repo_id
stringlengths
21
96
file_path
stringlengths
31
155
content
stringlengths
1
92.9M
__index_level_0__
int64
0
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/text/bpe_tests.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <nvtext/byte_pair_encoding.hpp> #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/strings/strings_column_view.hpp> struct TextBytePairEncoding : public cudf::test::BaseFixture {}; TEST_F(TextBytePairEncoding, BytePairEncoding) { // partial table based on values from https://huggingface.co/gpt2/raw/main/merges.txt auto mpt = cudf::test::strings_column_wrapper({ "e n", // 14 "i t", // 16 "i s", // 17 "e s", // 20 "en t", // 44 "c e", // 90 "es t", // 141 "en ce", // 340 "t h", // 146 "h i", // 5049 "th is", // 5407 "t est", // 9034 "s i", // 13142 "s ent" // 33832 }); auto merge_pairs = nvtext::load_merge_pairs(cudf::strings_column_view(mpt)); auto validity = cudf::test::iterators::null_at(4); cudf::test::strings_column_wrapper input( {"thisisit", "thisis test-sentence-1", "thisistestsentence-2", "this-istestsentence 3", "", ""}, validity); auto sv = cudf::strings_column_view(input); auto results = nvtext::byte_pair_encoding(sv, *merge_pairs); auto expected = cudf::test::strings_column_wrapper({"this is it", "this is test - sent ence - 1", "this is test sent ence - 2", "this - is test sent ence 3", "", ""}, validity); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); auto sliced = cudf::slice(input, {1, 4}).front(); auto sliced_expected = cudf::slice(expected, {1, 4}).front(); sv = cudf::strings_column_view(sliced); results = nvtext::byte_pair_encoding(sv, *merge_pairs); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), sliced_expected); } TEST_F(TextBytePairEncoding, BytePairEncodingSeparator) { auto mpt = cudf::test::strings_column_wrapper( {"Ġ t", "Ġt he", "h e", "e n", "i t", "e s", "en t", "c e", "es t", "en ce", "t est", "s ent"}); auto merge_pairs = nvtext::load_merge_pairs(cudf::strings_column_view(mpt)); cudf::test::strings_column_wrapper input( {"Ġthe test sentence", "test Ġthe sentence", "Ġthetest sentence", "testĠthesentence"}); auto sv = cudf::strings_column_view(input); auto results = nvtext::byte_pair_encoding(sv, *merge_pairs, std::string("$")); auto expected = cudf::test::strings_column_wrapper({"Ġthe$ $test$ $sent$ence", "test$ $Ġthe$ $sent$ence", "Ġthe$test$ $sent$ence", "test$Ġthe$sent$ence"}); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); } TEST_F(TextBytePairEncoding, BPEAdjacentPairs) { auto mpt = cudf::test::strings_column_wrapper({ "▁ H", // 157 "m m", // 10742 "? !", // 50675 "▁H mm", // 174381 "mm m", // 262776 "?! !", // 352313 "? !?", // 352314 "mm mm", // 387733 "▁H m", // 471269 "?! ?!", // 506981 "?!? !", // 506982 }); auto merge_pairs = nvtext::load_merge_pairs(cudf::strings_column_view(mpt)); cudf::test::strings_column_wrapper input({"▁Hmmmmm", "?!?!?!"}); auto results = nvtext::byte_pair_encoding(cudf::strings_column_view(input), *merge_pairs); auto expected = cudf::test::strings_column_wrapper({"▁Hmm mmm", "?!?! ?!"}); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); } TEST_F(TextBytePairEncoding, BPE_Empty) { auto mpt = cudf::test::strings_column_wrapper({"i s", "i t"}); auto merge_pairs = nvtext::load_merge_pairs(cudf::strings_column_view(mpt)); auto empty = cudf::make_empty_column(cudf::type_id::STRING); auto results = nvtext::byte_pair_encoding(cudf::strings_column_view(empty->view()), *merge_pairs); EXPECT_EQ(0, results->size()); } TEST_F(TextBytePairEncoding, BPE_Error) { auto empty = cudf::make_empty_column(cudf::type_id::STRING); EXPECT_THROW(nvtext::load_merge_pairs(cudf::strings_column_view(*empty)), cudf::logic_error); auto null_pairs = cudf::test::strings_column_wrapper({"", ""}, {1, 0}); EXPECT_THROW(nvtext::load_merge_pairs(cudf::strings_column_view(null_pairs)), cudf::logic_error); }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/text/jaccard_tests.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <nvtext/jaccard.hpp> #include <cudf/strings/strings_column_view.hpp> struct JaccardTest : public cudf::test::BaseFixture {}; TEST_F(JaccardTest, Basic) { auto input1 = cudf::test::strings_column_wrapper({"the quick brown fox", "jumped over the lazy dog."}); auto input2 = cudf::test::strings_column_wrapper({"the slowest brown cat", "crawled under the jumping fox"}); auto view1 = cudf::strings_column_view(input1); auto view2 = cudf::strings_column_view(input2); auto results = nvtext::jaccard_index(view1, view2, 5); auto expected = cudf::test::fixed_width_column_wrapper<float>({0.103448279f, 0.0697674453f}); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*results, expected); expected = cudf::test::fixed_width_column_wrapper<float>({1.0f, 1.0f}); results = nvtext::jaccard_index(view1, view1, 5); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*results, expected); results = nvtext::jaccard_index(view2, view2, 10); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*results, expected); } TEST_F(JaccardTest, WithNulls) { auto input1 = cudf::test::strings_column_wrapper({"brown fox", "jumps over dog", "", ""}, {1, 1, 0, 1}); auto input2 = cudf::test::strings_column_wrapper({"brown cat", "jumps on fox", "", ""}, {1, 1, 1, 0}); auto view1 = cudf::strings_column_view(input1); auto view2 = cudf::strings_column_view(input2); auto results = nvtext::jaccard_index(view1, view2, 5); auto expected = cudf::test::fixed_width_column_wrapper<float>({0.25f, 0.200000003f, 0.f, 0.f}, {1, 1, 0, 0}); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*results, expected); expected = cudf::test::fixed_width_column_wrapper<float>({1.0f, 1.0f, 0.f, 0.f}, {1, 1, 0, 1}); results = nvtext::jaccard_index(view1, view1, 7); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*results, expected); } TEST_F(JaccardTest, Errors) { auto input = cudf::test::strings_column_wrapper({"1", "2", "3"}); auto view = cudf::strings_column_view(input); // invalid parameter value EXPECT_THROW(nvtext::jaccard_index(view, view, 1), std::invalid_argument); // invalid size auto input2 = cudf::test::strings_column_wrapper({"1", "2"}); auto view2 = cudf::strings_column_view(input2); EXPECT_THROW(nvtext::jaccard_index(view, view2, 5), std::invalid_argument); }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/text/replace_tests.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <nvtext/replace.hpp> #include <thrust/iterator/transform_iterator.h> #include <vector> struct TextReplaceTest : public cudf::test::BaseFixture {}; TEST_F(TextReplaceTest, ReplaceTokens) { std::vector<char const*> h_strings{"the fox jumped over the dog", "is theme of the thesis", nullptr, "", "no change", "thé is the cheese is"}; cudf::test::strings_column_wrapper strings( h_strings.begin(), h_strings.end(), thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; })); cudf::test::strings_column_wrapper targets({"is", "the"}); cudf::test::strings_column_wrapper repls({"___", ""}); std::vector<char const*> h_expected{" fox jumped over dog", "___ theme of thesis", nullptr, "", "no change", "thé ___ cheese ___"}; cudf::test::strings_column_wrapper expected( h_expected.begin(), h_expected.end(), thrust::make_transform_iterator(h_expected.begin(), [](auto str) { return str != nullptr; })); auto results = nvtext::replace_tokens(cudf::strings_column_view(strings), cudf::strings_column_view(targets), cudf::strings_column_view(repls)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); results = nvtext::replace_tokens(cudf::strings_column_view(strings), cudf::strings_column_view(targets), cudf::strings_column_view(repls), cudf::string_scalar("o ")); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } TEST_F(TextReplaceTest, ReplaceTokensSingleRepl) { cudf::test::strings_column_wrapper strings({"this\t is that", "is then \tis", "us them is us"}); cudf::test::strings_column_wrapper targets({"is", "us"}); cudf::test::strings_column_wrapper repls({"_"}); cudf::test::strings_column_wrapper expected({"this\t _ that", "_ then \t_", "_ them _ _"}); auto results = nvtext::replace_tokens(cudf::strings_column_view(strings), cudf::strings_column_view(targets), cudf::strings_column_view(repls)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } TEST_F(TextReplaceTest, ReplaceTokensEmptyTest) { auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING}); cudf::strings_column_view strings_view(strings->view()); auto const results = nvtext::replace_tokens(strings_view, strings_view, strings_view); EXPECT_EQ(results->size(), 0); EXPECT_EQ(results->has_nulls(), false); } TEST_F(TextReplaceTest, ReplaceTokensErrorTest) { auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING}); cudf::strings_column_view strings_view(strings->view()); cudf::test::strings_column_wrapper notnulls({"", "", ""}); cudf::strings_column_view notnulls_view(notnulls); cudf::test::strings_column_wrapper nulls({"", ""}, {0, 0}); cudf::strings_column_view nulls_view(nulls); EXPECT_THROW(nvtext::replace_tokens(strings_view, nulls_view, notnulls_view), cudf::logic_error); EXPECT_THROW(nvtext::replace_tokens(strings_view, notnulls_view, nulls_view), cudf::logic_error); EXPECT_THROW(nvtext::replace_tokens(notnulls_view, notnulls_view, strings_view), cudf::logic_error); EXPECT_THROW( nvtext::replace_tokens(notnulls_view, nulls_view, strings_view, cudf::string_scalar("", false)), cudf::logic_error); } TEST_F(TextReplaceTest, FilterTokens) { cudf::test::strings_column_wrapper strings({" one two three ", "four fivé six", "sevén eight"}); auto results = nvtext::filter_tokens(cudf::strings_column_view(strings), 1); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, strings); // no change { auto results = nvtext::filter_tokens(cudf::strings_column_view(strings), 4); cudf::test::strings_column_wrapper expected({" three ", "four fivé ", "sevén eight"}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } { auto results = nvtext::filter_tokens(cudf::strings_column_view(strings), 5); cudf::test::strings_column_wrapper expected({" three ", " ", "sevén eight"}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } { auto results = nvtext::filter_tokens(cudf::strings_column_view(strings), 4, cudf::string_scalar("--")); cudf::test::strings_column_wrapper expected({" -- -- three ", "four fivé --", "sevén eight"}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } } TEST_F(TextReplaceTest, FilterTokensEmptyTest) { auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING}); auto const results = nvtext::filter_tokens(cudf::strings_column_view(strings->view()), 7); EXPECT_EQ(results->size(), 0); } TEST_F(TextReplaceTest, FilterTokensErrorTest) { auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING}); EXPECT_THROW(nvtext::filter_tokens( cudf::strings_column_view(strings->view()), 1, cudf::string_scalar("", false)), cudf::logic_error); EXPECT_THROW(nvtext::filter_tokens(cudf::strings_column_view(strings->view()), 1, cudf::string_scalar("-"), cudf::string_scalar("", false)), cudf::logic_error); }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/text/normalize_tests.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/copying.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <nvtext/normalize.hpp> #include <thrust/iterator/transform_iterator.h> #include <vector> struct TextNormalizeTest : public cudf::test::BaseFixture {}; TEST_F(TextNormalizeTest, NormalizeSpaces) { std::vector<char const*> h_strings{"the\t fox jumped over the dog", "the dog\f chased the cat\r", " the cat chaséd the mouse\n", nullptr, "", " \r\t\n", "no change", "the mousé ate the cheese"}; cudf::test::strings_column_wrapper strings( h_strings.begin(), h_strings.end(), thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; })); cudf::strings_column_view strings_view(strings); std::vector<char const*> h_expected{"the fox jumped over the dog", "the dog chased the cat", "the cat chaséd the mouse", nullptr, "", "", "no change", "the mousé ate the cheese"}; cudf::test::strings_column_wrapper expected( h_expected.begin(), h_expected.end(), thrust::make_transform_iterator(h_expected.begin(), [](auto str) { return str != nullptr; })); auto const results = nvtext::normalize_spaces(strings_view); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } TEST_F(TextNormalizeTest, NormalizeEmptyTest) { auto strings = cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING}); cudf::strings_column_view strings_view(strings->view()); auto results = nvtext::normalize_spaces(strings_view); EXPECT_EQ(results->size(), 0); results = nvtext::normalize_characters(strings_view, true); EXPECT_EQ(results->size(), 0); results = nvtext::normalize_characters(strings_view, false); EXPECT_EQ(results->size(), 0); } TEST_F(TextNormalizeTest, AllNullStrings) { cudf::test::strings_column_wrapper strings({"", "", ""}, {0, 0, 0}); cudf::strings_column_view strings_view(strings); auto results = nvtext::normalize_spaces(strings_view); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, strings); results = nvtext::normalize_characters(strings_view, false); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, strings); } TEST_F(TextNormalizeTest, SomeNullStrings) { cudf::test::strings_column_wrapper strings({"", ".", "a"}, {0, 1, 1}); cudf::strings_column_view strings_view(strings); auto results = nvtext::normalize_characters(strings_view, false); cudf::test::strings_column_wrapper expected({"", " . ", "a"}, {0, 1, 1}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } TEST_F(TextNormalizeTest, NormalizeCharacters) { // These include punctuation, accents, whitespace, and CJK characters std::vector<char const*> h_strings{"abc£def", nullptr, "éè â îô\taeio", "\tĂĆĖÑ Ü", "ACEN U", "P^NP", "$41.07", "[a,b]", "丏丟", ""}; auto validity = thrust::make_transform_iterator(h_strings.begin(), [](auto str) { return str != nullptr; }); cudf::test::strings_column_wrapper strings(h_strings.begin(), h_strings.end(), validity); cudf::strings_column_view strings_view(strings); { auto results = nvtext::normalize_characters(strings_view, true); cudf::test::strings_column_wrapper expected({"abc£def", "", "ee a io aeio", " acen u", "acen u", "p ^ np", " $ 41 . 07", " [ a , b ] ", " 丏 丟 ", ""}, validity); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } { auto results = nvtext::normalize_characters(strings_view, false); cudf::test::strings_column_wrapper expected({"abc£def", "", "éè â îô aeio", " ĂĆĖÑ Ü", "ACEN U", "P ^ NP", " $ 41 . 07", " [ a , b ] ", " 丏 丟 ", ""}, validity); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); } } TEST_F(TextNormalizeTest, NormalizeSlicedColumn) { cudf::test::strings_column_wrapper strings( {"abc£def", "éè â îô\taeio", "ACEN U", "P^NP", "$41.07", "[a,b]", "丏丟"}); std::vector<cudf::column_view> sliced = cudf::split(strings, {4}); auto results = nvtext::normalize_characters(cudf::strings_column_view(sliced.front()), true); cudf::test::strings_column_wrapper expected({"abc£def", "ee a io aeio", "acen u", "p ^ np"}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected); results = nvtext::normalize_characters(cudf::strings_column_view(sliced[1]), false); cudf::test::strings_column_wrapper expected2({" $ 41 . 07", " [ a , b ] ", " 丏 丟 "}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*results, expected2); }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/file_io_test.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/cudf_gtest.hpp> #include <src/io/utilities/file_io_utilities.hpp> #include <type_traits> // Base test fixture for tests struct CuFileIOTest : public cudf::test::BaseFixture {}; TEST_F(CuFileIOTest, SliceSize) { std::vector<std::pair<size_t, size_t>> test_cases{ {1 << 20, 1 << 18}, {1 << 18, 1 << 20}, {1 << 20, 3333}, {0, 1 << 18}, {0, 0}, {1 << 20, 0}}; for (auto const& test_case : test_cases) { auto const slices = cudf::io::detail::make_file_io_slices(test_case.first, test_case.second); if (slices.empty()) { ASSERT_EQ(test_case.first, 0); } else { ASSERT_EQ(slices.front().offset, 0); ASSERT_EQ(slices.back().offset + slices.back().size, test_case.first); for (auto i = 1u; i < slices.size(); ++i) { ASSERT_EQ(slices[i].offset, slices[i - 1].offset + slices[i - 1].size); } } } } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/row_selection_test.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/cudf_gtest.hpp> #include <src/io/utilities/row_selection.hpp> #include <limits> using cudf::io::detail::skip_rows_num_rows_from_options; // Base test fixture for tests struct FromOptsTest : public cudf::test::BaseFixture {}; TEST_F(FromOptsTest, PassThrough) { // select all rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(0, 100, 100); EXPECT_EQ(out_skip, 0); EXPECT_EQ(out_num, 100); } // select all except first skip_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(10, 90, 100); EXPECT_EQ(out_skip, 10); EXPECT_EQ(out_num, 90); } // select first num_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(0, 60, 100); EXPECT_EQ(out_skip, 0); EXPECT_EQ(out_num, 60); } } TEST_F(FromOptsTest, DefaultNumRows) { // no skip_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(0, std::nullopt, 100); EXPECT_EQ(out_skip, 0); EXPECT_EQ(out_num, 100); } // with skip_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(20, std::nullopt, 100); EXPECT_EQ(out_skip, 20); EXPECT_EQ(out_num, 80); } } TEST_F(FromOptsTest, InputSize32BitOverflow) { // Input number of rows too large to fit into cudf::size_type // Test that we can still select rows from such input auto const too_large_for_32bit = std::numeric_limits<int64_t>::max(); // no num_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(too_large_for_32bit - 10, std::nullopt, too_large_for_32bit); EXPECT_EQ(out_skip, too_large_for_32bit - 10); EXPECT_EQ(out_num, 10); } // with num_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(too_large_for_32bit - 100, 30, too_large_for_32bit); EXPECT_EQ(out_skip, too_large_for_32bit - 100); EXPECT_EQ(out_num, 30); } } TEST_F(FromOptsTest, LimitOptionsToFileRows) { // limit skip_rows without num_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(1000, std::nullopt, 100); EXPECT_EQ(out_skip, 100); EXPECT_EQ(out_num, 0); } // limit skip_rows with num_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(1000, 2, 100); EXPECT_EQ(out_skip, 100); EXPECT_EQ(out_num, 0); } // limit num_rows without skip_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(0, 1000, 100); EXPECT_EQ(out_skip, 0); EXPECT_EQ(out_num, 100); } // limit num_rows with skip_rows { auto [out_skip, out_num] = skip_rows_num_rows_from_options(10, 1000, 100); EXPECT_EQ(out_skip, 10); EXPECT_EQ(out_num, 90); } } TEST_F(FromOptsTest, OverFlowDetection) { auto const too_large_for_32bit = std::numeric_limits<int64_t>::max(); // Too many rows to read until the end of the file EXPECT_THROW(skip_rows_num_rows_from_options(0, std::nullopt, too_large_for_32bit), std::overflow_error); // Should work fine with num_rows EXPECT_NO_THROW( skip_rows_num_rows_from_options(1000, too_large_for_32bit - 100, too_large_for_32bit)); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/json_type_cast_test.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <io/utilities/string_parsing.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/io/datasource.hpp> #include <cudf/io/json.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <rmm/exec_policy.hpp> #include <algorithm> #include <iterator> #include <type_traits> using namespace cudf::test::iterators; struct JSONTypeCastTest : public cudf::test::BaseFixture {}; namespace { struct offsets_to_length { __device__ cudf::size_type operator()(thrust::tuple<cudf::size_type, cudf::size_type> const& p) { return thrust::get<1>(p) - thrust::get<0>(p); } }; /// Returns length of each string in the column auto string_offset_to_length(cudf::strings_column_view const& column, rmm::cuda_stream_view stream) { auto offsets_begin = column.offsets_begin(); auto offsets_pair = thrust::make_zip_iterator(thrust::make_tuple(offsets_begin, thrust::next(offsets_begin))); rmm::device_uvector<cudf::size_type> svs_length(column.size(), stream); thrust::transform(rmm::exec_policy(cudf::get_default_stream()), offsets_pair, offsets_pair + column.size(), svs_length.begin(), offsets_to_length{}); return svs_length; } } // namespace auto default_json_options() { auto parse_opts = cudf::io::parse_options{',', '\n', '\"', '.'}; auto const stream = cudf::get_default_stream(); parse_opts.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); parse_opts.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); parse_opts.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); return parse_opts; } TEST_F(JSONTypeCastTest, String) { auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); auto const type = cudf::data_type{cudf::type_id::STRING}; auto in_valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 4; }); std::vector<char const*> input_values{"this", "is", "null", "of", "", "strings", R"("null")"}; cudf::test::strings_column_wrapper input(input_values.begin(), input_values.end(), in_valids); auto column = cudf::strings_column_view(input); rmm::device_uvector<cudf::size_type> svs_length = string_offset_to_length(column, stream); auto null_mask_it = no_nulls(); auto null_mask = std::get<0>(cudf::test::detail::make_null_mask(null_mask_it, null_mask_it + column.size())); auto str_col = cudf::io::json::detail::parse_data( column.chars().data<char>(), thrust::make_zip_iterator(thrust::make_tuple(column.offsets_begin(), svs_length.begin())), column.size(), type, std::move(null_mask), 0, default_json_options().view(), stream, mr); auto out_valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 2 and i != 4; }); std::vector<char const*> expected_values{"this", "is", "", "of", "", "strings", "null"}; cudf::test::strings_column_wrapper expected( expected_values.begin(), expected_values.end(), out_valids); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(str_col->view(), expected); } TEST_F(JSONTypeCastTest, Int) { auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); auto const type = cudf::data_type{cudf::type_id::INT64}; cudf::test::strings_column_wrapper data({"1", "null", "3", "true", "5", "false"}); auto column = cudf::strings_column_view(data); rmm::device_uvector<cudf::size_type> svs_length = string_offset_to_length(column, stream); auto null_mask_it = no_nulls(); auto null_mask = std::get<0>(cudf::test::detail::make_null_mask(null_mask_it, null_mask_it + column.size())); auto col = cudf::io::json::detail::parse_data( column.chars().data<char>(), thrust::make_zip_iterator(thrust::make_tuple(column.offsets_begin(), svs_length.begin())), column.size(), type, std::move(null_mask), 0, default_json_options().view(), stream, mr); auto expected = cudf::test::fixed_width_column_wrapper<int64_t>{{1, 2, 3, 1, 5, 0}, {1, 0, 1, 1, 1, 1}}; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(col->view(), expected); } TEST_F(JSONTypeCastTest, StringEscapes) { auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); auto const type = cudf::data_type{cudf::type_id::STRING}; cudf::test::strings_column_wrapper data({ R"("\uD83D\uDE80")", R"("\uff21\ud83d\ude80\uff21\uff21")", R"("invalid char being escaped escape char\-")", R"("too few hex digits \u12")", R"("too few hex digits for surrogate pair \uD83D\uDE")", R"("\u005C")", R"("\u27A9")", R"("escape with nothing to escape \")", R"("\"\\\/\b\f\n\r\t")", }); auto column = cudf::strings_column_view(data); rmm::device_uvector<cudf::size_type> svs_length = string_offset_to_length(column, stream); auto null_mask_it = no_nulls(); auto null_mask = std::get<0>(cudf::test::detail::make_null_mask(null_mask_it, null_mask_it + column.size())); auto col = cudf::io::json::detail::parse_data( column.chars().data<char>(), thrust::make_zip_iterator(thrust::make_tuple(column.offsets_begin(), svs_length.begin())), column.size(), type, std::move(null_mask), 0, default_json_options().view(), stream, mr); auto expected = cudf::test::strings_column_wrapper{ {"🚀", "A🚀AA", "", "", "", "\\", "➩", "", "\"\\/\b\f\n\r\t"}, {true, true, false, false, false, true, true, false, true}}; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(col->view(), expected); } TEST_F(JSONTypeCastTest, ErrorNulls) { auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); auto const type = cudf::data_type{cudf::type_id::STRING}; // error in decoding std::vector<char const*> input_values{R"("\"\a")", R"("\u")", R"("\u0")", R"("\u0b")", R"("\u00b")", R"("\u00bz")", R"("\t34567890123456\t9012345678901\ug0bc")", R"("\t34567890123456\t90123456789012\u0hbc")", R"("\t34567890123456\t90123456789012\u00ic")", R"("\t34567890123456\t9012345678901\")", R"("\t34567890123456\t90123456789012\")", R"(null)"}; // Note: without quotes are copied without decoding cudf::test::strings_column_wrapper input(input_values.begin(), input_values.end()); auto column = cudf::strings_column_view(input); auto space_length = 128; auto prepend_space = [&space_length](auto const& s) { if (s[0] == '"') return "\"" + std::string(space_length, ' ') + std::string(s + 1); return std::string(s); }; std::vector<std::string> small_input; std::transform( input_values.begin(), input_values.end(), std::back_inserter(small_input), prepend_space); cudf::test::strings_column_wrapper small_col(small_input.begin(), small_input.end()); std::vector<std::string> large_input; space_length = 128 * 128; std::transform( input_values.begin(), input_values.end(), std::back_inserter(large_input), prepend_space); cudf::test::strings_column_wrapper large_col(large_input.begin(), large_input.end()); std::vector<char const*> expected_values{"", "", "", "", "", "", "", "", "", "", "", ""}; cudf::test::strings_column_wrapper expected( expected_values.begin(), expected_values.end(), cudf::test::iterators::all_nulls()); // single threads, warp, block. for (auto const& column : {column, cudf::strings_column_view(small_col), cudf::strings_column_view(large_col)}) { rmm::device_uvector<cudf::size_type> svs_length = string_offset_to_length(column, stream); auto null_mask_it = no_nulls(); auto null_mask = std::get<0>(cudf::test::detail::make_null_mask(null_mask_it, null_mask_it + column.size())); auto str_col = cudf::io::json::detail::parse_data( column.chars().data<char>(), thrust::make_zip_iterator(thrust::make_tuple(column.offsets_begin(), svs_length.begin())), column.size(), type, std::move(null_mask), 0, default_json_options().view(), stream, mr); CUDF_TEST_EXPECT_COLUMNS_EQUAL(str_col->view(), expected); } } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/metadata_utilities.cpp
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/io_metadata_utilities.hpp> #include <gmock/gmock.h> namespace cudf::test { void expect_metadata_equal(cudf::io::table_input_metadata in_meta, cudf::io::table_metadata out_meta) { std::function<void(cudf::io::column_name_info, cudf::io::column_in_metadata)> compare_names = [&](cudf::io::column_name_info out_col, cudf::io::column_in_metadata in_col) { if (not in_col.get_name().empty()) { EXPECT_EQ(out_col.name, in_col.get_name()); } ASSERT_EQ(out_col.children.size(), in_col.num_children()); for (size_t i = 0; i < out_col.children.size(); ++i) { compare_names(out_col.children[i], in_col.child(i)); } }; ASSERT_EQ(out_meta.schema_info.size(), in_meta.column_metadata.size()); for (size_t i = 0; i < out_meta.schema_info.size(); ++i) { compare_names(out_meta.schema_info[i], in_meta.column_metadata[i]); } } void expect_metadata_equal(cudf::io::table_metadata lhs_meta, cudf::io::table_metadata rhs_meta) { std::function<void(cudf::io::column_name_info, cudf::io::column_name_info)> compare_names = [&](cudf::io::column_name_info lhs, cudf::io::column_name_info rhs) { // Ensure column names match EXPECT_EQ(lhs.name, rhs.name); // Ensure number of child columns match ASSERT_EQ(lhs.children.size(), rhs.children.size()); for (size_t i = 0; i < lhs.children.size(); ++i) { compare_names(lhs.children[i], rhs.children[i]); } }; // Ensure the number of columns at the root level matches ASSERT_EQ(lhs_meta.schema_info.size(), rhs_meta.schema_info.size()); // Recurse for each column making sure their names and descendants match for (size_t i = 0; i < rhs_meta.schema_info.size(); ++i) { compare_names(lhs_meta.schema_info[i], rhs_meta.schema_info[i]); } } } // namespace cudf::test
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/json_writer.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/default_stream.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/io/json.hpp> #include <cudf/io/types.hpp> #include <cudf/types.hpp> #include <cudf/unary.hpp> #include <string> #include <vector> struct JsonWriterTest : public cudf::test::BaseFixture {}; TEST_F(JsonWriterTest, EmptyInput) { cudf::test::strings_column_wrapper col1; cudf::test::strings_column_wrapper col2; cudf::test::fixed_width_column_wrapper<int> col3; cudf::test::fixed_width_column_wrapper<float> col4; cudf::test::fixed_width_column_wrapper<int16_t> col5; cudf::table_view tbl_view{{col1, col2, col3, col4}}; cudf::io::table_metadata mt{{{"col1"}, {"col2"}, {"int"}, {"float"}, {"int16"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto out_options = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(true) .metadata(mt) .lines(false) .na_rep("null") .build(); // Empty columns in table cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"([])"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); // Empty columns in table - JSON Lines out_buffer.clear(); out_options.enable_lines(true); cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected_lines = "\n"; EXPECT_EQ(expected_lines, std::string(out_buffer.data(), out_buffer.size())); // Empty table - JSON Lines cudf::table_view tbl_view2{}; out_options.set_table(tbl_view2); out_buffer.clear(); cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); EXPECT_EQ(expected_lines, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, ErrorCases) { cudf::test::strings_column_wrapper col1{"a", "b", "c"}; cudf::test::strings_column_wrapper col2{"d", "e", "f"}; cudf::test::fixed_width_column_wrapper<int> col3{1, 2, 3}; cudf::test::fixed_width_column_wrapper<float> col4{1.5, 2.5, 3.5}; cudf::test::fixed_width_column_wrapper<int16_t> col5{{1, 2, 3}, cudf::test::iterators::nulls_at({0, 2})}; cudf::table_view tbl_view{{col1, col2, col3, col4, col5}}; cudf::io::table_metadata mt{{{"col1"}, {"col2"}, {"int"}, {"float"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto out_options = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(true) .metadata(mt) .lines(false) .na_rep("null") .build(); // not enough column names EXPECT_THROW( cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()), cudf::logic_error); mt.schema_info.emplace_back("int16"); out_options.set_metadata(mt); EXPECT_NO_THROW(cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource())); // chunk_rows must be at least 8 out_options.set_rows_per_chunk(0); EXPECT_THROW( cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()), cudf::logic_error); } TEST_F(JsonWriterTest, PlainTable) { cudf::test::strings_column_wrapper col1{"a", "b", "c"}; cudf::test::strings_column_wrapper col2{"d", "e", "f"}; cudf::test::fixed_width_column_wrapper<int> col3{1, 2, 3}; cudf::test::fixed_width_column_wrapper<float> col4{1.5, 2.5, 3.5}; cudf::test::fixed_width_column_wrapper<int16_t> col5{{1, 2, 3}, cudf::test::iterators::nulls_at({0, 2})}; cudf::table_view tbl_view{{col1, col2, col3, col4, col5}}; cudf::io::table_metadata mt{{{"col1"}, {"col2"}, {"int"}, {"float"}, {"int16"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(true) .metadata(mt) .lines(false) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"([{"col1":"a","col2":"d","int":1,"float":1.5,"int16":null},{"col1":"b","col2":"e","int":2,"float":2.5,"int16":2},{"col1":"c","col2":"f","int":3,"float":3.5,"int16":null}])"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, SimpleNested) { std::string const data = R"( {"a": 1, "b": 2, "c": {"d": 3 }, "f": 5.5, "g": [1]} {"a": 6, "b": 7, "c": {"d": 8 }, "f": 10.5, "g": null} {"a": 1, "b": 2, "c": { "e": 4}, "f": 5.5, "g": [2, null]} {"a": 6, "b": 7, "c": { "e": 9}, "f": 10.5, "g": [3, 4, 5]} )"; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); cudf::table_view tbl_view = result.tbl->view(); cudf::io::table_metadata mt{result.metadata}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(false) .metadata(mt) .lines(true) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({"a":1,"b":2,"c":{"d":3},"f":5.5,"g":[1]} {"a":6,"b":7,"c":{"d":8},"f":10.5} {"a":1,"b":2,"c":{"e":4},"f":5.5,"g":[2,null]} {"a":6,"b":7,"c":{"e":9},"f":10.5,"g":[3,4,5]} )"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, MixedNested) { std::string const data = R"( {"a": 1, "b": 2, "c": {"d": [3] }, "f": 5.5, "g": [ {"h": 1}]} {"a": 6, "b": 7, "c": {"d": [8] }, "f": 10.5, "g": null} {"a": 1, "b": 2, "c": { "e": 4}, "f": 5.5, "g": [{"h": 2}, null]} {"a": 6, "b": 7, "c": { "e": 9}, "f": 10.5, "g": [{"h": 3}, {"h": 4}, {"h": 5}]} )"; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); cudf::table_view tbl_view = result.tbl->view(); cudf::io::table_metadata mt{result.metadata}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(false) .metadata(mt) .lines(false) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"([{"a":1,"b":2,"c":{"d":[3]},"f":5.5,"g":[{"h":1}]},)" R"({"a":6,"b":7,"c":{"d":[8]},"f":10.5},)" R"({"a":1,"b":2,"c":{"e":4},"f":5.5,"g":[{"h":2},null]},)" R"({"a":6,"b":7,"c":{"e":9},"f":10.5,"g":[{"h":3},{"h":4},{"h":5}]}])"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, WriteReadNested) { using namespace cudf::test::iterators; using LCW = cudf::test::lists_column_wrapper<int64_t>; cudf::test::fixed_width_column_wrapper<int> a{1, 6, 1, 6}; cudf::test::fixed_width_column_wrapper<uint8_t> b{2, 7, 2, 7}; cudf::test::fixed_width_column_wrapper<int64_t> d{{3, 8, 0, 0}, nulls_at({2, 3})}; cudf::test::fixed_width_column_wrapper<int64_t> e{{0, 0, 4, 9}, nulls_at({0, 1})}; cudf::test::structs_column_wrapper c{{d, e}}; cudf::test::fixed_width_column_wrapper<float> f{5.5, 10.5, 5.5, 10.5}; LCW g{{LCW{1}, LCW{0}, LCW{{2, 0}, null_at(1)}, LCW{3, 4, 5}}, null_at(1)}; cudf::table_view tbl_view{{a, b, c, f, g}}; cudf::io::table_metadata mt{{{"a"}, {"b"}, {"c"}, {"f"}, {"g"}}}; mt.schema_info[2].children = {{"d"}, {"e"}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto out_options = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(false) .metadata(mt) .lines(true) .na_rep("null") .build(); cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({"a":1,"b":2,"c":{"d":3},"f":5.5,"g":[1]} {"a":6,"b":7,"c":{"d":8},"f":10.5} {"a":1,"b":2,"c":{"e":4},"f":5.5,"g":[2,null]} {"a":6,"b":7,"c":{"e":9},"f":10.5,"g":[3,4,5]} )"; auto const output_string = std::string(out_buffer.data(), out_buffer.size()); EXPECT_EQ(expected, output_string); // Read back the written JSON, and compare with the original table // Without type information auto in_options = cudf::io::json_reader_options::builder( cudf::io::source_info{output_string.data(), output_string.size()}) .lines(true) .build(); auto result = cudf::io::read_json(in_options); auto tbl_out = result.tbl->view(); auto const int64_dtype = cudf::data_type{cudf::type_id::INT64}; auto const double_dtype = cudf::data_type{cudf::type_id::FLOAT64}; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*cudf::cast(a, int64_dtype), tbl_out.column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*cudf::cast(b, int64_dtype), tbl_out.column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(c, tbl_out.column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*cudf::cast(f, double_dtype), tbl_out.column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(g, tbl_out.column(4)); mt.schema_info[4].children = {{"offsets"}, {"element"}}; // list child column names EXPECT_EQ(mt.schema_info.size(), result.metadata.schema_info.size()); for (auto i = 0UL; i < mt.schema_info.size(); i++) { EXPECT_EQ(mt.schema_info[i].name, result.metadata.schema_info[i].name) << "[" << i << "]"; EXPECT_EQ(mt.schema_info[i].children.size(), result.metadata.schema_info[i].children.size()) << "[" << i << "]"; for (auto j = 0UL; j < mt.schema_info[i].children.size(); j++) { EXPECT_EQ(mt.schema_info[i].children[j].name, result.metadata.schema_info[i].children[j].name) << "[" << i << "][" << j << "]"; } } // Read with type information std::map<std::string, cudf::io::schema_element> types; types["a"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::INT32}}; types["b"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::UINT8}}; types["c"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::STRUCT}}; types["c"].child_types["d"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::INT64}}; types["c"].child_types["e"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::INT64}}; types["f"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::FLOAT32}}; types["g"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::LIST}}; types["g"].child_types["element"] = cudf::io::schema_element{cudf::data_type{cudf::type_id::INT64}}; in_options.set_dtypes(types); result = cudf::io::read_json(in_options); tbl_out = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(a, tbl_out.column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(b, tbl_out.column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(c, tbl_out.column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(f, tbl_out.column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(g, tbl_out.column(4)); EXPECT_EQ(mt.schema_info.size(), result.metadata.schema_info.size()); for (auto i = 0UL; i < mt.schema_info.size(); i++) { EXPECT_EQ(mt.schema_info[i].name, result.metadata.schema_info[i].name) << "[" << i << "]"; EXPECT_EQ(mt.schema_info[i].children.size(), result.metadata.schema_info[i].children.size()) << "[" << i << "]"; for (auto j = 0UL; j < mt.schema_info[i].children.size(); j++) { EXPECT_EQ(mt.schema_info[i].children[j].name, result.metadata.schema_info[i].children[j].name) << "[" << i << "][" << j << "]"; } } // Without children column names mt.schema_info[2].children.clear(); out_options.set_metadata(mt); out_buffer.clear(); cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); in_options = cudf::io::json_reader_options::builder( cudf::io::source_info{out_buffer.data(), out_buffer.size()}) .lines(true) .build(); result = cudf::io::read_json(in_options); mt.schema_info[2].children = {{"0"}, {"1"}}; EXPECT_EQ(mt.schema_info.size(), result.metadata.schema_info.size()); for (auto i = 0UL; i < mt.schema_info.size(); i++) { EXPECT_EQ(mt.schema_info[i].name, result.metadata.schema_info[i].name) << "[" << i << "]"; EXPECT_EQ(mt.schema_info[i].children.size(), result.metadata.schema_info[i].children.size()) << "[" << i << "]"; for (auto j = 0UL; j < mt.schema_info[i].children.size(); j++) { EXPECT_EQ(mt.schema_info[i].children[j].name, result.metadata.schema_info[i].children[j].name) << "[" << i << "][" << j << "]"; } } // without column names out_options.set_metadata(cudf::io::table_metadata{}); out_buffer.clear(); cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); in_options = cudf::io::json_reader_options::builder( cudf::io::source_info{out_buffer.data(), out_buffer.size()}) .lines(true) .build(); result = cudf::io::read_json(in_options); mt.schema_info = {{"0"}, {"1"}, {"2"}, {"3"}, {"4"}}; mt.schema_info[2].children = {{"0"}, {"1"}}; mt.schema_info[4].children = {{"offsets"}, {"element"}}; // list child column names EXPECT_EQ(mt.schema_info.size(), result.metadata.schema_info.size()); for (auto i = 0UL; i < mt.schema_info.size(); i++) { EXPECT_EQ(mt.schema_info[i].name, result.metadata.schema_info[i].name) << "[" << i << "]"; EXPECT_EQ(mt.schema_info[i].children.size(), result.metadata.schema_info[i].children.size()) << "[" << i << "]"; for (auto j = 0UL; j < mt.schema_info[i].children.size(); j++) { EXPECT_EQ(mt.schema_info[i].children[j].name, result.metadata.schema_info[i].children[j].name) << "[" << i << "][" << j << "]"; } } } TEST_F(JsonWriterTest, SpecialChars) { cudf::test::fixed_width_column_wrapper<int> a{1, 6, 1, 6}; cudf::test::strings_column_wrapper b{"abcd", "b\b\f\n\r\t", "\"c\"", "/\\"}; cudf::table_view tbl_view{{a, b}}; cudf::io::table_metadata mt{{{"\"a\""}, {"\'b\'"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto out_options = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(false) .metadata(mt) .lines(true) .na_rep("null") .build(); cudf::io::write_json( out_options, cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({"\"a\"":1,"'b'":"abcd"} {"\"a\"":6,"'b'":"b\b\f\n\r\t"} {"\"a\"":1,"'b'":"\"c\""} {"\"a\"":6,"'b'":"\/\\"} )"; auto const output_string = std::string(out_buffer.data(), out_buffer.size()); EXPECT_EQ(expected, output_string); } TEST_F(JsonWriterTest, NullList) { std::string const data = R"( {"a": [null], "b": [[1, 2, 3], [null], [null, null, null], [4, null, 5]]} {"a": [2, null, null, 3] , "b": null} {"a": [null, null, 4], "b": [[2, null], null]} {"a": [5, null, null], "b": [null, [3, 4, 5]]} )"; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); cudf::table_view tbl_view = result.tbl->view(); cudf::io::table_metadata mt{result.metadata}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(true) .metadata(mt) .lines(true) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({"a":[null],"b":[[1,2,3],[null],[null,null,null],[4,null,5]]} {"a":[2,null,null,3],"b":null} {"a":[null,null,4],"b":[[2,null],null]} {"a":[5,null,null],"b":[null,[3,4,5]]} )"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, ChunkedNested) { std::string const data = R"( {"a": 1, "b": -2, "c": { }, "e": [{"f": 1}]} {"a": 2, "b": -2, "c": { }, "e": null} {"a": 3, "b": -2, "c": {"d": 9}, "e": [{"f": 2}, null]} {"a": 4, "b": -2, "c": {"d": 16}, "e": [{"f": 3}, {"f": 4}, {"f": 5}]} {"a": 5, "b": -2, "c": { }, "e": []} {"a": 6, "b": -2, "c": {"d": 36}, "e": [{"f": 6}]} {"a": 7, "b": -2, "c": {"d": 49}, "e": [{"f": 7}]} {"a": 8, "b": -2, "c": {"d": 64}, "e": [{"f": 8}]} {"a": 9, "b": -2, "c": {"d": 81}, "e": [{"f": 9}]} )"; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); cudf::table_view tbl_view = result.tbl->view(); cudf::io::table_metadata mt{result.metadata}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(false) .metadata(mt) .lines(true) .na_rep("null") .rows_per_chunk(8); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({"a":1,"b":-2,"c":{},"e":[{"f":1}]} {"a":2,"b":-2,"c":{}} {"a":3,"b":-2,"c":{"d":9},"e":[{"f":2},null]} {"a":4,"b":-2,"c":{"d":16},"e":[{"f":3},{"f":4},{"f":5}]} {"a":5,"b":-2,"c":{},"e":[]} {"a":6,"b":-2,"c":{"d":36},"e":[{"f":6}]} {"a":7,"b":-2,"c":{"d":49},"e":[{"f":7}]} {"a":8,"b":-2,"c":{"d":64},"e":[{"f":8}]} {"a":9,"b":-2,"c":{"d":81},"e":[{"f":9}]} )"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, StructAllNullCombinations) { auto const_1_iter = thrust::make_constant_iterator(1); auto col_a = cudf::test::fixed_width_column_wrapper<int>( const_1_iter, const_1_iter + 32, cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i / 16; })); auto col_b = cudf::test::fixed_width_column_wrapper<int>( const_1_iter, const_1_iter + 32, cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i / 8) % 2; })); auto col_c = cudf::test::fixed_width_column_wrapper<int>( const_1_iter, const_1_iter + 32, cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i / 4) % 2; })); auto col_d = cudf::test::fixed_width_column_wrapper<int>( const_1_iter, const_1_iter + 32, cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i / 2) % 2; })); auto col_e = cudf::test::fixed_width_column_wrapper<int>( const_1_iter, const_1_iter + 32, cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; })); // The table has 32 rows with validity from 00000 to 11111 cudf::table_view tbl_view = cudf::table_view({col_a, col_b, col_c, col_d, col_e}); cudf::io::table_metadata mt{{{"a"}, {"b"}, {"c"}, {"d"}, {"e"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(false) .metadata(mt) .lines(true) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({} {"e":1} {"d":1} {"d":1,"e":1} {"c":1} {"c":1,"e":1} {"c":1,"d":1} {"c":1,"d":1,"e":1} {"b":1} {"b":1,"e":1} {"b":1,"d":1} {"b":1,"d":1,"e":1} {"b":1,"c":1} {"b":1,"c":1,"e":1} {"b":1,"c":1,"d":1} {"b":1,"c":1,"d":1,"e":1} {"a":1} {"a":1,"e":1} {"a":1,"d":1} {"a":1,"d":1,"e":1} {"a":1,"c":1} {"a":1,"c":1,"e":1} {"a":1,"c":1,"d":1} {"a":1,"c":1,"d":1,"e":1} {"a":1,"b":1} {"a":1,"b":1,"e":1} {"a":1,"b":1,"d":1} {"a":1,"b":1,"d":1,"e":1} {"a":1,"b":1,"c":1} {"a":1,"b":1,"c":1,"e":1} {"a":1,"b":1,"c":1,"d":1} {"a":1,"b":1,"c":1,"d":1,"e":1} )"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } TEST_F(JsonWriterTest, Unicode) { // UTF-8, UTF-16 cudf::test::strings_column_wrapper col1{"\"\\/\b\f\n\r\t", "ராபிட்ஸ்", "$€𐐷𤭢", "C𝞵𝓓𝒻"}; // Unicode // 0000-FFFF Basic Multilingual Plane // 10000-10FFFF Supplementary Plane cudf::test::strings_column_wrapper col2{ "CႮ≪ㇳ䍏凹沦王辿龸ꁗ믜스폶ﴠ", // 0000-FFFF "𐀀𑿪𒐦𓃰𔙆 𖦆𗿿𘳕𚿾[↳] 𜽆𝓚𞤁🄰", // 10000-1FFFF "𠘨𡥌𢗉𣇊𤊩𥅽𦉱𧴱𨁲𩁹𪐢𫇭𬬭𭺷𮊦屮", // 20000-2FFFF "𰾑𱔈𲍉"}; // 30000-3FFFF cudf::test::fixed_width_column_wrapper<int16_t> col3{{1, 2, 3, 4}, cudf::test::iterators::nulls_at({0, 2})}; cudf::table_view tbl_view{{col1, col2, col3}}; cudf::io::table_metadata mt{{{"col1"}, {"col2"}, {"int16"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(true) .metadata(mt) .lines(true) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); std::string const expected = R"({"col1":"\"\\\/\b\f\n\r\t","col2":"C\u10ae\u226a\u31f3\u434f\u51f9\u6ca6\u738b\u8fbf\u9fb8\ua057\ubbdc\uc2a4\ud3f6\ue4fe\ufd20","int16":null} {"col1":"\u0bb0\u0bbe\u0baa\u0bbf\u0b9f\u0bcd\u0bb8\u0bcd","col2":"\ud800\udc00\ud807\udfea\ud809\udc26\ud80c\udcf0\ud811\ude46 \ud81a\udd86\ud81f\udfff\ud823\udcd5\ud82b\udffe[\u21b3] \ud833\udf46\ud835\udcda\ud83a\udd01\ud83c\udd30","int16":2} {"col1":"$\u20ac\ud801\udc37\ud852\udf62","col2":"\ud841\ude28\ud846\udd4c\ud849\uddc9\ud84c\uddca\ud850\udea9\ud854\udd7d\ud858\ude71\ud85f\udd31\ud860\udc72\ud864\udc79\ud869\udc22\ud86c\udded\ud872\udf2d\ud877\udeb7\ud878\udea6\u5c6e","int16":null} {"col1":"C\ud835\udfb5\ud835\udcd3\ud835\udcbb","col2":"\ud883\udf91\ud885\udd08\ud888\udf49","int16":4} )"; EXPECT_EQ(expected, std::string(out_buffer.data(), out_buffer.size())); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/parquet_chunked_reader_test.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/io_metadata_utilities.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/concatenate.hpp> #include <cudf/copying.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/structs/utilities.hpp> #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/io/data_sink.hpp> #include <cudf/io/datasource.hpp> #include <cudf/io/parquet.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/span.hpp> #include <src/io/parquet/compact_protocol_reader.hpp> #include <src/io/parquet/parquet.hpp> #include <thrust/iterator/counting_iterator.h> #include <rmm/cuda_stream_view.hpp> #include <fstream> #include <type_traits> namespace { // Global environment for temporary files auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); using int32s_col = cudf::test::fixed_width_column_wrapper<int32_t>; using int64s_col = cudf::test::fixed_width_column_wrapper<int64_t>; using strings_col = cudf::test::strings_column_wrapper; using structs_col = cudf::test::structs_column_wrapper; using int32s_lists_col = cudf::test::lists_column_wrapper<int32_t>; auto write_file(std::vector<std::unique_ptr<cudf::column>>& input_columns, std::string const& filename, bool nullable, std::size_t max_page_size_bytes = cudf::io::default_max_page_size_bytes, std::size_t max_page_size_rows = cudf::io::default_max_page_size_rows) { // Just shift nulls of the next column by one position to avoid having all nulls in the same // table rows. if (nullable) { // Generate deterministic bitmask instead of random bitmask for easy computation of data size. auto const valid_iter = cudf::detail::make_counting_transform_iterator( 0, [](cudf::size_type i) { return i % 4 != 3; }); cudf::size_type offset{0}; for (auto& col : input_columns) { auto const [null_mask, null_count] = cudf::test::detail::make_null_mask(valid_iter + offset, valid_iter + col->size() + offset); col = cudf::structs::detail::superimpose_nulls( static_cast<cudf::bitmask_type const*>(null_mask.data()), null_count, std::move(col), cudf::get_default_stream(), rmm::mr::get_current_device_resource()); } } auto input_table = std::make_unique<cudf::table>(std::move(input_columns)); auto filepath = temp_env->get_temp_filepath(nullable ? filename + "_nullable.parquet" : filename + ".parquet"); auto const write_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *input_table) .max_page_size_bytes(max_page_size_bytes) .max_page_size_rows(max_page_size_rows) .max_page_fragment_size(cudf::io::default_max_page_fragment_size) .build(); cudf::io::write_parquet(write_opts); return std::pair{std::move(input_table), std::move(filepath)}; } auto chunked_read(std::string const& filepath, std::size_t output_limit, std::size_t input_limit = 0) { auto const read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}).build(); auto reader = cudf::io::chunked_parquet_reader(output_limit, input_limit, read_opts); auto num_chunks = 0; auto out_tables = std::vector<std::unique_ptr<cudf::table>>{}; do { auto chunk = reader.read_chunk(); // If the input file is empty, the first call to `read_chunk` will return an empty table. // Thus, we only check for non-empty output table from the second call. if (num_chunks > 0) { CUDF_EXPECTS(chunk.tbl->num_rows() != 0, "Number of rows in the new chunk is zero."); } ++num_chunks; out_tables.emplace_back(std::move(chunk.tbl)); } while (reader.has_next()); auto out_tviews = std::vector<cudf::table_view>{}; for (auto const& tbl : out_tables) { out_tviews.emplace_back(tbl->view()); } return std::pair(cudf::concatenate(out_tviews), num_chunks); } } // namespace struct ParquetChunkedReaderTest : public cudf::test::BaseFixture {}; TEST_F(ParquetChunkedReaderTest, TestChunkedReadNoData) { std::vector<std::unique_ptr<cudf::column>> input_columns; input_columns.emplace_back(int32s_col{}.release()); input_columns.emplace_back(int64s_col{}.release()); auto const [expected, filepath] = write_file(input_columns, "chunked_read_empty", false); auto const [result, num_chunks] = chunked_read(filepath, 1'000); EXPECT_EQ(num_chunks, 1); EXPECT_EQ(result->num_rows(), 0); EXPECT_EQ(result->num_columns(), 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } TEST_F(ParquetChunkedReaderTest, TestChunkedReadSimpleData) { auto constexpr num_rows = 40'000; auto const generate_input = [num_rows](bool nullable) { std::vector<std::unique_ptr<cudf::column>> input_columns; auto const value_iter = thrust::make_counting_iterator(0); input_columns.emplace_back(int32s_col(value_iter, value_iter + num_rows).release()); input_columns.emplace_back(int64s_col(value_iter, value_iter + num_rows).release()); return write_file(input_columns, "chunked_read_simple", nullable); }; { auto const [expected, filepath] = generate_input(false); auto const [result, num_chunks] = chunked_read(filepath, 240'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } { auto const [expected, filepath] = generate_input(true); auto const [result, num_chunks] = chunked_read(filepath, 240'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadBoundaryCases) { // Tests some specific boundary conditions in the split calculations. auto constexpr num_rows = 40'000; auto const [expected, filepath] = [num_rows]() { std::vector<std::unique_ptr<cudf::column>> input_columns; auto const value_iter = thrust::make_counting_iterator(0); input_columns.emplace_back(int32s_col(value_iter, value_iter + num_rows).release()); return write_file(input_columns, "chunked_read_simple_boundary", false /*nullable*/); }(); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath, 1); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit slightly less than one page of data { auto const [result, num_chunks] = chunked_read(filepath, 79'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit exactly the size one page of data { auto const [result, num_chunks] = chunked_read(filepath, 80'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit slightly more the size one page of data { auto const [result, num_chunks] = chunked_read(filepath, 81'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit slightly less than two pages of data { auto const [result, num_chunks] = chunked_read(filepath, 159'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit exactly the size of two pages of data minus one byte { auto const [result, num_chunks] = chunked_read(filepath, 159'999); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit exactly the size of two pages of data { auto const [result, num_chunks] = chunked_read(filepath, 160'000); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a limit slightly more the size two pages of data { auto const [result, num_chunks] = chunked_read(filepath, 161'000); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithString) { auto constexpr num_rows = 60'000; auto const generate_input = [num_rows](bool nullable) { std::vector<std::unique_ptr<cudf::column>> input_columns; auto const value_iter = thrust::make_counting_iterator(0); // ints Page total bytes cumulative bytes // 20000 rows of 4 bytes each = A0 80000 80000 // 20000 rows of 4 bytes each = A1 80000 160000 // 20000 rows of 4 bytes each = A2 80000 240000 input_columns.emplace_back(int32s_col(value_iter, value_iter + num_rows).release()); // strings Page total bytes cumulative bytes // 20000 rows of 1 char each (20000 + 80004) = B0 100004 100004 // 20000 rows of 4 chars each (80000 + 80004) = B1 160004 260008 // 20000 rows of 16 chars each (320000 + 80004) = B2 400004 660012 auto const strings = std::vector<std::string>{"a", "bbbb", "cccccccccccccccc"}; auto const str_iter = cudf::detail::make_counting_transform_iterator(0, [&](int32_t i) { if (i < 20000) { return strings[0]; } if (i < 40000) { return strings[1]; } return strings[2]; }); input_columns.emplace_back(strings_col(str_iter, str_iter + num_rows).release()); // Cumulative sizes: // A0 + B0 : 180004 // A1 + B1 : 420008 // A2 + B2 : 900012 // skip_rows / num_rows // byte_limit==500000 should give 2 chunks: {0, 40000}, {40000, 20000} // byte_limit==1000000 should give 1 chunks: {0, 60000}, return write_file(input_columns, "chunked_read_with_strings", nullable, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }; auto const [expected_no_null, filepath_no_null] = generate_input(false); auto const [expected_with_nulls, filepath_with_nulls] = generate_input(true); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath_no_null, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath_no_null, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Other tests: { auto const [result, num_chunks] = chunked_read(filepath_no_null, 500'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 500'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1'000'000); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1'000'000); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithStringPrecise) { auto constexpr num_rows = 60'000; auto const generate_input = [num_rows](bool nullable) { std::vector<std::unique_ptr<cudf::column>> input_columns; // strings Page total bytes cumulative // 20000 rows alternating 1-4 chars each (50000 + 80004) A0 130004 130004 // 20000 rows alternating 1-4 chars each (50000 + 80004) A1 130004 260008 // ... auto const strings = std::vector<std::string>{"a", "bbbb"}; auto const str_iter = cudf::detail::make_counting_transform_iterator(0, [&](int32_t i) { return strings[i % 2]; }); input_columns.emplace_back(strings_col(str_iter, str_iter + num_rows).release()); // Cumulative sizes: // A0 : 130004 // A1 : 260008 // A2 : 390012 return write_file(input_columns, "chunked_read_with_strings_precise", nullable, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }; auto const [expected_no_null, filepath_no_null] = generate_input(false); // a chunk limit of 1 byte less than 2 pages should force it to produce 3 chunks: // each 1 page in size { auto const [result, num_chunks] = chunked_read(filepath_no_null, 260'007); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } // a chunk limit of exactly equal to 2 pages should force it to produce 2 chunks // pages 0-1 and page 2 { auto const [result, num_chunks] = chunked_read(filepath_no_null, 260'008); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithStructs) { auto constexpr num_rows = 100'000; auto const generate_input = [num_rows](bool nullable) { std::vector<std::unique_ptr<cudf::column>> input_columns; auto const int_iter = thrust::make_counting_iterator(0); input_columns.emplace_back(int32s_col(int_iter, int_iter + num_rows).release()); input_columns.emplace_back([=] { auto child1 = int32s_col(int_iter, int_iter + num_rows); auto child2 = int32s_col(int_iter + num_rows, int_iter + num_rows * 2); auto const str_iter = cudf::detail::make_counting_transform_iterator( 0, [&](int32_t i) { return std::to_string(i); }); auto child3 = strings_col{str_iter, str_iter + num_rows}; return structs_col{{child1, child2, child3}}.release(); }()); return write_file(input_columns, "chunked_read_with_structs", nullable, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }; auto const [expected_no_null, filepath_no_null] = generate_input(false); auto const [expected_with_nulls, filepath_with_nulls] = generate_input(true); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath_no_null, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath_no_null, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Other tests: { auto const [result, num_chunks] = chunked_read(filepath_no_null, 500'000); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 500'000); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithListsNoNulls) { auto constexpr num_rows = 100'000; auto const [expected, filepath] = [num_rows]() { std::vector<std::unique_ptr<cudf::column>> input_columns; // 20000 rows in 1 page consist of: // // 20001 offsets : 80004 bytes // 30000 ints : 120000 bytes // total : 200004 bytes auto const template_lists = int32s_lists_col{ int32s_lists_col{}, int32s_lists_col{0}, int32s_lists_col{1, 2}, int32s_lists_col{3, 4, 5}}; auto const gather_iter = cudf::detail::make_counting_transform_iterator(0, [&](int32_t i) { return i % 4; }); auto const gather_map = int32s_col(gather_iter, gather_iter + num_rows); input_columns.emplace_back( std::move(cudf::gather(cudf::table_view{{template_lists}}, gather_map)->release().front())); return write_file(input_columns, "chunked_read_with_lists_no_null", false /*nullable*/, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }(); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath, 1); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size slightly less than 1 page (forcing it to be at least 1 page per read) { auto const [result, num_chunks] = chunked_read(filepath, 200'000); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size exactly 1 page { auto const [result, num_chunks] = chunked_read(filepath, 200'004); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size 2 pages. 3 chunks (2 pages + 2 pages + 1 page) { auto const [result, num_chunks] = chunked_read(filepath, 400'008); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size 2 pages minus one byte: each chunk will be just one page { auto const [result, num_chunks] = chunked_read(filepath, 400'007); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithListsHavingNulls) { auto constexpr num_rows = 100'000; auto const [expected, filepath] = [num_rows]() { std::vector<std::unique_ptr<cudf::column>> input_columns; // 20000 rows in 1 page consist of: // // 625 validity words : 2500 bytes (a null every 4 rows: null at indices [3, 7, 11, ...]) // 20001 offsets : 80004 bytes // 15000 ints : 60000 bytes // total : 142504 bytes auto const template_lists = int32s_lists_col{// these will all be null int32s_lists_col{}, int32s_lists_col{0}, int32s_lists_col{1, 2}, int32s_lists_col{3, 4, 5, 6, 7, 8, 9} /* this list will be nullified out */}; auto const gather_iter = cudf::detail::make_counting_transform_iterator(0, [&](int32_t i) { return i % 4; }); auto const gather_map = int32s_col(gather_iter, gather_iter + num_rows); input_columns.emplace_back( std::move(cudf::gather(cudf::table_view{{template_lists}}, gather_map)->release().front())); return write_file(input_columns, "chunked_read_with_lists_nulls", true /*nullable*/, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }(); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath, 1); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size slightly less than 1 page (forcing it to be at least 1 page per read) { auto const [result, num_chunks] = chunked_read(filepath, 142'500); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size exactly 1 page { auto const [result, num_chunks] = chunked_read(filepath, 142'504); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size 2 pages. 3 chunks (2 pages + 2 pages + 1 page) { auto const [result, num_chunks] = chunked_read(filepath, 285'008); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } // chunk size 2 pages minus 1 byte: each chunk will be just one page { auto const [result, num_chunks] = chunked_read(filepath, 285'007); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithStructsOfLists) { auto constexpr num_rows = 100'000; auto const generate_input = [num_rows](bool nullable) { std::vector<std::unique_ptr<cudf::column>> input_columns; auto const int_iter = thrust::make_counting_iterator(0); input_columns.emplace_back(int32s_col(int_iter, int_iter + num_rows).release()); input_columns.emplace_back([=] { std::vector<std::unique_ptr<cudf::column>> child_columns; child_columns.emplace_back(int32s_col(int_iter, int_iter + num_rows).release()); child_columns.emplace_back( int32s_col(int_iter + num_rows, int_iter + num_rows * 2).release()); auto const str_iter = cudf::detail::make_counting_transform_iterator(0, [&](int32_t i) { return std::to_string(i) + "++++++++++++++++++++" + std::to_string(i); }); child_columns.emplace_back(strings_col{str_iter, str_iter + num_rows}.release()); auto const template_lists = int32s_lists_col{ int32s_lists_col{}, int32s_lists_col{0}, int32s_lists_col{0, 1}, int32s_lists_col{0, 1, 2}}; auto const gather_iter = cudf::detail::make_counting_transform_iterator(0, [&](int32_t i) { return i % 4; }); auto const gather_map = int32s_col(gather_iter, gather_iter + num_rows); child_columns.emplace_back( std::move(cudf::gather(cudf::table_view{{template_lists}}, gather_map)->release().front())); return structs_col(std::move(child_columns)).release(); }()); return write_file(input_columns, "chunked_read_with_structs_of_lists", nullable, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }; auto const [expected_no_null, filepath_no_null] = generate_input(false); auto const [expected_with_nulls, filepath_with_nulls] = generate_input(true); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath_no_null, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1); EXPECT_EQ(num_chunks, 10); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath_no_null, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Other tests: // for these tests, different columns get written to different numbers of pages so it's a // little tricky to describe the expected results by page counts. To get an idea of how // these values are chosen, see the debug output from the call to print_cumulative_row_info() in // reader_impl_preprocess.cu -> find_splits() { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1'000'000); EXPECT_EQ(num_chunks, 7); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1'500'000); EXPECT_EQ(num_chunks, 4); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 2'000'000); EXPECT_EQ(num_chunks, 4); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 5'000'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1'000'000); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1'500'000); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 2'000'000); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 5'000'000); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadWithListsOfStructs) { auto constexpr num_rows = 100'000; auto const generate_input = [num_rows](bool nullable) { std::vector<std::unique_ptr<cudf::column>> input_columns; auto const int_iter = thrust::make_counting_iterator(0); input_columns.emplace_back(int32s_col(int_iter, int_iter + num_rows).release()); auto offsets = std::vector<cudf::size_type>{}; offsets.reserve(num_rows * 2); cudf::size_type num_structs = 0; for (int i = 0; i < num_rows; ++i) { offsets.push_back(num_structs); auto const new_list_size = i % 4; num_structs += new_list_size; } offsets.push_back(num_structs); auto const make_structs_col = [=] { auto child1 = int32s_col(int_iter, int_iter + num_structs); auto child2 = int32s_col(int_iter + num_structs, int_iter + num_structs * 2); auto const str_iter = cudf::detail::make_counting_transform_iterator( 0, [&](int32_t i) { return std::to_string(i) + std::to_string(i) + std::to_string(i); }); auto child3 = strings_col{str_iter, str_iter + num_structs}; return structs_col{{child1, child2, child3}}.release(); }; input_columns.emplace_back( cudf::make_lists_column(static_cast<cudf::size_type>(offsets.size() - 1), int32s_col(offsets.begin(), offsets.end()).release(), make_structs_col(), 0, rmm::device_buffer{})); return write_file(input_columns, "chunked_read_with_lists_of_structs", nullable, 512 * 1024, // 512KB per page 20000 // 20k rows per page ); }; auto const [expected_no_null, filepath_no_null] = generate_input(false); auto const [expected_with_nulls, filepath_with_nulls] = generate_input(true); // Test with zero limit: everything will be read in one chunk { auto const [result, num_chunks] = chunked_read(filepath_no_null, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very small limit: 1 byte { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1); EXPECT_EQ(num_chunks, 10); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // Test with a very large limit { auto const [result, num_chunks] = chunked_read(filepath_no_null, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 2L << 40); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } // for these tests, different columns get written to different numbers of pages so it's a // little tricky to describe the expected results by page counts. To get an idea of how // these values are chosen, see the debug output from the call to print_cumulative_row_info() in // reader_impl_preprocess.cu -> find_splits() { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1'000'000); EXPECT_EQ(num_chunks, 7); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 1'500'000); EXPECT_EQ(num_chunks, 4); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 2'000'000); EXPECT_EQ(num_chunks, 4); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_no_null, 5'000'000); EXPECT_EQ(num_chunks, 2); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_no_null, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1'000'000); EXPECT_EQ(num_chunks, 5); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 1'500'000); EXPECT_EQ(num_chunks, 4); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 2'000'000); EXPECT_EQ(num_chunks, 3); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } { auto const [result, num_chunks] = chunked_read(filepath_with_nulls, 5'000'000); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_TABLES_EQUAL(*expected_with_nulls, *result); } } TEST_F(ParquetChunkedReaderTest, TestChunkedReadNullCount) { auto constexpr num_rows = 100'000; auto const sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 1; }); auto const validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 4 != 3; }); cudf::test::fixed_width_column_wrapper<int32_t> col{sequence, sequence + num_rows, validity}; std::vector<std::unique_ptr<cudf::column>> cols; cols.push_back(col.release()); auto const expected = std::make_unique<cudf::table>(std::move(cols)); auto const filepath = temp_env->get_temp_filepath("chunked_reader_null_count.parquet"); auto const page_limit_rows = num_rows / 5; auto const write_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected) .max_page_size_rows(page_limit_rows) // 20k rows per page .build(); cudf::io::write_parquet(write_opts); auto const byte_limit = page_limit_rows * sizeof(int); auto const read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}).build(); auto reader = cudf::io::chunked_parquet_reader(byte_limit, read_opts); do { // Every fourth row is null EXPECT_EQ(reader.read_chunk().tbl->get_column(0).null_count(), page_limit_rows / 4); } while (reader.has_next()); } TEST_F(ParquetChunkedReaderTest, InputLimitSimple) { auto const filepath = temp_env->get_temp_filepath("input_limit_10_rowgroups.parquet"); // This results in 10 grow groups, at 4001150 bytes per row group constexpr int num_rows = 25'000'000; auto value_iter = cudf::detail::make_counting_transform_iterator(0, [](int i) { return i; }); cudf::test::fixed_width_column_wrapper<int> expected(value_iter, value_iter + num_rows); cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, cudf::table_view{{expected}}) // note: it is unnecessary to force compression to NONE here because the size we are using in // the row group is the uncompressed data size. But forcing the dictionary policy to // dictionary_policy::NEVER is necessary to prevent changes in the // decompressed-but-not-yet-decoded data. .dictionary_policy(cudf::io::dictionary_policy::NEVER); cudf::io::write_parquet(opts); { // no chunking auto const [result, num_chunks] = chunked_read(filepath, 0, 0); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->get_column(0)); } { // 25 chunks of 100k rows each auto const [result, num_chunks] = chunked_read(filepath, 0, 1); EXPECT_EQ(num_chunks, 25); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->get_column(0)); } { // 25 chunks of 100k rows each auto const [result, num_chunks] = chunked_read(filepath, 0, 4000000); EXPECT_EQ(num_chunks, 25); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->get_column(0)); } { // 25 chunks of 100k rows each auto const [result, num_chunks] = chunked_read(filepath, 0, 4100000); EXPECT_EQ(num_chunks, 25); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->get_column(0)); } { // 12 chunks of 200k rows each, plus 1 final chunk of 100k rows. auto const [result, num_chunks] = chunked_read(filepath, 0, 8002301); EXPECT_EQ(num_chunks, 13); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->get_column(0)); } { // 1 big chunk auto const [result, num_chunks] = chunked_read(filepath, 0, size_t{1} * 1024 * 1024 * 1024); EXPECT_EQ(num_chunks, 1); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, result->get_column(0)); } }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/csv_test.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/io/arrow_io_source.hpp> #include <cudf/io/csv.hpp> #include <cudf/strings/convert/convert_datetime.hpp> #include <cudf/strings/convert/convert_fixed_point.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/unary.hpp> #include <arrow/io/api.h> #include <thrust/copy.h> #include <thrust/execution_policy.h> #include <thrust/find.h> #include <thrust/iterator/counting_iterator.h> #include <algorithm> #include <fstream> #include <iostream> #include <iterator> #include <limits> #include <numeric> #include <sstream> #include <string> #include <vector> using cudf::data_type; using cudf::type_id; using cudf::type_to_id; template <typename T> auto dtype() { return data_type{type_to_id<T>()}; } template <typename T, typename SourceElementT = T> using column_wrapper = typename std::conditional<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper, cudf::test::fixed_width_column_wrapper<T, SourceElementT>>::type; using column = cudf::column; using table = cudf::table; using table_view = cudf::table_view; // Global environment for temporary files auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); // Base test fixture for tests struct CsvWriterTest : public cudf::test::BaseFixture {}; template <typename T> struct CsvFixedPointWriterTest : public CsvWriterTest {}; TYPED_TEST_SUITE(CsvFixedPointWriterTest, cudf::test::FixedPointTypes); // Base test fixture for tests struct CsvReaderTest : public cudf::test::BaseFixture {}; // Typed test fixture for timestamp type tests template <typename T> struct CsvReaderNumericTypeTest : public CsvReaderTest {}; // Declare typed test cases using SupportedNumericTypes = cudf::test::Types<int64_t, double>; TYPED_TEST_SUITE(CsvReaderNumericTypeTest, SupportedNumericTypes); template <typename DecimalType> struct CsvFixedPointReaderTest : public CsvReaderTest { void run_tests(std::vector<std::string> const& reference_strings, numeric::scale_type scale) { cudf::test::strings_column_wrapper const strings(reference_strings.begin(), reference_strings.end()); auto const expected = cudf::strings::to_fixed_point( cudf::strings_column_view(strings), data_type{type_to_id<DecimalType>(), scale}); auto const buffer = std::accumulate(reference_strings.begin(), reference_strings.end(), std::string{}, [](std::string const& acc, std::string const& rhs) { return acc.empty() ? rhs : (acc + "\n" + rhs); }); cudf::io::csv_reader_options const in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .dtypes({data_type{type_to_id<DecimalType>(), scale}}) .header(-1); auto const result = cudf::io::read_csv(in_opts); auto const result_view = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, result_view.column(0)); EXPECT_EQ(result_view.num_columns(), 1); } }; TYPED_TEST_SUITE(CsvFixedPointReaderTest, cudf::test::FixedPointTypes); namespace { // Generates a vector of uniform random values of type T template <typename T> inline auto random_values(size_t size) { std::vector<T> values(size); using T1 = T; using uniform_distribution = typename std::conditional_t<std::is_same_v<T1, bool>, std::bernoulli_distribution, std::conditional_t<std::is_floating_point_v<T1>, std::uniform_real_distribution<T1>, std::uniform_int_distribution<T1>>>; static constexpr auto seed = 0xf00d; static std::mt19937 engine{seed}; static uniform_distribution dist{}; std::generate_n(values.begin(), size, [&]() { return T{dist(engine)}; }); return values; } MATCHER_P(FloatNearPointwise, tolerance, "Out-of-range") { return (std::get<0>(arg) > std::get<1>(arg) - tolerance && std::get<0>(arg) < std::get<1>(arg) + tolerance); } template <typename T> using wrapper = cudf::test::fixed_width_column_wrapper<T>; // temporary method to verify the float columns until // CUDF_TEST_EXPECT_COLUMNS_EQUAL supports floating point template <typename T, typename valid_t> void check_float_column(cudf::column_view const& col_lhs, cudf::column_view const& col_rhs, T tol, valid_t const& validity) { auto h_data = cudf::test::to_host<T>(col_rhs).first; std::vector<T> data(h_data.size()); std::copy(h_data.begin(), h_data.end(), data.begin()); CUDF_TEST_EXPECT_COLUMN_PROPERTIES_EQUIVALENT(col_lhs, (wrapper<T>{data.begin(), data.end(), validity})); EXPECT_TRUE(col_lhs.null_count() == 0 and col_rhs.null_count() == 0); EXPECT_THAT(cudf::test::to_host<T>(col_lhs).first, ::testing::Pointwise(FloatNearPointwise(tol), data)); } // timestamp column checker within tolerance // given by `tol_ms` (milliseconds) void check_timestamp_column(cudf::column_view const& col_lhs, cudf::column_view const& col_rhs, long tol_ms = 1000l) { using T = cudf::timestamp_ms; using namespace cuda::std::chrono; auto h_lhs = cudf::test::to_host<T>(col_lhs).first; auto h_rhs = cudf::test::to_host<T>(col_rhs).first; cudf::size_type nrows = h_lhs.size(); EXPECT_TRUE(nrows == static_cast<cudf::size_type>(h_rhs.size())); auto begin_count = thrust::make_counting_iterator<cudf::size_type>(0); auto end_count = thrust::make_counting_iterator<cudf::size_type>(nrows); auto* ptr_lhs = h_lhs.data(); // cannot capture host_vector in thrust, // not even in host lambda auto* ptr_rhs = h_rhs.data(); auto found = thrust::find_if( thrust::host, begin_count, end_count, [ptr_lhs, ptr_rhs, tol_ms](auto row_index) { auto delta_ms = cuda::std::chrono::duration_cast<cuda::std::chrono::milliseconds>( ptr_lhs[row_index] - ptr_rhs[row_index]); return delta_ms.count() >= tol_ms; }); EXPECT_TRUE(found == end_count); // not found... } // helper to replace in `str` _all_ occurrences of `from` with `to` std::string replace_all_helper(std::string str, std::string const& from, std::string const& to) { size_t start_pos = 0; while ((start_pos = str.find(from, start_pos)) != std::string::npos) { str.replace(start_pos, from.length(), to); start_pos += to.length(); } return str; } // compare string columns accounting for special character // treatment: double double quotes ('\"') // and surround whole string by double quotes if it contains: // newline '\n', <delimiter>, and double quotes; void check_string_column(cudf::column_view const& col_lhs, cudf::column_view const& col_rhs, std::string const& delimiter = ",") { auto h_lhs = cudf::test::to_host<std::string>(col_lhs).first; auto h_rhs = cudf::test::to_host<std::string>(col_rhs).first; std::string newline("\n"); std::string quotes("\""); std::string quotes_repl("\"\""); std::vector<std::string> v_lhs; std::transform(h_lhs.begin(), h_lhs.end(), std::back_inserter(v_lhs), [delimiter, newline, quotes, quotes_repl](std::string const& str_row) { auto found_quote = str_row.find(quotes); auto found_newl = str_row.find(newline); auto found_delim = str_row.find(delimiter); bool flag_found_quotes = (found_quote != std::string::npos); bool need_surround = flag_found_quotes || (found_newl != std::string::npos) || (found_delim != std::string::npos); std::string str_repl; if (flag_found_quotes) { str_repl = replace_all_helper(str_row, quotes, quotes_repl); } else { str_repl = str_row; } return need_surround ? quotes + str_repl + quotes : str_row; }); EXPECT_TRUE(std::equal(v_lhs.begin(), v_lhs.end(), h_rhs.begin())); } // Helper function to compare two floating-point column contents template <typename T, std::enable_if_t<std::is_floating_point_v<T>>* = nullptr> void expect_column_data_equal(std::vector<T> const& lhs, cudf::column_view const& rhs) { EXPECT_THAT(cudf::test::to_host<T>(rhs).first, ::testing::Pointwise(FloatNearPointwise(1e-6), lhs)); } // Helper function to compare two column contents template <typename T, std::enable_if_t<!std::is_floating_point_v<T>>* = nullptr> void expect_column_data_equal(std::vector<T> const& lhs, cudf::column_view const& rhs) { EXPECT_THAT(cudf::test::to_host<T>(rhs).first, ::testing::ElementsAreArray(lhs)); } void write_csv_helper(std::string const& filename, cudf::table_view const& table, std::vector<std::string> const& names = {}) { cudf::io::csv_writer_options writer_options = cudf::io::csv_writer_options::builder(cudf::io::sink_info(filename), table) .include_header(not names.empty()) .names(names); cudf::io::write_csv(writer_options); } template <typename T> std::string assign(T input) { return std::to_string(input); } std::string assign(std::string input) { return input; } template <typename T> std::vector<std::string> prepend_zeros(std::vector<T> const& input, int zero_count = 0, bool add_positive_sign = false) { std::vector<std::string> output(input.size()); std::transform(input.begin(), input.end(), output.begin(), [=](T const& num) { auto str = assign(num); bool is_negative = (str[0] == '-'); if (is_negative) { str.insert(1, zero_count, '0'); return str; } else if (add_positive_sign) { return "+" + std::string(zero_count, '0') + str; } else { str.insert(0, zero_count, '0'); return str; } }); return output; } } // namespace TYPED_TEST(CsvReaderNumericTypeTest, SingleColumn) { constexpr auto num_rows = 10; auto sequence = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return static_cast<TypeParam>(i + 1000.50f); }); auto filepath = temp_env->get_temp_filepath("SingleColumn.csv"); { std::ofstream out_file{filepath, std::ofstream::out}; std::ostream_iterator<TypeParam> output_iterator(out_file, "\n"); std::copy(sequence, sequence + num_rows, output_iterator); } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}).header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); expect_column_data_equal(std::vector<TypeParam>(sequence, sequence + num_rows), view.column(0)); } TYPED_TEST(CsvFixedPointReaderTest, SingleColumnNegativeScale) { this->run_tests({"1.23", "876e-2", "5.43e1", "-0.12", "0.25", "-0.23", "-0.27", "0.00", "0.00"}, numeric::scale_type{-2}); } TYPED_TEST(CsvFixedPointReaderTest, SingleColumnNoScale) { this->run_tests({"123", "-87600e-2", "54.3e1", "-12", "25", "-23", "-27", "0", "0"}, numeric::scale_type{0}); } TYPED_TEST(CsvFixedPointReaderTest, SingleColumnPositiveScale) { this->run_tests( {"123000", "-87600000e-2", "54300e1", "-12000", "25000", "-23000", "-27000", "0000", "0000"}, numeric::scale_type{3}); } TYPED_TEST(CsvFixedPointWriterTest, SingleColumnNegativeScale) { std::vector<std::string> reference_strings = { "1.23", "-8.76", "5.43", "-0.12", "0.25", "-0.23", "-0.27", "0.00", "0.00"}; auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2 == 0); }); cudf::test::strings_column_wrapper strings( reference_strings.begin(), reference_strings.end(), validity); std::vector<std::string> valid_reference_strings; thrust::copy_if(thrust::host, reference_strings.begin(), reference_strings.end(), thrust::make_counting_iterator(0), std::back_inserter(valid_reference_strings), validity.functor()); reference_strings = valid_reference_strings; using DecimalType = TypeParam; auto input_column = cudf::strings::to_fixed_point(cudf::strings_column_view(strings), data_type{type_to_id<DecimalType>(), numeric::scale_type{-2}}); auto input_table = cudf::table_view{std::vector<cudf::column_view>{*input_column}}; auto filepath = temp_env->get_temp_dir() + "FixedPointSingleColumnNegativeScale.csv"; cudf::io::csv_writer_options writer_options = cudf::io::csv_writer_options::builder(cudf::io::sink_info(filepath), input_table) .include_header(false); cudf::io::write_csv(writer_options); std::vector<std::string> result_strings; result_strings.reserve(reference_strings.size()); std::ifstream read_result_file(filepath); ASSERT_TRUE(read_result_file.is_open()); std::copy(std::istream_iterator<std::string>(read_result_file), std::istream_iterator<std::string>(), std::back_inserter(result_strings)); EXPECT_EQ(result_strings, reference_strings); } TYPED_TEST(CsvFixedPointWriterTest, SingleColumnPositiveScale) { std::vector<std::string> reference_strings = { "123000", "-876000", "543000", "-12000", "25000", "-23000", "-27000", "0000", "0000"}; auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2 == 0); }); cudf::test::strings_column_wrapper strings( reference_strings.begin(), reference_strings.end(), validity); std::vector<std::string> valid_reference_strings; thrust::copy_if(thrust::host, reference_strings.begin(), reference_strings.end(), thrust::make_counting_iterator(0), std::back_inserter(valid_reference_strings), validity.functor()); reference_strings = valid_reference_strings; using DecimalType = TypeParam; auto input_column = cudf::strings::to_fixed_point(cudf::strings_column_view(strings), data_type{type_to_id<DecimalType>(), numeric::scale_type{3}}); auto input_table = cudf::table_view{std::vector<cudf::column_view>{*input_column}}; auto filepath = temp_env->get_temp_dir() + "FixedPointSingleColumnPositiveScale.csv"; cudf::io::csv_writer_options writer_options = cudf::io::csv_writer_options::builder(cudf::io::sink_info(filepath), input_table) .include_header(false); cudf::io::write_csv(writer_options); std::vector<std::string> result_strings; result_strings.reserve(reference_strings.size()); std::ifstream read_result_file(filepath); ASSERT_TRUE(read_result_file.is_open()); std::copy(std::istream_iterator<std::string>(read_result_file), std::istream_iterator<std::string>(), std::back_inserter(result_strings)); EXPECT_EQ(result_strings, reference_strings); } void test_quoting_disabled_with_delimiter(char delimiter_char) { auto const delimiter = std::string{delimiter_char}; auto const input_strings = cudf::test::strings_column_wrapper{ std::string{"All"} + delimiter + "the" + delimiter + "leaves", "are\"brown", "and\nthe\nsky\nis\ngrey"}; auto const input_table = table_view{{input_strings}}; auto const filepath = temp_env->get_temp_dir() + "unquoted.csv"; auto w_options = cudf::io::csv_writer_options::builder(cudf::io::sink_info{filepath}, input_table) .include_header(false) .inter_column_delimiter(delimiter_char) .quoting(cudf::io::quote_style::NONE); cudf::io::write_csv(w_options.build()); auto r_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .header(-1) .delimiter(delimiter_char) .quoting(cudf::io::quote_style::NONE); auto r_table = cudf::io::read_csv(r_options.build()); auto const expected = cudf::test::strings_column_wrapper{"All", "are\"brown", "and", "the", "sky", "is", "grey"}; CUDF_TEST_EXPECT_COLUMNS_EQUAL(r_table.tbl->view().column(0), expected); } TEST_F(CsvWriterTest, QuotingDisabled) { test_quoting_disabled_with_delimiter(','); test_quoting_disabled_with_delimiter('\u0001'); } TEST_F(CsvReaderTest, MultiColumn) { constexpr auto num_rows = 10; auto int8_values = random_values<int8_t>(num_rows); auto int16_values = random_values<int16_t>(num_rows); auto int32_values = random_values<int32_t>(num_rows); auto int64_values = random_values<int64_t>(num_rows); auto uint8_values = random_values<uint8_t>(num_rows); auto uint16_values = random_values<uint16_t>(num_rows); auto uint32_values = random_values<uint32_t>(num_rows); auto uint64_values = random_values<uint64_t>(num_rows); auto float32_values = random_values<float>(num_rows); auto float64_values = random_values<double>(num_rows); auto filepath = temp_env->get_temp_dir() + "MultiColumn.csv"; { std::ostringstream line; for (int i = 0; i < num_rows; ++i) { line << std::to_string(int8_values[i]) << "," << int16_values[i] << "," << int32_values[i] << "," << int64_values[i] << "," << std::to_string(uint8_values[i]) << "," << uint16_values[i] << "," << uint32_values[i] << "," << uint64_values[i] << "," << float32_values[i] << "," << float64_values[i] << "\n"; } std::ofstream outfile(filepath, std::ofstream::out); outfile << line.str(); } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .header(-1) .dtypes({dtype<int8_t>(), dtype<int16_t>(), dtype<int32_t>(), dtype<int64_t>(), dtype<uint8_t>(), dtype<uint16_t>(), dtype<uint32_t>(), dtype<uint64_t>(), dtype<float>(), dtype<double>()}); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); expect_column_data_equal(int8_values, view.column(0)); expect_column_data_equal(int16_values, view.column(1)); expect_column_data_equal(int32_values, view.column(2)); expect_column_data_equal(int64_values, view.column(3)); expect_column_data_equal(uint8_values, view.column(4)); expect_column_data_equal(uint16_values, view.column(5)); expect_column_data_equal(uint32_values, view.column(6)); expect_column_data_equal(uint64_values, view.column(7)); expect_column_data_equal(float32_values, view.column(8)); expect_column_data_equal(float64_values, view.column(9)); } TEST_F(CsvReaderTest, RepeatColumn) { constexpr auto num_rows = 10; auto int16_values = random_values<int16_t>(num_rows); auto int64_values = random_values<int64_t>(num_rows); auto uint64_values = random_values<uint64_t>(num_rows); auto float32_values = random_values<float>(num_rows); auto filepath = temp_env->get_temp_dir() + "RepeatColumn.csv"; { std::ostringstream line; for (int i = 0; i < num_rows; ++i) { line << int16_values[i] << "," << int64_values[i] << "," << uint64_values[i] << "," << float32_values[i] << "\n"; } std::ofstream outfile(filepath, std::ofstream::out); outfile << line.str(); } // repeats column in indexes and names, misses 1 column. cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({dtype<int16_t>(), dtype<int64_t>(), dtype<uint64_t>(), dtype<float>()}) .names({"A", "B", "C", "D"}) .use_cols_indexes({1, 0, 0}) .use_cols_names({"D", "B", "B"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(3, view.num_columns()); expect_column_data_equal(int16_values, view.column(0)); expect_column_data_equal(int64_values, view.column(1)); expect_column_data_equal(float32_values, view.column(2)); } TEST_F(CsvReaderTest, Booleans) { auto filepath = temp_env->get_temp_dir() + "Booleans.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "YES,1,bar,true\nno,2,FOO,true\nBar,3,yes,false\nNo,4,NO," "true\nYes,5,foo,false\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A", "B", "C", "D"}) .dtypes({dtype<int32_t>(), dtype<int32_t>(), dtype<int16_t>(), dtype<bool>()}) .true_values({"yes", "Yes", "YES", "foo", "FOO"}) .false_values({"no", "No", "NO", "Bar", "bar"}) .header(-1); auto result = cudf::io::read_csv(in_opts); // Booleans are the same (integer) data type, but valued at 0 or 1 auto const view = result.tbl->view(); EXPECT_EQ(4, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); ASSERT_EQ(type_id::INT32, view.column(1).type().id()); ASSERT_EQ(type_id::INT16, view.column(2).type().id()); ASSERT_EQ(type_id::BOOL8, view.column(3).type().id()); expect_column_data_equal(std::vector<int32_t>{1, 0, 0, 0, 1}, view.column(0)); expect_column_data_equal(std::vector<int16_t>{0, 1, 1, 0, 1}, view.column(2)); expect_column_data_equal(std::vector<bool>{true, true, false, true, false}, view.column(3)); } TEST_F(CsvReaderTest, Dates) { auto filepath = temp_env->get_temp_dir() + "Dates.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "05/03/2001\n31/10/2010\n20/10/1994\n18/10/1990\n1/1/1970\n"; outfile << "18/04/1995\n14/07/1994\n07/06/2006 11:20:30.400\n"; outfile << "16/09/2005T1:2:30.400PM\n2/2/1970\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_MILLISECONDS}}) .dayfirst(true) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_MILLISECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; expect_column_data_equal(std::vector<cudf::timestamp_ms>{cudf::timestamp_ms{983750400000ms}, cudf::timestamp_ms{1288483200000ms}, cudf::timestamp_ms{782611200000ms}, cudf::timestamp_ms{656208000000ms}, cudf::timestamp_ms{0ms}, cudf::timestamp_ms{798163200000ms}, cudf::timestamp_ms{774144000000ms}, cudf::timestamp_ms{1149679230400ms}, cudf::timestamp_ms{1126875750400ms}, cudf::timestamp_ms{2764800000ms}}, view.column(0)); } TEST_F(CsvReaderTest, DatesCastToTimestampSeconds) { auto filepath = temp_env->get_temp_dir() + "DatesCastToTimestampS.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "05/03/2001\n31/10/2010\n20/10/1994\n18/10/1990\n1/1/1970\n"; outfile << "18/04/1995\n14/07/1994\n07/06/2006 11:20:30.400\n"; outfile << "16/09/2005T1:2:30.400PM\n2/2/1970\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_SECONDS}}) .dayfirst(true) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_SECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; expect_column_data_equal(std::vector<cudf::timestamp_s>{cudf::timestamp_s{983750400s}, cudf::timestamp_s{1288483200s}, cudf::timestamp_s{782611200s}, cudf::timestamp_s{656208000s}, cudf::timestamp_s{0s}, cudf::timestamp_s{798163200s}, cudf::timestamp_s{774144000s}, cudf::timestamp_s{1149679230s}, cudf::timestamp_s{1126875750s}, cudf::timestamp_s{2764800s}}, view.column(0)); } TEST_F(CsvReaderTest, DatesCastToTimestampMilliSeconds) { auto filepath = temp_env->get_temp_dir() + "DatesCastToTimestampMs.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "05/03/2001\n31/10/2010\n20/10/1994\n18/10/1990\n1/1/1970\n"; outfile << "18/04/1995\n14/07/1994\n07/06/2006 11:20:30.400\n"; outfile << "16/09/2005T1:2:30.400PM\n2/2/1970\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_MILLISECONDS}}) .dayfirst(true) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_MILLISECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; expect_column_data_equal(std::vector<cudf::timestamp_ms>{cudf::timestamp_ms{983750400000ms}, cudf::timestamp_ms{1288483200000ms}, cudf::timestamp_ms{782611200000ms}, cudf::timestamp_ms{656208000000ms}, cudf::timestamp_ms{0ms}, cudf::timestamp_ms{798163200000ms}, cudf::timestamp_ms{774144000000ms}, cudf::timestamp_ms{1149679230400ms}, cudf::timestamp_ms{1126875750400ms}, cudf::timestamp_ms{2764800000ms}}, view.column(0)); } TEST_F(CsvReaderTest, DatesCastToTimestampMicroSeconds) { auto filepath = temp_env->get_temp_dir() + "DatesCastToTimestampUs.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "05/03/2001\n31/10/2010\n20/10/1994\n18/10/1990\n1/1/1970\n"; outfile << "18/04/1995\n14/07/1994\n07/06/2006 11:20:30.400\n"; outfile << "16/09/2005T1:2:30.400PM\n2/2/1970\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_MICROSECONDS}}) .dayfirst(true) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_MICROSECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; expect_column_data_equal(std::vector<cudf::timestamp_us>{cudf::timestamp_us{983750400000000us}, cudf::timestamp_us{1288483200000000us}, cudf::timestamp_us{782611200000000us}, cudf::timestamp_us{656208000000000us}, cudf::timestamp_us{0us}, cudf::timestamp_us{798163200000000us}, cudf::timestamp_us{774144000000000us}, cudf::timestamp_us{1149679230400000us}, cudf::timestamp_us{1126875750400000us}, cudf::timestamp_us{2764800000000us}}, view.column(0)); } TEST_F(CsvReaderTest, DatesCastToTimestampNanoSeconds) { auto filepath = temp_env->get_temp_dir() + "DatesCastToTimestampNs.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "05/03/2001\n31/10/2010\n20/10/1994\n18/10/1990\n1/1/1970\n"; outfile << "18/04/1995\n14/07/1994\n07/06/2006 11:20:30.400\n"; outfile << "16/09/2005T1:2:30.400PM\n2/2/1970\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_NANOSECONDS}}) .dayfirst(true) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_NANOSECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; expect_column_data_equal( std::vector<cudf::timestamp_ns>{cudf::timestamp_ns{983750400000000000ns}, cudf::timestamp_ns{1288483200000000000ns}, cudf::timestamp_ns{782611200000000000ns}, cudf::timestamp_ns{656208000000000000ns}, cudf::timestamp_ns{0ns}, cudf::timestamp_ns{798163200000000000ns}, cudf::timestamp_ns{774144000000000000ns}, cudf::timestamp_ns{1149679230400000000ns}, cudf::timestamp_ns{1126875750400000000ns}, cudf::timestamp_ns{2764800000000000ns}}, view.column(0)); } TEST_F(CsvReaderTest, IntegersCastToTimestampSeconds) { auto filepath = temp_env->get_temp_dir() + "IntegersCastToTimestampS.csv"; std::vector<int64_t> input_vals{1, 10, 111, 2, 11, 112, 3, 12, 113, 43432423, 13342, 13243214}; auto expected_column = column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>(input_vals.begin(), input_vals.end()); { std::ofstream outfile(filepath, std::ofstream::out); for (auto v : input_vals) { outfile << v << "\n"; } } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_SECONDS}}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_SECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_column, view.column(0)); } TEST_F(CsvReaderTest, IntegersCastToTimestampMilliSeconds) { auto filepath = temp_env->get_temp_dir() + "IntegersCastToTimestampMs.csv"; std::vector<int64_t> input_vals{1, 10, 111, 2, 11, 112, 3, 12, 113, 43432423, 13342, 13243214}; auto expected_column = column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep>( input_vals.begin(), input_vals.end()); { std::ofstream outfile(filepath, std::ofstream::out); for (auto v : input_vals) { outfile << v << "\n"; } } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_MILLISECONDS}}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_MILLISECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_column, view.column(0)); } TEST_F(CsvReaderTest, IntegersCastToTimestampMicroSeconds) { auto filepath = temp_env->get_temp_dir() + "IntegersCastToTimestampUs.csv"; std::vector<int64_t> input_vals{1, 10, 111, 2, 11, 112, 3, 12, 113, 43432423, 13342, 13243214}; auto expected_column = column_wrapper<cudf::timestamp_us, cudf::timestamp_us::rep>( input_vals.begin(), input_vals.end()); { std::ofstream outfile(filepath, std::ofstream::out); for (auto v : input_vals) { outfile << v << "\n"; } } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_MICROSECONDS}}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_MICROSECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_column, view.column(0)); } TEST_F(CsvReaderTest, IntegersCastToTimestampNanoSeconds) { auto filepath = temp_env->get_temp_dir() + "IntegersCastToTimestampNs.csv"; std::vector<int64_t> input_vals{1, 10, 111, 2, 11, 112, 3, 12, 113, 43432423, 13342, 13243214}; auto expected_column = column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep>( input_vals.begin(), input_vals.end()); { std::ofstream outfile(filepath, std::ofstream::out); for (auto v : input_vals) { outfile << v << "\n"; } } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_NANOSECONDS}}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::TIMESTAMP_NANOSECONDS, view.column(0).type().id()); using namespace cuda::std::chrono_literals; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_column, view.column(0)); } TEST_F(CsvReaderTest, FloatingPoint) { auto filepath = temp_env->get_temp_dir() + "FloatingPoint.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "5.6;0.5679e2;1.2e10;0.07e1;3000e-3;12.34e0;3.1e-001;-73." "98007199999998;"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<float>()}) .lineterminator(';') .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::FLOAT32, view.column(0).type().id()); auto const ref_vals = std::vector<float>{5.6, 56.79, 12000000000, 0.7, 3.000, 12.34, 0.31, -73.98007199999998}; expect_column_data_equal(ref_vals, view.column(0)); auto const bitmask = cudf::test::bitmask_to_host(view.column(0)); ASSERT_EQ((1u << ref_vals.size()) - 1, bitmask[0]); } TEST_F(CsvReaderTest, Strings) { std::vector<std::string> names{"line", "verse"}; auto filepath = temp_env->get_temp_dir() + "Strings.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << names[0] << ',' << names[1] << '\n'; outfile << "10,abc def ghi" << '\n'; outfile << "20,\"jkl mno pqr\"" << '\n'; outfile << "30,stu \"\"vwx\"\" yz" << '\n'; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names(names) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}) .quoting(cudf::io::quote_style::NONE); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(2, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); ASSERT_EQ(type_id::STRING, view.column(1).type().id()); expect_column_data_equal( std::vector<std::string>{"abc def ghi", "\"jkl mno pqr\"", "stu \"\"vwx\"\" yz"}, view.column(1)); } TEST_F(CsvReaderTest, StringsQuotes) { std::vector<std::string> names{"line", "verse"}; auto filepath = temp_env->get_temp_dir() + "StringsQuotes.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << names[0] << ',' << names[1] << '\n'; outfile << "10,`abc,\ndef, ghi`" << '\n'; outfile << "20,`jkl, ``mno``, pqr`" << '\n'; outfile << "30,stu `vwx` yz" << '\n'; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names(names) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}) .quotechar('`'); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(2, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); ASSERT_EQ(type_id::STRING, view.column(1).type().id()); expect_column_data_equal( std::vector<std::string>{"abc,\ndef, ghi", "jkl, `mno`, pqr", "stu `vwx` yz"}, view.column(1)); } TEST_F(CsvReaderTest, StringsQuotesIgnored) { std::vector<std::string> names{"line", "verse"}; auto filepath = temp_env->get_temp_dir() + "StringsQuotesIgnored.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << names[0] << ',' << names[1] << '\n'; outfile << "10,\"abcdef ghi\"" << '\n'; outfile << "20,\"jkl \"\"mno\"\" pqr\"" << '\n'; outfile << "30,stu \"vwx\" yz" << '\n'; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names(names) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}) .quoting(cudf::io::quote_style::NONE) .doublequote(false); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(2, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); ASSERT_EQ(type_id::STRING, view.column(1).type().id()); expect_column_data_equal( std::vector<std::string>{"\"abcdef ghi\"", "\"jkl \"\"mno\"\" pqr\"", "stu \"vwx\" yz"}, view.column(1)); } TEST_F(CsvReaderTest, SkiprowsNrows) { auto filepath = temp_env->get_temp_dir() + "SkiprowsNrows.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "1\n2\n3\n4\n5\n6\n7\n8\n9\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<int32_t>()}) .header(1) .skiprows(2) .nrows(2); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); expect_column_data_equal(std::vector<int32_t>{5, 6}, view.column(0)); } TEST_F(CsvReaderTest, ByteRange) { auto filepath = temp_env->get_temp_dir() + "ByteRange.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "1000\n2000\n3000\n4000\n5000\n6000\n7000\n8000\n9000\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<int32_t>()}) .header(-1) .byte_range_offset(11) .byte_range_size(15); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); expect_column_data_equal(std::vector<int32_t>{4000, 5000, 6000}, view.column(0)); } TEST_F(CsvReaderTest, ByteRangeStrings) { std::string input = "\"a\"\n\"b\"\n\"c\""; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{input.c_str(), input.size()}) .names({"A"}) .dtypes({dtype<cudf::string_view>()}) .header(-1) .byte_range_offset(4); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::STRING, view.column(0).type().id()); expect_column_data_equal(std::vector<std::string>{"c"}, view.column(0)); } TEST_F(CsvReaderTest, BlanksAndComments) { auto filepath = temp_env->get_temp_dir() + "BlanksAndComments.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "1\n#blank\n3\n4\n5\n#blank\n\n\n8\n9\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<int32_t>()}) .header(-1) .comment('#'); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::INT32, view.column(0).type().id()); expect_column_data_equal(std::vector<int32_t>{1, 3, 4, 5, 8, 9}, view.column(0)); } TEST_F(CsvReaderTest, EmptyFile) { auto filepath = temp_env->get_temp_dir() + "EmptyFile.csv"; { std::ofstream outfile{filepath, std::ofstream::out}; outfile << ""; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(0, view.num_columns()); } TEST_F(CsvReaderTest, NoDataFile) { auto filepath = temp_env->get_temp_dir() + "NoDataFile.csv"; { std::ofstream outfile{filepath, std::ofstream::out}; outfile << "\n\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(0, view.num_columns()); } TEST_F(CsvReaderTest, HeaderOnlyFile) { auto filepath = temp_env->get_temp_dir() + "HeaderOnlyFile.csv"; { std::ofstream outfile{filepath, std::ofstream::out}; outfile << "\"a\",\"b\",\"c\"\n\n"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(0, view.num_rows()); EXPECT_EQ(3, view.num_columns()); } TEST_F(CsvReaderTest, ArrowFileSource) { auto filepath = temp_env->get_temp_dir() + "ArrowFileSource.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "A\n9\n8\n7\n6\n5\n4\n3\n2\n"; } std::shared_ptr<arrow::io::ReadableFile> infile; ASSERT_TRUE(arrow::io::ReadableFile::Open(filepath).Value(&infile).ok()); auto arrow_source = cudf::io::arrow_io_source{infile}; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{&arrow_source}) .dtypes({dtype<int8_t>()}); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::INT8, view.column(0).type().id()); expect_column_data_equal(std::vector<int8_t>{9, 8, 7, 6, 5, 4, 3, 2}, view.column(0)); } TEST_F(CsvReaderTest, InvalidFloatingPoint) { auto const filepath = temp_env->get_temp_dir() + "InvalidFloatingPoint.