repo_id
stringlengths
21
96
file_path
stringlengths
31
155
content
stringlengths
1
92.9M
__index_level_0__
int64
0
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/LogicalAnd.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::LogicalAnd>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/BitwiseAnd.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::BitwiseAnd>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/binary_ops.cuh
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "binary_ops.hpp" #include "operation.cuh" #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_view.hpp> #include <cudf/detail/utilities/integer_utils.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> namespace cudf { namespace binops { namespace compiled { template <typename BinaryOperator, typename TypeLhs, typename TypeRhs> constexpr bool is_bool_result() { using ReturnType = std::invoke_result_t<BinaryOperator, TypeLhs, TypeRhs>; return std::is_same_v<bool, ReturnType>; } /** * @brief Type casts each element of the column to `CastType` * */ template <typename CastType> struct type_casted_accessor { template <typename Element> __device__ inline CastType operator()(cudf::size_type i, column_device_view const& col, bool is_scalar) const { if constexpr (column_device_view::has_element_accessor<Element>() and std::is_convertible_v<Element, CastType>) return static_cast<CastType>(col.element<Element>(is_scalar ? 0 : i)); return {}; } }; /** * @brief Type casts value to column type and stores in `i`th row of the column * */ template <typename FromType> struct typed_casted_writer { template <typename Element> __device__ inline void operator()(cudf::size_type i, mutable_column_device_view const& col, FromType val) const { if constexpr (mutable_column_device_view::has_element_accessor<Element>() and std::is_constructible_v<Element, FromType>) { col.element<Element>(i) = static_cast<Element>(val); } else if constexpr (is_fixed_point<Element>() and (is_fixed_point<FromType>() or std::is_constructible_v<Element, FromType>)) { if constexpr (is_fixed_point<FromType>()) col.data<Element::rep>()[i] = val.rescaled(numeric::scale_type{col.type().scale()}).value(); else col.data<Element::rep>()[i] = Element{val, numeric::scale_type{col.type().scale()}}.value(); } } }; // Functors to launch only defined operations. /** * @brief Functor to launch only defined operations with common type. * * @tparam BinaryOperator binary operator functor */ template <typename BinaryOperator> struct ops_wrapper { mutable_column_device_view& out; column_device_view const& lhs; column_device_view const& rhs; bool const& is_lhs_scalar; bool const& is_rhs_scalar; template <typename TypeCommon> __device__ void operator()(size_type i) { if constexpr (std::is_invocable_v<BinaryOperator, TypeCommon, TypeCommon>) { TypeCommon x = type_dispatcher(lhs.type(), type_casted_accessor<TypeCommon>{}, i, lhs, is_lhs_scalar); TypeCommon y = type_dispatcher(rhs.type(), type_casted_accessor<TypeCommon>{}, i, rhs, is_rhs_scalar); auto result = [&]() { if constexpr (std::is_same_v<BinaryOperator, ops::NullEquals> or std::is_same_v<BinaryOperator, ops::NullLogicalAnd> or std::is_same_v<BinaryOperator, ops::NullLogicalOr> or std::is_same_v<BinaryOperator, ops::NullMax> or std::is_same_v<BinaryOperator, ops::NullMin>) { bool output_valid = false; auto result = BinaryOperator{}.template operator()<TypeCommon, TypeCommon>( x, y, lhs.is_valid(is_lhs_scalar ? 0 : i), rhs.is_valid(is_rhs_scalar ? 0 : i), output_valid); if (out.nullable() && !output_valid) out.set_null(i); return result; } else { return BinaryOperator{}.template operator()<TypeCommon, TypeCommon>(x, y); } // To suppress nvcc warning return std::invoke_result_t<BinaryOperator, TypeCommon, TypeCommon>{}; }(); if constexpr (is_bool_result<BinaryOperator, TypeCommon, TypeCommon>()) out.element<decltype(result)>(i) = result; else type_dispatcher(out.type(), typed_casted_writer<decltype(result)>{}, i, out, result); } (void)i; } }; /** * @brief Functor to launch only defined operations without common type. * * @tparam BinaryOperator binary operator functor */ template <typename BinaryOperator> struct ops2_wrapper { mutable_column_device_view& out; column_device_view const& lhs; column_device_view const& rhs; bool const& is_lhs_scalar; bool const& is_rhs_scalar; template <typename TypeLhs, typename TypeRhs> __device__ void operator()(size_type i) { if constexpr (!has_common_type_v<TypeLhs, TypeRhs> and std::is_invocable_v<BinaryOperator, TypeLhs, TypeRhs>) { TypeLhs x = lhs.element<TypeLhs>(is_lhs_scalar ? 0 : i); TypeRhs y = rhs.element<TypeRhs>(is_rhs_scalar ? 0 : i); auto result = [&]() { if constexpr (std::is_same_v<BinaryOperator, ops::NullEquals> or std::is_same_v<BinaryOperator, ops::NullLogicalAnd> or std::is_same_v<BinaryOperator, ops::NullLogicalOr> or std::is_same_v<BinaryOperator, ops::NullMax> or std::is_same_v<BinaryOperator, ops::NullMin>) { bool output_valid = false; auto result = BinaryOperator{}.template operator()<TypeLhs, TypeRhs>( x, y, lhs.is_valid(is_lhs_scalar ? 0 : i), rhs.is_valid(is_rhs_scalar ? 0 : i), output_valid); if (out.nullable() && !output_valid) out.set_null(i); return result; } else { return BinaryOperator{}.template operator()<TypeLhs, TypeRhs>(x, y); } // To suppress nvcc warning return std::invoke_result_t<BinaryOperator, TypeLhs, TypeRhs>{}; }(); if constexpr (is_bool_result<BinaryOperator, TypeLhs, TypeRhs>()) out.element<decltype(result)>(i) = result; else type_dispatcher(out.type(), typed_casted_writer<decltype(result)>{}, i, out, result); } (void)i; } }; /** * @brief Functor which does single type dispatcher in device code * * single type dispatcher for lhs and rhs with common types. * * @tparam BinaryOperator binary operator functor */ template <class BinaryOperator> struct binary_op_device_dispatcher { data_type common_data_type; mutable_column_device_view out; column_device_view lhs; column_device_view rhs; bool is_lhs_scalar; bool is_rhs_scalar; __forceinline__ __device__ void operator()(size_type i) { type_dispatcher(common_data_type, ops_wrapper<BinaryOperator>{out, lhs, rhs, is_lhs_scalar, is_rhs_scalar}, i); } }; /** * @brief Functor which does double type dispatcher in device code * * double type dispatcher for lhs and rhs without common types. * * @tparam BinaryOperator binary operator functor */ template <class BinaryOperator> struct binary_op_double_device_dispatcher { mutable_column_device_view out; column_device_view lhs; column_device_view rhs; bool is_lhs_scalar; bool is_rhs_scalar; __forceinline__ __device__ void operator()(size_type i) { double_type_dispatcher( lhs.type(), rhs.type(), ops2_wrapper<BinaryOperator>{out, lhs, rhs, is_lhs_scalar, is_rhs_scalar}, i); } }; /** * @brief Simplified for_each kernel * * @param size number of elements to process. * @param f Functor object to call for each element. */ template <typename Functor> __global__ void for_each_kernel(cudf::size_type size, Functor f) { int tid = threadIdx.x; int blkid = blockIdx.x; int blksz = blockDim.x; int gridsz = gridDim.x; int start = tid + blkid * blksz; int step = blksz * gridsz; #pragma unroll for (cudf::size_type i = start; i < size; i += step) { f(i); } } /** * @brief Launches Simplified for_each kernel with maximum occupancy grid dimensions. * * @tparam Functor * @param stream CUDA stream used for device memory operations and kernel launches. * @param size number of elements to process. * @param f Functor object to call for each element. */ template <typename Functor> void for_each(rmm::cuda_stream_view stream, cudf::size_type size, Functor f) { int block_size; int min_grid_size; CUDF_CUDA_TRY( cudaOccupancyMaxPotentialBlockSize(&min_grid_size, &block_size, for_each_kernel<decltype(f)>)); // 2 elements per thread. int const grid_size = util::div_rounding_up_safe(size, 2 * block_size); for_each_kernel<<<grid_size, block_size, 0, stream.value()>>>(size, std::forward<Functor&&>(f)); } template <class BinaryOperator> void apply_binary_op(mutable_column_view& out, column_view const& lhs, column_view const& rhs, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view stream) { auto common_dtype = get_common_type(out.type(), lhs.type(), rhs.type()); auto lhsd = column_device_view::create(lhs, stream); auto rhsd = column_device_view::create(rhs, stream); auto outd = mutable_column_device_view::create(out, stream); // Create binop functor instance if (common_dtype) { // Execute it on every element for_each(stream, out.size(), binary_op_device_dispatcher<BinaryOperator>{ *common_dtype, *outd, *lhsd, *rhsd, is_lhs_scalar, is_rhs_scalar}); } else { // Execute it on every element for_each(stream, out.size(), binary_op_double_device_dispatcher<BinaryOperator>{ *outd, *lhsd, *rhsd, is_lhs_scalar, is_rhs_scalar}); } } } // namespace compiled } // namespace binops } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/BitwiseXor.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::BitwiseXor>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/NullMin.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::NullMin>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); } // namespace cudf::binops::compiled
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/LogBase.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::LogBase>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/util.cpp
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "operation.cuh" #include <cudf/binaryop.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <optional> namespace cudf::binops::compiled { namespace { struct common_type_functor { template <typename TypeLhs, typename TypeRhs> std::optional<data_type> operator()() const { if constexpr (cudf::has_common_type_v<TypeLhs, TypeRhs>) { using TypeCommon = std::common_type_t<TypeLhs, TypeRhs>; return data_type{type_to_id<TypeCommon>()}; } // A compiler bug may cause a compilation error when using empty // initializer list to construct an std::optional object containing no // `data_type` value. Therefore, we explicitly return `std::nullopt` // instead. return std::nullopt; } }; struct has_mutable_element_accessor_functor { template <typename T> bool operator()() const { return mutable_column_device_view::has_element_accessor<T>(); } }; bool has_mutable_element_accessor(data_type t) { return type_dispatcher(t, has_mutable_element_accessor_functor{}); } template <typename InputType> struct is_constructible_functor { template <typename TargetType> bool operator()() const { return std::is_constructible_v<TargetType, InputType>; } }; template <typename InputType> bool is_constructible(data_type target_type) { return type_dispatcher(target_type, is_constructible_functor<InputType>{}); } /** * @brief Functor that return true if BinaryOperator supports given input and output types. * * @tparam BinaryOperator binary operator functor */ template <typename BinaryOperator> struct is_binary_operation_supported { // For types where Out type is fixed. (e.g. comparison types) template <typename TypeLhs, typename TypeRhs> inline constexpr bool operator()() const { if constexpr (column_device_view::has_element_accessor<TypeLhs>() and column_device_view::has_element_accessor<TypeRhs>()) { if constexpr (has_common_type_v<TypeLhs, TypeRhs>) { using common_t = std::common_type_t<TypeLhs, TypeRhs>; return std::is_invocable_v<BinaryOperator, common_t, common_t>; } else { return std::is_invocable_v<BinaryOperator, TypeLhs, TypeRhs>; } } else { return false; } } template <typename TypeLhs, typename TypeRhs> inline constexpr bool operator()(data_type out_type) const { if constexpr (column_device_view::has_element_accessor<TypeLhs>() and column_device_view::has_element_accessor<TypeRhs>()) { if (has_mutable_element_accessor(out_type) or is_fixed_point(out_type)) { if constexpr (has_common_type_v<TypeLhs, TypeRhs>) { using common_t = std::common_type_t<TypeLhs, TypeRhs>; if constexpr (std::is_invocable_v<BinaryOperator, common_t, common_t>) { using ReturnType = std::invoke_result_t<BinaryOperator, common_t, common_t>; return is_constructible<ReturnType>(out_type) or (is_fixed_point<ReturnType>() and is_fixed_point(out_type)); } } else if constexpr (std::is_invocable_v<BinaryOperator, TypeLhs, TypeRhs>) { using ReturnType = std::invoke_result_t<BinaryOperator, TypeLhs, TypeRhs>; return is_constructible<ReturnType>(out_type); } } } return false; } }; struct is_supported_operation_functor { template <typename TypeLhs, typename TypeRhs> struct nested_support_functor { template <typename BinaryOperator> inline constexpr bool call(data_type out_type) const { return is_binary_operation_supported<BinaryOperator>{}.template operator()<TypeLhs, TypeRhs>( out_type); } inline constexpr bool operator()(binary_operator op, data_type out_type) const { switch (op) { // clang-format off case binary_operator::ADD: return call<ops::Add>(out_type); case binary_operator::SUB: return call<ops::Sub>(out_type); case binary_operator::MUL: return call<ops::Mul>(out_type); case binary_operator::DIV: return call<ops::Div>(out_type); case binary_operator::TRUE_DIV: return call<ops::TrueDiv>(out_type); case binary_operator::FLOOR_DIV: return call<ops::FloorDiv>(out_type); case binary_operator::MOD: return call<ops::Mod>(out_type); case binary_operator::PYMOD: return call<ops::PyMod>(out_type); case binary_operator::POW: return call<ops::Pow>(out_type); case binary_operator::INT_POW: return call<ops::IntPow>(out_type); case binary_operator::BITWISE_AND: return call<ops::BitwiseAnd>(out_type); case binary_operator::BITWISE_OR: return call<ops::BitwiseOr>(out_type); case binary_operator::BITWISE_XOR: return call<ops::BitwiseXor>(out_type); case binary_operator::SHIFT_LEFT: return call<ops::ShiftLeft>(out_type); case binary_operator::SHIFT_RIGHT: return call<ops::ShiftRight>(out_type); case binary_operator::SHIFT_RIGHT_UNSIGNED: return call<ops::ShiftRightUnsigned>(out_type); case binary_operator::LOG_BASE: return call<ops::LogBase>(out_type); case binary_operator::ATAN2: return call<ops::ATan2>(out_type); case binary_operator::PMOD: return call<ops::PMod>(out_type); case binary_operator::NULL_MAX: return call<ops::NullMax>(out_type); case binary_operator::NULL_MIN: return call<ops::NullMin>(out_type); /* case binary_operator::GENERIC_BINARY: // defined in jit only. */ default: return false; // clang-format on } } }; template <typename BinaryOperator, typename TypeLhs, typename TypeRhs> inline constexpr bool bool_op(data_type out) const { return out.id() == type_id::BOOL8 and is_binary_operation_supported<BinaryOperator>{}.template operator()<TypeLhs, TypeRhs>(); } template <typename TypeLhs, typename TypeRhs> inline constexpr bool operator()(data_type out, binary_operator op) const { switch (op) { // output type should be bool type. case binary_operator::LOGICAL_AND: return bool_op<ops::LogicalAnd, TypeLhs, TypeRhs>(out); case binary_operator::LOGICAL_OR: return bool_op<ops::LogicalOr, TypeLhs, TypeRhs>(out); case binary_operator::EQUAL: return bool_op<ops::Equal, TypeLhs, TypeRhs>(out); case binary_operator::NOT_EQUAL: return bool_op<ops::NotEqual, TypeLhs, TypeRhs>(out); case binary_operator::LESS: return bool_op<ops::Less, TypeLhs, TypeRhs>(out); case binary_operator::GREATER: return bool_op<ops::Greater, TypeLhs, TypeRhs>(out); case binary_operator::LESS_EQUAL: return bool_op<ops::LessEqual, TypeLhs, TypeRhs>(out); case binary_operator::GREATER_EQUAL: return bool_op<ops::GreaterEqual, TypeLhs, TypeRhs>(out); case binary_operator::NULL_EQUALS: return bool_op<ops::NullEquals, TypeLhs, TypeRhs>(out); case binary_operator::NULL_LOGICAL_AND: return bool_op<ops::NullLogicalAnd, TypeLhs, TypeRhs>(out); case binary_operator::NULL_LOGICAL_OR: return bool_op<ops::NullLogicalOr, TypeLhs, TypeRhs>(out); default: return nested_support_functor<TypeLhs, TypeRhs>{}(op, out); } return false; } }; } // namespace std::optional<data_type> get_common_type(data_type out, data_type lhs, data_type rhs) { // Compute the common type of (out, lhs, rhs) if it exists, or the common // type of (lhs, rhs) if it exists, else return a null optional. // We can avoid a triple type dispatch by using the definition of // std::common_type to compute this with double type dispatches. // Specifically, std::common_type_t<TypeOut, TypeLhs, TypeRhs> is the same as // std::common_type_t<std::common_type_t<TypeOut, TypeLhs>, TypeRhs>. auto common_type = double_type_dispatcher(out, lhs, common_type_functor{}); if (common_type.has_value()) { common_type = double_type_dispatcher(common_type.value(), rhs, common_type_functor{}); } // If no common type of (out, lhs, rhs) exists, fall back to the common type // of (lhs, rhs). if (!common_type.has_value()) { common_type = double_type_dispatcher(lhs, rhs, common_type_functor{}); } return common_type; } bool is_supported_operation(data_type out, data_type lhs, data_type rhs, binary_operator op) { return double_type_dispatcher(lhs, rhs, is_supported_operation_functor{}, out, op); } } // namespace cudf::binops::compiled
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/operation.cuh
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/utilities/traits.hpp> #include <cmath> namespace cudf { namespace binops { namespace compiled { // All binary operations namespace ops { struct Add { template <typename T1, typename T2> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> decltype(lhs + rhs) { return lhs + rhs; } }; struct Sub { template <typename T1, typename T2> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> decltype(lhs - rhs) { return lhs - rhs; } }; struct Mul { template <typename TypeLhs, typename TypeRhs> static constexpr inline bool is_supported() { return has_common_type_v<TypeLhs, TypeRhs> or // FIXME: without the following line, compilation error // _deps/libcudacxx-src/include/cuda/std/detail/libcxx/include/chrono(917): error: // identifier "cuda::std::__3::ratio<(long)86400000000l, (long)1l> ::num" is undefined in // device code (is_duration<TypeLhs>() and std::is_integral<TypeRhs>()) or (std::is_integral<TypeLhs>() and is_duration<TypeRhs>()) or (is_fixed_point<TypeLhs>() and is_numeric<TypeRhs>()) or (is_numeric<TypeLhs>() and is_fixed_point<TypeRhs>()); } template <typename T1, typename T2, std::enable_if_t<is_supported<T1, T2>()>* = nullptr> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> decltype(lhs * rhs) { return lhs * rhs; } }; struct Div { template <typename TypeLhs, typename TypeRhs> static constexpr inline bool is_supported() { return has_common_type_v<TypeLhs, TypeRhs> or // FIXME: without this, compilation error on chrono:917 (is_duration<TypeLhs>() and (std::is_integral<TypeRhs>() or is_duration<TypeRhs>())) or (is_fixed_point<TypeLhs>() and is_numeric<TypeRhs>()) or (is_numeric<TypeLhs>() and is_fixed_point<TypeRhs>()); } template <typename T1, typename T2, std::enable_if_t<is_supported<T1, T2>()>* = nullptr> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> decltype(lhs / rhs) { return lhs / rhs; } }; struct TrueDiv { template <typename T1, typename T2> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> decltype((static_cast<double>(lhs) / static_cast<double>(rhs))) { return (static_cast<double>(lhs) / static_cast<double>(rhs)); } }; struct FloorDiv { template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_integral_v<std::common_type_t<TypeLhs, TypeRhs>> and std::is_signed_v<std::common_type_t<TypeLhs, TypeRhs>>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x / y) { auto const quotient = x / y; auto const nonzero_remainder = (x % y) != 0; auto const mixed_sign = (x ^ y) < 0; return quotient - mixed_sign * nonzero_remainder; } template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_integral_v<std::common_type_t<TypeLhs, TypeRhs>> and !std::is_signed_v<std::common_type_t<TypeLhs, TypeRhs>>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x / y) { return x / y; } template < typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_same_v<std::common_type_t<TypeLhs, TypeRhs>, float>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> float { return floorf(x / y); } template < typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_same_v<std::common_type_t<TypeLhs, TypeRhs>, double>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> double { return floor(x / y); } }; struct Mod { template <typename TypeLhs, typename TypeRhs> static constexpr inline bool is_supported() { return has_common_type_v<TypeLhs, TypeRhs> or // FIXME: without this, compilation error //_deps/libcudacxx-src/include/cuda/std/detail/libcxx/include/chrono(1337): // error : expression must have integral or unscoped enum type (is_duration<TypeLhs>() and (std::is_integral<TypeRhs>() or is_duration<TypeRhs>())); } template <typename T1, typename T2, std::enable_if_t<is_supported<T1, T2>()>* = nullptr> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> decltype(lhs % rhs) { return lhs % rhs; } template <typename T1, typename T2, std::enable_if_t<(std::is_same_v<float, std::common_type_t<T1, T2>>)>* = nullptr> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> float { return fmodf(static_cast<float>(lhs), static_cast<float>(rhs)); } template <typename T1, typename T2, std::enable_if_t<(std::is_same_v<double, std::common_type_t<T1, T2>>)>* = nullptr> __device__ inline auto operator()(T1 const& lhs, T2 const& rhs) -> double { return fmod(static_cast<double>(lhs), static_cast<double>(rhs)); } }; struct PMod { // Ideally, these two specializations - one for integral types and one for non integral // types shouldn't be required, as std::fmod should promote integral types automatically // to double and call the std::fmod overload for doubles. Sadly, doing this in jitified // code does not work - it is having trouble deciding between float/double overloads template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_integral_v<std::common_type_t<TypeLhs, TypeRhs>>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) { using common_t = std::common_type_t<TypeLhs, TypeRhs>; common_t xconv = static_cast<common_t>(x); common_t yconv = static_cast<common_t>(y); auto rem = xconv % yconv; if constexpr (std::is_signed_v<decltype(rem)>) if (rem < 0) rem = (rem + yconv) % yconv; return rem; } template < typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_floating_point_v<std::common_type_t<TypeLhs, TypeRhs>>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) { using common_t = std::common_type_t<TypeLhs, TypeRhs>; common_t xconv = static_cast<common_t>(x); common_t yconv = static_cast<common_t>(y); auto rem = std::fmod(xconv, yconv); if (rem < 0) rem = std::fmod(rem + yconv, yconv); return rem; } template <typename TypeLhs, typename TypeRhs, std::enable_if_t<cudf::is_fixed_point<TypeLhs>() and std::is_same_v<TypeLhs, TypeRhs>>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) { auto const remainder = x % y; return remainder.value() < 0 ? (remainder + y) % y : remainder; } }; struct PyMod { template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_integral_v<std::common_type_t<TypeLhs, TypeRhs>> or (cudf::is_fixed_point<TypeLhs>() and std::is_same_v<TypeLhs, TypeRhs>))>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(((x % y) + y) % y) { return ((x % y) + y) % y; } template < typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_floating_point_v<std::common_type_t<TypeLhs, TypeRhs>>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> double { auto x1 = static_cast<double>(x); auto y1 = static_cast<double>(y); return fmod(fmod(x1, y1) + y1, y1); } template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(is_duration<TypeLhs>())>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(((x % y) + y) % y) { return ((x % y) + y) % y; } }; struct Pow { template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_convertible_v<TypeLhs, double> and std::is_convertible_v<TypeRhs, double>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> double { return pow(static_cast<double>(x), static_cast<double>(y)); } }; struct IntPow { template < typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_integral_v<TypeLhs> and std::is_integral_v<TypeRhs>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> TypeLhs { if constexpr (std::is_signed_v<TypeRhs>) { if (y < 0) { // Integer exponentiation with negative exponent is not possible. return 0; } } if (y == 0) { return 1; } if (x == 0) { return 0; } TypeLhs extra = 1; while (y > 1) { if (y & 1) { // The exponent is odd, so multiply by one factor of x. extra *= x; y -= 1; } // The exponent is even, so square x and divide the exponent y by 2. y /= 2; x *= x; } return x * extra; } }; struct LogBase { template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_convertible_v<TypeLhs, double> and std::is_convertible_v<TypeRhs, double>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> double { return (std::log(static_cast<double>(x)) / std::log(static_cast<double>(y))); } }; struct ATan2 { template <typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_convertible_v<TypeLhs, double> and std::is_convertible_v<TypeRhs, double>)>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> double { return std::atan2(static_cast<double>(x), static_cast<double>(y)); } }; struct ShiftLeft { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x << y) { return (x << y); } }; struct ShiftRight { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x >> y) { return (x >> y); } }; struct ShiftRightUnsigned { template < typename TypeLhs, typename TypeRhs, std::enable_if_t<(std::is_integral_v<TypeLhs> and not is_boolean<TypeLhs>())>* = nullptr> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(static_cast<std::make_unsigned_t<TypeLhs>>(x) >> y) { return (static_cast<std::make_unsigned_t<TypeLhs>>(x) >> y); } }; struct