2, 3, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountSingleGroupOrderByDESCNullsLast)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
{1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::DESCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 3, 2, 1, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountMultiGroupOrderByDESCNullsFirst)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{4, 3, 2, 1, 0, 9, 8, 7, 6, 5},
{0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::DESCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 2, 2, 2, 2, 2, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountMultiGroupOrderByDESCNullsLast)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{4, 3, 2, 1, 0, 9, 8, 7, 6, 5},
{1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::DESCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 2, 2, 2, 2, 3, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountSingleGroupAllNullOrderBys)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::ASCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 9, 9, 9, 9, 9, 9, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, CountMultiGroupAllNullOrderBys)
{
using T = TypeParam;
// Groupby column.
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
// Aggregation column.
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
// OrderBy column.
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 0, 0, 0, 0}};
auto const output = do_count_over_window<T>(grp_col, oby_col, cudf::order::ASCENDING, agg_col);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 3, 2, 4, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, UnboundedPrecedingWindowSingleGroupOrderByASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const output = do_count_over_window<T>(
grp_col,
oby_col,
cudf::order::ASCENDING,
agg_col,
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<T>()}),
cudf::range_window_bounds::get(cudf::numeric_scalar<T>{1, true}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 5, 6, 7, 8, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedRangeRollingNullsTest, UnboundedFollowingWindowSingleGroupOrderByASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const oby_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const output = do_count_over_window<T>(
grp_col,
oby_col,
cudf::order::ASCENDING,
agg_col,
cudf::range_window_bounds::get(cudf::numeric_scalar<T>{1, true}),
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<T>()}));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 9, 9, 5, 5, 4, 4, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/grouped_rolling_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rolling_test.hpp"
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/rolling.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/bit.hpp>
#include <src/rolling/detail/rolling.hpp>
#include <thrust/host_vector.h>
#include <thrust/iterator/counting_iterator.h>
const std::string cuda_func{
R"***(
template <typename OutType, typename InType>
__device__ void CUDA_GENERIC_AGGREGATOR(OutType *ret, InType *in_col, cudf::size_type start,
cudf::size_type count) {
OutType val = 0;
for (cudf::size_type i = 0; i < count; i++) {
val += in_col[start + i];
}
*ret = val;
}
)***"};
const std::string ptx_func{
R"***(
//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-24817639
// Cuda compilation tools, release 10.0, V10.0.130
// Based on LLVM 3.4svn
//
.version 6.3
.target sm_70
.address_size 64
// .globl _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE
.common .global .align 8 .u64 _ZN08NumbaEnv8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE;
.visible .func (.param .b32 func_retval0) _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE(
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_0,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_1,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_2,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_3,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_4,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_5,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_6,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_7
)
{
.reg .pred %p<3>;
.reg .b32 %r<6>;
.reg .b64 %rd<18>;
ld.param.u64 %rd6, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_0];
ld.param.u64 %rd7, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_5];
ld.param.u64 %rd8, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_6];
ld.param.u64 %rd9, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_7];
mov.u64 %rd15, 0;
mov.u64 %rd16, %rd15;
BB0_1:
mov.u64 %rd2, %rd16;
mov.u32 %r5, 0;
setp.ge.s64 %p1, %rd15, %rd8;
mov.u64 %rd17, %rd15;
@%p1 bra BB0_3;
mul.lo.s64 %rd12, %rd15, %rd9;
add.s64 %rd13, %rd12, %rd7;
ld.u32 %r5, [%rd13];
add.s64 %rd17, %rd15, 1;
BB0_3:
cvt.s64.s32 %rd14, %r5;
add.s64 %rd16, %rd14, %rd2;
setp.lt.s64 %p2, %rd15, %rd8;
mov.u64 %rd15, %rd17;
@%p2 bra BB0_1;
st.u64 [%rd6], %rd2;
mov.u32 %r4, 0;
st.param.b32 [func_retval0+0], %r4;
ret;
}
)***"};
template <typename T>
class GroupedRollingTest : public cudf::test::BaseFixture {
protected:
// input as column_wrapper
void run_test_col(cudf::table_view const& keys,
cudf::column_view const& input,
std::vector<cudf::size_type> const& expected_grouping,
cudf::size_type const& preceding_window,
cudf::size_type const& following_window,
cudf::size_type min_periods,
cudf::rolling_aggregation const& op)
{
std::unique_ptr<cudf::column> output;
// wrap windows
EXPECT_NO_THROW(output = cudf::grouped_rolling_window(
keys, input, preceding_window, following_window, min_periods, op));
auto reference = create_reference_output(
op, input, expected_grouping, preceding_window, following_window, min_periods);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, *reference);
}
void run_test_col_agg(cudf::table_view const& keys,
cudf::column_view const& input,
std::vector<cudf::size_type> const& expected_grouping,
cudf::size_type preceding_window,
cudf::size_type following_window,
cudf::size_type min_periods)
{
// Skip grouping-tests on bool8 keys. sort_helper does not support this.
if (keys.num_columns() > 0 && cudf::is_boolean(keys.column(0).type())) { return; }
// test all supported aggregators
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
run_test_col(
keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
if (!cudf::is_timestamp(input.type())) {
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_mean_aggregation<cudf::rolling_aggregation>());
}
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cudf::make_row_number_aggregation<cudf::rolling_aggregation>());
// >>> test UDFs <<<
if (input.type() == cudf::data_type{cudf::type_id::INT32} && !input.has_nulls()) {
auto cuda_udf_agg = cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::CUDA, cuda_func, cudf::data_type{cudf::type_id::INT64});
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*cuda_udf_agg);
auto ptx_udf_agg = cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::PTX, ptx_func, cudf::data_type{cudf::type_id::INT64});
run_test_col(keys,
input,
expected_grouping,
preceding_window,
following_window,
min_periods,
*ptx_udf_agg);
}
}
private:
// use SFINAE to only instantiate for supported combinations
// specialization for COUNT_VALID, COUNT_ALL
template <bool include_nulls>
std::unique_ptr<cudf::column> create_count_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window,
cudf::size_type const& following_window,
cudf::size_type min_periods)
{
cudf::size_type num_rows = input.size();
thrust::host_vector<cudf::size_type> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
std::vector<cudf::bitmask_type> in_valid = cudf::test::bitmask_to_host(input);
cudf::bitmask_type* valid_mask = in_valid.data();
for (cudf::size_type i = 0; i < num_rows; i++) {
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto group_end_index = std::upper_bound(group_offsets.begin(), group_offsets.end(), i);
auto group_start_index = group_end_index - 1;
cudf::size_type start = std::min(num_rows, std::max(0, i - preceding_window + 1));
cudf::size_type end = std::min(num_rows, std::max(0, i + following_window + 1));
cudf::size_type start_index = std::max(*group_start_index, std::min(start, end));
cudf::size_type end_index = std::min(*group_end_index, std::max(start, end));
// aggregate
cudf::size_type count = 0;
for (cudf::size_type j = start_index; j < end_index; j++) {
if (include_nulls || !input.nullable() || cudf::bit_is_set(valid_mask, j)) count++;
}
ref_valid[i] = ((end_index - start_index) >= min_periods);
if (ref_valid[i]) ref_data[i] = count;
}
cudf::test::fixed_width_column_wrapper<cudf::size_type> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
std::unique_ptr<cudf::column> create_row_number_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window,
cudf::size_type const& following_window,
cudf::size_type min_periods)
{
cudf::size_type num_rows = input.size();
thrust::host_vector<cudf::size_type> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
std::vector<cudf::bitmask_type> in_valid = cudf::test::bitmask_to_host(input);
for (cudf::size_type i = 0; i < num_rows; i++) {
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto group_end_index = std::upper_bound(group_offsets.begin(), group_offsets.end(), i);
auto group_start_index = group_end_index - 1;
cudf::size_type start = std::min(num_rows, std::max(0, i - preceding_window + 1));
cudf::size_type end = std::min(num_rows, std::max(0, i + following_window + 1));
cudf::size_type start_index = std::max(*group_start_index, std::min(start, end));
cudf::size_type end_index = std::min(*group_end_index, std::max(start, end));
// aggregate
cudf::size_type count{end_index - start_index};
cudf::size_type row_number{i - start_index + 1};
ref_valid[i] = (count >= min_periods);
ref_data[i] = row_number;
}
cudf::test::fixed_width_column_wrapper<cudf::size_type> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
template <typename agg_op,
cudf::aggregation::Kind k,
typename OutputType,
bool is_mean,
std::enable_if_t<is_rolling_supported<T, k>()>* = nullptr>
std::unique_ptr<cudf::column> create_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window,
cudf::size_type const& following_window,
cudf::size_type min_periods)
{
cudf::size_type num_rows = input.size();
thrust::host_vector<OutputType> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
auto [in_col, in_valid] = cudf::test::to_host<T>(input);
cudf::bitmask_type* valid_mask = in_valid.data();
agg_op op;
for (cudf::size_type i = 0; i < num_rows; i++) {
OutputType val = agg_op::template identity<OutputType>();
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto group_end_index = std::upper_bound(group_offsets.begin(), group_offsets.end(), i);
auto group_start_index = group_end_index - 1;
cudf::size_type start = std::min(
num_rows, std::max(0, i - preceding_window + 1)); // Preceding window includes current row.
cudf::size_type end = std::min(num_rows, std::max(0, i + following_window + 1));
cudf::size_type start_index = std::max(*group_start_index, std::min(start, end));
cudf::size_type end_index = std::min(*group_end_index, std::max(start, end));
// aggregate
cudf::size_type count = 0;
for (cudf::size_type j = start_index; j < end_index; j++) {
if (!input.nullable() || cudf::bit_is_set(valid_mask, j)) {
val = op(static_cast<OutputType>(in_col[j]), val);
count++;
}
}
ref_valid[i] = (count >= min_periods);
if (ref_valid[i]) {
cudf::detail::rolling_store_output_functor<OutputType, is_mean>{}(ref_data[i], val, count);
}
}
cudf::test::fixed_width_column_wrapper<OutputType> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
template <typename agg_op,
cudf::aggregation::Kind k,
typename OutputType,
bool is_mean,
std::enable_if_t<!is_rolling_supported<T, k>()>* = nullptr>
std::unique_ptr<cudf::column> create_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window_col,
cudf::size_type const& following_window_col,
cudf::size_type min_periods)
{
CUDF_FAIL("Unsupported combination of type and aggregation");
}
std::unique_ptr<cudf::column> create_reference_output(
cudf::rolling_aggregation const& op,
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window,
cudf::size_type const& following_window,
cudf::size_type min_periods)
{
// unroll aggregation types
switch (op.kind) {
case cudf::aggregation::SUM:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::SUM,
cudf::detail::target_type_t<T, cudf::aggregation::SUM>,
false>(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::MIN:
return create_reference_output<cudf::DeviceMin,
cudf::aggregation::MIN,
cudf::detail::target_type_t<T, cudf::aggregation::MIN>,
false>(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::MAX:
return create_reference_output<cudf::DeviceMax,
cudf::aggregation::MAX,
cudf::detail::target_type_t<T, cudf::aggregation::MAX>,
false>(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::COUNT_VALID:
return create_count_reference_output<false>(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::COUNT_ALL:
return create_count_reference_output<true>(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::ROW_NUMBER:
return create_row_number_reference_output(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::MEAN:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::MEAN,
cudf::detail::target_type_t<T, cudf::aggregation::MEAN>,
true>(
input, group_offsets, preceding_window, following_window, min_periods);
// >>> UDFs <<<
case cudf::aggregation::CUDA:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::SUM,
cudf::detail::target_type_t<T, cudf::aggregation::SUM>,
false>(
input, group_offsets, preceding_window, following_window, min_periods);
case cudf::aggregation::PTX:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::SUM,
cudf::detail::target_type_t<T, cudf::aggregation::SUM>,
false>(
input, group_offsets, preceding_window, following_window, min_periods);
default: return cudf::test::fixed_width_column_wrapper<T>({}).release();
}
}
};
// // ------------- expected failures --------------------
class GroupedRollingErrorTest : public cudf::test::BaseFixture {};
// negative sizes
TEST_F(GroupedRollingErrorTest, NegativeMinPeriods)
{
// Construct agg column.
const std::vector<cudf::size_type> col_data{0, 1, 2, 0, 4};
const std::vector<bool> col_valid{1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<cudf::size_type> input{
col_data.begin(), col_data.end(), col_valid.begin()};
// Construct Grouping keys table-view.
auto const N_ELEMENTS{col_data.size()};
const std::vector<cudf::size_type> grouping_key_vec(N_ELEMENTS, 0);
cudf::test::fixed_width_column_wrapper<cudf::size_type> grouping_keys_col(
grouping_key_vec.begin(), grouping_key_vec.end(), col_valid.begin());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{grouping_keys_col}};
EXPECT_THROW(
cudf::grouped_rolling_window(
grouping_keys, input, 2, 2, -2, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
TEST_F(GroupedRollingErrorTest, EmptyInput)
{
cudf::test::fixed_width_column_wrapper<int32_t> empty_col{};
std::unique_ptr<cudf::column> output;
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{}};
EXPECT_NO_THROW(
output = cudf::grouped_rolling_window(
grouping_keys, empty_col, 2, 0, 2, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()));
EXPECT_EQ(output->size(), 0);
}
// incorrect type/aggregation combo: sum of timestamps
TEST_F(GroupedRollingErrorTest, SumTimestampNotSupported)
{
constexpr cudf::size_type size{10};
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep> input_D(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep> input_s(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep> input_ms(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_us, cudf::timestamp_us::rep> input_us(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep> input_ns(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
// Construct table-view of grouping keys.
std::vector<cudf::size_type> grouping_keys_vec(size, 0); // `size` elements, each == 0.
const cudf::table_view grouping_keys{
std::vector<cudf::column_view>{cudf::test::fixed_width_column_wrapper<cudf::size_type>(
grouping_keys_vec.begin(), grouping_keys_vec.end())}};
EXPECT_THROW(
cudf::grouped_rolling_window(
grouping_keys, input_D, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(
cudf::grouped_rolling_window(
grouping_keys, input_s, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(
cudf::grouped_rolling_window(
grouping_keys, input_ms, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(
cudf::grouped_rolling_window(
grouping_keys, input_us, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(
cudf::grouped_rolling_window(
grouping_keys, input_ns, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
TYPED_TEST_SUITE(GroupedRollingTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(GroupedRollingTest, SimplePartitionedStaticWindowsWithGroupKeys)
{
auto const col_data = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90};
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(col_data.size())};
const std::vector<bool> col_mask(DATA_SIZE, true);
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> input(
col_data.begin(), col_data.end(), col_mask.begin());
// 2 grouping keys, with effectively 3 groups of at most 4 rows each:
// 1. key_0 {0, 0, 0, ...0}
// 2. key_1 {0, 0, 0, 0, 1, 1, 1, 1, 2, 2}
std::vector<int64_t> key_0_vec(DATA_SIZE, 0);
std::vector<int64_t> key_1_vec;
int i{0};
std::generate_n(
std::back_inserter(key_1_vec), DATA_SIZE, [&i]() { return i++ / 4; }); // Groups of 4.
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_0(key_0_vec.begin(),
key_0_vec.end());
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_1(key_1_vec.begin(),
key_1_vec.end());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{key_0, key_1}};
cudf::size_type preceding_window = 2;
cudf::size_type following_window = 1;
std::vector<cudf::size_type> expected_group_offsets{0, 4, 8, DATA_SIZE};
this->run_test_col_agg(
grouping_keys, input, expected_group_offsets, preceding_window, following_window, 1);
}
TYPED_TEST(GroupedRollingTest, SimplePartitionedStaticWindowWithNoGroupKeys)
{
auto const col_data =
cudf::test::make_type_param_vector<TypeParam>({0, 10, 20, 30, 40, 50, 60, 70, 80, 90});
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(col_data.size())};
const std::vector<bool> col_mask(DATA_SIZE, true);
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{}};
cudf::size_type preceding_window = 2;
cudf::size_type following_window = 1;
std::vector<cudf::size_type> expected_group_offsets{0, DATA_SIZE};
this->run_test_col_agg(
grouping_keys, input, expected_group_offsets, preceding_window, following_window, 1);
}
// all rows are invalid
TYPED_TEST(GroupedRollingTest, AllInvalid)
{
auto const col_data =
cudf::test::make_type_param_vector<TypeParam>({0, 10, 20, 30, 40, 50, 60, 70, 80, 90});
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(col_data.size())};
const std::vector<bool> col_mask(DATA_SIZE, false);
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
// 2 grouping keys, with effectively 3 groups of at most 4 rows each:
// 1. key_0 {0, 0, 0, ...0}
// 2. key_1 {0, 0, 0, 0, 1, 1, 1, 1, 2, 2}
std::vector<int64_t> key_0_vec(DATA_SIZE, 0);
std::vector<int64_t> key_1_vec;
int i{0};
std::generate_n(
std::back_inserter(key_1_vec), DATA_SIZE, [&i]() { return i++ / 4; }); // Groups of 4.
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_0(key_0_vec.begin(),
key_0_vec.end());
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_1(key_1_vec.begin(),
key_1_vec.end());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{key_0, key_1}};
cudf::size_type preceding_window = 2;
cudf::size_type following_window = 1;
std::vector<cudf::size_type> expected_group_offsets{0, 4, 8, DATA_SIZE};
this->run_test_col_agg(
grouping_keys, input, expected_group_offsets, preceding_window, following_window, 1);
}
// window = following_window = 0
TYPED_TEST(GroupedRollingTest, ZeroWindow)
{
auto const col_data = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90};
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(col_data.size())};
const std::vector<bool> col_mask(DATA_SIZE, true);
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> input(
col_data.begin(), col_data.end(), col_mask.begin());
// 2 grouping keys, with effectively 3 groups of at most 4 rows each:
// 1. key_0 {0, 0, 0, ...0}
// 2. key_1 {0, 0, 0, 0, 1, 1, 1, 1, 2, 2}
std::vector<int64_t> key_0_vec(DATA_SIZE, 0);
std::vector<int64_t> key_1_vec;
int i{0};
std::generate_n(
std::back_inserter(key_1_vec), DATA_SIZE, [&i]() { return i++ / 4; }); // Groups of 4.
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_0(key_0_vec.begin(),
key_0_vec.end());
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_1(key_1_vec.begin(),
key_1_vec.end());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{key_0, key_1}};
cudf::size_type preceding_window = 1;
cudf::size_type following_window = 0;
std::vector<cudf::size_type> expected_group_offsets{0, 4, 8, DATA_SIZE};
this->run_test_col_agg(
grouping_keys, input, expected_group_offsets, preceding_window, following_window, 1);
}
using GroupedRollingTestInts = GroupedRollingTest<int32_t>;
TEST_F(GroupedRollingTestInts, SumLargeWindow)
{
cudf::test::fixed_width_column_wrapper<int32_t, int32_t> input({1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::size_type preceding_window = 2147483640;
cudf::size_type following_window = 2147483642;
cudf::table_view groupby_keys;
auto result =
cudf::grouped_rolling_window(groupby_keys,
input,
preceding_window,
following_window,
1,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
cudf::test::fixed_width_column_wrapper<int64_t, int32_t> expected(
{10, 10, 10, 10, 10, 10, 10, 10, 10, 10});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
// ------------- non-fixed-width types --------------------
using GroupedRollingTestStrings = GroupedRollingTest<cudf::string_view>;
TEST_F(GroupedRollingTestStrings, StringsUnsupportedOperators)
{
cudf::test::strings_column_wrapper input{{"This", "is", "not", "a", "string", "type"},
{1, 1, 1, 0, 1, 0}};
const cudf::size_type DATA_SIZE{static_cast<cudf::column_view>(input).size()};
const std::vector<cudf::size_type> key_col_vec(DATA_SIZE, 0);
const cudf::table_view key_cols{
std::vector<cudf::column_view>{cudf::test::fixed_width_column_wrapper<cudf::size_type>(
key_col_vec.begin(), key_col_vec.end())}};
EXPECT_THROW(
cudf::grouped_rolling_window(
key_cols, input, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(
cudf::grouped_rolling_window(
key_cols, input, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
template <typename T>
class GroupedTimeRangeRollingTest : public cudf::test::BaseFixture {
protected:
// input as column_wrapper
void run_test_col(cudf::table_view const& keys,
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& expected_grouping,
cudf::size_type const& preceding_window_in_days,
cudf::size_type const& following_window_in_days,
cudf::size_type min_periods,
cudf::rolling_aggregation const& op)
{
std::unique_ptr<cudf::column> output;
// wrap windows
EXPECT_NO_THROW(output = cudf::grouped_time_range_rolling_window(keys,
timestamp_column,
timestamp_order,
input,
preceding_window_in_days,
following_window_in_days,
min_periods,
op));
auto reference = create_reference_output(op,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, *reference);
}
void run_test_col_agg(cudf::table_view const& keys,
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& expected_grouping,
cudf::size_type preceding_window_in_days,
cudf::size_type following_window_in_days,
cudf::size_type min_periods)
{
// Skip grouping-tests on bool8 keys. sort_helper does not support this.
if (keys.num_columns() > 0 && cudf::is_boolean(keys.column(0).type())) { return; }
// test all supported aggregators
run_test_col(keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
run_test_col(keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
run_test_col(
keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
run_test_col(keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
if (!cudf::is_timestamp(input.type())) {
run_test_col(keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
run_test_col(keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_mean_aggregation<cudf::rolling_aggregation>());
}
run_test_col(keys,
timestamp_column,
timestamp_order,
input,
expected_grouping,
preceding_window_in_days,
following_window_in_days,
min_periods,
*cudf::make_row_number_aggregation<cudf::rolling_aggregation>());
}
private:
// use SFINAE to only instantiate for supported combinations
// specialization for COUNT_VALID, COUNT_ALL
template <bool include_nulls>
std::unique_ptr<cudf::column> create_count_reference_output(
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window_in_days,
cudf::size_type const& following_window_in_days,
cudf::size_type min_periods)
{
assert(timestamp_column.type().id() == cudf::type_id::TIMESTAMP_DAYS); // Testing with DAYS.
auto timestamp_vec = cudf::test::to_host<int32_t>(timestamp_column).first;
cudf::size_type num_rows = input.size();
thrust::host_vector<cudf::size_type> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
std::vector<cudf::bitmask_type> in_valid = cudf::test::bitmask_to_host(input);
cudf::bitmask_type* valid_mask = in_valid.data();
for (cudf::size_type i = 0; i < num_rows; i++) {
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto group_end_index = std::upper_bound(group_offsets.begin(), group_offsets.end(), i);
auto group_start_index = group_end_index - 1;
cudf::size_type start_index = i;
cudf::size_type end_index = i;
if (timestamp_order == cudf::order::ASCENDING) {
while ((start_index - 1) >= *group_start_index &&
timestamp_vec[start_index - 1] >= (timestamp_vec[i] - preceding_window_in_days)) {
--start_index;
}
while ((end_index + 1) < *group_end_index &&
timestamp_vec[end_index + 1] <= (timestamp_vec[i] + following_window_in_days)) {
++end_index;
}
++end_index; // One past the last.
} else {
while ((start_index - 1) >= *group_start_index &&
timestamp_vec[start_index - 1] <= (timestamp_vec[i] + preceding_window_in_days)) {
--start_index;
}
while ((end_index + 1) < *group_end_index &&
timestamp_vec[end_index + 1] >= (timestamp_vec[i] - following_window_in_days)) {
++end_index;
}
++end_index; // One past the last.
}
// aggregate
cudf::size_type count = 0;
for (cudf::size_type j = start_index; j < end_index; j++) {
if (include_nulls || !input.nullable() || cudf::bit_is_set(valid_mask, j)) count++;
}
ref_valid[i] = ((end_index - start_index) >= min_periods);
if (ref_valid[i]) ref_data[i] = count;
}
cudf::test::fixed_width_column_wrapper<cudf::size_type> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
std::unique_ptr<cudf::column> create_row_number_reference_output(
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window_in_days,
cudf::size_type const& following_window_in_days,
cudf::size_type min_periods)
{
assert(timestamp_column.type().id() == cudf::type_id::TIMESTAMP_DAYS); // Testing with DAYS.
auto timestamp_vec = cudf::test::to_host<int32_t>(timestamp_column).first;
cudf::size_type num_rows = input.size();
thrust::host_vector<cudf::size_type> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
std::vector<cudf::bitmask_type> in_valid = cudf::test::bitmask_to_host(input);
for (cudf::size_type i = 0; i < num_rows; i++) {
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto group_end_index = std::upper_bound(group_offsets.begin(), group_offsets.end(), i);
auto group_start_index = group_end_index - 1;
cudf::size_type start_index = i;
cudf::size_type end_index = i;
if (timestamp_order == cudf::order::ASCENDING) {
while ((start_index - 1) >= *group_start_index &&
timestamp_vec[start_index - 1] >= (timestamp_vec[i] - preceding_window_in_days)) {
--start_index;
}
while ((end_index + 1) < *group_end_index &&
timestamp_vec[end_index + 1] <= (timestamp_vec[i] + following_window_in_days)) {
++end_index;
}
++end_index; // One past the last.
} else {
while ((start_index - 1) >= *group_start_index &&
timestamp_vec[start_index - 1] <= (timestamp_vec[i] + preceding_window_in_days)) {
--start_index;
}
while ((end_index + 1) < *group_end_index &&
timestamp_vec[end_index + 1] >= (timestamp_vec[i] - following_window_in_days)) {
++end_index;
}
++end_index; // One past the last.
}
// aggregate
cudf::size_type count{end_index - start_index};
cudf::size_type row_number{i - start_index + 1};
ref_valid[i] = (count >= min_periods);
ref_data[i] = row_number;
}
cudf::test::fixed_width_column_wrapper<cudf::size_type> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
template <typename agg_op,
cudf::aggregation::Kind k,
typename OutputType,
bool is_mean,
std::enable_if_t<is_rolling_supported<T, k>()>* = nullptr>
std::unique_ptr<cudf::column> create_reference_output(
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window_in_days,
cudf::size_type const& following_window_in_days,
cudf::size_type min_periods)
{
assert(timestamp_column.type().id() == cudf::type_id::TIMESTAMP_DAYS); // Testing with DAYS.
auto timestamp_vec = cudf::test::to_host<int32_t>(timestamp_column).first;
cudf::size_type num_rows = input.size();
thrust::host_vector<OutputType> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
auto [in_col, in_valid] = cudf::test::to_host<T>(input);
cudf::bitmask_type* valid_mask = in_valid.data();
agg_op op;
for (cudf::size_type i = 0; i < num_rows; i++) {
OutputType val = agg_op::template identity<OutputType>();
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto group_end_index = std::upper_bound(group_offsets.begin(), group_offsets.end(), i);
auto group_start_index = group_end_index - 1;
cudf::size_type start_index = i;
cudf::size_type end_index = i;
if (timestamp_order == cudf::order::ASCENDING) {
while ((start_index - 1) >= *group_start_index &&
timestamp_vec[start_index - 1] >= (timestamp_vec[i] - preceding_window_in_days)) {
--start_index;
}
while ((end_index + 1) < *group_end_index &&
timestamp_vec[end_index + 1] <= (timestamp_vec[i] + following_window_in_days)) {
++end_index;
}
++end_index; // One past the last.
} else {
while ((start_index - 1) >= *group_start_index &&
timestamp_vec[start_index - 1] <= (timestamp_vec[i] + preceding_window_in_days)) {
--start_index;
}
while ((end_index + 1) < *group_end_index &&
timestamp_vec[end_index + 1] >= (timestamp_vec[i] - following_window_in_days)) {
++end_index;
}
++end_index;
}
// aggregate
cudf::size_type count = 0;
for (cudf::size_type j = start_index; j < end_index; j++) {
if (!input.nullable() || cudf::bit_is_set(valid_mask, j)) {
val = op(static_cast<OutputType>(in_col[j]), val);
count++;
}
}
ref_valid[i] = (count >= min_periods);
if (ref_valid[i]) {
cudf::detail::rolling_store_output_functor<OutputType, is_mean>{}(ref_data[i], val, count);
}
}
cudf::test::fixed_width_column_wrapper<OutputType> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
template <typename agg_op,
cudf::aggregation::Kind k,
typename OutputType,
bool is_mean,
std::enable_if_t<!is_rolling_supported<T, k>()>* = nullptr>
std::unique_ptr<cudf::column> create_reference_output(
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window_col,
cudf::size_type const& following_window_col,
cudf::size_type min_periods)
{
CUDF_FAIL("Unsupported combination of type and aggregation");
}
std::unique_ptr<cudf::column> create_reference_output(
cudf::rolling_aggregation const& op,
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
std::vector<cudf::size_type> const& group_offsets,
cudf::size_type const& preceding_window,
cudf::size_type const& following_window,
cudf::size_type min_periods)
{
// unroll aggregation types
switch (op.kind) {
case cudf::aggregation::SUM:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::SUM,
cudf::detail::target_type_t<T, cudf::aggregation::SUM>,
false>(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
case cudf::aggregation::MIN:
return create_reference_output<cudf::DeviceMin,
cudf::aggregation::MIN,
cudf::detail::target_type_t<T, cudf::aggregation::MIN>,
false>(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
case cudf::aggregation::MAX:
return create_reference_output<cudf::DeviceMax,
cudf::aggregation::MAX,
cudf::detail::target_type_t<T, cudf::aggregation::MAX>,
false>(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
case cudf::aggregation::COUNT_VALID:
return create_count_reference_output<false>(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
case cudf::aggregation::COUNT_ALL:
return create_count_reference_output<true>(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
case cudf::aggregation::ROW_NUMBER:
return create_row_number_reference_output(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
case cudf::aggregation::MEAN:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::MEAN,
cudf::detail::target_type_t<T, cudf::aggregation::MEAN>,
true>(timestamp_column,
timestamp_order,
input,
group_offsets,
preceding_window,
following_window,
min_periods);
default: return cudf::test::fixed_width_column_wrapper<T>({}).release();
}
}
};
TYPED_TEST_SUITE(GroupedTimeRangeRollingTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(GroupedTimeRangeRollingTest,
SimplePartitionedStaticWindowsWithGroupKeysAndTimeRangesAscending)
{
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(18)};
const std::vector<int> col_data(DATA_SIZE, 1);
const std::vector<bool> col_mask(DATA_SIZE, true);
cudf::test::fixed_width_column_wrapper<TypeParam, int> input(
col_data.begin(), col_data.end(), col_mask.begin());
// 2 grouping keys, with effectively 3 groups of at most 6 rows each:
// 1. key_0 {0, 0, 0, ...0}
// 2. key_1 {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2}
std::vector<int64_t> key_0_vec(DATA_SIZE, 0);
std::vector<int64_t> key_1_vec;
int i{0};
std::generate_n(
std::back_inserter(key_1_vec), DATA_SIZE, [&i]() { return i++ / 6; }); // Groups of 6.
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_0(key_0_vec.begin(),
key_0_vec.end());
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_1(key_1_vec.begin(),
key_1_vec.end());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{key_0, key_1}};
cudf::size_type preceding_window_in_days = 1;
cudf::size_type following_window_in_days = 1;
std::vector<cudf::size_type> expected_group_offsets{0, 6, 12, DATA_SIZE};
// Timestamp column.
std::vector<int32_t> timestamp_days_vec{0, 2, 3, 4, 5, 7, 0, 0, 1, 2, 3, 3, 0, 1, 2, 3, 3, 3};
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>
timestamp_days_ascending(timestamp_days_vec.begin(), timestamp_days_vec.end());
this->run_test_col_agg(grouping_keys,
timestamp_days_ascending,
cudf::order::ASCENDING,
input,
expected_group_offsets,
preceding_window_in_days,
following_window_in_days,
1);
}
TYPED_TEST(GroupedTimeRangeRollingTest,
SimplePartitionedStaticWindowsWithGroupKeysAndTimeRangesDescending)
{
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(18)};
const std::vector<int> col_data(DATA_SIZE, 1);
const std::vector<bool> col_mask(DATA_SIZE, true);
cudf::test::fixed_width_column_wrapper<TypeParam, int> input(
col_data.begin(), col_data.end(), col_mask.begin());
// 2 grouping keys, with effectively 3 groups of at most 6 rows each:
// 1. key_0 {0, 0, 0, ...0}
// 2. key_1 {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2}
std::vector<int64_t> key_0_vec(DATA_SIZE, 0);
std::vector<int64_t> key_1_vec;
int i{0};
std::generate_n(
std::back_inserter(key_1_vec), DATA_SIZE, [&i]() { return i++ / 6; }); // Groups of 6.
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_0(key_0_vec.begin(),
key_0_vec.end());
const cudf::test::fixed_width_column_wrapper<TypeParam, int64_t> key_1(key_1_vec.begin(),
key_1_vec.end());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{key_0, key_1}};
cudf::size_type preceding_window_in_days = 1;
cudf::size_type following_window_in_days = 2;
std::vector<cudf::size_type> expected_group_offsets{0, 6, 12, DATA_SIZE};
// Timestamp column.
std::vector<int32_t> timestamp_days_vec{0, 2, 3, 4, 5, 7, 0, 0, 1, 2, 3, 3, 0, 1, 2, 3, 3, 3};
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>
timestamp_days_descending(timestamp_days_vec.rbegin(), timestamp_days_vec.rend());
this->run_test_col_agg(grouping_keys,
timestamp_days_descending,
cudf::order::DESCENDING,
input,
expected_group_offsets,
preceding_window_in_days,
following_window_in_days,
1);
}
TYPED_TEST(GroupedTimeRangeRollingTest, SimplePartitionedStaticWindowsWithNoGroupingKeys)
{
const cudf::size_type DATA_SIZE{static_cast<cudf::size_type>(6)};
const std::vector<int> col_data(DATA_SIZE, 1);
const std::vector<bool> col_mask(DATA_SIZE, true);
cudf::test::fixed_width_column_wrapper<TypeParam, int> input(
col_data.begin(), col_data.end(), col_mask.begin());
const cudf::table_view grouping_keys{std::vector<cudf::column_view>{}};
cudf::size_type preceding_window_in_days = 1;
cudf::size_type following_window_in_days = 1;
std::vector<cudf::size_type> expected_group_offsets{0, DATA_SIZE};
// Timestamp column.
std::vector<int32_t> timestamp_days_vec{0, 2, 3, 4, 5, 7};
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>
timestamp_days_ascending(timestamp_days_vec.begin(), timestamp_days_vec.end());
this->run_test_col_agg(grouping_keys,
timestamp_days_ascending,
cudf::order::ASCENDING,
input,
expected_group_offsets,
preceding_window_in_days,
following_window_in_days,
1);
}
template <typename T>
struct TypedNullTimestampTestForRangeQueries : public cudf::test::BaseFixture {};
struct NullTimestampTestForRangeQueries : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedNullTimestampTestForRangeQueries, cudf::test::IntegralTypes);
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountSingleGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 1, 2, 2, 3, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountSingleGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 3, 2, 1, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountMultiGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 2, 1, 2, 3, 4, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 2, 2, 2, 2, 2, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountMultiGroupTimestampASCNullsLast)
{
using T = int32_t;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 3, 1, 2, 3, 4, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 2, 2, 2, 3, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountSingleGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 1, 2, 2, 3, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountSingleGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 3, 2, 1, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountMultiGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 2, 2, 2, 2, 2, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountMultiGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 2, 2, 2, 2, 3, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountSingleGroupAllNullTimestamps)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 9, 9, 9, 9, 9, 9, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedNullTimestampTestForRangeQueries, CountMultiGroupAllNullTimestamps)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 1, 1, 1, 1, 0, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const preceding = 1L;
auto const following = 1L;
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 3, 2, 4, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
template <typename T>
struct TypedUnboundedWindowTest : public cudf::test::BaseFixture {};
struct UnboundedWindowTest : public cudf::test::BaseFixture {};
using FixedWidthTypes = cudf::test::Concat<cudf::test::IntegralTypes,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(TypedUnboundedWindowTest, FixedWidthTypes);
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingWindowSingleGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 5, 6, 7, 8, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingWindowSingleGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 9, 9, 5, 5, 4, 4, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingWindowSingleGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{9, 9, 9, 9, 9, 9, 9, 9, 9, 9});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingWindowSingleGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 4, 5, 5, 5, 9, 9, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingWindowSingleGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 8, 7, 6, 5, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingWindowSingleGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{9, 9, 9, 9, 9, 9, 9, 9, 9, 9});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingWindowSingleGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{4, 4, 4, 4, 5, 6, 7, 8, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingWindowSingleGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 9, 9, 5, 5, 4, 4, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingWindowSingleGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{9, 9, 9, 9, 9, 9, 9, 9, 9, 9});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingWindowSingleGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 4, 5, 5, 5, 9, 9, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingWindowSingleGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 9, 8, 7, 6, 5, 4, 4, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingWindowSingleGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{9, 9, 9, 9, 9, 9, 9, 9, 9, 9});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingCountMultiGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 2, 1, 2, 3, 4, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 5, 5, 2, 2, 4, 5, 5}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingCountMultiGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 2, 1, 2, 3, 4, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{5, 5, 5, 2, 2, 5, 5, 3, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingCountMultiGroupTimestampASCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 2, 1, 2, 3, 4, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{5, 5, 5, 5, 5, 5, 5, 5, 5, 5});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingCountMultiGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 3, 1, 2, 3, 4, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 5, 5, 2, 3, 3, 5, 5}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingCountMultiGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 3, 1, 2, 3, 4, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{5, 5, 5, 2, 2, 5, 5, 4, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingCountMultiGroupTimestampASCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{1, 2, 2, 1, 3, 1, 2, 3, 4, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::ASCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{5, 5, 5, 5, 5, 5, 5, 5, 5, 5});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingCountMultiGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 3, 5, 5, 2, 2, 4, 5, 5}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingCountMultiGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{5, 5, 5, 2, 2, 5, 5, 3, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingCountMultiGroupTimestampDESCNullsFirst)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{5, 5, 5, 5, 5, 5, 5, 5, 5, 5});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingCountMultiGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_day_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
one_day_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 3, 5, 5, 2, 3, 3, 5, 5}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingCountMultiGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_day_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
one_day_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{5, 5, 4, 2, 2, 5, 5, 4, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest,
UnboundedPrecedingAndFollowingCountMultiGroupTimestampDESCNullsLast)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
auto const time_col =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{4, 3, 2, 1, 0, 9, 8, 7, 6, 5}, {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output = cudf::grouped_time_range_rolling_window(
grouping_keys,
time_col,
cudf::order::DESCENDING,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{5, 5, 5, 5, 5, 5, 5, 5, 5, 5});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingWindowSingleGroup)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_row_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
unbounded_preceding,
one_row_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{2, 3, 4, 5, 5, 6, 7, 8, 9, 9}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingWindowSingleGroup)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_row_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
one_row_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{9, 8, 7, 6, 5, 4, 4, 3, 2, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingAndFollowingWindowSingleGroup)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{9, 9, 9, 9, 9, 9, 9, 9, 9, 9});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingWindowMultiGroup)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 1, 1, 0, 1, 0, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const one_row_following = cudf::window_bounds::get(1L);
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
unbounded_preceding,
one_row_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{1, 2, 2, 3, 3, 1, 2, 3, 4, 4}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedFollowingWindowMultiGroup)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 1, 1, 0, 1, 0, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const one_row_preceding = cudf::window_bounds::get(1L);
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
one_row_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{
{3, 3, 2, 1, 1, 4, 4, 3, 2, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingAndFollowingWindowMultiGroup)
{
using T = TypeParam;
auto const grp_col = cudf::test::fixed_width_column_wrapper<T>{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
auto const agg_col = cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 1, 1, 0, 1, 0, 1, 1, 1, 1}};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
output->view(),
cudf::test::fixed_width_column_wrapper<cudf::size_type>{3, 3, 3, 3, 3, 4, 4, 4, 4, 4});
}
TYPED_TEST(TypedUnboundedWindowTest, UnboundedPrecedingAndFollowingStructGroup)
{
// Test that grouping on STRUCT keys produces is possible.
using T = TypeParam;
using numerics = cudf::test::fixed_width_column_wrapper<T>;
using result_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto const grp_col = [] {
auto grp_col_inner = numerics{0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
return cudf::test::structs_column_wrapper{{grp_col_inner}};
}();
auto const agg_col =
numerics{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, cudf::test::iterators::nulls_at({0, 3, 5})};
auto const grouping_keys = cudf::table_view{{grp_col}};
auto const unbounded_preceding = cudf::window_bounds::unbounded();
auto const unbounded_following = cudf::window_bounds::unbounded();
auto const min_periods = 1L;
auto const output =
cudf::grouped_rolling_window(grouping_keys,
agg_col,
unbounded_preceding,
unbounded_following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output->view(), result_t{3, 3, 3, 3, 3, 4, 4, 4, 4, 4});
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/rolling_test.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/aggregation.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/utilities/traits.hpp>
// return true if the aggregation is valid for the specified ColumnType
// valid aggregations may still be further specialized (eg, is_string_specialized)
template <typename ColumnType, cudf::aggregation::Kind op>
static constexpr bool is_rolling_supported()
{
if (!cudf::detail::is_valid_aggregation<ColumnType, op>()) {
return false;
} else if (cudf::is_numeric<ColumnType>() or cudf::is_duration<ColumnType>()) {
return (op == cudf::aggregation::SUM) or (op == cudf::aggregation::MIN) or
(op == cudf::aggregation::MAX) or (op == cudf::aggregation::COUNT_VALID) or
(op == cudf::aggregation::COUNT_ALL) or (op == cudf::aggregation::MEAN) or
(op == cudf::aggregation::ROW_NUMBER) or (op == cudf::aggregation::LEAD) or
(op == cudf::aggregation::LAG) or (op == cudf::aggregation::COLLECT_LIST);
} else if (cudf::is_timestamp<ColumnType>()) {
return (op == cudf::aggregation::MIN) or (op == cudf::aggregation::MAX) or
(op == cudf::aggregation::COUNT_VALID) or (op == cudf::aggregation::COUNT_ALL) or
(op == cudf::aggregation::ROW_NUMBER) or (op == cudf::aggregation::LEAD) or
(op == cudf::aggregation::LAG) or (op == cudf::aggregation::COLLECT_LIST);
} else if (cudf::is_fixed_point<ColumnType>()) {
return (op == cudf::aggregation::SUM) or (op == cudf::aggregation::MIN) or
(op == cudf::aggregation::MAX) or (op == cudf::aggregation::COUNT_VALID) or
(op == cudf::aggregation::COUNT_ALL) or (op == cudf::aggregation::ROW_NUMBER) or
(op == cudf::aggregation::LEAD) or (op == cudf::aggregation::LAG) or
(op == cudf::aggregation::COLLECT_LIST);
} else if (std::is_same<ColumnType, cudf::string_view>()) {
return (op == cudf::aggregation::MIN) or (op == cudf::aggregation::MAX) or
(op == cudf::aggregation::COUNT_VALID) or (op == cudf::aggregation::COUNT_ALL) or
(op == cudf::aggregation::ROW_NUMBER) or (op == cudf::aggregation::COLLECT_LIST);
} else if (std::is_same<ColumnType, cudf::list_view>()) {
return (op == cudf::aggregation::COUNT_VALID) or (op == cudf::aggregation::COUNT_ALL) or
(op == cudf::aggregation::ROW_NUMBER) or (op == cudf::aggregation::COLLECT_LIST);
} else if (std::is_same<ColumnType, cudf::struct_view>()) {
// TODO: Add support for COUNT_VALID, COUNT_ALL, ROW_NUMBER.
return op == cudf::aggregation::COLLECT_LIST;
} else {
return false;
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/range_window_bounds_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/rolling/range_window_bounds.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <src/rolling/detail/range_window_bounds.hpp>
#include <vector>
struct RangeWindowBoundsTest : public cudf::test::BaseFixture {};
template <typename Timestamp>
struct TimestampRangeWindowBoundsTest : RangeWindowBoundsTest {};
TYPED_TEST_SUITE(TimestampRangeWindowBoundsTest, cudf::test::TimestampTypes);
TEST_F(RangeWindowBoundsTest, TestBasicTimestampRangeTypeMapping)
{
// Explicitly check that the programmatic mapping of orderby column types
// to their respective range and range_rep types is accurate.
static_assert(std::is_same_v<cudf::detail::range_type<cudf::timestamp_D>, cudf::duration_D>);
static_assert(std::is_same_v<cudf::detail::range_type<cudf::timestamp_s>, cudf::duration_s>);
static_assert(std::is_same_v<cudf::detail::range_type<cudf::timestamp_ms>, cudf::duration_ms>);
static_assert(std::is_same_v<cudf::detail::range_type<cudf::timestamp_us>, cudf::duration_us>);
static_assert(std::is_same_v<cudf::detail::range_type<cudf::timestamp_ns>, cudf::duration_ns>);
static_assert(std::is_same_v<cudf::detail::range_rep_type<cudf::timestamp_D>, int32_t>);
static_assert(std::is_same_v<cudf::detail::range_rep_type<cudf::timestamp_s>, int64_t>);
static_assert(std::is_same_v<cudf::detail::range_rep_type<cudf::timestamp_ms>, int64_t>);
static_assert(std::is_same_v<cudf::detail::range_rep_type<cudf::timestamp_us>, int64_t>);
static_assert(std::is_same_v<cudf::detail::range_rep_type<cudf::timestamp_ns>, int64_t>);
}
TYPED_TEST(TimestampRangeWindowBoundsTest, BoundsConstruction)
{
using OrderByType = TypeParam;
using range_type = cudf::detail::range_type<OrderByType>;
using rep_type = cudf::detail::range_rep_type<OrderByType>;
auto const dtype = cudf::data_type{cudf::type_to_id<OrderByType>()};
static_assert(cudf::is_duration<range_type>());
auto range_3 = cudf::range_window_bounds::get(cudf::duration_scalar<range_type>{3, true});
EXPECT_FALSE(range_3.is_unbounded() &&
"range_window_bounds constructed from scalar cannot be unbounded.");
EXPECT_EQ(
cudf::detail::range_comparable_value<OrderByType>(range_3, dtype, cudf::get_default_stream()),
rep_type{3});
auto range_unbounded =
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<range_type>()});
EXPECT_TRUE(range_unbounded.is_unbounded() &&
"range_window_bounds::unbounded() must return an unbounded range.");
EXPECT_EQ(cudf::detail::range_comparable_value<OrderByType>(
range_unbounded, dtype, cudf::get_default_stream()),
rep_type{});
}
TYPED_TEST(TimestampRangeWindowBoundsTest, WrongRangeType)
{
using OrderByType = TypeParam;
auto const dtype = cudf::data_type{cudf::type_to_id<OrderByType>()};
using wrong_range_type = std::conditional_t<std::is_same_v<OrderByType, cudf::timestamp_D>,
cudf::duration_ns,
cudf::duration_D>;
auto range_3 = cudf::range_window_bounds::get(cudf::duration_scalar<wrong_range_type>{3, true});
EXPECT_THROW(
cudf::detail::range_comparable_value<OrderByType>(range_3, dtype, cudf::get_default_stream()),
cudf::logic_error);
auto range_unbounded =
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<wrong_range_type>()});
EXPECT_THROW(cudf::detail::range_comparable_value<OrderByType>(
range_unbounded, dtype, cudf::get_default_stream()),
cudf::logic_error);
}
template <typename T>
struct NumericRangeWindowBoundsTest : RangeWindowBoundsTest {};
using TypesForTest = cudf::test::IntegralTypesNotBool;
TYPED_TEST_SUITE(NumericRangeWindowBoundsTest, TypesForTest);
TYPED_TEST(NumericRangeWindowBoundsTest, BasicNumericRangeTypeMapping)
{
using T = TypeParam;
using range_type = cudf::detail::range_type<T>;
using range_rep_type = cudf::detail::range_rep_type<T>;
static_assert(std::is_same_v<T, range_type>);
static_assert(std::is_same_v<T, range_rep_type>);
}
TYPED_TEST(NumericRangeWindowBoundsTest, BoundsConstruction)
{
using OrderByType = TypeParam;
using range_type = cudf::detail::range_type<OrderByType>;
using rep_type = cudf::detail::range_rep_type<OrderByType>;
auto const dtype = cudf::data_type{cudf::type_to_id<OrderByType>()};
static_assert(std::is_integral_v<range_type>);
auto range_3 = cudf::range_window_bounds::get(cudf::numeric_scalar<range_type>{3, true});
EXPECT_FALSE(range_3.is_unbounded() &&
"range_window_bounds constructed from scalar cannot be unbounded.");
EXPECT_EQ(
cudf::detail::range_comparable_value<OrderByType>(range_3, dtype, cudf::get_default_stream()),
rep_type{3});
auto range_unbounded =
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<range_type>()});
EXPECT_TRUE(range_unbounded.is_unbounded() &&
"range_window_bounds::unbounded() must return an unbounded range.");
EXPECT_EQ(cudf::detail::range_comparable_value<OrderByType>(
range_unbounded, dtype, cudf::get_default_stream()),
rep_type{});
}
TYPED_TEST(NumericRangeWindowBoundsTest, WrongRangeType)
{
using OrderByType = TypeParam;
auto const dtype = cudf::data_type{cudf::type_to_id<OrderByType>()};
using wrong_range_type =
std::conditional_t<std::is_same_v<OrderByType, int32_t>, int16_t, int32_t>;
auto range_3 = cudf::range_window_bounds::get(cudf::numeric_scalar<wrong_range_type>{3, true});
EXPECT_THROW(
cudf::detail::range_comparable_value<OrderByType>(range_3, dtype, cudf::get_default_stream()),
cudf::logic_error);
auto range_unbounded =
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<wrong_range_type>()});
EXPECT_THROW(cudf::detail::range_comparable_value<OrderByType>(
range_unbounded, dtype, cudf::get_default_stream()),
cudf::logic_error);
}
template <typename T>
struct DecimalRangeBoundsTest : RangeWindowBoundsTest {};
TYPED_TEST_SUITE(DecimalRangeBoundsTest, cudf::test::FixedPointTypes);
TYPED_TEST(DecimalRangeBoundsTest, BoundsConstruction)
{
using DecimalT = TypeParam;
using Rep = cudf::detail::range_rep_type<DecimalT>;
auto const dtype = cudf::data_type{cudf::type_to_id<DecimalT>()};
// Interval type must match the decimal type.
static_assert(std::is_same_v<cudf::detail::range_type<DecimalT>, DecimalT>);
auto const range_3 = cudf::range_window_bounds::get(
cudf::fixed_point_scalar<DecimalT>{Rep{3}, numeric::scale_type{0}});
EXPECT_FALSE(range_3.is_unbounded() &&
"range_window_bounds constructed from scalar cannot be unbounded.");
EXPECT_EQ(
cudf::detail::range_comparable_value<DecimalT>(range_3, dtype, cudf::get_default_stream()),
Rep{3});
auto const range_unbounded =
cudf::range_window_bounds::unbounded(cudf::data_type{cudf::type_to_id<DecimalT>()});
EXPECT_TRUE(range_unbounded.is_unbounded() &&
"range_window_bounds::unbounded() must return an unbounded range.");
}
TYPED_TEST(DecimalRangeBoundsTest, Rescale)
{
using DecimalT = TypeParam;
using RepT = typename DecimalT::rep;
// Powers of 10.
auto constexpr pow10 = std::array{1, 10, 100, 1000, 10000, 100000};
// Check that the rep has expected values at different range scales.
auto const order_by_scale = -2;
auto const order_by_data_type = cudf::data_type{cudf::type_to_id<DecimalT>(), order_by_scale};
for (auto const range_scale : {-2, -1, 0, 1, 2}) {
auto const decimal_range_bounds = cudf::range_window_bounds::get(
cudf::fixed_point_scalar<DecimalT>{RepT{20}, numeric::scale_type{range_scale}});
auto const rescaled_range_rep = cudf::detail::range_comparable_value<DecimalT>(
decimal_range_bounds, order_by_data_type, cudf::get_default_stream());
EXPECT_EQ(rescaled_range_rep, RepT{20} * pow10[range_scale - order_by_scale]);
}
// Order By column scale cannot exceed range scale:
{
auto const decimal_range_bounds = cudf::range_window_bounds::get(
cudf::fixed_point_scalar<DecimalT>{RepT{200}, numeric::scale_type{-3}});
EXPECT_THROW(cudf::detail::range_comparable_value<DecimalT>(
decimal_range_bounds, order_by_data_type, cudf::get_default_stream()),
cudf::logic_error);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/rolling_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rolling_test.hpp"
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/encode.hpp>
#include <cudf/rolling.hpp>
#include <cudf/unary.hpp>
#include <cudf/utilities/bit.hpp>
#include <cudf/utilities/traits.hpp>
#include <src/rolling/detail/rolling.hpp>
#include <thrust/host_vector.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <limits>
#include <type_traits>
#include <vector>
class RollingStringTest : public cudf::test::BaseFixture {};
TEST_F(RollingStringTest, NoNullStringMinMaxCount)
{
cudf::test::strings_column_wrapper input(
{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"});
std::vector<cudf::size_type> window{2};
cudf::test::strings_column_wrapper expected_min(
{"This", "This", "being", "being", "being", "being", "column", "column", "column"},
{1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::strings_column_wrapper expected_max(
{"rolling", "test", "test", "test", "test", "string", "string", "string", "string"},
{1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count(
{3, 4, 4, 4, 4, 4, 4, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1});
auto got_min = cudf::rolling_window(
input, window[0], window[0], 1, *cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto got_max = cudf::rolling_window(
input, window[0], window[0], 1, *cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto got_count_valid = cudf::rolling_window(
input, window[0], window[0], 1, *cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto got_count_all = cudf::rolling_window(
input,
window[0],
window[0],
1,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, got_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, got_max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count, got_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count, got_count_all->view());
}
TEST_F(RollingStringTest, NullStringMinMaxCount)
{
cudf::test::strings_column_wrapper input(
{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"},
{1, 0, 0, 1, 0, 1, 1, 1, 0});
std::vector<cudf::size_type> window{2};
cudf::test::strings_column_wrapper expected_min(
{"This", "This", "test", "operated", "on", "on", "on", "on", "string"},
{1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::strings_column_wrapper expected_max(
{"This", "test", "test", "test", "test", "string", "string", "string", "string"},
{1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count_val(
{1, 2, 1, 2, 3, 3, 3, 2, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count_all(
{3, 4, 4, 4, 4, 4, 4, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1});
auto got_min = cudf::rolling_window(
input, window[0], window[0], 1, *cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto got_max = cudf::rolling_window(
input, window[0], window[0], 1, *cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto got_count_valid = cudf::rolling_window(
input, window[0], window[0], 1, *cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto got_count_all = cudf::rolling_window(
input,
window[0],
window[0],
1,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, got_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, got_max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_val, got_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_all, got_count_all->view());
}
TEST_F(RollingStringTest, MinPeriods)
{
cudf::test::strings_column_wrapper input(
{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"},
{1, 0, 0, 1, 0, 1, 1, 1, 0});
std::vector<cudf::size_type> window{2};
cudf::test::strings_column_wrapper expected_min(
{"This", "This", "This", "operated", "on", "on", "on", "on", "on"},
{0, 0, 0, 0, 1, 1, 1, 0, 0});
cudf::test::strings_column_wrapper expected_max(
{"This", "test", "test", "test", "test", "string", "string", "string", "string"},
{0, 0, 0, 0, 1, 1, 1, 0, 0});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count_val(
{1, 2, 1, 2, 3, 3, 3, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count_all(
{3, 4, 4, 4, 4, 4, 4, 3, 2}, {0, 1, 1, 1, 1, 1, 1, 0, 0});
auto got_min = cudf::rolling_window(
input, window[0], window[0], 3, *cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto got_max = cudf::rolling_window(
input, window[0], window[0], 3, *cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto got_count_valid = cudf::rolling_window(
input, window[0], window[0], 3, *cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto got_count_all = cudf::rolling_window(
input,
window[0],
window[0],
4,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, got_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, got_max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_val, got_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_all, got_count_all->view());
}
// =========================================================================================
class RollingStructTest : public cudf::test::BaseFixture {};
TEST_F(RollingStructTest, NoNullStructsMinMaxCount)
{
using strings_col = cudf::test::strings_column_wrapper;
using ints_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
auto const do_test = [](auto const& input) {
auto const expected_min = [] {
auto child1 = strings_col{
"This", "This", "being", "being", "being", "being", "column", "column", "column"};
auto child2 = ints_col{1, 1, 5, 5, 5, 5, 9, 9, 9};
return structs_col{{child1, child2}, cudf::test::iterators::no_nulls()};
}();
auto const expected_max = [] {
auto child1 = strings_col{
"rolling", "test", "test", "test", "test", "string", "string", "string", "string"};
auto child2 = ints_col{3, 4, 4, 4, 4, 8, 8, 8, 8};
return structs_col{{child1, child2}, cudf::test::iterators::no_nulls()};
}();
auto const expected_count =
ints_col{{3, 4, 4, 4, 4, 4, 4, 3, 2}, cudf::test::iterators::no_nulls()};
auto constexpr preceding = 2;
auto constexpr following = 2;
auto constexpr min_period = 1;
auto const result_min =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto const result_max =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto const result_count_valid =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto const result_count_all = cudf::rolling_window(
input,
preceding,
following,
min_period,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, result_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, result_max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count, result_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count, result_count_all->view());
};
auto const input_no_sliced = [] {
auto child1 =
strings_col{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"};
auto child2 = ints_col{1, 2, 3, 4, 5, 6, 7, 8, 9};
return structs_col{{child1, child2}};
}();
auto const input_before_sliced = [] {
auto constexpr dont_care{0};
auto child1 = strings_col{"1dont_care",
"1dont_care",
"@dont_care",
"This",
"is",
"rolling",
"test",
"being",
"operated",
"on",
"string",
"column",
"1dont_care",
"1dont_care",
"@dont_care"};
auto child2 = ints_col{
dont_care, dont_care, dont_care, 1, 2, 3, 4, 5, 6, 7, 8, 9, dont_care, dont_care, dont_care};
return structs_col{{child1, child2}};
}();
auto const input_sliced = cudf::slice(input_before_sliced, {3, 12})[0];
do_test(input_no_sliced);
do_test(input_sliced);
}
TEST_F(RollingStructTest, NullChildrenMinMaxCount)
{
using strings_col = cudf::test::strings_column_wrapper;
using ints_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
auto const input = [] {
auto child1 = strings_col{
{"This", "" /*NULL*/, "" /*NULL*/, "test", "" /*NULL*/, "operated", "on", "string", "column"},
cudf::test::iterators::nulls_at({1, 2, 4})};
auto child2 = ints_col{1, 2, 3, 4, 5, 6, 7, 8, 9};
return structs_col{{child1, child2}};
}();
auto const expected_min = [] {
auto child1 = strings_col{{"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"column",
"column",
"column"},
cudf::test::iterators::nulls_at({0, 1, 2, 3, 4, 5})};
auto child2 = ints_col{2, 2, 2, 3, 5, 5, 9, 9, 9};
return structs_col{{child1, child2}, cudf::test::iterators::no_nulls()};
}();
auto const expected_max = [] {
auto child1 =
strings_col{"This", "test", "test", "test", "test", "string", "string", "string", "string"};
auto child2 = ints_col{1, 4, 4, 4, 4, 8, 8, 8, 8};
return structs_col{{child1, child2}, cudf::test::iterators::no_nulls()};
}();
auto const expected_count =
ints_col{{3, 4, 4, 4, 4, 4, 4, 3, 2}, cudf::test::iterators::no_nulls()};
auto constexpr preceding = 2;
auto constexpr following = 2;
auto constexpr min_period = 1;
auto const result_min =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto const result_max =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto const result_count_valid =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto const result_count_all = cudf::rolling_window(
input,
preceding,
following,
min_period,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, result_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, result_max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count, result_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count, result_count_all->view());
}
TEST_F(RollingStructTest, NullParentMinMaxCount)
{
using strings_col = cudf::test::strings_column_wrapper;
using ints_col = cudf::test::fixed_width_column_wrapper<int32_t>;
using structs_col = cudf::test::structs_column_wrapper;
auto constexpr null{0};
auto const input = [] {
auto child1 = strings_col{"This",
"" /*NULL*/,
"" /*NULL*/,
"test",
"" /*NULL*/,
"operated",
"on",
"string",
"" /*NULL*/};
auto child2 = ints_col{1, null, null, 4, null, 6, 7, 8, null};
return structs_col{{child1, child2}, cudf::test::iterators::nulls_at({1, 2, 4, 8})};
}();
auto const expected_min = [] {
auto child1 = strings_col{"This", "This", "test", "operated", "on", "on", "on", "on", "string"};
auto child2 = ints_col{1, 1, 4, 6, 7, 7, 7, 7, 8};
return structs_col{{child1, child2}, cudf::test::iterators::no_nulls()};
}();
auto const expected_max = [] {
auto child1 =
strings_col{"This", "test", "test", "test", "test", "string", "string", "string", "string"};
auto child2 = ints_col{1, 4, 4, 4, 4, 8, 8, 8, 8};
return structs_col{{child1, child2}, cudf::test::iterators::no_nulls()};
}();
auto const expected_count_valid =
ints_col{{1, 2, 1, 2, 3, 3, 3, 2, 1}, cudf::test::iterators::no_nulls()};
auto const expected_count_all =
ints_col{{3, 4, 4, 4, 4, 4, 4, 3, 2}, cudf::test::iterators::no_nulls()};
auto constexpr preceding = 2;
auto constexpr following = 2;
auto constexpr min_period = 1;
auto const result_min =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto const result_max =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto const result_count_valid =
cudf::rolling_window(input,
preceding,
following,
min_period,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto const result_count_all = cudf::rolling_window(
input,
preceding,
following,
min_period,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, result_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, result_max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_valid, result_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_all, result_count_all->view());
}
// =========================================================================================
template <typename T>
class RollingTest : public cudf::test::BaseFixture {
protected:
// input as column_wrapper
void run_test_col(cudf::column_view const& input,
std::vector<cudf::size_type> const& preceding_window,
std::vector<cudf::size_type> const& following_window,
cudf::size_type min_periods,
cudf::rolling_aggregation const& op)
{
std::unique_ptr<cudf::column> output;
// wrap windows
if (preceding_window.size() > 1) {
cudf::test::fixed_width_column_wrapper<cudf::size_type> preceding_window_wrapper(
preceding_window.begin(), preceding_window.end());
cudf::test::fixed_width_column_wrapper<cudf::size_type> following_window_wrapper(
following_window.begin(), following_window.end());
EXPECT_NO_THROW(
output = cudf::rolling_window(
input, preceding_window_wrapper, following_window_wrapper, min_periods, op));
} else {
EXPECT_NO_THROW(output = cudf::rolling_window(
input, preceding_window[0], following_window[0], min_periods, op));
}
auto reference =
create_reference_output(op, input, preceding_window, following_window, min_periods);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, *reference);
}
// helper function to test all aggregators
void run_test_col_agg(cudf::column_view const& input,
std::vector<cudf::size_type> const& preceding_window,
std::vector<cudf::size_type> const& following_window,
cudf::size_type min_periods)
{
// test all supported aggregators
run_test_col(input,
preceding_window,
following_window,
min_periods,
*cudf::make_min_aggregation<cudf::rolling_aggregation>());
run_test_col(input,
preceding_window,
following_window,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>());
run_test_col(
input,
preceding_window,
following_window,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
run_test_col(input,
preceding_window,
following_window,
min_periods,
*cudf::make_max_aggregation<cudf::rolling_aggregation>());
if (not cudf::is_timestamp(input.type())) {
run_test_col(input,
preceding_window,
following_window,
min_periods,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>());
run_test_col(input,
preceding_window,
following_window,
min_periods,
*cudf::make_mean_aggregation<cudf::rolling_aggregation>());
}
}
private:
// use SFINAE to only instantiate for supported combinations
// specialization for COUNT_VALID, COUNT_ALL
template <bool include_nulls>
std::unique_ptr<cudf::column> create_count_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& preceding_window_col,
std::vector<cudf::size_type> const& following_window_col,
cudf::size_type min_periods)
{
cudf::size_type num_rows = input.size();
std::vector<cudf::size_type> ref_data(num_rows);
std::vector<bool> ref_valid(num_rows);
// input data and mask
std::vector<cudf::bitmask_type> in_valid = cudf::test::bitmask_to_host(input);
cudf::bitmask_type* valid_mask = in_valid.data();
for (cudf::size_type i = 0; i < num_rows; i++) {
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto preceding_window = preceding_window_col[i % preceding_window_col.size()];
auto following_window = following_window_col[i % following_window_col.size()];
cudf::size_type start = std::min(num_rows, std::max(0, i - preceding_window + 1));
cudf::size_type end = std::min(num_rows, std::max(0, i + following_window + 1));
cudf::size_type start_index = std::min(start, end);
cudf::size_type end_index = std::max(start, end);
// aggregate
cudf::size_type count = 0;
for (cudf::size_type j = start_index; j < end_index; j++) {
if (include_nulls || !input.nullable() || cudf::bit_is_set(valid_mask, j)) count++;
}
ref_valid[i] = ((end_index - start_index) >= min_periods);
if (ref_valid[i]) ref_data[i] = count;
}
cudf::test::fixed_width_column_wrapper<cudf::size_type> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
template <typename agg_op,
cudf::aggregation::Kind k,
typename OutputType,
bool is_mean,
std::enable_if_t<is_rolling_supported<T, k>()>* = nullptr>
std::unique_ptr<cudf::column> create_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& preceding_window_col,
std::vector<cudf::size_type> const& following_window_col,
cudf::size_type min_periods)
{
cudf::size_type num_rows = input.size();
thrust::host_vector<OutputType> ref_data(num_rows);
thrust::host_vector<bool> ref_valid(num_rows);
// input data and mask
auto [in_col, in_valid] = cudf::test::to_host<T>(input);
cudf::bitmask_type* valid_mask = in_valid.data();
agg_op op;
for (cudf::size_type i = 0; i < num_rows; i++) {
OutputType val = agg_op::template identity<OutputType>();
// load sizes
min_periods = std::max(min_periods, 1); // at least one observation is required
// compute bounds
auto preceding_window = preceding_window_col[i % preceding_window_col.size()];
auto following_window = following_window_col[i % following_window_col.size()];
cudf::size_type start = std::min(num_rows, std::max(0, i - preceding_window + 1));
cudf::size_type end = std::min(num_rows, std::max(0, i + following_window + 1));
cudf::size_type start_index = std::min(start, end);
cudf::size_type end_index = std::max(start, end);
// aggregate
cudf::size_type count = 0;
for (cudf::size_type j = start_index; j < end_index; j++) {
if (!input.nullable() || cudf::bit_is_set(valid_mask, j)) {
val = op(static_cast<OutputType>(in_col[j]), val);
count++;
}
}
ref_valid[i] = (count >= min_periods);
if (ref_valid[i]) {
cudf::detail::rolling_store_output_functor<OutputType, is_mean>{}(ref_data[i], val, count);
}
}
cudf::test::fixed_width_column_wrapper<OutputType> col(
ref_data.begin(), ref_data.end(), ref_valid.begin());
return col.release();
}
template <typename agg_op,
cudf::aggregation::Kind k,
typename OutputType,
bool is_mean,
std::enable_if_t<!is_rolling_supported<T, k>()>* = nullptr>
std::unique_ptr<cudf::column> create_reference_output(
cudf::column_view const& input,
std::vector<cudf::size_type> const& preceding_window_col,
std::vector<cudf::size_type> const& following_window_col,
cudf::size_type min_periods)
{
CUDF_FAIL("Unsupported combination of type and aggregation");
}
std::unique_ptr<cudf::column> create_reference_output(
cudf::rolling_aggregation const& op,
cudf::column_view const& input,
std::vector<cudf::size_type> const& preceding_window,
std::vector<cudf::size_type> const& following_window,
cudf::size_type min_periods)
{
// unroll aggregation types
switch (op.kind) {
case cudf::aggregation::SUM:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::SUM,
cudf::detail::target_type_t<T, cudf::aggregation::SUM>,
false>(
input, preceding_window, following_window, min_periods);
case cudf::aggregation::MIN:
return create_reference_output<cudf::DeviceMin,
cudf::aggregation::MIN,
cudf::detail::target_type_t<T, cudf::aggregation::MIN>,
false>(
input, preceding_window, following_window, min_periods);
case cudf::aggregation::MAX:
return create_reference_output<cudf::DeviceMax,
cudf::aggregation::MAX,
cudf::detail::target_type_t<T, cudf::aggregation::MAX>,
false>(
input, preceding_window, following_window, min_periods);
case cudf::aggregation::COUNT_VALID:
return create_count_reference_output<false>(
input, preceding_window, following_window, min_periods);
case cudf::aggregation::COUNT_ALL:
return create_count_reference_output<true>(
input, preceding_window, following_window, min_periods);
case cudf::aggregation::MEAN:
return create_reference_output<cudf::DeviceSum,
cudf::aggregation::MEAN,
cudf::detail::target_type_t<T, cudf::aggregation::MEAN>,
true>(
input, preceding_window, following_window, min_periods);
default: return cudf::test::fixed_width_column_wrapper<T>({}).release();
}
}
};
template <typename T>
class RollingVarStdTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(RollingVarStdTest, cudf::test::FixedWidthTypesWithoutChrono);
class RollingtVarStdTestUntyped : public cudf::test::BaseFixture {};
class RollingErrorTest : public cudf::test::BaseFixture {};
// negative sizes
TEST_F(RollingErrorTest, NegativeMinPeriods)
{
const std::vector<cudf::size_type> col_data = {0, 1, 2, 0, 4};
const std::vector<bool> col_valid = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<cudf::size_type> input(
col_data.begin(), col_data.end(), col_valid.begin());
EXPECT_THROW(
cudf::rolling_window(input, 2, 2, -2, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
// window array size mismatch
TEST_F(RollingErrorTest, WindowArraySizeMismatch)
{
const std::vector<cudf::size_type> col_data = {0, 1, 2, 0, 4};
const std::vector<bool> col_valid = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<cudf::size_type> input(
col_data.begin(), col_data.end(), col_valid.begin());
std::vector<cudf::size_type> five({2, 1, 2, 1, 4});
std::vector<cudf::size_type> four({1, 2, 3, 4});
cudf::test::fixed_width_column_wrapper<cudf::size_type> five_elements(five.begin(), five.end());
cudf::test::fixed_width_column_wrapper<cudf::size_type> four_elements(four.begin(), four.end());
// this runs ok
EXPECT_NO_THROW(cudf::rolling_window(input,
five_elements,
five_elements,
1,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()));
// mismatch for the window array
EXPECT_THROW(cudf::rolling_window(input,
four_elements,
five_elements,
1,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
// mismatch for the forward window array
EXPECT_THROW(cudf::rolling_window(input,
five_elements,
four_elements,
1,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
TEST_F(RollingErrorTest, EmptyInput)
{
cudf::test::fixed_width_column_wrapper<int32_t> empty_col{};
std::unique_ptr<cudf::column> output;
EXPECT_NO_THROW(output = cudf::rolling_window(
empty_col, 2, 0, 2, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()));
EXPECT_EQ(output->size(), 0);
cudf::test::fixed_width_column_wrapper<int32_t> preceding_window{};
cudf::test::fixed_width_column_wrapper<int32_t> following_window{};
EXPECT_NO_THROW(output =
cudf::rolling_window(empty_col,
preceding_window,
following_window,
2,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()));
EXPECT_EQ(output->size(), 0);
cudf::test::fixed_width_column_wrapper<int32_t> nonempty_col{{1, 2, 3}};
EXPECT_NO_THROW(output =
cudf::rolling_window(nonempty_col,
preceding_window,
following_window,
2,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()));
EXPECT_EQ(output->size(), 0);
}
TEST_F(RollingErrorTest, SizeMismatch)
{
cudf::test::fixed_width_column_wrapper<int32_t> nonempty_col{{1, 2, 3}};
std::unique_ptr<cudf::column> output;
{
cudf::test::fixed_width_column_wrapper<int32_t> preceding_window{{1, 1}}; // wrong size
cudf::test::fixed_width_column_wrapper<int32_t> following_window{{1, 1, 1}};
EXPECT_THROW(
output = cudf::rolling_window(nonempty_col,
preceding_window,
following_window,
2,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
{
cudf::test::fixed_width_column_wrapper<int32_t> preceding_window{{1, 1, 1}};
cudf::test::fixed_width_column_wrapper<int32_t> following_window{{1, 2}}; // wrong size
EXPECT_THROW(
output = cudf::rolling_window(nonempty_col,
preceding_window,
following_window,
2,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
}
TEST_F(RollingErrorTest, WindowWrongDtype)
{
cudf::test::fixed_width_column_wrapper<int32_t> nonempty_col{{1, 2, 3}};
std::unique_ptr<cudf::column> output;
cudf::test::fixed_width_column_wrapper<float> preceding_window{{1.0f, 1.0f, 1.0f}};
cudf::test::fixed_width_column_wrapper<float> following_window{{1.0f, 1.0f, 1.0f}};
EXPECT_THROW(
output = cudf::rolling_window(nonempty_col,
preceding_window,
following_window,
2,
*cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
// incorrect type/aggregation combo: sum of timestamps
TEST_F(RollingErrorTest, SumTimestampNotSupported)
{
constexpr cudf::size_type size{10};
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep> input_D(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep> input_s(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep> input_ms(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_us, cudf::timestamp_us::rep> input_us(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep> input_ns(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
EXPECT_THROW(cudf::rolling_window(
input_D, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_s, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_ms, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_us, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_ns, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
// incorrect type/aggregation combo: mean of timestamps
TEST_F(RollingErrorTest, MeanTimestampNotSupported)
{
constexpr cudf::size_type size{10};
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep> input_D(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep> input_s(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep> input_ms(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_us, cudf::timestamp_us::rep> input_us(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep> input_ns(
thrust::make_counting_iterator(0), thrust::make_counting_iterator(size));
EXPECT_THROW(cudf::rolling_window(
input_D, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_s, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_ms, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_us, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(
input_ns, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
}
TYPED_TEST_SUITE(RollingTest, cudf::test::FixedWidthTypesWithoutFixedPoint);
// simple example from Pandas docs
TYPED_TEST(RollingTest, SimpleStatic)
{
// https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html
auto const col_data = cudf::test::make_type_param_vector<TypeParam>({0, 1, 2, 0, 4});
const std::vector<bool> col_mask = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> window{2};
// static sizes
this->run_test_col_agg(input, window, window, 1);
}
TYPED_TEST(RollingVarStdTest, SimpleStaticVarianceStd)
{
#define XXX 0 // NULL stub
using ResultType = double;
double const nan = std::numeric_limits<double>::signaling_NaN();
cudf::size_type const ddof = 1, min_periods = 0, preceding_window = 2, following_window = 1;
auto const col_data =
cudf::test::make_type_param_vector<TypeParam>({XXX, XXX, 9, 5, XXX, XXX, XXX, 0, 8, 5, 8});
const std::vector<bool> col_mask = {0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1};
auto const expected_var =
cudf::is_boolean<TypeParam>()
? std::vector<ResultType>{XXX, nan, 0, 0, nan, XXX, nan, 0.5, 0.3333333333333333, 0, 0}
: std::vector<ResultType>{XXX, nan, 8, 8, nan, XXX, nan, 32, 16.33333333333333, 3, 4.5};
std::vector<ResultType> expected_std(expected_var.size());
std::transform(expected_var.begin(), expected_var.end(), expected_std.begin(), [](auto const& x) {
return std::sqrt(x);
});
const std::vector<bool> expected_mask = {0, /* all null window */
1, /* 0 div 0, nan */
1,
1,
1, /* 0 div 0, nan */
0, /* all null window */
1, /* 0 div 0, nan */
1,
1,
1,
1};
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
cudf::test::fixed_width_column_wrapper<ResultType> var_expect(
expected_var.begin(), expected_var.end(), expected_mask.begin());
cudf::test::fixed_width_column_wrapper<ResultType> std_expect(
expected_std.begin(), expected_std.end(), expected_mask.begin());
std::unique_ptr<cudf::column> var_result, std_result;
// static sizes
EXPECT_NO_THROW(var_result = cudf::rolling_window(input,
preceding_window,
following_window,
min_periods,
dynamic_cast<cudf::rolling_aggregation const&>(
*cudf::make_variance_aggregation(ddof))););
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*var_result, var_expect);
EXPECT_NO_THROW(std_result = cudf::rolling_window(input,
preceding_window,
following_window,
min_periods,
dynamic_cast<cudf::rolling_aggregation const&>(
*cudf::make_std_aggregation(ddof))););
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*std_result, std_expect);
#undef XXX
}
TEST_F(RollingtVarStdTestUntyped, SimpleStaticVarianceStdInfNaN)
{
#define XXX 0. // NULL stub
using ResultType = double;
double const inf = std::numeric_limits<double>::infinity();
double const nan = std::numeric_limits<double>::signaling_NaN();
cudf::size_type const ddof = 1, min_periods = 1, preceding_window = 3, following_window = 0;
auto const col_data =
cudf::test::make_type_param_vector<double>({5., 4., XXX, inf, 4., 8., 0., nan, XXX, 5.});
const std::vector<bool> col_mask = {1, 1, 0, 1, 1, 1, 1, 1, 0, 1};
auto const expected_var =
std::vector<ResultType>{nan, 0.5, 0.5, nan, nan, nan, 16, nan, nan, nan};
std::vector<ResultType> expected_std(expected_var.size());
std::transform(expected_var.begin(), expected_var.end(), expected_std.begin(), [](auto const& x) {
return std::sqrt(x);
});
const std::vector<bool> expected_mask = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
cudf::test::fixed_width_column_wrapper<double> input(
col_data.begin(), col_data.end(), col_mask.begin());
cudf::test::fixed_width_column_wrapper<ResultType> var_expect(
expected_var.begin(), expected_var.end(), expected_mask.begin());
cudf::test::fixed_width_column_wrapper<ResultType> std_expect(
expected_std.begin(), expected_std.end(), expected_mask.begin());
std::unique_ptr<cudf::column> var_result, std_result;
// static sizes
EXPECT_NO_THROW(var_result = cudf::rolling_window(input,
preceding_window,
following_window,
min_periods,
dynamic_cast<cudf::rolling_aggregation const&>(
*cudf::make_variance_aggregation(ddof))););
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*var_result, var_expect);
EXPECT_NO_THROW(std_result = cudf::rolling_window(input,
preceding_window,
following_window,
min_periods,
dynamic_cast<cudf::rolling_aggregation const&>(
*cudf::make_std_aggregation(ddof))););
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*std_result, std_expect);
#undef XXX
}
/*
// negative sizes
TYPED_TEST(RollingTest, NegativeWindowSizes)
{
auto const col_data = cudf::test::make_type_param_vector<TypeParam>({0, 1, 2, 0, 4});
auto const col_valid = std::vector<bool>{1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_valid.begin());
std::vector<cudf::size_type> window{3};
std::vector<cudf::size_type> negative_window{-2};
this->run_test_col_agg(input, negative_window, window, 1);
this->run_test_col_agg(input, window, negative_window, 1);
this->run_test_col_agg(input, negative_window, negative_window, 1);
}
*/
// simple example from Pandas docs:
TYPED_TEST(RollingTest, SimpleDynamic)
{
// https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html
auto const col_data = cudf::test::make_type_param_vector<TypeParam>({0, 1, 2, 0, 4});
const std::vector<bool> col_mask = {1, 1, 1, 0, 1};
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> preceding_window({1, 2, 3, 4, 2});
std::vector<cudf::size_type> following_window({2, 1, 2, 1, 2});
// dynamic sizes
this->run_test_col_agg(input, preceding_window, following_window, 1);
}
// this is a special test to check the volatile count variable issue (see rolling.cu for detail)
TYPED_TEST(RollingTest, VolatileCount)
{
auto const col_data = cudf::test::make_type_param_vector<TypeParam>({8, 70, 45, 20, 59, 80});
const std::vector<bool> col_mask = {1, 1, 0, 0, 1, 0};
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> preceding_window({5, 9, 4, 8, 3, 3});
std::vector<cudf::size_type> following_window({1, 1, 9, 2, 8, 9});
// dynamic sizes
this->run_test_col_agg(input, preceding_window, following_window, 1);
}
// all rows are invalid
TYPED_TEST(RollingTest, AllInvalid)
{
cudf::size_type num_rows = 1000;
std::vector<TypeParam> col_data(num_rows);
std::vector<bool> col_mask(num_rows, 0);
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> window({100});
cudf::size_type periods = 100;
this->run_test_col_agg(input, window, window, periods);
}
// window = following_window = 0
// Note: Preceding includes current row, so its value is set to 1.
TYPED_TEST(RollingTest, ZeroWindow)
{
cudf::size_type num_rows = 1000;
std::vector<int> col_data(num_rows, 1);
std::vector<bool> col_mask(num_rows, 1);
cudf::test::fixed_width_column_wrapper<TypeParam, int> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> preceding({0});
std::vector<cudf::size_type> following({1});
cudf::size_type periods = num_rows;
this->run_test_col_agg(input, preceding, following, periods);
}
// min_periods = 0
TYPED_TEST(RollingTest, ZeroPeriods)
{
cudf::size_type num_rows = 1000;
std::vector<int> col_data(num_rows, 1);
std::vector<bool> col_mask(num_rows, 1);
cudf::test::fixed_width_column_wrapper<TypeParam, int> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> window({num_rows});
cudf::size_type periods = 0;
this->run_test_col_agg(input, window, window, periods);
}
// window in one direction is not large enough to collect enough samples,
// but if using both directions we should get == min_periods,
// also tests out of boundary accesses
TYPED_TEST(RollingTest, BackwardForwardWindow)
{
cudf::size_type num_rows = 1000;
std::vector<int> col_data(num_rows, 1);
std::vector<bool> col_mask(num_rows, 1);
cudf::test::fixed_width_column_wrapper<TypeParam, int> input(
col_data.begin(), col_data.end(), col_mask.begin());
std::vector<cudf::size_type> window({num_rows});
cudf::size_type periods = num_rows;
this->run_test_col_agg(input, window, window, periods);
}
// random input data, static parameters, no nulls
TYPED_TEST(RollingTest, RandomStaticAllValid)
{
cudf::size_type num_rows = 10000;
// random input
std::vector<TypeParam> col_data(num_rows);
cudf::test::UniformRandomGenerator<TypeParam> rng;
std::generate(col_data.begin(), col_data.end(), [&rng]() { return rng.generate(); });
cudf::test::fixed_width_column_wrapper<TypeParam> input(col_data.begin(), col_data.end());
std::vector<cudf::size_type> window({50});
cudf::size_type periods = 50;
this->run_test_col_agg(input, window, window, periods);
}
// random input data, static parameters, with nulls
TYPED_TEST(RollingTest, RandomStaticWithInvalid)
{
cudf::size_type num_rows = 10000;
// random input
std::vector<TypeParam> col_data(num_rows);
std::vector<bool> col_valid(num_rows);
cudf::test::UniformRandomGenerator<TypeParam> rng;
cudf::test::UniformRandomGenerator<bool> rbg;
std::generate(col_data.begin(), col_data.end(), [&rng]() { return rng.generate(); });
std::generate(col_valid.begin(), col_valid.end(), [&rbg]() { return rbg.generate(); });
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_valid.begin());
std::vector<cudf::size_type> window({50});
cudf::size_type periods = 50;
this->run_test_col_agg(input, window, window, periods);
}
// random input data, dynamic parameters, no nulls
TYPED_TEST(RollingTest, RandomDynamicAllValid)
{
cudf::size_type num_rows = 50000;
cudf::size_type max_window_size = 50;
// random input
std::vector<TypeParam> col_data(num_rows);
cudf::test::UniformRandomGenerator<TypeParam> rng;
std::generate(col_data.begin(), col_data.end(), [&rng]() { return rng.generate(); });
cudf::test::fixed_width_column_wrapper<TypeParam> input(col_data.begin(), col_data.end());
// random parameters
cudf::test::UniformRandomGenerator<cudf::size_type> window_rng(0, max_window_size);
auto generator = [&]() { return window_rng.generate(); };
std::vector<cudf::size_type> preceding_window(num_rows);
std::vector<cudf::size_type> following_window(num_rows);
std::generate(preceding_window.begin(), preceding_window.end(), generator);
std::generate(following_window.begin(), following_window.end(), generator);
this->run_test_col_agg(input, preceding_window, following_window, max_window_size);
}
// random input data, dynamic parameters, with nulls
TYPED_TEST(RollingTest, RandomDynamicWithInvalid)
{
cudf::size_type num_rows = 50000;
cudf::size_type max_window_size = 50;
// random input with nulls
std::vector<TypeParam> col_data(num_rows);
std::vector<bool> col_valid(num_rows);
cudf::test::UniformRandomGenerator<TypeParam> rng;
cudf::test::UniformRandomGenerator<bool> rbg;
std::generate(col_data.begin(), col_data.end(), [&rng]() { return rng.generate(); });
std::generate(col_valid.begin(), col_valid.end(), [&rbg]() { return rbg.generate(); });
cudf::test::fixed_width_column_wrapper<TypeParam> input(
col_data.begin(), col_data.end(), col_valid.begin());
// random parameters
cudf::test::UniformRandomGenerator<cudf::size_type> window_rng(0, max_window_size);
auto generator = [&]() { return window_rng.generate(); };
std::vector<cudf::size_type> preceding_window(num_rows);
std::vector<cudf::size_type> following_window(num_rows);
std::generate(preceding_window.begin(), preceding_window.end(), generator);
std::generate(following_window.begin(), following_window.end(), generator);
this->run_test_col_agg(input, preceding_window, following_window, max_window_size);
}
// ------------- non-fixed-width types --------------------
using RollingTestStrings = RollingTest<cudf::string_view>;
TEST_F(RollingTestStrings, StringsUnsupportedOperators)
{
cudf::test::strings_column_wrapper input{{"This", "is", "not", "a", "string", "type"},
{1, 1, 1, 0, 1, 0}};
std::vector<cudf::size_type> window{1};
EXPECT_THROW(
cudf::rolling_window(input, 2, 2, 0, *cudf::make_sum_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(
cudf::rolling_window(input, 2, 2, 0, *cudf::make_mean_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(input,
2,
2,
0,
*cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::PTX, std::string{}, cudf::data_type{})),
cudf::logic_error);
EXPECT_THROW(cudf::rolling_window(input,
2,
2,
0,
*cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::CUDA, std::string{}, cudf::data_type{})),
cudf::logic_error);
}
/*TEST_F(RollingTestStrings, SimpleStatic)
{
cudf::test::strings_column_wrapper input{{"This", "is", "not", "a", "string", "type"},
{1, 1, 1, 0, 1, 0}};
std::vector<cudf::size_type> window{1};
EXPECT_NO_THROW(this->run_test_col(input, window, window, 0, rolling_operator::MIN));
EXPECT_NO_THROW(this->run_test_col(input, window, window, 0, rolling_operator::MAX));
EXPECT_NO_THROW(this->run_test_col(input, window, window, 0, rolling_operator::COUNT_VALID));
EXPECT_NO_THROW(this->run_test_col(input, window, window, 0, rolling_operator::COUNT_ALL));
}*/
struct RollingTestUdf : public cudf::test::BaseFixture {
const std::string cuda_func{
R"***(
template <typename OutType, typename InType>
__device__ void CUDA_GENERIC_AGGREGATOR(OutType *ret, InType *in_col, cudf::size_type start,
cudf::size_type count) {
OutType val = 0;
for (cudf::size_type i = 0; i < count; i++) {
val += in_col[start + i];
}
*ret = val;
}
)***"};
const std::string ptx_func{
R"***(
//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-24817639
// Cuda compilation tools, release 10.0, V10.0.130
// Based on LLVM 3.4svn
//
.version 6.3
.target sm_70
.address_size 64
// .globl _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE
.common .global .align 8 .u64 _ZN08NumbaEnv8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE;
.visible .func (.param .b32 func_retval0) _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE(
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_0,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_1,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_2,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_3,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_4,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_5,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_6,
.param .b64 _ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_7
)
{
.reg .pred %p<3>;
.reg .b32 %r<6>;
.reg .b64 %rd<18>;
ld.param.u64 %rd6, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_0];
ld.param.u64 %rd7, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_5];
ld.param.u64 %rd8, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_6];
ld.param.u64 %rd9, [_ZN8__main__7add$241E5ArrayIiLi1E1A7mutable7alignedE_paam_7];
mov.u64 %rd15, 0;
mov.u64 %rd16, %rd15;
BB0_1:
mov.u64 %rd2, %rd16;
mov.u32 %r5, 0;
setp.ge.s64 %p1, %rd15, %rd8;
mov.u64 %rd17, %rd15;
@%p1 bra BB0_3;
mul.lo.s64 %rd12, %rd15, %rd9;
add.s64 %rd13, %rd12, %rd7;
ld.u32 %r5, [%rd13];
add.s64 %rd17, %rd15, 1;
BB0_3:
cvt.s64.s32 %rd14, %r5;
add.s64 %rd16, %rd14, %rd2;
setp.lt.s64 %p2, %rd15, %rd8;
mov.u64 %rd15, %rd17;
@%p2 bra BB0_1;
st.u64 [%rd6], %rd2;
mov.u32 %r4, 0;
st.param.b32 [func_retval0+0], %r4;
ret;
}
)***"};
};
TEST_F(RollingTestUdf, StaticWindow)
{
cudf::size_type size = 1000;
cudf::test::fixed_width_column_wrapper<int32_t> input(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(size),
thrust::make_constant_iterator(true));
std::unique_ptr<cudf::column> output;
auto start = cudf::detail::make_counting_transform_iterator(0, [size](cudf::size_type row) {
return std::accumulate(thrust::make_counting_iterator(std::max(0, row - 2 + 1)),
thrust::make_counting_iterator(std::min(size, row + 2 + 1)),
0);
});
auto valid = cudf::detail::make_counting_transform_iterator(
0, [size](cudf::size_type row) { return (row != 0 && row != size - 2 && row != size - 1); });
cudf::test::fixed_width_column_wrapper<int64_t> expected{start, start + size, valid};
// Test CUDA UDF
auto cuda_udf_agg = cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::CUDA, this->cuda_func, cudf::data_type{cudf::type_id::INT64});
output = cudf::rolling_window(input, 2, 2, 4, *cuda_udf_agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, expected);
// Test NUMBA UDF
auto ptx_udf_agg = cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::PTX, this->ptx_func, cudf::data_type{cudf::type_id::INT64});
output = cudf::rolling_window(input, 2, 2, 4, *ptx_udf_agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, expected);
}
TEST_F(RollingTestUdf, DynamicWindow)
{
cudf::size_type size = 1000;
cudf::test::fixed_width_column_wrapper<int32_t> input(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(size),
thrust::make_constant_iterator(true));
auto prec = cudf::detail::make_counting_transform_iterator(
0, [] __device__(cudf::size_type row) { return row % 2 + 2; });
auto follow = cudf::detail::make_counting_transform_iterator(
0, [] __device__(cudf::size_type row) { return row % 2; });
cudf::test::fixed_width_column_wrapper<int32_t> preceding(prec, prec + size);
cudf::test::fixed_width_column_wrapper<int32_t> following(follow, follow + size);
std::unique_ptr<cudf::column> output;
auto start =
cudf::detail::make_counting_transform_iterator(0, [size] __device__(cudf::size_type row) {
return std::accumulate(thrust::make_counting_iterator(std::max(0, row - (row % 2 + 2) + 1)),
thrust::make_counting_iterator(std::min(size, row + (row % 2) + 1)),
0);
});
auto valid = cudf::detail::make_counting_transform_iterator(
0, [] __device__(cudf::size_type row) { return row != 0; });
cudf::test::fixed_width_column_wrapper<int64_t> expected{start, start + size, valid};
// Test CUDA UDF
auto cuda_udf_agg = cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::CUDA, this->cuda_func, cudf::data_type{cudf::type_id::INT64});
output = cudf::rolling_window(input, preceding, following, 2, *cuda_udf_agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, expected);
// Test PTX UDF
auto ptx_udf_agg = cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::PTX, this->ptx_func, cudf::data_type{cudf::type_id::INT64});
output = cudf::rolling_window(input, preceding, following, 2, *ptx_udf_agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*output, expected);
}
template <typename T>
struct FixedPointTests : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTests, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTests, MinMaxCountLagLead)
{
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
using fw_wrapper = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto const scale = numeric::scale_type{-1};
auto const input = fp_wrapper{{42, 1729, 55, 3, 1, 2}, {1, 1, 1, 1, 1, 1}, scale};
auto const expected_min = fp_wrapper{{42, 42, 3, 1, 1, 1}, {1, 1, 1, 1, 1, 1}, scale};
auto const expected_max = fp_wrapper{{1729, 1729, 1729, 55, 3, 2}, {1, 1, 1, 1, 1, 1}, scale};
auto const expected_lag = fp_wrapper{{0, 42, 1729, 55, 3, 1}, {0, 1, 1, 1, 1, 1}, scale};
auto const expected_lead = fp_wrapper{{1729, 55, 3, 1, 2, 0}, {1, 1, 1, 1, 1, 0}, scale};
auto const expected_count_val = fw_wrapper{{2, 3, 3, 3, 3, 2}, {1, 1, 1, 1, 1, 1}};
auto const expected_count_all = fw_wrapper{{2, 3, 3, 3, 3, 2}, {1, 1, 1, 1, 1, 1}};
auto const expected_rowno = fw_wrapper{{1, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 1}};
auto const expected_rowno1 = fw_wrapper{{1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1}};
auto const min =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto const max =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto const lag =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
auto const lead = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_lead_aggregation<cudf::rolling_aggregation>(1));
auto const valid = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto const all = cudf::rolling_window(
input,
2,
1,
1,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
auto const rowno = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_row_number_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lag, lag->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lead, lead->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_val, valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_all, all->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_rowno, rowno->view());
// ROW_NUMBER will always return row 1 if the preceding window is set to a constant 1
for (int following = 1; following < 5; ++following) {
auto const rowno1 = cudf::rolling_window(
input, 1, following, 1, *cudf::make_row_number_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_rowno1, rowno1->view());
}
}
TYPED_TEST(FixedPointTests, MinMaxCountLagLeadNulls)
{
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
using fw_wrapper = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto const scale = numeric::scale_type{-1};
auto const input = fp_wrapper{{42, 1729, 55, 343, 1, 2}, {1, 0, 1, 0, 1, 1}, scale};
auto const expected_sum = fp_wrapper{{42, 97, 55, 56, 3, 3}, {1, 1, 1, 1, 1, 1}, scale};
auto const expected_min = fp_wrapper{{42, 42, 55, 1, 1, 1}, {1, 1, 1, 1, 1, 1}, scale};
auto const expected_max = fp_wrapper{{42, 55, 55, 55, 2, 2}, {1, 1, 1, 1, 1, 1}, scale};
auto const expected_lag = fp_wrapper{{0, 42, 1729, 55, 343, 1}, {0, 1, 0, 1, 0, 1}, scale};
auto const expected_lead = fp_wrapper{{1729, 55, 343, 1, 2, 0}, {0, 1, 0, 1, 1, 0}, scale};
auto const expected_count_val = fw_wrapper{{1, 2, 1, 2, 2, 2}, {1, 1, 1, 1, 1, 1}};
auto const expected_count_all = fw_wrapper{{2, 3, 3, 3, 3, 2}, {1, 1, 1, 1, 1, 1}};
auto const expected_rowno = fw_wrapper{{1, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 1}};
auto const sum =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_sum_aggregation<cudf::rolling_aggregation>());
auto const min =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto const max =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto const lag =
cudf::rolling_window(input, 2, 1, 1, *cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
auto const lead = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_lead_aggregation<cudf::rolling_aggregation>(1));
auto const valid = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto const all = cudf::rolling_window(
input,
2,
1,
1,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
auto const rowno = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_row_number_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_sum, sum->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, max->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lag, lag->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lead, lead->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_val, valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_all, all->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_rowno, rowno->view());
}
TYPED_TEST(FixedPointTests, VarStd)
{
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
using fw_wrapper = cudf::test::fixed_width_column_wrapper<double>;
double const nan = std::numeric_limits<double>::signaling_NaN();
double const inf = std::numeric_limits<double>::infinity();
cudf::size_type preceding_window{3}, following_window{0}, min_periods{1}, ddof{2};
// The variance of `input` given `scale` == 0
std::vector<double> result_base_v{
nan, inf, 1882804.66666666667, 1928018.666666666667, 1874.6666666666667, 2.0};
std::vector<bool> result_mask_v{1, 1, 1, 1, 1, 1};
// var tests
for (int32_t s = -2; s <= 2; s++) {
auto const scale = numeric::scale_type{s};
auto const input = fp_wrapper{{42, 1729, 55, 3, 1, 2}, {1, 1, 1, 1, 1, 1}, scale};
auto got = cudf::rolling_window(
input,
preceding_window,
following_window,
min_periods,
dynamic_cast<cudf::rolling_aggregation const&>(*cudf::make_variance_aggregation(ddof)));
std::vector<double> result_scaled_v(result_base_v.size());
std::transform(
result_base_v.begin(), result_base_v.end(), result_scaled_v.begin(), [&s](auto x) {
// When values are scaled by 10^n, the variance is scaled by 10^2n.
return x * exp10(s) * exp10(s);
});
fw_wrapper expect(result_scaled_v.begin(), result_scaled_v.end(), result_mask_v.begin());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expect, *got);
}
// std tests
for (int32_t s = -2; s <= 2; s++) {
auto const scale = numeric::scale_type{s};
auto const input = fp_wrapper{{42, 1729, 55, 3, 1, 2}, {1, 1, 1, 1, 1, 1}, scale};
auto got = cudf::rolling_window(
input,
preceding_window,
following_window,
min_periods,
dynamic_cast<cudf::rolling_aggregation const&>(*cudf::make_std_aggregation(ddof)));
std::vector<double> result_scaled_v(result_base_v.size());
std::transform(
result_base_v.begin(), result_base_v.end(), result_scaled_v.begin(), [&s](auto x) {
// When values are scaled by 10^n, the variance is scaled by 10^2n.
return std::sqrt(x * exp10(s) * exp10(s));
});
fw_wrapper expect(result_scaled_v.begin(), result_scaled_v.end(), result_mask_v.begin());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expect, *got);
}
}
class RollingDictionaryTest : public cudf::test::BaseFixture {};
TEST_F(RollingDictionaryTest, Count)
{
cudf::test::dictionary_column_wrapper<std::string> input(
{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"},
{1, 0, 0, 1, 0, 1, 1, 1, 0});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count_val(
{1, 2, 1, 2, 3, 3, 3, 2, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_count_all(
{3, 4, 4, 4, 4, 4, 4, 3, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected_row_number(
{1, 2, 2, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1, 1});
auto got_count_valid = cudf::rolling_window(
input, 2, 2, 1, *cudf::make_count_aggregation<cudf::rolling_aggregation>());
auto got_count_all = cudf::rolling_window(
input,
2,
2,
1,
*cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE));
auto got_row_number = cudf::rolling_window(
input, 2, 2, 1, *cudf::make_row_number_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_val, got_count_valid->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_count_all, got_count_all->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_row_number, got_row_number->view());
}
TEST_F(RollingDictionaryTest, MinMax)
{
cudf::test::dictionary_column_wrapper<std::string> input(
{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"},
{1, 0, 0, 1, 0, 1, 1, 1, 0});
cudf::test::strings_column_wrapper expected_min(
{"This", "This", "test", "operated", "on", "on", "on", "on", "string"},
{1, 1, 1, 1, 1, 1, 1, 1, 1});
cudf::test::strings_column_wrapper expected_max(
{"This", "test", "test", "test", "test", "string", "string", "string", "string"},
{1, 1, 1, 1, 1, 1, 1, 1, 1});
auto got_min_dict =
cudf::rolling_window(input, 2, 2, 1, *cudf::make_min_aggregation<cudf::rolling_aggregation>());
auto got_min = cudf::dictionary::decode(cudf::dictionary_column_view(got_min_dict->view()));
auto got_max_dict =
cudf::rolling_window(input, 2, 2, 1, *cudf::make_max_aggregation<cudf::rolling_aggregation>());
auto got_max = cudf::dictionary::decode(cudf::dictionary_column_view(got_max_dict->view()));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_min, got_min->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_max, got_max->view());
}
TEST_F(RollingDictionaryTest, LeadLag)
{
cudf::test::dictionary_column_wrapper<std::string> input(
{"This", "is", "rolling", "test", "being", "operated", "on", "string", "column"},
{1, 0, 0, 1, 0, 1, 1, 1, 0});
cudf::test::strings_column_wrapper expected_lead(
{"", "", "test", "", "operated", "on", "string", "", ""}, {0, 0, 1, 0, 1, 1, 1, 0, 0});
cudf::test::strings_column_wrapper expected_lag(
{"", "This", "", "", "test", "", "operated", "on", "string"}, {0, 1, 0, 0, 1, 0, 1, 1, 1});
auto got_lead_dict = cudf::rolling_window(
input, 2, 1, 1, *cudf::make_lead_aggregation<cudf::rolling_aggregation>(1));
auto got_lead = cudf::dictionary::decode(cudf::dictionary_column_view(got_lead_dict->view()));
auto got_lag_dict =
cudf::rolling_window(input, 2, 2, 1, *cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
auto got_lag = cudf::dictionary::decode(cudf::dictionary_column_view(got_lag_dict->view()));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lead, got_lead->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_lag, got_lag->view());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/empty_input_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/rolling.hpp>
#include <cudf/scalar/scalar.hpp>
namespace {
// Helper functions to construct rolling window operators.
auto count_valid()
{
return cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE);
}
auto count_all()
{
return cudf::make_count_aggregation<cudf::rolling_aggregation>(cudf::null_policy::INCLUDE);
}
auto sum() { return cudf::make_sum_aggregation<cudf::rolling_aggregation>(); }
auto mean() { return cudf::make_mean_aggregation<cudf::rolling_aggregation>(); }
auto min() { return cudf::make_min_aggregation<cudf::rolling_aggregation>(); }
auto max() { return cudf::make_max_aggregation<cudf::rolling_aggregation>(); }
auto lead() { return cudf::make_lead_aggregation<cudf::rolling_aggregation>(3); }
auto lag() { return cudf::make_lag_aggregation<cudf::rolling_aggregation>(3); }
auto row_number() { return cudf::make_row_number_aggregation<cudf::rolling_aggregation>(); }
auto collect_list() { return cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(); }
auto udf()
{
return cudf::make_udf_aggregation<cudf::rolling_aggregation>(
cudf::udf_type::CUDA, "", cudf::data_type{cudf::type_id::INT32});
}
// Constants for rolling_window.
auto constexpr min_periods = 1;
auto constexpr preceding = 2;
auto constexpr following = 2;
auto preceding_scalar() { return cudf::numeric_scalar<cudf::size_type>(preceding); }
auto following_scalar() { return cudf::numeric_scalar<cudf::size_type>(following); }
auto preceding_column()
{
return cudf::test::fixed_width_column_wrapper<cudf::size_type>{}.release();
}
auto following_column()
{
return cudf::test::fixed_width_column_wrapper<cudf::size_type>{}.release();
}
} // namespace
struct RollingEmptyInputTest : cudf::test::BaseFixture {};
template <typename T>
struct TypedRollingEmptyInputTest : RollingEmptyInputTest {};
TYPED_TEST_SUITE(TypedRollingEmptyInputTest, cudf::test::FixedWidthTypes);
using agg_vector_t = std::vector<std::unique_ptr<cudf::rolling_aggregation>>;
void rolling_output_type_matches(cudf::column_view const& result,
cudf::type_id expected_type,
cudf::type_id expected_child_type)
{
EXPECT_EQ(result.type().id(), expected_type);
EXPECT_EQ(result.size(), 0);
if (expected_type == cudf::type_id::LIST) {
EXPECT_EQ(result.child(cudf::lists_column_view::child_column_index).type().id(),
expected_child_type);
}
if (expected_type == cudf::type_id::STRUCT) {
EXPECT_EQ(result.child(0).type().id(), expected_child_type);
}
}
void rolling_output_type_matches(cudf::column_view const& empty_input,
agg_vector_t const& aggs,
cudf::type_id expected_type,
cudf::type_id expected_child_type = cudf::type_id::EMPTY)
{
auto const preceding_col = preceding_column();
auto const following_col = following_column();
for (auto const& agg : aggs) {
auto rolling_output_numeric_bounds =
cudf::rolling_window(empty_input, preceding, following, min_periods, *agg);
rolling_output_type_matches(
rolling_output_numeric_bounds->view(), expected_type, expected_child_type);
auto rolling_output_columnar_bounds =
cudf::rolling_window(empty_input, *preceding_col, *following_col, min_periods, *agg);
rolling_output_type_matches(
rolling_output_columnar_bounds->view(), expected_type, expected_child_type);
auto grouped_rolling_output =
cudf::grouped_rolling_window(cudf::table_view{std::vector{empty_input}},
empty_input,
preceding,
following,
min_periods,
*agg);
rolling_output_type_matches(grouped_rolling_output->view(), expected_type, expected_child_type);
auto grouped_range_rolling_output =
cudf::grouped_range_rolling_window(cudf::table_view{std::vector{empty_input}},
empty_input,
cudf::order::ASCENDING,
empty_input,
cudf::range_window_bounds::get(preceding_scalar()),
cudf::range_window_bounds::get(following_scalar()),
min_periods,
*agg);
rolling_output_type_matches(
grouped_range_rolling_output->view(), expected_type, expected_child_type);
}
}
void rolling_window_throws(cudf::column_view const& empty_input, agg_vector_t const& aggs)
{
for (auto const& agg : aggs) {
EXPECT_THROW(cudf::rolling_window(empty_input, 2, 2, 1, *agg), cudf::logic_error);
}
}
TYPED_TEST(TypedRollingEmptyInputTest, EmptyFixedWidthInputs)
{
using InputType = TypeParam;
auto input_col = cudf::test::fixed_width_column_wrapper<InputType>{}.release();
auto empty_input = input_col->view();
/// Test aggregations that yield columns of type `size_type`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(count_valid());
aggs.emplace_back(count_all());
aggs.emplace_back(row_number());
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<cudf::size_type>());
}
/// Test aggregations that yield columns of same type as input.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(min());
aggs.emplace_back(max());
aggs.emplace_back(lead());
aggs.emplace_back(lag());
aggs.emplace_back(udf());
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<InputType>());
}
/// `SUM` returns 64-bit promoted types for integral/decimal input.