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "1.2e1+\n3.4e2-\n5.6e3e\n7.8e3A\n9.0Be1\n1C.2"; } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<float>()}) .header(-1); auto const result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); EXPECT_EQ(1, view.num_columns()); ASSERT_EQ(type_id::FLOAT32, view.column(0).type().id()); // ignore all data because it is all nulls. ASSERT_EQ(6u, result.tbl->view().column(0).null_count()); } TEST_F(CsvReaderTest, StringInference) { std::string buffer = "\"-1\"\n"; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .header(-1); auto const result = cudf::io::read_csv(in_opts); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), type_id::STRING); } TEST_F(CsvReaderTest, TypeInferenceThousands) { std::string buffer = "1`400,123,1`234.56\n123`456,123456,12.34"; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .header(-1) .thousands('`'); auto const result = cudf::io::read_csv(in_opts); auto const result_view = result.tbl->view(); EXPECT_EQ(result_view.num_columns(), 3); EXPECT_EQ(result_view.column(0).type().id(), type_id::INT64); EXPECT_EQ(result_view.column(1).type().id(), type_id::INT64); EXPECT_EQ(result_view.column(2).type().id(), type_id::FLOAT64); auto tsnd_sep_col = std::vector<int64_t>{1400L, 123456L}; auto int_col = std::vector<int64_t>{123L, 123456L}; auto dbl_col = std::vector<double>{1234.56, 12.34}; expect_column_data_equal(tsnd_sep_col, result_view.column(0)); expect_column_data_equal(int_col, result_view.column(1)); expect_column_data_equal(dbl_col, result_view.column(2)); } TEST_F(CsvReaderTest, TypeInferenceWithDecimal) { // Given that thousands:'`' and decimal(';'), we expect: // col#0 => INT64 (column contains only digits & thousands sep) // col#1 => STRING (contains digits and period character, which is NOT the decimal point here) // col#2 => FLOAT64 (column contains digits and decimal point (i.e., ';')) std::string buffer = "1`400,1.23,1`234;56\n123`456,123.456,12;34"; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .header(-1) .thousands('`') .decimal(';'); auto const result = cudf::io::read_csv(in_opts); auto const result_view = result.tbl->view(); EXPECT_EQ(result_view.num_columns(), 3); EXPECT_EQ(result_view.column(0).type().id(), type_id::INT64); EXPECT_EQ(result_view.column(1).type().id(), type_id::STRING); EXPECT_EQ(result_view.column(2).type().id(), type_id::FLOAT64); auto int_col = std::vector<int64_t>{1400L, 123456L}; auto str_col = std::vector<std::string>{"1.23", "123.456"}; auto dbl_col = std::vector<double>{1234.56, 12.34}; expect_column_data_equal(int_col, result_view.column(0)); expect_column_data_equal(str_col, result_view.column(1)); expect_column_data_equal(dbl_col, result_view.column(2)); } TEST_F(CsvReaderTest, SkipRowsXorSkipFooter) { std::string buffer = "1,2,3"; cudf::io::csv_reader_options skiprows_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .header(-1) .skiprows(1); EXPECT_NO_THROW(cudf::io::read_csv(skiprows_options)); cudf::io::csv_reader_options skipfooter_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .header(-1) .skipfooter(1); EXPECT_NO_THROW(cudf::io::read_csv(skipfooter_options)); } TEST_F(CsvReaderTest, nullHandling) { auto const filepath = temp_env->get_temp_dir() + "NullValues.csv"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << "NULL\n\nnull\nn/a\nNull\nNA\nnan"; } // Test disabling na_filter { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .na_filter(false) .dtypes({dtype<cudf::string_view>()}) .header(-1) .skip_blank_lines(false); auto const result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); auto expect = cudf::test::strings_column_wrapper({"NULL", "", "null", "n/a", "Null", "NA", "nan"}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, view.column(0)); } // Test enabling na_filter { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({dtype<cudf::string_view>()}) .header(-1) .skip_blank_lines(false); auto const result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); auto expect = cudf::test::strings_column_wrapper({"NULL", "", "null", "n/a", "Null", "NA", "nan"}, {false, false, false, false, true, false, false}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, view.column(0)); } // Setting na_values with default values { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .na_values({"Null"}) .dtypes({dtype<cudf::string_view>()}) .header(-1) .skip_blank_lines(false); auto const result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); auto expect = cudf::test::strings_column_wrapper({"NULL", "", "null", "n/a", "Null", "NA", "nan"}, {false, false, false, false, false, false, false}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, view.column(0)); } // Setting na_values without default values { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .keep_default_na(false) .na_values({"Null"}) .dtypes({dtype<cudf::string_view>()}) .header(-1) .skip_blank_lines(false); auto const result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); auto expect = cudf::test::strings_column_wrapper({"NULL", "", "null", "n/a", "Null", "NA", "nan"}, {true, true, true, true, false, true, true, true}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, view.column(0)); } // Filter enabled, but no NA values { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .keep_default_na(false) .dtypes({dtype<cudf::string_view>()}) .header(-1) .skip_blank_lines(false); auto const result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); auto expect = cudf::test::strings_column_wrapper({"NULL", "", "null", "n/a", "Null", "NA", "nan"}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expect, view.column(0)); } } TEST_F(CsvReaderTest, FailCases) { std::string buffer = "1,2,3"; { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .byte_range_offset(4) .skiprows(1), std::invalid_argument); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .byte_range_offset(4) .skipfooter(1), std::invalid_argument); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .byte_range_offset(4) .nrows(1), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .byte_range_size(4) .skiprows(1), std::invalid_argument); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .byte_range_size(4) .skipfooter(1), std::invalid_argument); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .byte_range_size(4) .nrows(1), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .skiprows(1) .byte_range_offset(4), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .skipfooter(1) .byte_range_offset(4), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .nrows(1) .byte_range_offset(4), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .skiprows(1) .byte_range_size(4), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .skipfooter(1) .byte_range_size(4), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .nrows(1) .byte_range_size(4), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .nrows(1) .skipfooter(1), std::invalid_argument); ; } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .skipfooter(1) .nrows(1), cudf::logic_error); } { EXPECT_THROW( cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .na_filter(false) .na_values({"Null"}), cudf::logic_error); } } TEST_F(CsvReaderTest, HexTest) { auto filepath = temp_env->get_temp_filepath("Hexadecimal.csv"); { std::ofstream outfile(filepath, std::ofstream::out); outfile << "0x0\n-0x1000\n0xfedcba\n0xABCDEF\n0xaBcDeF\n9512c20b\n"; } // specify hex columns by name { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<int64_t>()}) .header(-1) .parse_hex({"A"}); auto result = cudf::io::read_csv(in_opts); expect_column_data_equal( std::vector<int64_t>{0, -4096, 16702650, 11259375, 11259375, 2501034507}, result.tbl->view().column(0)); } // specify hex columns by index { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<int64_t>()}) .header(-1) .parse_hex(std::vector<int>{0}); auto result = cudf::io::read_csv(in_opts); expect_column_data_equal( std::vector<int64_t>{0, -4096, 16702650, 11259375, 11259375, 2501034507}, result.tbl->view().column(0)); } } TYPED_TEST(CsvReaderNumericTypeTest, SingleColumnWithWriter) { constexpr auto num_rows = 10; auto sequence = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return static_cast<TypeParam>(i + 1000.50f); }); auto input_column = column_wrapper<TypeParam>(sequence, sequence + num_rows); auto input_table = cudf::table_view{std::vector<cudf::column_view>{input_column}}; auto filepath = temp_env->get_temp_filepath("SingleColumnWithWriter.csv"); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}).header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_table, result_table); } TEST_F(CsvReaderTest, MultiColumnWithWriter) { constexpr auto num_rows = 10; auto int8_column = []() { auto values = random_values<int8_t>(num_rows); return column_wrapper<int8_t>(values.begin(), values.end()); }(); auto int16_column = []() { auto values = random_values<int16_t>(num_rows); return column_wrapper<int16_t>(values.begin(), values.end()); }(); auto int32_column = []() { auto values = random_values<int32_t>(num_rows); return column_wrapper<int32_t>(values.begin(), values.end()); }(); auto int64_column = []() { auto values = random_values<int64_t>(num_rows); return column_wrapper<int64_t>(values.begin(), values.end()); }(); auto uint8_column = []() { auto values = random_values<uint8_t>(num_rows); return column_wrapper<uint8_t>(values.begin(), values.end()); }(); auto uint16_column = []() { auto values = random_values<uint16_t>(num_rows); return column_wrapper<uint16_t>(values.begin(), values.end()); }(); auto uint32_column = []() { auto values = random_values<uint32_t>(num_rows); return column_wrapper<uint32_t>(values.begin(), values.end()); }(); auto uint64_column = []() { auto values = random_values<uint64_t>(num_rows); return column_wrapper<uint64_t>(values.begin(), values.end()); }(); auto float32_column = []() { auto values = random_values<float>(num_rows); return column_wrapper<float>(values.begin(), values.end()); }(); auto float64_column = []() { auto values = random_values<double>(num_rows); return column_wrapper<double>(values.begin(), values.end()); }(); std::vector<cudf::column_view> input_columns{int8_column, int16_column, int32_column, int64_column, uint8_column, uint16_column, uint32_column, uint64_column, float32_column, float64_column}; cudf::table_view input_table{input_columns}; auto filepath = temp_env->get_temp_dir() + "MultiColumnWithWriter.csv"; write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .header(-1) .dtypes({dtype<int8_t>(), dtype<int16_t>(), dtype<int32_t>(), dtype<int64_t>(), dtype<uint8_t>(), dtype<uint16_t>(), dtype<uint32_t>(), dtype<uint64_t>(), dtype<float>(), dtype<double>()}); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); std::vector<cudf::size_type> non_float64s{0, 1, 2, 3, 4, 5, 6, 7, 8}; auto const input_sliced_view = input_table.select(non_float64s); auto const result_sliced_view = result_table.select(non_float64s); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_sliced_view, result_sliced_view); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); double tol{1.0e-6}; auto float64_col_idx = non_float64s.size(); check_float_column( input_table.column(float64_col_idx), result_table.column(float64_col_idx), tol, validity); } TEST_F(CsvReaderTest, DatesWithWriter) { auto filepath = temp_env->get_temp_dir() + "DatesWithWriter.csv"; auto input_column = column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep>{983750400000, 1288483200000, 782611200000, 656208000000, 0L, 798163200000, 774144000000, 1149679230400, 1126875750400, 2764800000}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); // TODO need to add a dayfirst flag? write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({data_type{type_id::TIMESTAMP_MILLISECONDS}}) .dayfirst(true) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); check_timestamp_column(input_table.column(0), result_table.column(0)); } TEST_F(CsvReaderTest, DatesStringWithWriter) { { auto filepath = temp_env->get_temp_dir() + "DatesStringWithWriter_D.csv"; auto input_column = column_wrapper<cudf::timestamp_D, cudf::timestamp_D::rep>{-106751, 106751}; auto expected_column = column_wrapper<cudf::string_view>{"1677-09-22", "2262-04-11"}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column, result_table.column(0)); } { auto filepath = temp_env->get_temp_dir() + "DatesStringWithWriter_s.csv"; auto input_column = column_wrapper<cudf::timestamp_s, cudf::timestamp_s::rep>{-9223372036, 9223372036}; auto expected_column = column_wrapper<cudf::string_view>{"1677-09-21T00:12:44Z", "2262-04-11T23:47:16Z"}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column, result_table.column(0)); } { auto filepath = temp_env->get_temp_dir() + "DatesStringWithWriter_ms.csv"; auto input_column = column_wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep>{-9223372036854, 9223372036854}; auto expected_column = column_wrapper<cudf::string_view>{"1677-09-21T00:12:43.146Z", "2262-04-11T23:47:16.854Z"}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column, result_table.column(0)); } { auto filepath = temp_env->get_temp_dir() + "DatesStringWithWriter_us.csv"; auto input_column = column_wrapper<cudf::timestamp_us, cudf::timestamp_us::rep>{ -9223372036854775, 9223372036854775}; auto cast_column = cudf::strings::from_timestamps(input_column, "%Y-%m-%dT%H:%M:%S.%fZ"); auto expected_column = column_wrapper<cudf::string_view>{"1677-09-21T00:12:43.145225Z", "2262-04-11T23:47:16.854775Z"}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column, result_table.column(0)); } { auto filepath = temp_env->get_temp_dir() + "DatesStringWithWriter_ns.csv"; auto input_column = column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep>{ -9223372036854775807, 9223372036854775807}; auto expected_column = column_wrapper<cudf::string_view>{"1677-09-21T00:12:43.145224193Z", "2262-04-11T23:47:16.854775807Z"}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_column, result_table.column(0)); } } TEST_F(CsvReaderTest, FloatingPointWithWriter) { auto filepath = temp_env->get_temp_dir() + "FloatingPointWithWriter.csv"; auto input_column = column_wrapper<double>{5.6, 56.79, 12000000000., 0.7, 3.000, 12.34, 0.31, -73.98007199999998}; cudf::table_view input_table(std::vector<cudf::column_view>{input_column}); // TODO add lineterminator=";" write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names({"A"}) .dtypes({dtype<double>()}) .header(-1); // in_opts.lineterminator = ';'; auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_table, result_table); } TEST_F(CsvReaderTest, StringsWithWriter) { std::vector<std::string> names{"line", "verse"}; auto filepath = temp_env->get_temp_dir() + "StringsWithWriter.csv"; auto int_column = column_wrapper<int32_t>{10, 20, 30}; auto string_column = column_wrapper<cudf::string_view>{"abc def ghi", "\"jkl mno pqr\"", "stu \"\"vwx\"\" yz"}; cudf::table_view input_table(std::vector<cudf::column_view>{int_column, string_column}); // TODO add quoting style flag? write_csv_helper(filepath, input_table, names); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}) .quoting(cudf::io::quote_style::NONE); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_table.column(0), result_table.column(0)); check_string_column(input_table.column(1), result_table.column(1)); ASSERT_EQ(result.metadata.schema_info.size(), names.size()); for (auto i = 0ul; i < names.size(); ++i) EXPECT_EQ(names[i], result.metadata.schema_info[i].name); } TEST_F(CsvReaderTest, StringsWithWriterSimple) { std::vector<std::string> names{"line", "verse"}; auto filepath = temp_env->get_temp_dir() + "StringsWithWriterSimple.csv"; auto int_column = column_wrapper<int32_t>{10, 20, 30}; auto string_column = column_wrapper<cudf::string_view>{"abc def ghi", "jkl mno pq", "stu vwx y"}; cudf::table_view input_table(std::vector<cudf::column_view>{int_column, string_column}); // TODO add quoting style flag? write_csv_helper(filepath, input_table, names); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}) .quoting(cudf::io::quote_style::NONE); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_table.column(0), result_table.column(0)); check_string_column(input_table.column(1), result_table.column(1)); ASSERT_EQ(result.metadata.schema_info.size(), names.size()); for (auto i = 0ul; i < names.size(); ++i) EXPECT_EQ(names[i], result.metadata.schema_info[i].name); } TEST_F(CsvReaderTest, StringsEmbeddedDelimiter) { std::vector<std::string> names{"line", "verse"}; auto filepath = temp_env->get_temp_dir() + "StringsWithWriterSimple.csv"; auto int_column = column_wrapper<int32_t>{10, 20, 30}; auto string_column = column_wrapper<cudf::string_view>{"abc def ghi", "jkl,mno,pq", "stu vwx y"}; cudf::table_view input_table(std::vector<cudf::column_view>{int_column, string_column}); write_csv_helper(filepath, input_table, names); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}); auto result = cudf::io::read_csv(in_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_table, result.tbl->view()); ASSERT_EQ(result.metadata.schema_info.size(), names.size()); for (auto i = 0ul; i < names.size(); ++i) EXPECT_EQ(names[i], result.metadata.schema_info[i].name); } TEST_F(CsvReaderTest, HeaderEmbeddedDelimiter) { std::vector<std::string> names{ "header1", "header,2", "quote\"embedded", "new\nline", "\"quoted\""}; auto filepath = temp_env->get_temp_dir() + "HeaderEmbeddedDelimiter.csv"; auto int_column = column_wrapper<int32_t>{10, 20, 30}; auto string_column = column_wrapper<cudf::string_view>{"abc", "jkl,mno", "xyz"}; cudf::table_view input_table( std::vector<cudf::column_view>{int_column, string_column, int_column, int_column, int_column}); write_csv_helper(filepath, input_table, names); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names(names) .dtypes({dtype<int32_t>(), dtype<cudf::string_view>(), dtype<int32_t>(), dtype<int32_t>(), dtype<int32_t>()}); auto result = cudf::io::read_csv(in_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_table, result.tbl->view()); ASSERT_EQ(result.metadata.schema_info.size(), names.size()); for (auto i = 0ul; i < names.size(); ++i) EXPECT_EQ(names[i], result.metadata.schema_info[i].name); } TEST_F(CsvReaderTest, EmptyFileWithWriter) { auto filepath = temp_env->get_temp_dir() + "EmptyFileWithWriter.csv"; cudf::table_view empty_table; write_csv_helper(filepath, empty_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_csv(in_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(empty_table, result.tbl->view()); } class TestSource : public cudf::io::datasource { public: std::string const str; TestSource(std::string s) : str(std::move(s)) {} std::unique_ptr<buffer> host_read(size_t offset, size_t size) override { size = std::min(size, str.size() - offset); return std::make_unique<non_owning_buffer>((uint8_t*)str.data() + offset, size); } size_t host_read(size_t offset, size_t size, uint8_t* dst) override { auto const read_size = std::min(size, str.size() - offset); memcpy(dst, str.data() + offset, size); return read_size; } [[nodiscard]] size_t size() const override { return str.size(); } }; TEST_F(CsvReaderTest, UserImplementedSource) { constexpr auto num_rows = 10; auto int8_values = random_values<int8_t>(num_rows); auto int16_values = random_values<int16_t>(num_rows); auto int32_values = random_values<int32_t>(num_rows); std::ostringstream csv_data; for (int i = 0; i < num_rows; ++i) { csv_data << std::to_string(int8_values[i]) << "," << int16_values[i] << "," << int32_values[i] << "\n"; } TestSource source{csv_data.str()}; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{&source}) .dtypes({dtype<int8_t>(), dtype<int16_t>(), dtype<int32_t>()}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); expect_column_data_equal(int8_values, view.column(0)); expect_column_data_equal(int16_values, view.column(1)); expect_column_data_equal(int32_values, view.column(2)); } TEST_F(CsvReaderTest, DurationsWithWriter) { auto filepath = temp_env->get_temp_dir() + "DurationsWithWriter.csv"; constexpr long max_value_d = std::numeric_limits<cudf::duration_D::rep>::max(); constexpr long min_value_d = std::numeric_limits<cudf::duration_D::rep>::min(); constexpr long max_value_ns = std::numeric_limits<cudf::duration_s::rep>::max(); constexpr long min_value_ns = std::numeric_limits<cudf::duration_s::rep>::min(); column_wrapper<cudf::duration_D, cudf::duration_D::rep> durations_D{ {-86400L, -3600L, -2L, -1L, 0L, 1L, 2L, min_value_d, max_value_d}}; column_wrapper<cudf::duration_s, int64_t> durations_s{{-86400L, -3600L, -2L, -1L, 0L, 1L, 2L, min_value_ns / 1000000000 + 1, max_value_ns / 1000000000}}; column_wrapper<cudf::duration_ms, int64_t> durations_ms{ {-86400L, -3600L, -2L, -1L, 0L, 1L, 2L, min_value_ns / 1000000 + 1, max_value_ns / 1000000}}; column_wrapper<cudf::duration_us, int64_t> durations_us{ {-86400L, -3600L, -2L, -1L, 0L, 1L, 2L, min_value_ns / 1000 + 1, max_value_ns / 1000}}; column_wrapper<cudf::duration_ns, int64_t> durations_ns{ {-86400L, -3600L, -2L, -1L, 0L, 1L, 2L, min_value_ns, max_value_ns}}; cudf::table_view input_table(std::vector<cudf::column_view>{ durations_D, durations_s, durations_ms, durations_us, durations_ns}); std::vector<std::string> names{"D", "s", "ms", "us", "ns"}; write_csv_helper(filepath, input_table, names); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .names(names) .dtypes({data_type{type_id::DURATION_DAYS}, data_type{type_id::DURATION_SECONDS}, data_type{type_id::DURATION_MILLISECONDS}, data_type{type_id::DURATION_MICROSECONDS}, data_type{type_id::DURATION_NANOSECONDS}}); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_table, result_table); ASSERT_EQ(result.metadata.schema_info.size(), names.size()); for (auto i = 0ul; i < names.size(); ++i) EXPECT_EQ(names[i], result.metadata.schema_info[i].name); } TEST_F(CsvReaderTest, ParseInRangeIntegers) { std::vector<int64_t> small_int = {0, -10, 20, -30}; std::vector<int64_t> less_equal_int64_max = {std::numeric_limits<int64_t>::max() - 3, std::numeric_limits<int64_t>::max() - 2, std::numeric_limits<int64_t>::max() - 1, std::numeric_limits<int64_t>::max()}; std::vector<int64_t> greater_equal_int64_min = {std::numeric_limits<int64_t>::min() + 3, std::numeric_limits<int64_t>::min() + 2, std::numeric_limits<int64_t>::min() + 1, std::numeric_limits<int64_t>::min()}; std::vector<uint64_t> greater_int64_max = {uint64_t{std::numeric_limits<int64_t>::max()} - 1, uint64_t{std::numeric_limits<int64_t>::max()}, uint64_t{std::numeric_limits<int64_t>::max()} + 1, uint64_t{std::numeric_limits<int64_t>::max()} + 2}; std::vector<uint64_t> less_equal_uint64_max = {std::numeric_limits<uint64_t>::max() - 3, std::numeric_limits<uint64_t>::max() - 2, std::numeric_limits<uint64_t>::max() - 1, std::numeric_limits<uint64_t>::max()}; auto input_small_int = column_wrapper<int64_t>(small_int.begin(), small_int.end()); auto input_less_equal_int64_max = column_wrapper<int64_t>(less_equal_int64_max.begin(), less_equal_int64_max.end()); auto input_greater_equal_int64_min = column_wrapper<int64_t>(greater_equal_int64_min.begin(), greater_equal_int64_min.end()); auto input_greater_int64_max = column_wrapper<uint64_t>(greater_int64_max.begin(), greater_int64_max.end()); auto input_less_equal_uint64_max = column_wrapper<uint64_t>(less_equal_uint64_max.begin(), less_equal_uint64_max.end()); auto small_int_append_zeros = prepend_zeros(small_int, 32, true); auto less_equal_int64_max_append_zeros = prepend_zeros(less_equal_int64_max, 32, true); auto greater_equal_int64_min_append_zeros = prepend_zeros(greater_equal_int64_min, 17); auto greater_int64_max_append_zeros = prepend_zeros(greater_int64_max, 5); auto less_equal_uint64_max_append_zeros = prepend_zeros(less_equal_uint64_max, 8, true); auto input_small_int_append = column_wrapper<cudf::string_view>(small_int_append_zeros.begin(), small_int_append_zeros.end()); auto input_less_equal_int64_max_append = column_wrapper<cudf::string_view>( less_equal_int64_max_append_zeros.begin(), less_equal_int64_max_append_zeros.end()); auto input_greater_equal_int64_min_append = column_wrapper<cudf::string_view>( greater_equal_int64_min_append_zeros.begin(), greater_equal_int64_min_append_zeros.end()); auto input_greater_int64_max_append = column_wrapper<cudf::string_view>( greater_int64_max_append_zeros.begin(), greater_int64_max_append_zeros.end()); auto input_less_equal_uint64_max_append = column_wrapper<cudf::string_view>( less_equal_uint64_max_append_zeros.begin(), less_equal_uint64_max_append_zeros.end()); std::vector<cudf::column_view> input_columns{input_small_int, input_less_equal_int64_max, input_greater_equal_int64_min, input_greater_int64_max, input_less_equal_uint64_max, input_small_int_append, input_less_equal_int64_max_append, input_greater_equal_int64_min_append, input_greater_int64_max_append, input_less_equal_uint64_max_append}; cudf::table_view input_table{input_columns}; auto filepath = temp_env->get_temp_filepath("ParseInRangeIntegers.csv"); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}).header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_small_int, view.column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_int64_max, view.column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_equal_int64_min, view.column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_int64_max, view.column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_uint64_max, view.column(4)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_small_int, view.column(5)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_int64_max, view.column(6)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_equal_int64_min, view.column(7)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_int64_max, view.column(8)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_uint64_max, view.column(9)); } TEST_F(CsvReaderTest, ParseOutOfRangeIntegers) { std::vector<std::string> out_of_range_positive = {"111111111111111111111", "2222222222222222222222", "33333333333333333333333", "444444444444444444444444"}; std::vector<std::string> out_of_range_negative = {"-111111111111111111111", "-2222222222222222222222", "-33333333333333333333333", "-444444444444444444444444"}; std::vector<std::string> greater_uint64_max = { "18446744073709551615", "18446744073709551616", "18446744073709551617", "18446744073709551618"}; std::vector<std::string> less_int64_min = { "-9223372036854775807", "-9223372036854775808", "-9223372036854775809", "-9223372036854775810"}; std::vector<std::string> mixed_range = { "18446744073709551613", "18446744073709551614", "18446744073709551615", "-5"}; auto input_out_of_range_positive = column_wrapper<cudf::string_view>(out_of_range_positive.begin(), out_of_range_positive.end()); auto input_out_of_range_negative = column_wrapper<cudf::string_view>(out_of_range_negative.begin(), out_of_range_negative.end()); auto input_greater_uint64_max = column_wrapper<cudf::string_view>(greater_uint64_max.begin(), greater_uint64_max.end()); auto input_less_int64_min = column_wrapper<cudf::string_view>(less_int64_min.begin(), less_int64_min.end()); auto input_mixed_range = column_wrapper<cudf::string_view>(mixed_range.begin(), mixed_range.end()); auto out_of_range_positive_append_zeros = prepend_zeros(out_of_range_positive, 32, true); auto out_of_range_negative_append_zeros = prepend_zeros(out_of_range_negative, 5); auto greater_uint64_max_append_zeros = prepend_zeros(greater_uint64_max, 8, true); auto less_int64_min_append_zeros = prepend_zeros(less_int64_min, 17); auto mixed_range_append_zeros = prepend_zeros(mixed_range, 2, true); auto input_out_of_range_positive_append = column_wrapper<cudf::string_view>( out_of_range_positive_append_zeros.begin(), out_of_range_positive_append_zeros.end()); auto input_out_of_range_negative_append = column_wrapper<cudf::string_view>( out_of_range_negative_append_zeros.begin(), out_of_range_negative_append_zeros.end()); auto input_greater_uint64_max_append = column_wrapper<cudf::string_view>( greater_uint64_max_append_zeros.begin(), greater_uint64_max_append_zeros.end()); auto input_less_int64_min_append = column_wrapper<cudf::string_view>( less_int64_min_append_zeros.begin(), less_int64_min_append_zeros.end()); auto input_mixed_range_append = column_wrapper<cudf::string_view>( mixed_range_append_zeros.begin(), mixed_range_append_zeros.end()); std::vector<cudf::column_view> input_columns{input_out_of_range_positive, input_out_of_range_negative, input_greater_uint64_max, input_less_int64_min, input_mixed_range, input_out_of_range_positive_append, input_out_of_range_negative_append, input_greater_uint64_max_append, input_less_int64_min_append, input_mixed_range_append}; cudf::table_view input_table{input_columns}; auto filepath = temp_env->get_temp_filepath("ParseOutOfRangeIntegers.csv"); write_csv_helper(filepath, input_table); cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}).header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_positive, view.column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_negative, view.column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_uint64_max, view.column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_int64_min, view.column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_mixed_range, view.column(4)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_positive_append, view.column(5)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_negative_append, view.column(6)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_uint64_max_append, view.column(7)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_int64_min_append, view.column(8)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_mixed_range_append, view.column(9)); } TEST_F(CsvReaderTest, ReadMaxNumericValue) { constexpr auto num_rows = 10; auto sequence = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return std::numeric_limits<uint64_t>::max() - i; }); auto filepath = temp_env->get_temp_filepath("ReadMaxNumericValue.csv"); { std::ofstream out_file{filepath, std::ofstream::out}; std::ostream_iterator<uint64_t> output_iterator(out_file, "\n"); std::copy(sequence, sequence + num_rows, output_iterator); } cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}).header(-1); auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); expect_column_data_equal(std::vector<uint64_t>(sequence, sequence + num_rows), view.column(0)); } TEST_F(CsvReaderTest, DefaultWriteChunkSize) { for (auto num_rows : {1, 20, 100, 1000}) { auto sequence = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return static_cast<int32_t>(i + 1000.50f); }); auto input_column = column_wrapper<int32_t>(sequence, sequence + num_rows); auto input_table = cudf::table_view{std::vector<cudf::column_view>{input_column}}; cudf::io::csv_writer_options opts = cudf::io::csv_writer_options::builder(cudf::io::sink_info{"unused.path"}, input_table); ASSERT_EQ(num_rows, opts.get_rows_per_chunk()); } } TEST_F(CsvReaderTest, DtypesMap) { std::string csv_in{"12,9\n34,8\n56,7"}; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .names({"A", "B"}) .dtypes({{"B", dtype<int16_t>()}, {"A", dtype<int32_t>()}}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 2); ASSERT_EQ(result_table.column(0).type(), data_type{type_id::INT32}); ASSERT_EQ(result_table.column(1).type(), data_type{type_id::INT16}); expect_column_data_equal(std::vector<int32_t>{12, 34, 56}, result_table.column(0)); expect_column_data_equal(std::vector<int16_t>{9, 8, 7}, result_table.column(1)); } TEST_F(CsvReaderTest, DtypesMapPartial) { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{nullptr, 0}) .names({"A", "B"}) .dtypes({{"A", dtype<int16_t>()}}); { auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); ASSERT_EQ(type_id::INT16, view.column(0).type().id()); // Default to String if there's no data ASSERT_EQ(type_id::STRING, view.column(1).type().id()); } in_opts.set_dtypes({{"B", dtype<uint32_t>()}}); { auto result = cudf::io::read_csv(in_opts); auto const view = result.tbl->view(); ASSERT_EQ(type_id::STRING, view.column(0).type().id()); ASSERT_EQ(type_id::UINT32, view.column(1).type().id()); } } TEST_F(CsvReaderTest, DtypesArrayInvalid) { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{nullptr, 0}) .names({"A", "B", "C"}) .dtypes(std::vector<cudf::data_type>{dtype<int16_t>(), dtype<int8_t>()}); EXPECT_THROW(cudf::io::read_csv(in_opts), cudf::logic_error); } TEST_F(CsvReaderTest, CsvDefaultOptionsWriteReadMatch) { auto const filepath = temp_env->get_temp_dir() + "issue.csv"; // make up some kind of dataframe auto int_column = column_wrapper<int32_t>{10, 20, 30}; auto str_column = column_wrapper<cudf::string_view>{"abc", "mno", "xyz"}; cudf::table_view input_table(std::vector<cudf::column_view>{int_column, str_column}); // write that dataframe to a csv using default options to some temporary file cudf::io::csv_writer_options writer_options = cudf::io::csv_writer_options::builder(cudf::io::sink_info{filepath}, input_table); cudf::io::write_csv(writer_options); // read the temp csv file using default options cudf::io::csv_reader_options read_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{filepath}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<cudf::string_view>()}); cudf::io::table_with_metadata new_table_and_metadata = cudf::io::read_csv(read_options); // verify that the tables are identical, or as identical as expected. auto const new_table_view = new_table_and_metadata.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(input_table, new_table_view); EXPECT_EQ(new_table_and_metadata.metadata.schema_info[0].name, "0"); EXPECT_EQ(new_table_and_metadata.metadata.schema_info[1].name, "1"); } TEST_F(CsvReaderTest, UseColsValidation) { const std::string buffer = "1,2,3"; const cudf::io::csv_reader_options idx_cnt_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .names({"a", "b"}) .use_cols_indexes({0}); EXPECT_THROW(cudf::io::read_csv(idx_cnt_options), cudf::logic_error); cudf::io::csv_reader_options unique_idx_cnt_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .names({"a", "b"}) .use_cols_indexes({0, 0}); EXPECT_THROW(cudf::io::read_csv(unique_idx_cnt_options), cudf::logic_error); cudf::io::csv_reader_options bad_name_options = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .names({"a", "b", "c"}) .use_cols_names({"nonexistent_name"}); EXPECT_THROW(cudf::io::read_csv(bad_name_options), cudf::logic_error); } TEST_F(CsvReaderTest, CropColumns) { const std::string csv_in{"12,9., 10\n34,8., 20\n56,7., 30"}; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<float>()}) .names({"a", "b"}) .header(-1); auto const result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 2); ASSERT_EQ(result_table.column(0).type(), data_type{type_id::INT32}); ASSERT_EQ(result_table.column(1).type(), data_type{type_id::FLOAT32}); expect_column_data_equal(std::vector<int32_t>{12, 34, 56}, result_table.column(0)); expect_column_data_equal(std::vector<float>{9., 8., 7.}, result_table.column(1)); } TEST_F(CsvReaderTest, CropColumnsUseColsNames) { std::string csv_in{"12,9., 10\n34,8., 20\n56,7., 30"}; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<float>()}) .names({"a", "b"}) .use_cols_names({"b"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 1); ASSERT_EQ(result_table.column(0).type(), data_type{type_id::FLOAT32}); expect_column_data_equal(std::vector<float>{9., 8., 7.}, result_table.column(0)); } TEST_F(CsvReaderTest, ExtraColumns) { std::string csv_in{"12,9., 10\n34,8., 20\n56,7., 30"}; { cudf::io::csv_reader_options opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .names({"a", "b", "c", "d"}) .header(-1); auto result = cudf::io::read_csv(opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 4); ASSERT_EQ(result_table.column(3).type(), data_type{type_id::INT8}); ASSERT_EQ(result_table.column(3).null_count(), 3); } { cudf::io::csv_reader_options with_dtypes_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .names({"a", "b", "c", "d"}) .dtypes({dtype<int32_t>(), dtype<int32_t>(), dtype<int32_t>(), dtype<float>()}) .header(-1); auto result = cudf::io::read_csv(with_dtypes_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 4); ASSERT_EQ(result_table.column(3).type(), data_type{type_id::FLOAT32}); ASSERT_EQ(result_table.column(3).null_count(), 3); } } TEST_F(CsvReaderTest, ExtraColumnsUseCols) { std::string csv_in{"12,9., 10\n34,8., 20\n56,7., 30"}; { cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .names({"a", "b", "c", "d"}) .use_cols_names({"b", "d"}) .header(-1); auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 2); ASSERT_EQ(result_table.column(1).type(), data_type{type_id::INT8}); ASSERT_EQ(result_table.column(1).null_count(), 3); } { cudf::io::csv_reader_options with_dtypes_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .names({"a", "b", "c", "d"}) .use_cols_names({"b", "d"}) .dtypes({dtype<int32_t>(), dtype<int32_t>(), dtype<int32_t>(), dtype<cudf::string_view>()}) .header(-1); auto result = cudf::io::read_csv(with_dtypes_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 2); ASSERT_EQ(result_table.column(1).type(), data_type{type_id::STRING}); ASSERT_EQ(result_table.column(1).null_count(), 3); } } TEST_F(CsvReaderTest, EmptyColumns) { // First column only has empty fields. second column contains only "null" literals std::string csv_in{",null\n,null"}; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .names({"a", "b", "c", "d"}) .header(-1); // More elements in `names` than in the file; additional columns are filled with nulls auto result = cudf::io::read_csv(in_opts); auto const result_table = result.tbl->view(); EXPECT_EQ(result_table.num_columns(), 4); // All columns should contain only nulls; expect INT8 type to use as little memory as possible for (auto& column : result_table) { EXPECT_EQ(column.type(), data_type{type_id::INT8}); EXPECT_EQ(column.null_count(), 2); } } TEST_F(CsvReaderTest, BlankLineAfterFirstRow) { std::string csv_in{"12,9., 10\n\n"}; { cudf::io::csv_reader_options no_header_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}) .header(-1); // No header, getting column names/count from first row auto result = cudf::io::read_csv(no_header_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 3); } { cudf::io::csv_reader_options header_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{csv_in.c_str(), csv_in.size()}); // Getting column names/count from header auto result = cudf::io::read_csv(header_opts); auto const result_table = result.tbl->view(); ASSERT_EQ(result_table.num_columns(), 3); } } TEST_F(CsvReaderTest, NullCount) { std::string buffer = "0,,\n1,1.,\n2,,\n3,,\n4,4.,\n5,5.,\n6,6.,\n7,7.,\n"; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .header(-1); auto const result = cudf::io::read_csv(in_opts); auto const result_view = result.tbl->view(); EXPECT_EQ(result_view.num_rows(), 8); EXPECT_EQ(result_view.column(0).null_count(), 0); EXPECT_EQ(result_view.column(1).null_count(), 3); EXPECT_EQ(result_view.column(2).null_count(), 8); } TEST_F(CsvReaderTest, UTF8BOM) { std::string buffer = "\xEF\xBB\xBFMonth,Day,Year\nJune,6,2023\nAugust,25,1990\nMay,1,2000\n"; cudf::io::csv_reader_options in_opts = cudf::io::csv_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}); auto const result = cudf::io::read_csv(in_opts); auto const result_view = result.tbl->view(); EXPECT_EQ(result_view.num_rows(), 3); EXPECT_EQ(result.metadata.schema_info.front().name, "Month"); auto col1 = cudf::test::strings_column_wrapper({"June", "August", "May"}); auto col2 = cudf::test::fixed_width_column_wrapper<int64_t>({6, 25, 1}); auto col3 = cudf::test::fixed_width_column_wrapper<int64_t>({2023, 1990, 2000}); auto expected = cudf::table_view({col1, col2, col3}); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(result_view, expected); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/type_inference_test.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <io/utilities/string_parsing.hpp> #include <io/utilities/trie.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf_test/base_fixture.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <thrust/iterator/zip_iterator.h> #include <thrust/tuple.h> #include <cstddef> #include <string> #include <vector> using cudf::io::parse_options; using cudf::io::detail::infer_data_type; // Base test fixture for tests struct TypeInference : public cudf::test::BaseFixture {}; TEST_F(TypeInference, Basic) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json([42,52,5])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 4, 7}; auto const string_length = std::vector<cudf::size_type>{2, 2, 1}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::INT64}); } TEST_F(TypeInference, Null) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json([52,5])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 1, 4}; auto const string_length = std::vector<cudf::size_type>{0, 2, 1}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::INT64}); } TEST_F(TypeInference, AllNull) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json([null])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 1, 1}; auto const string_length = std::vector<cudf::size_type>{0, 0, 4}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::INT8}); // INT8 if all nulls } TEST_F(TypeInference, String) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json(["1990","8","25"])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 8, 12}; auto const string_length = std::vector<cudf::size_type>{6, 3, 4}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::STRING}); } TEST_F(TypeInference, Bool) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json([true,false,false])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 6, 12}; auto const string_length = std::vector<cudf::size_type>{4, 5, 5}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::BOOL8}); } TEST_F(TypeInference, Timestamp) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json([1970/2/5,1970/8/25])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 10}; auto const string_length = std::vector<cudf::size_type>{8, 9}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); // All data time (quoted and unquoted) is inferred as string for now EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::STRING}); } TEST_F(TypeInference, InvalidInput) { auto const stream = cudf::get_default_stream(); auto options = parse_options{',', '\n', '\"'}; options.trie_true = cudf::detail::create_serialized_trie({"true"}, stream); options.trie_false = cudf::detail::create_serialized_trie({"false"}, stream); options.trie_na = cudf::detail::create_serialized_trie({"", "null"}, stream); std::string data = R"json([1,2,3,a,5])json"; auto d_data = cudf::make_string_scalar(data); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_data); auto const string_offset = std::vector<cudf::size_type>{1, 3, 5, 7, 9}; auto const string_length = std::vector<cudf::size_type>{1, 1, 1, 1, 1}; auto const d_string_offset = cudf::detail::make_device_uvector_async( string_offset, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_string_length = cudf::detail::make_device_uvector_async( string_length, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto d_col_strings = thrust::make_zip_iterator(thrust::make_tuple(d_string_offset.begin(), d_string_length.begin())); auto res_type = infer_data_type(options.json_view(), {d_string_scalar.data(), static_cast<std::size_t>(d_string_scalar.size())}, d_col_strings, string_offset.size(), stream); // Invalid input is inferred as string for now EXPECT_EQ(res_type, cudf::data_type{cudf::type_id::STRING}); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/json_tree.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <io/json/nested_json.hpp> #include <io/utilities/hostdevice_vector.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/span.hpp> #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/cudf_gtest.hpp> #include <rmm/cuda_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <string> #include <unordered_map> namespace cuio_json = cudf::io::json; // Host copy of tree_meta_t struct tree_meta_t2 { std::vector<cuio_json::NodeT> node_categories; std::vector<cuio_json::NodeIndexT> parent_node_ids; std::vector<cuio_json::TreeDepthT> node_levels; std::vector<cuio_json::SymbolOffsetT> node_range_begin; std::vector<cuio_json::SymbolOffsetT> node_range_end; }; namespace { std::string get_node_string(std::size_t const node_id, tree_meta_t2 const& tree_rep, std::string const& json_input) { auto node_to_str = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::NC_STRUCT: return "STRUCT"; case cuio_json::NC_LIST: return "LIST"; case cuio_json::NC_FN: return "FN"; case cuio_json::NC_STR: return "STR"; case cuio_json::NC_VAL: return "VAL"; case cuio_json::NC_ERR: return "ERR"; default: return "N/A"; }; }; return "<" + std::to_string(node_id) + ":" + node_to_str(tree_rep.node_categories[node_id]) + ":[" + std::to_string(tree_rep.node_range_begin[node_id]) + ", " + std::to_string(tree_rep.node_range_end[node_id]) + ") '" + json_input.substr(tree_rep.node_range_begin[node_id], tree_rep.node_range_end[node_id] - tree_rep.node_range_begin[node_id]) + "'>"; } void print_tree_representation(std::string const& json_input, tree_meta_t2 const& tree_rep) { for (std::size_t i = 0; i < tree_rep.node_categories.size(); i++) { auto parent_id = tree_rep.parent_node_ids[i]; std::stack<std::size_t> path; path.push(i); while (parent_id != cuio_json::parent_node_sentinel) { path.push(parent_id); parent_id = tree_rep.parent_node_ids[parent_id]; } while (path.size()) { auto const node_id = path.top(); std::cout << get_node_string(node_id, tree_rep, json_input) << (path.size() > 1 ? " -> " : ""); path.pop(); } std::cout << "\n"; } } tree_meta_t2 to_cpu_tree(cuio_json::tree_meta_t const& d_value, rmm::cuda_stream_view stream) { return {cudf::detail::make_std_vector_async(d_value.node_categories, stream), cudf::detail::make_std_vector_async(d_value.parent_node_ids, stream), cudf::detail::make_std_vector_async(d_value.node_levels, stream), cudf::detail::make_std_vector_async(d_value.node_range_begin, stream), cudf::detail::make_std_vector_async(d_value.node_range_end, stream)}; } // DEBUG prints auto to_cat = [](auto v) -> std::string { switch (v) { case cuio_json::NC_STRUCT: return " S"; case cuio_json::NC_LIST: return " L"; case cuio_json::NC_STR: return " \""; case cuio_json::NC_VAL: return " V"; case cuio_json::NC_FN: return " F"; case cuio_json::NC_ERR: return "ER"; default: return "UN"; }; }; auto to_int = [](auto v) { return std::to_string(static_cast<int>(v)); }; auto print_vec = [](auto const& cpu, auto const name, auto converter) { for (auto const& v : cpu) printf("%3s,", converter(v).c_str()); std::cout << name << std::endl; }; void print_tree(tree_meta_t2 const& cpu_tree) { print_vec(cpu_tree.node_categories, "node_categories", to_cat); print_vec(cpu_tree.parent_node_ids, "parent_node_ids", to_int); print_vec(cpu_tree.node_levels, "node_levels", to_int); print_vec(cpu_tree.node_range_begin, "node_range_begin", to_int); print_vec(cpu_tree.node_range_end, "node_range_end", to_int); } void print_tree(cuio_json::tree_meta_t const& d_gpu_tree) { auto const cpu_tree = to_cpu_tree(d_gpu_tree, cudf::get_default_stream()); print_tree(cpu_tree); } template <typename T> bool compare_vector(std::vector<T> const& cpu_vec, std::vector<T> const& gpu_vec, std::string const& name) { EXPECT_EQ(cpu_vec.size(), gpu_vec.size()); bool mismatch = false; if (!std::equal(cpu_vec.begin(), cpu_vec.end(), gpu_vec.begin())) { print_vec(cpu_vec, name + "(cpu)", to_int); print_vec(gpu_vec, name + "(gpu)", to_int); for (auto i = 0lu; i < cpu_vec.size(); i++) { mismatch |= (cpu_vec[i] != gpu_vec[i]); printf("%3s,", (cpu_vec[i] == gpu_vec[i] ? " " : "x")); } printf("\n"); } EXPECT_FALSE(mismatch); return mismatch; } template <typename T> bool compare_vector(std::vector<T> const& cpu_vec, rmm::device_uvector<T> const& d_vec, std::string const& name) { auto gpu_vec = cudf::detail::make_std_vector_async(d_vec, cudf::get_default_stream()); return compare_vector(cpu_vec, gpu_vec, name); } void compare_trees(tree_meta_t2 const& cpu_tree, cuio_json::tree_meta_t const& d_gpu_tree, bool print = false) { auto cpu_num_nodes = cpu_tree.node_categories.size(); EXPECT_EQ(cpu_num_nodes, d_gpu_tree.node_categories.size()); EXPECT_EQ(cpu_num_nodes, d_gpu_tree.parent_node_ids.size()); EXPECT_EQ(cpu_num_nodes, d_gpu_tree.node_levels.size()); EXPECT_EQ(cpu_num_nodes, d_gpu_tree.node_range_begin.size()); EXPECT_EQ(cpu_num_nodes, d_gpu_tree.node_range_end.size()); auto gpu_tree = to_cpu_tree(d_gpu_tree, cudf::get_default_stream()); bool mismatch = false; #define COMPARE_MEMBER(member) \ for (std::size_t i = 0; i < cpu_num_nodes; i++) { \ EXPECT_EQ(cpu_tree.member[i], gpu_tree.member[i]) << #member << "[" << i << "]"; \ } COMPARE_MEMBER(node_categories); COMPARE_MEMBER(parent_node_ids); COMPARE_MEMBER(node_levels); COMPARE_MEMBER(node_range_begin); COMPARE_MEMBER(node_range_end); #undef COMPARE_MEMBER #define PRINT_VEC(vec, conv) print_vec(vec, #vec, conv); #define PRINT_COMPARISON(vec, conv) \ PRINT_VEC(cpu_tree.vec, conv); \ PRINT_VEC(gpu_tree.vec, conv); \ if (!std::equal(cpu_tree.vec.begin(), cpu_tree.vec.end(), gpu_tree.vec.begin())) { \ for (auto i = 0lu; i < cpu_tree.vec.size(); i++) { \ mismatch |= (gpu_tree.vec[i] != cpu_tree.vec[i]); \ printf("%3s,", (gpu_tree.vec[i] == cpu_tree.vec[i] ? " " : "x")); \ } \ printf("\n"); \ } if (print) { for (int i = 0; i < int(cpu_num_nodes); i++) printf("%3d,", i); printf(" node_id\n"); PRINT_COMPARISON(node_categories, to_cat); // Works PRINT_COMPARISON(node_levels, to_int); // Works PRINT_COMPARISON(node_range_begin, to_int); // Works PRINT_COMPARISON(node_range_end, to_int); // Works PRINT_COMPARISON(parent_node_ids, to_int); // Works EXPECT_FALSE(mismatch); } #undef PRINT_VEC #undef PRINT_COMPARISON } template <typename T> auto translate_col_id(T const& col_id) { using value_type = typename T::value_type; std::unordered_map<value_type, value_type> col_id_map; std::vector<value_type> new_col_ids(col_id.size()); value_type unique_id = 0; for (auto id : col_id) { if (col_id_map.count(id) == 0) { col_id_map[id] = unique_id++; } } for (size_t i = 0; i < col_id.size(); i++) { new_col_ids[i] = col_id_map[col_id[i]]; } return new_col_ids; } tree_meta_t2 get_tree_representation_cpu( cudf::device_span<cuio_json::PdaTokenT const> tokens_gpu, cudf::device_span<cuio_json::SymbolOffsetT const> token_indices_gpu1, cudf::io::json_reader_options const& options, rmm::cuda_stream_view stream) { constexpr bool include_quote_char = true; // Copy the JSON tokens to the host thrust::host_vector<cuio_json::PdaTokenT> tokens = cudf::detail::make_host_vector_async(tokens_gpu, stream); thrust::host_vector<cuio_json::SymbolOffsetT> token_indices = cudf::detail::make_host_vector_async(token_indices_gpu1, stream); // Make sure tokens have been copied to the host stream.synchronize(); // DEBUG print [[maybe_unused]] auto to_token_str = [](cuio_json::PdaTokenT token) { switch (token) { case cuio_json::token_t::StructBegin: return " {"; case cuio_json::token_t::StructEnd: return " }"; case cuio_json::token_t::ListBegin: return " ["; case cuio_json::token_t::ListEnd: return " ]"; case cuio_json::token_t::FieldNameBegin: return "FB"; case cuio_json::token_t::FieldNameEnd: return "FE"; case cuio_json::token_t::StringBegin: return "SB"; case cuio_json::token_t::StringEnd: return "SE"; case cuio_json::token_t::ErrorBegin: return "er"; case cuio_json::token_t::ValueBegin: return "VB"; case cuio_json::token_t::ValueEnd: return "VE"; case cuio_json::token_t::StructMemberBegin: return " <"; case cuio_json::token_t::StructMemberEnd: return " >"; case cuio_json::token_t::LineEnd: return ";"; default: return "."; } }; if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { std::cout << "Tokens: \n"; for (auto i = 0u; i < tokens.size(); i++) { std::cout << to_token_str(tokens[i]) << " "; } std::cout << std::endl; } // Whether a token does represent a node in the tree representation auto is_node = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::token_t::StructBegin: case cuio_json::token_t::ListBegin: case cuio_json::token_t::StringBegin: case cuio_json::token_t::ValueBegin: case cuio_json::token_t::FieldNameBegin: case cuio_json::token_t::ErrorBegin: return true; default: return false; }; }; // The node that a token represents auto token_to_node = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::token_t::StructBegin: return cuio_json::NC_STRUCT; case cuio_json::token_t::ListBegin: return cuio_json::NC_LIST; case cuio_json::token_t::StringBegin: return cuio_json::NC_STR; case cuio_json::token_t::ValueBegin: return cuio_json::NC_STR; // NC_VAL; case cuio_json::token_t::FieldNameBegin: return cuio_json::NC_FN; default: return cuio_json::NC_ERR; }; }; // Includes quote char for end-of-string token or Skips the quote char for beginning-of-field-name auto get_token_index = [include_quote_char](cuio_json::PdaTokenT const token, cuio_json::SymbolOffsetT const token_index) { constexpr cuio_json::SymbolOffsetT quote_char_size = 1; switch (token) { // Strip off or include quote char for StringBegin case cuio_json::token_t::StringBegin: return token_index + (include_quote_char ? 0 : quote_char_size); // Strip off or Include trailing quote char for string values for StringEnd case cuio_json::token_t::StringEnd: return token_index + (include_quote_char ? quote_char_size : 0); // Strip off quote char included for FieldNameBegin case cuio_json::token_t::FieldNameBegin: return token_index + quote_char_size; default: return token_index; }; }; // Whether a token expects to be followed by its respective end-of-* token partner auto is_begin_of_section = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::token_t::StringBegin: case cuio_json::token_t::ValueBegin: case cuio_json::token_t::FieldNameBegin: return true; default: return false; }; }; // The end-of-* partner token for a given beginning-of-* token auto end_of_partner = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::token_t::StringBegin: return cuio_json::token_t::StringEnd; case cuio_json::token_t::ValueBegin: return cuio_json::token_t::ValueEnd; case cuio_json::token_t::FieldNameBegin: return cuio_json::token_t::FieldNameEnd; default: return cuio_json::token_t::ErrorBegin; }; }; // Whether the token pops from the parent node stack auto does_pop = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::token_t::StructEnd: case cuio_json::token_t::ListEnd: return true; default: return false; }; }; // Whether the token pushes onto the parent node stack auto does_push = [](cuio_json::PdaTokenT const token) { switch (token) { case cuio_json::token_t::StructBegin: case cuio_json::token_t::ListBegin: return true; default: return false; }; }; // The node id sitting on top of the stack becomes the node's parent // The full stack represents the path from the root to the current node std::stack<std::pair<cuio_json::NodeIndexT, bool>> parent_stack; constexpr bool field_name_node = true; constexpr bool no_field_name_node = false; std::vector<cuio_json::NodeT> node_categories; std::vector<cuio_json::NodeIndexT> parent_node_ids; std::vector<cuio_json::TreeDepthT> node_levels; std::vector<cuio_json::SymbolOffsetT> node_range_begin; std::vector<cuio_json::SymbolOffsetT> node_range_end; std::size_t node_id = 0; for (std::size_t i = 0; i < tokens.size(); i++) { auto token = tokens[i]; // The section from the original JSON input that this token demarcates std::size_t range_begin = get_token_index(token, token_indices[i]); std::size_t range_end = range_begin + 1; // Identify this node's parent node id std::size_t parent_node_id = (parent_stack.size() > 0) ? parent_stack.top().first : cuio_json::parent_node_sentinel; // If this token is the beginning-of-{value, string, field name}, also consume the next end-of-* // token if (is_begin_of_section(token)) { if ((i + 1) < tokens.size() && end_of_partner(token) == tokens[i + 1]) { // Update the range_end for this pair of tokens range_end = get_token_index(tokens[i + 1], token_indices[i + 1]); // We can skip the subsequent end-of-* token i++; } } // Emit node if this token becomes a node in the tree if (is_node(token)) { node_categories.push_back(token_to_node(token)); parent_node_ids.push_back(parent_node_id); node_levels.push_back(parent_stack.size()); node_range_begin.push_back(range_begin); node_range_end.push_back(range_end); } // Modify the stack if needed if (token == cuio_json::token_t::FieldNameBegin) { parent_stack.push({node_id, field_name_node}); } else { if (does_push(token)) { parent_stack.push({node_id, no_field_name_node}); } else if (does_pop(token)) { CUDF_EXPECTS(parent_stack.size() >= 1, "Invalid JSON input."); parent_stack.pop(); } // If what we're left with is a field name on top of stack, we need to pop it if (parent_stack.size() >= 1 && parent_stack.top().second == field_name_node) { parent_stack.pop(); } } // Update node_id if (is_node(token)) { node_id++; } } return {std::move(node_categories), std::move(parent_node_ids), std::move(node_levels), std::move(node_range_begin), std::move(node_range_end)}; } std::tuple<std::vector<cuio_json::NodeIndexT>, std::vector<cudf::size_type>> records_orient_tree_traversal_cpu(cudf::host_span<cuio_json::SymbolT const> input, tree_meta_t2 const& tree, bool is_array_of_arrays, bool is_enabled_lines, rmm::cuda_stream_view stream) { std::vector<cuio_json::NodeIndexT> node_ids(tree.parent_node_ids.size()); std::iota(node_ids.begin(), node_ids.end(), 0); const cuio_json::NodeIndexT row_array_children_level = is_enabled_lines ? 1 : 2; std::unordered_map<cuio_json::NodeIndexT, cuio_json::NodeIndexT> list_indices; if (is_array_of_arrays) { cuio_json::NodeIndexT parent_node = -1, child_index = 0; for (size_t i = 0; i < tree.node_levels.size(); i++) { if (tree.node_levels[i] == row_array_children_level) { if (tree.parent_node_ids[i] != parent_node) { parent_node = tree.parent_node_ids[i]; child_index = 0; } list_indices[i] = child_index++; } } } if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { for (int i = 0; i < int(tree.node_range_begin.size()); i++) { printf("%3s ", std::string(input.data() + tree.node_range_begin[i], tree.node_range_end[i] - tree.node_range_begin[i]) .c_str()); } printf(" (JSON)\n"); print_vec(tree.node_categories, "node_categories", to_cat); print_vec(node_ids, "cpu.node_ids", to_int); } // print_vec(tree.parent_node_ids, "tree.parent_node_ids (before)"); constexpr cuio_json::NodeIndexT top_node = -1; // CPU version of the algorithm // Calculate row offsets too. auto hash_path = [&](auto node_id) { size_t seed = 0; while (node_id != top_node) { seed = cudf::hashing::detail::hash_combine( seed, std::hash<cuio_json::TreeDepthT>{}(tree.node_levels[node_id])); seed = cudf::hashing::detail::hash_combine( seed, std::hash<cuio_json::NodeT>{}(tree.node_categories[node_id])); if (tree.node_categories[node_id] == cuio_json::node_t::NC_FN) { auto field_name = std::string_view(input.data() + tree.node_range_begin[node_id], tree.node_range_end[node_id] - tree.node_range_begin[node_id]); seed = cudf::hashing::detail::hash_combine(seed, std::hash<std::string_view>{}(field_name)); } if (is_array_of_arrays and tree.node_levels[node_id] == row_array_children_level) seed = cudf::hashing::detail::hash_combine(seed, list_indices[node_id]); node_id = tree.parent_node_ids[node_id]; } return seed; }; auto equal_path = [&](auto node_id1, auto node_id2) { bool is_equal = true; while (is_equal and node_id1 != top_node and node_id2 != top_node) { is_equal &= tree.node_levels[node_id1] == tree.node_levels[node_id2]; is_equal &= tree.node_categories[node_id1] == tree.node_categories[node_id2]; if (is_equal and tree.node_categories[node_id1] == cuio_json::node_t::NC_FN) { auto field_name1 = std::string_view(input.data() + tree.node_range_begin[node_id1], tree.node_range_end[node_id1] - tree.node_range_begin[node_id1]); auto field_name2 = std::string_view(input.data() + tree.node_range_begin[node_id2], tree.node_range_end[node_id2] - tree.node_range_begin[node_id2]); is_equal &= field_name1 == field_name2; } if (is_array_of_arrays and is_equal and tree.node_levels[node_id1] == row_array_children_level) { is_equal &= list_indices[node_id1] == list_indices[node_id2]; } node_id1 = tree.parent_node_ids[node_id1]; node_id2 = tree.parent_node_ids[node_id2]; } return is_equal and node_id1 == top_node and node_id2 == top_node; }; std::unordered_map<cuio_json::NodeIndexT, int, decltype(hash_path), decltype(equal_path)> node_id_map(10, hash_path, equal_path); auto unique_col_id = 0; for (auto& node_idx : node_ids) { if (node_id_map.count(node_idx) == 0) { node_id_map[node_idx] = unique_col_id++; // node_idx; node_idx = node_id_map[node_idx]; } else { node_idx = node_id_map[node_idx]; } } // Translate parent_node_ids auto parent_col_ids(tree.parent_node_ids); for (auto& parent_node_id : parent_col_ids) { if (parent_node_id != top_node) parent_node_id = node_ids[parent_node_id]; } if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { print_vec(node_ids, "cpu.node_ids (after)", to_int); print_vec(tree.parent_node_ids, "cpu.parent_node_ids (after)", to_int); } // row_offsets std::vector<int> row_offsets(tree.parent_node_ids.size(), 0); std::unordered_map<int, int> col_id_current_offset; for (std::size_t i = 0; i < tree.parent_node_ids.size(); i++) { auto current_col_id = node_ids[i]; auto parent_col_id = parent_col_ids[i]; auto parent_node_id = tree.parent_node_ids[i]; if (parent_col_id == top_node) { // row_offsets[current_col_id] = 0; // JSON lines treats top node as list. col_id_current_offset[current_col_id]++; row_offsets[i] = col_id_current_offset[current_col_id] - 1; } else { if (tree.node_categories[parent_node_id] == cuio_json::node_t::NC_LIST and !(is_array_of_arrays and tree.node_levels[i] == row_array_children_level)) { col_id_current_offset[current_col_id]++; row_offsets[i] = col_id_current_offset[current_col_id] - 1; } else { row_offsets[i] = col_id_current_offset[parent_col_id] - 1; col_id_current_offset[current_col_id] = col_id_current_offset[parent_col_id]; } } } if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { print_vec(row_offsets, "cpu.row_offsets (generated)", to_int); } return {std::move(node_ids), std::move(row_offsets)}; } } // namespace // Base test fixture for tests struct JsonTest : public cudf::test::BaseFixture {}; TEST_F(JsonTest, TreeRepresentation) { auto const stream = cudf::get_default_stream(); // Test input std::string const input = R"( [{)" R"("category": "reference",)" R"("index:": [4,12,42],)" R"("author": "Nigel Rees",)" R"("title": "[Sayings of the Century]",)" R"("price": 8.95)" R"(}, )" R"({)" R"("category": "reference",)" R"("index": [4,{},null,{"a":[{ }, {}] } ],)" R"("author": "Nigel Rees",)" R"("title": "{}[], <=semantic-symbols-string",)" R"("price": 8.95)" R"(}] )"; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<cuio_json::SymbolT const>{ d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::io::json_reader_options const options{}; // Parse the JSON and get the token stream auto const [tokens_gpu, token_indices_gpu] = cudf::io::json::detail::get_token_stream( d_input, options, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation auto gpu_tree = cuio_json::detail::get_tree_representation( tokens_gpu, token_indices_gpu, stream, rmm::mr::get_current_device_resource()); // host tree generation auto cpu_tree = get_tree_representation_cpu(tokens_gpu, token_indices_gpu, options, stream); compare_trees(cpu_tree, gpu_tree); // Print tree representation if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { print_tree_representation(input, cpu_tree); } // Golden sample of node categories std::vector<cuio_json::node_t> golden_node_categories = { cuio_json::NC_LIST, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_LIST, cuio_json::NC_STR, cuio_json::NC_STR, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_LIST, cuio_json::NC_STR, cuio_json::NC_STRUCT, cuio_json::NC_STR, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_LIST, cuio_json::NC_STRUCT, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR}; // Golden sample of node ids // clang-format off std::vector<cuio_json::NodeIndexT> golden_parent_node_ids = { cuio_json::parent_node_sentinel, 0, 1, 2, 1, 4, 5, 5, 5, 1, 9, 1, 11, 1, 13, 0, 15, 16, 15, 18, 19, 19, 19, 19, 23, 24, 25, 25, 15, 28, 15, 30, 15, 32}; // clang-format on // Golden sample of node levels std::vector<cuio_json::TreeDepthT> golden_node_levels = {0, 1, 2, 3, 2, 3, 4, 4, 4, 2, 3, 2, 3, 2, 3, 1, 2, 3, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 2, 3, 2, 3, 2, 3}; // Golden sample of the character-ranges from the original input that each node demarcates std::vector<std::size_t> golden_node_range_begin = { 2, 3, 5, 16, 29, 38, 39, 41, 44, 49, 58, 72, 80, 108, 116, 124, 126, 137, 150, 158, 159, 161, 164, 169, 171, 174, 175, 180, 189, 198, 212, 220, 255, 263}; // Golden sample of the character-ranges from the original input that each node demarcates std::vector<std::size_t> golden_node_range_end = { 3, 4, 13, 27, 35, 39, 40, 43, 46, 55, 70, 77, 106, 113, 120, 125, 134, 148, 155, 159, 160, 162, 168, 170, 172, 175, 176, 181, 195, 210, 217, 253, 260, 267}; // Check results against golden samples ASSERT_EQ(golden_node_categories.size(), cpu_tree.node_categories.size()); ASSERT_EQ(golden_parent_node_ids.size(), cpu_tree.parent_node_ids.size()); ASSERT_EQ(golden_node_levels.size(), cpu_tree.node_levels.size()); ASSERT_EQ(golden_node_range_begin.size(), cpu_tree.node_range_begin.size()); ASSERT_EQ(golden_node_range_end.size(), cpu_tree.node_range_end.size()); for (std::size_t i = 0; i < golden_node_categories.size(); i++) { ASSERT_EQ(golden_node_categories[i], cpu_tree.node_categories[i]) << "[" << i << "]"; ASSERT_EQ(golden_parent_node_ids[i], cpu_tree.parent_node_ids[i]) << "[" << i << "]"; ASSERT_EQ(golden_node_levels[i], cpu_tree.node_levels[i]) << "[" << i << "]"; ASSERT_EQ(golden_node_range_begin[i], cpu_tree.node_range_begin[i]) << "[" << i << "]"; ASSERT_EQ(golden_node_range_end[i], cpu_tree.node_range_end[i]) << "[" << i << "]"; } } TEST_F(JsonTest, TreeRepresentation2) { auto const stream = cudf::get_default_stream(); // Test input: value end with comma, space, close-brace ", }" std::string const input = // 0 1 2 3 4 5 6 7 8 9 // 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 R"([ {}, { "a": { "y" : 6, "z": [] }}, { "a" : { "x" : 8, "y": 9 }, "b" : {"x": 10 , "z": 11)" "\n}}]"; // Prepare input & output buffers cudf::string_scalar d_scalar(input, true, stream); auto d_input = cudf::device_span<cuio_json::SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::io::json_reader_options const options{}; // Parse the JSON and get the token stream auto const [tokens_gpu, token_indices_gpu] = cudf::io::json::detail::get_token_stream( d_input, options, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation auto gpu_tree = cuio_json::detail::get_tree_representation( tokens_gpu, token_indices_gpu, stream, rmm::mr::get_current_device_resource()); // host tree generation auto cpu_tree = get_tree_representation_cpu(tokens_gpu, token_indices_gpu, options, stream); compare_trees(cpu_tree, gpu_tree); // Print tree representation if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { print_tree_representation(input, cpu_tree); } // Golden sample of node categories // clang-format off std::vector<cuio_json::node_t> golden_node_categories = { cuio_json::NC_LIST, cuio_json::NC_STRUCT, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_LIST, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STRUCT, cuio_json::NC_FN, cuio_json::NC_STR, cuio_json::NC_FN, cuio_json::NC_STR}; // Golden sample of node ids std::vector<cuio_json::NodeIndexT> golden_parent_node_ids = { cuio_json::parent_node_sentinel, 0, 0, 2, 3, 4, 5, 4, 7, 0, 9, 10, 11, 12, 11, 14, 9, 16, 17, 18, 17, 20}; // clang-format on // Golden sample of node levels std::vector<cuio_json::TreeDepthT> golden_node_levels = { 0, 1, 1, 2, 3, 4, 5, 4, 5, 1, 2, 3, 4, 5, 4, 5, 2, 3, 4, 5, 4, 5, }; // Golden sample of the character-ranges from the original input that each node demarcates std::vector<std::size_t> golden_node_range_begin = {0, 2, 6, 9, 13, 16, 21, 25, 29, 36, 39, 44, 47, 52, 56, 60, 66, 71, 73, 77, 83, 87}; // Golden sample of the character-ranges from the original input that each node demarcates std::vector<std::size_t> golden_node_range_end = {1, 3, 7, 10, 14, 17, 22, 26, 30, 37, 40, 45, 48, 53, 57, 61, 67, 72, 74, 79, 84, 89}; // Check results against golden samples ASSERT_EQ(golden_node_categories.size(), cpu_tree.node_categories.size()); ASSERT_EQ(golden_parent_node_ids.size(), cpu_tree.parent_node_ids.size()); ASSERT_EQ(golden_node_levels.size(), cpu_tree.node_levels.size()); ASSERT_EQ(golden_node_range_begin.size(), cpu_tree.node_range_begin.size()); ASSERT_EQ(golden_node_range_end.size(), cpu_tree.node_range_end.size()); for (std::size_t i = 0; i < golden_node_categories.size(); i++) { ASSERT_EQ(golden_node_categories[i], cpu_tree.node_categories[i]); ASSERT_EQ(golden_parent_node_ids[i], cpu_tree.parent_node_ids[i]); ASSERT_EQ(golden_node_levels[i], cpu_tree.node_levels[i]); ASSERT_EQ(golden_node_range_begin[i], cpu_tree.node_range_begin[i]); ASSERT_EQ(golden_node_range_end[i], cpu_tree.node_range_end[i]); } } TEST_F(JsonTest, TreeRepresentation3) { auto const stream = cudf::get_default_stream(); // Test input: Json lines with same TreeRepresentation2 input std::string const input = R"( {} { "a": { "y" : 6, "z": [] }} { "a" : { "x" : 8, "y": 9 }, "b" : {"x": 10 , "z": 11 }} )"; // Prepare input & output buffers cudf::string_scalar d_scalar(input, true, stream); auto d_input = cudf::device_span<cuio_json::SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::io::json_reader_options options{}; options.enable_lines(true); // Parse the JSON and get the token stream auto const [tokens_gpu, token_indices_gpu] = cudf::io::json::detail::get_token_stream( d_input, options, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation auto gpu_tree = cuio_json::detail::get_tree_representation( tokens_gpu, token_indices_gpu, stream, rmm::mr::get_current_device_resource()); // host tree generation auto cpu_tree = get_tree_representation_cpu(tokens_gpu, token_indices_gpu, options, stream); compare_trees(cpu_tree, gpu_tree); // Print tree representation if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { print_tree_representation(input, cpu_tree); } } TEST_F(JsonTest, TreeRepresentationError) { auto const stream = cudf::get_default_stream(); std::string const input = R"([ {}, }{])"; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<cuio_json::SymbolT const>{ d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::io::json_reader_options const options{}; // Parse the JSON and get the token stream auto const [tokens_gpu, token_indices_gpu] = cudf::io::json::detail::get_token_stream( d_input, options, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation // This JSON is invalid and will raise an exception. EXPECT_THROW(cuio_json::detail::get_tree_representation( tokens_gpu, token_indices_gpu, stream, rmm::mr::get_current_device_resource()), cudf::logic_error); } /** * @brief Test fixture for parametrized JSON tree traversal tests */ struct JsonTreeTraversalTest : public cudf::test::BaseFixture, public testing::WithParamInterface<std::tuple<bool, std::string>> {}; // std::vector<std::string> json_list = { "[]", "value", "\"string\"", "[1, 2, 3]", R"({"a": 1, "b": 2, "c": 3})", // input a: {x:i, y:i, z:[]}, b: {x:i, z:i} R"([ {}, { "a": { "y" : 6, "z": [] }}, { "a" : { "x" : 8, "y": 9}, "b" : {"x": 10, "z": 11}}])", // input a: {x:i, y:i, z:[]}, b: {x:i, z: {p: i, q: i}} R"([ {}, { "a": { "y" : 1, "z": [] }}, { "a": { "x" : 2, "y": 3}, "b" : {"x": 4, "z": [ {"p": 1, "q": 2}]}}, { "a": { "y" : 6, "z": [7, 8, 9]}, "b": {"x": 10, "z": [{}, {"q": 3}, {"p": 4}]}}, { "a": { "z": [12, 13, 14, 15]}}, { "a": { "z": [16], "x": 2}} ])", //^row offset a a.x a.y a.z b b.x b.z // 1 1 1 // 2 2 2 2 2 2 b.z[] 0 b.z.p 0, b.z.q 0 // 3 3 3 3 3 3 a.z[] 0, 1, 2 b.z[] 1, 2, 3 b.z.q 2, b.z.p 3 // 4 4 a.z[] 3, 4, 5, 6 // 5 5 5 a.z[] 7 R"([[1, 2, 3], [4, 5, 6], [7, 8, 9]])", R"([[1, 2, 3], [4, 5], [7]])", R"([[1], [4, 5, 6], [7, 8]])", }; std::vector<std::string> json_lines_list = { // Test input a: {x:i, y:i, z:[]}, b: {x:i, z:i} with JSON-lines "", R"( {} { "a": { "y" : 6, "z": [] }} { "a": { "y" : 6, "z": [2, 3, 4, 5] }} { "a": { "z": [4], "y" : 6 }} { "a" : { "x" : 8, "y": 9 }, "b" : {"x": 10 , "z": 11 }} )", // empty list, row. R"( {"a" : [], "b" : {}} {"a" : []} {"b" : {}})", R"([1, 2, 3] [4, 5, 6])", R"([1] [4, [5], 6] [7, [8]])"}; INSTANTIATE_TEST_SUITE_P(Mixed_And_Records, JsonTreeTraversalTest, ::testing::Combine(::testing::Values(false), ::testing::ValuesIn(json_list))); INSTANTIATE_TEST_SUITE_P(JsonLines, JsonTreeTraversalTest, ::testing::Combine(::testing::Values(true), ::testing::ValuesIn(json_lines_list))); TEST_P(JsonTreeTraversalTest, CPUvsGPUTraversal) { auto [json_lines, input] = GetParam(); auto stream = cudf::get_default_stream(); cudf::io::json_reader_options options{}; options.enable_lines(json_lines); // std::cout << json_lines << input << std::endl; cudf::string_scalar d_scalar(input, true, stream); auto d_input = cudf::device_span<cuio_json::SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; // Parse the JSON and get the token stream auto const [tokens_gpu, token_indices_gpu] = cudf::io::json::detail::get_token_stream( d_input, options, stream, rmm::mr::get_current_device_resource()); // host tree generation auto cpu_tree = get_tree_representation_cpu(tokens_gpu, token_indices_gpu, options, stream); bool const is_array_of_arrays = (cpu_tree.node_categories.size() > 0 and cpu_tree.node_categories[0] == cudf::io::json::NC_LIST) and (json_lines or (cpu_tree.node_categories.size() > 1 and cpu_tree.node_categories[1] == cudf::io::json::NC_LIST)); // host tree traversal auto [cpu_col_id, cpu_row_offsets] = records_orient_tree_traversal_cpu(input, cpu_tree, is_array_of_arrays, json_lines, stream); // gpu tree generation auto gpu_tree = cuio_json::detail::get_tree_representation( tokens_gpu, token_indices_gpu, stream, rmm::mr::get_current_device_resource()); // Print tree representation if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { printf("BEFORE traversal (gpu_tree):\n"); print_tree(gpu_tree); } // gpu tree traversal auto [gpu_col_id, gpu_row_offsets] = cuio_json::detail::records_orient_tree_traversal(d_input, gpu_tree, is_array_of_arrays, json_lines, stream, rmm::mr::get_current_device_resource()); // Print tree representation if (std::getenv("NJP_DEBUG_DUMP") != nullptr) { printf("AFTER traversal (gpu_tree):\n"); print_tree(gpu_tree); } // convert to sequence because gpu col id might be have random id auto gpu_col_id2 = translate_col_id(cudf::detail::make_std_vector_async(gpu_col_id, stream)); EXPECT_FALSE(compare_vector(cpu_col_id, gpu_col_id2, "col_id")); EXPECT_FALSE(compare_vector(cpu_row_offsets, gpu_row_offsets, "row_offsets")); }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/orc_test.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/io_metadata_utilities.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/concatenate.hpp> #include <cudf/copying.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/io/orc.hpp> #include <cudf/io/orc_metadata.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/span.hpp> #include <src/io/comp/nvcomp_adapter.hpp> #include <type_traits> template <typename T, typename SourceElementT = T> using column_wrapper = typename std::conditional<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper, cudf::test::fixed_width_column_wrapper<T, SourceElementT>>::type; using str_col = column_wrapper<cudf::string_view>; using bool_col = column_wrapper<bool>; using int8_col = column_wrapper<int8_t>; using int16_col = column_wrapper<int16_t>; using int32_col = column_wrapper<int32_t>; using int64_col = column_wrapper<int64_t>; using float32_col = column_wrapper<float>; using float64_col = column_wrapper<double>; using dec32_col = column_wrapper<numeric::decimal32>; using dec64_col = column_wrapper<numeric::decimal64>; using dec128_col = column_wrapper<numeric::decimal128>; using struct_col = cudf::test::structs_column_wrapper; template <typename T> using list_col = cudf::test::lists_column_wrapper<T>; using column = cudf::column; using table = cudf::table; using table_view = cudf::table_view; // Global environment for temporary files auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); template <typename T> std::unique_ptr<cudf::table> create_random_fixed_table(cudf::size_type num_columns, cudf::size_type num_rows, bool include_validity) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; }); std::vector<column_wrapper<T>> src_cols(num_columns); for (int idx = 0; idx < num_columns; idx++) { auto rand_elements = cudf::detail::make_counting_transform_iterator(0, [](T i) { return rand(); }); if (include_validity) { src_cols[idx] = column_wrapper<T>(rand_elements, rand_elements + num_rows, valids); } else { src_cols[idx] = column_wrapper<T>(rand_elements, rand_elements + num_rows); } } std::vector<std::unique_ptr<cudf::column>> columns(num_columns); std::transform(src_cols.begin(), src_cols.end(), columns.begin(), [](column_wrapper<T>& in) { auto ret = in.release(); [[maybe_unused]] auto nulls = ret->has_nulls(); // pre-cache the null count return ret; }); return std::make_unique<cudf::table>(std::move(columns)); } // Base test fixture for tests struct OrcWriterTest : public cudf::test::BaseFixture {}; // Typed test fixture for numeric type tests template <typename T> struct OrcWriterNumericTypeTest : public OrcWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Typed test fixture for timestamp type tests template <typename T> struct OrcWriterTimestampTypeTest : public OrcWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Declare typed test cases // TODO: Replace with `NumericTypes` when unsigned support is added. Issue #5351 using SupportedTypes = cudf::test::Types<int8_t, int16_t, int32_t, int64_t, bool, float, double>; TYPED_TEST_SUITE(OrcWriterNumericTypeTest, SupportedTypes); using SupportedTimestampTypes = cudf::test::RemoveIf<cudf::test::ContainedIn<cudf::test::Types<cudf::timestamp_D>>, cudf::test::TimestampTypes>; TYPED_TEST_SUITE(OrcWriterTimestampTypeTest, SupportedTimestampTypes); // Base test fixture for chunked writer tests struct OrcChunkedWriterTest : public cudf::test::BaseFixture {}; // Typed test fixture for numeric type tests template <typename T> struct OrcChunkedWriterNumericTypeTest : public OrcChunkedWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Declare typed test cases TYPED_TEST_SUITE(OrcChunkedWriterNumericTypeTest, SupportedTypes); // Test fixture for reader tests struct OrcReaderTest : public cudf::test::BaseFixture {}; // Test fixture for statistics tests struct OrcStatisticsTest : public cudf::test::BaseFixture {}; // Test fixture for metadata tests struct OrcMetadataReaderTest : public cudf::test::BaseFixture {}; namespace { // Generates a vector of uniform random values of type T template <typename T> inline auto random_values(size_t size) { std::vector<T> values(size); using T1 = T; using uniform_distribution = typename std::conditional_t<std::is_same_v<T1, bool>, std::bernoulli_distribution, std::conditional_t<std::is_floating_point_v<T1>, std::uniform_real_distribution<T1>, std::uniform_int_distribution<T1>>>; static constexpr auto seed = 0xf00d; static std::mt19937 engine{seed}; static uniform_distribution dist{}; std::generate_n(values.begin(), size, [&]() { return T{dist(engine)}; }); return values; } struct SkipRowTest { int test_calls{0}; SkipRowTest() {} std::unique_ptr<table> get_expected_result(std::string const& filepath, int skip_rows, int file_num_rows, int read_num_rows) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; }); column_wrapper<int32_t, typename decltype(sequence)::value_type> input_col( sequence, sequence + file_num_rows); table_view input_table({input_col}); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, input_table); cudf::io::write_orc(out_opts); auto begin_sequence = sequence, end_sequence = sequence; if (skip_rows < file_num_rows) { begin_sequence += skip_rows; end_sequence += std::min(skip_rows + read_num_rows, file_num_rows); } column_wrapper<int32_t, typename decltype(sequence)::value_type> output_col(begin_sequence, end_sequence); std::vector<std::unique_ptr<column>> output_cols; output_cols.push_back(output_col.release()); return std::make_unique<table>(std::move(output_cols)); } void test(int skip_rows, int file_num_rows, int read_num_rows) { auto filepath = temp_env->get_temp_filepath("SkipRowTest" + std::to_string(test_calls++) + ".orc"); auto expected_result = get_expected_result(filepath, skip_rows, file_num_rows, read_num_rows); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .skip_rows(skip_rows) .num_rows(read_num_rows); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_result->view(), result.tbl->view()); } void test(int skip_rows, int file_num_rows) { auto filepath = temp_env->get_temp_filepath("SkipRowTest" + std::to_string(test_calls++) + ".orc"); auto expected_result = get_expected_result(filepath, skip_rows, file_num_rows, file_num_rows - skip_rows); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .skip_rows(skip_rows); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_result->view(), result.tbl->view()); } }; } // namespace TYPED_TEST(OrcWriterNumericTypeTest, SingleColumn) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col(sequence, sequence + num_rows); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcSingleColumn.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(OrcWriterNumericTypeTest, SingleColumnWithNulls) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2); }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col( sequence, sequence + num_rows, validity); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcSingleColumnWithNulls.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(OrcWriterTimestampTypeTest, Timestamps) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (std::rand() / 10); }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col(sequence, sequence + num_rows); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcTimestamps.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .timestamp_type(this->type()); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(OrcWriterTimestampTypeTest, TimestampsWithNulls) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (std::rand() / 10); }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i > 30) && (i < 60); }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col( sequence, sequence + num_rows, validity); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcTimestampsWithNulls.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .timestamp_type(this->type()); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(OrcWriterTimestampTypeTest, TimestampOverflow) { constexpr int64_t max = std::numeric_limits<int64_t>::max(); auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return max - i; }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col(sequence, sequence + num_rows); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcTimestampOverflow.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .timestamp_type(this->type()); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(OrcWriterTest, MultiColumn) { constexpr auto num_rows = 10; auto col0_data = random_values<bool>(num_rows); auto col1_data = random_values<int8_t>(num_rows); auto col2_data = random_values<int16_t>(num_rows); auto col3_data = random_values<int32_t>(num_rows); auto col4_data = random_values<float>(num_rows); auto col5_data = random_values<double>(num_rows); auto col6_vals = random_values<int64_t>(num_rows); auto col6_data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal128{col6_vals[i], numeric::scale_type{12}}; }); auto col7_data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal128{col6_vals[i], numeric::scale_type{-12}}; }); bool_col col0(col0_data.begin(), col0_data.end()); int8_col col1(col1_data.begin(), col1_data.end()); int16_col col2(col2_data.begin(), col2_data.end()); int32_col col3(col3_data.begin(), col3_data.end()); float32_col col4(col4_data.begin(), col4_data.end()); float64_col col5(col5_data.begin(), col5_data.end()); dec128_col col6(col6_data, col6_data + num_rows); dec128_col col7(col7_data, col7_data + num_rows); list_col<int64_t> col8{ {9, 8}, {7, 6, 5}, {}, {4}, {3, 2, 1, 0}, {20, 21, 22, 23, 24}, {}, {66, 666}, {}, {-1, -2}}; int32_col child_col{48, 27, 25, 31, 351, 351, 29, 15, -1, -99}; struct_col col9{child_col}; table_view expected({col0, col1, col2, col3, col4, col5, col6, col7, col8, col9}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("bools"); expected_metadata.column_metadata[1].set_name("int8s"); expected_metadata.column_metadata[2].set_name("int16s"); expected_metadata.column_metadata[3].set_name("int32s"); expected_metadata.column_metadata[4].set_name("floats"); expected_metadata.column_metadata[5].set_name("doubles"); expected_metadata.column_metadata[6].set_name("decimal_pos_scale"); expected_metadata.column_metadata[7].set_name("decimal_neg_scale"); expected_metadata.column_metadata[8].set_name("lists"); expected_metadata.column_metadata[9].set_name("structs"); auto filepath = temp_env->get_temp_filepath("OrcMultiColumn.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcWriterTest, MultiColumnWithNulls) { constexpr auto num_rows = 10; auto col0_data = random_values<bool>(num_rows); auto col1_data = random_values<int8_t>(num_rows); auto col2_data = random_values<int16_t>(num_rows); auto col3_data = random_values<int32_t>(num_rows); auto col4_data = random_values<float>(num_rows); auto col5_data = random_values<double>(num_rows); auto col6_vals = random_values<int32_t>(num_rows); auto col6_data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal64{col6_vals[i], numeric::scale_type{2}}; }); auto col0_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2); }); auto col1_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i < 2); }); auto col3_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i == (num_rows - 1)); }); auto col4_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i >= 4 && i <= 6); }); auto col5_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i > 8); }); auto col6_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 3); }); bool_col col0{col0_data.begin(), col0_data.end(), col0_mask}; int8_col col1{col1_data.begin(), col1_data.end(), col1_mask}; int16_col col2(col2_data.begin(), col2_data.end()); int32_col col3{col3_data.begin(), col3_data.end(), col3_mask}; float32_col col4{col4_data.begin(), col4_data.end(), col4_mask}; float64_col col5{col5_data.begin(), col5_data.end(), col5_mask}; dec64_col col6{col6_data, col6_data + num_rows, col6_mask}; list_col<int32_t> col7{ {{9, 8}, {7, 6, 5}, {}, {4}, {3, 2, 1, 0}, {20, 21, 22, 23, 24}, {}, {66, 666}, {}, {-1, -2}}, col0_mask}; auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{ {48, 27, 25, 31, 351, 351, 29, 15, -1, -99}, {1, 0, 1, 1, 0, 1, 1, 1, 0, 1}}; struct_col col8{{ages_col}, {0, 1, 1, 0, 1, 1, 0, 1, 1, 0}}; table_view expected({col0, col1, col2, col3, col4, col5, col6, col7, col8}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("bools"); expected_metadata.column_metadata[1].set_name("int8s"); expected_metadata.column_metadata[2].set_name("int16s"); expected_metadata.column_metadata[3].set_name("int32s"); expected_metadata.column_metadata[4].set_name("floats"); expected_metadata.column_metadata[5].set_name("doubles"); expected_metadata.column_metadata[6].set_name("decimal"); expected_metadata.column_metadata[7].set_name("lists"); expected_metadata.column_metadata[8].set_name("structs"); auto filepath = temp_env->get_temp_filepath("OrcMultiColumnWithNulls.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcWriterTest, ReadZeroRows) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; }); constexpr auto num_rows = 10; column_wrapper<int64_t, typename decltype(sequence)::value_type> col(sequence, sequence + num_rows); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcSingleColumn.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .num_rows(0); auto result = cudf::io::read_orc(in_opts); EXPECT_EQ(0, result.tbl->num_rows()); EXPECT_EQ(1, result.tbl->num_columns()); } TEST_F(OrcWriterTest, Strings) { std::vector<char const*> strings{ "Monday", "Monday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; auto const num_rows = strings.size(); auto seq_col0 = random_values<int>(num_rows); auto seq_col2 = random_values<float>(num_rows); int32_col col0(seq_col0.begin(), seq_col0.end()); str_col col1(strings.begin(), strings.end()); float32_col col2(seq_col2.begin(), seq_col2.end()); table_view expected({col0, col1, col2}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_other"); expected_metadata.column_metadata[1].set_name("col_string"); expected_metadata.column_metadata[2].set_name("col_another"); auto filepath = temp_env->get_temp_filepath("OrcStrings.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcWriterTest, SlicedTable) { // This test checks for writing zero copy, offsetted views into existing cudf tables std::vector<char const*> strings{ "Monday", "Monday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; auto const num_rows = strings.size(); auto seq_col0 = random_values<int32_t>(num_rows); auto seq_col2 = random_values<float>(num_rows); auto vals_col3 = random_values<int32_t>(num_rows); auto seq_col3 = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal64{vals_col3[i], numeric::scale_type{2}}; }); int32_col col0(seq_col0.begin(), seq_col0.end()); str_col col1(strings.begin(), strings.end()); float32_col col2(seq_col2.begin(), seq_col2.end()); float32_col col3(seq_col3, seq_col3 + num_rows); list_col<int64_t> col4{ {9, 8}, {7, 6, 5}, {}, {4}, {3, 2, 1, 0}, {20, 21, 22, 23, 24}, {}, {66, 666}}; int16_col ages_col{{48, 27, 25, 31, 351, 351, 29, 15}, cudf::test::iterators::null_at(5)}; struct_col col5{{ages_col}, cudf::test::iterators::null_at(4)}; table_view expected({col0, col1, col2, col3, col4, col5}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_other"); expected_metadata.column_metadata[1].set_name("col_string"); expected_metadata.column_metadata[2].set_name("col_another"); expected_metadata.column_metadata[3].set_name("col_decimal"); expected_metadata.column_metadata[4].set_name("lists"); expected_metadata.column_metadata[5].set_name("structs"); auto expected_slice = cudf::slice(expected, {2, static_cast<cudf::size_type>(num_rows)}); auto filepath = temp_env->get_temp_filepath("SlicedTable.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected_slice) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_slice, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcWriterTest, HostBuffer) { constexpr auto num_rows = 100 << 10; auto const seq_col = random_values<int>(num_rows); int32_col col(seq_col.begin(), seq_col.end()); table_view expected{{col}}; cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_other"); std::vector<char> out_buffer; cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info(&out_buffer), expected) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder( cudf::io::source_info(out_buffer.data(), out_buffer.size())) .use_index(false); auto const result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcWriterTest, negTimestampsNano) { // This is a separate test because ORC format has a bug where writing a timestamp between -1 and 0 // seconds from UNIX epoch is read as that timestamp + 1 second. We mimic that behavior and so // this test has to hardcode test values which are < -1 second. // Details: https://github.com/rapidsai/cudf/pull/5529#issuecomment-648768925 auto timestamps_ns = cudf::test::fixed_width_column_wrapper<cudf::timestamp_ns, cudf::timestamp_ns::rep>{ -131968727238000000, -1530705634500000000, -1674638741932929000, }; cudf::table_view expected({timestamps_ns}); auto filepath = temp_env->get_temp_filepath("OrcNegTimestamp.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected.column(0), result.tbl->view().column(0), cudf::test::debug_output_level::ALL_ERRORS); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(OrcWriterTest, Slice) { int32_col col{{1, 2, 3, 4, 5}, cudf::test::iterators::null_at(3)}; std::vector<cudf::size_type> indices{2, 5}; std::vector<cudf::column_view> result = cudf::slice(col, indices); cudf::table_view tbl{result}; auto filepath = temp_env->get_temp_filepath("Slice.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto read_table = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(read_table.tbl->view(), tbl); } TEST_F(OrcChunkedWriterTest, SingleTable) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto filepath = temp_env->get_temp_filepath("ChunkedSingle.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(*table1); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *table1); } TEST_F(OrcChunkedWriterTest, SimpleTable) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto table2 = create_random_fixed_table<int>(5, 5, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedSimple.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(*table1).write(*table2); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(OrcChunkedWriterTest, LargeTables) { srand(31337); auto table1 = create_random_fixed_table<int>(512, 4096, true); auto table2 = create_random_fixed_table<int>(512, 8192, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedLarge.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(*table1).write(*table2); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(OrcChunkedWriterTest, ManyTables) { srand(31337); std::vector<std::unique_ptr<table>> tables; std::vector<table_view> table_views; constexpr int num_tables = 96; for (int idx = 0; idx < num_tables; idx++) { auto tbl = create_random_fixed_table<int>(16, 64, true); table_views.push_back(*tbl); tables.push_back(std::move(tbl)); } auto expected = cudf::concatenate(table_views); auto filepath = temp_env->get_temp_filepath("ChunkedManyTables.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer writer(opts); std::for_each(table_views.begin(), table_views.end(), [&writer](table_view const& tbl) { writer.write(tbl); }); writer.close(); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(OrcChunkedWriterTest, Metadata) { std::vector<char const*> strings{ "Monday", "Tuesday", "THURSDAY", "Wednesday", "Friday", "Sunday", "Saturday"}; auto const num_rows = strings.size(); auto seq_col0 = random_values<int>(num_rows); auto seq_col2 = random_values<float>(num_rows); int32_col col0(seq_col0.begin(), seq_col0.end()); str_col col1{strings.begin(), strings.end()}; float32_col col2(seq_col2.begin(), seq_col2.end()); table_view expected({col0, col1, col2}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_other"); expected_metadata.column_metadata[1].set_name("col_string"); expected_metadata.column_metadata[2].set_name("col_another"); auto filepath = temp_env->get_temp_filepath("ChunkedMetadata.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}) .metadata(expected_metadata); cudf::io::orc_chunked_writer(opts).write(expected).write(expected); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcChunkedWriterTest, Strings) { bool mask1[] = {true, true, false, true, true, true, true}; std::vector<char const*> h_strings1{"four", "score", "and", "seven", "years", "ago", "abcdefgh"}; str_col strings1(h_strings1.begin(), h_strings1.end(), mask1); table_view tbl1({strings1}); bool mask2[] = {false, true, true, true, true, true, true}; std::vector<char const*> h_strings2{"ooooo", "ppppppp", "fff", "j", "cccc", "bbb", "zzzzzzzzzzz"}; str_col strings2(h_strings2.begin(), h_strings2.end(), mask2); table_view tbl2({strings2}); auto expected = cudf::concatenate(std::vector<table_view>({tbl1, tbl2})); auto filepath = temp_env->get_temp_filepath("ChunkedStrings.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(tbl1).write(tbl2); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(OrcChunkedWriterTest, MismatchedTypes) { srand(31337); auto table1 = create_random_fixed_table<int>(4, 4, true); auto table2 = create_random_fixed_table<float>(4, 4, true); auto filepath = temp_env->get_temp_filepath("ChunkedMismatchedTypes.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer writer(opts); writer.write(*table1); EXPECT_THROW(writer.write(*table2), cudf::logic_error); } TEST_F(OrcChunkedWriterTest, ChunkedWritingAfterClosing) { srand(31337); auto table1 = create_random_fixed_table<int>(4, 4, true); auto filepath = temp_env->get_temp_filepath("ChunkedWritingAfterClosing.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer writer(opts); writer.write(*table1); writer.close(); EXPECT_THROW(writer.write(*table1), cudf::logic_error); } TEST_F(OrcChunkedWriterTest, MismatchedStructure) { srand(31337); auto table1 = create_random_fixed_table<int>(4, 4, true); auto table2 = create_random_fixed_table<int>(3, 4, true); auto filepath = temp_env->get_temp_filepath("ChunkedMismatchedStructure.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer writer(opts); writer.write(*table1); EXPECT_THROW(writer.write(*table2), cudf::logic_error); } TEST_F(OrcChunkedWriterTest, ReadStripes) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto table2 = create_random_fixed_table<int>(5, 5, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table2, *table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedStripes.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(*table1).write(*table2); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).stripes({{1, 0, 1}}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(OrcChunkedWriterTest, ReadStripesError) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto filepath = temp_env->get_temp_filepath("ChunkedStripesError.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(*table1); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).stripes({{0, 1}}); EXPECT_THROW(cudf::io::read_orc(read_opts), cudf::logic_error); read_opts.set_stripes({{-1}}); EXPECT_THROW(cudf::io::read_orc(read_opts), cudf::logic_error); } TYPED_TEST(OrcChunkedWriterNumericTypeTest, UnalignedSize) { // write out two 31 row tables and make sure they get // read back with all their validity bits in the right place using T = TypeParam; int num_els = 31; bool mask[] = {false, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true}; T c1a[num_els]; std::fill(c1a, c1a + num_els, static_cast<T>(5)); T c1b[num_els]; std::fill(c1b, c1b + num_els, static_cast<T>(6)); column_wrapper<T> c1a_w(c1a, c1a + num_els, mask); column_wrapper<T> c1b_w(c1b, c1b + num_els, mask); table_view tbl1({c1a_w, c1b_w}); T c2a[num_els]; std::fill(c2a, c2a + num_els, static_cast<T>(8)); T c2b[num_els]; std::fill(c2b, c2b + num_els, static_cast<T>(9)); column_wrapper<T> c2a_w(c2a, c2a + num_els, mask); column_wrapper<T> c2b_w(c2b, c2b + num_els, mask); table_view tbl2({c2a_w, c2b_w}); auto expected = cudf::concatenate(std::vector<table_view>({tbl1, tbl2})); auto filepath = temp_env->get_temp_filepath("ChunkedUnalignedSize.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(tbl1).write(tbl2); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TYPED_TEST(OrcChunkedWriterNumericTypeTest, UnalignedSize2) { // write out two 33 row tables and make sure they get // read back with all their validity bits in the right place using T = TypeParam; int num_els = 33; bool mask[] = {false, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true}; T c1a[num_els]; std::fill(c1a, c1a + num_els, static_cast<T>(5)); T c1b[num_els]; std::fill(c1b, c1b + num_els, static_cast<T>(6)); column_wrapper<T> c1a_w(c1a, c1a + num_els, mask); column_wrapper<T> c1b_w(c1b, c1b + num_els, mask); table_view tbl1({c1a_w, c1b_w}); T c2a[num_els]; std::fill(c2a, c2a + num_els, static_cast<T>(8)); T c2b[num_els]; std::fill(c2b, c2b + num_els, static_cast<T>(9)); column_wrapper<T> c2a_w(c2a, c2a + num_els, mask); column_wrapper<T> c2b_w(c2b, c2b + num_els, mask); table_view tbl2({c2a_w, c2b_w}); auto expected = cudf::concatenate(std::vector<table_view>({tbl1, tbl2})); auto filepath = temp_env->get_temp_filepath("ChunkedUnalignedSize2.orc"); cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::orc_chunked_writer(opts).write(tbl1).write(tbl2); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(OrcReaderTest, CombinedSkipRowTest) { SkipRowTest skip_row; skip_row.test(50, 75); skip_row.test(2, 100); skip_row.test(2, 100, 50); skip_row.test(2, 100, 98); skip_row.test(2, 100, 99); skip_row.test(2, 100, 100); skip_row.test(2, 100, 110); } TEST_F(OrcStatisticsTest, Basic) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i; }); auto ts_sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i - 4) * 1000002; }); auto dec_sequence = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return i * 1001; }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); std::vector<char const*> strings{ "Monday", "Monday", "Friday", "Monday", "Friday", "Friday", "Friday", "Wednesday", "Tuesday"}; int num_rows = strings.size(); column_wrapper<int32_t, typename decltype(sequence)::value_type> col1( sequence, sequence + num_rows, validity); column_wrapper<float, typename decltype(sequence)::value_type> col2( sequence, sequence + num_rows, validity); str_col col3{strings.begin(), strings.end()}; column_wrapper<cudf::timestamp_ns, typename decltype(sequence)::value_type> col4( ts_sequence, ts_sequence + num_rows, validity); column_wrapper<cudf::timestamp_us, typename decltype(sequence)::value_type> col5( ts_sequence, ts_sequence + num_rows, validity); bool_col col6({true, true, true, true, true, false, false, false, false}, validity); cudf::test::fixed_point_column_wrapper<int64_t> col7( dec_sequence, dec_sequence + num_rows, numeric::scale_type{-1}); table_view expected({col1, col2, col3, col4, col5, col6, col7}); auto filepath = temp_env->get_temp_filepath("OrcStatsMerge.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); auto const stats = cudf::io::read_parsed_orc_statistics(cudf::io::source_info{filepath}); auto expected_column_names = std::vector<std::string>{""}; std::generate_n( std::back_inserter(expected_column_names), expected.num_columns(), [starting_index = 0]() mutable { return "_col" + std::to_string(starting_index++); }); EXPECT_EQ(stats.column_names, expected_column_names); auto validate_statistics = [&](std::vector<cudf::io::column_statistics> const& stats) { ASSERT_EQ(stats.size(), expected.num_columns() + 1); auto& s0 = stats[0]; EXPECT_EQ(*s0.number_of_values, 9ul); auto& s1 = stats[1]; EXPECT_EQ(*s1.number_of_values, 4ul); EXPECT_TRUE(*s1.has_null); auto& ts1 = std::get<cudf::io::integer_statistics>(s1.type_specific_stats); EXPECT_EQ(*ts1.minimum, 1); EXPECT_EQ(*ts1.maximum, 7); EXPECT_EQ(*ts1.sum, 16); auto& s2 = stats[2]; EXPECT_EQ(*s2.number_of_values, 4ul); EXPECT_TRUE(*s2.has_null); auto& ts2 = std::get<cudf::io::double_statistics>(s2.type_specific_stats); EXPECT_EQ(*ts2.minimum, 1.); EXPECT_EQ(*ts2.maximum, 7.); EXPECT_EQ(*ts2.sum, 16.); auto& s3 = stats[3]; EXPECT_EQ(*s3.number_of_values, 9ul); EXPECT_FALSE(*s3.has_null); auto& ts3 = std::get<cudf::io::string_statistics>(s3.type_specific_stats); EXPECT_EQ(*ts3.minimum, "Friday"); EXPECT_EQ(*ts3.maximum, "Wednesday"); EXPECT_EQ(*ts3.sum, 58ul); auto& s4 = stats[4]; EXPECT_EQ(*s4.number_of_values, 4ul); EXPECT_TRUE(*s4.has_null); auto& ts4 = std::get<cudf::io::timestamp_statistics>(s4.type_specific_stats); EXPECT_EQ(*ts4.minimum, -4); EXPECT_EQ(*ts4.maximum, 3); EXPECT_EQ(*ts4.minimum_utc, -4); EXPECT_EQ(*ts4.maximum_utc, 3); // nanosecond precision can't be included until we write a writer version that includes ORC-135 // see https://github.com/rapidsai/cudf/issues/14325 // EXPECT_EQ(*ts4.minimum_nanos, 999994); EXPECT_FALSE(ts4.minimum_nanos.has_value()); // EXPECT_EQ(*ts4.maximum_nanos, 6); EXPECT_FALSE(ts4.maximum_nanos.has_value()); auto& s5 = stats[5]; EXPECT_EQ(*s5.number_of_values, 4ul); EXPECT_TRUE(*s5.has_null); auto& ts5 = std::get<cudf::io::timestamp_statistics>(s5.type_specific_stats); EXPECT_EQ(*ts5.minimum, -3001); EXPECT_EQ(*ts5.maximum, 3000); EXPECT_EQ(*ts5.minimum_utc, -3001); EXPECT_EQ(*ts5.maximum_utc, 3000); // nanosecond precision can't be included until we write a writer version that includes ORC-135 // see https://github.com/rapidsai/cudf/issues/14325 // EXPECT_EQ(*ts5.minimum_nanos, 994000); EXPECT_FALSE(ts5.minimum_nanos.has_value()); // EXPECT_EQ(*ts5.maximum_nanos, 6000); EXPECT_FALSE(ts5.maximum_nanos.has_value()); auto& s6 = stats[6]; EXPECT_EQ(*s6.number_of_values, 4ul); EXPECT_TRUE(*s6.has_null); auto& ts6 = std::get<cudf::io::bucket_statistics>(s6.type_specific_stats); EXPECT_EQ(ts6.count[0], 2); auto& s7 = stats[7]; EXPECT_EQ(*s7.number_of_values, 9ul); EXPECT_FALSE(*s7.has_null); auto& ts7 = std::get<cudf::io::decimal_statistics>(s7.type_specific_stats); EXPECT_EQ(*ts7.minimum, "0.0"); EXPECT_EQ(*ts7.maximum, "800.8"); EXPECT_EQ(*ts7.sum, "3603.6"); }; validate_statistics(stats.file_stats); // There's only one stripe, so column stats are the same as stripe stats validate_statistics(stats.stripes_stats[0]); } TEST_F(OrcWriterTest, SlicedValidMask) { std::vector<char const*> strings; // Need more than 32 elements to reproduce the issue for (int i = 0; i < 34; ++i) strings.emplace_back("a long string to make sure overflow affects the output"); // An element is null only to enforce the output column to be nullable str_col col{strings.begin(), strings.end(), cudf::test::iterators::null_at(32)}; // Bug tested here is easiest to reproduce when column_offset % 32 is 31 std::vector<cudf::size_type> indices{31, 34}; auto sliced_col = cudf::slice(static_cast<cudf::column_view>(col), indices); cudf::table_view tbl{sliced_col}; cudf::io::table_input_metadata expected_metadata(tbl); expected_metadata.column_metadata[0].set_name("col_string"); auto filepath = temp_env->get_temp_filepath("OrcStrings.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, tbl) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(tbl, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcReaderTest, SingleInputs) { srand(31533); auto table1 = create_random_fixed_table<int>(5, 5, true); auto filepath1 = temp_env->get_temp_filepath("SimpleTable1.orc"); cudf::io::orc_writer_options write_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath1}, table1->view()); cudf::io::write_orc(write_opts); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{{filepath1}}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *table1); } TEST_F(OrcReaderTest, zstdCompressionRegression) { if (cudf::io::nvcomp::is_decompression_disabled(cudf::io::nvcomp::compression_type::ZSTD)) { GTEST_SKIP() << "Newer nvCOMP version is required"; } // Test with zstd compressed orc file with high compression ratio. constexpr uint8_t input_buffer[] = { 0x4f, 0x52, 0x43, 0x5a, 0x00, 0x00, 0x28, 0xb5, 0x2f, 0xfd, 0xa4, 0x34, 0xc7, 0x03, 0x00, 0x74, 0x00, 0x00, 0x18, 0x41, 0xff, 0xaa, 0x02, 0x00, 0xbb, 0xff, 0x45, 0xc8, 0x01, 0x25, 0x30, 0x04, 0x65, 0x00, 0x00, 0x10, 0xaa, 0x1f, 0x02, 0x00, 0x01, 0x29, 0x0b, 0xc7, 0x39, 0xb8, 0x02, 0xcb, 0xaf, 0x38, 0xc0, 0x07, 0x00, 0x00, 0x40, 0x01, 0xc0, 0x05, 0x00, 0x00, 0x46, 0x4d, 0x45, 0x00, 0x00, 0x0a, 0x06, 0x08, 0x01, 0x10, 0x01, 0x18, 0x30, 0x0a, 0x06, 0x08, 0x02, 0x10, 0x01, 0x18, 0x06, 0x0a, 0x06, 0x08, 0x03, 0x10, 0x01, 0x18, 0x05, 0x12, 0x02, 0x08, 0x00, 0x12, 0x04, 0x08, 0x03, 0x10, 0x02, 0x59, 0x00, 0x00, 0x08, 0x03, 0x10, 0x63, 0x1a, 0x0c, 0x08, 0x03, 0x10, 0x00, 0x18, 0x3b, 0x20, 0x25, 0x28, 0xa0, 0x9e, 0x75, 0x22, 0x10, 0x08, 0x0c, 0x12, 0x01, 0x01, 0x1a, 0x09, 0x63, 0x64, 0x5f, 0x67, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x22, 0x02, 0x08, 0x07, 0x30, 0xa0, 0x9e, 0x75, 0x08, 0x2f, 0x10, 0x05, 0x18, 0x80, 0x80, 0x10, 0x22, 0x02, 0x00, 0x0c, 0x28, 0x00, 0x30, 0x09, 0x82, 0xf4, 0x03, 0x03, 0x4f, 0x52, 0x43, 0x17}; auto source = cudf::io::source_info(reinterpret_cast<char const*>(input_buffer), sizeof(input_buffer)); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(source).use_index(false); cudf::io::table_with_metadata result; CUDF_EXPECT_NO_THROW(result = cudf::io::read_orc(in_opts)); EXPECT_EQ(1920800, result.tbl->num_rows()); } TEST_F(OrcReaderTest, MultipleInputs) { srand(31537); auto table1 = create_random_fixed_table<int>(5, 5, true); auto table2 = create_random_fixed_table<int>(5, 5, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto const filepath1 = temp_env->get_temp_filepath("SimpleTable1.orc"); { cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath1}, table1->view()); cudf::io::write_orc(out_opts); } auto const filepath2 = temp_env->get_temp_filepath("SimpleTable2.orc"); { cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath2}, table2->view()); cudf::io::write_orc(out_opts); } cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{{filepath1, filepath2}}); auto result = cudf::io::read_orc(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } struct OrcWriterTestDecimal : public OrcWriterTest, public ::testing::WithParamInterface<std::tuple<int, int>> {}; TEST_P(OrcWriterTestDecimal, Decimal64) { auto const [num_rows, scale] = GetParam(); // Using int16_t because scale causes values to overflow if they already require 32 bits auto const vals = random_values<int32_t>(num_rows); auto data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal64{vals[i], numeric::scale_type{scale}}; }); auto mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 7 == 0; }); dec64_col col{data, data + num_rows, mask}; cudf::table_view tbl({static_cast<cudf::column_view>(col)}); auto filepath = temp_env->get_temp_filepath("Decimal64.