BitwiseAnd { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x & y) { return (x & y); } }; struct BitwiseOr { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x | y) { return (x | y); } }; struct BitwiseXor { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x ^ y) { return (x ^ y); } }; struct LogicalAnd { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x && y) { return (x && y); } }; struct LogicalOr { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x || y) { return (x || y); } }; struct Equal { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x == y) { return (x == y); } }; struct NotEqual { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x != y) { return (x != y); } }; struct Less { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x < y) { return (x < y); } }; struct Greater { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x > y) { return (x > y); } }; struct LessEqual { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x <= y) { return (x <= y); } }; struct GreaterEqual { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x >= y) { return (x >= y); } }; struct NullEquals { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()( TypeLhs x, TypeRhs y, bool lhs_valid, bool rhs_valid, bool& output_valid) -> decltype(x == y) { output_valid = true; if (!lhs_valid && !rhs_valid) return true; if (lhs_valid && rhs_valid) return x == y; return false; } // To allow std::is_invocable_v = true template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x == y); }; struct NullMax { template <typename TypeLhs, typename TypeRhs, typename common_t = std::common_type_t<TypeLhs, TypeRhs>> __device__ inline auto operator()( TypeLhs x, TypeRhs y, bool lhs_valid, bool rhs_valid, bool& output_valid) -> decltype(static_cast<common_t>(static_cast<common_t>(x) > static_cast<common_t>(y) ? x : y)) { output_valid = true; auto const x_conv = static_cast<common_t>(x); auto const y_conv = static_cast<common_t>(y); if (!lhs_valid && !rhs_valid) { output_valid = false; return common_t{}; } else if (lhs_valid && rhs_valid) { return (x_conv > y_conv) ? x_conv : y_conv; } else if (lhs_valid) return x_conv; else return y_conv; } // To allow std::is_invocable_v = true template <typename TypeLhs, typename TypeRhs, typename common_t = std::common_type_t<TypeLhs, TypeRhs>> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(static_cast<common_t>(static_cast<common_t>(x) > static_cast<common_t>(y) ? x : y)); }; struct NullMin { template <typename TypeLhs, typename TypeRhs, typename common_t = std::common_type_t<TypeLhs, TypeRhs>> __device__ inline auto operator()( TypeLhs x, TypeRhs y, bool lhs_valid, bool rhs_valid, bool& output_valid) -> decltype(static_cast<common_t>(static_cast<common_t>(x) < static_cast<common_t>(y) ? x : y)) { output_valid = true; auto const x_conv = static_cast<common_t>(x); auto const y_conv = static_cast<common_t>(y); if (!lhs_valid && !rhs_valid) { output_valid = false; return common_t{}; } else if (lhs_valid && rhs_valid) { return (x_conv < y_conv) ? x_conv : y_conv; } else if (lhs_valid) return x_conv; else return y_conv; } // To allow std::is_invocable_v = true template <typename TypeLhs, typename TypeRhs, typename common_t = std::common_type_t<TypeLhs, TypeRhs>> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(static_cast<common_t>(static_cast<common_t>(x) < static_cast<common_t>(y) ? x : y)); }; struct NullLogicalAnd { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()( TypeLhs x, TypeRhs y, bool lhs_valid, bool rhs_valid, bool& output_valid) -> decltype(x && y) { bool lhs_false = lhs_valid && !x; bool rhs_false = rhs_valid && !y; bool both_valid = lhs_valid && rhs_valid; output_valid = lhs_false || rhs_false || both_valid; return both_valid && !lhs_false && !rhs_false; } // To allow std::is_invocable_v = true template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x && y); }; struct NullLogicalOr { template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()( TypeLhs x, TypeRhs y, bool lhs_valid, bool rhs_valid, bool& output_valid) -> decltype(x || y) { bool lhs_true = lhs_valid && x; bool rhs_true = rhs_valid && y; bool both_valid = lhs_valid && rhs_valid; output_valid = lhs_true || rhs_true || both_valid; return lhs_true || rhs_true; } // To allow std::is_invocable_v = true template <typename TypeLhs, typename TypeRhs> __device__ inline auto operator()(TypeLhs x, TypeRhs y) -> decltype(x || y); }; } // namespace ops } // namespace compiled } // namespace binops } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/PyMod.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::PyMod>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/binary_ops.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.hpp" #include "operation.cuh" #include "struct_binary_ops.cuh" #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/structs/utilities.hpp> #include <cudf/scalar/scalar_device_view.cuh> #include <cudf/strings/detail/strings_children.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/functional.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> namespace cudf { namespace binops { namespace compiled { namespace { /** * @brief Converts scalar to column_view with single element. * * @return pair with column_view and column containing any auxiliary data to create column_view from * scalar */ struct scalar_as_column_view { using return_type = typename std::pair<column_view, std::unique_ptr<column>>; template <typename T, CUDF_ENABLE_IF(is_fixed_width<T>())> return_type operator()(scalar const& s, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource*) { auto& h_scalar_type_view = static_cast<cudf::scalar_type_t<T>&>(const_cast<scalar&>(s)); auto col_v = column_view(s.type(), 1, h_scalar_type_view.data(), reinterpret_cast<bitmask_type const*>(s.validity_data()), !s.is_valid(stream)); return std::pair{col_v, std::unique_ptr<column>(nullptr)}; } template <typename T, CUDF_ENABLE_IF(!is_fixed_width<T>())> return_type operator()(scalar const&, rmm::cuda_stream_view, rmm::mr::device_memory_resource*) { CUDF_FAIL("Unsupported type"); } }; // specialization for cudf::string_view template <> scalar_as_column_view::return_type scalar_as_column_view::operator()<cudf::string_view>( scalar const& s, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using T = cudf::string_view; auto& h_scalar_type_view = static_cast<cudf::scalar_type_t<T>&>(const_cast<scalar&>(s)); // build offsets column from the string size auto offsets_transformer_itr = thrust::make_constant_iterator<size_type>(h_scalar_type_view.size()); auto offsets_column = std::get<0>(cudf::detail::make_offsets_child_column( offsets_transformer_itr, offsets_transformer_itr + 1, stream, mr)); auto chars_column_v = column_view( data_type{type_id::INT8}, h_scalar_type_view.size(), h_scalar_type_view.data(), nullptr, 0); // Construct string column_view auto col_v = column_view(s.type(), 1, nullptr, reinterpret_cast<bitmask_type const*>(s.validity_data()), static_cast<size_type>(!s.is_valid(stream)), 0, {offsets_column->view(), chars_column_v}); return std::pair{col_v, std::move(offsets_column)}; } // specializing for struct column template <> scalar_as_column_view::return_type scalar_as_column_view::operator()<cudf::struct_view>( scalar const& s, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto col = make_column_from_scalar(s, 1, stream, mr); return std::pair{col->view(), std::move(col)}; } /** * @brief Converts scalar to column_view with single element. * * @param scal scalar to convert * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory * @return pair with column_view and column containing any auxiliary data to create * column_view from scalar */ auto scalar_to_column_view( scalar const& scal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()) { return type_dispatcher(scal.type(), scalar_as_column_view{}, scal, stream, mr); } // This functor does the actual comparison between string column value and a scalar string // or between two string column values using a comparator template <typename LhsDeviceViewT, typename RhsDeviceViewT, typename OutT, typename CompareFunc> struct compare_functor { LhsDeviceViewT const lhs_dev_view_; // Scalar or a column device view - lhs RhsDeviceViewT const rhs_dev_view_; // Scalar or a column device view - rhs CompareFunc const cfunc_; // Comparison function compare_functor(LhsDeviceViewT const& lhs_dev_view, RhsDeviceViewT const& rhs_dev_view, CompareFunc cf) : lhs_dev_view_(lhs_dev_view), rhs_dev_view_(rhs_dev_view), cfunc_(cf) { } // This is used to compare a scalar and a column value template <typename LhsViewT = LhsDeviceViewT, typename RhsViewT = RhsDeviceViewT> __device__ inline std::enable_if_t<std::is_same_v<LhsViewT, column_device_view> && !std::is_same_v<RhsViewT, column_device_view>, OutT> operator()(cudf::size_type i) const { return cfunc_(lhs_dev_view_.is_valid(i), rhs_dev_view_.is_valid(), lhs_dev_view_.is_valid(i) ? lhs_dev_view_.template element<cudf::string_view>(i) : cudf::string_view{}, rhs_dev_view_.is_valid() ? rhs_dev_view_.value() : cudf::string_view{}); } // This is used to compare a scalar and a column value template <typename LhsViewT = LhsDeviceViewT, typename RhsViewT = RhsDeviceViewT> __device__ inline std::enable_if_t<!std::is_same_v<LhsViewT, column_device_view> && std::is_same_v<RhsViewT, column_device_view>, OutT> operator()(cudf::size_type i) const { return cfunc_(lhs_dev_view_.is_valid(), rhs_dev_view_.is_valid(i), lhs_dev_view_.is_valid() ? lhs_dev_view_.value() : cudf::string_view{}, rhs_dev_view_.is_valid(i) ? rhs_dev_view_.template element<cudf::string_view>(i) : cudf::string_view{}); } // This is used to compare 2 column values template <typename LhsViewT = LhsDeviceViewT, typename RhsViewT = RhsDeviceViewT> __device__ inline std::enable_if_t<std::is_same_v<LhsViewT, column_device_view> && std::is_same_v<RhsViewT, column_device_view>, OutT> operator()(cudf::size_type i) const { return cfunc_(lhs_dev_view_.is_valid(i), rhs_dev_view_.is_valid(i), lhs_dev_view_.is_valid(i) ? lhs_dev_view_.template element<cudf::string_view>(i) : cudf::string_view{}, rhs_dev_view_.is_valid(i) ? rhs_dev_view_.template element<cudf::string_view>(i) : cudf::string_view{}); } }; // This functor performs null aware binop between two columns or a column and a scalar by // iterating over them on the device struct null_considering_binop { [[nodiscard]] auto get_device_view(cudf::scalar const& scalar_item) const { return get_scalar_device_view( static_cast<cudf::scalar_type_t<cudf::string_view>&>(const_cast<scalar&>(scalar_item))); } [[nodiscard]] auto get_device_view(column_device_view const& col_item) const { return col_item; } template <typename LhsViewT, typename RhsViewT, typename OutT, typename CompareFunc> void populate_out_col(LhsViewT const& lhsv, RhsViewT const& rhsv, cudf::size_type col_size, rmm::cuda_stream_view stream, CompareFunc cfunc, OutT* out_col) const { // Create binop functor instance compare_functor<LhsViewT, RhsViewT, OutT, CompareFunc> binop_func{lhsv, rhsv, cfunc}; // Execute it on every element thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(col_size), out_col, binop_func); } // This is invoked to perform comparison between cudf string types template <typename LhsT, typename RhsT> std::unique_ptr<column> operator()(LhsT const& lhs, RhsT const& rhs, binary_operator op, data_type output_type, cudf::size_type col_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { // Create device views for inputs auto const lhs_dev_view = get_device_view(lhs); auto const rhs_dev_view = get_device_view(rhs); // Validate input CUDF_EXPECTS(output_type.id() == lhs.type().id(), "Output column type should match input column type"); // Shallow copy of the resultant strings rmm::device_uvector<cudf::string_view> out_col_strings(col_size, stream); // Invalid output column strings - null rows cudf::string_view const invalid_str{nullptr, 0}; // Create a compare function lambda auto minmax_func = [op, invalid_str] __device__( bool lhs_valid, bool rhs_valid, cudf::string_view lhs_value, cudf::string_view rhs_value) { if (!lhs_valid && !rhs_valid) return invalid_str; else if (lhs_valid && rhs_valid) { return (op == binary_operator::NULL_MAX) ? thrust::maximum<cudf::string_view>()(lhs_value, rhs_value) : thrust::minimum<cudf::string_view>()(lhs_value, rhs_value); } else if (lhs_valid) return lhs_value; else return rhs_value; }; // Populate output column populate_out_col( lhs_dev_view, rhs_dev_view, col_size, stream, minmax_func, out_col_strings.data()); // Create an output column with the resultant strings return cudf::make_strings_column(out_col_strings, invalid_str, stream, mr); } }; } // namespace std::unique_ptr<column> string_null_min_max(scalar const& lhs, column_view const& rhs, binary_operator op, data_type output_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // hard-coded to only work with cudf::string_view so we don't explode compile times CUDF_EXPECTS(lhs.type().id() == cudf::type_id::STRING, "Invalid/Unsupported lhs datatype"); CUDF_EXPECTS(rhs.type().id() == cudf::type_id::STRING, "Invalid/Unsupported rhs datatype"); CUDF_EXPECTS(op == binary_operator::NULL_MAX or op == binary_operator::NULL_MIN, "Unsupported binary operation"); if (rhs.is_empty()) return cudf::make_empty_column(output_type); auto rhs_device_view = cudf::column_device_view::create(rhs, stream); return null_considering_binop{}(lhs, *rhs_device_view, op, output_type, rhs.size(), stream, mr); } std::unique_ptr<column> string_null_min_max(column_view const& lhs, scalar const& rhs, binary_operator op, data_type output_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // hard-coded to only work with cudf::string_view so we don't explode compile times CUDF_EXPECTS(lhs.type().id() == cudf::type_id::STRING, "Invalid/Unsupported lhs datatype"); CUDF_EXPECTS(rhs.type().id() == cudf::type_id::STRING, "Invalid/Unsupported rhs datatype"); CUDF_EXPECTS(op == binary_operator::NULL_MAX or op == binary_operator::NULL_MIN, "Unsupported binary operation"); if (lhs.is_empty()) return cudf::make_empty_column(output_type); auto lhs_device_view = cudf::column_device_view::create(lhs, stream); return null_considering_binop{}(*lhs_device_view, rhs, op, output_type, lhs.size(), stream, mr); } std::unique_ptr<column> string_null_min_max(column_view const& lhs, column_view const& rhs, binary_operator op, data_type output_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // hard-coded to only work with cudf::string_view so we don't explode compile times CUDF_EXPECTS(lhs.type().id() == cudf::type_id::STRING, "Invalid/Unsupported lhs datatype"); CUDF_EXPECTS(rhs.type().id() == cudf::type_id::STRING, "Invalid/Unsupported rhs datatype"); CUDF_EXPECTS(op == binary_operator::NULL_MAX or op == binary_operator::NULL_MIN, "Unsupported binary operation"); CUDF_EXPECTS(lhs.size() == rhs.size(), "Column sizes do not match"); if (lhs.is_empty()) return cudf::make_empty_column(output_type); auto lhs_device_view = cudf::column_device_view::create(lhs, stream); auto rhs_device_view = cudf::column_device_view::create(rhs, stream); return null_considering_binop{}( *lhs_device_view, *rhs_device_view, op, output_type, lhs.size(), stream, mr); } void operator_dispatcher(mutable_column_view& out, column_view const& lhs, column_view const& rhs, bool is_lhs_scalar, bool is_rhs_scalar, binary_operator op, rmm::cuda_stream_view stream) { // clang-format off switch (op) { case binary_operator::ADD: apply_binary_op<ops::Add>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::SUB: apply_binary_op<ops::Sub>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::MUL: apply_binary_op<ops::Mul>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::DIV: apply_binary_op<ops::Div>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::TRUE_DIV: apply_binary_op<ops::TrueDiv>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::FLOOR_DIV: apply_binary_op<ops::FloorDiv>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::MOD: apply_binary_op<ops::Mod>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::PYMOD: apply_binary_op<ops::PyMod>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::POW: apply_binary_op<ops::Pow>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::INT_POW: apply_binary_op<ops::IntPow>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::EQUAL: case binary_operator::NOT_EQUAL: if(out.type().id() != type_id::BOOL8) CUDF_FAIL("Output type of Comparison operator should be bool type"); dispatch_equality_op(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, op, stream); break; case binary_operator::LESS: apply_binary_op<ops::Less>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::GREATER: apply_binary_op<ops::Greater>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::LESS_EQUAL: apply_binary_op<ops::LessEqual>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::GREATER_EQUAL: apply_binary_op<ops::GreaterEqual>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::BITWISE_AND: apply_binary_op<ops::BitwiseAnd>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::BITWISE_OR: apply_binary_op<ops::BitwiseOr>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::BITWISE_XOR: apply_binary_op<ops::BitwiseXor>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::LOGICAL_AND: apply_binary_op<ops::LogicalAnd>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::LOGICAL_OR: apply_binary_op<ops::LogicalOr>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; /* case binary_operator::GENERIC_BINARY: // Cannot be compiled, should be called by jit::binary_operation */ case binary_operator::SHIFT_LEFT: apply_binary_op<ops::ShiftLeft>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::SHIFT_RIGHT: apply_binary_op<ops::ShiftRight>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::SHIFT_RIGHT_UNSIGNED: apply_binary_op<ops::ShiftRightUnsigned>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::LOG_BASE: apply_binary_op<ops::LogBase>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::ATAN2: apply_binary_op<ops::ATan2>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::PMOD: apply_binary_op<ops::PMod>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::NULL_EQUALS: apply_binary_op<ops::NullEquals>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::NULL_MAX: apply_binary_op<ops::NullMax>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::NULL_MIN: apply_binary_op<ops::NullMin>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::NULL_LOGICAL_AND: apply_binary_op<ops::NullLogicalAnd>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; case binary_operator::NULL_LOGICAL_OR: apply_binary_op<ops::NullLogicalOr>(out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, stream); break; default:; } // clang-format on } // vector_vector void binary_operation(mutable_column_view& out, column_view const& lhs, column_view const& rhs, binary_operator op, rmm::cuda_stream_view stream) { operator_dispatcher(out, lhs, rhs, false, false, op, stream); } // scalar_vector void binary_operation(mutable_column_view& out, scalar const& lhs, column_view const& rhs, binary_operator op, rmm::cuda_stream_view stream) { auto [lhsv, aux] = scalar_to_column_view(lhs, stream); operator_dispatcher(out, lhsv, rhs, true, false, op, stream); } // vector_scalar void binary_operation(mutable_column_view& out, column_view const& lhs, scalar const& rhs, binary_operator op, rmm::cuda_stream_view stream) { auto [rhsv, aux] = scalar_to_column_view(rhs, stream); operator_dispatcher(out, lhs, rhsv, false, true, op, stream); } namespace detail { void apply_sorting_struct_binary_op(mutable_column_view& out, column_view const& lhs, column_view const& rhs, bool is_lhs_scalar, bool is_rhs_scalar, binary_operator op, rmm::cuda_stream_view stream) { CUDF_EXPECTS(lhs.type().id() == type_id::STRUCT && rhs.type().id() == type_id::STRUCT, "Both columns must be struct columns"); CUDF_EXPECTS(!cudf::structs::detail::is_or_has_nested_lists(lhs) and !cudf::structs::detail::is_or_has_nested_lists(rhs), "List type is not supported"); // Struct child column type and structure mismatches are caught within the two_table_comparator switch (op) { case binary_operator::EQUAL: [[fallthrough]]; case binary_operator::NULL_EQUALS: [[fallthrough]]; case binary_operator::NOT_EQUAL: detail::apply_struct_equality_op( out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, op, cudf::experimental::row::equality::nan_equal_physical_equality_comparator{}, stream); break; case binary_operator::LESS: detail::apply_struct_binary_op<ops::Less>( out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, cudf::experimental::row::lexicographic::sorting_physical_element_comparator{}, stream); break; case binary_operator::GREATER: detail::apply_struct_binary_op<ops::Greater>( out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, cudf::experimental::row::lexicographic::sorting_physical_element_comparator{}, stream); break; case binary_operator::LESS_EQUAL: detail::apply_struct_binary_op<ops::LessEqual>( out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, cudf::experimental::row::lexicographic::sorting_physical_element_comparator{}, stream); break; case binary_operator::GREATER_EQUAL: detail::apply_struct_binary_op<ops::GreaterEqual>( out, lhs, rhs, is_lhs_scalar, is_rhs_scalar, cudf::experimental::row::lexicographic::sorting_physical_element_comparator{}, stream); break; default: CUDF_FAIL("Unsupported operator for structs"); } } } // namespace detail } // namespace compiled } // namespace binops } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/ShiftLeft.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::ShiftLeft>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/NullLogicalOr.cu
/* * Copyright (c) 2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::NullLogicalOr>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); } // namespace cudf::binops::compiled
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/equality_ops.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { void dispatch_equality_op(mutable_column_view& out, column_view const& lhs, column_view const& rhs, bool is_lhs_scalar, bool is_rhs_scalar, binary_operator op, rmm::cuda_stream_view stream) { CUDF_EXPECTS(op == binary_operator::EQUAL || op == binary_operator::NOT_EQUAL, "Unsupported operator for these types", cudf::data_type_error); auto common_dtype = get_common_type(out.type(), lhs.type(), rhs.type()); auto outd = mutable_column_device_view::create(out, stream); auto lhsd = column_device_view::create(lhs, stream); auto rhsd = column_device_view::create(rhs, stream); if (common_dtype) { if (op == binary_operator::EQUAL) { for_each(stream, out.size(), binary_op_device_dispatcher<ops::Equal>{ *common_dtype, *outd, *lhsd, *rhsd, is_lhs_scalar, is_rhs_scalar}); } else if (op == binary_operator::NOT_EQUAL) { for_each(stream, out.size(), binary_op_device_dispatcher<ops::NotEqual>{ *common_dtype, *outd, *lhsd, *rhsd, is_lhs_scalar, is_rhs_scalar}); } } else { if (op == binary_operator::EQUAL) { for_each(stream, out.size(), binary_op_double_device_dispatcher<ops::Equal>{ *outd, *lhsd, *rhsd, is_lhs_scalar, is_rhs_scalar}); } else if (op == binary_operator::NOT_EQUAL) { for_each(stream, out.size(), binary_op_double_device_dispatcher<ops::NotEqual>{ *outd, *lhsd, *rhsd, is_lhs_scalar, is_rhs_scalar}); } } } } // namespace cudf::binops::compiled