/// For other fixed-width input types, the same type is returned.
/// Timestamp types are not supported.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(sum());
using expected_type = cudf::detail::target_type_t<InputType, cudf::aggregation::SUM>;
if constexpr (cudf::is_timestamp<InputType>()) {
EXPECT_THROW(
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<expected_type>()),
cudf::logic_error);
} else {
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<expected_type>());
}
}
/// `MEAN` returns float64 for all numeric types,
/// except for duration-types, which yield the same duration-type.
/// Timestamp types are not supported.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(mean());
using expected_type = cudf::detail::target_type_t<InputType, cudf::aggregation::MEAN>;
if constexpr (cudf::is_timestamp<InputType>()) {
EXPECT_THROW(
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<expected_type>()),
cudf::logic_error);
} else {
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<expected_type>());
}
}
/// For an input type `T`, `COLLECT_LIST` returns a column of type `list<T>`.
{
auto aggs = std::vector<std::unique_ptr<cudf::rolling_aggregation>>{};
aggs.emplace_back(collect_list());
rolling_output_type_matches(
empty_input, aggs, cudf::type_to_id<cudf::list_view>(), cudf::type_to_id<InputType>());
}
}
TEST_F(RollingEmptyInputTest, Strings)
{
auto input_col = cudf::test::strings_column_wrapper{}.release();
auto empty_input = input_col->view();
/// Test aggregations that yield columns of type `size_type`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(count_valid());
aggs.emplace_back(count_all());
aggs.emplace_back(row_number());
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<cudf::size_type>());
}
/// Test aggregations that yield columns of same type as input.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(min());
aggs.emplace_back(max());
aggs.emplace_back(lead());
aggs.emplace_back(lag());
aggs.emplace_back(udf());
rolling_output_type_matches(empty_input, aggs, cudf::type_id::STRING);
}
/// For an input type `T`, `COLLECT_LIST` returns a column of type `list<T>`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(collect_list());
rolling_output_type_matches(
empty_input, aggs, cudf::type_to_id<cudf::list_view>(), cudf::type_id::STRING);
}
/// All other aggregations are unsupported.
{
auto unsupported_aggs = agg_vector_t{};
unsupported_aggs.emplace_back(sum());
unsupported_aggs.emplace_back(mean());
rolling_window_throws(empty_input, unsupported_aggs);
}
}
TEST_F(RollingEmptyInputTest, Dictionaries)
{
auto input_col = cudf::test::dictionary_column_wrapper<std::string>{}.release();
auto empty_input = input_col->view();
/// Test aggregations that yield columns of type `size_type`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(count_valid());
aggs.emplace_back(count_all());
aggs.emplace_back(row_number());
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<cudf::size_type>());
}
/// Test aggregations that yield columns of same type as input.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(min());
aggs.emplace_back(max());
aggs.emplace_back(lead());
aggs.emplace_back(lag());
aggs.emplace_back(udf());
rolling_output_type_matches(empty_input, aggs, cudf::type_id::DICTIONARY32);
}
/// For an input type `T`, `COLLECT_LIST` returns a column of type `list<T>`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(collect_list());
rolling_output_type_matches(
empty_input, aggs, cudf::type_to_id<cudf::list_view>(), cudf::type_id::DICTIONARY32);
}
/// All other aggregations are unsupported.
{
auto unsupported_aggs = agg_vector_t{};
unsupported_aggs.emplace_back(sum());
unsupported_aggs.emplace_back(mean());
rolling_window_throws(empty_input, unsupported_aggs);
}
}
TYPED_TEST(TypedRollingEmptyInputTest, Lists)
{
using T = TypeParam;
auto input_col = cudf::test::lists_column_wrapper<T>{}.release();
auto empty_input = input_col->view();
/// Test aggregations that yield columns of type `size_type`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(count_valid());
aggs.emplace_back(count_all());
aggs.emplace_back(row_number());
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<cudf::size_type>());
}
/// Test aggregations that yield columns of same type as input.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(min());
aggs.emplace_back(max());
aggs.emplace_back(lead());
aggs.emplace_back(lag());
aggs.emplace_back(udf());
rolling_output_type_matches(empty_input, aggs, cudf::type_id::LIST, cudf::type_to_id<T>());
}
/// For an input type `T`, `COLLECT_LIST` returns a column of type `list<T>`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(collect_list());
rolling_output_type_matches(empty_input, aggs, cudf::type_id::LIST, cudf::type_id::LIST);
}
/// All other aggregations are unsupported.
{
auto unsupported_aggs = agg_vector_t{};
unsupported_aggs.emplace_back(sum());
unsupported_aggs.emplace_back(mean());
rolling_window_throws(empty_input, unsupported_aggs);
}
}
TYPED_TEST(TypedRollingEmptyInputTest, Structs)
{
using T = TypeParam;
auto member_col = cudf::test::fixed_width_column_wrapper<T>{};
auto input_col = cudf::test::structs_column_wrapper{{member_col}}.release();
auto empty_input = input_col->view();
/// Test aggregations that yield columns of type `size_type`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(count_valid());
aggs.emplace_back(count_all());
aggs.emplace_back(row_number());
rolling_output_type_matches(empty_input, aggs, cudf::type_to_id<cudf::size_type>());
}
/// Test aggregations that yield columns of same type as input.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(min());
aggs.emplace_back(max());
aggs.emplace_back(lead());
aggs.emplace_back(lag());
aggs.emplace_back(udf());
rolling_output_type_matches(empty_input, aggs, cudf::type_id::STRUCT, cudf::type_to_id<T>());
}
/// For an input type `T`, `COLLECT_LIST` returns a column of type `list<T>`.
{
auto aggs = agg_vector_t{};
aggs.emplace_back(collect_list());
rolling_output_type_matches(empty_input, aggs, cudf::type_id::LIST, cudf::type_id::STRUCT);
}
/// All other aggregations are unsupported.
{
auto unsupported_aggs = agg_vector_t{};
unsupported_aggs.emplace_back(sum());
unsupported_aggs.emplace_back(mean());
rolling_window_throws(empty_input, unsupported_aggs);
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/collect_ops_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/lists/sorting.hpp>
#include <cudf/rolling.hpp>
#include <cudf/table/table_view.hpp>
#include <thrust/functional.h>
#include <vector>
struct CollectListTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedCollectListTest : public CollectListTest {};
using TypesForTest = cudf::test::Concat<cudf::test::IntegralTypes,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(TypedCollectListTest, TypesForTest);
TYPED_TEST(TypedCollectListTest, BasicRollingWindow)
{
using T = TypeParam;
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14};
auto const prev_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 2, 2};
auto const foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 1, 0};
EXPECT_EQ(static_cast<cudf::column_view>(prev_column).size(),
static_cast<cudf::column_view>(foll_column).size());
auto const result_column_based_window =
cudf::rolling_window(input_column,
prev_column,
foll_column,
1,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11},
{10, 11, 12},
{11, 12, 13},
{12, 13, 14},
{13, 14},
}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column_based_window->view());
auto const result_fixed_window = cudf::rolling_window(
input_column, 2, 1, 1, *cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_fixed_window->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
2,
1,
1,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, RollingWindowWithEmptyOutputLists)
{
using T = TypeParam;
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 15};
auto const prev_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 0, 2, 2};
auto const foll_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 0, 1, 0};
EXPECT_EQ(static_cast<cudf::column_view>(prev_column).size(),
static_cast<cudf::column_view>(foll_column).size());
auto const result_column_based_window =
cudf::rolling_window(input_column,
prev_column,
foll_column,
0,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11},
{10, 11, 12},
{11, 12, 13},
{},
{13, 14, 15},
{14, 15},
}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column_based_window->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
prev_column,
foll_column,
0,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, RollingWindowWithEmptyOutputListsAtEnds)
{
using T = TypeParam;
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{0, 1, 2, 3, 4, 5};
auto const prev_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 2, 2, 2, 0};
auto foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 1, 1, 1, 1, 0};
auto const result =
cudf::rolling_window(input_column,
prev_column,
foll_column,
0,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{{}, {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {}}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
prev_column,
foll_column,
0,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, RollingWindowHonoursMinPeriods)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
using T = TypeParam;
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{0, 1, 2, 3, 4, 5};
auto const num_elements = static_cast<cudf::column_view>(input_column).size();
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{{}, {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i != (num_elements - 1);
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
preceding = 2;
following = 2;
min_periods = 4;
auto result_2 =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_result_2 = cudf::test::lists_column_wrapper<T, int32_t>{
{{}, {0, 1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4, 5}, {}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i < 4;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(), result_2->view());
auto result_2_with_nulls_excluded = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(),
result_2_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, RollingWindowWithNullInputsHonoursMinPeriods)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
// Input column has null inputs.
using T = TypeParam;
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{{0, 1, 2, 3, 4, 5}, {1, 0, 1, 1, 0, 1}};
{
// One result row at each end should be null.
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_result_child_values = std::vector<int32_t>{0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5};
auto expected_result_child_validity = std::vector<bool>{1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1};
auto expected_result_child =
cudf::test::fixed_width_column_wrapper<T, int32_t>(expected_result_child_values.begin(),
expected_result_child_values.end(),
expected_result_child_validity.begin());
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 3, 6, 9, 12, 12}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0},
[expected_num_rows](auto i) { return i != 0 && i != (expected_num_rows - 1); });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
{
// One result row at each end should be null.
// Exclude nulls: No nulls elements for any output list rows.
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
auto expected_result_child_values = std::vector<int32_t>{0, 2, 2, 3, 2, 3, 3, 5};
auto expected_result_child = cudf::test::fixed_width_column_wrapper<T, int32_t>(
expected_result_child_values.begin(), expected_result_child_values.end());
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 2, 4, 6, 8, 8}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0},
[expected_num_rows](auto i) { return i != 0 && i != (expected_num_rows - 1); });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
{
// First result row, and the last two result rows should be null.
auto preceding = 2;
auto following = 2;
auto min_periods = 4;
auto const result =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_result_child_values = std::vector<int32_t>{0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5};
auto expected_result_child_validity = std::vector<bool>{1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1};
auto expected_result_child =
cudf::test::fixed_width_column_wrapper<T, int32_t>(expected_result_child_values.begin(),
expected_result_child_values.end(),
expected_result_child_validity.begin());
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 4, 8, 12, 12, 12}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0}, [expected_num_rows](auto i) { return i > 0 && i < 4; });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
{
// First result row, and the last two result rows should be null.
// Exclude nulls: No nulls elements for any output list rows.
auto preceding = 2;
auto following = 2;
auto min_periods = 4;
auto const result = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
auto expected_result_child_values = std::vector<int32_t>{0, 2, 3, 2, 3, 2, 3, 5};
auto expected_result_child = cudf::test::fixed_width_column_wrapper<T, int32_t>(
expected_result_child_values.begin(), expected_result_child_values.end());
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 3, 5, 8, 8, 8}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0}, [expected_num_rows](auto i) { return i > 0 && i < 4; });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
}
TEST_F(CollectListTest, RollingWindowHonoursMinPeriodsOnStrings)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
auto const input_column = cudf::test::strings_column_wrapper{"0", "1", "2", "3", "4", "5"};
auto const num_elements = static_cast<cudf::column_view>(input_column).size();
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<cudf::string_view>{
{{}, {"0", "1", "2"}, {"1", "2", "3"}, {"2", "3", "4"}, {"3", "4", "5"}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i != (num_elements - 1);
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
preceding = 2;
following = 2;
min_periods = 4;
auto result_2 =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_result_2 = cudf::test::lists_column_wrapper<cudf::string_view>{
{{}, {"0", "1", "2", "3"}, {"1", "2", "3", "4"}, {"2", "3", "4", "5"}, {}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i < 4;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(), result_2->view());
auto result_2_with_nulls_excluded = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(),
result_2_with_nulls_excluded->view());
}
TEST_F(CollectListTest, RollingWindowHonoursMinPeriodsWithDecimal)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
auto const input_iter =
cudf::detail::make_counting_transform_iterator(0, thrust::identity<int32_t>{});
auto const input_column = cudf::test::fixed_point_column_wrapper<int32_t>{
input_iter, input_iter + 6, numeric::scale_type{0}};
{
// One result row at each end should be null.
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_result_child_values = std::vector<int32_t>{0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5};
auto expected_result_child =
cudf::test::fixed_point_column_wrapper<int32_t>{expected_result_child_values.begin(),
expected_result_child_values.end(),
numeric::scale_type{0}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 3, 6, 9, 12, 12}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0},
[expected_num_rows](auto i) { return i != 0 && i != (expected_num_rows - 1); });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(),
result_with_nulls_excluded->view());
}
{
// First result row, and the last two result rows should be null.
auto preceding = 2;
auto following = 2;
auto min_periods = 4;
auto const result =
cudf::rolling_window(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_result_child_values = std::vector<int32_t>{0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5};
auto expected_result_child =
cudf::test::fixed_point_column_wrapper<int32_t>{expected_result_child_values.begin(),
expected_result_child_values.end(),
numeric::scale_type{0}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 4, 8, 12, 12, 12}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0}, [expected_num_rows](auto i) { return i > 0 && i < 4; });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::rolling_window(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(),
result_with_nulls_excluded->view());
}
}
TYPED_TEST(TypedCollectListTest, BasicGroupedRollingWindow)
{
using T = TypeParam;
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 20, 21, 22, 23};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result =
grouped_rolling_window(cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11},
{10, 11, 12},
{11, 12, 13},
{12, 13, 14},
{13, 14},
{20, 21},
{20, 21, 22},
{21, 22, 23},
{22, 23}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = grouped_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, BasicGroupedRollingWindowWithNulls)
{
using T = TypeParam;
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{10, 11, 12, 13, 14, 20, 21, 22, 23}, {1, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
{
// Nulls included.
auto const result =
grouped_rolling_window(cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{10, 11, 10, 11, 12, 11, 12, 13, 12, 13, 14, 13, 14, 20, 21, 20, 21, 22, 21, 22, 23, 22, 23},
{1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 2, 5, 8, 11, 13, 15, 18, 21, 23};
auto expected_result =
cudf::make_lists_column(static_cast<cudf::column_view>(group_column).size(),
expected_offsets.release(),
expected_child.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
{
// Nulls excluded.
auto const result = grouped_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
auto expected_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{
10, 10, 12, 12, 13, 12, 13, 14, 13, 14, 20, 20, 22, 22, 23, 22, 23};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 1, 3, 5, 8, 10, 11, 13, 15, 17};
auto expected_result =
cudf::make_lists_column(static_cast<cudf::column_view>(group_column).size(),
expected_offsets.release(),
expected_child.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
}
TYPED_TEST(TypedCollectListTest, BasicGroupedTimeRangeRollingWindow)
{
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 20, 21, 22, 23};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11, 12, 13},
{10, 11, 12, 13},
{10, 11, 12, 13, 14},
{10, 11, 12, 13, 14},
{10, 11, 12, 13, 14},
{20},
{21, 22},
{21, 22, 23},
{21, 22, 23}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, GroupedTimeRangeRollingWindowWithNulls)
{
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{10, 11, 12, 13, 14, 20, 21, 22, 23}, {1, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto null_at_0 = cudf::test::iterators::null_at(0);
auto null_at_1 = cudf::test::iterators::null_at(1);
// In the results, `11` and `21` should be nulls.
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{{10, 11, 12, 13}, null_at_1},
{{10, 11, 12, 13}, null_at_1},
{{10, 11, 12, 13, 14}, null_at_1},
{{10, 11, 12, 13, 14}, null_at_1},
{{10, 11, 12, 13, 14}, null_at_1},
{{20}, null_at_1},
{{21, 22}, null_at_0},
{{21, 22, 23}, null_at_0},
{{21, 22, 23}, null_at_0}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
// After null exclusion, `11`, `21`, and `null` should not appear.
auto const expected_result_with_nulls_excluded = cudf::test::lists_column_wrapper<T, int32_t>{
{10, 12, 13},
{10, 12, 13},
{10, 12, 13, 14},
{10, 12, 13, 14},
{10, 12, 13, 14},
{20},
{22},
{22, 23},
{22, 23}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_with_nulls_excluded->view(),
result_with_nulls_excluded->view());
}
TEST_F(CollectListTest, BasicGroupedTimeRangeRollingWindowOnStrings)
{
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::strings_column_wrapper{"10", "11", "12", "13", "14", "20", "21", "22", "23"};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<cudf::string_view>{
{"10", "11", "12", "13"},
{"10", "11", "12", "13"},
{"10", "11", "12", "13", "14"},
{"10", "11", "12", "13", "14"},
{"10", "11", "12", "13", "14"},
{"20"},
{"21", "22"},
{"21", "22", "23"},
{"21", "22", "23"}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TEST_F(CollectListTest, GroupedTimeRangeRollingWindowOnStringsWithNulls)
{
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::strings_column_wrapper{
{"10", "11", "12", "13", "14", "20", "21", "22", "23"}, {1, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto null_at_0 = cudf::test::iterators::null_at(0);
auto null_at_1 = cudf::test::iterators::null_at(1);
// In the results, `11` and `21` should be nulls.
auto const expected_result = cudf::test::lists_column_wrapper<cudf::string_view>{
{{"10", "11", "12", "13"}, null_at_1},
{{"10", "11", "12", "13"}, null_at_1},
{{"10", "11", "12", "13", "14"}, null_at_1},
{{"10", "11", "12", "13", "14"}, null_at_1},
{{"10", "11", "12", "13", "14"}, null_at_1},
{"20"},
{{"21", "22"}, null_at_0},
{{"21", "22", "23"}, null_at_0},
{{"21", "22", "23"},
null_at_0}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
// After null exclusion, `11`, `21`, and `null` should not appear.
auto const expected_result_with_nulls_excluded =
cudf::test::lists_column_wrapper<cudf::string_view>{{"10", "12", "13"},
{"10", "12", "13"},
{"10", "12", "13", "14"},
{"10", "12", "13", "14"},
{"10", "12", "13", "14"},
{"20"},
{"22"},
{"22", "23"},
{"22", "23"}}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_with_nulls_excluded->view(),
result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, BasicGroupedTimeRangeRollingWindowOnStructs)
{
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto numeric_member_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 20, 21, 22, 23};
auto string_member_column =
cudf::test::strings_column_wrapper{"10", "11", "12", "13", "14", "20", "21", "22", "23"};
auto struct_members = std::vector<std::unique_ptr<cudf::column>>{};
struct_members.emplace_back(numeric_member_column.release());
struct_members.emplace_back(string_member_column.release());
auto const struct_column = cudf::make_structs_column(9, std::move(struct_members), 0, {});
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
struct_column->view(),
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_numeric_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
10, 11, 12, 13, 10, 11, 12, 13, 10, 11, 12, 13, 14, 10, 11, 12,
13, 14, 10, 11, 12, 13, 14, 20, 21, 22, 21, 22, 23, 21, 22, 23};
auto expected_string_column = cudf::test::strings_column_wrapper{
"10", "11", "12", "13", "10", "11", "12", "13", "10", "11", "12", "13", "14", "10", "11", "12",
"13", "14", "10", "11", "12", "13", "14", "20", "21", "22", "21", "22", "23", "21", "22", "23"};
auto expected_struct_members = std::vector<std::unique_ptr<cudf::column>>{};
expected_struct_members.emplace_back(expected_numeric_column.release());
expected_struct_members.emplace_back(expected_string_column.release());
auto expected_structs_column =
cudf::make_structs_column(32, std::move(expected_struct_members), 0, {});
auto expected_offsets_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 8, 13, 18, 23, 24, 26, 29, 32}
.release();
auto expected_result = cudf::make_lists_column(
9, std::move(expected_offsets_column), std::move(expected_structs_column), 0, {});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
struct_column->view(),
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, GroupedTimeRangeRollingWindowWithMinPeriods)
{
// Test that min_periods is honoured.
// i.e. output row is null when min_periods exceeds number of observations.
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 20, 21, 22, 23};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 4;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{{10, 11, 12, 13},
{10, 11, 12, 13},
{10, 11, 12, 13, 14},
{10, 11, 12, 13, 14},
{10, 11, 12, 13, 14},
{},
{},
{},
{}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return i < 5;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, GroupedTimeRangeRollingWindowWithNullsAndMinPeriods)
{
// Test that min_periods is honoured.
// i.e. output row is null when min_periods exceeds number of observations.
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{10, 11, 12, 13, 14, 20, 21, 22, 23}, {1, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 4;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto null_at_1 = cudf::test::iterators::null_at(1);
// In the results, `11` and `21` should be nulls.
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{{{10, 11, 12, 13}, null_at_1},
{{10, 11, 12, 13}, null_at_1},
{{10, 11, 12, 13, 14}, null_at_1},
{{10, 11, 12, 13, 14}, null_at_1},
{{10, 11, 12, 13, 14}, null_at_1},
{},
{},
{},
{}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return i < 5;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
// After null exclusion, `11`, `21`, and `null` should not appear.
auto const expected_result_with_nulls_excluded = cudf::test::lists_column_wrapper<T, int32_t>{
{{10, 12, 13},
{10, 12, 13},
{10, 12, 13, 14},
{10, 12, 13, 14},
{10, 12, 13, 14},
{},
{},
{},
{}},
cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return i < 5; })}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_with_nulls_excluded->view(),
result_with_nulls_excluded->view());
}
TEST_F(CollectListTest, GroupedTimeRangeRollingWindowOnStringsWithMinPeriods)
{
// Test that min_periods is honoured.
// i.e. output row is null when min_periods exceeds number of observations.
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::strings_column_wrapper{"10", "11", "12", "13", "14", "20", "21", "22", "23"};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 4;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<cudf::string_view>{
{{"10", "11", "12", "13"},
{"10", "11", "12", "13"},
{"10", "11", "12", "13", "14"},
{"10", "11", "12", "13", "14"},
{"10", "11", "12", "13", "14"},
{},
{},
{},
{}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return i < 5;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TEST_F(CollectListTest, GroupedTimeRangeRollingWindowOnStringsWithNullsAndMinPeriods)
{
// Test that min_periods is honoured.
// i.e. output row is null when min_periods exceeds number of observations.
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::strings_column_wrapper{
{"10", "11", "12", "13", "14", "20", "21", "22", "23"}, {1, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 4;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto null_at_1 = cudf::test::iterators::null_at(1);
// In the results, `11` and `21` should be nulls.
auto const expected_result = cudf::test::lists_column_wrapper<cudf::string_view>{
{{{"10", "11", "12", "13"}, null_at_1},
{{"10", "11", "12", "13"}, null_at_1},
{{"10", "11", "12", "13", "14"}, null_at_1},
{{"10", "11", "12", "13", "14"}, null_at_1},
{{"10", "11", "12", "13", "14"}, null_at_1},
{},
{},
{},
{}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return i < 5;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
// After null exclusion, `11`, `21`, and `null` should not appear.
auto const expected_result_with_nulls_excluded =
cudf::test::lists_column_wrapper<cudf::string_view>{
{{"10", "12", "13"},
{"10", "12", "13"},
{"10", "12", "13", "14"},
{"10", "12", "13", "14"},
{"10", "12", "13", "14"},
{},
{},
{},
{}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i < 5; })}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_with_nulls_excluded->view(),
result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectListTest, GroupedTimeRangeRollingWindowOnStructsWithMinPeriods)
{
// Test that min_periods is honoured.
// i.e. output row is null when min_periods exceeds number of observations.
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto numeric_member_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 20, 21, 22, 23};
auto string_member_column =
cudf::test::strings_column_wrapper{"10", "11", "12", "13", "14", "20", "21", "22", "23"};
auto struct_members = std::vector<std::unique_ptr<cudf::column>>{};
struct_members.emplace_back(numeric_member_column.release());
struct_members.emplace_back(string_member_column.release());
auto const struct_column = cudf::make_structs_column(9, std::move(struct_members), 0, {});
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 4;
auto const result = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
struct_column->view(),
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>());
auto expected_numeric_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
10, 11, 12, 13, 10, 11, 12, 13, 10, 11, 12, 13, 14, 10, 11, 12, 13, 14, 10, 11, 12, 13, 14};
auto expected_string_column = cudf::test::strings_column_wrapper{
"10", "11", "12", "13", "10", "11", "12", "13", "10", "11", "12", "13",
"14", "10", "11", "12", "13", "14", "10", "11", "12", "13", "14"};
auto expected_struct_members = std::vector<std::unique_ptr<cudf::column>>{};
expected_struct_members.emplace_back(expected_numeric_column.release());
expected_struct_members.emplace_back(expected_string_column.release());
auto expected_structs_column =
cudf::make_structs_column(23, std::move(expected_struct_members), 0, {});
auto expected_offsets_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 8, 13, 18, 23, 23, 23, 23, 23}
.release();
auto expected_validity_iter =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i < 5; });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(expected_validity_iter, expected_validity_iter + 9);
auto expected_result = cudf::make_lists_column(9,
std::move(expected_offsets_column),
std::move(expected_structs_column),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = cudf::grouped_time_range_rolling_window(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
struct_column->view(),
preceding,
following,
min_periods,
*cudf::make_collect_list_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
// The results of `collect_set` are unordered lists.
// Thus, we have to sort the lists for comparison.
namespace {
template <typename WindowType>
auto rolling_collect_set(cudf::column_view const& input,
WindowType const& preceding_window,
WindowType const& following_window,
cudf::size_type min_periods,
cudf::rolling_aggregation const& agg)
{
auto const result =
cudf::rolling_window(input, preceding_window, following_window, min_periods, agg);
EXPECT_EQ(result->type().id(), cudf::type_id::LIST);
return cudf::lists::sort_lists(
cudf::lists_column_view{result->view()}, cudf::order::ASCENDING, cudf::null_order::AFTER);
}
template <typename WindowType>
auto grouped_rolling_collect_set(cudf::table_view const& group_keys,
cudf::column_view const& input,
WindowType const& preceding_window,
WindowType const& following_window,
cudf::size_type min_periods,
cudf::rolling_aggregation const& agg)
{
auto const result = cudf::grouped_rolling_window(
group_keys, input, preceding_window, following_window, min_periods, agg);
EXPECT_EQ(result->type().id(), cudf::type_id::LIST);
return cudf::lists::sort_lists(
cudf::lists_column_view{result->view()}, cudf::order::ASCENDING, cudf::null_order::AFTER);
}
template <typename WindowType>
auto grouped_time_range_rolling_collect_set(cudf::table_view const& group_keys,
cudf::column_view const& timestamp_column,
cudf::order const& timestamp_order,
cudf::column_view const& input,
WindowType const& preceding_window_in_days,
WindowType const& following_window_in_days,
cudf::size_type min_periods,
cudf::rolling_aggregation const& agg)
{
auto const result = cudf::grouped_time_range_rolling_window(group_keys,
timestamp_column,
timestamp_order,
input,
preceding_window_in_days,
following_window_in_days,
min_periods,
agg);
EXPECT_EQ(result->type().id(), cudf::type_id::LIST);
return cudf::lists::sort_lists(
cudf::lists_column_view{result->view()}, cudf::order::ASCENDING, cudf::null_order::AFTER);
}
} // namespace
struct CollectSetTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedCollectSetTest : public CollectSetTest {};
using TypesForSetTest = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(TypedCollectSetTest, TypesForSetTest);
TYPED_TEST(TypedCollectSetTest, BasicRollingWindow)
{
using T = TypeParam;
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 10, 11, 12, 11};
auto const prev_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 2, 2};
auto const foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 1, 0};
EXPECT_EQ(static_cast<cudf::column_view>(prev_column).size(),
static_cast<cudf::column_view>(foll_column).size());
auto const result_column_based_window =
rolling_collect_set(input_column,
prev_column,
foll_column,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{
{10},
{10, 11},
{10, 11, 12},
{11, 12},
{11, 12},
}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column_based_window->view());
auto const result_fixed_window = rolling_collect_set(
input_column, 2, 1, 1, *cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_fixed_window->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
2,
1,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectSetTest, RollingWindowWithEmptyOutputLists)
{
using T = TypeParam;
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 11, 11, 14, 15};
auto const prev_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 0, 2, 2};
auto const foll_column =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 0, 1, 0};
EXPECT_EQ(static_cast<cudf::column_view>(prev_column).size(),
static_cast<cudf::column_view>(foll_column).size());
auto const result_column_based_window =
rolling_collect_set(input_column,
prev_column,
foll_column,
0,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11},
{10, 11},
{11},
{},
{11, 14, 15},
{14, 15},
}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column_based_window->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
prev_column,
foll_column,
0,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectSetTest, RollingWindowHonoursMinPeriods)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
using T = TypeParam;
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{0, 1, 2, 2, 4, 5};
auto const num_elements = static_cast<cudf::column_view>(input_column).size();
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
rolling_collect_set(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{{}, {0, 1, 2}, {1, 2}, {2, 4}, {2, 4, 5}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i != (num_elements - 1);
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
preceding = 2;
following = 2;
min_periods = 4;
auto result_2 =
rolling_collect_set(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto expected_result_2 = cudf::test::lists_column_wrapper<T, int32_t>{
{{}, {0, 1, 2}, {1, 2, 4}, {2, 4, 5}, {}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i < 4;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(), result_2->view());
auto result_2_with_nulls_excluded = rolling_collect_set(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(),
result_2_with_nulls_excluded->view());
}
TEST_F(CollectSetTest, RollingWindowHonoursMinPeriodsOnStrings)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
auto const input_column = cudf::test::strings_column_wrapper{"0", "1", "2", "2", "4", "4"};
auto const num_elements = static_cast<cudf::column_view>(input_column).size();
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
rolling_collect_set(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<cudf::string_view>{
{{}, {"0", "1", "2"}, {"1", "2"}, {"2", "4"}, {"2", "4"}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i != (num_elements - 1);
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
preceding = 2;
following = 2;
min_periods = 4;
auto result_2 =
rolling_collect_set(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto expected_result_2 = cudf::test::lists_column_wrapper<cudf::string_view>{
{{}, {"0", "1", "2"}, {"1", "2", "4"}, {"2", "4"}, {}, {}},
cudf::detail::make_counting_transform_iterator(0, [num_elements](auto i) {
return i != 0 && i < 4;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(), result_2->view());
auto result_2_with_nulls_excluded = rolling_collect_set(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(),
result_2_with_nulls_excluded->view());
}
TEST_F(CollectSetTest, RollingWindowHonoursMinPeriodsWithDecimal)
{
// Test that when the number of observations is fewer than min_periods,
// the result is null.
auto const input_column =
cudf::test::fixed_point_column_wrapper<int32_t>{{0, 0, 1, 2, 3, 3}, numeric::scale_type{0}};
{
// One result row at each end should be null.
auto preceding = 2;
auto following = 1;
auto min_periods = 3;
auto const result =
rolling_collect_set(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto expected_result_child_values = std::vector<int32_t>{0, 1, 0, 1, 2, 1, 2, 3, 2, 3};
auto expected_result_child =
cudf::test::fixed_point_column_wrapper<int32_t>{expected_result_child_values.begin(),
expected_result_child_values.end(),
numeric::scale_type{0}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 2, 5, 8, 10, 10}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0},
[expected_num_rows](auto i) { return i != 0 && i != (expected_num_rows - 1); });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(),
result_with_nulls_excluded->view());
}
{
// First result row, and the last two result rows should be null.
auto preceding = 2;
auto following = 2;
auto min_periods = 4;
auto const result =
rolling_collect_set(input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto expected_result_child_values = std::vector<int32_t>{0, 1, 2, 0, 1, 2, 3, 1, 2, 3};
auto expected_result_child =
cudf::test::fixed_point_column_wrapper<int32_t>{expected_result_child_values.begin(),
expected_result_child_values.end(),
numeric::scale_type{0}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 3, 7, 10, 10, 10}.release();
auto expected_num_rows = expected_offsets->size() - 1;
auto null_mask_iter = cudf::detail::make_counting_transform_iterator(
cudf::size_type{0}, [expected_num_rows](auto i) { return i > 0 && i < 4; });
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_mask_iter, null_mask_iter + expected_num_rows);
auto expected_result = cudf::make_lists_column(expected_num_rows,
std::move(expected_offsets),
expected_result_child.release(),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(),
result_with_nulls_excluded->view());
}
}
TYPED_TEST(TypedCollectSetTest, BasicGroupedRollingWindow)
{
using T = TypeParam;
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 11, 13, 13, 20, 21, 20, 23};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result =
grouped_rolling_collect_set(cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11}, {10, 11}, {11, 13}, {11, 13}, {13}, {20, 21}, {20, 21}, {20, 21, 23}, {20, 23}}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = grouped_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectSetTest, BasicGroupedRollingWindowWithNulls)
{
using T = TypeParam;
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{10, 0, 0, 13, 13, 20, 21, 0, 0, 23}, {1, 0, 0, 1, 1, 1, 1, 0, 0, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
{
// Nulls included and nulls are equal.
auto const result =
grouped_rolling_collect_set(cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
// Null values are sorted to the tails of lists (sets)
auto expected_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{{
10, 0, // row 0
10, 0, // row 1
13, 0, // row 2
13, 0, // row 3
13, // row 4
20, 21, // row 5
20, 21, 0, // row 6
21, 0, // row 7
23, 0, // row 8
23, 0, // row 9
},
{
1, 0, // row 0
1, 0, // row 1
1, 0, // row 2
1, 0, // row 3
1, // row 4
1, 1, // row 5
1, 1, 0, // row 6
1, 0, // row 7
1, 0, // row 8
1, 0 // row 9
}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 2, 4, 6, 8, 9, 11, 14, 16, 18, 20};
auto expected_result =
cudf::make_lists_column(static_cast<cudf::column_view>(group_column).size(),
expected_offsets.release(),
expected_child.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
{
// Nulls included and nulls are NOT equal.
auto const result =
grouped_rolling_collect_set(cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::UNEQUAL));
// Null values are sorted to the tails of lists (sets)
auto expected_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{{
10, 0, // row 0
10, 0, 0, // row 1
13, 0, 0, // row 2
13, 0, // row 3
13, // row 4
20, 21, // row 5
20, 21, 0, // row 6
21, 0, 0, // row 7
23, 0, 0, // row 8
23, 0 // row 9
},
{
1, 0, // row 0
1, 0, 0, // row 1
1, 0, 0, // row 2
1, 0, // row 3
1, // row 4
1, 1, // row 5
1, 1, 0, // row 6
1, 0, 0, // row 7
1, 0, 0, // row 8
1, 0 // row 9
}};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 2, 5, 8, 10, 11, 13, 16, 19, 22, 24};
auto expected_result =
cudf::make_lists_column(static_cast<cudf::column_view>(group_column).size(),
expected_offsets.release(),
expected_child.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
{
// Nulls excluded.
auto const result = grouped_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
auto expected_child = cudf::test::fixed_width_column_wrapper<T, int32_t>{
10, // row 0
10, // row 1
13, // row 2
13, // row 3
13, // row 4
20,
21, // row 5
20,
21, // row 6
21, // row 7
23, // row 8
23 // row 9
};
auto expected_offsets =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12};
auto expected_result =
cudf::make_lists_column(static_cast<cudf::column_view>(group_column).size(),
expected_offsets.release(),
expected_child.release(),
0,
{});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
}
TYPED_TEST(TypedCollectSetTest, BasicGroupedTimeRangeRollingWindow)
{
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 12, 13, 14, 20, 21, 22, 23};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = grouped_time_range_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{10, 11, 12, 13},
{10, 11, 12, 13},
{10, 11, 12, 13, 14},
{10, 11, 12, 13, 14},
{10, 11, 12, 13, 14},
{20},
{21, 22},
{21, 22, 23},
{21, 22, 23}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = grouped_time_range_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectSetTest, GroupedTimeRangeRollingWindowWithNulls)
{
using T = TypeParam;
auto const time_column =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
1, 1, 2, 2, 3, 1, 4, 5, 6};
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<T, int32_t>{
{10, 10, 12, 13, 14, 20, 21, 22, 22}, {1, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result = grouped_time_range_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto null_at_1 = cudf::test::iterators::null_at(1);
auto null_at_3 = cudf::test::iterators::null_at(3);
auto null_at_4 = cudf::test::iterators::null_at(4);
// In the results, `11` and `21` should be nulls.
auto const expected_result = cudf::test::lists_column_wrapper<T, int32_t>{
{{10, 12, 13, 10}, null_at_3},
{{10, 12, 13, 10}, null_at_3},
{{10, 12, 13, 14, 10}, null_at_4},
{{10, 12, 13, 14, 10}, null_at_4},
{{10, 12, 13, 14, 10}, null_at_4},
{{20}, null_at_1},
{{22, 21}, null_at_1},
{{22, 21}, null_at_1},
{{22, 21}, null_at_1}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = grouped_time_range_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
time_column,
cudf::order::ASCENDING,
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
// After null exclusion, `11`, `21`, and `null` should not appear.
auto const expected_result_with_nulls_excluded = cudf::test::lists_column_wrapper<T, int32_t>{
{10, 12, 13},
{10, 12, 13},
{10, 12, 13, 14},
{10, 12, 13, 14},
{10, 12, 13, 14},
{20},
{22},
{22},
{22}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_with_nulls_excluded->view(),
result_with_nulls_excluded->view());
}
TYPED_TEST(TypedCollectSetTest, SlicedGroupedRollingWindow)
{
using T = TypeParam;
auto const group_original =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_original =
cudf::test::fixed_width_column_wrapper<T, int32_t>{10, 11, 11, 13, 13, 20, 21, 21, 23};
auto const group_col = cudf::slice(group_original, {2, 7})[0]; // { 1, 1, 1, 2, 2 }
auto const input_col = cudf::slice(input_original, {2, 7})[0]; // { 11, 13, 13, 20, 21 }
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result =
grouped_rolling_collect_set(cudf::table_view{std::vector<cudf::column_view>{group_col}},
input_col,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<T, int32_t>{{11, 13}, {11, 13}, {13}, {20, 21}, {20, 21}}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
}
TEST_F(CollectSetTest, BoolRollingWindow)
{
auto const input_column =
cudf::test::fixed_width_column_wrapper<bool>{false, false, true, true, true};
auto const prev_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 2, 2};
auto const foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 1, 0};
EXPECT_EQ(static_cast<cudf::column_view>(prev_column).size(),
static_cast<cudf::column_view>(foll_column).size());
auto const result_column_based_window =
rolling_collect_set(input_column,
prev_column,
foll_column,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result =
cudf::test::lists_column_wrapper<bool>{
{false},
{false, true},
{false, true},
{true},
{true},
}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column_based_window->view());
auto const result_fixed_window = rolling_collect_set(
input_column, 2, 1, 1, *cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_fixed_window->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
2,
1,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TEST_F(CollectSetTest, BoolGroupedRollingWindow)
{
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<bool>{
false, true, false, true, false, false, false, true, true};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
auto const result =
grouped_rolling_collect_set(cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
auto const expected_result = cudf::test::lists_column_wrapper<bool>{
{false, true},
{false, true},
{false, true},
{false, true},
{false, true},
{false},
{false, true},
{false, true},
{true}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
auto const result_with_nulls_excluded = grouped_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(cudf::null_policy::EXCLUDE));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
}
TEST_F(CollectSetTest, FloatGroupedRollingWindowWithNaNs)
{
auto const group_column =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 1, 1, 1, 1, 2, 2, 2, 2};
auto const input_column = cudf::test::fixed_width_column_wrapper<double>{
{1.23, 0.2341, 0.2341, -5.23e9, std::nan("1"), 1.1, std::nan("1"), std::nan("1"), 0.0},
{true, true, true, true, true, true, true, true, false}};
auto const preceding = 2;
auto const following = 1;
auto const min_periods = 1;
// test on nan_equality::UNEQUAL
auto const result = grouped_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::UNEQUAL));
auto const expected_result = cudf::test::lists_column_wrapper<double>{
{{0.2341, 1.23}, std::initializer_list<bool>{true, true}},
{{0.2341, 1.23}, std::initializer_list<bool>{true, true}},
{{-5.23e9, 0.2341}, std::initializer_list<bool>{true, true}},
{{-5.23e9, 0.2341, std::nan("1")}, std::initializer_list<bool>{true, true, true}},
{{-5.23e9, std::nan("1")}, std::initializer_list<bool>{true, true}},
{{1.1, std::nan("1")}, std::initializer_list<bool>{true, true}},
{{1.1, std::nan("1"), std::nan("1")}, std::initializer_list<bool>{true, true, true}},
{{std::nan("1"), std::nan("1"), 0.0}, std::initializer_list<bool>{true, true, false}},
{{std::nan("1"), 0.0},
std::initializer_list<bool>{
true, false}}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result->view());
// test on nan_equality::ALL_EQUAL
auto const result_nan_equal = grouped_rolling_collect_set(
cudf::table_view{std::vector<cudf::column_view>{group_column}},
input_column,
preceding,
following,
min_periods,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL));
auto const expected_result_nan_equal = cudf::test::lists_column_wrapper<double>{
{{0.2341, 1.23}, std::initializer_list<bool>{true, true}},
{{0.2341, 1.23}, std::initializer_list<bool>{true, true}},
{{-5.23e9, 0.2341}, std::initializer_list<bool>{true, true}},
{{-5.23e9, 0.2341, std::nan("1")}, std::initializer_list<bool>{true, true, true}},
{{-5.23e9, std::nan("1")}, std::initializer_list<bool>{true, true}},
{{1.1, std::nan("1")}, std::initializer_list<bool>{true, true}},
{{1.1, std::nan("1")}, std::initializer_list<bool>{true, true}},
{{std::nan("1"), 0.0}, std::initializer_list<bool>{true, false}},
{{std::nan("1"), 0.0},
std::initializer_list<bool>{true,
false}}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_nan_equal->view(), result_nan_equal->view());
}
TEST_F(CollectSetTest, BasicRollingWindowWithNaNs)
{
auto const input_column = cudf::test::fixed_width_column_wrapper<double>{
1.23, 0.2341, std::nan("1"), std::nan("1"), -5.23e9};
auto const prev_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 2, 2};
auto const foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 1, 0};
EXPECT_EQ(static_cast<cudf::column_view>(prev_column).size(),
static_cast<cudf::column_view>(foll_column).size());
auto const result_column_based_window = rolling_collect_set(
input_column,
prev_column,
foll_column,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::UNEQUAL));
auto const expected_result =
cudf::test::lists_column_wrapper<double>{
{0.2341, 1.23},
{0.2341, 1.23, std::nan("1")},
{0.2341, std::nan("1"), std::nan("1")},
{-5.23e9, std::nan("1"), std::nan("1")},
{-5.23e9, std::nan("1")},
}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_column_based_window->view());
auto const result_fixed_window = rolling_collect_set(
input_column,
2,
1,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_fixed_window->view());
auto const result_with_nulls_excluded = rolling_collect_set(
input_column,
2,
1,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::EXCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result->view(), result_with_nulls_excluded->view());
auto const expected_result_for_nan_equal =
cudf::test::lists_column_wrapper<double>{
{0.2341, 1.23},
{0.2341, 1.23, std::nan("1")},
{0.2341, std::nan("1")},
{-5.23e9, std::nan("1")},
{-5.23e9, std::nan("1")},
}
.release();
auto const result_with_nan_equal = rolling_collect_set(
input_column,
2,
1,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_for_nan_equal->view(),
result_with_nan_equal->view());
}
TEST_F(CollectSetTest, StructTypeRollingWindow)
{
auto col1 = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3, 4, 5};
auto col2 = cudf::test::strings_column_wrapper{"a", "b", "c", "d", "e"};
auto const input_column = cudf::test::structs_column_wrapper{{col1, col2}};
auto const prev_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 2, 2};
auto const foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 1, 0};
auto const expected = [] {
auto child1 =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5};
auto child2 = cudf::test::strings_column_wrapper{
"a", "b", "a", "b", "c", "b", "c", "d", "c", "d", "e", "d", "e"};
return cudf::make_lists_column(
5,
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 5, 8, 11, 13}.release(),
cudf::test::structs_column_wrapper{{child1, child2}}.release(),
0,
{});
}();
auto const result =
rolling_collect_set(input_column,
prev_column,
foll_column,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected->view(), result->view());
}
TEST_F(CollectSetTest, ListTypeRollingWindow)
{
auto const input_column =
cudf::test::lists_column_wrapper<int32_t>{{1, 2, 3}, {4, 5}, {6}, {7, 8, 9}, {10}};
auto const prev_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 2, 2, 2};
auto const foll_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 1, 1, 0};
auto const expected = [] {
auto data = cudf::test::fixed_width_column_wrapper<int32_t>{
1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 7, 8, 9, 10};
auto inner_offsets = cudf::test::fixed_width_column_wrapper<int32_t>{
0, 3, 5, 8, 10, 11, 13, 14, 17, 18, 21, 22, 25, 26};
auto outer_offsets =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 5, 8, 11, 13};
auto inner_list = cudf::make_lists_column(13, inner_offsets.release(), data.release(), 0, {});
return cudf::make_lists_column(5, outer_offsets.release(), std::move(inner_list), 0, {});
}();
auto const result =
rolling_collect_set(input_column,
prev_column,
foll_column,
1,
*cudf::make_collect_set_aggregation<cudf::rolling_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected->view(), result->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/rolling/lead_lag_test.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/dictionary_factories.hpp>
#include <cudf/rolling.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/error.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <initializer_list>
#include <memory>
#include <string>
struct LeadLagWindowTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedLeadLagWindowTest : public cudf::test::BaseFixture {};
using TypesForTest = cudf::test::Concat<cudf::test::IntegralTypes,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(TypedLeadLagWindowTest, TypesForTest);
TYPED_TEST(TypedLeadLagWindowTest, LeadLagBasics)
{
using T = int32_t;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50}.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{3, 4, 5, -1, -1, -1, 30, 40, 50, -1, -1, -1},
{1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0}}
.release()
->view());
auto lag_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{-1, -1, 0, 1, 2, 3, -1, -1, 0, 10, 20, 30},
{0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, LeadLagWithNulls)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1}}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{3, 4, 5, -1, -1, -1, 30, 40, 50, -1, -1, -1},
{1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0}}
.release()
->view());
auto const lag_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{-1, -1, 0, 1, -1, 3, -1, -1, 0, 10, -1, 30},
{0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithDefaults)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1}}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto const default_value =
cudf::make_fixed_width_scalar(cudf::test::detail::fixed_width_type_converter<int32_t, T>{}(99));
auto const default_outputs = cudf::make_column_from_scalar(*default_value, input_col->size());
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{3, 4, 5, 99, 99, 99, 30, 40, 50, 99, 99, 99},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}
.release()
->view());
auto const lag_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{99, 99, 0, 1, -1, 3, 99, 99, 0, 10, -1, 30},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithDefaultsContainingNulls)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1}}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const default_outputs =
cudf::test::fixed_width_column_wrapper<T>{{-1, 99, -1, 99, 99, -1, 99, 99, -1, 99, 99, -1},
{0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0}}
.release();
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{3, 4, 5, 99, 99, -1, 30, 40, 50, 99, 99, -1},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0}}
.release()
->view());
auto const lag_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{-1, 99, 0, 1, -1, 3, 99, 99, 0, 10, -1, 30},
{0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithOutOfRangeOffsets)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1}}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const default_value =
cudf::make_fixed_width_scalar(cudf::test::detail::fixed_width_type_converter<int32_t, T>{}(99));
auto const default_outputs = cudf::make_column_from_scalar(*default_value, input_col->size());
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_30_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(30));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_30_output_col,
cudf::test::fixed_width_column_wrapper<T>{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}
.release()
->view());
auto const lag_20_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(20));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_20_output_col,
cudf::test::fixed_width_column_wrapper<T>{{99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithZeroOffsets)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1}}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_0_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(0));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*lead_0_output_col, *input_col);
auto const lag_0_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(0));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*lag_0_output_col, *input_col);
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithNegativeOffsets)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1}}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const default_value =
cudf::make_fixed_width_scalar(cudf::test::detail::fixed_width_type_converter<int32_t, T>{}(99));
auto const default_outputs = cudf::make_column_from_scalar(*default_value, input_col->size());
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lag_minus_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(-3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_minus_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{3, 4, 5, 99, 99, 99, 30, 40, 50, 99, 99, 99},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}
.release()
->view());
auto const lead_minus_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(-2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_minus_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{99, 99, 0, 1, -1, 3, 99, 99, 0, 10, -1, 30},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithNoGrouping)
{
using T = TypeParam;
auto const input_col =
cudf::test::fixed_width_column_wrapper<T>{{0, 1, 2, 3, 4, 5}, {1, 1, 0, 1, 1, 1}}.release();
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{}};
auto const default_value =
cudf::make_fixed_width_scalar(cudf::test::detail::fixed_width_type_converter<int32_t, T>{}(99));
auto const default_outputs = cudf::make_column_from_scalar(*default_value, input_col->size());
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{3, 4, 5, 99, 99, 99}, {1, 1, 1, 1, 1, 1}}
.release()
->view());
auto const lag_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{99, 99, 0, 1, -1, 3}, {1, 1, 1, 1, 0, 1}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, TestLeadLagWithAllNullInput)
{
using T = TypeParam;
auto const input_col = cudf::test::fixed_width_column_wrapper<T>{
{0, 1, 2, 3, 4, 5, 0, 10, 20, 30, 40, 50},
cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return false;
})}.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const default_value =
cudf::make_fixed_width_scalar(cudf::test::detail::fixed_width_type_converter<int32_t, T>{}(99));
auto const default_outputs = cudf::make_column_from_scalar(*default_value, input_col->size());
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lead_3_output_col,
cudf::test::fixed_width_column_wrapper<T>{{-1, -1, -1, 99, 99, 99, -1, -1, -1, 99, 99, 99},
{0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1}}
.release()
->view());
auto const lag_2_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
*default_outputs,
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
*lag_2_output_col,
cudf::test::fixed_width_column_wrapper<T>{{99, 99, -1, -1, -1, -1, 99, 99, -1, -1, -1, -1},
{1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0}}
.release()
->view());
}
TYPED_TEST(TypedLeadLagWindowTest, DefaultValuesWithoutLeadLag)
{
// Test that passing default values for window-functions
// other than lead/lag lead to cudf::logic_error.
using T = TypeParam;
auto const input_col = cudf::test::fixed_width_column_wrapper<T>{
{0, 1, 2, 3, 4, 5}, cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return true;
})}.release();
auto const grouping_key = cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const default_value =
cudf::make_fixed_width_scalar(cudf::test::detail::fixed_width_type_converter<int32_t, T>{}(99));
auto const default_outputs = cudf::make_column_from_scalar(*default_value, input_col->size());
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto const assert_aggregation_fails = [&](auto&& aggr) {
EXPECT_THROW(
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
default_outputs->view(),
preceding,
following,
min_periods,
*cudf::make_count_aggregation<cudf::rolling_aggregation>()),
cudf::logic_error);
};
auto aggs = {cudf::make_count_aggregation<cudf::rolling_aggregation>(),
cudf::make_min_aggregation<cudf::rolling_aggregation>()};
std::for_each(
aggs.begin(), aggs.end(), [&](auto& agg) { assert_aggregation_fails(std::move(agg)); });
}
template <typename T>
struct TypedNestedLeadLagWindowTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedNestedLeadLagWindowTest, TypesForTest);
TYPED_TEST(TypedNestedLeadLagWindowTest, NumericListsWithNullsAllOver)
{
using T = TypeParam;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto null_at_2 = cudf::test::iterators::null_at(2);
auto const input_col = lcw{{{0, 0},
{1, 1},
{2, 2},
{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{5, 5, 5, 5, 5},
{0, 0},
{10, 10},
{20, 20},
{30, 30, 30},
{40, 40, 40, 40},
{{50, 50, 50, 50, 50}, null_at_2}},
null_at_2}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lead_3_output_col->view(),
lcw{{{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{5, 5, 5, 5, 5},
{},
{},
{},
{30, 30, 30},
{40, 40, 40, 40},
{{50, 50, 50, 50, 50}, null_at_2},
{},
{},
{}},
cudf::test::iterators::nulls_at({3, 4, 5, 9, 10, 11})}
.release()
->view());
auto lag_1_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lag_1_output_col->view(),
lcw{{{},
{0, 0},
{1, 1},
{2, 2},
{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{},
{0, 0},
{10, 10},
{20, 20},
{30, 30, 30},
{40, 40, 40, 40}},
cudf::test::iterators::nulls_at({0, 3, 6})}
.release()
->view());
}
TYPED_TEST(TypedNestedLeadLagWindowTest, NumericListsWithDefaults)
{
using T = TypeParam;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto null_at_2 = cudf::test::iterators::null_at(2);
auto const input_col = lcw{{{0, 0},
{1, 1},
{2, 2},
{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{5, 5, 5, 5, 5},
{0, 0},
{10, 10},
{20, 20},
{30, 30, 30},
{40, 40, 40, 40},
{{50, 50, 50, 50, 50}, null_at_2}},
null_at_2}
.release();
auto const defaults_col =
lcw{
{
{},
{91, 91},
{92, 92},
{}, // null!
{94, 94, 94},
{95, 95},
{},
{91, 91},
{92, 92},
{}, // null!
{94, 94, 94},
{95, 95},
},
}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lead_3_output_col->view(),
lcw{{{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{5, 5, 5, 5, 5},
{},
{},
{},
{30, 30, 30},
{40, 40, 40, 40},
{{50, 50, 50, 50, 50}, null_at_2},
{},
{},
{}},
cudf::test::iterators::nulls_at({3, 4, 5, 9, 10, 11})}
.release()
->view());
auto lag_1_output_col =
cudf::grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lag_1_output_col->view(),
lcw{{{},
{0, 0},
{1, 1},
{2, 2},
{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{},
{0, 0},
{10, 10},
{20, 20},
{30, 30, 30},
{40, 40, 40, 40}},
cudf::test::iterators::nulls_at({0, 3, 6})}
.release()
->view());
}
TYPED_TEST(TypedNestedLeadLagWindowTest, Structs)
{
using T = TypeParam;
using lcw = cudf::test::lists_column_wrapper<T, int32_t>;
auto null_at_2 = cudf::test::iterators::null_at(2);
auto lists_col = lcw{{{0, 0},
{1, 1},
{2, 2},
{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{5, 5, 5, 5, 5},
{0, 0},
{10, 10},
{20, 20},
{30, 30, 30},
{40, 40, 40, 40},
{{50, 50, 50, 50, 50}, null_at_2}},
null_at_2};
auto strings_col = cudf::test::strings_column_wrapper{{"00",
"11",
"22",
"333",
"4444",
"55555",
"00",
"1010",
"2020",
"303030",
"40404040",
"5050505050"},
cudf::test::iterators::null_at(9)};
auto structs_col = cudf::test::structs_column_wrapper{lists_col, strings_col}.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
// Test LEAD().
{
auto lead_3_output_col =
cudf::grouped_rolling_window(grouping_keys,
structs_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(3));
auto expected_lists_col = lcw{{{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{5, 5, 5, 5, 5},
{},
{},
{},
{30, 30, 30},
{40, 40, 40, 40},
{{50, 50, 50, 50, 50}, null_at_2},
{},
{},
{}},
cudf::test::iterators::nulls_at({3, 4, 5, 9, 10, 11})};
auto expected_strings_col = cudf::test::strings_column_wrapper{
{"333", "4444", "55555", "", "", "", "", "40404040", "5050505050", "", "", ""},
cudf::test::iterators::nulls_at({3, 4, 5, 6, 9, 10, 11})};
auto expected_structs_col =
cudf::test::structs_column_wrapper{{expected_lists_col, expected_strings_col},
cudf::test::iterators::nulls_at({3, 4, 5, 9, 10, 11})}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lead_3_output_col->view(), expected_structs_col->view());
}
// Test LAG()
{
auto lag_1_output_col =
cudf::grouped_rolling_window(grouping_keys,
structs_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
auto expected_lists_col = lcw{{{}, // null.
{0, 0},
{1, 1},
{}, // null.
{3, 3, 3},
{{4, 4, 4, 4}, null_at_2},
{}, // null.
{0, 0},
{10, 10},
{20, 20},
{30, 30, 30},
{40, 40, 40, 40}},
cudf::test::iterators::nulls_at({0, 3, 6})};
auto expected_strings_col =
cudf::test::strings_column_wrapper{{"", // null.
"00",
"11",
"22",
"333",
"4444",
"", // null.
"00",
"1010",
"2020",
"", // null.
"40404040"},
cudf::test::iterators::nulls_at({0, 6, 10})};
auto expected_structs_col =
cudf::test::structs_column_wrapper{{expected_lists_col, expected_strings_col},
cudf::test::iterators::nulls_at({0, 6})}
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lag_1_output_col->view(), expected_structs_col->view());
}
}
struct LeadLagNonFixedWidthTest : cudf::test::BaseFixture {};
TEST_F(LeadLagNonFixedWidthTest, StringsNoDefaults)
{
auto input_col =
cudf::test::strings_column_wrapper{{"",
"A_1",
"A_22",
"A_333",
"A_4444",
"A_55555",
"B_0",
"",
"B_22",
"B_333",
"B_4444",
"B_55555"},
cudf::test::iterators::nulls_at(std::vector{0, 7})}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_2 = grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
lead_2->view(),
cudf::test::strings_column_wrapper{
{"A_22", "A_333", "A_4444", "A_55555", "", "", "B_22", "B_333", "B_4444", "B_55555", "", ""},
cudf::test::iterators::nulls_at(std::vector{4, 5, 10, 11})});
auto lag_1 = grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
lag_1->view(),
cudf::test::strings_column_wrapper{
{"", "", "A_1", "A_22", "A_333", "A_4444", "", "B_0", "", "B_22", "B_333", "B_4444"},
cudf::test::iterators::nulls_at(std::vector{0, 1, 6, 8})});
}
TEST_F(LeadLagNonFixedWidthTest, StringsWithDefaults)
{
auto input_col =
cudf::test::strings_column_wrapper{{"",
"A_1",
"A_22",
"A_333",
"A_4444",
"A_55555",
"B_0",
"",
"B_22",
"B_333",
"B_4444",
"B_55555"},
cudf::test::iterators::nulls_at(std::vector{0, 7})}
.release();
auto defaults_col = cudf::test::strings_column_wrapper{"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999"}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_2 = grouped_rolling_window(grouping_keys,
input_col->view(),
defaults_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lead_2->view(),
cudf::test::strings_column_wrapper{"A_22",
"A_333",
"A_4444",
"A_55555",
"9999",
"9999",
"B_22",
"B_333",
"B_4444",
"B_55555",
"9999",
"9999"});
auto lag_1 = grouped_rolling_window(grouping_keys,
input_col->view(),
defaults_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
lag_1->view(),
cudf::test::strings_column_wrapper{
{"9999", "", "A_1", "A_22", "A_333", "A_4444", "9999", "B_0", "", "B_22", "B_333", "B_4444"},
cudf::test::iterators::nulls_at(std::vector{1, 8})});
}
TEST_F(LeadLagNonFixedWidthTest, StringsWithDefaultsNoGroups)
{
auto input_col =
cudf::test::strings_column_wrapper{{"",
"A_1",
"A_22",
"A_333",
"A_4444",
"A_55555",
"B_0",
"",
"B_22",
"B_333",
"B_4444",
"B_55555"},
cudf::test::iterators::nulls_at(std::vector{0, 7})}
.release();
auto defaults_col = cudf::test::strings_column_wrapper{"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999",
"9999"}
.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
auto lead_2 = grouped_rolling_window(grouping_keys,
input_col->view(),
defaults_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(2));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
lead_2->view(),
cudf::test::strings_column_wrapper{{"A_22",
"A_333",
"A_4444",
"A_55555",
"B_0",
"",
"B_22",
"B_333",
"B_4444",
"B_55555",
"9999",
"9999"},
cudf::test::iterators::null_at(5)});
auto lag_1 = grouped_rolling_window(grouping_keys,
input_col->view(),
defaults_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
lag_1->view(),
cudf::test::strings_column_wrapper{{"9999",
"",
"A_1",
"A_22",
"A_333",
"A_4444",
"A_55555",
"B_0",
"",
"B_22",
"B_333",
"B_4444"},
cudf::test::iterators::nulls_at(std::vector{1, 8})});
}
TEST_F(LeadLagNonFixedWidthTest, Dictionary)
{
using dictionary = cudf::test::dictionary_column_wrapper<std::string>;
auto input_strings = std::initializer_list<std::string>{"",
"A_1",
"A_22",
"A_333",
"A_4444",
"A_55555",
"B_0",
"",
"B_22",
"B_333",
"B_4444",
"B_55555"};
auto input_col = dictionary{input_strings}.release();
auto const grouping_key =
cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto const grouping_keys = cudf::table_view{std::vector<cudf::column_view>{grouping_key}};
auto const preceding = 4;
auto const following = 3;
auto const min_periods = 1;
{
auto lead_2 =
grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lead_aggregation<cudf::rolling_aggregation>(2));
auto expected_keys = cudf::test::strings_column_wrapper{input_strings}.release();
auto expected_values =
cudf::test::fixed_width_column_wrapper<uint32_t>{
{2, 3, 4, 5, 0, 0, 7, 8, 9, 10, 0, 0},
cudf::test::iterators::nulls_at(std::vector{4, 5, 10, 11})}
.release();
auto expected_output =
make_dictionary_column(expected_keys->view(), expected_values->view()).release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lead_2->view(), expected_output->view());
}
{
auto lag_1 = grouped_rolling_window(grouping_keys,
input_col->view(),
preceding,
following,
min_periods,
*cudf::make_lag_aggregation<cudf::rolling_aggregation>(1));
auto expected_keys = cudf::test::strings_column_wrapper{input_strings}.release();
auto expected_values =
cudf::test::fixed_width_column_wrapper<uint32_t>{
{0, 0, 1, 2, 3, 4, 0, 6, 0, 7, 8, 9}, cudf::test::iterators::nulls_at(std::vector{0, 6})}
.release();
auto expected_output =
make_dictionary_column(expected_keys->view(), expected_values->view()).release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(lag_1->view(), expected_output->view());
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reshape/interleave_columns_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/reshape.hpp>
using namespace cudf::test::iterators;
namespace {
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::FIRST_ERROR};
using TView = cudf::table_view;
using IntCol = cudf::test::fixed_width_column_wrapper<int32_t>;
using StructsCol = cudf::test::structs_column_wrapper;
using StringsCol = cudf::test::strings_column_wrapper;
using StrListsCol = cudf::test::lists_column_wrapper<cudf::string_view>;
using IntListsCol = cudf::test::lists_column_wrapper<int32_t>;
constexpr int32_t null{0}; // mark for null elements
constexpr int32_t NOT_USE{-1}; // mark for elements that we don't care
} // namespace
template <typename T>
struct InterleaveColumnsTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(InterleaveColumnsTest, cudf::test::FixedWidthTypes);
TYPED_TEST(InterleaveColumnsTest, NoColumns)
{
cudf::table_view in(std::vector<cudf::column_view>{});
EXPECT_THROW(cudf::interleave_columns(in), cudf::logic_error);
}
TYPED_TEST(InterleaveColumnsTest, OneColumn)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> a({-1, 0, 1});
cudf::table_view in(std::vector<cudf::column_view>{a});
auto expected = cudf::test::fixed_width_column_wrapper<T, int32_t>({-1, 0, 1});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, TwoColumns)
{
using T = TypeParam;
auto a = cudf::test::fixed_width_column_wrapper<T, int32_t>({0, 2});
auto b = cudf::test::fixed_width_column_wrapper<T, int32_t>({1, 3});
cudf::table_view in(std::vector<cudf::column_view>{a, b});
auto expected = cudf::test::fixed_width_column_wrapper<T, int32_t>({0, 1, 2, 3});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, ThreeColumns)
{
using T = TypeParam;
auto a = cudf::test::fixed_width_column_wrapper<T, int32_t>({0, 3, 6});
auto b = cudf::test::fixed_width_column_wrapper<T, int32_t>({1, 4, 7});
auto c = cudf::test::fixed_width_column_wrapper<T, int32_t>({2, 5, 8});
cudf::table_view in(std::vector<cudf::column_view>{a, b, c});
auto expected = cudf::test::fixed_width_column_wrapper<T, int32_t>({0, 1, 2, 3, 4, 5, 6, 7, 8});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, OneColumnEmpty)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T> a({});
cudf::table_view in(std::vector<cudf::column_view>{a});
auto expected = cudf::test::fixed_width_column_wrapper<T>({});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, ThreeColumnsEmpty)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T> a({});
cudf::test::fixed_width_column_wrapper<T> b({});
cudf::test::fixed_width_column_wrapper<T> c({});
cudf::table_view in(std::vector<cudf::column_view>{a, b, c});
auto expected = cudf::test::fixed_width_column_wrapper<T>({});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, OneColumnNullable)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> a({1, 2, 3}, {0, 1, 0});
cudf::table_view in(std::vector<cudf::column_view>{a});
auto expected = cudf::test::fixed_width_column_wrapper<T, int32_t>({0, 2, 0}, {0, 1, 0});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, TwoColumnNullable)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> a({1, 2, 3}, {0, 1, 0});
cudf::test::fixed_width_column_wrapper<T, int32_t> b({4, 5, 6}, {1, 0, 1});
cudf::table_view in(std::vector<cudf::column_view>{a, b});
auto expected =
cudf::test::fixed_width_column_wrapper<T, int32_t>({0, 4, 2, 0, 0, 6}, {0, 1, 1, 0, 0, 1});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, ThreeColumnsNullable)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> a({1, 4, 7}, {1, 0, 1});
cudf::test::fixed_width_column_wrapper<T, int32_t> b({2, 5, 8}, {0, 1, 0});
cudf::test::fixed_width_column_wrapper<T, int32_t> c({3, 6, 9}, {1, 0, 1});
cudf::table_view in(std::vector<cudf::column_view>{a, b, c});
auto expected = cudf::test::fixed_width_column_wrapper<T, int32_t>({1, 0, 3, 0, 5, 0, 7, 0, 9},
{1, 0, 1, 0, 1, 0, 1, 0, 1});
auto actual = cudf::interleave_columns(in);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
TYPED_TEST(InterleaveColumnsTest, MismatchedDtypes)
{
using T = TypeParam;
if (not std::is_same_v<int, T> and not cudf::is_fixed_point<T>()) {
cudf::test::fixed_width_column_wrapper<int32_t> input_a({1, 4, 7}, {1, 0, 1});
cudf::test::fixed_width_column_wrapper<T, int32_t> input_b({2, 5, 8}, {0, 1, 0});
cudf::table_view input(std::vector<cudf::column_view>{input_a, input_b});
EXPECT_THROW(cudf::interleave_columns(input), cudf::logic_error);
}
}
struct InterleaveStringsColumnsTest : public cudf::test::BaseFixture {};
TEST_F(InterleaveStringsColumnsTest, ZeroSizedColumns)
{
auto const col0 = cudf::make_empty_column(cudf::type_id::STRING)->view();
auto results = cudf::interleave_columns(cudf::table_view{{col0}});
cudf::test::expect_column_empty(results->view());
}
TEST_F(InterleaveStringsColumnsTest, SingleColumn)
{
auto col0 = cudf::test::strings_column_wrapper({"", "", "", ""}, {false, true, true, false});
auto results = cudf::interleave_columns(cudf::table_view{{col0}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, col0, verbosity);
}
TEST_F(InterleaveStringsColumnsTest, MultiColumnNullAndEmpty)
{
auto col0 = cudf::test::strings_column_wrapper({"", "", "", ""}, {false, true, true, false});
auto col1 = cudf::test::strings_column_wrapper({"", "", "", ""}, {true, false, true, false});
auto exp_results = cudf::test::strings_column_wrapper(
{"", "", "", "", "", "", "", ""}, {false, true, true, false, true, true, false, false});
auto results = cudf::interleave_columns(cudf::table_view{{col0, col1}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, exp_results, verbosity);
}
TEST_F(InterleaveStringsColumnsTest, MultiColumnEmptyNonNullable)
{
auto col0 = cudf::test::strings_column_wrapper({"", "", "", ""});
auto col1 = cudf::test::strings_column_wrapper({"", "", "", ""});
auto exp_results = cudf::test::strings_column_wrapper({"", "", "", "", "", "", "", ""});
auto results = cudf::interleave_columns(cudf::table_view{{col0, col1}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, exp_results, verbosity);
}
TEST_F(InterleaveStringsColumnsTest, MultiColumnStringMix)
{
auto col0 = cudf::test::strings_column_wrapper({"null", "null", "", "valid", "", "valid"},
{false, false, true, true, true, true});
auto col1 = cudf::test::strings_column_wrapper({"", "valid", "null", "null", "valid", ""},
{true, true, false, false, true, true});
auto col2 = cudf::test::strings_column_wrapper({"valid", "", "valid", "", "null", "null"},
{true, true, true, true, false, false});
auto exp_results = cudf::test::strings_column_wrapper({"null",
"",
"valid",
"null",
"valid",
"",
"",
"null",
"valid",
"valid",
"null",
"",
"",
"valid",
"null",
"valid",
"",
"null"},
{false,
true,
true,
false,
true,
true,
true,
false,
true,
true,
false,
true,
true,
true,
false,
true,
true,
false});
auto results = cudf::interleave_columns(cudf::table_view{{col0, col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, exp_results, verbosity);
}
TEST_F(InterleaveStringsColumnsTest, MultiColumnStringMixNonNullable)
{
auto col0 = cudf::test::strings_column_wrapper({"c00", "c01", "", "valid", "", "valid"});
auto col1 = cudf::test::strings_column_wrapper({"", "valid", "c13", "c14", "valid", ""});
auto col2 = cudf::test::strings_column_wrapper({"valid", "", "valid", "", "c24", "c25"});
auto exp_results = cudf::test::strings_column_wrapper({"c00",
"",
"valid",
"c01",
"valid",
"",
"",
"c13",
"valid",
"valid",
"c14",
"",
"",
"valid",
"c24",
"valid",
"",
"c25"});
auto results = cudf::interleave_columns(cudf::table_view{{col0, col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, exp_results, verbosity);
}
TEST_F(InterleaveStringsColumnsTest, MultiColumnStringMixNullableMix)
{
auto col0 = cudf::test::strings_column_wrapper({"c00", "c01", "", "valid", "", "valid"});
auto col1 = cudf::test::strings_column_wrapper({"", "valid", "null", "null", "valid", ""},
{true, true, false, false, true, true});
auto col2 = cudf::test::strings_column_wrapper({"valid", "", "valid", "", "c24", "c25"});
auto exp_results = cudf::test::strings_column_wrapper({"c00",
"",
"valid",
"c01",
"valid",
"",
"",
"null",
"valid",
"valid",
"null",
"",
"",
"valid",
"c24",
"valid",
"",
"c25"},
{true,
true,
true,
true,
true,
true,
true,
false,
true,
true,
false,
true,
true,
true,
true,
true,
true,
true});
auto results = cudf::interleave_columns(cudf::table_view{{col0, col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, exp_results, verbosity);
}
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTestAllReps, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTestAllReps, FixedPointInterleave)
{
using namespace numeric;
using decimalXX = TypeParam;
for (int i = 0; i > -4; --i) {
auto const ONE = decimalXX{1, scale_type{i}};
auto const TWO = decimalXX{2, scale_type{i}};
auto const FOUR = decimalXX{4, scale_type{i}};
auto const FIVE = decimalXX{5, scale_type{i}};
auto const a = cudf::test::fixed_width_column_wrapper<decimalXX>({ONE, FOUR});
auto const b = cudf::test::fixed_width_column_wrapper<decimalXX>({TWO, FIVE});
auto const input = cudf::table_view{std::vector<cudf::column_view>{a, b}};
auto const expected = cudf::test::fixed_width_column_wrapper<decimalXX>({ONE, TWO, FOUR, FIVE});
auto const actual = cudf::interleave_columns(input);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, actual->view());
}
}
struct ListsColumnsInterleaveTest : public cudf::test::BaseFixture {};
TEST_F(ListsColumnsInterleaveTest, InvalidInput)
{
// Input table contains non-list column
{
auto const col1 = IntCol{}.release();
auto const col2 = IntListsCol{}.release();
EXPECT_THROW(cudf::interleave_columns(TView{{col1->view(), col2->view()}}), cudf::logic_error);
}
// Types mismatch
{
auto const col1 = IntListsCol{}.release();
auto const col2 = StrListsCol{}.release();
EXPECT_THROW(cudf::interleave_columns(TView{{col1->view(), col2->view()}}), cudf::logic_error);
}
}
template <typename T>
struct ListsColumnsInterleaveTypedTest : public cudf::test::BaseFixture {};
using TypesForTest = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(ListsColumnsInterleaveTypedTest, TypesForTest);
TYPED_TEST(ListsColumnsInterleaveTypedTest, InterleaveEmptyColumns)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col = ListsCol{}.release();
auto const results = cudf::interleave_columns(TView{{col->view(), col->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*col, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, InterleaveOneColumnNotNull)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col = ListsCol{{1, 2}, {3, 4}, {5, 6}}.release();
auto const results = cudf::interleave_columns(TView{{col->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*col, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, InterleaveOneColumnWithNulls)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col = ListsCol{{ListsCol{{1, 2, null}, null_at(2)},
ListsCol{} /*NULL*/,
ListsCol{{null, 3, 4, 4, 4, 4}, null_at(0)},
ListsCol{5, 6}},
null_at(1)}
.release();
auto const results = cudf::interleave_columns(TView{{col->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*col, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SimpleInputNoNull)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1 = ListsCol{{1, 2}, {3, 4}, {5, 6}}.release();
auto const col2 = ListsCol{{7, 8}, {9, 10}, {11, 12}}.release();
auto const expected = ListsCol{{1, 2}, {7, 8}, {3, 4}, {9, 10}, {5, 6}, {11, 12}}.release();
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TEST_F(ListsColumnsInterleaveTest, SimpleInputStringsColumnsNoNull)
{
auto const col1 = StrListsCol{
StrListsCol{"Tomato", "Apple"},
StrListsCol{"Banana", "Kiwi", "Cherry"},
StrListsCol{
"Coconut"}}.release();
auto const col2 =
StrListsCol{StrListsCol{"Orange"}, StrListsCol{"Lemon", "Peach"}, StrListsCol{}}.release();
auto const expected = StrListsCol{
StrListsCol{"Tomato", "Apple"},
StrListsCol{"Orange"},
StrListsCol{"Banana", "Kiwi", "Cherry"},
StrListsCol{"Lemon", "Peach"},
StrListsCol{"Coconut"},
StrListsCol{}}.release();
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SimpleInputWithNulls)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1 = ListsCol{{ListsCol{{1, null, 3, 4}, null_at(1)},
ListsCol{{null, 2, 3, 4}, null_at(0)},
ListsCol{{null, 2, 3, 4}, null_at(0)},
ListsCol{} /*NULL*/,
ListsCol{{1, 2, null, 4}, null_at(2)},
ListsCol{{1, 2, 3, null}, null_at(3)}},
null_at(3)}
.release();
auto const col2 = ListsCol{{ListsCol{{10, 11, 12, null}, null_at(3)},
ListsCol{{13, 14, 15, 16, 17, null}, null_at(5)},
ListsCol{} /*NULL*/,
ListsCol{{null, 18}, null_at(0)},
ListsCol{{19, 20, null}, null_at(2)},
ListsCol{{null}, null_at(0)}},
null_at(2)}
.release();
auto const col3 = ListsCol{{ListsCol{} /*NULL*/,
ListsCol{{20, null}, null_at(1)},
ListsCol{{null, 21, null, null}, nulls_at({0, 2, 3})},
ListsCol{},
ListsCol{22, 23, 24, 25},
ListsCol{{null, null, null, null, null}, all_nulls()}},
null_at(0)}
.release();
auto const expected = ListsCol{{ListsCol{{1, null, 3, 4}, null_at(1)},
ListsCol{{10, 11, 12, null}, null_at(3)},
ListsCol{} /*NULL*/,
ListsCol{{null, 2, 3, 4}, null_at(0)},
ListsCol{{13, 14, 15, 16, 17, null}, null_at(5)},
ListsCol{{20, null}, null_at(1)},
ListsCol{{null, 2, 3, 4}, null_at(0)},
ListsCol{} /*NULL*/,
ListsCol{{null, 21, null, null}, nulls_at({0, 2, 3})},
ListsCol{} /*NULL*/,
ListsCol{{null, 18}, null_at(0)},
ListsCol{},
ListsCol{{1, 2, null, 4}, null_at(2)},
ListsCol{{19, 20, null}, null_at(2)},
ListsCol{22, 23, 24, 25},
ListsCol{{1, 2, 3, null}, null_at(3)},
ListsCol{{null}, null_at(0)},
ListsCol{{null, null, null, null, null}, all_nulls()}},
nulls_at({2, 7, 9})}
.release();
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view(), col3->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SimpleInputWithNullableChild)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1 = ListsCol{{1, 2}, {3, 4}}.release();
auto const col2 = ListsCol{{5, 6}, {7, 8}}.release();
auto const col3 = ListsCol{{9, 10}, ListsCol{{null, 12}, null_at(0)}}.release();
auto const expected =
ListsCol{{1, 2}, {5, 6}, {9, 10}, {3, 4}, {7, 8}, ListsCol{{null, 12}, null_at(0)}}.release();
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view(), col3->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TEST_F(ListsColumnsInterleaveTest, SimpleInputStringsColumnsWithNulls)
{
auto const col1 = StrListsCol{
StrListsCol{{"Tomato", "Bear" /*NULL*/, "Apple"}, null_at(1)},
StrListsCol{{"Banana", "Pig" /*NULL*/, "Kiwi", "Cherry", "Whale" /*NULL*/}, nulls_at({1, 4})},
StrListsCol{
"Coconut"}}.release();
auto const col2 =
StrListsCol{
{StrListsCol{{"Orange", "Dog" /*NULL*/, "Fox" /*NULL*/, "Duck" /*NULL*/},
nulls_at({1, 2, 3})},
StrListsCol{"Lemon", "Peach"},
StrListsCol{{"Deer" /*NULL*/, "Snake" /*NULL*/, "Horse" /*NULL*/}, all_nulls()}}, /*NULL*/
null_at(2)}
.release();
auto const expected =
StrListsCol{
{StrListsCol{{"Tomato", "" /*NULL*/, "Apple"}, null_at(1)},
StrListsCol{{"Orange", "" /*NULL*/, "" /*NULL*/, "" /*NULL*/}, nulls_at({1, 2, 3})},
StrListsCol{{"Banana", "" /*NULL*/, "Kiwi", "Cherry", "" /*NULL*/}, nulls_at({1, 4})},
StrListsCol{"Lemon", "Peach"},
StrListsCol{"Coconut"},
StrListsCol{}}, /*NULL*/
null_at(5)}
.release();
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TEST_F(ListsColumnsInterleaveTest, SimpleInputStringsColumnsWithNullableChild)
{
auto const col1 = StrListsCol{
StrListsCol{"Tomato", "Bear", "Apple"},
StrListsCol{"Banana", "Pig", "Kiwi", "Cherry", "Whale"},
StrListsCol{
"Coconut"}}.release();
auto const col2 = StrListsCol{
StrListsCol{{"Orange", "Dog" /*NULL*/, "Fox" /*NULL*/, "Duck" /*NULL*/}, nulls_at({1, 2, 3})},
StrListsCol{"Lemon", "Peach"},
StrListsCol{
{"Deer" /*NULL*/, "Snake" /*NULL*/, "Horse" /*NULL*/},
all_nulls()}}.release();
auto const expected = StrListsCol{
StrListsCol{"Tomato", "Bear", "Apple"},
StrListsCol{{"Orange", "" /*NULL*/, "" /*NULL*/, "" /*NULL*/}, nulls_at({1, 2, 3})},
StrListsCol{"Banana", "Pig", "Kiwi", "Cherry", "Whale"},
StrListsCol{"Lemon", "Peach"},
StrListsCol{"Coconut"},
StrListsCol{
{"Deer" /*NULL*/, "Snake" /*NULL*/, "Horse" /*NULL*/},
all_nulls()}}.release();
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedColumnsInputNoNull)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col = ListsCol{{1, 2, 3}, {2, 3}, {3, 4, 5, 6}, {5, 6}, {}, {7}}.release();
auto const col1 = cudf::slice(col->view(), {0, 3})[0];
auto const col2 = cudf::slice(col->view(), {1, 4})[0];
auto const col3 = cudf::slice(col->view(), {2, 5})[0];
auto const col4 = cudf::slice(col->view(), {3, 6})[0];
auto const expected = ListsCol{
ListsCol{1, 2, 3},
ListsCol{2, 3},
ListsCol{3, 4, 5, 6},
ListsCol{5, 6},
ListsCol{2, 3},
ListsCol{3, 4, 5, 6},
ListsCol{5, 6},
ListsCol{},
ListsCol{3, 4, 5, 6},
ListsCol{5, 6},
ListsCol{},
ListsCol{7}}.release();
auto const results = cudf::interleave_columns(TView{{col1, col2, col3, col4}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedColumnsInputWithNulls)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col = ListsCol{{ListsCol{{null, 2, 3}, null_at(0)},
ListsCol{2, 3}, /*NULL*/
ListsCol{{3, null, 5, 6}, null_at(1)},
ListsCol{5, 6}, /*NULL*/
ListsCol{}, /*NULL*/
ListsCol{7},
ListsCol{8, 9, 10}},
nulls_at({1, 3, 4})}
.release();
auto const col1 = cudf::slice(col->view(), {0, 3})[0];
auto const col2 = cudf::slice(col->view(), {1, 4})[0];
auto const col3 = cudf::slice(col->view(), {2, 5})[0];
auto const col4 = cudf::slice(col->view(), {3, 6})[0];
auto const col5 = cudf::slice(col->view(), {4, 7})[0];
auto const expected = ListsCol{{ListsCol{{null, 2, 3}, null_at(0)},
ListsCol{}, /*NULL*/
ListsCol{{3, null, 5, 6}, null_at(1)},
ListsCol{}, /*NULL*/
ListsCol{}, /*NULL*/
ListsCol{}, /*NULL*/
ListsCol{{3, null, 5, 6}, null_at(1)},
ListsCol{}, /*NULL*/
ListsCol{}, /*NULL*/
ListsCol{7},
ListsCol{{3, null, 5, 6}, null_at(1)},
ListsCol{}, /*NULL*/
ListsCol{}, /*NULL*/
ListsCol{7},
ListsCol{8, 9, 10}},
nulls_at({1, 3, 4, 5, 7, 8, 11, 12})}
.release();
auto const results = cudf::interleave_columns(TView{{col1, col2, col3, col4, col5}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedColumnsInputNullableChild)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col =
ListsCol{{1, 2, 3}, ListsCol{{null, 3}, null_at(0)}, {3, 4, 5, 6}, {5, 6}, {}, {7}}.release();
auto const col1 = cudf::slice(col->view(), {0, 3})[0];
auto const col2 = cudf::slice(col->view(), {1, 4})[0];
auto const col3 = cudf::slice(col->view(), {2, 5})[0];
auto const col4 = cudf::slice(col->view(), {3, 6})[0];
auto const expected = ListsCol{
ListsCol{1, 2, 3},
ListsCol{{null, 3}, null_at(0)},
ListsCol{3, 4, 5, 6},
ListsCol{5, 6},
ListsCol{{null, 3}, null_at(0)},
ListsCol{3, 4, 5, 6},
ListsCol{5, 6},
ListsCol{},
ListsCol{3, 4, 5, 6},
ListsCol{5, 6},
ListsCol{},
ListsCol{7}}.release();
auto const results = cudf::interleave_columns(TView{{col1, col2, col3, col4}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, InputListsOfListsNoNull)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1 = ListsCol{ListsCol{ListsCol{1, 2, 3}, ListsCol{4, 5, 6}},
ListsCol{ListsCol{7, 8}, ListsCol{9, 10}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15}, ListsCol{16, 17}}};
auto const col2 =
ListsCol{ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15, 16}},
ListsCol{ListsCol{17, 18}, ListsCol{19, 110}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}}};
auto const expected =
ListsCol{ListsCol{ListsCol{1, 2, 3}, ListsCol{4, 5, 6}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15, 16}},
ListsCol{ListsCol{7, 8}, ListsCol{9, 10}},
ListsCol{ListsCol{17, 18}, ListsCol{19, 110}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15}, ListsCol{16, 17}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}}}
.release();
auto const results = cudf::interleave_columns(TView{{col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, InputListsOfListsWithNulls)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1 = ListsCol{
ListsCol{ListsCol{{null, 2, 3}, null_at(0)}, ListsCol{{4, null, null}, nulls_at({1, 2})}},
ListsCol{{ListsCol{7, 8}, ListsCol{9, 10}, ListsCol{null, null, null} /*NULL*/}, null_at(2)},
ListsCol{ListsCol{11, 12, 13}, ListsCol{{14, null}, null_at(1)}, ListsCol{16, 17}}};
auto const col2 =
ListsCol{ListsCol{{ListsCol{11, 12, 13}, ListsCol{null, null} /*NULL*/}, null_at(1)},
ListsCol{ListsCol{17, 18}, ListsCol{{19, 110, null}, null_at(2)}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}}};
auto const expected = ListsCol{
ListsCol{ListsCol{{null, 2, 3}, null_at(0)}, ListsCol{{4, null, null}, nulls_at({1, 2})}},
ListsCol{{ListsCol{11, 12, 13}, ListsCol{null, null} /*NULL*/}, null_at(1)},
ListsCol{{ListsCol{7, 8}, ListsCol{9, 10}, ListsCol{null, null, null} /*NULL*/}, null_at(2)},
ListsCol{ListsCol{17, 18}, ListsCol{{19, 110, null}, null_at(2)}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{{14, null}, null_at(1)}, ListsCol{16, 17}},
ListsCol{
ListsCol{111, 112, 13},
ListsCol{114, 115},
ListsCol{116, 117}}}.release();
auto const results = cudf::interleave_columns(TView{{col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedInputListsOfListsNoNull)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1_original = ListsCol{
ListsCol{ListsCol{11, 11, 11}, ListsCol{22}, ListsCol{33, 33, 33}}, // don't care
ListsCol{ListsCol{11, 11, 11}, ListsCol{22}, ListsCol{33, 33, 33}}, // don't care
//
ListsCol{ListsCol{1, 2, 3}, ListsCol{4, 5, 6}},
ListsCol{ListsCol{7, 8}, ListsCol{9, 10}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15}, ListsCol{16, 17}},
//
ListsCol{ListsCol{11, 11, 11}, ListsCol{22}, ListsCol{33, 33, 33}}, // don't care
ListsCol{ListsCol{11, 11, 11}, ListsCol{22}, ListsCol{33, 33, 33}} // don't care
};
auto const col2_original = ListsCol{
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15, 16}},
ListsCol{ListsCol{17, 18}, ListsCol{19, 110}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}},
//
ListsCol{ListsCol{11, 11, 11}, ListsCol{22}, ListsCol{33, 33, 33}} // don't care
};
auto const col1 = cudf::slice(col1_original, {2, 5})[0];
auto const col2 = cudf::slice(col2_original, {0, 3})[0];
auto const expected =
ListsCol{ListsCol{ListsCol{1, 2, 3}, ListsCol{4, 5, 6}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15, 16}},
ListsCol{ListsCol{7, 8}, ListsCol{9, 10}},