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(tbl.column(0), result.tbl->view().column(0)); } INSTANTIATE_TEST_CASE_P(OrcWriterTest, OrcWriterTestDecimal, ::testing::Combine(::testing::Values(1, 10000, 10001, 34567), ::testing::Values(-2, 0, 2))); TEST_F(OrcWriterTest, Decimal32) { constexpr auto num_rows = 12000; // Using int16_t because scale causes values to overflow if they already require 32 bits auto const vals = random_values<int16_t>(num_rows); auto data = cudf::detail::make_counting_transform_iterator(0, [&vals](auto i) { return numeric::decimal32{vals[i], numeric::scale_type{2}}; }); auto mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 13; }); dec32_col col{data, data + num_rows, mask}; cudf::table_view expected({col}); auto filepath = temp_env->get_temp_filepath("Decimal32.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(col, result.tbl->view().column(0)); } TEST_F(OrcStatisticsTest, Overflow) { int num_rows = 10; auto too_large_seq = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i * (std::numeric_limits<int64_t>::max() / 20); }); auto too_small_seq = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i * (std::numeric_limits<int64_t>::min() / 20); }); auto not_too_large_seq = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i * (std::numeric_limits<int64_t>::max() / 200); }); auto not_too_small_seq = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i * (std::numeric_limits<int64_t>::min() / 200); }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); column_wrapper<int64_t, typename decltype(too_large_seq)::value_type> col1( too_large_seq, too_large_seq + num_rows, validity); column_wrapper<int64_t, typename decltype(too_small_seq)::value_type> col2( too_small_seq, too_small_seq + num_rows, validity); column_wrapper<int64_t, typename decltype(not_too_large_seq)::value_type> col3( not_too_large_seq, not_too_large_seq + num_rows, validity); column_wrapper<int64_t, typename decltype(not_too_small_seq)::value_type> col4( not_too_small_seq, not_too_small_seq + num_rows, validity); table_view tbl({col1, col2, col3, col4}); auto filepath = temp_env->get_temp_filepath("OrcStatsOverflow.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_orc(out_opts); auto const stats = cudf::io::read_parsed_orc_statistics(cudf::io::source_info{filepath}); auto check_sum_exist = [&](int idx, bool expected) { auto const& s = stats.file_stats[idx]; auto const& ts = std::get<cudf::io::integer_statistics>(s.type_specific_stats); EXPECT_EQ(ts.sum.has_value(), expected); }; check_sum_exist(1, false); check_sum_exist(2, false); check_sum_exist(3, true); check_sum_exist(4, true); } TEST_F(OrcStatisticsTest, HasNull) { // This test can now be implemented with libcudf; keeping the pandas version to keep the test // inputs diversified // Method to create file: // >>> import pandas as pd // >>> df = pd.DataFrame({'a':pd.Series([1, 2, None], dtype="Int64"), 'b':[3, 4, 5]}) // >>> df.to_orc("temp.orc") // // Contents of file: // >>> import pyarrow.orc as po // >>> po.ORCFile('temp.orc').read() // pyarrow.Table // a: int64 // b: int64 // ---- // a: [[1,2,null]] // b: [[3,4,5]] auto nulls_orc = std::array<uint8_t, 308>{ 0x4F, 0x52, 0x43, 0x1D, 0x00, 0x00, 0x0A, 0x0C, 0x0A, 0x04, 0x00, 0x00, 0x00, 0x00, 0x12, 0x04, 0x08, 0x03, 0x50, 0x00, 0x2C, 0x00, 0x00, 0xE3, 0x12, 0xE7, 0x62, 0x67, 0x80, 0x00, 0x21, 0x1E, 0x0E, 0x26, 0x21, 0x36, 0x0E, 0x26, 0x01, 0x16, 0x09, 0xB6, 0x00, 0x46, 0x00, 0x2C, 0x00, 0x00, 0xE3, 0x12, 0xE7, 0x62, 0x67, 0x80, 0x00, 0x21, 0x1E, 0x0E, 0x66, 0x21, 0x36, 0x0E, 0x36, 0x01, 0x2E, 0x09, 0x89, 0x00, 0x06, 0x00, 0x05, 0x00, 0x00, 0xFF, 0xE0, 0x05, 0x00, 0x00, 0xFF, 0xC0, 0x07, 0x00, 0x00, 0x46, 0x01, 0x24, 0x05, 0x00, 0x00, 0xFF, 0xE0, 0x09, 0x00, 0x00, 0x46, 0x02, 0x68, 0xA0, 0x68, 0x00, 0x00, 0xE3, 0x62, 0xE3, 0x60, 0x13, 0x60, 0x90, 0x10, 0xE4, 0x02, 0xD1, 0x8C, 0x12, 0x92, 0x60, 0x9A, 0x09, 0x4C, 0x33, 0x00, 0xC5, 0x59, 0xC1, 0x34, 0x23, 0x98, 0x66, 0x04, 0xD2, 0x6C, 0x60, 0x3E, 0x13, 0x94, 0xCF, 0x24, 0xC1, 0x2E, 0xC4, 0x02, 0x52, 0x07, 0x24, 0x99, 0x60, 0xA4, 0x14, 0x73, 0x68, 0x88, 0x33, 0x00, 0x46, 0x00, 0x00, 0xE3, 0x52, 0xE2, 0x62, 0xE1, 0x60, 0x0E, 0x60, 0xE0, 0xE2, 0xE1, 0x60, 0x12, 0x62, 0xE3, 0x60, 0x12, 0x60, 0x91, 0x60, 0x0B, 0x60, 0x04, 0xF2, 0x98, 0x81, 0x3C, 0x36, 0x01, 0x2E, 0x09, 0x89, 0x00, 0x06, 0x00, 0xB4, 0x00, 0x00, 0xE3, 0x60, 0x16, 0x98, 0xC6, 0x28, 0xC5, 0xC5, 0xC1, 0x2C, 0xE0, 0x2C, 0x21, 0xA3, 0x60, 0xAE, 0xC1, 0xAC, 0x24, 0xC4, 0xC1, 0x23, 0xC4, 0xC4, 0xC8, 0x24, 0xC5, 0x98, 0x28, 0xC5, 0x98, 0xA4, 0xC0, 0xA0, 0xC1, 0x60, 0xC0, 0xA0, 0xC4, 0xC1, 0xC1, 0x82, 0xCE, 0x32, 0x60, 0xB6, 0x62, 0xE1, 0x60, 0x0E, 0x60, 0xB0, 0xE2, 0xE1, 0x60, 0x12, 0x62, 0xE3, 0x60, 0x12, 0x60, 0x91, 0x60, 0x0B, 0x60, 0x04, 0xF2, 0x98, 0x81, 0x3C, 0x36, 0x01, 0x2E, 0x09, 0x89, 0x00, 0x06, 0x87, 0x09, 0x7E, 0x1E, 0x8C, 0x49, 0xAC, 0x86, 0x7A, 0xE6, 0x7A, 0xA6, 0x00, 0x08, 0x5D, 0x10, 0x01, 0x18, 0x80, 0x80, 0x04, 0x22, 0x02, 0x00, 0x0C, 0x28, 0x26, 0x30, 0x06, 0x82, 0xF4, 0x03, 0x03, 0x4F, 0x52, 0x43, 0x17, }; auto const stats = cudf::io::read_parsed_orc_statistics( cudf::io::source_info{reinterpret_cast<char const*>(nulls_orc.data()), nulls_orc.size()}); EXPECT_EQ(stats.file_stats[1].has_null, true); EXPECT_EQ(stats.file_stats[2].has_null, false); EXPECT_EQ(stats.stripes_stats[0][1].has_null, true); EXPECT_EQ(stats.stripes_stats[0][2].has_null, false); } struct OrcWriterTestStripes : public OrcWriterTest, public ::testing::WithParamInterface<std::tuple<size_t, cudf::size_type>> {}; TEST_P(OrcWriterTestStripes, StripeSize) { constexpr auto num_rows = 1000000; auto const [size_bytes, size_rows] = GetParam(); auto const seq_col = random_values<int>(num_rows); auto const validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); column_wrapper<int64_t> col{seq_col.begin(), seq_col.end(), validity}; std::vector<std::unique_ptr<column>> cols; cols.push_back(col.release()); auto const expected = std::make_unique<table>(std::move(cols)); auto validate = [&](std::vector<char> const& orc_buffer) { auto const expected_stripe_num = std::max<cudf::size_type>(num_rows / size_rows, (num_rows * sizeof(int64_t)) / size_bytes); auto const stats = cudf::io::read_parsed_orc_statistics( cudf::io::source_info(orc_buffer.data(), orc_buffer.size())); EXPECT_EQ(stats.stripes_stats.size(), expected_stripe_num); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder( cudf::io::source_info(orc_buffer.data(), orc_buffer.size())) .use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result.tbl->view()); }; { std::vector<char> out_buffer_chunked; cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info(&out_buffer_chunked)) .stripe_size_rows(size_rows) .stripe_size_bytes(size_bytes); cudf::io::orc_chunked_writer(opts).write(expected->view()); validate(out_buffer_chunked); } { std::vector<char> out_buffer; cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info(&out_buffer), expected->view()) .stripe_size_rows(size_rows) .stripe_size_bytes(size_bytes); cudf::io::write_orc(out_opts); validate(out_buffer); } } INSTANTIATE_TEST_CASE_P(OrcWriterTest, OrcWriterTestStripes, ::testing::Values(std::make_tuple(800000ul, 1000000), std::make_tuple(2000000ul, 1000000), std::make_tuple(4000000ul, 1000000), std::make_tuple(8000000ul, 1000000), std::make_tuple(8000000ul, 500000), std::make_tuple(8000000ul, 250000), std::make_tuple(8000000ul, 100000))); TEST_F(OrcWriterTest, StripeSizeInvalid) { auto const unused_table = std::make_unique<table>(); std::vector<char> out_buffer; EXPECT_THROW( cudf::io::orc_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .stripe_size_rows(511), cudf::logic_error); EXPECT_THROW( cudf::io::orc_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .stripe_size_bytes(63 << 10), cudf::logic_error); EXPECT_THROW( cudf::io::orc_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .row_index_stride(511), cudf::logic_error); } TEST_F(OrcWriterTest, TestMap) { auto const num_rows = 1200000; auto const lists_per_row = 4; auto const num_child_rows = (num_rows * lists_per_row) / 2; // half due to validity auto keys = random_values<int>(num_child_rows); auto vals = random_values<float>(num_child_rows); auto vals_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 3; }); int32_col keys_col(keys.begin(), keys.end()); float32_col vals_col{vals.begin(), vals.end(), vals_mask}; auto s_col = struct_col({keys_col, vals_col}).release(); auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); std::vector<int> row_offsets(num_rows + 1); int offset = 0; for (int idx = 0; idx < (num_rows) + 1; ++idx) { row_offsets[idx] = offset; if (valids[idx]) { offset += lists_per_row; } } int32_col offsets(row_offsets.begin(), row_offsets.end()); auto num_list_rows = static_cast<cudf::column_view>(offsets).size() - 1; auto [null_mask, null_count] = cudf::test::detail::make_null_mask(valids, valids + num_list_rows); auto list_col = cudf::make_lists_column( num_list_rows, offsets.release(), std::move(s_col), null_count, std::move(null_mask)); table_view expected({*list_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_list_column_as_map(); auto filepath = temp_env->get_temp_filepath("MapColumn.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(expected_metadata); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(OrcReaderTest, NestedColumnSelection) { auto const num_rows = 1000; auto child_col1_data = random_values<int32_t>(num_rows); auto child_col2_data = random_values<int64_t>(num_rows); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 3; }); int32_col child_col1{child_col1_data.begin(), child_col1_data.end(), validity}; int64_col child_col2{child_col2_data.begin(), child_col2_data.end(), validity}; struct_col s_col{child_col1, child_col2}; table_view expected({s_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("struct_s"); expected_metadata.column_metadata[0].child(0).set_name("field_a"); expected_metadata.column_metadata[0].child(1).set_name("field_b"); auto filepath = temp_env->get_temp_filepath("OrcNestedSelection.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) .columns({"struct_s.field_b"}); auto result = cudf::io::read_orc(in_opts); // Verify that only one child column is included in the output table ASSERT_EQ(1, result.tbl->view().column(0).num_children()); // Verify that the first child column is `field_b` int64_col expected_col{child_col2_data.begin(), child_col2_data.end(), validity}; CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_col, result.tbl->view().column(0).child(0)); ASSERT_EQ("field_b", result.metadata.schema_info[0].children[0].name); } TEST_F(OrcReaderTest, DecimalOptions) { constexpr auto num_rows = 10; auto col_vals = random_values<int64_t>(num_rows); auto col_data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal128{col_vals[i], numeric::scale_type{2}}; }); auto mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 3 == 0; }); dec128_col col{col_data, col_data + num_rows, mask}; table_view expected({col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("dec"); auto filepath = temp_env->get_temp_filepath("OrcDecimalOptions.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options valid_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .decimal128_columns({"dec", "fake_name"}); // Should not throw, even with "fake name" EXPECT_NO_THROW(cudf::io::read_orc(valid_opts)); } TEST_F(OrcWriterTest, DecimalOptionsNested) { auto const num_rows = 100; auto dec_vals = random_values<int32_t>(num_rows); auto dec1_data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal64{dec_vals[i], numeric::scale_type{2}}; }); auto dec2_data = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return numeric::decimal128{dec_vals[i], numeric::scale_type{2}}; }); dec64_col dec1_col(dec1_data, dec1_data + num_rows); dec128_col dec2_col(dec2_data, dec2_data + num_rows); auto child_struct_col = cudf::test::structs_column_wrapper{dec1_col, dec2_col}; auto int_vals = random_values<int32_t>(num_rows); int32_col int_col(int_vals.begin(), int_vals.end()); auto map_struct_col = struct_col({child_struct_col, int_col}).release(); std::vector<int> row_offsets(num_rows + 1); std::iota(row_offsets.begin(), row_offsets.end(), 0); int32_col offsets(row_offsets.begin(), row_offsets.end()); auto map_list_col = cudf::make_lists_column( num_rows, offsets.release(), std::move(map_struct_col), 0, rmm::device_buffer{}); table_view expected({*map_list_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("maps"); expected_metadata.column_metadata[0].set_list_column_as_map(); expected_metadata.column_metadata[0].child(1).child(0).child(0).set_name("dec64"); expected_metadata.column_metadata[0].child(1).child(0).child(1).set_name("dec128"); auto filepath = temp_env->get_temp_filepath("OrcMultiColumn.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}) .use_index(false) // One less level of nesting because children of map columns are the child struct's children .decimal128_columns({"maps.0.dec64"}); auto result = cudf::io::read_orc(in_opts); // Both columns should be read as decimal128 CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(result.tbl->view().column(0).child(1).child(0).child(0), result.tbl->view().column(0).child(1).child(0).child(1)); } TEST_F(OrcReaderTest, EmptyColumnsParam) { srand(31337); auto const expected = create_random_fixed_table<int>(2, 4, false); std::vector<char> out_buffer; cudf::io::orc_writer_options args = cudf::io::orc_writer_options::builder(cudf::io::sink_info{&out_buffer}, *expected); cudf::io::write_orc(args); cudf::io::orc_reader_options read_opts = cudf::io::orc_reader_options::builder( cudf::io::source_info{out_buffer.data(), out_buffer.size()}) .columns({}); auto const result = cudf::io::read_orc(read_opts); EXPECT_EQ(result.tbl->num_columns(), 0); EXPECT_EQ(result.tbl->num_rows(), 0); } TEST_F(OrcMetadataReaderTest, TestBasic) { auto const num_rows = 1'200'000; auto ints = random_values<int>(num_rows); auto floats = random_values<float>(num_rows); int32_col int_col(ints.begin(), ints.end()); float32_col float_col(floats.begin(), floats.end()); table_view expected({int_col, float_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("int_col"); expected_metadata.column_metadata[1].set_name("float_col"); auto filepath = temp_env->get_temp_filepath("MetadataTest.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_orc(out_opts); auto meta = read_orc_metadata(cudf::io::source_info{filepath}); EXPECT_EQ(meta.num_rows(), num_rows); EXPECT_EQ(meta.schema().root().name(), ""); EXPECT_EQ(meta.schema().root().type_kind(), cudf::io::orc::STRUCT); ASSERT_EQ(meta.schema().root().num_children(), 2); EXPECT_EQ(meta.schema().root().child(0).name(), "int_col"); EXPECT_EQ(meta.schema().root().child(1).name(), "float_col"); } TEST_F(OrcMetadataReaderTest, TestNested) { auto const num_rows = 1'200'000; auto const lists_per_row = 4; auto const num_child_rows = num_rows * lists_per_row; auto keys = random_values<int>(num_child_rows); auto vals = random_values<float>(num_child_rows); int32_col keys_col(keys.begin(), keys.end()); float32_col vals_col(vals.begin(), vals.end()); auto s_col = struct_col({keys_col, vals_col}).release(); std::vector<int> row_offsets(num_rows + 1); for (int idx = 0; idx < num_rows + 1; ++idx) { row_offsets[idx] = idx * lists_per_row; } int32_col offsets(row_offsets.begin(), row_offsets.end()); auto list_col = cudf::make_lists_column(num_rows, offsets.release(), std::move(s_col), 0, rmm::device_buffer{}); table_view expected({*list_col, *list_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("maps"); expected_metadata.column_metadata[0].set_list_column_as_map(); expected_metadata.column_metadata[1].set_name("lists"); expected_metadata.column_metadata[1].child(1).child(0).set_name("int_field"); expected_metadata.column_metadata[1].child(1).child(1).set_name("float_field"); auto filepath = temp_env->get_temp_filepath("MetadataTest.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_orc(out_opts); auto meta = read_orc_metadata(cudf::io::source_info{filepath}); EXPECT_EQ(meta.num_rows(), num_rows); EXPECT_EQ(meta.schema().root().name(), ""); EXPECT_EQ(meta.schema().root().type_kind(), cudf::io::orc::STRUCT); ASSERT_EQ(meta.schema().root().num_children(), 2); auto const& out_map_col = meta.schema().root().child(0); EXPECT_EQ(out_map_col.name(), "maps"); EXPECT_EQ(out_map_col.type_kind(), cudf::io::orc::MAP); ASSERT_EQ(out_map_col.num_children(), 2); EXPECT_EQ(out_map_col.child(0).name(), ""); // keys (no name in ORC) EXPECT_EQ(out_map_col.child(1).name(), ""); // values (no name in ORC) auto const& out_list_col = meta.schema().root().child(1); EXPECT_EQ(out_list_col.name(), "lists"); EXPECT_EQ(out_list_col.type_kind(), cudf::io::orc::LIST); ASSERT_EQ(out_list_col.num_children(), 1); auto const& out_list_struct_col = out_list_col.child(0); EXPECT_EQ(out_list_struct_col.name(), ""); // elements (no name in ORC) EXPECT_EQ(out_list_struct_col.type_kind(), cudf::io::orc::STRUCT); ASSERT_EQ(out_list_struct_col.num_children(), 2); auto const& out_int_col = out_list_struct_col.child(0); EXPECT_EQ(out_int_col.name(), "int_field"); EXPECT_EQ(out_int_col.type_kind(), cudf::io::orc::INT); auto const& out_float_col = out_list_struct_col.child(1); EXPECT_EQ(out_float_col.name(), "float_field"); EXPECT_EQ(out_float_col.type_kind(), cudf::io::orc::FLOAT); } TEST_F(OrcReaderTest, ZstdMaxCompressionRate) { if (cudf::io::nvcomp::is_decompression_disabled(cudf::io::nvcomp::compression_type::ZSTD) or cudf::io::nvcomp::is_compression_disabled(cudf::io::nvcomp::compression_type::ZSTD)) { GTEST_SKIP() << "Newer nvCOMP version is required"; } // Encodes as 64KB of zeros, which compresses to 18 bytes with ZSTD std::vector<float> const h_data(8 * 1024); float32_col col(h_data.begin(), h_data.end()); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcHugeCompRatio.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::ZSTD); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(OrcWriterTest, CompStats) { auto table = create_random_fixed_table<int>(1, 100000, true); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::orc_writer_options opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{&unused_buffer}, table->view()) .compression_statistics(stats); cudf::io::write_orc(opts); EXPECT_NE(stats->num_compressed_bytes(), 0); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); EXPECT_FALSE(std::isnan(stats->compression_ratio())); } TEST_F(OrcChunkedWriterTest, CompStats) { auto table = create_random_fixed_table<int>(1, 100000, true); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{&unused_buffer}) .compression_statistics(stats); cudf::io::orc_chunked_writer(opts).write(*table); EXPECT_NE(stats->num_compressed_bytes(), 0); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); EXPECT_FALSE(std::isnan(stats->compression_ratio())); auto const single_table_comp_stats = *stats; cudf::io::orc_chunked_writer(opts).write(*table); EXPECT_EQ(stats->compression_ratio(), single_table_comp_stats.compression_ratio()); EXPECT_EQ(stats->num_compressed_bytes(), 2 * single_table_comp_stats.num_compressed_bytes()); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); } void expect_compression_stats_empty(std::shared_ptr<cudf::io::writer_compression_statistics> stats) { EXPECT_EQ(stats->num_compressed_bytes(), 0); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); EXPECT_TRUE(std::isnan(stats->compression_ratio())); } TEST_F(OrcWriterTest, CompStatsEmptyTable) { auto table_no_rows = create_random_fixed_table<int>(20, 0, false); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::orc_writer_options opts = cudf::io::orc_writer_options::builder( cudf::io::sink_info{&unused_buffer}, table_no_rows->view()) .compression_statistics(stats); cudf::io::write_orc(opts); expect_compression_stats_empty(stats); } TEST_F(OrcChunkedWriterTest, CompStatsEmptyTable) { auto table_no_rows = create_random_fixed_table<int>(20, 0, false); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::chunked_orc_writer_options opts = cudf::io::chunked_orc_writer_options::builder(cudf::io::sink_info{&unused_buffer}) .compression_statistics(stats); cudf::io::orc_chunked_writer(opts).write(*table_no_rows); expect_compression_stats_empty(stats); } TEST_F(OrcWriterTest, EmptyRowGroup) { std::vector<int> ints(10000 + 5, -1); auto mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i >= 10000; }); int32_col col{ints.begin(), ints.end(), mask}; table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcEmptyRowGroup.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(OrcWriterTest, NoNullsAsNonNullable) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); column_wrapper<int32_t> col{{1, 2, 3}, valids}; table_view expected({col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_nullability(false); auto filepath = temp_env->get_temp_filepath("NonNullable.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); // Writer should be able to write a column without nulls as non-nullable EXPECT_NO_THROW(cudf::io::write_orc(out_opts)); } TEST_F(OrcWriterTest, SlicedStringColumn) { std::vector<char const*> strings{"a", "bc", "def", "longer", "strings", "at the end"}; str_col col(strings.begin(), strings.end()); table_view expected({col}); // Slice the table to include the longer strings auto expected_slice = cudf::slice(expected, {2, 6}); auto filepath = temp_env->get_temp_filepath("SlicedTable.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected_slice); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_slice, result.tbl->view()); } TEST_F(OrcWriterTest, EmptyChildStringColumn) { list_col<cudf::string_view> col{{}, {}}; table_view expected({col}); auto filepath = temp_env->get_temp_filepath("OrcEmptyChildStringColumn.orc"); cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_orc(out_opts); cudf::io::orc_reader_options in_opts = cudf::io::orc_reader_options::builder(cudf::io::source_info{filepath}).use_index(false); auto result = cudf::io::read_orc(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } template <typename T> void check_all_null_stats(cudf::io::column_statistics const& stats) { EXPECT_EQ(stats.number_of_values, 0); EXPECT_TRUE(stats.has_null); auto const ts = std::get<T>(stats.type_specific_stats); EXPECT_FALSE(ts.minimum.has_value()); EXPECT_FALSE(ts.maximum.has_value()); EXPECT_TRUE(ts.sum.has_value()); EXPECT_EQ(*ts.sum, 0); } TEST_F(OrcStatisticsTest, AllNulls) { float64_col double_col({0., 0., 0.}, cudf::test::iterators::all_nulls()); int32_col int_col({0, 0, 0}, cudf::test::iterators::all_nulls()); str_col string_col({"", "", ""}, cudf::test::iterators::all_nulls()); cudf::table_view expected({int_col, double_col, string_col}); std::vector<char> out_buffer; cudf::io::orc_writer_options out_opts = cudf::io::orc_writer_options::builder(cudf::io::sink_info{&out_buffer}, expected); cudf::io::write_orc(out_opts); auto const stats = cudf::io::read_parsed_orc_statistics( cudf::io::source_info{out_buffer.data(), out_buffer.size()}); check_all_null_stats<cudf::io::integer_statistics>(stats.file_stats[1]); check_all_null_stats<cudf::io::double_statistics>(stats.file_stats[2]); check_all_null_stats<cudf::io::string_statistics>(stats.file_stats[3]); } TEST_F(OrcWriterTest, UnorderedDictionary) { std::vector<char const*> strings{ "BBBB", "BBBB", "CCCC", "BBBB", "CCCC", "EEEE", "CCCC", "AAAA", "DDDD", "EEEE"}; str_col col(strings.begin(), strings.end()); table_view expected({col}); std::vector<char> out_buffer_sorted; cudf::io::orc_writer_options out_opts_sorted = cudf::io::orc_writer_options::builder(cudf::io::sink_info{&out_buffer_sorted}, expected); cudf::io::write_orc(out_opts_sorted); cudf::io::orc_reader_options in_opts_sorted = cudf::io::orc_reader_options::builder( cudf::io::source_info{out_buffer_sorted.data(), out_buffer_sorted.size()}); auto const from_sorted = cudf::io::read_orc(in_opts_sorted).tbl; std::vector<char> out_buffer_unsorted; cudf::io::orc_writer_options out_opts_unsorted = cudf::io::orc_writer_options::builder(cudf::io::sink_info{&out_buffer_unsorted}, expected) .enable_dictionary_sort(false); cudf::io::write_orc(out_opts_unsorted); cudf::io::orc_reader_options in_opts_unsorted = cudf::io::orc_reader_options::builder( cudf::io::source_info{out_buffer_unsorted.data(), out_buffer_unsorted.size()}); auto const from_unsorted = cudf::io::read_orc(in_opts_unsorted).tbl; CUDF_TEST_EXPECT_TABLES_EQUAL(*from_sorted, *from_unsorted); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/nested_json_test.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <io/json/nested_json.hpp> #include <io/utilities/hostdevice_vector.hpp> #include <cudf/io/datasource.hpp> #include <cudf/io/json.hpp> #include <cudf/io/parquet.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/span.hpp> #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/io_metadata_utilities.hpp> #include <cudf_test/table_utilities.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/iterator/zip_iterator.h> #include <string> namespace cuio_json = cudf::io::json; namespace { // Forward declaration void print_column(std::string const& input, cuio_json::json_column const& column, uint32_t indent = 0); /** * @brief Helper to generate indentation */ std::string pad(uint32_t indent = 0) { std::string pad{}; if (indent > 0) pad.insert(pad.begin(), indent, ' '); return pad; } /** * @brief Prints a string column. */ void print_json_string_col(std::string const& input, cuio_json::json_column const& column, uint32_t indent = 0) { for (std::size_t i = 0; i < column.string_offsets.size(); i++) { std::cout << pad(indent) << i << ": [" << (column.validity[i] ? "1" : "0") << "] '" << input.substr(column.string_offsets[i], column.string_lengths[i]) << "'\n"; } } /** * @brief Prints a list column. */ void print_json_list_col(std::string const& input, cuio_json::json_column const& column, uint32_t indent = 0) { std::cout << pad(indent) << " [LIST]\n"; std::cout << pad(indent) << " -> num. child-columns: " << column.child_columns.size() << "\n"; std::cout << pad(indent) << " -> num. rows: " << column.current_offset << "\n"; std::cout << pad(indent) << " -> num. valid: " << column.valid_count << "\n"; std::cout << pad(indent) << " offsets[]: " << "\n"; for (std::size_t i = 0; i < column.child_offsets.size() - 1; i++) { std::cout << pad(indent + 2) << i << ": [" << (column.validity[i] ? "1" : "0") << "] [" << column.child_offsets[i] << ", " << column.child_offsets[i + 1] << ")\n"; } if (column.child_columns.size() > 0) { std::cout << pad(indent) << column.child_columns.begin()->first << "[]: " << "\n"; print_column(input, column.child_columns.begin()->second, indent + 2); } } /** * @brief Prints a struct column. */ void print_json_struct_col(std::string const& input, cuio_json::json_column const& column, uint32_t indent = 0) { std::cout << pad(indent) << " [STRUCT]\n"; std::cout << pad(indent) << " -> num. child-columns: " << column.child_columns.size() << "\n"; std::cout << pad(indent) << " -> num. rows: " << column.current_offset << "\n"; std::cout << pad(indent) << " -> num. valid: " << column.valid_count << "\n"; std::cout << pad(indent) << " -> validity[]: " << "\n"; for (decltype(column.current_offset) i = 0; i < column.current_offset; i++) { std::cout << pad(indent + 2) << i << ": [" << (column.validity[i] ? "1" : "0") << "]\n"; } auto it = std::begin(column.child_columns); for (std::size_t i = 0; i < column.child_columns.size(); i++) { std::cout << pad(indent + 2) << "child #" << i << " '" << it->first << "'[] \n"; print_column(input, it->second, indent + 2); it++; } } /** * @brief Prints the column's data and recurses through and prints all the child columns. */ void print_column(std::string const& input, cuio_json::json_column const& column, uint32_t indent) { switch (column.type) { case cuio_json::json_col_t::StringColumn: print_json_string_col(input, column, indent); break; case cuio_json::json_col_t::ListColumn: print_json_list_col(input, column, indent); break; case cuio_json::json_col_t::StructColumn: print_json_struct_col(input, column, indent); break; case cuio_json::json_col_t::Unknown: std::cout << pad(indent) << "[UNKNOWN]\n"; break; default: break; } } } // namespace // Base test fixture for tests struct JsonTest : public cudf::test::BaseFixture {}; TEST_F(JsonTest, StackContext) { // Type used to represent the atomic symbol type used within the finite-state machine using SymbolT = char; using StackSymbolT = char; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); // Test input std::string const input = R"( [{)" R"("category": "reference",)" R"("index:": [4,12,42],)" R"("author": "Nigel Rees",)" R"("title": "[Sayings of the Century]",)" R"("price": 8.95)" R"(}, )" R"({)" R"("category": "reference",)" R"("index": [4,{},null,{"a":[{ }, {}] } ],)" R"("author": "Nigel Rees",)" R"("title": "{}\\\"[], <=semantic-symbols-string\\\\",)" R"("price": 8.95)" R"(}] )"; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::detail::hostdevice_vector<StackSymbolT> stack_context(input.size(), stream); // Run algorithm constexpr auto stack_behavior = cuio_json::stack_behavior_t::PushPopWithoutReset; cuio_json::detail::get_stack_context(d_input, stack_context.device_ptr(), stack_behavior, stream); // Copy back the results stack_context.device_to_host_async(stream); // Make sure we copied back the stack context stream.synchronize(); std::vector<char> const golden_stack_context{ '_', '_', '_', '[', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '[', '[', '[', '[', '[', '[', '[', '[', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '[', '[', '[', '[', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '[', '[', '[', '{', '[', '[', '[', '[', '[', '[', '[', '{', '{', '{', '{', '{', '[', '{', '{', '[', '[', '[', '{', '[', '{', '{', '[', '[', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '[', '_'}; ASSERT_EQ(golden_stack_context.size(), stack_context.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(golden_stack_context, stack_context, stack_context.size()); } TEST_F(JsonTest, StackContextUtf8) { // Type used to represent the atomic symbol type used within the finite-state machine using SymbolT = char; using StackSymbolT = char; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); // Test input std::string const input = R"([{"a":{"year":1882,"author": "Bharathi"}, {"a":"filip ʒakotɛ"}}])"; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::detail::hostdevice_vector<StackSymbolT> stack_context(input.size(), stream); // Run algorithm constexpr auto stack_behavior = cuio_json::stack_behavior_t::PushPopWithoutReset; cuio_json::detail::get_stack_context(d_input, stack_context.device_ptr(), stack_behavior, stream); // Copy back the results stack_context.device_to_host_async(stream); // Make sure we copied back the stack context stream.synchronize(); std::vector<char> const golden_stack_context{ '_', '[', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '{', '['}; ASSERT_EQ(golden_stack_context.size(), stack_context.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(golden_stack_context, stack_context, stack_context.size()); } TEST_F(JsonTest, StackContextRecovering) { // Type used to represent the atomic symbol type used within the finite-state machine using SymbolT = char; using StackSymbolT = char; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); // JSON lines input that recovers on invalid lines std::string const input = R"({"a":-2}, {"a": {"a":{"a":[321 {"a":[1]} {"b":123} )"; // Expected stack context (including stack context of the newline characters) std::string const golden_stack_context = "_{{{{{{{__" "___{{{{{" "___{{{{{{{{{{[[[[" "___{{{{{[[{_" "_" "___{{{{{{{{_" "__"; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::detail::hostdevice_vector<StackSymbolT> stack_context(input.size(), stream); // Run algorithm constexpr auto stack_behavior = cuio_json::stack_behavior_t::ResetOnDelimiter; cuio_json::detail::get_stack_context(d_input, stack_context.device_ptr(), stack_behavior, stream); // Copy back the results stack_context.device_to_host_async(stream); // Make sure we copied back the stack context stream.synchronize(); // Verify results ASSERT_EQ(golden_stack_context.size(), stack_context.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(golden_stack_context, stack_context, stack_context.size()); } TEST_F(JsonTest, StackContextRecoveringFuzz) { // Type used to represent the atomic symbol type used within the finite-state machine using SymbolT = char; using StackSymbolT = char; std::random_device rd; std::mt19937 gen(42); std::uniform_int_distribution<int> distribution(0, 4); constexpr std::size_t input_length = 1024 * 1024; std::string input{}; input.reserve(input_length); bool inside_quotes = false; std::stack<StackSymbolT> host_stack{}; for (std::size_t i = 0; i < input_length; ++i) { bool is_ok = true; char current{}; do { int rand_char = distribution(gen); is_ok = true; switch (rand_char) { case 0: current = '{'; break; case 1: current = '['; break; case 2: current = '}'; break; case 3: current = '"'; break; case 4: current = '\n'; break; } switch (current) { case '"': inside_quotes = !inside_quotes; break; case '{': if (!inside_quotes) { host_stack.push('{'); } break; case '[': if (!inside_quotes) { host_stack.push('['); } break; case '}': if (!inside_quotes) { if (host_stack.size() > 0) { // Get the proper 'pop' stack symbol current = (host_stack.top() == '{' ? '}' : ']'); host_stack.pop(); } else is_ok = false; } break; case '\n': // Increase chance to have longer lines if (distribution(gen) == 0) { is_ok = false; break; } else { host_stack = {}; inside_quotes = false; break; } } } while (!is_ok); input += current; } std::string expected_stack_context{}; expected_stack_context.reserve(input_length); inside_quotes = false; host_stack = std::stack<StackSymbolT>{}; for (auto const current : input) { // Write the stack context for the current input symbol if (host_stack.empty()) { expected_stack_context += '_'; } else { expected_stack_context += host_stack.top(); } switch (current) { case '"': inside_quotes = !inside_quotes; break; case '{': if (!inside_quotes) { host_stack.push('{'); } break; case '[': if (!inside_quotes) { host_stack.push('['); } break; case '}': if (!inside_quotes && host_stack.size() > 0) { host_stack.pop(); } break; case ']': if (!inside_quotes && host_stack.size() > 0) { host_stack.pop(); } break; case '\n': host_stack = {}; inside_quotes = false; break; } } // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; cudf::detail::hostdevice_vector<StackSymbolT> stack_context(input.size(), stream); // Run algorithm constexpr auto stack_behavior = cuio_json::stack_behavior_t::ResetOnDelimiter; cuio_json::detail::get_stack_context(d_input, stack_context.device_ptr(), stack_behavior, stream); // Copy back the results stack_context.device_to_host_async(stream); // Make sure we copied back the stack context stream.synchronize(); ASSERT_EQ(expected_stack_context.size(), stack_context.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(expected_stack_context, stack_context, stack_context.size()); } TEST_F(JsonTest, TokenStream) { using cuio_json::PdaTokenT; using cuio_json::SymbolOffsetT; using cuio_json::SymbolT; // Test input std::string const input = R"( [{)" R"("category": "reference",)" R"("index:": [4,12,42],)" R"("author": "Nigel Rees",)" R"("title": "[Sayings of the Century]",)" R"("price": 8.95)" R"(}, )" R"({)" R"("category": "reference",)" R"("index": [4,{},null,{"a":[{ }, {}] } ],)" R"("author": "Nigel Rees",)" R"("title": "{}[], <=semantic-symbols-string",)" R"("price": 8.95)" R"(}] )"; auto const stream = cudf::get_default_stream(); // Default parsing options cudf::io::json_reader_options default_options{}; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; // Parse the JSON and get the token stream auto [d_tokens_gpu, d_token_indices_gpu] = cuio_json::detail::get_token_stream( d_input, default_options, stream, rmm::mr::get_current_device_resource()); // Copy back the number of tokens that were written auto const tokens_gpu = cudf::detail::make_std_vector_async(d_tokens_gpu, stream); auto const token_indices_gpu = cudf::detail::make_std_vector_async(d_token_indices_gpu, stream); // Golden token stream sample using token_t = cuio_json::token_t; std::vector<std::pair<std::size_t, cuio_json::PdaTokenT>> const golden_token_stream = { {2, token_t::ListBegin}, {3, token_t::StructBegin}, {4, token_t::StructMemberBegin}, {4, token_t::FieldNameBegin}, {13, token_t::FieldNameEnd}, {16, token_t::StringBegin}, {26, token_t::StringEnd}, {27, token_t::StructMemberEnd}, {28, token_t::StructMemberBegin}, {28, token_t::FieldNameBegin}, {35, token_t::FieldNameEnd}, {38, token_t::ListBegin}, {39, token_t::ValueBegin}, {40, token_t::ValueEnd}, {41, token_t::ValueBegin}, {43, token_t::ValueEnd}, {44, token_t::ValueBegin}, {46, token_t::ValueEnd}, {46, token_t::ListEnd}, {47, token_t::StructMemberEnd}, {48, token_t::StructMemberBegin}, {48, token_t::FieldNameBegin}, {55, token_t::FieldNameEnd}, {58, token_t::StringBegin}, {69, token_t::StringEnd}, {70, token_t::StructMemberEnd}, {71, token_t::StructMemberBegin}, {71, token_t::FieldNameBegin}, {77, token_t::FieldNameEnd}, {80, token_t::StringBegin}, {105, token_t::StringEnd}, {106, token_t::StructMemberEnd}, {107, token_t::StructMemberBegin}, {107, token_t::FieldNameBegin}, {113, token_t::FieldNameEnd}, {116, token_t::ValueBegin}, {120, token_t::ValueEnd}, {120, token_t::StructMemberEnd}, {120, token_t::StructEnd}, {124, token_t::StructBegin}, {125, token_t::StructMemberBegin}, {125, token_t::FieldNameBegin}, {134, token_t::FieldNameEnd}, {137, token_t::StringBegin}, {147, token_t::StringEnd}, {148, token_t::StructMemberEnd}, {149, token_t::StructMemberBegin}, {149, token_t::FieldNameBegin}, {155, token_t::FieldNameEnd}, {158, token_t::ListBegin}, {159, token_t::ValueBegin}, {160, token_t::ValueEnd}, {161, token_t::StructBegin}, {162, token_t::StructEnd}, {164, token_t::ValueBegin}, {168, token_t::ValueEnd}, {169, token_t::StructBegin}, {170, token_t::StructMemberBegin}, {170, token_t::FieldNameBegin}, {172, token_t::FieldNameEnd}, {174, token_t::ListBegin}, {175, token_t::StructBegin}, {177, token_t::StructEnd}, {180, token_t::StructBegin}, {181, token_t::StructEnd}, {182, token_t::ListEnd}, {184, token_t::StructMemberEnd}, {184, token_t::StructEnd}, {186, token_t::ListEnd}, {187, token_t::StructMemberEnd}, {188, token_t::StructMemberBegin}, {188, token_t::FieldNameBegin}, {195, token_t::FieldNameEnd}, {198, token_t::StringBegin}, {209, token_t::StringEnd}, {210, token_t::StructMemberEnd}, {211, token_t::StructMemberBegin}, {211, token_t::FieldNameBegin}, {217, token_t::FieldNameEnd}, {220, token_t::StringBegin}, {252, token_t::StringEnd}, {253, token_t::StructMemberEnd}, {254, token_t::StructMemberBegin}, {254, token_t::FieldNameBegin}, {260, token_t::FieldNameEnd}, {263, token_t::ValueBegin}, {267, token_t::ValueEnd}, {267, token_t::StructMemberEnd}, {267, token_t::StructEnd}, {268, token_t::ListEnd}}; // Verify the number of tokens matches ASSERT_EQ(golden_token_stream.size(), tokens_gpu.size()); ASSERT_EQ(golden_token_stream.size(), token_indices_gpu.size()); for (std::size_t i = 0; i < tokens_gpu.size(); i++) { // Ensure the index the tokens are pointing to do match EXPECT_EQ(golden_token_stream[i].first, token_indices_gpu[i]) << "Mismatch at #" << i; // Ensure the token category is correct EXPECT_EQ(golden_token_stream[i].second, tokens_gpu[i]) << "Mismatch at #" << i; } } TEST_F(JsonTest, TokenStream2) { using cuio_json::PdaTokenT; using cuio_json::SymbolOffsetT; using cuio_json::SymbolT; // value end with comma, space, close-brace ", }" std::string const input = R"([ {}, { "a": { "y" : 6, "z": [] }}, { "a" : { "x" : 8, "y": 9}, "b" : {"x": 10 , "z": 11)" "\n}}]"; auto const stream = cudf::get_default_stream(); // Default parsing options cudf::io::json_reader_options default_options{}; // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<SymbolT const>{d_scalar.data(), static_cast<size_t>(d_scalar.size())}; // Parse the JSON and get the token stream auto [d_tokens_gpu, d_token_indices_gpu] = cuio_json::detail::get_token_stream( d_input, default_options, stream, rmm::mr::get_current_device_resource()); // Copy back the number of tokens that were written auto const tokens_gpu = cudf::detail::make_std_vector_async(d_tokens_gpu, stream); auto const token_indices_gpu = cudf::detail::make_std_vector_async(d_token_indices_gpu, stream); // Golden token stream sample using token_t = cuio_json::token_t; // clang-format off std::vector<std::pair<std::size_t, cuio_json::PdaTokenT>> const golden_token_stream = { {0, token_t::ListBegin}, {2, token_t::StructBegin}, {3, token_t::StructEnd}, //{} {6, token_t::StructBegin}, {8, token_t::StructMemberBegin}, {8, token_t::FieldNameBegin}, {10, token_t::FieldNameEnd}, //a {13, token_t::StructBegin}, {15, token_t::StructMemberBegin}, {15, token_t::FieldNameBegin}, {17, token_t::FieldNameEnd}, {21, token_t::ValueBegin}, {22, token_t::ValueEnd}, {22, token_t::StructMemberEnd}, //a.y {24, token_t::StructMemberBegin}, {24, token_t::FieldNameBegin}, {26, token_t::FieldNameEnd}, {29, token_t::ListBegin}, {30, token_t::ListEnd}, {32, token_t::StructMemberEnd}, //a.z {32, token_t::StructEnd}, {33, token_t::StructMemberEnd}, {33, token_t::StructEnd}, {36, token_t::StructBegin}, {38, token_t::StructMemberBegin}, {38, token_t::FieldNameBegin}, {40, token_t::FieldNameEnd}, //a {44, token_t::StructBegin}, {46, token_t::StructMemberBegin}, {46, token_t::FieldNameBegin}, {48, token_t::FieldNameEnd}, {52, token_t::ValueBegin}, {53, token_t::ValueEnd}, {53, token_t::StructMemberEnd}, //a.x {55, token_t::StructMemberBegin}, {55, token_t::FieldNameBegin}, {57, token_t::FieldNameEnd}, {60, token_t::ValueBegin}, {61, token_t::ValueEnd}, {61, token_t::StructMemberEnd}, //a.y {61, token_t::StructEnd}, {62, token_t::StructMemberEnd}, {64, token_t::StructMemberBegin}, {64, token_t::FieldNameBegin}, {66, token_t::FieldNameEnd}, //b {70, token_t::StructBegin}, {71, token_t::StructMemberBegin}, {71, token_t::FieldNameBegin}, {73, token_t::FieldNameEnd}, {76, token_t::ValueBegin}, {78, token_t::ValueEnd}, {79, token_t::StructMemberEnd}, //b.x {81, token_t::StructMemberBegin}, {81, token_t::FieldNameBegin}, {83, token_t::FieldNameEnd}, {86, token_t::ValueBegin}, {88, token_t::ValueEnd}, {89, token_t::StructMemberEnd}, //b.z {89, token_t::StructEnd}, {90, token_t::StructMemberEnd}, {90, token_t::StructEnd}, {91, token_t::ListEnd}}; // clang-format on // Verify the number of tokens matches ASSERT_EQ(golden_token_stream.size(), tokens_gpu.size()); ASSERT_EQ(golden_token_stream.size(), token_indices_gpu.size()); for (std::size_t i = 0; i < tokens_gpu.size(); i++) { // Ensure the index the tokens are pointing to do match EXPECT_EQ(golden_token_stream[i].first, token_indices_gpu[i]) << "Mismatch at #" << i; // Ensure the token category is correct EXPECT_EQ(golden_token_stream[i].second, tokens_gpu[i]) << "Mismatch at #" << i; } } struct JsonParserTest : public cudf::test::BaseFixture, public testing::WithParamInterface<bool> {}; INSTANTIATE_TEST_SUITE_P(Experimental, JsonParserTest, testing::Bool()); TEST_P(JsonParserTest, ExtractColumn) { using cuio_json::SymbolT; bool const is_full_gpu = GetParam(); auto json_parser = is_full_gpu ? cuio_json::detail::device_parse_nested_json : cuio_json::detail::host_parse_nested_json; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); // Default parsing options cudf::io::json_reader_options default_options{}; std::string const input = R"( [{"a":0.0, "b":1.0}, {"a":0.1, "b":1.1}, {"a":0.2, "b":1.2}] )"; auto const d_input = cudf::detail::make_device_uvector_async( cudf::host_span<char const>{input.c_str(), input.size()}, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation auto const cudf_table = json_parser(d_input, default_options, stream, mr); auto const expected_col_count = 2; EXPECT_EQ(cudf_table.tbl->num_columns(), expected_col_count); auto expected_col1 = cudf::test::fixed_width_column_wrapper<double>({0.0, 0.1, 0.2}, {true, true, true}); auto expected_col2 = cudf::test::fixed_width_column_wrapper<double>({1.0, 1.1, 1.2}, {true, true, true}); cudf::column_view parsed_col1 = cudf_table.tbl->get_column(0); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_col1, parsed_col1); cudf::column_view parsed_col2 = cudf_table.tbl->get_column(1); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_col2, parsed_col2); } TEST_F(JsonTest, RecoveringTokenStream) { // Test input. Inline comments used to indicate character indexes // 012345678 <= line 0 std::string const input = R"({"a":2 {})" // 9 "\n" // 01234 <= line 1 R"({"a":)" // 5 "\n" // 67890123456789 <= line 2 R"({"a":{"a":[321)" // 0 "\n" // 123456789 <= line 3 R"({"a":[1]})" // 0 "\n" // 1 <= line 4 "\n" // 23456789 <= line 5 R"({"b":123})"; // Golden token stream sample using token_t = cuio_json::token_t; std::vector<std::pair<std::size_t, cuio_json::PdaTokenT>> const golden_token_stream = { // Line 0 (invalid) {0, token_t::StructBegin}, {0, token_t::StructEnd}, // Line 1 (invalid) {0, token_t::StructBegin}, {0, token_t::StructEnd}, // Line 2 (invalid) {0, token_t::StructBegin}, {0, token_t::StructEnd}, // Line 3 (valid) {31, token_t::StructBegin}, {32, token_t::StructMemberBegin}, {32, token_t::FieldNameBegin}, {34, token_t::FieldNameEnd}, {36, token_t::ListBegin}, {37, token_t::ValueBegin}, {38, token_t::ValueEnd}, {38, token_t::ListEnd}, {39, token_t::StructMemberEnd}, {39, token_t::StructEnd}, // Line 4 (empty) // Line 5 (valid) {42, token_t::StructBegin}, {43, token_t::StructMemberBegin}, {43, token_t::FieldNameBegin}, {45, token_t::FieldNameEnd}, {47, token_t::ValueBegin}, {50, token_t::ValueEnd}, {50, token_t::StructMemberEnd}, {50, token_t::StructEnd}}; auto const stream = cudf::get_default_stream(); // Default parsing options cudf::io::json_reader_options default_options{}; default_options.set_recovery_mode(cudf::io::json_recovery_mode_t::RECOVER_WITH_NULL); default_options.enable_lines(true); // Prepare input & output buffers cudf::string_scalar const d_scalar(input, true, stream); auto const d_input = cudf::device_span<cuio_json::SymbolT const>{ d_scalar.data(), static_cast<size_t>(d_scalar.size())}; // Parse the JSON and get the token stream auto [d_tokens_gpu, d_token_indices_gpu] = cuio_json::detail::get_token_stream( d_input, default_options, stream, rmm::mr::get_current_device_resource()); // Copy back the number of tokens that were written auto const tokens_gpu = cudf::detail::make_std_vector_async(d_tokens_gpu, stream); auto const token_indices_gpu = cudf::detail::make_std_vector_async(d_token_indices_gpu, stream); // Verify the number of tokens matches ASSERT_EQ(golden_token_stream.size(), tokens_gpu.size()); ASSERT_EQ(golden_token_stream.size(), token_indices_gpu.size()); for (std::size_t i = 0; i < tokens_gpu.size(); i++) { // Ensure the index the tokens are pointing to do match EXPECT_EQ(golden_token_stream[i].first, token_indices_gpu[i]) << "Mismatch at #" << i; // Ensure the token category is correct EXPECT_EQ(golden_token_stream[i].second, tokens_gpu[i]) << "Mismatch at #" << i; } } TEST_F(JsonTest, PostProcessTokenStream) { // Golden token stream sample using token_t = cuio_json::token_t; using token_index_t = cuio_json::SymbolOffsetT; using tuple_t = thrust::tuple<token_index_t, cuio_json::PdaTokenT>; std::vector<tuple_t> const input = {// Line 0 (invalid) {0, token_t::LineEnd}, {0, token_t::StructBegin}, {1, token_t::StructMemberBegin}, {1, token_t::FieldNameBegin}, {3, token_t::FieldNameEnd}, {5, token_t::ValueBegin}, {7, token_t::ValueEnd}, {7, token_t::StructMemberEnd}, {7, token_t::StructEnd}, {8, token_t::ErrorBegin}, {9, token_t::LineEnd}, // Line 1 {10, token_t::StructBegin}, {11, token_t::StructMemberBegin}, {11, token_t::FieldNameBegin}, {13, token_t::FieldNameEnd}, {15, token_t::LineEnd}, // Line 2 (invalid) {16, token_t::StructBegin}, {17, token_t::StructMemberBegin}, {17, token_t::FieldNameBegin}, {19, token_t::FieldNameEnd}, {21, token_t::StructBegin}, {22, token_t::StructMemberBegin}, {22, token_t::FieldNameBegin}, {24, token_t::FieldNameEnd}, {26, token_t::ListBegin}, {27, token_t::ValueBegin}, {29, token_t::ErrorBegin}, {30, token_t::LineEnd}, // Line 3 (invalid) {31, token_t::StructBegin}, {32, token_t::StructMemberBegin}, {32, token_t::FieldNameBegin}, {34, token_t::FieldNameEnd}, {36, token_t::ListBegin}, {37, token_t::ValueBegin}, {38, token_t::ValueEnd}, {38, token_t::ListEnd}, {39, token_t::StructMemberEnd}, {39, token_t::StructEnd}, {40, token_t::ErrorBegin}, {40, token_t::LineEnd}, // Line 4 {41, token_t::LineEnd}, // Line 5 {42, token_t::StructBegin}, {43, token_t::StructMemberBegin}, {43, token_t::FieldNameBegin}, {45, token_t::FieldNameEnd}, {47, token_t::ValueBegin}, {50, token_t::ValueEnd}, {50, token_t::StructMemberEnd}, {50, token_t::StructEnd}}; std::vector<tuple_t> const expected_output = {// Line 0 (invalid) {0, token_t::StructBegin}, {0, token_t::StructEnd}, // Line 1 {10, token_t::StructBegin}, {11, token_t::StructMemberBegin}, {11, token_t::FieldNameBegin}, {13, token_t::FieldNameEnd}, // Line 2 (invalid) {0, token_t::StructBegin}, {0, token_t::StructEnd}, // Line 3 (invalid) {0, token_t::StructBegin}, {0, token_t::StructEnd}, // Line 4 (empty) // Line 5 {42, token_t::StructBegin}, {43, token_t::StructMemberBegin}, {43, token_t::FieldNameBegin}, {45, token_t::FieldNameEnd}, {47, token_t::ValueBegin}, {50, token_t::ValueEnd}, {50, token_t::StructMemberEnd}, {50, token_t::StructEnd}}; // Decompose tuples auto const stream = cudf::get_default_stream(); std::vector<token_index_t> offsets(input.size()); std::vector<cuio_json::PdaTokenT> tokens(input.size()); auto token_tuples = thrust::make_zip_iterator(offsets.begin(), tokens.begin()); thrust::copy(input.cbegin(), input.cend(), token_tuples); // Initialize device-side test data auto const d_offsets = cudf::detail::make_device_uvector_async( cudf::host_span<token_index_t const>{offsets.data(), offsets.size()}, stream, rmm::mr::get_current_device_resource()); auto const d_tokens = cudf::detail::make_device_uvector_async(tokens, stream, rmm::mr::get_current_device_resource()); // Run system-under-test auto [d_filtered_tokens, d_filtered_indices] = cuio_json::detail::process_token_stream(d_tokens, d_offsets, stream); auto const filtered_tokens = cudf::detail::make_std_vector_async(d_filtered_tokens, stream); auto const filtered_indices = cudf::detail::make_std_vector_async(d_filtered_indices, stream); // Verify the number of tokens matches ASSERT_EQ(filtered_tokens.size(), expected_output.size()); ASSERT_EQ(filtered_indices.size(), expected_output.size()); for (std::size_t i = 0; i < filtered_tokens.size(); i++) { // Ensure the index the tokens are pointing to do match EXPECT_EQ(thrust::get<0>(expected_output[i]), filtered_indices[i]) << "Mismatch at #" << i; // Ensure the token category is correct EXPECT_EQ(thrust::get<1>(expected_output[i]), filtered_tokens[i]) << "Mismatch at #" << i; } } TEST_P(JsonParserTest, UTF_JSON) { // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); bool const is_full_gpu = GetParam(); auto json_parser = is_full_gpu ? cuio_json::detail::device_parse_nested_json : cuio_json::detail::host_parse_nested_json; // Default parsing options cudf::io::json_reader_options default_options{}; // Only ASCII string std::string const ascii_pass = R"([ {"a":1,"b":2,"c":[3], "d": {}}, {"a":1,"b":4.0,"c":[], "d": {"year":1882,"author": "Bharathi"}}, {"a":1,"b":6.0,"c":[5, 7], "d": null}, {"a":1,"b":8.0,"c":null, "d": {}}, {"a":1,"b":null,"c":null}, {"a":1,"b":Infinity,"c":[null], "d": {"year":-600,"author": "Kaniyan"}}])"; auto const d_ascii_pass = cudf::detail::make_device_uvector_sync( cudf::host_span<char const>{ascii_pass.c_str(), ascii_pass.size()}, stream, rmm::mr::get_current_device_resource()); CUDF_EXPECT_NO_THROW(json_parser(d_ascii_pass, default_options, stream, mr)); // utf-8 string that fails parsing. std::string const utf_failed = R"([ {"a":1,"b":2,"c":[3], "d": {}}, {"a":1,"b":4.0,"c":[], "d": {"year":1882,"author": "Bharathi"}}, {"a":1,"b":6.0,"c":[5, 7], "d": null}, {"a":1,"b":8.0,"c":null, "d": {}}, {"a":1,"b":null,"c":null}, {"a":1,"b":Infinity,"c":[null], "d": {"year":-600,"author": "filip ʒakotɛ"}}])"; auto const d_utf_failed = cudf::detail::make_device_uvector_sync( cudf::host_span<char const>{utf_failed.c_str(), utf_failed.size()}, stream, rmm::mr::get_current_device_resource()); CUDF_EXPECT_NO_THROW(json_parser(d_utf_failed, default_options, stream, mr)); // utf-8 string that passes parsing. std::string const utf_pass = R"([ {"a":1,"b":2,"c":[3], "d": {}}, {"a":1,"b":4.0,"c":[], "d": {"year":1882,"author": "Bharathi"}}, {"a":1,"b":6.0,"c":[5, 7], "d": null}, {"a":1,"b":8.0,"c":null, "d": {}}, {"a":1,"b":null,"c":null}, {"a":1,"b":Infinity,"c":[null], "d": {"year":-600,"author": "Kaniyan"}}, {"a":1,"b":NaN,"c":[null, null], "d": {"year": 2, "author": "filip ʒakotɛ"}}])"; auto const d_utf_pass = cudf::detail::make_device_uvector_sync( cudf::host_span<char const>{utf_pass.c_str(), utf_pass.size()}, stream, rmm::mr::get_current_device_resource()); CUDF_EXPECT_NO_THROW(json_parser(d_utf_pass, default_options, stream, mr)); } TEST_P(JsonParserTest, ExtractColumnWithQuotes) { using cuio_json::SymbolT; bool const is_full_gpu = GetParam(); auto json_parser = is_full_gpu ? cuio_json::detail::device_parse_nested_json : cuio_json::detail::host_parse_nested_json; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); // Default parsing options cudf::io::json_reader_options options{}; options.enable_keep_quotes(true); std::string const input = R"( [{"a":"0.0", "b":1.0}, {"b":1.1}, {"b":2.1, "a":"2.0"}] )"; auto const d_input = cudf::detail::make_device_uvector_async( cudf::host_span<char const>{input.c_str(), input.size()}, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation auto const cudf_table = json_parser(d_input, options, stream, mr); auto constexpr expected_col_count = 2; EXPECT_EQ(cudf_table.tbl->num_columns(), expected_col_count); auto expected_col1 = cudf::test::strings_column_wrapper({R"("0.0")", R"()", R"("2.0")"}, {true, false, true}); auto expected_col2 = cudf::test::fixed_width_column_wrapper<double>({1.0, 1.1, 2.1}, {true, true, true}); cudf::column_view parsed_col1 = cudf_table.tbl->get_column(0); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_col1, parsed_col1); cudf::column_view parsed_col2 = cudf_table.tbl->get_column(1); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected_col2, parsed_col2); } TEST_P(JsonParserTest, ExpectFailMixStructAndList) { using cuio_json::SymbolT; bool const is_full_gpu = GetParam(); auto json_parser = is_full_gpu ? cuio_json::detail::device_parse_nested_json : cuio_json::detail::host_parse_nested_json; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); // Default parsing options cudf::io::json_reader_options options{}; options.enable_keep_quotes(true); std::vector<std::string> const inputs_fail{ R"( [{"a":[123], "b":1.0}, {"b":1.1}, {"b":2.1, "a":{"0":123}}] )", R"( [{"a":{"0":"foo"}, "b":1.0}, {"b":1.1}, {"b":2.1, "a":[123]}] )", R"( [{"a":{"0":null}, "b":1.0}, {"b":1.1}, {"b":2.1, "a":[123]}] )"}; std::vector<std::string> const inputs_succeed{ R"( [{"a":[123, {"0": 123}], "b":1.0}, {"b":1.1}, {"b":2.1}] )", R"( [{"a":[123, "123"], "b":1.0}, {"b":1.1}, {"b":2.1}] )"}; // libcudf does not currently support a mix of lists and structs. for (auto const& input : inputs_fail) { auto const d_input = cudf::detail::make_device_uvector_async( cudf::host_span<char const>{input.c_str(), input.size()}, stream, rmm::mr::get_current_device_resource()); EXPECT_THROW(auto const cudf_table = json_parser(d_input, options, stream, mr), cudf::logic_error); } for (auto const& input : inputs_succeed) { auto const d_input = cudf::detail::make_device_uvector_async( cudf::host_span<char const>{input.c_str(), input.size()}, stream, rmm::mr::get_current_device_resource()); CUDF_EXPECT_NO_THROW(auto const cudf_table = json_parser(d_input, options, stream, mr)); } } TEST_P(JsonParserTest, EmptyString) { using cuio_json::SymbolT; bool const is_full_gpu = GetParam(); auto json_parser = is_full_gpu ? cuio_json::detail::device_parse_nested_json : cuio_json::detail::host_parse_nested_json; // Prepare cuda stream for data transfers & kernels auto const stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); // Default parsing options cudf::io::json_reader_options default_options{}; std::string const input = R"([])"; auto const d_input = cudf::detail::make_device_uvector_sync(cudf::host_span<char const>{input.c_str(), input.size()}, stream, rmm::mr::get_current_device_resource()); // Get the JSON's tree representation auto const cudf_table = json_parser(d_input, default_options, stream, mr); auto const expected_col_count = 0; EXPECT_EQ(cudf_table.tbl->num_columns(), expected_col_count); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/parquet_test.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/io_metadata_utilities.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/concatenate.hpp> #include <cudf/copying.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/io/data_sink.hpp> #include <cudf/io/datasource.hpp> #include <cudf/io/parquet.hpp> #include <cudf/io/parquet_metadata.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/transform.hpp> #include <cudf/unary.hpp> #include <cudf/utilities/span.hpp> #include <cudf/wrappers/timestamps.hpp> #include <src/io/parquet/compact_protocol_reader.hpp> #include <src/io/parquet/parquet.hpp> #include <src/io/parquet/parquet_gpu.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/counting_iterator.h> #include <fstream> #include <random> #include <type_traits> template <typename T, typename SourceElementT = T> using column_wrapper = typename std::conditional<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper, cudf::test::fixed_width_column_wrapper<T, SourceElementT>>::type; using column = cudf::column; using table = cudf::table; using table_view = cudf::table_view; // Global environment for temporary files auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); template <typename T, typename Elements> std::unique_ptr<cudf::table> create_fixed_table(cudf::size_type num_columns, cudf::size_type num_rows, bool include_validity, Elements elements) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; }); std::vector<cudf::test::fixed_width_column_wrapper<T>> src_cols(num_columns); for (int idx = 0; idx < num_columns; idx++) { if (include_validity) { src_cols[idx] = cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_rows, valids); } else { src_cols[idx] = cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_rows); } } std::vector<std::unique_ptr<cudf::column>> columns(num_columns); std::transform(src_cols.begin(), src_cols.end(), columns.begin(), [](cudf::test::fixed_width_column_wrapper<T>& in) { auto ret = in.release(); // pre-cache the null count [[maybe_unused]] auto const nulls = ret->has_nulls(); return ret; }); return std::make_unique<cudf::table>(std::move(columns)); } template <typename T> std::unique_ptr<cudf::table> create_random_fixed_table(cudf::size_type num_columns, cudf::size_type num_rows, bool include_validity) { auto rand_elements = cudf::detail::make_counting_transform_iterator(0, [](T i) { return rand(); }); return create_fixed_table<T>(num_columns, num_rows, include_validity, rand_elements); } template <typename T> std::unique_ptr<cudf::table> create_compressible_fixed_table(cudf::size_type num_columns, cudf::size_type num_rows, cudf::size_type period, bool include_validity) { auto compressible_elements = cudf::detail::make_counting_transform_iterator(0, [period](T i) { return i / period; }); return create_fixed_table<T>(num_columns, num_rows, include_validity, compressible_elements); } // this function replicates the "list_gen" function in // python/cudf/cudf/tests/test_parquet.py template <typename T> std::unique_ptr<cudf::column> make_parquet_list_list_col( int skip_rows, int num_rows, int lists_per_row, int list_size, bool include_validity) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0 ? 1 : 0; }); // root list std::vector<int> row_offsets(num_rows + 1); int row_offset_count = 0; { int offset = 0; for (int idx = 0; idx < (num_rows) + 1; idx++) { row_offsets[row_offset_count] = offset; if (!include_validity || valids[idx]) { offset += lists_per_row; } row_offset_count++; } } cudf::test::fixed_width_column_wrapper<int> offsets(row_offsets.begin(), row_offsets.begin() + row_offset_count); // child list std::vector<int> child_row_offsets((num_rows * lists_per_row) + 1); int child_row_offset_count = 0; { int offset = 0; for (int idx = 0; idx < (num_rows * lists_per_row); idx++) { int row_index = idx / lists_per_row; if (include_validity && !valids[row_index]) { continue; } child_row_offsets[child_row_offset_count] = offset; offset += list_size; child_row_offset_count++; } child_row_offsets[child_row_offset_count++] = offset; } cudf::test::fixed_width_column_wrapper<int> child_offsets( child_row_offsets.begin(), child_row_offsets.begin() + child_row_offset_count); // child values std::vector<T> child_values(num_rows * lists_per_row * list_size); T first_child_value_index = skip_rows * lists_per_row * list_size; int child_value_count = 0; { for (int idx = 0; idx < (num_rows * lists_per_row * list_size); idx++) { int row_index = idx / (lists_per_row * list_size); int val = first_child_value_index; first_child_value_index++; if (include_validity && !valids[row_index]) { continue; } child_values[child_value_count] = val; child_value_count++; } } // validity by value instead of index auto valids2 = cudf::detail::make_counting_transform_iterator( 0, [list_size](auto i) { return (i % list_size) % 2 == 0 ? 1 : 0; }); auto child_data = include_validity ? cudf::test::fixed_width_column_wrapper<T>( child_values.begin(), child_values.begin() + child_value_count, valids2) : cudf::test::fixed_width_column_wrapper<T>( child_values.begin(), child_values.begin() + child_value_count); int child_offsets_size = static_cast<cudf::column_view>(child_offsets).size() - 1; auto child = cudf::make_lists_column( child_offsets_size, child_offsets.release(), child_data.release(), 0, rmm::device_buffer{}); int offsets_size = static_cast<cudf::column_view>(offsets).size() - 1; auto [null_mask, null_count] = cudf::test::detail::make_null_mask(valids, valids + offsets_size); return include_validity ? cudf::make_lists_column( offsets_size, offsets.release(), std::move(child), null_count, std::move(null_mask)) : cudf::make_lists_column( offsets_size, offsets.release(), std::move(child), 0, rmm::device_buffer{}); } // given a datasource pointing to a parquet file, read the footer // of the file to populate the FileMetaData pointed to by file_meta_data. // throws cudf::logic_error if the file or metadata is invalid. void read_footer(std::unique_ptr<cudf::io::datasource> const& source, cudf::io::parquet::detail::FileMetaData* file_meta_data) { constexpr auto header_len = sizeof(cudf::io::parquet::detail::file_header_s); constexpr auto ender_len = sizeof(cudf::io::parquet::detail::file_ender_s); auto const len = source->size(); auto const header_buffer = source->host_read(0, header_len); auto const header = reinterpret_cast<cudf::io::parquet::detail::file_header_s const*>(header_buffer->data()); auto const ender_buffer = source->host_read(len - ender_len, ender_len); auto const ender = reinterpret_cast<cudf::io::parquet::detail::file_ender_s const*>(ender_buffer->data()); // checks for valid header, footer, and file length ASSERT_GT(len, header_len + ender_len); ASSERT_TRUE(header->magic == cudf::io::parquet::detail::parquet_magic && ender->magic == cudf::io::parquet::detail::parquet_magic); ASSERT_TRUE(ender->footer_len != 0 && ender->footer_len <= (len - header_len - ender_len)); // parquet files end with 4-byte footer_length and 4-byte magic == "PAR1" // seek backwards from the end of the file (footer_length + 8 bytes of ender) auto const footer_buffer = source->host_read(len - ender->footer_len - ender_len, ender->footer_len); cudf::io::parquet::detail::CompactProtocolReader cp(footer_buffer->data(), ender->footer_len); // returns true on success bool res = cp.read(file_meta_data); ASSERT_TRUE(res); } // returns the number of bits used for dictionary encoding data at the given page location. // this assumes the data is uncompressed. // throws cudf::logic_error if the page_loc data is invalid. int read_dict_bits(std::unique_ptr<cudf::io::datasource> const& source, cudf::io::parquet::detail::PageLocation const& page_loc) { CUDF_EXPECTS(page_loc.offset > 0, "Cannot find page header"); CUDF_EXPECTS(page_loc.compressed_page_size > 0, "Invalid page header length"); cudf::io::parquet::detail::PageHeader page_hdr; auto const page_buf = source->host_read(page_loc.offset, page_loc.compressed_page_size); cudf::io::parquet::detail::CompactProtocolReader cp(page_buf->data(), page_buf->size()); bool res = cp.read(&page_hdr); CUDF_EXPECTS(res, "Cannot parse page header"); // cp should be pointing at the start of page data now. the first byte // should be the encoding bit size return cp.getb(); } // read column index from datasource at location indicated by chunk, // parse and return as a ColumnIndex struct. // throws cudf::logic_error if the chunk data is invalid. cudf::io::parquet::detail::ColumnIndex read_column_index( std::unique_ptr<cudf::io::datasource> const& source, cudf::io::parquet::detail::ColumnChunk const& chunk) { CUDF_EXPECTS(chunk.column_index_offset > 0, "Cannot find column index"); CUDF_EXPECTS(chunk.column_index_length > 0, "Invalid column index length"); cudf::io::parquet::detail::ColumnIndex colidx; auto const ci_buf = source->host_read(chunk.column_index_offset, chunk.column_index_length); cudf::io::parquet::detail::CompactProtocolReader cp(ci_buf->data(), ci_buf->size()); bool res = cp.read(&colidx); CUDF_EXPECTS(res, "Cannot parse column index"); return colidx; } // read offset index from datasource at location indicated by chunk, // parse and return as an OffsetIndex struct. // throws cudf::logic_error if the chunk data is invalid. cudf::io::parquet::detail::OffsetIndex read_offset_index( std::unique_ptr<cudf::io::datasource> const& source, cudf::io::parquet::detail::ColumnChunk const& chunk) { CUDF_EXPECTS(chunk.offset_index_offset > 0, "Cannot find offset index"); CUDF_EXPECTS(chunk.offset_index_length > 0, "Invalid offset index length"); cudf::io::parquet::detail::OffsetIndex offidx; auto const oi_buf = source->host_read(chunk.offset_index_offset, chunk.offset_index_length); cudf::io::parquet::detail::CompactProtocolReader cp(oi_buf->data(), oi_buf->size()); bool res = cp.read(&offidx); CUDF_EXPECTS(res, "Cannot parse offset index"); return offidx; } // Return as a Statistics from the column chunk cudf::io::parquet::detail::Statistics const& get_statistics( cudf::io::parquet::detail::ColumnChunk const& chunk) { return chunk.meta_data.statistics; } // read page header from datasource at location indicated by page_loc, // parse and return as a PageHeader struct. // throws cudf::logic_error if the page_loc data is invalid. cudf::io::parquet::detail::PageHeader read_page_header( std::unique_ptr<cudf::io::datasource> const& source, cudf::io::parquet::detail::PageLocation const& page_loc) { CUDF_EXPECTS(page_loc.offset > 0, "Cannot find page header"); CUDF_EXPECTS(page_loc.compressed_page_size > 0, "Invalid page header length"); cudf::io::parquet::detail::PageHeader page_hdr; auto const page_buf = source->host_read(page_loc.offset, page_loc.compressed_page_size); cudf::io::parquet::detail::CompactProtocolReader cp(page_buf->data(), page_buf->size()); bool res = cp.read(&page_hdr); CUDF_EXPECTS(res, "Cannot parse page header"); return page_hdr; } // Base test fixture for tests struct ParquetWriterTest : public cudf::test::BaseFixture {}; // Base test fixture for tests struct ParquetReaderTest : public cudf::test::BaseFixture {}; // Base test fixture for "stress" tests struct ParquetWriterStressTest : public cudf::test::BaseFixture {}; // Typed test fixture for numeric type tests template <typename T> struct ParquetWriterNumericTypeTest : public ParquetWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Typed test fixture for comparable type tests template <typename T> struct ParquetWriterComparableTypeTest : public ParquetWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Typed test fixture for timestamp type tests template <typename T> struct ParquetWriterChronoTypeTest : public ParquetWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Typed test fixture for timestamp type tests template <typename T> struct ParquetWriterTimestampTypeTest : public ParquetWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Typed test fixture for all types template <typename T> struct ParquetWriterSchemaTest : public ParquetWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; template <typename T> struct ParquetReaderSourceTest : public ParquetReaderTest {}; template <typename T> struct ParquetWriterDeltaTest : public ParquetWriterTest {}; // Declare typed test cases // TODO: Replace with `NumericTypes` when unsigned support is added. Issue #5352 using SupportedTypes = cudf::test::Types<int8_t, int16_t, int32_t, int64_t, bool, float, double>; TYPED_TEST_SUITE(ParquetWriterNumericTypeTest, SupportedTypes); using ComparableAndFixedTypes = cudf::test::Concat<cudf::test::ComparableTypes, cudf::test::FixedPointTypes>; TYPED_TEST_SUITE(ParquetWriterComparableTypeTest, ComparableAndFixedTypes); TYPED_TEST_SUITE(ParquetWriterChronoTypeTest, cudf::test::ChronoTypes); using SupportedTimestampTypes = cudf::test::Types<cudf::timestamp_ms, cudf::timestamp_us, cudf::timestamp_ns>; TYPED_TEST_SUITE(ParquetWriterTimestampTypeTest, SupportedTimestampTypes); TYPED_TEST_SUITE(ParquetWriterSchemaTest, cudf::test::AllTypes); using ByteLikeTypes = cudf::test::Types<int8_t, char, uint8_t, unsigned char, std::byte>; TYPED_TEST_SUITE(ParquetReaderSourceTest, ByteLikeTypes); // Base test fixture for chunked writer tests struct ParquetChunkedWriterTest : public cudf::test::BaseFixture {}; // Typed test fixture for numeric type tests template <typename T> struct ParquetChunkedWriterNumericTypeTest : public ParquetChunkedWriterTest { auto type() { return cudf::data_type{cudf::type_to_id<T>()}; } }; // Declare typed test cases TYPED_TEST_SUITE(ParquetChunkedWriterNumericTypeTest, SupportedTypes); // Base test fixture for size-parameterized tests class ParquetSizedTest : public ::cudf::test::BaseFixtureWithParam<int> {}; // test the allowed bit widths for dictionary encoding INSTANTIATE_TEST_SUITE_P(ParquetDictionaryTest, ParquetSizedTest, testing::Range(1, 25), testing::PrintToStringParamName()); // Base test fixture for V2 header tests class ParquetV2Test : public ::cudf::test::BaseFixtureWithParam<bool> {}; INSTANTIATE_TEST_SUITE_P(ParquetV2ReadWriteTest, ParquetV2Test, testing::Bool(), testing::PrintToStringParamName()); namespace { // Generates a vector of uniform random values of type T template <typename T> inline auto random_values(size_t size) { std::vector<T> values(size); using T1 = T; using uniform_distribution = typename std::conditional_t<std::is_same_v<T1, bool>, std::bernoulli_distribution, std::conditional_t<std::is_floating_point_v<T1>, std::uniform_real_distribution<T1>, std::uniform_int_distribution<T1>>>; static constexpr auto seed = 0xf00d; static std::mt19937 engine{seed}; static uniform_distribution dist{}; std::generate_n(values.begin(), size, [&]() { return T{dist(engine)}; }); return values; } } // namespace TYPED_TEST(ParquetWriterNumericTypeTest, SingleColumn) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return TypeParam(i % 400); }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); constexpr auto num_rows = 800; column_wrapper<TypeParam> col(sequence, sequence + num_rows, validity); auto expected = table_view{{col}}; auto filepath = temp_env->get_temp_filepath("SingleColumn.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(ParquetWriterNumericTypeTest, SingleColumnWithNulls) { auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return TypeParam(i); }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 2); }); constexpr auto num_rows = 100; column_wrapper<TypeParam> col(sequence, sequence + num_rows, validity); auto expected = table_view{{col}}; auto filepath = temp_env->get_temp_filepath("SingleColumnWithNulls.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } template <typename mask_op_t> void test_durations(mask_op_t mask_op) { std::default_random_engine generator; std::uniform_int_distribution<int> distribution_d(0, 30); auto sequence_d = cudf::detail::make_counting_transform_iterator( 0, [&](auto i) { return distribution_d(generator); }); std::uniform_int_distribution<int> distribution_s(0, 86400); auto sequence_s = cudf::detail::make_counting_transform_iterator( 0, [&](auto i) { return distribution_s(generator); }); std::uniform_int_distribution<int> distribution(0, 86400 * 1000); auto sequence = cudf::detail::make_counting_transform_iterator( 0, [&](auto i) { return distribution(generator); }); auto mask = cudf::detail::make_counting_transform_iterator(0, mask_op); constexpr auto num_rows = 100; // Durations longer than a day are not exactly valid, but cudf should be able to round trip auto durations_d = cudf::test::fixed_width_column_wrapper<cudf::duration_D, int64_t>( sequence_d, sequence_d + num_rows, mask); auto durations_s = cudf::test::fixed_width_column_wrapper<cudf::duration_s, int64_t>( sequence_s, sequence_s + num_rows, mask); auto durations_ms = cudf::test::fixed_width_column_wrapper<cudf::duration_ms, int64_t>( sequence, sequence + num_rows, mask); auto durations_us = cudf::test::fixed_width_column_wrapper<cudf::duration_us, int64_t>( sequence, sequence + num_rows, mask); auto durations_ns = cudf::test::fixed_width_column_wrapper<cudf::duration_ns, int64_t>( sequence, sequence + num_rows, mask); auto expected = table_view{{durations_d, durations_s, durations_ms, durations_us, durations_ns}}; auto filepath = temp_env->get_temp_filepath("Durations.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); auto durations_d_got = cudf::cast(result.tbl->view().column(0), cudf::data_type{cudf::type_id::DURATION_DAYS}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(durations_d, durations_d_got->view()); auto durations_s_got = cudf::cast(result.tbl->view().column(1), cudf::data_type{cudf::type_id::DURATION_SECONDS}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(durations_s, durations_s_got->view()); CUDF_TEST_EXPECT_COLUMNS_EQUAL(durations_ms, result.tbl->view().column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(durations_us, result.tbl->view().column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(durations_ns, result.tbl->view().column(4)); } TEST_F(ParquetWriterTest, Durations) { test_durations([](auto i) { return true; }); test_durations([](auto i) { return (i % 2) != 0; }); test_durations([](auto i) { return (i % 3) != 0; }); test_durations([](auto i) { return false; }); } TYPED_TEST(ParquetWriterTimestampTypeTest, Timestamps) { auto sequence = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return ((std::rand() / 10000) * 1000); }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col( sequence, sequence + num_rows, validity); auto expected = table_view{{col}}; auto filepath = temp_env->get_temp_filepath("Timestamps.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .timestamp_type(this->type()); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(ParquetWriterTimestampTypeTest, TimestampsWithNulls) { auto sequence = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return ((std::rand() / 10000) * 1000); }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i > 30) && (i < 60); }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col( sequence, sequence + num_rows, validity); auto expected = table_view{{col}}; auto filepath = temp_env->get_temp_filepath("TimestampsWithNulls.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .timestamp_type(this->type()); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(ParquetWriterTimestampTypeTest, TimestampOverflow) { constexpr int64_t max = std::numeric_limits<int64_t>::max(); auto sequence = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return max - i; }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); constexpr auto num_rows = 100; column_wrapper<TypeParam, typename decltype(sequence)::value_type> col( sequence, sequence + num_rows, validity); table_view expected({col}); auto filepath = temp_env->get_temp_filepath("ParquetTimestampOverflow.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .timestamp_type(this->type()); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_P(ParquetV2Test, MultiColumn) { constexpr auto num_rows = 100000; auto const is_v2 = GetParam(); // auto col0_data = random_values<bool>(num_rows); auto col1_data = random_values<int8_t>(num_rows); auto col2_data = random_values<int16_t>(num_rows); auto col3_data = random_values<int32_t>(num_rows); auto col4_data = random_values<float>(num_rows); auto col5_data = random_values<double>(num_rows); auto col6_vals = random_values<int16_t>(num_rows); auto col7_vals = random_values<int32_t>(num_rows); auto col8_vals = random_values<int64_t>(num_rows); auto col6_data = cudf::detail::make_counting_transform_iterator(0, [col6_vals](auto i) { return numeric::decimal32{col6_vals[i], numeric::scale_type{5}}; }); auto col7_data = cudf::detail::make_counting_transform_iterator(0, [col7_vals](auto i) { return numeric::decimal64{col7_vals[i], numeric::scale_type{-5}}; }); auto col8_data = cudf::detail::make_counting_transform_iterator(0, [col8_vals](auto i) { return numeric::decimal128{col8_vals[i], numeric::scale_type{-6}}; }); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); // column_wrapper<bool> col0{ // col0_data.begin(), col0_data.end(), validity}; column_wrapper<int8_t> col1{col1_data.begin(), col1_data.end(), validity}; column_wrapper<int16_t> col2{col2_data.begin(), col2_data.end(), validity}; column_wrapper<int32_t> col3{col3_data.begin(), col3_data.end(), validity}; column_wrapper<float> col4{col4_data.begin(), col4_data.end(), validity}; column_wrapper<double> col5{col5_data.begin(), col5_data.end(), validity}; column_wrapper<numeric::decimal32> col6{col6_data, col6_data + num_rows, validity}; column_wrapper<numeric::decimal64> col7{col7_data, col7_data + num_rows, validity}; column_wrapper<numeric::decimal128> col8{col8_data, col8_data + num_rows, validity}; auto expected = table_view{{col1, col2, col3, col4, col5, col6, col7, col8}}; cudf::io::table_input_metadata expected_metadata(expected); // expected_metadata.column_metadata[0].set_name( "bools"); expected_metadata.column_metadata[0].set_name("int8s"); expected_metadata.column_metadata[1].set_name("int16s"); expected_metadata.column_metadata[2].set_name("int32s"); expected_metadata.column_metadata[3].set_name("floats"); expected_metadata.column_metadata[4].set_name("doubles"); expected_metadata.column_metadata[5].set_name("decimal32s").set_decimal_precision(10); expected_metadata.column_metadata[6].set_name("decimal64s").set_decimal_precision(20); expected_metadata.column_metadata[7].set_name("decimal128s").set_decimal_precision(40); auto filepath = temp_env->get_temp_filepath("MultiColumn.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(is_v2) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_P(ParquetV2Test, MultiColumnWithNulls) { constexpr auto num_rows = 100; auto const is_v2 = GetParam(); // auto col0_data = random_values<bool>(num_rows); auto col1_data = random_values<int8_t>(num_rows); auto col2_data = random_values<int16_t>(num_rows); auto col3_data = random_values<int32_t>(num_rows); auto col4_data = random_values<float>(num_rows); auto col5_data = random_values<double>(num_rows); auto col6_vals = random_values<int32_t>(num_rows); auto col7_vals = random_values<int64_t>(num_rows); auto col6_data = cudf::detail::make_counting_transform_iterator(0, [col6_vals](auto i) { return numeric::decimal32{col6_vals[i], numeric::scale_type{-2}}; }); auto col7_data = cudf::detail::make_counting_transform_iterator(0, [col7_vals](auto i) { return numeric::decimal64{col7_vals[i], numeric::scale_type{-8}}; }); // auto col0_mask = cudf::detail::make_counting_transform_iterator( // 0, [](auto i) { return (i % 2); }); auto col1_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i < 10); }); auto col2_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); auto col3_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i == (num_rows - 1)); }); auto col4_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i >= 40 && i <= 60); }); auto col5_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i > 80); }); auto col6_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i % 5); }); auto col7_mask = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return (i != 55); }); // column_wrapper<bool> col0{ // col0_data.begin(), col0_data.end(), col0_mask}; column_wrapper<int8_t> col1{col1_data.begin(), col1_data.end(), col1_mask}; column_wrapper<int16_t> col2{col2_data.begin(), col2_data.end(), col2_mask}; column_wrapper<int32_t> col3{col3_data.begin(), col3_data.end(), col3_mask}; column_wrapper<float> col4{col4_data.begin(), col4_data.end(), col4_mask}; column_wrapper<double> col5{col5_data.begin(), col5_data.end(), col5_mask}; column_wrapper<numeric::decimal32> col6{col6_data, col6_data + num_rows, col6_mask}; column_wrapper<numeric::decimal64> col7{col7_data, col7_data + num_rows, col7_mask}; auto expected = table_view{{/*col0, */ col1, col2, col3, col4, col5, col6, col7}}; cudf::io::table_input_metadata expected_metadata(expected); // expected_metadata.column_names.emplace_back("bools"); expected_metadata.column_metadata[0].set_name("int8s"); expected_metadata.column_metadata[1].set_name("int16s"); expected_metadata.column_metadata[2].set_name("int32s"); expected_metadata.column_metadata[3].set_name("floats"); expected_metadata.column_metadata[4].set_name("doubles"); expected_metadata.column_metadata[5].set_name("decimal32s").set_decimal_precision(9); expected_metadata.column_metadata[6].set_name("decimal64s").set_decimal_precision(20); auto filepath = temp_env->get_temp_filepath("MultiColumnWithNulls.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(is_v2) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); // TODO: Need to be able to return metadata in tree form from reader so they can be compared. // Unfortunately the closest thing to a hierarchical schema is column_name_info which does not // have any tests for it c++ or python. cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_P(ParquetV2Test, Strings) { auto const is_v2 = GetParam(); std::vector<char const*> strings{ "Monday", "Wȅdnȅsday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; auto const num_rows = strings.size(); auto seq_col0 = random_values<int>(num_rows); auto seq_col2 = random_values<float>(num_rows); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); column_wrapper<int> col0{seq_col0.begin(), seq_col0.end(), validity}; column_wrapper<cudf::string_view> col1{strings.begin(), strings.end()}; column_wrapper<float> col2{seq_col2.begin(), seq_col2.end(), validity}; auto expected = table_view{{col0, col1, col2}}; cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_other"); expected_metadata.column_metadata[1].set_name("col_string"); expected_metadata.column_metadata[2].set_name("col_another"); auto filepath = temp_env->get_temp_filepath("Strings.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(is_v2) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(ParquetWriterTest, StringsAsBinary) { std::vector<char const*> unicode_strings{ "Monday", "Wȅdnȅsday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; std::vector<char const*> ascii_strings{ "Monday", "Wednesday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; column_wrapper<cudf::string_view> col0{ascii_strings.begin(), ascii_strings.end()}; column_wrapper<cudf::string_view> col1{unicode_strings.begin(), unicode_strings.end()}; column_wrapper<cudf::string_view> col2{ascii_strings.begin(), ascii_strings.end()}; cudf::test::lists_column_wrapper<uint8_t> col3{{'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 'e', 'd', 'n', 'e', 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'M', 'o', 'n', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'u', 'n', 'd', 'a', 'y'}}; cudf::test::lists_column_wrapper<uint8_t> col4{ {'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 200, 133, 'd', 'n', 200, 133, 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'M', 'o', 'n', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'u', 'n', 'd', 'a', 'y'}}; auto write_tbl = table_view{{col0, col1, col2, col3, col4}}; cudf::io::table_input_metadata expected_metadata(write_tbl); expected_metadata.column_metadata[0].set_name("col_single").set_output_as_binary(true); expected_metadata.column_metadata[1].set_name("col_string").set_output_as_binary(true); expected_metadata.column_metadata[2].set_name("col_another").set_output_as_binary(true); expected_metadata.column_metadata[3].set_name("col_binary"); expected_metadata.column_metadata[4].set_name("col_binary"); auto filepath = temp_env->get_temp_filepath("BinaryStrings.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, write_tbl) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .set_column_schema( {cudf::io::reader_column_schema().set_convert_binary_to_strings(false), cudf::io::reader_column_schema().set_convert_binary_to_strings(false), cudf::io::reader_column_schema().set_convert_binary_to_strings(false), cudf::io::reader_column_schema().add_child(cudf::io::reader_column_schema()), cudf::io::reader_column_schema().add_child(cudf::io::reader_column_schema())}); auto result = cudf::io::read_parquet(in_opts); auto expected = table_view{{col3, col4, col3, col3, col4}}; CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_P(ParquetV2Test, SlicedTable) { // This test checks for writing zero copy, offsetted views into existing cudf tables std::vector<char const*> strings{ "Monday", "Wȅdnȅsday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; auto const num_rows = strings.size(); auto const is_v2 = GetParam(); auto seq_col0 = random_values<int>(num_rows); auto seq_col2 = random_values<float>(num_rows); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 3 != 0; }); column_wrapper<int> col0{seq_col0.begin(), seq_col0.end(), validity}; column_wrapper<cudf::string_view> col1{strings.begin(), strings.end()}; column_wrapper<float> col2{seq_col2.begin(), seq_col2.end(), validity}; using lcw = cudf::test::lists_column_wrapper<uint64_t>; lcw col3{{9, 8}, {7, 6, 5}, {}, {4}, {3, 2, 1, 0}, {20, 21, 22, 23, 24}, {}, {66, 666}}; // [[[NULL,2,NULL,4]], [[NULL,6,NULL], [8,9]]] // [NULL, [[13],[14,15,16]], NULL] // [NULL, [], NULL, [[]]] // NULL // [[[NULL,2,NULL,4]], [[NULL,6,NULL], [8,9]]] // [NULL, [[13],[14,15,16]], NULL] // [[[]]] // [NULL, [], NULL, [[]]] auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); lcw col4{{ {{{{1, 2, 3, 4}, valids}}, {{{5, 6, 7}, valids}, {8, 9}}}, {{{{10, 11}, {12}}, {{13}, {14, 15, 16}}, {{17, 18}}}, valids}, {{lcw{lcw{}}, lcw{}, lcw{}, lcw{lcw{}}}, valids}, lcw{lcw{lcw{}}}, {{{{1, 2, 3, 4}, valids}}, {{{5, 6, 7}, valids}, {8, 9}}}, {{{{10, 11}, {12}}, {{13}, {14, 15, 16}}, {{17, 18}}}, valids}, lcw{lcw{lcw{}}}, {{lcw{lcw{}}, lcw{}, lcw{}, lcw{lcw{}}}, valids}, }, valids2}; // Struct column auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{ {48, 27, 25, 31, 351, 351, 29, 15}, {1, 1, 1, 1, 1, 0, 1, 1}}; auto col5 = cudf::test::structs_column_wrapper{{ages_col}, {1, 1, 1, 1, 0, 1, 1, 1}}; // Struct/List mixed column // [] // [NULL, 2, NULL] // [4, 5] // NULL // [] // [7, 8, 9] // [10] // [11, 12] lcw land{{{}, {{1, 2, 3}, valids}, {4, 5}, {}, {}, {7, 8, 9}, {10}, {11, 12}}, valids2}; // [] // [[1, 2, 3], [], [4, 5], [], [0, 6, 0]] // [[7, 8], []] // [[]] // [[]] // [[], [], []] // [[10]] // [[13, 14], [15]] lcw flats{lcw{}, {{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, {{7, 8}, {}}, lcw{lcw{}}, lcw{lcw{}}, lcw{lcw{}, lcw{}, lcw{}}, {lcw{10}}, {{13, 14}, {15}}}; auto struct_1 = cudf::test::structs_column_wrapper{land, flats}; auto is_human = cudf::test::fixed_width_column_wrapper<bool>{ {true, true, false, false, true, false, true, false}}; auto col6 = cudf::test::structs_column_wrapper{{is_human, struct_1}}; auto expected = table_view({col0, col1, col2, col3, col4, col5, col6}); // auto expected_slice = expected; auto expected_slice = cudf::slice(expected, {2, static_cast<cudf::size_type>(num_rows) - 1}); cudf::io::table_input_metadata expected_metadata(expected_slice); expected_metadata.column_metadata[0].set_name("col_other"); expected_metadata.column_metadata[1].set_name("col_string"); expected_metadata.column_metadata[2].set_name("col_another"); expected_metadata.column_metadata[3].set_name("col_list"); expected_metadata.column_metadata[4].set_name("col_multi_level_list"); expected_metadata.column_metadata[5].set_name("col_struct"); expected_metadata.column_metadata[5].set_name("col_struct_list"); expected_metadata.column_metadata[6].child(0).set_name("human?"); expected_metadata.column_metadata[6].child(1).set_name("particulars"); expected_metadata.column_metadata[6].child(1).child(0).set_name("land"); expected_metadata.column_metadata[6].child(1).child(1).set_name("flats"); auto filepath = temp_env->get_temp_filepath("SlicedTable.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected_slice) .write_v2_headers(is_v2) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(expected_slice, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_P(ParquetV2Test, ListColumn) { auto const is_v2 = GetParam(); auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); using lcw = cudf::test::lists_column_wrapper<int32_t>; // [NULL, 2, NULL] // [] // [4, 5] // NULL lcw col0{{{{1, 2, 3}, valids}, {}, {4, 5}, {}}, valids2}; // [[1, 2, 3], [], [4, 5], [], [0, 6, 0]] // [[7, 8]] // [] // [[]] lcw col1{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, {{7, 8}}, lcw{}, lcw{lcw{}}}; // [[1, 2, 3], [], [4, 5], NULL, [0, 6, 0]] // [[7, 8]] // [] // [[]] lcw col2{{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, valids2}, {{7, 8}}, lcw{}, lcw{lcw{}}}; // [[1, 2, 3], [], [4, 5], NULL, [NULL, 6, NULL]] // [[7, 8]] // [] // [[]] using dlcw = cudf::test::lists_column_wrapper<double>; dlcw col3{{{{1., 2., 3.}, {}, {4., 5.}, {}, {{0., 6., 0.}, valids}}, valids2}, {{7., 8.}}, dlcw{}, dlcw{dlcw{}}}; // TODO: uint16_t lists are not read properly in parquet reader // [[1, 2, 3], [], [4, 5], NULL, [0, 6, 0]] // [[7, 8]] // [] // NULL // using ui16lcw = cudf::test::lists_column_wrapper<uint16_t>; // cudf::test::lists_column_wrapper<uint16_t> col4{ // {{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, valids2}, {{7, 8}}, ui16lcw{}, ui16lcw{ui16lcw{}}}, // valids2}; // [[1, 2, 3], [], [4, 5], NULL, [NULL, 6, NULL]] // [[7, 8]] // [] // NULL lcw col5{ {{{{1, 2, 3}, {}, {4, 5}, {}, {{0, 6, 0}, valids}}, valids2}, {{7, 8}}, lcw{}, lcw{lcw{}}}, valids2}; using strlcw = cudf::test::lists_column_wrapper<cudf::string_view>; cudf::test::lists_column_wrapper<cudf::string_view> col6{ {{"Monday", "Monday", "Friday"}, {}, {"Monday", "Friday"}, {}, {"Sunday", "Funday"}}, {{"bee", "sting"}}, strlcw{}, strlcw{strlcw{}}}; // [[[NULL,2,NULL,4]], [[NULL,6,NULL], [8,9]]] // [NULL, [[13],[14,15,16]], NULL] // [NULL, [], NULL, [[]]] // NULL lcw col7{{ {{{{1, 2, 3, 4}, valids}}, {{{5, 6, 7}, valids}, {8, 9}}}, {{{{10, 11}, {12}}, {{13}, {14, 15, 16}}, {{17, 18}}}, valids}, {{lcw{lcw{}}, lcw{}, lcw{}, lcw{lcw{}}}, valids}, lcw{lcw{lcw{}}}, }, valids2}; table_view expected({col0, col1, col2, col3, /* col4, */ col5, col6, col7}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_list_int_0"); expected_metadata.column_metadata[1].set_name("col_list_list_int_1"); expected_metadata.column_metadata[2].set_name("col_list_list_int_nullable_2"); expected_metadata.column_metadata[3].set_name("col_list_list_nullable_double_nullable_3"); // expected_metadata.column_metadata[0].set_name("col_list_list_uint16_4"); expected_metadata.column_metadata[4].set_name("col_list_nullable_list_nullable_int_nullable_5"); expected_metadata.column_metadata[5].set_name("col_list_list_string_6"); expected_metadata.column_metadata[6].set_name("col_list_list_list_7"); auto filepath = temp_env->get_temp_filepath("ListColumn.parquet"); auto out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(is_v2) .metadata(expected_metadata) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(out_opts); auto in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(ParquetWriterTest, MultiIndex) { constexpr auto num_rows = 100; auto col0_data = random_values<int8_t>(num_rows); auto col1_data = random_values<int16_t>(num_rows); auto col2_data = random_values<int32_t>(num_rows); auto col3_data = random_values<float>(num_rows); auto col4_data = random_values<double>(num_rows); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); column_wrapper<int8_t> col0{col0_data.begin(), col0_data.end(), validity}; column_wrapper<int16_t> col1{col1_data.begin(), col1_data.end(), validity}; column_wrapper<int32_t> col2{col2_data.begin(), col2_data.end(), validity}; column_wrapper<float> col3{col3_data.begin(), col3_data.end(), validity}; column_wrapper<double> col4{col4_data.begin(), col4_data.end(), validity}; auto expected = table_view{{col0, col1, col2, col3, col4}}; cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("int8s"); expected_metadata.column_metadata[1].set_name("int16s"); expected_metadata.column_metadata[2].set_name("int32s"); expected_metadata.column_metadata[3].set_name("floats"); expected_metadata.column_metadata[4].set_name("doubles"); auto filepath = temp_env->get_temp_filepath("MultiIndex.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(expected_metadata) .key_value_metadata( {{{"pandas", "\"index_columns\": [\"int8s\", \"int16s\"], \"column1\": [\"int32s\"]"}}}); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .use_pandas_metadata(true) .columns({"int32s", "floats", "doubles"}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(ParquetWriterTest, BufferSource) { constexpr auto num_rows = 100 << 10; auto const seq_col = random_values<int>(num_rows); auto const validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); column_wrapper<int> col{seq_col.begin(), seq_col.end(), validity}; auto const expected = table_view{{col}}; cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_other"); std::vector<char> out_buffer; cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), expected) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); // host buffer { cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info(out_buffer.data(), out_buffer.size())); auto const result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } // device buffer { auto const d_input = cudf::detail::make_device_uvector_sync( cudf::host_span<uint8_t const>{reinterpret_cast<uint8_t const*>(out_buffer.data()), out_buffer.size()}, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto const d_buffer = cudf::device_span<std::byte const>( reinterpret_cast<std::byte const*>(d_input.data()), d_input.size()); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info(d_buffer)); auto const result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } } TEST_F(ParquetWriterTest, ManyFragments) { srand(31337); auto const expected = create_random_fixed_table<int>(10, 6'000'000, false); auto const filepath = temp_env->get_temp_filepath("ManyFragments.parquet"); cudf::io::parquet_writer_options const args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected) .max_page_size_bytes(8 * 1024); cudf::io::write_parquet(args); cudf::io::parquet_reader_options const read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(ParquetWriterTest, NonNullable) { srand(31337); auto expected = create_random_fixed_table<int>(9, 9, false); auto filepath = temp_env->get_temp_filepath("NonNullable.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(ParquetWriterTest, Struct) { // Struct<is_human:bool, Struct<names:string, ages:int>> auto names = {"Samuel Vimes", "Carrot Ironfoundersson", "Angua von Uberwald", "Cheery Littlebottom", "Detritus", "Mr Slant"}; // `Name` column has all valid values. auto names_col = cudf::test::strings_column_wrapper{names.begin(), names.end()}; auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto struct_1 = cudf::test::structs_column_wrapper{{names_col, ages_col}, {1, 1, 1, 1, 0, 1}}; auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{ {true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}}; auto struct_2 = cudf::test::structs_column_wrapper{{is_human_col, struct_1}, {0, 1, 1, 1, 1, 1}}.release(); auto expected = table_view({*struct_2}); auto filepath = temp_env->get_temp_filepath("Struct.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath)); cudf::io::read_parquet(read_args); } TEST_P(ParquetV2Test, StructOfList) { auto const is_v2 = GetParam(); // Struct<is_human:bool, // Struct<weight:float, // ages:int, // land_unit:List<int>>, // flats:List<List<int>> // > // > auto weights_col = cudf::test::fixed_width_column_wrapper<float>{1.1, 2.4, 5.3, 8.0, 9.6, 6.9}; auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); using lcw = cudf::test::lists_column_wrapper<int32_t>; // [] // [NULL, 2, NULL] // [4, 5] // NULL // [] // [7, 8, 9] lcw land_unit{{{}, {{1, 2, 3}, valids}, {4, 5}, {}, {}, {7, 8, 9}}, valids2}; // [] // [[1, 2, 3], [], [4, 5], [], [0, 6, 0]] // [[7, 8], []] // [[]] // [[]] // [[], [], []] lcw flats{lcw{}, {{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, {{7, 8}, {}}, lcw{lcw{}}, lcw{lcw{}}, lcw{lcw{}, lcw{}, lcw{}}}; auto struct_1 = cudf::test::structs_column_wrapper{{weights_col, ages_col, land_unit, flats}, {1, 1, 1, 1, 0, 1}}; auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{ {true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}}; auto struct_2 = cudf::test::structs_column_wrapper{{is_human_col, struct_1}, {0, 1, 1, 1, 1, 1}}.release(); auto expected = table_view({*struct_2}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("being"); expected_metadata.column_metadata[0].child(0).set_name("human?"); expected_metadata.column_metadata[0].child(1).set_name("particulars"); expected_metadata.column_metadata[0].child(1).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(1).child(1).set_name("age"); expected_metadata.column_metadata[0].child(1).child(2).set_name("land_unit"); expected_metadata.column_metadata[0].child(1).child(3).set_name("flats"); auto filepath = temp_env->get_temp_filepath("StructOfList.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(is_v2) .metadata(expected_metadata); cudf::io::write_parquet(args); cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath)); auto const result = cudf::io::read_parquet(read_args); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_P(ParquetV2Test, ListOfStruct) { auto const is_v2 = GetParam(); // List<Struct<is_human:bool, // Struct<weight:float, // ages:int, // > // > // > auto weight_col = cudf::test::fixed_width_column_wrapper<float>{1.1, 2.4, 5.3, 8.0, 9.6, 6.9}; auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto struct_1 = cudf::test::structs_column_wrapper{{weight_col, ages_col}, {1, 1, 1, 1, 0, 1}}; auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{ {true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}}; auto struct_2 = cudf::test::structs_column_wrapper{{is_human_col, struct_1}, {0, 1, 1, 1, 1, 1}}.release(); auto list_offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 5, 5, 6}.release(); auto num_list_rows = list_offsets_column->size() - 1; auto list_col = cudf::make_lists_column( num_list_rows, std::move(list_offsets_column), std::move(struct_2), 0, {}); auto expected = table_view({*list_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("family"); expected_metadata.column_metadata[0].child(1).child(0).set_name("human?"); expected_metadata.column_metadata[0].child(1).child(1).set_name("particulars"); expected_metadata.column_metadata[0].child(1).child(1).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(1).child(1).child(1).set_name("age"); auto filepath = temp_env->get_temp_filepath("ListOfStruct.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(is_v2) .metadata(expected_metadata); cudf::io::write_parquet(args); cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath)); auto const result = cudf::io::read_parquet(read_args); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } // custom data sink that supports device writes. uses plain file io. class custom_test_data_sink : public cudf::io::data_sink { public: explicit custom_test_data_sink(std::string const& filepath) { outfile_.open(filepath, std::ios::out | std::ios::binary | std::ios::trunc); CUDF_EXPECTS(outfile_.is_open(), "Cannot open output file"); } virtual ~custom_test_data_sink() { flush(); } void host_write(void const* data, size_t size) override { outfile_.write(static_cast<char const*>(data), size); } [[nodiscard]] bool supports_device_write() const override { return true; } void device_write(void const* gpu_data, size_t size, rmm::cuda_stream_view stream) override { this->device_write_async(gpu_data, size, stream).get(); } std::future<void> device_write_async(void const* gpu_data, size_t size, rmm::cuda_stream_view stream) override { return std::async(std::launch::deferred, [=] { char* ptr = nullptr; CUDF_CUDA_TRY(cudaMallocHost(&ptr, size)); CUDF_CUDA_TRY(cudaMemcpyAsync(ptr, gpu_data, size, cudaMemcpyDefault, stream.value())); stream.synchronize(); outfile_.write(ptr, size); CUDF_CUDA_TRY(cudaFreeHost(ptr)); }); } void flush() override { outfile_.flush(); } size_t bytes_written() override { return outfile_.tellp(); } private: std::ofstream outfile_; }; TEST_F(ParquetWriterTest, CustomDataSink) { auto filepath = temp_env->get_temp_filepath("CustomDataSink.parquet"); custom_test_data_sink custom_sink(filepath); srand(31337); auto expected = create_random_fixed_table<int>(5, 10, false); // write out using the custom sink { cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); } // write out using a memmapped sink std::vector<char> buf_sink; { cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&buf_sink}, *expected); cudf::io::write_parquet(args); } // read them back in and make sure everything matches cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); cudf::io::parquet_reader_options buf_args = cudf::io::parquet_reader_options::builder( cudf::io::source_info{buf_sink.data(), buf_sink.size()}); auto buf_tbl = cudf::io::read_parquet(buf_args); CUDF_TEST_EXPECT_TABLES_EQUAL(buf_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterTest, DeviceWriteLargeishFile) { auto filepath = temp_env->get_temp_filepath("DeviceWriteLargeishFile.parquet"); custom_test_data_sink custom_sink(filepath); // exercises multiple rowgroups srand(31337); auto expected = create_random_fixed_table<int>(4, 4 * 1024 * 1024, false); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterTest, PartitionedWrite) { auto source = create_compressible_fixed_table<int>(16, 4 * 1024 * 1024, 1000, false); auto filepath1 = temp_env->get_temp_filepath("PartitionedWrite1.parquet"); auto filepath2 = temp_env->get_temp_filepath("PartitionedWrite2.parquet"); auto partition1 = cudf::io::partition_info{10, 1024 * 1024}; auto partition2 = cudf::io::partition_info{20 * 1024 + 7, 3 * 1024 * 1024}; auto expected1 = cudf::slice(*source, {partition1.start_row, partition1.start_row + partition1.num_rows}); auto expected2 = cudf::slice(*source, {partition2.start_row, partition2.start_row + partition2.num_rows}); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder( cudf::io::sink_info(std::vector<std::string>{filepath1, filepath2}), *source) .partitions({partition1, partition2}) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(args); auto result1 = cudf::io::read_parquet( cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath1))); CUDF_TEST_EXPECT_TABLES_EQUAL(expected1, result1.tbl->view()); auto result2 = cudf::io::read_parquet( cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath2))); CUDF_TEST_EXPECT_TABLES_EQUAL(expected2, result2.tbl->view()); } TEST_P(ParquetV2Test, PartitionedWriteEmptyPartitions) { auto const is_v2 = GetParam(); auto source = create_random_fixed_table<int>(4, 4, false); auto filepath1 = temp_env->get_temp_filepath("PartitionedWrite1.parquet"); auto filepath2 = temp_env->get_temp_filepath("PartitionedWrite2.parquet"); auto partition1 = cudf::io::partition_info{1, 0}; auto partition2 = cudf::io::partition_info{1, 0}; auto expected1 = cudf::slice(*source, {partition1.start_row, partition1.start_row + partition1.num_rows}); auto expected2 = cudf::slice(*source, {partition2.start_row, partition2.start_row + partition2.num_rows}); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder( cudf::io::sink_info(std::vector<std::string>{filepath1, filepath2}), *source) .partitions({partition1, partition2}) .write_v2_headers(is_v2) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(args); auto result1 = cudf::io::read_parquet( cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath1))); CUDF_TEST_EXPECT_TABLES_EQUAL(expected1, result1.tbl->view()); auto result2 = cudf::io::read_parquet( cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath2))); CUDF_TEST_EXPECT_TABLES_EQUAL(expected2, result2.tbl->view()); } TEST_P(ParquetV2Test, PartitionedWriteEmptyColumns) { auto const is_v2 = GetParam(); auto source = create_random_fixed_table<int>(0, 4, false); auto filepath1 = temp_env->get_temp_filepath("PartitionedWrite1.parquet"); auto filepath2 = temp_env->get_temp_filepath("PartitionedWrite2.parquet"); auto partition1 = cudf::io::partition_info{1, 0}; auto partition2 = cudf::io::partition_info{1, 0}; auto expected1 = cudf::slice(*source, {partition1.start_row, partition1.start_row + partition1.num_rows}); auto expected2 = cudf::slice(*source, {partition2.start_row, partition2.start_row + partition2.num_rows}); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder( cudf::io::sink_info(std::vector<std::string>{filepath1, filepath2}), *source) .partitions({partition1, partition2}) .write_v2_headers(is_v2) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(args); auto result1 = cudf::io::read_parquet( cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath1))); CUDF_TEST_EXPECT_TABLES_EQUAL(expected1, result1.tbl->view()); auto result2 = cudf::io::read_parquet( cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath2))); CUDF_TEST_EXPECT_TABLES_EQUAL(expected2, result2.tbl->view()); } template <typename T> std::string create_parquet_file(int num_cols) { srand(31337); auto const table = create_random_fixed_table<T>(num_cols, 10, true); auto const filepath = temp_env->get_temp_filepath(typeid(T).name() + std::to_string(num_cols) + ".parquet"); cudf::io::parquet_writer_options const out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, table->view()); cudf::io::write_parquet(out_opts); return filepath; } TEST_F(ParquetWriterTest, MultipleMismatchedSources) { auto const int5file = create_parquet_file<int>(5); { auto const float5file = create_parquet_file<float>(5); std::vector<std::string> files{int5file, float5file}; cudf::io::parquet_reader_options const read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{files}); EXPECT_THROW(cudf::io::read_parquet(read_opts), cudf::logic_error); } { auto const int10file = create_parquet_file<int>(10); std::vector<std::string> files{int5file, int10file}; cudf::io::parquet_reader_options const read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{files}); EXPECT_THROW(cudf::io::read_parquet(read_opts), cudf::logic_error); } } TEST_F(ParquetWriterTest, Slice) { auto col = cudf::test::fixed_width_column_wrapper<int>{{1, 2, 3, 4, 5}, {true, true, true, false, true}}; std::vector<cudf::size_type> indices{2, 5}; std::vector<cudf::column_view> result = cudf::slice(col, indices); cudf::table_view tbl{result}; auto filepath = temp_env->get_temp_filepath("Slice.