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/Greater.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::Greater>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/Mod.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::Mod>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/PMod.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::PMod>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/TrueDiv.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::TrueDiv>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/struct_binary_ops.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "binary_ops.hpp" #include "operation.cuh" #include <cudf/binaryop.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_view.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/table/experimental/row_operators.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/tabulate.h> namespace cudf::binops::compiled::detail { template <class T, class... Ts> inline constexpr bool is_any_v = std::disjunction<std::is_same<T, Ts>...>::value; template <typename OptionalIterator, typename DeviceComparator> struct device_comparison_functor { // Explicit constructor definition required to avoid a "no instance of constructor" compilation // error device_comparison_functor(OptionalIterator const optional_iter, bool const is_lhs_scalar, bool const is_rhs_scalar, DeviceComparator const& comparator) : _optional_iter(optional_iter), _is_lhs_scalar(is_lhs_scalar), _is_rhs_scalar(is_rhs_scalar), _comparator(comparator) { } bool __device__ operator()(size_type i) { return _optional_iter[i].has_value() && _comparator(cudf::experimental::row::lhs_index_type{_is_lhs_scalar ? 0 : i}, cudf::experimental::row::rhs_index_type{_is_rhs_scalar ? 0 : i}); } OptionalIterator const _optional_iter; bool const _is_lhs_scalar; bool const _is_rhs_scalar; DeviceComparator const _comparator; }; template <class BinaryOperator, typename PhysicalElementComparator = cudf::experimental::row::lexicographic::sorting_physical_element_comparator> void apply_struct_binary_op(mutable_column_view& out, column_view const& lhs, column_view const& rhs, bool is_lhs_scalar, bool is_rhs_scalar, PhysicalElementComparator comparator, rmm::cuda_stream_view stream) { auto const compare_orders = std::vector<order>( lhs.size(), is_any_v<BinaryOperator, ops::Greater, ops::GreaterEqual> ? order::DESCENDING : order::ASCENDING); auto const tlhs = table_view{{lhs}}; auto const trhs = table_view{{rhs}}; auto const table_comparator = cudf::experimental::row::lexicographic::two_table_comparator{ tlhs, trhs, compare_orders, {}, stream}; auto outd = column_device_view::create(out, stream); auto optional_iter = cudf::detail::make_optional_iterator<bool>(*outd, nullate::DYNAMIC{out.has_nulls()}); auto const comparator_nulls = nullate::DYNAMIC{has_nested_nulls(tlhs) || has_nested_nulls(trhs)}; auto tabulate_device_operator = [&](auto device_comparator) { thrust::tabulate( rmm::exec_policy(stream), out.begin<bool>(), out.end<bool>(), device_comparison_functor{optional_iter, is_lhs_scalar, is_rhs_scalar, device_comparator}); }; if (cudf::detail::has_nested_columns(tlhs) || cudf::detail::has_nested_columns(trhs)) { is_any_v<BinaryOperator, ops::LessEqual, ops::GreaterEqual> ? tabulate_device_operator( table_comparator.less_equivalent<true>(comparator_nulls, comparator)) : tabulate_device_operator(table_comparator.less<true>(comparator_nulls, comparator)); } else { is_any_v<BinaryOperator, ops::LessEqual, ops::GreaterEqual> ? tabulate_device_operator( table_comparator.less_equivalent<false>(comparator_nulls, comparator)) : tabulate_device_operator(table_comparator.less<false>(comparator_nulls, comparator)); } } template <typename OptionalIteratorType, typename DeviceComparatorType> struct struct_equality_functor { struct_equality_functor(OptionalIteratorType optional_iter, DeviceComparatorType device_comparator, bool is_lhs_scalar, bool is_rhs_scalar, bool preserve_output) : _optional_iter(optional_iter), _device_comparator(device_comparator), _is_lhs_scalar(is_lhs_scalar), _is_rhs_scalar(is_rhs_scalar), _preserve_output(preserve_output) { } auto __device__ operator()(size_type i) const noexcept { auto const lhs = cudf::experimental::row::lhs_index_type{_is_lhs_scalar ? 0 : i}; auto const rhs = cudf::experimental::row::rhs_index_type{_is_rhs_scalar ? 0 : i}; return _optional_iter[i].has_value() and (_device_comparator(lhs, rhs) == _preserve_output); } private: OptionalIteratorType _optional_iter; DeviceComparatorType _device_comparator; bool _is_lhs_scalar; bool _is_rhs_scalar; bool _preserve_output; }; template <typename PhysicalEqualityComparator = cudf::experimental::row::equality::physical_equality_comparator> void apply_struct_equality_op(mutable_column_view& out, column_view const& lhs, column_view const& rhs, bool is_lhs_scalar, bool is_rhs_scalar, binary_operator op, PhysicalEqualityComparator comparator, rmm::cuda_stream_view stream) { CUDF_EXPECTS(op == binary_operator::EQUAL || op == binary_operator::NOT_EQUAL || op == binary_operator::NULL_EQUALS, "Unsupported operator for these types", cudf::data_type_error); auto tlhs = table_view{{lhs}}; auto trhs = table_view{{rhs}}; auto table_comparator = cudf::experimental::row::equality::two_table_comparator{tlhs, trhs, stream}; auto outd = column_device_view::create(out, stream); auto optional_iter = cudf::detail::make_optional_iterator<bool>(*outd, nullate::DYNAMIC{out.has_nulls()}); auto const comparator_helper = [&](auto const device_comparator) { thrust::tabulate(rmm::exec_policy(stream), out.begin<bool>(), out.end<bool>(), struct_equality_functor<decltype(optional_iter), decltype(device_comparator)>( optional_iter, device_comparator, is_lhs_scalar, is_rhs_scalar, op != binary_operator::NOT_EQUAL)); }; if (cudf::detail::has_nested_columns(tlhs) or cudf::detail::has_nested_columns(trhs)) { auto device_comparator = table_comparator.equal_to<true>( nullate::DYNAMIC{has_nested_nulls(tlhs) || has_nested_nulls(trhs)}, null_equality::EQUAL, comparator); comparator_helper(device_comparator); } else { auto device_comparator = table_comparator.equal_to<false>( nullate::DYNAMIC{has_nested_nulls(tlhs) || has_nested_nulls(trhs)}, null_equality::EQUAL, comparator); comparator_helper(device_comparator); } } } // namespace cudf::binops::compiled::detail
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/Add.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::Add>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); }
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/compiled/NullLogicalAnd.cu
/* * Copyright (c) 2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary_ops.cuh" namespace cudf::binops::compiled { template void apply_binary_op<ops::NullLogicalAnd>(mutable_column_view&, column_view const&, column_view const&, bool is_lhs_scalar, bool is_rhs_scalar, rmm::cuda_stream_view); } // namespace cudf::binops::compiled
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/jit/kernel.cu
/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Copyright 2018-2019 BlazingDB, Inc. * Copyright 2018 Christian Noboa Mardini <[email protected]> * Copyright 2018 Rommel Quintanilla <[email protected]> * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/types.hpp> #include <cudf/utilities/bit.hpp> #include <cudf/wrappers/durations.hpp> #include <cudf/wrappers/timestamps.hpp> #include <binaryop/jit/operation-udf.hpp> #include <cuda/std/type_traits> namespace cudf { namespace binops { namespace jit { struct UserDefinedOp { template <typename TypeOut, typename TypeLhs, typename TypeRhs> static TypeOut operate(TypeLhs x, TypeRhs y) { TypeOut output; using TypeCommon = typename cuda::std::common_type<TypeOut, TypeLhs, TypeRhs>::type; GENERIC_BINARY_OP(&output, static_cast<TypeCommon>(x), static_cast<TypeCommon>(y)); return output; } }; template <typename TypeOut, typename TypeLhs, typename TypeRhs, typename TypeOpe> __global__ void kernel_v_v(cudf::size_type size, TypeOut* out_data, TypeLhs* lhs_data, TypeRhs* rhs_data) { int tid = threadIdx.x; int blkid = blockIdx.x; int blksz = blockDim.x; int gridsz = gridDim.x; int start = tid + blkid * blksz; int step = blksz * gridsz; for (cudf::size_type i = start; i < size; i += step) { out_data[i] = TypeOpe::template operate<TypeOut, TypeLhs, TypeRhs>(lhs_data[i], rhs_data[i]); } } template <typename TypeOut, typename TypeLhs, typename TypeRhs, typename TypeOpe> __global__ void kernel_v_v_with_validity(cudf::size_type size, TypeOut* out_data, TypeLhs* lhs_data, TypeRhs* rhs_data, cudf::bitmask_type* output_mask, cudf::bitmask_type const* lhs_mask, cudf::size_type lhs_offset, cudf::bitmask_type const* rhs_mask, cudf::size_type rhs_offset) { int tid = threadIdx.x; int blkid = blockIdx.x; int blksz = blockDim.x; int gridsz = gridDim.x; int start = tid + blkid * blksz; int step = blksz * gridsz; for (cudf::size_type i = start; i < size; i += step) { bool output_valid = false; out_data[i] = TypeOpe::template operate<TypeOut, TypeLhs, TypeRhs>( lhs_data[i], rhs_data[i], lhs_mask ? cudf::bit_is_set(lhs_mask, lhs_offset + i) : true, rhs_mask ? cudf::bit_is_set(rhs_mask, rhs_offset + i) : true, output_valid); if (output_mask && !output_valid) cudf::clear_bit(output_mask, i); } } } // namespace jit } // namespace binops } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/binaryop
rapidsai_public_repos/cudf/cpp/src/binaryop/jit/operation-udf.hpp
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once // This file serves as a placeholder for user defined functions, so jitify can choose to override it // at runtime.
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/encode.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/transform.hpp> #include <cudf/detail/unary.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/dictionary/encode.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace dictionary { namespace detail { /** * @copydoc cudf::dictionary::encode * * @param stream CUDA stream used for device memory operations and kernel launches. */ std::unique_ptr<column> encode(column_view const& input_column, data_type indices_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_unsigned(indices_type), "indices must be type unsigned integer"); CUDF_EXPECTS(input_column.type().id() != type_id::DICTIONARY32, "cannot encode a dictionary from a dictionary"); auto codified = cudf::detail::encode(cudf::table_view({input_column}), stream, mr); auto keys_table = std::move(codified.first); auto indices_column = std::move(codified.second); auto keys_column = std::move(keys_table->release().front()); if (keys_column->has_nulls()) { keys_column = std::make_unique<column>( cudf::detail::slice( keys_column->view(), std::vector<size_type>{0, keys_column->size() - 1}, stream) .front(), stream, mr); keys_column->set_null_mask(rmm::device_buffer{0, stream, mr}, 0); // remove the null-mask } // the encode() returns INT32 for indices if (indices_column->type().id() != indices_type.id()) indices_column = cudf::detail::cast(indices_column->view(), indices_type, stream, mr); // create column with keys_column and indices_column return make_dictionary_column(std::move(keys_column), std::move(indices_column), cudf::detail::copy_bitmask(input_column, stream, mr), input_column.null_count()); } /** * @copydoc cudf::dictionary::detail::get_indices_type_for_size */ data_type get_indices_type_for_size(size_type keys_size) { if (keys_size <= std::numeric_limits<uint8_t>::max()) return data_type{type_id::UINT8}; if (keys_size <= std::numeric_limits<uint16_t>::max()) return data_type{type_id::UINT16}; return data_type{type_id::UINT32}; } } // namespace detail // external API std::unique_ptr<column> encode(column_view const& input_column, data_type indices_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::encode(input_column, indices_type, stream, mr); } } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/replace.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy.hpp> #include <cudf/detail/copy_if_else.cuh> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/unary.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/detail/replace.hpp> #include <cudf/dictionary/detail/search.hpp> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace dictionary { namespace detail { namespace { /** * @brief This utility uses `copy_if_else` to replace null entries using the input bitmask as a * predicate. * * The predicate identifies which column row to copy from and the bitmask specifies which rows * are null. Since the `copy_if_else` accepts iterators, we also supply it with pair-iterators * created from indexalators and the validity masks. * * @tparam ReplacementItr must be a pair iterator of (index,valid). * * @param input lhs for `copy_if_else` * @param replacement_iter rhs for `copy_if_else` * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory. * @return Always returns column of type INT32 (size_type) */ template <typename ReplacementIter> std::unique_ptr<column> replace_indices(column_view const& input, ReplacementIter replacement_iter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const input_view = column_device_view::create(input, stream); auto const d_input = *input_view; auto predicate = [d_input] __device__(auto i) { return d_input.is_valid(i); }; auto input_iterator = cudf::detail::indexalator_factory::make_input_optional_iterator(input); return cudf::detail::copy_if_else(true, input_iterator, input_iterator + input.size(), replacement_iter, predicate, data_type{type_to_id<size_type>()}, stream, mr); } } // namespace /** * @copydoc cudf::dictionary::detail::replace_nulls(cudf::column_view const&,cudf::column_view * const& rmm::cuda_stream_view, rmm::mr::device_memory_resource*) */ std::unique_ptr<column> replace_nulls(dictionary_column_view const& input, dictionary_column_view const& replacement, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) { return cudf::empty_like(input.parent()); } if (!input.has_nulls()) { return std::make_unique<cudf::column>(input.parent(), stream, mr); } CUDF_EXPECTS(input.keys().type() == replacement.keys().type(), "keys must match"); CUDF_EXPECTS(replacement.size() == input.size(), "column sizes must match"); // first combine the keys so both input dictionaries have the same set auto matched = match_dictionaries(std::vector<dictionary_column_view>({input, replacement}), stream, mr); // now build the new indices by doing replace-null using the updated input indices auto const input_indices = dictionary_column_view(matched.front()->view()).get_indices_annotated(); auto const repl_indices = dictionary_column_view(matched.back()->view()).get_indices_annotated(); auto new_indices = replace_indices(input_indices, cudf::detail::indexalator_factory::make_input_optional_iterator(repl_indices), stream, mr); return make_dictionary_column( std::move(matched.front()->release().children.back()), std::move(new_indices), stream, mr); } /** * @copydoc cudf::dictionary::detail::replace_nulls(cudf::column_view const&,cudf::scalar * const&, rmm::cuda_stream_view, rmm::mr::device_memory_resource*) */ std::unique_ptr<column> replace_nulls(dictionary_column_view const& input, scalar const& replacement, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) { return cudf::empty_like(input.parent()); } if (!input.has_nulls() || !replacement.is_valid(stream)) { return std::make_unique<cudf::column>(input.parent(), stream, mr); } CUDF_EXPECTS(input.keys().type() == replacement.type(), "keys must match scalar type"); // first add the replacement to the keys so only the indices need to be processed auto input_matched = dictionary::detail::add_keys( input, make_column_from_scalar(replacement, 1, stream)->view(), stream, mr); auto const input_view = dictionary_column_view(input_matched->view()); auto const scalar_index = get_index(input_view, replacement, stream, rmm::mr::get_current_device_resource()); // now build the new indices by doing replace-null on the updated indices auto const input_indices = input_view.get_indices_annotated(); auto new_indices = replace_indices(input_indices, cudf::detail::indexalator_factory::make_input_optional_iterator(*scalar_index), stream, mr); new_indices->set_null_mask(rmm::device_buffer{0, stream, mr}, 0); return make_dictionary_column( std::move(input_matched->release().children.back()), std::move(new_indices), stream, mr); } } // namespace detail } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/dictionary_column_view.cpp
/* * Copyright (c) 2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/error.hpp> namespace cudf { // dictionary_column_view::dictionary_column_view(column_view const& dictionary_column) : column_view(dictionary_column) { CUDF_EXPECTS(type().id() == type_id::DICTIONARY32, "dictionary_column_view only supports DICTIONARY type"); if (size() > 0) CUDF_EXPECTS(num_children() == 2, "dictionary column has no children"); } column_view dictionary_column_view::parent() const noexcept { return static_cast<column_view>(*this); } column_view dictionary_column_view::indices() const noexcept { return child(0); } column_view dictionary_column_view::get_indices_annotated() const noexcept { return column_view( indices().type(), size(), indices().head(), null_mask(), null_count(), offset()); } column_view dictionary_column_view::keys() const noexcept { return child(1); } size_type dictionary_column_view::keys_size() const noexcept { return (size() == 0) ? 0 : keys().size(); } data_type dictionary_column_view::keys_type() const noexcept { return (size() == 0) ? data_type{type_id::EMPTY} : keys().type(); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/dictionary_factories.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/unary.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace { struct dispatch_create_indices { template <typename IndexType, std::enable_if_t<is_index_type<IndexType>()>* = nullptr> std::unique_ptr<column> operator()(column_view const& indices, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(std::is_unsigned<IndexType>(), "indices must be an unsigned type"); column_view indices_view{ indices.type(), indices.size(), indices.data<IndexType>(), nullptr, 0, indices.offset()}; return std::make_unique<column>(indices_view, stream, mr); } template <typename IndexType, std::enable_if_t<!is_index_type<IndexType>()>* = nullptr> std::unique_ptr<column> operator()(column_view const&, rmm::cuda_stream_view, rmm::mr::device_memory_resource*) { CUDF_FAIL("indices must be an integer type."); } }; } // namespace std::unique_ptr<column> make_dictionary_column(column_view const& keys_column, column_view const& indices_column, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(!keys_column.has_nulls(), "keys column must not have nulls"); if (keys_column.is_empty()) return make_empty_column(type_id::DICTIONARY32); auto keys_copy = std::make_unique<column>(keys_column, stream, mr); auto indices_copy = type_dispatcher(indices_column.type(), dispatch_create_indices{}, indices_column, stream, mr); rmm::device_buffer null_mask{0, stream, mr}; auto null_count = indices_column.null_count(); if (null_count) null_mask = detail::copy_bitmask(indices_column, stream, mr); std::vector<std::unique_ptr<column>> children; children.emplace_back(std::move(indices_copy)); children.emplace_back(std::move(keys_copy)); return std::make_unique<column>(data_type{type_id::DICTIONARY32}, indices_column.size(), rmm::device_buffer{0, stream, mr}, std::move(null_mask), null_count, std::move(children)); } std::unique_ptr<column> make_dictionary_column(std::unique_ptr<column> keys_column, std::unique_ptr<column> indices_column, rmm::device_buffer&& null_mask, size_type null_count) { CUDF_EXPECTS(!keys_column->has_nulls(), "keys column must not have nulls"); CUDF_EXPECTS(!indices_column->has_nulls(), "indices column must not have nulls"); CUDF_EXPECTS(is_unsigned(indices_column->type()), "indices must be type unsigned integer"); auto count = indices_column->size(); std::vector<std::unique_ptr<column>> children; children.emplace_back(std::move(indices_column)); children.emplace_back(std::move(keys_column)); return std::make_unique<column>(data_type{type_id::DICTIONARY32}, count, rmm::device_buffer{}, std::move(null_mask), null_count, std::move(children)); } namespace { /** * @brief This functor maps signed type_ids to unsigned counterparts. */ struct make_unsigned_fn { template <typename T, std::enable_if_t<is_index_type<T>()>* = nullptr> constexpr cudf::type_id operator()() { return cudf::type_to_id<std::make_unsigned_t<T>>(); } template <typename T, std::enable_if_t<not is_index_type<T>()>* = nullptr> constexpr cudf::type_id operator()() { return cudf::type_to_id<T>(); } }; } // namespace std::unique_ptr<column> make_dictionary_column(std::unique_ptr<column> keys, std::unique_ptr<column> indices, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(!keys->has_nulls(), "keys column must not have nulls"); // signed integer data can be used directly in the unsigned indices column auto const indices_type = cudf::type_dispatcher(indices->type(), make_unsigned_fn{}); auto const indices_size = indices->size(); // these need to be saved auto const null_count = indices->null_count(); // before calling release() auto contents = indices->release(); // compute the indices type using the size of the key set auto const new_type = dictionary::detail::get_indices_type_for_size(keys->size()); // create the dictionary indices: convert to unsigned and remove nulls auto indices_column = [&] { // If the types match, then just commandeer the column's data buffer. if (new_type.id() == indices_type) { return std::make_unique<column>( new_type, indices_size, std::move(*(contents.data.release())), rmm::device_buffer{}, 0); } // If the new type does not match, then convert the data. cudf::column_view cast_view{ cudf::data_type{indices_type}, indices_size, contents.data->data(), nullptr, 0}; return cudf::detail::cast(cast_view, new_type, stream, mr); }(); return make_dictionary_column(std::move(keys), std::move(indices_column), std::move(*(contents.null_mask.release())), null_count); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/remove_keys.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy_if.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/dictionary/update_keys.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/fill.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/scatter.h> #include <thrust/sequence.h> #include <thrust/transform.h> namespace cudf { namespace dictionary { namespace detail { namespace { /** * @brief Return a new dictionary by removing identified keys from the provided dictionary. * * This is a common utility for `remove_keys` and `remove_unused_keys` detail functions. * It will create a new dictionary with the remaining keys and create new indices values * to go with these new keys. * * @tparam KeysKeeper Function bool(size_type) that takes keys position index * and returns true if that key is to be used in the output dictionary. * @param dictionary_column The column to use for creating the new dictionary. * @param keys_to_keep_fn Called to determine which keys in `dictionary_column` to keep. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory. */ template <typename KeysKeeper> std::unique_ptr<column> remove_keys_fn(dictionary_column_view const& dictionary_column, KeysKeeper keys_to_keep_fn, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const keys_view = dictionary_column.keys(); auto const indices_type = dictionary_column.indices().type(); auto const max_size = dictionary_column.size(); // create/init indices map array auto map_indices = make_fixed_width_column(indices_type, keys_view.size(), mask_state::UNALLOCATED, stream); auto map_itr = cudf::detail::indexalator_factory::make_output_iterator(map_indices->mutable_view()); // init to max to identify new nulls thrust::fill(rmm::exec_policy(stream), map_itr, map_itr + keys_view.size(), max_size); // all valid indices are less than this value // build keys column and indices map std::unique_ptr<column> keys_column = [&] { // create keys positions column to identify original key positions after removing they keys auto keys_positions = [&] { auto positions = make_fixed_width_column( indices_type, keys_view.size(), cudf::mask_state::UNALLOCATED, stream); auto itr = cudf::detail::indexalator_factory::make_output_iterator(positions->mutable_view()); thrust::sequence(rmm::exec_policy(stream), itr, itr + keys_view.size()); return positions; }(); // copy the non-removed keys ( keys_to_keep_fn(idx)==true ) auto table_keys = cudf::detail::copy_if( table_view{{keys_view, keys_positions->view()}}, keys_to_keep_fn, stream, mr) ->release(); auto const filtered_view = table_keys[1]->view(); auto filtered_itr = cudf::detail::indexalator_factory::make_input_iterator(filtered_view); auto positions_itr = cudf::detail::indexalator_factory::make_input_iterator(keys_positions->view()); // build indices mapper // Example scatter([0,1,2][0,2,4][max,max,max,max,max]) => [0,max,1,max,2] thrust::scatter(rmm::exec_policy(stream), positions_itr, positions_itr + filtered_view.size(), filtered_itr, map_itr); return std::move(table_keys.front()); }(); // create non-nullable indices view with offset applied -- this is used as a gather map column_view indices_view(dictionary_column.indices().type(), dictionary_column.size(), dictionary_column.indices().head(), nullptr, 0, dictionary_column.offset()); // create new indices column // Example: gather([0,max,1,max,2],[4,0,3,1,2,2,2,4,0]) => [2,0,max,max,1,1,1,2,0] auto table_indices = cudf::detail::gather(table_view{{map_indices->view()}}, indices_view, cudf::out_of_bounds_policy::NULLIFY, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr) ->release(); std::unique_ptr<column> indices_column(std::move(table_indices.front())); indices_column->set_null_mask(rmm::device_buffer{}, 0); // compute new nulls -- merge the existing nulls with the newly created ones (value<0) auto const offset = dictionary_column.offset(); auto d_null_mask = dictionary_column.null_mask(); auto indices_itr = cudf::detail::indexalator_factory::make_input_iterator(indices_column->view()); auto new_nulls = cudf::detail::valid_if( thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(dictionary_column.size()), [offset, d_null_mask, indices_itr, max_size] __device__(size_type idx) { if (d_null_mask && !bit_is_set(d_null_mask, idx + offset)) return false; return (indices_itr[idx] < max_size); // new nulls have max values }, stream, mr); rmm::device_buffer new_null_mask = (new_nulls.second > 0) ? std::move(new_nulls.first) : rmm::device_buffer{0, stream, mr}; // create column with keys_column and indices_column return make_dictionary_column( std::move(keys_column), std::move(indices_column), std::move(new_null_mask), new_nulls.second); } } // namespace std::unique_ptr<column> remove_keys(dictionary_column_view const& dictionary_column, column_view const& keys_to_remove, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(!keys_to_remove.has_nulls(), "keys_to_remove must not have nulls"); auto const keys_view = dictionary_column.keys(); CUDF_EXPECTS(keys_view.type() == keys_to_remove.type(), "keys types must match"); // locate keys to remove by searching the keys column auto const matches = cudf::detail::contains(keys_to_remove, keys_view, stream, mr); auto d_matches = matches->view().data<bool>(); // call common utility method to keep the keys not matched to keys_to_remove auto key_matcher = [d_matches] __device__(size_type idx) { return !d_matches[idx]; }; return remove_keys_fn(dictionary_column, key_matcher, stream, mr); } std::unique_ptr<column> remove_unused_keys(dictionary_column_view const& dictionary_column, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // locate the keys to remove auto const keys_size = dictionary_column.keys_size(); column_view indices_view = dictionary_column.get_indices_annotated(); // search the indices values with key indices to look for any holes auto const matches = [&] { // build keys index to verify against indices values rmm::device_uvector<uint32_t> keys_positions(keys_size, stream); thrust::sequence(rmm::exec_policy(stream), keys_positions.begin(), keys_positions.end()); // wrap the indices for comparison in contains() column_view keys_positions_view( data_type{type_id::UINT32}, keys_size, keys_positions.data(), nullptr, 0); return cudf::detail::contains(indices_view, keys_positions_view, stream, mr); }(); auto d_matches = matches->view().data<bool>(); // call common utility method to keep the keys that match auto key_matcher = [d_matches] __device__(size_type idx) { return d_matches[idx]; }; return remove_keys_fn(dictionary_column, key_matcher, stream, mr); } } // namespace detail // external APIs std::unique_ptr<column> remove_keys(dictionary_column_view const& dictionary_column, column_view const& keys_to_remove, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::remove_keys(dictionary_column, keys_to_remove, stream, mr); } std::unique_ptr<column> remove_unused_keys(dictionary_column_view const& dictionary_column, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::remove_unused_keys(dictionary_column, stream, mr); } } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/set_keys.