ListsCol{ListsCol{17, 18}, ListsCol{19, 110}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{14, 15}, ListsCol{16, 17}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}}}
.release();
auto const results = cudf::interleave_columns(TView{{col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedInputListsOfListsWithNulls)
{
using ListsCol = cudf::test::lists_column_wrapper<TypeParam>;
auto const col1_original = ListsCol{
{
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
//
ListsCol{ListsCol{{null, 2, 3}, null_at(0)}, ListsCol{{4, null, null}, nulls_at({1, 2})}},
ListsCol{{ListsCol{7, 8}, ListsCol{9, 10}, ListsCol{null, null, null} /*NULL*/}, null_at(2)},
ListsCol{ListsCol{11, 12, 13}, ListsCol{{14, null}, null_at(1)}, ListsCol{16, 17}},
//
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}} // don't care
},
nulls_at({0, 2, 3})};
auto const col2_original = ListsCol{
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
//
ListsCol{{ListsCol{11, 12, 13}, ListsCol{null, null} /*NULL*/}, null_at(1)},
ListsCol{ListsCol{17, 18}, ListsCol{{19, 110, null}, null_at(2)}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}},
ListsCol{ListsCol{{null, 11}, null_at(0)},
//
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}}, // don't care
ListsCol{ListsCol{{null, 11}, null_at(0)},
ListsCol{{22, null, null}, nulls_at({1, 2})}} // don't care
};
auto const col1 = cudf::slice(col1_original, {3, 6})[0];
auto const col2 = cudf::slice(col2_original, {2, 5})[0];
auto const expected =
ListsCol{
{ListsCol{ListsCol{{null, 2, 3}, null_at(0)}, ListsCol{{4, null, null}, nulls_at({1, 2})}},
ListsCol{{ListsCol{11, 12, 13}, ListsCol{null, null} /*NULL*/}, null_at(1)},
ListsCol{{ListsCol{7, 8}, ListsCol{9, 10}, ListsCol{null, null, null} /*NULL*/}, null_at(2)},
ListsCol{ListsCol{17, 18}, ListsCol{{19, 110, null}, null_at(2)}},
ListsCol{ListsCol{11, 12, 13}, ListsCol{{14, null}, null_at(1)}, ListsCol{16, 17}},
ListsCol{ListsCol{111, 112, 13}, ListsCol{114, 115}, ListsCol{116, 117}}},
null_at(0)}
.release();
auto const results = cudf::interleave_columns(TView{{col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, InputListsOfStructsNoNull)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto structs1 = [] {
auto child1 = ColWrapper{1, 2, 3, 4, 5};
auto child2 = ColWrapper{6, 7, 8, 9, 10};
auto child3 = StringsCol{"Banana", "Mango", "Apple", "Cherry", "Kiwi"};
return StructsCol{{child1, child2, child3}};
}();
auto structs2 = [] {
auto child1 = ColWrapper{11, 12, 13, 14, 15};
auto child2 = ColWrapper{16, 17, 18, 19, 110};
auto child3 = StringsCol{"Bear", "Duck", "Cat", "Dog", "Panda"};
return StructsCol{{child1, child2, child3}};
}();
auto structs_expected = [] {
auto child1 = ColWrapper{1, 11, 12, 13, 2, 3, 14, 4, 5, 15};
auto child2 = ColWrapper{6, 16, 17, 18, 7, 8, 19, 9, 10, 110};
auto child3 = StringsCol{
"Banana", "Bear", "Duck", "Cat", "Mango", "Apple", "Dog", "Cherry", "Kiwi", "Panda"};
return StructsCol{{child1, child2, child3}};
}();
auto const col1 =
cudf::make_lists_column(3, IntCol{0, 1, 3, 5}.release(), structs1.release(), 0, {});
auto const col2 =
cudf::make_lists_column(3, IntCol{0, 3, 4, 5}.release(), structs2.release(), 0, {});
auto const expected = cudf::make_lists_column(
6, IntCol{0, 1, 4, 6, 7, 9, 10}.release(), structs_expected.release(), 0, {});
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, InputListsOfStructsWithNulls)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto structs1 = [] {
auto child1 = ColWrapper{{1, 2, null, 4, 5}, null_at(2)};
auto child2 = ColWrapper{{6, 7, 8, 9, null}, null_at(4)};
auto child3 = StringsCol{"Banana", "Mango", "Apple", "Cherry", "Kiwi"};
return StructsCol{{child1, child2, child3}, null_at(0)};
}();
auto structs2 = [] {
auto child1 = ColWrapper{11, 12, 13, 14, 15};
auto child2 = ColWrapper{{null, 17, 18, 19, 110}, null_at(0)};
auto child3 = StringsCol{{"" /*NULL*/, "Duck", "Cat", "Dog", "" /*NULL*/}, nulls_at({0, 4})};
return StructsCol{{child1, child2, child3}};
}();
auto structs_expected = [] {
auto child1 = ColWrapper{{1, 11, 12, 13, 2, null, 14, 4, 5, 15}, null_at(5)};
auto child2 = ColWrapper{{6, null, 17, 18, 7, 8, 19, 9, null, 110}, nulls_at({1, 8})};
auto child3 = StringsCol{{"Banana",
"" /*NULL*/,
"Duck",
"Cat",
"Mango",
"Apple",
"Dog",
"Cherry",
"Kiwi",
"" /*NULL*/},
nulls_at({1, 9})};
return StructsCol{{child1, child2, child3}, null_at(0)};
}();
auto const col1 =
cudf::make_lists_column(3, IntCol{0, 1, 3, 5}.release(), structs1.release(), 0, {});
auto const col2 =
cudf::make_lists_column(3, IntCol{0, 3, 4, 5}.release(), structs2.release(), 0, {});
auto const expected = cudf::make_lists_column(
6, IntCol{0, 1, 4, 6, 7, 9, 10}.release(), structs_expected.release(), 0, {});
auto const results = cudf::interleave_columns(TView{{col1->view(), col2->view()}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedInputListsOfStructsNoNull)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto structs1 = [] {
auto child1 = ColWrapper{NOT_USE, NOT_USE, 1, 2, 3, 4, 5, NOT_USE};
auto child2 = ColWrapper{NOT_USE, NOT_USE, 6, 7, 8, 9, 10, NOT_USE};
auto child3 =
StringsCol{"NOT_USE", "NOT_USE", "Banana", "Mango", "Apple", "Cherry", "Kiwi", "NOT_USE"};
return StructsCol{{child1, child2, child3}};
}();
auto structs2 = [] {
auto child1 = ColWrapper{11, 12, 13, 14, 15, NOT_USE, NOT_USE};
auto child2 = ColWrapper{16, 17, 18, 19, 110, NOT_USE, NOT_USE};
auto child3 = StringsCol{"Bear", "Duck", "Cat", "Dog", "Panda", "NOT_USE", "NOT_USE"};
return StructsCol{{child1, child2, child3}};
}();
auto structs_expected = [] {
auto child1 = ColWrapper{1, 11, 12, 13, 2, 3, 14, 4, 5, 15};
auto child2 = ColWrapper{6, 16, 17, 18, 7, 8, 19, 9, 10, 110};
auto child3 = StringsCol{
"Banana", "Bear", "Duck", "Cat", "Mango", "Apple", "Dog", "Cherry", "Kiwi", "Panda"};
return StructsCol{{child1, child2, child3}};
}();
auto const col1_original =
cudf::make_lists_column(5, IntCol{0, 2, 3, 5, 7, 8}.release(), structs1.release(), 0, {});
auto const col2_original =
cudf::make_lists_column(4, IntCol{0, 3, 4, 5, 7}.release(), structs2.release(), 0, {});
auto const expected = cudf::make_lists_column(
6, IntCol{0, 1, 4, 6, 7, 9, 10}.release(), structs_expected.release(), 0, {});
auto const col1 = cudf::slice(col1_original->view(), {1, 4})[0];
auto const col2 = cudf::slice(col2_original->view(), {0, 3})[0];
auto const results = cudf::interleave_columns(TView{{col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TYPED_TEST(ListsColumnsInterleaveTypedTest, SlicedInputListsOfStructsWithNulls)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto structs1 = [] {
auto child1 = ColWrapper{{NOT_USE, 1, 2, null, 4, 5, NOT_USE}, nulls_at({0, 3})};
auto child2 = ColWrapper{{NOT_USE, 6, 7, 8, 9, null, NOT_USE}, null_at(5)};
auto child3 = StringsCol{"NOT_USE", "Banana", "Mango", "Apple", "Cherry", "Kiwi", "NOT_USE"};
return StructsCol{{child1, child2, child3}, nulls_at({1, 6})};
}();
auto structs2 = [] {
auto child1 = ColWrapper{{NOT_USE, 11, 12, 13, 14, 15}, null_at(0)};
auto child2 = ColWrapper{{NOT_USE, null, 17, 18, 19, 110}, null_at(1)};
auto child3 =
StringsCol{{"NOT_USE", "" /*NULL*/, "Duck", "Cat", "Dog", "" /*NULL*/}, nulls_at({0, 1, 5})};
return StructsCol{{child1, child2, child3}};
}();
auto structs_expected = [] {
auto child1 = ColWrapper{{1, 11, 12, 13, 2, null, 14, 4, 5, 15}, null_at(5)};
auto child2 = ColWrapper{{6, null, 17, 18, 7, 8, 19, 9, null, 110}, nulls_at({1, 8})};
auto child3 = StringsCol{{"Banana",
"" /*NULL*/,
"Duck",
"Cat",
"Mango",
"Apple",
"Dog",
"Cherry",
"Kiwi",
"" /*NULL*/},
nulls_at({1, 9})};
return StructsCol{{child1, child2, child3}, null_at(0)};
}();
auto const col1_original =
cudf::make_lists_column(5, IntCol{0, 1, 2, 4, 6, 7}.release(), structs1.release(), 0, {});
auto const col2_original =
cudf::make_lists_column(4, IntCol{0, 1, 4, 5, 6}.release(), structs2.release(), 0, {});
auto const col1 = cudf::slice(col1_original->view(), {1, 4})[0];
auto const col2 = cudf::slice(col2_original->view(), {1, 4})[0];
auto const expected = cudf::make_lists_column(
6, IntCol{0, 1, 4, 6, 7, 9, 10}.release(), structs_expected.release(), 0, {});
auto const results = cudf::interleave_columns(TView{{col1, col2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
TEST_F(ListsColumnsInterleaveTest, SlicedStringsColumnsInputWithNulls)
{
auto const col =
StrListsCol{
{StrListsCol{{"Tomato", "Bear" /*NULL*/, "Apple"}, null_at(1)},
StrListsCol{{"Banana", "Pig" /*NULL*/, "Kiwi", "Cherry", "Whale" /*NULL*/},
nulls_at({1, 4})},
StrListsCol{"Coconut"},
StrListsCol{{"Orange", "Dog" /*NULL*/, "Fox" /*NULL*/, "Duck" /*NULL*/},
nulls_at({1, 2, 3})},
StrListsCol{"Lemon", "Peach"},
StrListsCol{{"Deer" /*NULL*/, "Snake" /*NULL*/, "Horse" /*NULL*/}, all_nulls()}}, /*NULL*/
null_at(5)}
.release();
auto const col1 = cudf::slice(col->view(), {0, 3})[0];
auto const col2 = cudf::slice(col->view(), {1, 4})[0];
auto const col3 = cudf::slice(col->view(), {2, 5})[0];
auto const col4 = cudf::slice(col->view(), {3, 6})[0];
auto const expected =
StrListsCol{
{StrListsCol{{"Tomato", "" /*NULL*/, "Apple"}, null_at(1)},
StrListsCol{{"Banana", "" /*NULL*/, "Kiwi", "Cherry", "" /*NULL*/}, nulls_at({1, 4})},
StrListsCol{"Coconut"},
StrListsCol{{"Orange", "" /*NULL*/, "" /*NULL*/, "" /*NULL*/}, nulls_at({1, 2, 3})},
StrListsCol{{"Banana", "" /*NULL*/, "Kiwi", "Cherry", "" /*NULL*/}, nulls_at({1, 4})},
StrListsCol{"Coconut"},
StrListsCol{{"Orange", "" /*NULL*/, "" /*NULL*/, "" /*NULL*/}, nulls_at({1, 2, 3})},
StrListsCol{"Lemon", "Peach"},
StrListsCol{"Coconut"},
StrListsCol{{"Orange", "" /*NULL*/, "" /*NULL*/, "" /*NULL*/}, nulls_at({1, 2, 3})},
StrListsCol{"Lemon", "Peach"},
StrListsCol{}}, /*NULL*/
null_at(11)}
.release();
auto const results = cudf::interleave_columns(TView{{col1, col2, col3, col4}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, verbosity);
}
struct StructsColumnsInterleaveTest : public cudf::test::BaseFixture {};
TEST_F(StructsColumnsInterleaveTest, InvalidInput)
{
// Input table contains non-structs column
{
auto const col1 = IntCol{};
auto const col2 = StructsCol{};
EXPECT_THROW(cudf::interleave_columns(TView{{col1, col2}}), cudf::logic_error);
}
// Types mismatch
{
auto const structs1 = [] {
auto child1 = IntCol{1, 2, 3};
auto child2 = IntCol{4, 5, 6};
return StructsCol{{child1, child2}};
}();
auto const structs2 = [] {
auto child1 = IntCol{7, 8, 9};
auto child2 = StringsCol{"", "abc", "123"};
return StructsCol{{child1, child2}};
}();
EXPECT_THROW(cudf::interleave_columns(TView{{structs1, structs2}}), cudf::logic_error);
}
// Numbers of children mismatch
{
auto const structs1 = [] {
auto child1 = IntCol{1, 2, 3};
auto child2 = IntCol{4, 5, 6};
return StructsCol{{child1, child2}};
}();
auto const structs2 = [] {
auto child1 = IntCol{7, 8, 9};
auto child2 = IntCol{10, 11, 12};
auto child3 = IntCol{13, 14, 15};
return StructsCol{{child1, child2, child3}};
}();
EXPECT_THROW(cudf::interleave_columns(TView{{structs1, structs2}}), cudf::logic_error);
}
}
TEST_F(StructsColumnsInterleaveTest, InterleaveEmptyColumns)
{
auto const structs = StructsCol{};
auto const results = cudf::interleave_columns(TView{{structs, structs}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(structs, *results, verbosity);
}
template <typename T>
struct StructsColumnsInterleaveTypedTest : public cudf::test::BaseFixture {};
using TypesForTest = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(StructsColumnsInterleaveTypedTest, TypesForTest);
TYPED_TEST(StructsColumnsInterleaveTypedTest, InterleaveOneColumnNotNull)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const structs = [] {
auto child1 = ColWrapper{1, 2, 3};
auto child2 = ColWrapper{4, 5, 6};
auto child3 = StringsCol{"Banana", "Mango", "Apple"};
return StructsCol{{child1, child2, child3}};
}();
auto const results = cudf::interleave_columns(TView{{structs}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(structs, *results, verbosity);
}
TYPED_TEST(StructsColumnsInterleaveTypedTest, InterleaveOneColumnWithNulls)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const structs = [] {
auto child1 = ColWrapper{{1, 2, null, 3}, null_at(2)};
auto child2 = ColWrapper{{4, null, 5, 6}, null_at(1)};
auto child3 = StringsCol{{"" /*NULL*/, "Banana", "Mango", "Apple"}, null_at(0)};
return StructsCol{{child1, child2, child3}, null_at(3)};
}();
auto const results = cudf::interleave_columns(TView{{structs}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(structs, *results, verbosity);
}
TYPED_TEST(StructsColumnsInterleaveTypedTest, SimpleInputNoNull)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const structs1 = [] {
auto child1 = ColWrapper{1, 2, 3};
auto child2 = ColWrapper{4, 5, 6};
auto child3 = StringsCol{"Banana", "Mango", "Apple"};
return StructsCol{{child1, child2, child3}};
}();
auto const structs2 = [] {
auto child1 = ColWrapper{7, 8, 9};
auto child2 = ColWrapper{10, 11, 12};
auto child3 = StringsCol{"Bear", "Duck", "Cat"};
return StructsCol{{child1, child2, child3}};
}();
auto const expected = [] {
auto child1 = ColWrapper{1, 7, 2, 8, 3, 9};
auto child2 = ColWrapper{4, 10, 5, 11, 6, 12};
auto child3 = StringsCol{"Banana", "Bear", "Mango", "Duck", "Apple", "Cat"};
return StructsCol{{child1, child2, child3}};
}();
auto const results = cudf::interleave_columns(TView{{structs1, structs2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results, verbosity);
}
TYPED_TEST(StructsColumnsInterleaveTypedTest, SimpleInputWithNulls)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const structs1 = [] {
auto child1 = ColWrapper{{1, 2, null, 3, 4}, null_at(2)};
auto child2 = ColWrapper{{4, null, 5, 6, 7}, null_at(1)};
auto child3 = StringsCol{{"" /*NULL*/, "Banana", "Mango", "Apple", "Cherry"}, null_at(0)};
return StructsCol{{child1, child2, child3}, null_at(0)};
}();
auto const structs2 = [] {
auto child1 = ColWrapper{{7, null, null, 8, 9}, nulls_at({1, 2})};
auto child2 = ColWrapper{{10, 11, 12, null, 14}, null_at(3)};
auto child3 = StringsCol{"Bear", "Duck", "Cat", "Dog", "Panda"};
return StructsCol{{child1, child2, child3}, null_at(4)};
}();
auto const structs3 = [] {
auto child1 = ColWrapper{{-1, -2, -3, 0, null}, null_at(4)};
auto child2 = ColWrapper{{-5, 0, null, -1, -10}, null_at(2)};
auto child3 = StringsCol{"111", "Bànànà", "abcxyz", "é á í", "zzz"};
return StructsCol{{child1, child2, child3}, null_at(1)};
}();
auto const expected = [] {
auto child1 = ColWrapper{{1, 7, -1, 2, null, -2, null, null, -3, 3, 8, 0, 4, 9, null},
nulls_at({4, 6, 7, 14})};
auto child2 = ColWrapper{{4, 10, -5, null, 11, 0, 5, 12, null, 6, null, -1, 7, 14, -10},
nulls_at({3, 8, 10})};
auto child3 = StringsCol{{"" /*NULL*/,
"Bear",
"111",
"Banana",
"Duck",
"Bànànà",
"Mango",
"Cat",
"abcxyz",
"Apple",
"Dog",
"é á í",
"Cherry",
"Panda",
"zzz"},
null_at(0)};
return StructsCol{{child1, child2, child3}, nulls_at({0, 5, 13})};
}();
auto const results = cudf::interleave_columns(TView{{structs1, structs2, structs3}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results, verbosity);
}
TYPED_TEST(StructsColumnsInterleaveTypedTest, NestedInputStructsColumns)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const structs1 = [] {
auto child_structs1 = [] {
auto child1 = ColWrapper{{null, 2, 3, 4, 5}, null_at(0)};
auto child2 = ColWrapper{{6, 7, 8, null, 10}, null_at(3)};
return StructsCol{{child1, child2}, null_at(0)};
}();
auto child_structs2 = [] {
auto child1 = ColWrapper{{11, null, 13, 14, 15}, null_at(1)};
auto child2 = ColWrapper{{null, 17, 18, 19, 20}, null_at(0)};
return StructsCol{{child1, child2}, nulls_at({0, 1})};
}();
auto child_strings = [] { return StringsCol{"Banana", "Mango", "Apple", "Cherry", "Kiwi"}; }();
return StructsCol{{child_structs1, child_structs2, child_strings}, null_at(0)};
}();
auto const structs2 = [] {
auto child_structs1 = [] {
auto child1 = ColWrapper{{-1, null, -3, -4, -5}, null_at(1)};
auto child2 = ColWrapper{{-6, -7, -8, null, -10}, null_at(3)};
return StructsCol{{child1, child2}};
}();
auto child_structs2 = [] {
auto child1 = ColWrapper{{-11, -12, null, -14, -15}, null_at(2)};
auto child2 = ColWrapper{{-16, -17, -18, -19, null}, null_at(4)};
return StructsCol{{child1, child2}, null_at(2)};
}();
auto child_strings = [] { return StringsCol{"Bear", "Duck", "Cat", "Dog", "Rabbit"}; }();
return StructsCol{{child_structs1, child_structs2, child_strings}, null_at(2)};
}();
auto const expected = [] {
auto child_structs1 = [] {
auto child1 = ColWrapper{{null, -1, 2, null, 3, -3, 4, -4, 5, -5}, nulls_at({0, 3})};
auto child2 = ColWrapper{{6, -6, 7, -7, 8, -8, null, null, 10, -10}, nulls_at({6, 7})};
return StructsCol{{child1, child2}, null_at(0)};
}();
auto child_structs2 = [] {
auto child1 = ColWrapper{{11, -11, null, -12, 13, null, 14, -14, 15, -15}, nulls_at({2, 5})};
auto child2 = ColWrapper{{null, -16, 17, -17, 18, -18, 19, -19, 20, null}, nulls_at({0, 9})};
return StructsCol{{child1, child2}, nulls_at({0, 2, 5})};
}();
auto child_strings = [] {
return StringsCol{
"Banana", "Bear", "Mango", "Duck", "Apple", "Cat", "Cherry", "Dog", "Kiwi", "Rabbit"};
}();
return StructsCol{{child_structs1, child_structs2, child_strings}, nulls_at({0, 5})};
}();
auto const results = cudf::interleave_columns(TView{{structs1, structs2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results, verbosity);
}
TYPED_TEST(StructsColumnsInterleaveTypedTest, SlicedColumnsInputNoNull)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
auto const structs1_original = [] {
auto child1 = ColWrapper{NOT_USE, NOT_USE, 1, 2, 3, NOT_USE};
auto child2 = ColWrapper{NOT_USE, NOT_USE, 4, 5, 6, NOT_USE};
auto child3 = StringsCol{"NOT_USE", "NOT_USE", "Banana", "Mango", "Apple", "NOT_USE"};
return StructsCol{{child1, child2, child3}};
}();
// structs2 has more rows than structs1
auto const structs2_original = [] {
auto child1 = ColWrapper{NOT_USE, 7, 8, 9, NOT_USE, NOT_USE, NOT_USE};
auto child2 = ColWrapper{NOT_USE, 10, 11, 12, NOT_USE, NOT_USE, NOT_USE};
auto child3 = StringsCol{"NOT_USE", "Bear", "Duck", "Cat", "NOT_USE", "NOT_USE", "NOT_USE"};
return StructsCol{{child1, child2, child3}};
}();
auto const expected = [] {
auto child1 = ColWrapper{1, 7, 2, 8, 3, 9};
auto child2 = ColWrapper{4, 10, 5, 11, 6, 12};
auto child3 = StringsCol{"Banana", "Bear", "Mango", "Duck", "Apple", "Cat"};
return StructsCol{{child1, child2, child3}};
}();
auto const structs1 = cudf::slice(structs1_original, {2, 5})[0];
auto const structs2 = cudf::slice(structs2_original, {1, 4})[0];
auto const results = cudf::interleave_columns(TView{{structs1, structs2}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results, verbosity);
}
TYPED_TEST(StructsColumnsInterleaveTypedTest, SlicedColumnsInputWithNulls)
{
using ColWrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
constexpr int32_t NOT_USE{-1}; // mark for elements that we don't care
auto const structs1_original = [] {
auto child1 = ColWrapper{{NOT_USE, NOT_USE, 1, 2, null, 3, 4, NOT_USE}, null_at(4)};
auto child2 = ColWrapper{{NOT_USE, NOT_USE, 4, null, 5, 6, 7, NOT_USE}, null_at(3)};
auto child3 = StringsCol{
{"NOT_USE", "NOT_USE", "" /*NULL*/, "Banana", "Mango", "Apple", "Cherry", "NOT_USE"},
null_at(2)};
return StructsCol{{child1, child2, child3}, null_at(2)};
}();
auto const structs2_original = [] {
auto child1 = ColWrapper{{7, null, null, 8, 9, NOT_USE, NOT_USE}, nulls_at({1, 2})};
auto child2 = ColWrapper{{10, 11, 12, null, 14, NOT_USE, NOT_USE}, null_at(3)};
auto child3 = StringsCol{"Bear", "Duck", "Cat", "Dog", "Panda", "NOT_USE", "NOT_USE"};
return StructsCol{{child1, child2, child3}, null_at(4)};
}();
auto const structs3_original = [] {
auto child1 = ColWrapper{{NOT_USE, NOT_USE, NOT_USE, -1, -2, -3, 0, null}, null_at(7)};
auto child2 = ColWrapper{{NOT_USE, NOT_USE, NOT_USE, -5, 0, null, -1, -10}, null_at(5)};
auto child3 =
StringsCol{"NOT_USE", "NOT_USE", "NOT_USE", "111", "Bànànà", "abcxyz", "é á í", "zzz"};
return StructsCol{{child1, child2, child3}, null_at(4)};
}();
auto const expected = [] {
auto child1 = ColWrapper{{1, 7, -1, 2, null, -2, null, null, -3, 3, 8, 0, 4, 9, null},
nulls_at({4, 6, 7, 14})};
auto child2 = ColWrapper{{4, 10, -5, null, 11, 0, 5, 12, null, 6, null, -1, 7, 14, -10},
nulls_at({3, 8, 10})};
auto child3 = StringsCol{{"" /*NULL*/,
"Bear",
"111",
"Banana",
"Duck",
"Bànànà",
"Mango",
"Cat",
"abcxyz",
"Apple",
"Dog",
"é á í",
"Cherry",
"Panda",
"zzz"},
null_at(0)};
return StructsCol{{child1, child2, child3}, nulls_at({0, 5, 13})};
}();
auto const structs1 = cudf::slice(structs1_original, {2, 7})[0];
auto const structs2 = cudf::slice(structs2_original, {0, 5})[0];
auto const structs3 = cudf::slice(structs3_original, {3, 8})[0];
auto const results = cudf::interleave_columns(TView{{structs1, structs2, structs3}});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected, *results, verbosity);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reshape/byte_cast_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/reshape.hpp>
class ByteCastTest : public cudf::test::BaseFixture {};
TEST_F(ByteCastTest, int16ValuesWithSplit)
{
using limits = std::numeric_limits<int16_t>;
cudf::test::fixed_width_column_wrapper<int16_t> const int16_col(
{short(0), short(100), short(-100), limits::min(), limits::max()});
cudf::test::lists_column_wrapper<uint8_t> const int16_expected(
{{0x00, 0x00}, {0x64, 0x00}, {0x9c, 0xff}, {0x00, 0x80}, {0xff, 0x7f}});
cudf::test::lists_column_wrapper<uint8_t> const int16_expected_slice1(
{{0x00, 0x00}, {0x00, 0x64}, {0xff, 0x9c}});
cudf::test::lists_column_wrapper<uint8_t> const int16_expected_slice2(
{{0x80, 0x00}, {0x7f, 0xff}});
std::vector<cudf::size_type> splits({3});
std::vector<cudf::column_view> split_column = cudf::split(int16_col, splits);
auto const output_int16 = cudf::byte_cast(int16_col, cudf::flip_endianness::NO);
auto const output_int16_slice1 = cudf::byte_cast(split_column.at(0), cudf::flip_endianness::YES);
auto const output_int16_slice2 = cudf::byte_cast(split_column.at(1), cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int16->view(), int16_expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int16_slice1->view(), int16_expected_slice1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int16_slice2->view(), int16_expected_slice2);
}
TEST_F(ByteCastTest, int16ValuesWithNulls)
{
using limits = std::numeric_limits<int16_t>;
auto odd_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
cudf::test::fixed_width_column_wrapper<int16_t> const int16_col(
{short(0), short(100), short(-100), limits::min(), limits::max()}, {0, 1, 0, 1, 0});
auto int16_data = cudf::test::fixed_width_column_wrapper<uint8_t>{0x00, 0x64, 0x80, 0x00};
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(odd_validity, odd_validity + 5);
auto int16_expected = cudf::make_lists_column(
5,
std::move(cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 2, 2, 4, 4}.release()),
std::move(int16_data.release()),
null_count,
std::move(null_mask));
auto const output_int16 = cudf::byte_cast(int16_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output_int16->view(), int16_expected->view());
}
TEST_F(ByteCastTest, int32Values)
{
using limits = std::numeric_limits<int32_t>;
cudf::test::fixed_width_column_wrapper<int32_t> const int32_col(
{0, 100, -100, limits::min(), limits::max()});
cudf::test::lists_column_wrapper<uint8_t> const int32_expected_flipped(
{{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x64},
{0xff, 0xff, 0xff, 0x9c},
{0x80, 0x00, 0x00, 0x00},
{0x7f, 0xff, 0xff, 0xff}});
cudf::test::lists_column_wrapper<uint8_t> const int32_expected({{0x00, 0x00, 0x00, 0x00},
{0x64, 0x00, 0x00, 0x00},
{0x9c, 0xff, 0xff, 0xff},
{0x00, 0x00, 0x00, 0x80},
{0xff, 0xff, 0xff, 0x7f}});
auto const output_int32_flipped = cudf::byte_cast(int32_col, cudf::flip_endianness::YES);
auto const output_int32 = cudf::byte_cast(int32_col, cudf::flip_endianness::NO);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int32_flipped->view(), int32_expected_flipped);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int32->view(), int32_expected);
}
TEST_F(ByteCastTest, int32ValuesWithNulls)
{
using limits = std::numeric_limits<int32_t>;
auto even_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i + 1) % 2; });
cudf::test::fixed_width_column_wrapper<int32_t> const int32_col(
{0, 100, -100, limits::min(), limits::max()}, {1, 0, 1, 0, 1});
auto int32_data = cudf::test::fixed_width_column_wrapper<uint8_t>{
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0x9c, 0x7f, 0xff, 0xff, 0xff};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(even_validity, even_validity + 5);
auto int32_expected = cudf::make_lists_column(
5,
std::move(cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 4, 8, 8, 12}.release()),
std::move(int32_data.release()),
null_count,
std::move(null_mask));
auto const output_int32 = cudf::byte_cast(int32_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output_int32->view(), int32_expected->view());
}
TEST_F(ByteCastTest, int64ValuesWithSplit)
{
using limits = std::numeric_limits<int64_t>;
cudf::test::fixed_width_column_wrapper<int64_t> const int64_col(
{long(0), long(100), long(-100), limits::min(), limits::max()});
cudf::test::lists_column_wrapper<uint8_t> const int64_expected_flipped(
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64},
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9c},
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}});
cudf::test::lists_column_wrapper<uint8_t> const int64_expected_slice1(
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x9c, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}});
cudf::test::lists_column_wrapper<uint8_t> const int64_expected_slice2(
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80},
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}});
std::vector<cudf::size_type> splits({3});
std::vector<cudf::column_view> split_column = cudf::split(int64_col, splits);
auto const output_int64_flipped = cudf::byte_cast(int64_col, cudf::flip_endianness::YES);
auto const output_int64_slice1 = cudf::byte_cast(split_column.at(0), cudf::flip_endianness::NO);
auto const output_int64_slice2 = cudf::byte_cast(split_column.at(1), cudf::flip_endianness::NO);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int64_flipped->view(), int64_expected_flipped);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int64_slice1->view(), int64_expected_slice1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_int64_slice2->view(), int64_expected_slice2);
}
TEST_F(ByteCastTest, int64ValuesWithNulls)
{
using limits = std::numeric_limits<int64_t>;
auto odd_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
cudf::test::fixed_width_column_wrapper<int64_t> const int64_col(
{long(0), long(100), long(-100), limits::min(), limits::max()}, {0, 1, 0, 1, 0});
auto int64_data = cudf::test::fixed_width_column_wrapper<uint8_t>{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(odd_validity, odd_validity + 5);
auto int64_expected = cudf::make_lists_column(
5,
std::move(
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 8, 8, 16, 16}.release()),
std::move(int64_data.release()),
null_count,
std::move(null_mask));
auto const output_int64 = cudf::byte_cast(int64_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output_int64->view(), int64_expected->view());
}
TEST_F(ByteCastTest, fp32ValuesWithSplit)
{
using limits = std::numeric_limits<float>;
float nan = limits::quiet_NaN();
float inf = limits::infinity();
cudf::test::fixed_width_column_wrapper<float> const fp32_col(
{float(0.0), float(100.0), float(-100.0), limits::min(), limits::max(), nan, -nan, inf, -inf});
cudf::test::lists_column_wrapper<uint8_t> const fp32_expected({{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0xc8, 0x42},
{0x00, 0x00, 0xc8, 0xc2},
{0x00, 0x00, 0x80, 0x00},
{0xff, 0xff, 0x7f, 0x7f},
{0x00, 0x00, 0xc0, 0x7f},
{0x00, 0x00, 0xc0, 0xff},
{0x00, 0x00, 0x80, 0x7f},
{0x00, 0x00, 0x80, 0xff}});
cudf::test::lists_column_wrapper<uint8_t> const fp32_expected_slice1({{0x00, 0x00, 0x00, 0x00},
{0x42, 0xc8, 0x00, 0x00},
{0xc2, 0xc8, 0x00, 0x00},
{0x00, 0x80, 0x00, 0x00},
{0x7f, 0x7f, 0xff, 0xff}});
cudf::test::lists_column_wrapper<uint8_t> const fp32_expected_slice2({{0x7f, 0xc0, 0x00, 0x00},
{0xff, 0xc0, 0x00, 0x00},
{0x7f, 0x80, 0x00, 0x00},
{0xff, 0x80, 0x00, 0x00}});
std::vector<cudf::size_type> splits({5});
std::vector<cudf::column_view> split_column = cudf::split(fp32_col, splits);
auto const output_fp32 = cudf::byte_cast(fp32_col, cudf::flip_endianness::NO);
auto const output_fp32_slice1 = cudf::byte_cast(split_column.at(0), cudf::flip_endianness::YES);
auto const output_fp32_slice2 = cudf::byte_cast(split_column.at(1), cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_fp32->view(), fp32_expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_fp32_slice1->view(), fp32_expected_slice1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_fp32_slice2->view(), fp32_expected_slice2);
}
TEST_F(ByteCastTest, fp32ValuesWithNulls)
{
using limits = std::numeric_limits<float>;
auto even_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i + 1) % 2; });
cudf::test::fixed_width_column_wrapper<float> const fp32_col(
{float(0.0), float(100.0), float(-100.0), limits::min(), limits::max()}, {1, 0, 1, 0, 1});
auto fp32_data = cudf::test::fixed_width_column_wrapper<uint8_t>{
0x00, 0x00, 0x00, 0x00, 0xc2, 0xc8, 0x00, 0x00, 0x7f, 0x7f, 0xff, 0xff};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(even_validity, even_validity + 5);
auto fp32_expected = cudf::make_lists_column(
5,
std::move(cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 4, 4, 8, 8, 12}.release()),
std::move(fp32_data.release()),
null_count,
std::move(null_mask));
auto const output_fp32 = cudf::byte_cast(fp32_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output_fp32->view(), fp32_expected->view());
}
TEST_F(ByteCastTest, fp64ValuesWithSplit)
{
using limits = std::numeric_limits<double>;
double nan = limits::quiet_NaN();
double inf = limits::infinity();
cudf::test::fixed_width_column_wrapper<double> const fp64_col({double(0.0),
double(100.0),
double(-100.0),
limits::min(),
limits::max(),
nan,
-nan,
inf,
-inf});
cudf::test::lists_column_wrapper<uint8_t> const fp64_flipped_expected(
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x40, 0x59, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0xc0, 0x59, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x7f, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0x7f, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0xff, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x7f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0xff, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}});
cudf::test::lists_column_wrapper<uint8_t> const fp64_expected_slice1(
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x59, 0x40},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x59, 0xc0},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00},
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x7f}});
cudf::test::lists_column_wrapper<uint8_t> const fp64_expected_slice2(
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0x7f},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0x7f},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff}});
std::vector<cudf::size_type> splits({5});
std::vector<cudf::column_view> split_column = cudf::split(fp64_col, splits);
auto const output_fp64_flipped = cudf::byte_cast(fp64_col, cudf::flip_endianness::YES);
auto const output_fp64_slice1 = cudf::byte_cast(split_column.at(0), cudf::flip_endianness::NO);
auto const output_fp64_slice2 = cudf::byte_cast(split_column.at(1), cudf::flip_endianness::NO);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_fp64_flipped->view(), fp64_flipped_expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_fp64_slice1->view(), fp64_expected_slice1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_fp64_slice2->view(), fp64_expected_slice2);
}
TEST_F(ByteCastTest, fp64ValuesWithNulls)
{
using limits = std::numeric_limits<double>;
auto odd_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
cudf::test::fixed_width_column_wrapper<double> const fp64_col(
{double(0.0), double(100.0), double(-100.0), limits::min(), limits::max()}, {0, 1, 0, 1, 0});
auto fp64_data = cudf::test::fixed_width_column_wrapper<uint8_t>{
0x40, 0x59, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(odd_validity, odd_validity + 5);
auto fp64_expected = cudf::make_lists_column(
5,
std::move(
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 8, 8, 16, 16}.release()),
std::move(fp64_data.release()),
null_count,
std::move(null_mask));
auto const output_fp64 = cudf::byte_cast(fp64_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(output_fp64->view(), fp64_expected->view());
}
TEST_F(ByteCastTest, StringValuesNoNulls)
{
cudf::test::strings_column_wrapper const strings_col(
{"", "The quick", " brown fox...", "!\"#$%&\'()*+,-./", "0123456789:;<=>?@", "[\\]^_`{|}~"});
cudf::test::lists_column_wrapper<uint8_t> const strings_expected(
{{},
{0x54, 0x68, 0x65, 0x20, 0x71, 0x75, 0x69, 0x63, 0x6b},
{0x20, 0x62, 0x72, 0x6f, 0x77, 0x6e, 0x20, 0x66, 0x6f, 0x78, 0x2e, 0x2e, 0x2e},
{0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f},
{0x30,
0x31,
0x32,
0x33,
0x34,
0x35,
0x36,
0x37,
0x38,
0x39,
0x3a,
0x3b,
0x3c,
0x3d,
0x3e,
0x3f,
0x40},
{0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x7b, 0x7c, 0x7d, 0x7e}});
auto const output_strings = cudf::byte_cast(strings_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_strings->view(), strings_expected);
}
TEST_F(ByteCastTest, StringValuesWithNulls)
{
auto const strings_col = [] {
auto output =
cudf::test::strings_column_wrapper(
{"", "The quick", " brown fox...", "!\"#$%&\'()*+,-./", "0123456789:;<=>?@", "[\\]^_`{|}~"})
.release();
// Set nulls by `set_null_mask` so the output column will have non-empty nulls.
// This is intentional.
auto const null_iter = cudf::test::iterators::nulls_at({2, 4});
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_iter, null_iter + output->size());
output->set_null_mask(std::move(null_mask), null_count);
return output;
}();
auto const strings_expected = cudf::test::lists_column_wrapper<uint8_t>{
{{},
{0x54, 0x68, 0x65, 0x20, 0x71, 0x75, 0x69, 0x63, 0x6b},
{} /*NULL*/,
{0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f},
{} /*NULL*/,
{0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x7b, 0x7c, 0x7d, 0x7e}},
cudf::test::iterators::nulls_at({2, 4})};
auto const output_strings = cudf::byte_cast(*strings_col, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output_strings->view(), strings_expected);
}
TEST_F(ByteCastTest, int32Empty)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>{};
auto const expected = cudf::test::lists_column_wrapper<uint8_t>{};
auto const output = cudf::byte_cast(input, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *output);
}
TEST_F(ByteCastTest, int32sAllNulls)
{
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>{{0, 0, 0}, cudf::test::iterators::all_nulls()};
auto const output = cudf::byte_cast(input, cudf::flip_endianness::YES);
auto const& out_child = output->child(cudf::lists_column_view::child_column_index);
EXPECT_EQ(output->size(), 3);
EXPECT_EQ(output->null_count(), 3);
EXPECT_EQ(out_child.size(), 0);
EXPECT_EQ(out_child.type().id(), cudf::type_id::UINT8);
}
TEST_F(ByteCastTest, StringEmpty)
{
auto const input = cudf::test::strings_column_wrapper{};
auto const expected = cudf::test::lists_column_wrapper<uint8_t>{};
auto const output = cudf::byte_cast(input, cudf::flip_endianness::YES);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *output);
}
TEST_F(ByteCastTest, StringsAllNulls)
{
auto const input =
cudf::test::strings_column_wrapper{{"", "", ""}, cudf::test::iterators::all_nulls()};
auto const output = cudf::byte_cast(input, cudf::flip_endianness::YES);
auto const& out_child = output->child(cudf::lists_column_view::child_column_index);
EXPECT_EQ(output->size(), 3);
EXPECT_EQ(output->null_count(), 3);
EXPECT_EQ(out_child.size(), 0);
EXPECT_EQ(out_child.type().id(), cudf::type_id::UINT8);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reshape/tile_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/reshape.hpp>
#include <cudf/table/table.hpp>
#include <cudf/utilities/error.hpp>
template <typename T>
struct TileTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TileTest, cudf::test::AllTypes);
TYPED_TEST(TileTest, NoColumns)
{
cudf::table_view in(std::vector<cudf::column_view>{});
auto expected = in;
auto actual = cudf::tile(in, 10);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, actual->view());
}
TYPED_TEST(TileTest, NoRows)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T> in_a({});
cudf::table_view in(std::vector<cudf::column_view>{in_a});
auto expected = in;
auto actual = cudf::tile(in, 10);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, actual->view());
}
TYPED_TEST(TileTest, OneColumn)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> in_a({-1, 0, 1});
cudf::table_view in(std::vector<cudf::column_view>{in_a});
cudf::test::fixed_width_column_wrapper<T, int32_t> expected_a({-1, 0, 1, -1, 0, 1});
cudf::table_view expected(std::vector<cudf::column_view>{expected_a});
auto actual = cudf::tile(in, 2);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, actual->view());
}
TYPED_TEST(TileTest, OneColumnNullable)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> in_a({-1, 0, 1}, {1, 0, 0});
cudf::table_view in(std::vector<cudf::column_view>{in_a});
cudf::test::fixed_width_column_wrapper<T, int32_t> expected_a({-1, 0, 1, -1, 0, 1},
{1, 0, 0, 1, 0, 0});
cudf::table_view expected(std::vector<cudf::column_view>{expected_a});
auto actual = cudf::tile(in, 2);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, actual->view());
}
TYPED_TEST(TileTest, OneColumnNegativeCount)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> in_a({-1, 0, 1}, {1, 0, 0});
cudf::table_view in(std::vector<cudf::column_view>{in_a});
EXPECT_THROW(cudf::tile(in, -1), cudf::logic_error);
}
TYPED_TEST(TileTest, OneColumnZeroCount)
{
using T = TypeParam;
cudf::test::fixed_width_column_wrapper<T, int32_t> in_a({-1, 0, 1}, {1, 0, 0});
cudf::table_view in(std::vector<cudf::column_view>{in_a});
std::vector<T> vals{};
std::vector<bool> mask{};
cudf::test::fixed_width_column_wrapper<T> expected_a(vals.begin(), vals.end(), mask.begin());
cudf::table_view expected(std::vector<cudf::column_view>{expected_a});
auto actual = cudf::tile(in, 0);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, actual->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/compound_test.cu
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column.hpp>
#include <cudf/column/column_device_view.cuh>
#include <cudf/column/column_view.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/logical.h>
#include <thrust/sequence.h>
#include <vector>
struct CompoundColumnTest : public cudf::test::BaseFixture {};
template <typename ColumnDeviceView>
struct checker_for_level1 {
ColumnDeviceView d_column;
bool __device__ operator()(int32_t idx)
{
int32_t val1 = d_column.child(0).template element<int32_t>(idx);
int32_t val2 = d_column.child(1).template element<int32_t>(idx);
int32_t val3 = d_column.child(2).template element<int32_t>(idx);
return ((val1 + 100) == val2) && ((val2 + 100) == val3);
}
};
template <typename ColumnDeviceView>
struct checker_for_level2 {
ColumnDeviceView d_column;
bool __device__ operator()(int32_t idx)
{
bool bcheck = true;
for (int i = 0; i < 2 && bcheck; ++i) {
auto child = d_column.child(i);
int32_t val1 = child.child(0).template element<int32_t>(idx);
int32_t val2 = child.child(1).template element<int32_t>(idx);
int32_t val3 = child.child(2).template element<int32_t>(idx);
bcheck = ((val1 + 100) == val2) && ((val2 + 100) == val3);
}
return bcheck;
}
};
TEST_F(CompoundColumnTest, ChildrenLevel1)
{
rmm::device_uvector<int32_t> data(1000, cudf::get_default_stream());
thrust::sequence(rmm::exec_policy(cudf::get_default_stream()), data.begin(), data.end(), 1);
auto null_mask = cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED);
rmm::device_buffer data1{data.data() + 100, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data2{data.data() + 200, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data3{data.data() + 300, 100 * sizeof(int32_t), cudf::get_default_stream()};
auto child1 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
100,
std::move(data1),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto child2 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
200,
std::move(data2),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto child3 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
300,
std::move(data3),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
std::vector<std::unique_ptr<cudf::column>> children;
children.emplace_back(std::move(child1));
children.emplace_back(std::move(child2));
children.emplace_back(std::move(child3));
auto parent = std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::STRING},
100,
rmm::device_buffer{},
rmm::device_buffer{},
0,
std::move(children));
{
auto column = cudf::column_device_view::create(parent->view());
EXPECT_TRUE(thrust::any_of(rmm::exec_policy(cudf::get_default_stream()),
thrust::make_counting_iterator<int32_t>(0),
thrust::make_counting_iterator<int32_t>(100),
checker_for_level1<cudf::column_device_view>{*column}));
}
{
auto column = cudf::mutable_column_device_view::create(parent->mutable_view());
EXPECT_TRUE(thrust::any_of(rmm::exec_policy(cudf::get_default_stream()),
thrust::make_counting_iterator<int32_t>(0),
thrust::make_counting_iterator<int32_t>(100),
checker_for_level1<cudf::mutable_column_device_view>{*column}));
}
}
TEST_F(CompoundColumnTest, ChildrenLevel2)
{
rmm::device_uvector<int32_t> data(1000, cudf::get_default_stream());
thrust::sequence(rmm::exec_policy(cudf::get_default_stream()), data.begin(), data.end(), 1);
auto null_mask = cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED);
rmm::device_buffer data11{data.data() + 100, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data12{data.data() + 200, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data13{data.data() + 300, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data21{data.data() + 400, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data22{data.data() + 500, 100 * sizeof(int32_t), cudf::get_default_stream()};
rmm::device_buffer data23{data.data() + 600, 100 * sizeof(int32_t), cudf::get_default_stream()};
auto gchild11 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
100,
std::move(data11),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto gchild12 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
200,
std::move(data12),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto gchild13 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
300,
std::move(data13),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto gchild21 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
400,
std::move(data21),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto gchild22 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
500,
std::move(data22),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
auto gchild23 =
std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32},
600,
std::move(data23),
cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED),
0);
std::vector<std::unique_ptr<cudf::column>> gchildren1;
gchildren1.emplace_back(std::move(gchild11));
gchildren1.emplace_back(std::move(gchild12));
gchildren1.emplace_back(std::move(gchild13));
std::vector<std::unique_ptr<cudf::column>> gchildren2;
gchildren2.emplace_back(std::move(gchild21));
gchildren2.emplace_back(std::move(gchild22));
gchildren2.emplace_back(std::move(gchild23));
auto children1 = std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::STRING},
100,
rmm::device_buffer{},
rmm::device_buffer{},
0,
std::move(gchildren1));
auto children2 = std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::STRING},
100,
rmm::device_buffer{},
rmm::device_buffer{},
0,
std::move(gchildren2));
std::vector<std::unique_ptr<cudf::column>> children;
children.emplace_back(std::move(children1));
children.emplace_back(std::move(children2));
auto parent = std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::STRING},
100,
rmm::device_buffer{},
rmm::device_buffer{},
0,
std::move(children));
{
auto column = cudf::column_device_view::create(parent->view());
EXPECT_TRUE(thrust::any_of(rmm::exec_policy(cudf::get_default_stream()),
thrust::make_counting_iterator<int32_t>(0),
thrust::make_counting_iterator<int32_t>(100),
checker_for_level2<cudf::column_device_view>{*column}));
}
{
auto column = cudf::mutable_column_device_view::create(parent->mutable_view());
EXPECT_TRUE(thrust::any_of(rmm::exec_policy(cudf::get_default_stream()),
thrust::make_counting_iterator<int32_t>(0),
thrust::make_counting_iterator<int32_t>(100),
checker_for_level2<cudf::mutable_column_device_view>{*column}));
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/bit_cast_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <random>
template <typename T, typename T2 = void>
struct rep_type_impl {
using type = void;
};
template <typename T>
struct rep_type_impl<T, std::enable_if_t<cudf::is_timestamp<T>()>> {
using type = typename T::duration::rep;
};
template <typename T>
struct rep_type_impl<T, std::enable_if_t<cudf::is_duration<T>()>> {
using type = typename T::rep;
};
template <typename T>
struct rep_type_impl<T, std::enable_if_t<cudf::is_fixed_point<T>()>> {
using type = typename T::rep;
};
template <typename T>
using rep_type_t = typename rep_type_impl<T>::type;
template <typename T>
struct ColumnViewAllTypesTests : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ColumnViewAllTypesTests, cudf::test::FixedWidthTypes);
template <typename FromType, typename ToType, typename Iterator>
void do_bit_cast(cudf::column_view const& column_view, Iterator begin, Iterator end)
{
auto mutable_column_view = reinterpret_cast<cudf::mutable_column_view const&>(column_view);
cudf::data_type to_type{cudf::type_to_id<ToType>()};
if (std::is_same_v<FromType, ToType>) {
// Cast to same to_type
auto output = cudf::bit_cast(column_view, column_view.type());
auto output1 = cudf::bit_cast(mutable_column_view, mutable_column_view.type());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, column_view);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output1, mutable_column_view);
} else if (std::is_same_v<rep_type_t<FromType>, ToType> ||
std::is_same_v<FromType, rep_type_t<ToType>>) {
// Cast integer to timestamp or vice versa
auto output = cudf::bit_cast(column_view, to_type);
auto output1 = cudf::bit_cast(mutable_column_view, to_type);
cudf::test::fixed_width_column_wrapper<ToType, cudf::size_type> expected(begin, end);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output1, expected);
} else {
if (cuda::std::is_trivially_copyable_v<FromType> &&
cuda::std::is_trivially_copyable_v<ToType>) {
constexpr auto from_size = sizeof(cudf::device_storage_type_t<FromType>);
constexpr auto to_size = sizeof(cudf::device_storage_type_t<ToType>);
if (from_size == to_size) {
// Cast from FromType to ToType
auto output1 = cudf::bit_cast(column_view, to_type);
auto output1_mutable = cudf::bit_cast(mutable_column_view, to_type);
// Cast back from ToType to FromType
cudf::data_type from_type{cudf::type_to_id<FromType>()};
auto output2 = cudf::bit_cast(output1, from_type);
auto output2_mutable = cudf::bit_cast(output1_mutable, from_type);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output2, column_view);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output2_mutable, mutable_column_view);
} else {
// Not allow to cast if sizes are mismatched
EXPECT_THROW(cudf::bit_cast(column_view, to_type), cudf::logic_error);
EXPECT_THROW(cudf::bit_cast(mutable_column_view, to_type), cudf::logic_error);
}
} else {
// Not allow to cast if any of from/to types is not trivially copyable
EXPECT_THROW(cudf::bit_cast(column_view, to_type), cudf::logic_error);
EXPECT_THROW(cudf::bit_cast(mutable_column_view, to_type), cudf::logic_error);
}
}
}
TYPED_TEST(ColumnViewAllTypesTests, BitCast)
{
auto begin = thrust::make_counting_iterator(1);
auto end = thrust::make_counting_iterator(16);
cudf::test::fixed_width_column_wrapper<TypeParam, cudf::size_type> input(begin, end);
do_bit_cast<TypeParam, int8_t>(input, begin, end);
do_bit_cast<TypeParam, int16_t>(input, begin, end);
do_bit_cast<TypeParam, int32_t>(input, begin, end);
do_bit_cast<TypeParam, int64_t>(input, begin, end);
do_bit_cast<TypeParam, float>(input, begin, end);
do_bit_cast<TypeParam, double>(input, begin, end);
do_bit_cast<TypeParam, bool>(input, begin, end);
do_bit_cast<TypeParam, cudf::duration_D>(input, begin, end);
do_bit_cast<TypeParam, cudf::duration_s>(input, begin, end);
do_bit_cast<TypeParam, cudf::duration_ms>(input, begin, end);
do_bit_cast<TypeParam, cudf::duration_us>(input, begin, end);
do_bit_cast<TypeParam, cudf::duration_ns>(input, begin, end);
do_bit_cast<TypeParam, cudf::timestamp_D>(input, begin, end);
do_bit_cast<TypeParam, cudf::timestamp_s>(input, begin, end);
do_bit_cast<TypeParam, cudf::timestamp_ms>(input, begin, end);
do_bit_cast<TypeParam, cudf::timestamp_us>(input, begin, end);
do_bit_cast<TypeParam, cudf::timestamp_ns>(input, begin, end);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/column_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_list_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/utilities/vector_factories.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/transform.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/error.hpp>
#include <numeric>
#include <random>
template <typename T>
struct TypedColumnTest : public cudf::test::BaseFixture {
cudf::data_type type() { return cudf::data_type{cudf::type_to_id<T>()}; }
TypedColumnTest(rmm::cuda_stream_view stream = cudf::get_default_stream())
: data{_num_elements * cudf::size_of(type()), stream},
mask{cudf::bitmask_allocation_size_bytes(_num_elements), stream}
{
std::vector<char> h_data(std::max(data.size(), mask.size()));
std::iota(h_data.begin(), h_data.end(), 0);
CUDF_CUDA_TRY(
cudaMemcpyAsync(data.data(), h_data.data(), data.size(), cudaMemcpyDefault, stream.value()));
CUDF_CUDA_TRY(
cudaMemcpyAsync(mask.data(), h_data.data(), mask.size(), cudaMemcpyDefault, stream.value()));
}
cudf::size_type num_elements() { return _num_elements; }
std::random_device r;
std::default_random_engine generator{r()};
std::uniform_int_distribution<cudf::size_type> distribution{200, 1000};
cudf::size_type _num_elements{distribution(generator)};
rmm::device_buffer data{};
rmm::device_buffer mask{};
rmm::device_buffer all_valid_mask{create_null_mask(num_elements(), cudf::mask_state::ALL_VALID)};
rmm::device_buffer all_null_mask{create_null_mask(num_elements(), cudf::mask_state::ALL_NULL)};
};
TYPED_TEST_SUITE(TypedColumnTest, cudf::test::Types<int32_t>);
/**
* @brief Verifies equality of the properties and data of a `column`'s views.
*
* @param col The `column` to verify
*/
void verify_column_views(cudf::column col)
{
cudf::column_view view = col;
cudf::mutable_column_view mutable_view = col;
EXPECT_EQ(col.type(), view.type());
EXPECT_EQ(col.type(), mutable_view.type());
EXPECT_EQ(col.size(), view.size());
EXPECT_EQ(col.size(), mutable_view.size());
EXPECT_EQ(col.null_count(), view.null_count());
EXPECT_EQ(col.null_count(), mutable_view.null_count());
EXPECT_EQ(col.nullable(), view.nullable());
EXPECT_EQ(col.nullable(), mutable_view.nullable());
EXPECT_EQ(col.num_children(), view.num_children());
EXPECT_EQ(col.num_children(), mutable_view.num_children());
EXPECT_EQ(view.head(), mutable_view.head());
EXPECT_EQ(view.data<char>(), mutable_view.data<char>());
EXPECT_EQ(view.offset(), mutable_view.offset());
}
TYPED_TEST(TypedColumnTest, DefaultNullCountNoMask)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
EXPECT_FALSE(col.nullable());
EXPECT_FALSE(col.has_nulls());
EXPECT_EQ(0, col.null_count());
}
TYPED_TEST(TypedColumnTest, DefaultNullCountEmptyMask)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
EXPECT_FALSE(col.nullable());
EXPECT_FALSE(col.has_nulls());
EXPECT_EQ(0, col.null_count());
}
TYPED_TEST(TypedColumnTest, DefaultNullCountAllValid)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
EXPECT_TRUE(col.nullable());
EXPECT_FALSE(col.has_nulls());
EXPECT_EQ(0, col.null_count());
}
TYPED_TEST(TypedColumnTest, ExplicitNullCountAllValid)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
EXPECT_TRUE(col.nullable());
EXPECT_FALSE(col.has_nulls());
EXPECT_EQ(0, col.null_count());
}
TYPED_TEST(TypedColumnTest, DefaultNullCountAllNull)
{
cudf::column col{this->type(),
this->num_elements(),
std::move(this->data),
std::move(this->all_null_mask),
this->num_elements()};
EXPECT_TRUE(col.nullable());
EXPECT_TRUE(col.has_nulls());
EXPECT_EQ(this->num_elements(), col.null_count());
}
TYPED_TEST(TypedColumnTest, ExplicitNullCountAllNull)
{
cudf::column col{this->type(),
this->num_elements(),
std::move(this->data),
std::move(this->all_null_mask),
this->num_elements()};
EXPECT_TRUE(col.nullable());
EXPECT_TRUE(col.has_nulls());
EXPECT_EQ(this->num_elements(), col.null_count());
}
TYPED_TEST(TypedColumnTest, SetNullCountNoMask)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
EXPECT_THROW(col.set_null_count(1), cudf::logic_error);
}
TYPED_TEST(TypedColumnTest, SetEmptyNullMaskNonZeroNullCount)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
rmm::device_buffer empty_null_mask{};
EXPECT_THROW(col.set_null_mask(std::move(empty_null_mask), this->num_elements()),
cudf::logic_error);
}
TYPED_TEST(TypedColumnTest, SetInvalidSizeNullMaskNonZeroNullCount)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
auto invalid_size_null_mask =
create_null_mask(std::min(this->num_elements() - 50, 0), cudf::mask_state::ALL_VALID);
EXPECT_THROW(
col.set_null_mask(invalid_size_null_mask, this->num_elements(), cudf::get_default_stream()),
cudf::logic_error);
}
TYPED_TEST(TypedColumnTest, SetNullCountEmptyMask)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
EXPECT_THROW(col.set_null_count(1), cudf::logic_error);
}
TYPED_TEST(TypedColumnTest, SetNullCountAllValid)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
EXPECT_NO_THROW(col.set_null_count(0));
EXPECT_EQ(0, col.null_count());
}
TYPED_TEST(TypedColumnTest, SetNullCountAllNull)
{
cudf::column col{this->type(),
this->num_elements(),
std::move(this->data),
std::move(this->all_null_mask),
this->num_elements()};
EXPECT_NO_THROW(col.set_null_count(this->num_elements()));
EXPECT_EQ(this->num_elements(), col.null_count());
}
TYPED_TEST(TypedColumnTest, ResetNullCountAllNull)
{
cudf::column col{this->type(),
this->num_elements(),
std::move(this->data),
std::move(this->all_null_mask),
this->num_elements()};
EXPECT_EQ(this->num_elements(), col.null_count());
}
TYPED_TEST(TypedColumnTest, ResetNullCountAllValid)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
EXPECT_EQ(0, col.null_count());
}
TYPED_TEST(TypedColumnTest, CopyDataNoMask)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
EXPECT_EQ(this->type(), col.type());
EXPECT_FALSE(col.nullable());
EXPECT_EQ(0, col.null_count());
EXPECT_EQ(this->num_elements(), col.size());
EXPECT_EQ(0, col.num_children());
verify_column_views(col);
// Verify deep copy
cudf::column_view v = col;
EXPECT_NE(v.head(), this->data.data());
CUDF_TEST_EXPECT_EQUAL_BUFFERS(v.head(), this->data.data(), this->data.size());
}
TYPED_TEST(TypedColumnTest, MoveDataNoMask)
{
void* original_data = this->data.data();
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
EXPECT_EQ(this->type(), col.type());
EXPECT_FALSE(col.nullable());
EXPECT_EQ(0, col.null_count());
EXPECT_EQ(this->num_elements(), col.size());
EXPECT_EQ(0, col.num_children());
verify_column_views(col);
// Verify shallow copy
cudf::column_view v = col;
EXPECT_EQ(v.head(), original_data);
}
TYPED_TEST(TypedColumnTest, CopyDataAndMask)
{
cudf::column col{this->type(),
this->num_elements(),
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0};
EXPECT_EQ(this->type(), col.type());
EXPECT_TRUE(col.nullable());
EXPECT_EQ(0, col.null_count());
EXPECT_EQ(this->num_elements(), col.size());
EXPECT_EQ(0, col.num_children());
verify_column_views(col);
// Verify deep copy
cudf::column_view v = col;
EXPECT_NE(v.head(), this->data.data());
EXPECT_NE(v.null_mask(), this->all_valid_mask.data());
CUDF_TEST_EXPECT_EQUAL_BUFFERS(v.head(), this->data.data(), this->data.size());
CUDF_TEST_EXPECT_EQUAL_BUFFERS(v.null_mask(), this->all_valid_mask.data(), this->mask.size());
}
TYPED_TEST(TypedColumnTest, MoveDataAndMask)
{
void* original_data = this->data.data();
void* original_mask = this->all_valid_mask.data();
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
EXPECT_EQ(this->type(), col.type());
EXPECT_TRUE(col.nullable());
EXPECT_EQ(0, col.null_count());
EXPECT_EQ(this->num_elements(), col.size());
EXPECT_EQ(0, col.num_children());
verify_column_views(col);
// Verify shallow copy
cudf::column_view v = col;
EXPECT_EQ(v.head(), original_data);
EXPECT_EQ(v.null_mask(), original_mask);
}
TYPED_TEST(TypedColumnTest, CopyConstructorNoMask)
{
cudf::column original{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
cudf::column copy{original};
verify_column_views(copy);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(original, copy);
// Verify deep copy
cudf::column_view original_view = original;
cudf::column_view copy_view = copy;
EXPECT_NE(original_view.head(), copy_view.head());
}
TYPED_TEST(TypedColumnTest, CopyConstructorWithMask)
{
cudf::column original{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
cudf::column copy{original};
verify_column_views(copy);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(original, copy);
// Verify deep copy
cudf::column_view original_view = original;
cudf::column_view copy_view = copy;
EXPECT_NE(original_view.head(), copy_view.head());
EXPECT_NE(original_view.null_mask(), copy_view.null_mask());
}
TYPED_TEST(TypedColumnTest, MoveConstructorNoMask)
{
cudf::column original{
this->type(), this->num_elements(), std::move(this->data), rmm::device_buffer{}, 0};
auto original_data = original.view().head();
cudf::column moved_to{std::move(original)};
EXPECT_EQ(0, original.size());
EXPECT_EQ(cudf::data_type{cudf::type_id::EMPTY}, original.type());
verify_column_views(moved_to);
// Verify move
cudf::column_view moved_to_view = moved_to;
EXPECT_EQ(original_data, moved_to_view.head());
}
TYPED_TEST(TypedColumnTest, MoveConstructorWithMask)
{
cudf::column original{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
auto original_data = original.view().head();
auto original_mask = original.view().null_mask();
cudf::column moved_to{std::move(original)};
verify_column_views(moved_to);
EXPECT_EQ(0, original.size());
EXPECT_EQ(cudf::data_type{cudf::type_id::EMPTY}, original.type());
// Verify move
cudf::column_view moved_to_view = moved_to;
EXPECT_EQ(original_data, moved_to_view.head());
EXPECT_EQ(original_mask, moved_to_view.null_mask());
}
TYPED_TEST(TypedColumnTest, DeviceUvectorConstructorNoMask)
{
auto data = cudf::device_span<TypeParam const>(static_cast<TypeParam*>(this->data.data()),
this->num_elements());
auto original = cudf::detail::make_device_uvector_async(
data, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto original_data = original.data();
cudf::column moved_to{std::move(original), rmm::device_buffer{}, 0};
verify_column_views(moved_to);
// Verify move
cudf::column_view moved_to_view = moved_to;
EXPECT_EQ(original_data, moved_to_view.head());
}
TYPED_TEST(TypedColumnTest, DeviceUvectorConstructorWithMask)
{
auto data = cudf::device_span<TypeParam const>(static_cast<TypeParam*>(this->data.data()),
this->num_elements());
auto original = cudf::detail::make_device_uvector_async(
data, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto original_data = original.data();
auto original_mask = this->all_valid_mask.data();
cudf::column moved_to{std::move(original), std::move(this->all_valid_mask), 0};
verify_column_views(moved_to);
// Verify move
cudf::column_view moved_to_view = moved_to;
EXPECT_EQ(original_data, moved_to_view.head());
EXPECT_EQ(original_mask, moved_to_view.null_mask());
}
TYPED_TEST(TypedColumnTest, ConstructWithChildren)
{
std::vector<std::unique_ptr<cudf::column>> children;
children.emplace_back(std::make_unique<cudf::column>(
cudf::data_type{cudf::type_id::INT8},
42,
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0));
children.emplace_back(std::make_unique<cudf::column>(
cudf::data_type{cudf::type_id::FLOAT64},
314,
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0));
cudf::column col{this->type(),
this->num_elements(),
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0,
std::move(children)};
verify_column_views(col);
EXPECT_EQ(2, col.num_children());
EXPECT_EQ(cudf::data_type{cudf::type_id::INT8}, col.child(0).type());
EXPECT_EQ(42, col.child(0).size());
EXPECT_EQ(cudf::data_type{cudf::type_id::FLOAT64}, col.child(1).type());
EXPECT_EQ(314, col.child(1).size());
}
TYPED_TEST(TypedColumnTest, ReleaseNoChildren)
{
cudf::column col{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
auto original_data = col.view().head();
auto original_mask = col.view().null_mask();
cudf::column::contents contents = col.release();
EXPECT_EQ(original_data, contents.data->data());
EXPECT_EQ(original_mask, contents.null_mask->data());
EXPECT_EQ(0u, contents.children.size());
EXPECT_EQ(0, col.size());
EXPECT_EQ(0, col.null_count());
EXPECT_EQ(cudf::data_type{cudf::type_id::EMPTY}, col.type());
EXPECT_EQ(0, col.num_children());
}
TYPED_TEST(TypedColumnTest, ReleaseWithChildren)
{
std::vector<std::unique_ptr<cudf::column>> children;
children.emplace_back(std::make_unique<cudf::column>(
this->type(),
this->num_elements(),
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0));
children.emplace_back(std::make_unique<cudf::column>(
this->type(),
this->num_elements(),
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0));
cudf::column col{this->type(),
this->num_elements(),
rmm::device_buffer{this->data, cudf::get_default_stream()},
rmm::device_buffer{this->all_valid_mask, cudf::get_default_stream()},
0,
std::move(children)};
auto original_data = col.view().head();
auto original_mask = col.view().null_mask();
cudf::column::contents contents = col.release();
EXPECT_EQ(original_data, contents.data->data());
EXPECT_EQ(original_mask, contents.null_mask->data());
EXPECT_EQ(2u, contents.children.size());
EXPECT_EQ(0, col.size());
EXPECT_EQ(0, col.null_count());
EXPECT_EQ(cudf::data_type{cudf::type_id::EMPTY}, col.type());
EXPECT_EQ(0, col.num_children());
}
TYPED_TEST(TypedColumnTest, ColumnViewConstructorWithMask)
{
cudf::column original{
this->type(), this->num_elements(), std::move(this->data), std::move(this->all_valid_mask), 0};
cudf::column_view original_view = original;
cudf::column copy{original_view};
verify_column_views(copy);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(original, copy);
// Verify deep copy
cudf::column_view copy_view = copy;
EXPECT_NE(original_view.head(), copy_view.head());
EXPECT_NE(original_view.null_mask(), copy_view.null_mask());
}
template <typename T>
struct ListsColumnTest : public cudf::test::BaseFixture {};
using NumericTypesNotBool =
cudf::test::Concat<cudf::test::IntegralTypesNotBool, cudf::test::FloatingPointTypes>;
TYPED_TEST_SUITE(ListsColumnTest, NumericTypesNotBool);
TYPED_TEST(ListsColumnTest, ListsColumnViewConstructor)
{
cudf::test::lists_column_wrapper<TypeParam> list{{1, 2}, {3, 4}, {5, 6, 7}, {8, 9}};
auto result = std::make_unique<cudf::column>(list);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(list, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedColumnViewConstructor)
{
cudf::test::lists_column_wrapper<TypeParam> list{{1, 2}, {3, 4}, {5, 6, 7}, {8, 9}};
cudf::test::lists_column_wrapper<TypeParam> expect{{3, 4}, {5, 6, 7}};
auto sliced = cudf::slice(list, {1, 3}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedIncludesEmpty)
{
cudf::test::lists_column_wrapper<TypeParam> list{{1, 2}, {}, {3, 4}, {8, 9}};
cudf::test::lists_column_wrapper<TypeParam> expect{{}, {3, 4}};
auto sliced = cudf::slice(list, {1, 3}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedNonNestedEmpty)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam>;
// Column of List<int>
LCW list{{1, 2}, {}, {3, 4}, {8, 9}};
// Column of 1 row, an empty List<int>
LCW expect{LCW{}};
auto sliced = cudf::slice(list, {1, 2}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedNestedEmpty)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam>;
using FWCW_SZ = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
// Column of List<List<int>>, with incomplete hierarchy
LCW list{{LCW{1}, LCW{2}},
{}, // < ----------- empty List<List<int>>, slice this
{LCW{3}, LCW{4, 5}}};
// Make 1-row column of type List<List<int>>, the row data contains 0 element.
// Well-formed memory layout:
// type: List<List<int>>
// Length: 1
// Mask: 1
// Offsets: 0, 0
// List<int>
// Length: 0
// Offset:
// INT
// Length: 0
auto leaf = std::make_unique<cudf::column>(cudf::column(LCW{}));
auto offset = std::make_unique<cudf::column>(cudf::column(FWCW_SZ{0, 0}));
auto null_mask = cudf::create_null_mask(0, cudf::mask_state::UNALLOCATED);
auto expect =
cudf::make_lists_column(1, std::move(offset), std::move(leaf), 0, std::move(null_mask));
auto sliced = cudf::slice(list, {1, 2}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expect, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedZeroSliceLengthNested)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam>;
// Column of List<List<int>>, with incomplete hierarchy
LCW list{{LCW{1}, LCW{2}}, {}, {LCW{3}, LCW{4, 5}}};
auto expect = cudf::empty_like(list);
auto sliced = cudf::slice(list, {0, 0}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expect, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedZeroSliceLengthNonNested)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam>;
LCW list{{1, 2}, {}, {3, 4}, {8, 9}};
auto expect = cudf::empty_like(list);
auto sliced = cudf::slice(list, {0, 0}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expect, result->view());
}
TYPED_TEST(ListsColumnTest, ListsSlicedColumnViewConstructorWithNulls)
{
auto valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; });
auto expect_valids =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 != 0; });
using LCW = cudf::test::lists_column_wrapper<TypeParam>;
cudf::test::lists_column_wrapper<TypeParam> list{
{{{{1, 2}, {3, 4}}, valids}, LCW{}, {{{5, 6, 7}, LCW{}, {8, 9}}, valids}, LCW{}, LCW{}},
valids};
cudf::test::lists_column_wrapper<TypeParam> expect{
{LCW{}, {{{5, 6, 7}, LCW{}, {8, 9}}, valids}, LCW{}, LCW{}}, expect_valids};
auto sliced = cudf::slice(list, {1, 5}).front();
auto result = std::make_unique<cudf::column>(sliced);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, result->view());
// TODO: null mask equality is being checked separately because
// expect_columns_equal doesn't do the check for lists columns.
// This is fixed in https://github.com/rapidsai/cudf/pull/5904,
// so we should remove this check after that's merged:
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
cudf::mask_to_bools(result->view().null_mask(), 0, 4)->view(),
cudf::mask_to_bools(static_cast<cudf::column_view>(expect).null_mask(), 0, 4)->view());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/column_view_device_span_test.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_view.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/span.hpp>
#include <cudf/utilities/traits.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <memory>
template <typename T, CUDF_ENABLE_IF(cudf::is_numeric<T>() or cudf::is_chrono<T>())>
std::unique_ptr<cudf::column> example_column()
{
auto begin = thrust::make_counting_iterator(1);
auto end = thrust::make_counting_iterator(16);
return cudf::test::fixed_width_column_wrapper<T>(begin, end).release();
}
template <typename T>
struct ColumnViewDeviceSpanTests : public cudf::test::BaseFixture {};
using DeviceSpanTypes = cudf::test::FixedWidthTypesWithoutFixedPoint;
TYPED_TEST_SUITE(ColumnViewDeviceSpanTests, DeviceSpanTypes);
TYPED_TEST(ColumnViewDeviceSpanTests, conversion_round_trip)
{
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// Test implicit conversion, round trip
cudf::device_span<TypeParam const> device_span_from_col_view = col_view;
cudf::column_view col_view_from_device_span = device_span_from_col_view;
CUDF_TEST_EXPECT_COLUMNS_EQUAL(col_view, col_view_from_device_span);
}
struct ColumnViewDeviceSpanErrorTests : public cudf::test::BaseFixture {};
TEST_F(ColumnViewDeviceSpanErrorTests, type_mismatch)
{
auto col = example_column<int32_t>();
auto col_view = cudf::column_view{*col};
EXPECT_THROW((void)cudf::device_span<float const>{col_view}, cudf::logic_error);
}
TEST_F(ColumnViewDeviceSpanErrorTests, nullable_column)
{
auto col = example_column<int32_t>();
col->set_null_mask(cudf::create_null_mask(col->size(), cudf::mask_state::ALL_NULL), col->size());
auto col_view = cudf::column_view{*col};
EXPECT_THROW((void)cudf::device_span<int32_t const>{col_view}, cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/factories_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <thrust/iterator/counting_iterator.h>
class ColumnFactoryTest : public cudf::test::BaseFixture {
cudf::size_type _size{1000};
public:
cudf::size_type size() { return _size; }
};
template <typename T>
class NumericFactoryTest : public ColumnFactoryTest {};
TYPED_TEST_SUITE(NumericFactoryTest, cudf::test::NumericTypes);
TYPED_TEST(NumericFactoryTest, EmptyNoMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 0, cudf::mask_state::UNALLOCATED);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), 0);
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, EmptyAllValidMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 0, cudf::mask_state::ALL_VALID);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), 0);
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, EmptyAllNullMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 0, cudf::mask_state::ALL_NULL);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), 0);
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, NoMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::UNALLOCATED);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, UnitializedMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::UNINITIALIZED);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_TRUE(column->nullable());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, AllValidMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::ALL_VALID);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, AllNullMask)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::ALL_NULL);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(this->size(), column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, NullMaskAsParm)
{
rmm::device_buffer null_mask{create_null_mask(this->size(), cudf::mask_state::ALL_NULL)};
auto column = cudf::make_numeric_column(cudf::data_type{cudf::type_to_id<TypeParam>()},
this->size(),
std::move(null_mask),
this->size());
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(this->size(), column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, NullMaskAsEmptyParm)
{
auto column = cudf::make_numeric_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), rmm::device_buffer{}, 0);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
class NonNumericFactoryTest : public ColumnFactoryTest,
public testing::WithParamInterface<cudf::type_id> {};
// All non-numeric types should throw
TEST_P(NonNumericFactoryTest, NonNumericThrow)
{
auto construct = [this]() {
auto column = cudf::make_numeric_column(
cudf::data_type{GetParam()}, this->size(), cudf::mask_state::UNALLOCATED);
};
EXPECT_THROW(construct(), cudf::logic_error);
}
INSTANTIATE_TEST_CASE_P(NonNumeric,
NonNumericFactoryTest,
testing::ValuesIn(cudf::test::non_numeric_type_ids));
template <typename T>
class FixedWidthFactoryTest : public ColumnFactoryTest {};
TYPED_TEST_SUITE(FixedWidthFactoryTest, cudf::test::FixedWidthTypes);
TYPED_TEST(FixedWidthFactoryTest, EmptyNoMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 0, cudf::mask_state::UNALLOCATED);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
}
template <typename T>
class EmptyFactoryTest : public ColumnFactoryTest {};
TYPED_TEST_SUITE(EmptyFactoryTest, cudf::test::AllTypes);
TYPED_TEST(EmptyFactoryTest, Empty)
{
auto type = cudf::data_type{cudf::type_to_id<TypeParam>()};
auto column = cudf::make_empty_column(type);
EXPECT_EQ(type, column->type());
EXPECT_EQ(column->size(), 0);
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, EmptyAllValidMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 0, cudf::mask_state::ALL_VALID);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), 0);
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, EmptyAllNullMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, 0, cudf::mask_state::ALL_NULL);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), 0);
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, NoMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::UNALLOCATED);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, UnitializedMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::UNINITIALIZED);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_TRUE(column->nullable());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, AllValidMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::ALL_VALID);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, AllNullMask)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), cudf::mask_state::ALL_NULL);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(this->size(), column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, NullMaskAsParm)
{
rmm::device_buffer null_mask{create_null_mask(this->size(), cudf::mask_state::ALL_NULL)};
auto column = cudf::make_fixed_width_column(cudf::data_type{cudf::type_to_id<TypeParam>()},
this->size(),
std::move(null_mask),
this->size());
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(this->size(), column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(FixedWidthFactoryTest, NullMaskAsEmptyParm)
{
auto column = cudf::make_fixed_width_column(
cudf::data_type{cudf::type_to_id<TypeParam>()}, this->size(), rmm::device_buffer{}, 0);
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_to_id<TypeParam>()});
EXPECT_EQ(column->size(), this->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
class NonFixedWidthFactoryTest : public ColumnFactoryTest,
public testing::WithParamInterface<cudf::type_id> {};
// All non-fixed types should throw
TEST_P(NonFixedWidthFactoryTest, NonFixedWidthThrow)
{
auto construct = [this]() {
auto column = cudf::make_fixed_width_column(
cudf::data_type{GetParam()}, this->size(), cudf::mask_state::UNALLOCATED);
};
EXPECT_THROW(construct(), cudf::logic_error);
}
INSTANTIATE_TEST_CASE_P(NonFixedWidth,
NonFixedWidthFactoryTest,
testing::ValuesIn(cudf::test::non_fixed_width_type_ids));
TYPED_TEST(NumericFactoryTest, FromScalar)
{
cudf::numeric_scalar<TypeParam> value(12);
auto column = cudf::make_column_from_scalar(value, 10);
EXPECT_EQ(column->type(), value.type());
EXPECT_EQ(10, column->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, FromNullScalar)
{
cudf::numeric_scalar<TypeParam> value(0, false);
auto column = cudf::make_column_from_scalar(value, 10);
EXPECT_EQ(column->type(), value.type());
EXPECT_EQ(10, column->size());
EXPECT_EQ(10, column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TYPED_TEST(NumericFactoryTest, FromScalarWithZeroSize)
{
cudf::numeric_scalar<TypeParam> value(7);
auto column = cudf::make_column_from_scalar(value, 0);
EXPECT_EQ(column->type(), value.type());
EXPECT_EQ(0, column->size());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_EQ(0, column->num_children());
}
TEST_F(ColumnFactoryTest, FromStringScalar)
{
cudf::string_scalar value("hello");
auto column = cudf::make_column_from_scalar(value, 1);
EXPECT_EQ(1, column->size());
EXPECT_EQ(column->type(), value.type());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
EXPECT_TRUE(column->num_children() > 0);
}
TEST_F(ColumnFactoryTest, FromNullStringScalar)
{
cudf::string_scalar value("", false);
auto column = cudf::make_column_from_scalar(value, 2);
EXPECT_EQ(2, column->size());
EXPECT_EQ(column->type(), value.type());
EXPECT_EQ(2, column->null_count());
EXPECT_TRUE(column->nullable());
EXPECT_TRUE(column->has_nulls());
EXPECT_TRUE(column->num_children() > 0);
}
TEST_F(ColumnFactoryTest, FromStringScalarWithZeroSize)
{
cudf::string_scalar value("hello");
auto column = cudf::make_column_from_scalar(value, 0);
EXPECT_EQ(0, column->size());
EXPECT_EQ(column->type(), value.type());
EXPECT_EQ(0, column->null_count());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
}
TEST_F(ColumnFactoryTest, DictionaryFromStringScalar)
{
cudf::string_scalar value("hello");
auto column = cudf::make_dictionary_from_scalar(value, 1);
EXPECT_EQ(1, column->size());
EXPECT_EQ(column->type(), cudf::data_type{cudf::type_id::DICTIONARY32});
EXPECT_EQ(0, column->null_count());
EXPECT_EQ(2, column->num_children());
EXPECT_FALSE(column->nullable());
EXPECT_FALSE(column->has_nulls());
}
TEST_F(ColumnFactoryTest, DictionaryFromStringScalarError)
{
cudf::string_scalar value("hello", false);
EXPECT_THROW(cudf::make_dictionary_from_scalar(value, 1), cudf::logic_error);
}
template <typename T>
class ListsFixedWidthLeafTest : public ColumnFactoryTest {};
TYPED_TEST_SUITE(ListsFixedWidthLeafTest, cudf::test::FixedWidthTypes);
TYPED_TEST(ListsFixedWidthLeafTest, FromNonNested)
{
using FCW = cudf::test::fixed_width_column_wrapper<TypeParam>;
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using valid_t = std::vector<cudf::valid_type>;
auto s = cudf::make_list_scalar(FCW({1, -1, 3}, {1, 0, 1}));
auto col = cudf::make_column_from_scalar(*s, 3);
auto expected = LCW{LCW({1, 2, 3}, valid_t{1, 0, 1}.begin()),
LCW({1, 2, 3}, valid_t{1, 0, 1}.begin()),
LCW({1, 2, 3}, valid_t{1, 0, 1}.begin())};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, expected);
}
TYPED_TEST(ListsFixedWidthLeafTest, FromNested)
{
using LCW = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using valid_t = std::vector<cudf::valid_type>;
#define row_data \
LCW({LCW({-1, -1, 3}, valid_t{0, 0, 1}.begin()), LCW{}, LCW{}}, valid_t{1, 0, 1}.begin())
auto s = cudf::make_list_scalar(row_data);
auto col = cudf::make_column_from_scalar(*s, 5);
auto expected = LCW{row_data, row_data, row_data, row_data, row_data};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, expected);
#undef row_data
}
template <typename T>
class ListsDictionaryLeafTest : public ColumnFactoryTest {};
TYPED_TEST_SUITE(ListsDictionaryLeafTest, cudf::test::FixedWidthTypes);
TYPED_TEST(ListsDictionaryLeafTest, FromNonNested)
{
using DCW = cudf::test::dictionary_column_wrapper<TypeParam>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto s = cudf::make_list_scalar(DCW({1, 3, -1, 1, 3}, {1, 1, 0, 1, 1}));
auto col = cudf::make_column_from_scalar(*s, 2);
DCW leaf({1, 3, -1, 1, 3, 1, 3, -1, 1, 3}, {1, 1, 0, 1, 1, 1, 1, 0, 1, 1});
offset_t offsets{0, 5, 10};
auto mask = cudf::create_null_mask(2, cudf::mask_state::UNALLOCATED);
auto expected = cudf::make_lists_column(2, offsets.release(), leaf.release(), 0, std::move(mask));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, *expected);
}
TYPED_TEST(ListsDictionaryLeafTest, FromNested)
{
using DCW = cudf::test::dictionary_column_wrapper<TypeParam>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
DCW leaf({1, 3, -1, 1, 3, 1, 3, -1, 1, 3}, {1, 1, 0, 1, 1, 1, 1, 0, 1, 1});
offset_t offsets{0, 3, 3, 6, 6, 10};
auto mask = cudf::create_null_mask(5, cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask.data()), 1, 2, false);
auto data = cudf::make_lists_column(5, offsets.release(), leaf.release(), 0, std::move(mask));
auto s = cudf::make_list_scalar(*data);
auto col = cudf::make_column_from_scalar(*s, 3);
DCW leaf2(
{1, 3, -1, 1, 3, 1, 3, -1, 1, 3, 1, 3, -1, 1, 3,
1, 3, -1, 1, 3, 1, 3, -1, 1, 3, 1, 3, -1, 1, 3},
{1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1});
offset_t offsets2{0, 3, 3, 6, 6, 10, 13, 13, 16, 16, 20, 23, 23, 26, 26, 30};
auto mask2 = cudf::create_null_mask(15, cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask2.data()), 1, 2, false);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask2.data()), 6, 7, false);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask2.data()), 11, 12, false);
auto nested =
cudf::make_lists_column(15, offsets2.release(), leaf2.release(), 3, std::move(mask2));
offset_t offsets3{0, 5, 10, 15};
auto mask3 = cudf::create_null_mask(3, cudf::mask_state::UNALLOCATED);
auto expected =
cudf::make_lists_column(3, offsets3.release(), std::move(nested), 0, std::move(mask3));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, *expected);
}
class ListsStringLeafTest : public ColumnFactoryTest {};
TEST_F(ListsStringLeafTest, FromNonNested)
{
using SCW = cudf::test::strings_column_wrapper;
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
using valid_t = std::vector<cudf::valid_type>;
auto s = cudf::make_list_scalar(SCW({"xx", "", "z"}, {true, false, true}));
auto col = cudf::make_column_from_scalar(*s, 4);
auto expected = LCW{LCW({"xx", "", "z"}, valid_t{1, 0, 1}.begin()),
LCW({"xx", "", "z"}, valid_t{1, 0, 1}.begin()),
LCW({"xx", "", "z"}, valid_t{1, 0, 1}.begin()),
LCW({"xx", "", "z"}, valid_t{1, 0, 1}.begin())};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, expected);
}
TEST_F(ListsStringLeafTest, FromNested)
{
using LCW = cudf::test::lists_column_wrapper<cudf::string_view>;
using valid_t = std::vector<cudf::valid_type>;
#define row_data \
LCW({LCW{}, \
LCW({"@@", "rapids", "", "四", "ら"}, valid_t{1, 1, 0, 1, 1}.begin()), \
LCW{}, \
LCW({"hello", ""}, valid_t{1, 0}.begin())}, \
valid_t{0, 1, 1, 1}.begin())
auto s = cudf::make_list_scalar(row_data);
auto col = cudf::make_column_from_scalar(*s, 3);
auto expected = LCW{row_data, row_data, row_data};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, expected);
#undef row_data
}
template <typename T>
class ListsStructsLeafTest : public ColumnFactoryTest {
protected:
using SCW = cudf::test::structs_column_wrapper;
/**
* @brief Create a structs column that contains 3 fields: int, string, List<int>
*/
template <typename MaskIterator>
SCW make_test_structs_column(cudf::test::fixed_width_column_wrapper<T> field1,
cudf::test::strings_column_wrapper field2,
cudf::test::lists_column_wrapper<T, int32_t> field3,
MaskIterator mask)
{
return SCW{{field1, field2, field3}, mask};
}
};
TYPED_TEST_SUITE(ListsStructsLeafTest, cudf::test::FixedWidthTypes);
TYPED_TEST(ListsStructsLeafTest, FromNonNested)
{
using LCWinner_t = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using valid_t = std::vector<cudf::valid_type>;
auto data = this->make_test_structs_column(
{{1, 3, 5, 2, 4}, {1, 0, 1, 0, 1}},
StringCW({"fleur", "flower", "", "花", "はな"}, {true, true, false, true, true}),
LCWinner_t({{1, 2}, {}, {4, 5}, {-1}, {}}, valid_t{1, 1, 1, 1, 0}.begin()),
valid_t{1, 1, 1, 0, 1}.begin());
auto s = cudf::make_list_scalar(data);
auto col = cudf::make_column_from_scalar(*s, 2);
auto leaf = this->make_test_structs_column(
{{1, 3, 5, 2, 4, 1, 3, 5, 2, 4}, {1, 0, 1, 0, 1, 1, 0, 1, 0, 1}},
StringCW({"fleur", "flower", "", "花", "はな", "fleur", "flower", "", "花", "はな"},
{true, true, false, true, true, true, true, false, true, true}),
LCWinner_t({{1, 2}, {}, {4, 5}, {-1}, {}, {1, 2}, {}, {4, 5}, {-1}, {}},
valid_t{1, 1, 1, 1, 0, 1, 1, 1, 1, 0}.begin()),
valid_t{1, 1, 1, 0, 1, 1, 1, 1, 0, 1}.begin());
auto expected = cudf::make_lists_column(2,
offset_t{0, 5, 10}.release(),
leaf.release(),
0,
cudf::create_null_mask(2, cudf::mask_state::UNALLOCATED));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*col, *expected);
}
TYPED_TEST(ListsStructsLeafTest, FromNested)
{
using LCWinner_t = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using valid_t = std::vector<cudf::valid_type>;
auto leaf = this->make_test_structs_column(
{{1, 2}, {0, 1}},
StringCW({"étoile", "星"}, {true, true}),
LCWinner_t({LCWinner_t{}, LCWinner_t{42}}, valid_t{1, 1}.begin()),
valid_t{0, 1}.begin());
auto mask = cudf::create_null_mask(3, cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask.data()), 0, 1, false);
auto data =
cudf::make_lists_column(3, offset_t{0, 0, 1, 2}.release(), leaf.release(), 1, std::move(mask));
auto s = cudf::make_list_scalar(*data);
auto col = cudf::make_column_from_scalar(*s, 3);
auto leaf2 = this->make_test_structs_column(
{{1, 2, 1, 2, 1, 2}, {0, 1, 0, 1, 0, 1}},
StringCW({"étoile", "星", "étoile", "星", "étoile", "星"},
{true, true, true, true, true, true}),
LCWinner_t(
{LCWinner_t{}, LCWinner_t{42}, LCWinner_t{}, LCWinner_t{42}, LCWinner_t{}, LCWinner_t{42}},
valid_t{1, 1, 1, 1, 1, 1}.begin()),
valid_t{0, 1, 0, 1, 0, 1}.begin());
auto mask2 = cudf::create_null_mask(9, cudf::mask_state::ALL_VALID);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask2.data()), 0, 1, false);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask2.data()), 3, 4, false);
cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask2.data()), 6, 7, false);
auto data2 = cudf::make_lists_column(
9, offset_t{0, 0, 1, 2, 2, 3, 4, 4, 5, 6}.release(), leaf2.release(), 3, std::move(mask2));
auto expected = cudf::make_lists_column(3,
offset_t{0, 3, 6, 9}.release(),
std::move(data2),
0,
cudf::create_null_mask(3, cudf::mask_state::UNALLOCATED));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*col, *expected);
}
class ListsZeroLengthColumnTest : public ColumnFactoryTest {
protected:
using StructsCW = cudf::test::structs_column_wrapper;
StructsCW make_test_structs_column(cudf::test::fixed_width_column_wrapper<int32_t> field1,
cudf::test::strings_column_wrapper field2,
cudf::test::lists_column_wrapper<int32_t> field3)
{
return StructsCW{field1, field2, field3};
}
};
TEST_F(ListsZeroLengthColumnTest, MixedTypes)
{
using FCW = cudf::test::fixed_width_column_wrapper<int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
using LCW = cudf::test::lists_column_wrapper<int32_t>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
{
auto s = cudf::make_list_scalar(FCW{1, 2, 3});
auto got = cudf::make_column_from_scalar(*s, 0);
auto expected =
cudf::make_lists_column(0,
offset_t{}.release(),
FCW{}.release(),
0,
cudf::create_null_mask(0, cudf::mask_state::UNALLOCATED));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*got, *expected);
}
{
auto s = cudf::make_list_scalar(LCW{LCW{1, 2, 3}, LCW{}, LCW{5, 6}});
auto got = cudf::make_column_from_scalar(*s, 0);
auto nested = cudf::make_lists_column(0,
offset_t{}.release(),
FCW{}.release(),
0,
cudf::create_null_mask(0, cudf::mask_state::UNALLOCATED));
auto expected =
cudf::make_lists_column(0,
offset_t{}.release(),
std::move(nested),
0,
cudf::create_null_mask(0, cudf::mask_state::UNALLOCATED));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*got, *expected);
}
{
auto s = cudf::make_list_scalar(
this->make_test_structs_column({1, 2, 3}, StringCW({"x", "", "y"}), LCW{{5, 6}, {}, {7}}));
auto got = cudf::make_column_from_scalar(*s, 0);
std::vector<std::unique_ptr<cudf::column>> children;
children.emplace_back(FCW{}.release());
children.emplace_back(StringCW{}.release());
children.emplace_back(LCW{}.release());
auto nested = cudf::make_structs_column(
0, std::move(children), 0, cudf::create_null_mask(0, cudf::mask_state::UNALLOCATED));
auto expected =
cudf::make_lists_column(0,
offset_t{}.release(),
std::move(nested),
0,
cudf::create_null_mask(0, cudf::mask_state::UNALLOCATED));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*got, *expected);
}
}
TEST_F(ListsZeroLengthColumnTest, SuperimposeNulls)
{
using FCW = cudf::test::fixed_width_column_wrapper<int32_t>;
using StringCW = cudf::test::strings_column_wrapper;
using LCW = cudf::test::lists_column_wrapper<int32_t>;
using offset_t = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
auto const lists = [&] {
auto child = this
->make_test_structs_column(FCW{1, 2, 3, 4, 5},
StringCW({"a", "b", "c", "d", "e"}),
LCW{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11}, {12}})
.release();
auto offsets = offset_t{0, 3, 3, 5}.release();
auto const valid_iter = cudf::test::iterators::null_at(2);
auto [null_mask, null_count] = cudf::test::detail::make_null_mask(valid_iter, valid_iter + 3);
return cudf::make_lists_column(
3, std::move(offsets), std::move(child), null_count, std::move(null_mask));
}();
auto const expected_child =
this
->make_test_structs_column(
FCW{1, 2, 3}, StringCW({"a", "b", "c"}), LCW{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}})
.release();
auto const expected_offsets = offset_t{0, 3, 3, 3}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_child,
lists->child(cudf::lists_column_view::child_column_index));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_offsets,
lists->child(cudf::lists_column_view::offsets_column_index));
}
void struct_from_scalar(bool is_valid)
{
using LCW = cudf::test::lists_column_wrapper<int>;
cudf::test::fixed_width_column_wrapper<int> col0{1};
cudf::test::strings_column_wrapper col1{"abc"};
cudf::test::lists_column_wrapper<int> col2{{1, 2, 3}};
cudf::test::lists_column_wrapper<int> col3{LCW{}};
std::vector<cudf::column_view> src_children({col0, col1, col2, col3});
auto value = cudf::struct_scalar(src_children, is_valid);
cudf::test::structs_column_wrapper struct_col({col0, col1, col2, col3}, {is_valid});
auto const num_rows = 32;
auto result = cudf::make_column_from_scalar(value, num_rows);
// generate a column of size num_rows
std::vector<cudf::column_view> cols;
auto iter = thrust::make_counting_iterator(0);
std::transform(iter, iter + num_rows, std::back_inserter(cols), [&](int i) {
return static_cast<cudf::column_view>(struct_col);
});
auto expected = cudf::concatenate(cols);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, *expected);
}
TEST_F(ColumnFactoryTest, FromStructScalar) { struct_from_scalar(true); }
TEST_F(ColumnFactoryTest, FromStructScalarNull) { struct_from_scalar(false); }
TEST_F(ColumnFactoryTest, FromScalarErrors)
{
cudf::string_scalar ss("hello world");
EXPECT_THROW(cudf::make_column_from_scalar(ss, 214748365), std::overflow_error);
using FCW = cudf::test::fixed_width_column_wrapper<int8_t>;
auto s = cudf::make_list_scalar(FCW({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}));
EXPECT_THROW(cudf::make_column_from_scalar(*s, 214748365), std::overflow_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/column_view_shallow_test.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_view.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/traits.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <memory>
#include <type_traits>
// fixed_width, dict, string, list, struct
template <typename T, std::enable_if_t<cudf::is_fixed_width<T>()>* = nullptr>
std::unique_ptr<cudf::column> example_column()
{
auto begin = thrust::make_counting_iterator(1);
auto end = thrust::make_counting_iterator(16);
return cudf::test::fixed_width_column_wrapper<T>(begin, end).release();
}
template <typename T, std::enable_if_t<cudf::is_dictionary<T>()>* = nullptr>
std::unique_ptr<cudf::column> example_column()
{
return cudf::test::dictionary_column_wrapper<std::string>(
{"fff", "aaa", "ddd", "bbb", "ccc", "ccc", "ccc", "", ""}, {1, 1, 1, 1, 1, 1, 1, 1, 0})
.release();
}
template <typename T,
std::enable_if_t<std::is_same_v<T, std::string> or
std::is_same_v<T, cudf::string_view>>* = nullptr>
std::unique_ptr<cudf::column> example_column()
{
return cudf::test::strings_column_wrapper(
{"fff", "aaa", "ddd", "bbb", "ccc", "ccc", "ccc", "", ""})
.release();
}
template <typename T, std::enable_if_t<std::is_same_v<T, cudf::list_view>>* = nullptr>
std::unique_ptr<cudf::column> example_column()
{
return cudf::test::lists_column_wrapper<int>({{1, 2, 3}, {4, 5}, {}, {6, 7, 8}}).release();
}
template <typename T, std::enable_if_t<std::is_same_v<T, cudf::struct_view>>* = nullptr>
std::unique_ptr<cudf::column> example_column()
{
auto begin = thrust::make_counting_iterator(1);
auto end = thrust::make_counting_iterator(16);
auto member_0 = cudf::test::fixed_width_column_wrapper<int32_t>(begin, end);
auto member_1 = cudf::test::fixed_width_column_wrapper<int32_t>(begin + 10, end + 10);
return cudf::test::structs_column_wrapper({member_0, member_1}).release();
}
template <typename T>
struct ColumnViewShallowTests : public cudf::test::BaseFixture {};
using AllTypes = cudf::test::Concat<cudf::test::AllTypes, cudf::test::CompoundTypes>;
TYPED_TEST_SUITE(ColumnViewShallowTests, AllTypes);
// Test for fixed_width, dict, string, list, struct
// column_view, column_view = same hash.