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto read_table = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(read_table.tbl->view(), tbl); } TEST_F(ParquetChunkedWriterTest, SingleTable) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto filepath = temp_env->get_temp_filepath("ChunkedSingle.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(*table1); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *table1); } TEST_F(ParquetChunkedWriterTest, SimpleTable) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto table2 = create_random_fixed_table<int>(5, 5, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedSimple.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(*table1).write(*table2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(ParquetChunkedWriterTest, LargeTables) { srand(31337); auto table1 = create_random_fixed_table<int>(512, 4096, true); auto table2 = create_random_fixed_table<int>(512, 8192, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedLarge.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); auto md = cudf::io::parquet_chunked_writer(args).write(*table1).write(*table2).close(); ASSERT_EQ(md, nullptr); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(ParquetChunkedWriterTest, ManyTables) { srand(31337); std::vector<std::unique_ptr<table>> tables; std::vector<table_view> table_views; constexpr int num_tables = 96; for (int idx = 0; idx < num_tables; idx++) { auto tbl = create_random_fixed_table<int>(16, 64, true); table_views.push_back(*tbl); tables.push_back(std::move(tbl)); } auto expected = cudf::concatenate(table_views); auto filepath = temp_env->get_temp_filepath("ChunkedManyTables.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer writer(args); std::for_each(table_views.begin(), table_views.end(), [&writer](table_view const& tbl) { writer.write(tbl); }); auto md = writer.close({"dummy/path"}); ASSERT_NE(md, nullptr); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(ParquetChunkedWriterTest, Strings) { std::vector<std::unique_ptr<cudf::column>> cols; bool mask1[] = {true, true, false, true, true, true, true}; std::vector<char const*> h_strings1{"four", "score", "and", "seven", "years", "ago", "abcdefgh"}; cudf::test::strings_column_wrapper strings1(h_strings1.begin(), h_strings1.end(), mask1); cols.push_back(strings1.release()); cudf::table tbl1(std::move(cols)); bool mask2[] = {false, true, true, true, true, true, true}; std::vector<char const*> h_strings2{"ooooo", "ppppppp", "fff", "j", "cccc", "bbb", "zzzzzzzzzzz"}; cudf::test::strings_column_wrapper strings2(h_strings2.begin(), h_strings2.end(), mask2); cols.push_back(strings2.release()); cudf::table tbl2(std::move(cols)); auto expected = cudf::concatenate(std::vector<table_view>({tbl1, tbl2})); auto filepath = temp_env->get_temp_filepath("ChunkedStrings.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(tbl1).write(tbl2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(ParquetChunkedWriterTest, ListColumn) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); using lcw = cudf::test::lists_column_wrapper<int32_t>; // COL0 (Same nullability) ==================== // [NULL, 2, NULL] // [] // [4, 5] // NULL lcw col0_tbl0{{{{1, 2, 3}, valids}, {}, {4, 5}, {}}, valids2}; // [7, 8, 9] // [] // [NULL, 11] // NULL lcw col0_tbl1{{{7, 8, 9}, {}, {{10, 11}, valids}, {}}, valids2}; // COL1 (Nullability different in different chunks, test of merging nullability in writer) // [NULL, 2, NULL] // [] // [4, 5] // [] lcw col1_tbl0{{{1, 2, 3}, valids}, {}, {4, 5}, {}}; // [7, 8, 9] // [] // [10, 11] // NULL lcw col1_tbl1{{{7, 8, 9}, {}, {10, 11}, {}}, valids2}; // COL2 (non-nested columns to test proper schema construction) size_t num_rows_tbl0 = static_cast<cudf::column_view>(col0_tbl0).size(); size_t num_rows_tbl1 = static_cast<cudf::column_view>(col0_tbl1).size(); auto seq_col0 = random_values<int>(num_rows_tbl0); auto seq_col1 = random_values<int>(num_rows_tbl1); column_wrapper<int> col2_tbl0{seq_col0.begin(), seq_col0.end(), valids}; column_wrapper<int> col2_tbl1{seq_col1.begin(), seq_col1.end(), valids2}; auto tbl0 = table_view({col0_tbl0, col1_tbl0, col2_tbl0}); auto tbl1 = table_view({col0_tbl1, col1_tbl1, col2_tbl1}); auto expected = cudf::concatenate(std::vector<table_view>({tbl0, tbl1})); auto filepath = temp_env->get_temp_filepath("ChunkedLists.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(tbl0).write(tbl1); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(ParquetChunkedWriterTest, ListOfStruct) { // Table 1 auto weight_1 = cudf::test::fixed_width_column_wrapper<float>{{57.5, 51.1, 15.3}}; auto ages_1 = cudf::test::fixed_width_column_wrapper<int32_t>{{30, 27, 5}}; auto struct_1_1 = cudf::test::structs_column_wrapper{weight_1, ages_1}; auto is_human_1 = cudf::test::fixed_width_column_wrapper<bool>{{true, true, false}}; auto struct_2_1 = cudf::test::structs_column_wrapper{{is_human_1, struct_1_1}}; auto list_offsets_column_1 = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 3, 3}.release(); auto num_list_rows_1 = list_offsets_column_1->size() - 1; auto list_col_1 = cudf::make_lists_column( num_list_rows_1, std::move(list_offsets_column_1), struct_2_1.release(), 0, {}); auto table_1 = table_view({*list_col_1}); // Table 2 auto weight_2 = cudf::test::fixed_width_column_wrapper<float>{{1.1, -1.0, -1.0}}; auto ages_2 = cudf::test::fixed_width_column_wrapper<int32_t>{{31, 351, 351}, {1, 1, 0}}; auto struct_1_2 = cudf::test::structs_column_wrapper{{weight_2, ages_2}, {1, 0, 1}}; auto is_human_2 = cudf::test::fixed_width_column_wrapper<bool>{{false, false, false}, {1, 1, 0}}; auto struct_2_2 = cudf::test::structs_column_wrapper{{is_human_2, struct_1_2}}; auto list_offsets_column_2 = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 1, 2, 3}.release(); auto num_list_rows_2 = list_offsets_column_2->size() - 1; auto list_col_2 = cudf::make_lists_column( num_list_rows_2, std::move(list_offsets_column_2), struct_2_2.release(), 0, {}); auto table_2 = table_view({*list_col_2}); auto full_table = cudf::concatenate(std::vector<table_view>({table_1, table_2})); cudf::io::table_input_metadata expected_metadata(table_1); expected_metadata.column_metadata[0].set_name("family"); expected_metadata.column_metadata[0].child(1).set_nullability(false); expected_metadata.column_metadata[0].child(1).child(0).set_name("human?"); expected_metadata.column_metadata[0].child(1).child(1).set_name("particulars"); expected_metadata.column_metadata[0].child(1).child(1).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(1).child(1).child(1).set_name("age"); auto filepath = temp_env->get_temp_filepath("ChunkedListOfStruct.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); args.set_metadata(expected_metadata); cudf::io::parquet_chunked_writer(args).write(table_1).write(table_2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*result.tbl, *full_table); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(ParquetChunkedWriterTest, ListOfStructOfStructOfListOfList) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); using lcw = cudf::test::lists_column_wrapper<int32_t>; // Table 1 =========================== // [] // [NULL, 2, NULL] // [4, 5] // NULL lcw land_1{{{}, {{1, 2, 3}, valids}, {4, 5}, {}}, valids2}; // [] // [[1, 2, 3], [], [4, 5], [], [0, 6, 0]] // [[7, 8], []] // [[]] lcw flats_1{lcw{}, {{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, {{7, 8}, {}}, lcw{lcw{}}}; auto weight_1 = cudf::test::fixed_width_column_wrapper<float>{{57.5, 51.1, 15.3, 1.1}}; auto ages_1 = cudf::test::fixed_width_column_wrapper<int32_t>{{30, 27, 5, 31}}; auto struct_1_1 = cudf::test::structs_column_wrapper{weight_1, ages_1, land_1, flats_1}; auto is_human_1 = cudf::test::fixed_width_column_wrapper<bool>{{true, true, false, false}}; auto struct_2_1 = cudf::test::structs_column_wrapper{{is_human_1, struct_1_1}}; auto list_offsets_column_1 = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 2, 3, 4}.release(); auto num_list_rows_1 = list_offsets_column_1->size() - 1; auto list_col_1 = cudf::make_lists_column( num_list_rows_1, std::move(list_offsets_column_1), struct_2_1.release(), 0, {}); auto table_1 = table_view({*list_col_1}); // Table 2 =========================== // [] // [7, 8, 9] lcw land_2{{}, {7, 8, 9}}; // [[]] // [[], [], []] lcw flats_2{lcw{lcw{}}, lcw{lcw{}, lcw{}, lcw{}}}; auto weight_2 = cudf::test::fixed_width_column_wrapper<float>{{-1.0, -1.0}}; auto ages_2 = cudf::test::fixed_width_column_wrapper<int32_t>{{351, 351}, {1, 0}}; auto struct_1_2 = cudf::test::structs_column_wrapper{{weight_2, ages_2, land_2, flats_2}, {0, 1}}; auto is_human_2 = cudf::test::fixed_width_column_wrapper<bool>{{false, false}, {1, 0}}; auto struct_2_2 = cudf::test::structs_column_wrapper{{is_human_2, struct_1_2}}; auto list_offsets_column_2 = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 1, 2}.release(); auto num_list_rows_2 = list_offsets_column_2->size() - 1; auto list_col_2 = cudf::make_lists_column( num_list_rows_2, std::move(list_offsets_column_2), struct_2_2.release(), 0, {}); auto table_2 = table_view({*list_col_2}); auto full_table = cudf::concatenate(std::vector<table_view>({table_1, table_2})); cudf::io::table_input_metadata expected_metadata(table_1); expected_metadata.column_metadata[0].set_name("family"); expected_metadata.column_metadata[0].child(1).set_nullability(false); expected_metadata.column_metadata[0].child(1).child(0).set_name("human?"); expected_metadata.column_metadata[0].child(1).child(1).set_name("particulars"); expected_metadata.column_metadata[0].child(1).child(1).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(1).child(1).child(1).set_name("age"); expected_metadata.column_metadata[0].child(1).child(1).child(2).set_name("land_unit"); expected_metadata.column_metadata[0].child(1).child(1).child(3).set_name("flats"); auto filepath = temp_env->get_temp_filepath("ListOfStructOfStructOfListOfList.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); args.set_metadata(expected_metadata); cudf::io::parquet_chunked_writer(args).write(table_1).write(table_2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*result.tbl, *full_table); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); // We specifically mentioned in input schema that struct_2 is non-nullable across chunked calls. auto result_parent_list = result.tbl->get_column(0); auto result_struct_2 = result_parent_list.child(cudf::lists_column_view::child_column_index); EXPECT_EQ(result_struct_2.nullable(), false); } TEST_F(ParquetChunkedWriterTest, MismatchedTypes) { srand(31337); auto table1 = create_random_fixed_table<int>(4, 4, true); auto table2 = create_random_fixed_table<float>(4, 4, true); auto filepath = temp_env->get_temp_filepath("ChunkedMismatchedTypes.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer writer(args); writer.write(*table1); EXPECT_THROW(writer.write(*table2), cudf::logic_error); writer.close(); } TEST_F(ParquetChunkedWriterTest, ChunkedWriteAfterClosing) { srand(31337); auto table = create_random_fixed_table<int>(4, 4, true); auto filepath = temp_env->get_temp_filepath("ChunkedWriteAfterClosing.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer writer(args); writer.write(*table).close(); EXPECT_THROW(writer.write(*table), cudf::logic_error); } TEST_F(ParquetChunkedWriterTest, ReadingUnclosedFile) { srand(31337); auto table = create_random_fixed_table<int>(4, 4, true); auto filepath = temp_env->get_temp_filepath("ReadingUnclosedFile.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer writer(args); writer.write(*table); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); EXPECT_THROW(cudf::io::read_parquet(read_opts), cudf::logic_error); } TEST_F(ParquetChunkedWriterTest, MismatchedStructure) { srand(31337); auto table1 = create_random_fixed_table<int>(4, 4, true); auto table2 = create_random_fixed_table<float>(3, 4, true); auto filepath = temp_env->get_temp_filepath("ChunkedMismatchedStructure.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer writer(args); writer.write(*table1); EXPECT_THROW(writer.write(*table2), cudf::logic_error); writer.close(); } TEST_F(ParquetChunkedWriterTest, MismatchedStructureList) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); using lcw = cudf::test::lists_column_wrapper<int32_t>; // COL0 (mismatched depth) ==================== // [NULL, 2, NULL] // [] // [4, 5] // NULL lcw col00{{{{1, 2, 3}, valids}, {}, {4, 5}, {}}, valids2}; // [[1, 2, 3], [], [4, 5], [], [0, 6, 0]] // [[7, 8]] // [] // [[]] lcw col01{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, {{7, 8}}, lcw{}, lcw{lcw{}}}; // COL2 (non-nested columns to test proper schema construction) size_t num_rows = static_cast<cudf::column_view>(col00).size(); auto seq_col0 = random_values<int>(num_rows); auto seq_col1 = random_values<int>(num_rows); column_wrapper<int> col10{seq_col0.begin(), seq_col0.end(), valids}; column_wrapper<int> col11{seq_col1.begin(), seq_col1.end(), valids2}; auto tbl0 = table_view({col00, col10}); auto tbl1 = table_view({col01, col11}); auto filepath = temp_env->get_temp_filepath("ChunkedLists.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer writer(args); writer.write(tbl0); EXPECT_THROW(writer.write(tbl1), cudf::logic_error); } TEST_F(ParquetChunkedWriterTest, DifferentNullability) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto table2 = create_random_fixed_table<int>(5, 5, false); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedNullable.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(*table1).write(*table2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(ParquetChunkedWriterTest, DifferentNullabilityStruct) { // Struct<is_human:bool (non-nullable), // Struct<weight:float>, // age:int // > (nullable) // > (non-nullable) // Table 1: is_human and struct_1 are non-nullable but should be nullable when read back. auto weight_1 = cudf::test::fixed_width_column_wrapper<float>{{57.5, 51.1, 15.3}}; auto ages_1 = cudf::test::fixed_width_column_wrapper<int32_t>{{30, 27, 5}}; auto struct_1_1 = cudf::test::structs_column_wrapper{weight_1, ages_1}; auto is_human_1 = cudf::test::fixed_width_column_wrapper<bool>{{true, true, false}}; auto struct_2_1 = cudf::test::structs_column_wrapper{{is_human_1, struct_1_1}}; auto table_1 = cudf::table_view({struct_2_1}); // Table 2: struct_1 and is_human are nullable now so if we hadn't assumed worst case (nullable) // when writing table_1, we would have wrong pages for it. auto weight_2 = cudf::test::fixed_width_column_wrapper<float>{{1.1, -1.0, -1.0}}; auto ages_2 = cudf::test::fixed_width_column_wrapper<int32_t>{{31, 351, 351}, {1, 1, 0}}; auto struct_1_2 = cudf::test::structs_column_wrapper{{weight_2, ages_2}, {1, 0, 1}}; auto is_human_2 = cudf::test::fixed_width_column_wrapper<bool>{{false, false, false}, {1, 1, 0}}; auto struct_2_2 = cudf::test::structs_column_wrapper{{is_human_2, struct_1_2}}; auto table_2 = cudf::table_view({struct_2_2}); auto full_table = cudf::concatenate(std::vector<table_view>({table_1, table_2})); cudf::io::table_input_metadata expected_metadata(table_1); expected_metadata.column_metadata[0].set_name("being"); expected_metadata.column_metadata[0].child(0).set_name("human?"); expected_metadata.column_metadata[0].child(1).set_name("particulars"); expected_metadata.column_metadata[0].child(1).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(1).child(1).set_name("age"); auto filepath = temp_env->get_temp_filepath("ChunkedNullableStruct.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); args.set_metadata(expected_metadata); cudf::io::parquet_chunked_writer(args).write(table_1).write(table_2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*result.tbl, *full_table); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(ParquetChunkedWriterTest, ForcedNullability) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, false); auto table2 = create_random_fixed_table<int>(5, 5, false); auto full_table = cudf::concatenate(std::vector<table_view>({*table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedNoNullable.parquet"); cudf::io::table_input_metadata metadata(*table1); // In the absence of prescribed per-column nullability in metadata, the writer assumes the worst // and considers all columns nullable. However cudf::concatenate will not force nulls in case no // columns are nullable. To get the expected result, we tell the writer the nullability of all // columns in advance. for (auto& col_meta : metadata.column_metadata) { col_meta.set_nullability(false); } cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}) .metadata(std::move(metadata)); cudf::io::parquet_chunked_writer(args).write(*table1).write(*table2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(ParquetChunkedWriterTest, ForcedNullabilityList) { srand(31337); auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2; }); auto valids2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 3; }); using lcw = cudf::test::lists_column_wrapper<int32_t>; // COL0 ==================== // [1, 2, 3] // [] // [4, 5] // NULL lcw col00{{{1, 2, 3}, {}, {4, 5}, {}}, valids2}; // [7] // [] // [8, 9, 10, 11] // NULL lcw col01{{{7}, {}, {8, 9, 10, 11}, {}}, valids2}; // COL1 (non-nested columns to test proper schema construction) size_t num_rows = static_cast<cudf::column_view>(col00).size(); auto seq_col0 = random_values<int>(num_rows); auto seq_col1 = random_values<int>(num_rows); column_wrapper<int> col10{seq_col0.begin(), seq_col0.end(), valids}; column_wrapper<int> col11{seq_col1.begin(), seq_col1.end(), valids2}; auto table1 = table_view({col00, col10}); auto table2 = table_view({col01, col11}); auto full_table = cudf::concatenate(std::vector<table_view>({table1, table2})); cudf::io::table_input_metadata metadata(table1); metadata.column_metadata[0].set_nullability(true); // List is nullable at first (root) level metadata.column_metadata[0].child(1).set_nullability( false); // non-nullable at second (leaf) level metadata.column_metadata[1].set_nullability(true); auto filepath = temp_env->get_temp_filepath("ChunkedListNullable.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}) .metadata(std::move(metadata)); cudf::io::parquet_chunked_writer(args).write(table1).write(table2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(ParquetChunkedWriterTest, ForcedNullabilityStruct) { // Struct<is_human:bool (non-nullable), // Struct<weight:float>, // age:int // > (nullable) // > (non-nullable) // Table 1: is_human and struct_2 are non-nullable and should stay that way when read back. auto weight_1 = cudf::test::fixed_width_column_wrapper<float>{{57.5, 51.1, 15.3}}; auto ages_1 = cudf::test::fixed_width_column_wrapper<int32_t>{{30, 27, 5}}; auto struct_1_1 = cudf::test::structs_column_wrapper{weight_1, ages_1}; auto is_human_1 = cudf::test::fixed_width_column_wrapper<bool>{{true, true, false}}; auto struct_2_1 = cudf::test::structs_column_wrapper{{is_human_1, struct_1_1}}; auto table_1 = cudf::table_view({struct_2_1}); auto weight_2 = cudf::test::fixed_width_column_wrapper<float>{{1.1, -1.0, -1.0}}; auto ages_2 = cudf::test::fixed_width_column_wrapper<int32_t>{{31, 351, 351}, {1, 1, 0}}; auto struct_1_2 = cudf::test::structs_column_wrapper{{weight_2, ages_2}, {1, 0, 1}}; auto is_human_2 = cudf::test::fixed_width_column_wrapper<bool>{{false, false, false}}; auto struct_2_2 = cudf::test::structs_column_wrapper{{is_human_2, struct_1_2}}; auto table_2 = cudf::table_view({struct_2_2}); auto full_table = cudf::concatenate(std::vector<table_view>({table_1, table_2})); cudf::io::table_input_metadata expected_metadata(table_1); expected_metadata.column_metadata[0].set_name("being").set_nullability(false); expected_metadata.column_metadata[0].child(0).set_name("human?").set_nullability(false); expected_metadata.column_metadata[0].child(1).set_name("particulars"); expected_metadata.column_metadata[0].child(1).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(1).child(1).set_name("age"); auto filepath = temp_env->get_temp_filepath("ChunkedNullableStruct.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); args.set_metadata(expected_metadata); cudf::io::parquet_chunked_writer(args).write(table_1).write(table_2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } TEST_F(ParquetChunkedWriterTest, ReadRowGroups) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto table2 = create_random_fixed_table<int>(5, 5, true); auto full_table = cudf::concatenate(std::vector<table_view>({*table2, *table1, *table2})); auto filepath = temp_env->get_temp_filepath("ChunkedRowGroups.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); { cudf::io::parquet_chunked_writer(args).write(*table1).write(*table2); } cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .row_groups({{1, 0, 1}}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *full_table); } TEST_F(ParquetChunkedWriterTest, ReadRowGroupsError) { srand(31337); auto table1 = create_random_fixed_table<int>(5, 5, true); auto filepath = temp_env->get_temp_filepath("ChunkedRowGroupsError.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(*table1); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}).row_groups({{0, 1}}); EXPECT_THROW(cudf::io::read_parquet(read_opts), cudf::logic_error); read_opts.set_row_groups({{-1}}); EXPECT_THROW(cudf::io::read_parquet(read_opts), cudf::logic_error); read_opts.set_row_groups({{0}, {0}}); EXPECT_THROW(cudf::io::read_parquet(read_opts), cudf::logic_error); } TEST_F(ParquetWriterTest, DecimalWrite) { constexpr cudf::size_type num_rows = 500; auto seq_col0 = random_values<int32_t>(num_rows); auto seq_col1 = random_values<int64_t>(num_rows); auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; }); auto col0 = cudf::test::fixed_point_column_wrapper<int32_t>{ seq_col0.begin(), seq_col0.end(), valids, numeric::scale_type{5}}; auto col1 = cudf::test::fixed_point_column_wrapper<int64_t>{ seq_col1.begin(), seq_col1.end(), valids, numeric::scale_type{-9}}; auto table = table_view({col0, col1}); auto filepath = temp_env->get_temp_filepath("DecimalWrite.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, table); cudf::io::table_input_metadata expected_metadata(table); // verify failure if too small a precision is given expected_metadata.column_metadata[0].set_decimal_precision(7); expected_metadata.column_metadata[1].set_decimal_precision(1); args.set_metadata(expected_metadata); EXPECT_THROW(cudf::io::write_parquet(args), cudf::logic_error); // verify success if equal precision is given expected_metadata.column_metadata[0].set_decimal_precision(7); expected_metadata.column_metadata[1].set_decimal_precision(9); args.set_metadata(std::move(expected_metadata)); cudf::io::write_parquet(args); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, table); } TYPED_TEST(ParquetChunkedWriterNumericTypeTest, UnalignedSize) { // write out two 31 row tables and make sure they get // read back with all their validity bits in the right place using T = TypeParam; int num_els = 31; std::vector<std::unique_ptr<cudf::column>> cols; bool mask[] = {false, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true}; T c1a[num_els]; std::fill(c1a, c1a + num_els, static_cast<T>(5)); T c1b[num_els]; std::fill(c1b, c1b + num_els, static_cast<T>(6)); column_wrapper<T> c1a_w(c1a, c1a + num_els, mask); column_wrapper<T> c1b_w(c1b, c1b + num_els, mask); cols.push_back(c1a_w.release()); cols.push_back(c1b_w.release()); cudf::table tbl1(std::move(cols)); T c2a[num_els]; std::fill(c2a, c2a + num_els, static_cast<T>(8)); T c2b[num_els]; std::fill(c2b, c2b + num_els, static_cast<T>(9)); column_wrapper<T> c2a_w(c2a, c2a + num_els, mask); column_wrapper<T> c2b_w(c2b, c2b + num_els, mask); cols.push_back(c2a_w.release()); cols.push_back(c2b_w.release()); cudf::table tbl2(std::move(cols)); auto expected = cudf::concatenate(std::vector<table_view>({tbl1, tbl2})); auto filepath = temp_env->get_temp_filepath("ChunkedUnalignedSize.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(tbl1).write(tbl2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TYPED_TEST(ParquetChunkedWriterNumericTypeTest, UnalignedSize2) { // write out two 33 row tables and make sure they get // read back with all their validity bits in the right place using T = TypeParam; int num_els = 33; std::vector<std::unique_ptr<cudf::column>> cols; bool mask[] = {false, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true}; T c1a[num_els]; std::fill(c1a, c1a + num_els, static_cast<T>(5)); T c1b[num_els]; std::fill(c1b, c1b + num_els, static_cast<T>(6)); column_wrapper<T> c1a_w(c1a, c1a + num_els, mask); column_wrapper<T> c1b_w(c1b, c1b + num_els, mask); cols.push_back(c1a_w.release()); cols.push_back(c1b_w.release()); cudf::table tbl1(std::move(cols)); T c2a[num_els]; std::fill(c2a, c2a + num_els, static_cast<T>(8)); T c2b[num_els]; std::fill(c2b, c2b + num_els, static_cast<T>(9)); column_wrapper<T> c2a_w(c2a, c2a + num_els, mask); column_wrapper<T> c2b_w(c2b, c2b + num_els, mask); cols.push_back(c2a_w.release()); cols.push_back(c2b_w.release()); cudf::table tbl2(std::move(cols)); auto expected = cudf::concatenate(std::vector<table_view>({tbl1, tbl2})); auto filepath = temp_env->get_temp_filepath("ChunkedUnalignedSize2.parquet"); cudf::io::chunked_parquet_writer_options args = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{filepath}); cudf::io::parquet_chunked_writer(args).write(tbl1).write(tbl2); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } // custom mem mapped data sink that supports device writes template <bool supports_device_writes> class custom_test_memmap_sink : public cudf::io::data_sink { public: explicit custom_test_memmap_sink(std::vector<char>* mm_writer_buf) { mm_writer = cudf::io::data_sink::create(mm_writer_buf); } virtual ~custom_test_memmap_sink() { mm_writer->flush(); } void host_write(void const* data, size_t size) override { mm_writer->host_write(data, size); } [[nodiscard]] bool supports_device_write() const override { return supports_device_writes; } void device_write(void const* gpu_data, size_t size, rmm::cuda_stream_view stream) override { this->device_write_async(gpu_data, size, stream).get(); } std::future<void> device_write_async(void const* gpu_data, size_t size, rmm::cuda_stream_view stream) override { return std::async(std::launch::deferred, [=] { char* ptr = nullptr; CUDF_CUDA_TRY(cudaMallocHost(&ptr, size)); CUDF_CUDA_TRY(cudaMemcpyAsync(ptr, gpu_data, size, cudaMemcpyDefault, stream.value())); stream.synchronize(); mm_writer->host_write(ptr, size); CUDF_CUDA_TRY(cudaFreeHost(ptr)); }); } void flush() override { mm_writer->flush(); } size_t bytes_written() override { return mm_writer->bytes_written(); } private: std::unique_ptr<data_sink> mm_writer; }; TEST_F(ParquetWriterStressTest, LargeTableWeakCompression) { std::vector<char> mm_buf; mm_buf.reserve(4 * 1024 * 1024 * 16); custom_test_memmap_sink<false> custom_sink(&mm_buf); // exercises multiple rowgroups srand(31337); auto expected = create_random_fixed_table<int>(16, 4 * 1024 * 1024, false); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{mm_buf.data(), mm_buf.size()}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterStressTest, LargeTableGoodCompression) { std::vector<char> mm_buf; mm_buf.reserve(4 * 1024 * 1024 * 16); custom_test_memmap_sink<false> custom_sink(&mm_buf); // exercises multiple rowgroups srand(31337); auto expected = create_compressible_fixed_table<int>(16, 4 * 1024 * 1024, 128 * 1024, false); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{mm_buf.data(), mm_buf.size()}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterStressTest, LargeTableWithValids) { std::vector<char> mm_buf; mm_buf.reserve(4 * 1024 * 1024 * 16); custom_test_memmap_sink<false> custom_sink(&mm_buf); // exercises multiple rowgroups srand(31337); auto expected = create_compressible_fixed_table<int>(16, 4 * 1024 * 1024, 6, true); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{mm_buf.data(), mm_buf.size()}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterStressTest, DeviceWriteLargeTableWeakCompression) { std::vector<char> mm_buf; mm_buf.reserve(4 * 1024 * 1024 * 16); custom_test_memmap_sink<true> custom_sink(&mm_buf); // exercises multiple rowgroups srand(31337); auto expected = create_random_fixed_table<int>(16, 4 * 1024 * 1024, false); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{mm_buf.data(), mm_buf.size()}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterStressTest, DeviceWriteLargeTableGoodCompression) { std::vector<char> mm_buf; mm_buf.reserve(4 * 1024 * 1024 * 16); custom_test_memmap_sink<true> custom_sink(&mm_buf); // exercises multiple rowgroups srand(31337); auto expected = create_compressible_fixed_table<int>(16, 4 * 1024 * 1024, 128 * 1024, false); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{mm_buf.data(), mm_buf.size()}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetWriterStressTest, DeviceWriteLargeTableWithValids) { std::vector<char> mm_buf; mm_buf.reserve(4 * 1024 * 1024 * 16); custom_test_memmap_sink<true> custom_sink(&mm_buf); // exercises multiple rowgroups srand(31337); auto expected = create_compressible_fixed_table<int>(16, 4 * 1024 * 1024, 6, true); // write out using the custom sink (which uses device writes) cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&custom_sink}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options custom_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{mm_buf.data(), mm_buf.size()}); auto custom_tbl = cudf::io::read_parquet(custom_args); CUDF_TEST_EXPECT_TABLES_EQUAL(custom_tbl.tbl->view(), expected->view()); } TEST_F(ParquetReaderTest, UserBounds) { // trying to read more rows than there are should result in // receiving the properly capped # of rows { srand(31337); auto expected = create_random_fixed_table<int>(4, 4, false); auto filepath = temp_env->get_temp_filepath("TooManyRows.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected); cudf::io::write_parquet(args); // attempt to read more rows than there actually are cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}).num_rows(16); auto result = cudf::io::read_parquet(read_opts); // we should only get back 4 rows EXPECT_EQ(result.tbl->view().column(0).size(), 4); } // trying to read past the end of the # of actual rows should result // in empty columns. { srand(31337); auto expected = create_random_fixed_table<int>(4, 4, false); auto filepath = temp_env->get_temp_filepath("PastBounds.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected); cudf::io::write_parquet(args); // attempt to read more rows than there actually are cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}).skip_rows(4); auto result = cudf::io::read_parquet(read_opts); // we should get empty columns back EXPECT_EQ(result.tbl->view().num_columns(), 4); EXPECT_EQ(result.tbl->view().column(0).size(), 0); } // trying to read 0 rows should result in empty columns { srand(31337); auto expected = create_random_fixed_table<int>(4, 4, false); auto filepath = temp_env->get_temp_filepath("ZeroRows.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected); cudf::io::write_parquet(args); // attempt to read more rows than there actually are cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}).num_rows(0); auto result = cudf::io::read_parquet(read_opts); EXPECT_EQ(result.tbl->view().num_columns(), 4); EXPECT_EQ(result.tbl->view().column(0).size(), 0); } // trying to read 0 rows past the end of the # of actual rows should result // in empty columns. { srand(31337); auto expected = create_random_fixed_table<int>(4, 4, false); auto filepath = temp_env->get_temp_filepath("ZeroRowsPastBounds.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *expected); cudf::io::write_parquet(args); // attempt to read more rows than there actually are cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .skip_rows(4) .num_rows(0); auto result = cudf::io::read_parquet(read_opts); // we should get empty columns back EXPECT_EQ(result.tbl->view().num_columns(), 4); EXPECT_EQ(result.tbl->view().column(0).size(), 0); } } TEST_F(ParquetReaderTest, UserBoundsWithNulls) { // clang-format off cudf::test::fixed_width_column_wrapper<float> col{{1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8} ,{1,1,1,0,0,0,1,1, 1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0, 1,1,1,1,1,1,0,0, 1,0,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0}}; // clang-format on cudf::table_view tbl({col}); auto filepath = temp_env->get_temp_filepath("UserBoundsWithNulls.parquet"); cudf::io::parquet_writer_options out_args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_parquet(out_args); // skip_rows / num_rows // clang-format off std::vector<std::pair<int, int>> params{ {-1, -1}, {1, 3}, {3, -1}, {31, -1}, {32, -1}, {33, -1}, {31, 5}, {32, 5}, {33, 5}, {-1, 7}, {-1, 31}, {-1, 32}, {-1, 33}, {62, -1}, {63, -1}, {62, 2}, {63, 1}}; // clang-format on for (auto p : params) { cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); if (p.first >= 0) { read_args.set_skip_rows(p.first); } if (p.second >= 0) { read_args.set_num_rows(p.second); } auto result = cudf::io::read_parquet(read_args); p.first = p.first < 0 ? 0 : p.first; p.second = p.second < 0 ? static_cast<cudf::column_view>(col).size() - p.first : p.second; std::vector<cudf::size_type> slice_indices{p.first, p.first + p.second}; auto expected = cudf::slice(col, slice_indices); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), expected[0]); } } TEST_F(ParquetReaderTest, UserBoundsWithNullsMixedTypes) { constexpr int num_rows = 32 * 1024; std::mt19937 gen(6542); std::bernoulli_distribution bn(0.7f); auto valids = cudf::detail::make_counting_transform_iterator(0, [&](int index) { return bn(gen); }); auto values = thrust::make_counting_iterator(0); // int64 cudf::test::fixed_width_column_wrapper<int64_t> c0(values, values + num_rows, valids); // list<float> constexpr int floats_per_row = 4; auto c1_offset_iter = cudf::detail::make_counting_transform_iterator( 0, [floats_per_row](cudf::size_type idx) { return idx * floats_per_row; }); cudf::test::fixed_width_column_wrapper<cudf::size_type> c1_offsets(c1_offset_iter, c1_offset_iter + num_rows + 1); cudf::test::fixed_width_column_wrapper<float> c1_floats( values, values + (num_rows * floats_per_row), valids); auto [null_mask, null_count] = cudf::test::detail::make_null_mask(valids, valids + num_rows); auto _c1 = cudf::make_lists_column( num_rows, c1_offsets.release(), c1_floats.release(), null_count, std::move(null_mask)); auto c1 = cudf::purge_nonempty_nulls(*_c1); // list<list<int>> auto c2 = make_parquet_list_list_col<int>(0, num_rows, 5, 8, true); // struct<list<string>, int, float> std::vector<std::string> strings{ "abc", "x", "bananas", "gpu", "minty", "backspace", "", "cayenne", "turbine", "soft"}; std::uniform_int_distribution<int> uni(0, strings.size() - 1); auto string_iter = cudf::detail::make_counting_transform_iterator( 0, [&](cudf::size_type idx) { return strings[uni(gen)]; }); constexpr int string_per_row = 3; constexpr int num_string_rows = num_rows * string_per_row; cudf::test::strings_column_wrapper string_col{string_iter, string_iter + num_string_rows}; auto offset_iter = cudf::detail::make_counting_transform_iterator( 0, [string_per_row](cudf::size_type idx) { return idx * string_per_row; }); cudf::test::fixed_width_column_wrapper<cudf::size_type> offsets(offset_iter, offset_iter + num_rows + 1); auto _c3_valids = cudf::detail::make_counting_transform_iterator(0, [&](int index) { return index % 200; }); std::vector<bool> c3_valids(num_rows); std::copy(_c3_valids, _c3_valids + num_rows, c3_valids.begin()); std::tie(null_mask, null_count) = cudf::test::detail::make_null_mask(valids, valids + num_rows); auto _c3_list = cudf::make_lists_column( num_rows, offsets.release(), string_col.release(), null_count, std::move(null_mask)); auto c3_list = cudf::purge_nonempty_nulls(*_c3_list); cudf::test::fixed_width_column_wrapper<int> c3_ints(values, values + num_rows, valids); cudf::test::fixed_width_column_wrapper<float> c3_floats(values, values + num_rows, valids); std::vector<std::unique_ptr<cudf::column>> c3_children; c3_children.push_back(std::move(c3_list)); c3_children.push_back(c3_ints.release()); c3_children.push_back(c3_floats.release()); cudf::test::structs_column_wrapper _c3(std::move(c3_children), c3_valids); auto c3 = cudf::purge_nonempty_nulls(_c3); // write it out cudf::table_view tbl({c0, *c1, *c2, *c3}); auto filepath = temp_env->get_temp_filepath("UserBoundsWithNullsMixedTypes.parquet"); cudf::io::parquet_writer_options out_args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_parquet(out_args); // read it back std::vector<std::pair<int, int>> params{ {-1, -1}, {0, num_rows}, {1, num_rows - 1}, {num_rows - 1, 1}, {517, 22000}}; for (auto p : params) { cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); if (p.first >= 0) { read_args.set_skip_rows(p.first); } if (p.second >= 0) { read_args.set_num_rows(p.second); } auto result = cudf::io::read_parquet(read_args); p.first = p.first < 0 ? 0 : p.first; p.second = p.second < 0 ? num_rows - p.first : p.second; std::vector<cudf::size_type> slice_indices{p.first, p.first + p.second}; auto expected = cudf::slice(tbl, slice_indices); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, expected[0]); } } TEST_F(ParquetReaderTest, UserBoundsWithNullsLarge) { constexpr int num_rows = 30 * 1000000; std::mt19937 gen(6747); std::bernoulli_distribution bn(0.7f); auto valids = cudf::detail::make_counting_transform_iterator(0, [&](int index) { return bn(gen); }); auto values = thrust::make_counting_iterator(0); cudf::test::fixed_width_column_wrapper<int> col(values, values + num_rows, valids); // this file will have row groups of 1,000,000 each cudf::table_view tbl({col}); auto filepath = temp_env->get_temp_filepath("UserBoundsWithNullsLarge.parquet"); cudf::io::parquet_writer_options out_args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_parquet(out_args); // skip_rows / num_rows // clang-format off std::vector<std::pair<int, int>> params{ {-1, -1}, {31, -1}, {32, -1}, {33, -1}, {1613470, -1}, {1999999, -1}, {31, 1}, {32, 1}, {33, 1}, // deliberately span some row group boundaries {999000, 1001}, {999000, 2000}, {2999999, 2}, {13999997, -1}, {16785678, 3}, {22996176, 31}, {24001231, 17}, {29000001, 989999}, {29999999, 1} }; // clang-format on for (auto p : params) { cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); if (p.first >= 0) { read_args.set_skip_rows(p.first); } if (p.second >= 0) { read_args.set_num_rows(p.second); } auto result = cudf::io::read_parquet(read_args); p.first = p.first < 0 ? 0 : p.first; p.second = p.second < 0 ? static_cast<cudf::column_view>(col).size() - p.first : p.second; std::vector<cudf::size_type> slice_indices{p.first, p.first + p.second}; auto expected = cudf::slice(col, slice_indices); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), expected[0]); } } TEST_F(ParquetReaderTest, ListUserBoundsWithNullsLarge) { constexpr int num_rows = 5 * 1000000; auto colp = make_parquet_list_list_col<int>(0, num_rows, 5, 8, true); cudf::column_view col = *colp; // this file will have row groups of 1,000,000 each cudf::table_view tbl({col}); auto filepath = temp_env->get_temp_filepath("ListUserBoundsWithNullsLarge.parquet"); cudf::io::parquet_writer_options out_args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl); cudf::io::write_parquet(out_args); // skip_rows / num_rows // clang-format off std::vector<std::pair<int, int>> params{ {-1, -1}, {31, -1}, {32, -1}, {33, -1}, {161470, -1}, {4499997, -1}, {31, 1}, {32, 1}, {33, 1}, // deliberately span some row group boundaries {999000, 1001}, {999000, 2000}, {2999999, 2}, {1678567, 3}, {4299676, 31}, {4001231, 17}, {1900000, 989999}, {4999999, 1} }; // clang-format on for (auto p : params) { cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); if (p.first >= 0) { read_args.set_skip_rows(p.first); } if (p.second >= 0) { read_args.set_num_rows(p.second); } auto result = cudf::io::read_parquet(read_args); p.first = p.first < 0 ? 0 : p.first; p.second = p.second < 0 ? static_cast<cudf::column_view>(col).size() - p.first : p.second; std::vector<cudf::size_type> slice_indices{p.first, p.first + p.second}; auto expected = cudf::slice(col, slice_indices); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), expected[0]); } } TEST_F(ParquetReaderTest, ReorderedColumns) { { auto a = cudf::test::strings_column_wrapper{{"a", "", "c"}, {true, false, true}}; auto b = cudf::test::fixed_width_column_wrapper<int>{1, 2, 3}; cudf::table_view tbl{{a, b}}; auto filepath = temp_env->get_temp_filepath("ReorderedColumns.parquet"); cudf::io::table_input_metadata md(tbl); md.column_metadata[0].set_name("a"); md.column_metadata[1].set_name("b"); cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl).metadata(md); cudf::io::write_parquet(opts); // read them out of order cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .columns({"b", "a"}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), b); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), a); } { auto a = cudf::test::fixed_width_column_wrapper<int>{1, 2, 3}; auto b = cudf::test::strings_column_wrapper{{"a", "", "c"}, {true, false, true}}; cudf::table_view tbl{{a, b}}; auto filepath = temp_env->get_temp_filepath("ReorderedColumns2.parquet"); cudf::io::table_input_metadata md(tbl); md.column_metadata[0].set_name("a"); md.column_metadata[1].set_name("b"); cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl).metadata(md); cudf::io::write_parquet(opts); // read them out of order cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .columns({"b", "a"}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), b); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), a); } auto a = cudf::test::fixed_width_column_wrapper<int>{1, 2, 3, 10, 20, 30}; auto b = cudf::test::strings_column_wrapper{{"a", "", "c", "cats", "dogs", "owls"}, {true, false, true, true, false, true}}; auto c = cudf::test::fixed_width_column_wrapper<int>{{15, 16, 17, 25, 26, 32}, {false, true, true, true, true, false}}; auto d = cudf::test::strings_column_wrapper{"ducks", "sheep", "cows", "fish", "birds", "ants"}; cudf::table_view tbl{{a, b, c, d}}; auto filepath = temp_env->get_temp_filepath("ReorderedColumns3.parquet"); cudf::io::table_input_metadata md(tbl); md.column_metadata[0].set_name("a"); md.column_metadata[1].set_name("b"); md.column_metadata[2].set_name("c"); md.column_metadata[3].set_name("d"); cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, tbl) .metadata(std::move(md)); cudf::io::write_parquet(opts); { // read them out of order cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .columns({"d", "a", "b", "c"}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), d); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), a); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(2), b); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(3), c); } { // read them out of order cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .columns({"c", "d", "a", "b"}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), c); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), d); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(2), a); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(3), b); } { // read them out of order cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .columns({"d", "c", "b", "a"}); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), d); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), c); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(2), b); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(3), a); } } TEST_F(ParquetReaderTest, SelectNestedColumn) { // Struct<is_human:bool, // Struct<weight:float, // ages:int, // land_unit:List<int>>, // flats:List<List<int>> // > // > auto weights_col = cudf::test::fixed_width_column_wrapper<float>{1.1, 2.4, 5.3, 8.0, 9.6, 6.9}; auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{{48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto struct_1 = cudf::test::structs_column_wrapper{{weights_col, ages_col}, {1, 1, 1, 1, 0, 1}}; auto is_human_col = cudf::test::fixed_width_column_wrapper<bool>{ {true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}}; auto struct_2 = cudf::test::structs_column_wrapper{{is_human_col, struct_1}, {0, 1, 1, 1, 1, 1}}.release(); auto input = table_view({*struct_2}); cudf::io::table_input_metadata input_metadata(input); input_metadata.column_metadata[0].set_name("being"); input_metadata.column_metadata[0].child(0).set_name("human?"); input_metadata.column_metadata[0].child(1).set_name("particulars"); input_metadata.column_metadata[0].child(1).child(0).set_name("weight"); input_metadata.column_metadata[0].child(1).child(1).set_name("age"); auto filepath = temp_env->get_temp_filepath("SelectNestedColumn.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, input) .metadata(std::move(input_metadata)); cudf::io::write_parquet(args); { // Test selecting a single leaf from the table cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath)) .columns({"being.particulars.age"}); auto const result = cudf::io::read_parquet(read_args); auto expect_ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{ {48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto expect_s_1 = cudf::test::structs_column_wrapper{{expect_ages_col}, {1, 1, 1, 1, 0, 1}}; auto expect_s_2 = cudf::test::structs_column_wrapper{{expect_s_1}, {0, 1, 1, 1, 1, 1}}.release(); auto expected = table_view({*expect_s_2}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("being"); expected_metadata.column_metadata[0].child(0).set_name("particulars"); expected_metadata.column_metadata[0].child(0).child(0).set_name("age"); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } { // Test selecting a non-leaf and expecting all hierarchy from that node onwards cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath)) .columns({"being.particulars"}); auto const result = cudf::io::read_parquet(read_args); auto expected_weights_col = cudf::test::fixed_width_column_wrapper<float>{1.1, 2.4, 5.3, 8.0, 9.6, 6.9}; auto expected_ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{ {48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto expected_s_1 = cudf::test::structs_column_wrapper{ {expected_weights_col, expected_ages_col}, {1, 1, 1, 1, 0, 1}}; auto expect_s_2 = cudf::test::structs_column_wrapper{{expected_s_1}, {0, 1, 1, 1, 1, 1}}.release(); auto expected = table_view({*expect_s_2}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("being"); expected_metadata.column_metadata[0].child(0).set_name("particulars"); expected_metadata.column_metadata[0].child(0).child(0).set_name("weight"); expected_metadata.column_metadata[0].child(0).child(1).set_name("age"); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } { // Test selecting struct children out of order cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info(filepath)) .columns({"being.particulars.age", "being.particulars.weight", "being.human?"}); auto const result = cudf::io::read_parquet(read_args); auto expected_weights_col = cudf::test::fixed_width_column_wrapper<float>{1.1, 2.4, 5.3, 8.0, 9.6, 6.9}; auto expected_ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{ {48, 27, 25, 31, 351, 351}, {1, 1, 1, 1, 1, 0}}; auto expected_is_human_col = cudf::test::fixed_width_column_wrapper<bool>{ {true, true, false, false, false, false}, {1, 1, 0, 1, 1, 0}}; auto expect_s_1 = cudf::test::structs_column_wrapper{{expected_ages_col, expected_weights_col}, {1, 1, 1, 1, 0, 1}}; auto expect_s_2 = cudf::test::structs_column_wrapper{{expect_s_1, expected_is_human_col}, {0, 1, 1, 1, 1, 1}} .release(); auto expected = table_view({*expect_s_2}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("being"); expected_metadata.column_metadata[0].child(0).set_name("particulars"); expected_metadata.column_metadata[0].child(0).child(0).set_name("age"); expected_metadata.column_metadata[0].child(0).child(1).set_name("weight"); expected_metadata.column_metadata[0].child(1).set_name("human?"); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); cudf::test::expect_metadata_equal(expected_metadata, result.metadata); } } TEST_F(ParquetReaderTest, DecimalRead) { { /* We could add a dataset to include this file, but we don't want tests in cudf to have data. This test is a temporary test until python gains the ability to write decimal, so we're embedding a parquet file directly into the code here to prevent issues with finding the file */ unsigned char const decimals_parquet[] = { 0x50, 0x41, 0x52, 0x31, 0x15, 0x00, 0x15, 0xb0, 0x03, 0x15, 0xb8, 0x03, 0x2c, 0x15, 0x6a, 0x15, 0x00, 0x15, 0x06, 0x15, 0x08, 0x1c, 0x36, 0x02, 0x28, 0x04, 0x7f, 0x96, 0x98, 0x00, 0x18, 0x04, 0x81, 0x69, 0x67, 0xff, 0x00, 0x00, 0x00, 0xd8, 0x01, 0xf0, 0xd7, 0x04, 0x00, 0x00, 0x00, 0x64, 0x01, 0x03, 0x06, 0x68, 0x12, 0xdc, 0xff, 0xbd, 0x18, 0xfd, 0xff, 0x64, 0x13, 0x80, 0x00, 0xb3, 0x5d, 0x62, 0x00, 0x90, 0x35, 0xa9, 0xff, 0xa2, 0xde, 0xe3, 0xff, 0xe9, 0xbf, 0x96, 0xff, 0x1f, 0x8a, 0x98, 0xff, 0xb1, 0x50, 0x34, 0x00, 0x88, 0x24, 0x59, 0x00, 0x2a, 0x33, 0xbe, 0xff, 0xd5, 0x16, 0xbc, 0xff, 0x13, 0x50, 0x8d, 0xff, 0xcb, 0x63, 0x2d, 0x00, 0x80, 0x8f, 0xbe, 0xff, 0x82, 0x40, 0x10, 0x00, 0x84, 0x68, 0x70, 0xff, 0x9b, 0x69, 0x78, 0x00, 0x14, 0x6c, 0x10, 0x00, 0x50, 0xd9, 0xe1, 0xff, 0xaa, 0xcd, 0x6a, 0x00, 0xcf, 0xb1, 0x28, 0x00, 0x77, 0x57, 0x8d, 0x00, 0xee, 0x05, 0x79, 0x00, 0xf0, 0x15, 0xeb, 0xff, 0x02, 0xe2, 0x06, 0x00, 0x87, 0x43, 0x86, 0x00, 0xf8, 0x2d, 0x2e, 0x00, 0xee, 0x2e, 0x98, 0xff, 0x39, 0xcb, 0x4d, 0x00, 0x1e, 0x6b, 0xea, 0xff, 0x80, 0x8e, 0x6c, 0xff, 0x97, 0x25, 0x26, 0x00, 0x4d, 0x0d, 0x0a, 0x00, 0xca, 0x64, 0x7f, 0x00, 0xf4, 0xbe, 0xa1, 0xff, 0xe2, 0x12, 0x6c, 0xff, 0xbd, 0x77, 0xae, 0xff, 0xf9, 0x4b, 0x36, 0x00, 0xb0, 0xe3, 0x79, 0xff, 0xa2, 0x2a, 0x29, 0x00, 0xcd, 0x06, 0xbc, 0xff, 0x2d, 0xa3, 0x7e, 0x00, 0xa9, 0x08, 0xa1, 0xff, 0xbf, 0x81, 0xd0, 0xff, 0x4f, 0x03, 0x73, 0x00, 0xb0, 0x99, 0x0c, 0x00, 0xbd, 0x6f, 0xf8, 0xff, 0x6b, 0x02, 0x05, 0x00, 0xc1, 0xe1, 0xba, 0xff, 0x81, 0x69, 0x67, 0xff, 0x7f, 0x96, 0x98, 0x00, 0x15, 0x00, 0x15, 0xd0, 0x06, 0x15, 0xda, 0x06, 0x2c, 0x15, 0x6a, 0x15, 0x00, 0x15, 0x06, 0x15, 0x08, 0x1c, 0x36, 0x02, 0x28, 0x08, 0xff, 0x3f, 0x7a, 0x10, 0xf3, 0x5a, 0x00, 0x00, 0x18, 0x08, 0x01, 0xc0, 0x85, 0xef, 0x0c, 0xa5, 0xff, 0xff, 0x00, 0x00, 0x00, 0xa8, 0x03, 0xf4, 0xa7, 0x01, 0x04, 0x00, 0x00, 0x00, 0x64, 0x01, 0x03, 0x06, 0x55, 0x6f, 0xc5, 0xe4, 0x9f, 0x1a, 0x00, 0x00, 0x47, 0x89, 0x0a, 0xe8, 0x58, 0xf0, 0xff, 0xff, 0x63, 0xee, 0x21, 0xdd, 0xdd, 0xca, 0xff, 0xff, 0xbe, 0x6f, 0x3b, 0xaa, 0xe9, 0x3d, 0x00, 0x00, 0xd6, 0x91, 0x2a, 0xb7, 0x08, 0x02, 0x00, 0x00, 0x75, 0x45, 0x2c, 0xd7, 0x76, 0x0c, 0x00, 0x00, 0x54, 0x49, 0x92, 0x44, 0x9c, 0xbf, 0xff, 0xff, 0x41, 0xa9, 0x6d, 0xec, 0x7a, 0xd0, 0xff, 0xff, 0x27, 0xa0, 0x23, 0x41, 0x44, 0xc1, 0xff, 0xff, 0x18, 0xd4, 0xe1, 0x30, 0xd3, 0xe0, 0xff, 0xff, 0x59, 0xac, 0x14, 0xf4, 0xec, 0x58, 0x00, 0x00, 0x2c, 0x17, 0x29, 0x57, 0x44, 0x13, 0x00, 0x00, 0xa2, 0x0d, 0x4a, 0xcc, 0x63, 0xff, 0xff, 0xff, 0x81, 0x33, 0xbc, 0xda, 0xd5, 0xda, 0xff, 0xff, 0x4c, 0x05, 0xf4, 0x78, 0x19, 0xea, 0xff, 0xff, 0x06, 0x71, 0x25, 0xde, 0x5a, 0xaf, 0xff, 0xff, 0x95, 0x32, 0x5f, 0x76, 0x98, 0xb3, 0xff, 0xff, 0xf1, 0x34, 0x3c, 0xbf, 0xa8, 0xbe, 0xff, 0xff, 0x27, 0x73, 0x40, 0x0c, 0x7d, 0xcd, 0xff, 0xff, 0x68, 0xa9, 0xc2, 0xe9, 0x2c, 0x03, 0x00, 0x00, 0x3f, 0x79, 0xd9, 0x04, 0x8c, 0xe5, 0xff, 0xff, 0x91, 0xb4, 0x9b, 0xe3, 0x8f, 0x21, 0x00, 0x00, 0xb8, 0x20, 0xc8, 0xc2, 0x4d, 0xa6, 0xff, 0xff, 0x47, 0xfa, 0xde, 0x36, 0x4a, 0xf3, 0xff, 0xff, 0x72, 0x80, 0x94, 0x59, 0xdd, 0x4e, 0x00, 0x00, 0x29, 0xe4, 0xd6, 0x43, 0xb0, 0xf0, 0xff, 0xff, 0x68, 0x36, 0xbc, 0x2d, 0xd1, 0xa9, 0xff, 0xff, 0xbc, 0xe4, 0xbe, 0xd7, 0xed, 0x1b, 0x00, 0x00, 0x02, 0x8b, 0xcb, 0xd7, 0xed, 0x47, 0x00, 0x00, 0x3c, 0x06, 0xe4, 0xda, 0xc7, 0x47, 0x00, 0x00, 0xf3, 0x39, 0x55, 0x28, 0x97, 0xba, 0xff, 0xff, 0x07, 0x79, 0x38, 0x4e, 0xe0, 0x21, 0x00, 0x00, 0xde, 0xed, 0x1c, 0x23, 0x09, 0x49, 0x00, 0x00, 0x49, 0x46, 0x49, 0x5d, 0x8f, 0x34, 0x00, 0x00, 0x38, 0x18, 0x50, 0xf6, 0xa1, 0x11, 0x00, 0x00, 0xdf, 0xb8, 0x19, 0x14, 0xd1, 0xe1, 0xff, 0xff, 0x2c, 0x56, 0x72, 0x93, 0x64, 0x3f, 0x00, 0x00, 0x1c, 0xe0, 0xbe, 0x87, 0x7d, 0xf9, 0xff, 0xff, 0x73, 0x0e, 0x3c, 0x01, 0x91, 0xf9, 0xff, 0xff, 0xb2, 0x37, 0x85, 0x81, 0x5f, 0x54, 0x00, 0x00, 0x58, 0x44, 0xb0, 0x1a, 0xac, 0xbb, 0xff, 0xff, 0x36, 0xbf, 0xbe, 0x5e, 0x22, 0xff, 0xff, 0xff, 0x06, 0x20, 0xa0, 0x23, 0x0d, 0x3b, 0x00, 0x00, 0x19, 0xc6, 0x49, 0x0a, 0x00, 0xcf, 0xff, 0xff, 0x4f, 0xcd, 0xc6, 0x95, 0x4b, 0xf1, 0xff, 0xff, 0xa3, 0x59, 0xaf, 0x65, 0xec, 0xe9, 0xff, 0xff, 0x58, 0xef, 0x05, 0x50, 0x63, 0xe4, 0xff, 0xff, 0xc7, 0x6a, 0x9e, 0xf1, 0x69, 0x20, 0x00, 0x00, 0xd1, 0xb3, 0xc9, 0x14, 0xb2, 0x29, 0x00, 0x00, 0x1d, 0x48, 0x16, 0x70, 0xf0, 0x40, 0x00, 0x00, 0x01, 0xc0, 0x85, 0xef, 0x0c, 0xa5, 0xff, 0xff, 0xff, 0x3f, 0x7a, 0x10, 0xf3, 0x5a, 0x00, 0x00, 0x15, 0x00, 0x15, 0x90, 0x0d, 0x15, 0x9a, 0x0d, 0x2c, 0x15, 0x6a, 0x15, 0x00, 0x15, 0x06, 0x15, 0x08, 0x1c, 0x36, 0x02, 0x28, 0x10, 0x4b, 0x3b, 0x4c, 0xa8, 0x5a, 0x86, 0xc4, 0x7a, 0x09, 0x8a, 0x22, 0x3f, 0xff, 0xff, 0xff, 0xff, 0x18, 0x10, 0xb4, 0xc4, 0xb3, 0x57, 0xa5, 0x79, 0x3b, 0x85, 0xf6, 0x75, 0xdd, 0xc0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xc8, 0x06, 0xf4, 0x47, 0x03, 0x04, 0x00, 0x00, 0x00, 0x64, 0x01, 0x03, 0x06, 0x05, 0x49, 0xf7, 0xfc, 0x89, 0x3d, 0x3e, 0x20, 0x07, 0x72, 0x3e, 0xa1, 0x66, 0x81, 0x67, 0x80, 0x23, 0x78, 0x06, 0x68, 0x0e, 0x78, 0xf5, 0x08, 0xed, 0x20, 0xcd, 0x0e, 0x7f, 0x9c, 0x70, 0xa0, 0xb9, 0x16, 0x44, 0xb2, 0x41, 0x62, 0xba, 0x82, 0xad, 0xe1, 0x12, 0x9b, 0xa6, 0x53, 0x8d, 0x20, 0x27, 0xd5, 0x84, 0x63, 0xb8, 0x07, 0x4b, 0x5b, 0xa4, 0x1c, 0xa4, 0x1c, 0x17, 0xbf, 0x4b, 0x00, 0x24, 0x04, 0x56, 0xa8, 0x52, 0xaf, 0x33, 0xf7, 0xad, 0x7c, 0xc8, 0x83, 0x25, 0x13, 0xaf, 0x80, 0x25, 0x6f, 0xbd, 0xd1, 0x15, 0x69, 0x64, 0x20, 0x7b, 0xd7, 0x33, 0xba, 0x66, 0x29, 0x8a, 0x00, 0xda, 0x42, 0x07, 0x2c, 0x6c, 0x39, 0x76, 0x9f, 0xdc, 0x17, 0xad, 0xb6, 0x58, 0xdf, 0x5f, 0x00, 0x18, 0x3a, 0xae, 0x1c, 0xd6, 0x5f, 0x9d, 0x78, 0x8d, 0x73, 0xdd, 0x3e, 0xd6, 0x18, 0x33, 0x40, 0xe4, 0x36, 0xde, 0xb0, 0xb7, 0x33, 0x2a, 0x6b, 0x08, 0x03, 0x6c, 0x6d, 0x8f, 0x13, 0x93, 0xd0, 0xd7, 0x87, 0x62, 0x63, 0x53, 0xfb, 0xd8, 0xbb, 0xc9, 0x54, 0x90, 0xd6, 0xa9, 0x8f, 0xc8, 0x60, 0xbd, 0xec, 0x75, 0x23, 0x9a, 0x21, 0xec, 0xe4, 0x86, 0x43, 0xd7, 0xc1, 0x88, 0xdc, 0x82, 0x00, 0x32, 0x79, 0xc9, 0x2b, 0x70, 0x85, 0xb7, 0x25, 0xa1, 0xcc, 0x7d, 0x0b, 0x29, 0x03, 0xea, 0x80, 0xff, 0x9b, 0xf3, 0x24, 0x7f, 0xd1, 0xff, 0xf0, 0x22, 0x65, 0x85, 0x99, 0x17, 0x63, 0xc2, 0xc0, 0xb7, 0x62, 0x05, 0xda, 0x7a, 0xa0, 0xc3, 0x2a, 0x6f, 0x1f, 0xee, 0x1f, 0x31, 0xa8, 0x42, 0x80, 0xe4, 0xb7, 0x6c, 0xf6, 0xac, 0x47, 0xb0, 0x17, 0x69, 0xcb, 0xff, 0x66, 0x8a, 0xd6, 0x25, 0x00, 0xf3, 0xcf, 0x0a, 0xaf, 0xf8, 0x92, 0x8a, 0xa0, 0xdf, 0x71, 0x13, 0x8d, 0x9d, 0xff, 0x7e, 0xe0, 0x0a, 0x52, 0xf1, 0x97, 0x01, 0xa9, 0x73, 0x27, 0xfd, 0x63, 0x58, 0x00, 0x32, 0xa6, 0xf6, 0x78, 0xb8, 0xe4, 0xfd, 0x20, 0x7c, 0x90, 0xee, 0xad, 0x8c, 0xc9, 0x71, 0x35, 0x66, 0x71, 0x3c, 0xe0, 0xe4, 0x0b, 0xbb, 0xa0, 0x50, 0xe9, 0xf2, 0x81, 0x1d, 0x3a, 0x95, 0x94, 0x00, 0xd5, 0x49, 0x00, 0x07, 0xdf, 0x21, 0x53, 0x36, 0x8d, 0x9e, 0xd9, 0xa5, 0x52, 0x4d, 0x0d, 0x29, 0x74, 0xf0, 0x40, 0xbd, 0xda, 0x63, 0x4e, 0xdd, 0x91, 0x8e, 0xa6, 0xa7, 0xf6, 0x78, 0x58, 0x3b, 0x0a, 0x5c, 0x60, 0x3c, 0x15, 0x34, 0xf8, 0x2c, 0x21, 0xe3, 0x56, 0x1b, 0x9e, 0xd9, 0x56, 0xd3, 0x13, 0x2e, 0x80, 0x2c, 0x36, 0xda, 0x1d, 0xc8, 0xfb, 0x52, 0xee, 0x17, 0xb3, 0x2b, 0xf3, 0xd2, 0xeb, 0x29, 0xa0, 0x37, 0xa0, 0x12, 0xce, 0x1c, 0x50, 0x6a, 0xf4, 0x11, 0xcd, 0x96, 0x88, 0x3f, 0x43, 0x78, 0xc0, 0x2c, 0x53, 0x6c, 0xa6, 0xdf, 0xb9, 0x9e, 0x93, 0xd4, 0x1e, 0xa9, 0x7f, 0x67, 0xa6, 0xc1, 0x80, 0x46, 0x0f, 0x63, 0x7d, 0x15, 0xf2, 0x4c, 0xc5, 0xda, 0x11, 0x9a, 0x20, 0x67, 0x27, 0xe8, 0x00, 0xec, 0x03, 0x1d, 0x15, 0xa7, 0x92, 0xb3, 0x1f, 0xda, 0x20, 0x92, 0xd8, 0x00, 0xfb, 0x06, 0x80, 0xeb, 0x4b, 0x0c, 0xc1, 0x1f, 0x49, 0x40, 0x06, 0x8d, 0x8a, 0xf8, 0x34, 0xb1, 0x0c, 0x1d, 0x20, 0xd0, 0x47, 0xe5, 0xb1, 0x7e, 0xf7, 0xe4, 0xb4, 0x7e, 0x9c, 0x84, 0x18, 0x61, 0x32, 0x4f, 0xc0, 0xc2, 0xb2, 0xcc, 0x63, 0xf6, 0xe1, 0x16, 0xd6, 0xd9, 0x4b, 0x74, 0x13, 0x01, 0xa1, 0xe2, 0x00, 0xb7, 0x9e, 0xc1, 0x3a, 0xc5, 0xaf, 0xe8, 0x54, 0x07, 0x2a, 0x20, 0xfd, 0x2c, 0x6f, 0xb9, 0x80, 0x18, 0x92, 0x87, 0xa0, 0x81, 0x24, 0x60, 0x47, 0x17, 0x4f, 0xbc, 0xbe, 0xf5, 0x03, 0x69, 0x80, 0xe3, 0x10, 0x54, 0xd6, 0x68, 0x7d, 0x75, 0xd3, 0x0a, 0x45, 0x38, 0x9e, 0xa9, 0xfd, 0x05, 0x40, 0xd2, 0x1e, 0x6f, 0x5c, 0x30, 0x10, 0xfe, 0x9b, 0x9f, 0x6d, 0xc0, 0x9d, 0x6c, 0x17, 0x7d, 0x00, 0x09, 0xb6, 0x8a, 0x31, 0x8e, 0x1b, 0x6b, 0x84, 0x1e, 0x79, 0xce, 0x10, 0x55, 0x59, 0x6a, 0x40, 0x16, 0xdc, 0x9a, 0xcf, 0x4d, 0xb0, 0x8f, 0xac, 0xe3, 0x8d, 0xee, 0xd2, 0xef, 0x01, 0x8c, 0xe0, 0x2b, 0x24, 0xe5, 0xb4, 0xe1, 0x86, 0x72, 0x00, 0x30, 0x07, 0xce, 0x02, 0x23, 0x41, 0x33, 0x40, 0xf0, 0x9b, 0xc2, 0x2d, 0x30, 0xec, 0x3b, 0x17, 0xb2, 0x8f, 0x64, 0x7d, 0xcd, 0x70, 0x9e, 0x80, 0x22, 0xb5, 0xdf, 0x6d, 0x2a, 0x43, 0xd4, 0x2b, 0x5a, 0xf6, 0x96, 0xa6, 0xea, 0x91, 0x62, 0x80, 0x39, 0xf2, 0x5a, 0x8e, 0xc0, 0xb9, 0x29, 0x99, 0x17, 0xe7, 0x35, 0x2c, 0xf6, 0x4d, 0x18, 0x00, 0x48, 0x10, 0x85, 0xb4, 0x3f, 0x89, 0x60, 0x49, 0x6e, 0xf0, 0xcd, 0x9d, 0x92, 0xeb, 0x96, 0x80, 0xcf, 0xf9, 0xf1, 0x46, 0x1d, 0xc0, 0x49, 0xb3, 0x36, 0x2e, 0x24, 0xc8, 0xdb, 0x41, 0x72, 0x20, 0xf5, 0xde, 0x5c, 0xf9, 0x4a, 0x6e, 0xa0, 0x0b, 0x13, 0xfc, 0x2d, 0x17, 0x07, 0x16, 0x5e, 0x00, 0x3c, 0x54, 0x41, 0x0e, 0xa2, 0x0d, 0xf3, 0x48, 0x12, 0x2e, 0x7c, 0xab, 0x3c, 0x59, 0x1c, 0x40, 0xca, 0xb0, 0x71, 0xc7, 0x29, 0xf0, 0xbb, 0x9f, 0xf4, 0x3f, 0x25, 0x49, 0xad, 0xc2, 0x8f, 0x80, 0x04, 0x38, 0x6d, 0x35, 0x02, 0xca, 0xe6, 0x02, 0x83, 0x89, 0x4e, 0x74, 0xdb, 0x08, 0x5a, 0x80, 0x13, 0x99, 0xd4, 0x26, 0xc1, 0x27, 0xce, 0xb0, 0x98, 0x99, 0xca, 0xf6, 0x3e, 0x50, 0x49, 0xd0, 0xbf, 0xcb, 0x6f, 0xbe, 0x5b, 0x92, 0x63, 0xde, 0x94, 0xd3, 0x8f, 0x07, 0x06, 0x0f, 0x2b, 0x80, 0x36, 0xf1, 0x77, 0xf6, 0x29, 0x33, 0x13, 0xa9, 0x4a, 0x55, 0x3d, 0x6c, 0xca, 0xdb, 0x4e, 0x40, 0xc4, 0x95, 0x54, 0xf4, 0xe2, 0x8c, 0x1b, 0xa0, 0xfe, 0x30, 0x50, 0x9d, 0x62, 0xbc, 0x5c, 0x00, 0xb4, 0xc4, 0xb3, 0x57, 0xa5, 0x79, 0x3b, 0x85, 0xf6, 0x75, 0xdd, 0xc0, 0x00, 0x00, 0x00, 0x01, 0x4b, 0x3b, 0x4c, 0xa8, 0x5a, 0x86, 0xc4, 0x7a, 0x09, 0x8a, 0x22, 0x3f, 0xff, 0xff, 0xff, 0xff, 0x15, 0x02, 0x19, 0x4c, 0x48, 0x0c, 0x73, 0x70, 0x61, 0x72, 0x6b, 0x5f, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x15, 0x06, 0x00, 0x15, 0x02, 0x25, 0x02, 0x18, 0x06, 0x64, 0x65, 0x63, 0x37, 0x70, 0x34, 0x25, 0x0a, 0x15, 0x08, 0x15, 0x0e, 0x00, 0x15, 0x04, 0x25, 0x02, 0x18, 0x07, 0x64, 0x65, 0x63, 0x31, 0x34, 0x70, 0x35, 0x25, 0x0a, 0x15, 0x0a, 0x15, 0x1c, 0x00, 0x15, 0x0e, 0x15, 0x20, 0x15, 0x02, 0x18, 0x08, 0x64, 0x65, 0x63, 0x33, 0x38, 0x70, 0x31, 0x38, 0x25, 0x0a, 0x15, 0x24, 0x15, 0x4c, 0x00, 0x16, 0x6a, 0x19, 0x1c, 0x19, 0x3c, 0x26, 0x08, 0x1c, 0x15, 0x02, 0x19, 0x35, 0x06, 0x08, 0x00, 0x19, 0x18, 0x06, 0x64, 0x65, 0x63, 0x37, 0x70, 0x34, 0x15, 0x02, 0x16, 0x6a, 0x16, 0xf6, 0x03, 0x16, 0xfe, 0x03, 0x26, 0x08, 0x3c, 0x36, 0x02, 0x28, 0x04, 0x7f, 0x96, 0x98, 0x00, 0x18, 0x04, 0x81, 0x69, 0x67, 0xff, 0x00, 0x19, 0x1c, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x26, 0x86, 0x04, 0x1c, 0x15, 0x04, 0x19, 0x35, 0x06, 0x08, 0x00, 0x19, 0x18, 0x07, 0x64, 0x65, 0x63, 0x31, 0x34, 0x70, 0x35, 0x15, 0x02, 0x16, 0x6a, 0x16, 0xa6, 0x07, 0x16, 0xb0, 0x07, 0x26, 0x86, 0x04, 0x3c, 0x36, 0x02, 0x28, 0x08, 0xff, 0x3f, 0x7a, 0x10, 0xf3, 0x5a, 0x00, 0x00, 0x18, 0x08, 0x01, 0xc0, 0x85, 0xef, 0x0c, 0xa5, 0xff, 0xff, 0x00, 0x19, 0x1c, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x26, 0xb6, 0x0b, 0x1c, 0x15, 0x0e, 0x19, 0x35, 0x06, 0x08, 0x00, 0x19, 0x18, 0x08, 0x64, 0x65, 0x63, 0x33, 0x38, 0x70, 0x31, 0x38, 0x15, 0x02, 0x16, 0x6a, 0x16, 0x86, 0x0e, 0x16, 0x90, 0x0e, 0x26, 0xb6, 0x0b, 0x3c, 0x36, 0x02, 0x28, 0x10, 0x4b, 0x3b, 0x4c, 0xa8, 0x5a, 0x86, 0xc4, 0x7a, 0x09, 0x8a, 0x22, 0x3f, 0xff, 0xff, 0xff, 0xff, 0x18, 0x10, 0xb4, 0xc4, 0xb3, 0x57, 0xa5, 0x79, 0x3b, 0x85, 0xf6, 0x75, 0xdd, 0xc0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x19, 0x1c, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x16, 0xa2, 0x19, 0x16, 0x6a, 0x00, 0x19, 0x2c, 0x18, 0x18, 0x6f, 0x72, 0x67, 0x2e, 0x61, 0x70, 0x61, 0x63, 0x68, 0x65, 0x2e, 0x73, 0x70, 0x61, 0x72, 0x6b, 0x2e, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x18, 0x05, 0x33, 0x2e, 0x30, 0x2e, 0x31, 0x00, 0x18, 0x29, 0x6f, 0x72, 0x67, 0x2e, 0x61, 0x70, 0x61, 0x63, 0x68, 0x65, 0x2e, 0x73, 0x70, 0x61, 0x72, 0x6b, 0x2e, 0x73, 0x71, 0x6c, 0x2e, 0x70, 0x61, 0x72, 0x71, 0x75, 0x65, 0x74, 0x2e, 0x72, 0x6f, 0x77, 0x2e, 0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x18, 0xf4, 0x01, 0x7b, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3a, 0x22, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x22, 0x2c, 0x22, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x22, 0x3a, 0x5b, 0x7b, 0x22, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, 0x22, 0x64, 0x65, 0x63, 0x37, 0x70, 0x34, 0x22, 0x2c, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3a, 0x22, 0x64, 0x65, 0x63, 0x69, 0x6d, 0x61, 0x6c, 0x28, 0x37, 0x2c, 0x34, 0x29, 0x22, 0x2c, 0x22, 0x6e, 0x75, 0x6c, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x22, 0x3a, 0x74, 0x72, 0x75, 0x65, 0x2c, 0x22, 0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x22, 0x3a, 0x7b, 0x7d, 0x7d, 0x2c, 0x7b, 0x22, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, 0x22, 0x64, 0x65, 0x63, 0x31, 0x34, 0x70, 0x35, 0x22, 0x2c, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3a, 0x22, 0x64, 0x65, 0x63, 0x69, 0x6d, 0x61, 0x6c, 0x28, 0x31, 0x34, 0x2c, 0x35, 0x29, 0x22, 0x2c, 0x22, 0x6e, 0x75, 0x6c, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x22, 0x3a, 0x74, 0x72, 0x75, 0x65, 0x2c, 0x22, 0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x22, 0x3a, 0x7b, 0x7d, 0x7d, 0x2c, 0x7b, 0x22, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, 0x22, 0x64, 0x65, 0x63, 0x33, 0x38, 0x70, 0x31, 0x38, 0x22, 0x2c, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3a, 0x22, 0x64, 0x65, 0x63, 0x69, 0x6d, 0x61, 0x6c, 0x28, 0x33, 0x38, 0x2c, 0x31, 0x38, 0x29, 0x22, 0x2c, 0x22, 0x6e, 0x75, 0x6c, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x22, 0x3a, 0x74, 0x72, 0x75, 0x65, 0x2c, 0x22, 0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x22, 0x3a, 0x7b, 0x7d, 0x7d, 0x5d, 0x7d, 0x00, 0x18, 0x4a, 0x70, 0x61, 0x72, 0x71, 0x75, 0x65, 0x74, 0x2d, 0x6d, 0x72, 0x20, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x31, 0x2e, 0x31, 0x30, 0x2e, 0x31, 0x20, 0x28, 0x62, 0x75, 0x69, 0x6c, 0x64, 0x20, 0x61, 0x38, 0x39, 0x64, 0x66, 0x38, 0x66, 0x39, 0x39, 0x33, 0x32, 0x62, 0x36, 0x65, 0x66, 0x36, 0x36, 0x33, 0x33, 0x64, 0x30, 0x36, 0x30, 0x36, 0x39, 0x65, 0x35, 0x30, 0x63, 0x39, 0x62, 0x37, 0x39, 0x37, 0x30, 0x62, 0x65, 0x62, 0x64, 0x31, 0x29, 0x19, 0x3c, 0x1c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0xd3, 0x02, 0x00, 0x00, 0x50, 0x41, 0x52, 0x31}; unsigned int decimals_parquet_len = 2366; cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info{reinterpret_cast<char const*>(decimals_parquet), decimals_parquet_len}); auto result = cudf::io::read_parquet(read_opts); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 50; }); EXPECT_EQ(result.tbl->view().num_columns(), 3); int32_t col0_data[] = { -2354584, -190275, 8393572, 6446515, -5687920, -1843550, -6897687, -6780385, 3428529, 5842056, -4312278, -4450603, -7516141, 2974667, -4288640, 1065090, -9410428, 7891355, 1076244, -1975984, 6999466, 2666959, 9262967, 7931374, -1370640, 451074, 8799111, 3026424, -6803730, 5098297, -1414370, -9662848, 2499991, 658765, 8348874, -6177036, -9694494, -5343299, 3558393, -8789072, 2697890, -4454707, 8299309, -6223703, -3112513, 7537487, 825776, -495683, 328299, -4529727, 0, -9999999, 9999999}; EXPECT_EQ(static_cast<std::size_t>(result.tbl->view().column(0).size()), sizeof(col0_data) / sizeof(col0_data[0])); cudf::test::fixed_point_column_wrapper<int32_t> col0( std::begin(col0_data), std::end(col0_data), validity, numeric::scale_type{-4}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), col0); int64_t col1_data[] = {29274040266581, -17210335917753, -58420730139037, 68073792696254, 2236456014294, 13704555677045, -70797090469548, -52248605513407, -68976081919961, -34277313883112, 97774730521689, 21184241014572, -670882460254, -40862944054399, -24079852370612, -88670167797498, -84007574359403, -71843004533519, -55538016554201, 3491435293032, -29085437167297, 36901882672273, -98622066122568, -13974902998457, 86712597643378, -16835133643735, -94759096142232, 30708340810940, 79086853262082, 78923696440892, -76316597208589, 37247268714759, 80303592631774, 57790350050889, 19387319851064, -33186875066145, 69701203023404, -7157433049060, -7073790423437, 92769171617714, -75127120182184, -951893180618, 64927618310150, -53875897154023, -16168039035569, -24273449166429, -30359781249192, 35639397345991, 45844829680593, 71401416837149, 0, -99999999999999, 99999999999999}; EXPECT_EQ(static_cast<std::size_t>(result.tbl->view().column(1).size()), sizeof(col1_data) / sizeof(col1_data[0])); cudf::test::fixed_point_column_wrapper<int64_t> col1( std::begin(col1_data), std::end(col1_data), validity, numeric::scale_type{-5}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), col1); cudf::io::parquet_reader_options read_strict_opts = read_opts; read_strict_opts.set_columns({"dec7p4", "dec14p5"}); EXPECT_NO_THROW(cudf::io::read_parquet(read_strict_opts)); } { // dec7p3: Decimal(precision=7, scale=3) backed by FIXED_LENGTH_BYTE_ARRAY(length = 4) // dec12p11: Decimal(precision=12, scale=11) backed by FIXED_LENGTH_BYTE_ARRAY(length = 6) // dec20p1: Decimal(precision=20, scale=1) backed by FIXED_LENGTH_BYTE_ARRAY(length = 9) unsigned char const fixed_len_bytes_decimal_parquet[] = { 0x50, 0x41, 0x52, 0x31, 0x15, 0x00, 0x15, 0xA8, 0x01, 0x15, 0xAE, 0x01, 0x2C, 0x15, 0x28, 0x15, 0x00, 0x15, 0x06, 0x15, 0x08, 0x1C, 0x36, 0x02, 0x28, 0x04, 0x00, 0x97, 0x45, 0x72, 0x18, 0x04, 0x00, 0x01, 0x81, 0x3B, 0x00, 0x00, 0x00, 0x54, 0xF0, 0x53, 0x04, 0x00, 0x00, 0x00, 0x26, 0x01, 0x03, 0x00, 0x00, 0x61, 0x10, 0xCF, 0x00, 0x0A, 0xA9, 0x08, 0x00, 0x77, 0x58, 0x6F, 0x00, 0x6B, 0xEE, 0xA4, 0x00, 0x92, 0xF8, 0x94, 0x00, 0x2E, 0x18, 0xD4, 0x00, 0x4F, 0x45, 0x33, 0x00, 0x97, 0x45, 0x72, 0x00, 0x0D, 0xC2, 0x75, 0x00, 0x76, 0xAA, 0xAA, 0x00, 0x30, 0x9F, 0x86, 0x00, 0x4B, 0x9D, 0xB1, 0x00, 0x4E, 0x4B, 0x3B, 0x00, 0x01, 0x81, 0x3B, 0x00, 0x22, 0xD4, 0x53, 0x00, 0x72, 0xC4, 0xAF, 0x00, 0x43, 0x9B, 0x72, 0x00, 0x1D, 0x91, 0xC3, 0x00, 0x45, 0x27, 0x48, 0x15, 0x00, 0x15, 0xF4, 0x01, 0x15, 0xFA, 0x01, 0x2C, 0x15, 0x28, 0x15, 0x00, 0x15, 0x06, 0x15, 0x08, 0x1C, 0x36, 0x02, 0x28, 0x06, 0x00, 0xD5, 0xD7, 0x31, 0x99, 0xA6, 0x18, 0x06, 0xFF, 0x17, 0x2B, 0x5A, 0xF0, 0x01, 0x00, 0x00, 0x00, 0x7A, 0xF0, 0x79, 0x04, 0x00, 0x00, 0x00, 0x24, 0x01, 0x03, 0x02, 0x00, 0x54, 0x23, 0xCF, 0x13, 0x0A, 0x00, 0x07, 0x22, 0xB1, 0x21, 0x7E, 0x00, 0x64, 0x19, 0xD6, 0xD2, 0xA5, 0x00, 0x61, 0x7F, 0xF6, 0xB9, 0xB0, 0x00, 0xD0, 0x7F, 0x9C, 0xA9, 0xE9, 0x00, 0x65, 0x58, 0xF0, 0xAD, 0xFB, 0x00, 0xBC, 0x61, 0xE2, 0x03, 0xDA, 0xFF, 0x17, 0x2B, 0x5A, 0xF0, 0x01, 0x00, 0x63, 0x4B, 0x4C, 0xFE, 0x45, 0x00, 0x7A, 0xA0, 0xD8, 0xD1, 0xC0, 0x00, 0xC0, 0x63, 0xF7, 0x9D, 0x0A, 0x00, 0x88, 0x22, 0x0F, 0x1B, 0x25, 0x00, 0x1A, 0x80, 0x56, 0x34, 0xC7, 0x00, 0x5F, 0x48, 0x61, 0x09, 0x7C, 0x00, 0x61, 0xEF, 0x92, 0x42, 0x2F, 0x00, 0xD5, 0xD7, 0x31, 0x99, 0xA6, 0xFF, 0x17, 0x2B, 0x5A, 0xF0, 0x01, 0x00, 0x71, 0xDD, 0xE2, 0x22, 0x7B, 0x00, 0x54, 0xBF, 0xAE, 0xE9, 0x3C, 0x15, 0x00, 0x15, 0xD4, 0x02, 0x15, 0xDC, 0x02, 0x2C, 0x15, 0x28, 0x15, 0x00, 0x15, 0x06, 0x15, 0x08, 0x1C, 0x36, 0x04, 0x28, 0x09, 0x00, 0x7D, 0xFE, 0x02, 0xDA, 0xB2, 0x62, 0xA3, 0xFB, 0x18, 0x09, 0x00, 0x03, 0x9C, 0xCD, 0x5A, 0xAC, 0xBB, 0xF1, 0xE3, 0x00, 0x00, 0x00, 0xAA, 0x01, 0xF0, 0xA9, 0x04, 0x00, 0x00, 0x00, 0x07, 0xBF, 0xBF, 0x0F, 0x00, 0x7D, 0xFE, 0x02, 0xDA, 0xB2, 0x62, 0xA3, 0xFB, 0x00, 0x7D, 0x9A, 0xCB, 0xDA, 0x4B, 0x10, 0x8B, 0xAC, 0x00, 0x20, 0xBA, 0x97, 0x87, 0x2E, 0x3B, 0x4E, 0x04, 0x00, 0x15, 0xBB, 0xC2, 0xDF, 0x2D, 0x25, 0x08, 0xB6, 0x00, 0x5C, 0x67, 0x0E, 0x36, 0x30, 0xF1, 0xAC, 0xA4, 0x00, 0x44, 0xF1, 0x8E, 0xFB, 0x17, 0x5E, 0xE1, 0x96, 0x00, 0x64, 0x69, 0xF9, 0x66, 0x3F, 0x11, 0xED, 0xB9, 0x00, 0x45, 0xB5, 0xDA, 0x14, 0x9C, 0xA3, 0xFA, 0x64, 0x00, 0x26, 0x5F, 0xDE, 0xD7, 0x67, 0x95, 0xEF, 0xB1, 0x00, 0x35, 0xDB, 0x9B, 0x88, 0x46, 0xD0, 0xA1, 0x0E, 0x00, 0x45, 0xA9, 0x92, 0x8E, 0x89, 0xD1, 0xAC, 0x4C, 0x00, 0x4C, 0xF1, 0xCB, 0x27, 0x82, 0x3A, 0x7D, 0xB7, 0x00, 0x64, 0xD3, 0xD2, 0x2F, 0x9C, 0x83, 0x16, 0x75, 0x00, 0x15, 0xDF, 0xC2, 0xA9, 0x63, 0xB8, 0x33, 0x65, 0x00, 0x27, 0x40, 0x28, 0x97, 0x05, 0x8E, 0xE3, 0x46, 0x00, 0x03, 0x9C, 0xCD, 0x5A, 0xAC, 0xBB, 0xF1, 0xE3, 0x00, 0x22, 0x23, 0xF5, 0xE8, 0x9D, 0x55, 0xD4, 0x9C, 0x00, 0x25, 0xB9, 0xD8, 0x87, 0x2D, 0xF1, 0xF2, 0x17, 0x15, 0x02, 0x19, 0x4C, 0x48, 0x0C, 0x73, 0x70, 0x61, 0x72, 0x6B, 0x5F, 0x73, 0x63, 0x68, 0x65, 0x6D, 0x61, 0x15, 0x06, 0x00, 0x15, 0x0E, 0x15, 0x08, 0x15, 0x02, 0x18, 0x06, 0x64, 0x65, 0x63, 0x37, 0x70, 0x33, 0x25, 0x0A, 0x15, 0x06, 0x15, 0x0E, 0x00, 0x15, 0x0E, 0x15, 0x0C, 0x15, 0x02, 0x18, 0x08, 0x64, 0x65, 0x63, 0x31, 0x32, 0x70, 0x31, 0x31, 0x25, 0x0A, 0x15, 0x16, 0x15, 0x18, 0x00, 0x15, 0x0E, 0x15, 0x12, 0x15, 0x02, 0x18, 0x07, 0x64, 0x65, 0x63, 0x32, 0x30, 0x70, 0x31, 0x25, 0x0A, 0x15, 0x02, 0x15, 0x28, 0x00, 0x16, 0x28, 0x19, 0x1C, 0x19, 0x3C, 0x26, 0x08, 0x1C, 0x15, 0x0E, 0x19, 0x35, 0x06, 0x08, 0x00, 0x19, 0x18, 0x06, 0x64, 0x65, 0x63, 0x37, 0x70, 0x33, 0x15, 0x02, 0x16, 0x28, 0x16, 0xEE, 0x01, 0x16, 0xF4, 0x01, 0x26, 0x08, 0x3C, 0x36, 0x02, 0x28, 0x04, 0x00, 0x97, 0x45, 0x72, 0x18, 0x04, 0x00, 0x01, 0x81, 0x3B, 0x00, 0x19, 0x1C, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x26, 0xFC, 0x01, 0x1C, 0x15, 0x0E, 0x19, 0x35, 0x06, 0x08, 0x00, 0x19, 0x18, 0x08, 0x64, 0x65, 0x63, 0x31, 0x32, 0x70, 0x31, 0x31, 0x15, 0x02, 0x16, 0x28, 0x16, 0xC2, 0x02, 0x16, 0xC8, 0x02, 0x26, 0xFC, 0x01, 0x3C, 0x36, 0x02, 0x28, 0x06, 0x00, 0xD5, 0xD7, 0x31, 0x99, 0xA6, 0x18, 0x06, 0xFF, 0x17, 0x2B, 0x5A, 0xF0, 0x01, 0x00, 0x19, 0x1C, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x26, 0xC4, 0x04, 0x1C, 0x15, 0x0E, 0x19, 0x35, 0x06, 0x08, 0x00, 0x19, 0x18, 0x07, 0x64, 0x65, 0x63, 0x32, 0x30, 0x70, 0x31, 0x15, 0x02, 0x16, 0x28, 0x16, 0xAE, 0x03, 0x16, 0xB6, 0x03, 0x26, 0xC4, 0x04, 0x3C, 0x36, 0x04, 0x28, 0x09, 0x00, 0x7D, 0xFE, 0x02, 0xDA, 0xB2, 0x62, 0xA3, 0xFB, 0x18, 0x09, 0x00, 0x03, 0x9C, 0xCD, 0x5A, 0xAC, 0xBB, 0xF1, 0xE3, 0x00, 0x19, 0x1C, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x16, 0xDE, 0x07, 0x16, 0x28, 0x00, 0x19, 0x2C, 0x18, 0x18, 0x6F, 0x72, 0x67, 0x2E, 0x61, 0x70, 0x61, 0x63, 0x68, 0x65, 0x2E, 0x73, 0x70, 0x61, 0x72, 0x6B, 0x2E, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6F, 0x6E, 0x18, 0x05, 0x33, 0x2E, 0x30, 0x2E, 0x31, 0x00, 0x18, 0x29, 0x6F, 0x72, 0x67, 0x2E, 0x61, 0x70, 0x61, 0x63, 0x68, 0x65, 0x2E, 0x73, 0x70, 0x61, 0x72, 0x6B, 0x2E, 0x73, 0x71, 0x6C, 0x2E, 0x70, 0x61, 0x72, 0x71, 0x75, 0x65, 0x74, 0x2E, 0x72, 0x6F, 0x77, 0x2E, 0x6D, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x18, 0xF4, 0x01, 0x7B, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3A, 0x22, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x22, 0x2C, 0x22, 0x66, 0x69, 0x65, 0x6C, 0x64, 0x73, 0x22, 0x3A, 0x5B, 0x7B, 0x22, 0x6E, 0x61, 0x6D, 0x65, 0x22, 0x3A, 0x22, 0x64, 0x65, 0x63, 0x37, 0x70, 0x33, 0x22, 0x2C, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3A, 0x22, 0x64, 0x65, 0x63, 0x69, 0x6D, 0x61, 0x6C, 0x28, 0x37, 0x2C, 0x33, 0x29, 0x22, 0x2C, 0x22, 0x6E, 0x75, 0x6C, 0x6C, 0x61, 0x62, 0x6C, 0x65, 0x22, 0x3A, 0x74, 0x72, 0x75, 0x65, 0x2C, 0x22, 0x6D, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x22, 0x3A, 0x7B, 0x7D, 0x7D, 0x2C, 0x7B, 0x22, 0x6E, 0x61, 0x6D, 0x65, 0x22, 0x3A, 0x22, 0x64, 0x65, 0x63, 0x31, 0x32, 0x70, 0x31, 0x31, 0x22, 0x2C, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3A, 0x22, 0x64, 0x65, 0x63, 0x69, 0x6D, 0x61, 0x6C, 0x28, 0x31, 0x32, 0x2C, 0x31, 0x31, 0x29, 0x22, 0x2C, 0x22, 0x6E, 0x75, 0x6C, 0x6C, 0x61, 0x62, 0x6C, 0x65, 0x22, 0x3A, 0x74, 0x72, 0x75, 0x65, 0x2C, 0x22, 0x6D, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x22, 0x3A, 0x7B, 0x7D, 0x7D, 0x2C, 0x7B, 0x22, 0x6E, 0x61, 0x6D, 0x65, 0x22, 0x3A, 0x22, 0x64, 0x65, 0x63, 0x32, 0x30, 0x70, 0x31, 0x22, 0x2C, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x3A, 0x22, 0x64, 0x65, 0x63, 0x69, 0x6D, 0x61, 0x6C, 0x28, 0x32, 0x30, 0x2C, 0x31, 0x29, 0x22, 0x2C, 0x22, 0x6E, 0x75, 0x6C, 0x6C, 0x61, 0x62, 0x6C, 0x65, 0x22, 0x3A, 0x74, 0x72, 0x75, 0x65, 0x2C, 0x22, 0x6D, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x22, 0x3A, 0x7B, 0x7D, 0x7D, 0x5D, 0x7D, 0x00, 0x18, 0x4A, 0x70, 0x61, 0x72, 0x71, 0x75, 0x65, 0x74, 0x2D, 0x6D, 0x72, 0x20, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6F, 0x6E, 0x20, 0x31, 0x2E, 0x31, 0x30, 0x2E, 0x31, 0x20, 0x28, 0x62, 0x75, 0x69, 0x6C, 0x64, 0x20, 0x61, 0x38, 0x39, 0x64, 0x66, 0x38, 0x66, 0x39, 0x39, 0x33, 0x32, 0x62, 0x36, 0x65, 0x66, 0x36, 0x36, 0x33, 0x33, 0x64, 0x30, 0x36, 0x30, 0x36, 0x39, 0x65, 0x35, 0x30, 0x63, 0x39, 0x62, 0x37, 0x39, 0x37, 0x30, 0x62, 0x65, 0x62, 0x64, 0x31, 0x29, 0x19, 0x3C, 0x1C, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0xC5, 0x02, 0x00, 0x00, 0x50, 0x41, 0x52, 0x31, }; unsigned int parquet_len = 1226; cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{ reinterpret_cast<char const*>(fixed_len_bytes_decimal_parquet), parquet_len}); auto result = cudf::io::read_parquet(read_opts); EXPECT_EQ(result.tbl->view().num_columns(), 3); auto validity_c0 = cudf::test::iterators::nulls_at({19}); int32_t col0_data[] = {6361295, 698632, 7821423, 7073444, 9631892, 3021012, 5195059, 9913714, 901749, 7776938, 3186566, 4955569, 5131067, 98619, 2282579, 7521455, 4430706, 1937859, 4532040, 0}; EXPECT_EQ(static_cast<std::size_t>(result.tbl->view().column(0).size()), sizeof(col0_data) / sizeof(col0_data[0])); cudf::test::fixed_point_column_wrapper<int32_t> col0( std::begin(col0_data), std::end(col0_data), validity_c0, numeric::scale_type{-3}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), col0); auto validity_c1 = cudf::test::iterators::nulls_at({18}); int64_t col1_data[] = {361378026250, 30646804862, 429930238629, 418758703536, 895494171113, 435283865083, 809096053722, -999999999999, 426465099333, 526684574144, 826310892810, 584686967589, 113822282951, 409236212092, 420631167535, 918438386086, -999999999999, 489053889147, 0, 363993164092}; EXPECT_EQ(static_cast<std::size_t>(result.tbl->view().column(1).size()), sizeof(col1_data) / sizeof(col1_data[0])); cudf::test::fixed_point_column_wrapper<int64_t> col1( std::begin(col1_data), std::end(col1_data), validity_c1, numeric::scale_type{-11}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(1), col1); auto validity_c2 = cudf::test::iterators::nulls_at({6, 14}); __int128_t col2_data[] = {9078697037144433659, 9050770539577117612, 2358363961733893636, 1566059559232276662, 6658306200002735268, 4967909073046397334, 0, 7235588493887532473, 5023160741463849572, 2765173712965988273, 3880866513515749646, 5019704400576359500, 5544435986818825655, 7265381725809874549, 0, 1576192427381240677, 2828305195087094598, 260308667809395171, 2460080200895288476, 2718441925197820439}; EXPECT_EQ(static_cast<std::size_t>(result.tbl->view().column(2).size()), sizeof(col2_data) / sizeof(col2_data[0])); cudf::test::fixed_point_column_wrapper<__int128_t> col2( std::begin(col2_data), std::end(col2_data), validity_c2, numeric::scale_type{-1}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(2), col2); } } TEST_F(ParquetReaderTest, EmptyOutput) { cudf::test::fixed_width_column_wrapper<int> c0; cudf::test::strings_column_wrapper c1; cudf::test::fixed_point_column_wrapper<int> c2({}, numeric::scale_type{2}); cudf::test::lists_column_wrapper<float> _c3{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}; auto c3 = cudf::empty_like(_c3); cudf::test::fixed_width_column_wrapper<int> sc0; cudf::test::strings_column_wrapper sc1; cudf::test::lists_column_wrapper<int> _sc2{{1, 2}}; std::vector<std::unique_ptr<cudf::column>> struct_children; struct_children.push_back(sc0.release()); struct_children.push_back(sc1.release()); struct_children.push_back(cudf::empty_like(_sc2)); cudf::test::structs_column_wrapper c4(std::move(struct_children)); table_view expected({c0, c1, c2, *c3, c4}); // set precision on the decimal column cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[2].set_decimal_precision(1); auto filepath = temp_env->get_temp_filepath("EmptyOutput.parquet"); cudf::io::parquet_writer_options out_args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); out_args.set_metadata(std::move(expected_metadata)); cudf::io::write_parquet(out_args); cudf::io::parquet_reader_options read_args = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_args); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(ParquetWriterTest, RowGroupSizeInvalid) { auto const unused_table = std::make_unique<table>(); std::vector<char> out_buffer; EXPECT_THROW(cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .row_group_size_rows(0), cudf::logic_error); EXPECT_THROW(cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .max_page_size_rows(0), cudf::logic_error); EXPECT_THROW(cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .row_group_size_bytes(3 << 8), cudf::logic_error); EXPECT_THROW(cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .max_page_size_bytes(3 << 8), cudf::logic_error); EXPECT_THROW(cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .max_page_size_bytes(0xFFFF'FFFFUL), cudf::logic_error); EXPECT_THROW(cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info(&out_buffer)) .row_group_size_rows(0), cudf::logic_error); EXPECT_THROW(cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info(&out_buffer)) .max_page_size_rows(0), cudf::logic_error); EXPECT_THROW(cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info(&out_buffer)) .row_group_size_bytes(3 << 8), cudf::logic_error); EXPECT_THROW(cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info(&out_buffer)) .max_page_size_bytes(3 << 8), cudf::logic_error); EXPECT_THROW(cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info(&out_buffer)) .max_page_size_bytes(0xFFFF'FFFFUL), cudf::logic_error); } TEST_F(ParquetWriterTest, RowGroupPageSizeMatch) { auto const unused_table = std::make_unique<table>(); std::vector<char> out_buffer; auto options = cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), unused_table->view()) .row_group_size_bytes(128 * 1024) .max_page_size_bytes(512 * 1024) .row_group_size_rows(10000) .max_page_size_rows(20000) .build(); EXPECT_EQ(options.get_row_group_size_bytes(), options.get_max_page_size_bytes()); EXPECT_EQ(options.get_row_group_size_rows(), options.get_max_page_size_rows()); } TEST_F(ParquetChunkedWriterTest, RowGroupPageSizeMatch) { std::vector<char> out_buffer; auto options = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info(&out_buffer)) .row_group_size_bytes(128 * 1024) .max_page_size_bytes(512 * 1024) .row_group_size_rows(10000) .max_page_size_rows(20000) .build(); EXPECT_EQ(options.get_row_group_size_bytes(), options.get_max_page_size_bytes()); EXPECT_EQ(options.get_row_group_size_rows(), options.get_max_page_size_rows()); } TEST_F(ParquetWriterTest, EmptyList) { auto L1 = cudf::make_lists_column(0, cudf::make_empty_column(cudf::data_type(cudf::type_id::INT32)), cudf::make_empty_column(cudf::data_type{cudf::type_id::INT64}), 0, {}); auto L0 = cudf::make_lists_column( 3, cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0}.release(), std::move(L1), 0, {}); auto filepath = temp_env->get_temp_filepath("EmptyList.parquet"); cudf::io::write_parquet(cudf::io::parquet_writer_options_builder(cudf::io::sink_info(filepath), cudf::table_view({*L0}))); auto result = cudf::io::read_parquet( cudf::io::parquet_reader_options_builder(cudf::io::source_info(filepath))); using lcw = cudf::test::lists_column_wrapper<int64_t>; auto expected = lcw{lcw{}, lcw{}, lcw{}}; CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), expected); } TEST_F(ParquetWriterTest, DeepEmptyList) { // Make a list column LLLi st only L is valid and LLi are all null. This tests whether we can // handle multiple nullptr offsets auto L2 = cudf::make_lists_column(0, cudf::make_empty_column(cudf::data_type(cudf::type_id::INT32)), cudf::make_empty_column(cudf::data_type{cudf::type_id::INT64}), 0, {}); auto L1 = cudf::make_lists_column( 0, cudf::make_empty_column(cudf::data_type(cudf::type_id::INT32)), std::move(L2), 0, {}); auto L0 = cudf::make_lists_column( 3, cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0}.release(), std::move(L1), 0, {}); auto filepath = temp_env->get_temp_filepath("DeepEmptyList.parquet"); cudf::io::write_parquet(cudf::io::parquet_writer_options_builder(cudf::io::sink_info(filepath), cudf::table_view({*L0}))); auto result = cudf::io::read_parquet( cudf::io::parquet_reader_options_builder(cudf::io::source_info(filepath))); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), *L0); } TEST_F(ParquetWriterTest, EmptyListWithStruct) { auto L2 = cudf::make_lists_column(0, cudf::make_empty_column(cudf::data_type(cudf::type_id::INT32)), cudf::make_empty_column(cudf::data_type{cudf::type_id::INT64}), 0, {}); auto children = std::vector<std::unique_ptr<cudf::column>>{}; children.push_back(std::move(L2)); auto S2 = cudf::make_structs_column(0, std::move(children), 0, {}); auto L1 = cudf::make_lists_column( 0, cudf::make_empty_column(cudf::data_type(cudf::type_id::INT32)), std::move(S2), 0, {}); auto L0 = cudf::make_lists_column( 3, cudf::test::fixed_width_column_wrapper<int32_t>{0, 0, 0, 0}.release(), std::move(L1), 0, {}); auto filepath = temp_env->get_temp_filepath("EmptyListWithStruct.parquet"); cudf::io::write_parquet(cudf::io::parquet_writer_options_builder(cudf::io::sink_info(filepath), cudf::table_view({*L0}))); auto result = cudf::io::read_parquet( cudf::io::parquet_reader_options_builder(cudf::io::source_info(filepath))); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->view().column(0), *L0); } TEST_F(ParquetWriterTest, CheckPageRows) { auto sequence = thrust::make_counting_iterator(0); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); constexpr auto page_rows = 5000; constexpr auto num_rows = 2 * page_rows; column_wrapper<int> col(sequence, sequence + num_rows, validity); auto expected = table_view{{col}}; auto const filepath = temp_env->get_temp_filepath("CheckPageRows.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .max_page_size_rows(page_rows); cudf::io::write_parquet(out_opts); // check first page header and make sure it has only page_rows values auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); ASSERT_GT(fmd.row_groups.size(), 0); ASSERT_EQ(fmd.row_groups[0].columns.size(), 1); auto const& first_chunk = fmd.row_groups[0].columns[0].meta_data; ASSERT_GT(first_chunk.data_page_offset, 0); // read first data page header. sizeof(PageHeader) is not exact, but the thrift encoded // version should be smaller than size of the struct. auto const ph = read_page_header( source, {first_chunk.data_page_offset, sizeof(cudf::io::parquet::detail::PageHeader), 0}); EXPECT_EQ(ph.data_page_header.num_values, page_rows); } TEST_F(ParquetWriterTest, CheckPageRowsAdjusted) { // enough for a few pages with the default 20'000 rows/page constexpr auto rows_per_page = 20'000; constexpr auto num_rows = 3 * rows_per_page; const std::string s1(32, 'a'); auto col0_elements = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return s1; }); auto col0 = cudf::test::strings_column_wrapper(col0_elements, col0_elements + num_rows); auto const expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("CheckPageRowsAdjusted.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .max_page_size_rows(rows_per_page); cudf::io::write_parquet(out_opts); // check first page header and make sure it has only page_rows values auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); ASSERT_GT(fmd.row_groups.size(), 0); ASSERT_EQ(fmd.row_groups[0].columns.size(), 1); auto const& first_chunk = fmd.row_groups[0].columns[0].meta_data; ASSERT_GT(first_chunk.data_page_offset, 0); // read first data page header. sizeof(PageHeader) is not exact, but the thrift encoded // version should be smaller than size of the struct. auto const ph = read_page_header( source, {first_chunk.data_page_offset, sizeof(cudf::io::parquet::detail::PageHeader), 0}); EXPECT_LE(ph.data_page_header.num_values, rows_per_page); } TEST_F(ParquetWriterTest, CheckPageRowsTooSmall) { constexpr auto rows_per_page = 1'000; constexpr auto fragment_size = 5'000; constexpr auto num_rows = 3 * rows_per_page; const std::string s1(32, 'a'); auto col0_elements = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return s1; }); auto col0 = cudf::test::strings_column_wrapper(col0_elements, col0_elements + num_rows); auto const expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("CheckPageRowsTooSmall.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .max_page_fragment_size(fragment_size) .max_page_size_rows(rows_per_page); cudf::io::write_parquet(out_opts); // check that file is written correctly when rows/page < fragment size auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); ASSERT_TRUE(fmd.row_groups.size() > 0); ASSERT_TRUE(fmd.row_groups[0].columns.size() == 1); auto const& first_chunk = fmd.row_groups[0].columns[0].meta_data; ASSERT_TRUE(first_chunk.data_page_offset > 0); // read first data page header. sizeof(PageHeader) is not exact, but the thrift encoded // version should be smaller than size of the struct. auto const ph = read_page_header( source, {first_chunk.data_page_offset, sizeof(cudf::io::parquet::detail::PageHeader), 0}); // there should be only one page since the fragment size is larger than rows_per_page EXPECT_EQ(ph.data_page_header.num_values, num_rows); } TEST_F(ParquetWriterTest, Decimal128Stats) { // check that decimal128 min and max statistics are written in network byte order // this is negative, so should be the min std::vector<uint8_t> expected_min{ 0xa1, 0xb2, 0xc3, 0xd4, 0xe5, 0xf6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; std::vector<uint8_t> expected_max{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa1, 0xb2, 0xc3, 0xd4, 0xe5, 0xf6}; __int128_t val0 = 0xa1b2'c3d4'e5f6ULL; __int128_t val1 = val0 << 80; column_wrapper<numeric::decimal128> col0{{numeric::decimal128(val0, numeric::scale_type{0}), numeric::decimal128(val1, numeric::scale_type{0})}}; auto expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("Decimal128Stats.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto const stats = get_statistics(fmd.row_groups[0].columns[0]); EXPECT_EQ(expected_min, stats.min_value); EXPECT_EQ(expected_max, stats.max_value); } // ============================================================================= // ---- test data for stats sort order tests // need at least 3 pages, and min page count is 5000, so need at least 15000 values. // use 20000 to be safe. static constexpr int num_ordered_rows = 20000; static constexpr int page_size_for_ordered_tests = 5000; namespace { namespace testdata { // ----- most numerics. scale by 100 so all values fit in a single byte template <typename T> std::enable_if_t<std::is_arithmetic_v<T> && !std::is_same_v<T, bool>, cudf::test::fixed_width_column_wrapper<T>> ascending() { int start = std::is_signed_v<T> ? -num_ordered_rows / 2 : 0; auto elements = cudf::detail::make_counting_transform_iterator(start, [](auto i) { return i / 100; }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<std::is_arithmetic_v<T> && !std::is_same_v<T, bool>, cudf::test::fixed_width_column_wrapper<T>> descending() { if (std::is_signed_v<T>) { auto elements = cudf::detail::make_counting_transform_iterator(-num_ordered_rows / 2, [](auto i) { return -i / 100; }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } else { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return (num_ordered_rows - i) / 100; }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } } template <typename T> std::enable_if_t<std::is_arithmetic_v<T> && !std::is_same_v<T, bool>, cudf::test::fixed_width_column_wrapper<T>> unordered() { if (std::is_signed_v<T>) { auto elements = cudf::detail::make_counting_transform_iterator( -num_ordered_rows / 2, [](auto i) { return (i % 2 ? i : -i) / 100; }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } else { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return (i % 2 ? i : num_ordered_rows - i) / 100; }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } } // ----- bool template <typename T> std::enable_if_t<std::is_same_v<T, bool>, cudf::test::fixed_width_column_wrapper<bool>> ascending() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i >= num_ordered_rows / 2; }); return cudf::test::fixed_width_column_wrapper<bool>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<std::is_same_v<T, bool>, cudf::test::fixed_width_column_wrapper<bool>> descending() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i < num_ordered_rows / 2; }); return cudf::test::fixed_width_column_wrapper<bool>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<std::is_same_v<T, bool>, cudf::test::fixed_width_column_wrapper<bool>> unordered() { auto elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { switch (i / page_size_for_ordered_tests) { case 0: return true; case 1: return false; case 2: return true; default: return false; } }); return cudf::test::fixed_width_column_wrapper<bool>(elements, elements + num_ordered_rows); } // ----- fixed point types template <typename T> std::enable_if_t<cudf::is_fixed_point<T>(), cudf::test::fixed_width_column_wrapper<T>> ascending() { auto elements = cudf::detail::make_counting_transform_iterator( -num_ordered_rows / 2, [](auto i) { return T(i, numeric::scale_type{0}); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<cudf::is_fixed_point<T>(), cudf::test::fixed_width_column_wrapper<T>> descending() { auto elements = cudf::detail::make_counting_transform_iterator( -num_ordered_rows / 2, [](auto i) { return T(-i, numeric::scale_type{0}); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<cudf::is_fixed_point<T>(), cudf::test::fixed_width_column_wrapper<T>> unordered() { auto elements = cudf::detail::make_counting_transform_iterator( -num_ordered_rows / 2, [](auto i) { return T(i % 2 ? i : -i, numeric::scale_type{0}); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } // ----- chrono types // ----- timstamp template <typename T> std::enable_if_t<cudf::is_timestamp<T>(), cudf::test::fixed_width_column_wrapper<T>> ascending() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return T(typename T::duration(i)); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<cudf::is_timestamp<T>(), cudf::test::fixed_width_column_wrapper<T>> descending() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return T(typename T::duration(num_ordered_rows - i)); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<cudf::is_timestamp<T>(), cudf::test::fixed_width_column_wrapper<T>> unordered() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return T(typename T::duration(i % 2 ? i : num_ordered_rows - i)); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } // ----- duration template <typename T> std::enable_if_t<cudf::is_duration<T>(), cudf::test::fixed_width_column_wrapper<T>> ascending() { auto elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return T(i); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<cudf::is_duration<T>(), cudf::test::fixed_width_column_wrapper<T>> descending() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return T(num_ordered_rows - i); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<cudf::is_duration<T>(), cudf::test::fixed_width_column_wrapper<T>> unordered() { auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return T(i % 2 ? i : num_ordered_rows - i); }); return cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_ordered_rows); } // ----- string_view template <typename T> std::enable_if_t<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper> ascending() { char buf[10]; auto elements = cudf::detail::make_counting_transform_iterator(0, [&buf](auto i) { sprintf(buf, "%09d", i); return std::string(buf); }); return cudf::test::strings_column_wrapper(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper> descending() { char buf[10]; auto elements = cudf::detail::make_counting_transform_iterator(0, [&buf](auto i) { sprintf(buf, "%09d", num_ordered_rows - i); return std::string(buf); }); return cudf::test::strings_column_wrapper(elements, elements + num_ordered_rows); } template <typename T> std::enable_if_t<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper> unordered() { char buf[10]; auto elements = cudf::detail::make_counting_transform_iterator(0, [&buf](auto i) { sprintf(buf, "%09d", (i % 2 == 0) ? i : (num_ordered_rows - i)); return std::string(buf); }); return cudf::test::strings_column_wrapper(elements, elements + num_ordered_rows); } } // namespace testdata } // anonymous namespace TYPED_TEST(ParquetWriterComparableTypeTest, ThreeColumnSorted) { using T = TypeParam; auto col0 = testdata::ascending<T>(); auto col1 = testdata::descending<T>(); auto col2 = testdata::unordered<T>(); auto const expected = table_view{{col0, col1, col2}}; auto const filepath = temp_env->get_temp_filepath("ThreeColumnSorted.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .max_page_size_rows(page_size_for_ordered_tests) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); ASSERT_GT(fmd.row_groups.size(), 0); auto const& columns = fmd.row_groups[0].columns; ASSERT_EQ(columns.size(), static_cast<size_t>(expected.num_columns())); // now check that the boundary order for chunk 1 is ascending, // chunk 2 is descending, and chunk 3 is unordered cudf::io::parquet::detail::BoundaryOrder expected_orders[] = { cudf::io::parquet::detail::BoundaryOrder::ASCENDING, cudf::io::parquet::detail::BoundaryOrder::DESCENDING, cudf::io::parquet::detail::BoundaryOrder::UNORDERED}; for (std::size_t i = 0; i < columns.size(); i++) { auto const ci = read_column_index(source, columns[i]); EXPECT_EQ(ci.boundary_order, expected_orders[i]); } } // utility functions for column index tests // compare two values. return -1 if v1 < v2, // 0 if v1 == v2, and 1 if v1 > v2. template <typename T> int32_t compare(T& v1, T& v2) { return (v1 > v2) - (v1 < v2); } // compare two binary statistics blobs based on their physical // and converted types. returns -1 if v1 < v2, 0 if v1 == v2, and // 1 if v1 > v2. int32_t compare_binary(std::vector<uint8_t> const& v1, std::vector<uint8_t> const& v2, cudf::io::parquet::detail::Type ptype, thrust::optional<cudf::io::parquet::detail::ConvertedType> const& ctype) { auto ctype_val = ctype.value_or(cudf::io::parquet::detail::UNKNOWN); switch (ptype) { case cudf::io::parquet::detail::INT32: switch (ctype_val) { case cudf::io::parquet::detail::UINT_8: case cudf::io::parquet::detail::UINT_16: case cudf::io::parquet::detail::UINT_32: return compare(*(reinterpret_cast<uint32_t const*>(v1.data())), *(reinterpret_cast<uint32_t const*>(v2.data()))); default: return compare(*(reinterpret_cast<int32_t const*>(v1.data())), *(reinterpret_cast<int32_t const*>(v2.data()))); } case cudf::io::parquet::detail::INT64: if (ctype_val == cudf::io::parquet::detail::UINT_64) { return compare(*(reinterpret_cast<uint64_t const*>(v1.data())), *(reinterpret_cast<uint64_t const*>(v2.data()))); } return compare(*(reinterpret_cast<int64_t const*>(v1.data())), *(reinterpret_cast<int64_t const*>(v2.data()))); case cudf::io::parquet::detail::FLOAT: return compare(*(reinterpret_cast<float const*>(v1.data())), *(reinterpret_cast<float const*>(v2.data()))); case cudf::io::parquet::detail::DOUBLE: return compare(*(reinterpret_cast<double const*>(v1.data())), *(reinterpret_cast<double const*>(v2.data()))); case cudf::io::parquet::detail::BYTE_ARRAY: { int32_t v1sz = v1.size(); int32_t v2sz = v2.size(); int32_t ret = memcmp(v1.data(), v2.data(), std::min(v1sz, v2sz)); if (ret != 0 or v1sz == v2sz) { return ret; } return v1sz - v2sz; } default: CUDF_FAIL("Invalid type in compare_binary"); } return 0; } TEST_P(ParquetV2Test, LargeColumnIndex) { // create a file large enough to be written in 2 batches (currently 1GB per batch) // pick fragment size that num_rows is divisible by, so we'll get equal sized row groups const std::string s1(1000, 'a'); const std::string s2(1000, 'b'); constexpr auto num_rows = 512 * 1024; constexpr auto frag_size = num_rows / 128; auto const is_v2 = GetParam(); auto col0_elements = cudf::detail::make_counting_transform_iterator( 0, [&](auto i) { return (i < num_rows) ? s1 : s2; }); auto col0 = cudf::test::strings_column_wrapper(col0_elements, col0_elements + 2 * num_rows); auto const expected = table_view{{col0, col0}}; auto const filepath = temp_env->get_temp_filepath("LargeColumnIndex.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .compression(cudf::io::compression_type::NONE) .dictionary_policy(cudf::io::dictionary_policy::NEVER) .write_v2_headers(is_v2) .max_page_fragment_size(frag_size) .row_group_size_bytes(1024 * 1024 * 1024) .row_group_size_rows(num_rows); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (auto const& rg : fmd.row_groups) { for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); // check trunc(page.min) <= stats.min && trun(page.max) >= stats.max auto const ptype = fmd.schema[c + 1].type; auto const ctype = fmd.schema[c + 1].converted_type; ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); EXPECT_TRUE(compare_binary(ci.min_values[0], stats.min_value.value(), ptype, ctype) <= 0); EXPECT_TRUE(compare_binary(ci.max_values[0], stats.max_value.value(), ptype, ctype) >= 0); } } } TEST_P(ParquetV2Test, CheckColumnOffsetIndex) { constexpr auto num_rows = 100000; auto const is_v2 = GetParam(); auto const expected_hdr_type = is_v2 ? cudf::io::parquet::detail::PageType::DATA_PAGE_V2 : cudf::io::parquet::detail::PageType::DATA_PAGE; // fixed length strings auto str1_elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { char buf[30]; sprintf(buf, "%012d", i); return std::string(buf); }); auto col0 = cudf::test::strings_column_wrapper(str1_elements, str1_elements + num_rows); auto col1_data = random_values<int8_t>(num_rows); auto col2_data = random_values<int16_t>(num_rows); auto col3_data = random_values<int32_t>(num_rows); auto col4_data = random_values<uint64_t>(num_rows); auto col5_data = random_values<float>(num_rows); auto col6_data = random_values<double>(num_rows); auto col1 = cudf::test::fixed_width_column_wrapper<int8_t>(col1_data.begin(), col1_data.end()); auto col2 = cudf::test::fixed_width_column_wrapper<int16_t>(col2_data.begin(), col2_data.end()); auto col3 = cudf::test::fixed_width_column_wrapper<int32_t>(col3_data.begin(), col3_data.end()); auto col4 = cudf::test::fixed_width_column_wrapper<uint64_t>(col4_data.begin(), col4_data.end()); auto col5 = cudf::test::fixed_width_column_wrapper<float>(col5_data.begin(), col5_data.end()); auto col6 = cudf::test::fixed_width_column_wrapper<double>(col6_data.begin(), col6_data.end()); // mixed length strings auto str2_elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { char buf[30]; sprintf(buf, "%d", i); return std::string(buf); }); auto col7 = cudf::test::strings_column_wrapper(str2_elements, str2_elements + num_rows); auto const expected = table_view{{col0, col1, col2, col3, col4, col5, col6, col7}}; auto const filepath = temp_env->get_temp_filepath("CheckColumnOffsetIndex.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .write_v2_headers(is_v2) .max_page_size_rows(20000); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; // loop over offsets, read each page header, make sure it's a data page and that // the first row index is correct auto const oi = read_offset_index(source, chunk); int64_t num_vals = 0; for (size_t o = 0; o < oi.page_locations.size(); o++) { auto const& page_loc = oi.page_locations[o]; auto const ph = read_page_header(source, page_loc); EXPECT_EQ(ph.type, expected_hdr_type); EXPECT_EQ(page_loc.first_row_index, num_vals); num_vals += is_v2 ? ph.data_page_header_v2.num_rows : ph.data_page_header.num_values; } // loop over page stats from the column index. check that stats.min <= page.min // and stats.max >= page.max for each page. auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); // schema indexing starts at 1 auto const ptype = fmd.schema[c + 1].type; auto const ctype = fmd.schema[c + 1].converted_type; for (size_t p = 0; p < ci.min_values.size(); p++) { // null_pages should always be false EXPECT_FALSE(ci.null_pages[p]); // null_counts should always be 0 EXPECT_EQ(ci.null_counts[p], 0); EXPECT_TRUE(compare_binary(stats.min_value.value(), ci.min_values[p], ptype, ctype) <= 0); } for (size_t p = 0; p < ci.max_values.size(); p++) EXPECT_TRUE(compare_binary(stats.max_value.value(), ci.max_values[p], ptype, ctype) >= 0); } } } TEST_P(ParquetV2Test, CheckColumnOffsetIndexNulls) { constexpr auto num_rows = 100000; auto const is_v2 = GetParam(); auto const expected_hdr_type = is_v2 ? cudf::io::parquet::detail::PageType::DATA_PAGE_V2 : cudf::io::parquet::detail::PageType::DATA_PAGE; // fixed length strings auto str1_elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { char buf[30]; sprintf(buf, "%012d", i); return std::string(buf); }); auto col0 = cudf::test::strings_column_wrapper(str1_elements, str1_elements + num_rows); auto col1_data = random_values<int8_t>(num_rows); auto col2_data = random_values<int16_t>(num_rows); auto col3_data = random_values<int32_t>(num_rows); auto col4_data = random_values<uint64_t>(num_rows); auto col5_data = random_values<float>(num_rows); auto col6_data = random_values<double>(num_rows); auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; }); // add null values for all but first column auto col1 = cudf::test::fixed_width_column_wrapper<int8_t>(col1_data.begin(), col1_data.end(), valids); auto col2 = cudf::test::fixed_width_column_wrapper<int16_t>(col2_data.begin(), col2_data.end(), valids); auto col3 = cudf::test::fixed_width_column_wrapper<int32_t>(col3_data.begin(), col3_data.end(), valids); auto col4 = cudf::test::fixed_width_column_wrapper<uint64_t>(col4_data.begin(), col4_data.end(), valids); auto col5 = cudf::test::fixed_width_column_wrapper<float>(col5_data.begin(), col5_data.end(), valids); auto col6 = cudf::test::fixed_width_column_wrapper<double>(col6_data.begin(), col6_data.end(), valids); // mixed length strings auto str2_elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { char buf[30]; sprintf(buf, "%d", i); return std::string(buf); }); auto col7 = cudf::test::strings_column_wrapper(str2_elements, str2_elements + num_rows, valids); auto expected = table_view{{col0, col1, col2, col3, col4, col5, col6, col7}}; auto const filepath = temp_env->get_temp_filepath("CheckColumnOffsetIndexNulls.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .write_v2_headers(is_v2) .max_page_size_rows(20000); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; // loop over offsets, read each page header, make sure it's a data page and that // the first row index is correct auto const oi = read_offset_index(source, chunk); int64_t num_vals = 0; for (size_t o = 0; o < oi.page_locations.size(); o++) { auto const& page_loc = oi.page_locations[o]; auto const ph = read_page_header(source, page_loc); EXPECT_EQ(ph.type, expected_hdr_type); EXPECT_EQ(page_loc.first_row_index, num_vals); num_vals += is_v2 ? ph.data_page_header_v2.num_rows : ph.data_page_header.num_values; } // loop over page stats from the column index. check that stats.min <= page.min // and stats.max >= page.max for each page. auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); // should be half nulls, except no nulls in column 0 ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); ASSERT_TRUE(stats.null_count.has_value()); EXPECT_EQ(stats.null_count.value(), c == 0 ? 