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/concatenate.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <algorithm> #include <iterator> namespace cudf { namespace dictionary { namespace detail { namespace { /** * @brief Type-dispatch functor for remapping the old indices to new values based on the new * key-set. * * The dispatch is based on the key type. * The output column is the new indices column for the new dictionary column. */ struct dispatch_compute_indices { template <typename Element> std::enable_if_t<cudf::is_relationally_comparable<Element, Element>(), std::unique_ptr<column>> operator()(dictionary_column_view const& input, column_view const& new_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto dictionary_view = column_device_view::create(input.parent(), stream); auto dictionary_itr = make_dictionary_iterator<Element>(*dictionary_view); auto new_keys_view = column_device_view::create(new_keys, stream); auto begin = new_keys_view->begin<Element>(); auto end = new_keys_view->end<Element>(); // create output indices column auto result = make_numeric_column(get_indices_type_for_size(new_keys.size()), input.size(), mask_state::UNALLOCATED, stream, mr); auto result_itr = cudf::detail::indexalator_factory::make_output_iterator(result->mutable_view()); #ifdef NDEBUG thrust::lower_bound(rmm::exec_policy(stream), begin, end, dictionary_itr, dictionary_itr + input.size(), result_itr, thrust::less<Element>()); #else // There is a problem with thrust::lower_bound and the output_indexalator // https://github.com/NVIDIA/thrust/issues/1452; thrust team created nvbug 3322776 // This is a workaround. thrust::transform(rmm::exec_policy(stream), dictionary_itr, dictionary_itr + input.size(), result_itr, [begin, end] __device__(auto key) { auto itr = thrust::lower_bound(thrust::seq, begin, end, key); return static_cast<size_type>(thrust::distance(begin, itr)); }); #endif result->set_null_count(0); return result; } template <typename Element, typename... Args> std::enable_if_t<!cudf::is_relationally_comparable<Element, Element>(), std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("dictionary set_keys not supported for this column type"); } }; } // namespace // std::unique_ptr<column> set_keys(dictionary_column_view const& dictionary_column, column_view const& new_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(!new_keys.has_nulls(), "keys parameter must not have nulls"); auto keys = dictionary_column.keys(); CUDF_EXPECTS(keys.type() == new_keys.type(), "keys types must match"); // copy the keys -- use cudf::distinct to make sure there are no duplicates, // then sort the results. auto distinct_keys = cudf::detail::distinct(table_view{{new_keys}}, std::vector<size_type>{0}, duplicate_keep_option::KEEP_ANY, null_equality::EQUAL, nan_equality::ALL_EQUAL, stream, mr); auto sorted_keys = cudf::detail::sort(distinct_keys->view(), std::vector<order>{order::ASCENDING}, std::vector<null_order>{null_order::BEFORE}, stream, mr) ->release(); std::unique_ptr<column> keys_column(std::move(sorted_keys.front())); // compute the new nulls auto matches = cudf::detail::contains(keys_column->view(), keys, stream, mr); auto d_matches = matches->view().data<bool>(); auto indices_itr = cudf::detail::indexalator_factory::make_input_iterator(dictionary_column.indices()); auto d_null_mask = dictionary_column.null_mask(); auto new_nulls = cudf::detail::valid_if( thrust::make_counting_iterator<size_type>(dictionary_column.offset()), thrust::make_counting_iterator<size_type>(dictionary_column.offset() + dictionary_column.size()), [d_null_mask, indices_itr, d_matches] __device__(size_type idx) { if (d_null_mask && !bit_is_set(d_null_mask, idx)) return false; return d_matches[indices_itr[idx]]; }, stream, mr); // compute the new indices auto indices_column = type_dispatcher(keys_column->type(), dispatch_compute_indices{}, dictionary_column, keys_column->view(), stream, mr); // create column with keys_column and indices_column return make_dictionary_column(std::move(keys_column), std::move(indices_column), std::move(new_nulls.first), new_nulls.second); } std::vector<std::unique_ptr<column>> match_dictionaries( cudf::host_span<dictionary_column_view const> input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::vector<column_view> keys(input.size()); std::transform(input.begin(), input.end(), keys.begin(), [](auto& col) { return col.keys(); }); auto new_keys = cudf::detail::concatenate(keys, stream, rmm::mr::get_current_device_resource()); auto keys_view = new_keys->view(); std::vector<std::unique_ptr<column>> result(input.size()); std::transform(input.begin(), input.end(), result.begin(), [keys_view, mr, stream](auto& col) { return set_keys(col, keys_view, stream, mr); }); return result; } std::pair<std::vector<std::unique_ptr<column>>, std::vector<table_view>> match_dictionaries( std::vector<table_view> tables, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Make a copy of all the column views from each table_view std::vector<std::vector<column_view>> updated_columns; std::transform(tables.begin(), tables.end(), std::back_inserter(updated_columns), [](auto& t) { return std::vector<column_view>(t.begin(), t.end()); }); // Each column in a table must match in type. // Once a dictionary column is found, all the corresponding column_views in the // other table_views are matched. The matched column_views then replace the originals. std::vector<std::unique_ptr<column>> dictionary_columns; auto first_table = tables.front(); for (size_type col_idx = 0; col_idx < first_table.num_columns(); ++col_idx) { auto col = first_table.column(col_idx); if (col.type().id() == type_id::DICTIONARY32) { std::vector<dictionary_column_view> dict_views; // hold all column_views at col_idx std::transform( tables.begin(), tables.end(), std::back_inserter(dict_views), [col_idx](auto& t) { return dictionary_column_view(t.column(col_idx)); }); // now match the keys in these dictionary columns auto dict_cols = dictionary::detail::match_dictionaries(dict_views, stream, mr); // replace the updated_columns vector entries for the set of columns at col_idx auto dict_col_idx = 0; for (auto& v : updated_columns) v[col_idx] = dict_cols[dict_col_idx++]->view(); // move the updated dictionary columns into the main output vector std::move(dict_cols.begin(), dict_cols.end(), std::back_inserter(dictionary_columns)); } } // All the new column_views are in now updated_columns. // Rebuild the table_views from the column_views. std::vector<table_view> updated_tables; std::transform(updated_columns.begin(), updated_columns.end(), std::back_inserter(updated_tables), [](auto& v) { return table_view{v}; }); // Return the new dictionary columns and table_views return {std::move(dictionary_columns), std::move(updated_tables)}; } } // namespace detail // external API std::unique_ptr<column> set_keys(dictionary_column_view const& dictionary_column, column_view const& keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::set_keys(dictionary_column, keys, stream, mr); } std::vector<std::unique_ptr<column>> match_dictionaries( cudf::host_span<dictionary_column_view const> input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::match_dictionaries(input, stream, mr); } } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/search.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/dictionary/detail/search.hpp> #include <cudf/dictionary/search.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> namespace cudf { namespace dictionary { namespace detail { namespace { struct dispatch_scalar_index { template <typename IndexType, std::enable_if_t<is_index_type<IndexType>()>* = nullptr> std::unique_ptr<scalar> operator()(size_type index, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return std::make_unique<numeric_scalar<IndexType>>(index, is_valid, stream, mr); } template <typename IndexType, typename... Args, std::enable_if_t<not is_index_type<IndexType>()>* = nullptr> std::unique_ptr<scalar> operator()(Args&&...) { CUDF_FAIL("indices must be an integral type"); } }; /** * @brief Find index of a given key within a dictionary's keys column. * * The index is the position within the keys column where the given key (scalar) is found. * The keys column is sorted and unique so only one value is expected. * The result is an integer scalar identifying the index value. * If the key is not found, the resulting scalar has `is_valid()=false`. */ struct find_index_fn { template <typename Element, std::enable_if_t<not std::is_same_v<Element, dictionary32> and not std::is_same_v<Element, list_view> and not std::is_same_v<Element, struct_view>>* = nullptr> std::unique_ptr<scalar> operator()(dictionary_column_view const& input, scalar const& key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { if (!key.is_valid(stream)) return type_dispatcher(input.indices().type(), dispatch_scalar_index{}, 0, false, stream, mr); CUDF_EXPECTS(input.keys().type() == key.type(), "search key type must match dictionary keys type"); using ScalarType = cudf::scalar_type_t<Element>; auto find_key = static_cast<ScalarType const&>(key).value(stream); auto keys_view = column_device_view::create(input.keys(), stream); auto iter = thrust::equal_range( rmm::exec_policy(stream), keys_view->begin<Element>(), keys_view->end<Element>(), find_key); return type_dispatcher(input.indices().type(), dispatch_scalar_index{}, thrust::distance(keys_view->begin<Element>(), iter.first), (thrust::distance(iter.first, iter.second) > 0), stream, mr); } template < typename Element, std::enable_if_t<std::is_same_v<Element, dictionary32> or std::is_same_v<Element, list_view> or std::is_same_v<Element, struct_view>>* = nullptr> std::unique_ptr<scalar> operator()(dictionary_column_view const&, scalar const&, rmm::cuda_stream_view, rmm::mr::device_memory_resource*) const { CUDF_FAIL( "dictionary, list_view, and struct_view columns cannot be the keys column of a dictionary"); } }; struct find_insert_index_fn { template <typename Element, std::enable_if_t<not std::is_same_v<Element, dictionary32> and not std::is_same_v<Element, list_view> and not std::is_same_v<Element, struct_view>>* = nullptr> std::unique_ptr<scalar> operator()(dictionary_column_view const& input, scalar const& key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { if (!key.is_valid(stream)) return type_dispatcher(input.indices().type(), dispatch_scalar_index{}, 0, false, stream, mr); CUDF_EXPECTS(input.keys().type() == key.type(), "search key type must match dictionary keys type"); using ScalarType = cudf::scalar_type_t<Element>; auto find_key = static_cast<ScalarType const&>(key).value(stream); auto keys_view = column_device_view::create(input.keys(), stream); auto iter = thrust::lower_bound( rmm::exec_policy(stream), keys_view->begin<Element>(), keys_view->end<Element>(), find_key); return type_dispatcher(input.indices().type(), dispatch_scalar_index{}, thrust::distance(keys_view->begin<Element>(), iter), true, stream, mr); } template < typename Element, std::enable_if_t<std::is_same_v<Element, dictionary32> or std::is_same_v<Element, list_view> or std::is_same_v<Element, struct_view>>* = nullptr> std::unique_ptr<scalar> operator()(dictionary_column_view const&, scalar const&, rmm::cuda_stream_view, rmm::mr::device_memory_resource*) const { CUDF_FAIL("dictionary, list_view, and struct_view columns cannot be the keys for a dictionary"); } }; } // namespace std::unique_ptr<scalar> get_index(dictionary_column_view const& dictionary, scalar const& key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (dictionary.is_empty()) return std::make_unique<numeric_scalar<uint32_t>>(0, false, stream, mr); return type_dispatcher<dispatch_storage_type>( dictionary.keys().type(), find_index_fn(), dictionary, key, stream, mr); } std::unique_ptr<scalar> get_insert_index(dictionary_column_view const& dictionary, scalar const& key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (dictionary.is_empty()) return std::make_unique<numeric_scalar<uint32_t>>(0, false, stream, mr); return type_dispatcher<dispatch_storage_type>( dictionary.keys().type(), find_insert_index_fn(), dictionary, key, stream, mr); } } // namespace detail // external API std::unique_ptr<scalar> get_index(dictionary_column_view const& dictionary, scalar const& key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::get_index(dictionary, key, stream, mr); } } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/add_keys.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/concatenate.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/detail/unary.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/dictionary/update_keys.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/mr/device/per_device_resource.hpp> namespace cudf { namespace dictionary { namespace detail { /** * @brief Create a new dictionary column by adding the new keys elements * to the existing dictionary_column. * * ``` * Example: * d1 = {[a, b, c, d, f], {4, 0, 3, 1, 2, 2, 2, 4, 0}} * d2 = add_keys( d1, [d, b, e] ) * d2 is now {[a, b, c, d, e, f], [5, 0, 3, 1, 2, 2, 2, 5, 0]} * ``` */ std::unique_ptr<column> add_keys(dictionary_column_view const& dictionary_column, column_view const& new_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(!new_keys.has_nulls(), "Keys must not have nulls"); auto old_keys = dictionary_column.keys(); // [a,b,c,d,f] CUDF_EXPECTS(new_keys.type() == old_keys.type(), "Keys must be the same type"); // first, concatenate the keys together // [a,b,c,d,f] + [d,b,e] = [a,b,c,d,f,d,b,e] auto combined_keys = cudf::detail::concatenate( std::vector<column_view>{old_keys, new_keys}, stream, rmm::mr::get_current_device_resource()); // Drop duplicates from the combined keys, then sort the result. // sort(distinct([a,b,c,d,f,d,b,e])) = [a,b,c,d,e,f] auto table_keys = cudf::detail::distinct(table_view{{combined_keys->view()}}, std::vector<size_type>{0}, // only one key column duplicate_keep_option::KEEP_ANY, null_equality::EQUAL, nan_equality::ALL_EQUAL, stream, mr); std::vector<order> column_order{order::ASCENDING}; std::vector<null_order> null_precedence{null_order::AFTER}; // should be no nulls here auto sorted_keys = cudf::detail::sort(table_keys->view(), column_order, null_precedence, stream, mr)->release(); std::unique_ptr<column> keys_column(std::move(sorted_keys.front())); // create a map for the indices // lower_bound([a,b,c,d,e,f],[a,b,c,d,f]) = [0,1,2,3,5] auto map_indices = cudf::detail::lower_bound(table_view{{keys_column->view()}}, table_view{{old_keys}}, column_order, null_precedence, stream, mr); // now create the indices column -- map old values to the new ones // gather([4,0,3,1,2,2,2,4,0],[0,1,2,3,5]) = [5,0,3,1,2,2,2,5,0] column_view indices_view(dictionary_column.indices().type(), dictionary_column.size(), dictionary_column.indices().head(), nullptr, 0, dictionary_column.offset()); // the result may contain nulls if the input contains nulls // and the corresponding index is therefore invalid/undefined auto table_indices = cudf::detail::gather(table_view{{map_indices->view()}}, indices_view, cudf::out_of_bounds_policy::NULLIFY, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr) ->release(); // The output of lower_bound is INT32 but we need to convert to unsigned indices. auto const indices_type = get_indices_type_for_size(keys_column->size()); auto indices_column = [&] { column_view gather_result = table_indices.front()->view(); auto const indices_size = gather_result.size(); // we can just use the lower-bound/gather data directly for UINT32 case if (indices_type.id() == type_id::UINT32) { auto contents = table_indices.front()->release(); return std::make_unique<column>(data_type{type_id::UINT32}, indices_size, std::move(*(contents.data.release())), rmm::device_buffer{0, stream, mr}, 0); } // otherwise we need to convert the gather result column_view cast_view(gather_result.type(), indices_size, gather_result.head(), nullptr, 0); return cudf::detail::cast(cast_view, indices_type, stream, mr); }(); // create new dictionary column with keys_column and indices_column // null mask has not changed return make_dictionary_column(std::move(keys_column), std::move(indices_column), cudf::detail::copy_bitmask(dictionary_column.parent(), stream, mr), dictionary_column.null_count()); } } // namespace detail std::unique_ptr<column> add_keys(dictionary_column_view const& dictionary_column, column_view const& keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::add_keys(dictionary_column, keys, stream, mr); } } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/dictionary/decode.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/encode.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace dictionary { namespace detail { /** * @brief Decode a column from a dictionary. */ std::unique_ptr<column> decode(dictionary_column_view const& source, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (source.is_empty()) return make_empty_column(type_id::EMPTY); column_view indices{source.indices().type(), source.size(), source.indices().head(), nullptr, // no nulls for gather indices 0, source.offset()}; // use gather to create the output column -- use ignore_out_of_bounds=true auto table_column = cudf::detail::gather(table_view{{source.keys()}}, indices, cudf::out_of_bounds_policy::NULLIFY, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr) ->release(); auto output_column = std::unique_ptr<column>(std::move(table_column.front())); // apply any nulls to the output column output_column->set_null_mask(cudf::detail::copy_bitmask(source.parent(), stream, mr), source.null_count()); return output_column; } } // namespace detail std::unique_ptr<column> decode(dictionary_column_view const& source, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::decode(source, stream, mr); } } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/dictionary
rapidsai_public_repos/cudf/cpp/src/dictionary/detail/merge.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/detail/merge.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/transform.h> namespace cudf { namespace dictionary { namespace detail { std::unique_ptr<column> merge(dictionary_column_view const& lcol, dictionary_column_view const& rcol, cudf::detail::index_vector const& row_order, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const lcol_iter = cudf::detail::indexalator_factory::make_input_iterator(lcol.indices()); auto const rcol_iter = cudf::detail::indexalator_factory::make_input_iterator(rcol.indices()); // create output indices column auto const merged_size = lcol.size() + rcol.size(); auto const indices_type = get_indices_type_for_size(merged_size); auto indices_column = make_fixed_width_column(indices_type, merged_size, cudf::mask_state::UNALLOCATED, stream, mr); auto output_iter = cudf::detail::indexalator_factory::make_output_iterator(indices_column->mutable_view()); // merge the input indices columns into the output column thrust::transform(rmm::exec_policy(stream), row_order.begin(), row_order.end(), output_iter, [lcol_iter, rcol_iter] __device__(auto const& index_pair) { auto const [side, index] = index_pair; return side == cudf::detail::side::LEFT ? lcol_iter[index] : rcol_iter[index]; }); // build dictionary; the validity mask is updated by the caller return make_dictionary_column( std::make_unique<column>(lcol.keys(), stream, mr), std::move(indices_column), cudf::detail::create_null_mask( lcol.has_nulls() || rcol.has_nulls() ? static_cast<size_t>(merged_size) : 0, mask_state::UNINITIALIZED, stream, mr), lcol.null_count() + rcol.null_count()); } } // namespace detail } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/dictionary
rapidsai_public_repos/cudf/cpp/src/dictionary/detail/concatenate.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/concatenate.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/sorting.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/dictionary/detail/concatenate.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/permutation_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/pair.h> #include <thrust/transform.h> #include <thrust/transform_scan.h> #include <algorithm> #include <vector> namespace cudf { namespace dictionary { namespace detail { namespace { /** * @brief Keys and indices offsets values. * * The first value is the keys offsets and the second values is the indices offsets. * These are offsets to the beginning of each input column after concatenating. */ using offsets_pair = thrust::pair<size_type, size_type>; /** * @brief Utility for calculating the offsets for the concatenated child columns * of the output dictionary column. */ struct compute_children_offsets_fn { /** * @brief Create the utility functor. * * The columns vector is converted into vector of column_view pointers so they * can be used in thrust::transform_exclusive_scan without causing the * compiler warning/error: "host/device function calling host function". * * @param columns The input dictionary columns. */ compute_children_offsets_fn(host_span<column_view const> columns) : columns_ptrs{columns.size()} { std::transform( columns.begin(), columns.end(), columns_ptrs.begin(), [](auto& cv) { return &cv; }); } /** * @brief Return the first keys().type of the dictionary columns. */ data_type get_keys_type() { auto const view(*std::find_if( columns_ptrs.begin(), columns_ptrs.end(), [](auto pcv) { return pcv->size() > 0; })); return dictionary_column_view(*view).keys().type(); } /** * @brief Create the offsets pair for the concatenated columns. * * Both vectors have the length of the number of input columns. * The sizes of each child (keys and indices) of the individual columns * are used to create the offsets. * * @param stream Stream used for allocating the output rmm::device_uvector. * @return Vector of offsets_pair objects for keys and indices. */ rmm::device_uvector<offsets_pair> create_children_offsets(rmm::cuda_stream_view stream) { std::vector<offsets_pair> offsets(columns_ptrs.size()); thrust::transform_exclusive_scan( thrust::host, columns_ptrs.begin(), columns_ptrs.end(), offsets.begin(), [](auto pcv) { dictionary_column_view view(*pcv); return offsets_pair{view.keys_size(), view.size()}; }, offsets_pair{0, 0}, [](auto lhs, auto rhs) { return offsets_pair{lhs.first + rhs.first, lhs.second + rhs.second}; }); return cudf::detail::make_device_uvector_sync( offsets, stream, rmm::mr::get_current_device_resource()); } private: std::vector<column_view const*> columns_ptrs; ///< pointer version of input column_view vector }; /** * @brief Type-dispatch functor for remapping the old indices to new values based * on the new key-set. * * The dispatch is based on the key type. * The output column is the updated indices child for the new dictionary column. */ struct dispatch_compute_indices { template <typename Element> std::enable_if_t<cudf::is_relationally_comparable<Element, Element>(), std::unique_ptr<column>> operator()(column_view const& all_keys, column_view const& all_indices, column_view const& new_keys, offsets_pair const* d_offsets, size_type const* d_map_to_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto keys_view = column_device_view::create(all_keys, stream); auto indices_view = column_device_view::create(all_indices, stream); auto d_all_indices = *indices_view; auto indices_itr = cudf::detail::indexalator_factory::make_input_iterator(all_indices); // map the concatenated indices to the concatenated keys auto all_itr = thrust::make_permutation_iterator( keys_view->begin<Element>(), thrust::make_transform_iterator( thrust::make_counting_iterator<size_type>(0), [d_offsets, d_map_to_keys, d_all_indices, indices_itr] __device__(size_type idx) { if (d_all_indices.is_null(idx)) return 0; return indices_itr[idx] + d_offsets[d_map_to_keys[idx]].first; })); auto new_keys_view = column_device_view::create(new_keys, stream); auto begin = new_keys_view->begin<Element>(); auto end = new_keys_view->end<Element>(); // create the indices output column auto result = make_numeric_column( all_indices.type(), all_indices.size(), mask_state::UNALLOCATED, stream, mr); auto result_itr = cudf::detail::indexalator_factory::make_output_iterator(result->mutable_view()); // new indices values are computed by matching the concatenated keys to the new key set #ifdef NDEBUG thrust::lower_bound(rmm::exec_policy(stream), begin, end, all_itr, all_itr + all_indices.size(), result_itr, thrust::less<Element>()); #else // There is a problem with thrust::lower_bound and the output_indexalator. // https://github.com/NVIDIA/thrust/issues/1452; thrust