// column_view, make a copy = same hash.
// new column_view from column = same hash
// column_view, copy column = diff hash
// column_view, diff column = diff hash.
//
// column_view old, update data + new column_view = same hash.
// column_view old, add null_mask + new column_view = diff hash.
// column_view old, update nulls + new column_view = same hash.
// column_view old, set_null_count + new column_view = same hash.
//
// column_view, sliced[0, size) = same hash (for split too)
// column_view, sliced[n:) = diff hash (for split too)
// column_view, bit_cast = diff hash
//
// mutable_column_view, column_view = same hash
// mutable_column_view, modified mutable_column_view = same hash
//
// update the children column data = same hash
// update the children column_views = diff hash
TYPED_TEST(ColumnViewShallowTests, shallow_hash_basic)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// same = same hash
{
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_view));
}
// copy column_view = same hash
{
auto col_view_copy = col_view;
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_view_copy));
}
// new column_view from column = same hash
{
auto col_view_new = cudf::column_view{*col};
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_view_new));
}
// copy column = diff hash
{
auto col_new = std::make_unique<cudf::column>(*col);
auto col_view_copy = col_new->view();
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_view_copy));
}
// column_view, diff column = diff hash.
{
auto col_diff = example_column<TypeParam>();
auto col_view_diff = cudf::column_view{*col_diff};
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_view_diff));
}
}
TYPED_TEST(ColumnViewShallowTests, shallow_hash_update_data)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// update data + new column_view = same hash.
{
// update data by modifying some bits: fixed_width, string, dict, list, struct
if constexpr (cudf::is_fixed_width<TypeParam>()) {
// Update data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->mutable_view().head());
cudf::set_null_mask(data, 2, 64, true);
} else {
// Update child(0).data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->child(0).mutable_view().head());
cudf::set_null_mask(data, 2, 64, true);
}
auto col_view_new = cudf::column_view{*col};
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_view_new));
}
// add null_mask + new column_view = diff hash.
{
col->set_null_mask(cudf::create_null_mask(col->size(), cudf::mask_state::ALL_VALID), 0);
auto col_view_new = cudf::column_view{*col};
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_view_new));
[[maybe_unused]] auto const nulls = col_view_new.null_count();
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_view_new));
auto col_view_new2 = cudf::column_view{*col};
EXPECT_EQ(shallow_hash(col_view_new), shallow_hash(col_view_new2));
}
col_view = cudf::column_view{*col}; // updating after adding null_mask
// update nulls + new column_view = same hash.
{
cudf::set_null_mask(col->mutable_view().null_mask(), 2, 4, false);
auto col_view_new = cudf::column_view{*col};
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_view_new));
}
// set_null_count + new column_view = same hash.
{
col->set_null_count(col->size());
auto col_view_new2 = cudf::column_view{*col};
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_view_new2));
}
}
TYPED_TEST(ColumnViewShallowTests, shallow_hash_slice)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// column_view, sliced[0, size) = same hash (for split too)
{
auto col_sliced = cudf::slice(col_view, {0, col_view.size()});
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_sliced[0]));
auto col_split = cudf::split(col_view, {0});
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_split[0]));
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_split[1]));
}
// column_view, sliced[n:] = diff hash (for split too)
{
auto col_sliced = cudf::slice(col_view, {1, col_view.size()});
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_sliced[0]));
auto col_split = cudf::split(col_view, {1});
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_split[0]));
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_split[1]));
}
// column_view, col copy sliced[0, 0) = same hash (empty column)
{
auto col_new = std::make_unique<cudf::column>(*col);
auto col_new_view = col_new->view();
auto col_sliced = cudf::slice(col_view, {0, 0, 1, 1, col_view.size(), col_view.size()});
auto col_new_sliced = cudf::slice(col_new_view, {0, 0, 1, 1, col_view.size(), col_view.size()});
EXPECT_EQ(shallow_hash(col_sliced[0]), shallow_hash(col_sliced[1]));
EXPECT_EQ(shallow_hash(col_sliced[1]), shallow_hash(col_sliced[2]));
EXPECT_EQ(shallow_hash(col_sliced[0]), shallow_hash(col_new_sliced[0]));
EXPECT_EQ(shallow_hash(col_sliced[1]), shallow_hash(col_new_sliced[1]));
EXPECT_EQ(shallow_hash(col_sliced[2]), shallow_hash(col_new_sliced[2]));
}
// column_view, bit_cast = diff hash
{
if constexpr (std::is_integral_v<TypeParam> and not std::is_same_v<TypeParam, bool>) {
using newType = std::conditional_t<std::is_signed_v<TypeParam>,
std::make_unsigned_t<TypeParam>,
std::make_signed_t<TypeParam>>;
auto new_type = cudf::data_type(cudf::type_to_id<newType>());
auto col_bitcast = cudf::bit_cast(col_view, new_type);
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_bitcast));
}
}
}
TYPED_TEST(ColumnViewShallowTests, shallow_hash_mutable)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// mutable_column_view, column_view = same hash
{
auto col_mutable = cudf::mutable_column_view{*col};
EXPECT_EQ(shallow_hash(col_mutable), shallow_hash(col_view));
}
// mutable_column_view, modified mutable_column_view = same hash
// update the children column data = same hash
{
auto col_mutable = cudf::mutable_column_view{*col};
if constexpr (cudf::is_fixed_width<TypeParam>()) {
// Update data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->mutable_view().head());
cudf::set_null_mask(data, 1, 32, false);
} else {
// Update child(0).data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->child(0).mutable_view().head());
cudf::set_null_mask(data, 1, 32, false);
}
EXPECT_EQ(shallow_hash(col_view), shallow_hash(col_mutable));
auto col_mutable_new = cudf::mutable_column_view{*col};
EXPECT_EQ(shallow_hash(col_mutable), shallow_hash(col_mutable_new));
}
// update the children column_views = diff hash
{
if constexpr (cudf::is_nested<TypeParam>()) {
col->child(0).set_null_mask(
cudf::create_null_mask(col->child(0).size(), cudf::mask_state::ALL_NULL),
col->child(0).size());
auto col_child_updated = cudf::mutable_column_view{*col};
EXPECT_NE(shallow_hash(col_view), shallow_hash(col_child_updated));
}
}
}
TYPED_TEST(ColumnViewShallowTests, is_shallow_equivalent_basic)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// same = same hash
{
EXPECT_TRUE(is_shallow_equivalent(col_view, col_view));
}
// copy column_view = same hash
{
auto col_view_copy = col_view;
EXPECT_TRUE(is_shallow_equivalent(col_view, col_view_copy));
}
// new column_view from column = same hash
{
auto col_view_new = cudf::column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_view, col_view_new));
}
// copy column = diff hash
{
auto col_new = std::make_unique<cudf::column>(*col);
auto col_view_copy = col_new->view();
EXPECT_FALSE(is_shallow_equivalent(col_view, col_view_copy));
}
// column_view, diff column = diff hash.
{
auto col_diff = example_column<TypeParam>();
auto col_view_diff = cudf::column_view{*col_diff};
EXPECT_FALSE(is_shallow_equivalent(col_view, col_view_diff));
}
}
TYPED_TEST(ColumnViewShallowTests, is_shallow_equivalent_update_data)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// update data + new column_view = same hash.
{
// update data by modifying some bits: fixed_width, string, dict, list, struct
if constexpr (cudf::is_fixed_width<TypeParam>()) {
// Update data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->mutable_view().head());
cudf::set_null_mask(data, 2, 64, true);
} else {
// Update child(0).data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->child(0).mutable_view().head());
cudf::set_null_mask(data, 2, 64, true);
}
auto col_view_new = cudf::column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_view, col_view_new));
}
// add null_mask + new column_view = diff hash.
{
col->set_null_mask(cudf::create_null_mask(col->size(), cudf::mask_state::ALL_VALID), 0);
auto col_view_new = cudf::column_view{*col};
EXPECT_FALSE(is_shallow_equivalent(col_view, col_view_new));
[[maybe_unused]] auto const nulls = col_view_new.null_count();
EXPECT_FALSE(is_shallow_equivalent(col_view, col_view_new));
auto col_view_new2 = cudf::column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_view_new, col_view_new2));
}
col_view = cudf::column_view{*col}; // updating after adding null_mask
// update nulls + new column_view = same hash.
{
cudf::set_null_mask(col->mutable_view().null_mask(), 2, 4, false);
auto col_view_new = cudf::column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_view, col_view_new));
}
// set_null_count + new column_view = same hash.
{
col->set_null_count(col->size());
auto col_view_new2 = cudf::column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_view, col_view_new2));
}
}
TYPED_TEST(ColumnViewShallowTests, is_shallow_equivalent_slice)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// column_view, sliced[0, size) = same hash (for split too)
{
auto col_sliced = cudf::slice(col_view, {0, col_view.size()});
EXPECT_TRUE(is_shallow_equivalent(col_view, col_sliced[0]));
auto col_split = cudf::split(col_view, {0});
EXPECT_FALSE(is_shallow_equivalent(col_view, col_split[0]));
EXPECT_TRUE(is_shallow_equivalent(col_view, col_split[1]));
}
// column_view, sliced[n:] = diff hash (for split too)
{
auto col_sliced = cudf::slice(col_view, {1, col_view.size()});
EXPECT_FALSE(is_shallow_equivalent(col_view, col_sliced[0]));
auto col_split = cudf::split(col_view, {1});
EXPECT_FALSE(is_shallow_equivalent(col_view, col_split[0]));
EXPECT_FALSE(is_shallow_equivalent(col_view, col_split[1]));
}
// column_view, col copy sliced[0, 0) = same hash (empty column)
{
auto col_new = std::make_unique<cudf::column>(*col);
auto col_new_view = col_new->view();
auto col_sliced = cudf::slice(col_view, {0, 0, 1, 1, col_view.size(), col_view.size()});
auto col_new_sliced = cudf::slice(col_new_view, {0, 0, 1, 1, col_view.size(), col_view.size()});
EXPECT_TRUE(is_shallow_equivalent(col_sliced[0], col_sliced[1]));
EXPECT_TRUE(is_shallow_equivalent(col_sliced[1], col_sliced[2]));
EXPECT_TRUE(is_shallow_equivalent(col_sliced[0], col_new_sliced[0]));
EXPECT_TRUE(is_shallow_equivalent(col_sliced[1], col_new_sliced[1]));
EXPECT_TRUE(is_shallow_equivalent(col_sliced[2], col_new_sliced[2]));
}
// column_view, bit_cast = diff hash
{
if constexpr (std::is_integral_v<TypeParam> and not std::is_same_v<TypeParam, bool>) {
using newType = std::conditional_t<std::is_signed_v<TypeParam>,
std::make_unsigned_t<TypeParam>,
std::make_signed_t<TypeParam>>;
auto new_type = cudf::data_type(cudf::type_to_id<newType>());
auto col_bitcast = cudf::bit_cast(col_view, new_type);
EXPECT_FALSE(is_shallow_equivalent(col_view, col_bitcast));
}
}
}
TYPED_TEST(ColumnViewShallowTests, is_shallow_equivalent_mutable)
{
using namespace cudf::detail;
auto col = example_column<TypeParam>();
auto col_view = cudf::column_view{*col};
// mutable_column_view, column_view = same hash
{
auto col_mutable = cudf::mutable_column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_mutable, col_view));
}
// mutable_column_view, modified mutable_column_view = same hash
// update the children column data = same hash
{
auto col_mutable = cudf::mutable_column_view{*col};
if constexpr (cudf::is_fixed_width<TypeParam>()) {
// Update data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->mutable_view().head());
cudf::set_null_mask(data, 1, 32, false);
} else {
// Update child(0).data
auto data = reinterpret_cast<cudf::bitmask_type*>(col->child(0).mutable_view().head());
cudf::set_null_mask(data, 1, 32, false);
}
EXPECT_TRUE(is_shallow_equivalent(col_view, col_mutable));
auto col_mutable_new = cudf::mutable_column_view{*col};
EXPECT_TRUE(is_shallow_equivalent(col_mutable, col_mutable_new));
}
// update the children column_views = diff hash
{
if constexpr (cudf::is_nested<TypeParam>()) {
col->child(0).set_null_mask(
cudf::create_null_mask(col->child(0).size(), cudf::mask_state::ALL_NULL), col->size());
auto col_child_updated = cudf::mutable_column_view{*col};
EXPECT_FALSE(is_shallow_equivalent(col_view, col_child_updated));
}
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/column/column_device_view_test.cu
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf/column/column.hpp>
#include <cudf/column/column_device_view.cuh>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/copy.h>
struct ColumnDeviceViewTest : public cudf::test::BaseFixture {};
TEST_F(ColumnDeviceViewTest, Sample)
{
using T = int32_t;
rmm::cuda_stream_view stream{cudf::get_default_stream()};
cudf::test::fixed_width_column_wrapper<T> input({1, 2, 3, 4, 5, 6});
auto output = cudf::allocate_like(input);
auto input_device_view = cudf::column_device_view::create(input, stream);
auto output_device_view =
cudf::mutable_column_device_view::create(output->mutable_view(), stream);
EXPECT_NO_THROW(thrust::copy(rmm::exec_policy(stream),
input_device_view->begin<T>(),
input_device_view->end<T>(),
output_device_view->begin<T>()));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(input, output->view());
}
TEST_F(ColumnDeviceViewTest, MismatchingType)
{
using T = int32_t;
rmm::cuda_stream_view stream{cudf::get_default_stream()};
cudf::test::fixed_width_column_wrapper<T> input({1, 2, 3, 4, 5, 6});
auto output = cudf::allocate_like(input);
auto input_device_view = cudf::column_device_view::create(input, stream);
auto output_device_view =
cudf::mutable_column_device_view::create(output->mutable_view(), stream);
EXPECT_THROW(thrust::copy(rmm::exec_policy(stream),
input_device_view->begin<T>(),
input_device_view->end<T>(),
output_device_view->begin<int64_t>()),
cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/merge/merge_test.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/merge.hpp>
#include <cudf/sorting.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_list_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/merge.h>
#include <vector>
template <typename T>
class MergeTest_ : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(MergeTest_, cudf::test::FixedWidthTypes);
TYPED_TEST(MergeTest_, MergeIsZeroWhenShouldNotBeZero)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1({1, 2, 3, 4, 5});
cudf::test::fixed_width_column_wrapper<TypeParam> rightColWrap1{};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order;
column_order.push_back(cudf::order::ASCENDING);
std::vector<cudf::null_order> null_precedence(column_order.size(), cudf::null_order::AFTER);
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
cudf::table_view expected{{leftColWrap1}};
auto result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
int expected_len = 5;
ASSERT_EQ(result->num_rows(), expected_len);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result->view());
}
TYPED_TEST(MergeTest_, MismatchedNumColumns)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1({0, 1, 2, 3});
columnFactoryT rightColWrap1({0, 1, 2, 3});
columnFactoryT rightColWrap2({0, 1, 2, 3});
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, MismatchedColumnDypes)
{
cudf::test::fixed_width_column_wrapper<int32_t> leftColWrap1{{0, 1, 2, 3}};
cudf::test::fixed_width_column_wrapper<double> rightColWrap1{{0, 1, 2, 3}};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, EmptyKeyColumns)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1({0, 1, 2, 3});
columnFactoryT rightColWrap1({0, 1, 2, 3});
std::vector<cudf::size_type> key_cols{}; // empty! this should trigger exception
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, TooManyKeyColumns)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1{0, 1, 2, 3};
columnFactoryT rightColWrap1{0, 1, 2, 3};
std::vector<cudf::size_type> key_cols{
0, 1}; // more keys than columns: this should trigger exception
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, EmptyOrderTypes)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1{0, 1, 2, 3};
columnFactoryT rightColWrap1{0, 1, 2, 3};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{}; // empty! this should trigger exception
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, TooManyOrderTypes)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1{0, 1, 2, 3};
columnFactoryT rightColWrap1{0, 1, 2, 3};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{
cudf::order::ASCENDING,
cudf::order::DESCENDING}; // more order types than columns: this should trigger exception
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, MismatchedKeyColumnsAndOrderTypes)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
columnFactoryT leftColWrap1{0, 1, 2, 3};
columnFactoryT leftColWrap2{0, 1, 2, 3};
columnFactoryT rightColWrap1{0, 1, 2, 3};
columnFactoryT rightColWrap2{0, 1, 2, 3};
cudf::table_view left_view{{leftColWrap1, leftColWrap2}};
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
std::vector<cudf::size_type> key_cols{0, 1};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
EXPECT_THROW(cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence),
cudf::logic_error);
}
TYPED_TEST(MergeTest_, NoInputTables)
{
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(p_outputTable = cudf::merge({}, {}, {}, {}));
EXPECT_EQ(p_outputTable->num_columns(), 0);
}
TYPED_TEST(MergeTest_, SingleTableInput)
{
cudf::size_type inputRows = 40;
auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence)::value_type>
colWrap1(sequence, sequence + inputRows);
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{colWrap1}};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(p_outputTable =
cudf::merge({left_view}, key_cols, column_order, null_precedence));
auto input_column_view{left_view.column(0)};
auto output_column_view{p_outputTable->view().column(0)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(input_column_view, output_column_view);
}
TYPED_TEST(MergeTest_, MergeTwoEmptyTables)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam>;
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
columnFactoryT leftColWrap1{};
columnFactoryT rightColWrap1{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(
p_outputTable = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
CUDF_TEST_EXPECT_TABLES_EQUAL(left_view, p_outputTable->view());
}
TYPED_TEST(MergeTest_, MergeWithEmptyColumn)
{
using columnFactoryT = cudf::test::fixed_width_column_wrapper<TypeParam>;
cudf::size_type inputRows = 40;
auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence)::value_type>
leftColWrap1(sequence, sequence + inputRows);
columnFactoryT rightColWrap1{}; // wrapper of empty column <- this might require a (sequence,
// sequence) generator
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(
p_outputTable = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence)::value_type>
expectedDataWrap1(
sequence,
sequence +
outputRows); //<- confirmed I can reuse a sequence, wo/ creating overlapping columns!
auto expected_column_view{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto output_column_view{p_outputTable->view().column(0)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view, output_column_view);
}
TYPED_TEST(MergeTest_, Merge1KeyColumns)
{
cudf::size_type inputRows = 40;
auto sequence0 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row;
});
auto sequence1 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 1;
else
return 2 * row;
});
auto sequence2 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return 2 * row + 1;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>
leftColWrap1(sequence1, sequence1 + inputRows);
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type>
leftColWrap2(sequence0, sequence0 + inputRows);
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence2)::value_type>
rightColWrap1(sequence2, sequence2 + inputRows);
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type>
rightColWrap2(
sequence0,
sequence0 +
inputRows); //<- confirmed I can reuse a sequence, wo/ creating overlapping columns!
cudf::table_view left_view{{leftColWrap1, leftColWrap2}};
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(
p_outputTable = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
auto seq_out1 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row >= outputRows / 2) ? 1 : 0;
} else
return row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out1)::value_type>
expectedDataWrap1(seq_out1, seq_out1 + outputRows);
auto seq_out2 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row / 2;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type>
expectedDataWrap2(seq_out2, seq_out2 + outputRows);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
TYPED_TEST(MergeTest_, Merge2KeyColumns)
{
cudf::size_type inputRows = 40;
auto sequence1 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row >= inputRows / 2) ? 1 : 0;
} else
return row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>
leftColWrap1(sequence1, sequence1 + inputRows);
auto sequence2 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (inputRows / 4)) % 2 == 0) ? 1 : 0;
} else {
return row * 2;
}
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence2)::value_type>
leftColWrap2(sequence2, sequence2 + inputRows);
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>
rightColWrap1(sequence1, sequence1 + inputRows);
auto sequence3 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (inputRows / 4)) % 2 == 0) ? 1 : 0;
} else
return (2 * row + 1);
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence3)::value_type>
rightColWrap2(sequence3, sequence3 + inputRows);
cudf::table_view left_view{{leftColWrap1, leftColWrap2}};
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
std::vector<cudf::size_type> key_cols{0, 1};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedence{};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(
p_outputTable = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
auto seq_out1 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row >= outputRows / 2) ? 1 : 0;
} else
return (row / 2);
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out1)::value_type>
expectedDataWrap1(seq_out1, seq_out1 + outputRows);
auto seq_out2 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (outputRows / 4)) % 2 == 0) ? 1 : 0;
} else {
return (row % 2 == 0 ? row + 1 : row - 1);
}
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type>
expectedDataWrap2(seq_out2, seq_out2 + outputRows);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
TYPED_TEST(MergeTest_, Merge1KeyNullColumns)
{
cudf::size_type inputRows = 40;
// data: 0 2 4 6 | valid: 1 1 1 0
auto sequence1 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return 0; // <- no shortcut to this can avoid compiler errors
} else {
return row * 2;
}
});
auto valid_sequence1 = cudf::detail::make_counting_transform_iterator(
0, [inputRows](auto row) { return (row < inputRows - 1); });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>
leftColWrap1(sequence1, sequence1 + inputRows, valid_sequence1);
// data: 1 3 5 7 | valid: 1 1 1 0
auto sequence2 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return 1;
} else
return (2 * row + 1);
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence2)::value_type>
rightColWrap1(sequence2,
sequence2 + inputRows,
valid_sequence1); // <- recycle valid_seq1, confirmed okay...
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
/*Note: default behavior semantics for null_precedence has changed
* wrt legacy code:
*
* in legacy code missing (default) nulls argument
* meant nulls are greatest; i.e., null_order::AFTER (not null_order::BEFORE)
*
* While new semantics is (see row_operators.cuh: row_lexicographic_comparator::operator() ):
* null_order null_precedence = _null_precedence == nullptr ?
* null_order::BEFORE: _null_precedence[i];
*
* hence missing (default) value meant nulls are smallest
* null_order::BEFORE (not null_order::AFTER) (!)
*/
std::vector<cudf::null_order> null_precedence{cudf::null_order::AFTER};
cudf::table_view left_view{{leftColWrap1}};
cudf::table_view right_view{{rightColWrap1}};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(
p_outputTable = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
const cudf::size_type column1TotalNulls =
a_left_tbl_cview.null_count() + a_right_tbl_cview.null_count();
// data: 0 1 2 3 4 5 6 7 | valid: 1 1 1 1 1 1 0 0
auto seq_out1 =
cudf::detail::make_counting_transform_iterator(0, [outputRows, column1TotalNulls](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row >= (outputRows - column1TotalNulls) / 2) ? 1 : 0;
} else
return (row);
});
auto valid_seq_out = cudf::detail::make_counting_transform_iterator(
0,
[outputRows, column1TotalNulls](auto row) { return (row < (outputRows - column1TotalNulls)); });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out1)::value_type>
expectedDataWrap1(seq_out1, seq_out1 + outputRows, valid_seq_out);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto output_column_view1{p_outputTable->view().column(0)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
}
TYPED_TEST(MergeTest_, Merge2KeyNullColumns)
{
cudf::size_type inputRows = 40;
// data: 0 1 2 3 | valid: 1 1 1 1
auto sequence1 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row >= inputRows / 2) ? 1 : 0;
} else
return (row);
});
auto valid_sequence1 =
cudf::detail::make_counting_transform_iterator(0, [](auto row) { return true; });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>
leftColWrap1(sequence1,
sequence1 + inputRows,
valid_sequence1); // if left out: valid_sequence defaults to `false`;
// data: 0 2 4 6 | valid: 1 1 1 1
auto sequence2 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (inputRows / 4)) % 2 == 0) ? 1 : 0;
} else {
return row * 2;
}
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence2)::value_type>
leftColWrap2(sequence2, sequence2 + inputRows, valid_sequence1);
// data: 0 1 2 3 | valid: 1 1 1 1
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>
rightColWrap1(sequence1,
sequence1 + inputRows,
valid_sequence1); // if left out: valid_sequence defaults to `false`;
// data: 0 1 2 3 | valid: 0 0 0 0
auto sequence3 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (inputRows / 4)) % 2 == 0) ? 1 : 0;
} else
return (row);
});
auto valid_sequence0 =
cudf::detail::make_counting_transform_iterator(0, [](auto row) { return false; });
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence3)::value_type>
rightColWrap2(sequence3, sequence3 + inputRows, valid_sequence0);
cudf::table_view left_view{{leftColWrap1, leftColWrap2}};
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
std::vector<cudf::size_type> key_cols{0, 1};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedence{cudf::null_order::AFTER, cudf::null_order::AFTER};
std::unique_ptr<cudf::table> p_outputTable;
CUDF_EXPECT_NO_THROW(
p_outputTable = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
// data: 0 0 1 1 2 2 3 3 | valid: 1 1 1 1 1 1 1 1
auto seq_out1 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row >= outputRows / 2) ? 1 : 0;
} else
return (row / 2);
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out1)::value_type>
expectedDataWrap1(seq_out1, seq_out1 + outputRows, valid_sequence1);
// data: 0 0 2 1 4 2 6 3 | valid: 0 1 0 1 0 1 0 1
auto seq_out2 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (outputRows / 8)) % 2 == 0) ? 1 : 0;
} else {
return (row % 2 != 0 ? 2 * (row / 2) : (row / 2));
}
});
auto valid_sequence_out =
cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return ((row / (outputRows / 4)) % 2 == 1) ? 1 : 0;
} else {
return (row % 2 != 0) ? 1 : 0;
}
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type>
expectedDataWrap2(seq_out2, seq_out2 + outputRows, valid_sequence_out);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
TYPED_TEST(MergeTest_, NMerge1KeyColumns)
{
cudf::size_type inputRows = 64;
auto sequence0 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row;
});
auto sequence1 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 1;
else
return inputRows - row;
});
constexpr int num_tables = 63;
using PairT0 =
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type>;
using PairT1 =
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence1)::value_type>;
std::vector<std::pair<PairT0, PairT1>> facts{};
std::vector<cudf::table_view> tables{};
for (int i = 0; i < num_tables; ++i) {
facts.emplace_back(std::pair(PairT0(sequence0, sequence0 + inputRows),
PairT1(sequence1, sequence1 + inputRows)));
tables.push_back(cudf::table_view{{facts.back().first, facts.back().second}});
}
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
std::unique_ptr<cudf::table> p_outputTable;
EXPECT_NO_THROW(p_outputTable = cudf::merge(tables, key_cols, column_order, null_precedence));
const cudf::size_type outputRows = inputRows * num_tables;
auto seq_out1 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (0);
} else
return (row / num_tables);
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out1)::value_type>
expectedDataWrap1(seq_out1, seq_out1 + outputRows);
auto seq_out2 = cudf::detail::make_counting_transform_iterator(0, [inputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 1;
else
return inputRows - row / num_tables;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type>
expectedDataWrap2(seq_out2, seq_out2 + outputRows);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
class MergeTest : public cudf::test::BaseFixture {};
TEST_F(MergeTest, KeysWithNulls)
{
cudf::size_type nrows = 13200; // Ensures that thrust::merge uses more than one tile/block
auto data_iter = thrust::make_counting_iterator<int32_t>(0);
auto valids1 =
cudf::detail::make_counting_transform_iterator(0, [](auto row) { return row % 10 != 0; });
cudf::test::fixed_width_column_wrapper<int32_t> data1(data_iter, data_iter + nrows, valids1);
auto valids2 =
cudf::detail::make_counting_transform_iterator(0, [](auto row) { return row % 15 != 0; });
cudf::test::fixed_width_column_wrapper<int32_t> data2(data_iter, data_iter + nrows, valids2);
auto all_data = cudf::concatenate(std::vector<cudf::column_view>{{data1, data2}});
std::vector<cudf::order> column_orders{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedences{cudf::null_order::AFTER, cudf::null_order::BEFORE};
for (auto co : column_orders)
for (auto np : null_precedences) {
std::vector<cudf::order> column_order{co};
std::vector<cudf::null_order> null_precedence{np};
auto sorted1 =
cudf::sort(cudf::table_view({data1}), column_order, null_precedence)->release();
auto col1 = sorted1.front()->view();
auto sorted2 =
cudf::sort(cudf::table_view({data2}), column_order, null_precedence)->release();
auto col2 = sorted2.front()->view();
auto result = cudf::merge(
{cudf::table_view({col1}), cudf::table_view({col2})}, {0}, column_order, null_precedence);
auto sorted_all =
cudf::sort(cudf::table_view({all_data->view()}), column_order, null_precedence);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(sorted_all->view().column(0), result->view().column(0));
}
}
TEST_F(MergeTest, Structs)
{
// clang-format off
cudf::test::fixed_width_column_wrapper<int> t0_col0{0, 2, 4, 6, 8};
cudf::test::strings_column_wrapper t0_scol0{"abc", "def", "ghi", "jkl", "mno"};
cudf::test::fixed_width_column_wrapper<float> t0_scol1{1, 2, 3, 4, 5};
cudf::test::structs_column_wrapper t0_col1({t0_scol0, t0_scol1});
cudf::test::fixed_width_column_wrapper<int> t1_col0{1, 3, 5, 7, 9};
cudf::test::strings_column_wrapper t1_scol0{"pqr", "stu", "vwx", "yzz", "000"};
cudf::test::fixed_width_column_wrapper<float> t1_scol1{-1, -2, -3, -4, -5};
cudf::test::structs_column_wrapper t1_col1({t1_scol0, t1_scol1});
cudf::table_view t0({t0_col0, t0_col1});
cudf::table_view t1({t1_col0, t1_col1});
auto result = cudf::merge({t0, t1}, {0}, {cudf::order::ASCENDING});
cudf::test::fixed_width_column_wrapper<int> e_col0{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
cudf::test::strings_column_wrapper e_scol0{"abc", "pqr", "def", "stu", "ghi", "vwx", "jkl", "yzz", "mno", "000"};
cudf::test::fixed_width_column_wrapper<float> e_scol1{1, -1, 2, -2, 3, -3, 4, -4, 5, -5};
cudf::test::structs_column_wrapper e_col1({e_scol0, e_scol1});
cudf::table_view expected({e_col0, e_col1});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected, *result);
// clang-format on
}
TEST_F(MergeTest, StructsWithNulls)
{
// clang-format off
cudf::test::fixed_width_column_wrapper<int> t0_col0{0, 2, 4, 6, 8};
cudf::test::strings_column_wrapper t0_scol0{{"abc", "def", "ghi", "jkl", "mno"}, {1, 1, 0, 0, 1}};
cudf::test::fixed_width_column_wrapper<float> t0_scol1{{1, 2, 3, 4, 5}, {0, 1, 0, 0, 1}};
cudf::test::structs_column_wrapper t0_col1({t0_scol0, t0_scol1}, {1, 0, 1, 0, 0});
cudf::test::fixed_width_column_wrapper<int> t1_col0{1, 3, 5, 7, 9};
cudf::test::strings_column_wrapper t1_scol0{"pqr", "stu", "vwx", "yzz", "000"};
cudf::test::fixed_width_column_wrapper<float> t1_scol1{{-1, -2, -3, -4, -5}, {1, 1, 1, 0, 0}};
cudf::test::structs_column_wrapper t1_col1({t1_scol0, t1_scol1}, {1, 1, 1, 1, 0});
cudf::table_view t0({t0_col0, t0_col1});
cudf::table_view t1({t1_col0, t1_col1});
auto result = cudf::merge({t0, t1}, {0}, {cudf::order::ASCENDING});
cudf::test::fixed_width_column_wrapper<int> e_col0{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
cudf::test::strings_column_wrapper e_scol0{{"abc", "pqr", "def", "stu", "ghi", "vwx", "jkl", "yzz", "mno", "000"},
{1, 1, 0, 1, 0, 1, 0, 1, 0, 1}};
cudf::test::fixed_width_column_wrapper<float> e_scol1{{1, -1, 2, -2, 3, -3, 4, -4, 5, -5},
{0, 1, 0, 1, 0, 1, 0, 0, 0, 0}};
cudf::test::structs_column_wrapper e_col1({e_scol0, e_scol1}, {1, 1, 0, 1, 1, 1, 0, 1, 0, 0});
cudf::table_view expected({e_col0, e_col1});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected, *result);
// clang-format on
}
TEST_F(MergeTest, StructsNested)
{
// clang-format off
cudf::test::fixed_width_column_wrapper<int> t0_col0{8, 6, 4, 2, 0};
cudf::test::strings_column_wrapper t0_scol0{"mno", "jkl", "ghi", "def", "abc"};
cudf::test::fixed_width_column_wrapper<float> t0_scol1{5, 4, 3, 2, 1};
cudf::test::strings_column_wrapper t0_sscol0{"5555", "4444", "333", "22", "1"};
cudf::test::fixed_width_column_wrapper<float> t0_sscol1{50, 40, 30, 20, 10};
cudf::test::structs_column_wrapper t0_scol2({t0_sscol0, t0_sscol1});
cudf::test::structs_column_wrapper t0_col1({t0_scol0, t0_scol1, t0_scol2});
cudf::test::fixed_width_column_wrapper<int> t1_col0{9, 7, 5, 3, 1};
cudf::test::strings_column_wrapper t1_scol0{"000", "yzz", "vwx", "stu", "pqr"};
cudf::test::fixed_width_column_wrapper<float> t1_scol1{-5, -4, -3, -2, -1};
cudf::test::strings_column_wrapper t1_sscol0{"-5555", "-4444", "-333", "-22", "-1"};
cudf::test::fixed_width_column_wrapper<float> t1_sscol1{-50, -40, -30, -20, -10};
cudf::test::structs_column_wrapper t1_scol2({t1_sscol0, t1_sscol1});
cudf::test::structs_column_wrapper t1_col1({t1_scol0, t1_scol1, t1_scol2});
cudf::table_view t0({t0_col0 , t0_col1});
cudf::table_view t1({t1_col0 , t1_col1});
auto result = cudf::merge({t0, t1}, {0}, {cudf::order::DESCENDING});
cudf::test::fixed_width_column_wrapper<int> e_col0{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
cudf::test::strings_column_wrapper e_scol0{"000", "mno", "yzz", "jkl", "vwx", "ghi", "stu", "def", "pqr", "abc"};
cudf::test::fixed_width_column_wrapper<float> e_scol1{-5, 5, -4, 4, -3, 3, -2, 2, -1, 1};
cudf::test::strings_column_wrapper e_sscol0{"-5555", "5555", "-4444", "4444", "-333", "333", "-22", "22", "-1", "1"};
cudf::test::fixed_width_column_wrapper<float> e_sscol1{-50, 50, -40, 40, -30, 30, -20, 20, -10, 10};
cudf::test::structs_column_wrapper e_scol2({e_sscol0, e_sscol1});
cudf::test::structs_column_wrapper e_col1({e_scol0, e_scol1, e_scol2});
cudf::table_view expected({e_col0, e_col1});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected, *result);
// clang-format on
}
TEST_F(MergeTest, StructsNestedWithNulls)
{
// clang-format off
cudf::test::fixed_width_column_wrapper<int> t0_col0{8, 6, 4, 2, 0};
cudf::test::strings_column_wrapper t0_scol0{"mno", "jkl", "ghi", "def", "abc"};
cudf::test::fixed_width_column_wrapper<float> t0_scol1{{5, 4, 3, 2, 1}, {1, 1, 0, 1, 1}};
cudf::test::strings_column_wrapper t0_sscol0{{"5555", "4444", "333", "22", "1"}, {1, 0, 1, 1, 0}};
cudf::test::fixed_width_column_wrapper<float> t0_sscol1{50, 40, 30, 20, 10};
cudf::test::structs_column_wrapper t0_scol2({t0_sscol0, t0_sscol1}, {0, 0, 1, 1, 1});
cudf::test::structs_column_wrapper t0_col1({t0_scol0, t0_scol1, t0_scol2}, {0, 0, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<int> t1_col0{9, 7, 5, 3, 1};
cudf::test::strings_column_wrapper t1_scol0{"000", "yzz", "vwx", "stu", "pqr"};
cudf::test::fixed_width_column_wrapper<float> t1_scol1{{-5, -4, -3, -2, -1}, {1, 1, 1, 0, 1}};
cudf::test::strings_column_wrapper t1_sscol0{{"-5555", "-4444", "-333", "-22", "-1"}, {1, 1, 1, 1, 1}};
cudf::test::fixed_width_column_wrapper<float> t1_sscol1{-50, -40, -30, -20, -10};
cudf::test::structs_column_wrapper t1_scol2({t1_sscol0, t1_sscol1}, {1, 1, 1, 1, 0});
cudf::test::structs_column_wrapper t1_col1({t1_scol0, t1_scol1, t1_scol2});
cudf::table_view t0({t0_col0 , t0_col1});
cudf::table_view t1({t1_col0 , t1_col1});
auto result = cudf::merge({t0, t1}, {0}, {cudf::order::DESCENDING});
cudf::test::fixed_width_column_wrapper<int> e_col0{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
cudf::test::strings_column_wrapper e_scol0{"000", "mno", "yzz", "jkl", "vwx", "ghi", "stu", "def", "pqr", "abc"};
cudf::test::fixed_width_column_wrapper<float> e_scol1{{-5, 5, -4, 4, -3, 3, -2, 2, -1, 1},
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}};
cudf::test::strings_column_wrapper e_sscol0{{"-5555", "5555", "-4444", "4444", "-333", "333", "-22", "22", "-1", "1"},
{ 1, 0, 1, 0, 1, 1, 1, 1, 0, 0}};
cudf::test::fixed_width_column_wrapper<float> e_sscol1{-50, 50, -40, 40, -30, 30, -20, 20, -10, 10};
cudf::test::structs_column_wrapper e_scol2({e_sscol0, e_sscol1}, {1, 0, 1, 0, 1, 1, 1, 1, 0, 1});
cudf::test::structs_column_wrapper e_col1({e_scol0, e_scol1, e_scol2}, {1, 0, 1, 0, 1, 1, 1, 1, 1, 1});
cudf::table_view expected({e_col0, e_col1});
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected, *result);
// clang-format on
}
using lcw = cudf::test::lists_column_wrapper<int32_t>;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
TEST_F(MergeTest, Lists)
{
auto col1 = lcw{lcw{1}, lcw{3}, lcw{5}, lcw{7}};
auto col2 = lcw{lcw{2}, lcw{4}, lcw{6}, lcw{8}};
auto tbl1 = cudf::table_view{{col1}};
auto tbl2 = cudf::table_view{{col2}};
auto result = cudf::merge({tbl1, tbl2}, {0}, {cudf::order::ASCENDING});
auto expected_col = lcw{lcw{1}, lcw{2}, lcw{3}, lcw{4}, lcw{5}, lcw{6}, lcw{7}, lcw{8}};
auto expected_tbl = cudf::table_view{{expected_col}};
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected_tbl, *result);
}
TEST_F(MergeTest, NestedListsWithNulls)
{
auto col1 = lcw{{lcw{lcw{1}}, lcw{lcw{3}}, lcw{lcw{5}}, lcw{lcw{7}}}, null_at(3)};
auto col2 = lcw{{lcw{lcw{2}}, lcw{lcw{4}}, lcw{lcw{6}}, lcw{lcw{8}}}, null_at(3)};
auto tbl1 = cudf::table_view{{col1}};
auto tbl2 = cudf::table_view{{col2}};
auto result = cudf::merge({tbl1, tbl2}, {0}, {cudf::order::ASCENDING}, {cudf::null_order::AFTER});
auto expected_col = lcw{{lcw{lcw{1}},
lcw{lcw{2}},
lcw{lcw{3}},
lcw{lcw{4}},
lcw{lcw{5}},
lcw{lcw{6}},
lcw{lcw{7}},
lcw{lcw{8}}},
nulls_at({6, 7})};
auto expected_tbl = cudf::table_view{{expected_col}};
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected_tbl, *result);
}
TEST_F(MergeTest, NestedListsofStructs)
{
// [ {1}, {2}, {3} ]
// [ {5} ]
// [ {7}, {8} ]
// [ {10} ]
auto const col1 = [] {
auto const get_structs = [] {
auto child0 = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3, 5, 7, 8, 10};
return cudf::test::structs_column_wrapper{{child0}};
};
return cudf::make_lists_column(
4,
cudf::test::fixed_width_column_wrapper<int32_t>{0, 3, 4, 6, 7}.release(),
get_structs().release(),
0,
{});
}();
// [ {4} ]
// [ {6} ]
// [ {9} ]
// [ {11} ]
auto const col2 = [] {
auto const get_structs = [] {
auto child0 = cudf::test::fixed_width_column_wrapper<int32_t>{4, 6, 9, 11};
return cudf::test::structs_column_wrapper{{child0}};
};
return cudf::make_lists_column(
4,
cudf::test::fixed_width_column_wrapper<int32_t>{0, 1, 2, 3, 4}.release(),
get_structs().release(),
0,
{});
}();
auto tbl1 = cudf::table_view{{*col1}};
auto tbl2 = cudf::table_view{{*col2}};
auto result = cudf::merge({tbl1, tbl2}, {0}, {cudf::order::ASCENDING}, {cudf::null_order::AFTER});
// [ {1}, {2}, {3} ]
// [ {4} ]
// [ {5} ]
// [ {6} ]
// [ {7}, {8} ]
// [ {9} ]
// [ {10} ]
// [ {11} ]
auto const expected_col = [] {
auto const get_structs = [] {
auto child0 =
cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
return cudf::test::structs_column_wrapper{{child0}};
};
return cudf::make_lists_column(
8,
cudf::test::fixed_width_column_wrapper<int32_t>{0, 3, 4, 5, 6, 8, 9, 10, 11}.release(),
get_structs().release(),
0,
{});
}();
auto expected_tbl = cudf::table_view{{*expected_col}};
CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected_tbl, *result);
}
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
template <typename T>
using fp_wrapper = cudf::test::fixed_point_column_wrapper<T>;
TYPED_TEST_SUITE(FixedPointTestAllReps, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTestAllReps, FixedPointMerge)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
auto const a = fp_wrapper<RepType>{{4, 22, 33, 44, 55}, scale_type{-1}};
auto const b = fp_wrapper<RepType>{{5, 7, 10}, scale_type{-1}};
auto const table_a = cudf::table_view(std::vector<cudf::column_view>{a});
auto const table_b = cudf::table_view(std::vector<cudf::column_view>{b});
auto const tables = std::vector<cudf::table_view>{table_a, table_b};
auto const key_cols = std::vector<cudf::size_type>{0};
auto const order = std::vector<cudf::order>{cudf::order::ASCENDING};
auto const exp = fp_wrapper<RepType>{{4, 5, 7, 10, 22, 33, 44, 55}, scale_type{-1}};
auto const exp_table = cudf::table_view(std::vector<cudf::column_view>{exp});
auto const result = cudf::merge(tables, key_cols, order);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(exp_table.column(0), result->view().column(0));
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/merge/merge_dictionary_test.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/dictionary/encode.hpp>
#include <cudf/merge.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <vector>
struct MergeDictionaryTest : public cudf::test::BaseFixture {};
TEST_F(MergeDictionaryTest, Merge1Column)
{
cudf::test::strings_column_wrapper left_w({"ab", "ab", "cd", "de", "de", "fg", "gh", "gh"});
auto left = cudf::dictionary::encode(left_w);
cudf::test::strings_column_wrapper right_w({"ab", "cd", "de", "fg", "gh"});
auto right = cudf::dictionary::encode(right_w);
cudf::table_view left_view{{left->view()}};
cudf::table_view right_view{{right->view()}};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
auto result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
cudf::test::strings_column_wrapper expected_w(
{"ab", "ab", "ab", "cd", "cd", "de", "de", "de", "fg", "fg", "gh", "gh", "gh"});
auto expected = cudf::dictionary::encode(expected_w);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected->view(), result->get_column(0).view());
}
TEST_F(MergeDictionaryTest, Merge2Columns)
{
cudf::test::strings_column_wrapper left_w1({"ab", "bc", "cd", "de", "de", "fg", "fg"});
auto left1 = cudf::dictionary::encode(left_w1);
cudf::test::strings_column_wrapper left_w2({"zy", "zy", "xw", "xw", "vu", "vu", "ts"});
auto left2 = cudf::dictionary::encode(left_w2);
cudf::table_view left_view{{left1->view(), left2->view()}};
cudf::test::strings_column_wrapper right_w1({"ab", "ab", "bc", "cd", "de", "fg"});
auto right1 = cudf::dictionary::encode(right_w1);
cudf::test::strings_column_wrapper right_w2({"zy", "xw", "xw", "vu", "ts", "ts"});
auto right2 = cudf::dictionary::encode(right_w2);
cudf::table_view right_view{{right1->view(), right2->view()}};
std::vector<cudf::size_type> key_cols{0, 1};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedence{};
auto result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
auto decoded1 = cudf::dictionary::decode(result->get_column(0).view());
auto decoded2 = cudf::dictionary::decode(result->get_column(1).view());
cudf::test::strings_column_wrapper expected_1(
{"ab", "ab", "ab", "bc", "bc", "cd", "cd", "de", "de", "de", "fg", "fg", "fg"});
cudf::test::strings_column_wrapper expected_2(
{"zy", "zy", "xw", "zy", "xw", "xw", "vu", "xw", "vu", "ts", "vu", "ts", "ts"});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_1, decoded1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_2, decoded2->view());
left_view = cudf::table_view{{left1->view(), left_w2}};
right_view = cudf::table_view{{right1->view(), right_w2}};
result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
decoded1 = cudf::dictionary::decode(result->get_column(0).view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_1, decoded1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_2, result->get_column(1).view());
left_view = cudf::table_view{{left_w1, left2->view()}};
right_view = cudf::table_view{{right_w1, right2->view()}};
result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
decoded2 = cudf::dictionary::decode(result->get_column(1).view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_1, result->get_column(0).view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_2, decoded2->view());
}
TEST_F(MergeDictionaryTest, WithNulls)
{
cudf::test::fixed_width_column_wrapper<int8_t> left_w1({1, 2, 2, 4, 4, 5, 0},
{1, 1, 1, 1, 1, 1, 0});
auto left1 = cudf::dictionary::encode(left_w1);
cudf::test::fixed_width_column_wrapper<int64_t> left_w2({1000, 1000, 800, 500, 500, 100, 0},
{1, 1, 1, 1, 1, 1, 0});
auto left2 = cudf::dictionary::encode(left_w2);
cudf::table_view left_view{{left1->view(), left2->view()}};
cudf::test::fixed_width_column_wrapper<int8_t> right_w1({1, 1, 2, 4, 5, 0}, {1, 1, 1, 1, 1, 0});
auto right1 = cudf::dictionary::encode(right_w1);
cudf::test::fixed_width_column_wrapper<int64_t> right_w2({1000, 800, 800, 400, 100, 0},
{1, 1, 1, 1, 1, 0});
auto right2 = cudf::dictionary::encode(right_w2);
cudf::table_view right_view{{right1->view(), right2->view()}};
std::vector<cudf::size_type> key_cols{0, 1};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedence{cudf::null_order::AFTER, cudf::null_order::BEFORE};
auto result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
auto decoded1 = cudf::dictionary::decode(result->get_column(0).view());
auto decoded2 = cudf::dictionary::decode(result->get_column(1).view());
cudf::test::fixed_width_column_wrapper<int8_t> expected_1(
{1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 0, 0}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0});
cudf::test::fixed_width_column_wrapper<int64_t> expected_2(
{1000, 1000, 800, 1000, 800, 800, 500, 500, 400, 100, 100, 0, 0},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_1, decoded1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_2, decoded2->view());
left_view = cudf::table_view{{left1->view(), left_w2}};
right_view = cudf::table_view{{right1->view(), right_w2}};
result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
decoded1 = cudf::dictionary::decode(result->get_column(0).view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_1, decoded1->view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_2, result->get_column(1).view());
left_view = cudf::table_view{{left_w1, left2->view()}};
right_view = cudf::table_view{{right_w1, right2->view()}};
result = cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence);
decoded2 = cudf::dictionary::decode(result->get_column(1).view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_1, result->get_column(0).view());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_2, decoded2->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/merge/merge_string_test.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/merge.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <cassert>
#include <initializer_list>
#include <limits>
#include <memory>
#include <vector>
#include <gtest/gtest.h>
using cudf::test::fixed_width_column_wrapper;
using cudf::test::strings_column_wrapper;
template <typename T>
class MergeStringTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(MergeStringTest, cudf::test::FixedWidthTypes);
TYPED_TEST(MergeStringTest, Merge1StringKeyColumns)
{
strings_column_wrapper leftColWrap1({"ab", "bc", "cd", "de", "ef", "fg", "gh", "hi"});
cudf::size_type inputRows1 = static_cast<cudf::column_view const&>(leftColWrap1).size();
auto sequence0 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row;
});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type> leftColWrap2(
sequence0, sequence0 + inputRows1);
strings_column_wrapper rightColWrap1({"ac", "bd", "ce", "df", "eg", "fh", "gi", "hj"});
cudf::size_type inputRows2 = static_cast<cudf::column_view const&>(rightColWrap1).size();
fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type> rightColWrap2(
sequence0, sequence0 + inputRows2);
cudf::table_view left_view{{leftColWrap1, leftColWrap2}};
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{};
std::unique_ptr<cudf::table> p_outputTable;
EXPECT_NO_THROW(p_outputTable =
cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
strings_column_wrapper expectedDataWrap1({"ab",
"ac",
"bc",
"bd",
"cd",
"ce",
"de",
"df",
"ef",
"eg",
"fg",
"fh",
"gh",
"gi",
"hi",
"hj"});
auto seq_out2 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row / 2;
});
fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type> expectedDataWrap2(
seq_out2, seq_out2 + outputRows);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
// rename test <TestName> as DISABLED_<TestName> to disable:
// Example: TYPED_TEST(MergeStringTest, DISABLED_Merge2StringKeyColumns)
//
TYPED_TEST(MergeStringTest, Merge2StringKeyColumns)
{
strings_column_wrapper leftColWrap1({"ab", "bc", "cd", "de", "ef", "fg", "gh", "hi"});
strings_column_wrapper leftColWrap3({"zy", "yx", "xw", "wv", "vu", "ut", "ts", "sr"});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(leftColWrap1).size();
EXPECT_EQ(inputRows, static_cast<cudf::column_view const&>(leftColWrap3).size());
auto sequence_l = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 1;
else
return 2 * row;
});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type> leftColWrap2(
sequence_l, sequence_l + inputRows);
cudf::table_view left_view{{leftColWrap1, leftColWrap2, leftColWrap3}};
strings_column_wrapper rightColWrap1({"ac", "bd", "ce", "df", "eg", "fh", "gi", "hj"});
EXPECT_EQ(inputRows, static_cast<cudf::column_view const&>(rightColWrap1).size());
auto sequence_r = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return 2 * row + 1;
});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence_r)::value_type> rightColWrap2(
sequence_r, sequence_r + inputRows);
strings_column_wrapper rightColWrap3({"zx", "yw", "xv", "wu", "vt", "us", "tr", "sp"});
EXPECT_EQ(inputRows, static_cast<cudf::column_view const&>(rightColWrap3).size());
cudf::table_view right_view{{rightColWrap1, rightColWrap2, rightColWrap3}};
std::vector<cudf::size_type> key_cols{0, 2};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedence{};
std::unique_ptr<cudf::table> p_outputTable;
EXPECT_NO_THROW(p_outputTable =
cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
strings_column_wrapper expectedDataWrap1({"ab",
"ac",
"bc",
"bd",
"cd",
"ce",
"de",
"df",
"ef",
"eg",
"fg",
"fh",
"gh",
"gi",
"hi",
"hj"});
auto seq_out2 = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type> expectedDataWrap2(
seq_out2, seq_out2 + outputRows);
strings_column_wrapper expectedDataWrap3({"zy",
"zx",
"yx",
"yw",
"xw",
"xv",
"wv",
"wu",
"vu",
"vt",
"ut",
"us",
"ts",
"tr",
"sr",
"sp"});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto expected_column_view3{static_cast<cudf::column_view const&>(expectedDataWrap3)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
auto output_column_view3{p_outputTable->view().column(2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view3, output_column_view3);
}
TYPED_TEST(MergeStringTest, Merge1StringKeyNullColumns)
{
// data: "ab", "bc", "cd", "de" | valid: 1 1 1 0
strings_column_wrapper leftColWrap1({"ab", "bc", "cd", "de", "ef", "fg", "gh", "hi"},
{1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(leftColWrap1).size();
auto sequence0 = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row;
});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type> leftColWrap2(
sequence0, sequence0 + inputRows);
cudf::table_view left_view{{leftColWrap1, leftColWrap2}};
// data: "ac", "bd", "ce", "df" | valid: 1 1 1 0
strings_column_wrapper rightColWrap1({"ac", "bd", "ce", "df", "eg", "fh", "gi", "hj"},
{1, 1, 1, 1, 1, 1, 1, 0});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence0)::value_type> rightColWrap2(
sequence0, sequence0 + inputRows);
cudf::table_view right_view{{rightColWrap1, rightColWrap2}};
std::vector<cudf::size_type> key_cols{0};
std::vector<cudf::order> column_order{cudf::order::ASCENDING};
std::vector<cudf::null_order> null_precedence{cudf::null_order::AFTER};
std::unique_ptr<cudf::table> p_outputTable;
EXPECT_NO_THROW(p_outputTable =
cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
// data: "ab", "ac", "bc", "bd", "cd", "ce", "de", "df" | valid: 1 1 1 1 1 1 0 0
strings_column_wrapper expectedDataWrap1({"ab",
"ac",
"bc",
"bd",
"cd",
"ce",
"de",
"df",
"ef",
"eg",
"fg",
"fh",
"gh",
"gi",
"hi",
"hj"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0});
auto seq_out2 = cudf::detail::make_counting_transform_iterator(0, [outputRows](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return row / 2;
});
fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type> expectedDataWrap2(
seq_out2, seq_out2 + outputRows);
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
TYPED_TEST(MergeStringTest, Merge2StringKeyNullColumns)
{
strings_column_wrapper leftColWrap1({"ab", "bc", "cd", "de", "ef", "fg", "gh", "hi"},
{1, 1, 1, 1, 1, 1, 1, 0});
strings_column_wrapper leftColWrap3({"zy", "yx", "xw", "wv", "vu", "ut", "ts", "sr"},
{1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(leftColWrap1).size();
EXPECT_EQ(inputRows, static_cast<cudf::column_view const&>(leftColWrap3).size());
auto sequence_l = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 1;
else
return 2 * row;
});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type> leftColWrap2(
sequence_l, sequence_l + inputRows);
cudf::table_view left_view{{leftColWrap1, leftColWrap2, leftColWrap3}};
strings_column_wrapper rightColWrap1({"ac", "bd", "ce", "df", "eg", "fh", "gi", "hj"},
{1, 1, 1, 1, 1, 1, 1, 0});
EXPECT_EQ(inputRows, static_cast<cudf::column_view const&>(rightColWrap1).size());
auto sequence_r = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)
return 0;
else
return 2 * row + 1;
});
fixed_width_column_wrapper<TypeParam, typename decltype(sequence_r)::value_type> rightColWrap2(
sequence_r, sequence_r + inputRows);
strings_column_wrapper rightColWrap3({"zx", "yw", "xv", "wu", "vt", "us", "tr", "sp"},
{1, 1, 1, 1, 1, 1, 1, 0});
EXPECT_EQ(inputRows, static_cast<cudf::column_view const&>(rightColWrap3).size());
cudf::table_view right_view{{rightColWrap1, rightColWrap2, rightColWrap3}};
std::vector<cudf::size_type> key_cols{0, 2};
std::vector<cudf::order> column_order{cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector<cudf::null_order> null_precedence{cudf::null_order::AFTER, cudf::null_order::BEFORE};
std::unique_ptr<cudf::table> p_outputTable;
EXPECT_NO_THROW(p_outputTable =
cudf::merge({left_view, right_view}, key_cols, column_order, null_precedence));
cudf::column_view const& a_left_tbl_cview{static_cast<cudf::column_view const&>(leftColWrap1)};
cudf::column_view const& a_right_tbl_cview{static_cast<cudf::column_view const&>(rightColWrap1)};
const cudf::size_type outputRows = a_left_tbl_cview.size() + a_right_tbl_cview.size();
strings_column_wrapper expectedDataWrap1({"ab",
"ac",
"bc",
"bd",
"cd",
"ce",
"de",
"df",
"ef",
"eg",
"fg",
"fh",
"gh",
"gi",
"hi",
"hj"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0});
auto seq_out2 = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
fixed_width_column_wrapper<TypeParam, typename decltype(seq_out2)::value_type> expectedDataWrap2(
seq_out2, seq_out2 + outputRows);
strings_column_wrapper expectedDataWrap3({"zy",
"zx",
"yx",
"yw",
"xw",
"xv",
"wv",
"wu",
"vu",
"vt",
"ut",
"us",
"ts",
"tr",
"sr",
"sp"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
auto expected_column_view3{static_cast<cudf::column_view const&>(expectedDataWrap3)};
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
auto output_column_view3{p_outputTable->view().column(2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view3, output_column_view3);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/datetime/datetime_ops_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/datetime.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/types.hpp>
#include <cudf/wrappers/timestamps.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/timestamp_utilities.cuh>
#include <cudf_test/type_lists.hpp>
#include <thrust/transform.h>
#define XXX false // stub for null values
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::ALL_ERRORS};
template <typename T>
struct NonTimestampTest : public cudf::test::BaseFixture {
cudf::data_type type() { return cudf::data_type{cudf::type_to_id<T>()}; }
};
using NonTimestampTypes =
cudf::test::Concat<cudf::test::NumericTypes, cudf::test::StringTypes, cudf::test::DurationTypes>;
TYPED_TEST_SUITE(NonTimestampTest, NonTimestampTypes);
TYPED_TEST(NonTimestampTest, TestThrowsOnNonTimestamp)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
cudf::data_type dtype{cudf::type_to_id<T>()};
cudf::column col{dtype, 0, rmm::device_buffer{}, rmm::device_buffer{}, 0};
EXPECT_THROW(extract_year(col), cudf::logic_error);
EXPECT_THROW(extract_month(col), cudf::logic_error);
EXPECT_THROW(extract_day(col), cudf::logic_error);
EXPECT_THROW(extract_weekday(col), cudf::logic_error);
EXPECT_THROW(extract_hour(col), cudf::logic_error);
EXPECT_THROW(extract_minute(col), cudf::logic_error);
EXPECT_THROW(extract_second(col), cudf::logic_error);
EXPECT_THROW(extract_millisecond_fraction(col), cudf::logic_error);
EXPECT_THROW(extract_microsecond_fraction(col), cudf::logic_error);
EXPECT_THROW(extract_nanosecond_fraction(col), cudf::logic_error);
EXPECT_THROW(last_day_of_month(col), cudf::logic_error);
EXPECT_THROW(day_of_year(col), cudf::logic_error);
EXPECT_THROW(add_calendrical_months(col, *cudf::make_empty_column(cudf::type_id::INT16)),
cudf::logic_error);
}
struct BasicDatetimeOpsTest : public cudf::test::BaseFixture {};
TEST_F(BasicDatetimeOpsTest, TestExtractingDatetimeComponents)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto timestamps_D =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
-1528, // 1965-10-26 GMT
17716, // 2018-07-04 GMT
19382 // 2023-01-25 GMT
};
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
-131968728, // 1965-10-26 14:01:12 GMT
1530705600, // 2018-07-04 12:00:00 GMT
1674631932 // 2023-01-25 07:32:12 GMT
};
auto timestamps_ms =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep>{
-131968727238, // 1965-10-26 14:01:12.762 GMT
1530705600000, // 2018-07-04 12:00:00.000 GMT
1674631932929 // 2023-01-25 07:32:12.929 GMT
};
auto timestamps_ns =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep>{
-23324234, // 1969-12-31 23:59:59.976675766 GMT
23432424, // 1970-01-01 00:00:00.023432424 GMT
987234623 // 1970-01-01 00:00:00.987234623 GMT
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps_D),
fixed_width_column_wrapper<int16_t>{1965, 2018, 2023});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps_s),
fixed_width_column_wrapper<int16_t>{1965, 2018, 2023});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps_ms),
fixed_width_column_wrapper<int16_t>{1965, 2018, 2023});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps_ns),
fixed_width_column_wrapper<int16_t>{1969, 1970, 1970});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps_D),
fixed_width_column_wrapper<int16_t>{10, 7, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps_s),
fixed_width_column_wrapper<int16_t>{10, 7, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps_ms),
fixed_width_column_wrapper<int16_t>{10, 7, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps_ns),
fixed_width_column_wrapper<int16_t>{12, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps_D),
fixed_width_column_wrapper<int16_t>{26, 4, 25});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps_s),
fixed_width_column_wrapper<int16_t>{26, 4, 25});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps_ms),
fixed_width_column_wrapper<int16_t>{26, 4, 25});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps_ns),
fixed_width_column_wrapper<int16_t>{31, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps_D),
fixed_width_column_wrapper<int16_t>{2, 3, 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps_s),
fixed_width_column_wrapper<int16_t>{2, 3, 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps_ms),
fixed_width_column_wrapper<int16_t>{2, 3, 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps_ms),
fixed_width_column_wrapper<int16_t>{2, 3, 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps_D),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps_s),
fixed_width_column_wrapper<int16_t>{14, 12, 7});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps_ms),
fixed_width_column_wrapper<int16_t>{14, 12, 7});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps_ns),
fixed_width_column_wrapper<int16_t>{23, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps_D),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps_s),
fixed_width_column_wrapper<int16_t>{1, 0, 32});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps_ms),
fixed_width_column_wrapper<int16_t>{1, 0, 32});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps_ns),
fixed_width_column_wrapper<int16_t>{59, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_second(timestamps_D),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_second(timestamps_s),
fixed_width_column_wrapper<int16_t>{12, 0, 12});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_second(timestamps_ms),
fixed_width_column_wrapper<int16_t>{12, 0, 12});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps_ns),
fixed_width_column_wrapper<int16_t>{59, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_millisecond_fraction(timestamps_D),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_millisecond_fraction(timestamps_s),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_millisecond_fraction(timestamps_ms),
fixed_width_column_wrapper<int16_t>{762, 0, 929});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_millisecond_fraction(timestamps_ns),
fixed_width_column_wrapper<int16_t>{976, 23, 987});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_microsecond_fraction(timestamps_D),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_microsecond_fraction(timestamps_s),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_microsecond_fraction(timestamps_ms),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_microsecond_fraction(timestamps_ns),
fixed_width_column_wrapper<int16_t>{675, 432, 234});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_nanosecond_fraction(timestamps_D),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_nanosecond_fraction(timestamps_s),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_nanosecond_fraction(timestamps_ms),
fixed_width_column_wrapper<int16_t>{0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_nanosecond_fraction(timestamps_ns),
fixed_width_column_wrapper<int16_t>{766, 424, 623});
}
template <typename T>
struct TypedDatetimeOpsTest : public cudf::test::BaseFixture {
cudf::size_type size() { return cudf::size_type(10); }
cudf::data_type type() { return cudf::data_type{cudf::type_to_id<T>()}; }
};
TYPED_TEST_SUITE(TypedDatetimeOpsTest, cudf::test::TimestampTypes);
TYPED_TEST(TypedDatetimeOpsTest, TestEmptyColumns)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto int16s_dtype = cudf::data_type{cudf::type_to_id<int16_t>()};
auto timestamps_dtype = cudf::data_type{cudf::type_to_id<T>()};
cudf::column int16s{int16s_dtype, 0, rmm::device_buffer{}, rmm::device_buffer{}, 0};
cudf::column timestamps{timestamps_dtype, 0, rmm::device_buffer{}, rmm::device_buffer{}, 0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_second(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_millisecond_fraction(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_microsecond_fraction(timestamps), int16s);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_nanosecond_fraction(timestamps), int16s);
}
TYPED_TEST(TypedDatetimeOpsTest, TestExtractingGeneratedDatetimeComponents)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto start = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto stop = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto timestamps = generate_timestamps<T>(this->size(), time_point_ms(start), time_point_ms(stop));
auto expected_years =
fixed_width_column_wrapper<int16_t>{1890, 1906, 1922, 1938, 1954, 1970, 1985, 2001, 2017, 2033};
auto expected_months = fixed_width_column_wrapper<int16_t>{10, 8, 6, 4, 2, 1, 11, 9, 7, 5};
auto expected_days = fixed_width_column_wrapper<int16_t>{11, 16, 20, 24, 26, 1, 5, 9, 14, 18};
auto expected_weekdays = fixed_width_column_wrapper<int16_t>{6, 4, 2, 7, 5, 4, 2, 7, 5, 3};
auto expected_hours = fixed_width_column_wrapper<int16_t>{19, 20, 21, 22, 23, 0, 0, 1, 2, 3};
auto expected_minutes = fixed_width_column_wrapper<int16_t>{33, 26, 20, 13, 6, 0, 53, 46, 40, 33};
auto expected_seconds = fixed_width_column_wrapper<int16_t>{20, 40, 0, 20, 40, 0, 20, 40, 0, 20};
// Special cases for timestamp_D: zero out the expected hh/mm/ss cols
if (std::is_same_v<TypeParam, cudf::timestamp_D>) {
expected_hours = fixed_width_column_wrapper<int16_t>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
expected_minutes = fixed_width_column_wrapper<int16_t>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
expected_seconds = fixed_width_column_wrapper<int16_t>{0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
}
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps), expected_years);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps), expected_months);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps), expected_days);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps), expected_weekdays);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps), expected_hours);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps), expected_minutes);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_second(timestamps), expected_seconds);
}
TYPED_TEST(TypedDatetimeOpsTest, TestExtractingGeneratedNullableDatetimeComponents)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto start = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto stop = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto timestamps =
generate_timestamps<T, true>(this->size(), time_point_ms(start), time_point_ms(stop));
auto expected_years = fixed_width_column_wrapper<int16_t>{
{1890, 1906, 1922, 1938, 1954, 1970, 1985, 2001, 2017, 2033},
{true, false, true, false, true, false, true, false, true, false}};
auto expected_months = fixed_width_column_wrapper<int16_t>{
{10, 8, 6, 4, 2, 1, 11, 9, 7, 5},
{true, false, true, false, true, false, true, false, true, false}};
auto expected_days = fixed_width_column_wrapper<int16_t>{
{11, 16, 20, 24, 26, 1, 5, 9, 14, 18},
{true, false, true, false, true, false, true, false, true, false}};
auto expected_weekdays = fixed_width_column_wrapper<int16_t>{
{6, 4, 2, 7, 5, 4, 2, 7, 5, 3},
{true, false, true, false, true, false, true, false, true, false}};
auto expected_hours = fixed_width_column_wrapper<int16_t>{
{19, 20, 21, 22, 23, 0, 0, 1, 2, 3},
{true, false, true, false, true, false, true, false, true, false}};
auto expected_minutes = fixed_width_column_wrapper<int16_t>{
{33, 26, 20, 13, 6, 0, 53, 46, 40, 33},
{true, false, true, false, true, false, true, false, true, false}};
auto expected_seconds = fixed_width_column_wrapper<int16_t>{
{20, 40, 0, 20, 40, 0, 20, 40, 0, 20},
{true, false, true, false, true, false, true, false, true, false}};
// Special cases for timestamp_D: zero out the expected hh/mm/ss cols
if (std::is_same_v<TypeParam, cudf::timestamp_D>) {
expected_hours = fixed_width_column_wrapper<int16_t>{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{true, false, true, false, true, false, true, false, true, false}};
expected_minutes = fixed_width_column_wrapper<int16_t>{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{true, false, true, false, true, false, true, false, true, false}};
expected_seconds = fixed_width_column_wrapper<int16_t>{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{true, false, true, false, true, false, true, false, true, false}};
}
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_year(timestamps), expected_years);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_month(timestamps), expected_months);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_day(timestamps), expected_days);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_weekday(timestamps), expected_weekdays);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_hour(timestamps), expected_hours);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_minute(timestamps), expected_minutes);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_second(timestamps), expected_seconds);
}
TEST_F(BasicDatetimeOpsTest, TestLastDayOfMonthWithSeconds)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s = fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
662688000L, // 1991-01-01 00:00:00 GMT
949496401L, // 2000-02-02 13:00:01 GMT - leap year
4106854801L, // 2100-02-21 01:00:01 GMT - not a leap year
1582391837L, // 2020-02-22 17:17:17 GMT - leap year
1363046401L, // 2013-03-12 00:00:01 GMT
1302696000L, // 2011-04-13 12:00:00 GMT
1495800001L, // 2017-05-26 12:00:01 GMT
1056931201L, // 2003-06-30 00:00:01 GMT - already last day
1031961599L, // 2002-09-13 23:59:59 GMT
0L, // This is the UNIX epoch - 1970-01-01
-131968728L, // 1965-10-26 14:01:12 GMT
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*last_day_of_month(timestamps_s),
fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
7700, // 1991-01-31
11016, // 2000-02-29
47540, // 2100-02-28
18321, // 2020-02-29
15795, // 2013-03-31
15094, // 2011-04-30
17317, // 2017-05-31
12233, // 2003-06-30
11960, // 2002-09-30
30, // This is the UNIX epoch - when rounded up becomes 1970-01-31
-1523 // 1965-10-31
},
verbosity);
}
TEST_F(BasicDatetimeOpsTest, TestLastDayOfMonthWithDate)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in days since epoch
// Dates converted using epochconverter.com
// Make some nullable fields as well
auto timestamps_d = fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{
999, // Random nullable field
0, // This is the UNIX epoch - 1970-01-01
44376, // 2091-07-01 00:00:00 GMT
47695, // 2100-08-02 00:00:00 GMT
3, // Random nullable field
66068, // 2150-11-21 00:00:00 GMT
22270, // 2030-12-22 00:00:00 GMT
111, // Random nullable field
},
{false, true, true, true, false, true, true, false},
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*last_day_of_month(timestamps_d),
fixed_width_column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{
{
999, // Random nullable field
30, // This is the UNIX epoch - when rounded up becomes 1970-01-31
44406, // 2091-07-31
47724, // 2100-08-31
3, // Random nullable field
66077, // 2150-11-30
22279, // 2030-12-31
111 // Random nullable field
},
{false, true, true, true, false, true, true, false}},
verbosity);
}
TEST_F(BasicDatetimeOpsTest, TestDayOfYearWithDate)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Day number in the year
// Dates converted using epochconverter.com
// Make some nullable fields as well
auto timestamps_d =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
{
999L, // Random nullable field
0L, // This is the UNIX epoch - 1970-01-01
1577865600L, // 2020-01-01 00:00:00 GMT
1581667200L, // 2020-02-14 00:00:00 GMT
3L, // Random nullable field
1609401600L, // 2020-12-31 00:00:00 GMT
4133923200L, // 2100-12-31 00:00:00 GMT
111L, // Random nullable field
-2180188800L // 1900-11-30 00:00:00 GMT
},
{false, true, true, true, false, true, true, false, true}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*day_of_year(timestamps_d),
fixed_width_column_wrapper<int16_t>{
{
999, // Random nullable field
1, // Number of year days until UNIX epoch time
1, // Number of year days until 2020-01-01
45, // Number of year days until 2020-02-14
3, // Random nullable field
366, // Number of year days until 2020-12-31
365, // Number of year days until 2100-12-31
111, // Random nullable field
334 // Number of year days until 1900-11-30
},
{false, true, true, true, false, true, true, false, true},
},
verbosity);
}
TEST_F(BasicDatetimeOpsTest, TestDayOfYearWithEmptyColumn)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Create an empty column
auto timestamps_d = fixed_width_column_wrapper<cudf::timestamp_s>{};
auto out_col = day_of_year(timestamps_d);
EXPECT_EQ(out_col->size(), 0);
}
TEST_F(BasicDatetimeOpsTest, TestAddMonthsWithInvalidColType)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
662688000L // 1991-01-01 00:00:00 GMT
};
// Months has to be an INT16 or INT32 type
EXPECT_NO_THROW(
add_calendrical_months(timestamps_s, cudf::test::fixed_width_column_wrapper<int32_t>{-2}));
EXPECT_NO_THROW(
add_calendrical_months(timestamps_s, cudf::test::fixed_width_column_wrapper<int16_t>{-2}));
EXPECT_THROW(
add_calendrical_months(timestamps_s, cudf::test::fixed_width_column_wrapper<int8_t>{-2}),
cudf::logic_error);
EXPECT_THROW(
add_calendrical_months(timestamps_s, cudf::test::fixed_width_column_wrapper<int64_t>{-2}),
cudf::logic_error);
}
TEST_F(BasicDatetimeOpsTest, TestAddMonthsWithInvalidScalarType)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s = fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
662688000L // 1991-01-01 00:00:00 GMT
};
// Months has to be an INT16 or INT32 type
EXPECT_NO_THROW(add_calendrical_months(timestamps_s, *cudf::make_fixed_width_scalar<int32_t>(5)));
EXPECT_NO_THROW(
add_calendrical_months(timestamps_s, *cudf::make_fixed_width_scalar<int16_t>(-3)));
EXPECT_THROW(add_calendrical_months(timestamps_s, *cudf::make_fixed_width_scalar<int8_t>(-3)),
cudf::logic_error);
EXPECT_THROW(add_calendrical_months(timestamps_s, *cudf::make_fixed_width_scalar<int64_t>(-3)),
cudf::logic_error);
}
TEST_F(BasicDatetimeOpsTest, TestAddMonthsWithIncorrectColSizes)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
662688000L // 1991-01-01 00:00:00 GMT
};
// Provide more number of months rows than timestamp rows
auto months = cudf::test::fixed_width_column_wrapper<int16_t>{-2, 3};
EXPECT_THROW(add_calendrical_months(timestamps_s, months), cudf::logic_error);
}
using ValidMonthIntegerType = cudf::test::Types<int16_t, int32_t>;
template <typename T>
struct TypedAddMonthsTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(TypedAddMonthsTest, ValidMonthIntegerType);
TYPED_TEST(TypedAddMonthsTest, TestAddMonthsWithSeconds)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
662688000L, // 1991-01-01 00:00:00 GMT
949496401L, // 2000-02-02 13:00:01 GMT - leap year
1056931201L, // 2003-06-30 00:00:01 GMT - last day of month
1056964201L, // 2003-06-30 09:10:01 GMT - last day of month
1056974401L, // 2003-06-30 12:00:01 GMT - last day of month
1056994021L, // 2003-06-30 17:27:01 GMT - last day of month
0L, // This is the UNIX epoch - 1970-01-01
0L, // This is the UNIX epoch - 1970-01-01
-131586588L, // 1965-10-31 00:10:12 GMT
-131550590L, // 1965-10-31 10:10:10 GMT
-131544000L, // 1965-10-31 12:00:00 GMT
-131536728L // 1965-10-31 14:01:12 GMT
};
auto const months =
cudf::test::fixed_width_column_wrapper<TypeParam>{-2, 6, -1, 1, -4, 8, -2, 10, 4, -20, 1, 3};
auto const expected =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
657417600L, // 1990-11-01 00:00:00 GMT
965221201L, // 2000-08-02 13:00:01 GMT
1054252801L, // 2003-05-30 00:00:01 GMT
1059556201L, // 2003-07-30 09:10:01 GMT
1046433601L, // 2003-02-28 12:00:01 GMT
1078075621L, // 2004-02-29 17:27:01 GMT
-5270400L, // 1969-11-01
26265600L, // 1970-11-01
-121218588L, // 1966-02-28 00:10:12 GMT
-184254590L, // 1964-02-29 10:10:10 GMT
-128952000L, // 1965-11-30 12:00:00 GMT
-123587928L // 1966-01-31 14:01:12 GMT
};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*add_calendrical_months(timestamps_s, months), expected, verbosity);
}
TYPED_TEST(TypedAddMonthsTest, TestAddScalarMonthsWithSeconds)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s = fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
662688000L, // 1991-01-01 00:00:00 GMT
949496401L, // 2000-02-02 13:00:01 GMT - leap year
1056964201L, // 2003-06-30 09:10:01 GMT - last day of month
0L, // This is the UNIX epoch - 1970-01-01
-131536728L // 1965-10-31 14:01:12 GMT - last day of month
};
// add
auto const months1 = cudf::make_fixed_width_scalar<TypeParam>(11);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*add_calendrical_months(timestamps_s, *months1),
fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
691545600L, // 1991-12-01 00:00:00 GMT
978440401L, // 2001-01-02 13:00:01 GMT
1085908201L, // 2004-05-30 09:10:01 GMT
28857600L, // 1970-12-01 00:00:00 GMT
-102679128L, // 1966-09-30 14:01:12 GMT
},
verbosity);
// subtract
auto const months2 = cudf::make_fixed_width_scalar<TypeParam>(-20);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*add_calendrical_months(timestamps_s, *months2),
fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
609984000L, // 1989-05-01 00:00:00 GMT
896792401L, // 1998-06-02 13:00:01 GMT
1004433001L, // 2001-10-30 09:10:01 GMT
-52704000L, // 1968-05-01 00:00:00 GMT
-184240728L, // 1964-02-29 14:01:12 GMT - lands on a leap year february
},
verbosity);
}
TYPED_TEST(TypedAddMonthsTest, TestAddMonthsWithSecondsAndNullValues)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
{
662688000L, // 1991-01-01 00:00:00 GMT
949496401L, // 2000-02-02 13:00:01 GMT - leap year
1056931201L, // 2003-06-30 00:00:01 GMT - last day of month
1056964201L, // 2003-06-30 09:10:01 GMT - last day of month
1056974401L, // 2003-06-30 12:00:01 GMT - last day of month
1056994021L, // 2003-06-30 17:27:01 GMT - last day of month
0L, // This is the UNIX epoch - 1970-01-01
0L, // This is the UNIX epoch - 1970-01-01
-131586588L, // 1965-10-31 00:10:12 GMT
-131550590L, // 1965-10-31 10:10:10 GMT
-131544000L, // 1965-10-31 12:00:00 GMT
-131536728L // 1965-10-31 14:01:12 GMT
},
{true, false, true, false, true, false, true, false, true, true, true, true}};
auto const months = cudf::test::fixed_width_column_wrapper<TypeParam>{
{-2, 6, -1, 1, -4, 8, -2, 10, 4, -20, 1, 3},
{false, true, true, false, true, true, true, true, true, true, true, true}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*add_calendrical_months(timestamps_s, months),
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
{
0L, // null value
0L, // null value
1054252801L, // 2003-05-30 00:00:01 GMT
0L, // null value
1046433601L, // 2003-02-28 12:00:01 GMT
0L, // null value
-5270400L, // 1969-11-01
0L, // null value
-121218588L, // 1966-02-28 00:10:12 GMT
-184254590L, // 1964-02-29 10:10:10 GMT
-128952000L, // 1965-11-30 12:00:00 GMT
-123587928L // 1966-01-31 14:01:12 GMT
},
{false, false, true, false, true, false, true, false, true, true, true, true}},
verbosity);
}
TYPED_TEST(TypedAddMonthsTest, TestAddScalarMonthsWithSecondsWithNulls)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s = fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>(
{
662688000L, // 1991-01-01 00:00:00 GMT
0L, // NULL
1056964201L, // 2003-06-30 09:10:01 GMT - last day of month
0L, // This is the UNIX epoch - 1970-01-01
0L // NULL
},
iterators::nulls_at({1, 4}));
// valid scalar
auto const months1 = cudf::make_fixed_width_scalar<TypeParam>(11);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*add_calendrical_months(timestamps_s, *months1),
fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>(
{
691545600L, // 1991-12-01 00:00:00 GMT
0L, // NULL
1085908201L, // 2004-05-30 09:10:01 GMT
28857600L, // 1970-12-01 00:00:00 GMT
0L, // NULL
},
iterators::nulls_at({1, 4})),
verbosity);
// null scalar
auto const months2 =
cudf::make_default_constructed_scalar(cudf::data_type{cudf::type_to_id<TypeParam>()});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*add_calendrical_months(timestamps_s, *months2),
fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>({0L, 0L, 0L, 0L, 0L},
iterators::all_nulls()),
verbosity);
}
TEST_F(BasicDatetimeOpsTest, TestIsLeapYear)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
{
1594332839L, // 2020-07-09 10:13:59 GMT - leap year
0L, // null
915148800L, // 1999-01-01 00:00:00 GMT - non leap year
-11663029161L, // 1600-5-31 05:40:39 GMT - leap year
707904541L, // 1992-06-07 08:09:01 GMT - leap year
-2181005247L, // 1900-11-20 09:12:33 GMT - non leap year
0L, // UNIX EPOCH 1970-01-01 00:00:00 GMT - non leap year
-12212553600L, // First full year of Gregorian Calendar 1583-01-01 00:00:00 - non-leap-year
0L, // null
13591632822L, // 2400-09-13 13:33:42 GMT - leap year
4539564243L, // 2113-11-08 06:04:03 GMT - non leap year
0L // null
},
{true, false, true, true, true, true, true, true, false, true, true, false}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(
*is_leap_year(timestamps_s),
cudf::test::fixed_width_column_wrapper<bool>{
{true, XXX, false, true, true, false, false, false, XXX, true, false, XXX},
{true, false, true, true, true, true, true, true, false, true, true, false}});
}
TEST_F(BasicDatetimeOpsTest, TestDaysInMonths)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
{
0L, // NULL
-1887541682L, // 1910-03-10 10:51:58
0L, // NULL
-1251006943L, // 1930-05-11 18:04:17
-932134638L, // 1940-06-18 09:42:42
-614354877L, // 1950-07-14 09:52:03
-296070394L, // 1960-08-14 06:13:26
22840404L, // 1970-09-22 08:33:24
339817190L, // 1980-10-08 01:39:50
657928062L, // 1990-11-06 21:47:42
976630837L, // 2000-12-12 14:20:37
1294699018L, // 2011-01-10 22:36:58
1613970182L, // 2021-02-22 05:03:02 - non leap year February
1930963331L, // 2031-03-11 02:42:11
2249867102L, // 2041-04-18 03:05:02
951426858L, // 2000-02-24 21:14:18 - leap year February
},
iterators::nulls_at({0, 2})};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*days_in_month(timestamps_s),
cudf::test::fixed_width_column_wrapper<int16_t>{
{-1, 31, -1, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 29},
iterators::nulls_at({0, 2})});
}
TEST_F(BasicDatetimeOpsTest, TestQuarter)
{
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
using namespace cudf::test::iterators;
// Time in seconds since epoch
// Dates converted using epochconverter.com
auto timestamps_s =
cudf::test::fixed_width_column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{
{
1594332839L, // 2020-07-09 10:13:59 GMT
0L, // null
915148800L, // 1999-01-01 00:00:00 GMT
-11663029161L, // 1600-5-31 05:40:39 GMT
707904541L, // 1992-06-07 08:09:01 GMT
-2181005247L, // 1900-11-20 09:12:33 GMT
0L, // UNIX EPOCH 1970-01-01 00:00:00 GMT
-12212553600L, // First full year of Gregorian Calendar 1583-01-01 00:00:00
0L, // null
13591632822L, // 2400-09-13 13:33:42 GMT
4539564243L, // 2113-11-08 06:04:03 GMT
0L, // null
1608581568L, // 2020-12-21 08:12:48 GMT
1584821568L, // 2020-03-21 08:12:48 GMT
},
nulls_at({1, 8, 11})};
auto quarter = cudf::test::fixed_width_column_wrapper<int16_t>{
{3, 0 /*null*/, 1, 2, 2, 4, 1, 1, 0 /*null*/, 3, 4, 0 /*null*/, 4, 1}, nulls_at({1, 8, 11})};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*extract_quarter(timestamps_s), quarter);
}
TYPED_TEST(TypedDatetimeOpsTest, TestCeilDatetime)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto start = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto stop = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto const input =
generate_timestamps<T>(this->size(), time_point_ms(start), time_point_ms(stop));
auto const timestamps = to_host<T>(input).first;
std::vector<T> ceiled_day(timestamps.size());
thrust::transform(timestamps.begin(), timestamps.end(), ceiled_day.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<days>(i));
});
auto expected_day =
fixed_width_column_wrapper<T, typename T::duration::rep>(ceiled_day.begin(), ceiled_day.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::DAY), expected_day);
std::vector<T> ceiled_hour(timestamps.size());
thrust::transform(timestamps.begin(), timestamps.end(), ceiled_hour.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<hours>(i));
});
auto expected_hour = fixed_width_column_wrapper<T, typename T::duration::rep>(ceiled_hour.begin(),
ceiled_hour.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::HOUR), expected_hour);
std::vector<T> ceiled_minute(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), ceiled_minute.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<minutes>(i));
});
auto expected_minute = fixed_width_column_wrapper<T, typename T::duration::rep>(
ceiled_minute.begin(), ceiled_minute.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::MINUTE),
expected_minute);
std::vector<T> ceiled_second(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), ceiled_second.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<seconds>(i));
});
auto expected_second = fixed_width_column_wrapper<T, typename T::duration::rep>(
ceiled_second.begin(), ceiled_second.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::SECOND),
expected_second);
std::vector<T> ceiled_millisecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), ceiled_millisecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<milliseconds>(i));
});
auto expected_millisecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
ceiled_millisecond.begin(), ceiled_millisecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::MILLISECOND),
expected_millisecond);
std::vector<T> ceiled_microsecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), ceiled_microsecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<microseconds>(i));
});
auto expected_microsecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
ceiled_microsecond.begin(), ceiled_microsecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::MICROSECOND),
expected_microsecond);
std::vector<T> ceiled_nanosecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), ceiled_nanosecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(ceil<nanoseconds>(i));
});
auto expected_nanosecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
ceiled_nanosecond.begin(), ceiled_nanosecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*ceil_datetimes(input, rounding_frequency::NANOSECOND),
expected_nanosecond);
}
TYPED_TEST(TypedDatetimeOpsTest, TestFloorDatetime)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto start = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto stop = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto const input =
generate_timestamps<T>(this->size(), time_point_ms(start), time_point_ms(stop));
auto const timestamps = to_host<T>(input).first;
std::vector<T> floored_day(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_day.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<days>(i));
});
auto expected_day = fixed_width_column_wrapper<T, typename T::duration::rep>(floored_day.begin(),
floored_day.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::DAY), expected_day);
std::vector<T> floored_hour(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_hour.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<hours>(i));
});
auto expected_hour = fixed_width_column_wrapper<T, typename T::duration::rep>(
floored_hour.begin(), floored_hour.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::HOUR), expected_hour);
std::vector<T> floored_minute(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_minute.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<minutes>(i));
});
auto expected_minute = fixed_width_column_wrapper<T, typename T::duration::rep>(
floored_minute.begin(), floored_minute.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::MINUTE),
expected_minute);
std::vector<T> floored_second(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_second.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<seconds>(i));
});
auto expected_second = fixed_width_column_wrapper<T, typename T::duration::rep>(
floored_second.begin(), floored_second.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::SECOND),
expected_second);
std::vector<T> floored_millisecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_millisecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<milliseconds>(i));
});
auto expected_millisecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
floored_millisecond.begin(), floored_millisecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::MILLISECOND),
expected_millisecond);
std::vector<T> floored_microsecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_microsecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<microseconds>(i));
});
auto expected_microsecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
floored_microsecond.begin(), floored_microsecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::MICROSECOND),
expected_microsecond);
std::vector<T> floored_nanosecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), floored_nanosecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(floor<nanoseconds>(i));
});
auto expected_nanosecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
floored_nanosecond.begin(), floored_nanosecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*floor_datetimes(input, rounding_frequency::NANOSECOND),
expected_nanosecond);
}
TYPED_TEST(TypedDatetimeOpsTest, TestRoundDatetime)
{
using T = TypeParam;
using namespace cudf::test;
using namespace cudf::datetime;
using namespace cuda::std::chrono;
auto start = milliseconds(-2500000000000); // Sat, 11 Oct 1890 19:33:20 GMT
auto stop = milliseconds(2500000000000); // Mon, 22 Mar 2049 04:26:40 GMT
auto const input =
generate_timestamps<T>(this->size(), time_point_ms(start), time_point_ms(stop));
auto const timestamps = to_host<T>(input).first;
std::vector<T> rounded_day(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_day.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<days>(i));
});
auto expected_day = fixed_width_column_wrapper<T, typename T::duration::rep>(rounded_day.begin(),
rounded_day.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::DAY), expected_day);
std::vector<T> rounded_hour(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_hour.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<hours>(i));
});
auto expected_hour = fixed_width_column_wrapper<T, typename T::duration::rep>(
rounded_hour.begin(), rounded_hour.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::HOUR), expected_hour);
std::vector<T> rounded_minute(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_minute.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<minutes>(i));
});
auto expected_minute = fixed_width_column_wrapper<T, typename T::duration::rep>(
rounded_minute.begin(), rounded_minute.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::MINUTE),
expected_minute);
std::vector<T> rounded_second(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_second.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<seconds>(i));
});
auto expected_second = fixed_width_column_wrapper<T, typename T::duration::rep>(
rounded_second.begin(), rounded_second.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::SECOND),
expected_second);
std::vector<T> rounded_millisecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_millisecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<milliseconds>(i));
});
auto expected_millisecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
rounded_millisecond.begin(), rounded_millisecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::MILLISECOND),
expected_millisecond);
std::vector<T> rounded_microsecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_microsecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<microseconds>(i));
});
auto expected_microsecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
rounded_microsecond.begin(), rounded_microsecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::MICROSECOND),
expected_microsecond);
std::vector<T> rounded_nanosecond(timestamps.size());
std::transform(timestamps.begin(), timestamps.end(), rounded_nanosecond.begin(), [](auto i) {
return time_point_cast<typename T::duration>(round<nanoseconds>(i));
});
auto expected_nanosecond = fixed_width_column_wrapper<T, typename T::duration::rep>(
rounded_nanosecond.begin(), rounded_nanosecond.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*round_datetimes(input, rounding_frequency::NANOSECOND),
expected_nanosecond);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/structs/structs_column_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/utilities/device_operators.cuh>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/structs/structs_column_view.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/error.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/host_vector.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/scan.h>
#include <thrust/sequence.h>
#include <rmm/device_buffer.hpp>
#include <algorithm>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <memory>
using vector_of_columns = std::vector<std::unique_ptr<cudf::column>>;
using cudf::size_type;
struct StructColumnWrapperTest : public cudf::test::BaseFixture {};
template <typename T>
struct TypedStructColumnWrapperTest : public cudf::test::BaseFixture {};
using FixedWidthTypesNotBool = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::DurationTypes,
cudf::test::TimestampTypes>;
TYPED_TEST_SUITE(TypedStructColumnWrapperTest, FixedWidthTypesNotBool);
// Test simple struct construction without nullmask, through column factory.
// Columns must retain their originally set values.
TYPED_TEST(TypedStructColumnWrapperTest, TestColumnFactoryConstruction)
{
auto names_col =
cudf::test::strings_column_wrapper{
"Samuel Vimes", "Carrot Ironfoundersson", "Angua von Überwald"}
.release();
int num_rows{names_col->size()};
auto ages_col =
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{{48, 27, 25}}.release();
auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{{true, true, false}}.release();
vector_of_columns cols;
cols.push_back(std::move(names_col));
cols.push_back(std::move(ages_col));
cols.push_back(std::move(is_human_col));
auto struct_col = cudf::make_structs_column(num_rows, std::move(cols), 0, {});
EXPECT_EQ(num_rows, struct_col->size());
auto struct_col_view{struct_col->view()};
EXPECT_TRUE(std::all_of(struct_col_view.child_begin(),
struct_col_view.child_end(),
[&](auto const& child) { return child.size() == num_rows; }));
// Check child columns for exactly correct values.
vector_of_columns expected_children;
expected_children.emplace_back(cudf::test::strings_column_wrapper{
"Samuel Vimes", "Carrot Ironfoundersson", "Angua von Überwald"}
.release());
expected_children.emplace_back(
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{48, 27, 25}.release());
expected_children.emplace_back(
cudf::test::fixed_width_column_wrapper<bool>{true, true, false}.release());
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0) + expected_children.size(),
[&](auto idx) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(struct_col_view.child(idx),
expected_children[idx]->view());
});
}
// Test simple struct construction with nullmasks, through column wrappers.
// When the struct row is null, the child column value must be null.
TYPED_TEST(TypedStructColumnWrapperTest, TestColumnWrapperConstruction)
{
std::initializer_list<std::string> names = {"Samuel Vimes",
"Carrot Ironfoundersson",
"Angua von Überwald",
"Cheery Littlebottom",
"Detritus",
"Mr Slant"};
auto num_rows{std::distance(names.begin(), names.end())};
auto names_col = cudf::test::strings_column_wrapper{names.begin(), names.end()};
auto ages_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{
{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}};
auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}};
auto struct_col =
cudf::test::structs_column_wrapper{{names_col, ages_col, is_human_col}, {1, 1, 1, 0, 1, 1}}
.release();
EXPECT_EQ(num_rows, struct_col->size());
auto struct_col_view{struct_col->view()};
EXPECT_TRUE(std::all_of(struct_col_view.child_begin(),
struct_col_view.child_end(),
[&](auto const& child) { return child.size() == num_rows; }));
// Check child columns for exactly correct values.
vector_of_columns expected_children;
expected_children.emplace_back(
cudf::test::strings_column_wrapper{names, {1, 1, 1, 0, 1, 1}}.release());
expected_children.emplace_back(cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{
{48, 27, 25, 31, 351, 351},
{1, 1, 1, 0, 1, 0}}.release());
expected_children.emplace_back(cudf::test::fixed_width_column_wrapper<bool>{
{true, true, false, false, false, false},
{1, 1, 0, 0, 1, 0}}.release());
std::for_each(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(0) + expected_children.size(),
[&](auto idx) {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(struct_col_view.child(idx),
expected_children[idx]->view());
});
auto expected_struct_col =
cudf::test::structs_column_wrapper{std::move(expected_children), {1, 1, 1, 0, 1, 1}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(struct_col_view, expected_struct_col->view());
}
TYPED_TEST(TypedStructColumnWrapperTest, TestStructsContainingLists)
{
// Test structs with two members:
// 1. Name: String
// 2. List: List<TypeParam>
std::initializer_list<std::string> names = {"Samuel Vimes",
"Carrot Ironfoundersson",
"Angua von Überwald",
"Cheery Littlebottom",
"Detritus",
"Mr Slant"};
auto num_rows{std::distance(names.begin(), names.end())};
// `Name` column has all valid values.
auto names_col = cudf::test::strings_column_wrapper{names.begin(), names.end()};
// `List` member.
auto lists_col =
cudf::test::lists_column_wrapper<TypeParam, int32_t>{{1, 2, 3}, {4}, {5, 6}, {}, {7, 8}, {9}};
// Construct a Struct column of 6 rows, with the last two values set to null.
auto struct_col =
cudf::test::structs_column_wrapper{{names_col, lists_col}, {1, 1, 1, 1, 0, 0}}.release();
EXPECT_EQ(struct_col->size(), num_rows);
EXPECT_EQ(struct_col->view().child(0).size(), num_rows);
EXPECT_EQ(struct_col->view().child(1).size(), num_rows);
// Check that the last two rows are null for all members.
// For `Name` member, indices 4 and 5 are null.
auto expected_names_col = cudf::test::strings_column_wrapper{
names.begin(), names.end(), cudf::detail::make_counting_transform_iterator(0, [](auto i) {
return i < 4;
})}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(struct_col->view().child(0), expected_names_col->view());
// For the `List` member, indices 4, 5 should be null.
auto expected_last_two_lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>{
{
{1, 2, 3},
{4},
{5, 6},
{},
{7, 8}, // Null.
{9} // Null.