0 : num_rows / 2); // schema indexing starts at 1 auto const ptype = fmd.schema[c + 1].type; auto const ctype = fmd.schema[c + 1].converted_type; for (size_t p = 0; p < ci.min_values.size(); p++) { EXPECT_FALSE(ci.null_pages[p]); if (c > 0) { // first column has no nulls EXPECT_GT(ci.null_counts[p], 0); } else { EXPECT_EQ(ci.null_counts[p], 0); } EXPECT_TRUE(compare_binary(stats.min_value.value(), ci.min_values[p], ptype, ctype) <= 0); } for (size_t p = 0; p < ci.max_values.size(); p++) { EXPECT_TRUE(compare_binary(stats.max_value.value(), ci.max_values[p], ptype, ctype) >= 0); } } } } TEST_P(ParquetV2Test, CheckColumnOffsetIndexNullColumn) { constexpr auto num_rows = 100000; auto const is_v2 = GetParam(); auto const expected_hdr_type = is_v2 ? cudf::io::parquet::detail::PageType::DATA_PAGE_V2 : cudf::io::parquet::detail::PageType::DATA_PAGE; // fixed length strings auto str1_elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { char buf[30]; sprintf(buf, "%012d", i); return std::string(buf); }); auto col0 = cudf::test::strings_column_wrapper(str1_elements, str1_elements + num_rows); auto col1_data = random_values<int32_t>(num_rows); auto col2_data = random_values<int32_t>(num_rows); // col1 is all nulls auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return false; }); auto col1 = cudf::test::fixed_width_column_wrapper<int32_t>(col1_data.begin(), col1_data.end(), valids); auto col2 = cudf::test::fixed_width_column_wrapper<int32_t>(col2_data.begin(), col2_data.end()); // mixed length strings auto str2_elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { char buf[30]; sprintf(buf, "%d", i); return std::string(buf); }); auto col3 = cudf::test::strings_column_wrapper(str2_elements, str2_elements + num_rows); auto expected = table_view{{col0, col1, col2, col3}}; auto const filepath = temp_env->get_temp_filepath("CheckColumnOffsetIndexNullColumn.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .write_v2_headers(is_v2) .max_page_size_rows(20000); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; // loop over offsets, read each page header, make sure it's a data page and that // the first row index is correct auto const oi = read_offset_index(source, chunk); int64_t num_vals = 0; for (size_t o = 0; o < oi.page_locations.size(); o++) { auto const& page_loc = oi.page_locations[o]; auto const ph = read_page_header(source, page_loc); EXPECT_EQ(ph.type, expected_hdr_type); EXPECT_EQ(page_loc.first_row_index, num_vals); num_vals += is_v2 ? ph.data_page_header_v2.num_rows : ph.data_page_header.num_values; } // loop over page stats from the column index. check that stats.min <= page.min // and stats.max >= page.max for each non-empty page. auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); // there should be no nulls except column 1 which is all nulls if (c != 1) { ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); } ASSERT_TRUE(stats.null_count.has_value()); EXPECT_EQ(stats.null_count.value(), c == 1 ? num_rows : 0); // schema indexing starts at 1 auto const ptype = fmd.schema[c + 1].type; auto const ctype = fmd.schema[c + 1].converted_type; for (size_t p = 0; p < ci.min_values.size(); p++) { // check tnat null_pages is true for column 1 if (c == 1) { EXPECT_TRUE(ci.null_pages[p]); EXPECT_GT(ci.null_counts[p], 0); } if (not ci.null_pages[p]) { EXPECT_EQ(ci.null_counts[p], 0); EXPECT_TRUE(compare_binary(stats.min_value.value(), ci.min_values[p], ptype, ctype) <= 0); } } for (size_t p = 0; p < ci.max_values.size(); p++) { if (not ci.null_pages[p]) { EXPECT_TRUE(compare_binary(stats.max_value.value(), ci.max_values[p], ptype, ctype) >= 0); } } } } } TEST_P(ParquetV2Test, CheckColumnOffsetIndexStruct) { auto const is_v2 = GetParam(); auto const expected_hdr_type = is_v2 ? cudf::io::parquet::detail::PageType::DATA_PAGE_V2 : cudf::io::parquet::detail::PageType::DATA_PAGE; auto c0 = testdata::ascending<uint32_t>(); auto sc0 = testdata::ascending<cudf::string_view>(); auto sc1 = testdata::descending<int32_t>(); auto sc2 = testdata::unordered<int64_t>(); std::vector<std::unique_ptr<cudf::column>> struct_children; struct_children.push_back(sc0.release()); struct_children.push_back(sc1.release()); struct_children.push_back(sc2.release()); cudf::test::structs_column_wrapper c1(std::move(struct_children)); auto listgen = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return i % 2 == 0 ? i / 2 : num_ordered_rows - (i / 2); }); auto list = cudf::test::fixed_width_column_wrapper<int32_t>(listgen, listgen + 2 * num_ordered_rows); auto offgen = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; }); auto offsets = cudf::test::fixed_width_column_wrapper<int32_t>(offgen, offgen + num_ordered_rows + 1); auto c2 = cudf::make_lists_column(num_ordered_rows, offsets.release(), list.release(), 0, {}); table_view expected({c0, c1, *c2}); auto const filepath = temp_env->get_temp_filepath("CheckColumnOffsetIndexStruct.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .write_v2_headers(is_v2) .max_page_size_rows(page_size_for_ordered_tests); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); // hard coded schema indices. // TODO find a way to do this without magic size_t const colidxs[] = {1, 3, 4, 5, 8}; for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { size_t colidx = colidxs[c]; auto const& chunk = rg.columns[c]; // loop over offsets, read each page header, make sure it's a data page and that // the first row index is correct auto const oi = read_offset_index(source, chunk); int64_t num_vals = 0; for (size_t o = 0; o < oi.page_locations.size(); o++) { auto const& page_loc = oi.page_locations[o]; auto const ph = read_page_header(source, page_loc); EXPECT_EQ(ph.type, expected_hdr_type); EXPECT_EQ(page_loc.first_row_index, num_vals); // last column has 2 values per row num_vals += is_v2 ? ph.data_page_header_v2.num_rows : ph.data_page_header.num_values / (c == rg.columns.size() - 1 ? 2 : 1); } // loop over page stats from the column index. check that stats.min <= page.min // and stats.max >= page.max for each page. auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); auto const ptype = fmd.schema[colidx].type; auto const ctype = fmd.schema[colidx].converted_type; for (size_t p = 0; p < ci.min_values.size(); p++) { EXPECT_TRUE(compare_binary(stats.min_value.value(), ci.min_values[p], ptype, ctype) <= 0); } for (size_t p = 0; p < ci.max_values.size(); p++) { EXPECT_TRUE(compare_binary(stats.max_value.value(), ci.max_values[p], ptype, ctype) >= 0); } } } } TEST_P(ParquetV2Test, CheckColumnOffsetIndexStructNulls) { auto const is_v2 = GetParam(); auto const expected_hdr_type = is_v2 ? cudf::io::parquet::detail::PageType::DATA_PAGE_V2 : cudf::io::parquet::detail::PageType::DATA_PAGE; auto validity2 = cudf::detail::make_counting_transform_iterator(0, [](cudf::size_type i) { return i % 2; }); auto validity3 = cudf::detail::make_counting_transform_iterator( 0, [](cudf::size_type i) { return (i % 3) != 0; }); auto validity4 = cudf::detail::make_counting_transform_iterator( 0, [](cudf::size_type i) { return (i % 4) != 0; }); auto validity5 = cudf::detail::make_counting_transform_iterator( 0, [](cudf::size_type i) { return (i % 5) != 0; }); auto c0 = testdata::ascending<uint32_t>(); auto col1_data = random_values<int32_t>(num_ordered_rows); auto col2_data = random_values<int32_t>(num_ordered_rows); auto col3_data = random_values<int32_t>(num_ordered_rows); // col1 is all nulls auto col1 = cudf::test::fixed_width_column_wrapper<int32_t>(col1_data.begin(), col1_data.end(), validity2); auto col2 = cudf::test::fixed_width_column_wrapper<int32_t>(col2_data.begin(), col2_data.end(), validity3); auto col3 = cudf::test::fixed_width_column_wrapper<int32_t>(col2_data.begin(), col2_data.end(), validity4); std::vector<std::unique_ptr<cudf::column>> struct_children; struct_children.push_back(col1.release()); struct_children.push_back(col2.release()); struct_children.push_back(col3.release()); auto struct_validity = std::vector<bool>(validity5, validity5 + num_ordered_rows); cudf::test::structs_column_wrapper c1(std::move(struct_children), struct_validity); table_view expected({c0, c1}); auto const filepath = temp_env->get_temp_filepath("CheckColumnOffsetIndexStructNulls.parquet"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .write_v2_headers(is_v2) .max_page_size_rows(page_size_for_ordered_tests); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; // loop over offsets, read each page header, make sure it's a data page and that // the first row index is correct auto const oi = read_offset_index(source, chunk); auto const ci = read_column_index(source, chunk); int64_t num_vals = 0; for (size_t o = 0; o < oi.page_locations.size(); o++) { auto const& page_loc = oi.page_locations[o]; auto const ph = read_page_header(source, page_loc); EXPECT_EQ(ph.type, expected_hdr_type); EXPECT_EQ(page_loc.first_row_index, num_vals); num_vals += is_v2 ? ph.data_page_header_v2.num_rows : ph.data_page_header.num_values; // check that null counts match if (is_v2) { EXPECT_EQ(ci.null_counts[o], ph.data_page_header_v2.num_nulls); } } } } } TEST_P(ParquetV2Test, CheckColumnIndexListWithNulls) { auto const is_v2 = GetParam(); auto const expected_hdr_type = is_v2 ? cudf::io::parquet::detail::PageType::DATA_PAGE_V2 : cudf::io::parquet::detail::PageType::DATA_PAGE; using cudf::test::iterators::null_at; using cudf::test::iterators::nulls_at; using lcw = cudf::test::lists_column_wrapper<int32_t>; // 4 nulls // [NULL, 2, NULL] // [] // [4, 5] // NULL lcw col0{{{{1, 2, 3}, nulls_at({0, 2})}, {}, {4, 5}, {}}, null_at(3)}; // 4 nulls // [[1, 2, 3], [], [4, 5], [], [0, 6, 0]] // [[7, 8]] // [] // [[]] lcw col1{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, {{7, 8}}, lcw{}, lcw{lcw{}}}; // 4 nulls // [[1, 2, 3], [], [4, 5], NULL, [0, 6, 0]] // [[7, 8]] // [] // [[]] lcw col2{{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, null_at(3)}, {{7, 8}}, lcw{}, lcw{lcw{}}}; // 6 nulls // [[1, 2, 3], [], [4, 5], NULL, [NULL, 6, NULL]] // [[7, 8]] // [] // [[]] using dlcw = cudf::test::lists_column_wrapper<double>; dlcw col3{{{{1., 2., 3.}, {}, {4., 5.}, {}, {{0., 6., 0.}, nulls_at({0, 2})}}, null_at(3)}, {{7., 8.}}, dlcw{}, dlcw{dlcw{}}}; // 4 nulls // [[1, 2, 3], [], [4, 5], NULL, [0, 6, 0]] // [[7, 8]] // [] // NULL using ui16lcw = cudf::test::lists_column_wrapper<uint16_t>; cudf::test::lists_column_wrapper<uint16_t> col4{ {{{{1, 2, 3}, {}, {4, 5}, {}, {0, 6, 0}}, null_at(3)}, {{7, 8}}, ui16lcw{}, ui16lcw{ui16lcw{}}}, null_at(3)}; // 6 nulls // [[1, 2, 3], [], [4, 5], NULL, [NULL, 6, NULL]] // [[7, 8]] // [] // NULL lcw col5{{{{{1, 2, 3}, {}, {4, 5}, {}, {{0, 6, 0}, nulls_at({0, 2})}}, null_at(3)}, {{7, 8}}, lcw{}, lcw{lcw{}}}, null_at(3)}; // 4 nulls using strlcw = cudf::test::lists_column_wrapper<cudf::string_view>; cudf::test::lists_column_wrapper<cudf::string_view> col6{ {{"Monday", "Monday", "Friday"}, {}, {"Monday", "Friday"}, {}, {"Sunday", "Funday"}}, {{"bee", "sting"}}, strlcw{}, strlcw{strlcw{}}}; // 11 nulls // [[[NULL,2,NULL,4]], [[NULL,6,NULL], [8,9]]] // [NULL, [[13],[14,15,16]], NULL] // [NULL, [], NULL, [[]]] // NULL lcw col7{{ {{{{1, 2, 3, 4}, nulls_at({0, 2})}}, {{{5, 6, 7}, nulls_at({0, 2})}, {8, 9}}}, {{{{10, 11}, {12}}, {{13}, {14, 15, 16}}, {{17, 18}}}, nulls_at({0, 2})}, {{lcw{lcw{}}, lcw{}, lcw{}, lcw{lcw{}}}, nulls_at({0, 2})}, lcw{lcw{lcw{}}}, }, null_at(3)}; table_view expected({col0, col1, col2, col3, col4, col5, col6, col7}); int64_t const expected_null_counts[] = {4, 4, 4, 6, 4, 6, 4, 11}; auto const filepath = temp_env->get_temp_filepath("ColumnIndexListWithNulls.parquet"); auto out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .write_v2_headers(is_v2) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; // loop over offsets, read each page header, make sure it's a data page and that // the first row index is correct auto const oi = read_offset_index(source, chunk); for (size_t o = 0; o < oi.page_locations.size(); o++) { auto const& page_loc = oi.page_locations[o]; auto const ph = read_page_header(source, page_loc); EXPECT_EQ(ph.type, expected_hdr_type); // check null counts in V2 header if (is_v2) { EXPECT_EQ(ph.data_page_header_v2.num_nulls, expected_null_counts[c]); } } // check null counts in column chunk stats and page indexes auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); EXPECT_EQ(stats.null_count, expected_null_counts[c]); // should only be one page EXPECT_FALSE(ci.null_pages[0]); EXPECT_EQ(ci.null_counts[0], expected_null_counts[c]); } } } TEST_F(ParquetWriterTest, CheckColumnIndexTruncation) { char const* coldata[] = { // in-range 7 bit. should truncate to "yyyyyyyz" "yyyyyyyyy", // max 7 bit. should truncate to "x7fx7fx7fx7fx7fx7fx7fx80", since it's // considered binary, not UTF-8. If UTF-8 it should not truncate. "\x7f\x7f\x7f\x7f\x7f\x7f\x7f\x7f\x7f", // max binary. this should not truncate "\xff\xff\xff\xff\xff\xff\xff\xff\xff", // in-range 2-byte UTF8 (U+00E9). should truncate to "éééê" "ééééé", // max 2-byte UTF8 (U+07FF). should not truncate "߿߿߿߿߿", // in-range 3-byte UTF8 (U+0800). should truncate to "ࠀࠁ" "ࠀࠀࠀ", // max 3-byte UTF8 (U+FFFF). should not truncate "\xef\xbf\xbf\xef\xbf\xbf\xef\xbf\xbf", // in-range 4-byte UTF8 (U+10000). should truncate to "𐀀𐀁" "𐀀𐀀𐀀", // max unicode (U+10FFFF). should truncate to \xf4\x8f\xbf\xbf\xf4\x90\x80\x80, // which is no longer valid unicode, but is still ok UTF-8??? "\xf4\x8f\xbf\xbf\xf4\x8f\xbf\xbf\xf4\x8f\xbf\xbf", // max 4-byte UTF8 (U+1FFFFF). should not truncate "\xf7\xbf\xbf\xbf\xf7\xbf\xbf\xbf\xf7\xbf\xbf\xbf"}; // NOTE: UTF8 min is initialized with 0xf7bfbfbf. Binary values larger // than that will not become minimum value (when written as UTF-8). char const* truncated_min[] = {"yyyyyyyy", "\x7f\x7f\x7f\x7f\x7f\x7f\x7f\x7f", "\xf7\xbf\xbf\xbf", "éééé", "߿߿߿߿", "ࠀࠀ", "\xef\xbf\xbf\xef\xbf\xbf", "𐀀𐀀", "\xf4\x8f\xbf\xbf\xf4\x8f\xbf\xbf", "\xf7\xbf\xbf\xbf"}; char const* truncated_max[] = {"yyyyyyyz", "\x7f\x7f\x7f\x7f\x7f\x7f\x7f\x80", "\xff\xff\xff\xff\xff\xff\xff\xff\xff", "éééê", "߿߿߿߿߿", "ࠀࠁ", "\xef\xbf\xbf\xef\xbf\xbf\xef\xbf\xbf", "𐀀𐀁", "\xf4\x8f\xbf\xbf\xf4\x90\x80\x80", "\xf7\xbf\xbf\xbf\xf7\xbf\xbf\xbf\xf7\xbf\xbf\xbf"}; auto cols = [&]() { using string_wrapper = column_wrapper<cudf::string_view>; std::vector<std::unique_ptr<column>> cols; for (auto const str : coldata) { cols.push_back(string_wrapper{str}.release()); } return cols; }(); auto expected = std::make_unique<table>(std::move(cols)); auto const filepath = temp_env->get_temp_filepath("CheckColumnIndexTruncation.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected->view()) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .column_index_truncate_length(8); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); // check trunc(page.min) <= stats.min && trun(page.max) >= stats.max auto const ptype = fmd.schema[c + 1].type; auto const ctype = fmd.schema[c + 1].converted_type; EXPECT_TRUE(compare_binary(ci.min_values[0], stats.min_value.value(), ptype, ctype) <= 0); EXPECT_TRUE(compare_binary(ci.max_values[0], stats.max_value.value(), ptype, ctype) >= 0); // check that truncated values == expected EXPECT_EQ(memcmp(ci.min_values[0].data(), truncated_min[c], ci.min_values[0].size()), 0); EXPECT_EQ(memcmp(ci.max_values[0].data(), truncated_max[c], ci.max_values[0].size()), 0); } } } TEST_F(ParquetWriterTest, BinaryColumnIndexTruncation) { std::vector<uint8_t> truncated_min[] = {{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe}, {0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}; std::vector<uint8_t> truncated_max[] = {{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xff}, {0xff}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}; cudf::test::lists_column_wrapper<uint8_t> col0{ {0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe}}; cudf::test::lists_column_wrapper<uint8_t> col1{ {0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}; cudf::test::lists_column_wrapper<uint8_t> col2{ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}; auto expected = table_view{{col0, col1, col2}}; cudf::io::table_input_metadata output_metadata(expected); output_metadata.column_metadata[0].set_name("col_binary0").set_output_as_binary(true); output_metadata.column_metadata[1].set_name("col_binary1").set_output_as_binary(true); output_metadata.column_metadata[2].set_name("col_binary2").set_output_as_binary(true); auto const filepath = temp_env->get_temp_filepath("BinaryColumnIndexTruncation.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(output_metadata)) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .column_index_truncate_length(8); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); for (size_t r = 0; r < fmd.row_groups.size(); r++) { auto const& rg = fmd.row_groups[r]; for (size_t c = 0; c < rg.columns.size(); c++) { auto const& chunk = rg.columns[c]; auto const ci = read_column_index(source, chunk); auto const stats = get_statistics(chunk); // check trunc(page.min) <= stats.min && trun(page.max) >= stats.max auto const ptype = fmd.schema[c + 1].type; auto const ctype = fmd.schema[c + 1].converted_type; ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); EXPECT_TRUE(compare_binary(ci.min_values[0], stats.min_value.value(), ptype, ctype) <= 0); EXPECT_TRUE(compare_binary(ci.max_values[0], stats.max_value.value(), ptype, ctype) >= 0); // check that truncated values == expected EXPECT_EQ(ci.min_values[0], truncated_min[c]); EXPECT_EQ(ci.max_values[0], truncated_max[c]); } } } TEST_F(ParquetReaderTest, EmptyColumnsParam) { srand(31337); auto const expected = create_random_fixed_table<int>(2, 4, false); std::vector<char> out_buffer; cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&out_buffer}, *expected); cudf::io::write_parquet(args); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info{out_buffer.data(), out_buffer.size()}) .columns({}); auto const result = cudf::io::read_parquet(read_opts); EXPECT_EQ(result.tbl->num_columns(), 0); EXPECT_EQ(result.tbl->num_rows(), 0); } TEST_F(ParquetReaderTest, BinaryAsStrings) { std::vector<char const*> strings{ "Monday", "Wednesday", "Friday", "Monday", "Friday", "Friday", "Friday", "Funday"}; auto const num_rows = strings.size(); auto seq_col0 = random_values<int>(num_rows); auto seq_col2 = random_values<float>(num_rows); auto seq_col3 = random_values<uint8_t>(num_rows); auto validity = cudf::test::iterators::no_nulls(); column_wrapper<int> int_col{seq_col0.begin(), seq_col0.end(), validity}; column_wrapper<cudf::string_view> string_col{strings.begin(), strings.end()}; column_wrapper<float> float_col{seq_col2.begin(), seq_col2.end(), validity}; cudf::test::lists_column_wrapper<uint8_t> list_int_col{ {'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 'e', 'd', 'n', 'e', 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'M', 'o', 'n', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'u', 'n', 'd', 'a', 'y'}}; auto output = table_view{{int_col, string_col, float_col, string_col, list_int_col}}; cudf::io::table_input_metadata output_metadata(output); output_metadata.column_metadata[0].set_name("col_other"); output_metadata.column_metadata[1].set_name("col_string"); output_metadata.column_metadata[2].set_name("col_float"); output_metadata.column_metadata[3].set_name("col_string2").set_output_as_binary(true); output_metadata.column_metadata[4].set_name("col_binary").set_output_as_binary(true); auto filepath = temp_env->get_temp_filepath("BinaryReadStrings.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, output) .metadata(std::move(output_metadata)); cudf::io::write_parquet(out_opts); auto expected_string = table_view{{int_col, string_col, float_col, string_col, string_col}}; auto expected_mixed = table_view{{int_col, string_col, float_col, list_int_col, list_int_col}}; cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .set_column_schema({{}, {}, {}, {}, {}}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_string, result.tbl->view()); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_string, result.tbl->view()); std::vector<cudf::io::reader_column_schema> md{ {}, {}, {}, cudf::io::reader_column_schema().set_convert_binary_to_strings(false), cudf::io::reader_column_schema().set_convert_binary_to_strings(false)}; cudf::io::parquet_reader_options mixed_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .set_column_schema(md); result = cudf::io::read_parquet(mixed_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_mixed, result.tbl->view()); } TEST_F(ParquetReaderTest, NestedByteArray) { constexpr auto num_rows = 8; auto seq_col0 = random_values<int>(num_rows); auto seq_col2 = random_values<float>(num_rows); auto seq_col3 = random_values<uint8_t>(num_rows); auto const validity = cudf::test::iterators::no_nulls(); column_wrapper<int> int_col{seq_col0.begin(), seq_col0.end(), validity}; column_wrapper<float> float_col{seq_col2.begin(), seq_col2.end(), validity}; cudf::test::lists_column_wrapper<uint8_t> list_list_int_col{ {{'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 'e', 'd', 'n', 'e', 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}}, {{'M', 'o', 'n', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}}, {{'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 'e', 'd', 'n', 'e', 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}}, {{'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'u', 'n', 'd', 'a', 'y'}}, {{'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 'e', 'd', 'n', 'e', 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}}, {{'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}, {'F', 'u', 'n', 'd', 'a', 'y'}}, {{'M', 'o', 'n', 'd', 'a', 'y'}, {'W', 'e', 'd', 'n', 'e', 's', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}}, {{'M', 'o', 'n', 'd', 'a', 'y'}, {'F', 'r', 'i', 'd', 'a', 'y'}}}; auto const expected = table_view{{int_col, float_col, list_list_int_col}}; cudf::io::table_input_metadata output_metadata(expected); output_metadata.column_metadata[0].set_name("col_other"); output_metadata.column_metadata[1].set_name("col_float"); output_metadata.column_metadata[2].set_name("col_binary").child(1).set_output_as_binary(true); auto filepath = temp_env->get_temp_filepath("NestedByteArray.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(output_metadata)); cudf::io::write_parquet(out_opts); auto source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); EXPECT_EQ(fmd.schema[5].type, cudf::io::parquet::detail::Type::BYTE_ARRAY); std::vector<cudf::io::reader_column_schema> md{ {}, {}, cudf::io::reader_column_schema().add_child( cudf::io::reader_column_schema().set_convert_binary_to_strings(false))}; cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .set_column_schema(md); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(ParquetWriterTest, ByteArrayStats) { // check that byte array min and max statistics are written as expected. If a byte array is // written as a string, max utf8 is 0xf7bfbfbf and so the minimum value will be set to that value // instead of a potential minimum higher than that. std::vector<uint8_t> expected_col0_min{0xf0}; std::vector<uint8_t> expected_col0_max{0xf0, 0xf5, 0xf5}; std::vector<uint8_t> expected_col1_min{0xfe, 0xfe, 0xfe}; std::vector<uint8_t> expected_col1_max{0xfe, 0xfe, 0xfe}; cudf::test::lists_column_wrapper<uint8_t> list_int_col0{ {0xf0}, {0xf0, 0xf5, 0xf3}, {0xf0, 0xf5, 0xf5}}; cudf::test::lists_column_wrapper<uint8_t> list_int_col1{ {0xfe, 0xfe, 0xfe}, {0xfe, 0xfe, 0xfe}, {0xfe, 0xfe, 0xfe}}; auto expected = table_view{{list_int_col0, list_int_col1}}; cudf::io::table_input_metadata output_metadata(expected); output_metadata.column_metadata[0].set_name("col_binary0").set_output_as_binary(true); output_metadata.column_metadata[1].set_name("col_binary1").set_output_as_binary(true); auto filepath = temp_env->get_temp_filepath("ByteArrayStats.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(output_metadata)); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .set_column_schema({{}, {}}); auto result = cudf::io::read_parquet(in_opts); auto source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); EXPECT_EQ(fmd.schema[1].type, cudf::io::parquet::detail::Type::BYTE_ARRAY); EXPECT_EQ(fmd.schema[2].type, cudf::io::parquet::detail::Type::BYTE_ARRAY); auto const stats0 = get_statistics(fmd.row_groups[0].columns[0]); auto const stats1 = get_statistics(fmd.row_groups[0].columns[1]); EXPECT_EQ(expected_col0_min, stats0.min_value); EXPECT_EQ(expected_col0_max, stats0.max_value); EXPECT_EQ(expected_col1_min, stats1.min_value); EXPECT_EQ(expected_col1_max, stats1.max_value); } TEST_F(ParquetReaderTest, StructByteArray) { constexpr auto num_rows = 100; auto seq_col0 = random_values<uint8_t>(num_rows); auto const validity = cudf::test::iterators::no_nulls(); column_wrapper<uint8_t> int_col{seq_col0.begin(), seq_col0.end(), validity}; cudf::test::lists_column_wrapper<uint8_t> list_of_int{{seq_col0.begin(), seq_col0.begin() + 50}, {seq_col0.begin() + 50, seq_col0.end()}}; auto struct_col = cudf::test::structs_column_wrapper{{list_of_int}, validity}; auto const expected = table_view{{struct_col}}; EXPECT_EQ(1, expected.num_columns()); cudf::io::table_input_metadata output_metadata(expected); output_metadata.column_metadata[0] .set_name("struct_binary") .child(0) .set_name("a") .set_output_as_binary(true); auto filepath = temp_env->get_temp_filepath("StructByteArray.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(output_metadata)); cudf::io::write_parquet(out_opts); std::vector<cudf::io::reader_column_schema> md{cudf::io::reader_column_schema().add_child( cudf::io::reader_column_schema().set_convert_binary_to_strings(false))}; cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .set_column_schema(md); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(ParquetReaderTest, NestingOptimizationTest) { // test nesting levels > cudf::io::parquet::detail::max_cacheable_nesting_decode_info deep. constexpr cudf::size_type num_nesting_levels = 16; static_assert(num_nesting_levels > cudf::io::parquet::detail::max_cacheable_nesting_decode_info); constexpr cudf::size_type rows_per_level = 2; constexpr cudf::size_type num_values = (1 << num_nesting_levels) * rows_per_level; auto value_iter = thrust::make_counting_iterator(0); auto validity = cudf::detail::make_counting_transform_iterator(0, [](cudf::size_type i) { return i % 2; }); cudf::test::fixed_width_column_wrapper<int> values(value_iter, value_iter + num_values, validity); // ~256k values with num_nesting_levels = 16 int total_values_produced = num_values; auto prev_col = values.release(); for (int idx = 0; idx < num_nesting_levels; idx++) { auto const depth = num_nesting_levels - idx; auto const num_rows = (1 << (num_nesting_levels - idx)); auto offsets_iter = cudf::detail::make_counting_transform_iterator( 0, [depth, rows_per_level](cudf::size_type i) { return i * rows_per_level; }); total_values_produced += (num_rows + 1); cudf::test::fixed_width_column_wrapper<cudf::size_type> offsets(offsets_iter, offsets_iter + num_rows + 1); auto c = cudf::make_lists_column(num_rows, offsets.release(), std::move(prev_col), 0, {}); prev_col = std::move(c); } auto const& expect = prev_col; auto filepath = temp_env->get_temp_filepath("NestingDecodeCache.parquet"); cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, table_view{{*expect}}); cudf::io::write_parquet(opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_COLUMNS_EQUAL(*expect, result.tbl->get_column(0)); } TEST_F(ParquetWriterTest, SingleValueDictionaryTest) { constexpr unsigned int expected_bits = 1; constexpr unsigned int nrows = 1'000'000U; auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return "a unique string value suffixed with 1"; }); auto const col0 = cudf::test::strings_column_wrapper(elements, elements + nrows); auto const expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("SingleValueDictionaryTest.parquet"); // set row group size so that there will be only one row group // no compression so we can easily read page data cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::NONE) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .row_group_size_rows(nrows); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); // make sure dictionary was used auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto used_dict = [&fmd]() { for (auto enc : fmd.row_groups[0].columns[0].meta_data.encodings) { if (enc == cudf::io::parquet::detail::Encoding::PLAIN_DICTIONARY or enc == cudf::io::parquet::detail::Encoding::RLE_DICTIONARY) { return true; } } return false; }; EXPECT_TRUE(used_dict()); // and check that the correct number of bits was used auto const oi = read_offset_index(source, fmd.row_groups[0].columns[0]); auto const nbits = read_dict_bits(source, oi.page_locations[0]); EXPECT_EQ(nbits, expected_bits); } TEST_F(ParquetWriterTest, DictionaryNeverTest) { constexpr unsigned int nrows = 1'000U; // only one value, so would normally use dictionary auto elements = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return "a unique string value suffixed with 1"; }); auto const col0 = cudf::test::strings_column_wrapper(elements, elements + nrows); auto const expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("DictionaryNeverTest.parquet"); // no compression so we can easily read page data cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::NONE) .dictionary_policy(cudf::io::dictionary_policy::NEVER); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); // make sure dictionary was not used auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto used_dict = [&fmd]() { for (auto enc : fmd.row_groups[0].columns[0].meta_data.encodings) { if (enc == cudf::io::parquet::detail::Encoding::PLAIN_DICTIONARY or enc == cudf::io::parquet::detail::Encoding::RLE_DICTIONARY) { return true; } } return false; }; EXPECT_FALSE(used_dict()); } TEST_F(ParquetWriterTest, DictionaryAdaptiveTest) { constexpr unsigned int nrows = 65'536U; // cardinality is chosen to result in a dictionary > 1MB in size constexpr unsigned int cardinality = 32'768U; // single value will have a small dictionary auto elements0 = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return "a unique string value suffixed with 1"; }); auto const col0 = cudf::test::strings_column_wrapper(elements0, elements0 + nrows); // high cardinality will have a large dictionary auto elements1 = cudf::detail::make_counting_transform_iterator(0, [cardinality](auto i) { return "a unique string value suffixed with " + std::to_string(i % cardinality); }); auto const col1 = cudf::test::strings_column_wrapper(elements1, elements1 + nrows); auto const expected = table_view{{col0, col1}}; auto const filepath = temp_env->get_temp_filepath("DictionaryAdaptiveTest.parquet"); // no compression so we can easily read page data cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::ZSTD) .dictionary_policy(cudf::io::dictionary_policy::ADAPTIVE); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); // make sure dictionary was used as expected. col0 should use one, // col1 should not. auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto used_dict = [&fmd](int col) { for (auto enc : fmd.row_groups[0].columns[col].meta_data.encodings) { if (enc == cudf::io::parquet::detail::Encoding::PLAIN_DICTIONARY or enc == cudf::io::parquet::detail::Encoding::RLE_DICTIONARY) { return true; } } return false; }; EXPECT_TRUE(used_dict(0)); EXPECT_FALSE(used_dict(1)); } TEST_F(ParquetWriterTest, DictionaryAlwaysTest) { constexpr unsigned int nrows = 65'536U; // cardinality is chosen to result in a dictionary > 1MB in size constexpr unsigned int cardinality = 32'768U; // single value will have a small dictionary auto elements0 = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return "a unique string value suffixed with 1"; }); auto const col0 = cudf::test::strings_column_wrapper(elements0, elements0 + nrows); // high cardinality will have a large dictionary auto elements1 = cudf::detail::make_counting_transform_iterator(0, [cardinality](auto i) { return "a unique string value suffixed with " + std::to_string(i % cardinality); }); auto const col1 = cudf::test::strings_column_wrapper(elements1, elements1 + nrows); auto const expected = table_view{{col0, col1}}; auto const filepath = temp_env->get_temp_filepath("DictionaryAlwaysTest.parquet"); // no compression so we can easily read page data cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::ZSTD) .dictionary_policy(cudf::io::dictionary_policy::ALWAYS); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); // make sure dictionary was used for both columns auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto used_dict = [&fmd](int col) { for (auto enc : fmd.row_groups[0].columns[col].meta_data.encodings) { if (enc == cudf::io::parquet::detail::Encoding::PLAIN_DICTIONARY or enc == cudf::io::parquet::detail::Encoding::RLE_DICTIONARY) { return true; } } return false; }; EXPECT_TRUE(used_dict(0)); EXPECT_TRUE(used_dict(1)); } TEST_F(ParquetWriterTest, DictionaryPageSizeEst) { // one page constexpr unsigned int nrows = 20'000U; // this test is creating a pattern of repeating then non-repeating values to trigger // a "worst-case" for page size estimation in the presence of a dictionary. have confirmed // that this fails for values over 16 in the final term of `max_RLE_page_size()`. // The output of the iterator will be 'CCCCCRRRRRCCCCCRRRRR...` where 'C' is a changing // value, and 'R' repeats. The encoder will turn this into a literal run of 8 values // (`CCCCCRRR`) followed by a repeated run of 2 (`RR`). This pattern then repeats, getting // as close as possible to a condition of repeated 8 value literal runs. auto elements0 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { if ((i / 5) % 2 == 1) { return std::string("non-unique string"); } else { return "a unique string value suffixed with " + std::to_string(i); } }); auto const col0 = cudf::test::strings_column_wrapper(elements0, elements0 + nrows); auto const expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("DictionaryPageSizeEst.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::ZSTD) .dictionary_policy(cudf::io::dictionary_policy::ALWAYS); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_P(ParquetSizedTest, DictionaryTest) { unsigned int const cardinality = (1 << (GetParam() - 1)) + 1; unsigned int const nrows = std::max(cardinality * 3 / 2, 3'000'000U); auto elements = cudf::detail::make_counting_transform_iterator(0, [cardinality](auto i) { return "a unique string value suffixed with " + std::to_string(i % cardinality); }); auto const col0 = cudf::test::strings_column_wrapper(elements, elements + nrows); auto const expected = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("DictionaryTest.parquet"); // set row group size so that there will be only one row group // no compression so we can easily read page data cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .compression(cudf::io::compression_type::NONE) .stats_level(cudf::io::statistics_freq::STATISTICS_COLUMN) .dictionary_policy(cudf::io::dictionary_policy::ALWAYS) .row_group_size_rows(nrows) .row_group_size_bytes(512 * 1024 * 1024); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options default_in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(default_in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); // make sure dictionary was used auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto used_dict = [&fmd]() { for (auto enc : fmd.row_groups[0].columns[0].meta_data.encodings) { if (enc == cudf::io::parquet::detail::Encoding::PLAIN_DICTIONARY or enc == cudf::io::parquet::detail::Encoding::RLE_DICTIONARY) { return true; } } return false; }; EXPECT_TRUE(used_dict()); // and check that the correct number of bits was used auto const oi = read_offset_index(source, fmd.row_groups[0].columns[0]); auto const nbits = read_dict_bits(source, oi.page_locations[0]); EXPECT_EQ(nbits, GetParam()); } TYPED_TEST(ParquetReaderSourceTest, BufferSourceTypes) { using T = TypeParam; srand(31337); auto table = create_random_fixed_table<int>(5, 5, true); std::vector<char> out_buffer; cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), *table); cudf::io::write_parquet(out_opts); { cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info( cudf::host_span<T>(reinterpret_cast<T*>(out_buffer.data()), out_buffer.size()))); auto const result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*table, result.tbl->view()); } { cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info(cudf::host_span<T const>( reinterpret_cast<T const*>(out_buffer.data()), out_buffer.size()))); auto const result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*table, result.tbl->view()); } } TYPED_TEST(ParquetReaderSourceTest, BufferSourceArrayTypes) { using T = TypeParam; srand(31337); auto table = create_random_fixed_table<int>(5, 5, true); std::vector<char> out_buffer; cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info(&out_buffer), *table); cudf::io::write_parquet(out_opts); auto full_table = cudf::concatenate(std::vector<table_view>({*table, *table})); { auto spans = std::vector<cudf::host_span<T>>{ cudf::host_span<T>(reinterpret_cast<T*>(out_buffer.data()), out_buffer.size()), cudf::host_span<T>(reinterpret_cast<T*>(out_buffer.data()), out_buffer.size())}; cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info(cudf::host_span<cudf::host_span<T>>(spans.data(), spans.size()))); auto const result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*full_table, result.tbl->view()); } { auto spans = std::vector<cudf::host_span<T const>>{ cudf::host_span<T const>(reinterpret_cast<T const*>(out_buffer.data()), out_buffer.size()), cudf::host_span<T const>(reinterpret_cast<T const*>(out_buffer.data()), out_buffer.size())}; cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info(cudf::host_span<cudf::host_span<T const>>(spans.data(), spans.size()))); auto const result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*full_table, result.tbl->view()); } } TEST_F(ParquetWriterTest, UserNullability) { auto weight_col = cudf::test::fixed_width_column_wrapper<float>{{57.5, 51.1, 15.3}}; auto ages_col = cudf::test::fixed_width_column_wrapper<int32_t>{{30, 27, 5}}; auto struct_col = cudf::test::structs_column_wrapper{weight_col, ages_col}; auto expected = table_view({struct_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_nullability(false); expected_metadata.column_metadata[0].child(0).set_nullability(true); auto filepath = temp_env->get_temp_filepath("SingleWriteNullable.parquet"); cudf::io::parquet_writer_options write_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_parquet(write_opts); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(read_opts); EXPECT_FALSE(result.tbl->view().column(0).nullable()); EXPECT_TRUE(result.tbl->view().column(0).child(0).nullable()); EXPECT_FALSE(result.tbl->view().column(0).child(1).nullable()); } TEST_F(ParquetWriterTest, UserNullabilityInvalid) { auto valids = cudf::detail::make_counting_transform_iterator(0, [&](int index) { return index % 2; }); auto col = cudf::test::fixed_width_column_wrapper<double>{{57.5, 51.1, 15.3}, valids}; auto expected = table_view({col}); auto filepath = temp_env->get_temp_filepath("SingleWriteNullableInvalid.parquet"); cudf::io::parquet_writer_options write_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected); // Should work without the nullability option EXPECT_NO_THROW(cudf::io::write_parquet(write_opts)); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_nullability(false); write_opts.set_metadata(std::move(expected_metadata)); // Can't write a column with nulls as not nullable EXPECT_THROW(cudf::io::write_parquet(write_opts), cudf::logic_error); } TEST_F(ParquetReaderTest, SingleLevelLists) { unsigned char list_bytes[] = { 0x50, 0x41, 0x52, 0x31, 0x15, 0x00, 0x15, 0x28, 0x15, 0x28, 0x15, 0xa7, 0xce, 0x91, 0x8c, 0x06, 0x1c, 0x15, 0x04, 0x15, 0x00, 0x15, 0x06, 0x15, 0x06, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x02, 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x15, 0x02, 0x19, 0x3c, 0x48, 0x0c, 0x73, 0x70, 0x61, 0x72, 0x6b, 0x5f, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x15, 0x02, 0x00, 0x35, 0x00, 0x18, 0x01, 0x66, 0x15, 0x02, 0x15, 0x06, 0x4c, 0x3c, 0x00, 0x00, 0x00, 0x15, 0x02, 0x25, 0x04, 0x18, 0x05, 0x61, 0x72, 0x72, 0x61, 0x79, 0x00, 0x16, 0x02, 0x19, 0x1c, 0x19, 0x1c, 0x26, 0x08, 0x1c, 0x15, 0x02, 0x19, 0x25, 0x00, 0x06, 0x19, 0x28, 0x01, 0x66, 0x05, 0x61, 0x72, 0x72, 0x61, 0x79, 0x15, 0x00, 0x16, 0x04, 0x16, 0x56, 0x16, 0x56, 0x26, 0x08, 0x3c, 0x18, 0x04, 0x01, 0x00, 0x00, 0x00, 0x18, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16, 0x00, 0x28, 0x04, 0x01, 0x00, 0x00, 0x00, 0x18, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x19, 0x1c, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x16, 0x56, 0x16, 0x02, 0x26, 0x08, 0x16, 0x56, 0x14, 0x00, 0x00, 0x28, 0x13, 0x52, 0x41, 0x50, 0x49, 0x44, 0x53, 0x20, 0x53, 0x70, 0x61, 0x72, 0x6b, 0x20, 0x50, 0x6c, 0x75, 0x67, 0x69, 0x6e, 0x19, 0x1c, 0x1c, 0x00, 0x00, 0x00, 0x9f, 0x00, 0x00, 0x00, 0x50, 0x41, 0x52, 0x31}; // read single level list reproducing parquet file cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info{reinterpret_cast<char const*>(list_bytes), sizeof(list_bytes)}); auto table = cudf::io::read_parquet(read_opts); auto const c0 = table.tbl->get_column(0); EXPECT_TRUE(c0.type().id() == cudf::type_id::LIST); auto const lc = cudf::lists_column_view(c0); auto const child = lc.child(); EXPECT_TRUE(child.type().id() == cudf::type_id::INT32); } TEST_F(ParquetReaderTest, ChunkedSingleLevelLists) { unsigned char list_bytes[] = { 0x50, 0x41, 0x52, 0x31, 0x15, 0x00, 0x15, 0x28, 0x15, 0x28, 0x15, 0xa7, 0xce, 0x91, 0x8c, 0x06, 0x1c, 0x15, 0x04, 0x15, 0x00, 0x15, 0x06, 0x15, 0x06, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x02, 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x15, 0x02, 0x19, 0x3c, 0x48, 0x0c, 0x73, 0x70, 0x61, 0x72, 0x6b, 0x5f, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x15, 0x02, 0x00, 0x35, 0x00, 0x18, 0x01, 0x66, 0x15, 0x02, 0x15, 0x06, 0x4c, 0x3c, 0x00, 0x00, 0x00, 0x15, 0x02, 0x25, 0x04, 0x18, 0x05, 0x61, 0x72, 0x72, 0x61, 0x79, 0x00, 0x16, 0x02, 0x19, 0x1c, 0x19, 0x1c, 0x26, 0x08, 0x1c, 0x15, 0x02, 0x19, 0x25, 0x00, 0x06, 0x19, 0x28, 0x01, 0x66, 0x05, 0x61, 0x72, 0x72, 0x61, 0x79, 0x15, 0x00, 0x16, 0x04, 0x16, 0x56, 0x16, 0x56, 0x26, 0x08, 0x3c, 0x18, 0x04, 0x01, 0x00, 0x00, 0x00, 0x18, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16, 0x00, 0x28, 0x04, 0x01, 0x00, 0x00, 0x00, 0x18, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x19, 0x1c, 0x15, 0x00, 0x15, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x16, 0x56, 0x16, 0x02, 0x26, 0x08, 0x16, 0x56, 0x14, 0x00, 0x00, 0x28, 0x13, 0x52, 0x41, 0x50, 0x49, 0x44, 0x53, 0x20, 0x53, 0x70, 0x61, 0x72, 0x6b, 0x20, 0x50, 0x6c, 0x75, 0x67, 0x69, 0x6e, 0x19, 0x1c, 0x1c, 0x00, 0x00, 0x00, 0x9f, 0x00, 0x00, 0x00, 0x50, 0x41, 0x52, 0x31}; auto reader = cudf::io::chunked_parquet_reader( 1L << 31, cudf::io::parquet_reader_options::builder( cudf::io::source_info{reinterpret_cast<char const*>(list_bytes), sizeof(list_bytes)})); int iterations = 0; while (reader.has_next() && iterations < 10) { auto chunk = reader.read_chunk(); } EXPECT_TRUE(iterations < 10); } TEST_F(ParquetWriterTest, CompStats) { auto table = create_random_fixed_table<int>(1, 100000, true); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&unused_buffer}, table->view()) .compression_statistics(stats); cudf::io::write_parquet(opts); EXPECT_NE(stats->num_compressed_bytes(), 0); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); EXPECT_FALSE(std::isnan(stats->compression_ratio())); } TEST_F(ParquetChunkedWriterTest, CompStats) { auto table = create_random_fixed_table<int>(1, 100000, true); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::chunked_parquet_writer_options opts = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{&unused_buffer}) .compression_statistics(stats); cudf::io::parquet_chunked_writer(opts).write(*table); EXPECT_NE(stats->num_compressed_bytes(), 0); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); EXPECT_FALSE(std::isnan(stats->compression_ratio())); auto const single_table_comp_stats = *stats; cudf::io::parquet_chunked_writer(opts).write(*table); EXPECT_EQ(stats->compression_ratio(), single_table_comp_stats.compression_ratio()); EXPECT_EQ(stats->num_compressed_bytes(), 2 * single_table_comp_stats.num_compressed_bytes()); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); } void expect_compression_stats_empty(std::shared_ptr<cudf::io::writer_compression_statistics> stats) { EXPECT_EQ(stats->num_compressed_bytes(), 0); EXPECT_EQ(stats->num_failed_bytes(), 0); EXPECT_EQ(stats->num_skipped_bytes(), 0); EXPECT_TRUE(std::isnan(stats->compression_ratio())); } TEST_F(ParquetWriterTest, CompStatsEmptyTable) { auto table_no_rows = create_random_fixed_table<int>(20, 0, false); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::parquet_writer_options opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{&unused_buffer}, table_no_rows->view()) .compression_statistics(stats); cudf::io::write_parquet(opts); expect_compression_stats_empty(stats); } TEST_F(ParquetChunkedWriterTest, CompStatsEmptyTable) { auto table_no_rows = create_random_fixed_table<int>(20, 0, false); auto const stats = std::make_shared<cudf::io::writer_compression_statistics>(); std::vector<char> unused_buffer; cudf::io::chunked_parquet_writer_options opts = cudf::io::chunked_parquet_writer_options::builder(cudf::io::sink_info{&unused_buffer}) .compression_statistics(stats); cudf::io::parquet_chunked_writer(opts).write(*table_no_rows); expect_compression_stats_empty(stats); } TEST_F(ParquetReaderTest, ReorderedReadMultipleFiles) { constexpr auto num_rows = 50'000; constexpr auto cardinality = 20'000; // table 1 auto str1 = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return "cat " + std::to_string(i % cardinality); }); auto cols1 = cudf::test::strings_column_wrapper(str1, str1 + num_rows); auto int1 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % cardinality; }); auto coli1 = cudf::test::fixed_width_column_wrapper<int>(int1, int1 + num_rows); auto const expected1 = table_view{{cols1, coli1}}; auto const swapped1 = table_view{{coli1, cols1}}; auto const filepath1 = temp_env->get_temp_filepath("LargeReorderedRead1.parquet"); auto out_opts1 = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath1}, expected1) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(out_opts1); // table 2 auto str2 = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return "dog " + std::to_string(i % cardinality); }); auto cols2 = cudf::test::strings_column_wrapper(str2, str2 + num_rows); auto int2 = cudf::detail::make_counting_transform_iterator( 0, [](auto i) { return (i % cardinality) + cardinality; }); auto coli2 = cudf::test::fixed_width_column_wrapper<int>(int2, int2 + num_rows); auto const expected2 = table_view{{cols2, coli2}}; auto const swapped2 = table_view{{coli2, cols2}}; auto const filepath2 = temp_env->get_temp_filepath("LargeReorderedRead2.parquet"); auto out_opts2 = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath2}, expected2) .compression(cudf::io::compression_type::NONE); cudf::io::write_parquet(out_opts2); // read in both files swapping the columns auto read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{{filepath1, filepath2}}) .columns({"_col1", "_col0"}); auto result = cudf::io::read_parquet(read_opts); auto sliced = cudf::slice(result.tbl->view(), {0, num_rows, num_rows, 2 * num_rows}); CUDF_TEST_EXPECT_TABLES_EQUAL(sliced[0], swapped1); CUDF_TEST_EXPECT_TABLES_EQUAL(sliced[1], swapped2); } // Test fixture for metadata tests struct ParquetMetadataReaderTest : public cudf::test::BaseFixture { std::string print(cudf::io::parquet_column_schema schema, int depth = 0) { std::string child_str; for (auto const& child : schema.children()) { child_str += print(child, depth + 1); } return std::string(depth, ' ') + schema.name() + "\n" + child_str; } }; TEST_F(ParquetMetadataReaderTest, TestBasic) { auto const num_rows = 1200; auto ints = random_values<int>(num_rows); auto floats = random_values<float>(num_rows); column_wrapper<int> int_col(ints.begin(), ints.end()); column_wrapper<float> float_col(floats.begin(), floats.end()); table_view expected({int_col, float_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("int_col"); expected_metadata.column_metadata[1].set_name("float_col"); auto filepath = temp_env->get_temp_filepath("MetadataTest.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_parquet(out_opts); auto meta = read_parquet_metadata(cudf::io::source_info{filepath}); EXPECT_EQ(meta.num_rows(), num_rows); std::string expected_schema = R"(schema int_col float_col )"; EXPECT_EQ(expected_schema, print(meta.schema().root())); EXPECT_EQ(meta.schema().root().name(), "schema"); EXPECT_EQ(meta.schema().root().type_kind(), cudf::io::parquet::TypeKind::UNDEFINED_TYPE); ASSERT_EQ(meta.schema().root().num_children(), 2); EXPECT_EQ(meta.schema().root().child(0).name(), "int_col"); EXPECT_EQ(meta.schema().root().child(1).name(), "float_col"); } TEST_F(ParquetMetadataReaderTest, TestNested) { auto const num_rows = 1200; auto const lists_per_row = 4; auto const num_child_rows = num_rows * lists_per_row; auto keys = random_values<int>(num_child_rows); auto vals = random_values<float>(num_child_rows); column_wrapper<int> keys_col(keys.begin(), keys.end()); column_wrapper<float> vals_col(vals.begin(), vals.end()); auto s_col = cudf::test::structs_column_wrapper({keys_col, vals_col}).release(); std::vector<int> row_offsets(num_rows + 1); for (int idx = 0; idx < num_rows + 1; ++idx) { row_offsets[idx] = idx * lists_per_row; } column_wrapper<int> offsets(row_offsets.begin(), row_offsets.end()); auto list_col = cudf::make_lists_column(num_rows, offsets.release(), std::move(s_col), 0, rmm::device_buffer{}); table_view expected({*list_col, *list_col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("maps"); expected_metadata.column_metadata[0].set_list_column_as_map(); expected_metadata.column_metadata[1].set_name("lists"); expected_metadata.column_metadata[1].child(1).child(0).set_name("int_field"); expected_metadata.column_metadata[1].child(1).child(1).set_name("float_field"); auto filepath = temp_env->get_temp_filepath("MetadataTest.orc"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); cudf::io::write_parquet(out_opts); auto meta = read_parquet_metadata(cudf::io::source_info{filepath}); EXPECT_EQ(meta.num_rows(), num_rows); std::string expected_schema = R"(schema maps key_value key value lists list element int_field float_field )"; EXPECT_EQ(expected_schema, print(meta.schema().root())); EXPECT_EQ(meta.schema().root().name(), "schema"); EXPECT_EQ(meta.schema().root().type_kind(), cudf::io::parquet::TypeKind::UNDEFINED_TYPE); // struct ASSERT_EQ(meta.schema().root().num_children(), 2); auto const& out_map_col = meta.schema().root().child(0); EXPECT_EQ(out_map_col.name(), "maps"); EXPECT_EQ(out_map_col.type_kind(), cudf::io::parquet::TypeKind::UNDEFINED_TYPE); // map ASSERT_EQ(out_map_col.num_children(), 1); EXPECT_EQ(out_map_col.child(0).name(), "key_value"); // key_value (named in parquet writer) ASSERT_EQ(out_map_col.child(0).num_children(), 2); EXPECT_EQ(out_map_col.child(0).child(0).name(), "key"); // key (named in parquet writer) EXPECT_EQ(out_map_col.child(0).child(1).name(), "value"); // value (named in parquet writer) EXPECT_EQ(out_map_col.child(0).child(0).type_kind(), cudf::io::parquet::TypeKind::INT32); // int EXPECT_EQ(out_map_col.child(0).child(1).type_kind(), cudf::io::parquet::TypeKind::FLOAT); // float auto const& out_list_col = meta.schema().root().child(1); EXPECT_EQ(out_list_col.name(), "lists"); EXPECT_EQ(out_list_col.type_kind(), cudf::io::parquet::TypeKind::UNDEFINED_TYPE); // list // TODO repetition type? ASSERT_EQ(out_list_col.num_children(), 1); EXPECT_EQ(out_list_col.child(0).name(), "list"); // list (named in parquet writer) ASSERT_EQ(out_list_col.child(0).num_children(), 1); auto const& out_list_struct_col = out_list_col.child(0).child(0); EXPECT_EQ(out_list_struct_col.name(), "element"); // elements (named in parquet writer) EXPECT_EQ(out_list_struct_col.type_kind(), cudf::io::parquet::TypeKind::UNDEFINED_TYPE); // struct ASSERT_EQ(out_list_struct_col.num_children(), 2); auto const& out_int_col = out_list_struct_col.child(0); EXPECT_EQ(out_int_col.name(), "int_field"); EXPECT_EQ(out_int_col.type_kind(), cudf::io::parquet::TypeKind::INT32); auto const& out_float_col = out_list_struct_col.child(1); EXPECT_EQ(out_float_col.name(), "float_field"); EXPECT_EQ(out_float_col.type_kind(), cudf::io::parquet::TypeKind::FLOAT); } TEST_F(ParquetWriterTest, NoNullsAsNonNullable) { auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); column_wrapper<int32_t> col{{1, 2, 3}, valids}; table_view expected({col}); cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_nullability(false); auto filepath = temp_env->get_temp_filepath("NonNullable.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)); // Writer should be able to write a column without nulls as non-nullable EXPECT_NO_THROW(cudf::io::write_parquet(out_opts)); } TEST_F(ParquetReaderTest, FilterSimple) { srand(31337); auto written_table = create_random_fixed_table<int>(9, 9, false); auto filepath = temp_env->get_temp_filepath("FilterSimple.parquet"); cudf::io::parquet_writer_options args = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, *written_table); cudf::io::write_parquet(args); // Filtering AST - table[0] < RAND_MAX/2 auto literal_value = cudf::numeric_scalar<decltype(RAND_MAX)>(RAND_MAX / 2); auto literal = cudf::ast::literal(literal_value); auto col_ref_0 = cudf::ast::column_reference(0); auto filter_expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, literal); auto predicate = cudf::compute_column(*written_table, filter_expression); EXPECT_EQ(predicate->view().type().id(), cudf::type_id::BOOL8) << "Predicate filter should return a boolean"; auto expected = cudf::apply_boolean_mask(*written_table, *predicate); // To make sure AST filters out some elements EXPECT_LT(expected->num_rows(), written_table->num_rows()); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .filter(filter_expression); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } auto create_parquet_with_stats(std::string const& filename) { auto col0 = testdata::ascending<uint32_t>(); auto col1 = testdata::descending<int64_t>(); auto col2 = testdata::unordered<double>(); auto const expected = table_view{{col0, col1, col2}}; cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("col_uint32"); expected_metadata.column_metadata[1].set_name("col_int64"); expected_metadata.column_metadata[2].set_name("col_double"); auto const filepath = temp_env->get_temp_filepath(filename); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(std::move(expected_metadata)) .row_group_size_rows(8000) .stats_level(cudf::io::statistics_freq::STATISTICS_ROWGROUP); cudf::io::write_parquet(out_opts); std::vector<std::unique_ptr<column>> columns; columns.push_back(col0.release()); columns.push_back(col1.release()); columns.push_back(col2.release()); return std::pair{cudf::table{std::move(columns)}, filepath}; } TEST_F(ParquetReaderTest, FilterIdentity) { auto [src, filepath] = create_parquet_with_stats("FilterIdentity.parquet"); // Filtering AST - identity function, always true. auto literal_value = cudf::numeric_scalar<bool>(true); auto literal = cudf::ast::literal(literal_value); auto filter_expression = cudf::ast::operation(cudf::ast::ast_operator::IDENTITY, literal); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .filter(filter_expression); auto result = cudf::io::read_parquet(read_opts); cudf::io::parquet_reader_options read_opts2 = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result2 = cudf::io::read_parquet(read_opts2); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *result2.tbl); } TEST_F(ParquetReaderTest, FilterReferenceExpression) { auto [src, filepath] = create_parquet_with_stats("FilterReferenceExpression.parquet"); // Filtering AST - table[0] < 150 auto literal_value = cudf::numeric_scalar<uint32_t>(150); auto literal = cudf::ast::literal(literal_value); auto col_ref_0 = cudf::ast::column_reference(0); auto filter_expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, literal); // Expected result auto predicate = cudf::compute_column(src, filter_expression); auto expected = cudf::apply_boolean_mask(src, *predicate); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .filter(filter_expression); auto result = cudf::io::read_parquet(read_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } TEST_F(ParquetReaderTest, FilterNamedExpression) { auto [src, filepath] = create_parquet_with_stats("NamedExpression.parquet"); // Filtering AST - table["col_uint32"] < 150 auto literal_value = cudf::numeric_scalar<uint32_t>(150); auto literal = cudf::ast::literal(literal_value); auto col_name_0 = cudf::ast::column_name_reference("col_uint32"); auto parquet_filter = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_name_0, literal); auto col_ref_0 = cudf::ast::column_reference(0); auto table_filter = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, literal); // Expected result auto predicate = cudf::compute_column(src, table_filter); auto expected = cudf::apply_boolean_mask(src, *predicate); cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .filter(parquet_filter); auto result = cudf::io::read_parquet(read_opts); // tests CUDF_TEST_EXPECT_TABLES_EQUAL(*result.tbl, *expected); } // Test for Types - numeric, chrono, string. template <typename T> struct ParquetReaderPredicatePushdownTest : public ParquetReaderTest {}; // These chrono types are not supported because parquet writer does not have a type to represent // them. using UnsupportedChronoTypes = cudf::test::Types<cudf::timestamp_s, cudf::duration_D, cudf::duration_s>; // Also fixed point types unsupported, because AST does not support them yet. using SupportedTestTypes = cudf::test::RemoveIf<cudf::test::ContainedIn<UnsupportedChronoTypes>, cudf::test::ComparableTypes>; TYPED_TEST_SUITE(ParquetReaderPredicatePushdownTest, SupportedTestTypes); template <typename T> auto create_parquet_typed_with_stats(std::string const& filename) { auto col0 = testdata::ascending<T>(); auto col1 = testdata::descending<T>(); auto col2 = testdata::unordered<T>(); auto const written_table = table_view{{col0, col1, col2}}; auto const filepath = temp_env->get_temp_filepath("FilterTyped.parquet"); { cudf::io::table_input_metadata expected_metadata(written_table); expected_metadata.column_metadata[0].set_name("col0"); expected_metadata.column_metadata[1].set_name("col1"); expected_metadata.column_metadata[2].set_name("col2"); const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, written_table) .metadata(std::move(expected_metadata)) .row_group_size_rows(8000); cudf::io::write_parquet(out_opts); } std::vector<std::unique_ptr<column>> columns; columns.push_back(col0.release()); columns.push_back(col1.release()); columns.push_back(col2.release()); return std::pair{cudf::table{std::move(columns)}, filepath}; } TYPED_TEST(ParquetReaderPredicatePushdownTest, FilterTyped) { using T = TypeParam; auto const [src, filepath] = create_parquet_typed_with_stats<T>("FilterTyped.parquet"); auto const written_table = src.view(); // Filtering AST auto literal_value = []() { if constexpr (cudf::is_timestamp<T>()) { // table[0] < 10000 timestamp days/seconds/milliseconds/microseconds/nanoseconds return cudf::timestamp_scalar<T>(T(typename T::duration(10000))); // i (0-20,000) } else if constexpr (cudf::is_duration<T>()) { // table[0] < 10000 day/seconds/milliseconds/microseconds/nanoseconds return cudf::duration_scalar<T>(T(10000)); // i (0-20,000) } else if constexpr (std::is_same_v<T, cudf::string_view>) { // table[0] < "000010000" return cudf::string_scalar("000010000"); // i (0-20,000) } else { // table[0] < 0 or 100u return cudf::numeric_scalar<T>((100 - 100 * std::is_signed_v<T>)); // i/100 (-100-100/ 0-200) } }(); auto literal = cudf::ast::literal(literal_value); auto col_name_0 = cudf::ast::column_name_reference("col0"); auto filter_expression = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_name_0, literal); auto col_ref_0 = cudf::ast::column_reference(0); auto ref_filter = cudf::ast::operation(cudf::ast::ast_operator::LESS, col_ref_0, literal); // Expected result auto predicate = cudf::compute_column(written_table, ref_filter); EXPECT_EQ(predicate->view().type().id(), cudf::type_id::BOOL8) << "Predicate filter should return a boolean"; auto expected = cudf::apply_boolean_mask(written_table, *predicate); // Reading with Predicate Pushdown cudf::io::parquet_reader_options read_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}) .filter(filter_expression); auto result = cudf::io::read_parquet(read_opts); auto result_table = result.tbl->view(); // tests EXPECT_EQ(int(written_table.column(0).type().id()), int(result_table.column(0).type().id())) << "col0 type mismatch"; // To make sure AST filters out some elements EXPECT_LT(expected->num_rows(), written_table.num_rows()); EXPECT_EQ(result_table.num_rows(), expected->num_rows()); EXPECT_EQ(result_table.num_columns(), expected->num_columns()); CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result_table); } TEST_F(ParquetReaderTest, FilterMultiple1) { using T = cudf::string_view; auto const [src, filepath] = create_parquet_typed_with_stats<T>("FilterMultiple1.parquet"); auto const written_table = src.view(); // Filtering AST - 10000 < table[0] < 12000 std::string const low = "000010000"; std::string const high = "000012000"; auto lov = cudf::string_scalar(low, true); auto hiv = cudf::string_scalar(high, true); auto filter_col = cudf::ast::column_reference(0); auto lo_lit = cudf::ast::literal(lov); auto hi_lit = cudf::ast::literal(hiv); auto expr_1 = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col, lo_lit); auto expr_2 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col, hi_lit); auto expr_3 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_1, expr_2); // Expected result auto predicate = cudf::compute_column(written_table, expr_3); auto expected = cudf::apply_boolean_mask(written_table, *predicate); auto si = cudf::io::source_info(filepath); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr_3); auto table_with_metadata = cudf::io::read_parquet(builder); auto result = table_with_metadata.tbl->view(); // tests CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result); } TEST_F(ParquetReaderTest, FilterMultiple2) { // multiple conditions on same column. using T = cudf::string_view; auto const [src, filepath] = create_parquet_typed_with_stats<T>("FilterMultiple2.parquet"); auto const written_table = src.view(); // 0-8000, 8001-16000, 16001-20000 // Filtering AST // (table[0] >= "000010000" AND table[0] < "000012000") OR // (table[0] >= "000017000" AND table[0] < "000019000") std::string const low1 = "000010000"; std::string const high1 = "000012000"; auto lov = cudf::string_scalar(low1, true); auto hiv = cudf::string_scalar(high1, true); auto filter_col = cudf::ast::column_reference(0); auto lo_lit = cudf::ast::literal(lov); auto hi_lit = cudf::ast::literal(hiv); auto expr_1 = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col, lo_lit); auto expr_2 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col, hi_lit); auto expr_3 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_1, expr_2); std::string const low2 = "000017000"; std::string const high2 = "000019000"; auto lov2 = cudf::string_scalar(low2, true); auto hiv2 = cudf::string_scalar(high2, true); auto lo_lit2 = cudf::ast::literal(lov2); auto hi_lit2 = cudf::ast::literal(hiv2); auto expr_4 = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col, lo_lit2); auto expr_5 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col, hi_lit2); auto expr_6 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_4, expr_5); auto expr_7 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_OR, expr_3, expr_6); // Expected result auto predicate = cudf::compute_column(written_table, expr_7); auto expected = cudf::apply_boolean_mask(written_table, *predicate); auto si = cudf::io::source_info(filepath); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr_7); auto table_with_metadata = cudf::io::read_parquet(builder); auto result = table_with_metadata.tbl->view(); // tests CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result); } TEST_F(ParquetReaderTest, FilterMultiple3) { // multiple conditions with reference to multiple columns. // index and name references mixed. using T = uint32_t; auto const [src, filepath] = create_parquet_typed_with_stats<T>("FilterMultiple3.parquet"); auto const written_table = src.view(); // Filtering AST - (table[0] >= 70 AND table[0] < 90) OR (table[1] >= 100 AND table[1] < 120) // row groups min, max: // table[0] 0-80, 81-160, 161-200. // table[1] 200-121, 120-41, 40-0. auto filter_col1 = cudf::ast::column_reference(0); auto filter_col2 = cudf::ast::column_name_reference("col1"); T constexpr low1 = 70; T constexpr high1 = 90; T constexpr low2 = 100; T constexpr high2 = 120; auto lov = cudf::numeric_scalar(low1, true); auto hiv = cudf::numeric_scalar(high1, true); auto lo_lit1 = cudf::ast::literal(lov); auto hi_lit1 = cudf::ast::literal(hiv); auto expr_1 = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col1, lo_lit1); auto expr_2 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col1, hi_lit1); auto expr_3 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_1, expr_2); auto lov2 = cudf::numeric_scalar(low2, true); auto hiv2 = cudf::numeric_scalar(high2, true); auto lo_lit2 = cudf::ast::literal(lov2); auto hi_lit2 = cudf::ast::literal(hiv2); auto expr_4 = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col2, lo_lit2); auto expr_5 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col2, hi_lit2); auto expr_6 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_4, expr_5); // expression to test auto expr_7 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_OR, expr_3, expr_6); // Expected result auto filter_col2_ref = cudf::ast::column_reference(1); auto expr_4_ref = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col2_ref, lo_lit2); auto expr_5_ref = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col2_ref, hi_lit2); auto expr_6_ref = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_4_ref, expr_5_ref); auto expr_7_ref = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_OR, expr_3, expr_6_ref); auto predicate = cudf::compute_column(written_table, expr_7_ref); auto expected = cudf::apply_boolean_mask(written_table, *predicate); auto si = cudf::io::source_info(filepath); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr_7); auto table_with_metadata = cudf::io::read_parquet(builder); auto result = table_with_metadata.tbl->view(); // tests CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result); } TEST_F(ParquetReaderTest, FilterSupported) { using T = uint32_t; auto const [src, filepath] = create_parquet_typed_with_stats<T>("FilterSupported.parquet"); auto const written_table = src.view(); // Filtering AST - ((table[0] > 70 AND table[0] <= 90) OR (table[1] >= 100 AND table[1] < 120)) // AND (table[1] != 110) // row groups min, max: // table[0] 0-80, 81-160, 161-200. // table[1] 200-121, 120-41, 40-0. auto filter_col1 = cudf::ast::column_reference(0); auto filter_col2 = cudf::ast::column_reference(1); T constexpr low1 = 70; T constexpr high1 = 90; T constexpr low2 = 100; T constexpr high2 = 120; T constexpr skip_value = 110; auto lov = cudf::numeric_scalar(low1, true); auto hiv = cudf::numeric_scalar(high1, true); auto lo_lit1 = cudf::ast::literal(lov); auto hi_lit1 = cudf::ast::literal(hiv); auto expr_1 = cudf::ast::operation(cudf::ast::ast_operator::GREATER, filter_col1, lo_lit1); auto expr_2 = cudf::ast::operation(cudf::ast::ast_operator::LESS_EQUAL, filter_col1, hi_lit1); auto expr_3 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_1, expr_2); auto lov2 = cudf::numeric_scalar(low2, true); auto hiv2 = cudf::numeric_scalar(high2, true); auto lo_lit2 = cudf::ast::literal(lov2); auto hi_lit2 = cudf::ast::literal(hiv2); auto expr_4 = cudf::ast::operation(cudf::ast::ast_operator::GREATER_EQUAL, filter_col2, lo_lit2); auto expr_5 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col2, hi_lit2); auto expr_6 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_4, expr_5); auto expr_7 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_OR, expr_3, expr_6); auto skip_ov = cudf::numeric_scalar(skip_value, true); auto skip_lit = cudf::ast::literal(skip_ov); auto expr_8 = cudf::ast::operation(cudf::ast::ast_operator::NOT_EQUAL, filter_col2, skip_lit); auto expr_9 = cudf::ast::operation(cudf::ast::ast_operator::LOGICAL_AND, expr_7, expr_8); // Expected result auto predicate = cudf::compute_column(written_table, expr_9); auto expected = cudf::apply_boolean_mask(written_table, *predicate); auto si = cudf::io::source_info(filepath); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr_9); auto table_with_metadata = cudf::io::read_parquet(builder); auto result = table_with_metadata.tbl->view(); // tests CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result); } TEST_F(ParquetReaderTest, FilterSupported2) { using T = uint32_t; constexpr auto num_rows = 4000; auto elements0 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i / 2000; }); auto elements1 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i / 1000; }); auto elements2 = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i / 500; }); auto col0 = cudf::test::fixed_width_column_wrapper<T>(elements0, elements0 + num_rows); auto col1 = cudf::test::fixed_width_column_wrapper<T>(elements1, elements1 + num_rows); auto col2 = cudf::test::fixed_width_column_wrapper<T>(elements2, elements2 + num_rows); auto const written_table = table_view{{col0, col1, col2}}; auto const filepath = temp_env->get_temp_filepath("FilterSupported2.parquet"); { const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, written_table) .row_group_size_rows(1000); cudf::io::write_parquet(out_opts); } auto si = cudf::io::source_info(filepath); auto filter_col0 = cudf::ast::column_reference(0); auto filter_col1 = cudf::ast::column_reference(1); auto filter_col2 = cudf::ast::column_reference(2); auto s_value = cudf::numeric_scalar<T>(1, true); auto lit_value = cudf::ast::literal(s_value); auto test_expr = [&](auto& expr) { // Expected result auto predicate = cudf::compute_column(written_table, expr); auto expected = cudf::apply_boolean_mask(written_table, *predicate); // tests auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr); auto table_with_metadata = cudf::io::read_parquet(builder); auto result = table_with_metadata.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result); }; // row groups min, max: // table[0] 0-0, 0-0, 1-1, 1-1 // table[1] 0-0, 1-1, 2-2, 3-3 // table[2] 0-1, 2-3, 4-5, 6-7 // Filtering AST - table[i] == 1 { auto expr0 = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, filter_col0, lit_value); test_expr(expr0); auto expr1 = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, filter_col1, lit_value); test_expr(expr1); auto expr2 = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, filter_col2, lit_value); test_expr(expr2); } // Filtering AST - table[i] != 1 { auto expr0 = cudf::ast::operation(cudf::ast::ast_operator::NOT_EQUAL, filter_col0, lit_value); test_expr(expr0); auto expr1 = cudf::ast::operation(cudf::ast::ast_operator::NOT_EQUAL, filter_col1, lit_value); test_expr(expr1); auto expr2 = cudf::ast::operation(cudf::ast::ast_operator::NOT_EQUAL, filter_col2, lit_value); test_expr(expr2); } } // Error types - type mismatch, invalid column name, invalid literal type, invalid operator, // non-bool filter output type. TEST_F(ParquetReaderTest, FilterErrors) { using T = uint32_t; auto const [src, filepath] = create_parquet_typed_with_stats<T>("FilterErrors.parquet"); auto const written_table = src.view(); auto si = cudf::io::source_info(filepath); // Filtering AST - invalid column index { auto filter_col1 = cudf::ast::column_reference(3); T constexpr low = 100; auto lov = cudf::numeric_scalar(low, true); auto low_lot = cudf::ast::literal(lov); auto expr = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col1, low_lot); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr); EXPECT_THROW(cudf::io::read_parquet(builder), cudf::logic_error); } // Filtering AST - invalid column name { auto filter_col1 = cudf::ast::column_name_reference("col3"); T constexpr low = 100; auto lov = cudf::numeric_scalar(low, true); auto low_lot = cudf::ast::literal(lov); auto expr = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col1, low_lot); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr); EXPECT_THROW(cudf::io::read_parquet(builder), cudf::logic_error); } // Filtering AST - incompatible literal type { auto filter_col1 = cudf::ast::column_name_reference("col0"); auto filter_col2 = cudf::ast::column_reference(1); int64_t constexpr low = 100; auto lov = cudf::numeric_scalar(low, true); auto low_lot = cudf::ast::literal(lov); auto expr1 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col1, low_lot); auto expr2 = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col2, low_lot); auto builder1 = cudf::io::parquet_reader_options::builder(si).filter(expr1); EXPECT_THROW(cudf::io::read_parquet(builder1), cudf::logic_error); auto builder2 = cudf::io::parquet_reader_options::builder(si).filter(expr2); EXPECT_THROW(cudf::io::read_parquet(builder2), cudf::logic_error); } // Filtering AST - "table[0] + 110" is invalid filter expression { auto filter_col1 = cudf::ast::column_reference(0); T constexpr add_value = 110; auto add_v = cudf::numeric_scalar(add_value, true); auto add_lit = cudf::ast::literal(add_v); auto expr_8 = cudf::ast::operation(cudf::ast::ast_operator::ADD, filter_col1, add_lit); auto si = cudf::io::source_info(filepath); auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr_8); EXPECT_THROW(cudf::io::read_parquet(builder), cudf::logic_error); // Expected result throw to show that the filter expression is invalid, // not a limitation of the parquet predicate pushdown. auto predicate = cudf::compute_column(written_table, expr_8); EXPECT_THROW(cudf::apply_boolean_mask(written_table, *predicate), cudf::logic_error); } // Filtering AST - INT64(table[0] < 100) non-bool expression { auto filter_col1 = cudf::ast::column_reference(0); T constexpr low = 100; auto lov = cudf::numeric_scalar(low, true); auto low_lot = cudf::ast::literal(lov); auto bool_expr = cudf::ast::operation(cudf::ast::ast_operator::LESS, filter_col1, low_lot); auto cast = cudf::ast::operation(cudf::ast::ast_operator::CAST_TO_INT64, bool_expr); auto builder = cudf::io::parquet_reader_options::builder(si).filter(cast); EXPECT_THROW(cudf::io::read_parquet(builder), cudf::logic_error); EXPECT_NO_THROW(cudf::compute_column(written_table, cast)); auto predicate = cudf::compute_column(written_table, cast); EXPECT_NE(predicate->view().type().id(), cudf::type_id::BOOL8); } } // Filter without stats information in file. TEST_F(ParquetReaderTest, FilterNoStats) { using T = uint32_t; constexpr auto num_rows = 16000; auto elements = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i / 1000; }); auto col0 = cudf::test::fixed_width_column_wrapper<T>(elements, elements + num_rows); auto const written_table = table_view{{col0}}; auto const filepath = temp_env->get_temp_filepath("FilterNoStats.parquet"); { const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, written_table) .row_group_size_rows(8000) .stats_level(cudf::io::statistics_freq::STATISTICS_NONE); cudf::io::write_parquet(out_opts); } auto si = cudf::io::source_info(filepath); auto filter_col0 = cudf::ast::column_reference(0); auto s_value = cudf::numeric_scalar<T>(1, true); auto lit_value = cudf::ast::literal(s_value); // row groups min, max: // table[0] 0-0, 1-1, 2-2, 3-3 // Filtering AST - table[0] > 1 auto expr = cudf::ast::operation(cudf::ast::ast_operator::GREATER, filter_col0, lit_value); // Expected result auto predicate = cudf::compute_column(written_table, expr); auto expected = cudf::apply_boolean_mask(written_table, *predicate); // tests auto builder = cudf::io::parquet_reader_options::builder(si).filter(expr); auto table_with_metadata = cudf::io::read_parquet(builder); auto result = table_with_metadata.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), result); } // Filter for float column with NaN values TEST_F(ParquetReaderTest, FilterFloatNAN) { constexpr auto num_rows = 24000; auto elements = cudf::detail::make_counting_transform_iterator( 0, [num_rows](auto i) { return i > num_rows / 2 ? NAN : i; }); auto col0 = cudf::test::fixed_width_column_wrapper<float>(elements, elements + num_rows); auto col1 = cudf::test::fixed_width_column_wrapper<double>(elements, elements + num_rows); auto const written_table = table_view{{col0, col1}}; auto const filepath = temp_env->get_temp_filepath("FilterFloatNAN.parquet"); { const cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, written_table) .row_group_size_rows(8000); cudf::io::write_parquet(out_opts); } auto si = cudf::io::source_info(filepath); auto filter_col0 = cudf::ast::column_reference(0); auto filter_col1 = cudf::ast::column_reference(1); auto s0_value = cudf::numeric_scalar<float>(NAN, true); auto lit0_value = cudf::ast::literal(s0_value); auto s1_value = cudf::numeric_scalar<double>(NAN, true); auto lit1_value = cudf::ast::literal(s1_value); // row groups min, max: // table[0] 0-0, 1-1, 2-2, 3-3 // Filtering AST - table[0] == NAN, table[1] != NAN auto expr_eq = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, filter_col0, lit0_value); auto expr_neq = cudf::ast::operation(cudf::ast::ast_operator::NOT_EQUAL, filter_col1, lit1_value); // Expected result auto predicate0 = cudf::compute_column(written_table, expr_eq); auto expected0 = cudf::apply_boolean_mask(written_table, *predicate0); auto predicate1 = cudf::compute_column(written_table, expr_neq); auto expected1 = cudf::apply_boolean_mask(written_table, *predicate1); // tests auto builder0 = cudf::io::parquet_reader_options::builder(si).filter(expr_eq); auto table_with_metadata0 = cudf::io::read_parquet(builder0); auto result0 = table_with_metadata0.tbl->view(); auto builder1 = cudf::io::parquet_reader_options::builder(si).filter(expr_neq); auto table_with_metadata1 = cudf::io::read_parquet(builder1); auto result1 = table_with_metadata1.tbl->view(); CUDF_TEST_EXPECT_TABLES_EQUAL(expected0->view(), result0); CUDF_TEST_EXPECT_TABLES_EQUAL(expected1->view(), result1); } TEST_F(ParquetWriterTest, TimestampMicrosINT96NoOverflow) { using namespace cuda::std::chrono; using namespace cudf::io; column_wrapper<cudf::timestamp_us> big_ts_col{ sys_days{year{3023} / month{7} / day{14}} + 7h + 38min + 45s + 418688us, sys_days{year{723} / month{3} / day{21}} + 14h + 20min + 13s + microseconds{781ms}}; table_view expected({big_ts_col}); auto filepath = temp_env->get_temp_filepath("BigINT96Timestamp.parquet"); auto const out_opts = parquet_writer_options::builder(sink_info{filepath}, expected).int96_timestamps(true).build(); write_parquet(out_opts); auto const in_opts = parquet_reader_options::builder(source_info(filepath)) .timestamp_type(cudf::data_type(cudf::type_id::TIMESTAMP_MICROSECONDS)) .build(); auto const result = read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TEST_F(ParquetWriterTest, PreserveNullability) { constexpr auto num_rows = 100; auto const col0_data = random_values<int32_t>(num_rows); auto const col1_data = random_values<int32_t>(num_rows); auto const col0_validity = cudf::test::iterators::no_nulls(); auto const col1_validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 2 == 0; }); column_wrapper<int32_t> col0{col0_data.begin(), col0_data.end(), col0_validity}; column_wrapper<int32_t> col1{col1_data.begin(), col1_data.end(), col1_validity}; auto const col2 = make_parquet_list_list_col<int>(0, num_rows, 5, 8, true); auto const expected = table_view{{col0, col1, *col2}}; cudf::io::table_input_metadata expected_metadata(expected); expected_metadata.column_metadata[0].set_name("mandatory"); expected_metadata.column_metadata[0].set_nullability(false); expected_metadata.column_metadata[1].set_name("optional"); expected_metadata.column_metadata[1].set_nullability(true); expected_metadata.column_metadata[2].set_name("lists"); expected_metadata.column_metadata[2].set_nullability(true); // offsets is a cudf thing that's not part of the parquet schema so it won't have nullability set expected_metadata.column_metadata[2].child(0).set_name("offsets"); expected_metadata.column_metadata[2].child(1).set_name("element"); expected_metadata.column_metadata[2].child(1).set_nullability(false); expected_metadata.column_metadata[2].child(1).child(0).set_name("offsets"); expected_metadata.column_metadata[2].child(1).child(1).set_name("element"); expected_metadata.column_metadata[2].child(1).child(1).set_nullability(true); auto const filepath = temp_env->get_temp_filepath("PreserveNullability.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .metadata(expected_metadata); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options const in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto const result = cudf::io::read_parquet(in_opts); auto const read_metadata = cudf::io::table_input_metadata{result.metadata}; // test that expected_metadata matches read_metadata std::function<void(cudf::io::column_in_metadata, cudf::io::column_in_metadata)> compare_names_and_nullability = [&](auto lhs, auto rhs) { EXPECT_EQ(lhs.get_name(), rhs.get_name()); ASSERT_EQ(lhs.is_nullability_defined(), rhs.is_nullability_defined()); if (lhs.is_nullability_defined()) { EXPECT_EQ(lhs.nullable(), rhs.nullable()); } ASSERT_EQ(lhs.num_children(), rhs.num_children()); for (int i = 0; i < lhs.num_children(); ++i) { compare_names_and_nullability(lhs.child(i), rhs.child(i)); } }; ASSERT_EQ(expected_metadata.column_metadata.size(), read_metadata.column_metadata.size()); for (size_t i = 0; i < expected_metadata.column_metadata.size(); ++i) { compare_names_and_nullability(expected_metadata.column_metadata[i], read_metadata.column_metadata[i]); } } TEST_P(ParquetV2Test, CheckEncodings) { using cudf::io::parquet::detail::Encoding; constexpr auto num_rows = 100'000; auto const is_v2 = GetParam(); auto const validity = cudf::test::iterators::no_nulls(); // data should be PLAIN for v1, RLE for V2 auto col0_data = cudf::detail::make_counting_transform_iterator(0, [](auto i) -> bool { return i % 2 == 0; }); // data should be PLAIN for v1, DELTA_BINARY_PACKED for v2 auto col1_data = random_values<int32_t>(num_rows); // data should be PLAIN_DICTIONARY for v1, PLAIN and RLE_DICTIONARY for v2 auto col2_data = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 1; }); cudf::test::fixed_width_column_wrapper<bool> col0{col0_data, col0_data + num_rows, validity}; column_wrapper<int32_t> col1{col1_data.begin(), col1_data.end(), validity}; column_wrapper<int32_t> col2{col2_data, col2_data + num_rows, validity}; auto expected = table_view{{col0, col1, col2}}; auto const filename = is_v2 ? "CheckEncodingsV2.parquet" : "CheckEncodingsV1.parquet"; auto filepath = temp_env->get_temp_filepath(filename); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .max_page_size_rows(num_rows) .write_v2_headers(is_v2); cudf::io::write_parquet(out_opts); // make sure the expected encodings are present auto contains = [](auto const& vec, auto const& enc) { return std::find(vec.begin(), vec.end(), enc) != vec.end(); }; auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); auto const& chunk0_enc = fmd.row_groups[0].columns[0].meta_data.encodings; auto const& chunk1_enc = fmd.row_groups[0].columns[1].meta_data.encodings; auto const& chunk2_enc = fmd.row_groups[0].columns[2].meta_data.encodings; if (is_v2) { // col0 should have RLE for rep/def and data EXPECT_TRUE(chunk0_enc.size() == 1); EXPECT_TRUE(contains(chunk0_enc, Encoding::RLE)); // col1 should have RLE for rep/def and DELTA_BINARY_PACKED for data EXPECT_TRUE(chunk1_enc.size() == 2); EXPECT_TRUE(contains(chunk1_enc, Encoding::RLE)); EXPECT_TRUE(contains(chunk1_enc, Encoding::DELTA_BINARY_PACKED)); // col2 should have RLE for rep/def, PLAIN for dict, and RLE_DICTIONARY for data EXPECT_TRUE(chunk2_enc.size() == 3); EXPECT_TRUE(contains(chunk2_enc, Encoding::RLE)); EXPECT_TRUE(contains(chunk2_enc, Encoding::PLAIN)); EXPECT_TRUE(contains(chunk2_enc, Encoding::RLE_DICTIONARY)); } else { // col0 should have RLE for rep/def and PLAIN for data EXPECT_TRUE(chunk0_enc.size() == 2); EXPECT_TRUE(contains(chunk0_enc, Encoding::RLE)); EXPECT_TRUE(contains(chunk0_enc, Encoding::PLAIN)); // col1 should have RLE for rep/def and PLAIN for data EXPECT_TRUE(chunk1_enc.size() == 2); EXPECT_TRUE(contains(chunk1_enc, Encoding::RLE)); EXPECT_TRUE(contains(chunk1_enc, Encoding::PLAIN)); // col2 should have RLE for rep/def and PLAIN_DICTIONARY for data and dict EXPECT_TRUE(chunk2_enc.size() == 2); EXPECT_TRUE(contains(chunk2_enc, Encoding::RLE)); EXPECT_TRUE(contains(chunk2_enc, Encoding::PLAIN_DICTIONARY)); } } // removing duration_D, duration_s, and timestamp_s as they don't appear to be supported properly. // see definition of UnsupportedChronoTypes above. using DeltaDecimalTypes = cudf::test::Types<numeric::decimal32, numeric::decimal64>; using DeltaBinaryTypes = cudf::test::Concat<cudf::test::IntegralTypesNotBool, cudf::test::ChronoTypes, DeltaDecimalTypes>; using SupportedDeltaTestTypes = cudf::test::RemoveIf<cudf::test::ContainedIn<UnsupportedChronoTypes>, DeltaBinaryTypes>; TYPED_TEST_SUITE(ParquetWriterDeltaTest, SupportedDeltaTestTypes); TYPED_TEST(ParquetWriterDeltaTest, SupportedDeltaTestTypes) { using T = TypeParam; auto col0 = testdata::ascending<T>(); auto col1 = testdata::unordered<T>(); auto const expected = table_view{{col0, col1}}; auto const filepath = temp_env->get_temp_filepath("DeltaBinaryPacked.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected) .write_v2_headers(true) .dictionary_policy(cudf::io::dictionary_policy::NEVER); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, result.tbl->view()); } TYPED_TEST(ParquetWriterDeltaTest, SupportedDeltaTestTypesSliced) { using T = TypeParam; constexpr int num_rows = 4'000; auto col0 = testdata::ascending<T>(); auto col1 = testdata::unordered<T>(); auto const expected = table_view{{col0, col1}}; auto expected_slice = cudf::slice(expected, {num_rows, 2 * num_rows}); ASSERT_EQ(expected_slice[0].num_rows(), num_rows); auto const filepath = temp_env->get_temp_filepath("DeltaBinaryPackedSliced.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected_slice) .write_v2_headers(true) .dictionary_policy(cudf::io::dictionary_policy::NEVER); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_slice, result.tbl->view()); } TYPED_TEST(ParquetWriterDeltaTest, SupportedDeltaListSliced) { using T = TypeParam; constexpr int num_slice = 4'000; constexpr int num_rows = 32 * 1024; std::mt19937 gen(6542); std::bernoulli_distribution bn(0.7f); auto valids = cudf::detail::make_counting_transform_iterator(0, [&](int index) { return bn(gen); }); auto values = thrust::make_counting_iterator(0); // list<T> constexpr int vals_per_row = 4; auto c1_offset_iter = cudf::detail::make_counting_transform_iterator( 0, [vals_per_row](cudf::size_type idx) { return idx * vals_per_row; }); cudf::test::fixed_width_column_wrapper<cudf::size_type> c1_offsets(c1_offset_iter, c1_offset_iter + num_rows + 1); cudf::test::fixed_width_column_wrapper<T> c1_vals( values, values + (num_rows * vals_per_row), valids); auto [null_mask, null_count] = cudf::test::detail::make_null_mask(valids, valids + num_rows); auto _c1 = cudf::make_lists_column( num_rows, c1_offsets.release(), c1_vals.release(), null_count, std::move(null_mask)); auto c1 = cudf::purge_nonempty_nulls(*_c1); auto const expected = table_view{{*c1}}; auto expected_slice = cudf::slice(expected, {num_slice, 2 * num_slice}); ASSERT_EQ(expected_slice[0].num_rows(), num_slice); auto const filepath = temp_env->get_temp_filepath("DeltaBinaryPackedListSliced.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, expected_slice) .write_v2_headers(true) .dictionary_policy(cudf::io::dictionary_policy::NEVER); cudf::io::write_parquet(out_opts); cudf::io::parquet_reader_options in_opts = cudf::io::parquet_reader_options::builder(cudf::io::source_info{filepath}); auto result = cudf::io::read_parquet(in_opts); CUDF_TEST_EXPECT_TABLES_EQUAL(expected_slice, result.tbl->view()); } TEST_F(ParquetWriterTest, EmptyMinStringStatistics) { char const* const min_val = ""; char const* const max_val = "zzz"; std::vector<char const*> strings{min_val, max_val, "pining", "for", "the", "fjords"}; column_wrapper<cudf::string_view> string_col{strings.begin(), strings.end()}; auto const output = table_view{{string_col}}; auto const filepath = temp_env->get_temp_filepath("EmptyMinStringStatistics.parquet"); cudf::io::parquet_writer_options out_opts = cudf::io::parquet_writer_options::builder(cudf::io::sink_info{filepath}, output); cudf::io::write_parquet(out_opts); auto const source = cudf::io::datasource::create(filepath); cudf::io::parquet::detail::FileMetaData fmd; read_footer(source, &fmd); ASSERT_TRUE(fmd.row_groups.size() > 0); ASSERT_TRUE(fmd.row_groups[0].columns.size() > 0); auto const& chunk = fmd.row_groups[0].columns[0]; auto const stats = get_statistics(chunk); ASSERT_TRUE(stats.min_value.has_value()); ASSERT_TRUE(stats.max_value.has_value()); auto const min_value = std::string{reinterpret_cast<char const*>(stats.min_value.value().data()), stats.min_value.value().size()}; auto const max_value = std::string{reinterpret_cast<char const*>(stats.max_value.value().data()), stats.max_value.value().size()}; EXPECT_EQ(min_value, std::string(min_val)); EXPECT_EQ(max_value, std::string(max_val)); } TEST_F(ParquetReaderTest, RepeatedNoAnnotations) { constexpr unsigned char repeated_bytes[] = { 0x50, 0x41, 0x52, 0x31, 0x15, 0x04, 0x15, 0x30, 0x15, 0x30, 0x4c, 0x15, 0x0c, 0x15, 0x00, 0x12, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x15, 0x00, 0x15, 0x0a, 0x15, 0x0a, 0x2c, 0x15, 0x0c, 0x15, 0x10, 0x15, 0x06, 0x15, 0x06, 0x00, 0x00, 0x03, 0x03, 0x88, 0xc6, 0x02, 0x26, 0x80, 0x01, 0x1c, 0x15, 0x02, 0x19, 0x25, 0x00, 0x10, 0x19, 0x18, 0x02, 0x69, 0x64, 0x15, 0x00, 0x16, 0x0c, 0x16, 0x78, 0x16, 0x78, 0x26, 0x54, 0x26, 0x08, 0x00, 0x00, 0x15, 0x04, 0x15, 0x40, 0x15, 0x40, 0x4c, 0x15, 0x08, 0x15, 0x00, 0x12, 0x00, 0x00, 0xe3, 0x0c, 0x23, 0x4b, 0x01, 0x00, 0x00, 0x00, 0xc7, 0x35, 0x3a, 0x42, 0x00, 0x00, 0x00, 0x00, 0x8e, 0x6b, 0x74, 0x84, 0x00, 0x00, 0x00, 0x00, 0x55, 0xa1, 0xae, 0xc6, 0x00, 0x00, 0x00, 0x00, 0x15, 0x00, 0x15, 0x22, 0x15, 0x22, 0x2c, 0x15, 0x10, 0x15, 0x10, 0x15, 0x06, 0x15, 0x06, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0xc0, 0x03, 0x00, 0x00, 0x00, 0x03, 0x90, 0xaa, 0x02, 0x03, 0x94, 0x03, 0x26, 0xda, 0x02, 0x1c, 0x15, 0x04, 0x19, 0x25, 0x00, 0x10, 0x19, 0x38, 0x0c, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x4e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x73, 0x05, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x06, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x15, 0x00, 0x16, 0x10, 0x16, 0xa0, 0x01, 0x16, 0xa0, 0x01, 0x26, 0x96, 0x02, 0x26, 0xba, 0x01, 0x00, 0x00, 0x15, 0x04, 0x15, 0x24, 0x15, 0x24, 0x4c, 0x15, 0x04, 0x15, 0x00, 0x12, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x68, 0x6f, 0x6d, 0x65, 0x06, 0x00, 0x00, 0x00, 0x6d, 0x6f, 0x62, 0x69, 0x6c, 0x65, 0x15, 0x00, 0x15, 0x20, 0x15, 0x20, 0x2c, 0x15, 0x10, 0x15, 0x10, 0x15, 0x06, 0x15, 0x06, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0xc0, 0x03, 0x00, 0x00, 0x00, 0x03, 0x90, 0xef, 0x01, 0x03, 0x04, 0x26, 0xcc, 0x04, 0x1c, 0x15, 0x0c, 0x19, 0x25, 0x00, 0x10, 0x19, 0x38, 0x0c, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x4e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x73, 0x05, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x04, 0x6b, 0x69, 0x6e, 0x64, 0x15, 0x00, 0x16, 0x10, 0x16, 0x82, 0x01, 0x16, 0x82, 0x01, 0x26, 0x8a, 0x04, 0x26, 0xca, 0x03, 0x00, 0x00, 0x15, 0x02, 0x19, 0x6c, 0x48, 0x04, 0x75, 0x73, 0x65, 0x72, 0x15, 0x04, 0x00, 0x15, 0x02, 0x25, 0x00, 0x18, 0x02, 0x69, 0x64, 0x00, 0x35, 0x02, 0x18, 0x0c, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x4e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x73, 0x15, 0x02, 0x00, 0x35, 0x04, 0x18, 0x05, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x15, 0x04, 0x00, 0x15, 0x04, 0x25, 0x00, 0x18, 0x06, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x00, 0x15, 0x0c, 0x25, 0x02, 0x18, 0x04, 0x6b, 0x69, 0x6e, 0x64, 0x25, 0x00, 0x00, 0x16, 0x00, 0x19, 0x1c, 0x19, 0x3c, 0x26, 0x80, 0x01, 0x1c, 0x15, 0x02, 0x19, 0x25, 0x00, 0x10, 0x19, 0x18, 0x02, 0x69, 0x64, 0x15, 0x00, 0x16, 0x0c, 0x16, 0x78, 0x16, 0x78, 0x26, 0x54, 0x26, 0x08, 0x00, 0x00, 0x26, 0xda, 0x02, 0x1c, 0x15, 0x04, 0x19, 0x25, 0x00, 0x10, 0x19, 0x38, 0x0c, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x4e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x73, 0x05, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x06, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x15, 0x00, 0x16, 0x10, 0x16, 0xa0, 0x01, 0x16, 0xa0, 0x01, 0x26, 0x96, 0x02, 0x26, 0xba, 0x01, 0x00, 0x00, 0x26, 0xcc, 0x04, 0x1c, 0x15, 0x0c, 0x19, 0x25, 0x00, 0x10, 0x19, 0x38, 0x0c, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x4e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x73, 0x05, 0x70, 0x68, 0x6f, 0x6e, 0x65, 0x04, 0x6b, 0x69, 0x6e, 0x64, 0x15, 0x00, 0x16, 0x10, 0x16, 0x82, 0x01, 0x16, 0x82, 0x01, 0x26, 0x8a, 0x04, 0x26, 0xca, 0x03, 0x00, 0x00, 0x16, 0x9a, 0x03, 0x16, 0x0c, 0x00, 0x28, 0x49, 0x70, 0x61, 0x72, 0x71, 0x75, 0x65, 0x74, 0x2d, 0x72, 0x73, 0x20, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x30, 0x2e, 0x33, 0x2e, 0x30, 0x20, 0x28, 0x62, 0x75, 0x69, 0x6c, 0x64, 0x20, 0x62, 0x34, 0x35, 0x63, 0x65, 0x37, 0x63, 0x62, 0x61, 0x32, 0x31, 0x39, 0x39, 0x66, 0x32, 0x32, 0x64, 0x39, 0x33, 0x32, 0x36, 0x39, 0x63, 0x31, 0x35, 0x30, 0x64, 0x38, 0x61, 0x38, 0x33, 0x39, 0x31, 0x36, 0x63, 0x36, 0x39, 0x62, 0x35, 0x65, 0x29, 0x00, 0x32, 0x01, 0x00, 0x00, 0x50, 0x41, 0x52, 0x31}; auto read_opts = cudf::io::parquet_reader_options::builder( cudf::io::source_info{reinterpret_cast<char const*>(repeated_bytes), sizeof(repeated_bytes)}); auto result = cudf::io::read_parquet(read_opts); EXPECT_EQ(result.tbl->view().column(0).size(), 6); EXPECT_EQ(result.tbl->view().num_columns(), 2); column_wrapper<int32_t> col0{1, 2, 3, 4, 5, 6}; column_wrapper<int64_t> child0{{5555555555l, 1111111111l, 1111111111l, 2222222222l, 3333333333l}}; cudf::test::strings_column_wrapper child1{{"-", "home", "home", "-", "mobile"}, {0, 1, 1, 0, 1}}; auto struct_col = cudf::test::structs_column_wrapper{{child0, child1}}; auto list_offsets_column = cudf::test::fixed_width_column_wrapper<cudf::size_type>{0, 0, 0, 0, 1, 2, 5}.release(); auto num_list_rows = list_offsets_column->size() - 1; auto mask = cudf::create_null_mask(6, cudf::mask_state::ALL_VALID); cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask.data()), 0, 2, false); auto list_col = cudf::make_lists_column( num_list_rows, std::move(list_offsets_column), struct_col.release(), 2, std::move(mask)); std::vector<std::unique_ptr<cudf::column>> struct_children; struct_children.push_back(std::move(list_col)); auto outer_struct = cudf::test::structs_column_wrapper{{std::move(struct_children)}, {0, 0, 1, 1, 1, 1}}; table_view expected{{col0, outer_struct}}; CUDF_TEST_EXPECT_TABLES_EQUAL(result.tbl->view(), expected); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/json_test.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/default_stream.hpp> #include <cudf_test/iterator_utilities.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/io/arrow_io_source.hpp> #include <cudf/io/json.hpp> #include <cudf/strings/convert/convert_fixed_point.hpp> #include <cudf/strings/repeat_strings.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <limits> #include <thrust/iterator/constant_iterator.h> #include <arrow/io/api.h> #include <fstream> #include <type_traits> #define wrapper cudf::test::fixed_width_column_wrapper using float_wrapper = wrapper<float>; using float64_wrapper = wrapper<double>; using int_wrapper = wrapper<int>; using int8_wrapper = wrapper<int8_t>; using int16_wrapper = wrapper<int16_t>; using int64_wrapper = wrapper<int64_t>; using timestamp_ms_wrapper = wrapper<cudf::timestamp_ms, cudf::timestamp_ms::rep>; using bool_wrapper = wrapper<bool>; using cudf::data_type; using cudf::type_id; using cudf::type_to_id; template <typename T> auto dtype() { return data_type{type_to_id<T>()}; } template <typename T, typename SourceElementT = T> using column_wrapper = typename std::conditional<std::is_same_v<T, cudf::string_view>, cudf::test::strings_column_wrapper, cudf::test::fixed_width_column_wrapper<T, SourceElementT>>::type; cudf::test::TempDirTestEnvironment* const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); template <typename T> std::vector<std::string> prepend_zeros(std::vector<T> const& input, int zero_count = 0, bool add_positive_sign = false) { std::vector<std::string> output(input.size()); std::transform(input.begin(), input.end(), output.begin(), [=](T const& num) { auto str = std::to_string(num); bool is_negative = (str[0] == '-'); if (is_negative) { str.insert(1, zero_count, '0'); return str; } else if (add_positive_sign) { return "+" + std::string(zero_count, '0') + str; } else { str.insert(0, zero_count, '0'); return str; } }); return output; } template <> std::vector<std::string> prepend_zeros<std::string>(std::vector<std::string> const& input, int zero_count, bool add_positive_sign) { std::vector<std::string> output(input.size()); std::transform(input.begin(), input.end(), output.begin(), [=](std::string const& num) { auto str = num; bool is_negative = (str[0] == '-'); if (is_negative) { str.insert(1, zero_count, '0'); return str; } else if (add_positive_sign) { return "+" + std::string(zero_count, '0') + str; } else { str.insert(0, zero_count, '0'); return str; } }); return output; } // Generates a vector of uniform random values of type T template <typename T> inline auto random_values(size_t size) { std::vector<T> values(size); using T1 = T; using uniform_distribution = typename std::conditional_t<std::is_same_v<T1, bool>, std::bernoulli_distribution, std::conditional_t<std::is_floating_point_v<T1>, std::uniform_real_distribution<T1>, std::uniform_int_distribution<T1>>>; static constexpr auto seed = 0xf00d; static std::mt19937 engine{seed}; static uniform_distribution dist{}; std::generate_n(values.begin(), size, [&]() { return T{dist(engine)}; }); return values; } MATCHER_P(FloatNearPointwise, tolerance, "Out-of-range") { return (std::get<0>(arg) > std::get<1>(arg) - tolerance && std::get<0>(arg) < std::get<1>(arg) + tolerance); } // temporary method to verify the float columns until // CUDF_TEST_EXPECT_COLUMNS_EQUAL supports floating point template <typename T, typename valid_t> void check_float_column(cudf::column_view const& col, std::vector<T> const& data, valid_t const& validity) { CUDF_TEST_EXPECT_COLUMN_PROPERTIES_EQUAL(col, (wrapper<T>{data.begin(), data.end(), validity})); EXPECT_EQ(col.null_count(), 0); EXPECT_THAT(cudf::test::to_host<T>(col).first, ::testing::Pointwise(FloatNearPointwise(1e-6), data)); } /** * @brief Base test fixture for JSON reader tests */ struct JsonReaderTest : public cudf::test::BaseFixture {}; /** * @brief Enum class to be used to specify the test case of parametrized tests */ enum class json_test_t { // Run test with the existing JSON lines reader using row-orient input data legacy_lines_row_orient, // Run test with the existing JSON lines reader using record-orient input data legacy_lines_record_orient, // Run test with the nested JSON lines reader using record-orient input data json_experimental_record_orient, // Run test with the nested JSON lines reader using row-orient input data json_experimental_row_orient }; constexpr bool is_legacy_test(json_test_t test_opt) { return test_opt == json_test_t::legacy_lines_row_orient or test_opt == json_test_t::legacy_lines_record_orient; } constexpr bool is_row_orient_test(json_test_t test_opt) { return test_opt == json_test_t::legacy_lines_row_orient or test_opt == json_test_t::json_experimental_row_orient; } /** * @brief Test fixture for parametrized JSON reader tests */ struct JsonReaderParamTest : public cudf::test::BaseFixture, public testing::WithParamInterface<json_test_t> {}; /** * @brief Test fixture for parametrized JSON reader tests, testing record orient-only for legacy * JSON lines reader and the nested reader */ struct JsonReaderDualTest : public cudf::test::BaseFixture, public testing::WithParamInterface<json_test_t> {}; /** * @brief Test fixture for parametrized JSON reader tests that only tests the new nested JSON reader */ struct JsonReaderNoLegacy : public cudf::test::BaseFixture, public testing::WithParamInterface<json_test_t> {}; /** * @brief Generates a JSON lines string that uses the record orient * * @param records An array of a map of key-value pairs * @param record_delimiter The delimiter to be used to delimit a record * @param prefix The prefix prepended to the whole string * @param suffix The suffix to be appended after the whole string * @return The JSON lines string that uses the record orient */ std::string to_records_orient(std::vector<std::map<std::string, std::string>> const& records, std::string record_delimiter, std::string prefix = "", std::string suffix = "") { std::string result = prefix; for (auto record_it = std::cbegin(records); record_it != std::cend(records); record_it++) { result += "{"; for (auto kv_pair_it = std::cbegin(*record_it); kv_pair_it != std::cend(*record_it); kv_pair_it++) { auto const& [key, value] = *kv_pair_it; result += "\"" + key + "\":" + value; result += (kv_pair_it != std::prev(std::end(*record_it))) ? ", " : ""; } result += "}"; if (record_it != std::prev(std::end(records))) { result += record_delimiter; } } return (result + suffix); } template <typename DecimalType> struct JsonFixedPointReaderTest : public JsonReaderTest {}; template <typename DecimalType> struct JsonValidFixedPointReaderTest : public JsonFixedPointReaderTest<DecimalType> { void run_test(std::vector<std::string> const& reference_strings, numeric::scale_type scale, bool use_legacy_parser) { cudf::test::strings_column_wrapper const strings(reference_strings.begin(), reference_strings.end()); auto const expected = cudf::strings::to_fixed_point( cudf::strings_column_view(strings), data_type{type_to_id<DecimalType>(), scale}); auto const buffer = std::accumulate(reference_strings.begin(), reference_strings.end(), std::string{}, [](std::string const& acc, std::string const& rhs) { return acc + (acc.empty() ? "" : "\n") + "{\"col0\":" + rhs + "}"; }); cudf::io::json_reader_options const in_opts = cudf::io::json_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .dtypes({data_type{type_to_id<DecimalType>(), scale}}) .lines(true) .legacy(use_legacy_parser); auto const result = cudf::io::read_json(in_opts); auto const result_view = result.tbl->view(); ASSERT_EQ(result_view.num_columns(), 1); EXPECT_EQ(result.metadata.schema_info[0].name, "col0"); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, result_view.column(0)); } void run_tests(std::vector<std::string> const& reference_strings, numeric::scale_type scale) { // Test both parsers run_test(reference_strings, scale, false); run_test(reference_strings, scale, true); } }; TYPED_TEST_SUITE(JsonFixedPointReaderTest, cudf::test::FixedPointTypes); TYPED_TEST_SUITE(JsonValidFixedPointReaderTest, cudf::test::FixedPointTypes); // Parametrize qualifying JSON tests for executing both nested reader and legacy JSON lines reader INSTANTIATE_TEST_CASE_P(JsonReaderParamTest, JsonReaderParamTest, ::testing::Values(json_test_t::legacy_lines_row_orient, json_test_t::legacy_lines_record_orient, json_test_t::json_experimental_record_orient, json_test_t::json_experimental_row_orient)); // Parametrize qualifying JSON tests for executing both nested reader and legacy JSON lines reader INSTANTIATE_TEST_CASE_P(JsonReaderDualTest, JsonReaderDualTest, ::testing::Values(json_test_t::legacy_lines_record_orient, json_test_t::json_experimental_record_orient)); // Parametrize qualifying JSON tests for executing nested reader only INSTANTIATE_TEST_CASE_P(JsonReaderNoLegacy, JsonReaderNoLegacy, ::testing::Values(json_test_t::json_experimental_row_orient, json_test_t::json_experimental_record_orient)); TEST_P(JsonReaderParamTest, BasicJsonLines) { auto const test_opt = GetParam(); std::string row_orient = "[1, 1.1]\n[2, 2.2]\n[3, 3.3]\n"; std::string record_orient = to_records_orient( {{{"0", "1"}, {"1", "1.1"}}, {{"0", "2"}, {"1", "2.2"}}, {{"0", "3"}, {"1", "3.3"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .dtypes(std::vector<data_type>{dtype<int32_t>(), dtype<double>()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 3); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT32); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int_wrapper{{1, 2, 3}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2, 3.3}, validity}); } TEST_P(JsonReaderParamTest, FloatingPoint) { auto const test_opt = GetParam(); std::string row_orient = "[5.6]\n[0.5679e2]\n[1.2e10]\n[0.07e1]\n[3000e-3]\n[12.34e0]\n[3.1e-001]\n[-73." "98007199999998]\n"; std::string record_orient = to_records_orient({{{"0", "5.6"}}, {{"0", "0.5679e2"}}, {{"0", "1.2e10"}}, {{"0", "0.07e1"}}, {{"0", "3000e-3"}}, {{"0", "12.34e0"}}, {{"0", "3.1e-001"}}, {{"0", "-73.98007199999998"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; auto filepath = temp_env->get_temp_dir() + "FloatingPoint.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({dtype<float>()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::FLOAT32); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL( result.tbl->get_column(0), float_wrapper{{5.6, 56.79, 12000000000., 0.7, 3.000, 12.34, 0.31, -73.98007199999998}, validity}); auto const bitmask = cudf::test::bitmask_to_host(result.tbl->get_column(0)); ASSERT_EQ((1u << result.tbl->get_column(0).size()) - 1, bitmask[0]); } TEST_P(JsonReaderParamTest, JsonLinesStrings) { auto const test_opt = GetParam(); std::string row_orient = "[1, 1.1, \"aa \"]\n[2, 2.2, \" bbb\"]"; std::string record_orient = to_records_orient({{{"0", "1"}, {"1", "1.1"}, {"2", R"("aa ")"}}, {{"0", "2"}, {"1", "2.2"}, {"2", R"(" bbb")"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .dtypes({{"2", dtype<cudf::string_view>()}, {"0", dtype<int32_t>()}, {"1", dtype<double>()}}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT32); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.tbl->get_column(2).