team created nvbug 3322776 // This is a workaround. thrust::transform(rmm::exec_policy(stream), all_itr, all_itr + all_indices.size(), result_itr, [begin, end] __device__(auto key) { auto itr = thrust::lower_bound(thrust::seq, begin, end, key); return static_cast<size_type>(thrust::distance(begin, itr)); }); #endif return result; } template <typename Element, typename... Args> std::enable_if_t<!cudf::is_relationally_comparable<Element, Element>(), std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("dictionary concatenate not supported for this column type"); } }; } // namespace std::unique_ptr<column> concatenate(host_span<column_view const> columns, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // exception here is the same behavior as in cudf::concatenate CUDF_EXPECTS(not columns.empty(), "Unexpected empty list of columns to concatenate."); // concatenate the keys (and check the keys match) compute_children_offsets_fn child_offsets_fn{columns}; auto keys_type = child_offsets_fn.get_keys_type(); std::vector<column_view> keys_views(columns.size()); std::transform(columns.begin(), columns.end(), keys_views.begin(), [keys_type](auto cv) { auto dict_view = dictionary_column_view(cv); // empty column may not have keys so we create an empty column_view place-holder if (dict_view.is_empty()) return column_view{keys_type, 0, nullptr, nullptr, 0}; auto keys = dict_view.keys(); CUDF_EXPECTS(keys.type() == keys_type, "key types of all dictionary columns must match"); return keys; }); auto all_keys = cudf::detail::concatenate(keys_views, stream, rmm::mr::get_current_device_resource()); // sort keys and remove duplicates; // this becomes the keys child for the output dictionary column auto table_keys = cudf::detail::distinct(table_view{{all_keys->view()}}, std::vector<size_type>{0}, duplicate_keep_option::KEEP_ANY, null_equality::EQUAL, nan_equality::ALL_EQUAL, stream, mr); auto sorted_keys = cudf::detail::sort(table_keys->view(), std::vector<order>{order::ASCENDING}, std::vector<null_order>{null_order::BEFORE}, stream, mr) ->release(); std::unique_ptr<column> keys_column(std::move(sorted_keys.front())); // next, concatenate the indices std::vector<column_view> indices_views(columns.size()); std::transform(columns.begin(), columns.end(), indices_views.begin(), [](auto cv) { auto dict_view = dictionary_column_view(cv); if (dict_view.is_empty()) { return column_view{data_type{type_id::UINT32}, 0, nullptr, nullptr, 0}; } return dict_view.get_indices_annotated(); // nicely includes validity mask and view offset }); auto all_indices = cudf::detail::concatenate(indices_views, stream, mr); auto const indices_size = all_indices->size(); // build a vector of values to map the old indices to the concatenated keys auto children_offsets = child_offsets_fn.create_children_offsets(stream); rmm::device_uvector<size_type> map_to_keys(indices_size, stream); auto indices_itr = cudf::detail::make_counting_transform_iterator(1, [] __device__(size_type idx) { return offsets_pair{0, idx}; }); // the indices offsets (pair.second) are for building the map thrust::lower_bound( rmm::exec_policy(stream), children_offsets.begin() + 1, children_offsets.end(), indices_itr, indices_itr + indices_size, map_to_keys.begin(), [] __device__(auto const& lhs, auto const& rhs) { return lhs.second < rhs.second; }); // now recompute the indices values for the new keys_column; // the keys offsets (pair.first) are for mapping to the input keys auto indices_column = type_dispatcher(keys_type, dispatch_compute_indices{}, all_keys->view(), // old keys all_indices->view(), // old indices keys_column->view(), // new keys children_offsets.data(), map_to_keys.data(), stream, mr); // remove the bitmask from the all_indices auto null_count = all_indices->null_count(); // get before release() auto contents = all_indices->release(); // all_indices will now be empty // finally, frankenstein that dictionary column together return make_dictionary_column(std::move(keys_column), std::move(indices_column), std::move(*(contents.null_mask.release())), null_count); } } // namespace detail } // namespace dictionary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/json/json_path.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/json/json.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/detail/utilities.hpp> #include <cudf/strings/string_view.cuh> #include <cudf/strings/strings_column_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/bit.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <io/utilities/parsing_utils.cuh> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/optional.h> #include <thrust/pair.h> #include <thrust/scan.h> #include <thrust/tuple.h> namespace cudf { namespace detail { namespace { // change to "\n" and 1 to make output more readable #define DEBUG_NEWLINE constexpr int DEBUG_NEWLINE_LEN = 0; /** * @brief Result of calling a parse function. * * The primary use of this is to distinguish between "success" and * "success but no data" return cases. For example, if you are reading the * values of an array you might call a parse function in a while loop. You * would want to continue doing this until you either encounter an error (parse_result::ERROR) * or you get nothing back (parse_result::EMPTY) */ enum class parse_result { ERROR, // failure SUCCESS, // success MISSING_FIELD, // success, but the field is missing EMPTY, // success, but no data }; /** * @brief Base parser class inherited by the (device-side) json_state class and * (host-side) path_state class. * * Contains a number of useful utility functions common to parsing json and * JSONPath strings. */ class parser { protected: CUDF_HOST_DEVICE inline parser() {} CUDF_HOST_DEVICE inline parser(char const* _input, int64_t _input_len) : input(_input), input_len(_input_len), pos(_input) { parse_whitespace(); } CUDF_HOST_DEVICE inline parser(parser const& p) : input(p.input), input_len(p.input_len), pos(p.pos) { } CUDF_HOST_DEVICE inline bool eof(char const* p) { return p - input >= input_len; } CUDF_HOST_DEVICE inline bool eof() { return eof(pos); } CUDF_HOST_DEVICE inline bool parse_whitespace() { while (!eof()) { if (is_whitespace(*pos)) { pos++; } else { return true; } } return false; } CUDF_HOST_DEVICE inline bool is_hex_digit(char c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); } CUDF_HOST_DEVICE inline int64_t chars_left() { return input_len - ((pos - input) + 1); } /** * @brief Parse an escape sequence. * * Must be a valid sequence as specified by the JSON format * https://www.json.org/json-en.html * * @returns True on success or false on fail. */ CUDF_HOST_DEVICE inline bool parse_escape_seq() { if (*pos != '\\') { return false; } char c = *++pos; // simple case if (c == '\"' || c == '\\' || c == '/' || c == 'b' || c == 'f' || c == 'n' || c == 'r' || c == 't') { pos++; return true; } // hex digits: must be of the form uXXXX where each X is a valid hex digit if (c == 'u' && chars_left() >= 4 && is_hex_digit(pos[1]) && is_hex_digit(pos[2]) && is_hex_digit(pos[3]) && is_hex_digit(pos[4])) { pos += 5; return true; } // an illegal escape sequence. return false; } /** * @brief Parse a quote-enclosed JSON string. * * @param[out] str The resulting string. * @param can_be_empty Parameter indicating whether it is valid for the string * to not be present. * @param quote Character expected as the surrounding quotes. A value of 0 * indicates allowing either single or double quotes (but not a mixture of both). * @returns A result code indicating success, failure or other result. */ CUDF_HOST_DEVICE inline parse_result parse_string(string_view& str, bool can_be_empty, char quote) { str = string_view(nullptr, 0); if (parse_whitespace()) { // if the user specifies 0 for quote, allow either ' or ". otherwise // use the char directly if ((quote == 0 && (*pos == '\'' || *pos == '\"')) || (quote == *pos)) { quote = *pos; char const* start = ++pos; while (!eof()) { // handle escaped characters if (*pos == '\\') { if (!parse_escape_seq()) { return parse_result::ERROR; } } else if (*pos == quote) { str = string_view(start, pos - start); pos++; return parse_result::SUCCESS; } else { pos++; } } } } return can_be_empty ? parse_result::EMPTY : parse_result::ERROR; } protected: char const* input{nullptr}; int64_t input_len{0}; char const* pos{nullptr}; CUDF_HOST_DEVICE inline bool is_whitespace(char c) { return c <= ' '; } }; /** * @brief Output buffer object. Used during the preprocess/size-computation step * and the actual output step. * * There is an important distinction between two cases: * * - producing no output at all. that is, the query matched nothing in the input. * - producing empty output. the query matched something in the input, but the * value of the result is an empty string. * * The `has_output` field is the flag which indicates whether or not the output * from the query should be considered empty or null. * */ struct json_output { size_t output_max_len; char* output; thrust::optional<size_t> output_len; __device__ void add_output(char const* str, size_t len) { if (output != nullptr) { memcpy(output + output_len.value_or(0), str, len); } output_len = output_len.value_or(0) + len; } __device__ void add_output(string_view const& str) { add_output(str.data(), str.size_bytes()); } }; enum json_element_type { NONE, OBJECT, ARRAY, VALUE }; /** * @brief Parsing class that holds the current state of the json to be parse and provides * functions for navigating through it. */ class json_state : private parser { public: __device__ json_state() : parser() {} __device__ json_state(char const* _input, int64_t _input_len, cudf::get_json_object_options _options) : parser(_input, _input_len), options(_options) { } __device__ json_state(json_state const& j) : parser(j), cur_el_start(j.cur_el_start), cur_el_type(j.cur_el_type), parent_el_type(j.parent_el_type), options(j.options) { } // retrieve the entire current element into the output __device__ parse_result extract_element(json_output* output, bool list_element) { char const* start = cur_el_start; char const* end = start; // if we're a value type, do a simple value parse. if (cur_el_type == VALUE) { pos = cur_el_start; if (parse_value() != parse_result::SUCCESS) { return parse_result::ERROR; } end = pos; // potentially strip quotes from individually returned string values. if (options.get_strip_quotes_from_single_strings() && !list_element && is_quote(*start) && *(end - 1) == *start) { start++; end--; } } // otherwise, march through everything inside else { int obj_count = 0; int arr_count = 0; while (!eof(end)) { // parse strings explicitly so we handle all interesting corner cases (such as strings // containing {, }, [ or ] if (is_quote(*end)) { string_view str; pos = end; if (parse_string(str, false, *end) == parse_result::ERROR) { return parse_result::ERROR; } end = pos; } else { char const c = *end++; switch (c) { case '{': obj_count++; break; case '}': obj_count--; break; case '[': arr_count++; break; case ']': arr_count--; break; default: break; } } if (obj_count == 0 && arr_count == 0) { break; } } if (obj_count > 0 || arr_count > 0) { return parse_result::ERROR; } pos = end; } // parse trailing , if (parse_whitespace()) { if (*pos == ',') { pos++; } } if (output != nullptr) { output->add_output({start, static_cast<size_type>(end - start)}); } return parse_result::SUCCESS; } // skip the next element __device__ parse_result skip_element() { return extract_element(nullptr, false); } // advance to the next element __device__ parse_result next_element() { return next_element_internal(false); } // advance inside the current element __device__ parse_result child_element(json_element_type expected_type) { if (expected_type != NONE && cur_el_type != expected_type) { return parse_result::ERROR; } // if we succeed, record our parent element type. auto const prev_el_type = cur_el_type; auto const result = next_element_internal(true); if (result == parse_result::SUCCESS) { parent_el_type = prev_el_type; } return result; } // return the next element that matches the specified name. __device__ parse_result next_matching_element(string_view const& name, bool inclusive) { // if we're not including the current element, skip it if (!inclusive) { parse_result result = next_element_internal(false); if (result != parse_result::SUCCESS) { return result; } } // loop until we find a match or there's nothing left do { if (name.size_bytes() == 1 && name.data()[0] == '*') { return parse_result::SUCCESS; } else if (cur_el_name == name) { return parse_result::SUCCESS; } // next parse_result result = next_element_internal(false); if (result != parse_result::SUCCESS) { return options.get_missing_fields_as_nulls() && result == parse_result::EMPTY ? parse_result::MISSING_FIELD : result; } } while (true); return parse_result::ERROR; } /** * @brief Parse a name field for a JSON element. * * When parsing JSON objects, it is not always a requirement that the name * actually exists. For example, the outer object bounded by {} here has * no name, while the inner element "a" does. * * ``` * { * "a" : "b" * } * ``` * * The user can specify whether or not the name string must be present via * the `can_be_empty` flag. * * When a name is present, it must be followed by a colon `:` * * @param[out] name The resulting name. * @param can_be_empty Parameter indicating whether it is valid for the name * to not be present. * @returns A result code indicating success, failure or other result. */ CUDF_HOST_DEVICE inline parse_result parse_name(string_view& name, bool can_be_empty) { char const quote = options.get_allow_single_quotes() ? 0 : '\"'; if (parse_string(name, can_be_empty, quote) == parse_result::ERROR) { return parse_result::ERROR; } // if we got a real string, the next char must be a : if (name.size_bytes() > 0) { if (!parse_whitespace()) { return parse_result::ERROR; } if (*pos == ':') { pos++; return parse_result::SUCCESS; } } return parse_result::EMPTY; } private: /** * @brief Parse a non-string JSON value. * * Non-string values include numbers, true, false, or null. This function does not * do any validation of the value. * * @param val (Output) The string containing the parsed value * @returns A result code indicating success, failure or other result. */ CUDF_HOST_DEVICE inline parse_result parse_non_string_value(string_view& val) { if (!parse_whitespace()) { return parse_result::ERROR; } // parse to the end of the value char const* start = pos; char const* end = start; while (!eof(end)) { char const c = *end; if (c == ',' || c == '}' || c == ']' || is_whitespace(c)) { break; } // illegal chars if (c == '[' || c == '{' || c == ':' || is_quote(c)) { return parse_result::ERROR; } end++; } pos = end; val = string_view(start, end - start); return parse_result::SUCCESS; } // parse a value - either a string or a number/null/bool __device__ parse_result parse_value() { if (!parse_whitespace()) { return parse_result::ERROR; } // string or number? string_view unused; return is_quote(*pos) ? parse_string(unused, false, *pos) : parse_non_string_value(unused); } __device__ parse_result next_element_internal(bool child) { // if we're not getting a child element, skip the current element. // this will leave pos as the first character -after- the close of // the current element if (!child && cur_el_start != nullptr) { if (skip_element() == parse_result::ERROR) { return parse_result::ERROR; } cur_el_start = nullptr; } // otherwise pos will be at the first character within the current element // can only get the child of an object or array. // this could theoretically be handled as an error, but the evaluators I've found // seem to treat this as "it's nothing" if (child && (cur_el_type == VALUE || cur_el_type == NONE)) { return parse_result::EMPTY; } // what's next if (!parse_whitespace()) { return parse_result::EMPTY; } // if we're closing off a parent element, we're done char const c = *pos; if (c == ']' || c == '}') { return parse_result::EMPTY; } // if we're not accessing elements of an array, check for name. bool const array_access = (cur_el_type == ARRAY && child) || (parent_el_type == ARRAY && !child); if (!array_access && parse_name(cur_el_name, true) == parse_result::ERROR) { return parse_result::ERROR; } // element type if (!parse_whitespace()) { return parse_result::EMPTY; } switch (*pos++) { case '[': cur_el_type = ARRAY; break; case '{': cur_el_type = OBJECT; break; case ',': case ':': return parse_result::ERROR; case '\'': if (!options.get_allow_single_quotes()) { return parse_result::ERROR; } cur_el_type = VALUE; break; // value type default: cur_el_type = VALUE; break; } // the start of the current element is always at the value, not the name cur_el_start = pos - 1; return parse_result::SUCCESS; } CUDF_HOST_DEVICE inline bool is_quote(char c) { return (c == '\"') || (options.get_allow_single_quotes() && (c == '\'')); } char const* cur_el_start{nullptr}; // pointer to the first character of the -value- of the // current element - not the name string_view cur_el_name; // name of the current element (if applicable) json_element_type cur_el_type{json_element_type::NONE}; // type of the current element json_element_type parent_el_type{json_element_type::NONE}; // parent element type get_json_object_options options; // behavior options }; enum class path_operator_type { ROOT, CHILD, CHILD_WILDCARD, CHILD_INDEX, ERROR, END }; /** * @brief A "command" operator used to query a json string. A full query is * an array of these operators applied to the incoming json string, */ struct path_operator { CUDF_HOST_DEVICE inline path_operator() {} CUDF_HOST_DEVICE inline path_operator(path_operator_type _type, json_element_type _expected_type = NONE) : type(_type), expected_type{_expected_type} { } path_operator_type type{path_operator_type::ERROR}; // operator type // the expected element type we're applying this operation to. // for example: // - you cannot retrieve a subscripted field (eg [5]) from an object. // - you cannot retrieve a field by name (eg .book) from an array. // - you -can- use .* for both arrays and objects // a value of NONE implies any type accepted json_element_type expected_type{NONE}; // the expected type of the element we're working with string_view name; // name to match against (if applicable) int index{-1}; // index for subscript operator }; /** * @brief Parsing class that holds the current state of the JSONPath string to be parsed * and provides functions for navigating through it. This is only called on the host * during the preprocess step which builds a command buffer that the gpu uses. */ class path_state : private parser { public: path_state(char const* _path, size_t _path_len) : parser(_path, _path_len) {} // get the next operator in the JSONPath string path_operator get_next_operator() { if (eof()) { return {path_operator_type::END}; } switch (*pos++) { case '$': return {path_operator_type::ROOT}; case '.': { path_operator op; string_view term{".[", 2}; if (parse_path_name(op.name, term)) { // this is another potential use case for __SPARK_BEHAVIORS / configurability // Spark currently only handles the wildcard operator inside [*], it does // not handle .* if (op.name.size_bytes() == 1 && op.name.data()[0] == '*') { op.type = path_operator_type::CHILD_WILDCARD; op.expected_type = NONE; } else { op.type = path_operator_type::CHILD; op.expected_type = OBJECT; } return op; } } break; // 3 ways this can be used // indices: [0] // name: ['book'] // wildcard: [*] case '[': { path_operator op; string_view term{"]", 1}; bool const is_string = *pos == '\''; if (parse_path_name(op.name, term)) { pos++; if (op.name.size_bytes() == 1 && op.name.data()[0] == '*') { op.type = path_operator_type::CHILD_WILDCARD; op.expected_type = NONE; } else { if (is_string) { op.type = path_operator_type::CHILD; op.expected_type = OBJECT; } else { op.type = path_operator_type::CHILD_INDEX; auto const value = cudf::io::parse_numeric<int>( op.name.data(), op.name.data() + op.name.size_bytes(), json_opts); op.index = value.value_or(-1); CUDF_EXPECTS(op.index >= 0, "Invalid numeric index specified in JSONPath"); op.expected_type = ARRAY; } } return op; } } break; // wildcard operator case '*': { pos++; return path_operator{path_operator_type::CHILD_WILDCARD}; } break; default: CUDF_FAIL("Unrecognized JSONPath operator", std::invalid_argument); break; } return {path_operator_type::ERROR}; } private: cudf::io::parse_options_view json_opts{',', '\n', '\"', '.'}; bool parse_path_name(string_view& name, string_view const& terminators) { switch (*pos) { case '*': name = string_view(pos, 1); pos++; break; case '\'': if (parse_string(name, false, '\'') != parse_result::SUCCESS) { return false; } break; default: { size_t const chars_left = input_len - (pos - input); char const* end = std::find_first_of( pos, pos + chars_left, terminators.data(), terminators.data() + terminators.size_bytes()); if (end) { name = string_view(pos, end - pos); pos = end; } else { name = string_view(pos, chars_left); pos = input + input_len; } break; } } // an empty name is not valid CUDF_EXPECTS( name.size_bytes() > 0, "Invalid empty name in JSONPath query string", std::invalid_argument); return true; } }; /** * @brief Preprocess the incoming JSONPath string on the host to generate a * command buffer for use by the GPU. * * @param json_path The incoming json path * @param stream Cuda stream to perform any gpu actions on * @returns A pair containing the command buffer, and maximum stack depth required. */ std::pair<thrust::optional<rmm::device_uvector<path_operator>>, int> build_command_buffer( cudf::string_scalar const& json_path, rmm::cuda_stream_view stream) { std::string h_json_path = json_path.to_string(stream); path_state p_state(h_json_path.data(), static_cast<size_type>(h_json_path.size())); std::vector<path_operator> h_operators; path_operator op; int max_stack_depth = 1; do { op = p_state.get_next_operator(); if (op.type == path_operator_type::ERROR) { CUDF_FAIL("Encountered invalid JSONPath input string"); } if (op.type == path_operator_type::CHILD_WILDCARD) { max_stack_depth++; } // convert pointer to device pointer if (op.name.size_bytes() > 0) { op.name = string_view(json_path.data() + (op.name.data() - h_json_path.data()), op.name.size_bytes()); } if (op.type == path_operator_type::ROOT) { CUDF_EXPECTS(h_operators.size() == 0, "Root operator ($) can only exist at the root"); } // if we have not gotten a root operator to start, and we're not empty, quietly push a // root operator now. if (h_operators.size() == 0 && op.type != path_operator_type::ROOT && op.type != path_operator_type::END) { h_operators.push_back(path_operator{path_operator_type::ROOT}); } h_operators.push_back(op); } while (op.type != path_operator_type::END); auto const is_empty = h_operators.size() == 1 && h_operators[0].type == path_operator_type::END; return is_empty ? std::pair(thrust::nullopt, 0) : std::pair(thrust::make_optional(cudf::detail::make_device_uvector_sync( h_operators, stream, rmm::mr::get_current_device_resource())), max_stack_depth); } #define PARSE_TRY(_x) \ do { \ last_result = _x; \ if (last_result == parse_result::ERROR) { return parse_result::ERROR; } \ } while (0) /** * @brief Parse a single json string using the provided command buffer * * @param j_state The incoming json string and associated parser * @param commands The command buffer to be applied to the string. Always ends with a * path_operator_type::END * @param output Buffer user to store the results of the query * @returns A result code indicating success/fail/empty. */ template <int max_command_stack_depth> __device__ parse_result parse_json_path(json_state& j_state, path_operator const* commands, json_output& output) { // manually maintained context stack in lieu of calling parse_json_path recursively. struct context { json_state j_state; path_operator const* commands; bool list_element; bool state_flag; }; context stack[max_command_stack_depth]; int stack_pos = 0; auto push_context = [&stack, &stack_pos](json_state const& _j_state, path_operator const* _commands, bool _list_element = false, bool _state_flag = false) { if (stack_pos == max_command_stack_depth - 1) { return false; } stack[stack_pos++] = context{_j_state, _commands, _list_element, _state_flag}; return true; }; auto pop_context = [&stack, &stack_pos](context& c) { if (stack_pos > 0) { c = stack[--stack_pos]; return true; } return false; }; push_context(j_state, commands, false); parse_result last_result = parse_result::SUCCESS; context ctx; int element_count = 0; while (pop_context(ctx)) { path_operator op = *ctx.commands; switch (op.type) { // whatever the first object is case path_operator_type::ROOT: PARSE_TRY(ctx.j_state.next_element()); push_context(ctx.j_state, ctx.commands + 1); break; // .name // ['name'] // [1] // will return a single thing case path_operator_type::CHILD: { PARSE_TRY(ctx.j_state.child_element(op.expected_type)); if (last_result == parse_result::SUCCESS) { PARSE_TRY(ctx.j_state.next_matching_element(op.name, true)); if (last_result == parse_result::SUCCESS) { push_context(ctx.j_state, ctx.commands + 1, ctx.list_element); } else if (last_result == parse_result::MISSING_FIELD) { if (ctx.list_element && element_count > 0) { output.add_output({"," DEBUG_NEWLINE, 1 + DEBUG_NEWLINE_LEN}); } output.add_output({"null", 4}); element_count++; } } } break; // .