},
cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return i < 4; })}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(struct_col->view().child(1),
expected_last_two_lists_col->view());
}
TYPED_TEST(TypedStructColumnWrapperTest, StructOfStructs)
{
// Struct<is_human:bool, Struct<names:string, ages:int>>
auto names = {"Samuel Vimes",
"Carrot Ironfoundersson",
"Angua von Überwald",
"Cheery Littlebottom",
"Detritus",
"Mr Slant"};
auto num_rows{std::distance(names.begin(), names.end())};
// `Name` column has all valid values.
auto names_col = cudf::test::strings_column_wrapper{names.begin(), names.end()};
auto ages_col =
cudf::test::fixed_width_column_wrapper<int32_t>{{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}};
auto struct_1 = cudf::test::structs_column_wrapper{{names_col, ages_col}, {1, 1, 1, 1, 0, 1}};
auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}};
auto struct_2 =
cudf::test::structs_column_wrapper{{is_human_col, struct_1}, {0, 1, 1, 1, 1, 1}}.release();
EXPECT_EQ(struct_2->size(), num_rows);
EXPECT_EQ(struct_2->view().child(0).size(), num_rows);
EXPECT_EQ(struct_2->view().child(1).size(), num_rows);
// Verify that the child/grandchild columns are as expected.
auto expected_names_col =
cudf::test::strings_column_wrapper(
names.begin(),
names.end(),
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 0 && i != 4; }))
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_names_col, struct_2->child(1).child(0));
auto expected_ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{
{48, 27, 25, 31, 351, 351},
{0, 1, 1, 1, 0, 0}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_ages_col, struct_2->child(1).child(1));
auto expected_bool_col = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, false, false, false, false},
{0, 1, 0, 1, 1, 0}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_bool_col, struct_2->child(0));
// Verify that recursive struct columns may be compared
// using expect_columns_equivalent.
vector_of_columns expected_cols_1;
expected_cols_1.emplace_back(std::move(expected_names_col));
expected_cols_1.emplace_back(std::move(expected_ages_col));
auto expected_struct_1 =
cudf::test::structs_column_wrapper(std::move(expected_cols_1), {1, 1, 1, 1, 0, 1}).release();
vector_of_columns expected_cols_2;
expected_cols_2.emplace_back(std::move(expected_bool_col));
expected_cols_2.emplace_back(std::move(expected_struct_1));
auto expected_struct_2 =
cudf::test::structs_column_wrapper(std::move(expected_cols_2), {0, 1, 1, 1, 1, 1}).release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_struct_2, *struct_2);
}
TYPED_TEST(TypedStructColumnWrapperTest, TestNullMaskPropagationForNonNullStruct)
{
// Struct<is_human:bool, Struct<names:string, ages:int>>
auto names = {"Samuel Vimes",
"Carrot Ironfoundersson",
"Angua von Überwald",
"Cheery Littlebottom",
"Detritus",
"Mr Slant"};
auto num_rows{std::distance(names.begin(), names.end())};
// `Name` column has all valid values.
auto names_col = cudf::test::strings_column_wrapper{names.begin(), names.end()};
auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{
{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 1} // <-- No nulls in ages_col either.
};
auto struct_1 = cudf::test::structs_column_wrapper{
{names_col, ages_col}, {1, 1, 1, 1, 1, 1} // <-- Non-null, bottom level struct.
};
auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}};
auto struct_2 =
cudf::test::structs_column_wrapper{
{is_human_col, struct_1}, {0, 1, 1, 1, 1, 1} // <-- First row is null, for top-level struct.
}
.release();
EXPECT_EQ(struct_2->size(), num_rows);
EXPECT_EQ(struct_2->view().child(0).size(), num_rows);
EXPECT_EQ(struct_2->view().child(1).size(), num_rows);
// Verify that the child/grandchild columns are as expected.
// Top-struct has 1 null (at index 0).
// Bottom-level struct had no nulls, but must now report nulls
auto expected_names_col =
cudf::test::strings_column_wrapper(
names.begin(),
names.end(),
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 0; }))
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_names_col, struct_2->child(1).child(0));
auto expected_ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{
{48, 27, 25, 31, 351, 351},
{0, 1, 1, 1, 1, 1}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_ages_col, struct_2->child(1).child(1));
auto expected_bool_col = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, false, false, false, false},
{0, 1, 0, 1, 1, 0}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_bool_col, struct_2->child(0));
// Verify that recursive struct columns may be compared
// using expect_columns_equivalent.
vector_of_columns expected_cols_1;
expected_cols_1.emplace_back(std::move(expected_names_col));
expected_cols_1.emplace_back(std::move(expected_ages_col));
auto expected_struct_1 =
cudf::test::structs_column_wrapper(std::move(expected_cols_1), {1, 1, 1, 1, 1, 1}).release();
vector_of_columns expected_cols_2;
expected_cols_2.emplace_back(std::move(expected_bool_col));
expected_cols_2.emplace_back(std::move(expected_struct_1));
auto expected_struct_2 =
cudf::test::structs_column_wrapper(std::move(expected_cols_2), {0, 1, 1, 1, 1, 1}).release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_struct_2, *struct_2);
}
TEST_F(StructColumnWrapperTest, StructWithNoMembers)
{
auto struct_col{cudf::test::structs_column_wrapper{}.release()};
EXPECT_TRUE(struct_col->num_children() == 0);
EXPECT_TRUE(struct_col->null_count() == 0);
EXPECT_TRUE(struct_col->size() == 0);
}
TYPED_TEST(TypedStructColumnWrapperTest, StructsWithMembersWithDifferentRowCounts)
{
auto numeric_col_5 = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{{1, 2, 3, 4, 5}};
auto bool_col_4 = cudf::test::fixed_width_column_wrapper<bool>{1, 0, 1, 0};
EXPECT_THROW(cudf::test::structs_column_wrapper({numeric_col_5, bool_col_4}), cudf::logic_error);
}
TYPED_TEST(TypedStructColumnWrapperTest, TestListsOfStructs)
{
// Test list containing structs with two members
// 1. Name: String
// 2. Age: TypeParam
std::initializer_list<std::string> names = {"Samuel Vimes",
"Carrot Ironfoundersson",
"Angua von Überwald",
"Cheery Littlebottom",
"Detritus",
"Mr Slant"};
auto num_struct_rows{std::distance(names.begin(), names.end())};
// `Name` column has all valid values.
auto names_col = cudf::test::strings_column_wrapper{names.begin(), names.end()};
// Numeric column has some nulls.
auto ages_col = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>{
{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}};
auto struct_col =
cudf::test::structs_column_wrapper({names_col, ages_col}, {1, 1, 1, 0, 0, 1}).release();
EXPECT_EQ(struct_col->size(), num_struct_rows);
EXPECT_EQ(struct_col->view().child(0).size(), num_struct_rows);
auto expected_unchanged_struct_col = cudf::column(*struct_col);
auto list_offsets_column =
cudf::test::fixed_width_column_wrapper<size_type>{0, 2, 3, 5, 6}.release();
auto num_list_rows = list_offsets_column->size() - 1;
auto list_col = cudf::make_lists_column(
num_list_rows, std::move(list_offsets_column), std::move(struct_col), 0, {});
// List of structs was constructed successfully. No exceptions.
// Verify that child columns is as it was set.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_unchanged_struct_col,
cudf::lists_column_view(*list_col).child());
}
TYPED_TEST(TypedStructColumnWrapperTest, ListOfStructOfList)
{
using namespace cudf::test;
auto list_col = lists_column_wrapper<TypeParam, int32_t>{
{{0}, {1}, {}, {3}, {4}, {5, 5}, {6}, {}, {8}, {9}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; })};
// TODO: Struct<List> cannot be compared with expect_columns_equal(),
// if the struct has null values. After lists support "equivalence"
// comparisons, the structs column needs to be modified to add nulls.
auto struct_of_lists_col = structs_column_wrapper{{list_col}}.release();
auto list_of_struct_of_list_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 3; });
auto [null_mask, null_count] =
detail::make_null_mask(list_of_struct_of_list_validity, list_of_struct_of_list_validity + 5);
auto list_of_struct_of_list = cudf::make_lists_column(
5,
std::move(fixed_width_column_wrapper<size_type>{0, 2, 4, 6, 8, 10}.release()),
std::move(struct_of_lists_col),
null_count,
std::move(null_mask));
// Compare with expected values.
auto expected_level0_list = lists_column_wrapper<TypeParam, int32_t>{
{{}, {3}, {}, {5, 5}, {}, {9}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; })};
auto expected_level2_struct = structs_column_wrapper{{expected_level0_list}}.release();
CUDF_TEST_EXPECT_COLUMNS_EQUAL(cudf::lists_column_view(*list_of_struct_of_list).child(),
*expected_level2_struct);
std::tie(null_mask, null_count) =
detail::make_null_mask(list_of_struct_of_list_validity, list_of_struct_of_list_validity + 5);
auto expected_level3_list = cudf::make_lists_column(
5,
std::move(fixed_width_column_wrapper<size_type>{0, 0, 2, 4, 4, 6}.release()),
std::move(expected_level2_struct),
null_count,
std::move(null_mask));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*list_of_struct_of_list, *expected_level3_list);
}
TYPED_TEST(TypedStructColumnWrapperTest, StructOfListOfStruct)
{
using namespace cudf::test;
auto ints_col = fixed_width_column_wrapper<TypeParam, int32_t>{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; })};
auto structs_col =
structs_column_wrapper{
{ints_col},
cudf::detail::make_counting_transform_iterator(
0, [](auto i) { return i < 6; }) // Last 4 structs are null.
}
.release();
auto list_validity =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 3; });
auto [null_mask, null_count] = detail::make_null_mask(list_validity, list_validity + 5);
auto lists_col = cudf::make_lists_column(
5,
std::move(fixed_width_column_wrapper<size_type>{0, 2, 4, 6, 8, 10}.release()),
std::move(structs_col),
null_count,
std::move(null_mask));
std::vector<std::unique_ptr<cudf::column>> cols;
cols.push_back(std::move(lists_col));
auto struct_of_list_of_struct = structs_column_wrapper{std::move(cols)}.release();
// Check that the struct is constructed as expected.
auto expected_ints_col = fixed_width_column_wrapper<TypeParam, int32_t>{
{0, 1, 0, 3, 0, 5, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0, 0, 0}};
auto expected_structs_col =
structs_column_wrapper{{expected_ints_col}, {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}}.release();
std::tie(null_mask, null_count) = detail::make_null_mask(list_validity, list_validity + 5);
auto expected_lists_col = cudf::make_lists_column(
5,
std::move(fixed_width_column_wrapper<size_type>{0, 2, 4, 6, 8, 10}.release()),
std::move(expected_structs_col),
null_count,
std::move(null_mask));
// Test that the lists child column is as expected.
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_lists_col, struct_of_list_of_struct->child(0));
// Test that the outer struct column is as expected.
cols.clear();
cols.push_back(std::move(expected_lists_col));
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*(structs_column_wrapper{std::move(cols)}.release()),
*struct_of_list_of_struct);
}
TYPED_TEST(TypedStructColumnWrapperTest, EmptyColumnsOfStructs)
{
using namespace cudf::test;
{
// Empty struct column.
auto empty_struct_column = structs_column_wrapper{}.release();
EXPECT_TRUE(empty_struct_column->num_children() == 0);
EXPECT_TRUE(empty_struct_column->size() == 0);
EXPECT_TRUE(empty_struct_column->null_count() == 0);
}
{
// Empty struct<list> column.
auto empty_list_column = lists_column_wrapper<TypeParam>{};
auto struct_column = structs_column_wrapper{{empty_list_column}}.release();
EXPECT_TRUE(struct_column->num_children() == 1);
EXPECT_TRUE(struct_column->size() == 0);
EXPECT_TRUE(struct_column->null_count() == 0);
auto empty_list_of_structs = cudf::make_lists_column(
0, fixed_width_column_wrapper<size_type>{0}.release(), std::move(struct_column), 0, {});
EXPECT_TRUE(empty_list_of_structs->size() == 0);
EXPECT_TRUE(empty_list_of_structs->null_count() == 0);
auto child_struct_column = cudf::lists_column_view(*empty_list_of_structs).child();
EXPECT_TRUE(child_struct_column.num_children() == 1);
EXPECT_TRUE(child_struct_column.size() == 0);
EXPECT_TRUE(child_struct_column.null_count() == 0);
}
// TODO: Uncomment test after adding support to compare empty
// lists whose child columns may not be empty.
// {
// auto non_empty_column_of_numbers =
// fixed_width_column_wrapper<TypeParam>{1,2,3,4,5}.release();
//
// auto list_offsets =
// fixed_width_column_wrapper<size_type>{0}.release();
//
// auto empty_list_column =
// cudf::make_lists_column(
// 0, std::move(list_offsets), std::move(non_empty_column_of_numbers), 0, {});
//
// CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*lists_column_wrapper<TypeParam>{}.release(),
// *empty_list_column); auto struct_column =
// structs_column_wrapper{{empty_list_column}}.release();
// EXPECT_TRUE(struct_column->num_children() == 1);
// EXPECT_TRUE(struct_column->size() == 0);
// EXPECT_TRUE(struct_column->null_count() == 0);
// }
}
TYPED_TEST(TypedStructColumnWrapperTest, CopyColumnFromView)
{
// Testing deep-copying structs from column-views.
using namespace cudf::test;
using T = TypeParam;
auto numeric_column =
fixed_width_column_wrapper<T, int32_t>{{0, 1, 2, 3, 4, 5}, {1, 1, 1, 1, 1, 0}};
auto lists_column = lists_column_wrapper<T, int32_t>{
{{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 4; })};
auto structs_column = structs_column_wrapper{
{numeric_column, lists_column},
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; })};
auto clone_structs_column = cudf::column(structs_column);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(clone_structs_column, structs_column);
auto list_of_structs_column =
cudf::make_lists_column(
3, fixed_width_column_wrapper<int32_t>{0, 2, 4, 6}.release(), structs_column.release(), 0, {})
.release();
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(list_of_structs_column->view(),
cudf::column(list_of_structs_column->view()));
}
TEST_F(StructColumnWrapperTest, TestStructsColumnWithEmptyChild)
{
// structs_column_views should not superimpose their null mask onto any EMPTY children,
// because EMPTY columns cannot have a null mask. This test ensures that
// we can construct a structs column with a parent null mask and an EMPTY
// child and then view it.
auto empty_col = std::make_unique<cudf::column>(
cudf::data_type(cudf::type_id::EMPTY), 3, rmm::device_buffer{}, rmm::device_buffer{}, 0);
int num_rows{empty_col->size()};
vector_of_columns cols;
cols.push_back(std::move(empty_col));
auto mask_vec = std::vector<bool>{true, false, false};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(mask_vec.begin(), mask_vec.end());
auto structs_col =
cudf::make_structs_column(num_rows, std::move(cols), null_count, std::move(null_mask));
EXPECT_NO_THROW(structs_col->view());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/structs/utilities_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cudf_test/default_stream.hpp"
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/detail/null_mask.hpp>
#include <cudf/detail/structs/utilities.hpp>
#include <cudf/null_mask.hpp>
#include <cudf/utilities/default_stream.hpp>
template <typename T>
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
template <typename T>
using lists = cudf::test::lists_column_wrapper<T, int32_t>;
struct StructUtilitiesTest : cudf::test::BaseFixture {};
template <typename T>
struct TypedStructUtilitiesTest : StructUtilitiesTest {};
TYPED_TEST_SUITE(TypedStructUtilitiesTest, cudf::test::FixedWidthTypes);
TYPED_TEST(TypedStructUtilitiesTest, ListsAtTopLevel)
{
using T = TypeParam;
using lists = cudf::test::lists_column_wrapper<T, int32_t>;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto lists_col = lists{{0, 1}, {22, 33}, {44, 55, 66}};
auto nums_col = nums{{0, 1, 2}, cudf::test::iterators::null_at(6)};
auto table = cudf::table_view{{lists_col, nums_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(table, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, NoStructs)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_col = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto strings_col = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto nuther_nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto table = cudf::table_view{{nums_col, strings_col, nuther_nums_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(table, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, SingleLevelStruct)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_member = nums{{0, 1, 22, 333, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto strings_member = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto structs_col = cudf::test::structs_column_wrapper{{nums_member, strings_member}};
auto nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto table = cudf::table_view{{nums_col, structs_col}};
auto expected_nums_col_1 = cudf::column(nums_col);
auto expected_structs_col = cudf::test::fixed_width_column_wrapper<bool>{{1, 1, 1, 1, 1, 1, 1}};
auto expected_nums_col_2 = cudf::column(static_cast<cudf::structs_column_view>(structs_col)
.get_sliced_child(0, cudf::get_default_stream()));
auto expected_strings_col = cudf::column(static_cast<cudf::structs_column_view>(structs_col)
.get_sliced_child(1, cudf::get_default_stream()));
auto expected = cudf::table_view{
{expected_nums_col_1, expected_structs_col, expected_nums_col_2, expected_strings_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, SingleLevelStructWithNulls)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_member = nums{{0, 1, 22, 333, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto strings_member = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto structs_col = cudf::test::structs_column_wrapper{{nums_member, strings_member},
cudf::test::iterators::null_at(2)};
auto nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto table = cudf::table_view{{nums_col, structs_col}};
auto expected_nums_col_1 = cudf::column(nums_col);
auto expected_structs_col = cudf::test::fixed_width_column_wrapper<bool>{
{1, 1, 0, 1, 1, 1, 1}, cudf::test::iterators::null_at(2)};
auto expected_nums_col_2 = cudf::column(static_cast<cudf::structs_column_view>(structs_col)
.get_sliced_child(0, cudf::get_default_stream()));
auto expected_strings_col = cudf::column(static_cast<cudf::structs_column_view>(structs_col)
.get_sliced_child(1, cudf::get_default_stream()));
auto expected = cudf::table_view{
{expected_nums_col_1, expected_structs_col, expected_nums_col_2, expected_strings_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, StructOfStruct)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto struct_0_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto struct_0_strings_member = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto structs_1_structs_member =
cudf::test::structs_column_wrapper{{struct_0_nums_member, struct_0_strings_member}};
auto struct_1_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(3)};
auto struct_of_structs_col =
cudf::test::structs_column_wrapper{{struct_1_nums_member, structs_1_structs_member}};
auto table = cudf::table_view{{nums_col, struct_of_structs_col}};
auto expected_nums_col_1 = cudf::column(nums_col);
auto expected_structs_col_1 = cudf::test::fixed_width_column_wrapper<bool>{{1, 1, 1, 1, 1, 1, 1}};
auto expected_nums_col_2 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(0, cudf::get_default_stream()));
auto expected_structs_col_2 = cudf::test::fixed_width_column_wrapper<bool>{{1, 1, 1, 1, 1, 1, 1}};
auto expected_nums_col_3 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(0));
auto expected_strings_col =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(1));
auto expected = cudf::table_view{{expected_nums_col_1,
expected_structs_col_1,
expected_nums_col_2,
expected_structs_col_2,
expected_nums_col_3,
expected_strings_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, StructOfStructWithNullsAtLeafLevel)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto struct_0_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto struct_0_strings_member = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto structs_1_structs_member = cudf::test::structs_column_wrapper{
{struct_0_nums_member, struct_0_strings_member}, cudf::test::iterators::null_at(2)};
auto struct_1_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(3)};
auto struct_of_structs_col =
cudf::test::structs_column_wrapper{{struct_1_nums_member, structs_1_structs_member}};
auto table = cudf::table_view{{nums_col, struct_of_structs_col}};
auto expected_nums_col_1 = cudf::column(nums_col);
auto expected_structs_col_1 = cudf::test::fixed_width_column_wrapper<bool>{{1, 1, 1, 1, 1, 1, 1}};
auto expected_nums_col_2 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(0, cudf::get_default_stream()));
auto expected_structs_col_2 = cudf::test::fixed_width_column_wrapper<bool>{
{1, 1, 0, 1, 1, 1, 1}, cudf::test::iterators::null_at(2)};
auto expected_nums_col_3 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(0));
auto expected_strings_col =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(1));
auto expected = cudf::table_view{{expected_nums_col_1,
expected_structs_col_1,
expected_nums_col_2,
expected_structs_col_2,
expected_nums_col_3,
expected_strings_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, StructOfStructWithNullsAtTopLevel)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto struct_0_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto struct_0_strings_member = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto structs_1_structs_member =
cudf::test::structs_column_wrapper{{struct_0_nums_member, struct_0_strings_member}};
auto struct_1_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(3)};
auto struct_of_structs_col = cudf::test::structs_column_wrapper{
{struct_1_nums_member, structs_1_structs_member}, cudf::test::iterators::null_at(4)};
auto table = cudf::table_view{{nums_col, struct_of_structs_col}};
auto expected_nums_col_1 = cudf::column(nums_col);
auto expected_structs_col_1 = cudf::test::fixed_width_column_wrapper<bool>{
{1, 1, 1, 1, 0, 1, 1}, cudf::test::iterators::null_at(4)};
auto expected_nums_col_2 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(0, cudf::get_default_stream()));
auto expected_structs_col_2 = cudf::test::fixed_width_column_wrapper<bool>{
{1, 1, 1, 1, 0, 1, 1}, cudf::test::iterators::null_at(4)};
auto expected_nums_col_3 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(0));
auto expected_strings_col =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(1));
auto expected = cudf::table_view{{expected_nums_col_1,
expected_structs_col_1,
expected_nums_col_2,
expected_structs_col_2,
expected_nums_col_3,
expected_strings_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, flattened_table->flattened_columns());
}
TYPED_TEST(TypedStructUtilitiesTest, StructOfStructWithNullsAtAllLevels)
{
using T = TypeParam;
using nums = cudf::test::fixed_width_column_wrapper<T, int32_t>;
auto nums_col = nums{{0, 1, 2, 3, 4, 5, 6}, cudf::test::iterators::null_at(6)};
auto struct_0_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(0)};
auto struct_0_strings_member = cudf::test::strings_column_wrapper{
{"", "1", "22", "333", "4444", "55555", "666666"}, cudf::test::iterators::null_at(1)};
auto structs_1_structs_member = cudf::test::structs_column_wrapper{
{struct_0_nums_member, struct_0_strings_member}, cudf::test::iterators::null_at(2)};
auto struct_1_nums_member = nums{{0, 1, 22, 33, 44, 55, 66}, cudf::test::iterators::null_at(3)};
auto struct_of_structs_col = cudf::test::structs_column_wrapper{
{struct_1_nums_member, structs_1_structs_member}, cudf::test::iterators::null_at(4)};
auto table = cudf::table_view{{nums_col, struct_of_structs_col}};
auto expected_nums_col_1 = cudf::column(nums_col);
auto expected_structs_col_1 = cudf::test::fixed_width_column_wrapper<bool>{
{1, 1, 1, 1, 0, 1, 1}, cudf::test::iterators::null_at(4)};
auto expected_nums_col_2 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(0, cudf::get_default_stream()));
auto expected_structs_col_2 =
cudf::test::fixed_width_column_wrapper<bool>{{1, 1, 0, 1, 0, 1, 1}, {1, 1, 0, 1, 0, 1, 1}};
auto expected_nums_col_3 =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(0));
auto expected_strings_col =
cudf::column(static_cast<cudf::structs_column_view>(struct_of_structs_col)
.get_sliced_child(1, cudf::get_default_stream())
.child(1));
auto expected = cudf::table_view{{expected_nums_col_1,
expected_structs_col_1,
expected_nums_col_2,
expected_structs_col_2,
expected_nums_col_3,
expected_strings_col}};
auto flattened_table =
cudf::structs::detail::flatten_nested_columns(table,
{},
{},
cudf::structs::detail::column_nullability::FORCE,
cudf::get_default_stream(),
rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, flattened_table->flattened_columns());
}
struct SuperimposeTest : StructUtilitiesTest {};
template <typename T>
struct TypedSuperimposeTest : StructUtilitiesTest {};
TYPED_TEST_SUITE(TypedSuperimposeTest, cudf::test::FixedWidthTypes);
void test_non_struct_columns(cudf::column_view const& input)
{
// push_down_nulls() on non-struct columns should return the input column, unchanged.
auto [superimposed, backing_data] = cudf::structs::detail::push_down_nulls(
input, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(input, superimposed);
EXPECT_TRUE(backing_data.new_null_masks.empty());
if (input.type().id() != cudf::type_id::STRING && input.type().id() != cudf::type_id::LIST) {
EXPECT_TRUE(backing_data.new_columns.empty());
}
}
TYPED_TEST(TypedSuperimposeTest, NoStructInput)
{
using T = TypeParam;
test_non_struct_columns(cudf::test::fixed_width_column_wrapper<T>{
{6, 5, 4, 3, 2, 1, 0}, cudf::test::iterators::null_at(3)});
test_non_struct_columns(cudf::test::lists_column_wrapper<T, int32_t>{
{{6, 5}, {4, 3}, {2, 1}, {0}}, cudf::test::iterators::null_at(3)});
test_non_struct_columns(cudf::test::strings_column_wrapper{
{"All", "The", "Leaves", "Are", "Brown"}, cudf::test::iterators::null_at(3)});
test_non_struct_columns(cudf::test::dictionary_column_wrapper<std::string>{
{"All", "The", "Leaves", "Are", "Brown"}, cudf::test::iterators::null_at(3)});
}
/**
* @brief Helper to construct a numeric member of a struct column.
*/
template <typename T, typename NullIter>
nums<T> make_nums_member(NullIter null_iter = cudf::test::iterators::no_nulls())
{
return nums<T>{{10, 11, 12, 13, 14, 15, 16}, null_iter};
}
/**
* @brief Helper to construct a lists member of a struct column.
*/
template <typename T, typename NullIter>
lists<T> make_lists_member(NullIter null_iter = cudf::test::iterators::no_nulls())
{
return lists<T>{{{20, 20}, {21, 21}, {22, 22}, {23, 23}, {24, 24}, {25, 25}, {26, 26}},
null_iter};
}
TYPED_TEST(TypedSuperimposeTest, BasicStruct)
{
using T = TypeParam;
auto nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto structs_input = cudf::test::structs_column_wrapper{{nums_member, lists_member},
cudf::test::iterators::no_nulls()}
.release();
// Reset STRUCTs' null-mask. Mark first STRUCT row as null.
auto structs_view = structs_input->mutable_view();
cudf::detail::set_null_mask(structs_view.null_mask(), 0, 1, false, cudf::get_default_stream());
// At this point, the STRUCT nulls aren't pushed down to members,
// even though the parent null-mask was modified.
CUDF_TEST_EXPECT_COLUMNS_EQUAL(structs_view.child(0),
make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6})));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(structs_view.child(1),
make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5})));
auto [output, backing_data] = cudf::structs::detail::push_down_nulls(
structs_view, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
// After push_down_nulls(), the struct nulls (i.e. at index-0) should have been pushed
// down to the children. All members should have nulls at row-index 0.
auto expected_nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({0, 3, 6}));
auto expected_lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({0, 4, 5}));
auto expected_structs_output = cudf::test::structs_column_wrapper{
{expected_nums_member, expected_lists_member}, cudf::test::iterators::null_at(0)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected_structs_output);
}
TYPED_TEST(TypedSuperimposeTest, NonNullableParentStruct)
{
// Test that if the parent struct is not nullable, non-struct members should
// remain unchanged.
using T = TypeParam;
auto nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto structs_input = cudf::test::structs_column_wrapper{{nums_member, lists_member},
cudf::test::iterators::no_nulls()}
.release();
auto [output, backing_data] = cudf::structs::detail::push_down_nulls(
structs_input->view(), cudf::get_default_stream(), rmm::mr::get_current_device_resource());
// After push_down_nulls(), none of the child structs should have changed,
// because the parent had no nulls to begin with.
auto expected_nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto expected_lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto expected_structs_output = cudf::test::structs_column_wrapper{
{expected_nums_member, expected_lists_member}, cudf::test::iterators::no_nulls()};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected_structs_output);
}
TYPED_TEST(TypedSuperimposeTest, NestedStruct_ChildNullable_ParentNonNullable)
{
// Test with Struct<Struct>. If the parent struct is not nullable:
// 1. Non-struct members should remain unchanged.
// 2. Member-structs should have their respective nulls pushed down into grandchildren.
using T = TypeParam;
auto nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto outer_struct_members = std::vector<std::unique_ptr<cudf::column>>{};
outer_struct_members.push_back(cudf::test::structs_column_wrapper{
{nums_member, lists_member}, cudf::test::iterators::no_nulls()}
.release());
// Reset STRUCTs' null-mask. Mark first STRUCT row as null.
auto structs_view = outer_struct_members.back()->mutable_view();
cudf::detail::set_null_mask(structs_view.null_mask(), 0, 1, false, cudf::get_default_stream());
auto structs_of_structs =
cudf::test::structs_column_wrapper{std::move(outer_struct_members)}.release();
auto [output, backing_data] = cudf::structs::detail::push_down_nulls(
structs_of_structs->view(), cudf::get_default_stream(), rmm::mr::get_current_device_resource());
// After push_down_nulls(), outer-struct column should not have pushed nulls to child
// structs. But the child struct column must push its nulls to its own children.
auto expected_nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({0, 3, 6}));
auto expected_lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({0, 4, 5}));
auto expected_structs = cudf::test::structs_column_wrapper{
{expected_nums_member, expected_lists_member}, cudf::test::iterators::null_at(0)};
auto expected_structs_of_structs = cudf::test::structs_column_wrapper{{expected_structs}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected_structs_of_structs);
}
TYPED_TEST(TypedSuperimposeTest, NestedStruct_ChildNullable_ParentNullable)
{
// Test with Struct<Struct>.
// If both the parent struct and the child are nullable, the leaf nodes should
// have a 3-way ANDed null-mask.
using T = TypeParam;
auto nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto outer_struct_members = std::vector<std::unique_ptr<cudf::column>>{};
outer_struct_members.push_back(cudf::test::structs_column_wrapper{
{nums_member, lists_member}, cudf::test::iterators::no_nulls()}
.release());
// Reset STRUCTs' null-mask. Mark first STRUCT row as null.
auto structs_view = outer_struct_members.back()->mutable_view();
auto num_rows = structs_view.size();
cudf::detail::set_null_mask(structs_view.null_mask(), 0, 1, false, cudf::get_default_stream());
auto structs_of_structs = cudf::test::structs_column_wrapper{std::move(outer_struct_members),
std::vector<bool>(num_rows, true)}
.release();
// Modify STRUCT-of-STRUCT's null-mask. Mark second STRUCT row as null.
auto structs_of_structs_view = structs_of_structs->mutable_view();
cudf::detail::set_null_mask(
structs_of_structs_view.null_mask(), 1, 2, false, cudf::get_default_stream());
auto [output, backing_data] = cudf::structs::detail::push_down_nulls(
structs_of_structs->view(), cudf::get_default_stream(), rmm::mr::get_current_device_resource());
// After push_down_nulls(), outer-struct column should not have pushed nulls to child
// structs. But the child struct column must push its nulls to its own children.
auto expected_nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({0, 1, 3, 6}));
auto expected_lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({0, 1, 4, 5}));
auto expected_structs = cudf::test::structs_column_wrapper{
{expected_nums_member, expected_lists_member}, cudf::test::iterators::nulls_at({0, 1})};
auto expected_structs_of_structs =
cudf::test::structs_column_wrapper{{expected_structs}, cudf::test::iterators::null_at(1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected_structs_of_structs);
}
cudf::column_view slice_off_first_and_last_rows(cudf::column_view const& col)
{
return cudf::slice(col, {1, col.size() - 1})[0];
}
void mark_row_as_null(cudf::mutable_column_view const& col, cudf::size_type row_index)
{
cudf::detail::set_null_mask(
col.null_mask(), row_index, row_index + 1, false, cudf::get_default_stream());
}
TYPED_TEST(TypedSuperimposeTest, Struct_Sliced)
{
// Test with a sliced STRUCT column.
// Ensure that push_down_nulls() produces the right results, even when the input is
// sliced.
using T = TypeParam;
auto nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto structs_column = cudf::test::structs_column_wrapper{{nums_member, lists_member},
cudf::test::iterators::no_nulls()}
.release();
// Reset STRUCTs' null-mask. Mark second STRUCT row as null.
mark_row_as_null(structs_column->mutable_view(), 1);
// The null masks should now look as follows, with the STRUCT null mask *not* pushed down:
// STRUCT: 1111101
// nums_member: 0110111
// lists_member: 1001111
// Slice off the first and last rows.
auto sliced_structs = slice_off_first_and_last_rows(structs_column->view());
// After slice(), the null masks will be:
// STRUCT: 11110
// nums_member: 11011
// lists_member: 00111
auto [output, backing_data] = cudf::structs::detail::push_down_nulls(
sliced_structs, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
// After push_down_nulls(), the null masks should be:
// STRUCT: 11110
// nums_member: 11010
// lists_member: 00110
// Construct expected columns using structs_column_wrapper, which should push the parent nulls
// down automatically. Then, slice() off the ends.
auto expected_nums = make_nums_member<T>(cudf::test::iterators::nulls_at({1, 3, 6}));
auto expected_lists = make_lists_member<T>(cudf::test::iterators::nulls_at({1, 4, 5}));
auto expected_unsliced_structs = cudf::test::structs_column_wrapper{
{expected_nums, expected_lists}, cudf::test::iterators::nulls_at({1})};
auto expected_structs = slice_off_first_and_last_rows(expected_unsliced_structs);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected_structs);
}
TYPED_TEST(TypedSuperimposeTest, NestedStruct_Sliced)
{
// Test with a sliced STRUCT<STRUCT> column.
// Ensure that push_down_nulls() produces the right results, even when the input is
// sliced.
using T = TypeParam;
auto nums_member = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto lists_member = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto structs_column = cudf::test::structs_column_wrapper{{nums_member, lists_member},
cudf::test::iterators::null_at(1)};
auto struct_structs_column =
cudf::test::structs_column_wrapper{{structs_column}, cudf::test::iterators::no_nulls()}
.release();
// Reset STRUCT<STRUCT>'s null-mask. Mark third row as null.
mark_row_as_null(struct_structs_column->mutable_view(), 2);
// The null masks should now look as follows, with the STRUCT<STRUCT> null mask *not* pushed down:
// STRUCT<STRUCT>: 1111011
// STRUCT: 1111101
// nums_member: 0110101
// lists_member: 1001101
// Slice off the first and last rows.
auto sliced_structs = slice_off_first_and_last_rows(struct_structs_column->view());
// After slice(), the null masks will be:
// STRUCT<STRUCT>: 11101
// STRUCT: 11110
// nums_member: 11010
// lists_member: 00110
auto [output, backing_data] = cudf::structs::detail::push_down_nulls(
sliced_structs, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
// After push_down_nulls(), the null masks will be:
// STRUCT<STRUCT>: 11101
// STRUCT: 11100
// nums_member: 11000
// lists_member: 00100
// Construct expected columns using structs_column_wrapper, which should push the parent nulls
// down automatically. Then, slice() off the ends.
auto expected_nums = make_nums_member<T>(cudf::test::iterators::nulls_at({3, 6}));
auto expected_lists = make_lists_member<T>(cudf::test::iterators::nulls_at({4, 5}));
auto expected_structs = cudf::test::structs_column_wrapper{{expected_nums, expected_lists},
cudf::test::iterators::nulls_at({1})};
auto expected_struct_structs =
cudf::test::structs_column_wrapper{{expected_structs}, cudf::test::iterators::null_at(2)};
auto expected_sliced_structs = slice_off_first_and_last_rows(expected_struct_structs);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(output, expected_sliced_structs);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/ast/transform_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/ast/expressions.hpp>
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/scalar/scalar.hpp>
#include <cudf/scalar/scalar_device_view.cuh>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/transform.hpp>
#include <cudf/types.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <rmm/device_uvector.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <algorithm>
#include <limits>
#include <random>
#include <type_traits>
#include <vector>
template <typename T>
using column_wrapper = cudf::test::fixed_width_column_wrapper<T>;
constexpr cudf::test::debug_output_level verbosity{cudf::test::debug_output_level::ALL_ERRORS};
struct TransformTest : public cudf::test::BaseFixture {};
TEST_F(TransformTest, ColumnReference)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{10, 7, 20, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto const& expected = c_0;
auto result = cudf::compute_column(table, col_ref_0);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, Literal)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{10, 7, 20, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto literal_value = cudf::numeric_scalar<int32_t>(42);
auto literal = cudf::ast::literal(literal_value);
auto expected = column_wrapper<int32_t>{42, 42, 42, 42};
auto result = cudf::compute_column(table, literal);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, NullLiteral)
{
auto c_0 = column_wrapper<int32_t>{0, 0, 0, 0};
auto table = cudf::table_view{{c_0}};
auto literal_value = cudf::numeric_scalar<int32_t>(-123);
literal_value.set_valid_async(false);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::IDENTITY, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<int32_t>({-123, -123, -123, -123}, {0, 0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, IsNull)
{
auto c_0 = column_wrapper<int32_t>{{0, 1, 2, 0}, {0, 1, 1, 0}};
auto table = cudf::table_view{{c_0}};
// result of IS_NULL on literal, will be a column of table size, with all values set to
// !literal.is_valid(). The table values are irrelevant.
auto literal_value = cudf::numeric_scalar<int32_t>(-123);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::IS_NULL, literal);
auto result = cudf::compute_column(table, expression);
auto expected1 = column_wrapper<bool>({0, 0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, result->view(), verbosity);
literal_value.set_valid_async(false);
result = cudf::compute_column(table, expression);
auto expected2 = column_wrapper<bool>({1, 1, 1, 1}, cudf::test::iterators::no_nulls());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, result->view(), verbosity);
auto col_ref_0 = cudf::ast::column_reference(0);
auto expression2 = cudf::ast::operation(cudf::ast::ast_operator::IS_NULL, col_ref_0);
result = cudf::compute_column(table, expression2);
auto expected3 = column_wrapper<bool>({1, 0, 0, 1}, cudf::test::iterators::no_nulls());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, result->view(), verbosity);
}
TEST_F(TransformTest, BasicAddition)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{10, 7, 20, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, col_ref_1);
auto expected = column_wrapper<int32_t>{13, 27, 21, 50};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicAdditionEmptyTable)
{
auto c_0 = column_wrapper<int32_t>{};
auto c_1 = column_wrapper<int32_t>{};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, col_ref_1);
auto expected = column_wrapper<int32_t>{};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicAdditionCast)
{
auto c_0 = column_wrapper<int64_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int8_t>{10, 7, 20, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto cast = cudf::ast::operation(cudf::ast::ast_operator::CAST_TO_INT64, col_ref_1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, cast);
auto expected = column_wrapper<int64_t>{13, 27, 21, 50};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicEquality)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{3, 7, 1, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{true, false, true, false};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicAdditionLarge)
{
auto a = thrust::make_counting_iterator(0);
auto col = column_wrapper<int32_t>(a, a + 2000);
auto table = cudf::table_view{{col, col}};
auto col_ref = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref, col_ref);
auto b = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
auto expected = column_wrapper<int32_t>(b, b + 2000);
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, LessComparator)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{10, 7, 20, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{true, false, true, false};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, LessComparatorLarge)
{
auto a = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
auto b = thrust::make_counting_iterator(500);
auto c_0 = column_wrapper<int32_t>(a, a + 2000);
auto c_1 = column_wrapper<int32_t>(b, b + 2000);
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, col_ref_1);
auto c = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i < 500; });
auto expected = column_wrapper<bool>(c, c + 2000);
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, MultiLevelTreeArithmetic)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{10, 7, 20, 0};
auto c_2 = column_wrapper<int32_t>{-3, 66, 2, -99};
auto table = cudf::table_view{{c_0, c_1, c_2}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto col_ref_2 = cudf::ast::column_reference(2);
auto expression_left_subtree =
cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, col_ref_1);
auto expression_right_subtree =
cudf::ast::operation(cudf::ast::ast_operator::SUB, col_ref_2, col_ref_0);
auto expression_tree = cudf::ast::operation(
cudf::ast::ast_operator::ADD, expression_left_subtree, expression_right_subtree);
auto result = cudf::compute_column(table, expression_tree);
auto expected = column_wrapper<int32_t>{7, 73, 22, -99};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, MultiLevelTreeArithmeticLarge)
{
auto a = thrust::make_counting_iterator(0);
auto b = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i + 1; });
auto c = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
auto c_0 = column_wrapper<int32_t>(a, a + 2000);
auto c_1 = column_wrapper<int32_t>(b, b + 2000);
auto c_2 = column_wrapper<int32_t>(c, c + 2000);
auto table = cudf::table_view{{c_0, c_1, c_2}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto col_ref_2 = cudf::ast::column_reference(2);
auto expr_left_subtree = cudf::ast::operation(cudf::ast::ast_operator::MUL, col_ref_0, col_ref_1);
auto expr_right_subtree =
cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_2, col_ref_0);
auto expr_tree =
cudf::ast::operation(cudf::ast::ast_operator::SUB, expr_left_subtree, expr_right_subtree);
auto result = cudf::compute_column(table, expr_tree);
auto calc = [](auto i) { return (i * (i + 1)) - (i + (i * 2)); };
auto d = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return calc(i); });
auto expected = column_wrapper<int32_t>(d, d + 2000);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, ImbalancedTreeArithmetic)
{
auto c_0 = column_wrapper<double>{0.15, 0.37, 4.2, 21.3};
auto c_1 = column_wrapper<double>{0.0, -42.0, 1.0, 98.6};
auto c_2 = column_wrapper<double>{0.6, std::numeric_limits<double>::infinity(), 0.999, 1.0};
auto table = cudf::table_view{{c_0, c_1, c_2}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto col_ref_2 = cudf::ast::column_reference(2);
auto expression_right_subtree =
cudf::ast::operation(cudf::ast::ast_operator::MUL, col_ref_0, col_ref_1);
auto expression_tree =
cudf::ast::operation(cudf::ast::ast_operator::SUB, col_ref_2, expression_right_subtree);
auto result = cudf::compute_column(table, expression_tree);
auto expected =
column_wrapper<double>{0.6, std::numeric_limits<double>::infinity(), -3.201, -2099.18};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, ImbalancedTreeArithmeticDeep)
{
auto c_0 = column_wrapper<int64_t>{4, 5, 6};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
// expression: (c0 < c0) == (c0 < (c0 + c0))
// {false, false, false} == (c0 < {8, 10, 12})
// {false, false, false} == {true, true, true}
// {false, false, false}
auto expression_left_subtree =
cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, col_ref_0);
auto expression_right_inner_subtree =
cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, col_ref_0);
auto expression_right_subtree =
cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, expression_right_inner_subtree);
auto expression_tree = cudf::ast::operation(
cudf::ast::ast_operator::EQUAL, expression_left_subtree, expression_right_subtree);
auto result = cudf::compute_column(table, expression_tree);
auto expected = column_wrapper<bool>{false, false, false};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, DeeplyNestedArithmeticLogicalExpression)
{
// Test logic for deeply nested arithmetic and logical expressions.
constexpr int64_t left_depth_level = 100;
constexpr int64_t right_depth_level = 75;
auto generate_ast_expr = [](int64_t depth_level,
cudf::ast::column_reference col_ref,
cudf::ast::ast_operator root_operator,
cudf::ast::ast_operator arithmetic_operator,
bool nested_left_tree) {
// Note that a std::list is required here because of its guarantees against reference
// invalidation when items are added or removed. References to items in a std::vector are not
// safe if the vector must re-allocate.
auto expressions = std::list<cudf::ast::operation>();
auto op = arithmetic_operator;
expressions.push_back(cudf::ast::operation(op, col_ref, col_ref));
for (int64_t i = 0; i < depth_level - 1; i++) {
if (i == depth_level - 2) {
op = root_operator;
} else {
op = arithmetic_operator;
}
if (nested_left_tree) {
expressions.push_back(cudf::ast::operation(op, expressions.back(), col_ref));
} else {
expressions.push_back(cudf::ast::operation(op, col_ref, expressions.back()));
}
}
return expressions;
};
auto c_0 = column_wrapper<int64_t>{0, 0, 0};
auto c_1 = column_wrapper<int32_t>{0, 0, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto left_expression = generate_ast_expr(left_depth_level,
col_ref_0,
cudf::ast::ast_operator::LESS,
cudf::ast::ast_operator::ADD,
false);
auto right_expression = generate_ast_expr(right_depth_level,
col_ref_1,
cudf::ast::ast_operator::EQUAL,
cudf::ast::ast_operator::SUB,
true);
auto expression_tree = cudf::ast::operation(
cudf::ast::ast_operator::LOGICAL_OR, left_expression.back(), right_expression.back());
// Expression:
// OR(<(+(+(+(+($0, $0), $0), $0), $0), $0), ==($1, -($1, -($1, -($1, -($1, $1))))))
// ...
// OR(<($L, $0), ==($1, $R))
// true
//
// Breakdown:
// - Left Operand ($L): (+(+(+(+($0, $0), $0), $0), $0), $0)
// - Right Operand ($R): -($1, -($1, -($1, -($1, $1))))
// Explanation:
// If all $1 values and $R values are zeros, the result is true because of the equality check
// combined with the OR operator in OR(<($L, $0), ==($1, $R)).
auto result = cudf::compute_column(table, expression_tree);
auto expected = column_wrapper<bool>{true, true, true};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, MultiLevelTreeComparator)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{10, 7, 20, 0};
auto c_2 = column_wrapper<int32_t>{-3, 66, 2, -99};
auto table = cudf::table_view{{c_0, c_1, c_2}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto col_ref_2 = cudf::ast::column_reference(2);
auto expression_left_subtree =
cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, col_ref_0, col_ref_1);
auto expression_right_subtree =
cudf::ast::operation(cudf::ast::ast_operator::GREATER, col_ref_2, col_ref_0);
auto expression_tree = cudf::ast::operation(
cudf::ast::ast_operator::LOGICAL_AND, expression_left_subtree, expression_right_subtree);
auto result = cudf::compute_column(table, expression_tree);
auto expected = column_wrapper<bool>{false, true, false, false};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, MultiTypeOperationFailure)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<double>{0.15, 0.77, 4.2, 21.3};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression_0_plus_1 =
cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, col_ref_1);
auto expression_1_plus_0 =
cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_1, col_ref_0);
// Operations on different types are not allowed
EXPECT_THROW(cudf::compute_column(table, expression_0_plus_1), cudf::logic_error);
EXPECT_THROW(cudf::compute_column(table, expression_1_plus_0), cudf::logic_error);
}
TEST_F(TransformTest, LiteralComparison)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto literal_value = cudf::numeric_scalar<int32_t>(41);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::GREATER, col_ref_0, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<bool>{false, false, false, true};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, UnaryNot)
{
auto c_0 = column_wrapper<int32_t>{3, 0, 1, 50};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::NOT, col_ref_0);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<bool>{false, true, false, false};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, UnaryTrigonometry)
{
auto c_0 = column_wrapper<double>{0.0, M_PI / 4, M_PI / 3};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto expected_sin = column_wrapper<double>{0.0, std::sqrt(2) / 2, std::sqrt(3.0) / 2.0};
auto expression_sin = cudf::ast::operation(cudf::ast::ast_operator::SIN, col_ref_0);
auto result_sin = cudf::compute_column(table, expression_sin);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_sin, result_sin->view(), verbosity);
auto expected_cos = column_wrapper<double>{1.0, std::sqrt(2) / 2, 0.5};
auto expression_cos = cudf::ast::operation(cudf::ast::ast_operator::COS, col_ref_0);
auto result_cos = cudf::compute_column(table, expression_cos);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_cos, result_cos->view(), verbosity);
auto expected_tan = column_wrapper<double>{0.0, 1.0, std::sqrt(3.0)};
auto expression_tan = cudf::ast::operation(cudf::ast::ast_operator::TAN, col_ref_0);
auto result_tan = cudf::compute_column(table, expression_tan);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_tan, result_tan->view(), verbosity);
}
TEST_F(TransformTest, ArityCheckFailure)
{
auto col_ref_0 = cudf::ast::column_reference(0);
EXPECT_THROW(cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0), cudf::logic_error);
EXPECT_THROW(cudf::ast::operation(cudf::ast::ast_operator::ABS, col_ref_0, col_ref_0),
cudf::logic_error);
}
TEST_F(TransformTest, StringComparison)
{
auto c_0 = cudf::test::strings_column_wrapper({"a", "bb", "ccc", "dddd"});
auto c_1 = cudf::test::strings_column_wrapper({"aa", "b", "cccc", "ddd"});
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{true, false, true, false};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, StringScalarComparison)
{
auto c_0 =
cudf::test::strings_column_wrapper({"1", "12", "123", "23"}, {true, true, false, true});
auto table = cudf::table_view{{c_0}};
auto literal_value = cudf::string_scalar("2");
auto literal = cudf::ast::literal(literal_value);
auto col_ref_0 = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, literal);
auto expected = column_wrapper<bool>{{true, true, true, false}, {true, true, false, true}};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
// compare with null literal
literal_value.set_valid_async(false);
auto expected2 = column_wrapper<bool>{{false, false, false, false}, {false, false, false, false}};
auto result2 = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, NumericScalarComparison)
{
auto c_0 = column_wrapper<int32_t>{1, 12, 123, 23};
auto table = cudf::table_view{{c_0}};
auto literal_value = cudf::numeric_scalar<int32_t>(2);
auto literal = cudf::ast::literal(literal_value);
auto col_ref_0 = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, literal);
auto expected = column_wrapper<bool>{true, false, false, false};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, CopyColumn)
{
auto c_0 = column_wrapper<int32_t>{3, 0, 1, 50};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::IDENTITY, col_ref_0);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<int32_t>{3, 0, 1, 50};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, CopyLiteral)
{
auto c_0 = column_wrapper<int32_t>{0, 0, 0, 0};
auto table = cudf::table_view{{c_0}};
auto literal_value = cudf::numeric_scalar<int32_t>(-123);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::IDENTITY, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<int32_t>{-123, -123, -123, -123};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, TrueDiv)
{
auto c_0 = column_wrapper<int32_t>{3, 0, 1, 50};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto literal_value = cudf::numeric_scalar<int32_t>(2);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::TRUE_DIV, col_ref_0, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<double>{1.5, 0.0, 0.5, 25.0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, FloorDiv)
{
auto c_0 = column_wrapper<double>{3.0, 0.0, 1.0, 50.0};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto literal_value = cudf::numeric_scalar<double>(2.0);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::FLOOR_DIV, col_ref_0, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<double>{1.0, 0.0, 0.0, 25.0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, Mod)
{
auto c_0 = column_wrapper<double>{3.0, 0.0, -1.0, -50.0};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto literal_value = cudf::numeric_scalar<double>(2.0);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::MOD, col_ref_0, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<double>{1.0, 0.0, -1.0, 0.0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, PyMod)
{
auto c_0 = column_wrapper<double>{3.0, 0.0, -1.0, -50.0};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto literal_value = cudf::numeric_scalar<double>(2.0);
auto literal = cudf::ast::literal(literal_value);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::PYMOD, col_ref_0, literal);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<double>{1.0, 0.0, 1.0, 0.0};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicEqualityNullEqualNoNulls)
{
auto c_0 = column_wrapper<int32_t>{3, 20, 1, 50};
auto c_1 = column_wrapper<int32_t>{3, 7, 1, 0};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::NULL_EQUAL, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{true, false, true, false};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicEqualityNormalEqualWithNulls)
{
auto c_0 = column_wrapper<int32_t>{{3, 20, 1, 50}, {1, 1, 0, 0}};
auto c_1 = column_wrapper<int32_t>{{3, 7, 1, 0}, {1, 1, 0, 0}};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{{true, false, true, true}, {1, 1, 0, 0}};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicEqualityNulls)
{
auto c_0 = column_wrapper<int32_t>{{3, 20, 1, 2, 50}, {1, 1, 0, 1, 0}};
auto c_1 = column_wrapper<int32_t>{{3, 7, 1, 2, 0}, {1, 1, 1, 0, 0}};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::NULL_EQUAL, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{{true, false, false, false, true}, {1, 1, 1, 1, 1}};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, UnaryNotNulls)
{
auto c_0 = column_wrapper<int32_t>{{3, 0, 0, 50}, {0, 0, 1, 1}};
auto table = cudf::table_view{{c_0}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::NOT, col_ref_0);
auto result = cudf::compute_column(table, expression);
auto expected = column_wrapper<bool>{{false, true, true, false}, {0, 0, 1, 1}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicAdditionNulls)
{
auto c_0 = column_wrapper<int32_t>{{3, 20, 1, 50}, {0, 0, 1, 1}};
auto c_1 = column_wrapper<int32_t>{{10, 7, 20, 0}, {0, 1, 0, 1}};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref_0, col_ref_1);
auto expected = column_wrapper<int32_t>{{0, 0, 0, 50}, {0, 0, 0, 1}};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, BasicAdditionLargeNulls)
{
auto N = 2000;
auto a = thrust::make_counting_iterator(0);
auto validities = std::vector<int32_t>(N);
std::fill(validities.begin(), validities.begin() + N / 2, 0);
std::fill(validities.begin() + (N / 2), validities.end(), 0);
std::random_device rd;
std::mt19937 gen(rd());
std::shuffle(validities.begin(), validities.end(), gen);
auto col = column_wrapper<int32_t>(a, a + N, validities.begin());
auto table = cudf::table_view{{col}};
auto col_ref = cudf::ast::column_reference(0);
auto expression = cudf::ast::operation(cudf::ast::ast_operator::ADD, col_ref, col_ref);
auto b = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; });
auto expected = column_wrapper<int32_t>(b, b + N, validities.begin());
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, NullLogicalAnd)
{
auto c_0 = column_wrapper<bool>{{false, false, true, true, false, false, true, true},
{1, 1, 1, 1, 1, 0, 0, 0}};
auto c_1 = column_wrapper<bool>{{false, true, false, true, true, true, false, true},
{1, 1, 1, 1, 0, 1, 1, 0}};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression =
cudf::ast::operation(cudf::ast::ast_operator::NULL_LOGICAL_AND, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{{false, false, false, true, false, false, false, true},
{1, 1, 1, 1, 1, 0, 1, 0}};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
TEST_F(TransformTest, NullLogicalOr)
{
auto c_0 = column_wrapper<bool>{{false, false, true, true, false, false, true, true},
{1, 1, 1, 1, 1, 0, 1, 0}};
auto c_1 = column_wrapper<bool>{{false, true, false, true, true, true, false, true},
{1, 1, 1, 1, 0, 1, 0, 0}};
auto table = cudf::table_view{{c_0, c_1}};
auto col_ref_0 = cudf::ast::column_reference(0);
auto col_ref_1 = cudf::ast::column_reference(1);
auto expression =
cudf::ast::operation(cudf::ast::ast_operator::NULL_LOGICAL_OR, col_ref_0, col_ref_1);
auto expected = column_wrapper<bool>{{false, true, true, true, false, true, true, true},
{1, 1, 1, 1, 0, 1, 1, 0}};
auto result = cudf::compute_column(table, expression);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view(), verbosity);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/scan_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <tests/reductions/scan_tests.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/utilities/device_operators.cuh>
#include <cudf/reduction.hpp>
#include <thrust/host_vector.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/tuple.h>
#include <algorithm>
#include <numeric>
using aggregation = cudf::aggregation;
using scan_aggregation = cudf::scan_aggregation;
using cudf::null_policy;
using cudf::scan_type;
// This is the main test feature
template <typename T>
struct ScanTest : public BaseScanTest<T> {
using HostType = typename BaseScanTest<T>::HostType;
void scan_test(cudf::host_span<HostType const> v,
cudf::host_span<bool const> b,
scan_aggregation const& agg,
scan_type inclusive,
null_policy null_handling,
numeric::scale_type scale)
{
auto col_in = this->make_column(v, b, scale);
if (not this->params_supported(agg, inclusive)) {
EXPECT_THROW(scan(*col_in, agg, inclusive, null_handling), cudf::logic_error);
} else {
auto expected_col_out = this->make_expected(v, b, agg, inclusive, null_handling, scale);
auto col_out = scan(*col_in, agg, inclusive, null_handling);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_col_out, *col_out);
EXPECT_FALSE(cudf::has_nonempty_nulls(col_out->view()));
}
}
// Overload to iterate the test over a few different scales for fixed-point tests
void scan_test(cudf::host_span<HostType const> v,
cudf::host_span<bool const> b,
scan_aggregation const& agg,
scan_type inclusive,
null_policy null_handling = null_policy::EXCLUDE)
{
if constexpr (cudf::is_fixed_point<T>()) {
for (auto scale : {0, -1, -2, -3}) {
scan_test(v, b, agg, inclusive, null_handling, numeric::scale_type{scale});
}
} else {
scan_test(v, b, agg, inclusive, null_handling, numeric::scale_type{0});
}
}
bool params_supported(scan_aggregation const& agg, scan_type inclusive)
{
bool supported = [&] {
switch (agg.kind) {
case aggregation::SUM: return std::is_invocable_v<cudf::DeviceSum, T, T>;
case aggregation::PRODUCT: return std::is_invocable_v<cudf::DeviceProduct, T, T>;
case aggregation::MIN: return std::is_invocable_v<cudf::DeviceMin, T, T>;
case aggregation::MAX: return std::is_invocable_v<cudf::DeviceMax, T, T>;
case aggregation::RANK: return std::is_invocable_v<cudf::DeviceMax, T, T>; // comparable
default: return false;
}
return false;
}();
// special cases for individual types
if constexpr (cudf::is_fixed_point<T>()) return supported && (agg.kind != aggregation::PRODUCT);
if constexpr (std::is_same_v<T, cudf::string_view> || cudf::is_timestamp<T>())
return supported && (inclusive == scan_type::INCLUSIVE);
return supported;
}
std::function<HostType(HostType, HostType)> make_agg(scan_aggregation const& agg)
{
if constexpr (std::is_same_v<T, cudf::string_view>) {
switch (agg.kind) {
case aggregation::MIN: return [](HostType a, HostType b) { return std::min(a, b); };
case aggregation::MAX: return [](HostType a, HostType b) { return std::max(a, b); };
default: {
CUDF_FAIL("Unsupported aggregation");
return [](HostType a, HostType b) { return std::min(a, b); };
}
}
} else {
switch (agg.kind) {
case aggregation::SUM: return std::plus<HostType>{};
case aggregation::PRODUCT: return std::multiplies<HostType>{};
case aggregation::MIN: return [](HostType a, HostType b) { return std::min(a, b); };
case aggregation::MAX: return [](HostType a, HostType b) { return std::max(a, b); };
default: {
CUDF_FAIL("Unsupported aggregation");
return [](HostType a, HostType b) { return std::min(a, b); };
}
}
}
}
HostType make_identity(scan_aggregation const& agg)
{
if constexpr (std::is_same_v<T, cudf::string_view>) {
switch (agg.kind) {
case aggregation::MIN: return std::string{"\xF7\xBF\xBF\xBF"};
case aggregation::MAX: return std::string{};
default: CUDF_FAIL("Unsupported aggregation");
}
} else {
switch (agg.kind) {
case aggregation::SUM: return HostType{0};
case aggregation::PRODUCT: return HostType{1};
case aggregation::MIN:
if constexpr (std::numeric_limits<HostType>::has_infinity) {
return std::numeric_limits<HostType>::infinity();
} else {
return std::numeric_limits<HostType>::max();
}
case aggregation::MAX:
if constexpr (std::numeric_limits<HostType>::has_infinity) {
return -std::numeric_limits<HostType>::infinity();
} else {
return std::numeric_limits<HostType>::lowest();
}
default: CUDF_FAIL("Unsupported aggregation");
}
}
}
std::unique_ptr<cudf::column> make_expected(cudf::host_span<HostType const> v,
cudf::host_span<bool const> b,
scan_aggregation const& agg,
scan_type inclusive,
null_policy null_handling,
numeric::scale_type scale = numeric::scale_type{0})
{
auto op = this->make_agg(agg);
auto identity = this->make_identity(agg);
thrust::host_vector<HostType> expected(v.size());
thrust::host_vector<bool> b_out(b.begin(), b.end());
bool const nullable = (b.size() > 0);
auto masked_value = [identity](auto const& z) {
return thrust::get<1>(z) ? thrust::get<0>(z) : identity;
};
if (inclusive == scan_type::INCLUSIVE) {
if (nullable) {
std::transform_inclusive_scan(
thrust::make_zip_iterator(thrust::make_tuple(v.begin(), b.begin())),
thrust::make_zip_iterator(thrust::make_tuple(v.end(), b.end())),
expected.begin(),
op,
masked_value);
if (null_handling == null_policy::INCLUDE) {
std::inclusive_scan(b.begin(), b.end(), b_out.begin(), std::logical_and<bool>{});
}
} else {
std::inclusive_scan(v.begin(), v.end(), expected.begin(), op);
}
} else {
if (nullable) {
std::transform_exclusive_scan(
thrust::make_zip_iterator(thrust::make_tuple(v.begin(), b.begin())),
thrust::make_zip_iterator(thrust::make_tuple(v.end(), b.end())),
expected.begin(),
identity,
op,
masked_value);
if (null_handling == null_policy::INCLUDE) {
std::exclusive_scan(b.begin(), b.end(), b_out.begin(), true, std::logical_and<bool>{});
}
} else {
std::exclusive_scan(v.begin(), v.end(), expected.begin(), identity, op);
}
}
return nullable ? this->make_column(expected, b_out, scale)
: this->make_column(expected, {}, scale);
}
};
using TestTypes = cudf::test::
Concat<cudf::test::NumericTypes, cudf::test::FixedPointTypes, cudf::test::StringTypes>;
TYPED_TEST_SUITE(ScanTest, TestTypes);
TYPED_TEST(ScanTest, Min)
{
auto const v = make_vector<TypeParam>({123, 64, 63, 99, -5, 123, -16, -120, -111});
auto const b = thrust::host_vector<bool>(std::vector<bool>{1, 0, 1, 1, 1, 1, 0, 0, 1});
// no nulls
this->scan_test(v, {}, *cudf::make_min_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v, {}, *cudf::make_min_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
// skipna = true (default)
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
// skipna = false
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::INCLUDE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::INCLUDE);
}
TYPED_TEST(ScanTest, Max)
{
auto const v = make_vector<TypeParam>({-120, 5, 0, -120, -111, 64, 63, 99, 123, -16});
auto const b = thrust::host_vector<bool>(std::vector<bool>{1, 0, 1, 1, 1, 1, 0, 1, 0, 1});
// inclusive
// no nulls
this->scan_test(v, {}, *cudf::make_max_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v, {}, *cudf::make_max_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
// skipna = true (default)
this->scan_test(v,
b,
*cudf::make_max_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v,
b,
*cudf::make_max_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
// skipna = false
this->scan_test(v,
b,
*cudf::make_max_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::INCLUDE);
this->scan_test(v,
b,
*cudf::make_max_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::INCLUDE);
}
TYPED_TEST(ScanTest, Product)
{
auto const v = make_vector<TypeParam>({5, -1, 1, 3, -2, 4});
auto const b = thrust::host_vector<bool>(std::vector<bool>{1, 1, 1, 0, 1, 1});
// no nulls
this->scan_test(v, {}, *cudf::make_product_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v, {}, *cudf::make_product_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
// skipna = true (default)
this->scan_test(v,
b,
*cudf::make_product_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v,
b,
*cudf::make_product_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
// skipna = false
this->scan_test(v,
b,
*cudf::make_product_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::INCLUDE);
this->scan_test(v,
b,
*cudf::make_product_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::INCLUDE);
}
TYPED_TEST(ScanTest, Sum)
{
auto const v = [] {
if (std::is_signed_v<TypeParam>)
return make_vector<TypeParam>({-120, 5, 6, 113, -111, 64, -63, 9, 34, -16});
return make_vector<TypeParam>({12, 5, 6, 13, 11, 14, 3, 9, 34, 16});
}();
auto const b = thrust::host_vector<bool>(std::vector<bool>{1, 0, 1, 1, 0, 0, 1, 1, 1, 1});
// no nulls
this->scan_test(v, {}, *cudf::make_sum_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v, {}, *cudf::make_sum_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
// skipna = true (default)
this->scan_test(v,
b,
*cudf::make_sum_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v,
b,
*cudf::make_sum_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
// skipna = false
this->scan_test(v,
b,
*cudf::make_sum_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::INCLUDE);
this->scan_test(v,
b,
*cudf::make_sum_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::INCLUDE);
}
TYPED_TEST(ScanTest, EmptyColumn)
{
auto const v = thrust::host_vector<typename TypeParam_to_host_type<TypeParam>::type>{};
auto const b = thrust::host_vector<bool>{};
// skipna = true (default)
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
// skipna = false
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::INCLUDE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::INCLUDE);
}
TYPED_TEST(ScanTest, LeadingNulls)
{
auto const v = make_vector<TypeParam>({100, 200, 300});
auto const b = thrust::host_vector<bool>(std::vector<bool>{0, 1, 1});
// skipna = true (default)
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
// skipna = false
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::INCLUDE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::INCLUDE);
}
class ScanStringsTest : public ScanTest<cudf::string_view> {};
TEST_F(ScanStringsTest, MoreStringsMinMax)
{
int row_count = 512;
auto data_begin = cudf::detail::make_counting_transform_iterator(0, [](auto idx) {
char const s[] = {static_cast<char>('a' + (idx % 26)), 0};
return std::string(s);
});
auto validity = cudf::detail::make_counting_transform_iterator(
0, [](auto idx) -> bool { return (idx % 23) != 22; });
cudf::test::strings_column_wrapper col(data_begin, data_begin + row_count, validity);
thrust::host_vector<std::string> v(data_begin, data_begin + row_count);
thrust::host_vector<bool> b(validity, validity + row_count);
this->scan_test(v, {}, *cudf::make_min_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v, b, *cudf::make_min_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v, {}, *cudf::make_min_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
this->scan_test(v, b, *cudf::make_min_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
this->scan_test(v,
b,
*cudf::make_min_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v, {}, *cudf::make_max_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v, b, *cudf::make_max_aggregation<scan_aggregation>(), scan_type::INCLUSIVE);
this->scan_test(v,
b,
*cudf::make_max_aggregation<scan_aggregation>(),
scan_type::INCLUSIVE,
null_policy::EXCLUDE);
this->scan_test(v, {}, *cudf::make_max_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
this->scan_test(v, b, *cudf::make_max_aggregation<scan_aggregation>(), scan_type::EXCLUSIVE);
this->scan_test(v,
b,
*cudf::make_max_aggregation<scan_aggregation>(),
scan_type::EXCLUSIVE,
null_policy::EXCLUDE);
}
template <typename T>
struct ScanChronoTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ScanChronoTest, cudf::test::ChronoTypes);
TYPED_TEST(ScanChronoTest, ChronoMinMax)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> col({5, 4, 6, 0, 1, 6, 5, 3},
{1, 1, 1, 0, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected_min({5, 4, 4, 0, 1, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 1});
auto result =
cudf::scan(col, *cudf::make_min_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result->view(), expected_min);
result = cudf::scan(col,
*cudf::make_min_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result->view(), expected_min);
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected_max({5, 5, 6, 0, 6, 6, 6, 6},
{1, 1, 1, 0, 1, 1, 1, 1});
result =
cudf::scan(col, *cudf::make_max_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result->view(), expected_max);
result = cudf::scan(col,
*cudf::make_max_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result->view(), expected_max);
EXPECT_THROW(
cudf::scan(col, *cudf::make_max_aggregation<scan_aggregation>(), cudf::scan_type::EXCLUSIVE),
cudf::logic_error);
EXPECT_THROW(
cudf::scan(col, *cudf::make_min_aggregation<scan_aggregation>(), cudf::scan_type::EXCLUSIVE),
cudf::logic_error);
}
template <typename T>
struct ScanDurationTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ScanDurationTest, cudf::test::DurationTypes);
TYPED_TEST(ScanDurationTest, Sum)
{
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> col({5, 4, 6, 0, 1, 6, 5, 3},
{1, 1, 1, 0, 1, 1, 1, 1});
cudf::test::fixed_width_column_wrapper<TypeParam, int32_t> expected({5, 9, 15, 0, 16, 22, 27, 30},
{1, 1, 1, 0, 1, 1, 1, 1});
auto result =
cudf::scan(col, *cudf::make_sum_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result->view(), expected);
result = cudf::scan(col,
*cudf::make_sum_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result->view(), expected);
EXPECT_THROW(
cudf::scan(col, *cudf::make_sum_aggregation<scan_aggregation>(), cudf::scan_type::EXCLUSIVE),
cudf::logic_error);
}
struct StructScanTest : public cudf::test::BaseFixture {};
TEST_F(StructScanTest, StructScanMinMaxNoNull)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int32_t>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using STRUCTS_CW = cudf::test::structs_column_wrapper;
auto const input = [] {
auto child1 = STRINGS_CW{"año", "bit", "₹1", "aaa", "zit", "bat", "aab", "$1", "€1", "wut"};
auto child2 = INTS_CW{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
return STRUCTS_CW{{child1, child2}};
}();
{
auto const expected = [] {
auto child1 = STRINGS_CW{"año", "año", "año", "aaa", "aaa", "aaa", "aaa", "$1", "$1", "$1"};
auto child2 = INTS_CW{1, 1, 1, 4, 4, 4, 4, 8, 8, 8};
return STRUCTS_CW{{child1, child2}};
}();
auto const result = cudf::scan(
input, *cudf::make_min_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const expected = [] {
auto child1 = STRINGS_CW{"año", "bit", "₹1", "₹1", "₹1", "₹1", "₹1", "₹1", "₹1", "₹1"};
auto child2 = INTS_CW{1, 2, 3, 3, 3, 3, 3, 3, 3, 3};
return STRUCTS_CW{{child1, child2}};
}();
auto const result = cudf::scan(
input, *cudf::make_max_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(StructScanTest, StructScanMinMaxSlicedInput)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using STRUCTS_CW = cudf::test::structs_column_wrapper;
constexpr int32_t dont_care{1};
auto const input_original = [] {
auto child1 = STRINGS_CW{"$dont_care",
"$dont_care",
"año",
"bit",
"₹1",
"aaa",
"zit",
"bat",
"aab",
"$1",
"€1",
"wut",
"₹dont_care"};
auto child2 = INTS_CW{dont_care, dont_care, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, dont_care};
return STRUCTS_CW{{child1, child2}};
}();
auto const input = cudf::slice(input_original, {2, 12})[0];
{
auto const expected = [] {
auto child1 = STRINGS_CW{"año", "año", "año", "aaa", "aaa", "aaa", "aaa", "$1", "$1", "$1"};
auto child2 = INTS_CW{1, 1, 1, 4, 4, 4, 4, 8, 8, 8};
return STRUCTS_CW{{child1, child2}};
}();
auto const result = cudf::scan(
input, *cudf::make_min_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const expected = [] {
auto child1 = STRINGS_CW{"año", "bit", "₹1", "₹1", "₹1", "₹1", "₹1", "₹1", "₹1", "₹1"};
auto child2 = INTS_CW{1, 2, 3, 3, 3, 3, 3, 3, 3, 3};
return STRUCTS_CW{{child1, child2}};
}();
auto const result = cudf::scan(
input, *cudf::make_max_aggregation<scan_aggregation>(), cudf::scan_type::INCLUSIVE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
TEST_F(StructScanTest, StructScanMinMaxWithNulls)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using STRUCTS_CW = cudf::test::structs_column_wrapper;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
// `null` means null at child column.
// `NULL` means null at parent column.
auto const input = [] {
auto child1 = STRINGS_CW{{"año",
"bit",
"₹1" /*null*/,
"aaa" /*NULL*/,
"zit",
"bat",
"aab",
"$1" /*null*/,
"€1" /*NULL*/,
"wut"},
nulls_at({2, 7})};
auto child2 = INTS_CW{{1, 2, 3 /*null*/, 4 /*NULL*/, 5, 6, 7, 8 /*null*/, 9 /*NULL*/, 10},
nulls_at({2, 7})};
return STRUCTS_CW{{child1, child2}, nulls_at({3, 8})};
}();
{
auto const expected = [] {
auto child1 = STRINGS_CW{{"año",
"año",
"" /*null*/,
"" /*null*/,
"" /*null*/,
"" /*null*/,
"" /*null*/,
"" /*null*/,
"" /*null*/,
"" /*null*/},
nulls_at({2, 3, 4, 5, 6, 7, 8, 9})};
auto child2 = INTS_CW{{1,
1,
0 /*null*/,
0 /*null*/,
0 /*null*/,
0 /*null*/,
0 /*null*/,
0 /*null*/,
0 /*null*/,
0 /*null*/},
nulls_at({2, 3, 4, 5, 6, 7, 8, 9})};
return STRUCTS_CW{{child1, child2}, nulls_at({3, 8})};
}();
auto const result = cudf::scan(input,
*cudf::make_min_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const expected = [] {
auto child1 = STRINGS_CW{
"año", "bit", "bit", "" /*NULL*/, "zit", "zit", "zit", "zit", "" /*NULL*/, "zit"};
auto child2 = INTS_CW{1, 2, 2, 0 /*NULL*/, 5, 5, 5, 5, 0 /*NULL*/, 5};
return STRUCTS_CW{{child1, child2}, nulls_at({3, 8})};
}();
auto const result = cudf::scan(input,
*cudf::make_max_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const expected = [] {
auto child1 = STRINGS_CW{{"año",
"año",
"" /*null*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/},
null_at(2)};
auto child2 = INTS_CW{{1,
1,
0 /*null*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/},
null_at(2)};
return STRUCTS_CW{{child1, child2}, nulls_at({3, 4, 5, 6, 7, 8, 9})};
}();
auto const result = cudf::scan(input,
*cudf::make_min_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
{
auto const expected = [] {
auto child1 = STRINGS_CW{"año",
"bit",
"bit",
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/,
"" /*NULL*/};
auto child2 = INTS_CW{1,
2,
2,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/,
0 /*NULL*/};
return STRUCTS_CW{{child1, child2}, nulls_at({3, 4, 5, 6, 7, 8, 9})};
}();
auto const result = cudf::scan(input,
*cudf::make_max_aggregation<scan_aggregation>(),
cudf::scan_type::INCLUSIVE,
null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->view());
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/list_rank_test.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <benchmarks/common/generate_input.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/filling.hpp>
#include <cudf/reduction.hpp>
struct ListRankScanTest : public cudf::test::BaseFixture {
inline void test_ungrouped_rank_scan(cudf::column_view const& input,
cudf::column_view const& expect_vals,
cudf::scan_aggregation const& agg,
cudf::null_policy null_handling)
{
auto col_out = cudf::scan(input, agg, cudf::scan_type::INCLUSIVE, null_handling);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(
expect_vals, col_out->view(), cudf::test::debug_output_level::ALL_ERRORS);
}
};
TEST_F(ListRankScanTest, BasicList)
{
using lcw = cudf::test::lists_column_wrapper<uint64_t>;
auto const col = lcw{{}, {}, {1}, {1, 1}, {1}, {1, 2}, {2, 2}, {2}, {2}, {2, 1}, {2, 2}, {2, 2}};
auto const expected_dense_vals =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 9};
this->test_ungrouped_rank_scan(
col,
expected_dense_vals,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
TEST_F(ListRankScanTest, DeepList)
{
using lcw = cudf::test::lists_column_wrapper<uint64_t>;
lcw col{
{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}},
{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}},
{{1, 2, 3}, {}, {4, 5}, {0, 6, 0}},
{{7, 8}, {}},
lcw{lcw{}, lcw{}, lcw{}},
lcw{lcw{}},
lcw{lcw{}},
lcw{lcw{}},
lcw{lcw{}, lcw{}, lcw{}},
lcw{lcw{}, lcw{}, lcw{}},
{lcw{10}},
{lcw{10}},
{{13, 14}, {15}},
{{13, 14}, {16}},
lcw{},
lcw{lcw{}},
};
{ // Non-sliced
auto const expected_dense_vals = cudf::test::fixed_width_column_wrapper<cudf::size_type>{
1, 1, 2, 3, 4, 5, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11};
this->test_ungrouped_rank_scan(
col,
expected_dense_vals,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
{ // sliced
auto sliced_col = cudf::slice(col, {3, 12})[0];
auto const expected_dense_vals =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 3, 3, 3, 4, 4, 5, 5};
this->test_ungrouped_rank_scan(
sliced_col,
expected_dense_vals,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
}
TEST_F(ListRankScanTest, ListOfStruct)
{
// Constructing a list of struct of two elements
// 0. [] ==
// 1. [] !=
// 2. Null ==
// 3. Null !=
// 4. [Null, Null] !=
// 5. [Null] ==
// 6. [Null] ==
// 7. [Null] !=
// 8. [{Null, Null}] !=
// 9. [{1,'a'}, {2,'b'}] !=
// 10. [{0,'a'}, {2,'b'}] !=
// 11. [{0,'a'}, {2,'c'}] ==
// 12. [{0,'a'}, {2,'c'}] !=
// 13. [{0,Null}] ==
// 14. [{0,Null}] !=
// 15. [{Null, 0}] ==
// 16. [{Null, 0}]
auto col1 = cudf::test::fixed_width_column_wrapper<int32_t>{
{-1, -1, 0, 2, 2, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 1, 2},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0}};
auto col2 = cudf::test::strings_column_wrapper{
{"x", "x", "a", "a", "b", "b", "a", "b", "a", "b", "a", "c", "a", "c", "a", "c", "b", "b"},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1}};
auto struct_col = cudf::test::structs_column_wrapper{
{col1, col2}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{
0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18};
auto list_nullmask = std::vector<bool>{1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(list_nullmask.begin(), list_nullmask.end());
auto list_column = cudf::column_view(cudf::data_type(cudf::type_id::LIST),
17,
nullptr,
static_cast<cudf::bitmask_type*>(null_mask.data()),
null_count,
0,
{offsets, struct_col});
{ // Non-sliced
auto expect = cudf::test::fixed_width_column_wrapper<cudf::size_type>{
1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
this->test_ungrouped_rank_scan(
list_column,
expect,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
{ // Sliced
auto sliced_col = cudf::slice(list_column, {3, 15})[0];
auto expect =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 2, 3, 3, 3, 4, 5, 6, 7, 7, 8, 8};
this->test_ungrouped_rank_scan(
sliced_col,
expect,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
}
TEST_F(ListRankScanTest, ListOfEmptyStruct)
{
// []
// []
// Null
// Null
// [Null, Null]
// [Null, Null]
// [Null, Null]
// [Null]
// [Null]
// [{}]
// [{}]
// [{}, {}]
// [{}, {}]
auto struct_validity = std::vector<bool>{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(struct_validity.begin(), struct_validity.end());
auto struct_col = cudf::make_structs_column(14, {}, null_count, std::move(null_mask));
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{
0, 0, 0, 0, 0, 2, 4, 6, 7, 8, 9, 10, 12, 14};
auto list_nullmask = std::vector<bool>{1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1};
std::tie(null_mask, null_count) =
cudf::test::detail::make_null_mask(list_nullmask.begin(), list_nullmask.end());
auto list_column = cudf::make_lists_column(
13, offsets.release(), std::move(struct_col), null_count, std::move(null_mask));
auto expect =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6};
this->test_ungrouped_rank_scan(
*list_column,
expect,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
TEST_F(ListRankScanTest, EmptyDeepList)
{
// List<List<int>>, where all lists are empty
// []
// []
// Null
// Null
// Internal empty list
auto list1 = cudf::test::lists_column_wrapper<int>{};
auto offsets = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 0, 0, 0};
auto list_nullmask = std::vector<bool>{1, 1, 0, 0};
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(list_nullmask.begin(), list_nullmask.end());
auto list_column = cudf::make_lists_column(
4, offsets.release(), list1.release(), null_count, std::move(null_mask));
auto expect = cudf::test::fixed_width_column_wrapper<cudf::size_type>{1, 1, 2, 2};
this->test_ungrouped_rank_scan(
*list_column,
expect,
*cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE),
cudf::null_policy::INCLUDE);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/rank_tests.cpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "scan_tests.hpp"
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/reduction.hpp>
#include <cudf/types.hpp>
#include <thrust/host_vector.h>
using rank_result_col = cudf::test::fixed_width_column_wrapper<cudf::size_type>;
using percent_result_col = cudf::test::fixed_width_column_wrapper<double>;
auto const rank = cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::MIN);
auto const dense_rank =
cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::DENSE);
auto const percent_rank =
cudf::make_rank_aggregation<cudf::scan_aggregation>(cudf::rank_method::MIN,
{},
cudf::null_policy::INCLUDE,
{},
cudf::rank_percentage::ONE_NORMALIZED);
auto constexpr INCLUSIVE_SCAN = cudf::scan_type::INCLUSIVE;
auto constexpr INCLUDE_NULLS = cudf::null_policy::INCLUDE;
template <typename T>
struct TypedRankScanTest : BaseScanTest<T> {
inline void test_ungrouped_rank_scan(cudf::column_view const& input,
cudf::column_view const& expect_vals,
cudf::scan_aggregation const& agg)
{
auto col_out = cudf::scan(input, agg, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expect_vals, col_out->view());
}
};
using RankTypes = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::FixedPointTypes,
cudf::test::ChronoTypes,
cudf::test::StringTypes>;
TYPED_TEST_SUITE(TypedRankScanTest, RankTypes);
TYPED_TEST(TypedRankScanTest, Rank)
{
auto const v = [] {
if (std::is_signed_v<TypeParam>)
return make_vector<TypeParam>({-120, -120, -120, -16, -16, 5, 6, 6, 6, 6, 34, 113});
return make_vector<TypeParam>({5, 5, 5, 6, 6, 9, 11, 11, 11, 11, 14, 34});
}();
auto const col = this->make_column(v);
auto const expected_dense = rank_result_col{1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 6};
auto const expected_rank = rank_result_col{1, 1, 1, 4, 4, 6, 7, 7, 7, 7, 11, 12};
auto const expected_percent = percent_result_col{0.0,
0.0,
0.0,
3.0 / 11,
3.0 / 11,
5.0 / 11,
6.0 / 11,
6.0 / 11,
6.0 / 11,
6.0 / 11,
10.0 / 11,
11.0 / 11};
this->test_ungrouped_rank_scan(*col, expected_dense, *dense_rank);
this->test_ungrouped_rank_scan(*col, expected_rank, *rank);
this->test_ungrouped_rank_scan(*col, expected_percent, *percent_rank);
}
TYPED_TEST(TypedRankScanTest, RankWithNulls)
{
auto const v = [] {
if (std::is_signed_v<TypeParam>)
return make_vector<TypeParam>({-120, -120, -120, -16, -16, 5, 6, 6, 6, 6, 34, 113});
return make_vector<TypeParam>({5, 5, 5, 6, 6, 9, 11, 11, 11, 11, 14, 34});
}();
auto const null_iter = cudf::test::iterators::nulls_at({3, 6, 7, 11});
auto const b = thrust::host_vector<bool>(null_iter, null_iter + v.size());
auto col = this->make_column(v, b);
auto const expected_dense = rank_result_col{1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 8};
auto const expected_rank = rank_result_col{1, 1, 1, 4, 5, 6, 7, 7, 9, 9, 11, 12};
auto const expected_percent = percent_result_col{0.0,
0.0,
0.0,
3.0 / 11,
4.0 / 11,
5.0 / 11,
6.0 / 11,
6.0 / 11,
8.0 / 11,
8.0 / 11,
10.0 / 11,
11.0 / 11};
this->test_ungrouped_rank_scan(*col, expected_dense, *dense_rank);
this->test_ungrouped_rank_scan(*col, expected_rank, *rank);
this->test_ungrouped_rank_scan(*col, expected_percent, *percent_rank);
}
namespace {
template <typename TypeParam>
auto make_input_column()
{
if constexpr (std::is_same_v<TypeParam, cudf::string_view>) {
return cudf::test::strings_column_wrapper{
{"0", "0", "4", "4", "4", "5", "7", "7", "7", "9", "9", "9"},
cudf::test::iterators::null_at(5)};
} else {
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam>;
return (std::is_signed_v<TypeParam>)
? fw_wrapper{{-1, -1, -4, -4, -4, 5, 7, 7, 7, 9, 9, 9},
cudf::test::iterators::null_at(5)}
: fw_wrapper{{0, 0, 4, 4, 4, 5, 7, 7, 7, 9, 9, 9}, cudf::test::iterators::null_at(5)};
}
}
auto make_strings_column()
{
return cudf::test::strings_column_wrapper{
{"0a", "0a", "2a", "2a", "3b", "5", "6c", "6c", "", "9", "9", "10d"},
cudf::test::iterators::null_at(8)};
}
template <typename TypeParam>
auto make_mixed_structs_column()
{
auto col = make_input_column<TypeParam>();
auto strings = make_strings_column();
return cudf::test::structs_column_wrapper{{col, strings}};
}
} // namespace
TYPED_TEST(TypedRankScanTest, MixedStructs)
{
auto const struct_col = make_mixed_structs_column<TypeParam>();
auto const expected_dense = rank_result_col{1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8};
auto const expected_rank = rank_result_col{1, 1, 3, 3, 5, 6, 7, 7, 9, 10, 10, 12};
auto const expected_percent = percent_result_col{0.0,
0.0,
2.0 / 11,
2.0 / 11,
4.0 / 11,
5.0 / 11,
6.0 / 11,
6.0 / 11,
8.0 / 11,
9.0 / 11,
9.0 / 11,
11.0 / 11};
this->test_ungrouped_rank_scan(struct_col, expected_dense, *dense_rank);
this->test_ungrouped_rank_scan(struct_col, expected_rank, *rank);
this->test_ungrouped_rank_scan(struct_col, expected_percent, *percent_rank);
}
TYPED_TEST(TypedRankScanTest, NestedStructs)
{
auto const nested_col = [&] {
auto struct_col = [&] {
auto col = make_input_column<TypeParam>();
auto strings = make_strings_column();
return cudf::test::structs_column_wrapper{{col, strings}};
}();
auto col = make_input_column<TypeParam>();
return cudf::test::structs_column_wrapper{{struct_col, col}};
}();
auto const flat_col = [&] {
auto col = make_input_column<TypeParam>();
auto strings_col = make_strings_column();
auto nuther_col = make_input_column<TypeParam>();
return cudf::test::structs_column_wrapper{{col, strings_col, nuther_col}};
}();
auto const dense_out = cudf::scan(nested_col, *dense_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const dense_expected = cudf::scan(flat_col, *dense_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(dense_out->view(), dense_expected->view());
auto const rank_out = cudf::scan(nested_col, *rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const rank_expected = cudf::scan(flat_col, *rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(rank_out->view(), rank_expected->view());
auto const percent_out = cudf::scan(nested_col, *percent_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const percent_expected = cudf::scan(flat_col, *percent_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(percent_out->view(), percent_expected->view());
}
TYPED_TEST(TypedRankScanTest, StructsWithNullPushdown)
{
auto struct_col = make_mixed_structs_column<TypeParam>().release();
// First, verify that if the structs column has only nulls, all output rows are ranked 1.
{
// Null mask not pushed down to members.
struct_col->set_null_mask(create_null_mask(struct_col->size(), cudf::mask_state::ALL_NULL),
struct_col->size());
auto const expected_null_result = rank_result_col{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
auto const expected_percent_rank_null_result =
percent_result_col{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
auto const dense_out = cudf::scan(*struct_col, *dense_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const rank_out = cudf::scan(*struct_col, *rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const percent_out = cudf::scan(*struct_col, *percent_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(dense_out->view(), expected_null_result);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(rank_out->view(), expected_null_result);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(percent_out->view(), expected_percent_rank_null_result);
}
// Next, verify that if the structs column a null mask that is NOT pushed down to members,
// the ranks are still correct.
{
auto const null_iter = cudf::test::iterators::nulls_at({1, 2});
auto [null_mask, null_count] =
cudf::test::detail::make_null_mask(null_iter, null_iter + struct_col->size());
struct_col->set_null_mask(std::move(null_mask), null_count);
auto const expected_dense = rank_result_col{1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9};
auto const expected_rank = rank_result_col{1, 2, 2, 4, 5, 6, 7, 7, 9, 10, 10, 12};
auto const expected_percent = percent_result_col{0.0,
1.0 / 11,
1.0 / 11,
3.0 / 11,
4.0 / 11,
5.0 / 11,
6.0 / 11,
6.0 / 11,
8.0 / 11,
9.0 / 11,
9.0 / 11,
11.0 / 11};
auto const dense_out = cudf::scan(*struct_col, *dense_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const rank_out = cudf::scan(*struct_col, *rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const percent_out = cudf::scan(*struct_col, *percent_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(dense_out->view(), expected_dense);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(rank_out->view(), expected_rank);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(percent_out->view(), expected_percent);
}
}
struct RankScanTest : public cudf::test::BaseFixture {};
TEST(RankScanTest, BoolRank)
{
auto const vals =
cudf::test::fixed_width_column_wrapper<bool>{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1};
auto const expected_dense = rank_result_col{1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2};
auto const expected_rank = rank_result_col{1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4};
auto const expected_percent = percent_result_col{0.0,
0.0,
0.0,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11};
auto const dense_out = cudf::scan(vals, *dense_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const rank_out = cudf::scan(vals, *rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto const percent_out = cudf::scan(vals, *percent_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_dense, dense_out->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_rank, rank_out->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_percent, percent_out->view());
}
TEST(RankScanTest, BoolRankWithNull)
{
auto const vals = cudf::test::fixed_width_column_wrapper<bool>{
{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, cudf::test::iterators::nulls_at({8, 9, 10, 11})};
auto const expected_dense = rank_result_col{1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3};
auto const expected_rank = rank_result_col{1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 9};
auto const expected_percent = percent_result_col{0.0,
0.0,
0.0,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
3.0 / 11,
8.0 / 11,
8.0 / 11,
8.0 / 11,
8.0 / 11};
auto nullable_dense_out = cudf::scan(vals, *dense_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto nullable_rank_out = cudf::scan(vals, *rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
auto nullable_percent_out = cudf::scan(vals, *percent_rank, INCLUSIVE_SCAN, INCLUDE_NULLS);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_dense, nullable_dense_out->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_rank, nullable_rank_out->view());
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_percent, nullable_percent_out->view());
}
TEST(RankScanTest, ExclusiveScan)
{
auto const vals = cudf::test::fixed_width_column_wrapper<uint32_t>{3, 4, 5};
// Only inclusive scans are supported, so these should all raise exceptions.
EXPECT_THROW(cudf::scan(vals, *dense_rank, cudf::scan_type::EXCLUSIVE, INCLUDE_NULLS),
cudf::logic_error);
EXPECT_THROW(cudf::scan(vals, *rank, cudf::scan_type::EXCLUSIVE, INCLUDE_NULLS),
cudf::logic_error);
EXPECT_THROW(cudf::scan(vals, *percent_rank, cudf::scan_type::EXCLUSIVE, INCLUDE_NULLS),
cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/scan_tests.hpp
|
/*
* Copyright (c) 2021-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/column/column.hpp>
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/strings/string_view.hpp>
#include <cudf/utilities/span.hpp>
#include <cudf/utilities/traits.hpp>
#include <thrust/host_vector.h>
#include <initializer_list>
#include <type_traits>
#include <vector>
template <typename T>
struct TypeParam_to_host_type {
using type = T;
};
template <>
struct TypeParam_to_host_type<cudf::string_view> {
using type = std::string;
};
template <>
struct TypeParam_to_host_type<numeric::decimal32> {
using type = numeric::decimal32::rep;
};
template <>
struct TypeParam_to_host_type<numeric::decimal64> {
using type = numeric::decimal64::rep;
};
template <>
struct TypeParam_to_host_type<numeric::decimal128> {
using type = numeric::decimal128::rep;
};
template <typename TypeParam, typename T>
std::enable_if_t<std::is_same_v<TypeParam, cudf::string_view>, thrust::host_vector<std::string>>
make_vector(std::initializer_list<T> const& init)
{
return cudf::test::make_type_param_vector<std::string, T>(init);
}
template <typename TypeParam, typename T>
std::enable_if_t<cudf::is_fixed_point<TypeParam>(), thrust::host_vector<typename TypeParam::rep>>
make_vector(std::initializer_list<T> const& init)
{
return cudf::test::make_type_param_vector<typename TypeParam::rep, T>(init);
}
template <typename TypeParam, typename T>
std::enable_if_t<not(std::is_same_v<TypeParam, cudf::string_view> ||
cudf::is_fixed_point<TypeParam>()),
thrust::host_vector<TypeParam>>
make_vector(std::initializer_list<T> const& init)
{
return cudf::test::make_type_param_vector<TypeParam, T>(init);
}
// This is the base test feature
template <typename T>
struct BaseScanTest : public cudf::test::BaseFixture {
using HostType = typename TypeParam_to_host_type<T>::type;
std::unique_ptr<cudf::column> make_column(cudf::host_span<HostType const> v,
cudf::host_span<bool const> b = {},
numeric::scale_type scale = numeric::scale_type{0})
{
if constexpr (std::is_same_v<T, cudf::string_view>) {
auto col = (b.size() > 0) ? cudf::test::strings_column_wrapper(v.begin(), v.end(), b.begin())
: cudf::test::strings_column_wrapper(v.begin(), v.end());
return col.release();
} else if constexpr (cudf::is_fixed_point<T>()) {
auto col = (b.size() > 0) ? cudf::test::fixed_point_column_wrapper<typename T::rep>(
v.begin(), v.end(), b.begin(), scale)
: cudf::test::fixed_point_column_wrapper<typename T::rep>(
v.begin(), v.end(), scale);
return col.release();
} else {
auto col = (b.size() > 0)
? cudf::test::fixed_width_column_wrapper<T>(v.begin(), v.end(), b.begin())
: cudf::test::fixed_width_column_wrapper<T>(v.begin(), v.end());
return col.release();
}
}
};
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/segmented_reduction_tests.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/detail/utilities/vector_factories.hpp>
#include <cudf/reduction.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/types.hpp>
#include <limits>
#include <utility>
#include <vector>
#define XXX 0 // null placeholder
template <typename T>
struct SegmentedReductionTest : public cudf::test::BaseFixture {};
struct SegmentedReductionTestUntyped : public cudf::test::BaseFixture {};
TYPED_TEST_CASE(SegmentedReductionTest, cudf::test::NumericTypes);
TYPED_TEST(SegmentedReductionTest, SumExcludeNulls)
{
// [1, 2, 3], [1, null, 3], [1], [null], [null, null], []
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}
// outputs: {6, 4, 1, XXX, XXX, XXX}
// output nullmask: {1, 1, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{6, 4, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(3);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{9, 7, 4, 3, 3, 3}, {1, 1, 1, 1, 1, 1}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TYPED_TEST(SegmentedReductionTest, ProductExcludeNulls)
{
// [1, 3, 5], [null, 3, 5], [1], [null], [null, null], []
// values: {1, 3, 5, XXX, 3, 5, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 0, 1, 1, 1, 0, 0, 0}
// outputs: {15, 15, 1, XXX, XXX, XXX}
// output nullmask: {1, 1, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 3, 5, XXX, 3, 5, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 1, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<TypeParam>{{15, 15, 1, XXX, XXX, XXX},
{1, 1, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(3);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{45, 45, 3, 3, 3, 3}, {1, 1, 1, 1, 1, 1}};
res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TYPED_TEST(SegmentedReductionTest, MaxExcludeNulls)
{
// [1, 2, 3], [1, null, 3], [1], [null], [null, null], []
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}
// outputs: {3, 3, 1, XXX, XXX, XXX}
// output nullmask: {1, 1, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{3, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(2);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{3, 3, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 1}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TYPED_TEST(SegmentedReductionTest, MinExcludeNulls)
{
// [1, 2, 3], [1, null, 3], [1], [null], [null, null], []
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}
// outputs: {1, 1, 1, XXX, XXX, XXX}
// output nullmask: {1, 1, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{1, 1, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(2);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{1, 1, 1, 2, 2, 2}, {1, 1, 1, 1, 1, 1}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TYPED_TEST(SegmentedReductionTest, AnyExcludeNulls)
{
// [0, 0, 0], [0, null, 0], [0, 1, 0], [1, null, 0], [], [0], [1], [null], [null, null]
// values: {0, 0, 0, 0, XXX, 0, 0, 1, 0, 1, XXX, 0, 0, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 9, 12, 12, 13, 14, 15, 17}
// nullmask:{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0}
// outputs: {0, 0, 1, 1, XXX, 0, 1, XXX, XXX}
// output nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{0, 0, 0, 0, XXX, 0, 0, 1, 0, 1, XXX, 0, 0, 1, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 9, 12, 12, 13, 14, 15, 17};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<bool>{
{false, false, true, true, bool{XXX}, false, true, bool{XXX}, bool{XXX}},
{true, true, true, true, false, true, true, false, false}};
auto const agg = cudf::make_any_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::BOOL8};
auto const policy = cudf::null_policy::EXCLUDE;
auto res = cudf::segmented_reduce(input, d_offsets, *agg, output_type, policy);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(0);
auto const init_expect = cudf::test::fixed_width_column_wrapper<bool>{
{false, false, true, true, false, false, true, false, false},
{true, true, true, true, true, true, true, true, true}};
res = cudf::segmented_reduce(input, d_offsets, *agg, output_type, policy, *init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res = cudf::segmented_reduce(input, d_offsets, *agg, output_type, policy, *init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TYPED_TEST(SegmentedReductionTest, AllExcludeNulls)
{
// [1, 2, 3], [1, null, 3], [], [1], [null], [null, null], [1, 0, 3], [1, null, 0], [0]
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX, 1, 0, 3, 1, XXX, 0, 0}
// offsets: {0, 3, 6, 6, 7, 8, 10, 13, 16, 17}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}
// outputs: {true, true, XXX, true, XXX, XXX, false, false, false}
// output nullmask: {1, 1, 0, 1, 0, 0, 1, 1, 1}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX, 1, 0, 3, 1, XXX, 0, 0},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 6, 7, 8, 10, 13, 16, 17};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, bool{XXX}, true, bool{XXX}, bool{XXX}, false, false, false},
{true, true, false, true, false, false, true, true, true}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(1);
auto const init_expect = cudf::test::fixed_width_column_wrapper<bool>{
{true, true, true, true, true, true, false, false, false},
{true, true, true, true, true, true, true, true, true}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TYPED_TEST(SegmentedReductionTest, SumIncludeNulls)
{
// [1, 2, 3], [1, null, 3], [1], [null], [null, null], []
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}
// outputs: {6, XXX, 1, XXX, XXX, XXX}
// output nullmask: {1, 0, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<TypeParam>{{6, XXX, 1, XXX, XXX, XXX},
{1, 0, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(3);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{9, XXX, 4, XXX, XXX, 3}, {1, 0, 1, 0, 0, 1}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<TypeParam>{
{XXX, XXX, XXX, XXX, XXX, XXX}, {0, 0, 0, 0, 0, 0}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TYPED_TEST(SegmentedReductionTest, ProductIncludeNulls)
{
// [1, 3, 5], [null, 3, 5], [1], [null], [null, null], []
// values: {1, 3, 5, XXX, 3, 5, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 0, 1, 1, 1, 0, 0, 0}
// outputs: {15, XXX, 1, XXX, XXX, XXX}
// output nullmask: {1, 0, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 3, 5, XXX, 3, 5, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 1, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<TypeParam>{{15, XXX, 1, XXX, XXX, XXX},
{1, 0, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(3);
auto const init_expect = cudf::test::fixed_width_column_wrapper<TypeParam>{
{45, XXX, 3, XXX, XXX, 3}, {1, 0, 1, 0, 0, 1}};
res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<TypeParam>{
{XXX, XXX, XXX, XXX, XXX, XXX}, {0, 0, 0, 0, 0, 0}};
res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TYPED_TEST(SegmentedReductionTest, MaxIncludeNulls)
{
// [1, 2, 3], [1, null, 3], [1], [null], [null, null], []
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}
// outputs: {3, XXX, 1, XXX, XXX, XXX}
// output nullmask: {1, 0, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 1, 0, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<TypeParam>{{3, XXX, 1, XXX, XXX, XXX},
{1, 0, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(2);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{3, XXX, 2, XXX, XXX, 2}, {1, 0, 1, 0, 0, 1}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<TypeParam>{
{XXX, XXX, XXX, XXX, XXX, XXX}, {0, 0, 0, 0, 0, 0}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TYPED_TEST(SegmentedReductionTest, MinIncludeNulls)
{
// [1, 2, 3], [1, null, 3], [1], [null], [null, null], []
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX}
// offsets: {0, 3, 6, 7, 8, 10, 10}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0}
// outputs: {1, XXX, 1, XXX, XXX, XXX}
// output nullmask: {1, 0, 1, 0, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 1, 0, 1, 1, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<TypeParam>{{1, XXX, 1, XXX, XXX, XXX},
{1, 0, 1, 0, 0, 0}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(2);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<TypeParam>{{1, XXX, 1, XXX, XXX, 2}, {1, 0, 1, 0, 0, 1}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<TypeParam>{
{XXX, XXX, XXX, XXX, XXX, XXX}, {0, 0, 0, 0, 0, 0}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<TypeParam>()},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TYPED_TEST(SegmentedReductionTest, AnyIncludeNulls)
{
// [0, 0, 0], [0, null, 0], [0, 1, 0], [1, null, 0], [], [0], [1], [null], [null, null]
// values: {0, 0, 0, 0, XXX, 0, 0, 1, 0, 1, XXX, 0, 0, 1, XXX, XXX, XXX}
// offsets: {0, 3, 6, 9, 12, 12, 13, 14, 15, 17}
// nullmask:{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0}
// outputs: {0, XXX, 1, XXX, XXX, 0, 1, XXX, XXX}
// output nullmask: {1, 0, 1, 0, 0, 1, 1, 0, 0}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{0, 0, 0, 0, XXX, 0, 0, 1, 0, 1, XXX, 0, 0, 1, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 9, 12, 12, 13, 14, 15, 17};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<bool>{
{false, bool{XXX}, true, bool{XXX}, bool{XXX}, false, true, bool{XXX}, bool{XXX}},
{true, false, true, false, false, true, true, false, false}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_any_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(1);
auto const init_expect = cudf::test::fixed_width_column_wrapper<bool>{
{true, bool{XXX}, true, bool{XXX}, true, true, true, bool{XXX}, bool{XXX}},
{true, false, true, false, true, true, true, false, false}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_any_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<bool>{
{bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX}},
{false, false, false, false, false, false, false, false, false}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_any_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TYPED_TEST(SegmentedReductionTest, AllIncludeNulls)
{
// [1, 2, 3], [1, null, 3], [], [1], [null], [null, null], [1, 0, 3], [1, null, 0], [0]
// values: {1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX, 1, 0, 3, 1, XXX, 0, 0}
// offsets: {0, 3, 6, 6, 7, 8, 10, 13, 16, 17}
// nullmask: {1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}
// outputs: {true, XXX, XXX, true, XXX, XXX, false, XXX, false}
// output nullmask: {1, 0, 0, 1, 0, 0, 1, 0, 1}
auto const input = cudf::test::fixed_width_column_wrapper<TypeParam>{
{1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX, 1, 0, 3, 1, XXX, 0, 0},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}};
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 6, 7, 8, 10, 13, 16, 17};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<bool>{
{true, bool{XXX}, bool{XXX}, true, bool{XXX}, bool{XXX}, false, bool{XXX}, false},
{true, false, false, true, false, false, true, false, true}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<TypeParam>(1);
auto const init_expect = cudf::test::fixed_width_column_wrapper<bool>{
{true, bool{XXX}, true, true, bool{XXX}, bool{XXX}, false, bool{XXX}, false},
{true, false, true, true, false, false, true, false, true}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<bool>{
{bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX},
bool{XXX}},
{false, false, false, false, false, false, false, false, false}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TEST_F(SegmentedReductionTestUntyped, PartialSegmentReduction)
{
// Segmented reduction allows offsets only specify part of the input columns.