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); EXPECT_EQ(result.metadata.schema_info[2].name, "2"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int_wrapper{{1, 2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(2), cudf::test::strings_column_wrapper({"aa ", " bbb"})); } TEST_P(JsonReaderParamTest, MultiColumn) { auto const test_opt = GetParam(); bool const row_orient = is_row_orient_test(test_opt); constexpr auto num_rows = 10; auto int8_values = random_values<int8_t>(num_rows); auto int16_values = random_values<int16_t>(num_rows); auto int32_values = random_values<int32_t>(num_rows); auto int64_values = random_values<int64_t>(num_rows); auto float32_values = random_values<float>(num_rows); auto float64_values = random_values<double>(num_rows); auto filepath = temp_env->get_temp_dir() + "MultiColumn.json"; { std::ostringstream line; if (row_orient) { for (int i = 0; i < num_rows; ++i) { line << "[" << std::to_string(int8_values[i]) << "," << int16_values[i] << "," << int32_values[i] << "," << int64_values[i] << "," << float32_values[i] << "," << float64_values[i] << "]\n"; } } else { std::vector<std::map<std::string, std::string>> records; for (int i = 0; i < num_rows; ++i) { records.push_back({ {"0", std::to_string(int8_values[i])}, // {"1", std::to_string(int16_values[i])}, // {"2", std::to_string(int32_values[i])}, // {"3", std::to_string(int64_values[i])}, // {"4", std::to_string(float32_values[i])}, // {"5", std::to_string(float64_values[i])}, // }); } line << to_records_orient(records, "\n"); } std::ofstream outfile(filepath, std::ofstream::out); outfile << line.str(); } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({dtype<int8_t>(), dtype<int16_t>(), dtype<int32_t>(), dtype<int64_t>(), dtype<float>(), dtype<double>()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); auto const view = result.tbl->view(); EXPECT_EQ(view.num_columns(), 6); EXPECT_EQ(view.column(0).type().id(), cudf::type_id::INT8); EXPECT_EQ(view.column(1).type().id(), cudf::type_id::INT16); EXPECT_EQ(view.column(2).type().id(), cudf::type_id::INT32); EXPECT_EQ(view.column(3).type().id(), cudf::type_id::INT64); EXPECT_EQ(view.column(4).type().id(), cudf::type_id::FLOAT32); EXPECT_EQ(view.column(5).type().id(), cudf::type_id::FLOAT64); CUDF_TEST_EXPECT_COLUMNS_EQUAL(view.column(0), int8_wrapper{int8_values.begin(), int8_values.end(), validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(view.column(1), int16_wrapper{int16_values.begin(), int16_values.end(), validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(view.column(2), int_wrapper{int32_values.begin(), int32_values.end(), validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(view.column(3), int64_wrapper{int64_values.begin(), int64_values.end(), validity}); check_float_column(view.column(4), float32_values, validity); check_float_column(view.column(5), float64_values, validity); } TEST_P(JsonReaderParamTest, Booleans) { auto const test_opt = GetParam(); std::string row_orient = "[true]\n[true]\n[false]\n[false]\n[true]"; std::string record_orient = to_records_orient( { {{"0", "true"}}, {{"0", "true"}}, {{"0", "false"}}, {{"0", "false"}}, {{"0", "true"}}, }, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; auto filepath = temp_env->get_temp_dir() + "Booleans.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({dtype<bool>()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); // Booleans are the same (integer) data type, but valued at 0 or 1 auto const view = result.tbl->view(); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::BOOL8); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), bool_wrapper{{true, true, false, false, true}, validity}); } TEST_P(JsonReaderParamTest, Dates) { auto const test_opt = GetParam(); std::string row_orient = "[05/03/2001]\n[31/10/2010]\n[20/10/1994]\n[18/10/1990]\n[1/1/1970]\n" "[18/04/1995]\n[14/07/1994]\n[\"07/06/2006 11:20:30.400\"]\n" "[\"16/09/2005T1:2:30.400PM\"]\n[2/2/1970]\n[null]"; std::string record_orient = to_records_orient({{{"0", R"("05/03/2001")"}}, {{"0", R"("31/10/2010")"}}, {{"0", R"("20/10/1994")"}}, {{"0", R"("18/10/1990")"}}, {{"0", R"("1/1/1970")"}}, {{"0", R"("18/04/1995")"}}, {{"0", R"("14/07/1994")"}}, {{"0", R"("07/06/2006 11:20:30.400")"}}, {{"0", R"("16/09/2005T1:2:30.400PM")"}}, {{"0", R"("2/2/1970")"}}, {{"0", R"(null)"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; auto filepath = temp_env->get_temp_dir() + "Dates.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({data_type{type_id::TIMESTAMP_MILLISECONDS}}) .lines(true) .dayfirst(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::TIMESTAMP_MILLISECONDS); auto validity = cudf::test::iterators::nulls_at({10}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), timestamp_ms_wrapper{{983750400000, 1288483200000, 782611200000, 656208000000, 0L, 798163200000, 774144000000, 1149679230400, 1126875750400, 2764800000, 0L}, validity}); } TEST_P(JsonReaderParamTest, Durations) { auto const test_opt = GetParam(); std::string row_orient = "[-2]\n[-1]\n[0]\n" "[\"1 days\"]\n[\"0 days 23:01:00\"]\n[\"0 days 00:00:00.000000123\"]\n" "[\"0:0:0.000123\"]\n[\"0:0:0.000123000\"]\n[\"00:00:00.100000001\"]\n" "[-2147483648]\n[2147483647]\n[null]"; std::string record_orient = to_records_orient({{{"0", "-2"}}, {{"0", "-1"}}, {{"0", "0"}}, {{"0", R"("1 days")"}}, {{"0", R"("0 days 23:01:00")"}}, {{"0", R"("0 days 00:00:00.000000123")"}}, {{"0", R"("0:0:0.000123")"}}, {{"0", R"("0:0:0.000123000")"}}, {{"0", R"("00:00:00.100000001")"}}, {{"0", R"(-2147483648)"}}, {{"0", R"(2147483647)"}}, {{"0", R"(null)"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; auto filepath = temp_env->get_temp_dir() + "Durations.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({data_type{type_id::DURATION_NANOSECONDS}}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::DURATION_NANOSECONDS); auto validity = cudf::test::iterators::nulls_at({11}); CUDF_TEST_EXPECT_COLUMNS_EQUAL( result.tbl->get_column(0), wrapper<cudf::duration_ns, cudf::duration_ns::rep>{{-2L, -1L, 0L, 1L * 60 * 60 * 24 * 1000000000L, (23 * 60 + 1) * 60 * 1000000000L, 123L, 123000L, 123000L, 100000001L, -2147483648L, 2147483647L, 0L}, validity}); } TEST_P(JsonReaderParamTest, JsonLinesDtypeInference) { auto const test_opt = GetParam(); std::string row_orient = "[100, 1.1, \"aa \"]\n[200, 2.2, \" bbb\"]"; std::string record_orient = to_records_orient({{{"0", "100"}, {"1", "1.1"}, {"2", R"("aa ")"}}, {{"0", "200"}, {"1", "2.2"}, {"2", R"(" bbb")"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.tbl->get_column(2).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); EXPECT_EQ(result.metadata.schema_info[2].name, "2"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{100, 200}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(2), cudf::test::strings_column_wrapper({"aa ", " bbb"})); } TEST_P(JsonReaderParamTest, JsonLinesFileInput) { auto const test_opt = GetParam(); std::string row_orient = "[11, 1.1]\n[22, 2.2]"; std::string record_orient = to_records_orient({{{"0", "11"}, {"1", "1.1"}}, {{"0", "22"}, {"1", "2.2"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; const std::string fname = temp_env->get_temp_dir() + "JsonLinesFileTest.json"; std::ofstream outfile(fname, std::ofstream::out); outfile << data; outfile.close(); cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{fname}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{11, 22}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2}, validity}); } TEST_F(JsonReaderTest, JsonLinesByteRange) { const std::string fname = temp_env->get_temp_dir() + "JsonLinesByteRangeTest.json"; std::ofstream outfile(fname, std::ofstream::out); outfile << "[1000]\n[2000]\n[3000]\n[4000]\n[5000]\n[6000]\n[7000]\n[8000]\n[9000]\n"; outfile.close(); cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{fname}) .lines(true) .legacy(true) // Support in new reader coming in https://github.com/rapidsai/cudf/pull/12498 .byte_range_offset(11) .byte_range_size(20); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->num_rows(), 3); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{3000, 4000, 5000}, validity}); } TEST_P(JsonReaderDualTest, JsonLinesObjects) { auto const test_opt = GetParam(); const std::string fname = temp_env->get_temp_dir() + "JsonLinesObjectsTest.json"; std::ofstream outfile(fname, std::ofstream::out); outfile << " {\"co\\\"l1\" : 1, \"col2\" : 2.0} \n"; outfile.close(); cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{fname}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.metadata.schema_info[0].name, is_legacy_test(test_opt) ? "co\\\"l1" : "co\"l1"); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.metadata.schema_info[1].name, "col2"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{1}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{2.0}, validity}); } TEST_P(JsonReaderDualTest, JsonLinesObjectsStrings) { auto const test_opt = GetParam(); auto test_json_objects = [test_opt](std::string const& data) { cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.tbl->get_column(2).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.metadata.schema_info[0].name, "col1"); EXPECT_EQ(result.metadata.schema_info[1].name, "col2"); EXPECT_EQ(result.metadata.schema_info[2].name, "col3"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{100, 200}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(2), cudf::test::strings_column_wrapper({"aaa", "bbb"})); }; // simple case test_json_objects( "{\"col1\":100, \"col2\":1.1, \"col3\":\"aaa\"}\n" "{\"col1\":200, \"col2\":2.2, \"col3\":\"bbb\"}\n"); // out of order fields test_json_objects( "{\"col1\":100, \"col2\":1.1, \"col3\":\"aaa\"}\n" "{\"col3\":\"bbb\", \"col1\":200, \"col2\":2.2}\n"); } TEST_P(JsonReaderDualTest, JsonLinesObjectsMissingData) { auto const test_opt = GetParam(); // Note: columns will be ordered based on which fields appear first std::string const data = "{ \"col2\":1.1, \"col3\":\"aaa\"}\n" "{\"col1\":200, \"col3\":\"bbb\"}\n"; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.tbl->get_column(2).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.metadata.schema_info[0].name, "col2"); EXPECT_EQ(result.metadata.schema_info[1].name, "col3"); EXPECT_EQ(result.metadata.schema_info[2].name, "col1"); auto col1_validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i != 0; }); auto col2_validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i == 0; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(2), int64_wrapper{{0, 200}, col1_validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), float64_wrapper{{1.1, 0.}, col2_validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), cudf::test::strings_column_wrapper({"aaa", "bbb"})); } TEST_P(JsonReaderDualTest, JsonLinesObjectsOutOfOrder) { auto const test_opt = GetParam(); std::string const data = "{\"col1\":100, \"col2\":1.1, \"col3\":\"aaa\"}\n" "{\"col3\":\"bbb\", \"col1\":200, \"col2\":2.2}\n"; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.metadata.schema_info[0].name, "col1"); EXPECT_EQ(result.metadata.schema_info[1].name, "col2"); EXPECT_EQ(result.metadata.schema_info[2].name, "col3"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{100, 200}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(2), cudf::test::strings_column_wrapper({"aaa", "bbb"})); } TEST_F(JsonReaderTest, EmptyFile) { auto filepath = temp_env->get_temp_dir() + "EmptyFile.json"; { std::ofstream outfile{filepath, std::ofstream::out}; outfile << ""; } // New reader only - legacy reader is strict about having non-empty input cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}).lines(true); auto result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); EXPECT_EQ(0, view.num_columns()); } TEST_F(JsonReaderTest, NoDataFile) { auto filepath = temp_env->get_temp_dir() + "NoDataFile.json"; { std::ofstream outfile{filepath, std::ofstream::out}; outfile << "{}\n"; } // New reader only - legacy reader is strict about having non-empty input cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}).lines(true); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); EXPECT_EQ(0, view.num_columns()); } // empty input in values orient TEST_F(JsonReaderTest, NoDataFileValues) { auto filepath = temp_env->get_temp_dir() + "NoDataFileValues.csv"; { std::ofstream outfile{filepath, std::ofstream::out}; outfile << "[]\n"; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}).lines(true); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); EXPECT_EQ(0, view.num_columns()); } TEST_F(JsonReaderTest, ArrowFileSource) { const std::string fname = temp_env->get_temp_dir() + "ArrowFileSource.csv"; std::ofstream outfile(fname, std::ofstream::out); outfile << "[9]\n[8]\n[7]\n[6]\n[5]\n[4]\n[3]\n[2]\n"; outfile.close(); std::shared_ptr<arrow::io::ReadableFile> infile; ASSERT_TRUE(arrow::io::ReadableFile::Open(fname).Value(&infile).ok()); auto arrow_source = cudf::io::arrow_io_source{infile}; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{&arrow_source}) .dtypes({dtype<int8_t>()}) .lines(true) .legacy(true); // Support in new reader coming in https://github.com/rapidsai/cudf/pull/12498 cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT8); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int8_wrapper{{9, 8, 7, 6, 5, 4, 3, 2}, validity}); } TEST_P(JsonReaderParamTest, InvalidFloatingPoint) { auto const test_opt = GetParam(); std::string row_orient = "[1.2e1+]\n[3.4e2-]\n[5.6e3e]\n[7.8e3A]\n[9.0Be1]\n[1C.2]"; std::string record_orient = to_records_orient({{{"0", "1.2e1+"}}, {{"0", "3.4e2-"}}, {{"0", "5.6e3e"}}, {{"0", "7.8e3A"}}, {{"0", "9.0Be1"}}, {{"0", "1C.2"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; auto const filepath = temp_env->get_temp_dir() + "InvalidFloatingPoint.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .dtypes({dtype<float>()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::FLOAT32); // ignore all data because it is all nulls. ASSERT_EQ(6u, result.tbl->view().column(0).null_count()); } TEST_P(JsonReaderParamTest, StringInference) { auto const test_opt = GetParam(); std::string row_orient = "[\"-1\"]"; std::string record_orient = to_records_orient({{{"0", R"("-1")"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.c_str(), data.size()}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::STRING); } TEST_P(JsonReaderParamTest, ParseInRangeIntegers) { auto const test_opt = GetParam(); bool const row_orient = is_row_orient_test(test_opt); constexpr auto num_rows = 4; std::vector<int64_t> small_int = {0, -10, 20, -30}; std::vector<int64_t> less_equal_int64_max = {std::numeric_limits<int64_t>::max() - 3, std::numeric_limits<int64_t>::max() - 2, std::numeric_limits<int64_t>::max() - 1, std::numeric_limits<int64_t>::max()}; std::vector<int64_t> greater_equal_int64_min = {std::numeric_limits<int64_t>::min() + 3, std::numeric_limits<int64_t>::min() + 2, std::numeric_limits<int64_t>::min() + 1, std::numeric_limits<int64_t>::min()}; std::vector<uint64_t> greater_int64_max = {uint64_t{std::numeric_limits<int64_t>::max()} - 1, uint64_t{std::numeric_limits<int64_t>::max()}, uint64_t{std::numeric_limits<int64_t>::max()} + 1, uint64_t{std::numeric_limits<int64_t>::max()} + 2}; std::vector<uint64_t> less_equal_uint64_max = {std::numeric_limits<uint64_t>::max() - 3, std::numeric_limits<uint64_t>::max() - 2, std::numeric_limits<uint64_t>::max() - 1, std::numeric_limits<uint64_t>::max()}; auto input_small_int = column_wrapper<int64_t>(small_int.begin(), small_int.end()); auto input_less_equal_int64_max = column_wrapper<int64_t>(less_equal_int64_max.begin(), less_equal_int64_max.end()); auto input_greater_equal_int64_min = column_wrapper<int64_t>(greater_equal_int64_min.begin(), greater_equal_int64_min.end()); auto input_greater_int64_max = column_wrapper<uint64_t>(greater_int64_max.begin(), greater_int64_max.end()); auto input_less_equal_uint64_max = column_wrapper<uint64_t>(less_equal_uint64_max.begin(), less_equal_uint64_max.end()); auto small_int_append_zeros = prepend_zeros(small_int, 32, true); auto less_equal_int64_max_append_zeros = prepend_zeros(less_equal_int64_max, 32, true); auto greater_equal_int64_min_append_zeros = prepend_zeros(greater_equal_int64_min, 17); auto greater_int64_max_append_zeros = prepend_zeros(greater_int64_max, 5); auto less_equal_uint64_max_append_zeros = prepend_zeros(less_equal_uint64_max, 8, true); auto filepath = temp_env->get_temp_dir() + "ParseInRangeIntegers.json"; { std::ostringstream line; if (row_orient) { for (int i = 0; i < num_rows; ++i) { line << "[" << small_int[i] << "," << less_equal_int64_max[i] << "," << greater_equal_int64_min[i] << "," << greater_int64_max[i] << "," << less_equal_uint64_max[i] << "," << small_int_append_zeros[i] << "," << less_equal_int64_max_append_zeros[i] << "," << greater_equal_int64_min_append_zeros[i] << "," << greater_int64_max_append_zeros[i] << "," << less_equal_uint64_max_append_zeros[i] << "]\n"; } } else { std::vector<std::map<std::string, std::string>> records; for (int i = 0; i < num_rows; ++i) { records.push_back({ {"0", std::to_string(small_int[i])}, // {"1", std::to_string(less_equal_int64_max[i])}, // {"2", std::to_string(greater_equal_int64_min[i])}, // {"3", std::to_string(greater_int64_max[i])}, // {"4", std::to_string(less_equal_uint64_max[i])}, // {"5", small_int_append_zeros[i]}, // {"6", less_equal_int64_max_append_zeros[i]}, // {"7", greater_equal_int64_min_append_zeros[i]}, // {"8", greater_int64_max_append_zeros[i]}, // {"9", less_equal_uint64_max_append_zeros[i]}, // }); } line << to_records_orient(records, "\n"); } std::ofstream outfile(filepath, std::ofstream::out); outfile << line.str(); } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_small_int, view.column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_int64_max, view.column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_equal_int64_min, view.column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_int64_max, view.column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_uint64_max, view.column(4)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_small_int, view.column(5)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_int64_max, view.column(6)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_equal_int64_min, view.column(7)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_int64_max, view.column(8)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_equal_uint64_max, view.column(9)); } TEST_P(JsonReaderParamTest, ParseOutOfRangeIntegers) { auto const test_opt = GetParam(); bool const row_orient = is_row_orient_test(test_opt); constexpr auto num_rows = 4; std::vector<std::string> out_of_range_positive = {"111111111111111111111", "2222222222222222222222", "33333333333333333333333", "444444444444444444444444"}; std::vector<std::string> out_of_range_negative = {"-111111111111111111111", "-2222222222222222222222", "-33333333333333333333333", "-444444444444444444444444"}; std::vector<std::string> greater_uint64_max = { "18446744073709551615", "18446744073709551616", "18446744073709551617", "18446744073709551618"}; std::vector<std::string> less_int64_min = { "-9223372036854775807", "-9223372036854775808", "-9223372036854775809", "-9223372036854775810"}; std::vector<std::string> mixed_range = { "18446744073709551613", "18446744073709551614", "18446744073709551615", "-5"}; auto input_out_of_range_positive = column_wrapper<cudf::string_view>(out_of_range_positive.begin(), out_of_range_positive.end()); auto input_out_of_range_negative = column_wrapper<cudf::string_view>(out_of_range_negative.begin(), out_of_range_negative.end()); auto input_greater_uint64_max = column_wrapper<cudf::string_view>(greater_uint64_max.begin(), greater_uint64_max.end()); auto input_less_int64_min = column_wrapper<cudf::string_view>(less_int64_min.begin(), less_int64_min.end()); auto input_mixed_range = column_wrapper<cudf::string_view>(mixed_range.begin(), mixed_range.end()); auto out_of_range_positive_append_zeros = prepend_zeros(out_of_range_positive, 32, true); auto out_of_range_negative_append_zeros = prepend_zeros(out_of_range_negative, 5); auto greater_uint64_max_append_zeros = prepend_zeros(greater_uint64_max, 8, true); auto less_int64_min_append_zeros = prepend_zeros(less_int64_min, 17); auto mixed_range_append_zeros = prepend_zeros(mixed_range, 2, true); auto input_out_of_range_positive_append = column_wrapper<cudf::string_view>( out_of_range_positive_append_zeros.begin(), out_of_range_positive_append_zeros.end()); auto input_out_of_range_negative_append = column_wrapper<cudf::string_view>( out_of_range_negative_append_zeros.begin(), out_of_range_negative_append_zeros.end()); auto input_greater_uint64_max_append = column_wrapper<cudf::string_view>( greater_uint64_max_append_zeros.begin(), greater_uint64_max_append_zeros.end()); auto input_less_int64_min_append = column_wrapper<cudf::string_view>( less_int64_min_append_zeros.begin(), less_int64_min_append_zeros.end()); auto input_mixed_range_append = column_wrapper<cudf::string_view>( mixed_range_append_zeros.begin(), mixed_range_append_zeros.end()); auto filepath = temp_env->get_temp_dir() + "ParseOutOfRangeIntegers.json"; { std::ostringstream line; if (row_orient) { for (int i = 0; i < num_rows; ++i) { line << "[" << out_of_range_positive[i] << "," << out_of_range_negative[i] << "," << greater_uint64_max[i] << "," << less_int64_min[i] << "," << mixed_range[i] << "," << out_of_range_positive_append_zeros[i] << "," << out_of_range_negative_append_zeros[i] << "," << greater_uint64_max_append_zeros[i] << "," << less_int64_min_append_zeros[i] << "," << mixed_range_append_zeros[i] << "]\n"; } } else { std::vector<std::map<std::string, std::string>> records; for (int i = 0; i < num_rows; ++i) { records.push_back({ {"0", out_of_range_positive[i]}, // {"1", out_of_range_negative[i]}, // {"2", greater_uint64_max[i]}, // {"3", less_int64_min[i]}, // {"4", mixed_range[i]}, // {"5", out_of_range_positive_append_zeros[i]}, // {"6", out_of_range_negative_append_zeros[i]}, // {"7", greater_uint64_max_append_zeros[i]}, // {"8", less_int64_min_append_zeros[i]}, // {"9", mixed_range_append_zeros[i]}, // }); } line << to_records_orient(records, "\n"); } std::ofstream outfile(filepath, std::ofstream::out); outfile << line.str(); } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); auto const view = result.tbl->view(); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_positive, view.column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_negative, view.column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_uint64_max, view.column(2)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_int64_min, view.column(3)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_mixed_range, view.column(4)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_positive_append, view.column(5)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_out_of_range_negative_append, view.column(6)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_greater_uint64_max_append, view.column(7)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_less_int64_min_append, view.column(8)); CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(input_mixed_range_append, view.column(9)); } TEST_P(JsonReaderParamTest, JsonLinesMultipleFileInputs) { auto const test_opt = GetParam(); std::vector<std::string> row_orient{"[11, 1.1]\n[22, 2.2]\n", "[33, 3.3]\n[44, 4.4]"}; std::vector<std::string> record_orient{ to_records_orient({{{"0", "11"}, {"1", "1.1"}}, {{"0", "22"}, {"1", "2.2"}}}, "\n") + "\n", to_records_orient({{{"0", "33"}, {"1", "3.3"}}, {{"0", "44"}, {"1", "4.4"}}}, "\n") + "\n"}; auto const& data = is_row_orient_test(test_opt) ? row_orient : record_orient; const std::string file1 = temp_env->get_temp_dir() + "JsonLinesFileTest1.json"; std::ofstream outfile(file1, std::ofstream::out); outfile << data[0]; outfile.close(); const std::string file2 = temp_env->get_temp_dir() + "JsonLinesFileTest2.json"; std::ofstream outfile2(file2, std::ofstream::out); outfile2 << data[1]; outfile2.close(); cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{{file1, file2}}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 4); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{11, 22, 33, 44}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2, 3.3, 4.4}, validity}); } TEST_P(JsonReaderNoLegacy, JsonLinesMultipleFileInputsNoNL) { auto const test_opt = GetParam(); // Strings for the two separate input files in row-orient that do not end with a newline std::vector<std::string> row_orient{"[11, 1.1]\n[22, 2.2]", "[33, 3.3]\n[44, 4.4]"}; // Strings for the two separate input files in record-orient that do not end with a newline std::vector<std::string> record_orient{ to_records_orient({{{"0", "11"}, {"1", "1.1"}}, {{"0", "22"}, {"1", "2.2"}}}, "\n"), to_records_orient({{{"0", "33"}, {"1", "3.3"}}, {{"0", "44"}, {"1", "4.4"}}}, "\n")}; auto const& data = is_row_orient_test(test_opt) ? row_orient : record_orient; const std::string file1 = temp_env->get_temp_dir() + "JsonLinesFileTest1.json"; std::ofstream outfile(file1, std::ofstream::out); outfile << data[0]; outfile.close(); const std::string file2 = temp_env->get_temp_dir() + "JsonLinesFileTest2.json"; std::ofstream outfile2(file2, std::ofstream::out); outfile2 << data[1]; outfile2.close(); cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{{file1, file2}}) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 4); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{11, 22, 33, 44}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2, 3.3, 4.4}, validity}); } TEST_F(JsonReaderTest, BadDtypeParams) { std::string buffer = "[1,2,3,4]"; cudf::io::json_reader_options options_vec = cudf::io::json_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .lines(true) .dtypes({dtype<int8_t>()}) .legacy(true); // should throw because there are four columns and only one dtype EXPECT_THROW(cudf::io::read_json(options_vec), cudf::logic_error); cudf::io::json_reader_options options_map = cudf::io::json_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .lines(true) .legacy(true) .dtypes(std::map<std::string, cudf::data_type>{{"0", dtype<int8_t>()}, {"1", dtype<int8_t>()}, {"2", dtype<int8_t>()}, {"wrong_name", dtype<int8_t>()}}); // should throw because one of the columns is not in the dtype map EXPECT_THROW(cudf::io::read_json(options_map), cudf::logic_error); } TEST_F(JsonReaderTest, JsonExperimentalBasic) { std::string const fname = temp_env->get_temp_dir() + "JsonExperimentalBasic.json"; std::ofstream outfile(fname, std::ofstream::out); outfile << R"([{"a":"11", "b":"1.1"},{"a":"22", "b":"2.2"}])"; outfile.close(); cudf::io::json_reader_options options = cudf::io::json_reader_options::builder(cudf::io::source_info{fname}); auto result = cudf::io::read_json(options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.metadata.schema_info[0].name, "a"); EXPECT_EQ(result.metadata.schema_info[1].name, "b"); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), cudf::test::strings_column_wrapper({"11", "22"})); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), cudf::test::strings_column_wrapper({"1.1", "2.2"})); } TEST_F(JsonReaderTest, JsonExperimentalLines) { std::string const json_string = R"({"a":"a0"} {"a":"a1"} {"a":"a2", "b":"b2"} {"a":"a3", "c":"c3"} {"a":"a4"})"; // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_lines_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}) .lines(true); // Read test data via nested JSON reader auto const table = cudf::io::read_json(json_lines_options); // Read test data via legacy, non-nested JSON lines reader json_lines_options.enable_legacy(true); auto const legacy_reader_table = cudf::io::read_json(json_lines_options); // Verify that the data read via non-nested JSON lines reader matches the data read via nested // JSON reader CUDF_TEST_EXPECT_TABLES_EQUAL(legacy_reader_table.tbl->view(), table.tbl->view()); } TEST_F(JsonReaderTest, JsonLongString) { // Unicode // 0000-FFFF Basic Multilingual Plane // 10000-10FFFF Supplementary Plane cudf::test::strings_column_wrapper col1{ { "\"\\/\b\f\n\r\t", "\"", "\\", "/", "\b", "\f\n", "\r\t", "$€", "ராபிட்ஸ்", "C𝞵𝓓𝒻", "", // null "", // null "கார்த்தி", "CႮ≪ㇳ䍏凹沦王辿龸ꁗ믜스폶ﴠ", // 0000-FFFF "𐀀𑿪𒐦𓃰𔙆 𖦆𗿿𘳕𚿾[↳] 𜽆𝓚𞤁🄰", // 10000-1FFFF "𠘨𡥌𢗉𣇊𤊩𥅽𦉱𧴱𨁲𩁹𪐢𫇭𬬭𭺷𮊦屮", // 20000-2FFFF "𰾑𱔈𲍉", // 30000-3FFFF R"("$€ \u0024\u20ac \\u0024\\u20ac \\\u0024\\\u20ac \\\\u0024\\\\u20ac)", R"( \\\\\\\\\\\\\\\\)", R"(\\\\\\\\\\\\\\\\)", R"(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)", R"( \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)", R"( \\abcd)", R"( \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\)", R"( \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\)", }, cudf::test::iterators::nulls_at({10, 11})}; cudf::test::fixed_width_column_wrapper<int16_t> repeat_times{ {1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 19, 37, 81, 161, 323, 631, 1279, 10, 1, 2, 1, 100, 1000, 1, 3}, cudf::test::iterators::no_nulls()}; auto d_col2 = cudf::strings::repeat_strings(cudf::strings_column_view{col1}, repeat_times); auto col2 = d_col2->view(); cudf::table_view const tbl_view{{col1, col2, repeat_times}}; cudf::io::table_metadata mt{{{"col1"}, {"col2"}, {"int16"}}}; std::vector<char> out_buffer; auto destination = cudf::io::sink_info(&out_buffer); auto options_builder = cudf::io::json_writer_options_builder(destination, tbl_view) .include_nulls(true) .metadata(mt) .lines(true) .na_rep("null"); cudf::io::write_json(options_builder.build(), cudf::test::get_default_stream(), rmm::mr::get_current_device_resource()); cudf::table_view const expected = tbl_view; std::map<std::string, data_type> types; types["col1"] = data_type{type_id::STRING}; types["col2"] = data_type{type_id::STRING}; types["int16"] = data_type{type_id::INT16}; // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_lines_options = cudf::io::json_reader_options::builder( cudf::io::source_info{out_buffer.data(), out_buffer.size()}) .lines(true) .dtypes(types); // Read test data via nested JSON reader auto const table = cudf::io::read_json(json_lines_options); CUDF_TEST_EXPECT_TABLES_EQUAL(expected, table.tbl->view()); } TEST_F(JsonReaderTest, ErrorStrings) { // cases of invalid escape characters, invalid unicode encodings. // Error strings will decode to nulls auto const buffer = std::string{R"( {"col0": "\"\a"} {"col0": "\u"} {"col0": "\u0"} {"col0": "\u0b"} {"col0": "\u00b"} {"col0": "\u00bz"} {"col0": "\t34567890123456\t9012345678901\ug0bc"} {"col0": "\t34567890123456\t90123456789012\u0hbc"} {"col0": "\t34567890123456\t90123456789012\u00ic"} {"col0": "\u0b95\u0bbe\u0bb0\u0bcd\u0ba4\u0bcd\u0ba4\u0bbfகார்த்தி"} )"}; // Last one is not an error case, but shows that unicode in json is copied string column output. cudf::io::json_reader_options const in_opts = cudf::io::json_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .dtypes({data_type{cudf::type_id::STRING}}) .lines(true) .legacy(false); auto const result = cudf::io::read_json(in_opts); auto const result_view = result.tbl->view().column(0); EXPECT_EQ(result.metadata.schema_info[0].name, "col0"); EXPECT_EQ(result_view.null_count(), 9); cudf::test::strings_column_wrapper expected{ {"", "", "", "", "", "", "", "", "", "கார்த்தி\xe0\xae\x95\xe0\xae\xbe\xe0\xae\xb0\xe0\xaf\x8d\xe0\xae\xa4\xe0\xaf\x8d\xe0\xae\xa4" "\xe0\xae\xbf"}, // unicode hex 0xe0 0xae 0x95 0xe0 0xae 0xbe 0xe0 0xae 0xb0 0xe0 0xaf 0x8d // 0xe0 0xae 0xa4 0xe0 0xaf 0x8d 0xe0 0xae 0xa4 0xe0 0xae 0xbf cudf::test::iterators::nulls_at({0, 1, 2, 3, 4, 5, 6, 7, 8})}; CUDF_TEST_EXPECT_COLUMNS_EQUAL(result_view, expected); } TEST_F(JsonReaderTest, TokenAllocation) { std::array<std::string const, 3> const json_inputs{ R"({"":1})", "{}\n{}\n{}", R"({"":{"":{"":{"":{"":{"":{"":{"":{"":{"":{"":{"":1}}}}}}}}}}}})", }; for (auto const& json_string : json_inputs) { // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_lines_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}) .lines(true); EXPECT_NO_THROW(cudf::io::read_json(json_lines_options)); } } TEST_F(JsonReaderTest, ExperimentalLinesNoOmissions) { std::array<std::string const, 4> const json_inputs // single column {R"({"a":"a0"} {"a":"a1"} {"a":"a2"} {"a":"a3"} {"a":"a4"})", // single column, single row R"({"a":"a0"})", // single row R"({"a":"a0", "b":"b0"})", // two column, two rows R"({"a":"a0", "b":"b0"} {"a":"a1", "b":"b1"})"}; for (auto const& json_string : json_inputs) { // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_lines_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}) .lines(true); // Read test data via nested JSON reader auto const table = cudf::io::read_json(json_lines_options); // Read test data via legacy, non-nested JSON lines reader json_lines_options.enable_legacy(true); auto const legacy_reader_table = cudf::io::read_json(json_lines_options); // Verify that the data read via non-nested JSON lines reader matches the data read via // nested JSON reader CUDF_TEST_EXPECT_TABLES_EQUAL(legacy_reader_table.tbl->view(), table.tbl->view()); } } TEST_F(JsonReaderTest, TestColumnOrder) { std::string const json_string = // Expected order: // root: b, c, a, d // a: 2, 0, 1 {R"({"b":"b0"} {"c":"c1","a":{"2":null}} {"d":"d2","a":{"0":"a2.0", "2":"a2.2"}} {"b":"b3","a":{"1":null, "2":"a3.2"}})"}; std::vector<std::string> const root_col_names{"b", "c", "a", "d"}; std::vector<std::string> const a_child_col_names{"2", "0", "1"}; // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_lines_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}) .lines(true); // Read in data using nested JSON reader cudf::io::table_with_metadata new_reader_table = cudf::io::read_json(json_lines_options); // Verify root column order (assert to avoid OOB access) ASSERT_EQ(new_reader_table.metadata.schema_info.size(), root_col_names.size()); for (std::size_t i = 0; i < a_child_col_names.size(); i++) { auto const& root_col_name = root_col_names[i]; EXPECT_EQ(new_reader_table.metadata.schema_info[i].name, root_col_name); } // Verify nested child column order (assert to avoid OOB access) ASSERT_EQ(new_reader_table.metadata.schema_info[2].children.size(), a_child_col_names.size()); for (std::size_t i = 0; i < a_child_col_names.size(); i++) { auto const& a_child_col_name = a_child_col_names[i]; EXPECT_EQ(new_reader_table.metadata.schema_info[2].children[i].name, a_child_col_name); } // Verify data of root columns ASSERT_EQ(root_col_names.size(), new_reader_table.tbl->num_columns()); column_wrapper<cudf::string_view> root_col_data_b{{"b0", "", "", "b3"}, {true, false, false, true}}; column_wrapper<cudf::string_view> root_col_data_c{{"", "c1", "", ""}, {false, true, false, false}}; column_wrapper<cudf::string_view> root_col_data_d{{"", "", "d2", ""}, {false, false, true, false}}; CUDF_TEST_EXPECT_COLUMNS_EQUAL(root_col_data_b, new_reader_table.tbl->get_column(0)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(root_col_data_c, new_reader_table.tbl->get_column(1)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(root_col_data_d, new_reader_table.tbl->get_column(3)); // Verify data of child columns of column 'a' auto const col_a = new_reader_table.tbl->get_column(2); ASSERT_EQ(a_child_col_names.size(), col_a.num_children()); column_wrapper<cudf::string_view> col_a2{{"", "", "a2.2", "a3.2"}, {false, false, true, true}}; column_wrapper<cudf::string_view> col_a0{{"", "", "a2.0", ""}, {false, false, true, false}}; // col a.1 is inferred as all-null int8_wrapper col_a1{{0, 0, 0, 0}, {false, false, false, false}}; CUDF_TEST_EXPECT_COLUMNS_EQUAL(col_a2, col_a.child(0)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(col_a0, col_a.child(1)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(col_a1, col_a.child(2)); } TEST_P(JsonReaderParamTest, JsonDtypeSchema) { auto const test_opt = GetParam(); std::string row_orient = "[1, 1.1, \"aa \"]\n[2, 2.2, \" bbb\"]"; std::string record_orient = to_records_orient({{{"0", "1"}, {"1", "1.1"}, {"2", R"("aa ")"}}, {{"0", "2"}, {"1", "2.2"}, {"2", R"(" bbb")"}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; std::map<std::string, cudf::io::schema_element> dtype_schema{ {"2", {dtype<cudf::string_view>()}}, {"0", {dtype<int32_t>()}}, {"1", {dtype<double>()}}}; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .dtypes(dtype_schema) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 2); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT32); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); EXPECT_EQ(result.tbl->get_column(2).type().id(), cudf::type_id::STRING); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.metadata.schema_info[1].name, "1"); EXPECT_EQ(result.metadata.schema_info[2].name, "2"); auto validity = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return true; }); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int_wrapper{{1, 2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), float64_wrapper{{1.1, 2.2}, validity}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(2), cudf::test::strings_column_wrapper({"aa ", " bbb"})); } TEST_F(JsonReaderTest, JsonNestedDtypeSchema) { std::string json_string = R"( [{"a":[123, {"0": 123}], "b":1.0}, {"b":1.1}, {"b":2.1}])"; std::map<std::string, cudf::io::schema_element> dtype_schema{ {"a", { data_type{cudf::type_id::LIST}, {{"element", {data_type{cudf::type_id::STRUCT}, {{"0", {dtype<float>()}}}}}}, }}, {"b", {dtype<int32_t>()}}, }; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.data(), json_string.size()}) .dtypes(dtype_schema) .lines(false); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); // Make sure we have columns "a" and "b" ASSERT_EQ(result.tbl->num_columns(), 2); ASSERT_EQ(result.metadata.schema_info.size(), 2); EXPECT_EQ(result.metadata.schema_info[0].name, "a"); EXPECT_EQ(result.metadata.schema_info[1].name, "b"); // Make sure column "a" is a list column (offsets and elements) ASSERT_EQ(result.tbl->get_column(0).num_children(), 2); ASSERT_EQ(result.metadata.schema_info[0].children.size(), 2); // Make sure column "b" is a leaf column ASSERT_EQ(result.tbl->get_column(1).num_children(), 0); ASSERT_EQ(result.metadata.schema_info[1].children.size(), 0); // Offsets child with no other child columns ASSERT_EQ(result.tbl->get_column(0).child(0).num_children(), 0); ASSERT_EQ(result.metadata.schema_info[0].children[0].children.size(), 0); EXPECT_EQ(result.metadata.schema_info[0].children[0].name, "offsets"); // Elements is the struct column with a single child column "0" ASSERT_EQ(result.tbl->get_column(0).child(1).num_children(), 1); ASSERT_EQ(result.metadata.schema_info[0].children[1].children.size(), 1); EXPECT_EQ(result.metadata.schema_info[0].children[1].name, "element"); // Verify column "a" being a list column EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::LIST); // Verify column "a->element->0" is a float column EXPECT_EQ(result.tbl->get_column(0).child(1).child(0).type().id(), cudf::type_id::FLOAT32); // Verify column "b" is an int column EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::INT32); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0).child(0), int_wrapper{{0, 2, 2, 2}}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0).child(1).child(0), float_wrapper{{0.0, 123.0}, {false, true}}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(1), int_wrapper{{1, 1, 2}, {true, true, true}}); // List column expected auto leaf_child = float_wrapper{{0.0, 123.0}, {false, true}}; auto const validity = {1, 0, 0}; auto [null_mask, null_count] = cudf::test::detail::make_null_mask(validity.begin(), validity.end()); auto expected = cudf::make_lists_column( 3, int_wrapper{{0, 2, 2, 2}}.release(), cudf::test::structs_column_wrapper{{leaf_child}, {false, true}}.release(), null_count, std::move(null_mask)); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), *expected); } TEST_P(JsonReaderParamTest, JsonDtypeParsing) { auto const test_opt = GetParam(); // All corner cases of dtype parsing // 0, "0", " 0", 1, "1", " 1", "a", "z", null, true, false, "null", "true", "false", nan, "nan" // Test for dtypes: bool, int, float, str, duration, timestamp std::string row_orient = "[0]\n[\"0\"]\n[\" 0\"]\n[1]\n[\"1\"]\n[\" 1\"]\n[\"a\"]\n[\"z\"]\n" "[null]\n[true]\n[false]\n[\"null\"]\n[\"true\"]\n[\"false\"]\n[nan]\n[\"nan\"]\n"; std::string record_orient = to_records_orient({{{"0", "0"}}, {{"0", "\"0\""}}, {{"0", "\" 0\""}}, {{"0", "1"}}, {{"0", "\"1\""}}, {{"0", "\" 1\""}}, {{"0", "\"a\""}}, {{"0", "\"z\""}}, {{"0", "null"}}, {{"0", "true"}}, {{"0", "false"}}, {{"0", "\"null\""}}, {{"0", "\"true\""}}, {{"0", "\"false\""}}, {{"0", "nan"}}, {{"0", "\"nan\""}}}, "\n"); std::string data = is_row_orient_test(test_opt) ? row_orient : record_orient; auto make_validity = [](std::vector<int> const& validity) { return cudf::detail::make_counting_transform_iterator( 0, [&](auto i) -> bool { return static_cast<bool>(validity[i]); }); }; constexpr int int_ignore{}; constexpr double double_ignore{}; constexpr bool bool_ignore{}; std::vector<int> const validity = {1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0}; auto int_col = int_wrapper{{0, 0, int_ignore, 1, 1, int_ignore, int_ignore, int_ignore, int_ignore, 1, 0, int_ignore, 1, 0, int_ignore, int_ignore}, make_validity(validity)}; auto float_col = float_wrapper{{0.0, 0.0, double_ignore, 1.0, 1.0, double_ignore, double_ignore, double_ignore, double_ignore, 1.0, 0.0, double_ignore, 1.0, 0.0, double_ignore, double_ignore}, make_validity(validity)}; auto str_col = cudf::test::strings_column_wrapper{// clang-format off {"0", "0", " 0", "1", "1", " 1", "a", "z", "", "true", "false", "null", "true", "false", "nan", "nan"}, cudf::test::iterators::nulls_at(std::vector<int>{8})}; // clang-format on auto bool_col = bool_wrapper{{false, false, bool_ignore, true, true, bool_ignore, bool_ignore, bool_ignore, bool_ignore, true, false, bool_ignore, true, false, bool_ignore, bool_ignore}, make_validity(validity)}; // Types to test const std::vector<data_type> dtypes = { dtype<int32_t>(), dtype<float>(), dtype<cudf::string_view>(), dtype<bool>()}; const std::vector<cudf::column_view> cols{cudf::column_view(int_col), cudf::column_view(float_col), cudf::column_view(str_col), cudf::column_view(bool_col)}; for (size_t col_type = 0; col_type < cols.size(); col_type++) { std::map<std::string, cudf::io::schema_element> dtype_schema{{"0", {dtypes[col_type]}}}; cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{data.data(), data.size()}) .dtypes(dtype_schema) .lines(true) .legacy(is_legacy_test(test_opt)); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 1); EXPECT_EQ(result.tbl->num_rows(), 16); EXPECT_EQ(result.metadata.schema_info[0].name, "0"); EXPECT_EQ(result.tbl->get_column(0).type().id(), dtypes[col_type].id()); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), cols[col_type]); } } TYPED_TEST(JsonValidFixedPointReaderTest, SingleColumnNegativeScale) { this->run_tests({"1.23", "876e-2", "5.43e1", "-0.12", "0.25", "-0.23", "-0.27", "0.00", "0.00"}, numeric::scale_type{-2}); } TYPED_TEST(JsonValidFixedPointReaderTest, SingleColumnNoScale) { this->run_tests({"123", "-87600e-2", "54.3e1", "-12", "25", "-23", "-27", "0", "0"}, numeric::scale_type{0}); } TYPED_TEST(JsonValidFixedPointReaderTest, SingleColumnPositiveScale) { this->run_tests( {"123000", "-87600000e-2", "54300e1", "-12000", "25000", "-23000", "-27000", "0000", "0000"}, numeric::scale_type{3}); } TYPED_TEST(JsonFixedPointReaderTest, EmptyValues) { auto const buffer = std::string{"{\"col0\":}"}; cudf::io::json_reader_options const in_opts = cudf::io::json_reader_options::builder(cudf::io::source_info{buffer.c_str(), buffer.size()}) .dtypes({data_type{type_to_id<TypeParam>(), 0}}) .lines(true) .legacy(true); // Legacy behavior; not aligned with JSON specs auto const result = cudf::io::read_json(in_opts); auto const result_view = result.tbl->view(); ASSERT_EQ(result_view.num_columns(), 1); EXPECT_EQ(result_view.num_rows(), 1); EXPECT_EQ(result.metadata.schema_info[0].name, "col0"); EXPECT_EQ(result_view.column(0).null_count(), 1); } TEST_F(JsonReaderTest, UnsupportedMultipleFileInputs) { std::string const data = "{\"col\":0}"; auto const buffer = cudf::io::host_buffer{data.data(), data.size()}; auto const src = cudf::io::source_info{{buffer, buffer}}; cudf::io::json_reader_options const not_lines_opts = cudf::io::json_reader_options::builder(src); EXPECT_THROW(cudf::io::read_json(not_lines_opts), cudf::logic_error); cudf::io::json_reader_options const comp_exp_opts = cudf::io::json_reader_options::builder(src).compression(cudf::io::compression_type::GZIP); EXPECT_THROW(cudf::io::read_json(comp_exp_opts), cudf::logic_error); cudf::io::json_reader_options const comp_opts = cudf::io::json_reader_options::builder(src).compression(cudf::io::compression_type::GZIP); EXPECT_THROW(cudf::io::read_json(comp_opts), cudf::logic_error); } TEST_F(JsonReaderTest, TrailingCommas) { std::vector<std::string> const json_lines_valid{ R"({"a":"a0",} {"a":"a2", "b":"b2",} {"a":"a4",})", R"({"a":"a0"} {"a":"a2", "b": [1, 2,]})", R"({"a":"a0",} {"a":"a2", "b": [1, 2,],})", }; for (size_t i = 0; i < json_lines_valid.size(); i++) { auto const& json_string = json_lines_valid[i]; // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_parser_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}) .lines(true); EXPECT_NO_THROW(cudf::io::read_json(json_parser_options)) << "Failed on test case " << i; } std::vector<std::string> const json_valid{ R"([{"a":"a0",}, {"a":"a2", "b":"b2",}, {"a":"a4"},])", R"([{"a":"a0"}, {"a":"a2", "b": [1, 2,]}])", R"([{"a":"a0",}, {"a":"a2", "b": [1, 2,],}])", R"([{"a": 1,}, {"a": null, "b": [null,],}])", }; for (size_t i = 0; i < json_valid.size(); i++) { auto const& json_string = json_valid[i]; cudf::io::json_reader_options json_parser_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}); EXPECT_NO_THROW(cudf::io::read_json(json_parser_options)) << "Failed on test case " << i; } std::vector<std::string> const json_invalid{ R"([{"a":"a0",,}])", R"([{"a":"a0"},,])", R"([,{"a":"a0"}])", R"([{,"a":"a0"}])", R"([{,}])", R"([,])", R"([,,])", R"([{,,}])", }; for (size_t i = 0; i < json_invalid.size(); i++) { auto const& json_string = json_invalid[i]; cudf::io::json_reader_options json_parser_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}); EXPECT_THROW(cudf::io::read_json(json_parser_options), cudf::logic_error) << "Failed on test case " << i; } } TEST_F(JsonReaderTest, JSONLinesRecovering) { std::string data = // 0 -> a: -2 (valid) R"({"a":-2})" "\n" // 1 -> (invalid) R"({"a":])" "\n" // 2 -> (invalid) R"({"b":{"a":[321})" "\n" // 3 -> c: 1.2 (valid) R"({"c":1.2})" "\n" "\n" // 4 -> a: 4 (valid) R"({"a":4})" "\n" // 5 -> (invalid) R"({"a":5)" "\n" // 6 -> (invalid) R"({"a":6 )" "\n" // 7 -> (invalid) R"({"b":[7 )" "\n" // 8 -> a: 8 (valid) R"({"a":8})" "\n" // 9 -> (invalid) R"({"d":{"unterminated_field_name)" "\n" // 10 -> (invalid) R"({"d":{)" "\n" // 11 -> (invalid) R"({"d":{"123",)" "\n" // 12 -> a: 12 (valid) R"({"a":12})"; auto filepath = temp_env->get_temp_dir() + "RecoveringLines.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .lines(true) .recovery_mode(cudf::io::json_recovery_mode_t::RECOVER_WITH_NULL); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 2); EXPECT_EQ(result.tbl->num_rows(), 13); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::FLOAT64); std::vector<bool> a_validity{ true, false, false, false, true, false, false, false, true, false, false, false, true}; std::vector<bool> c_validity{ false, false, false, true, false, false, false, false, false, false, false, false, false}; CUDF_TEST_EXPECT_COLUMNS_EQUAL( result.tbl->get_column(0), int64_wrapper{{-2, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 12}, a_validity.cbegin()}); CUDF_TEST_EXPECT_COLUMNS_EQUAL( result.tbl->get_column(1), float64_wrapper{{0.0, 0.0, 0.0, 1.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, c_validity.cbegin()}); } TEST_F(JsonReaderTest, JSONLinesRecoveringIgnoreExcessChars) { /** * @brief Spark has the specific need to ignore extra characters that come after the first record * on a JSON line */ std::string data = // 0 -> a: -2 (valid) R"({"a":-2}{})" "\n" // 1 -> (invalid) R"({"b":{}should_be_invalid})" "\n" // 2 -> b (valid) R"({"b":{"a":3} })" "\n" // 3 -> c: (valid) R"({"c":1.2 } )" "\n" "\n" // 4 -> (valid) R"({"a":4} 123)" "\n" // 5 -> (valid) R"({"a":5}//Comment after record)" "\n" // 6 -> (valid) R"({"a":6} //Comment after whitespace)" "\n" // 7 -> (invalid) R"({"a":5 //Invalid Comment within record})"; auto filepath = temp_env->get_temp_dir() + "RecoveringLinesExcessChars.json"; { std::ofstream outfile(filepath, std::ofstream::out); outfile << data; } cudf::io::json_reader_options in_options = cudf::io::json_reader_options::builder(cudf::io::source_info{filepath}) .lines(true) .recovery_mode(cudf::io::json_recovery_mode_t::RECOVER_WITH_NULL); cudf::io::table_with_metadata result = cudf::io::read_json(in_options); EXPECT_EQ(result.tbl->num_columns(), 3); EXPECT_EQ(result.tbl->num_rows(), 8); EXPECT_EQ(result.tbl->get_column(0).type().id(), cudf::type_id::INT64); EXPECT_EQ(result.tbl->get_column(1).type().id(), cudf::type_id::STRUCT); EXPECT_EQ(result.tbl->get_column(2).type().id(), cudf::type_id::FLOAT64); std::vector<bool> a_validity{true, false, false, false, true, true, true, false}; std::vector<bool> b_validity{false, false, true, false, false, false, false, false}; std::vector<bool> c_validity{false, false, false, true, false, false, false, false}; // Child column b->a auto b_a_col = int64_wrapper({0, 0, 3, 0, 0, 0, 0, 0}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(result.tbl->get_column(0), int64_wrapper{{-2, 0, 0, 0, 4, 5, 6, 0}, a_validity.cbegin()}); CUDF_TEST_EXPECT_COLUMNS_EQUAL( result.tbl->get_column(1), cudf::test::structs_column_wrapper({b_a_col}, b_validity.cbegin())); CUDF_TEST_EXPECT_COLUMNS_EQUAL( result.tbl->get_column(2), float64_wrapper{{0.0, 0.0, 0.0, 1.2, 0.0, 0.0, 0.0, 0.0}, c_validity.cbegin()}); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/json_chunked_reader.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/table_utilities.hpp> #include <io/json/read_json.hpp> /** * @brief Base test fixture for JSON reader tests */ struct JsonReaderTest : public cudf::test::BaseFixture {}; // function to extract first delimiter in the string in each chunk, // collate together and form byte_range for each chunk, // parse separately. std::vector<cudf::io::table_with_metadata> skeleton_for_parellel_chunk_reader( cudf::host_span<std::unique_ptr<cudf::io::datasource>> sources, cudf::io::json_reader_options const& reader_opts, int32_t chunk_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using namespace cudf::io::json::detail; using cudf::size_type; // assuming single source. size_t total_source_size = 0; for (auto const& source : sources) { total_source_size += source->size(); } size_t num_chunks = (total_source_size + chunk_size - 1) / chunk_size; constexpr size_type no_min_value = -1; // Get the first delimiter in each chunk. std::vector<size_type> first_delimiter_index(num_chunks); auto reader_opts_chunk = reader_opts; for (size_t i = 0; i < num_chunks; i++) { auto const chunk_start = i * chunk_size; reader_opts_chunk.set_byte_range_offset(chunk_start); reader_opts_chunk.set_byte_range_size(chunk_size); first_delimiter_index[i] = find_first_delimiter_in_chunk(sources, reader_opts_chunk, '\n', stream); if (first_delimiter_index[i] != no_min_value) { first_delimiter_index[i] += chunk_start; } } // Process and allocate record start, end for each worker. using record_range = std::pair<size_type, size_type>; std::vector<record_range> record_ranges; record_ranges.reserve(num_chunks); first_delimiter_index[0] = 0; auto prev = first_delimiter_index[0]; for (size_t i = 1; i < num_chunks; i++) { if (first_delimiter_index[i] == no_min_value) continue; record_ranges.push_back({prev, first_delimiter_index[i]}); prev = first_delimiter_index[i]; } record_ranges.push_back({prev, total_source_size}); std::vector<cudf::io::table_with_metadata> tables; // Process each chunk in parallel. for (auto const& [chunk_start, chunk_end] : record_ranges) { if (chunk_start == -1 or chunk_end == -1) continue; reader_opts_chunk.set_byte_range_offset(chunk_start); reader_opts_chunk.set_byte_range_size(chunk_end - chunk_start); tables.push_back(read_json(sources, reader_opts_chunk, stream, mr)); } // assume all records have same number of columns, and inferred same type. (or schema is passed) // TODO a step before to merge all columns, types and infer final schema. return tables; } TEST_F(JsonReaderTest, ByteRange) { std::string const json_string = R"( { "a": { "y" : 6}, "b" : [1, 2, 3], "c": 11 } { "a": { "y" : 6}, "b" : [4, 5 ], "c": 12 } { "a": { "y" : 6}, "b" : [6 ], "c": 13 } { "a": { "y" : 6}, "b" : [7 ], "c": 14 })"; // Initialize parsing options (reading json lines) cudf::io::json_reader_options json_lines_options = cudf::io::json_reader_options::builder( cudf::io::source_info{json_string.c_str(), json_string.size()}) .compression(cudf::io::compression_type::NONE) .lines(true); // Read full test data via existing, nested JSON lines reader cudf::io::table_with_metadata current_reader_table = cudf::io::read_json(json_lines_options); auto datasources = cudf::io::datasource::create(json_lines_options.get_source().host_buffers()); // Test for different chunk sizes for (auto chunk_size : {7, 10, 15, 20, 40, 50, 100, 200, 500}) { auto const tables = skeleton_for_parellel_chunk_reader(datasources, json_lines_options, chunk_size, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); auto table_views = std::vector<cudf::table_view>(tables.size()); std::transform(tables.begin(), tables.end(), table_views.begin(), [](auto& table) { return table.tbl->view(); }); auto result = cudf::concatenate(table_views); // Verify that the data read via chunked reader matches the data read via nested JSON reader // cannot use EQUAL due to concatenate removing null mask CUDF_TEST_EXPECT_TABLES_EQUIVALENT(current_reader_table.tbl->view(), result->view()); } }
0
rapidsai_public_repos/cudf/cpp/tests
rapidsai_public_repos/cudf/cpp/tests/io/arrow_io_source_test.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/io/arrow_io_source.hpp> #include <cudf/io/json.hpp> #include <cudf/io/parquet.hpp> #include <arrow/filesystem/filesystem.h> #include <arrow/filesystem/s3fs.h> #include <arrow/io/api.h> #include <arrow/util/config.h> #include <fstream> #include <memory> #include <string> // Global environment for temporary files auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); // Base test fixture for tests struct ArrowIOTest : public cudf::test::BaseFixture {}; TEST_F(ArrowIOTest, URIFileSystem) { const std::string file_name = temp_env->get_temp_dir() + "JsonLinesFileTest.json"; std::ofstream outfile(file_name, std::ofstream::out); outfile << "{\"a\":11, \"b\":1.1}\n{\"a\":22, \"b\":2.2}"; outfile.close(); std::string file_uri = "file://" + file_name; auto datasource = std::make_unique<cudf::io::arrow_io_source>(file_uri); // Populate the JSON Reader Options cudf::io::json_reader_options options = cudf::io::json_reader_options::builder(cudf::io::source_info(datasource.get())).lines(true); // Read the JSON file from the LocalFileSystem cudf::io::table_with_metadata tbl = cudf::io::read_json(options); ASSERT_EQ(2, tbl.tbl->num_columns()); ASSERT_EQ(2, tbl.tbl->num_rows()); } TEST_F(ArrowIOTest, S3FileSystem) { std::string s3_uri = "s3://rapidsai-data/cudf/test/tips.parquet?region=us-east-2"; // Check to see if Arrow was built with support for S3. If not, ensure this // test throws. If so, validate the S3 file contents. auto const s3_unsupported = arrow::fs::FileSystemFromUri(s3_uri).status().IsNotImplemented(); if (s3_unsupported) { EXPECT_THROW(std::make_unique<cudf::io::arrow_io_source>(s3_uri), cudf::logic_error); } else { auto datasource = std::make_unique<cudf::io::arrow_io_source>(s3_uri); // Populate the Parquet Reader Options cudf::io::source_info src(datasource.get()); std::vector<std::string> single_column; single_column.insert(single_column.begin(), "total_bill"); cudf::io::parquet_reader_options_builder builder(src); cudf::io::parquet_reader_options options = builder.columns(single_column).build(); // Read the Parquet file from S3 cudf::io::table_with_metadata tbl = cudf::io::read_parquet(options); ASSERT_EQ(1, tbl.tbl->num_columns()); // Only single column specified in reader_options ASSERT_EQ(244, tbl.tbl->num_rows()); // known number of rows from the S3 file } #ifdef ARROW_S3 if (!s3_unsupported) { // Verify that we are using Arrow with S3, and call finalize // https://github.com/apache/arrow/issues/36974 // This needs to be in a separate conditional to ensure we call // finalize after all arrow_io_source instances have been deleted. [[maybe_unused]] auto _ = arrow::fs::EnsureS3Finalized(); } #endif } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests/io
rapidsai_public_repos/cudf/cpp/tests/io/comp/decomp_test.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <io/comp/gpuinflate.hpp> #include <io/utilities/hostdevice_vector.hpp> #include <src/io/comp/nvcomp_adapter.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf_test/base_fixture.hpp> #include <rmm/device_buffer.hpp> #include <rmm/device_uvector.hpp> #include <vector> using cudf::device_span; /** * @brief Base test fixture for decompression * * Calls into Decompressor fixture to dispatch actual decompression work, * whose interface and setup is different for each codec. */ template <typename Decompressor> struct DecompressTest : public cudf::test::BaseFixture { std::vector<uint8_t> vector_from_string(char const* str) const { return std::vector<uint8_t>(reinterpret_cast<uint8_t const*>(str), reinterpret_cast<uint8_t const*>(str) + strlen(str)); } void Decompress(std::vector<uint8_t>* decompressed, uint8_t const* compressed, size_t compressed_size) { auto stream = cudf::get_default_stream(); rmm::device_buffer src{compressed, compressed_size, stream}; rmm::device_uvector<uint8_t> dst{decompressed->size(), stream}; cudf::detail::hostdevice_vector<device_span<uint8_t const>> inf_in(1, stream); inf_in[0] = {static_cast<uint8_t const*>(src.data()), src.size()}; inf_in.host_to_device_async(stream); cudf::detail::hostdevice_vector<device_span<uint8_t>> inf_out(1, stream); inf_out[0] = dst; inf_out.host_to_device_async(stream); cudf::detail::hostdevice_vector<cudf::io::compression_result> inf_stat(1, stream); inf_stat[0] = {}; inf_stat.host_to_device_async(stream); static_cast<Decompressor*>(this)->dispatch(inf_in, inf_out, inf_stat); CUDF_CUDA_TRY(cudaMemcpyAsync( decompressed->data(), dst.data(), dst.size(), cudaMemcpyDefault, stream.value())); inf_stat.device_to_host_sync(stream); ASSERT_EQ(inf_stat[0].status, cudf::io::compression_status::SUCCESS); } }; /** * @brief Derived fixture for GZIP decompression */ struct GzipDecompressTest : public DecompressTest<GzipDecompressTest> { void dispatch(device_span<device_span<uint8_t const>> d_inf_in, device_span<device_span<uint8_t>> d_inf_out, device_span<cudf::io::compression_result> d_inf_stat) { cudf::io::gpuinflate(d_inf_in, d_inf_out, d_inf_stat, cudf::io::gzip_header_included::YES, cudf::get_default_stream()); } }; /** * @brief Derived fixture for Snappy decompression */ struct SnappyDecompressTest : public DecompressTest<SnappyDecompressTest> { void dispatch(device_span<device_span<uint8_t const>> d_inf_in, device_span<device_span<uint8_t>> d_inf_out, device_span<cudf::io::compression_result> d_inf_stat) { cudf::io::gpu_unsnap(d_inf_in, d_inf_out, d_inf_stat, cudf::get_default_stream()); } }; /** * @brief Derived fixture for Brotli decompression */ struct BrotliDecompressTest : public DecompressTest<BrotliDecompressTest> { void dispatch(device_span<device_span<uint8_t const>> d_inf_in, device_span<device_span<uint8_t>> d_inf_out, device_span<cudf::io::compression_result> d_inf_stat) { rmm::device_buffer d_scratch{cudf::io::get_gpu_debrotli_scratch_size(1), cudf::get_default_stream()}; cudf::io::gpu_debrotli(d_inf_in, d_inf_out, d_inf_stat, d_scratch.data(), d_scratch.size(), cudf::get_default_stream()); } }; struct NvcompConfigTest : public cudf::test::BaseFixture {}; TEST_F(GzipDecompressTest, HelloWorld) { constexpr char uncompressed[] = "hello world"; constexpr uint8_t compressed[] = { 0x1f, 0x8b, 0x8, 0x0, 0x9, 0x63, 0x99, 0x5c, 0x2, 0xff, 0xcb, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, 0x2f, 0xca, 0x49, 0x1, 0x0, 0x85, 0x11, 0x4a, 0xd, 0xb, 0x0, 0x0, 0x0}; std::vector<uint8_t> input = vector_from_string(uncompressed); std::vector<uint8_t> output(input.size()); Decompress(&output, compressed, sizeof(compressed)); EXPECT_EQ(output, input); } TEST_F(SnappyDecompressTest, HelloWorld) { constexpr char uncompressed[] = "hello world"; constexpr uint8_t compressed[] = { 0xb, 0x28, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, 0x6f, 0x72, 0x6c, 0x64}; std::vector<uint8_t> input = vector_from_string(uncompressed); std::vector<uint8_t> output(input.size()); Decompress(&output, compressed, sizeof(compressed)); EXPECT_EQ(output, input); } TEST_F(SnappyDecompressTest, ShortLiteralAfterLongCopyAtStartup) { constexpr char uncompressed[] = "Aaaaaaaaaaaah!"; constexpr uint8_t compressed[] = {14, 0x0, 'A', 0x0, 'a', (10 - 4) * 4 + 1, 1, 0x4, 'h', '!'}; std::vector<uint8_t> input = vector_from_string(uncompressed); std::vector<uint8_t> output(input.size()); Decompress(&output, compressed, sizeof(compressed)); EXPECT_EQ(output, input); } TEST_F(BrotliDecompressTest, HelloWorld) { constexpr char uncompressed[] = "hello world"; constexpr uint8_t compressed[] = { 0xb, 0x5, 0x80, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, 0x6f, 0x72, 0x6c, 0x64, 0x3}; std::vector<uint8_t> input = vector_from_string(uncompressed); std::vector<uint8_t> output(input.size()); Decompress(&output, compressed, sizeof(compressed)); EXPECT_EQ(output, input); } TEST_F(NvcompConfigTest, Compression) { using cudf::io::nvcomp::compression_type; auto const& comp_disabled = cudf::io::nvcomp::is_compression_disabled; EXPECT_FALSE(comp_disabled(compression_type::DEFLATE, {2, 5, 0, true, true, 0})); // version 2.5 required EXPECT_TRUE(comp_disabled(compression_type::DEFLATE, {2, 4, 0, true, true, 0})); // all integrations enabled required EXPECT_TRUE(comp_disabled(compression_type::DEFLATE, {2, 5, 0, false, true, 0})); EXPECT_FALSE(comp_disabled(compression_type::ZSTD, {2, 4, 0, true, true, 0})); EXPECT_FALSE(comp_disabled(compression_type::ZSTD, {2, 4, 0, false, true, 0})); // 2.4 version required EXPECT_TRUE(comp_disabled(compression_type::ZSTD, {2, 3, 1, false, true, 0})); // stable integrations enabled required EXPECT_TRUE(comp_disabled(compression_type::ZSTD, {2, 4, 0, false, false, 0})); EXPECT_FALSE(comp_disabled(compression_type::SNAPPY, {2, 5, 0, true, true, 0})); EXPECT_FALSE(comp_disabled(compression_type::SNAPPY, {2, 4, 0, false, true, 0})); // stable integrations enabled required EXPECT_TRUE(comp_disabled(compression_type::SNAPPY, {2, 3, 0, false, false, 0})); } TEST_F(NvcompConfigTest, Decompression) { using cudf::io::nvcomp::compression_type; auto const& decomp_disabled = cudf::io::nvcomp::is_decompression_disabled; EXPECT_FALSE(decomp_disabled(compression_type::DEFLATE, {2, 5, 0, true, true, 7})); // version 2.5 required EXPECT_TRUE(decomp_disabled(compression_type::DEFLATE, {2, 4, 0, true, true, 7})); // all integrations enabled required EXPECT_TRUE(decomp_disabled(compression_type::DEFLATE, {2, 5, 0, false, true, 7})); EXPECT_FALSE(decomp_disabled(compression_type::ZSTD, {2, 4, 0, true, true, 7})); EXPECT_FALSE(decomp_disabled(compression_type::ZSTD, {2, 3, 2, false, true, 6})); EXPECT_FALSE(decomp_disabled(compression_type::ZSTD, {2, 3, 0, true, true, 6})); // 2.3.1 and earlier requires all integrations to be enabled EXPECT_TRUE(decomp_disabled(compression_type::ZSTD, {2, 3, 1, false, true, 7})); // 2.3 version required EXPECT_TRUE(decomp_disabled(compression_type::ZSTD, {2, 2, 0, true, true, 7})); // stable integrations enabled required EXPECT_TRUE(decomp_disabled(compression_type::ZSTD, {2, 4, 0, false, false, 7})); // 2.4.0 disabled on Pascal EXPECT_TRUE(decomp_disabled(compression_type::ZSTD, {2, 4, 0, true, true, 6})); EXPECT_FALSE(decomp_disabled(compression_type::SNAPPY, {2, 4, 0, true, true, 7})); EXPECT_FALSE(decomp_disabled(compression_type::SNAPPY, {2, 3, 0, false, true, 7})); EXPECT_FALSE(decomp_disabled(compression_type::SNAPPY, {2, 2, 0, false, true, 7})); // stable integrations enabled required EXPECT_TRUE(decomp_disabled(compression_type::SNAPPY, {2, 2, 0, false, false, 7})); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests/io
rapidsai_public_repos/cudf/cpp/tests/io/fst/logical_stack_test.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf/types.hpp> #include <io/utilities/hostdevice_vector.hpp> #include <src/io/fst/logical_stack.cuh> #include <rmm/cuda_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <cstdlib> #include <iostream> #include <iterator> #include <stack> #include <vector> namespace { namespace fst = cudf::io::fst; /** * @brief Generates the sparse representation of stack operations to feed into the logical * stack * * @param begin Forward input iterator to the first item of symbols that are checked for whether * they push or pop * @param end Forward input iterator to one one past the last item of symbols that are checked for * whether they push or pop * @param to_stack_op A function object that takes an instance of InputItT's value type and * returns the kind of stack operation such item represents (i.e., of type stack_op_type) * @param stack_symbol_out Forward output iterator to which symbols that either push or pop are * assigned * @param stack_op_index_out Forward output iterator to which the indexes of symbols that either * push or pop are assigned * @return Pair of iterators to one past the last item of the items written to \p stack_symbol_out * and \p stack_op_index_out, respectively */ template <typename InputItT, typename ToStackOpTypeT, typename StackSymbolOutItT, typename StackOpIndexOutItT> std::pair<StackSymbolOutItT, StackOpIndexOutItT> to_sparse_stack_symbols( InputItT begin, InputItT end, ToStackOpTypeT to_stack_op, StackSymbolOutItT stack_symbol_out, StackOpIndexOutItT stack_op_index_out) { std::size_t index = 0; for (auto it = begin; it < end; it++) { fst::stack_op_type op_type = to_stack_op(*it); if (op_type == fst::stack_op_type::PUSH || op_type == fst::stack_op_type::POP) { *stack_symbol_out = *it; *stack_op_index_out = index; stack_symbol_out++; stack_op_index_out++; } index++; } return std::make_pair(stack_symbol_out, stack_op_index_out); } /** * @brief Reads in a sequence of items that represent stack operations, applies these operations to * a stack, and, for every operation being read in, outputs what was the symbol on top of the stack * before the operations was applied. In case the stack is empty before any operation, * \p empty_stack will be output instead. * * @tparam InputItT Forward input iterator type to items representing stack operations * @tparam ToStackOpTypeT A transform function object class that maps an item representing a stack * operation to the stack_op_type of such item * @tparam StackSymbolT Type representing items being pushed onto the stack * @tparam TopOfStackOutItT A forward output iterator type being assigned items of StackSymbolT * @param[in] begin Forward iterator to the beginning of the items representing stack operations * @param[in] end Iterator to one past the last item representing the stack operation * @param[in] to_stack_op A function object that takes an instance of InputItT's value type and * returns the kind of stack operation such item represents (i.e., of type stack_op_type) * @param[in] empty_stack A symbol that will be written to top_of_stack_out_it whenever the stack * was empty * @param[out] top_of_stack The output iterator to which the item will be written to * @return TopOfStackOutItT Iterators to one past the last element that was written */ template <typename InputItT, typename ToStackOpTypeT, typename StackSymbolT, typename TopOfStackOutItT> TopOfStackOutItT to_top_of_stack(InputItT begin, InputItT end, ToStackOpTypeT to_stack_op, StackSymbolT empty_stack, TopOfStackOutItT top_of_stack_out_it) { // This is the data structure that keeps track of the full stack state for each input symbol std::stack<StackSymbolT> stack_state; for (auto it = begin; it < end; it++) { // Write what is currently on top of the stack when reading in the current symbol *top_of_stack_out_it = stack_state.empty() ? empty_stack : stack_state.top(); top_of_stack_out_it++; auto const& current = *it; fst::stack_op_type op_type = to_stack_op(current); // Check whether this symbol corresponds to a push or pop operation and modify the stack // accordingly if (op_type == fst::stack_op_type::PUSH) { stack_state.push(current); } else if (op_type == fst::stack_op_type::POP) { stack_state.pop(); } } return top_of_stack_out_it; } /** * @brief Function object used to filter for brackets and braces that represent push and pop * operations * */ struct JSONToStackOp { template <typename StackSymbolT> constexpr CUDF_HOST_DEVICE fst::stack_op_type operator()(StackSymbolT const& stack_symbol) const { return (stack_symbol == '{' || stack_symbol == '[') ? fst::stack_op_type::PUSH : (stack_symbol == '}' || stack_symbol == ']') ? fst::stack_op_type::POP : fst::stack_op_type::READ; } }; } // namespace // Base test fixture for tests struct LogicalStackTest : public cudf::test::BaseFixture {}; TEST_F(LogicalStackTest, GroundTruth) { // Type sufficient to cover any stack level (must be a signed type) using StackLevelT = int8_t; using SymbolT = char; using SymbolOffsetT = uint32_t; // The stack symbol that we'll fill everywhere where there's nothing on the stack constexpr SymbolT empty_stack_symbol = '_'; // This just has to be a stack symbol that may not be confused with a symbol that would push constexpr SymbolT read_symbol = 'x'; // Prepare cuda stream for data transfers & kernels rmm::cuda_stream stream{}; rmm::cuda_stream_view stream_view(stream); // Test input, std::string input = R"( {)" R"(category": "reference",)" R"("index:" [4,12,42],)" R"("author": "Nigel Rees",)" R"("title": "Sayings of the Century",)" R"("price": 8.95)" R"(} )" R"({)" R"("category": "reference",)" R"("index:" [4,{},null,{"a":[]}],)" R"("author": "Nigel Rees",)" R"("title": "Sayings of the Century",)" R"("price": 8.95)" R"(} {} [] [ ])"; // Repeat input sample 1024x for (std::size_t i = 0; i < 10; i++) input += input; // Input's size std::size_t string_size = input.size(); // Getting the symbols that actually modify the stack (i.e., symbols that push or pop) std::string stack_symbols{}; std::vector<SymbolOffsetT> stack_op_indexes; stack_op_indexes.reserve(string_size); // Get the sparse representation of stack operations to_sparse_stack_symbols(std::cbegin(input), std::cend(input), JSONToStackOp{}, std::back_inserter(stack_symbols), std::back_inserter(stack_op_indexes)); rmm::device_uvector<SymbolT> d_stack_ops{stack_symbols.size(), stream_view}; rmm::device_uvector<SymbolOffsetT> d_stack_op_indexes{stack_op_indexes.size(), stream_view}; cudf::detail::hostdevice_vector<SymbolT> top_of_stack_gpu{string_size, stream_view}; cudf::device_span<SymbolOffsetT> d_stack_op_idx_span{d_stack_op_indexes}; CUDF_CUDA_TRY(cudaMemcpyAsync(d_stack_ops.data(), stack_symbols.data(), stack_symbols.size() * sizeof(SymbolT), cudaMemcpyDefault, stream.value())); CUDF_CUDA_TRY(cudaMemcpyAsync(d_stack_op_indexes.data(), stack_op_indexes.data(), stack_op_indexes.size() * sizeof(SymbolOffsetT), cudaMemcpyDefault, stream.value())); // Run algorithm fst::sparse_stack_op_to_top_of_stack<fst::stack_op_support::NO_RESET_SUPPORT, StackLevelT>( d_stack_ops.data(), d_stack_op_idx_span, JSONToStackOp{}, top_of_stack_gpu.device_ptr(), empty_stack_symbol, read_symbol, string_size, stream.value()); // Async copy results from device to host top_of_stack_gpu.device_to_host_async(stream_view); // Get CPU-side results for verification std::string top_of_stack_cpu{}; top_of_stack_cpu.reserve(string_size); to_top_of_stack(std::cbegin(input), std::cend(input), JSONToStackOp{}, empty_stack_symbol, std::back_inserter(top_of_stack_cpu)); // Make sure results have been copied back to host stream.synchronize(); // Verify results ASSERT_EQ(string_size, top_of_stack_cpu.size()); ASSERT_EQ(top_of_stack_gpu.size(), top_of_stack_cpu.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(top_of_stack_gpu.host_ptr(), top_of_stack_cpu, string_size); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests/io
rapidsai_public_repos/cudf/cpp/tests/io/fst/fst_test.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <io/fst/lookup_tables.cuh> #include <io/utilities/hostdevice_vector.hpp> #include <tests/io/fst/common.hpp> #include <cudf_test/base_fixture.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/strings/repeat_strings.hpp> #include <cudf/types.hpp> #include <rmm/cuda_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_buffer.hpp> #include <rmm/device_uvector.hpp> #include <cstdlib> #include <vector> namespace { //------------------------------------------------------------------------------ // CPU-BASED IMPLEMENTATIONS FOR VERIFICATION //------------------------------------------------------------------------------ /** * @brief CPU-based implementation of a finite-state transducer (FST). * * @tparam InputItT Forward input iterator type to symbols fed into the FST * @tparam StateT Type representing states of the finite-state machine * @tparam SymbolGroupLutT Sequence container of symbol groups. Each symbol group is a sequence * container to symbols within that group. * @tparam TransitionTableT Two-dimensional container type * @tparam TransducerTableT Two-dimensional container type * @tparam OutputItT Forward output iterator type * @tparam IndexOutputItT Forward output iterator type * @param[in] begin Forward iterator to the beginning of the symbol sequence * @param[in] end Forward iterator to one past the last element of the symbol sequence * @param[in] init_state The starting state of the finite-state machine * @param[in] symbol_group_lut Sequence container of symbol groups. Each symbol group is a sequence * container to symbols within that group. The index of the symbol group containing a symbol being * read will be used as symbol_gid of the transition and translation tables. * @param[in] transition_table The two-dimensional transition table, i.e., * transition_table[state][symbol_gid] -> new_state * @param[in] translation_table The two-dimensional transducer table, i.e., * translation_table[state][symbol_gid] -> range_of_output_symbols * @param[out] out_tape A forward output iterator to which the transduced input will be written * @param[out] out_index_tape A forward output iterator to which indexes of the symbols that * actually caused some output are written to * @return A pair of iterators to one past the last element of (1) the transduced output symbol * sequence and (2) the indexes of */ template <typename InputItT, typename StateT, typename SymbolGroupLutT, typename TransitionTableT, typename TransducerTableT, typename OutputItT, typename IndexOutputItT> static std::pair<OutputItT, IndexOutputItT> fst_baseline(InputItT begin, InputItT end, StateT const& init_state, SymbolGroupLutT symbol_group_lut, TransitionTableT transition_table, TransducerTableT translation_table, OutputItT out_tape, IndexOutputItT out_index_tape) { // Initialize "FSM" with starting state StateT state = init_state; // To track the symbol offset within the input that caused the FST to output std::size_t in_offset = 0; for (auto it = begin; it < end; it++) { // The symbol currently being read auto const& symbol = *it; // Iterate over symbol groups and search for the first symbol group containing the current // symbol, if no match is found we use cend(symbol_group_lut) as the "catch-all" symbol group auto symbol_group_it = std::find_if(std::cbegin(symbol_group_lut), std::cend(symbol_group_lut), [symbol](auto& sg) { return std::find(std::cbegin(sg), std::cend(sg), symbol) != std::cend(sg); }); auto symbol_group = std::distance(std::cbegin(symbol_group_lut), symbol_group_it); // Output the translated symbols to the output tape out_tape = std::copy(std::cbegin(translation_table[state][symbol_group]), std::cend(translation_table[state][symbol_group]), out_tape); auto out_size = std::distance(std::cbegin(translation_table[state][symbol_group]), std::cend(translation_table[state][symbol_group])); out_index_tape = std::fill_n(out_index_tape, out_size, in_offset); // Transition the state of the finite-state machine state = static_cast<char>(transition_table[state][symbol_group]); // Continue with next symbol from input tape in_offset++; } return {out_tape, out_index_tape}; } } // namespace // Base test fixture for tests struct FstTest : public cudf::test::BaseFixture {}; TEST_F(FstTest, GroundTruth) { // Type used to represent the atomic symbol type used within the finite-state machine using SymbolT = char; // Type sufficiently large to index symbols within the input and output (may be unsigned) using SymbolOffsetT = uint32_t; // Prepare cuda stream for data transfers & kernels rmm::cuda_stream stream{}; rmm::cuda_stream_view stream_view(stream); // Test input std::string input = R"( {)" R"("category": "reference",)" R"("index:" [4,12,42],)" R"("author": "Nigel Rees",)" R"("title": "Sayings of the Century",)" R"("price": 8.95)" R"(} )" R"({)" R"("category": "reference",)" R"("index:" [4,{},null,{"a":[]}],)" R"("author": "Nigel Rees",)" R"("title": "Sayings of the Century",)" R"("price": 8.95)" R"(} {} [] [ ])"; size_t string_size = input.size() * (1 << 10); auto d_input_scalar = cudf::make_string_scalar(input); auto& d_string_scalar = static_cast<cudf::string_scalar&>(*d_input_scalar); const cudf::size_type repeat_times = string_size / input.size(); auto d_input_string = cudf::strings::repeat_string(d_string_scalar, repeat_times); auto& d_input = static_cast<cudf::scalar_type_t<std::string>&>(*d_input_string); input = d_input.to_string(stream); // Prepare input & output buffers constexpr std::size_t single_item = 1; cudf::detail::hostdevice_vector<SymbolT> output_gpu(input.size(), stream_view); cudf::detail::hostdevice_vector<SymbolOffsetT> output_gpu_size(single_item, stream_view); cudf::detail::hostdevice_vector<SymbolOffsetT> out_indexes_gpu(input.size(), stream_view); // Run algorithm auto parser = cudf::io::fst::detail::make_fst( cudf::io::fst::detail::make_symbol_group_lut(pda_sgs), cudf::io::fst::detail::make_transition_table(pda_state_tt), cudf::io::fst::detail::make_translation_table<TT_NUM_STATES * NUM_SYMBOL_GROUPS>(pda_out_tt), stream); // Allocate device-side temporary storage & run algorithm parser.Transduce(d_input.data(), static_cast<SymbolOffsetT>(d_input.size()), output_gpu.device_ptr(), out_indexes_gpu.device_ptr(), output_gpu_size.device_ptr(), start_state, stream.value()); // Async copy results from device to host output_gpu.device_to_host_async(stream.view()); out_indexes_gpu.device_to_host_async(stream.view()); output_gpu_size.device_to_host_async(stream.view()); // Prepare CPU-side results for verification std::string output_cpu{}; std::vector<SymbolOffsetT> out_index_cpu{}; output_cpu.reserve(input.size()); out_index_cpu.reserve(input.size()); // Run CPU-side algorithm fst_baseline(std::begin(input), std::end(input), start_state, pda_sgs, pda_state_tt, pda_out_tt, std::back_inserter(output_cpu), std::back_inserter(out_index_cpu)); // Make sure results have been copied back to host stream.synchronize(); // Verify results ASSERT_EQ(output_gpu_size[0], output_cpu.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(output_gpu, output_cpu, output_cpu.size()); CUDF_TEST_EXPECT_VECTOR_EQUAL(out_indexes_gpu, out_index_cpu, output_cpu.size()); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests/io
rapidsai_public_repos/cudf/cpp/tests/io/fst/common.hpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <array> #include <string> #include <vector> //------------------------------------------------------------------------------ // TEST FST SPECIFICATIONS //------------------------------------------------------------------------------ // FST to check for brackets and braces outside of pairs of quotes enum class dfa_states : char { // The state being active while being outside of a string. When encountering an opening bracket or // curly brace, we push it onto the stack. When encountering a closing bracket or brace, we pop it // from the stack. TT_OOS = 0U, // The state being active while being within a string (e.g., field name or a string value). We do // not push or pop from the stack while being in this state. TT_STR, // The state being active after encountering an escape symbol (e.g., '\') while being in the // TT_STR state. TT_ESC, // Total number of states TT_NUM_STATES }; /** * @brief Definition of the symbol groups */ enum class dfa_symbol_group_id : uint32_t { OPENING_BRACE, ///< Opening brace SG: { OPENING_BRACKET, ///< Opening bracket SG: [ CLOSING_BRACE, ///< Closing brace SG: } CLOSING_BRACKET, ///< Closing bracket SG: ] QUOTE_CHAR, ///< Quote character SG: " ESCAPE_CHAR, ///< Escape character SG: '\' OTHER_SYMBOLS, ///< SG implicitly matching all other characters NUM_SYMBOL_GROUPS ///< Total number of symbol groups }; // Aliases for readability of the transition table constexpr auto TT_OOS = dfa_states::TT_OOS; constexpr auto TT_STR = dfa_states::TT_STR; constexpr auto TT_ESC = dfa_states::TT_ESC; constexpr auto TT_NUM_STATES = static_cast<char>(dfa_states::TT_NUM_STATES); constexpr auto NUM_SYMBOL_GROUPS = static_cast<uint32_t>(dfa_symbol_group_id::NUM_SYMBOL_GROUPS); // Transition table std::array<std::array<dfa_states, NUM_SYMBOL_GROUPS>, TT_NUM_STATES> const pda_state_tt{ {/* IN_STATE { [ } ] " \ OTHER */ /* TT_OOS */ {{TT_OOS, TT_OOS, TT_OOS, TT_OOS, TT_STR, TT_OOS, TT_OOS}}, /* TT_STR */ {{TT_STR, TT_STR, TT_STR, TT_STR, TT_OOS, TT_ESC, TT_STR}}, /* TT_ESC */ {{TT_STR, TT_STR, TT_STR, TT_STR, TT_STR, TT_STR, TT_STR}}}}; // Translation table (i.e., for each transition, what are the symbols that we output) std::array<std::array<std::vector<char>, NUM_SYMBOL_GROUPS>, TT_NUM_STATES> const pda_out_tt{ {/* IN_STATE { [ } ] " \ OTHER */ /* TT_OOS */ {{{'{'}, {'['}, {'}'}, {']'}, {'x'}, {'x'}, {'x'}}}, /* TT_STR */ {{{'x'}, {'x'}, {'x'}, {'x'}, {'x'}, {'x'}, {'x'}}}, /* TT_ESC */ {{{'x'}, {'x'}, {'x'}, {'x'}, {'x'}, {'x'}, {'x'}}}}}; // The i-th string representing all the characters of a symbol group std::array<std::string, NUM_SYMBOL_GROUPS - 1> const pda_sgs{"{", "[", "}", "]", "\"", "\\"}; // The DFA's starting state constexpr char start_state = static_cast<char>(dfa_states::TT_OOS);
0
rapidsai_public_repos/cudf/cpp/tests/io
rapidsai_public_repos/cudf/cpp/tests/io/text/multibyte_split_test.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <io/utilities/output_builder.cuh> #include <cudf_test/base_fixture.hpp> #include <cudf_test/column_utilities.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf_test/table_utilities.hpp> #include <cudf_test/type_lists.hpp> #include <cudf/concatenate.hpp> #include <cudf/io/text/byte_range_info.hpp> #include <cudf/io/text/data_chunk_source_factories.hpp> #include <cudf/io/text/multibyte_split.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> using cudf::test::strings_column_wrapper; // 😀 | F0 9F 98 80 | 11110000 10011111 10011000 10000000 // 😎 | F0 9F 98 8E | 11110000 10011111 10011000 10001110 struct MultibyteSplitTest : public cudf::test::BaseFixture {}; TEST_F(MultibyteSplitTest, Simple) { auto delimiter = std::string(":"); auto host_input = std::string("abc:def"); auto expected = strings_column_wrapper{"abc:", "def"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, NondeterministicMatching) { auto delimiter = std::string("abac"); auto host_input = std::string("ababacabacab"); auto expected = strings_column_wrapper{"ababac", "abac", "ab"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, NoDelimiter) { auto delimiter = std::string(":"); auto host_input = std::string("abcdefg"); auto expected = strings_column_wrapper{"abcdefg"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, DelimiterAtEnd) { auto delimiter = std::string(":"); auto host_input = std::string("abcdefg:"); auto expected = strings_column_wrapper{"abcdefg:"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, DelimiterAtEndByteRange) { auto delimiter = std::string(":"); auto host_input = std::string("abcdefg:"); auto expected = strings_column_wrapper{"abcdefg:"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split( *source, delimiter, cudf::io::text::byte_range_info{0, static_cast<int64_t>(host_input.size())}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, DelimiterAtEndByteRange2) { auto delimiter = std::string(":"); auto host_input = std::string("abcdefg:"); auto expected = strings_column_wrapper{"abcdefg:"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split( *source, delimiter, cudf::io::text::byte_range_info{0, static_cast<int64_t>(host_input.size() - 1)}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, LargeInputSparse) { auto host_input = std::string(1024 * 1024 * 32, '.'); auto host_expected = std::vector<std::string>(); host_input[host_input.size() / 2] = '|'; host_expected.emplace_back(host_input.substr(0, host_input.size() / 2 + 1)); host_expected.emplace_back(host_input.substr(host_input.size() / 2 + 1)); auto expected = strings_column_wrapper{host_expected.begin(), host_expected.end()}; auto delimiter = std::string("|"); auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, LargeInput) { auto host_input = std::string(); auto host_expected = std::vector<std::string>(); for (auto i = 0; i < (2 * 32 * 128 * 1024); i++) { host_input += "...:|"; host_expected.emplace_back(std::string("...:|")); } auto expected = strings_column_wrapper{host_expected.begin(), host_expected.end()}; auto delimiter = std::string("...:|"); auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, OverlappingMatchErasure) { auto delimiter = "::"; auto host_input = std::string( ":::::" ":::::"); auto expected = strings_column_wrapper{":::::", ":::::"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter); // CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); // this use case it not yet supported. } TEST_F(MultibyteSplitTest, DelimiterErasure) { auto delimiter = "\r\n"; auto host_input = std::string("line\r\nanother line\r\nthird line\r\n"); auto expected = strings_column_wrapper{"line", "another line", "third line"}; cudf::io::text::parse_options options; options.strip_delimiters = true; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter, options); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, DelimiterErasureByteRange) { auto delimiter = "\r\n"; auto host_input = std::string("line\r\nanother line\r\nthird line\r\n"); auto expected = strings_column_wrapper{"line", "another line", "third line"}; cudf::io::text::parse_options options; options.strip_delimiters = true; options.byte_range = cudf::io::text::byte_range_info(0, host_input.size() - 1); auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter, options); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, DelimiterErasureOverlap) { auto delimiter = "::"; auto host_input = std::string("::a:::b::c::::d"); auto expected = strings_column_wrapper{"", "a", "", "b", "c", "", "", "d"}; cudf::io::text::parse_options options; options.strip_delimiters = true; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiter, options); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out); } TEST_F(MultibyteSplitTest, HandpickedInput) { auto delimiters = "::|"; auto host_input = std::string( "aaa::|" "bbb::|" "ccc::|" "ddd::|" "eee::|" "fff::|" "ggg::|" "hhh::|" "___::|" "here::|" "is::|" "another::|" "simple::|" "text::|" "separated::|" "by::|" "emojis::|" "which::|" "are::|" "multiple::|" "bytes::|" "and::|" "used::|" "as::|" "delimiters.::|" "::|" "::|" "::|"); auto expected = strings_column_wrapper{ "aaa::|", "bbb::|", "ccc::|", "ddd::|", "eee::|", "fff::|", "ggg::|", "hhh::|", "___::|", "here::|", "is::|", "another::|", "simple::|", "text::|", "separated::|", "by::|", "emojis::|", "which::|", "are::|", "multiple::|", "bytes::|", "and::|", "used::|", "as::|", "delimiters.::|", "::|", "::|", "::|"}; auto source = cudf::io::text::make_source(host_input); auto out = cudf::io::text::multibyte_split(*source, delimiters); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, LargeInputMultipleRange) { auto host_input = std::string(); for (auto i = 0; i < (2 * 32 * 128 * 1024); i++) { host_input += "...:|"; } auto delimiter = std::string("...:|"); auto source = cudf::io::text::make_source(host_input); auto byte_ranges = cudf::io::text::create_byte_range_infos_consecutive(host_input.size(), 3); auto out0 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[0]); auto out1 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[1]); auto out2 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[2]); auto out_views = std::vector<cudf::column_view>({out0->view(), out1->view(), out2->view()}); auto out = cudf::concatenate(out_views); auto expected = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected->view(), *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, LargeInputSparseMultipleRange) { auto host_input = std::string(); for (auto i = 0; i < (2 * 32 * 128 * 1024); i++) { host_input += "....."; } auto delimiter = std::string("...:|"); host_input[host_input.size() / 2] = ':'; host_input[host_input.size() / 2 + 1] = '|'; auto source = cudf::io::text::make_source(host_input); auto byte_ranges = cudf::io::text::create_byte_range_infos_consecutive(host_input.size(), 3); auto out0 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[0]); auto out1 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[1]); auto out2 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[2]); auto out_views = std::vector<cudf::column_view>({out0->view(), out1->view(), out2->view()}); auto out = cudf::concatenate(out_views); auto expected = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected->view(), *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, LargeInputMultipleRangeSingleByte) { auto host_input = std::string(); for (auto i = 0; i < (2 * 32 * 128 * 1024); i++) { host_input += "...:|"; } auto delimiter = std::string("|"); auto source = cudf::io::text::make_source(host_input); auto byte_ranges = cudf::io::text::create_byte_range_infos_consecutive(host_input.size(), 3); auto out0 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[0]); auto out1 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[1]); auto out2 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[2]); auto out_views = std::vector<cudf::column_view>({out0->view(), out1->view(), out2->view()}); auto out = cudf::concatenate(out_views); auto expected = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected->view(), *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, LargeInputSparseMultipleRangeSingleByte) { auto host_input = std::string(); for (auto i = 0; i < (2 * 32 * 128 * 1024); i++) { host_input += "....."; } auto delimiter = std::string("|"); host_input[host_input.size() / 2] = '|'; auto source = cudf::io::text::make_source(host_input); auto byte_ranges = cudf::io::text::create_byte_range_infos_consecutive(host_input.size(), 3); auto out0 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[0]); auto out1 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[1]); auto out2 = cudf::io::text::multibyte_split(*source, delimiter, byte_ranges[2]); auto out_views = std::vector<cudf::column_view>({out0->view(), out1->view(), out2->view()}); auto out = cudf::concatenate(out_views); auto expected = cudf::io::text::multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected->view(), *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, SmallInputAllPossibleRanges) { using namespace cudf::io::text; auto host_input = std::string(); for (auto i = 0; i < 5; i++) { host_input += "::"; } auto delimiter = std::string("::"); auto source = make_source(host_input); // for all possible ways to split the input, check that each field is only output once int size = static_cast<int>(host_input.size()); for (int split1 = 1; split1 < size; split1++) { SCOPED_TRACE(split1); for (int split2 = split1 + 1; split2 < size; split2++) { SCOPED_TRACE(split2); auto out1 = multibyte_split(*source, delimiter, byte_range_info{0, split1}); auto out2 = multibyte_split(*source, delimiter, byte_range_info{split1, split2 - split1}); auto out3 = multibyte_split(*source, delimiter, byte_range_info{split2, size - split2}); auto out_views = std::vector<cudf::column_view>({out1->view(), out2->view(), out3->view()}); auto out = cudf::concatenate(out_views); auto expected = multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected->view(), *out, cudf::test::debug_output_level::ALL_ERRORS); } } } TEST_F(MultibyteSplitTest, SmallInputAllPossibleRangesSingleByte) { using namespace cudf::io::text; auto host_input = std::string(); for (auto i = 0; i < 5; i++) { host_input += std::to_string(i) + ":"; } auto delimiter = std::string(":"); auto source = make_source(host_input); // for all possible ways to split the input, check that each field is only output once int size = static_cast<int>(host_input.size()); for (int split1 = 1; split1 < size; split1++) { SCOPED_TRACE(split1); for (int split2 = split1 + 1; split2 < size; split2++) { SCOPED_TRACE(split2); auto out1 = multibyte_split(*source, delimiter, byte_range_info{0, split1}); auto out2 = multibyte_split(*source, delimiter, byte_range_info{split1, split2 - split1}); auto out3 = multibyte_split(*source, delimiter, byte_range_info{split2, size - split2}); auto out_views = std::vector<cudf::column_view>({out1->view(), out2->view(), out3->view()}); auto out = cudf::concatenate(out_views); auto expected = multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL( expected->view(), *out, cudf::test::debug_output_level::ALL_ERRORS); } } } TEST_F(MultibyteSplitTest, SingletonRangeAtEnd) { // we want a delimiter at the end of the file to not create a new empty row even if it is the only // character in the byte range using namespace cudf::io::text; auto host_input = std::string("ab:cd:"); auto delimiter = std::string(":"); auto source = make_source(host_input); auto expected = strings_column_wrapper{}; auto out = multibyte_split(*source, delimiter, byte_range_info{5, 1}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, EmptyInput) { using namespace cudf::io::text; auto host_input = std::string(); auto delimiter = std::string("::"); auto source = make_source(host_input); auto expected = strings_column_wrapper{}; auto out = multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, EmptyInputSingleByte) { using namespace cudf::io::text; auto host_input = std::string(); auto delimiter = std::string(":"); auto source = make_source(host_input); auto expected = strings_column_wrapper{}; auto out = multibyte_split(*source, delimiter); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, EmptyRange) { using namespace cudf::io::text; auto host_input = std::string("ab::cd"); auto delimiter = std::string("::"); auto source = make_source(host_input); auto expected = strings_column_wrapper{}; auto out = multibyte_split(*source, delimiter, byte_range_info{4, 0}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, EmptyRangeSingleByte) { using namespace cudf::io::text; auto host_input = std::string("ab:cd"); auto delimiter = std::string(":"); auto source = make_source(host_input); auto expected = strings_column_wrapper{}; auto out = multibyte_split(*source, delimiter, byte_range_info{3, 0}); CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, *out, cudf::test::debug_output_level::ALL_ERRORS); } TEST_F(MultibyteSplitTest, EmptySplitDeviceSpan) { cudf::split_device_span<int> span; ASSERT_EQ(span.size(), 0); ASSERT_EQ(span.head().size(), 0); ASSERT_EQ(span.head().data(), nullptr); ASSERT_EQ(span.tail().size(), 0); ASSERT_EQ(span.tail().data(), nullptr); } TEST_F(MultibyteSplitTest, SplitDeviceSpan) { int i = 0; int j = 1; cudf::split_device_span<int> span{{&i, 1}, {&j, 1}}; ASSERT_EQ(span.size(), 2); ASSERT_EQ(span.head().size(), 1); ASSERT_EQ(span.head().data(), &i); ASSERT_EQ(span.tail().size(), 1); ASSERT_EQ(span.tail().data(), &j); ASSERT_EQ(&span[0], &i); ASSERT_EQ(&span[1], &j); ASSERT_EQ(&*span.begin(), &i); ASSERT_EQ(&*(span.begin() + 1), &j); ASSERT_NE(span.begin() + 1, span.end()); ASSERT_EQ(span.begin() + 2, span.end()); } TEST_F(MultibyteSplitTest, OutputBuilder) { auto const stream = cudf::get_default_stream(); cudf::output_builder<char> builder{10, 4, stream}; auto const output = builder.next_output(stream); ASSERT_GE(output.size(), 10); ASSERT_EQ(output.tail().size(), 0); ASSERT_EQ(output.tail().data(), nullptr); ASSERT_EQ(builder.size(), 0); builder.advance_output(1, stream); ASSERT_EQ(builder.size(), 1); auto const output2 = builder.next_output(stream); ASSERT_EQ(output2.head().data(), output.head().data() + 1); builder.advance_output(10, stream); ASSERT_EQ(builder.size(), 11); auto const output3 = builder.next_output(stream); ASSERT_EQ(output3.head().size(), 9); ASSERT_EQ(output3.head().data(), output.head().data() + 11); ASSERT_EQ(output3.tail().size(), 40); builder.advance_output(9, stream); ASSERT_EQ(builder.size(), 20); auto const output4 = builder.next_output(stream); ASSERT_EQ(output4.head().size(), 0); ASSERT_EQ(output4.tail().size(), output3.tail().size()); ASSERT_EQ(output4.tail().data(), output3.tail().data()); builder.advance_output(1, stream); auto const output5 = builder.next_output(stream); ASSERT_EQ(output5.head().size(), 39); ASSERT_EQ(output5.head().data(), output4.tail().data() + 1); ASSERT_EQ(output5.tail().size(), 0); ASSERT_EQ(output5.tail().data(), nullptr); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp/tests/io
rapidsai_public_repos/cudf/cpp/tests/io/text/data_chunk_source_test.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf_test/base_fixture.hpp> #include <cudf_test/cudf_gtest.hpp> #include <cudf/io/text/data_chunk_source_factories.hpp> #include <cudf/io/text/detail/bgzip_utils.hpp> #include <rmm/cuda_stream_view.hpp> #include <fstream> #include <random> auto const temp_env = static_cast<cudf::test::TempDirTestEnvironment*>( ::testing::AddGlobalTestEnvironment(new cudf::test::TempDirTestEnvironment)); struct DataChunkSourceTest : public cudf::test::BaseFixture {}; std::string chunk_to_host(cudf::io::text::device_data_chunk const& chunk) { std::string result(chunk.size(), '\0'); CUDF_CUDA_TRY(cudaMemcpy(result.data(), chunk.data(), chunk.size(), cudaMemcpyDefault)); return result; } void test_source(std::string const& content, cudf::io::text::data_chunk_source const& source) { { // full contents auto reader = source.create_reader(); auto const chunk = reader->get_next_chunk(content.size(), cudf::get_default_stream()); ASSERT_EQ(chunk->size(), content.size()); ASSERT_EQ(chunk_to_host(*chunk), content); } { // skipping contents auto reader = source.create_reader(); reader->skip_bytes(4); auto const chunk = reader->get_next_chunk(content.size(), cudf::get_default_stream()); ASSERT_EQ(chunk->size(), content.size() - 4); ASSERT_EQ(chunk_to_host(*chunk), content.substr(4)); } { // reading multiple chunks, starting with a small one auto reader = source.create_reader(); auto const chunk1 = reader->get_next_chunk(5, cudf::get_default_stream()); auto const chunk2 = reader->get_next_chunk(content.size() - 5, cudf::get_default_stream()); ASSERT_EQ(chunk1->size(), 5); ASSERT_EQ(chunk2->size(), content.size() - 5); ASSERT_EQ(chunk_to_host(*chunk1), content.substr(0, 5)); ASSERT_EQ(chunk_to_host(*chunk2), content.substr(5)); } { // reading multiple chunks auto reader = source.create_reader(); auto const chunk1 = reader->get_next_chunk(content.size() / 2, cudf::get_default_stream()); auto const chunk2 = reader->get_next_chunk(content.size() - content.size() / 2, cudf::get_default_stream()); ASSERT_EQ(chunk1->size(), content.size() / 2); ASSERT_EQ(chunk2->size(), content.size() - content.size() / 2); ASSERT_EQ(chunk_to_host(*chunk1), content.substr(0, content.size() / 2)); ASSERT_EQ(chunk_to_host(*chunk2), content.substr(content.size() / 2)); } { // reading too many bytes auto reader = source.create_reader(); auto const chunk = reader->get_next_chunk(content.size() + 10, cudf::get_default_stream()); ASSERT_EQ(chunk->size(), content.size()); ASSERT_EQ(chunk_to_host(*chunk), content); auto next_chunk = reader->get_next_chunk(1, cudf::get_default_stream()); ASSERT_EQ(next_chunk->size(), 0); } { // skipping past the end auto reader = source.create_reader(); reader->skip_bytes(content.size() + 10); auto const next_chunk = reader->get_next_chunk(1, cudf::get_default_stream()); ASSERT_EQ(next_chunk->size(), 0); } } TEST_F(DataChunkSourceTest, DataSourceHost) { std::string const content = "host buffer source"; auto const datasource = cudf::io::datasource::create(cudf::io::host_buffer{content.data(), content.size()}); auto const source = cudf::io::text::make_source(*datasource); test_source(content, *source); } TEST_F(DataChunkSourceTest, DataSourceFile) { std::string content = "file datasource"; // make it big enough to have is_device_read_preferred return true content.reserve(content.size() << 20); for (int i = 0; i < 20; i++) { content += content; } auto const filename = temp_env->get_temp_filepath("file_source"); { std::ofstream file{filename}; file << content; } auto const datasource = cudf::io::datasource::create(filename); auto const source = cudf::io::text::make_source(*datasource); test_source(content, *source); } TEST_F(DataChunkSourceTest, Device) { std::string const content = "device buffer source"; cudf::string_scalar scalar(content); auto const source = cudf::io::text::make_source(scalar); test_source(content, *source); } TEST_F(DataChunkSourceTest, File) { std::string const content = "file source"; auto const filename = temp_env->get_temp_filepath("file_source"); { std::ofstream file{filename}; file << content; } auto const source = cudf::io::text::make_source_from_file(filename); test_source(content, *source); } TEST_F(DataChunkSourceTest, Host) { std::string const content = "host buffer source"; auto const source = cudf::io::text::make_source(content); test_source(content, *source); } enum class compression { ENABLED, DISABLED }; enum class eof { ADD_EOF_BLOCK, NO_EOF_BLOCK }; uint64_t virtual_offset(std::size_t block_offset, std::size_t local_offset) { return (block_offset << 16) | local_offset; } void write_bgzip(std::ostream& output_stream, cudf::host_span<char const> data, std::default_random_engine& rng, compression compress, eof add_eof) { std::vector<char> const extra_garbage_fields1{{13, // magic number 37, // magic number 7, // field length 0, // field length 1, 2, 3, 4, 5, 6, 7}}; std::vector<char> const extra_garbage_fields2{{12, // magic number 34, // magic number 2, // field length 0, // field length 1, 2, 56, // magic number 78, // magic number 1, // field length 0, // field length 3, // 90, // magic number 12, // magic number 8, // field length 0, // field length 1, 2, 3, 4, 5, 6, 7, 8}}; // make sure the block size with header stays below 65536 std::uniform_int_distribution<std::size_t> block_size_dist{1, 65000}; auto begin = data.begin(); auto const end = data.end(); int i = 0; while (begin < end) { using cudf::host_span; auto len = std::min<std::size_t>(end - begin, block_size_dist(rng)); host_span<char const> const garbage_before = i & 1 ? extra_garbage_fields1 : host_span<char const>{}; host_span<char const> const garbage_after = i & 2 ? extra_garbage_fields2 : host_span<char const>{}; if (compress == compression::ENABLED) { cudf::io::text::detail::bgzip::write_compressed_block( output_stream, {begin, len}, garbage_before, garbage_after); } else { cudf::io::text::detail::bgzip::write_uncompressed_block( output_stream, {begin, len}, garbage_before, garbage_after); } begin += len; i++; } if (add_eof == eof::ADD_EOF_BLOCK) { cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, {}); } } TEST_F(DataChunkSourceTest, BgzipSource) { auto const filename = temp_env->get_temp_filepath("bgzip_source"); std::string input{"bananarama"}; input.reserve(input.size() << 25); for (int i = 0; i < 24; i++) { input = input + input; } { std::ofstream output_stream{filename}; std::default_random_engine rng{}; write_bgzip(output_stream, input, rng, compression::DISABLED, eof::ADD_EOF_BLOCK); } auto const source = cudf::io::text::make_source_from_bgzip_file(filename); test_source(input, *source); } TEST_F(DataChunkSourceTest, BgzipSourceVirtualOffsets) { auto const filename = temp_env->get_temp_filepath("bgzip_source_offsets"); std::string input{"bananarama"}; input.reserve(input.size() << 25); for (int i = 0; i < 24; i++) { input = input + input; } std::string const padding_garbage(10000, 'g'); std::string const data_garbage{"GARBAGE"}; std::string const begininput{"begin of bananarama"}; std::string const endinput{"end of bananarama"}; std::size_t begin_compressed_offset{}; std::size_t end_compressed_offset{}; std::size_t const begin_local_offset{data_garbage.size()}; std::size_t const end_local_offset{endinput.size()}; { std::ofstream output_stream{filename}; output_stream.write(padding_garbage.data(), padding_garbage.size()); std::default_random_engine rng{}; begin_compressed_offset = output_stream.tellp(); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, data_garbage + begininput); write_bgzip(output_stream, input, rng, compression::DISABLED, eof::NO_EOF_BLOCK); end_compressed_offset = output_stream.tellp(); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, endinput + data_garbage + data_garbage); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, {}); output_stream.write(padding_garbage.data(), padding_garbage.size()); } input = begininput + input + endinput; auto const source = cudf::io::text::make_source_from_bgzip_file( filename, virtual_offset(begin_compressed_offset, begin_local_offset), virtual_offset(end_compressed_offset, end_local_offset)); test_source(input, *source); } TEST_F(DataChunkSourceTest, BgzipSourceVirtualOffsetsSingleGZipBlock) { auto const filename = temp_env->get_temp_filepath("bgzip_source_offsets_single_block"); std::string const input{"collection unit brings"}; std::string const head_garbage{"garbage"}; std::string const tail_garbage{"GARBAGE"}; std::size_t const begin_local_offset{head_garbage.size()}; std::size_t const end_local_offset{head_garbage.size() + input.size()}; { std::ofstream output_stream{filename}; cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, head_garbage + input + tail_garbage); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, {}); } auto const source = cudf::io::text::make_source_from_bgzip_file( filename, virtual_offset(0, begin_local_offset), virtual_offset(0, end_local_offset)); test_source(input, *source); } TEST_F(DataChunkSourceTest, BgzipSourceVirtualOffsetsSingleChunk) { auto const filename = temp_env->get_temp_filepath("bgzip_source_offsets_single_chunk"); std::string const input{"collection unit brings"}; std::string const head_garbage{"garbage"}; std::string const tail_garbage{"GARBAGE"}; std::size_t end_compressed_offset{}; std::size_t const begin_local_offset{head_garbage.size()}; std::size_t const end_local_offset{input.size() - 10}; { std::ofstream output_stream{filename}; cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, head_garbage + input.substr(0, 10)); end_compressed_offset = output_stream.tellp(); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, input.substr(10) + tail_garbage); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, {}); } auto const source = cudf::io::text::make_source_from_bgzip_file( filename, virtual_offset(0, begin_local_offset), virtual_offset(end_compressed_offset, end_local_offset)); test_source(input, *source); } TEST_F(DataChunkSourceTest, BgzipCompressedSourceVirtualOffsets) { auto const filename = temp_env->get_temp_filepath("bgzip_source_compressed_offsets"); std::string input{"bananarama"}; input.reserve(input.size() << 25); for (int i = 0; i < 24; i++) { input = input + input; } std::string const padding_garbage(10000, 'g'); std::string const data_garbage{"GARBAGE"}; std::string const begininput{"begin of bananarama"}; std::string const endinput{"end of bananarama"}; std::size_t begin_compressed_offset{}; std::size_t end_compressed_offset{}; std::size_t const begin_local_offset{data_garbage.size()}; std::size_t const end_local_offset{endinput.size()}; { std::ofstream output_stream{filename}; output_stream.write(padding_garbage.data(), padding_garbage.size()); std::default_random_engine rng{}; begin_compressed_offset = output_stream.tellp(); cudf::io::text::detail::bgzip::write_compressed_block(output_stream, data_garbage + begininput); write_bgzip(output_stream, input, rng, compression::ENABLED, eof::NO_EOF_BLOCK); end_compressed_offset = output_stream.tellp(); cudf::io::text::detail::bgzip::write_compressed_block(output_stream, endinput + data_garbage + data_garbage); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, {}); output_stream.write(padding_garbage.data(), padding_garbage.size()); } input = begininput + input + endinput; auto source = cudf::io::text::make_source_from_bgzip_file( filename, virtual_offset(begin_compressed_offset, begin_local_offset), virtual_offset(end_compressed_offset, end_local_offset)); test_source(input, *source); } TEST_F(DataChunkSourceTest, BgzipSourceVirtualOffsetsSingleCompressedGZipBlock) { auto const filename = temp_env->get_temp_filepath("bgzip_source_offsets_single_compressed_block"); std::string const input{"collection unit brings"}; std::string const head_garbage(10000, 'g'); std::string const tail_garbage{"GARBAGE"}; std::size_t const begin_local_offset{head_garbage.size()}; std::size_t const end_local_offset{head_garbage.size() + input.size()}; { std::ofstream output_stream{filename}; cudf::io::text::detail::bgzip::write_compressed_block(output_stream, head_garbage + input + tail_garbage); cudf::io::text::detail::bgzip::write_uncompressed_block(output_stream, {}); } auto const source = cudf::io::text::make_source_from_bgzip_file( filename, virtual_offset(0, begin_local_offset), virtual_offset(0, end_local_offset)); test_source(input, *source); } CUDF_TEST_PROGRAM_MAIN()