* // [*] // will return an array of things case path_operator_type::CHILD_WILDCARD: { // if we're on the first element of this wildcard if (!ctx.state_flag) { // we will only ever be returning 1 array if (!ctx.list_element) { output.add_output({"[" DEBUG_NEWLINE, 1 + DEBUG_NEWLINE_LEN}); } // step into the child element PARSE_TRY(ctx.j_state.child_element(op.expected_type)); if (last_result == parse_result::EMPTY) { if (!ctx.list_element) { output.add_output({"]" DEBUG_NEWLINE, 1 + DEBUG_NEWLINE_LEN}); } last_result = parse_result::SUCCESS; break; } // first element PARSE_TRY(ctx.j_state.next_matching_element({"*", 1}, true)); if (last_result == parse_result::EMPTY) { if (!ctx.list_element) { output.add_output({"]" DEBUG_NEWLINE, 1 + DEBUG_NEWLINE_LEN}); } last_result = parse_result::SUCCESS; break; } // re-push ourselves push_context(ctx.j_state, ctx.commands, ctx.list_element, true); // push the next command push_context(ctx.j_state, ctx.commands + 1, true); } else { // next element PARSE_TRY(ctx.j_state.next_matching_element({"*", 1}, false)); if (last_result == parse_result::EMPTY) { if (!ctx.list_element) { output.add_output({"]" DEBUG_NEWLINE, 1 + DEBUG_NEWLINE_LEN}); } last_result = parse_result::SUCCESS; break; } // re-push ourselves push_context(ctx.j_state, ctx.commands, ctx.list_element, true); // push the next command push_context(ctx.j_state, ctx.commands + 1, true); } } break; // [0] // [1] // etc // returns a single thing case path_operator_type::CHILD_INDEX: { PARSE_TRY(ctx.j_state.child_element(op.expected_type)); if (last_result == parse_result::SUCCESS) { string_view const any{"*", 1}; PARSE_TRY(ctx.j_state.next_matching_element(any, true)); if (last_result == parse_result::SUCCESS) { int idx; for (idx = 1; idx <= op.index; idx++) { PARSE_TRY(ctx.j_state.next_matching_element(any, false)); if (last_result == parse_result::EMPTY) { break; } } // if we didn't end up at the index we requested, this is an invalid index if (idx - 1 != op.index) { return parse_result::ERROR; } push_context(ctx.j_state, ctx.commands + 1, ctx.list_element); } } } break; // some sort of error. case path_operator_type::ERROR: return parse_result::ERROR; break; // END case default: { if (ctx.list_element && element_count > 0) { output.add_output({"," DEBUG_NEWLINE, 1 + DEBUG_NEWLINE_LEN}); } PARSE_TRY(ctx.j_state.extract_element(&output, ctx.list_element)); if (ctx.list_element && last_result != parse_result::EMPTY) { element_count++; } } break; } } return parse_result::SUCCESS; } // hardcoding this for now. to reach a stack depth of 8 would require // a JSONPath containing 7 nested wildcards so this is probably reasonable. constexpr int max_command_stack_depth = 8; /** * @brief Parse a single json string using the provided command buffer * * This function exists primarily as a shim for debugging purposes. * * @param input The incoming json string * @param input_len Size of the incoming json string * @param commands The command buffer to be applied to the string. Always ends with a * path_operator_type::END * @param out_buf Buffer user to store the results of the query (nullptr in the size computation * step) * @param out_buf_size Size of the output buffer * @param options Options controlling behavior * @returns A pair containing the result code the output buffer. */ __device__ thrust::pair<parse_result, json_output> get_json_object_single( char const* input, size_t input_len, path_operator const* const commands, char* out_buf, size_t out_buf_size, get_json_object_options options) { json_state j_state(input, input_len, options); json_output output{out_buf_size, out_buf}; auto const result = parse_json_path<max_command_stack_depth>(j_state, commands, output); return {result, output}; } /** * @brief Kernel for running the JSONPath query. * * This kernel operates in a 2-pass way. On the first pass, it computes * output sizes. On the second pass it fills in the provided output buffers * (chars and validity) * * @param col Device view of the incoming string * @param commands JSONPath command buffer * @param output_offsets Buffer used to store the string offsets for the results of the query * @param out_buf Buffer used to store the results of the query * @param out_validity Output validity buffer * @param out_valid_count Output count of # of valid bits * @param options Options controlling behavior */ template <int block_size> __launch_bounds__(block_size) __global__ void get_json_object_kernel(column_device_view col, path_operator const* const commands, size_type* output_offsets, thrust::optional<char*> out_buf, thrust::optional<bitmask_type*> out_validity, thrust::optional<size_type*> out_valid_count, get_json_object_options options) { auto tid = cudf::detail::grid_1d::global_thread_id(); auto const stride = cudf::thread_index_type{blockDim.x} * cudf::thread_index_type{gridDim.x}; size_type warp_valid_count{0}; auto active_threads = __ballot_sync(0xffff'ffffu, tid < col.size()); while (tid < col.size()) { bool is_valid = false; string_view const str = col.element<string_view>(tid); size_type output_size = 0; if (str.size_bytes() > 0) { char* dst = out_buf.has_value() ? out_buf.value() + output_offsets[tid] : nullptr; size_t const dst_size = out_buf.has_value() ? output_offsets[tid + 1] - output_offsets[tid] : 0; parse_result result; json_output out; thrust::tie(result, out) = get_json_object_single(str.data(), str.size_bytes(), commands, dst, dst_size, options); output_size = out.output_len.value_or(0); if (out.output_len.has_value() && result == parse_result::SUCCESS) { is_valid = true; } } // filled in only during the precompute step. during the compute step, the offsets // are fed back in so we do -not- want to write them out if (!out_buf.has_value()) { output_offsets[tid] = static_cast<size_type>(output_size); } // validity filled in only during the output step if (out_validity.has_value()) { uint32_t mask = __ballot_sync(active_threads, is_valid); // 0th lane of the warp writes the validity if (!(tid % cudf::detail::warp_size)) { out_validity.value()[cudf::word_index(tid)] = mask; warp_valid_count += __popc(mask); } } tid += stride; active_threads = __ballot_sync(active_threads, tid < col.size()); } // sum the valid counts across the whole block if (out_valid_count) { size_type block_valid_count = cudf::detail::single_lane_block_sum_reduce<block_size, 0>(warp_valid_count); if (threadIdx.x == 0) { atomicAdd(out_valid_count.value(), block_valid_count); } } } std::unique_ptr<cudf::column> get_json_object(cudf::strings_column_view const& col, cudf::string_scalar const& json_path, get_json_object_options options, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // preprocess the json_path into a command buffer auto preprocess = build_command_buffer(json_path, stream); CUDF_EXPECTS(std::get<1>(preprocess) <= max_command_stack_depth, "Encountered JSONPath string that is too complex"); if (col.is_empty()) return make_empty_column(type_id::STRING); // allocate output offsets buffer. auto offsets = cudf::make_fixed_width_column( data_type{type_id::INT32}, col.size() + 1, mask_state::UNALLOCATED, stream, mr); cudf::mutable_column_view offsets_view(*offsets); // if the query is empty, return a string column containing all nulls if (!std::get<0>(preprocess).has_value()) { return std::make_unique<column>( data_type{type_id::STRING}, col.size(), rmm::device_buffer{0, stream, mr}, // no data cudf::detail::create_null_mask(col.size(), mask_state::ALL_NULL, stream, mr), col.size()); // null count } constexpr int block_size = 512; cudf::detail::grid_1d const grid{col.size(), block_size}; auto cdv = column_device_view::create(col.parent(), stream); // preprocess sizes (returned in the offsets buffer) get_json_object_kernel<block_size> <<<grid.num_blocks, grid.num_threads_per_block, 0, stream.value()>>>( *cdv, std::get<0>(preprocess).value().data(), offsets_view.head<size_type>(), thrust::nullopt, thrust::nullopt, thrust::nullopt, options); // convert sizes to offsets thrust::exclusive_scan(rmm::exec_policy(stream), offsets_view.head<size_type>(), offsets_view.head<size_type>() + col.size() + 1, offsets_view.head<size_type>(), 0); size_type const output_size = cudf::detail::get_value<size_type>(offsets_view, col.size(), stream); // allocate output string column auto chars = cudf::strings::detail::create_chars_child_column(output_size, stream, mr); // potential optimization : if we know that all outputs are valid, we could skip creating // the validity mask altogether rmm::device_buffer validity = cudf::detail::create_null_mask(col.size(), mask_state::UNINITIALIZED, stream, mr); // compute results cudf::mutable_column_view chars_view(*chars); rmm::device_scalar<size_type> d_valid_count{0, stream}; get_json_object_kernel<block_size> <<<grid.num_blocks, grid.num_threads_per_block, 0, stream.value()>>>( *cdv, std::get<0>(preprocess).value().data(), offsets_view.head<size_type>(), chars_view.head<char>(), static_cast<bitmask_type*>(validity.data()), d_valid_count.data(), options); return make_strings_column(col.size(), std::move(offsets), std::move(chars), col.size() - d_valid_count.value(stream), std::move(validity)); } } // namespace } // namespace detail std::unique_ptr<cudf::column> get_json_object(cudf::strings_column_view const& col, cudf::string_scalar const& json_path, get_json_object_options options, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::get_json_object(col, json_path, options, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/segmented_sort.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/lists/sorting.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/transform.h> namespace cudf { namespace lists { namespace detail { namespace { /** * @brief Create output offsets for segmented sort * * This creates a normalized set of offsets from the offsets child column of the input. */ std::unique_ptr<column> build_output_offsets(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto output_offset = make_numeric_column( input.offsets().type(), input.size() + 1, mask_state::UNALLOCATED, stream, mr); thrust::transform(rmm::exec_policy(stream), input.offsets_begin(), input.offsets_end(), output_offset->mutable_view().begin<size_type>(), [first = input.offsets_begin()] __device__(auto offset_index) { return offset_index - *first; }); return output_offset; } } // namespace std::unique_ptr<column> sort_lists(lists_column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) return empty_like(input.parent()); auto output_offset = build_output_offsets(input, stream, mr); auto const child = input.get_sliced_child(stream); auto const sorted_child_table = cudf::detail::segmented_sort_by_key(table_view{{child}}, table_view{{child}}, output_offset->view(), {column_order}, {null_precedence}, stream, mr); return make_lists_column(input.size(), std::move(output_offset), std::move(sorted_child_table->release().front()), input.null_count(), cudf::detail::copy_bitmask(input.parent(), stream, mr), stream, mr); } std::unique_ptr<column> stable_sort_lists(lists_column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) { return empty_like(input.parent()); } auto output_offset = build_output_offsets(input, stream, mr); auto const child = input.get_sliced_child(stream); auto const sorted_child_table = cudf::detail::stable_segmented_sort_by_key(table_view{{child}}, table_view{{child}}, output_offset->view(), {column_order}, {null_precedence}, stream, mr); return make_lists_column(input.size(), std::move(output_offset), std::move(sorted_child_table->release().front()), input.null_count(), cudf::detail::copy_bitmask(input.parent(), stream, mr), stream, mr); } } // namespace detail std::unique_ptr<column> sort_lists(lists_column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sort_lists(input, column_order, null_precedence, stream, mr); } std::unique_ptr<column> stable_sort_lists(lists_column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::stable_sort_lists(input, column_order, null_precedence, stream, mr); } } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/contains.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/lists/detail/contains.hpp> #include <cudf/lists/detail/lists_column_factories.hpp> #include <cudf/lists/list_device_view.cuh> #include <cudf/lists/lists_column_device_view.cuh> #include <cudf/lists/lists_column_view.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/row_operators.cuh> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/exec_policy.hpp> #include <thrust/execution_policy.h> #include <thrust/find.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/reverse_iterator.h> #include <thrust/logical.h> #include <thrust/optional.h> #include <thrust/pair.h> #include <thrust/tabulate.h> #include <thrust/transform.h> #include <type_traits> namespace cudf::lists { namespace { /** * @brief A sentinel value used for marking that a given key has not been found in the search list. * * The value should be `-1` as indicated in the public API documentation. */ auto constexpr __device__ NOT_FOUND_SENTINEL = size_type{-1}; /** * @brief A sentinel value used for marking that a given output row should be null. * * This value should be different from `NOT_FOUND_SENTINEL`. */ auto constexpr __device__ NULL_SENTINEL = std::numeric_limits<size_type>::min(); /** * @brief Check if the given type is a supported non-nested type in `cudf::lists::contains`. */ template <typename Element> static auto constexpr is_supported_non_nested_type() { return cudf::is_fixed_width<Element>() || std::is_same_v<Element, cudf::string_view>; } /** * @brief Check if the given type is supported in `cudf::lists::contains`. */ struct is_supported_type_fn { template <typename Element> auto constexpr operator()() { return is_supported_non_nested_type<Element>() || cudf::is_nested<Element>(); } }; /** * @brief Return a pair of index iterators {begin, end} to loop through elements within a * list. * * Depending on the value of `forward`, a pair of forward or reverse iterators will be * returned, allowing to loop through elements in the list in first-to-last or last-to-first * order. * * Note that the element indices always restart to `0` at the first position in each list. * * @tparam forward A boolean value indicating whether we want to iterate elements in the list * by forward or reverse order. * @param size The number of elements in the list. * @return A pair of {begin, end} iterators to iterate through the range `[0, size)`. */ template <bool forward> __device__ auto element_index_pair_iter(size_type const size) { auto const begin = thrust::make_counting_iterator(0); auto const end = thrust::make_counting_iterator(size); if constexpr (forward) { return thrust::pair{begin, end}; } else { return thrust::pair{thrust::make_reverse_iterator(end), thrust::make_reverse_iterator(begin)}; } } /** * @brief Functor to perform searching for index of a key element in a given list, specialized * for nested types. */ template <typename KeyValidityIter, typename EqComparator> struct search_list_fn { duplicate_find_option const find_option; KeyValidityIter const key_validity_iter; EqComparator const d_comp; search_list_fn(duplicate_find_option const find_option, KeyValidityIter const key_validity_iter, EqComparator const& d_comp) : find_option(find_option), key_validity_iter(key_validity_iter), d_comp(d_comp) { } __device__ size_type operator()(list_device_view const list) const { // A null list or null key will result in a null output row. if (list.is_null() || !key_validity_iter[list.row_index()]) { return NULL_SENTINEL; } return find_option == duplicate_find_option::FIND_FIRST ? search_list_op<true>(list) : search_list_op<false>(list); } private: template <bool forward> __device__ inline size_type search_list_op(list_device_view const list) const { using cudf::experimental::row::lhs_index_type; using cudf::experimental::row::rhs_index_type; auto const [begin, end] = element_index_pair_iter<forward>(list.size()); auto const found_iter = thrust::find_if(thrust::seq, begin, end, [=] __device__(auto const idx) { return !list.is_null(idx) && d_comp(static_cast<lhs_index_type>(list.element_offset(idx)), static_cast<rhs_index_type>(list.row_index())); }); // If the key is found, return its found position in the list from `found_iter`. return found_iter == end ? NOT_FOUND_SENTINEL : *found_iter; } }; /** * @brief Function to search for index of key element(s) in the corresponding rows of a lists * column, specialized for nested types. */ template <typename InputIterator, typename OutputIterator, typename DeviceComp> void index_of(InputIterator input_it, size_type num_rows, OutputIterator output_it, column_view const& child, column_view const& search_keys, duplicate_find_option find_option, DeviceComp d_comp, rmm::cuda_stream_view stream) { auto const keys_dv_ptr = column_device_view::create(search_keys, stream); auto const key_validity_iter = cudf::detail::make_validity_iterator<true>(*keys_dv_ptr); thrust::transform(rmm::exec_policy(stream), input_it, input_it + num_rows, output_it, search_list_fn{find_option, key_validity_iter, d_comp}); } /** * @brief Dispatch function to search for index of key element(s) in the corresponding rows of a * lists column. */ std::unique_ptr<column> dispatch_index_of(lists_column_view const& lists, column_view const& search_keys, duplicate_find_option find_option, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(cudf::type_dispatcher(search_keys.type(), is_supported_type_fn{}), "Unsupported type in `dispatch_index_of` function."); // Access the child column through `child()` method, not `get_sliced_child()`. // This is because slicing offset has already been taken into account during row // comparisons. auto const child = lists.child(); CUDF_EXPECTS(child.type() == search_keys.type(), "Type/Scale of search key does not match list column element type.", cudf::data_type_error); CUDF_EXPECTS(search_keys.type().id() != type_id::EMPTY, "Type cannot be empty."); auto const search_keys_have_nulls = search_keys.has_nulls(); auto const num_rows = lists.size(); auto const lists_cdv_ptr = column_device_view::create(lists.parent(), stream); auto const input_it = cudf::detail::make_counting_transform_iterator( size_type{0}, [lists = cudf::detail::lists_column_device_view{*lists_cdv_ptr}] __device__(auto const idx) { return list_device_view{lists, idx}; }); auto out_positions = make_numeric_column( data_type{type_to_id<size_type>()}, num_rows, cudf::mask_state::UNALLOCATED, stream, mr); auto const output_it = out_positions->mutable_view().template begin<size_type>(); auto const keys_tview = cudf::table_view{{search_keys}}; auto const child_tview = cudf::table_view{{child}}; auto const has_nulls = has_nested_nulls(child_tview) || has_nested_nulls(keys_tview); auto const comparator = cudf::experimental::row::equality::two_table_comparator(child_tview, keys_tview, stream); if (cudf::is_nested(search_keys.type())) { auto const d_comp = comparator.equal_to<true>(nullate::DYNAMIC{has_nulls}); index_of(input_it, num_rows, output_it, child, search_keys, find_option, d_comp, stream); } else { auto const d_comp = comparator.equal_to<false>(nullate::DYNAMIC{has_nulls}); index_of(input_it, num_rows, output_it, child, search_keys, find_option, d_comp, stream); } if (search_keys_have_nulls || lists.has_nulls()) { auto [null_mask, null_count] = cudf::detail::valid_if( output_it, output_it + num_rows, [] __device__(auto const idx) { return idx != NULL_SENTINEL; }, stream, mr); out_positions->set_null_mask(std::move(null_mask), null_count); } return out_positions; } /** * @brief Converts key-positions vector (from `index_of()`) to a BOOL8 vector, indicating if * the search key(s) were found. */ std::unique_ptr<column> to_contains(std::unique_ptr<column>&& key_positions, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(key_positions->type().id() == type_to_id<size_type>(), "Expected input column of type cudf::size_type."); auto const positions_begin = key_positions->view().template begin<size_type>(); auto result = make_numeric_column( data_type{type_id::BOOL8}, key_positions->size(), mask_state::UNALLOCATED, stream, mr); thrust::transform(rmm::exec_policy(stream), positions_begin, positions_begin + key_positions->size(), result->mutable_view().template begin<bool>(), [] __device__(auto const i) { // position == NOT_FOUND_SENTINEL: the list does not contain the search key. return i != NOT_FOUND_SENTINEL; }); auto const null_count = key_positions->null_count(); [[maybe_unused]] auto [data, null_mask, children] = key_positions->release(); result->set_null_mask(std::move(*null_mask.release()), null_count); return result; } } // namespace namespace detail { std::unique_ptr<column> index_of(lists_column_view const& lists, cudf::scalar const& search_key, duplicate_find_option find_option, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (!search_key.is_valid(stream)) { return make_numeric_column( data_type{cudf::type_to_id<size_type>()}, lists.size(), cudf::detail::create_null_mask(lists.size(), mask_state::ALL_NULL, stream, mr), lists.size(), stream, mr); } if (lists.size() == 0) { return make_numeric_column( data_type{type_to_id<size_type>()}, 0, cudf::mask_state::UNALLOCATED, stream, mr); } auto search_key_col = cudf::make_column_from_scalar(search_key, lists.size(), stream, mr); return detail::index_of(lists, search_key_col->view(), find_option, stream, mr); } std::unique_ptr<column> index_of(lists_column_view const& lists, column_view const& search_keys, duplicate_find_option find_option, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(search_keys.size() == lists.size(), "Number of search keys must match list column size."); return dispatch_index_of(lists, search_keys, find_option, stream, mr); } std::unique_ptr<column> contains(lists_column_view const& lists, cudf::scalar const& search_key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto key_indices = detail::index_of(lists, search_key, duplicate_find_option::FIND_FIRST, stream, rmm::mr::get_current_device_resource()); return to_contains(std::move(key_indices), stream, mr); } std::unique_ptr<column> contains(lists_column_view const& lists, column_view const& search_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(search_keys.size() == lists.size(), "Number of search keys must match list column size."); auto key_indices = detail::index_of(lists, search_keys, duplicate_find_option::FIND_FIRST, stream, rmm::mr::get_current_device_resource()); return to_contains(std::move(key_indices), stream, mr); } std::unique_ptr<column> contains_nulls(lists_column_view const& lists, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const lists_cv = lists.parent(); auto output = make_numeric_column(data_type{type_to_id<bool>()}, lists.size(), cudf::detail::copy_bitmask(lists_cv, stream, mr), lists_cv.null_count(), stream, mr); auto const out_begin = output->mutable_view().template begin<bool>(); auto const lists_cdv_ptr = column_device_view::create(lists_cv, stream); thrust::tabulate(rmm::exec_policy(stream), out_begin, out_begin + lists.size(), [lists = cudf::detail::lists_column_device_view{*lists_cdv_ptr}] __device__( auto const list_idx) { auto const list = list_device_view{lists, list_idx}; return list.is_null() || thrust::any_of(thrust::seq, thrust::make_counting_iterator(0), thrust::make_counting_iterator(list.size()), [&list](auto const idx) { return list.is_null(idx); }); }); return output; } } // namespace detail std::unique_ptr<column> contains(lists_column_view const& lists, cudf::scalar const& search_key, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::contains(lists, search_key, stream, mr); } std::unique_ptr<column> contains(lists_column_view const& lists, column_view const& search_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::contains(lists, search_keys, stream, mr); } std::unique_ptr<column> contains_nulls(lists_column_view const& lists, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::contains_nulls(lists, stream, mr); } std::unique_ptr<column> index_of(lists_column_view const& lists, cudf::scalar const& search_key, duplicate_find_option find_option, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::index_of(lists, search_key, find_option, stream, mr); } std::unique_ptr<column> index_of(lists_column_view const& lists, column_view const& search_keys, duplicate_find_option find_option, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::index_of(lists, search_keys, find_option, stream, mr); } } // namespace cudf::lists