// [1], [2, 3], [4]
// values: {1, 2, 3, 4, 5, 6, 7}
// offsets: {0, 1, 3, 4}
// nullmask: {1, 1, 1, 1, 1, 1, 1}
// outputs: {1, 5, 4}
// output nullmask: {1, 1, 1}
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>{
{1, 2, 3, 4, 5, 6, 7}, {true, true, true, true, true, true, true}};
auto const offsets = std::vector<cudf::size_type>{1, 3, 4};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<int32_t>{{5, 4}, {true, true}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::INT32},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<int32_t>(3);
auto const init_expect = cudf::test::fixed_width_column_wrapper<int32_t>{{8, 7}, {true, true}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::INT32},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect =
cudf::test::fixed_width_column_wrapper<int32_t>{{XXX, XXX}, {false, false}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::INT32},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TEST_F(SegmentedReductionTestUntyped, NonNullableInput)
{
// Segmented reduction allows offsets only specify part of the input columns.
// [1], [], [2, 3], [4, 5, 6, 7]
// values: {1, 2, 3, 4, 5, 6, 7}
// offsets: {0, 1, 1, 3, 7}
// nullmask: nullptr
// outputs: {1, 5, 4}
// output nullmask: {1, 1, 1}
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>{1, 2, 3, 4, 5, 6, 7};
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 3, 7};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect =
cudf::test::fixed_width_column_wrapper<int32_t>{{1, XXX, 5, 22}, {true, false, true, true}};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::INT32},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<int32_t>(3);
auto const init_expect =
cudf::test::fixed_width_column_wrapper<int32_t>{{4, 3, 8, 25}, {true, true, true, true}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::INT32},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, init_expect);
// Test with null initial value
init_scalar->set_valid_async(false);
auto null_init_expect = cudf::test::fixed_width_column_wrapper<int32_t>{
{XXX, XXX, XXX, XXX}, {false, false, false, false}};
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::INT32},
cudf::null_policy::INCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, null_init_expect);
}
TEST_F(SegmentedReductionTestUntyped, Mean)
{
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>{10, 20, 30, 40, 50, 60, 70, 80, 90};
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_mean_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::FLOAT32};
auto const expected =
cudf::test::fixed_width_column_wrapper<float>{{10, 0, 30, 70}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, MeanNulls)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>(
{10, 20, 30, 40, 50, 60, 0, 80, 90}, {1, 1, 1, 1, 1, 1, 0, 1, 1});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_mean_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::FLOAT64};
auto expected = cudf::test::fixed_width_column_wrapper<double>{{10, 0, 30, 70}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
expected = cudf::test::fixed_width_column_wrapper<double>{{10, 0, 30, 0}, {1, 0, 1, 0}};
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, SumOfSquares)
{
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>{10, 20, 30, 40, 50, 60, 70, 80, 90};
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_sum_of_squares_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::INT32};
auto const expected =
cudf::test::fixed_width_column_wrapper<int32_t>{{100, 0, 2900, 25500}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, SumOfSquaresNulls)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>(
{10, 20, 30, 40, 50, 60, 0, 80, 90}, {1, 1, 1, 1, 1, 1, 0, 1, 1});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_sum_of_squares_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::INT64};
auto expected =
cudf::test::fixed_width_column_wrapper<int64_t>{{100, 0, 2900, 20600}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
expected = cudf::test::fixed_width_column_wrapper<int64_t>{{100, 0, 2900, 0}, {1, 0, 1, 0}};
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, StandardDeviation)
{
constexpr float NaN{std::numeric_limits<float>::quiet_NaN()};
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>{10, 20, 30, 40, 50, 60, 70, 80, 90};
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_std_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::FLOAT32};
auto expected = cudf::test::fixed_width_column_wrapper<float>{
{NaN, 0.f, 10.f, static_cast<float>(std::sqrt(250.))}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, StandardDeviationNulls)
{
constexpr double NaN{std::numeric_limits<double>::quiet_NaN()};
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>(
{10, 0, 20, 30, 54, 63, 0, 72, 81}, {1, 0, 1, 1, 1, 1, 0, 1, 1});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_std_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::FLOAT64};
auto expected = cudf::test::fixed_width_column_wrapper<double>{
{NaN, 0., std::sqrt(50.), std::sqrt(135.)}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
expected = cudf::test::fixed_width_column_wrapper<double>{{NaN, 0., 0., 0.}, {1, 0, 0, 0}};
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, Variance)
{
constexpr float NaN{std::numeric_limits<float>::quiet_NaN()};
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>{10, 20, 30, 40, 50, 60, 70, 80, 90};
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_variance_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::FLOAT32};
auto expected =
cudf::test::fixed_width_column_wrapper<float>{{NaN, 0.f, 100.f, 250.f}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, VarianceNulls)
{
constexpr double NaN{std::numeric_limits<double>::quiet_NaN()};
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>(
{10, 0, 20, 30, 54, 63, 0, 72, 81}, {1, 0, 1, 1, 1, 1, 0, 1, 1});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_variance_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::FLOAT64};
auto expected =
cudf::test::fixed_width_column_wrapper<double>{{NaN, 0., 50., 135.}, {1, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
expected = cudf::test::fixed_width_column_wrapper<double>{{NaN, 0., 0., 0.}, {1, 0, 0, 0}};
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, NUnique)
{
auto const input =
cudf::test::fixed_width_column_wrapper<int32_t>({10, 15, 20, 30, 60, 60, 70, 70, 80});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 2, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_nunique_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::INT32};
auto expected =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{{1, 0, 1, 2, 3}, {1, 0, 1, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, NUniqueNulls)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>(
{10, 0, 20, 30, 60, 60, 70, 70, 0}, {1, 0, 1, 1, 1, 1, 1, 1, 0});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 2, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_nunique_aggregation<cudf::segmented_reduce_aggregation>();
auto const output_type = cudf::data_type{cudf::type_id::INT32};
auto expected =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{{1, 0, 0, 2, 2}, {1, 0, 0, 1, 1}};
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
expected =
cudf::test::fixed_width_column_wrapper<cudf::size_type>{{1, 0, 1, 2, 3}, {1, 0, 1, 1, 1}};
result = cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*result, expected);
}
TEST_F(SegmentedReductionTestUntyped, Errors)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>(
{10, 0, 20, 30, 54, 63, 0, 72, 81}, {1, 0, 1, 1, 1, 1, 0, 1, 1});
auto const offsets = std::vector<cudf::size_type>{0, 1, 1, 4, 9};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const null_policy = cudf::null_policy::EXCLUDE;
auto const output_type = cudf::data_type{cudf::type_id::TIMESTAMP_DAYS};
auto const str_input =
cudf::test::strings_column_wrapper({"10", "0", "20", "30", "54", "63", "", "72", "81"});
auto const sum_agg = cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *sum_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *sum_agg, output_type, null_policy),
cudf::logic_error);
auto const product_agg = cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *product_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *product_agg, output_type, null_policy),
cudf::logic_error);
auto const min_agg = cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *min_agg, output_type, null_policy),
cudf::logic_error);
auto const max_agg = cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *max_agg, output_type, null_policy),
cudf::logic_error);
auto const any_agg = cudf::make_any_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *any_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *any_agg, output_type, null_policy),
cudf::logic_error);
auto const all_agg = cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *all_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *all_agg, output_type, null_policy),
cudf::logic_error);
auto const mean_agg = cudf::make_mean_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *mean_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *mean_agg, output_type, null_policy),
cudf::logic_error);
auto const std_agg = cudf::make_std_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *std_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *std_agg, output_type, null_policy),
cudf::logic_error);
auto const var_agg = cudf::make_variance_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *var_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *var_agg, output_type, null_policy),
cudf::logic_error);
auto const squares_agg =
cudf::make_sum_of_squares_aggregation<cudf::segmented_reduce_aggregation>();
EXPECT_THROW(cudf::segmented_reduce(input, d_offsets, *squares_agg, output_type, null_policy),
cudf::logic_error);
EXPECT_THROW(cudf::segmented_reduce(str_input, d_offsets, *squares_agg, output_type, null_policy),
cudf::logic_error);
}
TEST_F(SegmentedReductionTestUntyped, ReduceEmptyColumn)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>{};
auto const offsets = std::vector<cudf::size_type>{0};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::fixed_width_column_wrapper<int32_t>{};
auto res =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<int32_t>()},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with initial value
auto const init_scalar = cudf::make_fixed_width_scalar<int32_t>(3);
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<int32_t>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
// Test with null initial value
init_scalar->set_valid_async(false);
res = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_to_id<int32_t>()},
cudf::null_policy::EXCLUDE,
*init_scalar);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TEST_F(SegmentedReductionTestUntyped, EmptyInputWithOffsets)
{
auto const input = cudf::test::fixed_width_column_wrapper<int32_t>{};
auto const offsets = std::vector<cudf::size_type>{0, 0, 0, 0, 0, 0};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect =
cudf::test::fixed_width_column_wrapper<int32_t>{{XXX, XXX, XXX, XXX, XXX}, {0, 0, 0, 0, 0}};
auto aggregates =
std::vector<std::unique_ptr<cudf::segmented_reduce_aggregation,
std::default_delete<cudf::segmented_reduce_aggregation>>>();
aggregates.push_back(std::move(cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>()));
aggregates.push_back(std::move(cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>()));
aggregates.push_back(std::move(cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>()));
aggregates.push_back(
std::move(cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>()));
auto output_type = cudf::data_type{cudf::type_to_id<int32_t>()};
for (auto&& agg : aggregates) {
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, output_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
auto const expect_bool =
cudf::test::fixed_width_column_wrapper<bool>{{XXX, XXX, XXX, XXX, XXX}, {0, 0, 0, 0, 0}};
auto result =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_any_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect_bool);
result = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_all_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::BOOL8},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect_bool);
}
template <typename T>
struct SegmentedReductionFixedPointTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(SegmentedReductionFixedPointTest, cudf::test::FixedPointTypes);
TYPED_TEST(SegmentedReductionFixedPointTest, MaxWithNulls)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto const input =
cudf::test::fixed_point_column_wrapper<RepType>({1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0},
numeric::scale_type{scale});
auto out_type = cudf::column_view(input).type();
auto expect = cudf::test::fixed_point_column_wrapper<RepType>(
{3, XXX, 1, XXX, XXX, XXX}, {1, 0, 1, 0, 0, 0}, numeric::scale_type{scale});
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{3, 3, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}, numeric::scale_type{scale});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
TYPED_TEST(SegmentedReductionFixedPointTest, MinWithNulls)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto const input =
cudf::test::fixed_point_column_wrapper<RepType>({1, 2, 3, 1, XXX, 3, 1, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0},
numeric::scale_type{scale});
auto out_type = cudf::column_view(input).type();
auto expect = cudf::test::fixed_point_column_wrapper<RepType>(
{1, XXX, 1, XXX, XXX, XXX}, {1, 0, 1, 0, 0, 0}, numeric::scale_type{scale});
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{1, 1, 1, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}, numeric::scale_type{scale});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
TYPED_TEST(SegmentedReductionFixedPointTest, MaxNonNullableInput)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 4, 4};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto const input =
cudf::test::fixed_point_column_wrapper<RepType>({1, 2, 3, 1}, numeric::scale_type{scale});
auto out_type = cudf::column_view(input).type();
auto const expect = cudf::test::fixed_point_column_wrapper<RepType>(
{3, 1, XXX}, {1, 1, 0}, numeric::scale_type{scale});
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
TYPED_TEST(SegmentedReductionFixedPointTest, MinNonNullableInput)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 4, 4};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto const input =
cudf::test::fixed_point_column_wrapper<RepType>({1, 2, 3, 1}, numeric::scale_type{scale});
auto out_type = cudf::column_view(input).type();
auto const expect = cudf::test::fixed_point_column_wrapper<RepType>(
{1, 1, XXX}, {1, 1, 0}, numeric::scale_type{scale});
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
TYPED_TEST(SegmentedReductionFixedPointTest, Sum)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_sum_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto input =
cudf::test::fixed_point_column_wrapper<RepType>({-10, 0, 33, 100, XXX, 53, 11, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0},
numeric::scale_type{scale});
auto const out_type = cudf::column_view(input).type();
auto expect = cudf::test::fixed_point_column_wrapper<RepType>(
{23, XXX, 11, XXX, XXX, XXX}, {1, 0, 1, 0, 0, 0}, numeric::scale_type{scale});
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{23, 153, 11, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}, numeric::scale_type{scale});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
input = cudf::test::fixed_point_column_wrapper<RepType>(
{-10, 0, 33, 100, 123, 53, 11, 0, -120, 88}, numeric::scale_type{scale});
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{23, 276, 11, 0, -32, XXX}, {1, 1, 1, 1, 1, 0}, numeric::scale_type{scale});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
TYPED_TEST(SegmentedReductionFixedPointTest, Product)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 12, 12};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_product_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto input = cudf::test::fixed_point_column_wrapper<RepType>(
{-10, 1, 33, 40, XXX, 50, 11000, XXX, XXX, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0},
numeric::scale_type{scale});
auto const out_type = cudf::column_view(input).type();
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
auto expect = cudf::test::fixed_point_column_wrapper<RepType>(
{-330, XXX, 11000, XXX, XXX, XXX}, {1, 0, 1, 0, 0, 0}, numeric::scale_type{scale * 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{-330, 2000, 11000, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}, numeric::scale_type{scale * 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
input = cudf::test::fixed_point_column_wrapper<RepType>(
{-10, 1, 33, 3, 40, 50, 11000, 0, -3, 50, 10, 4}, numeric::scale_type{scale});
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{-330, 6000, 11000, 0, -6000, XXX}, {1, 1, 1, 1, 1, 0}, numeric::scale_type{scale * 4});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
TYPED_TEST(SegmentedReductionFixedPointTest, SumOfSquares)
{
using RepType = cudf::device_storage_type_t<TypeParam>;
auto const offsets = std::vector<cudf::size_type>{0, 3, 6, 7, 8, 10, 10};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const agg = cudf::make_sum_of_squares_aggregation<cudf::segmented_reduce_aggregation>();
for (auto scale : {-2, 0, 5}) {
auto input =
cudf::test::fixed_point_column_wrapper<RepType>({-10, 0, 33, 100, XXX, 53, 11, XXX, XXX, XXX},
{1, 1, 1, 1, 0, 1, 1, 0, 0, 0},
numeric::scale_type{scale});
auto const out_type = cudf::column_view(input).type();
auto expect = cudf::test::fixed_point_column_wrapper<RepType>(
{1189, XXX, 121, XXX, XXX, XXX}, {1, 0, 1, 0, 0, 0}, numeric::scale_type{scale * 2});
auto result =
cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{1189, 12809, 121, XXX, XXX, XXX}, {1, 1, 1, 0, 0, 0}, numeric::scale_type{scale * 2});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
input = cudf::test::fixed_point_column_wrapper<RepType>(
{-10, 0, 33, 100, 123, 53, 11, 0, -120, 88}, numeric::scale_type{scale});
expect = cudf::test::fixed_point_column_wrapper<RepType>(
{1189, 27938, 121, 0, 22144, XXX}, {1, 1, 1, 1, 1, 0}, numeric::scale_type{scale * 2});
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input, d_offsets, *agg, out_type, cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
}
// String min/max test grid
// Segment: Length 0, length 1, length 2
// Element nulls: No nulls, all nulls, some nulls
// String: Empty string,
// Position of the min/max: start of segment, end of segment
// Include null, exclude null
#undef XXX
#define XXX "" // null placeholder
struct SegmentedReductionStringTest : public cudf::test::BaseFixture {
std::pair<cudf::test::strings_column_wrapper,
cudf::test::fixed_width_column_wrapper<cudf::size_type>>
input()
{
return std::pair(
cudf::test::strings_column_wrapper{
{"world", "cudf", XXX, "", "rapids", "i am", "ai", "apples", "zebras", XXX, XXX, XXX},
{true, true, false, true, true, true, true, true, true, false, false, false}},
cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 1, 4, 7, 9, 9, 10, 12});
}
};
TEST_F(SegmentedReductionStringTest, MaxIncludeNulls)
{
// data: ['world'], ['cudf', NULL, ''], ['rapids', 'i am', 'ai'], ['apples', 'zebras'],
// [], [NULL], [NULL, NULL]
// values: {"world", "cudf", XXX, "", "rapids", "i am", "ai", "apples", "zebras", XXX, XXX, XXX}
// nullmask:{1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0}
// offsets: {0, 1, 4, 7, 9, 9, 10, 12}
// output_dtype: string dtype
// outputs: {"world", XXX, "rapids", "zebras", XXX, XXX, XXX}
// output nullmask: {1, 0, 1, 1, 0, 0, 0}
auto const [input, offsets] = this->input();
cudf::data_type output_dtype{cudf::type_id::STRING};
cudf::test::strings_column_wrapper expect{{"world", XXX, "rapids", "zebras", XXX, XXX, XXX},
{true, false, true, true, false, false, false}};
auto res =
cudf::segmented_reduce(input,
cudf::column_view(offsets),
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
output_dtype,
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TEST_F(SegmentedReductionStringTest, MaxExcludeNulls)
{
// data: ['world'], ['cudf', NULL, ''], ['rapids', 'i am', 'ai'], ['apples', 'zebras'],
// [], [NULL], [NULL, NULL]
// values: {"world", "cudf", XXX, "", "rapids", "i am", "ai", "apples", "zebras", XXX, XXX, XXX}
// nullmask:{1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0}
// offsets: {0, 1, 4, 7, 9, 9, 10, 12}
// output_dtype: string dtype
// outputs: {"world", "cudf", "rapids", "zebras", XXX, XXX, XXX}
// output nullmask: {1, 1, 1, 1, 0, 0, 0}
auto const [input, offsets] = this->input();
cudf::data_type output_dtype{cudf::type_id::STRING};
cudf::test::strings_column_wrapper expect{{"world", "cudf", "rapids", "zebras", XXX, XXX, XXX},
{true, true, true, true, false, false, false}};
auto res =
cudf::segmented_reduce(input,
cudf::column_view(offsets),
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
output_dtype,
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TEST_F(SegmentedReductionStringTest, MinIncludeNulls)
{
// data: ['world'], ['cudf', NULL, ''], ['rapids', 'i am', 'ai'], ['apples', 'zebras'],
// [], [NULL], [NULL, NULL]
// values: {"world", "cudf", XXX, "", "rapids", "i am", "ai", "apples", "zebras", XXX, XXX, XXX}
// nullmask:{1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0}
// offsets: {0, 1, 4, 7, 9, 9, 10, 12}
// output_dtype: string dtype
// outputs: {"world", XXX, "ai", "apples", XXX, XXX, XXX}
// output nullmask: {1, 0, 1, 1, 0, 0, 0}
auto const [input, offsets] = this->input();
cudf::data_type output_dtype{cudf::type_id::STRING};
cudf::test::strings_column_wrapper expect{{"world", XXX, "ai", "apples", XXX, XXX, XXX},
{true, false, true, true, false, false, false}};
auto res =
cudf::segmented_reduce(input,
cudf::column_view(offsets),
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
output_dtype,
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TEST_F(SegmentedReductionStringTest, MinExcludeNulls)
{
// data: ['world'], ['cudf', NULL, ''], ['rapids', 'i am', 'ai'], ['apples', 'zebras'],
// [], [NULL], [NULL, NULL]
// values: {"world", "cudf", XXX, "", "rapids", "i am", "ai", "apples", "zebras", XXX, XXX, XXX}
// nullmask:{1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0}
// offsets: {0, 1, 4, 7, 9, 9, 10, 12}
// output_dtype: string dtype
// outputs: {"world", "", "ai", "apples", XXX, XXX, XXX}
// output nullmask: {1, 1, 1, 1, 0, 0, 0}
auto const [input, offsets] = this->input();
cudf::data_type output_dtype{cudf::type_id::STRING};
cudf::test::strings_column_wrapper expect{{"world", "", "ai", "apples", XXX, XXX, XXX},
{true, true, true, true, false, false, false}};
auto res =
cudf::segmented_reduce(input,
cudf::column_view(offsets),
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
output_dtype,
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*res, expect);
}
TEST_F(SegmentedReductionStringTest, EmptyInputWithOffsets)
{
auto const input = cudf::test::strings_column_wrapper{};
auto const offsets = std::vector<cudf::size_type>{0, 0, 0, 0};
auto const d_offsets = cudf::detail::make_device_uvector_async(
offsets, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto const expect = cudf::test::strings_column_wrapper({XXX, XXX, XXX}, {0, 0, 0});
auto result =
cudf::segmented_reduce(input,
d_offsets,
*cudf::make_max_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::STRING},
cudf::null_policy::EXCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
result = cudf::segmented_reduce(input,
d_offsets,
*cudf::make_min_aggregation<cudf::segmented_reduce_aggregation>(),
cudf::data_type{cudf::type_id::STRING},
cudf::null_policy::INCLUDE);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, expect);
}
#undef XXX
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/tdigest_tests.cu
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/tdigest_utilities.cuh>
#include <cudf_test/type_lists.hpp>
#include <cudf/reduction.hpp>
template <typename T>
struct ReductionTDigestAllTypes : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(ReductionTDigestAllTypes, cudf::test::NumericTypes);
struct reduce_op {
std::unique_ptr<cudf::column> operator()(cudf::column_view const& values, int delta) const
{
// result is a scalar, but we want to extract out the underlying column
auto scalar_result =
cudf::reduce(values,
*cudf::make_tdigest_aggregation<cudf::reduce_aggregation>(delta),
cudf::data_type{cudf::type_id::STRUCT});
auto tbl = static_cast<cudf::struct_scalar const*>(scalar_result.get())->view();
std::vector<std::unique_ptr<cudf::column>> cols;
std::transform(
tbl.begin(), tbl.end(), std::back_inserter(cols), [](cudf::column_view const& col) {
return std::make_unique<cudf::column>(col);
});
return cudf::make_structs_column(tbl.num_rows(), std::move(cols), 0, rmm::device_buffer());
}
};
struct reduce_merge_op {
std::unique_ptr<cudf::column> operator()(cudf::column_view const& values, int delta) const
{
// result is a scalar, but we want to extract out the underlying column
auto scalar_result =
cudf::reduce(values,
*cudf::make_merge_tdigest_aggregation<cudf::reduce_aggregation>(delta),
cudf::data_type{cudf::type_id::STRUCT});
auto tbl = static_cast<cudf::struct_scalar const*>(scalar_result.get())->view();
std::vector<std::unique_ptr<cudf::column>> cols;
std::transform(
tbl.begin(), tbl.end(), std::back_inserter(cols), [](cudf::column_view const& col) {
return std::make_unique<cudf::column>(col);
});
return cudf::make_structs_column(tbl.num_rows(), std::move(cols), 0, rmm::device_buffer());
}
};
TYPED_TEST(ReductionTDigestAllTypes, Simple)
{
using T = TypeParam;
cudf::test::tdigest_simple_aggregation<T>(reduce_op{});
}
TYPED_TEST(ReductionTDigestAllTypes, SimpleWithNulls)
{
using T = TypeParam;
cudf::test::tdigest_simple_with_nulls_aggregation<T>(reduce_op{});
}
TYPED_TEST(ReductionTDigestAllTypes, AllNull)
{
using T = TypeParam;
cudf::test::tdigest_simple_all_nulls_aggregation<T>(reduce_op{});
}
struct ReductionTDigestMerge : public cudf::test::BaseFixture {};
TEST_F(ReductionTDigestMerge, Simple)
{
cudf::test::tdigest_merge_simple(reduce_op{}, reduce_merge_op{});
}
// tests an issue with the cluster generating code with a small number of centroids that have large
// weights
TEST_F(ReductionTDigestMerge, FewHeavyCentroids)
{
// digest 1
cudf::test::fixed_width_column_wrapper<double> c0c{1.0, 2.0};
cudf::test::fixed_width_column_wrapper<double> c0w{100.0, 50.0};
cudf::test::structs_column_wrapper c0s({c0c, c0w});
cudf::test::fixed_width_column_wrapper<cudf::size_type> c0_offsets{0, 2};
auto c0l =
cudf::make_lists_column(1, c0_offsets.release(), c0s.release(), 0, rmm::device_buffer{});
cudf::test::fixed_width_column_wrapper<double> c0min{1.0};
cudf::test::fixed_width_column_wrapper<double> c0max{2.0};
std::vector<std::unique_ptr<cudf::column>> c0_children;
c0_children.push_back(std::move(c0l));
c0_children.push_back(c0min.release());
c0_children.push_back(c0max.release());
// tdigest struct
auto c0 = cudf::make_structs_column(1, std::move(c0_children), 0, {});
cudf::tdigest::tdigest_column_view tdv0(*c0);
// digest 2
cudf::test::fixed_width_column_wrapper<double> c1c{3.0, 4.0};
cudf::test::fixed_width_column_wrapper<double> c1w{200.0, 50.0};
cudf::test::structs_column_wrapper c1s({c1c, c1w});
cudf::test::fixed_width_column_wrapper<cudf::size_type> c1_offsets{0, 2};
auto c1l =
cudf::make_lists_column(1, c1_offsets.release(), c1s.release(), 0, rmm::device_buffer{});
cudf::test::fixed_width_column_wrapper<double> c1min{3.0};
cudf::test::fixed_width_column_wrapper<double> c1max{4.0};
std::vector<std::unique_ptr<cudf::column>> c1_children;
c1_children.push_back(std::move(c1l));
c1_children.push_back(c1min.release());
c1_children.push_back(c1max.release());
// tdigest struct
auto c1 = cudf::make_structs_column(1, std::move(c1_children), 0, {});
std::vector<cudf::column_view> views;
views.push_back(*c0);
views.push_back(*c1);
auto values = cudf::concatenate(views);
// merge
auto scalar_result =
cudf::reduce(*values,
*cudf::make_merge_tdigest_aggregation<cudf::reduce_aggregation>(1000),
cudf::data_type{cudf::type_id::STRUCT});
// convert to a table
auto tbl = static_cast<cudf::struct_scalar const*>(scalar_result.get())->view();
std::vector<std::unique_ptr<cudf::column>> cols;
std::transform(
tbl.begin(), tbl.end(), std::back_inserter(cols), [](cudf::column_view const& col) {
return std::make_unique<cudf::column>(col);
});
auto result = cudf::make_structs_column(tbl.num_rows(), std::move(cols), 0, rmm::device_buffer());
// we expect to see exactly 4 centroids (the same inputs) with properly computed min/max.
cudf::test::fixed_width_column_wrapper<double> ec{1.0, 2.0, 3.0, 4.0};
cudf::test::fixed_width_column_wrapper<double> ew{100.0, 50.0, 200.0, 50.0};
cudf::test::structs_column_wrapper es({ec, ew});
cudf::test::fixed_width_column_wrapper<cudf::size_type> e_offsets{0, 4};
auto el = cudf::make_lists_column(1, e_offsets.release(), es.release(), 0, rmm::device_buffer{});
cudf::test::fixed_width_column_wrapper<double> emin{1.0};
cudf::test::fixed_width_column_wrapper<double> emax{4.0};
std::vector<std::unique_ptr<cudf::column>> e_children;
e_children.push_back(std::move(el));
e_children.push_back(emin.release());
e_children.push_back(emax.release());
// tdigest struct
auto expected = cudf::make_structs_column(1, std::move(e_children), 0, {});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*result, *expected);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/collect_ops_tests.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/aggregation.hpp>
#include <cudf/reduction.hpp>
#include <cudf/sorting.hpp>
namespace {
auto collect_set(cudf::column_view const& input,
std::unique_ptr<cudf::reduce_aggregation> const& agg)
{
auto const result_scalar = cudf::reduce(input, *agg, cudf::data_type{cudf::type_id::LIST});
// The results of `collect_set` are unordered thus we need to sort them for comparison.
auto const result_sorted_table =
cudf::sort(cudf::table_view{{dynamic_cast<cudf::list_scalar*>(result_scalar.get())->view()}},
{},
{cudf::null_order::AFTER});
return std::make_unique<cudf::list_scalar>(std::move(result_sorted_table->get_column(0)));
}
} // namespace
template <typename T>
struct CollectTestFixedWidth : public cudf::test::BaseFixture {};
using CollectFixedWidthTypes = cudf::test::Concat<cudf::test::IntegralTypesNotBool,
cudf::test::FloatingPointTypes,
cudf::test::ChronoTypes,
cudf::test::FixedPointTypes>;
TYPED_TEST_SUITE(CollectTestFixedWidth, CollectFixedWidthTypes);
// ------------------------------------------------------------------------
TYPED_TEST(CollectTestFixedWidth, CollectList)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
std::vector<int> values({5, 0, -120, -111, 0, 64, 63, 99, 123, -16});
std::vector<bool> null_mask({1, 1, 0, 1, 1, 1, 0, 1, 0, 1});
// null_include without nulls
fw_wrapper col(values.begin(), values.end());
auto const ret = cudf::reduce(col,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(col, dynamic_cast<cudf::list_scalar*>(ret.get())->view());
// null_include with nulls
fw_wrapper col_with_null(values.begin(), values.end(), null_mask.begin());
auto const ret1 = cudf::reduce(col_with_null,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(col_with_null,
dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// null_exclude with nulls
fw_wrapper col_null_filtered{{5, 0, -111, 0, 64, 99, -16}};
auto const ret2 = cudf::reduce(
col_with_null,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(cudf::null_policy::EXCLUDE),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(col_null_filtered,
dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
}
TYPED_TEST(CollectTestFixedWidth, CollectSet)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
std::vector<int> values({5, 0, 120, 0, 0, 64, 64, 99, 120, 99});
std::vector<bool> null_mask({1, 1, 0, 1, 1, 1, 0, 1, 0, 1});
fw_wrapper col(values.begin(), values.end());
fw_wrapper col_with_null(values.begin(), values.end(), null_mask.begin());
auto null_exclude = cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::EXCLUDE, cudf::null_equality::UNEQUAL, cudf::nan_equality::ALL_EQUAL);
auto null_eq = cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL);
auto null_unequal = cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::UNEQUAL, cudf::nan_equality::ALL_EQUAL);
// test without nulls
auto const ret = collect_set(col, null_eq);
fw_wrapper expected{{0, 5, 64, 99, 120}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, dynamic_cast<cudf::list_scalar*>(ret.get())->view());
// null exclude
auto const ret1 = collect_set(col_with_null, null_exclude);
fw_wrapper expected1{{0, 5, 64, 99}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// null equal
auto const ret2 = collect_set(col_with_null, null_eq);
fw_wrapper expected2{{0, 5, 64, 99, -1}, {1, 1, 1, 1, 0}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
// null unequal
auto const ret3 = collect_set(col_with_null, null_unequal);
fw_wrapper expected3{{0, 5, 64, 99, -1, -1, -1}, {1, 1, 1, 1, 0, 0, 0}};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, dynamic_cast<cudf::list_scalar*>(ret3.get())->view());
}
TYPED_TEST(CollectTestFixedWidth, MergeLists)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// test without nulls
auto const lists1 = lists_col{{1, 2, 3}, {}, {}, {4}, {5, 6, 7}, {8, 9}, {}};
auto const expected1 = fw_wrapper{{1, 2, 3, 4, 5, 6, 7, 8, 9}};
auto const ret1 = cudf::reduce(lists1,
*cudf::make_merge_lists_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// test with nulls
auto const lists2 = lists_col{{
lists_col{1, 2, 3},
lists_col{},
lists_col{{0, 4, 0, 5}, cudf::test::iterators::nulls_at({0, 2})},
lists_col{{0, 0, 0}, cudf::test::iterators::all_nulls()},
lists_col{6},
lists_col{-1, -1}, // null_list
lists_col{7, 8, 9},
},
cudf::test::iterators::null_at(5)};
auto const expected2 = fw_wrapper{{1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 7, 8, 9},
{1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1}};
auto const ret2 = cudf::reduce(lists2,
*cudf::make_merge_lists_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
}
TYPED_TEST(CollectTestFixedWidth, MergeSets)
{
using fw_wrapper = cudf::test::fixed_width_column_wrapper<TypeParam, int32_t>;
using lists_col = cudf::test::lists_column_wrapper<TypeParam, int32_t>;
// test without nulls
auto const lists1 = lists_col{{1, 2, 3}, {}, {}, {4}, {1, 3, 4}, {0, 3, 10}, {}};
auto const expected1 = fw_wrapper{{0, 1, 2, 3, 4, 10}};
auto const ret1 =
collect_set(lists1, cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// test with null_equal
auto const lists2 = lists_col{{
lists_col{1, 2, 3},
lists_col{},
lists_col{{0, 4, 0, 5}, cudf::test::iterators::nulls_at({0, 2})},
lists_col{{0, 0, 0}, cudf::test::iterators::all_nulls()},
lists_col{5},
lists_col{-1, -1}, // null_list
lists_col{1, 3, 5},
},
cudf::test::iterators::null_at(5)};
auto const expected2 = fw_wrapper{{1, 2, 3, 4, 5, 0}, {1, 1, 1, 1, 1, 0}};
auto const ret2 =
collect_set(lists2, cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
// test with null_unequal
auto const& lists3 = lists2;
auto const expected3 = fw_wrapper{{1, 2, 3, 4, 5, 0, 0, 0, 0, 0}, {1, 1, 1, 1, 1, 0, 0, 0, 0, 0}};
auto const ret3 = collect_set(
lists3,
cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>(cudf::null_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, dynamic_cast<cudf::list_scalar*>(ret3.get())->view());
}
struct CollectTest : public cudf::test::BaseFixture {};
TEST_F(CollectTest, CollectSetWithNaN)
{
using fp_wrapper = cudf::test::fixed_width_column_wrapper<float>;
fp_wrapper col{{1.0f, 1.0f, -2.3e-5f, -2.3e-5f, 2.3e5f, 2.3e5f, -NAN, -NAN, NAN, NAN, 0.0f, 0.0f},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0}};
// nan unequal with null equal
fp_wrapper expected1{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, -NAN, NAN, NAN, 0.0f},
{1, 1, 1, 1, 1, 1, 1, 0}};
auto const ret1 = collect_set(
col,
cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// nan unequal with null unequal
fp_wrapper expected2{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, -NAN, NAN, NAN, 0.0f, 0.0f},
{1, 1, 1, 1, 1, 1, 1, 0, 0}};
auto const ret2 = collect_set(
col,
cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::UNEQUAL, cudf::nan_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
// nan equal with null equal
fp_wrapper expected3{{-2.3e-5f, 1.0f, 2.3e5f, NAN, 0.0f}, {1, 1, 1, 1, 0}};
auto const ret3 = collect_set(
col,
cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, dynamic_cast<cudf::list_scalar*>(ret3.get())->view());
// nan equal with null unequal
fp_wrapper expected4{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, 0.0f, 0.0f}, {1, 1, 1, 1, 0, 0}};
auto const ret4 = collect_set(
col,
cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::UNEQUAL, cudf::nan_equality::ALL_EQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected4, dynamic_cast<cudf::list_scalar*>(ret4.get())->view());
}
TEST_F(CollectTest, MergeSetsWithNaN)
{
using fp_wrapper = cudf::test::fixed_width_column_wrapper<float>;
using lists_col = cudf::test::lists_column_wrapper<float>;
auto const col = lists_col{
lists_col{1.0f, -2.3e-5f, NAN},
lists_col{},
lists_col{{-2.3e-5f, 2.3e5f, NAN, 0.0f}, cudf::test::iterators::nulls_at({3})},
lists_col{{0.0f, 0.0f}, cudf::test::iterators::all_nulls()},
lists_col{-NAN},
};
// nan unequal with null equal
fp_wrapper expected1{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, NAN, NAN, 0.0f}, {1, 1, 1, 1, 1, 1, 0}};
auto const ret1 = collect_set(col,
cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>(
cudf::null_equality::EQUAL, cudf::nan_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected1, dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// nan unequal with null unequal
fp_wrapper expected2{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, NAN, NAN, 0.0f, 0.0f, 0.0f},
{1, 1, 1, 1, 1, 1, 0, 0, 0}};
auto const ret2 = collect_set(col,
cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>(
cudf::null_equality::UNEQUAL, cudf::nan_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
// nan equal with null equal
fp_wrapper expected3{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, 0.0f}, {1, 1, 1, 1, 0}};
auto const ret3 = collect_set(col,
cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>(
cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, dynamic_cast<cudf::list_scalar*>(ret3.get())->view());
// nan equal with null unequal
fp_wrapper expected4{{-2.3e-5f, 1.0f, 2.3e5f, -NAN, 0.0f, 0.0f, 0.0f}, {1, 1, 1, 1, 0, 0, 0}};
auto const ret4 = collect_set(col,
cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>(
cudf::null_equality::UNEQUAL, cudf::nan_equality::ALL_EQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected4, dynamic_cast<cudf::list_scalar*>(ret4.get())->view());
}
TEST_F(CollectTest, CollectStrings)
{
using str_col = cudf::test::strings_column_wrapper;
using lists_col = cudf::test::lists_column_wrapper<cudf::string_view>;
auto const s_col =
str_col{{"a", "a", "b", "b", "b", "c", "c", "d", "e", "e"}, {1, 1, 1, 0, 1, 1, 0, 1, 1, 1}};
// collect_list including nulls
auto const ret1 = cudf::reduce(s_col,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(s_col, dynamic_cast<cudf::list_scalar*>(ret1.get())->view());
// collect_list excluding nulls
auto const expected2 = str_col{"a", "a", "b", "b", "c", "d", "e", "e"};
auto const ret2 = cudf::reduce(
s_col,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(cudf::null_policy::EXCLUDE),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected2, dynamic_cast<cudf::list_scalar*>(ret2.get())->view());
// collect_set with null_equal
auto const expected3 = str_col{{"a", "b", "c", "d", "e", ""}, cudf::test::iterators::null_at(5)};
auto const ret3 =
collect_set(s_col, cudf::make_collect_set_aggregation<cudf::reduce_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected3, dynamic_cast<cudf::list_scalar*>(ret3.get())->view());
// collect_set with null_unequal
auto const expected4 = str_col{{"a", "b", "c", "d", "e", "", ""}, {1, 1, 1, 1, 1, 0, 0}};
auto const ret4 = collect_set(s_col,
cudf::make_collect_set_aggregation<cudf::reduce_aggregation>(
cudf::null_policy::INCLUDE, cudf::null_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected4, dynamic_cast<cudf::list_scalar*>(ret4.get())->view());
lists_col strings{{"a"},
{},
{"a", "b"},
lists_col{{"b", "null", "c"}, cudf::test::iterators::null_at(1)},
lists_col{{"null", "d"}, cudf::test::iterators::null_at(0)},
lists_col{{"null"}, cudf::test::iterators::null_at(0)},
{"e"}};
// merge_lists
auto const expected5 = str_col{{"a", "a", "b", "b", "null", "c", "null", "d", "null", "e"},
{1, 1, 1, 1, 0, 1, 0, 1, 0, 1}};
auto const ret5 = cudf::reduce(strings,
*cudf::make_merge_lists_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected5, dynamic_cast<cudf::list_scalar*>(ret5.get())->view());
// merge_sets with null_equal
auto const expected6 = str_col{{"a", "b", "c", "d", "e", "null"}, {1, 1, 1, 1, 1, 0}};
auto const ret6 =
collect_set(strings, cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected6, dynamic_cast<cudf::list_scalar*>(ret6.get())->view());
// merge_sets with null_unequal
auto const expected7 =
str_col{{"a", "b", "c", "d", "e", "null", "null", "null"}, {1, 1, 1, 1, 1, 0, 0, 0}};
auto const ret7 = collect_set(
strings,
cudf::make_merge_sets_aggregation<cudf::reduce_aggregation>(cudf::null_equality::UNEQUAL));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected7, dynamic_cast<cudf::list_scalar*>(ret7.get())->view());
}
TEST_F(CollectTest, CollectEmptys)
{
using int_col = cudf::test::fixed_width_column_wrapper<int32_t>;
// test collect empty columns
auto empty = int_col{};
auto ret = cudf::reduce(empty,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(int_col{}, dynamic_cast<cudf::list_scalar*>(ret.get())->view());
ret = collect_set(empty, cudf::make_collect_set_aggregation<cudf::reduce_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(int_col{}, dynamic_cast<cudf::list_scalar*>(ret.get())->view());
// test collect all null columns
auto all_nulls = int_col{{1, 2, 3, 4, 5}, {0, 0, 0, 0, 0}};
ret = cudf::reduce(all_nulls,
*cudf::make_collect_list_aggregation<cudf::reduce_aggregation>(),
cudf::data_type{cudf::type_id::LIST});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(int_col{}, dynamic_cast<cudf::list_scalar*>(ret.get())->view());
ret = collect_set(all_nulls, cudf::make_collect_set_aggregation<cudf::reduce_aggregation>());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(int_col{}, dynamic_cast<cudf::list_scalar*>(ret.get())->view());
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/reductions/reduction_tests.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/encode.hpp>
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/reduction.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/scalar/scalar_factories.hpp>
#include <cudf/sorting.hpp>
#include <cudf/types.hpp>
#include <cudf/wrappers/timestamps.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <iostream>
#include <vector>
using aggregation = cudf::aggregation;
using reduce_aggregation = cudf::reduce_aggregation;
template <typename T>
auto convert_int(int value)
{
if (std::is_unsigned_v<T>) value = std::abs(value);
if constexpr (cudf::is_timestamp_t<T>::value) {
return T{typename T::duration(value)};
} else {
return static_cast<T>(value);
}
}
template <typename T>
auto convert_values(std::vector<int> const& int_values)
{
std::vector<T> v(int_values.size());
std::transform(
int_values.begin(), int_values.end(), v.begin(), [](int x) { return convert_int<T>(x); });
return v;
}
template <typename T>
cudf::test::fixed_width_column_wrapper<T> construct_null_column(std::vector<T> const& values,
std::vector<bool> const& bools)
{
if (values.size() > bools.size()) { throw std::logic_error("input vector size mismatch."); }
return cudf::test::fixed_width_column_wrapper<T>(values.begin(), values.end(), bools.begin());
}
template <typename T>
std::vector<T> replace_nulls(std::vector<T> const& values,
std::vector<bool> const& bools,
T identity)
{
std::vector<T> v(values.size());
std::transform(values.begin(), values.end(), bools.begin(), v.begin(), [identity](T x, bool b) {
return (b) ? x : identity;
});
return v;
}
// ------------------------------------------------------------------------
// This is the main test feature
template <typename T>
struct ReductionTest : public cudf::test::BaseFixture {
// Sum/Prod/SumOfSquare never support non arithmetics
static constexpr bool ret_non_arithmetic = (std::is_arithmetic_v<T> || std::is_same_v<T, bool>);
ReductionTest() {}
~ReductionTest() {}
template <typename T_out>
std::pair<T_out, bool> reduction_test(cudf::column_view const& underlying_column,
reduce_aggregation const& agg,
std::optional<cudf::data_type> _output_dtype = {})
{
auto const output_dtype = _output_dtype.value_or(underlying_column.type());
std::unique_ptr<cudf::scalar> reduction = cudf::reduce(underlying_column, agg, output_dtype);
using ScalarType = cudf::scalar_type_t<T_out>;
auto result = static_cast<ScalarType*>(reduction.get());
return {result->value(), result->is_valid()};
}
// Test with initial value
template <typename T_out>
std::pair<T_out, bool> reduction_test(cudf::column_view const& underlying_column,
cudf::scalar const& initial_value,
reduce_aggregation const& agg,
std::optional<cudf::data_type> _output_dtype = {})
{
auto const output_dtype = _output_dtype.value_or(underlying_column.type());
std::unique_ptr<cudf::scalar> reduction =
cudf::reduce(underlying_column, agg, output_dtype, initial_value);
using ScalarType = cudf::scalar_type_t<T_out>;
auto result = static_cast<ScalarType*>(reduction.get());
return {result->value(), result->is_valid()};
}
};
template <typename T>
struct MinMaxReductionTest : public ReductionTest<T> {};
using MinMaxTypes = cudf::test::Types<int16_t, int32_t, float, double>;
TYPED_TEST_SUITE(MinMaxReductionTest, MinMaxTypes);
// ------------------------------------------------------------------------
TYPED_TEST(MinMaxReductionTest, MinMaxTypes)
{
using T = TypeParam;
std::vector<int> int_values({5, 0, -120, -111, 0, 64, 63, 99, 123, -16});
std::vector<bool> host_bools({1, 1, 0, 1, 1, 1, 0, 1, 0, 1});
std::vector<bool> all_null({0, 0, 0, 0, 0, 0, 0, 0, 0, 0});
std::vector<T> v = convert_values<T>(int_values);
T init_value = convert_int<T>(100);
auto const init_scalar = cudf::make_fixed_width_scalar<T>(init_value);
// Min/Max succeeds for any gdf types including
// non-arithmetic types (date32, date64, timestamp, category)
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
T expected_min_result = *(std::min_element(v.begin(), v.end()));
T expected_max_result = *(std::max_element(v.begin(), v.end()));
T expected_min_init_result = std::accumulate(
v.begin(), v.end(), init_value, [](T const& a, T const& b) { return std::min<T>(a, b); });
T expected_max_init_result = std::accumulate(
v.begin(), v.end(), init_value, [](T const& a, T const& b) { return std::max<T>(a, b); });
EXPECT_EQ(
this->template reduction_test<T>(col, *cudf::make_min_aggregation<reduce_aggregation>()).first,
expected_min_result);
EXPECT_EQ(
this->template reduction_test<T>(col, *cudf::make_max_aggregation<reduce_aggregation>()).first,
expected_max_result);
EXPECT_EQ(this
->template reduction_test<T>(
col, *init_scalar, *cudf::make_min_aggregation<reduce_aggregation>())
.first,
expected_min_init_result);
EXPECT_EQ(this
->template reduction_test<T>(
col, *init_scalar, *cudf::make_max_aggregation<reduce_aggregation>())
.first,
expected_max_init_result);
auto res = cudf::minmax(col);
using ScalarType = cudf::scalar_type_t<T>;
auto min_result = static_cast<ScalarType*>(res.first.get());
auto max_result = static_cast<ScalarType*>(res.second.get());
EXPECT_EQ(T{min_result->value()}, expected_min_result);
EXPECT_EQ(T{max_result->value()}, expected_max_result);
// test with some nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
auto r_min = replace_nulls(v, host_bools, std::numeric_limits<T>::max());
auto r_max = replace_nulls(v, host_bools, std::numeric_limits<T>::lowest());
T expected_min_null_result = *(std::min_element(r_min.begin(), r_min.end()));
T expected_max_null_result = *(std::max_element(r_max.begin(), r_max.end()));
T expected_min_init_null_result =
std::accumulate(r_min.begin(), r_min.end(), init_value, [](T const& a, T const& b) {
return std::min<T>(a, b);
});
T expected_max_init_null_result =
std::accumulate(r_max.begin(), r_max.end(), init_value, [](T const& a, T const& b) {
return std::max<T>(a, b);
});
EXPECT_EQ(
this->template reduction_test<T>(col_nulls, *cudf::make_min_aggregation<reduce_aggregation>())
.first,
expected_min_null_result);
EXPECT_EQ(
this->template reduction_test<T>(col_nulls, *cudf::make_max_aggregation<reduce_aggregation>())
.first,
expected_max_null_result);
EXPECT_EQ(this
->template reduction_test<T>(
col_nulls, *init_scalar, *cudf::make_min_aggregation<reduce_aggregation>())
.first,
expected_min_init_null_result);
EXPECT_EQ(this
->template reduction_test<T>(
col_nulls, *init_scalar, *cudf::make_max_aggregation<reduce_aggregation>())
.first,
expected_max_init_null_result);
auto null_res = cudf::minmax(col_nulls);
using ScalarType = cudf::scalar_type_t<T>;
auto min_null_result = static_cast<ScalarType*>(null_res.first.get());
auto max_null_result = static_cast<ScalarType*>(null_res.second.get());
EXPECT_EQ(T{min_null_result->value()}, expected_min_null_result);
EXPECT_EQ(T{max_null_result->value()}, expected_max_null_result);
// test with all null
cudf::test::fixed_width_column_wrapper<T> col_all_nulls = construct_null_column(v, all_null);
init_scalar->set_valid_async(false);
EXPECT_FALSE(
this
->template reduction_test<T>(col_all_nulls, *cudf::make_min_aggregation<reduce_aggregation>())
.second);
EXPECT_FALSE(
this
->template reduction_test<T>(col_all_nulls, *cudf::make_max_aggregation<reduce_aggregation>())
.second);
EXPECT_FALSE(this
->template reduction_test<T>(
col_all_nulls, *init_scalar, *cudf::make_min_aggregation<reduce_aggregation>())
.second);
EXPECT_FALSE(this
->template reduction_test<T>(
col_all_nulls, *init_scalar, *cudf::make_max_aggregation<reduce_aggregation>())
.second);
auto all_null_res = cudf::minmax(col_all_nulls);
using ScalarType = cudf::scalar_type_t<T>;
auto min_all_null_result = static_cast<ScalarType*>(all_null_res.first.get());
auto max_all_null_result = static_cast<ScalarType*>(all_null_res.second.get());
EXPECT_EQ(min_all_null_result->is_valid(), false);
EXPECT_EQ(max_all_null_result->is_valid(), false);
}
template <typename T>
struct SumReductionTest : public ReductionTest<T> {};
using SumTypes = cudf::test::Types<int16_t, int32_t, float, double>;
TYPED_TEST_SUITE(SumReductionTest, SumTypes);
TYPED_TEST(SumReductionTest, Sum)
{
using T = TypeParam;
std::vector<int> int_values({6, -14, 13, 64, 0, -13, -20, 45});
std::vector<bool> host_bools({1, 1, 0, 0, 1, 1, 1, 1});
std::vector<T> v = convert_values<T>(int_values);
T init_value = convert_int<T>(100);
auto const init_scalar = cudf::make_fixed_width_scalar<T>(init_value);
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
T expected_value = std::accumulate(v.begin(), v.end(), T{0});
T expected_value_init = std::accumulate(v.begin(), v.end(), init_value);
EXPECT_EQ(
this->template reduction_test<T>(col, *cudf::make_sum_aggregation<reduce_aggregation>()).first,
expected_value);
EXPECT_EQ(this
->template reduction_test<T>(
col, *init_scalar, *cudf::make_sum_aggregation<reduce_aggregation>())
.first,
expected_value_init);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
auto r = replace_nulls(v, host_bools, T{0});
T expected_null_value = std::accumulate(r.begin(), r.end(), T{0});
init_scalar->set_valid_async(false);
EXPECT_EQ(
this->template reduction_test<T>(col_nulls, *cudf::make_sum_aggregation<reduce_aggregation>())
.first,
expected_null_value);
EXPECT_FALSE(this
->template reduction_test<T>(
col_nulls, *init_scalar, *cudf::make_sum_aggregation<reduce_aggregation>())
.second);
}
TYPED_TEST_SUITE(ReductionTest, cudf::test::NumericTypes);
TYPED_TEST(ReductionTest, Product)
{
using T = TypeParam;
std::vector<int> int_values({5, -1, 1, 0, 3, 2, 4});
std::vector<bool> host_bools({1, 1, 0, 0, 1, 1, 1});
std::vector<TypeParam> v = convert_values<TypeParam>(int_values);
T init_value = convert_int<T>(4);
auto const init_scalar = cudf::make_fixed_width_scalar<T>(init_value);
auto calc_prod = [](std::vector<T>& v) {
T expected_value = std::accumulate(v.begin(), v.end(), T{1}, std::multiplies<T>());
return expected_value;
};
auto calc_prod_init = [](std::vector<T>& v, T init) {
T expected_value = std::accumulate(v.begin(), v.end(), init, std::multiplies<T>());
return expected_value;
};
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
TypeParam expected_value = calc_prod(v);
TypeParam expected_value_init = calc_prod_init(v, init_value);
EXPECT_EQ(
this->template reduction_test<T>(col, *cudf::make_product_aggregation<reduce_aggregation>())
.first,
expected_value);
EXPECT_EQ(this
->template reduction_test<T>(
col, *init_scalar, *cudf::make_product_aggregation<reduce_aggregation>())
.first,
expected_value_init);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
auto r = replace_nulls(v, host_bools, T{1});
TypeParam expected_null_value = calc_prod(r);
init_scalar->set_valid_async(false);
EXPECT_EQ(
this
->template reduction_test<T>(col_nulls, *cudf::make_product_aggregation<reduce_aggregation>())
.first,
expected_null_value);
EXPECT_FALSE(this
->template reduction_test<T>(
col_nulls, *init_scalar, *cudf::make_product_aggregation<reduce_aggregation>())
.second);
}
TYPED_TEST(ReductionTest, SumOfSquare)
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2});
std::vector<bool> host_bools({1, 1, 0, 0, 1, 1, 1, 1});
std::vector<T> v = convert_values<T>(int_values);
auto calc_reduction = [](std::vector<T>& v) {
T value = std::accumulate(v.begin(), v.end(), T{0}, [](T acc, T i) { return acc + i * i; });
return value;
};
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
T expected_value = calc_reduction(v);
EXPECT_EQ(this
->template reduction_test<T>(
col, *cudf::make_sum_of_squares_aggregation<reduce_aggregation>())
.first,
expected_value);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
auto r = replace_nulls(v, host_bools, T{0});
T expected_null_value = calc_reduction(r);
EXPECT_EQ(this
->template reduction_test<T>(
col_nulls, *cudf::make_sum_of_squares_aggregation<reduce_aggregation>())
.first,
expected_null_value);
}
auto histogram_reduction(cudf::column_view const& input,
std::unique_ptr<cudf::reduce_aggregation> const& agg)
{
CUDF_EXPECTS(
agg->kind == cudf::aggregation::HISTOGRAM || agg->kind == cudf::aggregation::MERGE_HISTOGRAM,
"Aggregation must be either HISTOGRAM or MERGE_HISTOGRAM.");
auto const result_scalar = cudf::reduce(input, *agg, cudf::data_type{cudf::type_id::INT64});
EXPECT_EQ(result_scalar->is_valid(), true);
auto const result_list_scalar = dynamic_cast<cudf::list_scalar*>(result_scalar.get());
EXPECT_NE(result_list_scalar, nullptr);
auto const histogram = result_list_scalar->view();
EXPECT_EQ(histogram.num_children(), 2);
EXPECT_EQ(histogram.null_count(), 0);
EXPECT_EQ(histogram.child(1).null_count(), 0);
// Sort the histogram based on the first column (unique input values).
auto const sort_order = cudf::sorted_order(cudf::table_view{{histogram.child(0)}}, {}, {});
return std::move(cudf::gather(cudf::table_view{{histogram}}, *sort_order)->release().front());
}
template <typename T>
struct ReductionHistogramTest : public cudf::test::BaseFixture {};
// Avoid unsigned types, as the tests below have negative values in their input.
using HistogramTestTypes = cudf::test::Concat<cudf::test::Types<int8_t, int16_t, int32_t, int64_t>,
cudf::test::FloatingPointTypes,
cudf::test::FixedPointTypes,
cudf::test::ChronoTypes>;
TYPED_TEST_SUITE(ReductionHistogramTest, HistogramTestTypes);
TYPED_TEST(ReductionHistogramTest, Histogram)
{
using data_col = cudf::test::fixed_width_column_wrapper<TypeParam, int>;
using int64_col = cudf::test::fixed_width_column_wrapper<int64_t>;
using structs_col = cudf::test::structs_column_wrapper;
auto const agg = cudf::make_histogram_aggregation<reduce_aggregation>();
// Empty input.
{
auto const input = data_col{};
auto const expected = [] {
auto child1 = data_col{};
auto child2 = int64_col{};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
{
auto const input = data_col{-3, 2, 1, 2, 0, 5, 2, -3, -2, 2, 1};
auto const expected = [] {
auto child1 = data_col{-3, -2, 0, 1, 2, 5};
auto child2 = int64_col{2, 1, 1, 2, 4, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test without nulls, sliced input.
{
auto const input_original = data_col{-3, 2, 1, 2, 0, 5, 2, -3, -2, 2, 1};
auto const input = cudf::slice(input_original, {0, 7})[0];
auto const expected = [] {
auto child1 = data_col{-3, 0, 1, 2, 5};
auto child2 = int64_col{1, 1, 1, 3, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test with nulls.
using namespace cudf::test::iterators;
auto constexpr null{0};
{
auto const input = data_col{{null, -3, 2, 1, 2, 0, null, 5, 2, null, -3, -2, null, 2, 1},
nulls_at({0, 6, 9, 12})};
auto const expected = [] {
auto child1 = data_col{{null, -3, -2, 0, 1, 2, 5}, null_at(0)};
auto child2 = int64_col{4, 2, 1, 1, 2, 4, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test with nulls, sliced input.
{
auto const input_original = data_col{
{null, -3, 2, 1, 2, 0, null, 5, 2, null, -3, -2, null, 2, 1}, nulls_at({0, 6, 9, 12})};
auto const input = cudf::slice(input_original, {0, 9})[0];
auto const expected = [] {
auto child1 = data_col{{null, -3, 0, 1, 2, 5}, null_at(0)};
auto child2 = int64_col{2, 1, 1, 1, 3, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
}
TYPED_TEST(ReductionHistogramTest, MergeHistogram)
{
using data_col = cudf::test::fixed_width_column_wrapper<TypeParam>;
using int64_col = cudf::test::fixed_width_column_wrapper<int64_t>;
using structs_col = cudf::test::structs_column_wrapper;
auto const agg = cudf::make_merge_histogram_aggregation<reduce_aggregation>();
// Empty input.
{
auto const input = [] {
auto child1 = data_col{};
auto child2 = int64_col{};
return structs_col{{child1, child2}};
}();
auto const expected = [] {
auto child1 = data_col{};
auto child2 = int64_col{};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test without nulls.
{
auto const input = [] {
auto child1 = data_col{-3, 2, 1, 2, 0, 5, 2, -3, -2, 2, 1};
auto child2 = int64_col{2, 1, 1, 2, 4, 1, 2, 3, 5, 3, 4};
return structs_col{{child1, child2}};
}();
auto const expected = [] {
auto child1 = data_col{-3, -2, 0, 1, 2, 5};
auto child2 = int64_col{5, 5, 4, 5, 8, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test without nulls, sliced input.
{
auto const input_original = [] {
auto child1 = data_col{-3, 2, 1, 2, 0, 5, 2, -3, -2, 2, 1};
auto child2 = int64_col{2, 1, 1, 2, 4, 1, 2, 3, 5, 3, 4};
return structs_col{{child1, child2}};
}();
auto const input = cudf::slice(input_original, {0, 7})[0];
auto const expected = [] {
auto child1 = data_col{-3, 0, 1, 2, 5};
auto child2 = int64_col{2, 4, 1, 5, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test with nulls.
using namespace cudf::test::iterators;
auto constexpr null{0};
{
auto const input = [] {
auto child1 = data_col{{-3, 2, null, 1, 2, null, 0, 5, null, 2, -3, null, -2, 2, 1, null},
nulls_at({2, 5, 8, 11, 15})};
auto child2 = int64_col{2, 1, 12, 1, 2, 11, 4, 1, 10, 2, 3, 15, 5, 3, 4, 19};
return structs_col{{child1, child2}};
}();
auto const expected = [] {
auto child1 = data_col{{null, -3, -2, 0, 1, 2, 5}, null_at(0)};
auto child2 = int64_col{67, 5, 5, 4, 5, 8, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
// Test with nulls, sliced input.
{
auto const input_original = [] {
auto child1 = data_col{{-3, 2, null, 1, 2, null, 0, 5, null, 2, -3, null, -2, 2, 1, null},
nulls_at({2, 5, 8, 11, 15})};
auto child2 = int64_col{2, 1, 12, 1, 2, 11, 4, 1, 10, 2, 3, 15, 5, 3, 4, 19};
return structs_col{{child1, child2}};
}();
auto const input = cudf::slice(input_original, {0, 9})[0];
auto const expected = [] {
auto child1 = data_col{{null, -3, 0, 1, 2, 5}, null_at(0)};
auto child2 = int64_col{33, 2, 4, 1, 3, 1};
return structs_col{{child1, child2}};
}();
auto const result = histogram_reduction(input, agg);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *result);
}
}
template <typename T>
struct ReductionAnyAllTest : public ReductionTest<bool> {};
using AnyAllTypes = cudf::test::Types<int32_t, float, bool>;
TYPED_TEST_SUITE(ReductionAnyAllTest, AnyAllTypes);
TYPED_TEST(ReductionAnyAllTest, AnyAllTrueTrue)
{
using T = TypeParam;
std::vector<int> int_values({true, true, true, true});
std::vector<bool> host_bools({1, 1, 0, 1});
std::vector<T> v = convert_values<T>(int_values);
auto const init_scalar = cudf::make_fixed_width_scalar<T>(convert_int<T>(true));
// Min/Max succeeds for any gdf types including
// non-arithmetic types (date32, date64, timestamp, category)
bool expected = true;
cudf::data_type output_dtype(cudf::type_id::BOOL8);
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(this
->template reduction_test<bool>(
col, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col, *init_scalar, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col, *init_scalar, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
init_scalar->set_valid_async(false);
EXPECT_EQ(this
->template reduction_test<bool>(
col_nulls, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col_nulls, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_FALSE(
this
->template reduction_test<bool>(
col_nulls, *init_scalar, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.second);
EXPECT_FALSE(
this
->template reduction_test<bool>(
col_nulls, *init_scalar, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.second);
}
TYPED_TEST(ReductionAnyAllTest, AnyAllFalseFalse)
{
using T = TypeParam;
std::vector<int> int_values({false, false, false, false});
std::vector<bool> host_bools({1, 1, 0, 1});
std::vector<T> v = convert_values<T>(int_values);
auto const init_scalar = cudf::make_fixed_width_scalar<T>(convert_int<T>(false));
// Min/Max succeeds for any gdf types including
// non-arithmetic types (date32, date64, timestamp, category)
bool expected = false;
cudf::data_type output_dtype(cudf::type_id::BOOL8);
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(this
->template reduction_test<bool>(
col, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col, *init_scalar, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col, *init_scalar, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
init_scalar->set_valid_async(false);
EXPECT_EQ(this
->template reduction_test<bool>(
col_nulls, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_EQ(this
->template reduction_test<bool>(
col_nulls, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.first,
expected);
EXPECT_FALSE(
this
->template reduction_test<bool>(
col_nulls, *init_scalar, *cudf::make_any_aggregation<reduce_aggregation>(), output_dtype)
.second);
EXPECT_FALSE(
this
->template reduction_test<bool>(
col_nulls, *init_scalar, *cudf::make_all_aggregation<reduce_aggregation>(), output_dtype)
.second);
}
// ----------------------------------------------------------------------------
template <typename T>
struct MultiStepReductionTest : public ReductionTest<T> {};
using MultiStepReductionTypes = cudf::test::Types<int16_t, int32_t, float, double>;
TYPED_TEST_SUITE(MultiStepReductionTest, MultiStepReductionTypes);
TYPED_TEST(MultiStepReductionTest, Mean)
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2, 28});
std::vector<bool> host_bools({1, 1, 0, 1, 1, 1, 0, 1});
auto calc_mean = [](std::vector<T>& v, cudf::size_type valid_count) {
double sum = std::accumulate(v.begin(), v.end(), double{0});
return sum / valid_count;
};
// test without nulls
std::vector<T> v = convert_values<T>(int_values);
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
double expected_value = calc_mean(v, v.size());
EXPECT_EQ(this
->template reduction_test<double>(col,
*cudf::make_mean_aggregation<reduce_aggregation>(),
cudf::data_type(cudf::type_id::FLOAT64))
.first,
expected_value);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
cudf::size_type valid_count =
cudf::column_view(col_nulls).size() - cudf::column_view(col_nulls).null_count();
auto replaced_array = replace_nulls(v, host_bools, T{0});
double expected_value_nulls = calc_mean(replaced_array, valid_count);
EXPECT_EQ(this
->template reduction_test<double>(col_nulls,
*cudf::make_mean_aggregation<reduce_aggregation>(),
cudf::data_type(cudf::type_id::FLOAT64))
.first,
expected_value_nulls);
}
// This test is disabled for only a Debug build because a compiler error
// documented in cpp/src/reductions/std.cu and cpp/src/reductions/var.cu
#ifdef NDEBUG
TYPED_TEST(MultiStepReductionTest, var_std)
#else
TYPED_TEST(MultiStepReductionTest, DISABLED_var_std)
#endif
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2, 28});
std::vector<bool> host_bools({1, 1, 0, 1, 1, 1, 0, 1});
auto calc_var = [](std::vector<T>& v, cudf::size_type valid_count, int ddof) {
double mean = std::accumulate(v.begin(), v.end(), double{0});
mean /= valid_count;
double sum_of_sq = std::accumulate(
v.begin(), v.end(), double{0}, [](double acc, TypeParam i) { return acc + i * i; });
cudf::size_type div = valid_count - ddof;
double var = sum_of_sq / div - ((mean * mean) * valid_count) / div;
return var;
};
// test without nulls
std::vector<T> v = convert_values<T>(int_values);
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
auto const ddof = 1;
double var = calc_var(v, v.size(), ddof);
double std = std::sqrt(var);
auto var_agg = cudf::make_variance_aggregation<reduce_aggregation>(ddof);
auto std_agg = cudf::make_std_aggregation<reduce_aggregation>(ddof);
EXPECT_EQ(
this->template reduction_test<double>(col, *var_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
var);
EXPECT_EQ(
this->template reduction_test<double>(col, *std_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
std);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
cudf::size_type valid_count =
cudf::column_view(col_nulls).size() - cudf::column_view(col_nulls).null_count();
auto replaced_array = replace_nulls(v, host_bools, T{0});
double var_nulls = calc_var(replaced_array, valid_count, ddof);
double std_nulls = std::sqrt(var_nulls);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *var_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
var_nulls);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *std_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
std_nulls);
}
// ----------------------------------------------------------------------------
template <typename T>
struct ReductionMultiStepErrorCheck : public ReductionTest<T> {
void reduction_error_check(cudf::test::fixed_width_column_wrapper<T>& col,
bool succeeded_condition,
reduce_aggregation const& agg,
cudf::data_type output_dtype)
{
const cudf::column_view underlying_column = col;
auto statement = [&]() { cudf::reduce(underlying_column, agg, output_dtype); };
if (succeeded_condition) {
CUDF_EXPECT_NO_THROW(statement());
} else {
EXPECT_ANY_THROW(statement());
}
}
};
TYPED_TEST_SUITE(ReductionMultiStepErrorCheck, cudf::test::AllTypes);
// This test is disabled for only a Debug build because a compiler error
// documented in cpp/src/reductions/std.cu and cpp/src/reductions/var.cu
#ifdef NDEBUG
TYPED_TEST(ReductionMultiStepErrorCheck, ErrorHandling)
#else
TYPED_TEST(ReductionMultiStepErrorCheck, DISABLED_ErrorHandling)
#endif
{
using T = TypeParam;
std::vector<int> int_values({-3, 2});
std::vector<bool> host_bools({1, 0});
std::vector<T> v = convert_values<T>(int_values);
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
bool is_input_acceptable = this->ret_non_arithmetic;
std::vector<cudf::data_type> dtypes(static_cast<int32_t>(cudf::type_id::NUM_TYPE_IDS) + 1);
int i = 0;
std::generate(dtypes.begin(), dtypes.end(), [&]() {
return cudf::data_type(static_cast<cudf::type_id>(i++));
});
auto is_supported_outdtype = [](cudf::data_type dtype) {
if (dtype == cudf::data_type(cudf::type_id::FLOAT32)) return true;
if (dtype == cudf::data_type(cudf::type_id::FLOAT64)) return true;
return false;
};
auto evaluate = [&](cudf::data_type dtype) mutable {
bool expect_succeed = is_input_acceptable & is_supported_outdtype(dtype);
auto const ddof = 1;
auto var_agg = cudf::make_variance_aggregation<reduce_aggregation>(ddof);
auto std_agg = cudf::make_std_aggregation<reduce_aggregation>(ddof);
this->reduction_error_check(
col, expect_succeed, *cudf::make_mean_aggregation<reduce_aggregation>(), dtype);
this->reduction_error_check(col, expect_succeed, *var_agg, dtype);
this->reduction_error_check(col, expect_succeed, *std_agg, dtype);
this->reduction_error_check(
col_nulls, expect_succeed, *cudf::make_mean_aggregation<reduce_aggregation>(), dtype);
this->reduction_error_check(col_nulls, expect_succeed, *var_agg, dtype);
this->reduction_error_check(col_nulls, expect_succeed, *std_agg, dtype);
return;
};
std::for_each(dtypes.begin(), dtypes.end(), evaluate);
}
// ----------------------------------------------------------------------------
struct ReductionDtypeTest : public cudf::test::BaseFixture {
template <typename T_in, typename T_out>
void reduction_test(std::vector<int>& int_values,
T_out expected_value,
bool succeeded_condition,
reduce_aggregation const& agg,
cudf::data_type out_dtype,
bool expected_overflow = false)
{
std::vector<T_in> input_values = convert_values<T_in>(int_values);
cudf::test::fixed_width_column_wrapper<T_in> const col(input_values.begin(),
input_values.end());
auto statement = [&]() {
std::unique_ptr<cudf::scalar> result = cudf::reduce(col, agg, out_dtype);
using ScalarType = cudf::scalar_type_t<T_out>;
auto result1 = static_cast<ScalarType*>(result.get());
if (result1->is_valid() && !expected_overflow) {
EXPECT_EQ(expected_value, result1->value());
}
};
if (succeeded_condition) {
CUDF_EXPECT_NO_THROW(statement());
} else {
EXPECT_ANY_THROW(statement());
}
}
};
TEST_F(ReductionDtypeTest, all_null_output)
{
auto sum_agg = cudf::make_sum_aggregation<reduce_aggregation>();
auto const col =
cudf::test::fixed_point_column_wrapper<int32_t>{{0, 0, 0}, {0, 0, 0}, numeric::scale_type{-2}}
.release();
std::unique_ptr<cudf::scalar> result = cudf::reduce(*col, *sum_agg, col->type());
EXPECT_EQ(result->is_valid(), false);
EXPECT_EQ(result->type().id(), col->type().id());
EXPECT_EQ(result->type().scale(), col->type().scale());
}
// test case for different output precision
TEST_F(ReductionDtypeTest, different_precision)
{
constexpr bool expected_overflow = true;
std::vector<int> int_values({6, -14, 13, 109, -13, -20, 0, 98, 122, 123});
int expected_value = std::accumulate(int_values.begin(), int_values.end(), 0);
auto sum_agg = cudf::make_sum_aggregation<reduce_aggregation>();
// over flow
this->reduction_test<int8_t, int8_t>(int_values,
static_cast<int8_t>(expected_value),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT8),
expected_overflow);
this->reduction_test<int8_t, int64_t>(int_values,
static_cast<int64_t>(expected_value),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT64));
this->reduction_test<int8_t, double>(int_values,
static_cast<double>(expected_value),
true,
*sum_agg,
cudf::data_type(cudf::type_id::FLOAT64));
// down cast (over flow)
this->reduction_test<double, int8_t>(int_values,
static_cast<int8_t>(expected_value),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT8),
expected_overflow);
// down cast (no over flow)
this->reduction_test<double, int16_t>(int_values,
static_cast<int16_t>(expected_value),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT16));
// not supported case:
// wrapper classes other than bool are not convertible
this->reduction_test<cudf::timestamp_D, cudf::timestamp_s>(
int_values,
cudf::timestamp_s{cudf::duration_s(expected_value)},
false,
*sum_agg,
cudf::data_type(cudf::type_id::TIMESTAMP_SECONDS));
this->reduction_test<cudf::timestamp_s, cudf::timestamp_ns>(
int_values,
cudf::timestamp_ns{cudf::duration_ns(expected_value)},
false,
*sum_agg,
cudf::data_type(cudf::type_id::TIMESTAMP_NANOSECONDS));
this->reduction_test<int8_t, cudf::timestamp_us>(
int_values,
cudf::timestamp_us{cudf::duration_us(expected_value)},
false,
*sum_agg,
cudf::data_type(cudf::type_id::TIMESTAMP_MICROSECONDS));
std::vector<bool> v = convert_values<bool>(int_values);
// When summing bool values into an non-bool arithmetic type,
// it's an integer/float sum of ones and zeros.
int expected = std::accumulate(v.begin(), v.end(), int{0});
this->reduction_test<bool, int8_t>(int_values,
static_cast<int8_t>(expected),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT8));
this->reduction_test<bool, int16_t>(int_values,
static_cast<int16_t>(expected),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT16));
this->reduction_test<bool, int32_t>(int_values,
static_cast<int32_t>(expected),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT32));
this->reduction_test<bool, int64_t>(int_values,
static_cast<int64_t>(expected),
true,
*sum_agg,
cudf::data_type(cudf::type_id::INT64));
this->reduction_test<bool, float>(int_values,
static_cast<float>(expected),
true,
*sum_agg,
cudf::data_type(cudf::type_id::FLOAT32));
this->reduction_test<bool, double>(int_values,
static_cast<double>(expected),
true,
*sum_agg,
cudf::data_type(cudf::type_id::FLOAT64));
// make sure boolean arithmetic semantics are obeyed when reducing to a bool
this->reduction_test<bool, bool>(
int_values, true, true, *sum_agg, cudf::data_type(cudf::type_id::BOOL8));
this->reduction_test<int32_t, bool>(
int_values, true, true, *sum_agg, cudf::data_type(cudf::type_id::BOOL8));
// cudf::timestamp_s and int64_t are not convertible types.