0
rapidsai_public_repos/cudf/cpp
rapidsai_public_repos/cudf/cpp/scripts/gdb-pretty-printers.py
# Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gdb global_locals = locals() if not all( name in global_locals for name in ( "HostIterator", "DeviceIterator", "is_template_type_not_alias", "template_match", ) ): raise NameError( "This file expects the RMM pretty-printers to be loaded already. " "Either load them manually, or use the generated load-pretty-printers " "script in the build directory" ) class CudfHostSpanPrinter(gdb.printing.PrettyPrinter): """Print a cudf::host_span""" def __init__(self, val): self.val = val self.pointer = val["_data"] self.size = int(val["_size"]) def children(self): return HostIterator(self.pointer, self.size) def to_string(self): return f"{self.val.type} of length {self.size} at {hex(self.pointer)}" def display_hint(self): return "array" class CudfDeviceSpanPrinter(gdb.printing.PrettyPrinter): """Print a cudf::device_span""" def __init__(self, val): self.val = val self.pointer = val["_data"] self.size = int(val["_size"]) def children(self): return DeviceIterator(self.pointer, self.size) def to_string(self): return f"{self.val.type} of length {self.size} at {hex(self.pointer)}" def display_hint(self): return "array" def lookup_cudf_type(val): if not str(val.type.unqualified()).startswith("cudf::"): return None suffix = str(val.type.unqualified())[6:] if not is_template_type_not_alias(suffix): return None if template_match(suffix, "host_span"): return CudfHostSpanPrinter(val) if template_match(suffix, "device_span"): return CudfDeviceSpanPrinter(val) return None gdb.pretty_printers.append(lookup_cudf_type)
0
rapidsai_public_repos/cudf/cpp
rapidsai_public_repos/cudf/cpp/scripts/load-pretty-printers.in
source @Thrust_SOURCE_DIR@/scripts/gdb-pretty-printers.py source @rmm_SOURCE_DIR@/scripts/gdb-pretty-printers.py source @PROJECT_SOURCE_DIR@/scripts/gdb-pretty-printers.py
0
rapidsai_public_repos/cudf/cpp
rapidsai_public_repos/cudf/cpp/scripts/run-cmake-format.sh
#!/bin/bash # Copyright (c) 2021-2022, NVIDIA CORPORATION. # This script is a wrapper for cmakelang that may be used with pre-commit. The # wrapping is necessary because RAPIDS libraries split configuration for # cmakelang linters between a local config file and a second config file that's # shared across all of RAPIDS via rapids-cmake. In order to keep it up to date # this file is only maintained in one place (the rapids-cmake repo) and # pulled down during builds. We need a way to invoke CMake linting commands # without causing pre-commit failures (which could block local commits or CI), # while also being sufficiently flexible to allow users to maintain the config # file independently of a build directory. # # This script provides the minimal functionality to enable those use cases. It # searches in a number of predefined locations for the rapids-cmake config file # and exits gracefully if the file is not found. If a user wishes to specify a # config file at a nonstandard location, they may do so by setting the # environment variable RAPIDS_CMAKE_FORMAT_FILE. # # This script can be invoked directly anywhere within the project repository. # Alternatively, it may be invoked as a pre-commit hook via # `pre-commit run (cmake-format)|(cmake-lint)`. # # Usage: # bash run-cmake-format.sh {cmake-format,cmake-lint} infile [infile ...] status=0 if [ -z ${CUDF_ROOT:+PLACEHOLDER} ]; then CUDF_BUILD_DIR=$(git rev-parse --show-toplevel 2>&1)/cpp/build status=$? else CUDF_BUILD_DIR=${CUDF_ROOT} fi if ! [ ${status} -eq 0 ]; then if [[ ${CUDF_BUILD_DIR} == *"not a git repository"* ]]; then echo "This script must be run inside the cudf repository, or the CUDF_ROOT environment variable must be set." else echo "Script failed with unknown error attempting to determine project root:" echo ${CUDF_BUILD_DIR} fi exit 1 fi DEFAULT_FORMAT_FILE_LOCATIONS=( "${CUDF_BUILD_DIR:-${HOME}}/_deps/rapids-cmake-src/cmake-format-rapids-cmake.json" "cpp/libcudf_kafka/build/_deps/rapids-cmake-src/cmake-format-rapids-cmake.json" ) if [ -z ${RAPIDS_CMAKE_FORMAT_FILE:+PLACEHOLDER} ]; then for file_path in ${DEFAULT_FORMAT_FILE_LOCATIONS[@]}; do if [ -f ${file_path} ]; then RAPIDS_CMAKE_FORMAT_FILE=${file_path} break fi done fi if [ -z ${RAPIDS_CMAKE_FORMAT_FILE:+PLACEHOLDER} ]; then echo "The rapids-cmake cmake-format configuration file was not found at any of the default search locations: " echo "" ( IFS=$'\n'; echo "${DEFAULT_FORMAT_FILE_LOCATIONS[*]}" ) echo "" echo "Try setting the environment variable RAPIDS_CMAKE_FORMAT_FILE to the path to the config file." exit 0 else echo "Using format file ${RAPIDS_CMAKE_FORMAT_FILE}" fi if [[ $1 == "cmake-format" ]]; then cmake-format -i --config-files cpp/cmake/config.json ${RAPIDS_CMAKE_FORMAT_FILE} -- ${@:2} elif [[ $1 == "cmake-lint" ]]; then # Since the pre-commit hook is verbose, we have to be careful to only # present cmake-lint's output (which is quite verbose) if we actually # observe a failure. OUTPUT=$(cmake-lint --config-files cpp/cmake/config.json ${RAPIDS_CMAKE_FORMAT_FILE} -- ${@:2}) status=$? if ! [ ${status} -eq 0 ]; then echo "${OUTPUT}" fi exit ${status} fi
0
rapidsai_public_repos/cudf/cpp
rapidsai_public_repos/cudf/cpp/scripts/run-clang-tidy.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import os import subprocess import argparse import json import multiprocessing as mp import shutil EXPECTED_VERSION = "16.0.6" VERSION_REGEX = re.compile(r" LLVM version ([0-9.]+)") GPU_ARCH_REGEX = re.compile(r"sm_(\d+)") SPACES = re.compile(r"\s+") SEPARATOR = "-" * 16 def parse_args(): argparser = argparse.ArgumentParser("Runs clang-tidy on a project") argparser.add_argument("-cdb", type=str, # TODO This is a hack, needs to be fixed default="cpp/build/cuda-11.5.0/clang-tidy/release/compile_commands.clangd.json", help="Path to cmake-generated compilation database" " file. It is always found inside the root of the " "cmake build folder. So make sure that `cmake` has " "been run once before running this script!") argparser.add_argument("-exe", type=str, default="clang-tidy", help="Path to clang-tidy exe") argparser.add_argument("-ignore", type=str, default="[.]cu$|examples/kmeans/", help="Regex used to ignore files from checking") argparser.add_argument("-select", type=str, default=None, help="Regex used to select files for checking") argparser.add_argument("-j", type=int, default=-1, help="Number of parallel jobs to launch.") args = argparser.parse_args() if args.j <= 0: args.j = mp.cpu_count() args.ignore_compiled = re.compile(args.ignore) if args.ignore else None args.select_compiled = re.compile(args.select) if args.select else None ret = subprocess.check_output("%s --version" % args.exe, shell=True) ret = ret.decode("utf-8") version = VERSION_REGEX.search(ret) if version is None: raise Exception("Failed to figure out clang-tidy version!") version = version.group(1) if version != EXPECTED_VERSION: raise Exception("clang-tidy exe must be v%s found '%s'" % \ (EXPECTED_VERSION, version)) if not os.path.exists(args.cdb): raise Exception("Compilation database '%s' missing" % args.cdb) return args def get_all_commands(cdb): with open(cdb) as fp: return json.load(fp) def get_gpu_archs(command): archs = [] for loc in range(len(command)): if command[loc] != "-gencode": continue arch_flag = command[loc + 1] match = GPU_ARCH_REGEX.search(arch_flag) if match is not None: archs.append("--cuda-gpu-arch=sm_%s" % match.group(1)) return archs def get_index(arr, item): try: return arr.index(item) except: return -1 def remove_item(arr, item): loc = get_index(arr, item) if loc >= 0: del arr[loc] return loc def remove_item_plus_one(arr, item): loc = get_index(arr, item) if loc >= 0: del arr[loc + 1] del arr[loc] return loc def get_clang_includes(exe): dir = os.getenv("CONDA_PREFIX") if dir is None: ret = subprocess.check_output("which %s 2>&1" % exe, shell=True) ret = ret.decode("utf-8") dir = os.path.dirname(os.path.dirname(ret)) header = os.path.join(dir, "include", "ClangHeaders") return ["-I", header] def get_tidy_args(cmd, exe): command, file = cmd["command"], cmd["file"] is_cuda = file.endswith(".cu") command = re.split(SPACES, command) # compiler is always clang++! command[0] = "clang++" # remove compilation and output targets from the original command remove_item_plus_one(command, "-c") remove_item_plus_one(command, "-o") if is_cuda: # replace nvcc's "-gencode ..." with clang's "--cuda-gpu-arch ..." archs = get_gpu_archs(command) command.extend(archs) while True: loc = remove_item_plus_one(command, "-gencode") if loc < 0: break # "-x cuda" is the right usage in clang loc = get_index(command, "-x") if loc >= 0: command[loc + 1] = "cuda" remove_item_plus_one(command, "-ccbin") remove_item(command, "--expt-extended-lambda") remove_item(command, "--diag_suppress=unrecognized_gcc_pragma") command.extend(get_clang_includes(exe)) return command, is_cuda def run_clang_tidy_command(tidy_cmd): cmd = " ".join(tidy_cmd) result = subprocess.run(cmd, check=False, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) status = result.returncode == 0 if status: out = "" else: out = "CMD: " + cmd out += result.stdout.decode("utf-8").rstrip() return status, out def run_clang_tidy(cmd, args): command, is_cuda = get_tidy_args(cmd, args.exe) tidy_cmd = [args.exe, "-header-filter='.*cudf/cpp/(src|include|bench|comms).*'", cmd["file"], "--", ] tidy_cmd.extend(command) status = True out = "" if is_cuda: tidy_cmd.append("--cuda-device-only") tidy_cmd.append(cmd["file"]) ret, out1 = run_clang_tidy_command(tidy_cmd) out += out1 out += "%s" % SEPARATOR if not ret: status = ret tidy_cmd[-2] = "--cuda-host-only" ret, out1 = run_clang_tidy_command(tidy_cmd) if not ret: status = ret out += out1 else: tidy_cmd.append(cmd["file"]) ret, out1 = run_clang_tidy_command(tidy_cmd) if not ret: status = ret out += out1 return status, out, cmd["file"] # yikes! global var :( results = [] def collect_result(result): global results results.append(result) def print_result(passed, stdout, file): status_str = "PASSED" if passed else "FAILED" print(f"{SEPARATOR} File:{file} {status_str} {SEPARATOR}") if stdout: print(stdout) print(f"{SEPARATOR} File:{file} ENDS {SEPARATOR}") def print_results(): global results status = True for passed, stdout, file in results: print_result(passed, stdout, file) if not passed: status = False return status def run_tidy_for_all_files(args, all_files): pool = None if args.j == 1 else mp.Pool(args.j) # actual tidy checker for cmd in all_files: # skip files that we don't want to look at if args.ignore_compiled is not None and \ re.search(args.ignore_compiled, cmd["file"]) is not None: continue if args.select_compiled is not None and \ re.search(args.select_compiled, cmd["file"]) is None: continue if pool is not None: pool.apply_async(run_clang_tidy, args=(cmd, args), callback=collect_result) else: passed, stdout, file = run_clang_tidy(cmd, args) collect_result((passed, stdout, file)) if pool is not None: pool.close() pool.join() return print_results() def main(): args = parse_args() # Attempt to making sure that we run this script from root of repo always if not os.path.exists(".git"): raise Exception("This needs to always be run from the root of repo") # Check whether clang-tidy exists # print(args) if "exe" not in args and shutil.which("clang-tidy") is not None: print("clang-tidy not found. Exiting...") return all_files = get_all_commands(args.cdb) status = run_tidy_for_all_files(args, all_files) if not status: raise Exception("clang-tidy failed! Refer to the errors above.") if __name__ == "__main__": main()
0
rapidsai_public_repos/cudf/cpp
rapidsai_public_repos/cudf/cpp/scripts/sort_ninja_log.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. # import argparse import os import sys import xml.etree.ElementTree as ET from pathlib import Path from xml.dom import minidom parser = argparse.ArgumentParser() parser.add_argument( "log_file", type=str, default=".ninja_log", help=".ninja_log file" ) parser.add_argument( "--fmt", type=str, default="csv", choices=["csv", "xml", "html"], help="output format (to stdout)", ) parser.add_argument( "--msg", type=str, default=None, help="optional text file to include at the top of the html output", ) parser.add_argument( "--cmp_log", type=str, default=None, help="optional baseline ninja_log to compare results", ) args = parser.parse_args() log_file = args.log_file output_fmt = args.fmt cmp_file = args.cmp_log # build a map of the log entries def build_log_map(log_file): entries = {} log_path = os.path.dirname(os.path.abspath(log_file)) with open(log_file) as log: last = 0 files = {} for line in log: entry = line.split() if len(entry) > 4: obj_file = entry[3] file_size = ( os.path.getsize(os.path.join(log_path, obj_file)) if os.path.exists(obj_file) else 0 ) start = int(entry[0]) end = int(entry[1]) # logic based on ninjatracing if end < last: files = {} last = end files.setdefault(entry[4], (entry[3], start, end, file_size)) # build entries from files dict for entry in files.values(): entries[entry[0]] = (entry[1], entry[2], entry[3]) return entries # output results in XML format def output_xml(entries, sorted_list, args): root = ET.Element("testsuites") testsuite = ET.Element( "testsuite", attrib={ "name": "build-time", "tests": str(len(sorted_list)), "failures": str(0), "errors": str(0), }, ) root.append(testsuite) for name in sorted_list: entry = entries[name] build_time = float(entry[1] - entry[0]) / 1000 item = ET.Element( "testcase", attrib={ "classname": "BuildTime", "name": name, "time": str(build_time), }, ) testsuite.append(item) tree = ET.ElementTree(root) xmlstr = minidom.parseString(ET.tostring(root)).toprettyxml(indent=" ") print(xmlstr) # utility converts a millisecond value to a column width in pixels def time_to_width(value, end): # map a value from (0,end) to (0,1000) r = (float(value) / float(end)) * 1000.0 return int(r) # assign each entry to a thread by analyzing the start/end times and # slotting them into thread buckets where they fit def assign_entries_to_threads(entries): # first sort the entries' keys by end timestamp sorted_keys = sorted( list(entries.keys()), key=lambda k: entries[k][1], reverse=True ) # build the chart data by assigning entries to threads results = {} threads = [] for name in sorted_keys: entry = entries[name] # assign this entry by finding the first available thread identified # by the thread's current start time greater than the entry's end time tid = -1 for t in range(len(threads)): if threads[t] >= entry[1]: threads[t] = entry[0] tid = t break # if no current thread found, create a new one with this entry if tid < 0: threads.append(entry[0]) tid = len(threads) - 1 # add entry name to the array associated with this tid if tid not in results.keys(): results[tid] = [] results[tid].append(name) # first entry has the last end time end_time = entries[sorted_keys[0]][1] # return the threaded entries and the last end time return (results, end_time) # format the build-time def format_build_time(input_time): build_time = abs(input_time) build_time_str = str(build_time) + " ms" if build_time > 120000: # 2 minutes minutes = int(build_time / 60000) seconds = int(((build_time / 60000) - minutes) * 60) build_time_str = "{:d}:{:02d} min".format(minutes, seconds) elif build_time > 1000: build_time_str = "{:.3f} s".format(build_time / 1000) if input_time < 0: build_time_str = "-" + build_time_str return build_time_str # format file size def format_file_size(input_size): file_size = abs(input_size) file_size_str = "" if file_size > 1000000: file_size_str = "{:.3f} MB".format(file_size / 1000000) elif file_size > 1000: file_size_str = "{:.3f} KB".format(file_size / 1000) elif file_size > 0: file_size_str = str(file_size) + " bytes" if input_size < 0: file_size_str = "-" + file_size_str return file_size_str # Output chart results in HTML format # Builds a standalone html file with no javascript or styles def output_html(entries, sorted_list, cmp_entries, args): print("<html><head><title>Build Metrics Report</title>") print("</head><body>") if args.msg is not None: msg_file = Path(args.msg) if msg_file.is_file(): msg = msg_file.read_text() print("<p>", msg, "</p>") # map entries to threads # the end_time is used to scale all the entries to a fixed output width threads, end_time = assign_entries_to_threads(entries) # color ranges for build times summary = {"red": 0, "yellow": 0, "green": 0, "white": 0} red = "bgcolor='#FFBBD0'" yellow = "bgcolor='#FFFF80'" green = "bgcolor='#AAFFBD'" white = "bgcolor='#FFFFFF'" # create the build-time chart print("<table id='chart' width='1000px' bgcolor='#BBBBBB'>") for tid in range(len(threads)): names = threads[tid] # sort the names for this thread by start time names = sorted(names, key=lambda k: entries[k][0]) # use the last entry's end time as the total row size # (this is an estimate and does not have to be exact) last_entry = entries[names[len(names) - 1]] last_time = time_to_width(last_entry[1], end_time) print( "<tr><td><table width='", last_time, "px' border='0' cellspacing='1' cellpadding='0'><tr>", sep="", ) prev_end = 0 # used for spacing between entries # write out each entry for this thread as a column for a single row for name in names: entry = entries[name] start = entry[0] end = entry[1] # this handles minor gaps between end of the # previous entry and the start of the next if prev_end > 0 and start > prev_end: size = time_to_width(start - prev_end, end_time) print("<td width='", size, "px'></td>") # adjust for the cellspacing prev_end = end + int(end_time / 500) build_time = end - start build_time_str = format_build_time(build_time) # assign color and accumulate legend values color = white if build_time > 300000: # 5 minutes color = red summary["red"] += 1 elif build_time > 120000: # 2 minutes color = yellow summary["yellow"] += 1 elif build_time > 1000: # 1 second color = green summary["green"] += 1 else: summary["white"] += 1 # compute the pixel width based on build-time size = max(time_to_width(build_time, end_time), 2) # output the column for this entry print("<td height='20px' width='", size, "px' ", sep="", end="") # title text is shown as hover-text by most browsers print(color, "title='", end="") print(name, "\n", build_time_str, "' ", sep="", end="") # centers the name if it fits in the box print("align='center' nowrap>", end="") # use a slightly smaller, fixed-width font print("<font size='-2' face='courier'>", end="") # add the file-name if it fits, otherwise, truncate the name file_name = os.path.basename(name) if len(file_name) + 3 > size / 7: abbr_size = int(size / 7) - 3 if abbr_size > 1: print(file_name[:abbr_size], "...", sep="", end="") else: print(file_name, end="") # done with this entry print("</font></td>") # update the entry with just the computed output info entries[name] = (build_time, color, entry[2]) # add a filler column at the end of each row print("<td width='*'></td></tr></table></td></tr>") # done with the chart print("</table><br/>") # output detail table in build-time descending order print("<table id='detail' bgcolor='#EEEEEE'>") print( "<tr><th>File</th>", "<th>Compile time</th>", "<th>Size</th>", sep="" ) if cmp_entries: print("<th>t-cmp</th>", sep="") print("</tr>") for name in sorted_list: entry = entries[name] build_time = entry[0] color = entry[1] file_size = entry[2] build_time_str = format_build_time(build_time) file_size_str = format_file_size(file_size) # output entry row print("<tr ", color, "><td>", name, "</td>", sep="", end="") print("<td align='right'>", build_time_str, "</td>", sep="", end="") print("<td align='right'>", file_size_str, "</td>", sep="", end="") # output diff column cmp_entry = ( cmp_entries[name] if cmp_entries and name in cmp_entries else None ) if cmp_entry: diff_time = build_time - (cmp_entry[1] - cmp_entry[0]) diff_time_str = format_build_time(diff_time) diff_color = white diff_percent = int((diff_time / build_time) * 100) if build_time > 60000: if diff_percent > 20: diff_color = red diff_time_str = "<b>" + diff_time_str + "</b>" elif diff_percent < -20: diff_color = green diff_time_str = "<b>" + diff_time_str + "</b>" elif diff_percent > 0: diff_color = yellow print( "<td align='right' ", diff_color, ">", diff_time_str, "</td>", sep="", end="", ) print("</tr>") print("</table><br/>") # include summary table with color legend print("<table id='legend' border='2' bgcolor='#EEEEEE'>") print("<tr><td", red, ">time &gt; 5 minutes</td>") print("<td align='right'>", summary["red"], "</td></tr>") print("<tr><td", yellow, ">2 minutes &lt; time &lt; 5 minutes</td>") print("<td align='right'>", summary["yellow"], "</td></tr>") print("<tr><td", green, ">1 second &lt; time &lt; 2 minutes</td>") print("<td align='right'>", summary["green"], "</td></tr>") print("<tr><td", white, ">time &lt; 1 second</td>") print("<td align='right'>", summary["white"], "</td></tr>") print("</table>") if cmp_entries: print("<table id='legend' border='2' bgcolor='#EEEEEE'>") print("<tr><td", red, ">time increase &gt; 20%</td></tr>") print("<tr><td", yellow, ">time increase &gt; 0</td></tr>") print("<tr><td", green, ">time decrease &gt; 20%</td></tr>") print( "<tr><td", white, ">time change &lt; 20%% or build time &lt; 1 minute</td></tr>", ) print("</table>") print("</body></html>") # output results in CSV format def output_csv(entries, sorted_list, cmp_entries, args): print("time,size,file", end="") if cmp_entries: print(",diff", end="") print() for name in sorted_list: entry = entries[name] build_time = entry[1] - entry[0] file_size = entry[2] cmp_entry = ( cmp_entries[name] if cmp_entries and name in cmp_entries else None ) print(build_time, file_size, name, sep=",", end="") if cmp_entry: diff_time = build_time - (cmp_entry[1] - cmp_entry[0]) print(",", diff_time, sep="", end="") print() # parse log file into map entries = build_log_map(log_file) if len(entries) == 0: print("Could not parse", log_file) exit() # sort the entries by build-time (descending order) sorted_list = sorted( list(entries.keys()), key=lambda k: entries[k][1] - entries[k][0], reverse=True, ) # load the comparison build log if available cmp_entries = build_log_map(cmp_file) if cmp_file else None if output_fmt == "xml": output_xml(entries, sorted_list, args) elif output_fmt == "html": output_html(entries, sorted_list, cmp_entries, args) else: output_csv(entries, sorted_list, cmp_entries, args)
0
rapidsai_public_repos/cudf/cpp
rapidsai_public_repos/cudf/cpp/benchmarks/CMakeLists.txt
# ============================================================================= # Copyright (c) 2018-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # ============================================================================= find_package(Threads REQUIRED) add_library(cudf_datagen STATIC common/generate_input.cu) target_compile_features(cudf_datagen PUBLIC cxx_std_17 cuda_std_17) target_compile_options( cudf_datagen PUBLIC "$<$<COMPILE_LANGUAGE:CXX>:${CUDF_CXX_FLAGS}>" "$<$<COMPILE_LANGUAGE:CUDA>:${CUDF_CUDA_FLAGS}>" ) target_link_libraries( cudf_datagen PUBLIC GTest::gmock GTest::gtest benchmark::benchmark nvbench::nvbench Threads::Threads cudf cudftestutil PRIVATE $<TARGET_NAME_IF_EXISTS:conda_env> ) target_include_directories( cudf_datagen PUBLIC "$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>" "$<BUILD_INTERFACE:${CUDF_SOURCE_DIR}>" "$<BUILD_INTERFACE:${CUDF_SOURCE_DIR}/src>" ) # ################################################################################################## # * compiler function ----------------------------------------------------------------------------- # Use an OBJECT library so we only compile these helper source files only once add_library( cudf_benchmark_common OBJECT "${CUDF_SOURCE_DIR}/tests/utilities/base_fixture.cpp" synchronization/synchronization.cpp io/cuio_common.cpp ) target_link_libraries(cudf_benchmark_common PRIVATE cudf_datagen $<TARGET_NAME_IF_EXISTS:conda_env>) add_custom_command( OUTPUT CUDF_BENCHMARKS COMMAND echo Running benchmarks COMMAND mkdir -p results VERBATIM COMMENT "Running cudf benchmarks." USES_TERMINAL ) # This function takes in a benchmark name and benchmark source and handles setting all of the # associated properties and linking to build the benchmark function(ConfigureBench CMAKE_BENCH_NAME) add_executable(${CMAKE_BENCH_NAME} ${ARGN}) set_target_properties( ${CMAKE_BENCH_NAME} PROPERTIES RUNTIME_OUTPUT_DIRECTORY "$<BUILD_INTERFACE:${CUDF_BINARY_DIR}/benchmarks>" INSTALL_RPATH "\$ORIGIN/../../../lib" CXX_STANDARD 17 CXX_STANDARD_REQUIRED ON # For std:: support of __int128_t. Can be removed once using cuda::std CXX_EXTENSIONS ON CUDA_STANDARD 17 CUDA_STANDARD_REQUIRED ON ) target_link_libraries( ${CMAKE_BENCH_NAME} PRIVATE cudf_benchmark_common cudf_datagen benchmark::benchmark_main $<TARGET_NAME_IF_EXISTS:conda_env> ) add_custom_command( OUTPUT CUDF_BENCHMARKS COMMAND ${CMAKE_BENCH_NAME} --benchmark_out_format=json --benchmark_out=results/${CMAKE_BENCH_NAME}.json APPEND COMMENT "Adding ${CMAKE_BENCH_NAME}" ) install( TARGETS ${CMAKE_BENCH_NAME} COMPONENT testing DESTINATION bin/benchmarks/libcudf EXCLUDE_FROM_ALL ) endfunction() # This function takes in a benchmark name and benchmark source for nvbench benchmarks and handles # setting all of the associated properties and linking to build the benchmark function(ConfigureNVBench CMAKE_BENCH_NAME) add_executable(${CMAKE_BENCH_NAME} ${ARGN} fixture/nvbench_main.cpp) set_target_properties( ${CMAKE_BENCH_NAME} PROPERTIES RUNTIME_OUTPUT_DIRECTORY "$<BUILD_INTERFACE:${CUDF_BINARY_DIR}/benchmarks>" INSTALL_RPATH "\$ORIGIN/../../../lib" ) target_link_libraries( ${CMAKE_BENCH_NAME} PRIVATE cudf_benchmark_common cudf_datagen nvbench::nvbench $<TARGET_NAME_IF_EXISTS:conda_env> ) install( TARGETS ${CMAKE_BENCH_NAME} COMPONENT testing DESTINATION bin/benchmarks/libcudf EXCLUDE_FROM_ALL ) endfunction() # ################################################################################################## # * column benchmarks ----------------------------------------------------------------------------- ConfigureBench(COLUMN_CONCAT_BENCH column/concatenate.cpp) # ################################################################################################## # * gather benchmark ------------------------------------------------------------------------------ ConfigureBench(GATHER_BENCH copying/gather.cu) # ################################################################################################## # * scatter benchmark ----------------------------------------------------------------------------- ConfigureBench(SCATTER_BENCH copying/scatter.cu) # ################################################################################################## # * lists scatter benchmark ----------------------------------------------------------------------- ConfigureBench(SCATTER_LISTS_BENCH lists/copying/scatter_lists.cu) # ################################################################################################## # * Other list-related operartions benchmark ------------------------------------------------------ ConfigureNVBench(SET_OPS_NVBENCH lists/set_operations.cpp) # ################################################################################################## # * contiguous_split benchmark ------------------------------------------------------------------- ConfigureBench(CONTIGUOUS_SPLIT_BENCH copying/contiguous_split.cu) # ################################################################################################## # * shift benchmark ------------------------------------------------------------------------------- ConfigureBench(SHIFT_BENCH copying/shift.cu) # ################################################################################################## # * copy-if-else benchmark # ----------------------------------------------------------------------------- ConfigureBench(COPY_IF_ELSE_BENCH copying/copy_if_else.cpp) # ################################################################################################## # * transpose benchmark --------------------------------------------------------------------------- ConfigureBench(TRANSPOSE_BENCH transpose/transpose.cpp) # ################################################################################################## # * apply_boolean_mask benchmark ------------------------------------------------------------------ ConfigureBench(APPLY_BOOLEAN_MASK_BENCH stream_compaction/apply_boolean_mask.cpp) # ################################################################################################## # * stream_compaction benchmark ------------------------------------------------------------------- ConfigureNVBench( STREAM_COMPACTION_NVBENCH stream_compaction/distinct.cpp stream_compaction/distinct_count.cpp stream_compaction/stable_distinct.cpp stream_compaction/unique.cpp stream_compaction/unique_count.cpp ) # ################################################################################################## # * join benchmark -------------------------------------------------------------------------------- ConfigureBench(JOIN_BENCH join/left_join.cu join/conditional_join.cu) ConfigureNVBench(JOIN_NVBENCH join/join.cu join/mixed_join.cu) # ################################################################################################## # * iterator benchmark ---------------------------------------------------------------------------- ConfigureBench(ITERATOR_BENCH iterator/iterator.cu) # ################################################################################################## # * search benchmark ------------------------------------------------------------------------------ ConfigureBench(SEARCH_BENCH search/search.cpp) ConfigureNVBench(SEARCH_NVBENCH search/contains_scalar.cpp search/contains_table.cpp) # ################################################################################################## # * sort benchmark -------------------------------------------------------------------------------- ConfigureBench(SORT_BENCH sort/rank.cpp sort/sort.cpp sort/sort_strings.cpp) ConfigureNVBench( SORT_NVBENCH sort/rank_lists.cpp sort/rank_structs.cpp sort/segmented_sort.cpp sort/sort_lists.cpp sort/sort_structs.cpp ) # ################################################################################################## # * quantiles benchmark # -------------------------------------------------------------------------------- ConfigureBench(QUANTILES_BENCH quantiles/quantiles.cpp) # ################################################################################################## # * type_dispatcher benchmark --------------------------------------------------------------------- ConfigureBench(TYPE_DISPATCHER_BENCH type_dispatcher/type_dispatcher.cu) # ################################################################################################## # * reduction benchmark --------------------------------------------------------------------------- ConfigureBench( REDUCTION_BENCH reduction/anyall.cpp reduction/dictionary.cpp reduction/minmax.cpp reduction/reduce.cpp reduction/scan.cpp ) ConfigureNVBench( REDUCTION_NVBENCH reduction/rank.cpp reduction/scan_structs.cpp reduction/segmented_reduce.cpp ) # ################################################################################################## # * reduction benchmark --------------------------------------------------------------------------- ConfigureBench(REPLACE_BENCH replace/clamp.cpp replace/nans.cpp) # ################################################################################################## # * filling benchmark ----------------------------------------------------------------------------- ConfigureBench(FILL_BENCH filling/repeat.cpp) # ################################################################################################## # * groupby benchmark ----------------------------------------------------------------------------- ConfigureBench( GROUPBY_BENCH groupby/group_sum.cpp groupby/group_nth.cpp groupby/group_shift.cpp groupby/group_struct_values.cpp groupby/group_no_requests.cpp groupby/group_scan.cpp ) ConfigureNVBench( GROUPBY_NVBENCH groupby/group_max.cpp groupby/group_nunique.cpp groupby/group_rank.cpp groupby/group_struct_keys.cpp ) # ################################################################################################## # * hashing benchmark ----------------------------------------------------------------------------- ConfigureBench(HASHING_BENCH hashing/partition.cpp) ConfigureNVBench(HASHING_NVBENCH hashing/hash.cpp) # ################################################################################################## # * merge benchmark ------------------------------------------------------------------------------- ConfigureBench(MERGE_BENCH merge/merge.cpp) ConfigureNVBench(MERGE_NVBENCH merge/merge_structs.cpp merge/merge_lists.cpp) # ################################################################################################## # * null_mask benchmark --------------------------------------------------------------------------- ConfigureBench(NULLMASK_BENCH null_mask/set_null_mask.cpp) # ################################################################################################## # * parquet writer benchmark ---------------------------------------------------------------------- ConfigureNVBench( PARQUET_WRITER_NVBENCH io/parquet/parquet_writer.cpp io/parquet/parquet_writer_chunks.cpp ) # ################################################################################################## # * parquet reader benchmark ---------------------------------------------------------------------- ConfigureNVBench( PARQUET_READER_NVBENCH io/parquet/parquet_reader_input.cpp io/parquet/parquet_reader_options.cpp ) # ################################################################################################## # * orc reader benchmark -------------------------------------------------------------------------- ConfigureNVBench(ORC_READER_NVBENCH io/orc/orc_reader_input.cpp io/orc/orc_reader_options.cpp) # ################################################################################################## # * csv reader benchmark -------------------------------------------------------------------------- ConfigureNVBench(CSV_READER_NVBENCH io/csv/csv_reader_input.cpp io/csv/csv_reader_options.cpp) # ################################################################################################## # * orc writer benchmark -------------------------------------------------------------------------- ConfigureNVBench(ORC_WRITER_NVBENCH io/orc/orc_writer.cpp io/orc/orc_writer_chunks.cpp) # ################################################################################################## # * csv writer benchmark -------------------------------------------------------------------------- ConfigureNVBench(CSV_WRITER_NVBENCH io/csv/csv_writer.cpp) # ################################################################################################## # * ast benchmark --------------------------------------------------------------------------------- ConfigureBench(AST_BENCH ast/transform.cpp) # ################################################################################################## # * binaryop benchmark ---------------------------------------------------------------------------- ConfigureBench(BINARYOP_BENCH binaryop/binaryop.cpp binaryop/compiled_binaryop.cpp) # ################################################################################################## # * nvtext benchmark ------------------------------------------------------------------- ConfigureBench(TEXT_BENCH text/ngrams.cpp text/subword.cpp) ConfigureNVBench( TEXT_NVBENCH text/edit_distance.cpp text/hash_ngrams.cpp text/jaccard.cpp text/minhash.cpp text/normalize.cpp text/replace.cpp text/tokenize.cpp text/vocab.cpp ) # ################################################################################################## # * strings benchmark ------------------------------------------------------------------- ConfigureBench( STRINGS_BENCH string/combine.cpp string/convert_datetime.cpp string/convert_durations.cpp string/convert_fixed_point.cpp string/convert_numerics.cpp string/copy.cu string/factory.cu string/filter.cpp string/find.cpp string/repeat_strings.cpp string/replace.cpp string/slice.cpp string/translate.cpp string/url_decode.cu ) ConfigureNVBench( STRINGS_NVBENCH string/case.cpp string/char_types.cpp string/contains.cpp string/count.cpp string/extract.cpp string/gather.cpp string/join_strings.cpp string/lengths.cpp string/like.cpp string/replace_re.cpp string/reverse.cpp string/split.cpp string/split_re.cpp ) # ################################################################################################## # * json benchmark ------------------------------------------------------------------- ConfigureBench(JSON_BENCH json/json.cu) ConfigureNVBench(FST_NVBENCH io/fst.cu) ConfigureNVBench(JSON_READER_NVBENCH io/json/nested_json.cpp io/json/json_reader_input.cpp) ConfigureNVBench(JSON_WRITER_NVBENCH io/json/json_writer.cpp) # ################################################################################################## # * io benchmark --------------------------------------------------------------------- ConfigureNVBench(MULTIBYTE_SPLIT_NVBENCH io/text/multibyte_split.cpp) target_link_libraries(MULTIBYTE_SPLIT_NVBENCH PRIVATE ZLIB::ZLIB) add_custom_target( run_benchmarks DEPENDS CUDF_BENCHMARKS COMMENT "Custom command for running cudf benchmarks." )
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/replace/nans.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column.hpp> #include <cudf/column/column_view.hpp> #include <cudf/replace.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/table/table.hpp> #include <cudf/types.hpp> class ReplaceNans : public cudf::benchmark {}; template <typename type> static void BM_replace_nans(benchmark::State& state, bool include_nulls) { cudf::size_type const n_rows{(cudf::size_type)state.range(0)}; auto const dtype = cudf::type_to_id<type>(); auto const input = create_random_column(dtype, row_count{n_rows}); if (!include_nulls) input->set_null_mask(rmm::device_buffer{}, 0); auto zero = cudf::make_fixed_width_scalar<type>(0); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = cudf::replace_nans(*input, *zero); } } #define NANS_BENCHMARK_DEFINE(name, type, nulls) \ BENCHMARK_DEFINE_F(ReplaceNans, name) \ (::benchmark::State & state) { BM_replace_nans<type>(state, nulls); } \ BENCHMARK_REGISTER_F(ReplaceNans, name) \ ->UseManualTime() \ ->Arg(10000) /* 10k */ \ ->Arg(100000) /* 100k */ \ ->Arg(1000000) /* 1M */ \ ->Arg(10000000) /* 10M */ \ ->Arg(100000000); /* 100M */ NANS_BENCHMARK_DEFINE(float32_nulls, float, true); NANS_BENCHMARK_DEFINE(float64_nulls, double, true); NANS_BENCHMARK_DEFINE(float32_no_nulls, float, false); NANS_BENCHMARK_DEFINE(float64_no_nulls, double, false);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/replace/clamp.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column.hpp> #include <cudf/column/column_view.hpp> #include <cudf/reduction.hpp> #include <cudf/replace.hpp> #include <cudf/table/table.hpp> #include <cudf/types.hpp> class ReplaceClamp : public cudf::benchmark {}; template <typename type> static void BM_clamp(benchmark::State& state, bool include_nulls) { cudf::size_type const n_rows{(cudf::size_type)state.range(0)}; auto const dtype = cudf::type_to_id<type>(); auto const input = create_random_column(dtype, row_count{n_rows}); if (!include_nulls) input->set_null_mask(rmm::device_buffer{}, 0); auto [low_scalar, high_scalar] = cudf::minmax(*input); // set the clamps 2 in from the min and max { using ScalarType = cudf::scalar_type_t<type>; auto lvalue = static_cast<ScalarType*>(low_scalar.get()); auto hvalue = static_cast<ScalarType*>(high_scalar.get()); // super heavy clamp auto mid = lvalue->value() + (hvalue->value() - lvalue->value()) / 2; lvalue->set_value(mid - 10); hvalue->set_value(mid + 10); } for (auto _ : state) { cuda_event_timer timer(state, true); auto result = cudf::clamp(*input, *low_scalar, *high_scalar); } } #define CLAMP_BENCHMARK_DEFINE(name, type, nulls) \ BENCHMARK_DEFINE_F(ReplaceClamp, name) \ (::benchmark::State & state) { BM_clamp<type>(state, nulls); } \ BENCHMARK_REGISTER_F(ReplaceClamp, name) \ ->UseManualTime() \ ->Arg(10000) /* 10k */ \ ->Arg(100000) /* 100k */ \ ->Arg(1000000) /* 1M */ \ ->Arg(10000000) /* 10M */ \ ->Arg(100000000); /* 100M */ CLAMP_BENCHMARK_DEFINE(int8_no_nulls, int8_t, false); CLAMP_BENCHMARK_DEFINE(int32_no_nulls, int32_t, false); CLAMP_BENCHMARK_DEFINE(uint64_no_nulls, uint64_t, false); CLAMP_BENCHMARK_DEFINE(float_no_nulls, float, false); CLAMP_BENCHMARK_DEFINE(int16_nulls, int16_t, true); CLAMP_BENCHMARK_DEFINE(uint32_nulls, uint32_t, true); CLAMP_BENCHMARK_DEFINE(double_nulls, double, true);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/binaryop/compiled_binaryop.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/binaryop.hpp> class COMPILED_BINARYOP : public cudf::benchmark {}; template <typename TypeLhs, typename TypeRhs, typename TypeOut> void BM_compiled_binaryop(benchmark::State& state, cudf::binary_operator binop) { auto const column_size{static_cast<cudf::size_type>(state.range(0))}; auto const source_table = create_random_table( {cudf::type_to_id<TypeLhs>(), cudf::type_to_id<TypeRhs>()}, row_count{column_size}); auto lhs = cudf::column_view(source_table->get_column(0)); auto rhs = cudf::column_view(source_table->get_column(1)); auto output_dtype = cudf::data_type(cudf::type_to_id<TypeOut>()); // Call once for hot cache. cudf::binary_operation(lhs, rhs, binop, output_dtype); for (auto _ : state) { cuda_event_timer timer(state, true); cudf::binary_operation(lhs, rhs, binop, output_dtype); } // use number of bytes read and written to global memory state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * column_size * (sizeof(TypeLhs) + sizeof(TypeRhs) + sizeof(TypeOut))); } // TODO tparam boolean for null. #define BM_BINARYOP_BENCHMARK_DEFINE(name, lhs, rhs, bop, tout) \ BENCHMARK_DEFINE_F(COMPILED_BINARYOP, name) \ (::benchmark::State & st) \ { \ BM_compiled_binaryop<lhs, rhs, tout>(st, cudf::binary_operator::bop); \ } \ BENCHMARK_REGISTER_F(COMPILED_BINARYOP, name) \ ->Unit(benchmark::kMicrosecond) \ ->UseManualTime() \ ->Arg(10000) /* 10k */ \ ->Arg(100000) /* 100k */ \ ->Arg(1000000) /* 1M */ \ ->Arg(10000000) /* 10M */ \ ->Arg(100000000); /* 100M */ #define build_name(a, b, c, d) a##_##b##_##c##_##d #define BINARYOP_BENCHMARK_DEFINE(lhs, rhs, bop, tout) \ BM_BINARYOP_BENCHMARK_DEFINE(build_name(bop, lhs, rhs, tout), lhs, rhs, bop, tout) using cudf::duration_D; using cudf::duration_ms; using cudf::duration_ns; using cudf::duration_s; using cudf::timestamp_D; using cudf::timestamp_ms; using cudf::timestamp_s; using numeric::decimal32; // clang-format off BINARYOP_BENCHMARK_DEFINE(float, int64_t, ADD, int32_t); BINARYOP_BENCHMARK_DEFINE(float, float, ADD, float); BINARYOP_BENCHMARK_DEFINE(timestamp_s, duration_s, ADD, timestamp_s); BINARYOP_BENCHMARK_DEFINE(duration_s, duration_D, SUB, duration_ms); BINARYOP_BENCHMARK_DEFINE(int64_t, int64_t, SUB, int64_t); BINARYOP_BENCHMARK_DEFINE(float, float, MUL, int64_t); BINARYOP_BENCHMARK_DEFINE(duration_s, int64_t, MUL, duration_s); BINARYOP_BENCHMARK_DEFINE(int64_t, int64_t, DIV, int64_t); BINARYOP_BENCHMARK_DEFINE(duration_ms, int32_t, DIV, duration_ms); BINARYOP_BENCHMARK_DEFINE(int64_t, int64_t, TRUE_DIV, int64_t); BINARYOP_BENCHMARK_DEFINE(int64_t, int64_t, FLOOR_DIV, int64_t); BINARYOP_BENCHMARK_DEFINE(double, double, MOD, double); BINARYOP_BENCHMARK_DEFINE(duration_ms, int64_t, MOD, duration_ms); BINARYOP_BENCHMARK_DEFINE(int32_t, int64_t, PMOD, double); BINARYOP_BENCHMARK_DEFINE(int32_t, uint8_t, PYMOD, int64_t); BINARYOP_BENCHMARK_DEFINE(int64_t, int64_t, POW, double); BINARYOP_BENCHMARK_DEFINE(float, double, LOG_BASE, double); BINARYOP_BENCHMARK_DEFINE(float, double, ATAN2, double); BINARYOP_BENCHMARK_DEFINE(int, int, SHIFT_LEFT, int); BINARYOP_BENCHMARK_DEFINE(int16_t, int64_t, SHIFT_RIGHT, int); BINARYOP_BENCHMARK_DEFINE(int64_t, int32_t, SHIFT_RIGHT_UNSIGNED, int64_t); BINARYOP_BENCHMARK_DEFINE(int64_t, int32_t, BITWISE_AND, int16_t); BINARYOP_BENCHMARK_DEFINE(int16_t, int32_t, BITWISE_OR, int64_t); BINARYOP_BENCHMARK_DEFINE(int16_t, int64_t, BITWISE_XOR, int32_t); BINARYOP_BENCHMARK_DEFINE(double, int8_t, LOGICAL_AND, bool); BINARYOP_BENCHMARK_DEFINE(int16_t, int64_t, LOGICAL_OR, bool); BINARYOP_BENCHMARK_DEFINE(int32_t, int64_t, EQUAL, bool); BINARYOP_BENCHMARK_DEFINE(duration_ms, duration_ns, EQUAL, bool); BINARYOP_BENCHMARK_DEFINE(decimal32, decimal32, NOT_EQUAL, bool); BINARYOP_BENCHMARK_DEFINE(timestamp_s, timestamp_s, LESS, bool); BINARYOP_BENCHMARK_DEFINE(timestamp_ms, timestamp_s, GREATER, bool); BINARYOP_BENCHMARK_DEFINE(duration_ms, duration_ns, NULL_EQUALS, bool); BINARYOP_BENCHMARK_DEFINE(decimal32, decimal32, NULL_MAX, decimal32); BINARYOP_BENCHMARK_DEFINE(timestamp_D, timestamp_s, NULL_MIN, timestamp_s);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/binaryop/binaryop.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/binaryop.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <algorithm> #include <vector> // This set of benchmarks is designed to be a comparison for the AST benchmarks enum class TreeType { IMBALANCED_LEFT // All operator expressions have a left child operator expression and a right // child column reference }; template <typename key_type, TreeType tree_type, bool reuse_columns> class BINARYOP : public cudf::benchmark {}; template <typename key_type, TreeType tree_type, bool reuse_columns> static void BM_binaryop_transform(benchmark::State& state) { auto const table_size{static_cast<cudf::size_type>(state.range(0))}; auto const tree_levels{static_cast<cudf::size_type>(state.range(1))}; // Create table data auto const n_cols = reuse_columns ? 1 : tree_levels + 1; auto const source_table = create_sequence_table( cycle_dtypes({cudf::type_to_id<key_type>()}, n_cols), row_count{table_size}); cudf::table_view table{*source_table}; // Execute benchmark for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 // Execute tree that chains additions like (((a + b) + c) + d) auto const op = cudf::binary_operator::ADD; auto const result_data_type = cudf::data_type(cudf::type_to_id<key_type>()); if (reuse_columns) { auto result = cudf::binary_operation(table.column(0), table.column(0), op, result_data_type); for (cudf::size_type i = 0; i < tree_levels - 1; i++) { result = cudf::binary_operation(result->view(), table.column(0), op, result_data_type); } } else { auto result = cudf::binary_operation(table.column(0), table.column(1), op, result_data_type); std::for_each(std::next(table.begin(), 2), table.end(), [&](auto const& col) { result = cudf::binary_operation(result->view(), col, op, result_data_type); }); } } // Use the number of bytes read from global memory state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * state.range(0) * (tree_levels + 1) * sizeof(key_type)); } #define BINARYOP_TRANSFORM_BENCHMARK_DEFINE(name, key_type, tree_type, reuse_columns) \ BENCHMARK_TEMPLATE_DEFINE_F(BINARYOP, name, key_type, tree_type, reuse_columns) \ (::benchmark::State & st) { BM_binaryop_transform<key_type, tree_type, reuse_columns>(st); } BINARYOP_TRANSFORM_BENCHMARK_DEFINE(binaryop_int32_imbalanced_unique, int32_t, TreeType::IMBALANCED_LEFT, false); BINARYOP_TRANSFORM_BENCHMARK_DEFINE(binaryop_int32_imbalanced_reuse, int32_t, TreeType::IMBALANCED_LEFT, true); BINARYOP_TRANSFORM_BENCHMARK_DEFINE(binaryop_double_imbalanced_unique, double, TreeType::IMBALANCED_LEFT, false); static void CustomRanges(benchmark::internal::Benchmark* b) { auto row_counts = std::vector<cudf::size_type>{100'000, 1'000'000, 10'000'000, 100'000'000}; auto operation_counts = std::vector<cudf::size_type>{1, 2, 5, 10}; for (auto const& row_count : row_counts) { for (auto const& operation_count : operation_counts) { b->Args({row_count, operation_count}); } } } BENCHMARK_REGISTER_F(BINARYOP, binaryop_int32_imbalanced_unique) ->Apply(CustomRanges) ->Unit(benchmark::kMillisecond) ->UseManualTime(); BENCHMARK_REGISTER_F(BINARYOP, binaryop_int32_imbalanced_reuse) ->Apply(CustomRanges) ->Unit(benchmark::kMillisecond) ->UseManualTime(); BENCHMARK_REGISTER_F(BINARYOP, binaryop_double_imbalanced_unique) ->Apply(CustomRanges) ->Unit(benchmark::kMillisecond) ->UseManualTime();
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/hashing/hash.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/hashing.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> #include <optional> static void bench_hash(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const nulls = state.get_float64("nulls"); // disable null bitmask if probability is exactly 0.0 bool const no_nulls = nulls == 0.0; auto const hash_name = state.get_string("hash_name"); data_profile const profile = data_profile_builder().null_probability(no_nulls ? std::nullopt : std::optional<double>{nulls}); auto const data = create_random_table( {cudf::type_id::INT64, cudf::type_id::STRING}, row_count{num_rows}, profile); auto stream = cudf::get_default_stream(); state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); // collect statistics cudf::strings_column_view input(data->get_column(1).view()); auto const chars_size = input.chars_size(); // add memory read from string column state.add_global_memory_reads<nvbench::int8_t>(chars_size); // add memory read from int64_t column state.add_global_memory_reads<nvbench::int64_t>(num_rows); // add memory read from bitmaks if (!no_nulls) { state.add_global_memory_reads<nvbench::int8_t>(2 * cudf::bitmask_allocation_size_bytes(num_rows)); } // memory written depends on used hash if (hash_name == "murmurhash3_x86_32") { state.add_global_memory_writes<nvbench::uint32_t>(num_rows); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::hashing::murmurhash3_x86_32(data->view()); }); } else if (hash_name == "md5") { // md5 creates a 32-byte string state.add_global_memory_writes<nvbench::int8_t>(32 * num_rows); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::hashing::md5(data->view()); }); } else if (hash_name == "spark_murmurhash3_x86_32") { state.add_global_memory_writes<nvbench::int32_t>(num_rows); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::hashing::spark_murmurhash3_x86_32(data->view()); }); } else { state.skip(hash_name + ": unknown hash name"); } } NVBENCH_BENCH(bench_hash) .set_name("hashing") .add_int64_axis("num_rows", {65536, 16777216}) .add_float64_axis("nulls", {0.0, 0.1}) .add_string_axis("hash_name", {"murmurhash3_x86_32", "md5", "spark_murmurhash3_x86_32"});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/hashing/partition.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/partitioning.hpp> #include <algorithm> class Hashing : public cudf::benchmark {}; template <class T> void BM_hash_partition(benchmark::State& state) { auto const num_rows = state.range(0); auto const num_cols = state.range(1); auto const num_partitions = state.range(2); // Create owning columns auto input_table = create_sequence_table(cycle_dtypes({cudf::type_to_id<T>()}, num_cols), row_count{static_cast<cudf::size_type>(num_rows)}); auto input = cudf::table_view(*input_table); auto columns_to_hash = std::vector<cudf::size_type>(num_cols); std::iota(columns_to_hash.begin(), columns_to_hash.end(), 0); for (auto _ : state) { cuda_event_timer timer(state, true); auto output = cudf::hash_partition(input, columns_to_hash, num_partitions); } auto const bytes_read = num_rows * num_cols * sizeof(T); auto const bytes_written = num_rows * num_cols * sizeof(T); auto const partition_bytes = num_partitions * sizeof(cudf::size_type); state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * (bytes_read + bytes_written + partition_bytes)); } BENCHMARK_DEFINE_F(Hashing, hash_partition) (::benchmark::State& state) { BM_hash_partition<double>(state); } static void CustomRanges(benchmark::internal::Benchmark* b) { for (int columns = 1; columns <= 256; columns *= 16) { for (int partitions = 64; partitions <= 1024; partitions *= 2) { for (int rows = 1 << 17; rows <= 1 << 21; rows *= 2) { b->Args({rows, columns, partitions}); } } } } BENCHMARK_REGISTER_F(Hashing, hash_partition) ->Apply(CustomRanges) ->Unit(benchmark::kMillisecond) ->UseManualTime();
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/json/json.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/json/json.hpp> #include <cudf/strings/detail/strings_children.cuh> #include <cudf/strings/detail/utilities.cuh> #include <cudf/strings/string_view.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/types.hpp> #include <thrust/random.h> class JsonPath : public cudf::benchmark {}; std::vector<std::string> const Books{ R"json({ "category": "reference", "author": "Nigel Rees", "title": "Sayings of the Century", "price": 8.95 })json", R"json({ "category": "fiction", "author": "Evelyn Waugh", "title": "Sword of Honour", "price": 12.99 })json", R"json({ "category": "fiction", "author": "Herman Melville", "title": "Moby Dick", "isbn": "0-553-21311-3", "price": 8.99 })json", R"json({ "category": "fiction", "author": "J. R. R. Tolkien", "title": "The Lord of the Rings", "isbn": "0-395-19395-8", "price": 22.99 })json"}; constexpr int Approx_book_size = 110; std::vector<std::string> const Bicycles{ R"json({"color": "red", "price": 9.95})json", R"json({"color": "green", "price": 29.95})json", R"json({"color": "blue", "price": 399.95})json", R"json({"color": "yellow", "price": 99.95})json", R"json({"color": "mauve", "price": 199.95})json", }; constexpr int Approx_bicycle_size = 33; std::string Misc{"\n\"expensive\": 10\n"}; struct json_benchmark_row_builder { int const desired_bytes; cudf::size_type const num_rows; cudf::column_device_view const d_books_bicycles[2]; // Books, Bicycles strings cudf::column_device_view const d_book_pct; // Book percentage cudf::column_device_view const d_misc_order; // Misc-Store order cudf::column_device_view const d_store_order; // Books-Bicycles order int32_t* d_offsets{}; char* d_chars{}; thrust::minstd_rand rng{5236}; thrust::uniform_int_distribution<int> dist{}; // internal data structure for {bytes, out_ptr} with operator+= struct bytes_and_ptr { cudf::size_type bytes; char* ptr; __device__ bytes_and_ptr& operator+=(cudf::string_view const& str_append) { bytes += str_append.size_bytes(); if (ptr) { ptr = cudf::strings::detail::copy_string(ptr, str_append); } return *this; } }; __device__ inline void copy_items(int this_idx, cudf::size_type num_items, bytes_and_ptr& output_str) { using param_type = thrust::uniform_int_distribution<int>::param_type; dist.param(param_type{0, d_books_bicycles[this_idx].size() - 1}); cudf::string_view comma(",\n", 2); for (int i = 0; i < num_items; i++) { if (i > 0) { output_str += comma; } int idx = dist(rng); auto item = d_books_bicycles[this_idx].element<cudf::string_view>(idx); output_str += item; } } __device__ void operator()(cudf::size_type idx) { int num_books = 2; int num_bicycles = 2; int remaining_bytes = max( 0, desired_bytes - ((num_books * Approx_book_size) + (num_bicycles * Approx_bicycle_size))); // divide up the remainder between books and bikes auto book_pct = d_book_pct.element<float>(idx); // {Misc, store} OR {store, Misc} // store: {books, bicycles} OR store: {bicycles, books} float bicycle_pct = 1.0f - book_pct; num_books += (remaining_bytes * book_pct) / Approx_book_size; num_bicycles += (remaining_bytes * bicycle_pct) / Approx_bicycle_size; char* out_ptr = d_chars ? d_chars + d_offsets[idx] : nullptr; bytes_and_ptr output_str{0, out_ptr}; // cudf::string_view comma(",\n", 2); cudf::string_view brace1("{\n", 2); cudf::string_view store_member_start[2]{{"\"book\": [\n", 10}, {"\"bicycle\": [\n", 13}}; cudf::string_view store("\"store\": {\n", 11); cudf::string_view Misc{"\"expensive\": 10", 15}; cudf::string_view brace2("\n}", 2); cudf::string_view square2{"\n]", 2}; output_str += brace1; if (d_misc_order.element<bool>(idx)) { // Misc. first. output_str += Misc; output_str += comma; } output_str += store; for (int store_order = 0; store_order < 2; store_order++) { if (store_order > 0) { output_str += comma; } int this_idx = (d_store_order.element<bool>(idx) == store_order); auto& mem_start = store_member_start[this_idx]; output_str += mem_start; copy_items(this_idx, this_idx == 0 ? num_books : num_bicycles, output_str); output_str += square2; } output_str += brace2; if (!d_misc_order.element<bool>(idx)) { // Misc, if not first. output_str += comma; output_str += Misc; } output_str += brace2; if (!output_str.ptr) d_offsets[idx] = output_str.bytes; } }; auto build_json_string_column(int desired_bytes, int num_rows) { data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_id::FLOAT32, distribution_id::UNIFORM, 0.0, 1.0); auto float_2bool_columns = create_random_table({cudf::type_id::FLOAT32, cudf::type_id::BOOL8, cudf::type_id::BOOL8}, row_count{num_rows}, profile); cudf::test::strings_column_wrapper books(Books.begin(), Books.end()); cudf::test::strings_column_wrapper bicycles(Bicycles.begin(), Bicycles.end()); auto d_books = cudf::column_device_view::create(books); auto d_bicycles = cudf::column_device_view::create(bicycles); auto d_book_pct = cudf::column_device_view::create(float_2bool_columns->get_column(0)); auto d_misc_order = cudf::column_device_view::create(float_2bool_columns->get_column(1)); auto d_store_order = cudf::column_device_view::create(float_2bool_columns->get_column(2)); json_benchmark_row_builder jb{ desired_bytes, num_rows, {*d_books, *d_bicycles}, *d_book_pct, *d_misc_order, *d_store_order}; auto children = cudf::strings::detail::make_strings_children( jb, num_rows, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); return cudf::make_strings_column( num_rows, std::move(children.first), std::move(children.second), 0, {}); } void BM_case(benchmark::State& state, std::string query_arg) { srand(5236); int num_rows = state.range(0); int desired_bytes = state.range(1); auto input = build_json_string_column(desired_bytes, num_rows); cudf::strings_column_view scv(input->view()); size_t num_chars = scv.chars().size(); std::string json_path(query_arg); for (auto _ : state) { cuda_event_timer raii(state, true); auto result = cudf::get_json_object(scv, json_path); CUDF_CUDA_TRY(cudaStreamSynchronize(0)); } // this isn't strictly 100% accurate. a given query isn't necessarily // going to visit every single incoming character. but in spirit it does. state.SetBytesProcessed(state.iterations() * num_chars); } #define JSON_BENCHMARK_DEFINE(name, query) \ BENCHMARK_DEFINE_F(JsonPath, name)(::benchmark::State & state) { BM_case(state, query); } \ BENCHMARK_REGISTER_F(JsonPath, name) \ ->ArgsProduct({{100, 1000, 100000, 400000}, {300, 600, 4096}}) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); JSON_BENCHMARK_DEFINE(query0, "$"); JSON_BENCHMARK_DEFINE(query1, "$.store"); JSON_BENCHMARK_DEFINE(query2, "$.store.book"); JSON_BENCHMARK_DEFINE(query3, "$.store.*"); JSON_BENCHMARK_DEFINE(query4, "$.store.book[*]"); JSON_BENCHMARK_DEFINE(query5, "$.store.book[*].category"); JSON_BENCHMARK_DEFINE(query6, "$.store['bicycle']"); JSON_BENCHMARK_DEFINE(query7, "$.store.book[*]['isbn']"); JSON_BENCHMARK_DEFINE(query8, "$.store.bicycle[1]");
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/lists/set_operations.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/lists/set_operations.hpp> #include <nvbench/nvbench.cuh> namespace { constexpr auto max_list_size = 20; auto generate_random_lists(cudf::size_type num_rows, cudf::size_type depth, double null_freq) { auto builder = data_profile_builder() .cardinality(0) .distribution(cudf::type_id::LIST, distribution_id::UNIFORM, 0, max_list_size) .list_depth(depth) .null_probability(null_freq > 0 ? std::optional<double>{null_freq} : std::nullopt); auto data_table = create_random_table({cudf::type_id::LIST}, row_count{num_rows}, data_profile{builder}); return std::move(data_table->release().front()); } template <typename BenchFuncPtr> void nvbench_set_op(nvbench::state& state, BenchFuncPtr bfunc) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const depth = static_cast<cudf::size_type>(state.get_int64("depth")); auto const null_freq = state.get_float64("null_frequency"); auto const lhs = generate_random_lists(num_rows, depth, null_freq); auto const rhs = generate_random_lists(num_rows, depth, null_freq); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { bfunc(cudf::lists_column_view{*lhs}, cudf::lists_column_view{*rhs}, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); }); } } // namespace void nvbench_have_overlap(nvbench::state& state) { nvbench_set_op(state, &cudf::lists::have_overlap); } void nvbench_intersect_distinct(nvbench::state& state) { nvbench_set_op(state, &cudf::lists::intersect_distinct); } NVBENCH_BENCH(nvbench_have_overlap) .set_name("have_overlap") .add_int64_power_of_two_axis("num_rows", {10, 13, 16}) .add_int64_axis("depth", {1, 4}) .add_float64_axis("null_frequency", {0, 0.2, 0.8}); NVBENCH_BENCH(nvbench_intersect_distinct) .set_name("intersect_distinct") .add_int64_power_of_two_axis("num_rows", {10, 13, 16}) .add_int64_axis("depth", {1, 4}) .add_float64_axis("null_frequency", {0, 0.2, 0.8});
0
rapidsai_public_repos/cudf/cpp/benchmarks/lists
rapidsai_public_repos/cudf/cpp/benchmarks/lists/copying/scatter_lists.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/null_mask.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/exec_policy.hpp> #include <rmm/mr/device/device_memory_resource.hpp> #include <thrust/random.h> #include <thrust/sequence.h> #include <thrust/shuffle.h> #include <cmath> class ScatterLists : public cudf::benchmark {}; template <class TypeParam, bool coalesce> void BM_lists_scatter(::benchmark::State& state) { auto stream = cudf::get_default_stream(); auto mr = rmm::mr::get_current_device_resource(); cudf::size_type const base_size{(cudf::size_type)state.range(0)}; cudf::size_type const num_elements_per_row{(cudf::size_type)state.range(1)}; auto const num_rows = (cudf::size_type)ceil(double(base_size) / num_elements_per_row); auto source_base_col = make_fixed_width_column(cudf::data_type{cudf::type_to_id<TypeParam>()}, base_size, cudf::mask_state::UNALLOCATED, stream, mr); auto target_base_col = make_fixed_width_column(cudf::data_type{cudf::type_to_id<TypeParam>()}, base_size, cudf::mask_state::UNALLOCATED, stream, mr); thrust::sequence(rmm::exec_policy(stream), source_base_col->mutable_view().begin<TypeParam>(), source_base_col->mutable_view().end<TypeParam>()); thrust::sequence(rmm::exec_policy(stream), target_base_col->mutable_view().begin<TypeParam>(), target_base_col->mutable_view().end<TypeParam>()); auto source_offsets = make_fixed_width_column(cudf::data_type{cudf::type_to_id<cudf::size_type>()}, num_rows + 1, cudf::mask_state::UNALLOCATED, stream, mr); auto target_offsets = make_fixed_width_column(cudf::data_type{cudf::type_to_id<cudf::size_type>()}, num_rows + 1, cudf::mask_state::UNALLOCATED, stream, mr); thrust::sequence(rmm::exec_policy(stream), source_offsets->mutable_view().begin<cudf::size_type>(), source_offsets->mutable_view().end<cudf::size_type>(), 0, num_elements_per_row); thrust::sequence(rmm::exec_policy(stream), target_offsets->mutable_view().begin<cudf::size_type>(), target_offsets->mutable_view().end<cudf::size_type>(), 0, num_elements_per_row); auto source = make_lists_column(num_rows, std::move(source_offsets), std::move(source_base_col), 0, cudf::create_null_mask(num_rows, cudf::mask_state::UNALLOCATED), stream, mr); auto target = make_lists_column(num_rows, std::move(target_offsets), std::move(target_base_col), 0, cudf::create_null_mask(num_rows, cudf::mask_state::UNALLOCATED), stream, mr); auto scatter_map = make_fixed_width_column(cudf::data_type{cudf::type_to_id<cudf::size_type>()}, num_rows, cudf::mask_state::UNALLOCATED, stream, mr); auto m_scatter_map = scatter_map->mutable_view(); thrust::sequence(rmm::exec_policy(stream), m_scatter_map.begin<cudf::size_type>(), m_scatter_map.end<cudf::size_type>(), num_rows - 1, -1); if (not coalesce) { thrust::default_random_engine g; thrust::shuffle(rmm::exec_policy(stream), m_scatter_map.begin<cudf::size_type>(), m_scatter_map.begin<cudf::size_type>(), g); } for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 scatter(cudf::table_view{{*source}}, *scatter_map, cudf::table_view{{*target}}, cudf::get_default_stream(), mr); } state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * state.range(0) * 2 * sizeof(TypeParam)); } #define SBM_BENCHMARK_DEFINE(name, type, coalesce) \ BENCHMARK_DEFINE_F(ScatterLists, name)(::benchmark::State & state) \ { \ BM_lists_scatter<type, coalesce>(state); \ } \ BENCHMARK_REGISTER_F(ScatterLists, name) \ ->RangeMultiplier(8) \ ->Ranges({{1 << 10, 1 << 25}, {64, 2048}}) /* 1K-1B rows, 64-2048 elements */ \ ->UseManualTime(); SBM_BENCHMARK_DEFINE(double_type_colesce_o, double, true); SBM_BENCHMARK_DEFINE(double_type_colesce_x, double, false);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/filling/repeat.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/filling.hpp> class Repeat : public cudf::benchmark {}; template <class TypeParam, bool nulls> void BM_repeat(benchmark::State& state) { auto const n_rows = static_cast<cudf::size_type>(state.range(0)); auto const n_cols = static_cast<cudf::size_type>(state.range(1)); auto const input_table = create_sequence_table(cycle_dtypes({cudf::type_to_id<TypeParam>()}, n_cols), row_count{n_rows}, nulls ? std::optional<double>{1.0} : std::nullopt); // Create table view auto input = cudf::table_view(*input_table); // repeat counts using sizeT = cudf::size_type; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<sizeT>(), distribution_id::UNIFORM, 0, 3); auto repeat_count = create_random_column(cudf::type_to_id<sizeT>(), row_count{n_rows}, profile); // warm up auto output = cudf::repeat(input, *repeat_count); for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 cudf::repeat(input, *repeat_count); } auto data_bytes = (input.num_columns() * input.num_rows() + output->num_columns() * output->num_rows()) * sizeof(TypeParam); auto null_bytes = nulls ? input.num_columns() * cudf::bitmask_allocation_size_bytes(input.num_rows()) + output->num_columns() * cudf::bitmask_allocation_size_bytes(output->num_rows()) : 0; state.SetBytesProcessed(state.iterations() * (data_bytes + null_bytes)); } #define REPEAT_BENCHMARK_DEFINE(name, type, nulls) \ BENCHMARK_DEFINE_F(Repeat, name)(::benchmark::State & state) { BM_repeat<type, nulls>(state); } \ BENCHMARK_REGISTER_F(Repeat, name) \ ->RangeMultiplier(8) \ ->Ranges({{1 << 10, 1 << 26}, {1, 8}}) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); REPEAT_BENCHMARK_DEFINE(double_nulls, double, true); REPEAT_BENCHMARK_DEFINE(double_no_nulls, double, false);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/iterator/iterator.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/utilities/device_operators.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/device_uvector.hpp> #include <cub/device/device_reduce.cuh> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/pair.h> #include <thrust/reduce.h> #include <random> template <typename T> T random_int(T min, T max) { static unsigned seed = 13377331; static std::mt19937 engine{seed}; static std::uniform_int_distribution<T> uniform{min, max}; return uniform(engine); } // ----------------------------------------------------------------------------- template <typename InputIterator, typename OutputIterator, typename T> inline auto reduce_by_cub(OutputIterator result, InputIterator d_in, int num_items, T init) { size_t temp_storage_bytes = 0; cub::DeviceReduce::Reduce( nullptr, temp_storage_bytes, d_in, result, num_items, cudf::DeviceSum{}, init); // Allocate temporary storage rmm::device_buffer d_temp_storage(temp_storage_bytes, cudf::get_default_stream()); // Run reduction cub::DeviceReduce::Reduce( d_temp_storage.data(), temp_storage_bytes, d_in, result, num_items, cudf::DeviceSum{}, init); return temp_storage_bytes; } // ----------------------------------------------------------------------------- template <typename T> void raw_stream_bench_cub(cudf::column_view& col, rmm::device_uvector<T>& result) { // std::cout << "raw stream cub: " << "\t"; T init{0}; auto begin = col.data<T>(); int num_items = col.size(); reduce_by_cub(result.begin(), begin, num_items, init); }; template <typename T, bool has_null> void iterator_bench_cub(cudf::column_view& col, rmm::device_uvector<T>& result) { // std::cout << "iterator cub " << ( (has_null) ? "<true>: " : "<false>: " ) << "\t"; T init{0}; auto d_col = cudf::column_device_view::create(col); int num_items = col.size(); if (has_null) { auto begin = cudf::detail::make_null_replacement_iterator(*d_col, init); reduce_by_cub(result.begin(), begin, num_items, init); } else { auto begin = d_col->begin<T>(); reduce_by_cub(result.begin(), begin, num_items, init); } } // ----------------------------------------------------------------------------- template <typename T> void raw_stream_bench_thrust(cudf::column_view& col, rmm::device_uvector<T>& result) { // std::cout << "raw stream thust: " << "\t\t"; T init{0}; auto d_in = col.data<T>(); auto d_end = d_in + col.size(); thrust::reduce(thrust::device, d_in, d_end, init, cudf::DeviceSum{}); } template <typename T, bool has_null> void iterator_bench_thrust(cudf::column_view& col, rmm::device_uvector<T>& result) { // std::cout << "iterator thust " << ( (has_null) ? "<true>: " : "<false>: " ) << "\t"; T init{0}; auto d_col = cudf::column_device_view::create(col); if (has_null) { auto d_in = cudf::detail::make_null_replacement_iterator(*d_col, init); auto d_end = d_in + col.size(); thrust::reduce(thrust::device, d_in, d_end, init, cudf::DeviceSum{}); } else { auto d_in = d_col->begin<T>(); auto d_end = d_in + col.size(); thrust::reduce(thrust::device, d_in, d_end, init, cudf::DeviceSum{}); } } // ----------------------------------------------------------------------------- class Iterator : public cudf::benchmark {}; template <class TypeParam, bool cub_or_thrust, bool raw_or_iterator> void BM_iterator(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; using T = TypeParam; auto num_gen = thrust::counting_iterator<cudf::size_type>(0); cudf::test::fixed_width_column_wrapper<T> wrap_hasnull_F(num_gen, num_gen + column_size); cudf::column_view hasnull_F = wrap_hasnull_F; // Initialize dev_result to false auto dev_result = cudf::detail::make_zeroed_device_uvector_sync<TypeParam>( 1, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 if (cub_or_thrust) { if (raw_or_iterator) { raw_stream_bench_cub<T>(hasnull_F, dev_result); // driven by raw pointer } else { iterator_bench_cub<T, false>(hasnull_F, dev_result); // driven by riterator without nulls } } else { if (raw_or_iterator) { raw_stream_bench_thrust<T>(hasnull_F, dev_result); // driven by raw pointer } else { iterator_bench_thrust<T, false>(hasnull_F, dev_result); // driven by riterator without nulls } } } state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * column_size * sizeof(TypeParam)); } // operator+ defined for pair iterator reduction template <typename T> __device__ thrust::pair<T, bool> operator+(thrust::pair<T, bool> lhs, thrust::pair<T, bool> rhs) { return thrust::pair<T, bool>{lhs.first * lhs.second + rhs.first * rhs.second, lhs.second + rhs.second}; } // ----------------------------------------------------------------------------- template <typename T, bool has_null> void pair_iterator_bench_cub(cudf::column_view& col, rmm::device_uvector<thrust::pair<T, bool>>& result) { thrust::pair<T, bool> init{0, false}; auto d_col = cudf::column_device_view::create(col); int num_items = col.size(); auto begin = d_col->pair_begin<T, has_null>(); reduce_by_cub(result.begin(), begin, num_items, init); } template <typename T, bool has_null> void pair_iterator_bench_thrust(cudf::column_view& col, rmm::device_uvector<thrust::pair<T, bool>>& result) { thrust::pair<T, bool> init{0, false}; auto d_col = cudf::column_device_view::create(col); auto d_in = d_col->pair_begin<T, has_null>(); auto d_end = d_in + col.size(); thrust::reduce(thrust::device, d_in, d_end, init, cudf::DeviceSum{}); } template <class TypeParam, bool cub_or_thrust> void BM_pair_iterator(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; using T = TypeParam; auto num_gen = thrust::counting_iterator<cudf::size_type>(0); auto null_gen = thrust::make_transform_iterator(num_gen, [](cudf::size_type row) { return row % 2 == 0; }); cudf::test::fixed_width_column_wrapper<T> wrap_hasnull_F(num_gen, num_gen + column_size); cudf::test::fixed_width_column_wrapper<T> wrap_hasnull_T( num_gen, num_gen + column_size, null_gen); cudf::column_view hasnull_F = wrap_hasnull_F; cudf::column_view hasnull_T = wrap_hasnull_T; // Initialize dev_result to false auto dev_result = cudf::detail::make_zeroed_device_uvector_sync<thrust::pair<T, bool>>( 1, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 if (cub_or_thrust) { pair_iterator_bench_cub<T, false>(hasnull_T, dev_result); // driven by pair iterator with nulls } else { pair_iterator_bench_thrust<T, false>(hasnull_T, dev_result); // driven by pair iterator with nulls } } state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * column_size * sizeof(TypeParam)); } #define ITER_BM_BENCHMARK_DEFINE(name, type, cub_or_thrust, raw_or_iterator) \ BENCHMARK_DEFINE_F(Iterator, name)(::benchmark::State & state) \ { \ BM_iterator<type, cub_or_thrust, raw_or_iterator>(state); \ } \ BENCHMARK_REGISTER_F(Iterator, name) \ ->RangeMultiplier(10) \ ->Range(1000, 10000000) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); ITER_BM_BENCHMARK_DEFINE(double_cub_raw, double, true, true); ITER_BM_BENCHMARK_DEFINE(double_cub_iter, double, true, false); ITER_BM_BENCHMARK_DEFINE(double_thrust_raw, double, false, true); ITER_BM_BENCHMARK_DEFINE(double_thrust_iter, double, false, false); #define PAIRITER_BM_BENCHMARK_DEFINE(name, type, cub_or_thrust) \ BENCHMARK_DEFINE_F(Iterator, name)(::benchmark::State & state) \ { \ BM_pair_iterator<type, cub_or_thrust>(state); \ } \ BENCHMARK_REGISTER_F(Iterator, name) \ ->RangeMultiplier(10) \ ->Range(1000, 10000000) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); PAIRITER_BM_BENCHMARK_DEFINE(double_cub_pair, double, true); PAIRITER_BM_BENCHMARK_DEFINE(double_thrust_pair, double, false);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/sort_strings.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/sorting.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> class Sort : public cudf::benchmark {}; static void BM_sort(benchmark::State& state) { cudf::size_type const n_rows{(cudf::size_type)state.range(0)}; auto const table = create_random_table({cudf::type_id::STRING}, row_count{n_rows}); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); cudf::sort(table->view()); } } #define SORT_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(Sort, name) \ (::benchmark::State & st) { BM_sort(st); } \ BENCHMARK_REGISTER_F(Sort, name) \ ->RangeMultiplier(8) \ ->Ranges({{1 << 10, 1 << 24}}) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); SORT_BENCHMARK_DEFINE(strings)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/sort_lists.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_nested_types.hpp> #include <cudf/detail/sorting.hpp> #include <nvbench/nvbench.cuh> namespace { constexpr cudf::size_type min_val = 0; constexpr cudf::size_type max_val = 100; void sort_multiple_lists(nvbench::state& state) { auto const num_columns = static_cast<cudf::size_type>(state.get_int64("num_columns")); auto const input_table = create_lists_data(state, num_columns, min_val, max_val); auto const stream = cudf::get_default_stream(); state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::detail::sorted_order( *input_table, {}, {}, stream, rmm::mr::get_current_device_resource()); }); } void sort_lists_of_structs(nvbench::state& state) { auto const num_columns = static_cast<cudf::size_type>(state.get_int64("num_columns")); auto const lists_table = create_lists_data(state, num_columns, min_val, max_val); // After having a table of (multiple) lists columns, convert those lists columns into lists of // structs columns. The children of these structs columns are also children of the original lists // columns. // Such resulted lists-of-structs columns are very similar to the original lists-of-integers // columns so their benchmarks can be somewhat comparable. std::vector<cudf::column_view> lists_of_structs; for (auto const& col : lists_table->view()) { auto const child = col.child(cudf::lists_column_view::child_column_index); // Put the child column under a struct column having the same null mask/null count. auto const new_child = cudf::column_view{cudf::data_type{cudf::type_id::STRUCT}, child.size(), nullptr, child.null_mask(), child.null_count(), child.offset(), {child}}; auto const converted_col = cudf::column_view{cudf::data_type{cudf::type_id::LIST}, col.size(), nullptr, col.null_mask(), col.null_count(), col.offset(), {col.child(cudf::lists_column_view::offsets_column_index), new_child}}; lists_of_structs.push_back(converted_col); } auto const input_table = cudf::table_view{lists_of_structs}; auto const stream = cudf::get_default_stream(); state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { rmm::cuda_stream_view stream_view{launch.get_stream()}; cudf::detail::sorted_order(input_table, {}, {}, stream, rmm::mr::get_current_device_resource()); }); } } // namespace void nvbench_sort_lists(nvbench::state& state) { auto const has_lists_of_structs = state.get_int64("lists_of_structs") > 0; if (has_lists_of_structs) { sort_lists_of_structs(state); } else { sort_multiple_lists(state); } } NVBENCH_BENCH(nvbench_sort_lists) .set_name("sort_list") .add_int64_power_of_two_axis("size_bytes", {10, 18, 24, 28}) .add_int64_axis("depth", {1, 4}) .add_int64_axis("num_columns", {1}) .add_int64_axis("lists_of_structs", {0, 1}) .add_float64_axis("null_frequency", {0, 0.2});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/rank_types_common.hpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/aggregation.hpp> #include <nvbench/nvbench.cuh> enum class rank_method : int32_t {}; NVBENCH_DECLARE_ENUM_TYPE_STRINGS( cudf::rank_method, [](cudf::rank_method value) { switch (value) { case cudf::rank_method::FIRST: return "FIRST"; case cudf::rank_method::AVERAGE: return "AVERAGE"; case cudf::rank_method::MIN: return "MIN"; case cudf::rank_method::MAX: return "MAX"; case cudf::rank_method::DENSE: return "DENSE"; default: return "unknown"; } }, [](cudf::rank_method value) { switch (value) { case cudf::rank_method::FIRST: return "cudf::rank_method::FIRST"; case cudf::rank_method::AVERAGE: return "cudf::rank_method::AVERAGE"; case cudf::rank_method::MIN: return "cudf::rank_method::MIN"; case cudf::rank_method::MAX: return "cudf::rank_method::MAX"; case cudf::rank_method::DENSE: return "cudf::rank_method::DENSE"; default: return "unknown"; } }) using methods = nvbench::enum_type_list<cudf::rank_method::AVERAGE, cudf::rank_method::DENSE, cudf::rank_method::FIRST, cudf::rank_method::MAX, cudf::rank_method::MIN>;
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/rank.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column_view.hpp> #include <cudf/sorting.hpp> #include <cudf/utilities/default_stream.hpp> class Rank : public cudf::benchmark {}; static void BM_rank(benchmark::State& state, bool nulls) { using Type = int; cudf::size_type const n_rows{(cudf::size_type)state.range(0)}; // Create columns with values in the range [0,100) data_profile profile = data_profile_builder().cardinality(0).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); profile.set_null_probability(nulls ? std::optional{0.2} : std::nullopt); auto keys = create_random_column(cudf::type_to_id<Type>(), row_count{n_rows}, profile); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); auto result = cudf::rank(keys->view(), cudf::rank_method::FIRST, cudf::order::ASCENDING, nulls ? cudf::null_policy::INCLUDE : cudf::null_policy::EXCLUDE, cudf::null_order::AFTER, false); } } #define RANK_BENCHMARK_DEFINE(name, nulls) \ BENCHMARK_DEFINE_F(Rank, name) \ (::benchmark::State & st) { BM_rank(st, nulls); } \ BENCHMARK_REGISTER_F(Rank, name) \ ->RangeMultiplier(8) \ ->Ranges({{1 << 10, 1 << 26}}) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); RANK_BENCHMARK_DEFINE(no_nulls, false) RANK_BENCHMARK_DEFINE(nulls, true)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/sort_structs.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_nested_types.hpp> #include <cudf/detail/sorting.hpp> #include <nvbench/nvbench.cuh> void nvbench_sort_struct(nvbench::state& state) { auto const input = create_structs_data(state); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { rmm::cuda_stream_view stream_view{launch.get_stream()}; cudf::detail::sorted_order(*input, {}, {}, stream_view, rmm::mr::get_current_device_resource()); }); } NVBENCH_BENCH(nvbench_sort_struct) .set_name("sort_struct") .add_int64_power_of_two_axis("NumRows", {10, 18, 26}) .add_int64_axis("Depth", {0, 1, 8}) .add_int64_axis("Nulls", {0, 1});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/rank_lists.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rank_types_common.hpp" #include <benchmarks/common/generate_nested_types.hpp> #include <cudf/sorting.hpp> #include <cudf_test/column_utilities.hpp> #include <nvbench/nvbench.cuh> template <cudf::rank_method method> void nvbench_rank_lists(nvbench::state& state, nvbench::type_list<nvbench::enum_type<method>>) { auto const table = create_lists_data(state); auto const null_frequency{state.get_float64("null_frequency")}; state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::rank(table->view().column(0), method, cudf::order::ASCENDING, null_frequency ? cudf::null_policy::INCLUDE : cudf::null_policy::EXCLUDE, cudf::null_order::AFTER, rmm::mr::get_current_device_resource()); }); } NVBENCH_BENCH_TYPES(nvbench_rank_lists, NVBENCH_TYPE_AXES(methods)) .set_name("rank_lists") .add_int64_power_of_two_axis("size_bytes", {10, 18, 24, 28}) .add_int64_axis("depth", {1, 4}) .add_float64_axis("null_frequency", {0, 0.2});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/segmented_sort.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/filling.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/sorting.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> void nvbench_segmented_sort(nvbench::state& state) { auto const stable = static_cast<bool>(state.get_int64("stable")); auto const dtype = cudf::type_to_id<int32_t>(); auto const size_bytes = static_cast<size_t>(state.get_int64("size_bytes")); auto const null_freq = state.get_float64("null_frequency"); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); data_profile const table_profile = data_profile_builder().null_probability(null_freq).distribution( dtype, distribution_id::UNIFORM, 0, 10); auto const input = create_random_table({cudf::type_id::INT32}, table_size_bytes{size_bytes}, table_profile); auto const rows = input->num_rows(); auto const segments = cudf::sequence((rows / row_width) + 1, cudf::numeric_scalar<int32_t>(0), cudf::numeric_scalar<int32_t>(row_width)); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.add_element_count(size_bytes, "bytes"); state.add_global_memory_reads<nvbench::int32_t>(rows * row_width); state.add_global_memory_writes<nvbench::int32_t>(rows); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { if (stable) cudf::stable_segmented_sorted_order(*input, *segments); else cudf::segmented_sorted_order(*input, *segments); }); } NVBENCH_BENCH(nvbench_segmented_sort) .set_name("segmented_sort") .add_int64_axis("stable", {0, 1}) .add_int64_power_of_two_axis("size_bytes", {16, 18, 20, 22, 24, 28}) .add_float64_axis("null_frequency", {0, 0.1}) .add_int64_axis("row_width", {16, 128, 1024});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/sort.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/sorting.hpp> #include <cudf/utilities/default_stream.hpp> template <bool stable> class Sort : public cudf::benchmark {}; template <bool stable> static void BM_sort(benchmark::State& state, bool nulls) { using Type = int; auto const dtype = cudf::type_to_id<Type>(); cudf::size_type const n_rows{(cudf::size_type)state.range(0)}; cudf::size_type const n_cols{(cudf::size_type)state.range(1)}; // Create table with values in the range [0,100) data_profile const profile = data_profile_builder() .cardinality(0) .null_probability(nulls ? std::optional{0.01} : std::nullopt) .distribution(dtype, distribution_id::UNIFORM, 0, 100); auto input_table = create_random_table(cycle_dtypes({dtype}, n_cols), row_count{n_rows}, profile); cudf::table_view input{*input_table}; for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); auto result = (stable) ? cudf::stable_sorted_order(input) : cudf::sorted_order(input); } } #define SORT_BENCHMARK_DEFINE(name, stable, nulls) \ BENCHMARK_TEMPLATE_DEFINE_F(Sort, name, stable) \ (::benchmark::State & st) { BM_sort<stable>(st, nulls); } \ BENCHMARK_REGISTER_F(Sort, name) \ ->RangeMultiplier(8) \ ->Ranges({{1 << 10, 1 << 26}, {1, 8}}) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); SORT_BENCHMARK_DEFINE(unstable_no_nulls, false, false) SORT_BENCHMARK_DEFINE(stable_no_nulls, true, false) SORT_BENCHMARK_DEFINE(unstable, false, true) SORT_BENCHMARK_DEFINE(stable, true, true)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/sort/rank_structs.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rank_types_common.hpp" #include <benchmarks/common/generate_nested_types.hpp> #include <cudf/sorting.hpp> #include <nvbench/nvbench.cuh> template <cudf::rank_method method> void nvbench_rank_structs(nvbench::state& state, nvbench::type_list<nvbench::enum_type<method>>) { auto const table = create_structs_data(state); bool const nulls{static_cast<bool>(state.get_int64("Nulls"))}; state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::rank(table->view().column(0), method, cudf::order::ASCENDING, nulls ? cudf::null_policy::INCLUDE : cudf::null_policy::EXCLUDE, cudf::null_order::AFTER, rmm::mr::get_current_device_resource()); }); } NVBENCH_BENCH_TYPES(nvbench_rank_structs, NVBENCH_TYPE_AXES(methods)) .set_name("rank_structs") .add_int64_power_of_two_axis("NumRows", {10, 18, 26}) .add_int64_axis("Depth", {0, 1, 8}) .add_int64_axis("Nulls", {0, 1});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/null_mask/set_null_mask.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/null_mask.hpp> class SetNullmask : public cudf::benchmark {}; void BM_setnullmask(benchmark::State& state) { cudf::size_type const size{(cudf::size_type)state.range(0)}; rmm::device_buffer mask = cudf::create_null_mask(size, cudf::mask_state::UNINITIALIZED); auto begin = 0, end = size; for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 cudf::set_null_mask(static_cast<cudf::bitmask_type*>(mask.data()), begin, end, true); } state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size / 8); } #define NBM_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(SetNullmask, name)(::benchmark::State & state) { BM_setnullmask(state); } \ BENCHMARK_REGISTER_F(SetNullmask, name) \ ->RangeMultiplier(1 << 10) \ ->Range(1 << 10, 1 << 30) \ ->UseManualTime(); NBM_BENCHMARK_DEFINE(SetNullMaskKernel);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/synchronization/synchronization.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "synchronization.hpp" #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_buffer.hpp> cuda_event_timer::cuda_event_timer(benchmark::State& state, bool flush_l2_cache, rmm::cuda_stream_view stream) : stream(stream), p_state(&state) { // flush all of L2$ if (flush_l2_cache) { int current_device = 0; CUDF_CUDA_TRY(cudaGetDevice(&current_device)); int l2_cache_bytes = 0; CUDF_CUDA_TRY(cudaDeviceGetAttribute(&l2_cache_bytes, cudaDevAttrL2CacheSize, current_device)); if (l2_cache_bytes > 0) { int const memset_value = 0; rmm::device_buffer l2_cache_buffer(l2_cache_bytes, stream); CUDF_CUDA_TRY( cudaMemsetAsync(l2_cache_buffer.data(), memset_value, l2_cache_bytes, stream.value())); } } CUDF_CUDA_TRY(cudaEventCreate(&start)); CUDF_CUDA_TRY(cudaEventCreate(&stop)); CUDF_CUDA_TRY(cudaEventRecord(start, stream.value())); } cuda_event_timer::~cuda_event_timer() { CUDF_CUDA_TRY(cudaEventRecord(stop, stream.value())); CUDF_CUDA_TRY(cudaEventSynchronize(stop)); float milliseconds = 0.0f; CUDF_CUDA_TRY(cudaEventElapsedTime(&milliseconds, start, stop)); p_state->SetIterationTime(milliseconds / (1000.0f)); CUDF_CUDA_TRY(cudaEventDestroy(start)); CUDF_CUDA_TRY(cudaEventDestroy(stop)); }
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/synchronization/synchronization.hpp
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file synchronization.hpp * @brief This is the header file for `cuda_event_timer`. */ /** * @brief This class serves as a wrapper for using `cudaEvent_t` as the user * defined timer within the framework of google benchmark * (https://github.com/google/benchmark). * * It is built on top of the idea of Resource acquisition is initialization * (RAII). In the following we show a minimal example of how to use this class. #include <benchmark/benchmark.h> #include <cudf/utilities/default_stream.hpp> static void sample_cuda_benchmark(benchmark::State& state) { for (auto _ : state){ // default stream, could be another stream rmm::cuda_stream_view stream{cudf::get_default_stream()}; // Create (Construct) an object of this class. You HAVE to pass in the // benchmark::State object you are using. It measures the time from its // creation to its destruction that is spent on the specified CUDA stream. // It also clears the L2 cache by cudaMemset'ing a device buffer that is of // the size of the L2 cache (if flush_l2_cache is set to true and there is // an L2 cache on the current device). cuda_event_timer raii(state, true, stream); // flush_l2_cache = true // Now perform the operations that is to be benchmarked sample_kernel<<<1, 256, 0, stream.value()>>>(); // Possibly launching a CUDA kernel } } // Register the function as a benchmark. You will need to set the `UseManualTime()` // flag in order to use the timer embedded in this class. BENCHMARK(sample_cuda_benchmark)->UseManualTime(); */ #pragma once // Google Benchmark library #include <benchmark/benchmark.h> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <driver_types.h> class cuda_event_timer { public: /** * @brief This c'tor clears the L2$ by cudaMemset'ing a buffer of L2$ size * and starts the timer. * * @param[in,out] state This is the benchmark::State whose timer we are going * to update. * @param[in] flush_l2_cache_ whether or not to flush the L2 cache before * every iteration. * @param[in] stream_ The CUDA stream we are measuring time on. */ cuda_event_timer(benchmark::State& state, bool flush_l2_cache, rmm::cuda_stream_view stream = cudf::get_default_stream()); // The user must provide a benchmark::State object to set // the timer so we disable the default c'tor. cuda_event_timer() = delete; // The d'tor stops the timer and performs a synchronization. // Time of the benchmark::State object provided to the c'tor // will be set to the value given by `cudaEventElapsedTime`. ~cuda_event_timer(); private: cudaEvent_t start; cudaEvent_t stop; rmm::cuda_stream_view stream; benchmark::State* p_state; };
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/quantiles/quantiles.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/quantiles.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/execution_policy.h> #include <thrust/tabulate.h> class Quantiles : public cudf::benchmark {}; static void BM_quantiles(benchmark::State& state, bool nulls) { using Type = int; cudf::size_type const n_rows{(cudf::size_type)state.range(0)}; cudf::size_type const n_cols{(cudf::size_type)state.range(1)}; cudf::size_type const n_quantiles{(cudf::size_type)state.range(2)}; // Create columns with values in the range [0,100) data_profile profile = data_profile_builder().cardinality(0).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); profile.set_null_probability(nulls ? std::optional{0.01} : std::nullopt); // 1% nulls or no null mask (<0) auto input_table = create_random_table( cycle_dtypes({cudf::type_to_id<Type>()}, n_cols), row_count{n_rows}, profile); auto input = cudf::table_view(*input_table); std::vector<double> q(n_quantiles); thrust::tabulate( thrust::seq, q.begin(), q.end(), [n_quantiles](auto i) { return i * (1.0f / n_quantiles); }); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); auto result = cudf::quantiles(input, q); // auto result = (stable) ? cudf::stable_sorted_order(input) : cudf::sorted_order(input); } } #define QUANTILES_BENCHMARK_DEFINE(name, nulls) \ BENCHMARK_DEFINE_F(Quantiles, name) \ (::benchmark::State & st) { BM_quantiles(st, nulls); } \ BENCHMARK_REGISTER_F(Quantiles, name) \ ->RangeMultiplier(4) \ ->Ranges({{1 << 16, 1 << 26}, {1, 8}, {1, 12}}) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); QUANTILES_BENCHMARK_DEFINE(no_nulls, false) QUANTILES_BENCHMARK_DEFINE(nulls, true)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_struct_keys.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/groupby.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> #include <random> void bench_groupby_struct_keys(nvbench::state& state) { using Type = int; using column_wrapper = cudf::test::fixed_width_column_wrapper<Type>; std::default_random_engine generator; std::uniform_int_distribution<int> distribution(0, 100); cudf::size_type const n_rows{static_cast<cudf::size_type>(state.get_int64("NumRows"))}; cudf::size_type const n_cols{1}; cudf::size_type const depth{static_cast<cudf::size_type>(state.get_int64("Depth"))}; bool const nulls{static_cast<bool>(state.get_int64("Nulls"))}; // Create columns with values in the range [0,100) std::vector<column_wrapper> columns; columns.reserve(n_cols); std::generate_n(std::back_inserter(columns), n_cols, [&]() { auto const elements = cudf::detail::make_counting_transform_iterator( 0, [&](auto row) { return distribution(generator); }); if (!nulls) return column_wrapper(elements, elements + n_rows); auto valids = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 10 != 0; }); return column_wrapper(elements, elements + n_rows, valids); }); std::vector<std::unique_ptr<cudf::column>> cols; std::transform(columns.begin(), columns.end(), std::back_inserter(cols), [](column_wrapper& col) { return col.release(); }); std::vector<std::unique_ptr<cudf::column>> child_cols = std::move(cols); // Add some layers for (int i = 0; i < depth; i++) { std::vector<bool> struct_validity; std::uniform_int_distribution<int> bool_distribution(0, 100 * (i + 1)); std::generate_n( std::back_inserter(struct_validity), n_rows, [&]() { return bool_distribution(generator); }); cudf::test::structs_column_wrapper struct_col(std::move(child_cols), struct_validity); child_cols = std::vector<std::unique_ptr<cudf::column>>{}; child_cols.push_back(struct_col.release()); } data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto const keys_table = cudf::table(std::move(child_cols)); auto const vals = create_random_column(cudf::type_to_id<int64_t>(), row_count{n_rows}, profile); cudf::groupby::groupby gb_obj(keys_table.view()); std::vector<cudf::groupby::aggregation_request> requests; requests.emplace_back(cudf::groupby::aggregation_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back(cudf::make_min_aggregation<cudf::groupby_aggregation>()); // Set up nvbench default stream auto stream = cudf::get_default_stream(); state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto const result = gb_obj.aggregate(requests); }); } NVBENCH_BENCH(bench_groupby_struct_keys) .set_name("groupby_struct_keys") .add_int64_power_of_two_axis("NumRows", {10, 16, 20}) .add_int64_axis("Depth", {0, 1, 8}) .add_int64_axis("Nulls", {0, 1});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_no_requests.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/groupby/group_common.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/groupby.hpp> #include <cudf/sorting.hpp> class Groupby : public cudf::benchmark {}; void BM_basic_no_requests(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); std::vector<cudf::groupby::aggregation_request> requests; for (auto _ : state) { cuda_event_timer timer(state, true); cudf::groupby::groupby gb_obj(*keys_table); auto result = gb_obj.aggregate(requests); } } BENCHMARK_DEFINE_F(Groupby, BasicNoRequest)(::benchmark::State& state) { BM_basic_no_requests(state); } BENCHMARK_REGISTER_F(Groupby, BasicNoRequest) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(10000) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000); void BM_pre_sorted_no_requests(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); auto sort_order = cudf::sorted_order(*keys_table); auto sorted_keys = cudf::gather(*keys_table, *sort_order); // No need to sort values using sort_order because they were generated randomly std::vector<cudf::groupby::aggregation_request> requests; for (auto _ : state) { cuda_event_timer timer(state, true); cudf::groupby::groupby gb_obj(*sorted_keys, cudf::null_policy::EXCLUDE, cudf::sorted::YES); auto result = gb_obj.aggregate(requests); } } BENCHMARK_DEFINE_F(Groupby, PreSortedNoRequests)(::benchmark::State& state) { BM_pre_sorted_no_requests(state); } BENCHMARK_REGISTER_F(Groupby, PreSortedNoRequests) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_sum.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/groupby/group_common.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/groupby.hpp> #include <cudf/sorting.hpp> class Groupby : public cudf::benchmark {}; void BM_basic_sum(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); auto vals = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); cudf::groupby::groupby gb_obj(cudf::table_view({keys->view(), keys->view(), keys->view()})); std::vector<cudf::groupby::aggregation_request> requests; requests.emplace_back(cudf::groupby::aggregation_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back(cudf::make_sum_aggregation<cudf::groupby_aggregation>()); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = gb_obj.aggregate(requests); } } BENCHMARK_DEFINE_F(Groupby, Basic)(::benchmark::State& state) { BM_basic_sum(state); } BENCHMARK_REGISTER_F(Groupby, Basic) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(10000) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000); void BM_pre_sorted_sum(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); profile.set_null_probability(0.1); auto vals = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); auto sort_order = cudf::sorted_order(*keys_table); auto sorted_keys = cudf::gather(*keys_table, *sort_order); // No need to sort values using sort_order because they were generated randomly cudf::groupby::groupby gb_obj(*sorted_keys, cudf::null_policy::EXCLUDE, cudf::sorted::YES); std::vector<cudf::groupby::aggregation_request> requests; requests.emplace_back(cudf::groupby::aggregation_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back(cudf::make_sum_aggregation<cudf::groupby_aggregation>()); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = gb_obj.aggregate(requests); } } BENCHMARK_DEFINE_F(Groupby, PreSorted)(::benchmark::State& state) { BM_pre_sorted_sum(state); } BENCHMARK_REGISTER_F(Groupby, PreSorted) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_nth.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/groupby/group_common.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/groupby.hpp> #include <cudf/sorting.hpp> class Groupby : public cudf::benchmark {}; void BM_pre_sorted_nth(benchmark::State& state) { // const cudf::size_type num_columns{(cudf::size_type)state.range(0)}; cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); auto vals = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); auto sort_order = cudf::sorted_order(*keys_table); auto sorted_keys = cudf::gather(*keys_table, *sort_order); // No need to sort values using sort_order because they were generated randomly cudf::groupby::groupby gb_obj(*sorted_keys, cudf::null_policy::EXCLUDE, cudf::sorted::YES); std::vector<cudf::groupby::aggregation_request> requests; requests.emplace_back(cudf::groupby::aggregation_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back( cudf::make_nth_element_aggregation<cudf::groupby_aggregation>(-1)); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = gb_obj.aggregate(requests); } } BENCHMARK_DEFINE_F(Groupby, PreSortedNth)(::benchmark::State& state) { BM_pre_sorted_nth(state); } BENCHMARK_REGISTER_F(Groupby, PreSortedNth) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(1000000) /* 1M */ ->Arg(10000000) /* 10M */ ->Arg(100000000); /* 100M */
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_common.hpp
/* * Copyright (c) 2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <random> template <typename T> T random_int(T min, T max) { static unsigned seed = 13377331; static std::mt19937 engine{seed}; static std::uniform_int_distribution<T> uniform{min, max}; return uniform(engine); }