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/dremel.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/lists/detail/dremel.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/table/table_device_view.cuh> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/gather.h> #include <thrust/host_vector.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> namespace cudf::detail { namespace { /** * @brief Functor to get definition level value for a nested struct column until the leaf level or * the first list level. * */ struct def_level_fn { column_device_view const* parent_col; uint8_t const* d_nullability; uint8_t sub_level_start; uint8_t curr_def_level; bool always_nullable; __device__ uint32_t operator()(size_type i) { uint32_t def = curr_def_level; uint8_t l = sub_level_start; bool is_col_struct = false; auto col = *parent_col; do { // If col not nullable then it does not contribute to def levels if (always_nullable or d_nullability[l]) { if (not col.nullable() or bit_is_set(col.null_mask(), i)) { ++def; } else { // We have found the shallowest level at which this row is null break; } } is_col_struct = (col.type().id() == type_id::STRUCT); if (is_col_struct) { col = col.child(0); ++l; } } while (is_col_struct); return def; } }; dremel_data get_encoding(column_view h_col, std::vector<uint8_t> nullability, bool output_as_byte_array, bool always_nullable, rmm::cuda_stream_view stream) { auto get_list_level = [](column_view col) { while (col.type().id() == type_id::STRUCT) { col = col.child(0); } return col; }; auto get_empties = [&](column_view col, size_type start, size_type end) { auto lcv = lists_column_view(get_list_level(col)); rmm::device_uvector<size_type> empties_idx(lcv.size(), stream); rmm::device_uvector<size_type> empties(lcv.size(), stream); auto d_off = lcv.offsets().data<size_type>(); auto empties_idx_end = thrust::copy_if(rmm::exec_policy(stream), thrust::make_counting_iterator(start), thrust::make_counting_iterator(end), empties_idx.begin(), [d_off] __device__(auto i) { return d_off[i] == d_off[i + 1]; }); auto empties_end = thrust::gather(rmm::exec_policy(stream), empties_idx.begin(), empties_idx_end, lcv.offsets().begin<size_type>(), empties.begin()); auto empties_size = empties_end - empties.begin(); return std::make_tuple(std::move(empties), std::move(empties_idx), empties_size); }; // Check if there are empty lists with empty offsets in this column bool has_empty_list_offsets = false; { auto curr_col = h_col; while (is_nested(curr_col.type())) { if (curr_col.type().id() == type_id::LIST) { auto lcv = lists_column_view(curr_col); if (lcv.offsets().size() == 0) { has_empty_list_offsets = true; break; } curr_col = lcv.child(); } else if (curr_col.type().id() == type_id::STRUCT) { curr_col = curr_col.child(0); } } } std::unique_ptr<column> empty_list_offset_col; if (has_empty_list_offsets) { empty_list_offset_col = make_fixed_width_column(data_type(type_id::INT32), 1); CUDF_CUDA_TRY(cudaMemsetAsync( empty_list_offset_col->mutable_view().head(), 0, sizeof(size_type), stream.value())); std::function<column_view(column_view const&)> normalize_col = [&](column_view const& col) { auto children = [&]() -> std::vector<column_view> { if (col.type().id() == type_id::LIST) { auto lcol = lists_column_view(col); auto offset_col = lcol.offsets().head() == nullptr ? empty_list_offset_col->view() : lcol.offsets(); return {offset_col, normalize_col(lcol.child())}; } else if (col.type().id() == type_id::STRUCT) { return {normalize_col(col.child(0))}; } else { return {col.child_begin(), col.child_end()}; } }(); return column_view(col.type(), col.size(), col.head(), col.null_mask(), col.null_count(), col.offset(), std::move(children)); }; h_col = normalize_col(h_col); } auto curr_col = h_col; std::vector<column_view> nesting_levels; std::vector<uint8_t> def_at_level; std::vector<uint8_t> start_at_sub_level; uint8_t curr_nesting_level_idx = 0; if (nullability.empty()) { while (is_nested(curr_col.type())) { nullability.push_back(curr_col.nullable()); curr_col = curr_col.type().id() == type_id::LIST ? curr_col.child(1) : curr_col.child(0); } nullability.push_back(curr_col.nullable()); } curr_col = h_col; auto add_def_at_level = [&](column_view col) { // Add up all def level contributions in this column all the way till the first list column // appears in the hierarchy or until we get to leaf uint32_t def = 0; start_at_sub_level.push_back(curr_nesting_level_idx); while (col.type().id() == type_id::STRUCT) { def += (always_nullable or nullability[curr_nesting_level_idx]) ? 1 : 0; col = col.child(0); ++curr_nesting_level_idx; } // At the end of all those structs is either a list column or the leaf. List column contributes // at least one def level. Leaf contributes 1 level only if it is nullable. def += (col.type().id() == type_id::LIST ? 1 : 0) + (always_nullable or nullability[curr_nesting_level_idx] ? 1 : 0); def_at_level.push_back(def); ++curr_nesting_level_idx; }; while (cudf::is_nested(curr_col.type())) { nesting_levels.push_back(curr_col); add_def_at_level(curr_col); while (curr_col.type().id() == type_id::STRUCT) { // Go down the hierarchy until we get to the LIST or the leaf level curr_col = curr_col.child(0); } if (curr_col.type().id() == type_id::LIST) { auto child = curr_col.child(lists_column_view::child_column_index); if (output_as_byte_array && child.type().id() == type_id::UINT8) { // consider this the bottom break; } curr_col = child; if (not is_nested(curr_col.type())) { // Special case: when the leaf data column is the immediate child of the list col then we // want it to be included right away. Otherwise the struct containing it will be included in // the next iteration of this loop. nesting_levels.push_back(curr_col); add_def_at_level(curr_col); break; } } } [[maybe_unused]] auto [device_view_owners, d_nesting_levels] = contiguous_copy_column_device_views<column_device_view>(nesting_levels, stream); auto max_def_level = def_at_level.back(); thrust::exclusive_scan( thrust::host, def_at_level.begin(), def_at_level.end(), def_at_level.begin()); max_def_level += def_at_level.back(); // Sliced list column views only have offsets applied to top level. Get offsets for each level. rmm::device_uvector<size_type> d_column_offsets(nesting_levels.size(), stream); rmm::device_uvector<size_type> d_column_ends(nesting_levels.size(), stream); auto d_col = column_device_view::create(h_col, stream); cudf::detail::device_single_thread( [offset_at_level = d_column_offsets.data(), end_idx_at_level = d_column_ends.data(), level_max = d_column_offsets.size(), col = *d_col] __device__() { auto curr_col = col; size_type off = curr_col.offset(); size_type end = off + curr_col.size(); size_type level = 0; offset_at_level[level] = off; end_idx_at_level[level] = end; ++level; // Apply offset recursively until we get to leaf data // Skip doing the following for any structs we encounter in between. while (curr_col.type().id() == type_id::LIST or curr_col.type().id() == type_id::STRUCT) { if (curr_col.type().id() == type_id::LIST) { off = curr_col.child(lists_column_view::offsets_column_index).element<size_type>(off); end = curr_col.child(lists_column_view::offsets_column_index).element<size_type>(end); if (level < level_max) { offset_at_level[level] = off; end_idx_at_level[level] = end; ++level; } curr_col = curr_col.child(lists_column_view::child_column_index); } else { curr_col = curr_col.child(0); } } }, stream); thrust::host_vector<size_type> column_offsets = cudf::detail::make_host_vector_async(d_column_offsets, stream); thrust::host_vector<size_type> column_ends = cudf::detail::make_host_vector_async(d_column_ends, stream); stream.synchronize(); size_t max_vals_size = 0; for (size_t l = 0; l < column_offsets.size(); ++l) { max_vals_size += column_ends[l] - column_offsets[l]; } auto d_nullability = cudf::detail::make_device_uvector_async( nullability, stream, rmm::mr::get_current_device_resource()); rmm::device_uvector<uint8_t> rep_level(max_vals_size, stream); rmm::device_uvector<uint8_t> def_level(max_vals_size, stream); rmm::device_uvector<uint8_t> temp_rep_vals(max_vals_size, stream); rmm::device_uvector<uint8_t> temp_def_vals(max_vals_size, stream); rmm::device_uvector<size_type> new_offsets(0, stream); size_type curr_rep_values_size = 0; { // At this point, curr_col contains the leaf column. Max nesting level is // nesting_levels.size(). // We are going to start by merging the last column in nesting_levels (the leaf, which is at the // index `nesting_levels.size() - 1`) with the second-to-last (which is at // `nesting_levels.size() - 2`). size_t level = nesting_levels.size() - 2; curr_col = nesting_levels[level]; auto lcv = lists_column_view(get_list_level(curr_col)); auto offset_size_at_level = column_ends[level] - column_offsets[level] + 1; // Get empties at this level auto [empties, empties_idx, empties_size] = get_empties(nesting_levels[level], column_offsets[level], column_ends[level]); // Merge empty at deepest parent level with the rep, def level vals at leaf level auto input_parent_rep_it = thrust::make_constant_iterator(level); auto input_parent_def_it = thrust::make_transform_iterator(empties_idx.begin(), def_level_fn{d_nesting_levels + level, d_nullability.data(), start_at_sub_level[level], def_at_level[level], always_nullable}); // `nesting_levels.size()` == no of list levels + leaf. Max repetition level = no of list levels auto input_child_rep_it = thrust::make_constant_iterator(nesting_levels.size() - 1); auto input_child_def_it = thrust::make_transform_iterator(thrust::make_counting_iterator(column_offsets[level + 1]), def_level_fn{d_nesting_levels + level + 1, d_nullability.data(), start_at_sub_level[level + 1], def_at_level[level + 1], always_nullable}); // Zip the input and output value iterators so that merge operation is done only once auto input_parent_zip_it = thrust::make_zip_iterator(thrust::make_tuple(input_parent_rep_it, input_parent_def_it)); auto input_child_zip_it = thrust::make_zip_iterator(thrust::make_tuple(input_child_rep_it, input_child_def_it)); auto output_zip_it = thrust::make_zip_iterator(thrust::make_tuple(rep_level.begin(), def_level.begin())); auto ends = thrust::merge_by_key(rmm::exec_policy(stream), empties.begin(), empties.begin() + empties_size, thrust::make_counting_iterator(column_offsets[level + 1]), thrust::make_counting_iterator(column_ends[level + 1]), input_parent_zip_it, input_child_zip_it, thrust::make_discard_iterator(), output_zip_it); curr_rep_values_size = ends.second - output_zip_it; // Scan to get distance by which each offset value is shifted due to the insertion of empties auto scan_it = cudf::detail::make_counting_transform_iterator( column_offsets[level], [off = lcv.offsets().data<size_type>(), size = lcv.offsets().size()] __device__( auto i) -> int { return (i + 1 < size) && (off[i] == off[i + 1]); }); rmm::device_uvector<size_type> scan_out(offset_size_at_level, stream); thrust::exclusive_scan( rmm::exec_policy(stream), scan_it, scan_it + offset_size_at_level, scan_out.begin()); // Add scan output to existing offsets to get new offsets into merged rep level values new_offsets = rmm::device_uvector<size_type>(offset_size_at_level, stream); thrust::for_each_n(rmm::exec_policy(stream), thrust::make_counting_iterator(0), offset_size_at_level, [off = lcv.offsets().data<size_type>() + column_offsets[level], scan_out = scan_out.data(), new_off = new_offsets.data()] __device__(auto i) { new_off[i] = off[i] - off[0] + scan_out[i]; }); // Set rep level values at level starts to appropriate rep level auto scatter_it = thrust::make_constant_iterator(level); thrust::scatter(rmm::exec_policy(stream), scatter_it, scatter_it + new_offsets.size() - 1, new_offsets.begin(), rep_level.begin()); } // Having already merged the last two levels, we are now going to merge the result with the // third-last level which is at index `nesting_levels.size() - 3`. for (int level = nesting_levels.size() - 3; level >= 0; level--) { curr_col = nesting_levels[level]; auto lcv = lists_column_view(get_list_level(curr_col)); auto offset_size_at_level = column_ends[level] - column_offsets[level] + 1; // Get empties at this level auto [empties, empties_idx, empties_size] = get_empties(nesting_levels[level], column_offsets[level], column_ends[level]); auto offset_transformer = [new_child_offsets = new_offsets.data(), child_start = column_offsets[level + 1]] __device__(auto x) { return new_child_offsets[x - child_start]; // (x - child's offset) }; // We will be reading from old rep_levels and writing again to rep_levels. Swap the current // rep values into temp_rep_vals so it can become the input and rep_levels can again be output. std::swap(temp_rep_vals, rep_level); std::swap(temp_def_vals, def_level); // Merge empty at parent level with the rep, def level vals at current level auto transformed_empties = thrust::make_transform_iterator(empties.begin(), offset_transformer); auto input_parent_rep_it = thrust::make_constant_iterator(level); auto input_parent_def_it = thrust::make_transform_iterator(empties_idx.begin(), def_level_fn{d_nesting_levels + level, d_nullability.data(), start_at_sub_level[level], def_at_level[level], always_nullable}); // Zip the input and output value iterators so that merge operation is done only once auto input_parent_zip_it = thrust::make_zip_iterator(thrust::make_tuple(input_parent_rep_it, input_parent_def_it)); auto input_child_zip_it = thrust::make_zip_iterator(thrust::make_tuple(temp_rep_vals.begin(), temp_def_vals.begin())); auto output_zip_it = thrust::make_zip_iterator(thrust::make_tuple(rep_level.begin(), def_level.begin())); auto ends = thrust::merge_by_key(rmm::exec_policy(stream), transformed_empties, transformed_empties + empties_size, thrust::make_counting_iterator(0), thrust::make_counting_iterator(curr_rep_values_size), input_parent_zip_it, input_child_zip_it, thrust::make_discard_iterator(), output_zip_it); curr_rep_values_size = ends.second - output_zip_it; // Scan to get distance by which each offset value is shifted due to the insertion of dremel // level value fof an empty list auto scan_it = cudf::detail::make_counting_transform_iterator( column_offsets[level], [off = lcv.offsets().data<size_type>(), size = lcv.offsets().size()] __device__( auto i) -> int { return (i + 1 < size) && (off[i] == off[i + 1]); }); rmm::device_uvector<size_type> scan_out(offset_size_at_level, stream); thrust::exclusive_scan( rmm::exec_policy(stream), scan_it, scan_it + offset_size_at_level, scan_out.begin()); // Add scan output to existing offsets to get new offsets into merged rep level values rmm::device_uvector<size_type> temp_new_offsets(offset_size_at_level, stream); thrust::for_each_n(rmm::exec_policy(stream), thrust::make_counting_iterator(0), offset_size_at_level, [off = lcv.offsets().data<size_type>() + column_offsets[level], scan_out = scan_out.data(), new_off = temp_new_offsets.data(), offset_transformer] __device__(auto i) { new_off[i] = offset_transformer(off[i]) + scan_out[i]; }); new_offsets = std::move(temp_new_offsets); // Set rep level values at level starts to appropriate rep level auto scatter_it = thrust::make_constant_iterator(level); thrust::scatter(rmm::exec_policy(stream), scatter_it, scatter_it + new_offsets.size() - 1, new_offsets.begin(), rep_level.begin()); } size_t level_vals_size = new_offsets.back_element(stream); rep_level.resize(level_vals_size, stream); def_level.resize(level_vals_size, stream); stream.synchronize(); size_type leaf_data_size = column_ends.back() - column_offsets.back(); return dremel_data{std::move(new_offsets), std::move(rep_level), std::move(def_level), leaf_data_size, max_def_level}; } } // namespace dremel_data get_dremel_data(column_view h_col, std::vector<uint8_t> nullability, bool output_as_byte_array, rmm::cuda_stream_view stream) { return get_encoding(h_col, nullability, output_as_byte_array, false, stream); } dremel_data get_comparator_data(column_view h_col, std::vector<uint8_t> nullability, bool output_as_byte_array, rmm::cuda_stream_view stream) { return get_encoding(h_col, nullability, output_as_byte_array, true, stream); } } // namespace cudf::detail
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/utilities.hpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/column/column_view.hpp> #include <cudf/lists/lists_column_view.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/mr/device/device_memory_resource.hpp> namespace cudf::lists::detail { /** * @brief Generate list labels for elements in the child column of the input lists column. * * @param input The input lists column * @param n_elements The number of elements in the child column of the input lists column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned object * @return A column containing list labels corresponding to each element in the child column */ std::unique_ptr<column> generate_labels(lists_column_view const& input, size_type n_elements, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Reconstruct an offsets column from the input list labels column. * * @param labels The list labels corresponding to each list element * @param n_lists The number of lists to build the offsets column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned object * @return The output offsets column */ std::unique_ptr<column> reconstruct_offsets(column_view const& labels, size_type n_lists, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Generate 0-based list offsets from the offsets of the input lists column. * * @param input The input lists column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned object * @return The output offsets column with values start from 0 */ std::unique_ptr<column> get_normalized_offsets(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); } // namespace cudf::lists::detail
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/lists_column_view.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/detail/copy.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/lists/list_view.hpp> #include <cudf/lists/lists_column_view.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { lists_column_view::lists_column_view(column_view const& lists_column) : column_view(lists_column) { CUDF_EXPECTS(type().id() == type_id::LIST, "lists_column_view only supports lists"); } column_view lists_column_view::parent() const { return static_cast<column_view>(*this); } column_view lists_column_view::offsets() const { CUDF_EXPECTS(num_children() == 2, "lists column has an incorrect number of children"); return column_view::child(offsets_column_index); } column_view lists_column_view::child() const { CUDF_EXPECTS(num_children() == 2, "lists column has an incorrect number of children"); return column_view::child(child_column_index); } column_view lists_column_view::get_sliced_child(rmm::cuda_stream_view stream) const { // if I have a positive offset, I need to slice my child if (offset() > 0) { // theoretically this function could always do this step and be correct, but get_value<> // actually hits the gpu so it's best to avoid it if possible. size_type child_offset_start = cudf::detail::get_value<size_type>(offsets(), offset(), stream); size_type child_offset_end = cudf::detail::get_value<size_type>(offsets(), offset() + size(), stream); return cudf::detail::slice(child(), {child_offset_start, child_offset_end}, stream).front(); } // if I don't have a positive offset, but I am shorter than my offsets() would otherwise indicate, // I need to do a split and return the front. if (size() < offsets().size() - 1) { size_type child_offset = cudf::detail::get_value<size_type>(offsets(), size(), stream); return cudf::detail::slice(child(), {0, child_offset}, stream).front(); } // otherwise just return the child directly return child(); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/lists_column_factories.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/sizes_to_offsets_iterator.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/lists/detail/lists_column_factories.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/constant_iterator.h> #include <thrust/sequence.h> namespace cudf { namespace lists { namespace detail { std::unique_ptr<cudf::column> make_lists_column_from_scalar(list_scalar const& value, size_type size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (size == 0) { return make_lists_column(0, make_empty_column(type_to_id<size_type>()), empty_like(value.view()), 0, cudf::detail::create_null_mask(0, mask_state::UNALLOCATED, stream, mr), stream, mr); } auto mr_final = size == 1 ? mr : rmm::mr::get_current_device_resource(); // Handcraft a 1-row column auto sizes_itr = thrust::constant_iterator<size_type>(value.view().size()); auto offsets = std::get<0>( cudf::detail::make_offsets_child_column(sizes_itr, sizes_itr + 1, stream, mr_final)); size_type null_count = value.is_valid(stream) ? 0 : 1; auto null_mask_state = null_count ? mask_state::ALL_NULL : mask_state::UNALLOCATED; auto null_mask = cudf::detail::create_null_mask(1, null_mask_state, stream, mr_final); if (size == 1) { auto child = std::make_unique<column>(value.view(), stream, mr_final); return make_lists_column( 1, std::move(offsets), std::move(child), null_count, std::move(null_mask), stream, mr_final); } auto children_views = std::vector<column_view>{offsets->view(), value.view()}; auto one_row_col_view = column_view(data_type{type_id::LIST}, 1, nullptr, static_cast<bitmask_type const*>(null_mask.data()), null_count, 0, children_views); auto begin = thrust::make_constant_iterator(0); auto res = cudf::detail::gather(table_view({one_row_col_view}), begin, begin + size, out_of_bounds_policy::DONT_CHECK, stream, mr_final); return std::move(res->release()[0]); } std::unique_ptr<column> make_empty_lists_column(data_type child_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto offsets = make_empty_column(data_type(type_to_id<size_type>())); auto child = make_empty_column(child_type); return make_lists_column( 0, std::move(offsets), std::move(child), 0, rmm::device_buffer{}, stream, mr); } std::unique_ptr<column> make_all_nulls_lists_column(size_type size, data_type child_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto offsets = [&] { auto offsets_buff = cudf::detail::make_zeroed_device_uvector_async<size_type>(size + 1, stream, mr); return std::make_unique<column>(std::move(offsets_buff), rmm::device_buffer{}, 0); }(); auto child = make_empty_column(child_type); auto null_mask = cudf::detail::create_null_mask(size, mask_state::ALL_NULL, stream, mr); return make_lists_column( size, std::move(offsets), std::move(child), size, std::move(null_mask), stream, mr); } } // namespace detail } // namespace lists /** * @copydoc cudf::make_lists_column */ std::unique_ptr<column> make_lists_column(size_type num_rows, std::unique_ptr<column> offsets_column, std::unique_ptr<column> child_column, size_type null_count, rmm::device_buffer&& null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (null_count > 0) { CUDF_EXPECTS(null_mask.size() > 0, "Column with nulls must be nullable."); } CUDF_EXPECTS( (num_rows == 0 && offsets_column->size() == 0) || num_rows == offsets_column->size() - 1, "Invalid offsets column size for lists column."); CUDF_EXPECTS(offsets_column->null_count() == 0, "Offsets column should not contain nulls"); CUDF_EXPECTS(child_column != nullptr, "Must pass a valid child column"); // Save type_id of the child column for later use. auto const child_type_id = child_column->type().id(); std::vector<std::unique_ptr<column>> children; children.emplace_back(std::move(offsets_column)); children.emplace_back(std::move(child_column)); auto output = std::make_unique<column>(cudf::data_type{type_id::LIST}, num_rows, rmm::device_buffer{}, std::move(null_mask), null_count, std::move(children)); // We need to enforce all null lists to be empty. // `has_nonempty_nulls` is less expensive than `purge_nonempty_nulls` and can save some // run time if we don't have any non-empty nulls. if (auto const output_cv = output->view(); detail::has_nonempty_nulls(output_cv, stream)) { return detail::purge_nonempty_nulls(output_cv, stream, mr); } return output; } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/explode.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/detail/gather.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/lists/explode.