this->reduction_test<cudf::timestamp_s, int64_t>(int_values,
static_cast<int64_t>(expected_value),
false,
*sum_agg,
cudf::data_type(cudf::type_id::INT64));
}
struct ReductionEmptyTest : public cudf::test::BaseFixture {};
// test case for empty input cases
TEST_F(ReductionEmptyTest, empty_column)
{
using T = int32_t;
auto statement = [](cudf::column_view const& col) {
std::unique_ptr<cudf::scalar> result =
cudf::reduce(col,
*cudf::make_sum_aggregation<reduce_aggregation>(),
cudf::data_type(cudf::type_id::INT64));
EXPECT_EQ(result->is_valid(), false);
};
// default column_view{} is an empty column
// empty column_view
CUDF_EXPECT_NO_THROW(statement(cudf::column_view{}));
// test if the size of input column is zero
// expect result.is_valid() is false
std::vector<T> empty_data(0);
cudf::test::fixed_width_column_wrapper<T> const col0(empty_data.begin(), empty_data.end());
CUDF_EXPECT_NO_THROW(statement(col0));
// test if null count is equal or greater than size of input
// expect result.is_valid() is false
int col_size = 5;
std::vector<T> col_data(col_size);
std::vector<bool> valids(col_size, 0);
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(col_data, valids);
CUDF_EXPECT_NO_THROW(statement(col_nulls));
auto any_agg = cudf::make_any_aggregation<cudf::reduce_aggregation>();
auto all_agg = cudf::make_all_aggregation<cudf::reduce_aggregation>();
auto bool_type = cudf::data_type{cudf::type_id::BOOL8};
auto result = cudf::reduce(col0, *any_agg, bool_type);
EXPECT_EQ(result->is_valid(), true);
EXPECT_EQ(dynamic_cast<cudf::numeric_scalar<bool>*>(result.get())->value(), false);
result = cudf::reduce(col_nulls, *any_agg, bool_type);
EXPECT_EQ(result->is_valid(), true);
EXPECT_EQ(dynamic_cast<cudf::numeric_scalar<bool>*>(result.get())->value(), false);
result = cudf::reduce(col0, *all_agg, bool_type);
EXPECT_EQ(result->is_valid(), true);
EXPECT_EQ(dynamic_cast<cudf::numeric_scalar<bool>*>(result.get())->value(), true);
result = cudf::reduce(col_nulls, *all_agg, bool_type);
EXPECT_EQ(result->is_valid(), true);
EXPECT_EQ(dynamic_cast<cudf::numeric_scalar<bool>*>(result.get())->value(), true);
}
// ----------------------------------------------------------------------------
struct ReductionParamTest : public ReductionTest<double>,
public ::testing::WithParamInterface<cudf::size_type> {};
INSTANTIATE_TEST_CASE_P(ddofParam, ReductionParamTest, ::testing::Range(1, 5));
// This test is disabled for only a Debug build because a compiler error
// documented in cpp/src/reductions/std.cu and cpp/src/reductions/var.cu
#ifdef NDEBUG
TEST_P(ReductionParamTest, std_var)
#else
TEST_P(ReductionParamTest, DISABLED_std_var)
#endif
{
int ddof = GetParam();
std::vector<double> int_values({-3, 2, 1, 0, 5, -3, -2, 28});
std::vector<bool> host_bools({1, 1, 0, 1, 1, 1, 0, 1});
auto calc_var = [ddof](std::vector<double>& v, cudf::size_type valid_count) {
double mean = std::accumulate(v.begin(), v.end(), double{0});
mean /= valid_count;
double sum_of_sq = std::accumulate(
v.begin(), v.end(), double{0}, [](double acc, double i) { return acc + i * i; });
cudf::size_type div = valid_count - ddof;
double var = sum_of_sq / div - ((mean * mean) * valid_count) / div;
return var;
};
// test without nulls
cudf::test::fixed_width_column_wrapper<double> col(int_values.begin(), int_values.end());
double var = calc_var(int_values, int_values.size());
double std = std::sqrt(var);
auto var_agg = cudf::make_variance_aggregation<reduce_aggregation>(ddof);
auto std_agg = cudf::make_std_aggregation<reduce_aggregation>(ddof);
EXPECT_EQ(
this->template reduction_test<double>(col, *var_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
var);
EXPECT_EQ(
this->template reduction_test<double>(col, *std_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
std);
// test with nulls
cudf::test::fixed_width_column_wrapper<double> col_nulls =
construct_null_column(int_values, host_bools);
cudf::size_type valid_count =
cudf::column_view(col_nulls).size() - cudf::column_view(col_nulls).null_count();
auto replaced_array = replace_nulls<double>(int_values, host_bools, int{0});
double var_nulls = calc_var(replaced_array, valid_count);
double std_nulls = std::sqrt(var_nulls);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *var_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
var_nulls);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *std_agg, cudf::data_type(cudf::type_id::FLOAT64))
.first,
std_nulls);
}
//-------------------------------------------------------------------
struct StringReductionTest : public cudf::test::BaseFixture,
public testing::WithParamInterface<std::vector<std::string>> {
// Min/Max
void reduction_test(cudf::column_view const& underlying_column,
std::string expected_value,
bool succeeded_condition,
reduce_aggregation const& agg,
cudf::data_type output_dtype = cudf::data_type{})
{
if (cudf::data_type{} == output_dtype) output_dtype = underlying_column.type();
auto statement = [&]() {
std::unique_ptr<cudf::scalar> result = cudf::reduce(underlying_column, agg, output_dtype);
using ScalarType = cudf::scalar_type_t<cudf::string_view>;
auto result1 = static_cast<ScalarType*>(result.get());
EXPECT_TRUE(result1->is_valid());
if (result1->is_valid()) {
EXPECT_EQ(expected_value, result1->to_string())
<< (agg.kind == aggregation::MIN ? "MIN" : "MAX");
}
};
if (succeeded_condition) {
CUDF_EXPECT_NO_THROW(statement());
} else {
EXPECT_ANY_THROW(statement());
}
}
void reduction_test(cudf::column_view const& underlying_column,
std::string initial_value,
std::string expected_value,
bool succeeded_condition,
reduce_aggregation const& agg,
cudf::data_type output_dtype = cudf::data_type{})
{
if (cudf::data_type{} == output_dtype) output_dtype = underlying_column.type();
auto string_scalar = cudf::make_string_scalar(initial_value);
auto statement = [&]() {
std::unique_ptr<cudf::scalar> result =
cudf::reduce(underlying_column, agg, output_dtype, *string_scalar);
using ScalarType = cudf::scalar_type_t<cudf::string_view>;
auto result1 = static_cast<ScalarType*>(result.get());
EXPECT_TRUE(result1->is_valid());
if (result1->is_valid()) {
EXPECT_EQ(expected_value, result1->to_string())
<< (agg.kind == aggregation::MIN ? "MIN" : "MAX");
}
};
if (succeeded_condition) {
CUDF_EXPECT_NO_THROW(statement());
} else {
EXPECT_ANY_THROW(statement());
}
}
};
// ------------------------------------------------------------------------
std::vector<std::string> string_list[] = {
{"one", "two", "three", "four", "five", "six", "seven", "eight", "nine"},
{"", "two", "three", "four", "five", "six", "seven", "eight", "nine"},
{"one", "", "three", "four", "five", "six", "seven", "eight", "nine"},
{"", "", "", "four", "five", "six", "seven", "eight", "nine"},
{"", "", "", "", "", "", "", "", ""},
// DeviceMin identity sentinel test cases
{"\xF7\xBF\xBF\xBF", "", "", "", "", "", "", "", ""},
{"one", "two", "three", "four", "\xF7\xBF\xBF\xBF", "six", "seven", "eight", "nine"},
{"one", "two", "\xF7\xBF\xBF\xBF", "four", "five", "six", "seven", "eight", "nine"},
};
INSTANTIATE_TEST_CASE_P(string_cases, StringReductionTest, testing::ValuesIn(string_list));
TEST_P(StringReductionTest, MinMax)
{
// data and valid arrays
std::vector<std::string> host_strings(GetParam());
std::vector<bool> host_bools({1, 0, 1, 1, 1, 1, 0, 0, 1});
bool succeed(true);
std::string initial_value = "init";
// all valid string column
cudf::test::strings_column_wrapper col(host_strings.begin(), host_strings.end());
std::string expected_min_result = *(std::min_element(host_strings.begin(), host_strings.end()));
std::string expected_max_result = *(std::max_element(host_strings.begin(), host_strings.end()));
std::string expected_min_init_result = std::min(expected_min_result, initial_value);
std::string expected_max_init_result = std::max(expected_max_result, initial_value);
// string column with nulls
cudf::test::strings_column_wrapper col_nulls(
host_strings.begin(), host_strings.end(), host_bools.begin());
std::vector<std::string> r_strings;
std::copy_if(host_strings.begin(),
host_strings.end(),
std::back_inserter(r_strings),
[host_bools, i = 0](auto s) mutable { return host_bools[i++]; });
std::string expected_min_null_result = *(std::min_element(r_strings.begin(), r_strings.end()));
std::string expected_max_null_result = *(std::max_element(r_strings.begin(), r_strings.end()));
std::string expected_min_init_null_result = std::min(expected_min_null_result, initial_value);
std::string expected_max_init_null_result = std::max(expected_max_null_result, initial_value);
// MIN
this->reduction_test(
col, expected_min_result, succeed, *cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(col_nulls,
expected_min_null_result,
succeed,
*cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(col,
initial_value,
expected_min_init_result,
succeed,
*cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(col_nulls,
initial_value,
expected_min_init_null_result,
succeed,
*cudf::make_min_aggregation<reduce_aggregation>());
// MAX
this->reduction_test(
col, expected_max_result, succeed, *cudf::make_max_aggregation<reduce_aggregation>());
this->reduction_test(col_nulls,
expected_max_null_result,
succeed,
*cudf::make_max_aggregation<reduce_aggregation>());
this->reduction_test(col,
initial_value,
expected_max_init_result,
succeed,
*cudf::make_max_aggregation<reduce_aggregation>());
this->reduction_test(col_nulls,
initial_value,
expected_max_init_null_result,
succeed,
*cudf::make_max_aggregation<reduce_aggregation>());
// MINMAX
auto result = cudf::minmax(col);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.first.get())->to_string(),
expected_min_result);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.second.get())->to_string(),
expected_max_result);
result = cudf::minmax(col_nulls);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.first.get())->to_string(),
expected_min_null_result);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.second.get())->to_string(),
expected_max_null_result);
}
TEST_P(StringReductionTest, DictionaryMinMax)
{
// data and valid arrays
std::vector<std::string> host_strings(GetParam());
cudf::test::dictionary_column_wrapper<std::string> col(host_strings.begin(), host_strings.end());
std::string expected_min_result = *(std::min_element(host_strings.begin(), host_strings.end()));
std::string expected_max_result = *(std::max_element(host_strings.begin(), host_strings.end()));
auto result = cudf::minmax(col);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.first.get())->to_string(),
expected_min_result);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.second.get())->to_string(),
expected_max_result);
// column with nulls
std::vector<bool> validity({1, 0, 1, 1, 1, 1, 0, 0, 1});
cudf::test::dictionary_column_wrapper<std::string> col_nulls(
host_strings.begin(), host_strings.end(), validity.begin());
std::vector<std::string> r_strings;
std::copy_if(host_strings.begin(),
host_strings.end(),
std::back_inserter(r_strings),
[validity, i = 0](auto s) mutable { return validity[i++]; });
expected_min_result = *(std::min_element(r_strings.begin(), r_strings.end()));
expected_max_result = *(std::max_element(r_strings.begin(), r_strings.end()));
result = cudf::minmax(col_nulls);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.first.get())->to_string(),
expected_min_result);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.second.get())->to_string(),
expected_max_result);
// test sliced column
result = cudf::minmax(cudf::slice(col_nulls, {3, 7}).front());
// 3->2 and 7->5 because r_strings contains no null entries
expected_min_result = *(std::min_element(r_strings.begin() + 2, r_strings.begin() + 5));
expected_max_result = *(std::max_element(r_strings.begin() + 2, r_strings.begin() + 5));
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.first.get())->to_string(),
expected_min_result);
EXPECT_EQ(static_cast<cudf::string_scalar*>(result.second.get())->to_string(),
expected_max_result);
}
TEST_F(StringReductionTest, AllNull)
{
// data and all null arrays
std::vector<std::string> host_strings(
{"one", "two", "three", "four", "five", "six", "seven", "eight", "nine"});
std::vector<bool> host_bools(host_strings.size(), false);
auto initial_value = cudf::make_string_scalar("init");
initial_value->set_valid_async(false);
// string column with nulls
cudf::test::strings_column_wrapper col_nulls(
host_strings.begin(), host_strings.end(), host_bools.begin());
cudf::data_type output_dtype = cudf::column_view(col_nulls).type();
// MIN
auto result =
cudf::reduce(col_nulls, *cudf::make_min_aggregation<reduce_aggregation>(), output_dtype);
EXPECT_FALSE(result->is_valid());
result = cudf::reduce(
col_nulls, *cudf::make_min_aggregation<reduce_aggregation>(), output_dtype, *initial_value);
EXPECT_FALSE(result->is_valid());
// MAX
result = cudf::reduce(col_nulls, *cudf::make_max_aggregation<reduce_aggregation>(), output_dtype);
EXPECT_FALSE(result->is_valid());
result = cudf::reduce(
col_nulls, *cudf::make_max_aggregation<reduce_aggregation>(), output_dtype, *initial_value);
EXPECT_FALSE(result->is_valid());
// MINMAX
auto mm_result = cudf::minmax(col_nulls);
EXPECT_FALSE(mm_result.first->is_valid());
EXPECT_FALSE(mm_result.second->is_valid());
}
TYPED_TEST(ReductionTest, Median)
{
using T = TypeParam;
//{-20, -14, -13, 0, 6, 13, 45, 64/None} = 3.0, 0.0
std::vector<int> int_values({6, -14, 13, 64, 0, -13, -20, 45});
std::vector<bool> host_bools({1, 1, 1, 0, 1, 1, 1, 1});
std::vector<T> v = convert_values<T>(int_values);
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
double expected_value = [] {
if (std::is_same_v<T, bool>) return 1.0;
if (std::is_signed_v<T>) return 3.0;
return 13.5;
}();
EXPECT_EQ(
this->template reduction_test<double>(col, *cudf::make_median_aggregation<reduce_aggregation>())
.first,
expected_value);
auto col_odd = cudf::split(col, {1})[1];
double expected_value_odd = [] {
if (std::is_same_v<T, bool>) return 1.0;
if (std::is_signed_v<T>) return 0.0;
return 14.0;
}();
EXPECT_EQ(this
->template reduction_test<double>(
col_odd, *cudf::make_median_aggregation<reduce_aggregation>())
.first,
expected_value_odd);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
double expected_null_value = [] {
if (std::is_same_v<T, bool>) return 1.0;
if (std::is_signed_v<T>) return 0.0;
return 13.0;
}();
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_median_aggregation<reduce_aggregation>())
.first,
expected_null_value);
auto col_nulls_odd = cudf::split(col_nulls, {1})[1];
double expected_null_value_odd = [] {
if (std::is_same_v<T, bool>) return 1.0;
if (std::is_signed_v<T>) return -6.5;
return 13.5;
}();
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls_odd, *cudf::make_median_aggregation<reduce_aggregation>())
.first,
expected_null_value_odd);
}
TYPED_TEST(ReductionTest, Quantile)
{
using T = TypeParam;
//{-20, -14, -13, 0, 6, 13, 45, 64/None}
std::vector<int> int_values({6, -14, 13, 64, 0, -13, -20, 45});
std::vector<bool> host_bools({1, 1, 1, 0, 1, 1, 1, 1});
std::vector<T> v = convert_values<T>(int_values);
cudf::interpolation interp{cudf::interpolation::LINEAR};
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
double expected_value0 = std::is_same_v<T, bool> || std::is_unsigned_v<T> ? v[4] : v[6];
EXPECT_EQ(this
->template reduction_test<double>(
col, *cudf::make_quantile_aggregation<reduce_aggregation>({0.0}, interp))
.first,
expected_value0);
double expected_value1 = v[3];
EXPECT_EQ(this
->template reduction_test<double>(
col, *cudf::make_quantile_aggregation<reduce_aggregation>({1.0}, interp))
.first,
expected_value1);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
double expected_null_value1 = v[7];
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_quantile_aggregation<reduce_aggregation>({0}, interp))
.first,
expected_value0);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_quantile_aggregation<reduce_aggregation>({1}, interp))
.first,
expected_null_value1);
}
TYPED_TEST(ReductionTest, UniqueCount)
{
using T = TypeParam;
std::vector<int> int_values({1, -3, 1, 2, 0, 2, -4, 45}); // 6 unique values
std::vector<bool> host_bools({1, 1, 1, 0, 1, 1, 1, 1});
std::vector<T> v = convert_values<T>(int_values);
// test without nulls
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
cudf::size_type expected_value = std::is_same_v<T, bool> ? 2 : 6;
EXPECT_EQ(
this
->template reduction_test<cudf::size_type>(
col, *cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::INCLUDE))
.first,
expected_value);
EXPECT_EQ(
this
->template reduction_test<cudf::size_type>(
col, *cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::EXCLUDE))
.first,
expected_value);
// test with nulls
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
cudf::size_type expected_null_value0 = std::is_same_v<T, bool> ? 3 : 7;
cudf::size_type expected_null_value1 = std::is_same_v<T, bool> ? 2 : 6;
EXPECT_EQ(
this
->template reduction_test<cudf::size_type>(
col_nulls, *cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::INCLUDE))
.first,
expected_null_value0);
EXPECT_EQ(
this
->template reduction_test<cudf::size_type>(
col_nulls, *cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::EXCLUDE))
.first,
expected_null_value1);
}
template <typename T>
struct FixedPointTestAllReps : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(FixedPointTestAllReps, cudf::test::FixedPointTypes);
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionProductZeroScale)
{
using namespace numeric;
using decimalXX = TypeParam;
auto const ONE = decimalXX{1, scale_type{0}};
auto const TWO = decimalXX{2, scale_type{0}};
auto const THREE = decimalXX{3, scale_type{0}};
auto const FOUR = decimalXX{4, scale_type{0}};
auto const _24 = decimalXX{24, scale_type{0}};
auto const _48 = decimalXX{48, scale_type{0}};
auto const in = std::vector<decimalXX>{ONE, TWO, THREE, FOUR};
auto const column = cudf::test::fixed_width_column_wrapper<decimalXX>(in.cbegin(), in.cend());
auto const expected = std::accumulate(in.cbegin(), in.cend(), ONE, std::multiplies<decimalXX>());
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const result =
cudf::reduce(column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
auto const result_fp = decimalXX{result_scalar->value()};
EXPECT_EQ(result_fp, expected);
EXPECT_EQ(result_fp, _24);
// Test with initial value
auto const init_expected =
std::accumulate(in.cbegin(), in.cend(), TWO, std::multiplies<decimalXX>());
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(2, scale_type{0});
auto const init_result = cudf::reduce(
column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
auto const init_result_fp = decimalXX{init_result_scalar->value()};
EXPECT_EQ(init_result_fp, init_expected);
EXPECT_EQ(init_result_fp, _48);
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionProduct)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{1, 2, 3, 1, 2, 3}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{36, scale_type{i * 6}}};
auto const result =
cudf::reduce(column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{72, scale_type{i * 7}}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(2, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionProductWithNulls)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{1, 2, 3, 1, 2, 3}, {1, 1, 1, 0, 0, 0}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{6, scale_type{i * 3}}};
auto const result =
cudf::reduce(column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{12, scale_type{i * 4}}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(2, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionSum)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{1, 2, 3, 4}, scale};
auto const expected = decimalXX{scaled_integer<RepType>{10, scale}};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const result =
cudf::reduce(column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{12, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(2, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionSumAlternate)
{
using namespace numeric;
using decimalXX = TypeParam;
auto const ZERO = decimalXX{0, scale_type{0}};
auto const ONE = decimalXX{1, scale_type{0}};
auto const TWO = decimalXX{2, scale_type{0}};
auto const THREE = decimalXX{3, scale_type{0}};
auto const FOUR = decimalXX{4, scale_type{0}};
auto const TEN = decimalXX{10, scale_type{0}};
auto const TWELVE = decimalXX{12, scale_type{0}};
auto const in = std::vector<decimalXX>{ONE, TWO, THREE, FOUR};
auto const column = cudf::test::fixed_width_column_wrapper<decimalXX>(in.cbegin(), in.cend());
auto const expected = std::accumulate(in.cbegin(), in.cend(), ZERO, std::plus<decimalXX>());
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const result =
cudf::reduce(column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
EXPECT_EQ(result_scalar->fixed_point_value(), TEN);
// Test with initial value
auto const init_expected = std::accumulate(in.cbegin(), in.cend(), TWO, std::plus<decimalXX>());
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(2, scale_type{0});
auto const init_result =
cudf::reduce(column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
EXPECT_EQ(init_result_scalar->fixed_point_value(), TWELVE);
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionSumFractional)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{111, 222, 333}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{666, scale}};
auto const result =
cudf::reduce(column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{668, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(2, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionSumLarge)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2}) {
auto const scale = scale_type{i};
auto f = thrust::make_counting_iterator(0);
auto const values = std::vector<RepType>(f, f + 1000);
auto const column = fp_wrapper{values.cbegin(), values.cend(), scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected_value = std::accumulate(values.cbegin(), values.cend(), RepType{0});
auto const expected = decimalXX{scaled_integer<RepType>{expected_value, scale}};
auto const result =
cudf::reduce(column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
int const init_value = 2;
auto const init_expected_value =
std::accumulate(values.cbegin(), values.cend(), RepType{init_value});
auto const init_expected = decimalXX{scaled_integer<RepType>{init_expected_value, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(init_value, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_sum_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionMin)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto const ONE = decimalXX{scaled_integer<RepType>{1, scale}};
auto const column = fp_wrapper{{1, 2, 3, 4}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const result =
cudf::reduce(column, *cudf::make_min_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), ONE);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{0, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(0, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_min_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionMinLarge)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto f = cudf::detail::make_counting_transform_iterator(0, [](auto e) { return e % 43; });
auto const column = fp_wrapper{f, f + 5000, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{0, scale};
auto const result =
cudf::reduce(column, *cudf::make_min_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{0, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(0, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_min_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionMax)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto const FOUR = decimalXX{scaled_integer<RepType>{4, scale}};
auto const column = fp_wrapper{{1, 2, 3, 4}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const result =
cudf::reduce(column, *cudf::make_max_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), FOUR);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{5, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(5, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_max_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionMaxLarge)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto f = cudf::detail::make_counting_transform_iterator(0, [](auto e) { return e % 43; });
auto const column = fp_wrapper{f, f + 5000, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{42, scale}};
auto const result =
cudf::reduce(column, *cudf::make_max_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimalXX{scaled_integer<RepType>{43, scale}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimalXX>(43, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_max_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionNUnique)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{1, 1, 2, 2, 3, 3, 4, 4}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const result =
cudf::reduce(column, *cudf::make_nunique_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<cudf::size_type>*>(result.get());
EXPECT_EQ(result_scalar->value(), 4);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionSumOfSquares)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{1, 2, 3, 4}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{30, scale_type{i * 2}}};
auto const result =
cudf::reduce(column, *cudf::make_sum_of_squares_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionMedianOddNumberOfElements)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const s : {0, -1, -2, -3, -4}) {
auto const scale = scale_type{s};
auto const column = fp_wrapper{{1, 2, 2, 3, 4}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{2, scale}};
auto const result =
cudf::reduce(column, *cudf::make_median_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionMedianEvenNumberOfElements)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const s : {0, -1, -2, -3, -4}) {
auto const scale = scale_type{s};
auto const column = fp_wrapper{{10, 20, 20, 30, 30, 40}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
auto const expected = decimalXX{scaled_integer<RepType>{25, scale}};
auto const result =
cudf::reduce(column, *cudf::make_median_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionQuantile)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const s : {0, -1, -2, -3, -4}) {
auto const scale = scale_type{s};
auto const column = fp_wrapper{{1, 2, 3, 4, 5}, scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
for (auto const i : {0, 1, 2, 3, 4}) {
auto const expected = decimalXX{scaled_integer<RepType>{i + 1, scale}};
auto const result = cudf::reduce(column,
*cudf::make_quantile_aggregation<reduce_aggregation>(
{i / 4.0}, cudf::interpolation::LINEAR),
out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
}
}
}
TYPED_TEST(FixedPointTestAllReps, FixedPointReductionNthElement)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const s : {0, -1, -2, -3, -4}) {
auto const scale = scale_type{s};
auto const values = std::vector<RepType>{4104, 42, 1729, 55};
auto const column = fp_wrapper{values.cbegin(), values.cend(), scale};
auto const out_type = static_cast<cudf::column_view>(column).type();
for (auto const i : {0, 1, 2, 3}) {
auto const expected = decimalXX{scaled_integer<RepType>{values[i], scale}};
auto const result = cudf::reduce(
column,
*cudf::make_nth_element_aggregation<reduce_aggregation>(i, cudf::null_policy::INCLUDE),
out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimalXX>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
}
}
}
struct Decimal128Only : public cudf::test::BaseFixture {};
TEST_F(Decimal128Only, Decimal128ProductReduction)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{2, 2, 2, 2, 2, 2, 2, 2, 2}, scale};
auto const expected = decimal128{scaled_integer<RepType>{512, scale_type{i * 9}}};
auto const out_type = cudf::data_type{cudf::type_id::DECIMAL128, scale};
auto const result =
cudf::reduce(column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimal128>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimal128{scaled_integer<RepType>{1024, scale_type{i * 10}}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimal128>(2, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar =
static_cast<cudf::scalar_type_t<decimal128>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TEST_F(Decimal128Only, Decimal128ProductReduction2)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
for (auto const i : {0, -1, -2, -3, -4, -5, -6}) {
auto const scale = scale_type{i};
auto const column = fp_wrapper{{1, 2, 3, 4, 5, 6}, scale};
auto const expected = decimal128{scaled_integer<RepType>{720, scale_type{i * 6}}};
auto const out_type = cudf::data_type{cudf::type_id::DECIMAL128, scale};
auto const result =
cudf::reduce(column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimal128>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_expected = decimal128{scaled_integer<RepType>{2160, scale_type{i * 7}}};
auto const init_scalar = cudf::make_fixed_point_scalar<decimal128>(3, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar =
static_cast<cudf::scalar_type_t<decimal128>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), init_expected);
}
}
TEST_F(Decimal128Only, Decimal128ProductReduction3)
{
using namespace numeric;
using RepType = cudf::device_storage_type_t<decimal128>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const values = std::vector(127, -2);
auto const scale = scale_type{0};
auto const column = fp_wrapper{values.cbegin(), values.cend(), scale};
auto const lowest = cuda::std::numeric_limits<RepType>::lowest();
auto const expected = decimal128{scaled_integer<RepType>{lowest, scale}};
auto const out_type = cudf::data_type{cudf::type_id::DECIMAL128, scale};
auto const result =
cudf::reduce(column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type);
auto const result_scalar = static_cast<cudf::scalar_type_t<decimal128>*>(result.get());
EXPECT_EQ(result_scalar->fixed_point_value(), expected);
// Test with initial value
auto const init_scalar = cudf::make_fixed_point_scalar<decimal128>(5, scale);
auto const init_result = cudf::reduce(
column, *cudf::make_product_aggregation<reduce_aggregation>(), out_type, *init_scalar);
auto const init_result_scalar = static_cast<cudf::scalar_type_t<decimal128>*>(init_result.get());
EXPECT_EQ(init_result_scalar->fixed_point_value(), expected);
}
TYPED_TEST(ReductionTest, NthElement)
{
using T = TypeParam;
std::vector<int> int_values(4000);
std::iota(int_values.begin(), int_values.end(), 0);
std::vector<bool> host_bools(int_values.size());
auto valid_condition = [](auto i) { return (i % 3 and i % 7); };
std::transform(int_values.begin(), int_values.end(), host_bools.begin(), valid_condition);
cudf::size_type valid_count = std::count(host_bools.begin(), host_bools.end(), true);
std::vector<int> int_values_valid(valid_count);
std::copy_if(int_values.begin(), int_values.end(), int_values_valid.begin(), valid_condition);
std::vector<T> v = convert_values<T>(int_values);
std::vector<T> v_valid = convert_values<T>(int_values_valid);
cudf::size_type input_size = v.size();
auto mod = [](int a, int b) { return (a % b + b) % b; };
cudf::test::fixed_width_column_wrapper<T> col(v.begin(), v.end());
cudf::test::fixed_width_column_wrapper<T> col_nulls = construct_null_column(v, host_bools);
// without nulls
for (cudf::size_type n :
{-input_size, -input_size / 2, -2, -1, 0, 1, 2, input_size / 2, input_size - 1}) {
auto const index = mod(n, v.size());
T expected_value_nonull = v[index];
bool const expected_null = host_bools[index];
EXPECT_EQ(
this
->template reduction_test<T>(
col,
*cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::INCLUDE))
.first,
expected_value_nonull);
EXPECT_EQ(
this
->template reduction_test<T>(
col,
*cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::EXCLUDE))
.first,
expected_value_nonull);
auto res = this->template reduction_test<T>(
col_nulls,
*cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::INCLUDE));
EXPECT_EQ(res.first, expected_value_nonull);
EXPECT_EQ(res.second, expected_null);
}
// valid only
for (cudf::size_type n :
{-valid_count, -valid_count / 2, -2, -1, 0, 1, 2, valid_count / 2, valid_count - 1}) {
T expected_value_null = v_valid[mod(n, v_valid.size())];
EXPECT_EQ(
this
->template reduction_test<T>(
col_nulls,
*cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::EXCLUDE))
.first,
expected_value_null);
}
// error cases
for (cudf::size_type n : {-input_size - 1, input_size}) {
EXPECT_ANY_THROW(this->template reduction_test<T>(
col, *cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::INCLUDE)));
EXPECT_ANY_THROW(this->template reduction_test<T>(
col_nulls,
*cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::INCLUDE)));
EXPECT_ANY_THROW(this->template reduction_test<T>(
col, *cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::EXCLUDE)));
EXPECT_ANY_THROW(this->template reduction_test<T>(
col_nulls,
*cudf::make_nth_element_aggregation<reduce_aggregation>(n, cudf::null_policy::EXCLUDE)));
}
}
struct DictionaryStringReductionTest : public StringReductionTest {};
std::vector<std::string> data_list[] = {
{"nine", "two", "five", "three", "five", "six", "two", "eight", "nine"},
};
INSTANTIATE_TEST_CASE_P(dictionary_cases,
DictionaryStringReductionTest,
testing::ValuesIn(data_list));
TEST_P(DictionaryStringReductionTest, MinMax)
{
std::vector<std::string> host_strings(GetParam());
cudf::data_type output_type{cudf::type_id::STRING};
cudf::test::dictionary_column_wrapper<std::string> col(host_strings.begin(), host_strings.end());
// MIN
this->reduction_test(col,
*(std::min_element(host_strings.begin(), host_strings.end())),
true,
*cudf::make_min_aggregation<reduce_aggregation>(),
output_type);
// sliced
this->reduction_test(cudf::slice(col, {1, 7}).front(),
*(std::min_element(host_strings.begin() + 1, host_strings.begin() + 7)),
true,
*cudf::make_min_aggregation<reduce_aggregation>(),
output_type);
// MAX
this->reduction_test(col,
*(std::max_element(host_strings.begin(), host_strings.end())),
true,
*cudf::make_max_aggregation<reduce_aggregation>(),
output_type);
// sliced
this->reduction_test(cudf::slice(col, {1, 7}).front(),
*(std::max_element(host_strings.begin() + 1, host_strings.begin() + 7)),
true,
*cudf::make_max_aggregation<reduce_aggregation>(),
output_type);
}
template <typename T>
struct DictionaryAnyAllTest : public ReductionTest<bool> {};
using DictionaryAnyAllTypes = cudf::test::Types<int16_t, int32_t, float, double, bool>;
TYPED_TEST_SUITE(DictionaryAnyAllTest, cudf::test::NumericTypes);
TYPED_TEST(DictionaryAnyAllTest, AnyAll)
{
using T = TypeParam;
std::vector<int> all_values({true, true, true, true});
std::vector<T> v_all = convert_values<T>(all_values);
std::vector<int> none_values({false, false, false, false});
std::vector<T> v_none = convert_values<T>(none_values);
std::vector<int> some_values({false, true, false, true});
std::vector<T> v_some = convert_values<T>(some_values);
cudf::data_type output_dtype(cudf::type_id::BOOL8);
auto any_agg = cudf::make_any_aggregation<reduce_aggregation>();
auto all_agg = cudf::make_all_aggregation<reduce_aggregation>();
// without nulls
{
cudf::test::dictionary_column_wrapper<T> all_col(v_all.begin(), v_all.end());
EXPECT_TRUE(this->template reduction_test<bool>(all_col, *any_agg, output_dtype).first);
EXPECT_TRUE(this->template reduction_test<bool>(all_col, *all_agg, output_dtype).first);
cudf::test::dictionary_column_wrapper<T> none_col(v_none.begin(), v_none.end());
EXPECT_FALSE(this->template reduction_test<bool>(none_col, *any_agg, output_dtype).first);
EXPECT_FALSE(this->template reduction_test<bool>(none_col, *all_agg, output_dtype).first);
cudf::test::dictionary_column_wrapper<T> some_col(v_some.begin(), v_some.end());
EXPECT_TRUE(this->template reduction_test<bool>(some_col, *any_agg, output_dtype).first);
EXPECT_FALSE(this->template reduction_test<bool>(some_col, *all_agg, output_dtype).first);
// sliced test
auto slice1 = cudf::slice(some_col, {1, 3}).front();
auto slice2 = cudf::slice(some_col, {1, 2}).front();
EXPECT_TRUE(this->template reduction_test<bool>(slice1, *any_agg, output_dtype).first);
EXPECT_TRUE(this->template reduction_test<bool>(slice2, *all_agg, output_dtype).first);
}
// with nulls
{
std::vector<bool> valid({1, 1, 0, 1});
cudf::test::dictionary_column_wrapper<T> all_col(v_all.begin(), v_all.end(), valid.begin());
EXPECT_TRUE(this->template reduction_test<bool>(all_col, *any_agg, output_dtype).first);
EXPECT_TRUE(this->template reduction_test<bool>(all_col, *all_agg, output_dtype).first);
cudf::test::dictionary_column_wrapper<T> none_col(v_none.begin(), v_none.end(), valid.begin());
EXPECT_FALSE(this->template reduction_test<bool>(none_col, *any_agg, output_dtype).first);
EXPECT_FALSE(this->template reduction_test<bool>(none_col, *all_agg, output_dtype).first);
cudf::test::dictionary_column_wrapper<T> some_col(v_some.begin(), v_some.end(), valid.begin());
EXPECT_TRUE(this->template reduction_test<bool>(some_col, *any_agg, output_dtype).first);
EXPECT_FALSE(this->template reduction_test<bool>(some_col, *all_agg, output_dtype).first);
// sliced test
auto slice1 = cudf::slice(some_col, {0, 3}).front();
auto slice2 = cudf::slice(some_col, {1, 4}).front();
EXPECT_TRUE(this->template reduction_test<bool>(slice1, *any_agg, output_dtype).first);
EXPECT_TRUE(this->template reduction_test<bool>(slice2, *all_agg, output_dtype).first);
}
}
template <typename T>
struct DictionaryReductionTest : public ReductionTest<T> {};
using DictionaryTypes = cudf::test::Types<int16_t, int32_t, float, double>;
TYPED_TEST_SUITE(DictionaryReductionTest, DictionaryTypes);
TYPED_TEST(DictionaryReductionTest, Sum)
{
using T = TypeParam;
std::vector<int> int_values({6, -14, 13, 64, 0, -13, -20, 45});
std::vector<T> v = convert_values<T>(int_values);
cudf::data_type output_type{cudf::type_to_id<T>()};
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
T expected_value = std::accumulate(v.begin(), v.end(), T{0});
EXPECT_EQ(this
->template reduction_test<T>(
col, *cudf::make_sum_aggregation<reduce_aggregation>(), output_type)
.first,
expected_value);
// test with nulls
std::vector<bool> validity({1, 1, 0, 0, 1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
expected_value = [v, validity] {
auto const r = replace_nulls(v, validity, T{0});
return std::accumulate(r.begin(), r.end(), T{0});
}();
EXPECT_EQ(this
->template reduction_test<T>(
col_nulls, *cudf::make_sum_aggregation<reduce_aggregation>(), output_type)
.first,
expected_value);
}
TYPED_TEST(DictionaryReductionTest, Product)
{
using T = TypeParam;
std::vector<int> int_values({5, -1, 1, 0, 3, 2, 4});
std::vector<TypeParam> v = convert_values<TypeParam>(int_values);
cudf::data_type output_type{cudf::type_to_id<T>()};
auto calc_prod = [](std::vector<T> const& v) {
return std::accumulate(v.cbegin(), v.cend(), T{1}, std::multiplies<T>());
};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(this
->template reduction_test<T>(
col, *cudf::make_product_aggregation<reduce_aggregation>(), output_type)
.first,
calc_prod(v));
// test with nulls
std::vector<bool> validity({1, 1, 0, 0, 1, 1, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
EXPECT_EQ(this
->template reduction_test<T>(
col_nulls, *cudf::make_product_aggregation<reduce_aggregation>(), output_type)
.first,
calc_prod(replace_nulls(v, validity, T{1})));
}
TYPED_TEST(DictionaryReductionTest, SumOfSquare)
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2});
std::vector<T> v = convert_values<T>(int_values);
cudf::data_type output_type{cudf::type_to_id<T>()};
auto calc_reduction = [](std::vector<T> const& v) {
return std::accumulate(v.cbegin(), v.cend(), T{0}, [](T acc, T i) { return acc + i * i; });
};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(this
->template reduction_test<T>(
col, *cudf::make_sum_of_squares_aggregation<reduce_aggregation>(), output_type)
.first,
calc_reduction(v));
// test with nulls
std::vector<bool> validity({1, 1, 0, 0, 1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
EXPECT_EQ(
this
->template reduction_test<T>(
col_nulls, *cudf::make_sum_of_squares_aggregation<reduce_aggregation>(), output_type)
.first,
calc_reduction(replace_nulls(v, validity, T{0})));
}
TYPED_TEST(DictionaryReductionTest, Mean)
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2, 28});
std::vector<T> v = convert_values<T>(int_values);
cudf::data_type output_type{cudf::type_to_id<double>()};
auto calc_mean = [](std::vector<T> const& v, cudf::size_type valid_count) {
double sum = std::accumulate(v.cbegin(), v.cend(), double{0});
return sum / valid_count;
};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(this
->template reduction_test<double>(
col, *cudf::make_mean_aggregation<reduce_aggregation>(), output_type)
.first,
calc_mean(v, v.size()));
// test with nulls
std::vector<bool> validity({1, 1, 0, 1, 1, 1, 0, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
cudf::size_type valid_count = std::count(validity.begin(), validity.end(), true);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_mean_aggregation<reduce_aggregation>(), output_type)
.first,
calc_mean(replace_nulls(v, validity, T{0}), valid_count));
}
#ifdef NDEBUG
TYPED_TEST(DictionaryReductionTest, VarStd)
#else
TYPED_TEST(DictionaryReductionTest, DISABLED_VarStd)
#endif
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2, 28});
std::vector<T> v = convert_values<T>(int_values);
cudf::data_type output_type{cudf::type_to_id<double>()};
auto calc_var = [](std::vector<T> const& v, cudf::size_type valid_count, cudf::size_type ddof) {
double mean = std::accumulate(v.cbegin(), v.cend(), double{0});
mean /= valid_count;
double sum_of_sq = std::accumulate(
v.cbegin(), v.cend(), double{0}, [](double acc, TypeParam i) { return acc + i * i; });
auto const div = valid_count - ddof;
double var = sum_of_sq / div - ((mean * mean) * valid_count) / div;
return var;
};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
cudf::size_type const ddof = 1;
double var = calc_var(v, v.size(), ddof);
double std = std::sqrt(var);
auto var_agg = cudf::make_variance_aggregation<reduce_aggregation>(ddof);
auto std_agg = cudf::make_std_aggregation<reduce_aggregation>(ddof);
EXPECT_EQ(this->template reduction_test<double>(col, *var_agg, output_type).first, var);
EXPECT_EQ(this->template reduction_test<double>(col, *std_agg, output_type).first, std);
// test with nulls
std::vector<bool> validity({1, 1, 0, 1, 1, 1, 0, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
cudf::size_type const valid_count = std::count(validity.begin(), validity.end(), true);
double var_nulls = calc_var(replace_nulls(v, validity, T{0}), valid_count, ddof);
double std_nulls = std::sqrt(var_nulls);
EXPECT_EQ(this->template reduction_test<double>(col_nulls, *var_agg, output_type).first,
var_nulls);
EXPECT_EQ(this->template reduction_test<double>(col_nulls, *std_agg, output_type).first,
std_nulls);
}
TYPED_TEST(DictionaryReductionTest, NthElement)
{
using T = TypeParam;
std::vector<int> int_values({-3, 2, 1, 0, 5, -3, -2, 28});
std::vector<T> v = convert_values<T>(int_values);
cudf::data_type output_type{cudf::type_to_id<T>()};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
cudf::size_type n = 5;
EXPECT_EQ(this
->template reduction_test<T>(col,
*cudf::make_nth_element_aggregation<reduce_aggregation>(
n, cudf::null_policy::INCLUDE),
output_type)
.first,
v[n]);
// test with nulls
std::vector<bool> validity({1, 1, 0, 1, 1, 1, 0, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
EXPECT_EQ(this
->template reduction_test<T>(col_nulls,
*cudf::make_nth_element_aggregation<reduce_aggregation>(
n, cudf::null_policy::INCLUDE),
output_type)
.first,
v[n]);
EXPECT_FALSE(
this
->template reduction_test<T>(
col_nulls,
*cudf::make_nth_element_aggregation<reduce_aggregation>(2, cudf::null_policy::INCLUDE),
output_type)
.second);
}
TYPED_TEST(DictionaryReductionTest, UniqueCount)
{
using T = TypeParam;
std::vector<int> int_values({1, -3, 1, 2, 0, 2, -4, 45}); // 6 unique values
std::vector<T> v = convert_values<T>(int_values);
cudf::data_type output_type{cudf::type_to_id<cudf::size_type>()};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(this
->template reduction_test<int>(
col,
*cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::INCLUDE),
output_type)
.first,
6);
// test with nulls
std::vector<bool> validity({1, 1, 1, 0, 1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
EXPECT_EQ(this
->template reduction_test<int>(
col_nulls,
*cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::INCLUDE),
output_type)
.first,
7);
EXPECT_EQ(this
->template reduction_test<int>(
col_nulls,
*cudf::make_nunique_aggregation<reduce_aggregation>(cudf::null_policy::EXCLUDE),
output_type)
.first,
6);
}
TYPED_TEST(DictionaryReductionTest, Median)
{
using T = TypeParam;
std::vector<int> int_values({6, -14, 13, 64, 0, -13, -20, 45});
std::vector<T> v = convert_values<T>(int_values);
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
EXPECT_EQ(
this->template reduction_test<double>(col, *cudf::make_median_aggregation<reduce_aggregation>())
.first,
(std::is_signed_v<T>) ? 3.0 : 13.5);
// test with nulls
std::vector<bool> validity({1, 1, 1, 0, 1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_median_aggregation<reduce_aggregation>())
.first,
(std::is_signed_v<T>) ? 0.0 : 13.0);
}
TYPED_TEST(DictionaryReductionTest, Quantile)
{
using T = TypeParam;
std::vector<int> int_values({6, -14, 13, 64, 0, -13, -20, 45});
std::vector<T> v = convert_values<T>(int_values);
cudf::interpolation interp{cudf::interpolation::LINEAR};
// test without nulls
cudf::test::dictionary_column_wrapper<T> col(v.begin(), v.end());
double expected_value = std::is_same_v<T, bool> || std::is_unsigned_v<T> ? 0.0 : -20.0;
EXPECT_EQ(this
->template reduction_test<double>(
col, *cudf::make_quantile_aggregation<reduce_aggregation>({0.0}, interp))
.first,
expected_value);
EXPECT_EQ(this
->template reduction_test<double>(
col, *cudf::make_quantile_aggregation<reduce_aggregation>({1.0}, interp))
.first,
64.0);
// test with nulls
std::vector<bool> validity({1, 1, 1, 0, 1, 1, 1, 1});
cudf::test::dictionary_column_wrapper<T> col_nulls(v.begin(), v.end(), validity.begin());
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_quantile_aggregation<reduce_aggregation>({0}, interp))
.first,
expected_value);
EXPECT_EQ(this
->template reduction_test<double>(
col_nulls, *cudf::make_quantile_aggregation<reduce_aggregation>({1}, interp))
.first,
45.0);
}
struct ListReductionTest : public cudf::test::BaseFixture {
void reduction_test(cudf::column_view const& input_data,
cudf::column_view const& expected_value,
bool succeeded_condition,
bool is_valid,
reduce_aggregation const& agg)
{
auto statement = [&]() {
std::unique_ptr<cudf::scalar> result =
cudf::reduce(input_data, agg, cudf::data_type(cudf::type_id::LIST));
auto list_result = dynamic_cast<cudf::list_scalar*>(result.get());
EXPECT_EQ(is_valid, list_result->is_valid());
if (is_valid) {
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_value, list_result->view());
} else {
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_value, list_result->view());
}
};
if (succeeded_condition) {
CUDF_EXPECT_NO_THROW(statement());
} else {
EXPECT_ANY_THROW(statement());
}
}
};
TEST_F(ListReductionTest, ListReductionNthElement)
{
using LCW = cudf::test::lists_column_wrapper<int>;
using ElementCol = cudf::test::fixed_width_column_wrapper<int>;
// test without nulls
LCW col{{-3}, {2, 1}, {0, 5, -3}, {-2}, {}, {28}};
this->reduction_test(
col,
ElementCol{0, 5, -3}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(2, cudf::null_policy::INCLUDE));
// test with null-exclude
std::vector<bool> validity{1, 0, 0, 1, 1, 0};
LCW col_nulls({{-3}, {2, 1}, {0, 5, -3}, {-2}, {}, {28}}, validity.begin());
this->reduction_test(
col_nulls,
ElementCol{-2}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(1, cudf::null_policy::EXCLUDE));
// test with null-include
this->reduction_test(
col_nulls,
ElementCol{}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(1, cudf::null_policy::INCLUDE));
}
TEST_F(ListReductionTest, NestedListReductionNthElement)
{
using LCW = cudf::test::lists_column_wrapper<int>;
// test without nulls
auto validity = std::vector<bool>{1, 0, 0, 1, 1};
auto nested_list = LCW(
{{LCW{}, LCW{2, 3, 4}}, {}, {LCW{5}, LCW{6}, LCW{7, 8}}, {LCW{9, 10}}, {LCW{11}, LCW{12, 13}}},
validity.begin());
this->reduction_test(
nested_list,
LCW{{}, {2, 3, 4}}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(0, cudf::null_policy::INCLUDE));
// test with null-include
this->reduction_test(
nested_list,
LCW{}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(2, cudf::null_policy::INCLUDE));
// test with null-exclude
this->reduction_test(
nested_list,
LCW{{11}, {12, 13}}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(2, cudf::null_policy::EXCLUDE));
}
TEST_F(ListReductionTest, NonValidListReductionNthElement)
{
using LCW = cudf::test::lists_column_wrapper<int>;
using ElementCol = cudf::test::fixed_width_column_wrapper<int>;
// test against col.size() <= col.null_count()
std::vector<bool> validity{0};
this->reduction_test(
LCW{{{1, 2}}, validity.begin()},
ElementCol{}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(0, cudf::null_policy::INCLUDE));
// test against empty input
this->reduction_test(
LCW{},
ElementCol{}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(0, cudf::null_policy::INCLUDE));
}
TEST_F(ListReductionTest, ReductionMinMaxNoNull)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using LISTS_CW = cudf::test::lists_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using LISTS_STRINGS_CW = cudf::test::lists_column_wrapper<cudf::string_view>;
{
auto const input = LISTS_CW{{3, 4}, {1, 2}, {5, 6, 7}, {0, 8}, {9, 10}, {1, 0}};
this->reduction_test(
input, INTS_CW{0, 8}, true, true, *cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(
input, INTS_CW{9, 10}, true, true, *cudf::make_max_aggregation<reduce_aggregation>());
}
{
auto const input = LISTS_STRINGS_CW{
{"34", "43"}, {"12", "21"}, {"567", "6", "765"}, {"08", "8"}, {"109", "10"}, {"10", "00"}};
this->reduction_test(
input, STRINGS_CW{"08", "8"}, true, true, *cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(input,
STRINGS_CW{"567", "6", "765"},
true,
true,
*cudf::make_max_aggregation<reduce_aggregation>());
}
}
TEST_F(ListReductionTest, ReductionMinMaxSlicedInput)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using LISTS_CW = cudf::test::lists_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using LISTS_STRINGS_CW = cudf::test::lists_column_wrapper<cudf::string_view>;
{
auto const input_original = LISTS_CW{{9, 9} /*don't care*/,
{0, 0} /*don't care*/,
{3, 4},
{1, 2},
{5, 6, 7},
{0, 8},
{9, 10},
{1, 0},
{0, 7} /*don't care*/};
auto const input = cudf::slice(input_original, {2, 8})[0];
this->reduction_test(
input, INTS_CW{0, 8}, true, true, *cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(
input, INTS_CW{9, 10}, true, true, *cudf::make_max_aggregation<reduce_aggregation>());
}
{
auto const input_original = LISTS_STRINGS_CW{{"08", "8"} /*don't care*/,
{"999", "8"} /*don't care*/,
{"34", "43"},
{"12", "21"},
{"567", "6", "765"},
{"08", "8"},
{"109", "10"},
{"10", "00"}};
auto const input = cudf::slice(input_original, {2, 8})[0];
this->reduction_test(
input, STRINGS_CW{"08", "8"}, true, true, *cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(input,
STRINGS_CW{"567", "6", "765"},
true,
true,
*cudf::make_max_aggregation<reduce_aggregation>());
}
}
TEST_F(ListReductionTest, ReductionMinMaxWithNulls)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using LISTS_CW = cudf::test::lists_column_wrapper<int>;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
constexpr int null{0};
auto const input = LISTS_CW{{LISTS_CW{3, 4},
LISTS_CW{1, 2},
LISTS_CW{{1, null}, null_at(1)},
LISTS_CW{} /*null*/,
LISTS_CW{5, 6, 7},
LISTS_CW{1, 8},
LISTS_CW{{9, null}, null_at(1)},
LISTS_CW{} /*null*/},
nulls_at({3, 7})};
this->reduction_test(input,
INTS_CW{{1, null}, null_at(1)},
true,
true,
*cudf::make_min_aggregation<reduce_aggregation>());
this->reduction_test(input,
INTS_CW{{9, null}, null_at(1)},
true,
true,
*cudf::make_max_aggregation<reduce_aggregation>());
}
struct StructReductionTest : public cudf::test::BaseFixture {
using SCW = cudf::test::structs_column_wrapper;
void reduction_test(cudf::column_view const& struct_column,
cudf::table_view const& expected_value,
bool succeeded_condition,
bool is_valid,
reduce_aggregation const& agg)
{
auto statement = [&]() {
std::unique_ptr<cudf::scalar> result =
cudf::reduce(struct_column, agg, cudf::data_type(cudf::type_id::STRUCT));
auto struct_result = dynamic_cast<cudf::struct_scalar*>(result.get());
EXPECT_EQ(is_valid, struct_result->is_valid());
if (is_valid) { CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected_value, struct_result->view()); }
};
if (succeeded_condition) {
CUDF_EXPECT_NO_THROW(statement());
} else {
EXPECT_ANY_THROW(statement());
}
}
};
TEST_F(StructReductionTest, StructReductionNthElement)
{
using ICW = cudf::test::fixed_width_column_wrapper<int>;
// test without nulls
auto child0 = *ICW{-3, 2, 1, 0, 5, -3, -2, 28}.release();
auto child1 = *ICW{0, 1, 2, 3, 4, 5, 6, 7}.release();
auto child2 =
*ICW{{-10, 10, -100, 100, -1000, 1000, -10000, 10000}, {1, 0, 0, 1, 1, 1, 0, 1}}.release();
std::vector<std::unique_ptr<cudf::column>> input_vector;
input_vector.push_back(std::make_unique<cudf::column>(child0));
input_vector.push_back(std::make_unique<cudf::column>(child1));
input_vector.push_back(std::make_unique<cudf::column>(child2));
auto struct_col = SCW(std::move(input_vector));
auto result_col0 = ICW{1};
auto result_col1 = ICW{2};
auto result_col2 = ICW{{0}, {0}};
this->reduction_test(
struct_col,
cudf::table_view{{result_col0, result_col1, result_col2}}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(2, cudf::null_policy::INCLUDE));
// test with null-include
std::vector<bool> validity{1, 1, 1, 0, 1, 0, 0, 1};
input_vector.clear();
input_vector.push_back(std::make_unique<cudf::column>(child0));
input_vector.push_back(std::make_unique<cudf::column>(child1));
input_vector.push_back(std::make_unique<cudf::column>(child2));
struct_col = SCW(std::move(input_vector), validity);
result_col0 = ICW{{0}, {0}};
result_col1 = ICW{{0}, {0}};
result_col2 = ICW{{0}, {0}};
this->reduction_test(
struct_col,
cudf::table_view{{result_col0, result_col1, result_col2}}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(6, cudf::null_policy::INCLUDE));
// test with null-exclude
result_col0 = ICW{{28}, {1}};
result_col1 = ICW{{7}, {1}};
result_col2 = ICW{{10000}, {1}};
this->reduction_test(
struct_col,
cudf::table_view{{result_col0, result_col1, result_col2}}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(4, cudf::null_policy::EXCLUDE));
}
TEST_F(StructReductionTest, NestedStructReductionNthElement)
{
using ICW = cudf::test::fixed_width_column_wrapper<int>;
using LCW = cudf::test::lists_column_wrapper<int>;
auto int_col0 = ICW{-4, -3, -2, -1, 0};
auto struct_col0 = SCW({int_col0}, std::vector<bool>{1, 0, 0, 1, 1});
auto int_col1 = ICW{0, 1, 2, 3, 4};
auto list_col = LCW{{0}, {}, {1, 2}, {3}, {4}};
auto struct_col1 = SCW({struct_col0, int_col1, list_col}, std::vector<bool>{1, 1, 1, 0, 1});
auto result_child0 = ICW{0};
auto result_col0 = SCW({result_child0}, std::vector<bool>{0});
auto result_col1 = ICW{{1}, {1}};
auto result_col2 = LCW({LCW{}}, std::vector<bool>{1}.begin());
// test without nulls
this->reduction_test(
struct_col1,
cudf::table_view{{result_col0, result_col1, result_col2}}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(1, cudf::null_policy::INCLUDE));
// test with null-include
result_child0 = ICW{0};
result_col0 = SCW({result_child0}, std::vector<bool>{0});
result_col1 = ICW{{0}, {0}};
result_col2 = LCW({LCW{3}}, std::vector<bool>{0}.begin());
this->reduction_test(
struct_col1,
cudf::table_view{{result_col0, result_col1, result_col2}}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(3, cudf::null_policy::INCLUDE));
// test with null-exclude
result_child0 = ICW{0};
result_col0 = SCW({result_child0}, std::vector<bool>{1});
result_col1 = ICW{{4}, {1}};
result_col2 = LCW({LCW{4}}, std::vector<bool>{1}.begin());
this->reduction_test(
struct_col1,
cudf::table_view{{result_col0, result_col1, result_col2}}, // expected_value,
true,
true,
*cudf::make_nth_element_aggregation<reduce_aggregation>(3, cudf::null_policy::EXCLUDE));
}
TEST_F(StructReductionTest, NonValidStructReductionNthElement)
{
using ICW = cudf::test::fixed_width_column_wrapper<int>;
// test against col.size() <= col.null_count()
auto child0 = ICW{-3, 3};
auto child1 = ICW{0, 0};
auto child2 = ICW{{-10, 10}, {0, 1}};
auto struct_col = SCW{{child0, child1, child2}, {0, 0}};
auto ret_col0 = ICW{{0}, {0}};
auto ret_col1 = ICW{{0}, {0}};
auto ret_col2 = ICW{{0}, {0}};
this->reduction_test(
struct_col,
cudf::table_view{{ret_col0, ret_col1, ret_col2}}, // expected_value,
true,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(0, cudf::null_policy::INCLUDE));
// test against empty input (would fail because we can not create empty struct scalar)
child0 = ICW{};
child1 = ICW{};
child2 = ICW{};
struct_col = SCW{{child0, child1, child2}};
ret_col0 = ICW{};
ret_col1 = ICW{};
ret_col2 = ICW{};
this->reduction_test(
struct_col,
cudf::table_view{{ret_col0, ret_col1, ret_col2}}, // expected_value,
false,
false,
*cudf::make_nth_element_aggregation<reduce_aggregation>(0, cudf::null_policy::INCLUDE));
}
TEST_F(StructReductionTest, StructReductionMinMaxNoNull)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using STRUCTS_CW = cudf::test::structs_column_wrapper;
auto const input = [] {
auto child1 = STRINGS_CW{"año", "bit", "₹1", "aaa", "zit", "bat", "aab", "$1", "€1", "wut"};
auto child2 = INTS_CW{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
return STRUCTS_CW{{child1, child2}};
}();
{
auto const expected_child1 = STRINGS_CW{"$1"};
auto const expected_child2 = INTS_CW{8};
this->reduction_test(input,
cudf::table_view{{expected_child1, expected_child2}},
true,
true,
*cudf::make_min_aggregation<reduce_aggregation>());
}
{
auto const expected_child1 = STRINGS_CW{"₹1"};
auto const expected_child2 = INTS_CW{3};
this->reduction_test(input,
cudf::table_view{{expected_child1, expected_child2}},
true,
true,
*cudf::make_max_aggregation<reduce_aggregation>());
}
}
TEST_F(StructReductionTest, StructReductionMinMaxSlicedInput)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using STRUCTS_CW = cudf::test::structs_column_wrapper;
constexpr int32_t dont_care{1};
auto const input_original = [] {
auto child1 = STRINGS_CW{"$dont_care",
"$dont_care",
"año",
"bit",
"₹1",
"aaa",
"zit",
"bat",
"aab",
"$1",
"€1",
"wut",
"₹dont_care"};
auto child2 = INTS_CW{dont_care, dont_care, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, dont_care};
return STRUCTS_CW{{child1, child2}};
}();
auto const input = cudf::slice(input_original, {2, 12})[0];
{
auto const expected_child1 = STRINGS_CW{"$1"};
auto const expected_child2 = INTS_CW{8};
this->reduction_test(input,
cudf::table_view{{expected_child1, expected_child2}},
true,
true,
*cudf::make_min_aggregation<reduce_aggregation>());
}
{
auto const expected_child1 = STRINGS_CW{"₹1"};
auto const expected_child2 = INTS_CW{3};
this->reduction_test(input,
cudf::table_view{{expected_child1, expected_child2}},
true,
true,
*cudf::make_max_aggregation<reduce_aggregation>());
}
}
TEST_F(StructReductionTest, StructReductionMinMaxWithNulls)
{
using INTS_CW = cudf::test::fixed_width_column_wrapper<int>;
using STRINGS_CW = cudf::test::strings_column_wrapper;
using STRUCTS_CW = cudf::test::structs_column_wrapper;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
// `null` means null at child column.
// `NULL` means null at parent column.
auto const input = [] {
auto child1 = STRINGS_CW{{"año",
"bit",
"₹1" /*null*/,
"aaa" /*NULL*/,
"zit",
"bat",
"aab",
"$1" /*null*/,
"€1" /*NULL*/,
"wut"},
nulls_at({2, 7})};
auto child2 = INTS_CW{{1, 2, 3 /*null*/, 4 /*NULL*/, 5, 6, 7, 8 /*null*/, 9 /*NULL*/, 10},
nulls_at({2, 7})};
return STRUCTS_CW{{child1, child2}, nulls_at({3, 8})};
}();
{
// In the structs column, the min struct is {null, null}.
auto const expected_child1 = STRINGS_CW{{""}, null_at(0)};
auto const expected_child2 = INTS_CW{{8}, null_at(0)};
this->reduction_test(input,
cudf::table_view{{expected_child1, expected_child2}},
true,
true,
*cudf::make_min_aggregation<reduce_aggregation>());
}
{
auto const expected_child1 = STRINGS_CW{"zit"};
auto const expected_child2 = INTS_CW{5};
this->reduction_test(input,
cudf::table_view{{expected_child1, expected_child2}},
true,
true,
*cudf::make_max_aggregation<reduce_aggregation>());
}
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/debug_utilities.cu
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/debug_utilities.hpp>
#include <cudf/detail/get_value.cuh>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/strings/convert/convert_datetime.hpp>
#include <cudf/structs/structs_column_view.hpp>
#include <cudf/utilities/bit.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform.h>
#include <iomanip>
#include <sstream>
namespace cudf::test {
// Forward declaration.
namespace detail {
/**
* @brief Formats a column view as a string
*
* @param col The column view
* @param delimiter The delimiter to put between strings
* @param indent Indentation for all output
*/
std::string to_string(cudf::column_view const& col,
std::string const& delimiter,
std::string const& indent = "");
/**
* @brief Formats a null mask as a string
*
* @param null_mask The null mask buffer
* @param null_mask_size Size of the null mask (in rows)
* @param indent Indentation for all output
*/
std::string to_string(std::vector<bitmask_type> const& null_mask,
size_type null_mask_size,
std::string const& indent = "");
/**
* @brief Convert column values to a host vector of strings
*
* Supports indentation of all output. For example, if the displayed output of your column
* would be
*
* @code{.pseudo}
* "1,2,3,4,5"
* @endcode
* and the `indent` parameter was " ", that indentation would be prepended to
* result in the output
* @code{.pseudo}
* " 1,2,3,4,5"
* @endcode
*
* The can be useful for displaying complex types. An example use case would be for
* displaying the nesting of a LIST type column (via recursion).
*
* List<List<int>>:
* Length : 3
* Offsets : 0, 2, 5, 6
* Children :
* List<int>:
* Length : 6
* Offsets : 0, 2, 4, 7, 8, 9, 11
* Children :
* 1, 2, 3, 4, 5, 6, 7, 0, 8, 9, 10
*
* @param col The column view
* @param indent Indentation for all output
*/
std::vector<std::string> to_strings(cudf::column_view const& col, std::string const& indent = "");
} // namespace detail
namespace {
template <typename T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>
static auto numeric_to_string_precise(T value)
{
return std::to_string(value);
}
template <typename T, std::enable_if_t<std::is_floating_point_v<T>>* = nullptr>
static auto numeric_to_string_precise(T value)
{
std::ostringstream o;
o << std::setprecision(std::numeric_limits<T>::max_digits10) << value;
return o.str();
}
static auto duration_suffix(cudf::duration_D) { return " days"; }
static auto duration_suffix(cudf::duration_s) { return " seconds"; }
static auto duration_suffix(cudf::duration_ms) { return " milliseconds"; }
static auto duration_suffix(cudf::duration_us) { return " microseconds"; }
static auto duration_suffix(cudf::duration_ns) { return " nanoseconds"; }
std::string get_nested_type_str(cudf::column_view const& view)
{
if (view.type().id() == cudf::type_id::LIST) {
lists_column_view lcv(view);
return cudf::type_to_name(view.type()) + "<" + (get_nested_type_str(lcv.child())) + ">";
}
if (view.type().id() == cudf::type_id::STRUCT) {
std::ostringstream out;
out << cudf::type_to_name(view.type()) + "<";
std::transform(view.child_begin(),
view.child_end(),
std::ostream_iterator<std::string>(out, ","),
[&out](auto const col) { return get_nested_type_str(col); });
out << ">";
return out.str();
}
return cudf::type_to_name(view.type());
}
template <typename NestedColumnView>
std::string nested_offsets_to_string(NestedColumnView const& c, std::string const& delimiter = ", ")
{
column_view offsets = (c.parent()).child(NestedColumnView::offsets_column_index);
CUDF_EXPECTS(offsets.type().id() == type_id::INT32,
"Column does not appear to be an offsets column");
CUDF_EXPECTS(offsets.offset() == 0, "Offsets column has an internal offset!");
size_type output_size = c.size() + 1;
// the first offset value to normalize everything against
size_type first =
cudf::detail::get_value<size_type>(offsets, c.offset(), cudf::get_default_stream());
rmm::device_uvector<size_type> shifted_offsets(output_size, cudf::get_default_stream());
// normalize the offset values for the column offset
size_type const* d_offsets = offsets.head<size_type>() + c.offset();
thrust::transform(
rmm::exec_policy(cudf::get_default_stream()),
d_offsets,
d_offsets + output_size,
shifted_offsets.begin(),
[first] __device__(int32_t offset) { return static_cast<size_type>(offset - first); });
auto const h_shifted_offsets =
cudf::detail::make_host_vector_sync(shifted_offsets, cudf::get_default_stream());
std::ostringstream buffer;
for (size_t idx = 0; idx < h_shifted_offsets.size(); idx++) {
buffer << h_shifted_offsets[idx];
if (idx < h_shifted_offsets.size() - 1) { buffer << delimiter; }
}
return buffer.str();
}
struct column_view_printer {
template <typename Element, std::enable_if_t<is_numeric<Element>()>* = nullptr>
void operator()(cudf::column_view const& col, std::vector<std::string>& out, std::string const&)
{
auto h_data = cudf::test::to_host<Element>(col);
out.resize(col.size());
if (col.nullable()) {
std::transform(thrust::make_counting_iterator(size_type{0}),
thrust::make_counting_iterator(col.size()),
out.begin(),
[&h_data](auto idx) {
return bit_is_set(h_data.second.data(), idx)
? numeric_to_string_precise(h_data.first[idx])
: std::string("NULL");
});
} else {
std::transform(h_data.first.begin(), h_data.first.end(), out.begin(), [](Element el) {
return numeric_to_string_precise(el);
});
}
}
template <typename Element, std::enable_if_t<is_timestamp<Element>()>* = nullptr>
void operator()(cudf::column_view const& col,
std::vector<std::string>& out,
std::string const& indent)
{
// For timestamps, convert timestamp column to column of strings, then
// call string version
std::string format = [&]() {
if constexpr (std::is_same_v<cudf::timestamp_s, Element>) {
return std::string{"%Y-%m-%dT%H:%M:%SZ"};
} else if constexpr (std::is_same_v<cudf::timestamp_ms, Element>) {
return std::string{"%Y-%m-%dT%H:%M:%S.%3fZ"};
} else if constexpr (std::is_same_v<cudf::timestamp_us, Element>) {
return std::string{"%Y-%m-%dT%H:%M:%S.%6fZ"};
} else if constexpr (std::is_same_v<cudf::timestamp_ns, Element>) {
return std::string{"%Y-%m-%dT%H:%M:%S.%9fZ"};
}
return std::string{"%Y-%m-%d"};
}();
auto col_as_strings = cudf::strings::from_timestamps(col, format);
if (col_as_strings->size() == 0) { return; }
this->template operator()<cudf::string_view>(*col_as_strings, out, indent);
}
template <typename Element, std::enable_if_t<cudf::is_fixed_point<Element>()>* = nullptr>
void operator()(cudf::column_view const& col, std::vector<std::string>& out, std::string const&)
{
auto const h_data = cudf::test::to_host<Element>(col);
if (col.nullable()) {
std::transform(thrust::make_counting_iterator(size_type{0}),
thrust::make_counting_iterator(col.size()),
std::back_inserter(out),
[&h_data](auto idx) {
return h_data.second.empty() || bit_is_set(h_data.second.data(), idx)
? static_cast<std::string>(h_data.first[idx])
: std::string("NULL");
});
} else {
std::transform(std::cbegin(h_data.first),
std::cend(h_data.first),
std::back_inserter(out),
[col](auto const& fp) { return static_cast<std::string>(fp); });
}
}
template <typename Element,
std::enable_if_t<std::is_same_v<Element, cudf::string_view>>* = nullptr>
void operator()(cudf::column_view const& col, std::vector<std::string>& out, std::string const&)
{
//
// Implementation for strings, call special to_host variant
//
if (col.is_empty()) return;
auto h_data = cudf::test::to_host<std::string>(col);
// explicitly replace some special whitespace characters with their literal equivalents
auto cleaned = [](std::string_view in) {
std::string out(in);
auto replace_char = [](std::string& out, char c, std::string_view repl) {
for (std::string::size_type pos{}; out.npos != (pos = out.find(c, pos)); pos++) {
out.replace(pos, 1, repl);
}
};
replace_char(out, '\a', "\\a");
replace_char(out, '\b', "\\b");
replace_char(out, '\f', "\\f");
replace_char(out, '\r', "\\r");
replace_char(out, '\t', "\\t");
replace_char(out, '\n', "\\n");
replace_char(out, '\v', "\\v");
return out;
};
out.resize(col.size());
std::transform(thrust::make_counting_iterator(size_type{0}),
thrust::make_counting_iterator(col.size()),
out.begin(),
[&](auto idx) {
return h_data.second.empty() || bit_is_set(h_data.second.data(), idx)
? cleaned(h_data.first[idx])
: std::string("NULL");
});
}
template <typename Element,
std::enable_if_t<std::is_same_v<Element, cudf::dictionary32>>* = nullptr>
void operator()(cudf::column_view const& col, std::vector<std::string>& out, std::string const&)
{
cudf::dictionary_column_view dictionary(col);
if (col.is_empty()) return;
std::vector<std::string> keys = to_strings(dictionary.keys());
std::vector<std::string> indices = to_strings({dictionary.indices().type(),
dictionary.size(),
dictionary.indices().head(),
dictionary.null_mask(),
dictionary.null_count(),
dictionary.offset()});
out.insert(out.end(), keys.begin(), keys.end());
if (!indices.empty()) {
std::string first = "\x08 : " + indices.front(); // use : as delimiter
out.push_back(first); // between keys and indices
out.insert(out.end(), indices.begin() + 1, indices.end());
}
}
// Print the tick counts with the units
template <typename Element, std::enable_if_t<is_duration<Element>()>* = nullptr>
void operator()(cudf::column_view const& col, std::vector<std::string>& out, std::string const&)
{
auto h_data = cudf::test::to_host<Element>(col);
out.resize(col.size());
if (col.nullable()) {
std::transform(thrust::make_counting_iterator(size_type{0}),
thrust::make_counting_iterator(col.size()),
out.begin(),
[&h_data](auto idx) {
return bit_is_set(h_data.second.data(), idx)
? numeric_to_string_precise(h_data.first[idx].count()) +
duration_suffix(h_data.first[idx])
: std::string("NULL");
});
} else {
std::transform(h_data.first.begin(), h_data.first.end(), out.begin(), [](Element el) {
return numeric_to_string_precise(el.count()) + duration_suffix(el);
});
}
}
template <typename Element, std::enable_if_t<std::is_same_v<Element, cudf::list_view>>* = nullptr>
void operator()(cudf::column_view const& col,
std::vector<std::string>& out,
std::string const& indent)
{
lists_column_view lcv(col);
// propagate slicing to the child if necessary
column_view child = lcv.get_sliced_child(cudf::get_default_stream());
bool const is_sliced = lcv.offset() > 0 || child.offset() > 0;
std::string tmp =
get_nested_type_str(col) + (is_sliced ? "(sliced)" : "") + ":\n" + indent +
"Length : " + std::to_string(lcv.size()) + "\n" + indent +
"Offsets : " + (lcv.size() > 0 ? nested_offsets_to_string(lcv) : "") + "\n" +
(lcv.parent().nullable()
? indent + "Null count: " + std::to_string(lcv.null_count()) + "\n" +
detail::to_string(cudf::test::bitmask_to_host(col), col.size(), indent) + "\n"
: "") +
// non-nested types don't typically display their null masks, so do it here for convenience.
(!is_nested(child.type()) && child.nullable()
? " " + detail::to_string(cudf::test::bitmask_to_host(child), child.size(), indent) +
"\n"
: "") +
(detail::to_string(child, ", ", indent + " ")) + "\n";
out.push_back(tmp);
}
template <typename Element,
std::enable_if_t<std::is_same_v<Element, cudf::struct_view>>* = nullptr>
void operator()(cudf::column_view const& col,
std::vector<std::string>& out,
std::string const& indent)
{
structs_column_view view{col};
std::ostringstream out_stream;
out_stream << get_nested_type_str(col) << ":\n"
<< indent << "Length : " << view.size() << ":\n";
if (view.nullable()) {
out_stream << indent << "Null count: " << view.null_count() << "\n"
<< detail::to_string(cudf::test::bitmask_to_host(col), col.size(), indent) << "\n";
}
auto iter = thrust::make_counting_iterator(0);
std::transform(
iter,
iter + view.num_children(),
std::ostream_iterator<std::string>(out_stream, "\n"),
[&](size_type index) {
auto child = view.get_sliced_child(index, cudf::get_default_stream());
// non-nested types don't typically display their null masks, so do it here for convenience.
return (!is_nested(child.type()) && child.nullable()
? " " +
detail::to_string(cudf::test::bitmask_to_host(child), child.size(), indent) +
"\n"
: "") +
detail::to_string(child, ", ", indent + " ");
});
out.push_back(out_stream.str());
}
};
} // namespace
namespace detail {
/**
* @copydoc cudf::test::detail::to_strings
*/
std::vector<std::string> to_strings(cudf::column_view const& col, std::string const& indent)
{
std::vector<std::string> reply;
cudf::type_dispatcher(col.type(), column_view_printer{}, col, reply, indent);
return reply;
}
/**
* @copydoc cudf::test::detail::to_string(cudf::column_view, std::string, std::string)
*
* @param indent Indentation for all output
*/
std::string to_string(cudf::column_view const& col,
std::string const& delimiter,
std::string const& indent)
{
std::ostringstream buffer;
std::vector<std::string> h_data = to_strings(col, indent);
buffer << indent;
std::copy(h_data.begin(),
h_data.end() - (!h_data.empty()),
std::ostream_iterator<std::string>(buffer, delimiter.c_str()));
if (!h_data.empty()) buffer << h_data.back();
return buffer.str();
}
/**
* @copydoc cudf::test::detail::to_string(std::vector<bitmask_type>, size_type, std::string)
*
* @param indent Indentation for all output. See comment in `to_strings` for
* a detailed description.
*/
std::string to_string(std::vector<bitmask_type> const& null_mask,
size_type null_mask_size,
std::string const& indent)
{
std::ostringstream buffer;
buffer << indent;
for (int idx = null_mask_size - 1; idx >= 0; idx--) {
buffer << (cudf::bit_is_set(null_mask.data(), idx) ? "1" : "0");
}
return buffer.str();
}
} // namespace detail
std::vector<std::string> to_strings(cudf::column_view const& col)
{
return detail::to_strings(col);
}
std::string to_string(cudf::column_view const& col, std::string const& delimiter)
{
return detail::to_string(col, delimiter);
}
std::string to_string(std::vector<bitmask_type> const& null_mask, size_type null_mask_size)
{
return detail::to_string(null_mask, null_mask_size);
}
void print(cudf::column_view const& col, std::ostream& os)
{
os << to_string(col, ",") << std::endl;
}
} // namespace cudf::test
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/table_utilities.cu
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <gmock/gmock.h>
namespace cudf::test::detail {
void expect_table_properties_equal(cudf::table_view lhs, cudf::table_view rhs)
{
EXPECT_EQ(lhs.num_rows(), rhs.num_rows());
EXPECT_EQ(lhs.num_columns(), rhs.num_columns());
}
void expect_tables_equal(cudf::table_view lhs, cudf::table_view rhs)
{
expect_table_properties_equal(lhs, rhs);
for (auto i = 0; i < lhs.num_columns(); ++i) {
cudf::test::detail::expect_columns_equal(lhs.column(i), rhs.column(i));
}
}
/**
* @copydoc cudf::test::expect_tables_equivalent
*/
void expect_tables_equivalent(cudf::table_view lhs, cudf::table_view rhs)
{
auto num_columns = lhs.num_columns();
for (auto i = 0; i < num_columns; ++i) {
cudf::test::detail::expect_columns_equivalent(lhs.column(i), rhs.column(i));
}
}
} // namespace cudf::test::detail
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/identify_stream_usage.cpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/detail/utilities/stacktrace.hpp>
#include <rmm/cuda_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <cuda_runtime.h>
#include <cstdlib>
#include <cstring>
#include <cxxabi.h>
#include <dlfcn.h>
#include <execinfo.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include <unordered_map>
// We control whether to override cudf::test::get_default_stream or
// cudf::get_default_stream with a compile-time flag. Thesee are the two valid
// options:
// 1. STREAM_MODE_TESTING=OFF: In this mode, cudf::get_default_stream will
// return a custom stream and stream_is_invalid will return true if any CUDA
// API is called using any of CUDA's default stream constants
// (cudaStreamLegacy, cudaStreamDefault, or cudaStreamPerThread). This check
// is sufficient to ensure that cudf is using cudf::get_default_stream
// everywhere internally rather than implicitly using stream 0,
// cudaStreamDefault, cudaStreamLegacy, thrust execution policies, etc. It
// is not sufficient to guarantee a stream-ordered API because it will not
// identify places in the code that use cudf::get_default_stream instead of
// properly forwarding along a user-provided stream.
// 2. STREAM_MODE_TESTING=ON: In this mode, cudf::test::get_default_stream
// returns a custom stream and stream_is_invalid returns true if any CUDA
// API is called using any stream other than cudf::test::get_default_stream.
// This is a necessary and sufficient condition to ensure that libcudf is
// properly passing streams through all of its (tested) APIs.
namespace cudf {
#ifdef STREAM_MODE_TESTING
namespace test {
#endif
rmm::cuda_stream_view const get_default_stream()
{
static rmm::cuda_stream stream{};
return {stream};
}
#ifdef STREAM_MODE_TESTING
} // namespace test
#endif
} // namespace cudf
bool stream_is_invalid(cudaStream_t stream)
{
#ifdef STREAM_MODE_TESTING
// In this mode the _only_ valid stream is the one returned by cudf::test::get_default_stream.
return (stream != cudf::test::get_default_stream().value());
#else
// We explicitly list the possibilities rather than using
// `cudf::get_default_stream().value()` because there is no guarantee that
// `thrust::device` and the default value of
// `cudf::get_default_stream().value()` are actually the same. At present, the
// former is `cudaStreamLegacy` while the latter is 0.
return (stream == cudaStreamDefault) || (stream == cudaStreamLegacy) ||
(stream == cudaStreamPerThread);
#endif
}
/**
* @brief Print a backtrace and raise an error if stream is a default stream.
*/
void check_stream_and_error(cudaStream_t stream)
{
if (stream_is_invalid(stream)) {
// Exclude the current function from stacktrace.
std::cout << cudf::detail::get_stacktrace(cudf::detail::capture_last_stackframe::NO)
<< std::endl;
char const* env_stream_error_mode{std::getenv("GTEST_CUDF_STREAM_ERROR_MODE")};
if (env_stream_error_mode && !strcmp(env_stream_error_mode, "print")) {
std::cout << "cudf_identify_stream_usage found unexpected stream!" << std::endl;
} else {
throw std::runtime_error("cudf_identify_stream_usage found unexpected stream!");
}
}
}
/**
* @brief Container for CUDA APIs that have been overloaded using DEFINE_OVERLOAD.
*
* This variable must be initialized before everything else.
*
* @see find_originals for a description of the priorities
*/
__attribute__((init_priority(1001))) std::unordered_map<std::string, void*> originals;
/**
* @brief Macro for generating functions to override existing CUDA functions.
*
* Define a new function with the provided signature that checks the used
* stream and raises an exception if it is one of CUDA's default streams. If
* not, the new function forwards all arguments to the original function.
*
* Note that since this only defines the function, we do not need default
* parameter values since those will be provided by the original declarations
* in CUDA itself.
*
* @see find_originals for a description of the priorities
*
* @param function The function to overload.
* @param signature The function signature (must include names, not just types).
* @parameter arguments The function arguments (names only, no types).
*/
#define DEFINE_OVERLOAD(function, signature, arguments) \
using function##_t = cudaError_t (*)(signature); \
\
cudaError_t function(signature) \
{ \
check_stream_and_error(stream); \
return ((function##_t)originals[#function])(arguments); \
} \
__attribute__((constructor(1002))) void queue_##function() { originals[#function] = nullptr; }
/**
* @brief Helper macro to define macro arguments that contain a comma.
*/
#define ARG(...) __VA_ARGS__
// clang-format off
/*
We need to overload all the functions from the runtime API (assuming that we
don't use the driver API) that accept streams. The main webpage for APIs is
https://docs.nvidia.com/cuda/cuda-runtime-api/modules.html#modules. Here are
the modules containing any APIs using streams as of 9/20/2022:
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT - Done
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXTRES__INTEROP.html#group__CUDART__EXTRES__INTEROP
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION - Done
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY - Done
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY__POOLS.html#group__CUDART__MEMORY__POOLS - Done
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL__DEPRECATED.html#group__CUDART__OPENGL__DEPRECATED
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__INTEROP.html#group__CUDART__INTEROP
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH
- https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__HIGHLEVEL.html#group__CUDART__HIGHLEVEL
*/
// clang-format on
// Event APIS:
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT
DEFINE_OVERLOAD(cudaEventRecord, ARG(cudaEvent_t event, cudaStream_t stream), ARG(event, stream));
DEFINE_OVERLOAD(cudaEventRecordWithFlags,
ARG(cudaEvent_t event, cudaStream_t stream, unsigned int flags),
ARG(event, stream, flags));
// Execution APIS:
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION
DEFINE_OVERLOAD(cudaLaunchKernel,
ARG(void const* func,
dim3 gridDim,
dim3 blockDim,
void** args,
size_t sharedMem,
cudaStream_t stream),
ARG(func, gridDim, blockDim, args, sharedMem, stream));
DEFINE_OVERLOAD(cudaLaunchCooperativeKernel,
ARG(void const* func,
dim3 gridDim,
dim3 blockDim,
void** args,
size_t sharedMem,
cudaStream_t stream),
ARG(func, gridDim, blockDim, args, sharedMem, stream));
DEFINE_OVERLOAD(cudaLaunchHostFunc,
ARG(cudaStream_t stream, cudaHostFn_t fn, void* userData),
ARG(stream, fn, userData));
// Memory transfer APIS:
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY
DEFINE_OVERLOAD(cudaMemPrefetchAsync,
ARG(void const* devPtr, size_t count, int dstDevice, cudaStream_t stream),
ARG(devPtr, count, dstDevice, stream));
DEFINE_OVERLOAD(cudaMemcpy2DAsync,
ARG(void* dst,
size_t dpitch,
void const* src,
size_t spitch,
size_t width,
size_t height,
cudaMemcpyKind kind,
cudaStream_t stream),
ARG(dst, dpitch, src, spitch, width, height, kind, stream));
DEFINE_OVERLOAD(cudaMemcpy2DFromArrayAsync,
ARG(void* dst,
size_t dpitch,
cudaArray_const_t src,
size_t wOffset,
size_t hOffset,
size_t width,
size_t height,
cudaMemcpyKind kind,
cudaStream_t stream),
ARG(dst, dpitch, src, wOffset, hOffset, width, height, kind, stream));
DEFINE_OVERLOAD(cudaMemcpy2DToArrayAsync,
ARG(cudaArray_t dst,
size_t wOffset,
size_t hOffset,
void const* src,
size_t spitch,
size_t width,
size_t height,
cudaMemcpyKind kind,
cudaStream_t stream),
ARG(dst, wOffset, hOffset, src, spitch, width, height, kind, stream));
DEFINE_OVERLOAD(cudaMemcpy3DAsync,
ARG(cudaMemcpy3DParms const* p, cudaStream_t stream),
ARG(p, stream));
DEFINE_OVERLOAD(cudaMemcpy3DPeerAsync,
ARG(cudaMemcpy3DPeerParms const* p, cudaStream_t stream),
ARG(p, stream));
DEFINE_OVERLOAD(
cudaMemcpyAsync,
ARG(void* dst, void const* src, size_t count, cudaMemcpyKind kind, cudaStream_t stream),
ARG(dst, src, count, kind, stream));
DEFINE_OVERLOAD(cudaMemcpyFromSymbolAsync,
ARG(void* dst,
void const* symbol,
size_t count,
size_t offset,
cudaMemcpyKind kind,
cudaStream_t stream),
ARG(dst, symbol, count, offset, kind, stream));
DEFINE_OVERLOAD(cudaMemcpyToSymbolAsync,
ARG(void const* symbol,
void const* src,
size_t count,
size_t offset,
cudaMemcpyKind kind,
cudaStream_t stream),
ARG(symbol, src, count, offset, kind, stream));
DEFINE_OVERLOAD(
cudaMemset2DAsync,
ARG(void* devPtr, size_t pitch, int value, size_t width, size_t height, cudaStream_t stream),
ARG(devPtr, pitch, value, width, height, stream));
DEFINE_OVERLOAD(
cudaMemset3DAsync,
ARG(cudaPitchedPtr pitchedDevPtr, int value, cudaExtent extent, cudaStream_t stream),
ARG(pitchedDevPtr, value, extent, stream));
DEFINE_OVERLOAD(cudaMemsetAsync,
ARG(void* devPtr, int value, size_t count, cudaStream_t stream),
ARG(devPtr, value, count, stream));
// Memory allocation APIS:
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY__POOLS.html#group__CUDART__MEMORY__POOLS
DEFINE_OVERLOAD(cudaFreeAsync, ARG(void* devPtr, cudaStream_t stream), ARG(devPtr, stream));
DEFINE_OVERLOAD(cudaMallocAsync,
ARG(void** devPtr, size_t size, cudaStream_t stream),
ARG(devPtr, size, stream));
DEFINE_OVERLOAD(cudaMallocFromPoolAsync,
ARG(void** ptr, size_t size, cudaMemPool_t memPool, cudaStream_t stream),
ARG(ptr, size, memPool, stream));
/**
* @brief Function to collect all the original CUDA symbols corresponding to overloaded functions.
*
* Note on priorities:
* - `originals` must be initialized first, so it is 1001.
* - The function names must be added to originals next in the macro, so those are 1002.
* - Finally, this function actually finds the original symbols so it is 1003.
*/
__attribute__((constructor(1003))) void find_originals()
{
for (auto it : originals) {
originals[it.first] = dlsym(RTLD_NEXT, it.first.data());
}
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/base_fixture.cpp
|
/*
* Copyright (c) 2020, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/types.hpp>
namespace cudf {
namespace test {
namespace detail {
/**
* @copydoc cudf::test::detail::random_generator_incrementing_seed()
*/
uint64_t random_generator_incrementing_seed()
{
static uint64_t seed = 0;
return ++seed;
}
} // namespace detail
} // namespace test
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/default_stream.cpp
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/utilities/default_stream.hpp>
#include <cudf_test/default_stream.hpp>
namespace cudf {
namespace test {
rmm::cuda_stream_view const get_default_stream() { return cudf::get_default_stream(); }
} // namespace test
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/column_utilities.cu
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/debug_utilities.hpp>
#include <cudf_test/default_stream.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/get_value.cuh>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/utilities/vector_factories.hpp>
#include <cudf/lists/list_view.hpp>
#include <cudf/structs/struct_view.hpp>
#include <cudf/table/experimental/row_operators.cuh>
#include <cudf/table/table_device_view.cuh>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/copy.h>
#include <thrust/distance.h>
#include <thrust/equal.h>
#include <thrust/execution_policy.h>
#include <thrust/generate.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/logical.h>
#include <thrust/reduce.h>
#include <thrust/remove.h>
#include <thrust/scan.h>
#include <thrust/scatter.h>
#include <thrust/sequence.h>
#include <thrust/transform.h>
#include <numeric>
#include <sstream>
namespace cudf {
namespace test {
namespace {
std::unique_ptr<column> generate_all_row_indices(size_type num_rows)
{
auto indices = cudf::make_fixed_width_column(
data_type{type_id::INT32}, num_rows, mask_state::UNALLOCATED, cudf::test::get_default_stream());
thrust::sequence(rmm::exec_policy(cudf::test::get_default_stream()),
indices->mutable_view().begin<size_type>(),
indices->mutable_view().end<size_type>(),
0);
return indices;
}
// generate the rows indices that should be checked for the child column of a list column.
//
// - if we are just checking for equivalence, we can skip any rows that are nulls. this allows
// things like non-empty rows that have been nullified after creation. they may actually contain
// values, but since the row is null they don't matter for equivalency.
//
// - if we are checking for exact equality, we need to check all rows.
//
// This allows us to differentiate between:
//
// List<int32_t>:
// Length : 1
// Offsets : 0, 4
// Null count: 1
// 0
// 0, 1, 2, 3
//
// List<int32_t>:
// Length : 1
// Offsets : 0, 0
// Null count: 1
// 0
//
std::unique_ptr<column> generate_child_row_indices(lists_column_view const& c,
column_view const& row_indices,
bool check_exact_equality)
{
// if we are checking for exact equality, we should be checking for "unsanitized" data that may
// be hiding underneath nulls. so check all rows instead of just non-null rows
if (check_exact_equality) {
return generate_all_row_indices(c.get_sliced_child(cudf::test::get_default_stream()).size());
}
// Example input
// List<int32_t>:
// Length : 7
// Offsets : 0, 3, 6, 8, 11, 14, 16, 19
// | | <-- non-null input rows
// Null count: 5
// 0010100
// 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7
// | | | | | <-- child rows of non-null rows
//
// Desired output: [6, 7, 11, 12, 13]
// compute total # of child row indices we will be emitting.
auto row_size_iter = cudf::detail::make_counting_transform_iterator(
0,
[row_indices = row_indices.begin<size_type>(),
validity = c.null_mask(),
offsets = c.offsets().begin<size_type>(),
offset = c.offset()] __device__(int index) {
// both null mask and offsets data are not pre-sliced. so we need to add the column offset to
// every incoming index.
auto const true_index = row_indices[index] + offset;
return !validity || cudf::bit_is_set(validity, true_index)
? (offsets[true_index + 1] - offsets[true_index])
: 0;
});
auto const output_size = thrust::reduce(rmm::exec_policy(cudf::test::get_default_stream()),
row_size_iter,
row_size_iter + row_indices.size());
// no output. done.
auto result =
cudf::make_fixed_width_column(data_type{type_id::INT32}, output_size, mask_state::UNALLOCATED);
if (output_size == 0) { return result; }
// for all input rows, what position in the output column they will start at.
//
// output_row_start = [0, 0, 0, 2, 2, 5, 5]
// | | <-- non-null input rows
//
auto output_row_start = cudf::make_fixed_width_column(
data_type{type_id::INT32}, row_indices.size(), mask_state::UNALLOCATED);
thrust::exclusive_scan(rmm::exec_policy(cudf::test::get_default_stream()),
row_size_iter,
row_size_iter + row_indices.size(),
output_row_start->mutable_view().begin<size_type>());
// fill result column with 1s
//
// result = [1, 1, 1, 1, 1]
//
thrust::generate(rmm::exec_policy(cudf::test::get_default_stream()),
result->mutable_view().begin<size_type>(),
result->mutable_view().end<size_type>(),
[] __device__() { return 1; });
// scatter the output row positions into result buffer
//
// result = [6, 1, 11, 1, 1]
//
auto output_row_iter = cudf::detail::make_counting_transform_iterator(
0,
[row_indices = row_indices.begin<size_type>(),
offsets = c.offsets().begin<size_type>(),
offset = c.offset(),
first_offset = cudf::detail::get_value<size_type>(
c.offsets(), c.offset(), cudf::test::get_default_stream())] __device__(int index) {
auto const true_index = row_indices[index] + offset;
return offsets[true_index] - first_offset;
});
thrust::scatter_if(rmm::exec_policy(cudf::test::get_default_stream()),
output_row_iter,
output_row_iter + row_indices.size(),
output_row_start->view().begin<size_type>(),
row_size_iter,
result->mutable_view().begin<size_type>(),
[] __device__(auto row_size) { return row_size != 0; });
// generate keys for each output row
//
// result = [1, 1, 2, 2, 2]
//
auto keys =
cudf::make_fixed_width_column(data_type{type_id::INT32}, output_size, mask_state::UNALLOCATED);
thrust::generate(rmm::exec_policy(cudf::test::get_default_stream()),
keys->mutable_view().begin<size_type>(),
keys->mutable_view().end<size_type>(),
[] __device__() { return 0; });
thrust::scatter_if(rmm::exec_policy(cudf::test::get_default_stream()),
row_size_iter,
row_size_iter + row_indices.size(),
output_row_start->view().begin<size_type>(),
row_size_iter,
keys->mutable_view().begin<size_type>(),
[] __device__(auto row_size) { return row_size != 0; });
thrust::inclusive_scan(rmm::exec_policy(cudf::test::get_default_stream()),
keys->view().begin<size_type>(),
keys->view().end<size_type>(),
keys->mutable_view().begin<size_type>());
// scan by key to generate final child row indices.
// input
// result = [6, 1, 11, 1, 1]
// keys = [1, 1, 2, 2, 2]
//
// output
// result = [6, 7, 11, 12, 13]
//
thrust::inclusive_scan_by_key(rmm::exec_policy(cudf::test::get_default_stream()),
keys->view().begin<size_type>(),
keys->view().end<size_type>(),
result->view().begin<size_type>(),
result->mutable_view().begin<size_type>());
return result;
}
#define PROP_EXPECT_EQ(a, b) \
do { \
if (verbosity == debug_output_level::QUIET) { \
if (a != b) { return false; } \
} else { \
EXPECT_EQ(a, b); \
if (a != b) { \
if (verbosity == debug_output_level::FIRST_ERROR) { \
return false; \
} else { \
result = false; \
} \
} \
} \
} while (0)
template <bool check_exact_equality>
struct column_property_comparator {
bool types_equivalent(cudf::data_type const& lhs, cudf::data_type const& rhs)
{
return is_fixed_point(lhs) ? lhs.id() == rhs.id() : lhs == rhs;
}
size_type count_nulls(cudf::column_view const& c, cudf::column_view const& row_indices)
{
auto validity_iter = cudf::detail::make_counting_transform_iterator(
0,
[row_indices = row_indices.begin<size_type>(),
validity = c.null_mask(),
offset = c.offset()] __device__(int index) {
// both null mask and offsets data are not pre-sliced. so we need to add the column offset
// to every incoming index.
auto const true_index = row_indices[index] + offset;
return !validity || cudf::bit_is_set(validity, true_index) ? 0 : 1;
});
return thrust::reduce(rmm::exec_policy(cudf::test::get_default_stream()),
validity_iter,
validity_iter + row_indices.size());
}
bool compare_common(cudf::column_view const& lhs,
cudf::column_view const& rhs,
cudf::column_view const& lhs_row_indices,
cudf::column_view const& rhs_row_indices,
debug_output_level verbosity)
{
bool result = true;
if (check_exact_equality) {
PROP_EXPECT_EQ(lhs.type(), rhs.type());
} else {
PROP_EXPECT_EQ(types_equivalent(lhs.type(), rhs.type()), true);
}
auto const lhs_size = check_exact_equality ? lhs.size() : lhs_row_indices.size();
auto const rhs_size = check_exact_equality ? rhs.size() : rhs_row_indices.size();
PROP_EXPECT_EQ(lhs_size, rhs_size);
if (lhs_size > 0 && check_exact_equality) { PROP_EXPECT_EQ(lhs.nullable(), rhs.nullable()); }
// DISCUSSION: does this make sense, semantically?
auto const lhs_null_count =
check_exact_equality ? lhs.null_count() : count_nulls(lhs, lhs_row_indices);
auto const rhs_null_count =
check_exact_equality ? rhs.null_count() : count_nulls(rhs, rhs_row_indices);
PROP_EXPECT_EQ(lhs_null_count, rhs_null_count);
// equivalent, but not exactly equal columns can have a different number of children if their
// sizes are both 0. Specifically, empty string columns may or may not have children.
if (check_exact_equality || (lhs.size() > 0 && lhs.null_count() < lhs.size())) {
PROP_EXPECT_EQ(lhs.num_children(), rhs.num_children());
}
return result;
}
template <typename T,
std::enable_if_t<!std::is_same_v<T, cudf::list_view> &&
!std::is_same_v<T, cudf::struct_view>>* = nullptr>
bool operator()(cudf::column_view const& lhs,
cudf::column_view const& rhs,
cudf::column_view const& lhs_row_indices,
cudf::column_view const& rhs_row_indices,
debug_output_level verbosity)
{
return compare_common(lhs, rhs, lhs_row_indices, rhs_row_indices, verbosity);
}
template <typename T, std::enable_if_t<std::is_same_v<T, cudf::list_view>>* = nullptr>
bool operator()(cudf::column_view const& lhs,
cudf::column_view const& rhs,
cudf::column_view const& lhs_row_indices,
cudf::column_view const& rhs_row_indices,
debug_output_level verbosity)
{
if (!compare_common(lhs, rhs, lhs_row_indices, rhs_row_indices, verbosity)) { return false; }
cudf::lists_column_view lhs_l(lhs);
cudf::lists_column_view rhs_l(rhs);
// recurse
// note: if a column is all nulls (and we are checking for exact equality) or otherwise empty,
// no indices are generated and no recursion happens
auto lhs_child_indices =
generate_child_row_indices(lhs_l, lhs_row_indices, check_exact_equality);
if (lhs_child_indices->size() > 0) {
auto lhs_child = lhs_l.get_sliced_child(cudf::test::get_default_stream());
auto rhs_child = rhs_l.get_sliced_child(cudf::test::get_default_stream());
auto rhs_child_indices =
generate_child_row_indices(rhs_l, rhs_row_indices, check_exact_equality);
return cudf::type_dispatcher(lhs_child.type(),
column_property_comparator<check_exact_equality>{},
lhs_child,
rhs_child,
*lhs_child_indices,
*rhs_child_indices,
verbosity);
}
return true;
}
template <typename T, std::enable_if_t<std::is_same_v<T, cudf::struct_view>>* = nullptr>
bool operator()(cudf::column_view const& lhs,
cudf::column_view const& rhs,
cudf::column_view const& lhs_row_indices,
cudf::column_view const& rhs_row_indices,
debug_output_level verbosity)
{
if (!compare_common(lhs, rhs, lhs_row_indices, rhs_row_indices, verbosity)) { return false; }
structs_column_view l_scv(lhs);
structs_column_view r_scv(rhs);
for (size_type i = 0; i < lhs.num_children(); i++) {
column_view lhs_child = l_scv.get_sliced_child(i, cudf::test::get_default_stream());
column_view rhs_child = r_scv.get_sliced_child(i, cudf::test::get_default_stream());
if (!cudf::type_dispatcher(lhs_child.type(),
column_property_comparator<check_exact_equality>{},
lhs_child,
rhs_child,
lhs_row_indices,
rhs_row_indices,
verbosity)) {
return false;
}
}
return true;
}
};
template <typename DeviceComparator>
class corresponding_rows_unequal {
public:
corresponding_rows_unequal(column_device_view lhs_row_indices_,
column_device_view rhs_row_indices_,
size_type /*fp_ulps*/,
DeviceComparator comp_,
column_device_view /*lhs*/,
column_device_view /*rhs*/)
: lhs_row_indices(lhs_row_indices_), rhs_row_indices(rhs_row_indices_), comp(comp_)
{
}
__device__ bool operator()(size_type index)
{
using cudf::experimental::row::lhs_index_type;
using cudf::experimental::row::rhs_index_type;
return !comp(lhs_index_type{lhs_row_indices.element<size_type>(index)},
rhs_index_type{rhs_row_indices.element<size_type>(index)});
}
column_device_view lhs_row_indices;
column_device_view rhs_row_indices;
DeviceComparator comp;
};
template <typename DeviceComparator>
class corresponding_rows_not_equivalent {
column_device_view lhs_row_indices;
column_device_view rhs_row_indices;
size_type const fp_ulps;
DeviceComparator comp;
column_device_view lhs;
column_device_view rhs;
public:
corresponding_rows_not_equivalent(column_device_view lhs_row_indices_,
column_device_view rhs_row_indices_,
size_type fp_ulps_,
DeviceComparator comp_,
column_device_view lhs_,
column_device_view rhs_)
: lhs_row_indices(lhs_row_indices_),
rhs_row_indices(rhs_row_indices_),
fp_ulps(fp_ulps_),
comp(comp_),
lhs(lhs_),
rhs(rhs_)
{
}
struct typed_element_not_equivalent {
template <typename T>
__device__ std::enable_if_t<std::is_floating_point_v<T>, bool> operator()(
column_device_view const& lhs,
column_device_view const& rhs,
size_type lhs_index,
size_type rhs_index,
size_type fp_ulps)
{
if (lhs.is_valid(lhs_index) and rhs.is_valid(rhs_index)) {
T const x = lhs.element<T>(lhs_index);
T const y = rhs.element<T>(rhs_index);
// Must handle inf and nan separately
if (std::isinf(x) || std::isinf(y)) {
return x != y; // comparison of (inf==inf) returns true
} else if (std::isnan(x) || std::isnan(y)) {
return std::isnan(x) != std::isnan(y); // comparison of (nan==nan) returns false
} else {
T const abs_x_minus_y = std::abs(x - y);
return abs_x_minus_y >= std::numeric_limits<T>::min() &&
abs_x_minus_y > std::numeric_limits<T>::epsilon() * std::abs(x + y) * fp_ulps;
}
} else {
// if either is null, then the inequality was checked already
return true;
}
}
template <typename T, typename... Args>
__device__ std::enable_if_t<not std::is_floating_point_v<T>, bool> operator()(Args...)
{
// Non-floating point inequality is checked already
return true;
}
};
__device__ bool operator()(size_type index)
{
using cudf::experimental::row::lhs_index_type;
using cudf::experimental::row::rhs_index_type;
auto const lhs_index = lhs_row_indices.element<size_type>(index);
auto const rhs_index = rhs_row_indices.element<size_type>(index);
if (not comp(lhs_index_type{lhs_index}, rhs_index_type{rhs_index})) {
return type_dispatcher(
lhs.type(), typed_element_not_equivalent{}, lhs, rhs, lhs_index, rhs_index, fp_ulps);
}
return false;
}
};
// Stringify the inconsistent values resulted from the comparison of two columns element-wise
std::string stringify_column_differences(cudf::device_span<int const> differences,
column_view const& lhs,
column_view const& rhs,
column_view const& lhs_row_indices,
column_view const& rhs_row_indices,
debug_output_level verbosity,
int depth)
{
CUDF_EXPECTS(not differences.empty(), "Shouldn't enter this function if `differences` is empty");
std::string const depth_str = depth > 0 ? "depth " + std::to_string(depth) + '\n' : "";
// move the differences to the host.
auto h_differences =
cudf::detail::make_host_vector_sync(differences, cudf::test::get_default_stream());
if (verbosity == debug_output_level::ALL_ERRORS) {
std::ostringstream buffer;
buffer << depth_str << "differences:" << std::endl;
auto source_table = cudf::table_view({lhs, rhs});
auto diff_column =
fixed_width_column_wrapper<int32_t>(h_differences.begin(), h_differences.end());
auto diff_table = cudf::gather(source_table, diff_column);
// Need to pull back the differences
auto const h_left_strings = to_strings(diff_table->get_column(0));
auto const h_right_strings = to_strings(diff_table->get_column(1));
for (size_t i = 0; i < h_differences.size(); ++i)
buffer << depth_str << "lhs[" << h_differences[i] << "] = " << h_left_strings[i] << ", rhs["
<< h_differences[i] << "] = " << h_right_strings[i] << std::endl;
return buffer.str();
} else {
auto const index = h_differences[0]; // only stringify first difference
auto const lhs_index =
cudf::detail::get_value<size_type>(lhs_row_indices, index, cudf::test::get_default_stream());
auto const rhs_index =
cudf::detail::get_value<size_type>(rhs_row_indices, index, cudf::test::get_default_stream());
auto diff_lhs = cudf::slice(lhs, {lhs_index, lhs_index + 1}).front();
auto diff_rhs = cudf::slice(rhs, {rhs_index, rhs_index + 1}).front();
return depth_str + "first difference: " + "lhs[" + std::to_string(index) +
"] = " + to_string(diff_lhs, "") + ", rhs[" + std::to_string(index) +
"] = " + to_string(diff_rhs, "");
}
}
// non-nested column types
template <typename T, bool check_exact_equality>
struct column_comparator_impl {
bool operator()(column_view const& lhs,
column_view const& rhs,
column_view const& lhs_row_indices,
column_view const& rhs_row_indices,
debug_output_level verbosity,
size_type fp_ulps,
int depth)
{
auto d_lhs_row_indices =
cudf::column_device_view::create(lhs_row_indices, cudf::test::get_default_stream());
auto d_rhs_row_indices =
cudf::column_device_view::create(rhs_row_indices, cudf::test::get_default_stream());
auto d_lhs = cudf::column_device_view::create(lhs, cudf::test::get_default_stream());
auto d_rhs = cudf::column_device_view::create(rhs, cudf::test::get_default_stream());
auto lhs_tview = table_view{{lhs}};
auto rhs_tview = table_view{{rhs}};
auto const comparator = cudf::experimental::row::equality::two_table_comparator{
lhs_tview, rhs_tview, cudf::test::get_default_stream()};
auto const has_nulls = cudf::has_nulls(lhs_tview) or cudf::has_nulls(rhs_tview);
auto const device_comparator = comparator.equal_to<false>(cudf::nullate::DYNAMIC{has_nulls});
using ComparatorType =
std::conditional_t<check_exact_equality,
corresponding_rows_unequal<decltype(device_comparator)>,
corresponding_rows_not_equivalent<decltype(device_comparator)>>;
auto differences = rmm::device_uvector<int>(
lhs_row_indices.size(),
cudf::test::get_default_stream()); // worst case: everything different
auto input_iter = thrust::make_counting_iterator(0);
auto diff_map =
rmm::device_uvector<bool>(lhs_row_indices.size(), cudf::test::get_default_stream());
thrust::transform(
rmm::exec_policy(cudf::test::get_default_stream()),
input_iter,
input_iter + lhs_row_indices.size(),
diff_map.begin(),
ComparatorType(
*d_lhs_row_indices, *d_rhs_row_indices, fp_ulps, device_comparator, *d_lhs, *d_rhs));
auto diff_iter = thrust::copy_if(rmm::exec_policy(cudf::test::get_default_stream()),
input_iter,
input_iter + lhs_row_indices.size(),
diff_map.begin(),
differences.begin(),
thrust::identity<bool>{});
differences.resize(thrust::distance(differences.begin(), diff_iter),
cudf::test::get_default_stream()); // shrink back down
if (not differences.is_empty()) {
if (verbosity != debug_output_level::QUIET) {
// GTEST_FAIL() does a return that conflicts with our return type. so hide it in a lambda.
[&]() {
GTEST_FAIL() << stringify_column_differences(
differences, lhs, rhs, lhs_row_indices, rhs_row_indices, verbosity, depth);
}();
}
return false;
}
return true;
}
};
// forward declaration for nested-type recursion.
template <bool check_exact_equality>
struct column_comparator;
// specialization for list columns
template <bool check_exact_equality>
struct column_comparator_impl<list_view, check_exact_equality> {
bool operator()(column_view const& lhs,
column_view const& rhs,
column_view const& lhs_row_indices,
column_view const& rhs_row_indices,
debug_output_level verbosity,
size_type fp_ulps,
int depth)
{
lists_column_view lhs_l(lhs);
lists_column_view rhs_l(rhs);
CUDF_EXPECTS(lhs_row_indices.size() == rhs_row_indices.size(), "List column size mismatch");
if (lhs_row_indices.is_empty()) { return true; }
// worst case - everything is different
rmm::device_uvector<int> differences(lhs_row_indices.size(), cudf::test::get_default_stream());
// compare offsets, taking slicing into account
// left side
size_type lhs_shift = cudf::detail::get_value<size_type>(
lhs_l.offsets(), lhs_l.offset(), cudf::test::get_default_stream());
auto lhs_offsets = thrust::make_transform_iterator(
lhs_l.offsets().begin<size_type>() + lhs_l.offset(),
[lhs_shift] __device__(size_type offset) { return offset - lhs_shift; });
auto lhs_valids = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
[mask = lhs_l.null_mask(), offset = lhs_l.offset()] __device__(size_type index) {
return mask == nullptr ? true : cudf::bit_is_set(mask, index + offset);
});
// right side
size_type rhs_shift = cudf::detail::get_value<size_type>(
rhs_l.offsets(), rhs_l.offset(), cudf::test::get_default_stream());
auto rhs_offsets = thrust::make_transform_iterator(
rhs_l.offsets().begin<size_type>() + rhs_l.offset(),
[rhs_shift] __device__(size_type offset) { return offset - rhs_shift; });
auto rhs_valids = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
[mask = rhs_l.null_mask(), offset = rhs_l.offset()] __device__(size_type index) {
return mask == nullptr ? true : cudf::bit_is_set(mask, index + offset);
});
// when checking for equivalency, we can't compare offset values directly, we can only
// compare lengths of the rows, and only if valid. as a concrete example, you could have two
// equivalent columns with the following data:
//
// column A
// offsets = [0, 3, 5, 7]
// validity = [0, 1, 1, 1]
//
// column B
// offsets = [0, 0, 2, 4]
// validity = [0, 1, 1, 1]
//
// Row 0 in column A happens to have a positive length, even though the row is null, but column
// B does not. So the offsets for the remaining valid rows are fundamentally different even
// though the row lengths are the same.
//
auto input_iter = thrust::make_counting_iterator(0);
auto diff_iter = thrust::copy_if(
rmm::exec_policy(cudf::test::get_default_stream()),
input_iter,
input_iter + lhs_row_indices.size(),
differences.begin(),
[lhs_offsets,
rhs_offsets,
lhs_valids,
rhs_valids,
lhs_indices = lhs_row_indices.begin<size_type>(),
rhs_indices = rhs_row_indices.begin<size_type>()] __device__(size_type index) {
auto const lhs_index = lhs_indices[index];
auto const rhs_index = rhs_indices[index];
// check for validity match
if (lhs_valids[lhs_index] != rhs_valids[rhs_index]) { return true; }
// if the row is valid, check that the length of the list is the same. do this
// for both the equivalency and exact equality checks.
if (lhs_valids[lhs_index] && ((lhs_offsets[lhs_index + 1] - lhs_offsets[lhs_index]) !=
(rhs_offsets[rhs_index + 1] - rhs_offsets[rhs_index]))) {
return true;
}
// if validity matches -and- is false, we can ignore the actual offset values. this
// is technically not checking "equal()", but it's how the non-list code path handles it
if (!lhs_valids[lhs_index]) { return false; }
// if checking exact equality, compare the actual offset values
if (check_exact_equality && lhs_offsets[lhs_index] != rhs_offsets[rhs_index]) {
return true;
}
return false;
});
differences.resize(thrust::distance(differences.begin(), diff_iter),
cudf::test::get_default_stream()); // shrink back down
if (not differences.is_empty()) {
if (verbosity != debug_output_level::QUIET) {
// GTEST_FAIL() does a return that conflicts with our return type. so hide it in a lambda.