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_nunique.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/groupby.hpp> #include <nvbench/nvbench.cuh> namespace { template <typename... Args> auto make_aggregation_request_vector(cudf::column_view const& values, Args&&... args) { std::vector<std::unique_ptr<cudf::groupby_aggregation>> aggregations; (aggregations.emplace_back(std::forward<Args>(args)), ...); std::vector<cudf::groupby::aggregation_request> requests; requests.emplace_back(cudf::groupby::aggregation_request{values, std::move(aggregations)}); return requests; } } // namespace template <typename Type> void bench_groupby_nunique(nvbench::state& state, nvbench::type_list<Type>) { auto const size = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const keys = [&] { data_profile profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, 100); return create_random_column(cudf::type_to_id<int32_t>(), row_count{size}, profile); }(); auto const vals = [&] { data_profile profile = data_profile_builder().cardinality(0).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 1000); if (const auto null_freq = state.get_float64("null_probability"); null_freq > 0) { profile.set_null_probability(null_freq); } else { profile.set_null_probability(std::nullopt); } return create_random_column(cudf::type_to_id<Type>(), row_count{size}, profile); }(); auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys->view(), keys->view(), keys->view()})); auto const requests = make_aggregation_request_vector( *vals, cudf::make_nunique_aggregation<cudf::groupby_aggregation>()); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto const result = gb_obj.aggregate(requests); }); } NVBENCH_BENCH_TYPES(bench_groupby_nunique, NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, int64_t>)) .set_name("groupby_nunique") .add_int64_power_of_two_axis("num_rows", {12, 16, 20, 24}) .add_float64_axis("null_probability", {0, 0.5});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_rank.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/groupby.hpp> #include <cudf/sorting.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <nvbench/nvbench.cuh> template <cudf::rank_method method> static void nvbench_groupby_rank(nvbench::state& state, nvbench::type_list<nvbench::enum_type<method>>) { constexpr auto dtype = cudf::type_to_id<int64_t>(); bool const is_sorted = state.get_int64("is_sorted"); cudf::size_type const column_size = state.get_int64("data_size"); constexpr int num_groups = 100; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( dtype, distribution_id::UNIFORM, 0, num_groups); auto source_table = create_random_table({dtype, dtype}, row_count{column_size}, profile); // values to be pre-sorted too for groupby rank if (is_sorted) source_table = cudf::sort(*source_table); cudf::table_view keys{{source_table->view().column(0)}}; cudf::column_view order_by{source_table->view().column(1)}; auto agg = cudf::make_rank_aggregation<cudf::groupby_scan_aggregation>(method); std::vector<cudf::groupby::scan_request> requests; requests.emplace_back(cudf::groupby::scan_request()); requests[0].values = order_by; requests[0].aggregations.push_back(std::move(agg)); cudf::groupby::groupby gb_obj( keys, cudf::null_policy::EXCLUDE, is_sorted ? cudf::sorted::YES : cudf::sorted::NO); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { rmm::cuda_stream_view stream_view{launch.get_stream()}; // groupby scan uses sort implementation auto result = gb_obj.scan(requests); }); } enum class rank_method : int32_t {}; NVBENCH_DECLARE_ENUM_TYPE_STRINGS( cudf::rank_method, [](cudf::rank_method value) { switch (value) { case cudf::rank_method::FIRST: return "FIRST"; case cudf::rank_method::AVERAGE: return "AVERAGE"; case cudf::rank_method::MIN: return "MIN"; case cudf::rank_method::MAX: return "MAX"; case cudf::rank_method::DENSE: return "DENSE"; default: return "unknown"; } }, [](cudf::rank_method value) { switch (value) { case cudf::rank_method::FIRST: return "cudf::rank_method::FIRST"; case cudf::rank_method::AVERAGE: return "cudf::rank_method::AVERAGE"; case cudf::rank_method::MIN: return "cudf::rank_method::MIN"; case cudf::rank_method::MAX: return "cudf::rank_method::MAX"; case cudf::rank_method::DENSE: return "cudf::rank_method::DENSE"; default: return "unknown"; } }) using methods = nvbench::enum_type_list<cudf::rank_method::AVERAGE, cudf::rank_method::DENSE, cudf::rank_method::FIRST, cudf::rank_method::MAX, cudf::rank_method::MIN>; NVBENCH_BENCH_TYPES(nvbench_groupby_rank, NVBENCH_TYPE_AXES(methods)) .set_type_axes_names({"rank_method"}) .set_name("groupby_rank") .add_int64_axis("data_size", { 1000000, // 1M 10000000, // 10M 100000000, // 100M }) .add_int64_axis("is_sorted", {0, 1});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_max.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/groupby.hpp> #include <nvbench/nvbench.cuh> template <typename Type> void bench_groupby_max(nvbench::state& state, nvbench::type_list<Type>) { auto const size = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const keys = [&] { data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, 100); return create_random_column(cudf::type_to_id<int32_t>(), row_count{size}, profile); }(); auto const vals = [&] { auto builder = data_profile_builder().cardinality(0).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 1000); if (const auto null_freq = state.get_float64("null_probability"); null_freq > 0) { builder.null_probability(null_freq); } else { builder.no_validity(); } return create_random_column(cudf::type_to_id<Type>(), row_count{size}, data_profile{builder}); }(); auto keys_view = keys->view(); auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys_view, keys_view, keys_view})); std::vector<cudf::groupby::aggregation_request> requests; requests.emplace_back(cudf::groupby::aggregation_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back(cudf::make_max_aggregation<cudf::groupby_aggregation>()); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto const result = gb_obj.aggregate(requests); }); } NVBENCH_BENCH_TYPES(bench_groupby_max, NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, int64_t, float, double>)) .set_name("groupby_max") .add_int64_power_of_two_axis("num_rows", {12, 18, 24}) .add_float64_axis("null_probability", {0, 0.1, 0.9});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_scan.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/groupby/group_common.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/groupby.hpp> #include <cudf/sorting.hpp> #include <cudf/table/table.hpp> class Groupby : public cudf::benchmark {}; void BM_basic_sum_scan(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); auto vals = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); cudf::groupby::groupby gb_obj(cudf::table_view({keys->view(), keys->view(), keys->view()})); std::vector<cudf::groupby::scan_request> requests; requests.emplace_back(cudf::groupby::scan_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back(cudf::make_sum_aggregation<cudf::groupby_scan_aggregation>()); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = gb_obj.scan(requests); } } BENCHMARK_DEFINE_F(Groupby, BasicSumScan)(::benchmark::State& state) { BM_basic_sum_scan(state); } BENCHMARK_REGISTER_F(Groupby, BasicSumScan) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000); void BM_pre_sorted_sum_scan(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; data_profile profile = data_profile_builder().cardinality(0).no_validity().distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, 100); auto keys_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); profile.set_null_probability(0.1); auto vals = create_random_column(cudf::type_to_id<int64_t>(), row_count{column_size}, profile); auto sort_order = cudf::sorted_order(*keys_table); auto sorted_keys = cudf::gather(*keys_table, *sort_order); // No need to sort values using sort_order because they were generated randomly cudf::groupby::groupby gb_obj(*sorted_keys, cudf::null_policy::EXCLUDE, cudf::sorted::YES); std::vector<cudf::groupby::scan_request> requests; requests.emplace_back(cudf::groupby::scan_request()); requests[0].values = vals->view(); requests[0].aggregations.push_back(cudf::make_sum_aggregation<cudf::groupby_scan_aggregation>()); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = gb_obj.scan(requests); } } BENCHMARK_DEFINE_F(Groupby, PreSortedSumScan)(::benchmark::State& state) { BM_pre_sorted_sum_scan(state); } BENCHMARK_REGISTER_F(Groupby, PreSortedSumScan) ->UseManualTime() ->Unit(benchmark::kMillisecond) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_shift.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/groupby/group_common.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/groupby.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> class Groupby : public cudf::benchmark {}; void BM_group_shift(benchmark::State& state) { cudf::size_type const column_size{(cudf::size_type)state.range(0)}; int const num_groups = 100; data_profile const profile = data_profile_builder().cardinality(0).null_probability(0.01).distribution( cudf::type_to_id<int64_t>(), distribution_id::UNIFORM, 0, num_groups); auto keys_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); auto vals_table = create_random_table({cudf::type_to_id<int64_t>()}, row_count{column_size}, profile); cudf::groupby::groupby gb_obj(*keys_table); std::vector<cudf::size_type> offsets{ static_cast<cudf::size_type>(column_size / float(num_groups) * 0.5)}; // forward shift half way // null fill value auto fill_value = cudf::make_default_constructed_scalar(cudf::data_type(cudf::type_id::INT64)); // non null fill value // auto fill_value = cudf::make_fixed_width_scalar(static_cast<int64_t>(42)); for (auto _ : state) { cuda_event_timer timer(state, true); auto result = gb_obj.shift(*vals_table, offsets, {*fill_value}); } } BENCHMARK_DEFINE_F(Groupby, Shift)(::benchmark::State& state) { BM_group_shift(state); } BENCHMARK_REGISTER_F(Groupby, Shift) ->Arg(1000000) ->Arg(10000000) ->Arg(100000000) ->UseManualTime() ->Unit(benchmark::kMillisecond);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/groupby/group_struct_values.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/aggregation.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/groupby.hpp> #include <cudf/structs/structs_column_view.hpp> static constexpr cudf::size_type num_struct_members = 8; static constexpr cudf::size_type max_int = 100; static constexpr cudf::size_type max_str_length = 32; static auto create_data_table(cudf::size_type n_rows) { data_profile const table_profile = data_profile_builder() .distribution(cudf::type_id::INT32, distribution_id::UNIFORM, 0, max_int) .distribution(cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); // The first two struct members are int32 and string. // The first column is also used as keys in groupby. // The subsequent struct members are int32 and string again. return create_random_table( cycle_dtypes({cudf::type_id::INT32, cudf::type_id::STRING}, num_struct_members), row_count{n_rows}, table_profile); } // Max aggregation/scan technically has the same performance as min. template <typename OpType> void BM_groupby_min_struct(benchmark::State& state) { auto const n_rows = static_cast<cudf::size_type>(state.range(0)); auto data_cols = create_data_table(n_rows)->release(); auto const keys_view = data_cols.front()->view(); auto const values = cudf::make_structs_column(keys_view.size(), std::move(data_cols), 0, rmm::device_buffer()); using RequestType = std::conditional_t<std::is_same_v<OpType, cudf::groupby_aggregation>, cudf::groupby::aggregation_request, cudf::groupby::scan_request>; auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys_view})); auto requests = std::vector<RequestType>(); requests.emplace_back(RequestType()); requests.front().values = values->view(); requests.front().aggregations.push_back(cudf::make_min_aggregation<OpType>()); for (auto _ : state) { [[maybe_unused]] auto const timer = cuda_event_timer(state, true); if constexpr (std::is_same_v<OpType, cudf::groupby_aggregation>) { [[maybe_unused]] auto const result = gb_obj.aggregate(requests); } else { [[maybe_unused]] auto const result = gb_obj.scan(requests); } } } class Groupby : public cudf::benchmark {}; #define MIN_RANGE 10'000 #define MAX_RANGE 10'000'000 #define REGISTER_BENCHMARK(name, op_type) \ BENCHMARK_DEFINE_F(Groupby, name)(::benchmark::State & state) \ { \ BM_groupby_min_struct<op_type>(state); \ } \ BENCHMARK_REGISTER_F(Groupby, name) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond) \ ->RangeMultiplier(4) \ ->Ranges({{MIN_RANGE, MAX_RANGE}}); REGISTER_BENCHMARK(Aggregation, cudf::groupby_aggregation) REGISTER_BENCHMARK(Scan, cudf::groupby_scan_aggregation)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/join/join.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/join/join_common.hpp> template <typename key_type, typename payload_type, bool Nullable> void nvbench_inner_join(nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_input, cudf::table_view const& right_input, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { auto const has_nulls = cudf::has_nested_nulls(left_input) || cudf::has_nested_nulls(right_input) ? cudf::nullable_join::YES : cudf::nullable_join::NO; cudf::hash_join hj_obj(left_input, has_nulls, compare_nulls, stream); return hj_obj.inner_join(right_input, std::nullopt, stream); }; BM_join<key_type, payload_type, Nullable>(state, join); } template <typename key_type, typename payload_type, bool Nullable> void nvbench_left_join(nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_input, cudf::table_view const& right_input, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { auto const has_nulls = cudf::has_nested_nulls(left_input) || cudf::has_nested_nulls(right_input) ? cudf::nullable_join::YES : cudf::nullable_join::NO; cudf::hash_join hj_obj(left_input, has_nulls, compare_nulls, stream); return hj_obj.left_join(right_input, std::nullopt, stream); }; BM_join<key_type, payload_type, Nullable>(state, join); } template <typename key_type, typename payload_type, bool Nullable> void nvbench_full_join(nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_input, cudf::table_view const& right_input, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { auto const has_nulls = cudf::has_nested_nulls(left_input) || cudf::has_nested_nulls(right_input) ? cudf::nullable_join::YES : cudf::nullable_join::NO; cudf::hash_join hj_obj(left_input, has_nulls, compare_nulls, stream); return hj_obj.full_join(right_input, std::nullopt, stream); }; BM_join<key_type, payload_type, Nullable>(state, join); } // inner join ----------------------------------------------------------------------- NVBENCH_BENCH_TYPES(nvbench_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("inner_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("inner_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("inner_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("inner_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); // left join ------------------------------------------------------------------------ NVBENCH_BENCH_TYPES(nvbench_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("left_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("left_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("left_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("left_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); // full join ------------------------------------------------------------------------ NVBENCH_BENCH_TYPES(nvbench_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("full_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("full_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("full_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("full_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/join/join_common.hpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "generate_input_tables.cuh" #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/ast/expressions.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/filling.hpp> #include <cudf/join.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <nvbench/nvbench.cuh> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/random/linear_congruential_engine.h> #include <thrust/random/uniform_int_distribution.h> #include <vector> struct null75_generator { thrust::minstd_rand engine; thrust::uniform_int_distribution<unsigned> rand_gen; null75_generator() : engine(), rand_gen() {} __device__ bool operator()(size_t i) { engine.discard(i); // roughly 75% nulls return (rand_gen(engine) & 3) == 0; } }; enum class join_t { CONDITIONAL, MIXED, HASH }; inline void skip_helper(nvbench::state& state) { auto const build_table_size = state.get_int64("Build Table Size"); auto const probe_table_size = state.get_int64("Probe Table Size"); if (build_table_size > probe_table_size) { state.skip("Large build tables are skipped."); return; } if (build_table_size * 100 <= probe_table_size) { state.skip("Large probe tables are skipped."); return; } } template <typename key_type, typename payload_type, bool Nullable, join_t join_type = join_t::HASH, typename state_type, typename Join> void BM_join(state_type& state, Join JoinFunc) { auto const build_table_size = [&]() { if constexpr (std::is_same_v<state_type, benchmark::State>) { return static_cast<cudf::size_type>(state.range(0)); } if constexpr (std::is_same_v<state_type, nvbench::state>) { return static_cast<cudf::size_type>(state.get_int64("Build Table Size")); } }(); auto const probe_table_size = [&]() { if constexpr (std::is_same_v<state_type, benchmark::State>) { return static_cast<cudf::size_type>(state.range(1)); } if constexpr (std::is_same_v<state_type, nvbench::state>) { return static_cast<cudf::size_type>(state.get_int64("Probe Table Size")); } }(); double const selectivity = 0.3; int const multiplicity = 1; // Generate build and probe tables auto build_random_null_mask = [](int size) { // roughly 75% nulls auto validity = thrust::make_transform_iterator(thrust::make_counting_iterator(0), null75_generator{}); return cudf::detail::valid_if(validity, validity + size, thrust::identity<bool>{}, cudf::get_default_stream(), rmm::mr::get_current_device_resource()); }; std::unique_ptr<cudf::column> build_key_column0 = [&]() { auto [null_mask, null_count] = build_random_null_mask(build_table_size); return Nullable ? cudf::make_numeric_column(cudf::data_type(cudf::type_to_id<key_type>()), build_table_size, std::move(null_mask), null_count) : cudf::make_numeric_column(cudf::data_type(cudf::type_to_id<key_type>()), build_table_size); }(); std::unique_ptr<cudf::column> probe_key_column0 = [&]() { auto [null_mask, null_count] = build_random_null_mask(probe_table_size); return Nullable ? cudf::make_numeric_column(cudf::data_type(cudf::type_to_id<key_type>()), probe_table_size, std::move(null_mask), null_count) : cudf::make_numeric_column(cudf::data_type(cudf::type_to_id<key_type>()), probe_table_size); }(); generate_input_tables<key_type, cudf::size_type>( build_key_column0->mutable_view().data<key_type>(), build_table_size, probe_key_column0->mutable_view().data<key_type>(), probe_table_size, selectivity, multiplicity); // Copy build_key_column0 and probe_key_column0 into new columns. // If Nullable, the new columns will be assigned new nullmasks. auto const build_key_column1 = [&]() { auto col = std::make_unique<cudf::column>(build_key_column0->view()); if (Nullable) { auto [null_mask, null_count] = build_random_null_mask(build_table_size); col->set_null_mask(std::move(null_mask), null_count); } return col; }(); auto const probe_key_column1 = [&]() { auto col = std::make_unique<cudf::column>(probe_key_column0->view()); if (Nullable) { auto [null_mask, null_count] = build_random_null_mask(probe_table_size); col->set_null_mask(std::move(null_mask), null_count); } return col; }(); auto init = cudf::make_fixed_width_scalar<payload_type>(static_cast<payload_type>(0)); auto build_payload_column = cudf::sequence(build_table_size, *init); auto probe_payload_column = cudf::sequence(probe_table_size, *init); CUDF_CHECK_CUDA(0); cudf::table_view build_table( {build_key_column0->view(), build_key_column1->view(), *build_payload_column}); cudf::table_view probe_table( {probe_key_column0->view(), probe_key_column1->view(), *probe_payload_column}); // Setup join parameters and result table [[maybe_unused]] std::vector<cudf::size_type> columns_to_join = {0}; // Benchmark the inner join operation if constexpr (std::is_same_v<state_type, benchmark::State> and (join_type != join_t::CONDITIONAL)) { for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); auto result = JoinFunc(probe_table.select(columns_to_join), build_table.select(columns_to_join), cudf::null_equality::UNEQUAL); } } if constexpr (std::is_same_v<state_type, nvbench::state> and (join_type != join_t::CONDITIONAL)) { if constexpr (join_type == join_t::MIXED) { auto const col_ref_left_0 = cudf::ast::column_reference(0); auto const col_ref_right_0 = cudf::ast::column_reference(0, cudf::ast::table_reference::RIGHT); auto left_zero_eq_right_zero = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, col_ref_left_0, col_ref_right_0); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { rmm::cuda_stream_view stream_view{launch.get_stream()}; auto result = JoinFunc(probe_table.select(columns_to_join), build_table.select(columns_to_join), probe_table.select({1}), build_table.select({1}), left_zero_eq_right_zero, cudf::null_equality::UNEQUAL, stream_view); }); } if constexpr (join_type == join_t::HASH) { state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { rmm::cuda_stream_view stream_view{launch.get_stream()}; auto result = JoinFunc(probe_table.select(columns_to_join), build_table.select(columns_to_join), cudf::null_equality::UNEQUAL, stream_view); }); } } // Benchmark conditional join if constexpr (std::is_same_v<state_type, benchmark::State> and join_type == join_t::CONDITIONAL) { // Common column references. auto const col_ref_left_0 = cudf::ast::column_reference(0); auto const col_ref_right_0 = cudf::ast::column_reference(0, cudf::ast::table_reference::RIGHT); auto left_zero_eq_right_zero = cudf::ast::operation(cudf::ast::ast_operator::EQUAL, col_ref_left_0, col_ref_right_0); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); auto result = JoinFunc(probe_table, build_table, left_zero_eq_right_zero, cudf::null_equality::UNEQUAL); } } }
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/join/mixed_join.cu
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/join/join_common.hpp> template <typename key_type, typename payload_type, bool Nullable> void nvbench_mixed_inner_join( nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_equality_input, cudf::table_view const& right_equality_input, cudf::table_view const& left_conditional_input, cudf::table_view const& right_conditional_input, cudf::ast::operation binary_pred, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { return cudf::mixed_inner_join(left_equality_input, right_equality_input, left_conditional_input, right_conditional_input, binary_pred, compare_nulls); }; BM_join<key_type, payload_type, Nullable, join_t::MIXED>(state, join); } template <typename key_type, typename payload_type, bool Nullable> void nvbench_mixed_left_join( nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_equality_input, cudf::table_view const& right_equality_input, cudf::table_view const& left_conditional_input, cudf::table_view const& right_conditional_input, cudf::ast::operation binary_pred, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { return cudf::mixed_left_join(left_equality_input, right_equality_input, left_conditional_input, right_conditional_input, binary_pred, compare_nulls); }; BM_join<key_type, payload_type, Nullable, join_t::MIXED>(state, join); } template <typename key_type, typename payload_type, bool Nullable> void nvbench_mixed_full_join( nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_equality_input, cudf::table_view const& right_equality_input, cudf::table_view const& left_conditional_input, cudf::table_view const& right_conditional_input, cudf::ast::operation binary_pred, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { return cudf::mixed_full_join(left_equality_input, right_equality_input, left_conditional_input, right_conditional_input, binary_pred, compare_nulls); }; BM_join<key_type, payload_type, Nullable, join_t::MIXED>(state, join); } template <typename key_type, typename payload_type, bool Nullable> void nvbench_mixed_left_semi_join( nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_equality_input, cudf::table_view const& right_equality_input, cudf::table_view const& left_conditional_input, cudf::table_view const& right_conditional_input, cudf::ast::operation binary_pred, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { return cudf::mixed_left_semi_join(left_equality_input, right_equality_input, left_conditional_input, right_conditional_input, binary_pred, compare_nulls); }; BM_join<key_type, payload_type, Nullable, join_t::MIXED>(state, join); } template <typename key_type, typename payload_type, bool Nullable> void nvbench_mixed_left_anti_join( nvbench::state& state, nvbench::type_list<key_type, payload_type, nvbench::enum_type<Nullable>>) { skip_helper(state); auto join = [](cudf::table_view const& left_equality_input, cudf::table_view const& right_equality_input, cudf::table_view const& left_conditional_input, cudf::table_view const& right_conditional_input, cudf::ast::operation binary_pred, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) { return cudf::mixed_left_anti_join(left_equality_input, right_equality_input, left_conditional_input, right_conditional_input, binary_pred, compare_nulls); }; BM_join<key_type, payload_type, Nullable, join_t::MIXED>(state, join); } // inner join ----------------------------------------------------------------------- NVBENCH_BENCH_TYPES(nvbench_mixed_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("mixed_inner_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("mixed_inner_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("mixed_inner_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_inner_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("mixed_inner_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); // left join ------------------------------------------------------------------------ NVBENCH_BENCH_TYPES(nvbench_mixed_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("mixed_left_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("mixed_left_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("mixed_left_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("mixed_left_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); // full join ------------------------------------------------------------------------ NVBENCH_BENCH_TYPES(nvbench_mixed_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("mixed_full_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("mixed_full_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("mixed_full_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_full_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("mixed_full_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); // left semi join ------------------------------------------------------------------------ NVBENCH_BENCH_TYPES(nvbench_mixed_left_semi_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("mixed_left_semi_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_semi_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("mixed_left_semi_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_semi_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("mixed_left_semi_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_semi_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("mixed_left_semi_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); // left anti join ------------------------------------------------------------------------ NVBENCH_BENCH_TYPES(nvbench_mixed_left_anti_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<false>)) .set_name("mixed_left_anti_join_32bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_anti_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<false>)) .set_name("mixed_left_anti_join_64bit") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_anti_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int32_t>, nvbench::type_list<nvbench::int32_t>, nvbench::enum_type_list<true>)) .set_name("mixed_left_anti_join_32bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {100'000, 10'000'000, 80'000'000, 100'000'000}) .add_int64_axis("Probe Table Size", {100'000, 400'000, 10'000'000, 40'000'000, 100'000'000, 240'000'000}); NVBENCH_BENCH_TYPES(nvbench_mixed_left_anti_join, NVBENCH_TYPE_AXES(nvbench::type_list<nvbench::int64_t>, nvbench::type_list<nvbench::int64_t>, nvbench::enum_type_list<true>)) .set_name("mixed_left_anti_join_64bit_nulls") .set_type_axes_names({"Key Type", "Payload Type", "Nullable"}) .add_int64_axis("Build Table Size", {40'000'000, 50'000'000}) .add_int64_axis("Probe Table Size", {50'000'000, 120'000'000});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/join/left_join.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/join/join_common.hpp> template <typename key_type, typename payload_type> class Join : public cudf::benchmark {}; #define LEFT_ANTI_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(Join, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::null_equality compare_nulls) { \ return cudf::left_anti_join(left, right, compare_nulls); \ }; \ BM_join<key_type, payload_type, nullable>(st, join); \ } LEFT_ANTI_JOIN_BENCHMARK_DEFINE(left_anti_join_32bit, int32_t, int32_t, false); LEFT_ANTI_JOIN_BENCHMARK_DEFINE(left_anti_join_64bit, int64_t, int64_t, false); LEFT_ANTI_JOIN_BENCHMARK_DEFINE(left_anti_join_32bit_nulls, int32_t, int32_t, true); LEFT_ANTI_JOIN_BENCHMARK_DEFINE(left_anti_join_64bit_nulls, int64_t, int64_t, true); #define LEFT_SEMI_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(Join, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::null_equality compare_nulls) { \ return cudf::left_semi_join(left, right, compare_nulls); \ }; \ BM_join<key_type, payload_type, nullable>(st, join); \ } LEFT_SEMI_JOIN_BENCHMARK_DEFINE(left_semi_join_32bit, int32_t, int32_t, false); LEFT_SEMI_JOIN_BENCHMARK_DEFINE(left_semi_join_64bit, int64_t, int64_t, false); LEFT_SEMI_JOIN_BENCHMARK_DEFINE(left_semi_join_32bit_nulls, int32_t, int32_t, true); LEFT_SEMI_JOIN_BENCHMARK_DEFINE(left_semi_join_64bit_nulls, int64_t, int64_t, true); // left anti-join ------------------------------------------------------------- BENCHMARK_REGISTER_F(Join, left_anti_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->Args({10'000'000, 10'000'000}) ->Args({10'000'000, 40'000'000}) ->Args({10'000'000, 100'000'000}) ->Args({100'000'000, 100'000'000}) ->Args({80'000'000, 240'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(Join, left_anti_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({50'000'000, 50'000'000}) ->Args({40'000'000, 120'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(Join, left_anti_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->Args({10'000'000, 10'000'000}) ->Args({10'000'000, 40'000'000}) ->Args({10'000'000, 100'000'000}) ->Args({100'000'000, 100'000'000}) ->Args({80'000'000, 240'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(Join, left_anti_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({50'000'000, 50'000'000}) ->Args({40'000'000, 120'000'000}) ->UseManualTime(); // left semi-join ------------------------------------------------------------- BENCHMARK_REGISTER_F(Join, left_semi_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->Args({10'000'000, 10'000'000}) ->Args({10'000'000, 40'000'000}) ->Args({10'000'000, 100'000'000}) ->Args({100'000'000, 100'000'000}) ->Args({80'000'000, 240'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(Join, left_semi_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({50'000'000, 50'000'000}) ->Args({40'000'000, 120'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(Join, left_semi_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->Args({10'000'000, 10'000'000}) ->Args({10'000'000, 40'000'000}) ->Args({10'000'000, 100'000'000}) ->Args({100'000'000, 100'000'000}) ->Args({80'000'000, 240'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(Join, left_semi_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({50'000'000, 50'000'000}) ->Args({40'000'000, 120'000'000}) ->UseManualTime();
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/join/generate_input_tables.cuh
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/detail/utilities/device_atomics.cuh> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/exec_policy.hpp> #include <thrust/distance.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/sequence.h> #include <curand.h> #include <curand_kernel.h> #include <cassert> __global__ static void init_curand(curandState* state, int const nstates) { int ithread = threadIdx.x + blockIdx.x * blockDim.x; if (ithread < nstates) { curand_init(1234ULL, ithread, 0, state + ithread); } } template <typename key_type, typename size_type> __global__ static void init_build_tbl(key_type* const build_tbl, size_type const build_tbl_size, int const multiplicity, curandState* state, int const num_states) { auto const start_idx = blockIdx.x * blockDim.x + threadIdx.x; auto const stride = blockDim.x * gridDim.x; assert(start_idx < num_states); curandState localState = state[start_idx]; for (size_type idx = start_idx; idx < build_tbl_size; idx += stride) { double const x = curand_uniform_double(&localState); build_tbl[idx] = static_cast<key_type>(x * (build_tbl_size / multiplicity)); } state[start_idx] = localState; } template <typename key_type, typename size_type> __global__ void init_probe_tbl(key_type* const probe_tbl, size_type const probe_tbl_size, size_type const build_tbl_size, key_type const rand_max, double const selectivity, int const multiplicity, curandState* state, int const num_states) { auto const start_idx = blockIdx.x * blockDim.x + threadIdx.x; auto const stride = blockDim.x * gridDim.x; assert(start_idx < num_states); curandState localState = state[start_idx]; for (size_type idx = start_idx; idx < probe_tbl_size; idx += stride) { key_type val; double x = curand_uniform_double(&localState); if (x <= selectivity) { // x <= selectivity means this key in the probe table should be present in the build table, so // we pick a key from [0, build_tbl_size / multiplicity] x = curand_uniform_double(&localState); val = static_cast<key_type>(x * (build_tbl_size / multiplicity)); } else { // This key in the probe table should not be present in the build table, so we pick a key from // [build_tbl_size, rand_max]. x = curand_uniform_double(&localState); val = static_cast<key_type>(x * (rand_max - build_tbl_size) + build_tbl_size); } probe_tbl[idx] = val; } state[start_idx] = localState; } /** * generate_input_tables generates random integer input tables for database benchmarks. * * generate_input_tables generates two random integer input tables for database benchmark * mainly designed to benchmark join operations. The templates key_type and size_type needed * to be builtin integer types (e.g. short, int, longlong) and key_type needs to be signed * as the lottery used internally relies on being able to use negative values to mark drawn * numbers. The tables need to be preallocated in a memory region accessible by the GPU * (e.g. device memory, zero copy memory or unified memory). Each value in the build table * will be from [0,rand_max] and if uniq_build_tbl_keys is true it is ensured that each value * will be uniq in the build table. Each value in the probe table will be also in the build * table with a probability of selectivity and a random number from * [0,rand_max] \setminus \{build_tbl\} otherwise. * * @param[out] build_tbl The build table to generate. Usually the smaller table used to * "build" the hash table in a hash based join implementation. * @param[in] build_tbl_size number of keys in the build table * @param[out] probe_tbl The probe table to generate. Usually the larger table used to * probe into the hash table created from the build table. * @param[in] build_tbl_size number of keys in the build table * @param[in] selectivity probability with which an element of the probe table is * present in the build table. * @param[in] multiplicity number of matches for each key. */ template <typename key_type, typename size_type> void generate_input_tables(key_type* const build_tbl, size_type const build_tbl_size, key_type* const probe_tbl, size_type const probe_tbl_size, double const selectivity, int const multiplicity) { // With large values of rand_max the a lot of temporary storage is needed for the lottery. At the // expense of not being that accurate with applying the selectivity an especially more memory // efficient implementations would be to partition the random numbers into two intervals and then // let one table choose random numbers from only one interval and the other only select with // selective probability from the same interval and from the other in the other cases. constexpr int block_size = 128; // Maximize exposed parallelism while minimizing storage for curand state int num_blocks_init_build_tbl{-1}; CUDF_CUDA_TRY(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &num_blocks_init_build_tbl, init_build_tbl<key_type, size_type>, block_size, 0)); int num_blocks_init_probe_tbl{-1}; CUDF_CUDA_TRY(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &num_blocks_init_probe_tbl, init_probe_tbl<key_type, size_type>, block_size, 0)); int dev_id{-1}; CUDF_CUDA_TRY(cudaGetDevice(&dev_id)); int num_sms{-1}; CUDF_CUDA_TRY(cudaDeviceGetAttribute(&num_sms, cudaDevAttrMultiProcessorCount, dev_id)); int const num_states = num_sms * std::max(num_blocks_init_build_tbl, num_blocks_init_probe_tbl) * block_size; rmm::device_uvector<curandState> devStates(num_states, cudf::get_default_stream()); init_curand<<<(num_states - 1) / block_size + 1, block_size>>>(devStates.data(), num_states); CUDF_CHECK_CUDA(0); init_build_tbl<key_type, size_type><<<num_sms * num_blocks_init_build_tbl, block_size>>>( build_tbl, build_tbl_size, multiplicity, devStates.data(), num_states); CUDF_CHECK_CUDA(0); auto const rand_max = std::numeric_limits<key_type>::max(); init_probe_tbl<key_type, size_type> <<<num_sms * num_blocks_init_build_tbl, block_size>>>(probe_tbl, probe_tbl_size, build_tbl_size, rand_max, selectivity, multiplicity, devStates.data(), num_states); CUDF_CHECK_CUDA(0); }
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/join/conditional_join.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/join/join_common.hpp> template <typename key_type, typename payload_type> class ConditionalJoin : public cudf::benchmark {}; // For compatibility with the shared logic for equality (hash) joins, all of // the join lambdas defined by these macros accept a null_equality parameter // but ignore it (don't forward it to the underlying join implementation) // because conditional joins do not use this parameter. #define CONDITIONAL_INNER_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(ConditionalJoin, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::ast::operation binary_pred, \ cudf::null_equality compare_nulls) { \ return cudf::conditional_inner_join(left, right, binary_pred); \ }; \ BM_join<key_type, payload_type, nullable, join_t::CONDITIONAL>(st, join); \ } CONDITIONAL_INNER_JOIN_BENCHMARK_DEFINE(conditional_inner_join_32bit, int32_t, int32_t, false); CONDITIONAL_INNER_JOIN_BENCHMARK_DEFINE(conditional_inner_join_64bit, int64_t, int64_t, false); CONDITIONAL_INNER_JOIN_BENCHMARK_DEFINE(conditional_inner_join_32bit_nulls, int32_t, int32_t, true); CONDITIONAL_INNER_JOIN_BENCHMARK_DEFINE(conditional_inner_join_64bit_nulls, int64_t, int64_t, true); #define CONDITIONAL_LEFT_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(ConditionalJoin, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::ast::operation binary_pred, \ cudf::null_equality compare_nulls) { \ return cudf::conditional_left_join(left, right, binary_pred); \ }; \ BM_join<key_type, payload_type, nullable, join_t::CONDITIONAL>(st, join); \ } CONDITIONAL_LEFT_JOIN_BENCHMARK_DEFINE(conditional_left_join_32bit, int32_t, int32_t, false); CONDITIONAL_LEFT_JOIN_BENCHMARK_DEFINE(conditional_left_join_64bit, int64_t, int64_t, false); CONDITIONAL_LEFT_JOIN_BENCHMARK_DEFINE(conditional_left_join_32bit_nulls, int32_t, int32_t, true); CONDITIONAL_LEFT_JOIN_BENCHMARK_DEFINE(conditional_left_join_64bit_nulls, int64_t, int64_t, true); #define CONDITIONAL_FULL_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(ConditionalJoin, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::ast::operation binary_pred, \ cudf::null_equality compare_nulls) { \ return cudf::conditional_full_join(left, right, binary_pred); \ }; \ BM_join<key_type, payload_type, nullable, join_t::CONDITIONAL>(st, join); \ } CONDITIONAL_FULL_JOIN_BENCHMARK_DEFINE(conditional_full_join_32bit, int32_t, int32_t, false); CONDITIONAL_FULL_JOIN_BENCHMARK_DEFINE(conditional_full_join_64bit, int64_t, int64_t, false); CONDITIONAL_FULL_JOIN_BENCHMARK_DEFINE(conditional_full_join_32bit_nulls, int32_t, int32_t, true); CONDITIONAL_FULL_JOIN_BENCHMARK_DEFINE(conditional_full_join_64bit_nulls, int64_t, int64_t, true); #define CONDITIONAL_LEFT_ANTI_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(ConditionalJoin, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::ast::operation binary_pred, \ cudf::null_equality compare_nulls) { \ return cudf::conditional_left_anti_join(left, right, binary_pred); \ }; \ BM_join<key_type, payload_type, nullable, join_t::CONDITIONAL>(st, join); \ } CONDITIONAL_LEFT_ANTI_JOIN_BENCHMARK_DEFINE(conditional_left_anti_join_32bit, int32_t, int32_t, false); CONDITIONAL_LEFT_ANTI_JOIN_BENCHMARK_DEFINE(conditional_left_anti_join_64bit, int64_t, int64_t, false); CONDITIONAL_LEFT_ANTI_JOIN_BENCHMARK_DEFINE(conditional_left_anti_join_32bit_nulls, int32_t, int32_t, true); CONDITIONAL_LEFT_ANTI_JOIN_BENCHMARK_DEFINE(conditional_left_anti_join_64bit_nulls, int64_t, int64_t, true); #define CONDITIONAL_LEFT_SEMI_JOIN_BENCHMARK_DEFINE(name, key_type, payload_type, nullable) \ BENCHMARK_TEMPLATE_DEFINE_F(ConditionalJoin, name, key_type, payload_type) \ (::benchmark::State & st) \ { \ auto join = [](cudf::table_view const& left, \ cudf::table_view const& right, \ cudf::ast::operation binary_pred, \ cudf::null_equality compare_nulls) { \ return cudf::conditional_left_semi_join(left, right, binary_pred); \ }; \ BM_join<key_type, payload_type, nullable, join_t::CONDITIONAL>(st, join); \ } CONDITIONAL_LEFT_SEMI_JOIN_BENCHMARK_DEFINE(conditional_left_semi_join_32bit, int32_t, int32_t, false); CONDITIONAL_LEFT_SEMI_JOIN_BENCHMARK_DEFINE(conditional_left_semi_join_64bit, int64_t, int64_t, false); CONDITIONAL_LEFT_SEMI_JOIN_BENCHMARK_DEFINE(conditional_left_semi_join_32bit_nulls, int32_t, int32_t, true); CONDITIONAL_LEFT_SEMI_JOIN_BENCHMARK_DEFINE(conditional_left_semi_join_64bit_nulls, int64_t, int64_t, true); // inner join ----------------------------------------------------------------------- BENCHMARK_REGISTER_F(ConditionalJoin, conditional_inner_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({400'000, 100'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_inner_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({400'000, 100'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_inner_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({400'000, 100'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_inner_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({400'000, 100'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); // left join ----------------------------------------------------------------------- BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); // full join ----------------------------------------------------------------------- BENCHMARK_REGISTER_F(ConditionalJoin, conditional_full_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_full_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_full_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_full_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); // left anti-join ------------------------------------------------------------- BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_anti_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_anti_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_anti_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_anti_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); // left semi-join ------------------------------------------------------------- BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_semi_join_32bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_semi_join_64bit) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_semi_join_32bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime(); BENCHMARK_REGISTER_F(ConditionalJoin, conditional_left_semi_join_64bit_nulls) ->Unit(benchmark::kMillisecond) ->Args({100'000, 100'000}) ->Args({100'000, 400'000}) ->Args({100'000, 1'000'000}) ->UseManualTime();
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/transpose/transpose.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/table/table.hpp> #include <cudf/transpose.hpp> #include <cudf/types.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> static void BM_transpose(benchmark::State& state) { auto count = state.range(0); constexpr auto column_type_id = cudf::type_id::INT32; auto int_column_generator = thrust::make_transform_iterator(thrust::counting_iterator(0), [count](int i) { return cudf::make_numeric_column( cudf::data_type{column_type_id}, count, cudf::mask_state::ALL_VALID); }); auto input_table = cudf::table(std::vector(int_column_generator, int_column_generator + count)); auto input = input_table.view(); for (auto _ : state) { cuda_event_timer raii(state, true); auto output = cudf::transpose(input); } // Collect memory statistics. auto const bytes_read = static_cast<uint64_t>(input.num_columns()) * input.num_rows() * sizeof(cudf::id_to_type<column_type_id>); auto const bytes_written = bytes_read; // Account for nullability in input and output. auto const null_bytes = 2 * static_cast<uint64_t>(input.num_columns()) * cudf::bitmask_allocation_size_bytes(input.num_rows()); state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * (bytes_read + bytes_written + null_bytes)); } class Transpose : public cudf::benchmark {}; #define TRANSPOSE_BM_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(Transpose, name)(::benchmark::State & state) { BM_transpose(state); } \ BENCHMARK_REGISTER_F(Transpose, name) \ ->RangeMultiplier(4) \ ->Range(4, 4 << 13) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); TRANSPOSE_BM_BENCHMARK_DEFINE(transpose_simple);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/stream_compaction/unique.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/lists/list_view.hpp> #include <cudf/sorting.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/types.hpp> #include <nvbench/nvbench.cuh> // necessary for custom enum types // see: https://github.com/NVIDIA/nvbench/blob/main/examples/enums.cu NVBENCH_DECLARE_ENUM_TYPE_STRINGS( // Enum type: cudf::duplicate_keep_option, // Callable to generate input strings: [](cudf::duplicate_keep_option option) { switch (option) { case cudf::duplicate_keep_option::KEEP_FIRST: return "KEEP_FIRST"; case cudf::duplicate_keep_option::KEEP_LAST: return "KEEP_LAST"; case cudf::duplicate_keep_option::KEEP_NONE: return "KEEP_NONE"; default: return "ERROR"; } }, // Callable to generate descriptions: [](auto) { return std::string{}; }) NVBENCH_DECLARE_TYPE_STRINGS(cudf::timestamp_ms, "cudf::timestamp_ms", "cudf::timestamp_ms"); template <typename Type, cudf::duplicate_keep_option Keep> void nvbench_unique(nvbench::state& state, nvbench::type_list<Type, nvbench::enum_type<Keep>>) { // KEEP_FIRST and KEEP_ANY are equivalent for unique if constexpr (not std::is_same_v<Type, int32_t> and Keep == cudf::duplicate_keep_option::KEEP_ANY) { state.skip("Skip unwanted benchmarks."); } cudf::size_type const num_rows = state.get_int64("NumRows"); auto const sorting = state.get_int64("Sort"); data_profile profile = data_profile_builder().cardinality(0).null_probability(0.01).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, num_rows / 100); auto source_column = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); auto input_column = source_column->view(); auto input_table = cudf::table_view({input_column, input_column, input_column, input_column}); auto const run_bench = [&](auto const input) { state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::unique(input, {0}, Keep, cudf::null_equality::EQUAL); }); }; if (sorting) { auto const sort_order = cudf::sorted_order(input_table); auto const sort_table = cudf::gather(input_table, *sort_order); run_bench(*sort_table); } else { run_bench(input_table); } } using data_type = nvbench::type_list<bool, int8_t, int32_t, int64_t, float, cudf::timestamp_ms>; using keep_option = nvbench::enum_type_list<cudf::duplicate_keep_option::KEEP_FIRST, cudf::duplicate_keep_option::KEEP_LAST, cudf::duplicate_keep_option::KEEP_NONE>; NVBENCH_BENCH_TYPES(nvbench_unique, NVBENCH_TYPE_AXES(data_type, keep_option)) .set_name("unique") .set_type_axes_names({"Type", "KeepOption"}) .add_int64_axis("NumRows", {10'000, 100'000, 1'000'000, 10'000'000}) .add_int64_axis("Sort", {0, 1}); template <typename Type, cudf::duplicate_keep_option Keep> void nvbench_unique_list(nvbench::state& state, nvbench::type_list<Type, nvbench::enum_type<Keep>>) { // KEEP_FIRST and KEEP_ANY are equivalent for unique if constexpr (Keep == cudf::duplicate_keep_option::KEEP_ANY) { state.skip("Skip unwanted benchmarks."); } auto const size = state.get_int64("ColumnSize"); auto const dtype = cudf::type_to_id<Type>(); double const null_probability = state.get_float64("null_probability"); auto const sorting = state.get_int64("Sort"); auto builder = data_profile_builder().null_probability(null_probability); if (dtype == cudf::type_id::LIST) { builder.distribution(dtype, distribution_id::UNIFORM, 0, 4) .distribution(cudf::type_id::INT32, distribution_id::UNIFORM, 0, 4) .list_depth(1); } else { // We're comparing unique() on a non-nested column to that on a list column with the same // number of unique rows. The max list size is 4 and the number of unique values in the // list's child is 5. So the number of unique rows in the list = 1 + 5 + 5^2 + 5^3 + 5^4 = 781 // We want this column to also have 781 unique values. builder.distribution(dtype, distribution_id::UNIFORM, 0, 781); } auto const input_table = create_random_table( {dtype}, table_size_bytes{static_cast<size_t>(size)}, data_profile{builder}, 0); auto const run_bench = [&](auto const input) { state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::unique(input, {0}, Keep, cudf::null_equality::EQUAL); }); }; if (sorting) { auto const sort_order = cudf::sorted_order(*input_table); auto const sort_table = cudf::gather(*input_table, *sort_order); run_bench(*sort_table); } else { run_bench(*input_table); } } NVBENCH_BENCH_TYPES(nvbench_unique_list, NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, cudf::list_view>, keep_option)) .set_name("unique_list") .set_type_axes_names({"Type", "KeepOption"}) .add_float64_axis("null_probability", {0.0, 0.1}) .add_int64_axis("ColumnSize", {10'000, 100'000, 1'000'000, 10'000'000, 100'000'000}) .add_int64_axis("Sort", {0, 1});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/stream_compaction/stable_distinct.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/column/column_view.hpp> #include <cudf/lists/list_view.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/types.hpp> #include <nvbench/nvbench.cuh> NVBENCH_DECLARE_TYPE_STRINGS(cudf::timestamp_ms, "cudf::timestamp_ms", "cudf::timestamp_ms"); template <typename Type> void nvbench_stable_distinct(nvbench::state& state, nvbench::type_list<Type>) { cudf::size_type const num_rows = state.get_int64("NumRows"); data_profile profile = data_profile_builder().cardinality(0).null_probability(0.01).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); auto source_column = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); auto input_column = source_column->view(); auto input_table = cudf::table_view({input_column, input_column, input_column, input_column}); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::stable_distinct(input_table, {0}, cudf::duplicate_keep_option::KEEP_ANY, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL); }); } using data_type = nvbench::type_list<bool, int8_t, int32_t, int64_t, float, cudf::timestamp_ms>; NVBENCH_BENCH_TYPES(nvbench_stable_distinct, NVBENCH_TYPE_AXES(data_type)) .set_name("stable_distinct") .set_type_axes_names({"Type"}) .add_int64_axis("NumRows", {10'000, 100'000, 1'000'000, 10'000'000}); template <typename Type> void nvbench_stable_distinct_list(nvbench::state& state, nvbench::type_list<Type>) { auto const size = state.get_int64("ColumnSize"); auto const dtype = cudf::type_to_id<Type>(); double const null_probability = state.get_float64("null_probability"); auto builder = data_profile_builder().null_probability(null_probability); if (dtype == cudf::type_id::LIST) { builder.distribution(dtype, distribution_id::UNIFORM, 0, 4) .distribution(cudf::type_id::INT32, distribution_id::UNIFORM, 0, 4) .list_depth(1); } else { // We're comparing stable_distinct() on a non-nested column to that on a list column with the // same number of stable_distinct rows. The max list size is 4 and the number of distinct values // in the list's child is 5. So the number of distinct rows in the list = 1 + 5 + 5^2 + 5^3 + // 5^4 = 781 We want this column to also have 781 distinct values. builder.distribution(dtype, distribution_id::UNIFORM, 0, 781); } auto const table = create_random_table( {dtype}, table_size_bytes{static_cast<size_t>(size)}, data_profile{builder}, 0); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::stable_distinct(*table, {0}, cudf::duplicate_keep_option::KEEP_ANY, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL); }); } NVBENCH_BENCH_TYPES(nvbench_stable_distinct_list, NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, cudf::list_view>)) .set_name("stable_distinct_list") .set_type_axes_names({"Type"}) .add_float64_axis("null_probability", {0.0, 0.1}) .add_int64_axis("ColumnSize", {100'000'000});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/stream_compaction/unique_count.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/column/column_view.hpp> #include <cudf/sorting.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/types.hpp> #include <nvbench/nvbench.cuh> template <typename Type> void nvbench_unique_count(nvbench::state& state, nvbench::type_list<Type>) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("NumRows")); auto const nulls = state.get_float64("NullProbability"); data_profile profile = data_profile_builder().cardinality(0).null_probability(nulls).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, num_rows / 100); auto source_column = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); auto sorted_table = cudf::sort(cudf::table_view({source_column->view()})); auto input = sorted_table->view(); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::unique_count(input, cudf::null_equality::EQUAL); }); } using data_type = nvbench::type_list<bool, int8_t, int32_t, int64_t, float, cudf::timestamp_ms>; NVBENCH_BENCH_TYPES(nvbench_unique_count, NVBENCH_TYPE_AXES(data_type)) .set_name("unique_count") .set_type_axes_names({"Type"}) .add_int64_axis("NumRows", {10'000, 100'000, 1'000'000, 10'000'000}) .add_float64_axis("NullProbability", {0.0, 0.1});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/stream_compaction/distinct.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/column/column_view.hpp> #include <cudf/lists/list_view.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/types.hpp> #include <nvbench/nvbench.cuh> NVBENCH_DECLARE_TYPE_STRINGS(cudf::timestamp_ms, "cudf::timestamp_ms", "cudf::timestamp_ms"); template <typename Type> void nvbench_distinct(nvbench::state& state, nvbench::type_list<Type>) { cudf::size_type const num_rows = state.get_int64("NumRows"); data_profile profile = data_profile_builder().cardinality(0).null_probability(0.01).distribution( cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); auto source_column = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); auto input_column = source_column->view(); auto input_table = cudf::table_view({input_column, input_column, input_column, input_column}); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::distinct(input_table, {0}, cudf::duplicate_keep_option::KEEP_ANY, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL); }); } using data_type = nvbench::type_list<bool, int8_t, int32_t, int64_t, float, cudf::timestamp_ms>; NVBENCH_BENCH_TYPES(nvbench_distinct, NVBENCH_TYPE_AXES(data_type)) .set_name("distinct") .set_type_axes_names({"Type"}) .add_int64_axis("NumRows", {10'000, 100'000, 1'000'000, 10'000'000}); template <typename Type> void nvbench_distinct_list(nvbench::state& state, nvbench::type_list<Type>) { auto const size = state.get_int64("ColumnSize"); auto const dtype = cudf::type_to_id<Type>(); double const null_probability = state.get_float64("null_probability"); auto builder = data_profile_builder().null_probability(null_probability); if (dtype == cudf::type_id::LIST) { builder.distribution(dtype, distribution_id::UNIFORM, 0, 4) .distribution(cudf::type_id::INT32, distribution_id::UNIFORM, 0, 4) .list_depth(1); } else { // We're comparing distinct() on a non-nested column to that on a list column with the same // number of distinct rows. The max list size is 4 and the number of distinct values in the // list's child is 5. So the number of distinct rows in the list = 1 + 5 + 5^2 + 5^3 + 5^4 = 781 // We want this column to also have 781 distinct values. builder.distribution(dtype, distribution_id::UNIFORM, 0, 781); } auto const table = create_random_table( {dtype}, table_size_bytes{static_cast<size_t>(size)}, data_profile{builder}, 0); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::distinct(*table, {0}, cudf::duplicate_keep_option::KEEP_ANY, cudf::null_equality::EQUAL, cudf::nan_equality::ALL_EQUAL); }); } NVBENCH_BENCH_TYPES(nvbench_distinct_list, NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, cudf::list_view>)) .set_name("distinct_list") .set_type_axes_names({"Type"}) .add_float64_axis("null_probability", {0.0, 0.1}) .add_int64_axis("ColumnSize", {100'000'000});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/stream_compaction/apply_boolean_mask.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <fixture/benchmark_fixture.hpp> #include <synchronization/synchronization.hpp> #include <cudf/stream_compaction.hpp> namespace { constexpr cudf::size_type hundredM = 1e8; constexpr cudf::size_type tenM = 1e7; constexpr cudf::size_type tenK = 1e4; constexpr cudf::size_type fifty_percent = 50; void percent_range(benchmark::internal::Benchmark* b) { b->Unit(benchmark::kMillisecond); for (int percent = 0; percent <= 100; percent += 10) b->Args({hundredM, percent}); } void size_range(benchmark::internal::Benchmark* b) { b->Unit(benchmark::kMillisecond); for (int size = tenK; size <= hundredM; size *= 10) b->Args({size, fifty_percent}); } template <typename T> void calculate_bandwidth(benchmark::State& state, cudf::size_type num_columns) { cudf::size_type const column_size{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const percent_true{static_cast<cudf::size_type>(state.range(1))}; float const fraction = percent_true / 100.f; cudf::size_type const column_size_out = fraction * column_size; int64_t const mask_size = sizeof(bool) * column_size + cudf::bitmask_allocation_size_bytes(column_size); int64_t const validity_bytes_in = (fraction >= 1.0f / 32) ? cudf::bitmask_allocation_size_bytes(column_size) : 4 * column_size_out; int64_t const validity_bytes_out = cudf::bitmask_allocation_size_bytes(column_size_out); int64_t const column_bytes_out = sizeof(T) * column_size_out; int64_t const column_bytes_in = column_bytes_out; // we only read unmasked inputs int64_t const bytes_read = (column_bytes_in + validity_bytes_in) * num_columns + // reading columns mask_size; // reading boolean mask int64_t const bytes_written = (column_bytes_out + validity_bytes_out) * num_columns; // writing columns state.SetItemsProcessed(state.iterations() * column_size * num_columns); state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * (bytes_read + bytes_written)); } } // namespace template <class T> void BM_apply_boolean_mask(benchmark::State& state, cudf::size_type num_columns) { cudf::size_type const column_size{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const percent_true{static_cast<cudf::size_type>(state.range(1))}; data_profile profile = data_profile_builder().cardinality(0).null_probability(0.0).distribution( cudf::type_to_id<T>(), distribution_id::UNIFORM, 0, 100); auto source_table = create_random_table( cycle_dtypes({cudf::type_to_id<T>()}, num_columns), row_count{column_size}, profile); profile.set_bool_probability_true(percent_true / 100.0); profile.set_null_probability(std::nullopt); // no null mask auto mask = create_random_column(cudf::type_id::BOOL8, row_count{column_size}, profile); for (auto _ : state) { cuda_event_timer raii(state, true); auto result = cudf::apply_boolean_mask(*source_table, mask->view()); } calculate_bandwidth<T>(state, num_columns); } template <class T> class ApplyBooleanMask : public cudf::benchmark { public: using TypeParam = T; }; #define ABM_BENCHMARK_DEFINE(name, type, n_columns) \ BENCHMARK_TEMPLATE_DEFINE_F(ApplyBooleanMask, name, type)(::benchmark::State & st) \ { \ BM_apply_boolean_mask<TypeParam>(st, n_columns); \ } ABM_BENCHMARK_DEFINE(float_1_col, float, 1); ABM_BENCHMARK_DEFINE(float_2_col, float, 2); ABM_BENCHMARK_DEFINE(float_4_col, float, 4); // shmoo 1, 2, 4 column float across percentage true BENCHMARK_REGISTER_F(ApplyBooleanMask, float_1_col)->Apply(percent_range); BENCHMARK_REGISTER_F(ApplyBooleanMask, float_2_col)->Apply(percent_range); BENCHMARK_REGISTER_F(ApplyBooleanMask, float_4_col)->Apply(percent_range); // shmoo 1, 2, 4 column float across column sizes with 50% true BENCHMARK_REGISTER_F(ApplyBooleanMask, float_1_col)->Apply(size_range); BENCHMARK_REGISTER_F(ApplyBooleanMask, float_2_col)->Apply(size_range); BENCHMARK_REGISTER_F(ApplyBooleanMask, float_4_col)->Apply(size_range); // spot benchmark other types ABM_BENCHMARK_DEFINE(int8_1_col, int8_t, 1); ABM_BENCHMARK_DEFINE(int16_1_col, int16_t, 1); ABM_BENCHMARK_DEFINE(int32_1_col, int32_t, 1); ABM_BENCHMARK_DEFINE(int64_1_col, int64_t, 1); ABM_BENCHMARK_DEFINE(double_1_col, double, 1); BENCHMARK_REGISTER_F(ApplyBooleanMask, int8_1_col)->Args({tenM, fifty_percent}); BENCHMARK_REGISTER_F(ApplyBooleanMask, int16_1_col)->Args({tenM, fifty_percent}); BENCHMARK_REGISTER_F(ApplyBooleanMask, int32_1_col)->Args({tenM, fifty_percent}); BENCHMARK_REGISTER_F(ApplyBooleanMask, int64_1_col)->Args({tenM, fifty_percent}); BENCHMARK_REGISTER_F(ApplyBooleanMask, double_1_col)->Args({tenM, fifty_percent});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/stream_compaction/distinct_count.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <cudf/stream_compaction.hpp> #include <nvbench/nvbench.cuh> template <typename Type> static void bench_distinct_count(nvbench::state& state, nvbench::type_list<Type>) { auto const dtype = cudf::type_to_id<Type>(); auto const size = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const null_probability = state.get_float64("null_probability"); data_profile profile = data_profile_builder().distribution(dtype, distribution_id::UNIFORM, 0, size / 100); if (null_probability > 0) { profile.set_null_probability({null_probability}); } else { profile.set_null_probability(std::nullopt); } auto const data_table = create_random_table({dtype}, row_count{size}, profile); auto const& data_column = data_table->get_column(0); auto const input_table = cudf::table_view{{data_column, data_column, data_column}}; // Collect memory statistics for input and output. state.add_global_memory_reads<Type>(input_table.num_rows() * input_table.num_columns()); state.add_global_memory_writes<cudf::size_type>(1); if (null_probability > 0) { state.add_global_memory_reads<nvbench::int8_t>( input_table.num_columns() * cudf::bitmask_allocation_size_bytes(input_table.num_rows())); } auto mem_stats_logger = cudf::memory_stats_logger(); // init stats logger state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::distinct_count(input_table, cudf::null_equality::EQUAL); }); state.add_buffer_size( mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); } using data_type = nvbench::type_list<int32_t, int64_t, float, double>; NVBENCH_BENCH_TYPES(bench_distinct_count, NVBENCH_TYPE_AXES(data_type)) .set_name("distinct_count") .add_int64_axis("num_rows", { 10000, // 10k 100000, // 100k 1000000, // 1M 10000000, // 10M 100000000, // 100M }) .add_float64_axis("null_probability", {0, 0.5});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/char_types.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/strings/char_types/char_types.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_char_types(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); auto const api_type = state.get_string("api"); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const table_profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const table = create_random_table({cudf::type_id::STRING}, row_count{num_rows}, table_profile); cudf::strings_column_view input(table->view().column(0)); auto input_types = cudf::strings::string_character_types::SPACE; state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto chars_size = input.chars_size(); state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; if (api_type == "all") { state.add_global_memory_writes<nvbench::int8_t>(num_rows); // output is a bool8 per row } else { state.add_global_memory_writes<nvbench::int8_t>(chars_size); } state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { if (api_type == "all") { auto result = cudf::strings::all_characters_of_type(input, input_types); } else { auto result = cudf::strings::filter_characters_of_type(input, input_types); } }); } NVBENCH_BENCH(bench_char_types) .set_name("char_types") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048, 4096}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216}) .add_string_axis("api", {"all", "filter"});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/url_decode.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/column/column_view.hpp> #include <cudf/filling.hpp> #include <cudf/strings/convert/convert_urls.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/random.h> #include <thrust/tuple.h> struct url_string_generator { char* chars; double esc_seq_chance; thrust::minstd_rand engine; thrust::uniform_real_distribution<float> esc_seq_dist; url_string_generator(char* c, double esc_seq_chance, thrust::minstd_rand& engine) : chars(c), esc_seq_chance(esc_seq_chance), engine(engine), esc_seq_dist(0, 1) { } __device__ void operator()(thrust::tuple<cudf::size_type, cudf::size_type> str_begin_end) { auto begin = thrust::get<0>(str_begin_end); auto end = thrust::get<1>(str_begin_end); engine.discard(begin); for (auto i = begin; i < end; ++i) { if (esc_seq_dist(engine) < esc_seq_chance and i < end - 3) { chars[i] = '%'; chars[i + 1] = '2'; chars[i + 2] = '0'; i += 2; } else { chars[i] = 'a'; } } } }; auto generate_column(cudf::size_type num_rows, cudf::size_type chars_per_row, double esc_seq_chance) { std::vector<std::string> strings{std::string(chars_per_row, 'a')}; auto col_1a = cudf::test::strings_column_wrapper(strings.begin(), strings.end()); auto table_a = cudf::repeat(cudf::table_view{{col_1a}}, num_rows); auto result_col = std::move(table_a->release()[0]); // string column with num_rows aaa... auto chars_col = result_col->child(cudf::strings_column_view::chars_column_index).mutable_view(); auto offset_col = result_col->child(cudf::strings_column_view::offsets_column_index).view(); auto engine = thrust::default_random_engine{}; thrust::for_each_n(thrust::device, thrust::make_zip_iterator(offset_col.begin<cudf::size_type>(), offset_col.begin<cudf::size_type>() + 1), num_rows, url_string_generator{chars_col.begin<char>(), esc_seq_chance, engine}); return result_col; } class UrlDecode : public cudf::benchmark {}; void BM_url_decode(benchmark::State& state, int esc_seq_pct) { cudf::size_type const num_rows = state.range(0); cudf::size_type const chars_per_row = state.range(1); auto column = generate_column(num_rows, chars_per_row, esc_seq_pct / 100.0); auto strings_view = cudf::strings_column_view(column->view()); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); auto result = cudf::strings::url_decode(strings_view); } state.SetBytesProcessed(state.iterations() * num_rows * (chars_per_row + sizeof(cudf::size_type))); } #define URLD_BENCHMARK_DEFINE(esc_seq_pct) \ BENCHMARK_DEFINE_F(UrlDecode, esc_seq_pct) \ (::benchmark::State & st) { BM_url_decode(st, esc_seq_pct); } \ BENCHMARK_REGISTER_F(UrlDecode, esc_seq_pct) \ ->Args({100000000, 10}) \ ->Args({10000000, 100}) \ ->Args({1000000, 1000}) \ ->Unit(benchmark::kMillisecond) \ ->UseManualTime(); URLD_BENCHMARK_DEFINE(10) URLD_BENCHMARK_DEFINE(50)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/convert_durations.cpp
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/column/column_view.hpp> #include <cudf/strings/convert/convert_durations.hpp> #include <cudf/types.hpp> #include <cudf/wrappers/durations.hpp> #include <algorithm> #include <random> class DurationsToString : public cudf::benchmark {}; template <class TypeParam> void BM_convert_from_durations(benchmark::State& state) { cudf::size_type const source_size = state.range(0); // Every element is valid auto data = cudf::detail::make_counting_transform_iterator( 0, [source_size](auto i) { return TypeParam{i - source_size / 2}; }); cudf::test::fixed_width_column_wrapper<TypeParam> source_durations(data, data + source_size); for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 cudf::strings::from_durations(source_durations, "%D days %H:%M:%S"); } state.SetBytesProcessed(state.iterations() * source_size * sizeof(TypeParam)); } class StringToDurations : public cudf::benchmark {}; template <class TypeParam> void BM_convert_to_durations(benchmark::State& state) { cudf::size_type const source_size = state.range(0); // Every element is valid auto data = cudf::detail::make_counting_transform_iterator( 0, [source_size](auto i) { return TypeParam{i - source_size / 2}; }); cudf::test::fixed_width_column_wrapper<TypeParam> source_durations(data, data + source_size); auto results = cudf::strings::from_durations(source_durations, "%D days %H:%M:%S"); cudf::strings_column_view source_string(*results); auto output_type = cudf::data_type(cudf::type_to_id<TypeParam>()); for (auto _ : state) { cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 cudf::strings::to_durations(source_string, output_type, "%D days %H:%M:%S"); } state.SetBytesProcessed(state.iterations() * source_size * sizeof(TypeParam)); } #define DSBM_BENCHMARK_DEFINE(name, type) \ BENCHMARK_DEFINE_F(DurationsToString, name)(::benchmark::State & state) \ { \ BM_convert_from_durations<type>(state); \ } \ BENCHMARK_REGISTER_F(DurationsToString, name) \ ->RangeMultiplier(1 << 5) \ ->Range(1 << 10, 1 << 25) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); #define SDBM_BENCHMARK_DEFINE(name, type) \ BENCHMARK_DEFINE_F(StringToDurations, name)(::benchmark::State & state) \ { \ BM_convert_to_durations<type>(state); \ } \ BENCHMARK_REGISTER_F(StringToDurations, name) \ ->RangeMultiplier(1 << 5) \ ->Range(1 << 10, 1 << 25) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); DSBM_BENCHMARK_DEFINE(from_durations_D, cudf::duration_D); DSBM_BENCHMARK_DEFINE(from_durations_s, cudf::duration_s); DSBM_BENCHMARK_DEFINE(from_durations_ms, cudf::duration_ms); DSBM_BENCHMARK_DEFINE(from_durations_us, cudf::duration_us); DSBM_BENCHMARK_DEFINE(from_durations_ns, cudf::duration_ns); SDBM_BENCHMARK_DEFINE(to_durations_D, cudf::duration_D); SDBM_BENCHMARK_DEFINE(to_durations_s, cudf::duration_s); SDBM_BENCHMARK_DEFINE(to_durations_ms, cudf::duration_ms); SDBM_BENCHMARK_DEFINE(to_durations_us, cudf::duration_us); SDBM_BENCHMARK_DEFINE(to_durations_ns, cudf::duration_ns);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/find.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/find.hpp> #include <cudf/strings/find_multiple.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <limits> enum FindAPI { find, find_multi, contains, starts_with, ends_with }; class StringFindScalar : public cudf::benchmark {}; static void BM_find_scalar(benchmark::State& state, FindAPI find_api) { cudf::size_type const n_rows{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const max_str_length{static_cast<cudf::size_type>(state.range(1))}; data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); auto const column = create_random_column(cudf::type_id::STRING, row_count{n_rows}, profile); cudf::strings_column_view input(column->view()); cudf::string_scalar target("+"); cudf::test::strings_column_wrapper targets({"+", "-"}); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); switch (find_api) { case find: cudf::strings::find(input, target); break; case find_multi: cudf::strings::find_multiple(input, cudf::strings_column_view(targets)); break; case contains: cudf::strings::contains(input, target); break; case starts_with: cudf::strings::starts_with(input, target); break; case ends_with: cudf::strings::ends_with(input, target); break; } } state.SetBytesProcessed(state.iterations() * input.chars_size()); } static void generate_bench_args(benchmark::internal::Benchmark* b) { int const min_rows = 1 << 12; int const max_rows = 1 << 24; int const row_mult = 8; int const min_rowlen = 1 << 5; int const max_rowlen = 1 << 13; int const len_mult = 2; for (int row_count = min_rows; row_count <= max_rows; row_count *= row_mult) { for (int rowlen = min_rowlen; rowlen <= max_rowlen; rowlen *= len_mult) { // avoid generating combinations that exceed the cudf column limit size_t total_chars = static_cast<size_t>(row_count) * rowlen; if (total_chars < static_cast<size_t>(std::numeric_limits<cudf::size_type>::max())) { b->Args({row_count, rowlen}); } } } } #define STRINGS_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(StringFindScalar, name) \ (::benchmark::State & st) { BM_find_scalar(st, name); } \ BENCHMARK_REGISTER_F(StringFindScalar, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); STRINGS_BENCHMARK_DEFINE(find) STRINGS_BENCHMARK_DEFINE(find_multi) STRINGS_BENCHMARK_DEFINE(contains) STRINGS_BENCHMARK_DEFINE(starts_with) STRINGS_BENCHMARK_DEFINE(ends_with)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/split.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/split/split.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_split(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); auto const stype = state.get_string("type"); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const column = create_random_column(cudf::type_id::STRING, row_count{num_rows}, profile); cudf::strings_column_view input(column->view()); cudf::string_scalar target("+"); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto chars_size = input.chars_size(); state.add_element_count(chars_size, "chars_size"); // number of bytes; state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int8_t>(chars_size); // all bytes are written if (stype == "split") { state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::strings::split(input, target); }); } else if (stype == "split_ws") { state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::strings::split(input); }); } else if (stype == "record") { state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::strings::split_record(input, target); }); } else { state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { cudf::strings::split_record(input); }); } } NVBENCH_BENCH(bench_split) .set_name("split") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216}) .add_string_axis("type", {"split", "split_ws", "record", "record_ws"});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/join_strings.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/strings/combine.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_join(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const table_profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const table = create_random_table({cudf::type_id::STRING}, row_count{num_rows}, table_profile); cudf::strings_column_view input(table->view().column(0)); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto const chars_size = input.chars_size(); state.add_element_count(chars_size, "chars_size"); // number of bytes; state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int8_t>(chars_size); // all bytes are written std::string separator(":"); std::string narep("null"); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::strings::join_strings(input, separator, narep); }); } NVBENCH_BENCH(bench_join) .set_name("strings_join") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/copy.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string_bench_args.hpp" #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/random.h> #include <thrust/shuffle.h> class StringCopy : public cudf::benchmark {}; enum copy_type { gather, scatter }; static void BM_copy(benchmark::State& state, copy_type ct) { cudf::size_type const n_rows{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const max_str_length{static_cast<cudf::size_type>(state.range(1))}; data_profile const table_profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); auto const source = create_random_table({cudf::type_id::STRING}, row_count{n_rows}, table_profile); auto const target = create_random_table({cudf::type_id::STRING}, row_count{n_rows}, table_profile); // scatter indices auto index_map_col = make_numeric_column( cudf::data_type{cudf::type_id::INT32}, n_rows, cudf::mask_state::UNALLOCATED); auto index_map = index_map_col->mutable_view(); thrust::shuffle_copy(thrust::device, thrust::counting_iterator<cudf::size_type>(0), thrust::counting_iterator<cudf::size_type>(n_rows), index_map.begin<cudf::size_type>(), thrust::default_random_engine()); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); switch (ct) { case gather: cudf::gather(source->view(), index_map); break; case scatter: cudf::scatter(source->view(), index_map, target->view()); break; } } state.SetBytesProcessed(state.iterations() * cudf::strings_column_view(source->view().column(0)).chars_size()); } static void generate_bench_args(benchmark::internal::Benchmark* b) { int const min_rows = 1 << 12; int const max_rows = 1 << 24; int const row_mult = 8; int const min_rowlen = 1 << 5; int const max_rowlen = 1 << 13; int const len_mult = 4; generate_string_bench_args(b, min_rows, max_rows, row_mult, min_rowlen, max_rowlen, len_mult); // Benchmark for very small strings b->Args({67108864, 2}); } #define COPY_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(StringCopy, name) \ (::benchmark::State & st) { BM_copy(st, copy_type::name); } \ BENCHMARK_REGISTER_F(StringCopy, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); COPY_BENCHMARK_DEFINE(gather) COPY_BENCHMARK_DEFINE(scatter)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/convert_fixed_point.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/strings/convert/convert_fixed_point.hpp> #include <cudf/strings/convert/convert_floats.hpp> #include <cudf/types.hpp> namespace { std::unique_ptr<cudf::column> get_strings_column(cudf::size_type rows) { auto result = create_random_column(cudf::type_id::FLOAT32, row_count{static_cast<cudf::size_type>(rows)}); return cudf::strings::from_floats(result->view()); } } // anonymous namespace class StringsToFixedPoint : public cudf::benchmark {}; template <typename fixed_point_type> void convert_to_fixed_point(benchmark::State& state) { auto const rows = static_cast<cudf::size_type>(state.range(0)); auto const strings_col = get_strings_column(rows); auto const strings_view = cudf::strings_column_view(strings_col->view()); auto const dtype = cudf::data_type{cudf::type_to_id<fixed_point_type>(), numeric::scale_type{-2}}; for (auto _ : state) { cuda_event_timer raii(state, true); auto volatile results = cudf::strings::to_fixed_point(strings_view, dtype); } // bytes_processed = bytes_input + bytes_output state.SetBytesProcessed(state.iterations() * (strings_view.chars_size() + rows * cudf::size_of(dtype))); } class StringsFromFixedPoint : public cudf::benchmark {}; template <typename fixed_point_type> void convert_from_fixed_point(benchmark::State& state) { auto const rows = static_cast<cudf::size_type>(state.range(0)); auto const strings_col = get_strings_column(rows); auto const dtype = cudf::data_type{cudf::type_to_id<fixed_point_type>(), numeric::scale_type{-2}}; auto const fp_col = cudf::strings::to_fixed_point(cudf::strings_column_view(strings_col->view()), dtype); std::unique_ptr<cudf::column> results = nullptr; for (auto _ : state) { cuda_event_timer raii(state, true); results = cudf::strings::from_fixed_point(fp_col->view()); } // bytes_processed = bytes_input + bytes_output state.SetBytesProcessed( state.iterations() * (cudf::strings_column_view(results->view()).chars_size() + rows * cudf::size_of(dtype))); } #define CONVERT_TO_FIXED_POINT_BMD(name, fixed_point_type) \ BENCHMARK_DEFINE_F(StringsToFixedPoint, name)(::benchmark::State & state) \ { \ convert_to_fixed_point<fixed_point_type>(state); \ } \ BENCHMARK_REGISTER_F(StringsToFixedPoint, name) \ ->RangeMultiplier(4) \ ->Range(1 << 12, 1 << 24) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); #define CONVERT_FROM_FIXED_POINT_BMD(name, fixed_point_type) \ BENCHMARK_DEFINE_F(StringsFromFixedPoint, name)(::benchmark::State & state) \ { \ convert_from_fixed_point<fixed_point_type>(state); \ } \ BENCHMARK_REGISTER_F(StringsFromFixedPoint, name) \ ->RangeMultiplier(4) \ ->Range(1 << 12, 1 << 24) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); CONVERT_TO_FIXED_POINT_BMD(strings_to_decimal32, numeric::decimal32); CONVERT_TO_FIXED_POINT_BMD(strings_to_decimal64, numeric::decimal64); CONVERT_FROM_FIXED_POINT_BMD(strings_from_decimal32, numeric::decimal32); CONVERT_FROM_FIXED_POINT_BMD(strings_from_decimal64, numeric::decimal64);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/slice.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string_bench_args.hpp" #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/slice.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/iterator/constant_iterator.h> #include <limits> class StringSlice : public cudf::benchmark {}; enum slice_type { position, multi_position }; static void BM_slice(benchmark::State& state, slice_type rt) { cudf::size_type const n_rows{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const max_str_length{static_cast<cudf::size_type>(state.range(1))}; data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); auto const column = create_random_column(cudf::type_id::STRING, row_count{n_rows}, profile); cudf::strings_column_view input(column->view()); auto starts_itr = thrust::constant_iterator<cudf::size_type>(max_str_length / 3); auto stops_itr = thrust::constant_iterator<cudf::size_type>(max_str_length / 2); cudf::test::fixed_width_column_wrapper<int32_t> starts(starts_itr, starts_itr + n_rows); cudf::test::fixed_width_column_wrapper<int32_t> stops(stops_itr, stops_itr + n_rows); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); switch (rt) { case position: cudf::strings::slice_strings(input, max_str_length / 3, max_str_length / 2); break; case multi_position: cudf::strings::slice_strings(input, starts, stops); break; } } state.SetBytesProcessed(state.iterations() * input.chars_size()); } static void generate_bench_args(benchmark::internal::Benchmark* b) { int const min_rows = 1 << 12; int const max_rows = 1 << 24; int const row_mult = 8; int const min_rowlen = 1 << 5; int const max_rowlen = 1 << 13; int const len_mult = 2; generate_string_bench_args(b, min_rows, max_rows, row_mult, min_rowlen, max_rowlen, len_mult); } #define STRINGS_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(StringSlice, name) \ (::benchmark::State & st) { BM_slice(st, slice_type::name); } \ BENCHMARK_REGISTER_F(StringSlice, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); STRINGS_BENCHMARK_DEFINE(position) STRINGS_BENCHMARK_DEFINE(multi_position)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/convert_numerics.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/strings/convert/convert_floats.hpp> #include <cudf/strings/convert/convert_integers.hpp> #include <cudf/types.hpp> namespace { template <typename NumericType> std::unique_ptr<cudf::column> get_numerics_column(cudf::size_type rows) { return create_random_column(cudf::type_to_id<NumericType>(), row_count{rows}); } template <typename NumericType> std::unique_ptr<cudf::column> get_strings_column(cudf::size_type rows) { auto const numerics_col = get_numerics_column<NumericType>(rows); if constexpr (std::is_floating_point_v<NumericType>) { return cudf::strings::from_floats(numerics_col->view()); } else { return cudf::strings::from_integers(numerics_col->view()); } } } // anonymous namespace class StringsToNumeric : public cudf::benchmark {}; template <typename NumericType> void convert_to_number(benchmark::State& state) { auto const rows = static_cast<cudf::size_type>(state.range(0)); auto const strings_col = get_strings_column<NumericType>(rows); auto const strings_view = cudf::strings_column_view(strings_col->view()); auto const col_type = cudf::type_to_id<NumericType>(); for (auto _ : state) { cuda_event_timer raii(state, true); if constexpr (std::is_floating_point_v<NumericType>) { cudf::strings::to_floats(strings_view, cudf::data_type{col_type}); } else { cudf::strings::to_integers(strings_view, cudf::data_type{col_type}); } } // bytes_processed = bytes_input + bytes_output state.SetBytesProcessed(state.iterations() * (strings_view.chars_size() + rows * sizeof(NumericType))); } class StringsFromNumeric : public cudf::benchmark {}; template <typename NumericType> void convert_from_number(benchmark::State& state) { auto const rows = static_cast<cudf::size_type>(state.range(0)); auto const numerics_col = get_numerics_column<NumericType>(rows); auto const numerics_view = numerics_col->view(); std::unique_ptr<cudf::column> results = nullptr; for (auto _ : state) { cuda_event_timer raii(state, true); if constexpr (std::is_floating_point_v<NumericType>) results = cudf::strings::from_floats(numerics_view); else results = cudf::strings::from_integers(numerics_view); } // bytes_processed = bytes_input + bytes_output state.SetBytesProcessed( state.iterations() * (cudf::strings_column_view(results->view()).chars_size() + rows * sizeof(NumericType))); } #define CONVERT_TO_NUMERICS_BD(name, type) \ BENCHMARK_DEFINE_F(StringsToNumeric, name)(::benchmark::State & state) \ { \ convert_to_number<type>(state); \ } \ BENCHMARK_REGISTER_F(StringsToNumeric, name) \ ->RangeMultiplier(4) \ ->Range(1 << 10, 1 << 17) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); #define CONVERT_FROM_NUMERICS_BD(name, type) \ BENCHMARK_DEFINE_F(StringsFromNumeric, name)(::benchmark::State & state) \ { \ convert_from_number<type>(state); \ } \ BENCHMARK_REGISTER_F(StringsFromNumeric, name) \ ->RangeMultiplier(4) \ ->Range(1 << 10, 1 << 17) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); CONVERT_TO_NUMERICS_BD(strings_to_float32, float); CONVERT_TO_NUMERICS_BD(strings_to_float64, double); CONVERT_TO_NUMERICS_BD(strings_to_int32, int32_t); CONVERT_TO_NUMERICS_BD(strings_to_int64, int64_t); CONVERT_TO_NUMERICS_BD(strings_to_uint8, uint8_t); CONVERT_TO_NUMERICS_BD(strings_to_uint16, uint16_t); CONVERT_FROM_NUMERICS_BD(strings_from_float32, float); CONVERT_FROM_NUMERICS_BD(strings_from_float64, double); CONVERT_FROM_NUMERICS_BD(strings_from_int32, int32_t); CONVERT_FROM_NUMERICS_BD(strings_from_int64, int64_t); CONVERT_FROM_NUMERICS_BD(strings_from_uint8, uint8_t); CONVERT_FROM_NUMERICS_BD(strings_from_uint16, uint16_t);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/reverse.cpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/strings/reverse.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_reverse(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const table_profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const table = create_random_table({cudf::type_id::STRING}, row_count{num_rows}, table_profile); cudf::strings_column_view input(table->view().column(0)); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto chars_size = input.chars_size(); state.add_element_count(chars_size, "chars_size"); // number of bytes; state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int8_t>(chars_size); // all bytes are written state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::strings::reverse(input); }); } NVBENCH_BENCH(bench_reverse) .set_name("reverse") .add_int64_axis("row_width", {8, 16, 32, 64, 128}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/extract.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/strings/extract.hpp> #include <cudf/strings/regex/regex_program.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> #include <random> static void bench_extract(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } auto groups = static_cast<cudf::size_type>(state.get_int64("groups")); std::default_random_engine generator; std::uniform_int_distribution<int> words_dist(0, 999); std::vector<std::string> samples(100); // 100 unique rows of data to reuse std::generate(samples.begin(), samples.end(), [&]() { std::string row; // build a row of random tokens while (static_cast<cudf::size_type>(row.size()) < row_width) { row += std::to_string(words_dist(generator)) + " "; } return row; }); std::string pattern{""}; while (groups--) { pattern += "(\\d+) "; } cudf::test::strings_column_wrapper samples_column(samples.begin(), samples.end()); data_profile const profile = data_profile_builder().no_validity().distribution( cudf::type_to_id<cudf::size_type>(), distribution_id::UNIFORM, 0ul, samples.size() - 1); auto map = create_random_column(cudf::type_to_id<cudf::size_type>(), row_count{num_rows}, profile); auto input = cudf::gather( cudf::table_view{{samples_column}}, map->view(), cudf::out_of_bounds_policy::DONT_CHECK); cudf::strings_column_view strings_view(input->get_column(0).view()); auto prog = cudf::strings::regex_program::create(pattern); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto chars_size = strings_view.chars_size(); state.add_element_count(chars_size, "chars_size"); // number of bytes; state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int8_t>(chars_size); // all bytes are written state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::strings::extract(strings_view, *prog); }); } NVBENCH_BENCH(bench_extract) .set_name("extract") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216}) .add_int64_axis("groups", {1, 2, 4});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/convert_datetime.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/strings/convert/convert_datetime.hpp> #include <cudf/wrappers/timestamps.hpp> class StringDateTime : public cudf::benchmark {}; enum class direction { to, from }; template <class TypeParam> void BM_convert_datetime(benchmark::State& state, direction dir) { auto const n_rows = static_cast<cudf::size_type>(state.range(0)); auto const data_type = cudf::data_type(cudf::type_to_id<TypeParam>()); auto const column = create_random_column(data_type.id(), row_count{n_rows}); cudf::column_view input(column->view()); auto source = dir == direction::to ? cudf::strings::from_timestamps(input, "%Y-%m-%d %H:%M:%S") : make_empty_column(cudf::data_type{cudf::type_id::STRING}); cudf::strings_column_view source_string(source->view()); for (auto _ : state) { cuda_event_timer raii(state, true); if (dir == direction::to) cudf::strings::to_timestamps(source_string, data_type, "%Y-%m-%d %H:%M:%S"); else cudf::strings::from_timestamps(input, "%Y-%m-%d %H:%M:%S"); } auto const bytes = dir == direction::to ? source_string.chars_size() : n_rows * sizeof(TypeParam); state.SetBytesProcessed(state.iterations() * bytes); } #define STR_BENCHMARK_DEFINE(name, type, dir) \ BENCHMARK_DEFINE_F(StringDateTime, name)(::benchmark::State & state) \ { \ BM_convert_datetime<type>(state, dir); \ } \ BENCHMARK_REGISTER_F(StringDateTime, name) \ ->RangeMultiplier(1 << 5) \ ->Range(1 << 10, 1 << 25) \ ->UseManualTime() \ ->Unit(benchmark::kMicrosecond); STR_BENCHMARK_DEFINE(from_days, cudf::timestamp_D, direction::from); STR_BENCHMARK_DEFINE(from_seconds, cudf::timestamp_s, direction::from); STR_BENCHMARK_DEFINE(from_mseconds, cudf::timestamp_ms, direction::from); STR_BENCHMARK_DEFINE(from_useconds, cudf::timestamp_us, direction::from); STR_BENCHMARK_DEFINE(from_nseconds, cudf::timestamp_ns, direction::from); STR_BENCHMARK_DEFINE(to_days, cudf::timestamp_D, direction::to); STR_BENCHMARK_DEFINE(to_seconds, cudf::timestamp_s, direction::to); STR_BENCHMARK_DEFINE(to_mseconds, cudf::timestamp_ms, direction::to); STR_BENCHMARK_DEFINE(to_useconds, cudf::timestamp_us, direction::to); STR_BENCHMARK_DEFINE(to_nseconds, cudf::timestamp_ns, direction::to);
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/split_re.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/strings/regex/regex_program.hpp> #include <cudf/strings/split/split_re.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_split(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } auto prog = cudf::strings::regex_program::create("\\d+"); data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const column = create_random_column(cudf::type_id::STRING, row_count{num_rows}, profile); cudf::strings_column_view input(column->view()); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto chars_size = input.chars_size(); state.add_element_count(chars_size, "chars_size"); // number of bytes; state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int8_t>(chars_size); // all bytes are written state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::strings::split_record_re(input, *prog); }); } NVBENCH_BENCH(bench_split) .set_name("split_re") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/replace.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string_bench_args.hpp" #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/replace.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <limits> class StringReplace : public cudf::benchmark {}; enum replace_type { scalar, slice, multi }; static void BM_replace(benchmark::State& state, replace_type rt) { cudf::size_type const n_rows{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const max_str_length{static_cast<cudf::size_type>(state.range(1))}; data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); auto const column = create_random_column(cudf::type_id::STRING, row_count{n_rows}, profile); cudf::strings_column_view input(column->view()); cudf::string_scalar target("+"); cudf::string_scalar repl(""); cudf::test::strings_column_wrapper targets({"+", "-"}); cudf::test::strings_column_wrapper repls({"", ""}); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); switch (rt) { case scalar: cudf::strings::replace(input, target, repl); break; case slice: cudf::strings::replace_slice(input, repl, 1, 10); break; case multi: cudf::strings::replace( input, cudf::strings_column_view(targets), cudf::strings_column_view(repls)); break; } } state.SetBytesProcessed(state.iterations() * input.chars_size()); } static void generate_bench_args(benchmark::internal::Benchmark* b) { int const min_rows = 1 << 12; int const max_rows = 1 << 24; int const row_mult = 8; int const min_rowlen = 1 << 5; int const max_rowlen = 1 << 13; int const len_mult = 2; generate_string_bench_args(b, min_rows, max_rows, row_mult, min_rowlen, max_rowlen, len_mult); } #define STRINGS_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(StringReplace, name) \ (::benchmark::State & st) { BM_replace(st, replace_type::name); } \ BENCHMARK_REGISTER_F(StringReplace, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); STRINGS_BENCHMARK_DEFINE(scalar) STRINGS_BENCHMARK_DEFINE(slice) STRINGS_BENCHMARK_DEFINE(multi)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/factory.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string_bench_args.hpp" #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf_test/column_wrapper.hpp> #include <cudf/strings/string_view.cuh> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/device_uvector.hpp> #include <thrust/execution_policy.h> #include <thrust/pair.h> #include <thrust/transform.h> #include <limits> namespace { using string_pair = thrust::pair<char const*, cudf::size_type>; struct string_view_to_pair { __device__ string_pair operator()(thrust::pair<cudf::string_view, bool> const& p) { return (p.second) ? string_pair{p.first.data(), p.first.size_bytes()} : string_pair{nullptr, 0}; } }; } // namespace class StringsFactory : public cudf::benchmark {}; static void BM_factory(benchmark::State& state) { cudf::size_type const n_rows{static_cast<cudf::size_type>(state.range(0))}; cudf::size_type const max_str_length{static_cast<cudf::size_type>(state.range(1))}; data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); auto const column = create_random_column(cudf::type_id::STRING, row_count{n_rows}, profile); auto d_column = cudf::column_device_view::create(column->view()); rmm::device_uvector<string_pair> pairs(d_column->size(), cudf::get_default_stream()); thrust::transform(thrust::device, d_column->pair_begin<cudf::string_view, true>(), d_column->pair_end<cudf::string_view, true>(), pairs.data(), string_view_to_pair{}); for (auto _ : state) { cuda_event_timer raii(state, true, cudf::get_default_stream()); cudf::make_strings_column(pairs, cudf::get_default_stream()); } cudf::strings_column_view input(column->view()); state.SetBytesProcessed(state.iterations() * input.chars_size()); } static void generate_bench_args(benchmark::internal::Benchmark* b) { int const min_rows = 1 << 12; int const max_rows = 1 << 24; int const row_mult = 8; int const min_rowlen = 1 << 5; int const max_rowlen = 1 << 13; int const len_mult = 4; generate_string_bench_args(b, min_rows, max_rows, row_mult, min_rowlen, max_rowlen, len_mult); } #define STRINGS_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(StringsFactory, name) \ (::benchmark::State & st) { BM_factory(st); } \ BENCHMARK_REGISTER_F(StringsFactory, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); STRINGS_BENCHMARK_DEFINE(factory)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/case.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/strings/case.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> void bench_case(nvbench::state& state) { auto const n_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const max_width = static_cast<int32_t>(state.get_int64("row_width")); auto const encoding = state.get_string("encoding"); if (static_cast<std::size_t>(n_rows) * static_cast<std::size_t>(max_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_width); auto const column = create_random_column(cudf::type_id::STRING, row_count{n_rows}, profile); auto col_view = column->view(); cudf::column::contents ascii_contents; if (encoding == "ascii") { data_profile ascii_profile = data_profile_builder().no_validity().distribution( cudf::type_id::INT8, distribution_id::UNIFORM, 32, 126); // nice ASCII range auto input = cudf::strings_column_view(col_view); auto ascii_column = create_random_column(cudf::type_id::INT8, row_count{input.chars_size()}, ascii_profile); auto ascii_data = ascii_column->view(); col_view = cudf::column_view(col_view.type(), col_view.size(), nullptr, col_view.null_mask(), col_view.null_count(), 0, {input.offsets(), ascii_data}); ascii_contents = ascii_column->release(); } auto input = cudf::strings_column_view(col_view); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); state.add_element_count(input.chars_size(), "chars_size"); state.add_global_memory_reads<nvbench::int8_t>(input.chars_size()); state.add_global_memory_writes<nvbench::int8_t>(input.chars_size()); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::strings::to_lower(input); }); } NVBENCH_BENCH(bench_case) .set_name("case") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216}) .add_string_axis("encoding", {"ascii", "utf8"});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/repeat_strings.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string_bench_args.hpp" #include <benchmarks/common/generate_input.hpp> #include <benchmarks/fixture/benchmark_fixture.hpp> #include <benchmarks/synchronization/synchronization.hpp> #include <cudf/strings/repeat_strings.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> static constexpr cudf::size_type default_repeat_times = 16; static constexpr cudf::size_type min_repeat_times = -16; static constexpr cudf::size_type max_repeat_times = 16; static std::unique_ptr<cudf::table> create_data_table(cudf::size_type n_cols, cudf::size_type n_rows, cudf::size_type max_str_length) { CUDF_EXPECTS(n_cols == 1 || n_cols == 2, "Invalid number of columns."); std::vector<cudf::type_id> dtype_ids{cudf::type_id::STRING}; auto builder = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, max_str_length); if (n_cols == 2) { dtype_ids.push_back(cudf::type_id::INT32); builder.distribution( cudf::type_id::INT32, distribution_id::NORMAL, min_repeat_times, max_repeat_times); } return create_random_table(dtype_ids, row_count{n_rows}, data_profile{builder}); } static void BM_repeat_strings_scalar_times(benchmark::State& state) { auto const n_rows = static_cast<cudf::size_type>(state.range(0)); auto const max_str_length = static_cast<cudf::size_type>(state.range(1)); auto const table = create_data_table(1, n_rows, max_str_length); auto const strings_col = cudf::strings_column_view(table->view().column(0)); for ([[maybe_unused]] auto _ : state) { [[maybe_unused]] cuda_event_timer raii(state, true, cudf::get_default_stream()); cudf::strings::repeat_strings(strings_col, default_repeat_times); } state.SetBytesProcessed(state.iterations() * strings_col.chars_size()); } static void BM_repeat_strings_column_times(benchmark::State& state) { auto const n_rows = static_cast<cudf::size_type>(state.range(0)); auto const max_str_length = static_cast<cudf::size_type>(state.range(1)); auto const table = create_data_table(2, n_rows, max_str_length); auto const strings_col = cudf::strings_column_view(table->view().column(0)); auto const repeat_times_col = table->view().column(1); for ([[maybe_unused]] auto _ : state) { [[maybe_unused]] cuda_event_timer raii(state, true, cudf::get_default_stream()); cudf::strings::repeat_strings(strings_col, repeat_times_col); } state.SetBytesProcessed(state.iterations() * (strings_col.chars_size() + repeat_times_col.size() * sizeof(int32_t))); } static void generate_bench_args(benchmark::internal::Benchmark* b) { int const min_rows = 1 << 8; int const max_rows = 1 << 18; int const row_mult = 4; int const min_strlen = 1 << 4; int const max_strlen = 1 << 8; int const len_mult = 4; generate_string_bench_args(b, min_rows, max_rows, row_mult, min_strlen, max_strlen, len_mult); } class RepeatStrings : public cudf::benchmark {}; #define REPEAT_STRINGS_SCALAR_TIMES_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(RepeatStrings, name) \ (::benchmark::State & st) { BM_repeat_strings_scalar_times(st); } \ BENCHMARK_REGISTER_F(RepeatStrings, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); #define REPEAT_STRINGS_COLUMN_TIMES_BENCHMARK_DEFINE(name) \ BENCHMARK_DEFINE_F(RepeatStrings, name) \ (::benchmark::State & st) { BM_repeat_strings_column_times(st); } \ BENCHMARK_REGISTER_F(RepeatStrings, name) \ ->Apply(generate_bench_args) \ ->UseManualTime() \ ->Unit(benchmark::kMillisecond); REPEAT_STRINGS_SCALAR_TIMES_BENCHMARK_DEFINE(scalar_times) REPEAT_STRINGS_COLUMN_TIMES_BENCHMARK_DEFINE(column_times)
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/lengths.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/strings/attributes.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_lengths(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const table_profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const table = create_random_table({cudf::type_id::STRING}, row_count{num_rows}, table_profile); cudf::strings_column_view input(table->view().column(0)); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); // gather some throughput statistics as well auto chars_size = input.chars_size(); state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int32_t>(num_rows); // output is an integer per row state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::strings::count_characters(input); }); } NVBENCH_BENCH(bench_lengths) .set_name("lengths") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048, 4096}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/gather.cpp
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <benchmarks/common/generate_input.hpp> #include <cudf/copying.hpp> #include <cudf/strings/strings_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <nvbench/nvbench.cuh> static void bench_gather(nvbench::state& state) { auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { state.skip("Skip benchmarks greater than size_type limit"); } data_profile const table_profile = data_profile_builder().distribution( cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); auto const input_table = create_random_table({cudf::type_id::STRING}, row_count{num_rows}, table_profile); data_profile const map_profile = data_profile_builder().no_validity().distribution( cudf::type_id::INT32, distribution_id::UNIFORM, 0, num_rows); auto const map_table = create_random_table({cudf::type_id::INT32}, row_count{num_rows}, map_profile); state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); auto chars_size = cudf::strings_column_view(input_table->view().column(0)).chars_size(); state.add_global_memory_reads<nvbench::int8_t>(chars_size); // all bytes are read; state.add_global_memory_writes<nvbench::int8_t>(chars_size); state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto result = cudf::gather( input_table->view(), map_table->view().column(0), cudf::out_of_bounds_policy::NULLIFY); }); } NVBENCH_BENCH(bench_gather) .set_name("gather") .add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024, 2048, 4096}) .add_int64_axis("num_rows", {4096, 32768, 262144, 2097152, 16777216});
0
rapidsai_public_repos/cudf/cpp/benchmarks
rapidsai_public_repos/cudf/cpp/benchmarks/string/string_bench_args.hpp
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <benchmark/benchmark.h> #include <cudf/types.hpp> #include <limits> /** * @brief Generate row count and row length argument ranges for a string benchmark. * * Generates a series of row count and row length arguments for string benchmarks. * Combinations of row count and row length that would exceed the maximum string character * column data length are not generated. * * @param b Benchmark to update with row count and row length arguments. * @param min_rows Minimum row count argument to generate. * @param max_rows Maximum row count argument to generate. * @param rows_mult Row count multiplier to generate intermediate row count arguments. * @param min_rowlen Minimum row length argument to generate. * @param max_rowlen Maximum row length argument to generate. * @param rowlen_mult Row length multiplier to generate intermediate row length arguments. */ inline void generate_string_bench_args(benchmark::internal::Benchmark* b, int min_rows, int max_rows, int rows_mult, int min_rowlen, int max_rowlen, int rowlen_mult) { for (int row_count = min_rows; row_count <= max_rows; row_count *= rows_mult) { for (int rowlen = min_rowlen; rowlen <= max_rowlen; rowlen *= rowlen_mult) { // avoid generating combinations that exceed the cudf column limit size_t total_chars = static_cast<size_t>(row_count) * rowlen; if (total_chars < static_cast<size_t>(std::numeric_limits<cudf::size_type>::max())) { b->Args({row_count, rowlen}); } } } }
0