[&]() {
GTEST_FAIL() << stringify_column_differences(
differences, lhs, rhs, lhs_row_indices, rhs_row_indices, verbosity, depth);
}();
}
return false;
}
// recurse
// note: if a column is all nulls (and we are only checking for equivalence) or otherwise empty,
// no indices are generated and no recursion happens
auto lhs_child_indices =
generate_child_row_indices(lhs_l, lhs_row_indices, check_exact_equality);
if (lhs_child_indices->size() > 0) {
auto lhs_child = lhs_l.get_sliced_child(cudf::test::get_default_stream());
auto rhs_child = rhs_l.get_sliced_child(cudf::test::get_default_stream());
auto rhs_child_indices =
generate_child_row_indices(rhs_l, rhs_row_indices, check_exact_equality);
return cudf::type_dispatcher(lhs_child.type(),
column_comparator<check_exact_equality>{},
lhs_child,
rhs_child,
*lhs_child_indices,
*rhs_child_indices,
verbosity,
fp_ulps,
depth + 1);
}
return true;
}
};
template <bool check_exact_equality>
struct column_comparator_impl<struct_view, check_exact_equality> {
bool operator()(column_view const& lhs,
column_view const& rhs,
column_view const& lhs_row_indices,
column_view const& rhs_row_indices,
debug_output_level verbosity,
size_type fp_ulps,
int depth)
{
structs_column_view l_scv(lhs);
structs_column_view r_scv(rhs);
for (size_type i = 0; i < lhs.num_children(); i++) {
column_view lhs_child = l_scv.get_sliced_child(i, cudf::test::get_default_stream());
column_view rhs_child = r_scv.get_sliced_child(i, cudf::test::get_default_stream());
if (!cudf::type_dispatcher(lhs_child.type(),
column_comparator<check_exact_equality>{},
lhs_child,
rhs_child,
lhs_row_indices,
rhs_row_indices,
verbosity,
fp_ulps,
depth + 1)) {
return false;
}
}
return true;
}
};
template <bool check_exact_equality>
struct column_comparator {
template <typename T>
bool operator()(column_view const& lhs,
column_view const& rhs,
column_view const& lhs_row_indices,
column_view const& rhs_row_indices,
debug_output_level verbosity,
size_type fp_ulps,
int depth = 0)
{
// compare properties
if (!cudf::type_dispatcher(lhs.type(),
column_property_comparator<check_exact_equality>{},
lhs,
rhs,
lhs_row_indices,
rhs_row_indices,
verbosity)) {
return false;
}
// compare values
column_comparator_impl<T, check_exact_equality> comparator{};
return comparator(lhs, rhs, lhs_row_indices, rhs_row_indices, verbosity, fp_ulps, depth);
}
};
} // namespace
namespace detail {
/**
* @copydoc cudf::test::expect_column_properties_equal
*/
bool expect_column_properties_equal(column_view const& lhs,
column_view const& rhs,
debug_output_level verbosity)
{
auto lhs_indices = generate_all_row_indices(lhs.size());
auto rhs_indices = generate_all_row_indices(rhs.size());
return cudf::type_dispatcher(lhs.type(),
column_property_comparator<true>{},
lhs,
rhs,
*lhs_indices,
*rhs_indices,
verbosity);
}
/**
* @copydoc cudf::test::expect_column_properties_equivalent
*/
bool expect_column_properties_equivalent(column_view const& lhs,
column_view const& rhs,
debug_output_level verbosity)
{
auto lhs_indices = generate_all_row_indices(lhs.size());
auto rhs_indices = generate_all_row_indices(rhs.size());
return cudf::type_dispatcher(lhs.type(),
column_property_comparator<false>{},
lhs,
rhs,
*lhs_indices,
*rhs_indices,
verbosity);
}
/**
* @copydoc cudf::test::expect_columns_equal
*/
bool expect_columns_equal(cudf::column_view const& lhs,
cudf::column_view const& rhs,
debug_output_level verbosity)
{
auto lhs_indices = generate_all_row_indices(lhs.size());
auto rhs_indices = generate_all_row_indices(rhs.size());
return cudf::type_dispatcher(lhs.type(),
column_comparator<true>{},
lhs,
rhs,
*lhs_indices,
*rhs_indices,
verbosity,
cudf::test::default_ulp);
}
/**
* @copydoc cudf::test::expect_columns_equivalent
*/
bool expect_columns_equivalent(cudf::column_view const& lhs,
cudf::column_view const& rhs,
debug_output_level verbosity,
size_type fp_ulps)
{
auto lhs_indices = generate_all_row_indices(lhs.size());
auto rhs_indices = generate_all_row_indices(rhs.size());
return cudf::type_dispatcher(lhs.type(),
column_comparator<false>{},
lhs,
rhs,
*lhs_indices,
*rhs_indices,
verbosity,
fp_ulps);
}
/**
* @copydoc cudf::test::expect_equal_buffers
*/
void expect_equal_buffers(void const* lhs, void const* rhs, std::size_t size_bytes)
{
if (size_bytes > 0) {
EXPECT_NE(nullptr, lhs);
EXPECT_NE(nullptr, rhs);
}
auto typed_lhs = static_cast<char const*>(lhs);
auto typed_rhs = static_cast<char const*>(rhs);
EXPECT_TRUE(thrust::equal(rmm::exec_policy(cudf::test::get_default_stream()),
typed_lhs,
typed_lhs + size_bytes,
typed_rhs));
}
} // namespace detail
/**
* @copydoc cudf::test::expect_column_empty
*/
void expect_column_empty(cudf::column_view const& col)
{
EXPECT_EQ(0, col.size());
EXPECT_EQ(0, col.null_count());
}
/**
* @copydoc cudf::test::bitmask_to_host
*/
std::vector<bitmask_type> bitmask_to_host(cudf::column_view const& c)
{
if (c.nullable()) {
auto num_bitmasks = num_bitmask_words(c.size());
std::vector<bitmask_type> host_bitmask(num_bitmasks);
if (c.offset() == 0) {
CUDF_CUDA_TRY(cudaMemcpy(host_bitmask.data(),
c.null_mask(),
num_bitmasks * sizeof(bitmask_type),
cudaMemcpyDefault));
} else {
auto mask = copy_bitmask(c.null_mask(), c.offset(), c.offset() + c.size());
CUDF_CUDA_TRY(cudaMemcpy(
host_bitmask.data(), mask.data(), num_bitmasks * sizeof(bitmask_type), cudaMemcpyDefault));
}
return host_bitmask;
} else {
return std::vector<bitmask_type>{};
}
}
/**
* @copydoc cudf::test::validate_host_masks
*/
bool validate_host_masks(std::vector<bitmask_type> const& expected_mask,
std::vector<bitmask_type> const& got_mask,
size_type number_of_elements)
{
return std::all_of(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(number_of_elements),
[&expected_mask, &got_mask](auto index) {
return cudf::bit_is_set(expected_mask.data(), index) ==
cudf::bit_is_set(got_mask.data(), index);
});
}
} // namespace test
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/utilities/tdigest_utilities.cu
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/concatenate.hpp>
#include <cudf/detail/tdigest/tdigest.hpp>
#include <cudf/tdigest/tdigest_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/tdigest_utilities.cuh>
#include <rmm/exec_policy.hpp>
#include <thrust/fill.h>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/tuple.h>
// for use with groupby and reduction aggregation tests.
namespace cudf {
namespace test {
void tdigest_sample_compare(cudf::tdigest::tdigest_column_view const& tdv,
std::vector<expected_value> const& h_expected)
{
column_view result_mean = tdv.means();
column_view result_weight = tdv.weights();
auto expected_mean = cudf::make_fixed_width_column(
data_type{type_id::FLOAT64}, h_expected.size(), mask_state::UNALLOCATED);
auto expected_weight = cudf::make_fixed_width_column(
data_type{type_id::FLOAT64}, h_expected.size(), mask_state::UNALLOCATED);
auto sampled_result_mean = cudf::make_fixed_width_column(
data_type{type_id::FLOAT64}, h_expected.size(), mask_state::UNALLOCATED);
auto sampled_result_weight = cudf::make_fixed_width_column(
data_type{type_id::FLOAT64}, h_expected.size(), mask_state::UNALLOCATED);
auto h_expected_src = std::vector<size_type>(h_expected.size());
auto h_expected_mean = std::vector<double>(h_expected.size());
auto h_expected_weight = std::vector<double>(h_expected.size());
{
auto iter = thrust::make_counting_iterator(0);
std::for_each_n(iter, h_expected.size(), [&](size_type const index) {
h_expected_src[index] = thrust::get<0>(h_expected[index]);
h_expected_mean[index] = thrust::get<1>(h_expected[index]);
h_expected_weight[index] = thrust::get<2>(h_expected[index]);
});
}
auto d_expected_src = cudf::detail::make_device_uvector_async(
h_expected_src, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto d_expected_mean = cudf::detail::make_device_uvector_async(
h_expected_mean, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto d_expected_weight = cudf::detail::make_device_uvector_async(
h_expected_weight, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
auto iter = thrust::make_counting_iterator(0);
thrust::for_each(
rmm::exec_policy(cudf::get_default_stream()),
iter,
iter + h_expected.size(),
[expected_src_in = d_expected_src.data(),
expected_mean_in = d_expected_mean.data(),
expected_weight_in = d_expected_weight.data(),
expected_mean = expected_mean->mutable_view().begin<double>(),
expected_weight = expected_weight->mutable_view().begin<double>(),
result_mean = result_mean.begin<double>(),
result_weight = result_weight.begin<double>(),
sampled_result_mean = sampled_result_mean->mutable_view().begin<double>(),
sampled_result_weight =
sampled_result_weight->mutable_view().begin<double>()] __device__(size_type index) {
expected_mean[index] = expected_mean_in[index];
expected_weight[index] = expected_weight_in[index];
auto const src_index = expected_src_in[index];
sampled_result_mean[index] = result_mean[src_index];
sampled_result_weight[index] = result_weight[src_index];
});
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected_mean, *sampled_result_mean);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expected_weight, *sampled_result_weight);
}
std::unique_ptr<column> make_expected_tdigest_column(std::vector<expected_tdigest> const& groups)
{
std::vector<std::unique_ptr<column>> tdigests;
// make an individual digest
auto make_digest = [&](expected_tdigest const& tdigest) {
std::vector<std::unique_ptr<column>> inner_children;
inner_children.push_back(std::make_unique<cudf::column>(tdigest.mean));
inner_children.push_back(std::make_unique<cudf::column>(tdigest.weight));
// tdigest struct
auto tdigests =
cudf::make_structs_column(tdigest.mean.size(), std::move(inner_children), 0, {});
std::vector<size_type> h_offsets{0, tdigest.mean.size()};
auto offsets =
cudf::make_fixed_width_column(data_type{type_id::INT32}, 2, mask_state::UNALLOCATED);
CUDF_CUDA_TRY(cudaMemcpy(offsets->mutable_view().begin<size_type>(),
h_offsets.data(),
sizeof(size_type) * 2,
cudaMemcpyDefault));
auto list = cudf::make_lists_column(1, std::move(offsets), std::move(tdigests), 0, {});
auto min_col =
cudf::make_fixed_width_column(data_type{type_id::FLOAT64}, 1, mask_state::UNALLOCATED);
thrust::fill(rmm::exec_policy(cudf::get_default_stream()),
min_col->mutable_view().begin<double>(),
min_col->mutable_view().end<double>(),
tdigest.min);
auto max_col =
cudf::make_fixed_width_column(data_type{type_id::FLOAT64}, 1, mask_state::UNALLOCATED);
thrust::fill(rmm::exec_policy(cudf::get_default_stream()),
max_col->mutable_view().begin<double>(),
max_col->mutable_view().end<double>(),
tdigest.max);
std::vector<std::unique_ptr<column>> children;
children.push_back(std::move(list));
children.push_back(std::move(min_col));
children.push_back(std::move(max_col));
return make_structs_column(1, std::move(children), 0, {});
};
// build the individual digests
std::transform(groups.begin(), groups.end(), std::back_inserter(tdigests), make_digest);
// concatenate them
std::vector<column_view> views;
std::transform(tdigests.begin(),
tdigests.end(),
std::back_inserter(views),
[](std::unique_ptr<column> const& c) { return c->view(); });
return cudf::concatenate(views);
}
} // namespace test
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/jit/parse_ptx_function.cpp
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cctype>
#include <cudf_test/base_fixture.hpp>
#include <jit/parser.hpp>
struct JitParseTest : public ::testing::Test {};
TEST_F(JitParseTest, PTXNoFunction)
{
std::string raw_ptx = R"(
.visible .entry _ZN3cub17CUB_101702_750_NS11EmptyKernelIvEEvv()
{
ret;
})";
EXPECT_THROW(cudf::jit::parse_single_function_ptx(raw_ptx, "GENERIC_OP", "float", {0}),
cudf::logic_error);
}
inline bool ptx_equal(std::string input, std::string expected)
{
// Remove all whitespace and newline characters and compare
// This allows us to handle things like excess newline characters
// and trailing whitespace in the 'input'
auto whitespace_or_newline = [](unsigned char c) { return std::isspace(c) || c == '\n'; };
input.erase(std::remove_if(input.begin(), input.end(), whitespace_or_newline), input.end());
expected.erase(std::remove_if(expected.begin(), expected.end(), whitespace_or_newline),
expected.end());
return input == expected;
}
TEST_F(JitParseTest, SimplePTX)
{
std::string raw_ptx = R"(
.visible .func (.param .b32 func_retval0) _ZN8__main__7add$241Eff(
.param .b64 _ZN8__main__7add$241Eff_param_0,
.param .b32 _ZN8__main__7add$241Eff_param_1,
.param .b32 _ZN8__main__7add$241Eff_param_2
)
{
ret;
}
)";
std::string expected = R"(
__device__ __inline__ void GENERIC_OP(
float* _ZN8__main__7add_241Eff_param_0,
int _ZN8__main__7add_241Eff_param_1,
int _ZN8__main__7add_241Eff_param_2
){
asm volatile ("{");
asm volatile ("bra RETTGT;");
asm volatile ("RETTGT:}");}
)";
std::string cuda_source =
cudf::jit::parse_single_function_ptx(raw_ptx, "GENERIC_OP", "float", {0});
EXPECT_TRUE(ptx_equal(cuda_source, expected));
}
TEST_F(JitParseTest, PTXWithPragma)
{
std::string raw_ptx = R"(
.visible .func _ZN3cub17CUB_101702_750_NS11EmptyKernelIvEEvv()
{
$L__BB0_151:
.pragma "nounroll";
mov.u32 % r1517, % r1516;
mov.u32 % r1516, % r1515;
mov.u32 % r1515, % r1505;
mov.u32 % r1457, 0;
$L__BB0_152:
.pragma "nounroll";
})";
std::string expected = R"(
__device__ __inline__ void EmptyKern(){
asm volatile ("{"); asm volatile (" $L__BB0_151: .pragma \"nounroll\";");
/** $L__BB0_151:
.pragma "nounroll" */
asm volatile (" mov.u32 _ r1517, _ r1516;");
/** mov.u32 % r1517, % r1516 */
asm volatile (" mov.u32 _ r1516, _ r1515;");
/** mov.u32 % r1516, % r1515 */
asm volatile (" mov.u32 _ r1515, _ r1505;");
/** mov.u32 % r1515, % r1505 */
asm volatile (" mov.u32 _ r1457, 0;");
/** mov.u32 % r1457, 0 */
asm volatile (" $L__BB0_152: .pragma \"nounroll\";");
/** $L__BB0_152:
.pragma "nounroll" */
asm volatile ("RETTGT:}");}
)";
std::string cuda_source = cudf::jit::parse_single_function_ptx(raw_ptx, "EmptyKern", "void", {0});
EXPECT_TRUE(ptx_equal(cuda_source, expected));
}
TEST_F(JitParseTest, PTXWithPragmaWithSpaces)
{
std::string raw_ptx = R"(
.visible .func _ZN3cub17CUB_101702_750_NS11EmptyKernelIvEEvv()
{
$L__BB0_58:
ld.param.u32 % r1419, [% rd419 + 80];
setp.ne.s32 % p394, % r1419, 22;
mov.u32 % r2050, 0;
mov.u32 % r2048, % r2050;
@ % p394 bra $L__BB0_380;
ld.param.u8 % rs1369, [% rd419 + 208];
setp.eq.s16 % p395, % rs1369, 0;
selp.b32 % r1422, % r1925, 0, % p395;
ld.param.u32 % r1423, [% rd419 + 112];
add.s32 % r427, % r1422, % r1423;
ld.param.u64 % rd1249, [% rd419 + 120];
cvta.to.global.u64 % rd1250, % rd1249;
.pragma "used_bytes_mask 4095";
ld.global.v4.u32{ % r1424, % r1425, % r1426, % r1427}, [% rd1250];
ld.global.v2.u64{ % rd1251, % rd1252}, [% rd1250 + 16];
ld.global.s32 % rd230, [% rd1250 + 32];
setp.gt.s32 % p396, % r1424, 6;
@ % p396 bra $L__BB0_376;
}
}
)";
std::string expected = R"(
__device__ __inline__ void LongKernel(){
asm volatile ("{"); asm volatile (" $L__BB0_58: cvt.u32.u32 _ %0, [_ rd419 + 80];": : "r"(r1419));
/** $L__BB0_58:
ld.param.u32 % r1419, [% rd419 + 80] */
asm volatile (" setp.ne.s32 _ p394, _ r1419, 22;");
/** setp.ne.s32 % p394, % r1419, 22 */
asm volatile (" mov.u32 _ r2050, 0;");
/** mov.u32 % r2050, 0 */
asm volatile (" mov.u32 _ r2048, _ r2050;");
/** mov.u32 % r2048, % r2050 */
asm volatile (" @ _ p394 bra $L__BB0_380;");
/** @ % p394 bra $L__BB0_380 */
asm volatile (" cvt.u8.u8 _ %0, [_ rd419 + 208];": : "h"( static_cast<short>(rs1369)));
/** ld.param.u8 % rs1369, [% rd419 + 208] */
asm volatile (" setp.eq.s16 _ p395, _ rs1369, 0;");
/** setp.eq.s16 % p395, % rs1369, 0 */
asm volatile (" selp.b32 _ r1422, _ r1925, 0, _ p395;");
/** selp.b32 % r1422, % r1925, 0, % p395 */
asm volatile (" cvt.u32.u32 _ %0, [_ rd419 + 112];": : "r"(r1423));
/** ld.param.u32 % r1423, [% rd419 + 112] */
asm volatile (" add.s32 _ r427, _ r1422, _ r1423;");
/** add.s32 % r427, % r1422, % r1423 */
asm volatile (" mov.u64 _ %0, [_ rd419 + 120];": : "l"(rd1249));
/** ld.param.u64 % rd1249, [% rd419 + 120] */
asm volatile (" cvta.to.global.u64 _ rd1250, _ rd1249;");
/** cvta.to.global.u64 % rd1250, % rd1249 */
asm volatile (" .pragma \"used_bytes_mask 4095\";");
/** .pragma "used_bytes_mask 4095" */
asm volatile (" ld.global.v4.u32{ _ r1424, _ r1425, _ r1426, _ r1427}, [_ rd1250];");
/** ld.global.v4.u32{ % r1424, % r1425, % r1426, % r1427}, [% rd1250] */
asm volatile (" ld.global.v2.u64{ _ rd1251, _ rd1252}, [_ rd1250 + 16];");
/** ld.global.v2.u64{ % rd1251, % rd1252}, [% rd1250 + 16] */
asm volatile (" ld.global.s32 _ rd230, [_ rd1250 + 32];");
/** ld.global.s32 % rd230, [% rd1250 + 32] */
asm volatile (" setp.gt.s32 _ p396, _ r1424, 6;");
/** setp.gt.s32 % p396, % r1424, 6 */
asm volatile (" @ _ p396 bra $L__BB0_376;");
/** @ % p396 bra $L__BB0_376 */
asm volatile ("RETTGT:}");}
)";
std::string cuda_source =
cudf::jit::parse_single_function_ptx(raw_ptx, "LongKernel", "void", {0});
EXPECT_TRUE(ptx_equal(cuda_source, expected));
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/partitioning/partition_test.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/partitioning.hpp>
#include <cudf/sorting.hpp>
#include <cudf/table/table.hpp>
template <typename T>
class PartitionTest : public cudf::test::BaseFixture {
using value_type = cudf::test::GetType<T, 0>;
using map_type = cudf::test::GetType<T, 1>;
};
using types =
cudf::test::CrossProduct<cudf::test::FixedWidthTypes, cudf::test::IntegralTypesNotBool>;
// using types = cudf::test::Types<cudf::test::Types<int32_t, int32_t> >;
TYPED_TEST_SUITE(PartitionTest, types);
using cudf::test::fixed_width_column_wrapper;
using cudf::test::strings_column_wrapper;
// Exceptional cases
TYPED_TEST(PartitionTest, EmptyInputs)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type> empty_column{};
fixed_width_column_wrapper<map_type> empty_map{};
auto result = cudf::partition(cudf::table_view{{empty_column}}, empty_map, 10);
auto result_offsets = result.second;
EXPECT_EQ(result_offsets.size(), std::size_t{11});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(empty_column, result.first->get_column(0));
}
TYPED_TEST(PartitionTest, MapInputSizeMismatch)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> input({1, 2, 3});
fixed_width_column_wrapper<map_type> map{1, 2};
EXPECT_THROW(cudf::partition(cudf::table_view{{input}}, map, 3), cudf::logic_error);
}
TYPED_TEST(PartitionTest, MapWithNullsThrows)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> input({1, 2, 3});
fixed_width_column_wrapper<map_type> map{{1, 2}, {1, 0}};
EXPECT_THROW(cudf::partition(cudf::table_view{{input}}, map, 3), cudf::logic_error);
}
/**
* @brief Verifies that partitions indicated by `offsets` are equal between
* `expected` and `actual`.
*
* The order of rows within each partition may be different, so each partition
* is first sorted before being compared for equality.
*/
void expect_equal_partitions(cudf::table_view expected,
cudf::table_view actual,
std::vector<cudf::size_type> const& offsets)
{
// Need to convert partition offsets into split points by dropping the first
// and last element
std::vector<cudf::size_type> split_points;
std::copy(std::next(offsets.begin()), std::prev(offsets.end()), std::back_inserter(split_points));
// Split the partitions, sort each partition, then compare for equality
auto actual_split = cudf::split(actual, split_points);
auto expected_split = cudf::split(expected, split_points);
std::equal(expected_split.begin(),
expected_split.end(),
actual_split.begin(),
[](cudf::table_view expected, cudf::table_view actual) {
auto sorted_expected = cudf::sort(expected);
auto sorted_actual = cudf::sort(actual);
CUDF_TEST_EXPECT_TABLES_EQUAL(*sorted_expected, *sorted_actual);
return true;
});
}
void run_partition_test(cudf::table_view table_to_partition,
cudf::column_view partition_map,
cudf::size_type num_partitions,
cudf::table_view expected_partitioned_table,
std::vector<cudf::size_type> const& expected_offsets)
{
auto result = cudf::partition(table_to_partition, partition_map, num_partitions);
auto const& actual_partitioned_table = result.first;
auto const& actual_offsets = result.second;
EXPECT_EQ(actual_offsets, expected_offsets);
expect_equal_partitions(expected_partitioned_table, *actual_partitioned_table, expected_offsets);
}
// Normal cases
TYPED_TEST(PartitionTest, Identity)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> first({0, 1, 2, 3, 4, 5});
strings_column_wrapper strings{"this", "is", "a", "column", "of", "strings"};
auto table_to_partition = cudf::table_view{{first, strings}};
fixed_width_column_wrapper<map_type> map{0, 1, 2, 3, 4, 5};
std::vector<cudf::size_type> expected_offsets{0, 1, 2, 3, 4, 5, 6};
run_partition_test(table_to_partition, map, 6, table_to_partition, expected_offsets);
}
TYPED_TEST(PartitionTest, Struct)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> A({1, 2}, {0, 1});
auto struct_col = cudf::test::structs_column_wrapper({A}, {0, 1}).release();
auto table_to_partition = cudf::table_view{{*struct_col}};
fixed_width_column_wrapper<map_type> map{9, 2};
fixed_width_column_wrapper<value_type, int32_t> A_expected({2, 1}, {1, 0});
auto struct_expected = cudf::test::structs_column_wrapper({A_expected}, {1, 0}).release();
auto expected = cudf::table_view{{*struct_expected}};
std::vector<cudf::size_type> expected_offsets{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2};
// This does not work because we cannot sort a struct right now...
// run_partition_test(table_to_partition, map, 12, expected, expected_offsets);
// But there is no ambiguity in the ordering so I'll just copy it all here for now.
auto num_partitions = 12;
auto result = cudf::partition(table_to_partition, map, num_partitions);
auto const& actual_partitioned_table = result.first;
auto const& actual_offsets = result.second;
EXPECT_EQ(actual_offsets, expected_offsets);
CUDF_TEST_EXPECT_TABLES_EQUAL(expected, *actual_partitioned_table);
}
TYPED_TEST(PartitionTest, Reverse)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> first({0, 1, 3, 7, 5, 13});
strings_column_wrapper strings{"this", "is", "a", "column", "of", "strings"};
auto table_to_partition = cudf::table_view{{first, strings}};
fixed_width_column_wrapper<map_type> map{5, 4, 3, 2, 1, 0};
std::vector<cudf::size_type> expected_offsets{0, 1, 2, 3, 4, 5, 6};
fixed_width_column_wrapper<value_type, int32_t> expected_first({13, 5, 7, 3, 1, 0});
strings_column_wrapper expected_strings{"strings", "of", "column", "a", "is", "this"};
auto expected_partitioned_table = cudf::table_view{{expected_first, expected_strings}};
run_partition_test(table_to_partition, map, 6, expected_partitioned_table, expected_offsets);
}
TYPED_TEST(PartitionTest, SinglePartition)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> first({0, 1, 3, 7, 5, 13});
strings_column_wrapper strings{"this", "is", "a", "column", "of", "strings"};
auto table_to_partition = cudf::table_view{{first, strings}};
fixed_width_column_wrapper<map_type> map{0, 0, 0, 0, 0, 0};
std::vector<cudf::size_type> expected_offsets{0, 6};
fixed_width_column_wrapper<value_type, int32_t> expected_first({13, 5, 7, 3, 1, 0});
strings_column_wrapper expected_strings{"strings", "of", "column", "a", "is", "this"};
auto expected_partitioned_table = cudf::table_view{{expected_first, expected_strings}};
run_partition_test(table_to_partition, map, 1, expected_partitioned_table, expected_offsets);
}
TYPED_TEST(PartitionTest, EmptyPartitions)
{
using value_type = cudf::test::GetType<TypeParam, 0>;
using map_type = cudf::test::GetType<TypeParam, 1>;
fixed_width_column_wrapper<value_type, int32_t> first({0, 1, 3, 7, 5, 13});
strings_column_wrapper strings{"this", "is", "a", "column", "of", "strings"};
auto table_to_partition = cudf::table_view{{first, strings}};
fixed_width_column_wrapper<map_type> map{2, 2, 0, 0, 4, 4};
std::vector<cudf::size_type> expected_offsets{0, 2, 2, 4, 4, 6};
fixed_width_column_wrapper<value_type, int32_t> expected_first({3, 7, 0, 1, 5, 13});
strings_column_wrapper expected_strings{"a", "column", "this", "is", "of", "strings"};
auto expected_partitioned_table = cudf::table_view{{expected_first, expected_strings}};
run_partition_test(table_to_partition, map, 5, expected_partitioned_table, expected_offsets);
}
template <typename T>
class PartitionTestFixedPoint : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(PartitionTestFixedPoint, cudf::test::FixedPointTypes);
TYPED_TEST(PartitionTestFixedPoint, Partition)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper({11, 22, 33, 44, 55, 66}, scale_type{-1});
auto const map = fixed_width_column_wrapper<int32_t>{0, 1, 2, 3, 4, 5};
auto const expected = cudf::table_view{{input}};
auto const offsets = std::vector<cudf::size_type>{0, 1, 2, 3, 4, 5, 6};
run_partition_test(expected, map, 6, expected, offsets);
}
TYPED_TEST(PartitionTestFixedPoint, Partition1)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper({11, 22, 33, 44, 55, 66}, scale_type{-1});
auto const map = fixed_width_column_wrapper<int32_t>{5, 4, 3, 2, 1, 0};
auto const expected = fp_wrapper({66, 55, 44, 33, 22, 11}, scale_type{-1});
auto const offsets = std::vector<cudf::size_type>{0, 1, 2, 3, 4, 5, 6};
run_partition_test(cudf::table_view{{input}}, map, 6, cudf::table_view{{expected}}, offsets);
}
TYPED_TEST(PartitionTestFixedPoint, Partition2)
{
using namespace numeric;
using decimalXX = TypeParam;
using RepType = cudf::device_storage_type_t<decimalXX>;
using fp_wrapper = cudf::test::fixed_point_column_wrapper<RepType>;
auto const input = fp_wrapper({11, 22, 33, 44, 55, 66}, scale_type{-1});
auto const map = fixed_width_column_wrapper<int32_t>{2, 1, 0, 2, 1, 0};
auto const expected = fp_wrapper({33, 66, 22, 55, 11, 44}, scale_type{-1});
auto const offsets = std::vector<cudf::size_type>{0, 2, 4, 6};
run_partition_test(cudf::table_view{{input}}, map, 3, cudf::table_view{{expected}}, offsets);
}
struct PartitionTestNotTyped : public cudf::test::BaseFixture {};
TEST_F(PartitionTestNotTyped, ListOfStringsEmpty)
{
cudf::test::lists_column_wrapper<cudf::string_view> list{{}, {}};
auto table_to_partition = cudf::table_view{{list}};
fixed_width_column_wrapper<int32_t> map{0, 0};
auto result = cudf::partition(table_to_partition, map, 2);
CUDF_TEST_EXPECT_TABLES_EQUAL(table_to_partition, result.first->view());
EXPECT_EQ(3, result.second.size());
}
TEST_F(PartitionTestNotTyped, ListOfListOfIntEmpty)
{
cudf::test::lists_column_wrapper<int32_t> level_2_list;
fixed_width_column_wrapper<int32_t> level_1_offsets{0, 0, 0};
std::unique_ptr<cudf::column> level_1_list =
cudf::make_lists_column(2, level_1_offsets.release(), level_2_list.release(), 0, {});
auto table_to_partition = cudf::table_view{{*level_1_list}};
fixed_width_column_wrapper<int32_t> map{0, 0};
auto result = cudf::partition(table_to_partition, map, 2);
CUDF_TEST_EXPECT_TABLES_EQUAL(table_to_partition, result.first->view());
EXPECT_EQ(3, result.second.size());
}
TEST_F(PartitionTestNotTyped, ListOfListOfListOfIntEmpty)
{
cudf::test::lists_column_wrapper<int32_t> level_3_list{};
fixed_width_column_wrapper<int32_t> level_2_offsets{};
std::unique_ptr<cudf::column> level_2_list =
cudf::make_lists_column(0, level_2_offsets.release(), level_3_list.release(), 0, {});
fixed_width_column_wrapper<int32_t> level_1_offsets{0, 0};
std::unique_ptr<cudf::column> level_1_list =
cudf::make_lists_column(1, level_1_offsets.release(), std::move(level_2_list), 0, {});
auto table_to_partition = cudf::table_view{{*level_1_list}};
fixed_width_column_wrapper<int32_t> map{0};
auto result = cudf::partition(table_to_partition, map, 2);
CUDF_TEST_EXPECT_TABLES_EQUAL(table_to_partition, result.first->view());
EXPECT_EQ(3, result.second.size());
}
TEST_F(PartitionTestNotTyped, NoIntegerOverflow)
{
auto elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; });
fixed_width_column_wrapper<int8_t> map(elements, elements + 129);
auto table_to_partition = cudf::table_view{{map}};
std::vector<cudf::size_type> expected_offsets{0, 65, 129};
auto expected_elements =
cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i / 65; });
fixed_width_column_wrapper<int8_t> expected(expected_elements, expected_elements + 129);
auto expected_table = cudf::table_view{{expected}};
run_partition_test(table_to_partition, map, 2, expected_table, expected_offsets);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/partitioning/hash_partition_test.cpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/detail/utilities/vector_factories.hpp>
#include <cudf/hashing.hpp>
#include <cudf/partitioning.hpp>
#include <cudf/sorting.hpp>
#include <cudf/table/table.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <cudf_test/table_utilities.hpp>
#include <cudf_test/type_lists.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
using cudf::test::fixed_width_column_wrapper;
using cudf::test::strings_column_wrapper;
using structs_col = cudf::test::structs_column_wrapper;
using cudf::test::iterators::null_at;
using cudf::test::iterators::nulls_at;
// Transform vector of column wrappers to vector of column views
template <typename T>
auto make_view_vector(std::vector<T> const& columns)
{
std::vector<cudf::column_view> views(columns.size());
std::transform(columns.begin(), columns.end(), views.begin(), [](auto const& col) {
return static_cast<cudf::column_view>(col);
});
return views;
}
class HashPartition : public cudf::test::BaseFixture {};
TEST_F(HashPartition, InvalidColumnsToHash)
{
fixed_width_column_wrapper<float> floats({1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
fixed_width_column_wrapper<int16_t> integers({1, 2, 3, 4, 5, 6, 7, 8});
strings_column_wrapper strings({"a", "bb", "ccc", "d", "ee", "fff", "gg", "h"});
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({-1});
cudf::size_type const num_partitions = 3;
EXPECT_THROW(cudf::hash_partition(input, columns_to_hash, num_partitions), std::out_of_range);
}
TEST_F(HashPartition, ZeroPartitions)
{
fixed_width_column_wrapper<float> floats({1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
fixed_width_column_wrapper<int16_t> integers({1, 2, 3, 4, 5, 6, 7, 8});
strings_column_wrapper strings({"a", "bb", "ccc", "d", "ee", "fff", "gg", "h"});
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({2});
cudf::size_type const num_partitions = 0;
auto [output, offsets] = cudf::hash_partition(input, columns_to_hash, num_partitions);
// Expect empty table with same number of columns and zero partitions
EXPECT_EQ(input.num_columns(), output->num_columns());
EXPECT_EQ(0, output->num_rows());
EXPECT_EQ(std::size_t{num_partitions}, offsets.size());
}
TEST_F(HashPartition, ZeroRows)
{
fixed_width_column_wrapper<float> floats({});
fixed_width_column_wrapper<int16_t> integers({});
strings_column_wrapper strings;
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({2});
cudf::size_type const num_partitions = 3;
auto [output, offsets] = cudf::hash_partition(input, columns_to_hash, num_partitions);
// Expect empty table with same number of columns and same number of partitions
EXPECT_EQ(input.num_columns(), output->num_columns());
EXPECT_EQ(0, output->num_rows());
EXPECT_EQ(std::size_t{num_partitions}, offsets.size());
}
TEST_F(HashPartition, ZeroColumns)
{
auto input = cudf::table_view(std::vector<cudf::column_view>{});
auto columns_to_hash = std::vector<cudf::size_type>({});
cudf::size_type const num_partitions = 3;
auto [output, offsets] = cudf::hash_partition(input, columns_to_hash, num_partitions);
// Expect empty table with same number of columns and same number of partitions
EXPECT_EQ(input.num_columns(), output->num_columns());
EXPECT_EQ(0, output->num_rows());
EXPECT_EQ(std::size_t{num_partitions}, offsets.size());
}
TEST_F(HashPartition, MixedColumnTypes)
{
fixed_width_column_wrapper<float> floats({1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
fixed_width_column_wrapper<int16_t> integers({1, 2, 3, 4, 5, 6, 7, 8});
strings_column_wrapper strings({"a", "bb", "ccc", "d", "ee", "fff", "gg", "h"});
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({0, 2});
cudf::size_type const num_partitions = 3;
auto [output1, offsets1] = cudf::hash_partition(input, columns_to_hash, num_partitions);
auto [output2, offsets2] = cudf::hash_partition(input, columns_to_hash, num_partitions);
// Expect output to have size num_partitions
EXPECT_EQ(static_cast<size_t>(num_partitions), offsets1.size());
EXPECT_EQ(offsets1.size(), offsets2.size());
// Expect output to have same shape as input
CUDF_TEST_EXPECT_TABLE_PROPERTIES_EQUAL(input, output1->view());
// Expect deterministic result from hashing the same input
CUDF_TEST_EXPECT_TABLES_EQUAL(output1->view(), output2->view());
}
TEST_F(HashPartition, NullableStrings)
{
strings_column_wrapper strings({"a", "bb", "ccc", "d"}, {1, 1, 1, 1});
cudf::table_view input({strings});
std::vector<cudf::size_type> const columns_to_hash({0});
cudf::size_type const num_partitions = 3;
auto [result, offsets] = cudf::hash_partition(input, columns_to_hash, num_partitions);
auto const& col = result->get_column(0);
EXPECT_EQ(0, col.null_count());
}
TEST_F(HashPartition, ColumnsToHash)
{
fixed_width_column_wrapper<int32_t> to_hash({1, 2, 3, 4, 5, 6});
fixed_width_column_wrapper<int32_t> first_col({7, 8, 9, 10, 11, 12});
fixed_width_column_wrapper<int32_t> second_col({13, 14, 15, 16, 17, 18});
auto first_input = cudf::table_view({to_hash, first_col});
auto second_input = cudf::table_view({to_hash, second_col});
auto columns_to_hash = std::vector<cudf::size_type>({0});
cudf::size_type const num_partitions = 3;
auto [first_result, first_offsets] =
cudf::hash_partition(first_input, columns_to_hash, num_partitions);
auto [second_result, second_offsets] =
cudf::hash_partition(second_input, columns_to_hash, num_partitions);
// Expect offsets to be equal and num_partitions in length
EXPECT_EQ(static_cast<size_t>(num_partitions), first_offsets.size());
EXPECT_TRUE(std::equal(
first_offsets.begin(), first_offsets.end(), second_offsets.begin(), second_offsets.end()));
// Expect same result for the hashed columns
CUDF_TEST_EXPECT_COLUMNS_EQUAL(first_result->get_column(0).view(),
second_result->get_column(0).view());
}
TEST_F(HashPartition, IdentityHashFailure)
{
fixed_width_column_wrapper<float> floats({1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
fixed_width_column_wrapper<int16_t> integers({1, 2, 3, 4, 5, 6, 7, 8});
strings_column_wrapper strings({"a", "bb", "ccc", "d", "ee", "fff", "gg", "h"});
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({2});
cudf::size_type const num_partitions = 3;
EXPECT_THROW(
cudf::hash_partition(input, columns_to_hash, num_partitions, cudf::hash_id::HASH_IDENTITY),
cudf::logic_error);
}
TEST_F(HashPartition, UnsupportedHashFunction)
{
fixed_width_column_wrapper<float> floats({1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
fixed_width_column_wrapper<int16_t> integers({1, 2, 3, 4, 5, 6, 7, 8});
strings_column_wrapper strings({"a", "bb", "ccc", "d", "ee", "fff", "gg", "h"});
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({2});
cudf::size_type const num_partitions = 3;
EXPECT_THROW(
cudf::hash_partition(input, columns_to_hash, num_partitions, cudf::hash_id::HASH_MD5),
cudf::logic_error);
}
TEST_F(HashPartition, CustomSeedValue)
{
fixed_width_column_wrapper<float> floats({1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
fixed_width_column_wrapper<int16_t> integers({1, 2, 3, 4, 5, 6, 7, 8});
strings_column_wrapper strings({"a", "bb", "ccc", "d", "ee", "fff", "gg", "h"});
auto input = cudf::table_view({floats, integers, strings});
auto columns_to_hash = std::vector<cudf::size_type>({0, 2});
cudf::size_type const num_partitions = 3;
auto [output1, offsets1] = cudf::hash_partition(
input, columns_to_hash, num_partitions, cudf::hash_id::HASH_MURMUR3, 12345);
auto [output2, offsets2] = cudf::hash_partition(
input, columns_to_hash, num_partitions, cudf::hash_id::HASH_MURMUR3, 12345);
// Expect output to have size num_partitions
EXPECT_EQ(static_cast<size_t>(num_partitions), offsets1.size());
EXPECT_EQ(offsets1.size(), offsets2.size());
// Expect output to have same shape as input
CUDF_TEST_EXPECT_TABLE_PROPERTIES_EQUAL(input, output1->view());
// Expect deterministic result from hashing the same input
CUDF_TEST_EXPECT_TABLES_EQUAL(output1->view(), output2->view());
}
template <typename T>
class HashPartitionFixedWidth : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(HashPartitionFixedWidth, cudf::test::FixedWidthTypesWithoutFixedPoint);
TYPED_TEST(HashPartitionFixedWidth, NullableFixedWidth)
{
fixed_width_column_wrapper<TypeParam, int32_t> fixed({1, 2, 3, 4}, {1, 1, 1, 1});
cudf::table_view input({fixed});
std::vector<cudf::size_type> const columns_to_hash({0});
cudf::size_type const num_partitions = 3;
auto [result, offsets] = cudf::hash_partition(input, columns_to_hash, num_partitions);
auto const& col = result->get_column(0);
EXPECT_EQ(0, col.null_count());
}
template <typename T>
void run_fixed_width_test(size_t cols,
size_t rows,
cudf::size_type num_partitions,
cudf::hash_id hash_function,
bool has_nulls = false)
{
std::vector<fixed_width_column_wrapper<T, int32_t>> columns;
columns.reserve(cols);
if (has_nulls) {
std::generate_n(std::back_inserter(columns), cols, [rows]() {
auto iter = thrust::make_counting_iterator(0);
auto valids = thrust::make_transform_iterator(iter, [](auto i) { return i % 4 != 0; });
return fixed_width_column_wrapper<T, int32_t>(iter, iter + rows, valids);
});
} else {
std::generate_n(std::back_inserter(columns), cols, [rows]() {
auto iter = thrust::make_counting_iterator(0);
return fixed_width_column_wrapper<T, int32_t>(iter, iter + rows);
});
}
auto input = cudf::table_view(make_view_vector(columns));
auto columns_to_hash = std::vector<cudf::size_type>(cols);
std::iota(columns_to_hash.begin(), columns_to_hash.end(), 0);
auto [output1, offsets1] = cudf::hash_partition(input, columns_to_hash, num_partitions);
auto [output2, offsets2] = cudf::hash_partition(input, columns_to_hash, num_partitions);
// Expect output to have size num_partitions
EXPECT_EQ(static_cast<size_t>(num_partitions), offsets1.size());
EXPECT_TRUE(std::equal(offsets1.begin(), offsets1.end(), offsets2.begin()));
// Expect output to have same shape as input
CUDF_TEST_EXPECT_TABLE_PROPERTIES_EQUAL(input, output1->view());
CUDF_TEST_EXPECT_TABLE_PROPERTIES_EQUAL(output1->view(), output2->view());
// Compute number of rows in each partition
EXPECT_EQ(0, offsets1[0]);
offsets1.push_back(rows);
std::adjacent_difference(offsets1.begin() + 1, offsets1.end(), offsets1.begin() + 1);
// Compute the partition number for each row
cudf::size_type partition = 0;
std::vector<cudf::size_type> partitions;
std::for_each(offsets1.begin() + 1, offsets1.end(), [&](cudf::size_type const& count) {
std::fill_n(std::back_inserter(partitions), count, partition++);
});
// Make a table view of the partition numbers
constexpr cudf::data_type dtype{cudf::type_id::INT32};
auto d_partitions = cudf::detail::make_device_uvector_sync(
partitions, cudf::get_default_stream(), rmm::mr::get_current_device_resource());
cudf::column_view partitions_col(dtype, rows, d_partitions.data(), nullptr, 0);
cudf::table_view partitions_table({partitions_col});
// Sort partition numbers by the corresponding row hashes of each output
auto hash1 = cudf::hash(output1->view());
cudf::table_view hash1_table({hash1->view()});
auto sorted_partitions1 = cudf::sort_by_key(partitions_table, hash1_table);
auto hash2 = cudf::hash(output2->view());
cudf::table_view hash2_table({hash2->view()});
auto sorted_partitions2 = cudf::sort_by_key(partitions_table, hash2_table);
// After sorting by row hashes, the corresponding partition numbers should be
// equal
CUDF_TEST_EXPECT_TABLES_EQUAL(sorted_partitions1->view(), sorted_partitions2->view());
}
TYPED_TEST(HashPartitionFixedWidth, MorePartitionsThanRows)
{
run_fixed_width_test<TypeParam>(5, 10, 50, cudf::hash_id::HASH_MURMUR3);
run_fixed_width_test<TypeParam>(5, 10, 50, cudf::hash_id::HASH_IDENTITY);
}
TYPED_TEST(HashPartitionFixedWidth, LargeInput)
{
run_fixed_width_test<TypeParam>(10, 1000, 10, cudf::hash_id::HASH_MURMUR3);
run_fixed_width_test<TypeParam>(10, 1000, 10, cudf::hash_id::HASH_IDENTITY);
}
TYPED_TEST(HashPartitionFixedWidth, HasNulls)
{
run_fixed_width_test<TypeParam>(10, 1000, 10, cudf::hash_id::HASH_MURMUR3, true);
run_fixed_width_test<TypeParam>(10, 1000, 10, cudf::hash_id::HASH_IDENTITY, true);
}
TEST_F(HashPartition, FixedPointColumnsToHash)
{
fixed_width_column_wrapper<int32_t> to_hash({1});
cudf::test::fixed_point_column_wrapper<int64_t> first_col({7}, numeric::scale_type{-1});
cudf::test::fixed_point_column_wrapper<__int128_t> second_col({77}, numeric::scale_type{0});
auto input = cudf::table_view({to_hash, first_col, second_col});
auto columns_to_hash = std::vector<cudf::size_type>({0});
cudf::size_type const num_partitions = 1;
auto [result, offsets] = cudf::hash_partition(input, columns_to_hash, num_partitions);
// Expect offsets to be equal and num_partitions in length
EXPECT_EQ(static_cast<size_t>(num_partitions), offsets.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result->get_column(0).view(), input.column(0));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result->get_column(1).view(), input.column(1));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result->get_column(2).view(), input.column(2));
}
TEST_F(HashPartition, ListWithNulls)
{
using lcw = cudf::test::lists_column_wrapper<int32_t>;
lcw to_hash{{{1}, {2, 2}, {0}, {1}, {2, 2}, {0}}, nulls_at({2, 5})};
fixed_width_column_wrapper<int32_t> first_col({7, 8, 9, 10, 11, 12});
fixed_width_column_wrapper<int32_t> second_col({13, 14, 15, 16, 17, 18});
auto const first_input = cudf::table_view({to_hash, first_col});
auto const second_input = cudf::table_view({to_hash, second_col});
auto const columns_to_hash = std::vector<cudf::size_type>({0});
cudf::size_type const num_partitions = 3;
auto const [first_result, first_offsets] =
cudf::hash_partition(first_input, columns_to_hash, num_partitions);
auto const [second_result, second_offsets] =
cudf::hash_partition(second_input, columns_to_hash, num_partitions);
// Expect offsets to be equal and num_partitions in length
EXPECT_EQ(static_cast<size_t>(num_partitions), first_offsets.size());
EXPECT_TRUE(std::equal(
first_offsets.begin(), first_offsets.end(), second_offsets.begin(), second_offsets.end()));
// Expect same result for the hashed columns
CUDF_TEST_EXPECT_COLUMNS_EQUAL(first_result->get_column(0).view(),
second_result->get_column(0).view());
}
TEST_F(HashPartition, StructofStructWithNulls)
{
// +-----------------+
// | s1{s2{a,b}, c} |
// +-----------------+
// 0 | { {1, 1}, 5} |
// 1 | { {1, 1}, 5} |
// 2 | { {1, 2}, 4} |
// 3 | Null |
// 4 | { Null, 4} |
// 5 | { Null, 4} |
auto const to_hash = [&] {
auto a = fixed_width_column_wrapper<int32_t>{1, 1, 1, 0, 0, 0};
auto b = fixed_width_column_wrapper<int32_t>{1, 1, 2, 0, 0, 0};
auto s2 = structs_col{{a, b}, nulls_at({4, 5})};
auto c = fixed_width_column_wrapper<int32_t>{5, 5, 4, 0, 4, 4};
return structs_col({s2, c}, null_at(3));
}();
fixed_width_column_wrapper<int32_t> first_col({7, 8, 9, 10, 11, 12});
fixed_width_column_wrapper<int32_t> second_col({13, 14, 15, 16, 17, 18});
auto const first_input = cudf::table_view({to_hash, first_col});
auto const second_input = cudf::table_view({to_hash, second_col});
auto const columns_to_hash = std::vector<cudf::size_type>({0});
cudf::size_type const num_partitions = 3;
auto const [first_result, first_offsets] =
cudf::hash_partition(first_input, columns_to_hash, num_partitions);
auto const [second_result, second_offsets] =
cudf::hash_partition(second_input, columns_to_hash, num_partitions);
// Expect offsets to be equal and num_partitions in length
EXPECT_EQ(static_cast<size_t>(num_partitions), first_offsets.size());
EXPECT_TRUE(std::equal(
first_offsets.begin(), first_offsets.end(), second_offsets.begin(), second_offsets.end()));
// Expect same result for the hashed columns
CUDF_TEST_EXPECT_COLUMNS_EQUAL(first_result->get_column(0).view(),
second_result->get_column(0).view());
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/partitioning/round_robin_test.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/partitioning.hpp>
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/cudf_gtest.hpp>
#include <cudf_test/type_lists.hpp>
#include <algorithm>
#include <cassert>
#include <initializer_list>
#include <limits>
#include <memory>
#include <numeric>
#include <vector>
#include <gtest/gtest.h>
using cudf::test::fixed_width_column_wrapper;
using cudf::test::strings_column_wrapper;
template <typename T>
class RoundRobinTest : public cudf::test::BaseFixture {};
TYPED_TEST_SUITE(RoundRobinTest, cudf::test::FixedWidthTypes);
TYPED_TEST(RoundRobinTest, EmptyInput)
{
auto const empty_column = fixed_width_column_wrapper<TypeParam>{};
auto const num_partitions = 5;
auto const start_partition = 0;
auto const [out_table, out_offsets] =
cudf::round_robin_partition(cudf::table_view{{empty_column}}, num_partitions, start_partition);
EXPECT_EQ(out_table->num_rows(), 0);
EXPECT_EQ(out_offsets.size(), std::size_t{num_partitions});
}
TYPED_TEST(RoundRobinTest, RoundRobinPartitions13_3)
{
strings_column_wrapper rrColWrap1(
{"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 3;
cudf::size_type start_partition = 0;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"a", "d", "g", "j", "m", "b", "e", "h", "k", "c", "f", "i", "l"},
{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{0, 3, 6, 9, 12, 1, 4, 7, 10, 2, 5, 8, 11});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 5, 9};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
start_partition = 1;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"c", "f", "i", "l", "a", "d", "g", "j", "m", "b", "e", "h", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{2, 5, 8, 11, 0, 3, 6, 9, 12, 1, 4, 7, 10});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 4, 9};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
start_partition = 2;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"b", "e", "h", "k", "c", "f", "i", "l", "a", "d", "g", "j", "m"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{1, 4, 7, 10, 2, 5, 8, 11, 0, 3, 6, 9, 12});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 4, 8};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
}
TYPED_TEST(RoundRobinTest, RoundRobinPartitions11_3)
{
strings_column_wrapper rrColWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 3;
cudf::size_type start_partition = 0;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"a", "d", "g", "j", "b", "e", "h", "k", "c", "f", "i"}, {1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 4, 8};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
start_partition = 1;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"c", "f", "i", "a", "d", "g", "j", "b", "e", "h", "k"}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{2, 5, 8, 0, 3, 6, 9, 1, 4, 7, 10});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 3, 7};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
start_partition = 2;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"b", "e", "h", "k", "c", "f", "i", "a", "d", "g", "j"}, {1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{1, 4, 7, 10, 2, 5, 8, 0, 3, 6, 9});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 4, 7};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
}
TYPED_TEST(RoundRobinTest, RoundRobinDegeneratePartitions11_15)
{
strings_column_wrapper rrColWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 15;
cudf::size_type start_partition = 2;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{
0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
start_partition = 10;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"f", "g", "h", "i", "j", "k", "a", "b", "c", "d", "e"}, {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{
0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 7, 8, 9, 10};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
start_partition = 14;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "a"}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
}
TYPED_TEST(RoundRobinTest, RoundRobinDegeneratePartitions11_11)
{
strings_column_wrapper rrColWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 11;
cudf::size_type start_partition = 2;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"j", "k", "a", "b", "c", "d", "e", "f", "g", "h", "i"}, {1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
}
TYPED_TEST(RoundRobinTest, RoundRobinNPartitionsDivideNRows)
{
// test the case when nrows `mod` npartitions = 0
//
// input:
// strings: ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u"],
// bools: [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1],
// nulls: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0])
//
strings_column_wrapper rrColWrap1(
{"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k",
"l", "m", "n", "o", "p", "q", "r", "s", "t", "u"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 3;
// expected:
// indxs: [0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,17,20],
// strings: ["a","d","g","j","m","p","s","b","e","h","k","n","q","t","c","f","i","l","o","r","u"],
// bools: [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1],
// nulls: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0],
// offsets: [0,7,14]
//
cudf::size_type start_partition = 0;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"a", "d", "g", "j", "m", "p", "s", "b", "e", "h", "k",
"n", "q", "t", "c", "f", "i", "l", "o", "r", "u"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2(
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{0, 3, 6, 9, 12, 15, 18, 1, 4, 7, 10, 13, 16, 19, 2, 5, 8, 11, 14, 17, 20});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 7, 14};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
// expected:
// indxs: [2,5,8,11,14,17,20,0,3,6,9,12,15,18,1,4,7,10,13,16,19],
// strings: ["c","f","i","l","o","r","u","a","d","g","j","m","p","s","b","e","h","k","n","q","t"],
// bools: [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0],
// nulls: [1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
// offsets: [0,7,14]
//
start_partition = 1;
{
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1(
{"c", "f", "i", "l", "o", "r", "u", "a", "d", "g", "j",
"m", "p", "s", "b", "e", "h", "k", "n", "q", "t"},
{1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2(
{1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{2, 5, 8, 11, 14, 17, 20, 0, 3, 6, 9, 12, 15, 18, 1, 4, 7, 10, 13, 16, 19});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0, 7, 14};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
}
TYPED_TEST(RoundRobinTest, RoundRobinSinglePartition)
{
strings_column_wrapper rrColWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(
0, [bool8 = (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8)](auto row) {
return bool8 ? static_cast<decltype(row)>(row % 2 == 0) : row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 1;
cudf::size_type start_partition = 0;
std::pair<std::unique_ptr<cudf::table>, std::vector<cudf::size_type>> result;
EXPECT_NO_THROW(result = cudf::round_robin_partition(rr_view, num_partitions, start_partition));
auto p_outputTable = std::move(result.first);
auto output_column_view1{p_outputTable->view().column(0)};
auto output_column_view2{p_outputTable->view().column(1)};
strings_column_wrapper expectedDataWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
auto expected_column_view1{static_cast<cudf::column_view const&>(expectedDataWrap1)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view1, output_column_view1);
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
fixed_width_column_wrapper<bool> expectedDataWrap2({1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
EXPECT_EQ(inputRows, expected_column_view2.size());
EXPECT_EQ(inputRows, output_column_view2.size());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
} else {
fixed_width_column_wrapper<TypeParam, int32_t> expectedDataWrap2(
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
auto expected_column_view2{static_cast<cudf::column_view const&>(expectedDataWrap2)};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column_view2, output_column_view2);
}
std::vector<cudf::size_type> expected_partition_offsets{0};
EXPECT_EQ(static_cast<std::size_t>(num_partitions), expected_partition_offsets.size());
EXPECT_EQ(expected_partition_offsets, result.second);
}
TYPED_TEST(RoundRobinTest, RoundRobinIncorrectNumPartitions)
{
strings_column_wrapper rrColWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row % 2 == 0) ? 1 : 0;
} else
return row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 0;
cudf::size_type start_partition = 0;
EXPECT_THROW(cudf::round_robin_partition(rr_view, num_partitions, start_partition),
cudf::logic_error);
}
TYPED_TEST(RoundRobinTest, RoundRobinIncorrectStartPartition)
{
strings_column_wrapper rrColWrap1({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0});
cudf::size_type inputRows = static_cast<cudf::column_view const&>(rrColWrap1).size();
auto sequence_l = cudf::detail::make_counting_transform_iterator(0, [](auto row) {
if (cudf::type_to_id<TypeParam>() == cudf::type_id::BOOL8) {
return (row % 2 == 0) ? 1 : 0;
} else
return row;
});
cudf::test::fixed_width_column_wrapper<TypeParam, typename decltype(sequence_l)::value_type>
rrColWrap2(sequence_l, sequence_l + inputRows);
cudf::table_view rr_view{{rrColWrap1, rrColWrap2}};
cudf::size_type num_partitions = 4;
cudf::size_type start_partition = 5;
EXPECT_THROW(cudf::round_robin_partition(rr_view, num_partitions, start_partition),
cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/subword_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <nvtext/subword_tokenize.hpp>
#include <fstream>
#include <iostream>
#include <vector>
// Global environment for temporary files
auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>(
::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment));
struct TextSubwordTest : public cudf::test::BaseFixture {};
// Create a fake hashed vocab text file for the tests in this source file.
// The vocab only includes the following words:
// 'this', 'is', 'a', 'test', 'tést'
// The period '.' character also has a token id.
void create_hashed_vocab(std::string const& hash_file)
{
std::vector<std::pair<int, int>> coefficients(23, {65559, 0});
std::ofstream outfile(hash_file, std::ofstream::out);
outfile << "1\n0\n" << coefficients.size() << "\n";
for (auto c : coefficients)
outfile << c.first << " " << c.second << "\n";
std::vector<uint64_t> hash_table(23, 0);
outfile << hash_table.size() << "\n";
hash_table[0] = 3015668L; // based on values
hash_table[1] = 6205475701751155871L; // from the
hash_table[5] = 6358029; // bert_hash_table.txt
hash_table[16] = 451412625363L; // file for the test
hash_table[20] = 6206321707968235495L; // words above
for (auto h : hash_table)
outfile << h << "\n";
outfile << "100\n101\n102\n\n";
}
TEST(TextSubwordTest, Tokenize)
{
uint32_t nrows = 100;
std::vector<char const*> h_strings(nrows, "This is a test. A test this is.");
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
uint32_t max_sequence_length = 16;
uint32_t stride = 16;
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
max_sequence_length,
stride,
true, // do_lower_case
false); // do_truncate
EXPECT_EQ(nrows, result.nrows_tensor);
{
std::vector<uint32_t> base_data(
{2023, 2003, 1037, 3231, 1012, 1037, 3231, 2023, 2003, 1012, 0, 0, 0, 0, 0, 0});
std::vector<uint32_t> h_expected;
for (uint32_t idx = 0; idx < nrows; ++idx)
h_expected.insert(h_expected.end(), base_data.begin(), base_data.end());
cudf::test::fixed_width_column_wrapper<uint32_t> expected(h_expected.begin(), h_expected.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected);
}
{
std::vector<uint32_t> base_data({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0});
std::vector<uint32_t> h_expected;
for (uint32_t idx = 0; idx < nrows; ++idx)
h_expected.insert(h_expected.end(), base_data.begin(), base_data.end());
cudf::test::fixed_width_column_wrapper<uint32_t> expected(h_expected.begin(), h_expected.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected);
}
{
std::vector<uint32_t> h_expected;
for (uint32_t idx = 0; idx < nrows; ++idx) {
// 0,0,9,1,0,9,2,0,9,3,0,9,4,0,9,5,0,9,6,0,9,7,0,9,8,0,9,9,0,9,...
h_expected.push_back(idx);
h_expected.push_back(0);
h_expected.push_back(9);
}
cudf::test::fixed_width_column_wrapper<uint32_t> expected(h_expected.begin(), h_expected.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected);
}
}
TEST(TextSubwordTest, TokenizeMultiRow)
{
std::vector<char const*> h_strings{"This is a test.", "This is a test. This is a tést."};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
uint32_t max_sequence_length = 8;
uint32_t stride = 6;
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
max_sequence_length,
stride,
true, // do_lower_case
false); // do_truncate
EXPECT_EQ(uint32_t{3}, result.nrows_tensor);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_tokens(
{2023, 2003, 1037, 3231, 1012, 0, 0, 0, 2023, 2003, 1037, 3231,
1012, 2023, 2003, 1037, 2003, 1037, 3231, 1012, 0, 0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected_tokens);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_attn(
{1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected_attn);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_metadata({0, 0, 4, 1, 0, 6, 1, 1, 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
TEST(TextSubwordTest, TokenizeWithEmptyRow)
{
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
cudf::test::strings_column_wrapper strings{
"This is a test.", "", "This is a test. This is a tést."};
auto input = cudf::strings_column_view{strings};
uint32_t const max_seq = 8;
uint32_t const stride = 6;
bool const lower = true;
bool const truncate = false;
auto result = nvtext::subword_tokenize(input, *vocab, max_seq, stride, lower, truncate);
EXPECT_EQ(uint32_t{4}, result.nrows_tensor);
// clang-format off
auto expected_tokens = cudf::test::fixed_width_column_wrapper<uint32_t>(
{2023, 2003, 1037, 3231, 1012, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
2023, 2003, 1037, 3231, 1012, 2023, 2003, 1037, // this one
2003, 1037, 3231, 1012, 0, 0, 0, 0}); // continues here
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected_tokens);
// clang-format off
auto expected_attn = cudf::test::fixed_width_column_wrapper<uint32_t>(
{1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected_attn);
// clang-format off
auto expected_metadata = cudf::test::fixed_width_column_wrapper<uint32_t>(
{0,0,4, 1,0,0, 2,0,6, 2,1,3}); // note that the 3rd element has 2 tensors
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
TEST(TextSubwordTest, TokenizeMaxEqualsTokens)
{
cudf::test::strings_column_wrapper strings({"This is a test."});
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
uint32_t max_sequence_length = 5; // five tokens in strings;
uint32_t stride = 5; // this should not effect the result
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
max_sequence_length,
stride,
true, // do_lower_case
false); // do_truncate
EXPECT_EQ(uint32_t{1}, result.nrows_tensor);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_tokens({2023, 2003, 1037, 3231, 1012});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected_tokens);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_attn({1, 1, 1, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected_attn);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_metadata({0, 0, 4});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
TEST(TextSubwordTest, ParameterErrors)
{
std::vector<char const*> h_strings{"This is a test.", "This is a test. This is a tést.", "", ""};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
EXPECT_THROW(nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
12, // max_sequence_length
13, // stride <= max_sequence_length
true, // do_lower_case
true), // do_truncate
cudf::logic_error);
EXPECT_THROW(nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
858993459,
5,
true, // do_lower_case
true), // do_truncate
std::overflow_error);
}
TEST(TextSubwordTest, EmptyStrings)
{
cudf::test::strings_column_wrapper strings;
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
16,
16,
true, // do_lower_case
false); // do_truncate
EXPECT_EQ(uint32_t{0}, result.nrows_tensor);
EXPECT_EQ(0, result.tensor_token_ids->size());
EXPECT_EQ(0, result.tensor_attention_mask->size());
EXPECT_EQ(0, result.tensor_metadata->size());
}
TEST(TextSubwordTest, AllNullStrings)
{
cudf::test::strings_column_wrapper strings({"", "", ""}, {0, 0, 0});
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
16,
16,
true, // do_lower_case
false); // do_truncate
EXPECT_EQ(uint32_t{0}, result.nrows_tensor);
EXPECT_EQ(0, result.tensor_token_ids->size());
EXPECT_EQ(0, result.tensor_attention_mask->size());
EXPECT_EQ(0, result.tensor_metadata->size());
}
TEST(TextSubwordTest, NoTokens)
{
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
auto vocab = nvtext::load_vocabulary_file(hash_file);
cudf::test::strings_column_wrapper strings({" ", "\n\r", "\t"});
auto input = cudf::strings_column_view{strings};
uint32_t const max_seq = 16;
uint32_t const stride = 16;
bool const lower = true;
bool const truncate = true;
auto result = nvtext::subword_tokenize(input, *vocab, max_seq, stride, lower, truncate);
std::vector<uint32_t> zeros(max_seq * input.size(), 0);
EXPECT_EQ(static_cast<uint32_t>(input.size()), result.nrows_tensor);
auto expected = cudf::test::fixed_width_column_wrapper<uint32_t>(zeros.begin(), zeros.end());
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected);
auto expected_metadata =
cudf::test::fixed_width_column_wrapper<uint32_t>({0, 0, 0, 1, 0, 0, 2, 0, 0});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
TEST(TextSubwordTest, TokenizeFromVocabStruct)
{
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_hashed_vocab(hash_file);
std::vector<char const*> h_strings{"This is a test.", "This is a test. This is a tést."};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
auto vocab = nvtext::load_vocabulary_file(hash_file);
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
8,
6,
true, // do_lower_case
true); // do_truncate
EXPECT_EQ(uint32_t{2}, result.nrows_tensor);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_tokens(
{2023, 2003, 1037, 3231, 1012, 0, 0, 0, 2023, 2003, 1037, 3231, 1012, 2023, 2003, 1037});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected_tokens);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_attn(
{1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected_attn);
cudf::test::fixed_width_column_wrapper<uint32_t> expected_metadata({0, 0, 4, 1, 0, 7});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
TEST(TextSubwordTest, LoadVocabFileErrors)
{
std::vector<char const*> h_strings{"This is a test.", "This is a test. This is a tést."};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
std::string hash_file = temp_env->get_temp_filepath("nothing.txt");
EXPECT_THROW(nvtext::load_vocabulary_file(hash_file), cudf::logic_error);
}
// This includes the words above and 7 special tokens:
// [BOS] [EOS] [UNK] [SEP] [PAD] [CLS] [MASK]
// The data here was generated by the utility:
// cudf.utils.hash_vocab_utils.hash_vocab()
void create_special_tokens_hashed_vocab(std::string const& hash_file)
{
std::ofstream outfile(hash_file, std::ofstream::out);
outfile << "26899\n27424\n3\n";
outfile << "1416131940466419714 0\n";
outfile << "313740585393291779 2\n";
outfile << "17006415773850330120 5\n";
outfile << "13\n";
outfile << "5903884228619468800\n";
outfile << "6205475701751152650\n";
outfile << "16285378285009240068\n";
outfile << "5162333542489915397\n";
outfile << "6064762127302393859\n";
outfile << "6173800107753209857\n";
outfile << "5322083323972878342\n";
outfile << "6242701866907861003\n";
outfile << "451412623368\n";
outfile << "3014668\n";
outfile << "5214737420442796034\n";
outfile << "6206321707968233479\n";
outfile << "6357001\n";
outfile << "1\n2\n3\n\n";
}
TEST(TextSubwordTest, TokenizeWithSpecialTokens)
{
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
create_special_tokens_hashed_vocab(hash_file);
// clang-format off
std::vector<const char*> h_strings{
"[BOS]This is a tést.[eos]",
"[CLS]A test[SEP]this is.",
"[PAD] [A][MASK]",
"test this [CL",
"S] is a ."};
// clang-format on
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
auto vocab = nvtext::load_vocabulary_file(hash_file);
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
8,
6,
true, // do_lower_case
true); // do_truncate
EXPECT_EQ(static_cast<uint32_t>(h_strings.size()), result.nrows_tensor);
// clang-format off
cudf::test::fixed_width_column_wrapper<uint32_t> expected_tokens(
{ 5, 7, 8, 9, 10, 12, 6, 0,
2, 9, 10, 3, 7, 8, 12, 0,
0, 1, 9, 1, 4, 0, 0, 0,
10, 7, 1, 1, 0, 0, 0, 0,
1, 1, 8, 9, 12, 0, 0, 0});
cudf::test::fixed_width_column_wrapper<uint32_t> expected_attn(
{1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 0, 0, 0,
1, 1, 1, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 0, 0, 0});
cudf::test::fixed_width_column_wrapper<uint32_t> expected_metadata(
{0, 0, 6,
1, 0, 6,
2, 0, 4,
3, 0, 3,
4, 0, 4});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected_tokens);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected_attn);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
TEST(TextSubwordTest, ZeroHashBinCoefficient)
{
std::string hash_file = temp_env->get_temp_filepath("hashed_vocab.txt");
{
std::ofstream outfile(hash_file, std::ofstream::out);
outfile << "26899\n27424\n2\n";
outfile << "6321733446031528966 0\n0 0\n9\n"; // zeroes are here
outfile << "6206321707968233475\n3014663\n6205475701751152646\n";
outfile << "451412623364\n5214737420442796033\n6173800107753209856\n";
outfile << "0\n6356997\n6064762127302393858\n";
outfile << "0\n1\n2\n";
}
std::vector<char const*> h_strings{".zzzz"};
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end());
auto vocab = nvtext::load_vocabulary_file(hash_file);
auto result = nvtext::subword_tokenize(cudf::strings_column_view{strings},
*vocab,
8,
8,
true, // do_lower_case
true); // do_truncate
// clang-format off
cudf::test::fixed_width_column_wrapper<uint32_t> expected_tokens({7, 0, 0, 0, 0, 0, 0, 0});
cudf::test::fixed_width_column_wrapper<uint32_t> expected_attn( {1, 1, 0, 0, 0, 0, 0, 0});
cudf::test::fixed_width_column_wrapper<uint32_t> expected_metadata({0, 0, 1});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_token_ids->view(), expected_tokens);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_attention_mask->view(), expected_attn);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tensor_metadata->view(), expected_metadata);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/stemmer_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <nvtext/stemmer.hpp>
#include <thrust/iterator/transform_iterator.h>
#include <vector>
struct TextStemmerTest : public cudf::test::BaseFixture {};
TEST_F(TextStemmerTest, PorterStemmer)
{
std::vector<char const*> h_strings{"abandon",
nullptr,
"abbey",
"cleans",
"trouble",
"",
"yearly",
"tree",
"y",
"by",
"oats",
"ivy",
"private",
"orrery"};
auto validity =
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; });
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end(), validity);
cudf::test::fixed_width_column_wrapper<int32_t> expected(
{3, 0, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 2}, validity);
auto const results = nvtext::porter_stemmer_measure(cudf::strings_column_view(strings));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(TextStemmerTest, IsLetterIndex)
{
std::vector<char const*> h_strings{"abandon",
nullptr,
"abbey",
"cleans",
"trouble",
"",
"yearly",
"tree",
"y",
"by",
"oats",
"ivy",
"private",
"orrery"};
auto validity =
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; });
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end(), validity);
cudf::strings_column_view sv(strings);
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::VOWEL, 0);
cudf::test::fixed_width_column_wrapper<bool> expected(
{1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::CONSONANT, 0);
cudf::test::fixed_width_column_wrapper<bool> expected(
{0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::VOWEL, 5);
cudf::test::fixed_width_column_wrapper<bool> expected(
{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::CONSONANT, 5);
cudf::test::fixed_width_column_wrapper<bool> expected(
{0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::VOWEL, -2);
cudf::test::fixed_width_column_wrapper<bool> expected(
{1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::CONSONANT, -2);
cudf::test::fixed_width_column_wrapper<bool> expected(
{0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextStemmerTest, IsLetterIndices)
{
std::vector<char const*> h_strings{"abandon",
nullptr,
"abbey",
"cleans",
"trouble",
"",
"yearly",
"tree",
"y",
"by",
"oats",
"ivy",
"private",
"orrery"};
auto validity =
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; });
cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end(), validity);
cudf::test::fixed_width_column_wrapper<int32_t> indices(
{0, 1, 2, 3, 4, 5, 4, 3, 2, 1, -1, -2, -3, -4});
cudf::strings_column_view sv(strings);
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::VOWEL, indices);
cudf::test::fixed_width_column_wrapper<bool> expected(
{1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
auto const results = nvtext::is_letter(sv, nvtext::letter_type::CONSONANT, indices);
cudf::test::fixed_width_column_wrapper<bool> expected(
{0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextStemmerTest, EmptyTest)
{
auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
cudf::strings_column_view sv(strings->view());
auto results = nvtext::porter_stemmer_measure(sv);
EXPECT_EQ(results->size(), 0);
results = nvtext::is_letter(sv, nvtext::letter_type::CONSONANT, 0);
EXPECT_EQ(results->size(), 0);
auto indices = cudf::make_empty_column(cudf::data_type{cudf::type_id::INT32});
results = nvtext::is_letter(sv, nvtext::letter_type::VOWEL, indices->view());
EXPECT_EQ(results->size(), 0);
}
TEST_F(TextStemmerTest, ErrorTest)
{
auto empty = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
cudf::test::fixed_width_column_wrapper<int32_t> indices({0}, {0});
EXPECT_THROW(nvtext::is_letter(
cudf::strings_column_view(empty->view()), nvtext::letter_type::VOWEL, indices),
cudf::logic_error);
cudf::test::strings_column_wrapper strings({"abc"});
EXPECT_THROW(
nvtext::is_letter(cudf::strings_column_view(strings), nvtext::letter_type::VOWEL, indices),
cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/edit_distance_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <nvtext/edit_distance.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <thrust/iterator/transform_iterator.h>
#include <vector>
struct TextEditDistanceTest : public cudf::test::BaseFixture {};
TEST_F(TextEditDistanceTest, EditDistance)
{
std::vector<char const*> h_strings{"dog", nullptr, "cat", "mouse", "pup", "", "puppy", "thé"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
std::vector<char const*> h_targets{"hog", "not", "cake", "house", "fox", nullptr, "puppy", "the"};
cudf::test::strings_column_wrapper targets(
h_targets.begin(),
h_targets.end(),
thrust::make_transform_iterator(h_targets.begin(), [](auto str) { return str != nullptr; }));
{
auto results =
nvtext::edit_distance(cudf::strings_column_view(strings), cudf::strings_column_view(targets));
cudf::test::fixed_width_column_wrapper<int32_t> expected({1, 3, 2, 1, 3, 0, 0, 1});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper single({"pup"});
auto results =
nvtext::edit_distance(cudf::strings_column_view(strings), cudf::strings_column_view(single));
cudf::test::fixed_width_column_wrapper<int32_t> expected({3, 3, 3, 4, 0, 3, 2, 3});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextEditDistanceTest, EditDistanceMatrix)
{
std::vector<char const*> h_strings{"dog", nullptr, "hog", "frog", "cat", "", "hat", "clog"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
{
auto results = nvtext::edit_distance_matrix(cudf::strings_column_view(strings));
using LCW = cudf::test::lists_column_wrapper<int32_t>;
LCW expected({LCW{0, 3, 1, 2, 3, 3, 3, 2},
LCW{3, 0, 3, 4, 3, 0, 3, 4},
LCW{1, 3, 0, 2, 3, 3, 2, 2},
LCW{2, 4, 2, 0, 4, 4, 4, 2},
LCW{3, 3, 3, 4, 0, 3, 1, 3},
LCW{3, 0, 3, 4, 3, 0, 3, 4},
LCW{3, 3, 2, 4, 1, 3, 0, 4},
LCW{2, 4, 2, 2, 3, 4, 4, 0}});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextEditDistanceTest, EmptyTest)
{
auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
cudf::strings_column_view strings_view(strings->view());
auto results = nvtext::edit_distance(strings_view, strings_view);
EXPECT_EQ(results->size(), 0);
results = nvtext::edit_distance_matrix(strings_view);
EXPECT_EQ(results->size(), 0);
}
TEST_F(TextEditDistanceTest, ErrorsTest)
{
cudf::test::strings_column_wrapper strings({"pup"});
cudf::test::strings_column_wrapper targets({"pup", ""});
EXPECT_THROW(
nvtext::edit_distance(cudf::strings_column_view(strings), cudf::strings_column_view(targets)),
cudf::logic_error);
EXPECT_THROW(nvtext::edit_distance_matrix(cudf::strings_column_view(strings)), cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/ngrams_tokenize_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <nvtext/ngrams_tokenize.hpp>
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <thrust/iterator/transform_iterator.h>
#include <vector>
struct TextNgramsTokenizeTest : public cudf::test::BaseFixture {};
TEST_F(TextNgramsTokenizeTest, Tokenize)
{
std::vector<char const*> h_strings{"the fox jumped over the dog",
"the dog chased the cat",
" the cat chased the mouse ",
nullptr,
"",
"the mousé ate the cheese"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
cudf::strings_column_view strings_view(strings);
{
cudf::test::strings_column_wrapper expected{"the_fox",
"fox_jumped",
"jumped_over",
"over_the",
"the_dog",
"the_dog",
"dog_chased",
"chased_the",
"the_cat",
"the_cat",
"cat_chased",
"chased_the",
"the_mouse",
"the_mousé",
"mousé_ate",
"ate_the",
"the_cheese"};
auto results = nvtext::ngrams_tokenize(strings_view, 2, std::string(), std::string("_"));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper expected{"the:fox:jumped",
"fox:jumped:over",
"jumped:over:the",
"over:the:dog",
"the:dog:chased",
"dog:chased:the",
"chased:the:cat",
"the:cat:chased",
"cat:chased:the",
"chased:the:mouse",
"the:mousé:ate",
"mousé:ate:the",
"ate:the:cheese"};
auto results = nvtext::ngrams_tokenize(strings_view, 3, std::string{" "}, std::string{":"});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper expected{"the--fox--jumped--over",
"fox--jumped--over--the",
"jumped--over--the--dog",
"the--dog--chased--the",
"dog--chased--the--cat",
"the--cat--chased--the",
"cat--chased--the--mouse",
"the--mousé--ate--the",
"mousé--ate--the--cheese"};
auto results = nvtext::ngrams_tokenize(strings_view, 4, std::string{" "}, std::string{"--"});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextNgramsTokenizeTest, TokenizeOneGram)
{
cudf::test::strings_column_wrapper strings{"aaa bbb", " ccc ddd ", "eee"};
cudf::strings_column_view strings_view(strings);
auto const empty = cudf::string_scalar("");
cudf::test::strings_column_wrapper expected{"aaa", "bbb", "ccc", "ddd", "eee"};
auto results = nvtext::ngrams_tokenize(strings_view, 1, empty, empty);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(TextNgramsTokenizeTest, TokenizeEmptyTest)
{
auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
cudf::strings_column_view strings_view(strings->view());
auto const empty = cudf::string_scalar("");
auto results = nvtext::ngrams_tokenize(strings_view, 2, empty, empty);
EXPECT_EQ(results->size(), 0);
EXPECT_EQ(results->has_nulls(), false);
}
TEST_F(TextNgramsTokenizeTest, TokenizeErrorTest)
{
cudf::test::strings_column_wrapper strings{"this column intentionally left blank"};
cudf::strings_column_view strings_view(strings);
auto const empty = cudf::string_scalar("");
EXPECT_THROW(nvtext::ngrams_tokenize(strings_view, 0, empty, empty), cudf::logic_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/ngrams_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <nvtext/generate_ngrams.hpp>
#include <thrust/iterator/transform_iterator.h>
#include <vector>
struct TextGenerateNgramsTest : public cudf::test::BaseFixture {};
TEST_F(TextGenerateNgramsTest, Ngrams)
{
cudf::test::strings_column_wrapper strings{"the", "fox", "jumped", "over", "thé", "dog"};
cudf::strings_column_view strings_view(strings);
auto const separator = cudf::string_scalar("_");
{
cudf::test::strings_column_wrapper expected{
"the_fox", "fox_jumped", "jumped_over", "over_thé", "thé_dog"};
auto const results = nvtext::generate_ngrams(strings_view, 2, separator);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper expected{
"the_fox_jumped", "fox_jumped_over", "jumped_over_thé", "over_thé_dog"};
auto const results = nvtext::generate_ngrams(strings_view, 3, separator);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper expected{"th",
"he",
"fo",
"ox",
"ju",
"um",
"mp",
"pe",
"ed",
"ov",
"ve",
"er",
"th",
"hé",
"do",
"og"};
auto const results = nvtext::generate_character_ngrams(strings_view, 2);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper expected{
"the", "fox", "jum", "ump", "mpe", "ped", "ove", "ver", "thé", "dog"};
auto const results = nvtext::generate_character_ngrams(strings_view, 3);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextGenerateNgramsTest, NgramsWithNulls)
{
std::vector<char const*> h_strings{"the", "fox", "", "jumped", "over", nullptr, "the", "dog"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
auto const separator = cudf::string_scalar("_");
cudf::strings_column_view strings_view(strings);
{
auto const results = nvtext::generate_ngrams(strings_view, 3, separator);
cudf::test::strings_column_wrapper expected{
"the_fox_jumped", "fox_jumped_over", "jumped_over_the", "over_the_dog"};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::strings_column_wrapper expected{
"the", "fox", "jum", "ump", "mpe", "ped", "ove", "ver", "the", "dog"};
auto const results = nvtext::generate_character_ngrams(strings_view, 3);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextGenerateNgramsTest, Empty)
{
auto const zero_size_strings_column = cudf::make_empty_column(cudf::type_id::STRING)->view();
auto const separator = cudf::string_scalar("_");
auto results =
nvtext::generate_ngrams(cudf::strings_column_view(zero_size_strings_column), 2, separator);
cudf::test::expect_column_empty(results->view());
results = nvtext::generate_character_ngrams(cudf::strings_column_view(zero_size_strings_column));
cudf::test::expect_column_empty(results->view());
}
TEST_F(TextGenerateNgramsTest, Errors)
{
cudf::test::strings_column_wrapper strings{""};
auto const separator = cudf::string_scalar("_");
// invalid parameter value
EXPECT_THROW(nvtext::generate_ngrams(cudf::strings_column_view(strings), 1, separator),
cudf::logic_error);
EXPECT_THROW(nvtext::generate_character_ngrams(cudf::strings_column_view(strings), 1),
cudf::logic_error);
// not enough strings to generate ngrams
EXPECT_THROW(nvtext::generate_ngrams(cudf::strings_column_view(strings), 3, separator),
cudf::logic_error);
EXPECT_THROW(nvtext::generate_character_ngrams(cudf::strings_column_view(strings), 3),
cudf::logic_error);
cudf::test::strings_column_wrapper strings_no_tokens({"", "", "", ""}, {1, 0, 1, 0});
EXPECT_THROW(nvtext::generate_ngrams(cudf::strings_column_view(strings_no_tokens), 2, separator),
cudf::logic_error);
EXPECT_THROW(nvtext::generate_character_ngrams(cudf::strings_column_view(strings_no_tokens)),
cudf::logic_error);
}
TEST_F(TextGenerateNgramsTest, NgramsHash)
{
auto input =
cudf::test::strings_column_wrapper({"the quick brown fox", "jumped over the lazy dog."});
auto view = cudf::strings_column_view(input);
auto results = nvtext::hash_character_ngrams(view);
using LCW = cudf::test::lists_column_wrapper<uint32_t>;
// clang-format off
LCW expected({LCW{2169381797u, 3924065905u, 1634753325u, 3766025829u, 771291085u,
2286480985u, 2815102125u, 2383213292u, 1587939873u, 3417728802u,
741580288u, 1721912990u, 3322339040u, 2530504717u, 1448945146u},
LCW{3542029734u, 2351937583u, 2373822151u, 2610417165u, 1303810911u,
2541942822u, 1736466351u, 3466558519u, 408633648u, 1698719372u,
620653030u, 16851044u, 608863326u, 948572753u, 3672211877u,
4097451013u, 1444462157u, 3762829398u, 743082018u, 2953783152u,
2319357747u}});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(TextGenerateNgramsTest, NgramsHashErrors)
{
auto input = cudf::test::strings_column_wrapper({"1", "2", "3"});
auto view = cudf::strings_column_view(input);
// invalid parameter value
EXPECT_THROW(nvtext::hash_character_ngrams(view, 1), cudf::logic_error);
// strings not long enough to generate ngrams
EXPECT_THROW(nvtext::hash_character_ngrams(view), cudf::logic_error);
}
CUDF_TEST_PROGRAM_MAIN()
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/minhash_tests.cpp
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <nvtext/minhash.hpp>
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <vector>
struct MinHashTest : public cudf::test::BaseFixture {};
TEST_F(MinHashTest, Basic)
{
auto validity = cudf::test::iterators::null_at(1);
auto input =
cudf::test::strings_column_wrapper({"doc 1",
"",
"this is doc 2",
"",
"doc 3",
"d",
"The quick brown fox jumpéd over the lazy brown dog."},
validity);
auto view = cudf::strings_column_view(input);
auto results = nvtext::minhash(view);
auto expected = cudf::test::fixed_width_column_wrapper<uint32_t>(
{1207251914u, 0u, 21141582u, 0u, 1207251914u, 655955059u, 86520422u}, validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
auto results64 = nvtext::minhash64(view);
auto expected64 = cudf::test::fixed_width_column_wrapper<uint64_t>({774489391575805754ul,
0ul,
3232308021562742685ul,
0ul,
13145552576991307582ul,
14660046701545912182ul,
398062025280761388ul},
validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results64, expected64);
}
TEST_F(MinHashTest, LengthEqualsWidth)
{
auto input = cudf::test::strings_column_wrapper({"abcdé", "fghjk", "lmnop", "qrstu", "vwxyz"});
auto view = cudf::strings_column_view(input);
auto results = nvtext::minhash(view, 0, 5);
auto expected = cudf::test::fixed_width_column_wrapper<uint32_t>(
{3825281041u, 2728681928u, 1984332911u, 3965004915u, 192452857u});
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(MinHashTest, MultiSeed)
{
auto input =
cudf::test::strings_column_wrapper({"doc 1",
"this is doc 2",
"doc 3",
"d",
"The quick brown fox jumpéd over the lazy brown dog."});
auto view = cudf::strings_column_view(input);
auto seeds = cudf::test::fixed_width_column_wrapper<uint32_t>({0, 1, 2});
auto results = nvtext::minhash(view, cudf::column_view(seeds));
using LCW = cudf::test::lists_column_wrapper<uint32_t>;
// clang-format off
LCW expected({LCW{1207251914u, 1677652962u, 1061355987u},
LCW{ 21141582u, 580916568u, 1258052021u},
LCW{1207251914u, 943567174u, 1109272887u},
LCW{ 655955059u, 488346356u, 2394664816u},
LCW{ 86520422u, 236622901u, 102546228u}});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
auto seeds64 = cudf::test::fixed_width_column_wrapper<uint64_t>({0, 1, 2});
auto results64 = nvtext::minhash64(view, cudf::column_view(seeds64));
using LCW64 = cudf::test::lists_column_wrapper<uint64_t>;
// clang-format off
LCW64 expected64({LCW64{ 774489391575805754ul, 10435654231793485448ul, 1188598072697676120ul},
LCW64{ 3232308021562742685ul, 4445611509348165860ul, 1188598072697676120ul},
LCW64{13145552576991307582ul, 6846192680998069919ul, 1188598072697676120ul},
LCW64{14660046701545912182ul, 17106501326045553694ul, 17713478494106035784ul},
LCW64{ 398062025280761388ul, 377720198157450084ul, 984941365662009329ul}});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results64, expected64);
}
TEST_F(MinHashTest, MultiSeedWithNullInputRow)
{
auto validity = cudf::test::iterators::null_at(1);
auto input = cudf::test::strings_column_wrapper({"abcdéfgh", "", "", "stuvwxyz"}, validity);
auto view = cudf::strings_column_view(input);
auto seeds = cudf::test::fixed_width_column_wrapper<uint32_t>({1, 2});
auto results = nvtext::minhash(view, cudf::column_view(seeds));
using LCW = cudf::test::lists_column_wrapper<uint32_t>;
LCW expected({LCW{484984072u, 1074168784u}, LCW{}, LCW{0u, 0u}, LCW{571652169u, 173528385u}},
validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
auto seeds64 = cudf::test::fixed_width_column_wrapper<uint64_t>({11, 22});
auto results64 = nvtext::minhash64(view, cudf::column_view(seeds64));
using LCW64 = cudf::test::lists_column_wrapper<uint64_t>;
LCW64 expected64({LCW64{2597399324547032480ul, 4461410998582111052ul},
LCW64{},
LCW64{0ul, 0ul},
LCW64{2717781266371273264ul, 6977325820868387259ul}},
validity);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results64, expected64);
}
TEST_F(MinHashTest, EmptyTest)
{
auto input = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
auto view = cudf::strings_column_view(input->view());
auto results = nvtext::minhash(view);
EXPECT_EQ(results->size(), 0);
results = nvtext::minhash64(view);
EXPECT_EQ(results->size(), 0);
}
TEST_F(MinHashTest, ErrorsTest)
{
auto input = cudf::test::strings_column_wrapper({"this string intentionally left blank"});
auto view = cudf::strings_column_view(input);
EXPECT_THROW(nvtext::minhash(view, 0, 0), std::invalid_argument);
EXPECT_THROW(nvtext::minhash64(view, 0, 0), std::invalid_argument);
auto seeds = cudf::test::fixed_width_column_wrapper<uint32_t>();
EXPECT_THROW(nvtext::minhash(view, cudf::column_view(seeds)), std::invalid_argument);
auto seeds64 = cudf::test::fixed_width_column_wrapper<uint64_t>();
EXPECT_THROW(nvtext::minhash64(view, cudf::column_view(seeds64)), std::invalid_argument);
std::vector<std::string> h_input(50000, "");
input = cudf::test::strings_column_wrapper(h_input.begin(), h_input.end());
view = cudf::strings_column_view(input);
auto const zeroes = thrust::constant_iterator<uint32_t>(0);
seeds = cudf::test::fixed_width_column_wrapper<uint32_t>(zeroes, zeroes + 50000);
EXPECT_THROW(nvtext::minhash(view, cudf::column_view(seeds)), std::overflow_error);
seeds64 = cudf::test::fixed_width_column_wrapper<uint64_t>(zeroes, zeroes + 50000);
EXPECT_THROW(nvtext::minhash64(view, cudf::column_view(seeds64)), std::overflow_error);
}
| 0 |
rapidsai_public_repos/cudf/cpp/tests
|
rapidsai_public_repos/cudf/cpp/tests/text/tokenize_tests.cpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf_test/base_fixture.hpp>
#include <cudf_test/column_utilities.hpp>
#include <cudf_test/column_wrapper.hpp>
#include <cudf_test/iterator_utilities.hpp>
#include <nvtext/tokenize.hpp>
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <thrust/iterator/transform_iterator.h>
#include <vector>
struct TextTokenizeTest : public cudf::test::BaseFixture {};
TEST_F(TextTokenizeTest, Tokenize)
{
std::vector<char const*> h_strings{"the fox jumped over the dog",
"the dog chased the cat",
" the cat chased the mouse ",
nullptr,
"",
"the mousé ate the cheese"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
cudf::strings_column_view strings_view(strings);
cudf::test::strings_column_wrapper expected{
"the", "fox", "jumped", "over", "the", "dog", "the", "dog", "chased", "the", "cat",
"the", "cat", "chased", "the", "mouse", "the", "mousé", "ate", "the", "cheese"};
auto results = nvtext::tokenize(strings_view, cudf::string_scalar(" "));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
results = nvtext::tokenize(strings_view);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
cudf::test::fixed_width_column_wrapper<int32_t> expected_counts{6, 5, 5, 0, 0, 5};
results = nvtext::count_tokens(strings_view, cudf::string_scalar(": #"));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_counts);
results = nvtext::count_tokens(strings_view);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_counts);
}
TEST_F(TextTokenizeTest, TokenizeMulti)
{
std::vector<char const*> h_strings{"the fox jumped over the dog",
"the dog chased the cat",
"the cat chased the mouse ",
nullptr,
"",
"the over ",
"the mousé ate the cheese"};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
cudf::strings_column_view strings_view(strings);
cudf::test::strings_column_wrapper delimiters{"the ", "over "};
cudf::strings_column_view delimiters_view(delimiters);
auto results = nvtext::tokenize(strings_view, delimiters_view);
cudf::test::strings_column_wrapper expected{
"fox jumped ", "dog", "dog chased ", "cat", "cat chased ", "mouse ", "mousé ate ", "cheese"};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
cudf::test::fixed_width_column_wrapper<int32_t> expected_counts{2, 2, 2, 0, 0, 0, 2};
results = nvtext::count_tokens(strings_view, delimiters_view);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected_counts);
}
TEST_F(TextTokenizeTest, TokenizeErrorTest)
{
cudf::test::strings_column_wrapper strings{"this column intentionally left blank"};
cudf::strings_column_view strings_view(strings);
{
cudf::test::strings_column_wrapper delimiters; // empty delimiters
cudf::strings_column_view delimiters_view(delimiters);
EXPECT_THROW(nvtext::tokenize(strings_view, delimiters_view), cudf::logic_error);
EXPECT_THROW(nvtext::count_tokens(strings_view, delimiters_view), cudf::logic_error);
}
{
cudf::test::strings_column_wrapper delimiters({"", ""}, {0, 0}); // null delimiters
cudf::strings_column_view delimiters_view(delimiters);
EXPECT_THROW(nvtext::tokenize(strings_view, delimiters_view), cudf::logic_error);
EXPECT_THROW(nvtext::count_tokens(strings_view, delimiters_view), cudf::logic_error);
}
}
TEST_F(TextTokenizeTest, CharacterTokenize)
{
std::vector<char const*> h_strings{"the mousé ate the cheese", nullptr, ""};
cudf::test::strings_column_wrapper strings(
h_strings.begin(),
h_strings.end(),
thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }));
cudf::test::strings_column_wrapper expected{"t", "h", "e", " ", "m", "o", "u", "s",
"é", " ", "a", "t", "e", " ", "t", "h",
"e", " ", "c", "h", "e", "e", "s", "e"};
auto results = nvtext::character_tokenize(cudf::strings_column_view(strings));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
TEST_F(TextTokenizeTest, TokenizeEmptyTest)
{
auto input = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING});
auto view = cudf::strings_column_view(input->view());
cudf::test::strings_column_wrapper all_empty_wrapper({"", "", ""});
auto all_empty = cudf::strings_column_view(all_empty_wrapper);
cudf::test::strings_column_wrapper all_null_wrapper({"", "", ""}, {0, 0, 0});
auto all_null = cudf::strings_column_view(all_null_wrapper);
cudf::test::fixed_width_column_wrapper<cudf::size_type> expected({0, 0, 0});
auto results = nvtext::tokenize(view);
EXPECT_EQ(results->size(), 0);
results = nvtext::tokenize(all_empty);
EXPECT_EQ(results->size(), 0);
results = nvtext::tokenize(all_null);
EXPECT_EQ(results->size(), 0);
results = nvtext::count_tokens(view);
EXPECT_EQ(results->size(), 0);
results = nvtext::count_tokens(all_empty);
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
results = nvtext::count_tokens(cudf::strings_column_view(all_null));
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
results = nvtext::character_tokenize(view);
EXPECT_EQ(results->size(), 0);
results = nvtext::character_tokenize(all_empty);
EXPECT_EQ(results->size(), 0);
results = nvtext::character_tokenize(all_null);
EXPECT_EQ(results->size(), 0);
auto const delimiter = cudf::string_scalar{""};
results = nvtext::tokenize_with_vocabulary(view, all_empty, delimiter);
EXPECT_EQ(results->size(), 0);
results = nvtext::tokenize_with_vocabulary(all_null, all_empty, delimiter);
EXPECT_EQ(results->size(), results->null_count());
}
TEST_F(TextTokenizeTest, Detokenize)
{
cudf::test::strings_column_wrapper strings{
"the", "fox", "jumped", "over", "the", "dog", "the", "dog", "chased", "the",
"cat", "the", "cat", "chased", "the", "mouse", "the", "mousé", "ate", "cheese"};
{
cudf::test::fixed_width_column_wrapper<int32_t> rows{0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 3, 3, 3, 3};
auto results = nvtext::detokenize(cudf::strings_column_view(strings), rows);
cudf::test::strings_column_wrapper expected{"the fox jumped over the dog",
"the dog chased the cat",
"the cat chased the mouse",
"the mousé ate cheese"};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
{
cudf::test::fixed_width_column_wrapper<int16_t> rows{0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 3, 3, 3, 0};
auto results =
nvtext::detokenize(cudf::strings_column_view(strings), rows, cudf::string_scalar("_"));
cudf::test::strings_column_wrapper expected{"the_fox_jumped_over_the_dog_cheese",
"the_dog_chased_the_cat",
"the_cat_chased_the_mouse",
"the_mousé_ate"};
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
}
}
TEST_F(TextTokenizeTest, DetokenizeErrors)
{
cudf::test::strings_column_wrapper strings{"this column intentionally left blank"};
cudf::strings_column_view strings_view(strings);
cudf::test::fixed_width_column_wrapper<int32_t> one({0});
cudf::test::fixed_width_column_wrapper<int32_t> none;
EXPECT_THROW(nvtext::detokenize(strings_view, none), cudf::logic_error);
EXPECT_THROW(nvtext::detokenize(strings_view, one, cudf::string_scalar("", false)),
cudf::logic_error);
}
TEST_F(TextTokenizeTest, Vocabulary)
{
cudf::test::strings_column_wrapper vocabulary( // leaving out 'cat' on purpose
{"ate", "chased", "cheese", "dog", "fox", "jumped", "mouse", "mousé", "over", "the"});
auto vocab = nvtext::load_vocabulary(cudf::strings_column_view(vocabulary));
auto validity = cudf::test::iterators::null_at(5);
auto input = cudf::test::strings_column_wrapper({" the fox jumped over the dog ",
" the dog chased the cat",
"",
"the cat chased the mouse ",
"the mousé ate cheese",
"",
"dog"},
validity);
auto input_view = cudf::strings_column_view(input);
auto delimiter = cudf::string_scalar(" ");
auto default_id = -7; // should be the token for the missing 'cat'
auto results = nvtext::tokenize_with_vocabulary(input_view, *vocab, delimiter, default_id);
using LCW = cudf::test::lists_column_wrapper<cudf::size_type>;
// clang-format off
LCW expected({LCW{ 9, 4, 5, 8, 9, 3},
LCW{ 9, 3, 1, 9,-7},
LCW{},
LCW{ 9,-7, 1, 9, 6},
LCW{ 9, 7, 0, 2},
LCW{}, LCW{3}},
validity);
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
auto sliced = cudf::slice(input, {1, 4}).front();
auto sliced_expected = cudf::slice(expected, {1, 4}).front();
input_view = cudf::strings_column_view(sliced);
results = nvtext::tokenize_with_vocabulary(input_view, *vocab, delimiter, default_id);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), sliced_expected);
}
TEST_F(TextTokenizeTest, VocabularyLongStrings)
{
cudf::test::strings_column_wrapper vocabulary(
{"ate", "chased", "cheese", "dog", "fox", "jumped", "mouse", "mousé", "over", "the"});
auto vocab = nvtext::load_vocabulary(cudf::strings_column_view(vocabulary));
std::vector<std::string> h_strings(
4,
"the fox jumped chased the dog cheese mouse at the over there dog mouse cat plus the horse "
"jumped over the mousé house with the dog ");
cudf::test::strings_column_wrapper input(h_strings.begin(), h_strings.end());
auto input_view = cudf::strings_column_view(input);
auto delimiter = cudf::string_scalar(" ");
auto default_id = -1;
auto results = nvtext::tokenize_with_vocabulary(input_view, *vocab, delimiter, default_id);
using LCW = cudf::test::lists_column_wrapper<cudf::size_type>;
// clang-format off
LCW expected({LCW{ 9, 4, 5, 1, 9, 3, 2, 6, -1, 9, 8, -1, 3, 6, -1, -1, 9, -1, 5, 8, 9, 7, -1, -1, 9, 3},
LCW{ 9, 4, 5, 1, 9, 3, 2, 6, -1, 9, 8, -1, 3, 6, -1, -1, 9, -1, 5, 8, 9, 7, -1, -1, 9, 3},
LCW{ 9, 4, 5, 1, 9, 3, 2, 6, -1, 9, 8, -1, 3, 6, -1, -1, 9, -1, 5, 8, 9, 7, -1, -1, 9, 3},
LCW{ 9, 4, 5, 1, 9, 3, 2, 6, -1, 9, 8, -1, 3, 6, -1, -1, 9, -1, 5, 8, 9, 7, -1, -1, 9, 3}});
// clang-format on
CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected);
auto sliced = cudf::slice(input, {1, 3}).front();
auto sliced_expected = cudf::slice(expected, {1, 3}).front();
input_view = cudf::strings_column_view(sliced);
results = nvtext::tokenize_with_vocabulary(input_view, *vocab, delimiter, default_id);
CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), sliced_expected);
}
TEST_F(TextTokenizeTest, TokenizeErrors)
{
cudf::test::strings_column_wrapper empty{};
cudf::strings_column_view view(empty);
EXPECT_THROW(nvtext::load_vocabulary(view), cudf::logic_error);
cudf::test::strings_column_wrapper vocab_nulls({""}, {0});
cudf::strings_column_view nulls(vocab_nulls);
EXPECT_THROW(nvtext::load_vocabulary(nulls), cudf::logic_error);
cudf::test::strings_column_wrapper some{"hello"};
auto vocab = nvtext::load_vocabulary(cudf::strings_column_view(some));
EXPECT_THROW(nvtext::tokenize_with_vocabulary(view, *vocab, cudf::string_scalar("", false)),
cudf::logic_error);
}
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.