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/advance.h> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/optional.h> #include <thrust/scan.h> #include <thrust/transform.h> #include <memory> #include <type_traits> namespace cudf { namespace detail { // explode column gather map uses cudf::out_of_bounds_policy::NULLIFY to // fill nulls where there are invalid indices constexpr size_type InvalidIndex = -1; namespace { std::unique_ptr<table> build_table( table_view const& input_table, size_type const explode_column_idx, column_view const& sliced_child, cudf::device_span<size_type const> gather_map, thrust::optional<cudf::device_span<size_type const>> explode_col_gather_map, thrust::optional<rmm::device_uvector<size_type>> position_array, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto select_iter = thrust::make_transform_iterator( thrust::make_counting_iterator(0), [explode_column_idx](size_type i) { return i >= explode_column_idx ? i + 1 : i; }); auto gathered_table = detail::gather(input_table.select(select_iter, select_iter + input_table.num_columns() - 1), gather_map.begin(), gather_map.end(), cudf::out_of_bounds_policy::DONT_CHECK, stream, mr); std::vector<std::unique_ptr<column>> columns = gathered_table->release(); columns.insert(columns.begin() + explode_column_idx, explode_col_gather_map ? std::move(detail::gather(table_view({sliced_child}), explode_col_gather_map->begin(), explode_col_gather_map->end(), cudf::out_of_bounds_policy::NULLIFY, stream, mr) ->release()[0]) : std::make_unique<column>(sliced_child, stream, mr)); if (position_array) { size_type position_size = position_array->size(); // build the null mask for position based on invalid entries in gather map auto nullmask = explode_col_gather_map ? valid_if( explode_col_gather_map->begin(), explode_col_gather_map->end(), [] __device__(auto i) { return i != InvalidIndex; }, stream, mr) : std::pair<rmm::device_buffer, size_type>{ rmm::device_buffer(0, stream), size_type{0}}; columns.insert(columns.begin() + explode_column_idx, std::make_unique<column>(data_type(type_to_id<size_type>()), position_size, position_array->release(), std::move(nullmask.first), nullmask.second)); } return std::make_unique<table>(std::move(columns)); } } // namespace std::unique_ptr<table> explode(table_view const& input_table, size_type const explode_column_idx, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { lists_column_view explode_col{input_table.column(explode_column_idx)}; auto sliced_child = explode_col.get_sliced_child(stream); rmm::device_uvector<size_type> gather_map(sliced_child.size(), stream); // Sliced columns may require rebasing of the offsets. auto offsets = explode_col.offsets_begin(); // offsets + 1 here to skip the 0th offset, which removes a - 1 operation later. auto offsets_minus_one = thrust::make_transform_iterator( thrust::next(offsets), [offsets] __device__(auto i) { return (i - offsets[0]) - 1; }); auto counting_iter = thrust::make_counting_iterator(0); // This looks like an off-by-one bug, but what is going on here is that we need to reduce each // result from `lower_bound` by 1 to build the correct gather map. This can be accomplished by // skipping the first entry and using the result of `lower_bound` directly. thrust::lower_bound(rmm::exec_policy(stream), offsets_minus_one, offsets_minus_one + explode_col.size(), counting_iter, counting_iter + gather_map.size(), gather_map.begin()); return build_table(input_table, explode_column_idx, sliced_child, gather_map, thrust::nullopt, thrust::nullopt, stream, mr); } std::unique_ptr<table> explode_position(table_view const& input_table, size_type const explode_column_idx, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { lists_column_view explode_col{input_table.column(explode_column_idx)}; auto sliced_child = explode_col.get_sliced_child(stream); rmm::device_uvector<size_type> gather_map(sliced_child.size(), stream); // Sliced columns may require rebasing of the offsets. auto offsets = explode_col.offsets_begin(); // offsets + 1 here to skip the 0th offset, which removes a - 1 operation later. auto offsets_minus_one = thrust::make_transform_iterator( offsets + 1, [offsets] __device__(auto i) { return (i - offsets[0]) - 1; }); auto counting_iter = thrust::make_counting_iterator(0); rmm::device_uvector<size_type> pos(sliced_child.size(), stream, mr); // This looks like an off-by-one bug, but what is going on here is that we need to reduce each // result from `lower_bound` by 1 to build the correct gather map. This can be accomplished by // skipping the first entry and using the result of `lower_bound` directly. thrust::transform( rmm::exec_policy(stream), counting_iter, counting_iter + gather_map.size(), gather_map.begin(), [position_array = pos.data(), offsets_minus_one, offsets, offset_size = explode_col.size()] __device__(auto idx) -> size_type { auto lb_idx = thrust::distance( offsets_minus_one, thrust::lower_bound(thrust::seq, offsets_minus_one, offsets_minus_one + offset_size, idx)); position_array[idx] = idx - (offsets[lb_idx] - offsets[0]); return lb_idx; }); return build_table(input_table, explode_column_idx, sliced_child, gather_map, thrust::nullopt, std::move(pos), stream, mr); } std::unique_ptr<table> explode_outer(table_view const& input_table, size_type const explode_column_idx, bool include_position, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { lists_column_view explode_col{input_table.column(explode_column_idx)}; auto sliced_child = explode_col.get_sliced_child(stream); auto counting_iter = thrust::make_counting_iterator(0); auto offsets = explode_col.offsets_begin(); // number of nulls or empty lists found so far in the explode column rmm::device_uvector<size_type> null_or_empty_offset(explode_col.size(), stream); auto null_or_empty = thrust::make_transform_iterator( thrust::make_counting_iterator(0), [offsets, offsets_size = explode_col.size() - 1] __device__(int idx) { return (idx > offsets_size || (offsets[idx + 1] != offsets[idx])) ? 0 : 1; }); thrust::inclusive_scan(rmm::exec_policy(stream), null_or_empty, null_or_empty + explode_col.size(), null_or_empty_offset.begin()); auto null_or_empty_count = null_or_empty_offset.size() > 0 ? null_or_empty_offset.back_element(stream) : 0; if (null_or_empty_count == 0) { // performance penalty to run the below loop if there are no nulls or empty lists. // run simple explode instead return include_position ? explode_position(input_table, explode_column_idx, stream, mr) : explode(input_table, explode_column_idx, stream, mr); } auto gather_map_size = sliced_child.size() + null_or_empty_count; rmm::device_uvector<size_type> gather_map(gather_map_size, stream); rmm::device_uvector<size_type> explode_col_gather_map(gather_map_size, stream); rmm::device_uvector<size_type> pos(include_position ? gather_map_size : 0, stream, mr); // offsets + 1 here to skip the 0th offset, which removes a - 1 operation later. auto offsets_minus_one = thrust::make_transform_iterator( thrust::next(offsets), [offsets] __device__(auto i) { return (i - offsets[0]) - 1; }); auto fill_gather_maps = [offsets_minus_one, gather_map_p = gather_map.begin(), explode_col_gather_map_p = explode_col_gather_map.begin(), position_array = pos.begin(), sliced_child_size = sliced_child.size(), null_or_empty_offset_p = null_or_empty_offset.begin(), include_position, offsets, null_or_empty, offset_size = explode_col.offsets().size() - 1] __device__(auto idx) { if (idx < sliced_child_size) { auto lb_idx = thrust::distance(offsets_minus_one, thrust::lower_bound( thrust::seq, offsets_minus_one, offsets_minus_one + (offset_size), idx)); auto index_to_write = null_or_empty_offset_p[lb_idx] + idx; gather_map_p[index_to_write] = lb_idx; explode_col_gather_map_p[index_to_write] = idx; if (include_position) { position_array[index_to_write] = idx - (offsets[lb_idx] - offsets[0]); } } if (null_or_empty[idx]) { auto invalid_index = null_or_empty_offset_p[idx] == 0 ? offsets[idx] : offsets[idx] + null_or_empty_offset_p[idx] - 1; gather_map_p[invalid_index] = idx; explode_col_gather_map_p[invalid_index] = InvalidIndex; if (include_position) { position_array[invalid_index] = 0; } } }; // we need to do this loop at least explode_col times or we may not properly fill in null and // empty entries. auto loop_count = std::max(sliced_child.size(), explode_col.size()); // Fill in gather map with all the child column's entries thrust::for_each( rmm::exec_policy(stream), counting_iter, counting_iter + loop_count, fill_gather_maps); return build_table( input_table, explode_column_idx, sliced_child, gather_map, explode_col_gather_map, include_position ? std::move(pos) : thrust::optional<rmm::device_uvector<size_type>>{}, stream, mr); } } // namespace detail /** * @copydoc cudf::explode(table_view const&, size_type, rmm::mr::device_memory_resource*) */ std::unique_ptr<table> explode(table_view const& input_table, size_type explode_column_idx, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(input_table.column(explode_column_idx).type().id() == type_id::LIST, "Unsupported non-list column"); return detail::explode(input_table, explode_column_idx, cudf::get_default_stream(), mr); } /** * @copydoc cudf::explode_position(table_view const&, size_type, rmm::mr::device_memory_resource*) */ std::unique_ptr<table> explode_position(table_view const& input_table, size_type explode_column_idx, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(input_table.column(explode_column_idx).type().id() == type_id::LIST, "Unsupported non-list column"); return detail::explode_position(input_table, explode_column_idx, cudf::get_default_stream(), mr); } /** * @copydoc cudf::explode_outer(table_view const&, size_type, rmm::mr::device_memory_resource*) */ std::unique_ptr<table> explode_outer(table_view const& input_table, size_type explode_column_idx, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(input_table.column(explode_column_idx).type().id() == type_id::LIST, "Unsupported non-list column"); return detail::explode_outer( input_table, explode_column_idx, false, cudf::get_default_stream(), mr); } /** * @copydoc cudf::explode_outer_position(table_view const&, size_type, * rmm::mr::device_memory_resource*) */ std::unique_ptr<table> explode_outer_position(table_view const& input_table, size_type explode_column_idx, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(input_table.column(explode_column_idx).type().id() == type_id::LIST, "Unsupported non-list column"); return detail::explode_outer( input_table, explode_column_idx, true, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/interleave_columns.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/concatenate.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/get_value.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/valid_if.cuh> #include <cudf/lists/lists_column_view.hpp> #include <cudf/strings/detail/strings_children.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/scan.h> #include <thrust/transform.h> namespace cudf { namespace lists { namespace detail { namespace { /** * @brief Generate list offsets and list validities for the output lists column from the table_view * of the input lists columns. */ std::pair<std::unique_ptr<column>, rmm::device_uvector<int8_t>> generate_list_offsets_and_validities(table_view const& input, bool has_null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const num_cols = input.num_columns(); auto const num_rows = input.num_rows(); auto const num_output_lists = num_rows * num_cols; auto const table_dv_ptr = table_device_view::create(input, stream); // The output offsets column. auto list_offsets = make_numeric_column( data_type{type_to_id<size_type>()}, num_output_lists + 1, mask_state::UNALLOCATED, stream, mr); auto const d_offsets = list_offsets->mutable_view().template begin<size_type>(); // The array of int8_t to store validities for list elements. auto validities = rmm::device_uvector<int8_t>(has_null_mask ? num_output_lists : 0, stream); // Compute list sizes and validities. thrust::transform( rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(num_output_lists), d_offsets, [num_cols, table_dv = *table_dv_ptr, d_validities = validities.begin(), has_null_mask] __device__(size_type const idx) { auto const col_id = idx % num_cols; auto const list_id = idx / num_cols; auto const& lists_col = table_dv.column(col_id); if (has_null_mask) { d_validities[idx] = static_cast<int8_t>(lists_col.is_valid(list_id)); } auto const list_offsets = lists_col.child(lists_column_view::offsets_column_index).template data<size_type>() + lists_col.offset(); return list_offsets[list_id + 1] - list_offsets[list_id]; }); // Compute offsets from sizes. thrust::exclusive_scan( rmm::exec_policy(stream), d_offsets, d_offsets + num_output_lists + 1, d_offsets); return {std::move(list_offsets), std::move(validities)}; } /** * @brief Concatenate all input columns into one column and gather its rows to generate an output * column that is the result of interleaving the input columns. */ std::unique_ptr<column> concatenate_and_gather_lists(host_span<column_view const> columns_to_concat, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Concatenate all columns into a single (temporary) column. auto const concatenated_col = cudf::detail::concatenate(columns_to_concat, stream, rmm::mr::get_current_device_resource()); // The number of input columns is known to be non-zero thus it's safe to call `front()` here. auto const num_cols = columns_to_concat.size(); auto const num_input_rows = columns_to_concat.front().size(); // Generate the gather map that interleaves the input columns. auto const iter_gather = cudf::detail::make_counting_transform_iterator( 0, [num_cols, num_input_rows] __device__(auto const idx) { auto const source_col_idx = idx % num_cols; auto const source_row_idx = idx / num_cols; return source_col_idx * num_input_rows + source_row_idx; }); // The gather API should be able to handle any data type for the input columns. auto result = cudf::detail::gather(table_view{{concatenated_col->view()}}, iter_gather, iter_gather + concatenated_col->size(), out_of_bounds_policy::DONT_CHECK, stream, mr); return std::move(result->release()[0]); } /** * @brief Compute string sizes, string validities, and interleave string lists functor. * * This functor is executed twice. In the first pass, the sizes and validities of the output strings * will be computed. In the second pass, this will interleave the lists of strings of the given * table containing those lists. */ struct compute_string_sizes_and_interleave_lists_fn { table_device_view const table_dv; // Store list offsets of the output lists column. size_type const* const dst_list_offsets; // Flag to specify whether to compute string validities. bool const has_null_mask; // Store offsets of the strings. size_type* d_offsets{nullptr}; // If d_chars == nullptr: only compute sizes and validities of the output strings. // If d_chars != nullptr: only interleave lists of strings. char* d_chars{nullptr}; // We need to set `1` or `0` for the validities of the strings in the child column. int8_t* d_validities{nullptr}; __device__ void operator()(size_type const idx) { auto const num_cols = table_dv.num_columns(); auto const col_id = idx % num_cols; auto const list_id = idx / num_cols; auto const& lists_col = table_dv.column(col_id); if (has_null_mask and lists_col.is_null(list_id)) { return; } auto const list_offsets = lists_col.child(lists_column_view::offsets_column_index).template data<size_type>() + lists_col.offset(); auto const& str_col = lists_col.child(lists_column_view::child_column_index); auto const str_offsets = str_col.child(strings_column_view::offsets_column_index).template data<size_type>(); // The range of indices of the strings within the source list. auto const start_str_idx = list_offsets[list_id]; auto const end_str_idx = list_offsets[list_id + 1]; // In case of empty list (i.e. it doesn't contain any string element), we just ignore it because // there will not be anything to store for that list in the child column. if (start_str_idx == end_str_idx) { return; } // read_idx and write_idx are indices of string elements. size_type write_idx = dst_list_offsets[idx]; if (not d_chars) { // just compute sizes and validities of strings within a list for (auto read_idx = start_str_idx; read_idx < end_str_idx; ++read_idx, ++write_idx) { if (has_null_mask) { d_validities[write_idx] = static_cast<int8_t>(str_col.is_valid(read_idx)); } d_offsets[write_idx] = str_offsets[read_idx + 1] - str_offsets[read_idx]; } } else { // just copy the entire memory region containing all strings in the list // start_byte and end_byte are indices of character of the string elements. auto const start_byte = str_offsets[start_str_idx]; auto const end_byte = str_offsets[end_str_idx]; if (start_byte < end_byte) { auto const input_ptr = str_col.child(strings_column_view::chars_column_index).template data<char>() + start_byte; auto const output_ptr = d_chars + d_offsets[write_idx]; thrust::copy(thrust::seq, input_ptr, input_ptr + end_byte - start_byte, output_ptr); } } } }; // Error case when no other overload or specialization is available template <typename T, typename Enable = void> struct interleave_list_entries_impl { template <typename... Args> std::unique_ptr<column> operator()(Args&&...) { CUDF_FAIL("Called `interleave_list_entries_fn()` on non-supported types."); } }; template <typename T> struct interleave_list_entries_impl<T, std::enable_if_t<std::is_same_v<T, cudf::string_view>>> { std::unique_ptr<column> operator()(table_view const& input, column_view const& output_list_offsets, size_type num_output_lists, size_type num_output_entries, bool data_has_null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const noexcept { auto const table_dv_ptr = table_device_view::create(input, stream); auto comp_fn = compute_string_sizes_and_interleave_lists_fn{ *table_dv_ptr, output_list_offsets.template begin<size_type>(), data_has_null_mask}; auto validities = rmm::device_uvector<int8_t>(data_has_null_mask ? num_output_entries : 0, stream); comp_fn.d_validities = validities.data(); auto [offsets_column, chars_column] = cudf::strings::detail::make_strings_children( comp_fn, num_output_lists, num_output_entries, stream, mr); auto [null_mask, null_count] = cudf::detail::valid_if(validities.begin(), validities.end(), thrust::identity{}, stream, mr); return make_strings_column(num_output_entries, std::move(offsets_column), std::move(chars_column), null_count, std::move(null_mask)); } }; template <typename T> struct interleave_list_entries_impl<T, std::enable_if_t<cudf::is_fixed_width<T>()>> { std::unique_ptr<column> operator()(table_view const& input, column_view const& output_list_offsets, size_type num_output_lists, size_type num_output_entries, bool data_has_null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const noexcept { auto const num_cols = input.num_columns(); auto const table_dv_ptr = table_device_view::create(input, stream); // The output child column. auto output = cudf::detail::allocate_like(lists_column_view(*input.begin()).child(), num_output_entries, mask_allocation_policy::NEVER, stream, mr); auto output_dv_ptr = mutable_column_device_view::create(*output, stream); // The array of int8_t to store entry validities. auto validities = rmm::device_uvector<int8_t>(data_has_null_mask ? num_output_entries : 0, stream); thrust::for_each_n( rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), num_output_lists, [num_cols, table_dv = *table_dv_ptr, d_validities = validities.begin(), d_offsets = output_list_offsets.template begin<size_type>(), d_output = output_dv_ptr->template begin<T>(), data_has_null_mask] __device__(size_type const idx) { auto const col_id = idx % num_cols; auto const list_id = idx / num_cols; auto const& lists_col = table_dv.column(col_id); auto const list_offsets = lists_col.child(lists_column_view::offsets_column_index).template data<size_type>() + lists_col.offset(); auto const& data_col = lists_col.child(lists_column_view::child_column_index); // The range of indices of the entries within the source list. auto const start_idx = list_offsets[list_id]; auto const end_idx = list_offsets[list_id + 1]; auto const write_start = d_offsets[idx]; // Fill the validities array if necessary. if (data_has_null_mask) { for (auto read_idx = start_idx, write_idx = write_start; read_idx < end_idx; ++read_idx, ++write_idx) { d_validities[write_idx] = static_cast<int8_t>(data_col.is_valid(read_idx)); } } // Do a copy for the entire list entries. auto const input_ptr = reinterpret_cast<char const*>(data_col.template data<T>() + start_idx); auto const output_ptr = reinterpret_cast<char*>(&d_output[write_start]); thrust::copy( thrust::seq, input_ptr, input_ptr + sizeof(T) * (end_idx - start_idx), output_ptr); }); if (data_has_null_mask) { auto [null_mask, null_count] = cudf::detail::valid_if( validities.begin(), validities.end(), thrust::identity{}, stream, mr); if (null_count > 0) { output->set_null_mask(null_mask, null_count); } } return output; } }; /** * @brief Struct used in type_dispatcher to interleave list entries of the input lists columns and * output the results into a destination column. */ struct interleave_list_entries_fn { template <class T> std::unique_ptr<column> operator()(table_view const& input, column_view const& output_list_offsets, size_type num_output_lists, size_type num_output_entries, bool data_has_null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { return interleave_list_entries_impl<T>{}(input, output_list_offsets, num_output_lists, num_output_entries, data_has_null_mask, stream, mr); } }; } // anonymous namespace /** * @copydoc cudf::lists::detail::interleave_columns * */ std::unique_ptr<column> interleave_columns(table_view const& input, bool has_null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const entry_type = lists_column_view(*input.begin()).child().type(); for (auto const& col : input) { CUDF_EXPECTS(col.type().id() == type_id::LIST, "All columns of the input table must be of lists column type."); auto const child_col = lists_column_view(col).child(); CUDF_EXPECTS(entry_type == child_col.type(), "The types of entries in the input columns must be the same."); } if (input.num_rows() == 0) { return cudf::empty_like(input.column(0)); } if (input.num_columns() == 1) { return std::make_unique<column>(*(input.begin()), stream, mr); } // For nested types, we rely on the `concatenate_and_gather` method, which costs more memory due // to concatenation of the input columns into a temporary column. For non-nested types, we can // directly interleave the input columns into the output column for better efficiency. if (cudf::is_nested(entry_type)) { auto const input_columns = std::vector<column_view>(input.begin(), input.end()); return concatenate_and_gather_lists(host_span<column_view const>{input_columns}, stream, mr); } // Generate offsets of the output lists column. auto [list_offsets, list_validities] = generate_list_offsets_and_validities(input, has_null_mask, stream, mr); auto const offsets_view = list_offsets->view(); // Copy entries from the input lists columns to the output lists column - this needed to be // specialized for different types. auto const num_output_lists = input.num_rows() * input.num_columns(); auto const num_output_entries = cudf::detail::get_value<size_type>(offsets_view, num_output_lists, stream); auto const data_has_null_mask = std::any_of(std::cbegin(input), std::cend(input), [](auto const& col) { return col.child(lists_column_view::child_column_index).nullable(); }); auto list_entries = type_dispatcher<dispatch_storage_type>(entry_type, interleave_list_entries_fn{}, input, offsets_view, num_output_lists, num_output_entries, data_has_null_mask, stream, mr); if (not has_null_mask) { return make_lists_column(num_output_lists, std::move(list_offsets), std::move(list_entries), 0, rmm::device_buffer{}, stream, mr); } auto [null_mask, null_count] = cudf::detail::valid_if( list_validities.begin(), list_validities.end(), thrust::identity{}, stream, mr); return make_lists_column(num_output_lists, std::move(list_offsets), std::move(list_entries), null_count, null_count ? std::move(null_mask) : rmm::device_buffer{}, stream, mr); } } // namespace detail } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/count_elements.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/lists/count_elements.hpp> #include <cudf/lists/list_device_view.cuh> #include <cudf/lists/lists_column_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <thrust/transform_scan.h> namespace cudf { namespace lists { namespace detail { /** * @brief Returns a numeric column containing lengths of each element * * @param input Input lists column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return New size_type column with lengths */ std::unique_ptr<column> count_elements(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto device_column = cudf::column_device_view::create(input.parent(), stream); auto d_column = *device_column; // create output column auto output = make_fixed_width_column(data_type{type_to_id<size_type>()}, input.size(), cudf::detail::copy_bitmask(input.parent(), stream, mr), input.null_count(), stream, mr); // fill in the sizes thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator<cudf::size_type>(0), thrust::make_counting_iterator<cudf::size_type>(input.size()), output->mutable_view().begin<size_type>(), list_size_functor{d_column}); output->set_null_count(input.null_count()); // reset null count return output; } } // namespace detail // external APIS std::unique_ptr<column> count_elements(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::count_elements(input, stream, mr); } } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/utilities.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utilities.hpp" #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/labeling/label_segments.cuh> namespace cudf::lists::detail { std::unique_ptr<column> generate_labels(lists_column_view const& input, size_type n_elements, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto labels = make_numeric_column( data_type(type_to_id<size_type>()), n_elements, cudf::mask_state::UNALLOCATED, stream, mr); auto const labels_begin = labels->mutable_view().template begin<size_type>(); cudf::detail::label_segments( input.offsets_begin(), input.offsets_end(), labels_begin, labels_begin + n_elements, stream); return labels; } std::unique_ptr<column> reconstruct_offsets(column_view const& labels, size_type n_lists, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto out_offsets = make_numeric_column( data_type{type_to_id<size_type>()}, n_lists + 1, mask_state::UNALLOCATED, stream, mr); auto const labels_begin = labels.template begin<size_type>(); auto const offsets_begin = out_offsets->mutable_view().template begin<size_type>(); cudf::detail::labels_to_offsets(labels_begin, labels_begin + labels.size(), offsets_begin, offsets_begin + out_offsets->size(), stream); return out_offsets; } std::unique_ptr<column> get_normalized_offsets(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) { return empty_like(input.offsets()); } auto out_offsets = make_numeric_column(data_type(type_to_id<size_type>()), input.size() + 1, cudf::mask_state::UNALLOCATED, stream, mr); thrust::transform(rmm::exec_policy(stream), input.offsets_begin(), input.offsets_end(), out_offsets->mutable_view().begin<size_type>(), [d_offsets = input.offsets_begin()] __device__(auto const offset_val) { // The first offset value, used for zero-normalizing offsets. return offset_val - *d_offsets; }); return out_offsets; } } // namespace cudf::lists::detail
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/extract.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sequence.hpp> #include <cudf/detail/structs/utilities.hpp> #include <cudf/lists/detail/extract.hpp> #include <cudf/lists/detail/gather.cuh> #include <cudf/lists/extract.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/fill.h> #include <thrust/iterator/constant_iterator.h> #include <limits> namespace cudf { namespace lists { namespace detail { namespace { /** * @brief Helper to construct a column of indices, for use with `segmented_gather()`. * * When indices are specified as a column, e.g. `{5, -4, 3, -2, 1, null}`, * the column returned is: `{5, -4, 3, -2, 1, MAX_SIZE_TYPE}`. * All null indices are replaced with `MAX_SIZE_TYPE = numeric_limits<size_type>::max()`. * * The returned column can then be used to construct a lists column, for use * with `segmented_gather()`. */ std::unique_ptr<cudf::column> make_index_child(column_view const& indices, size_type, rmm::cuda_stream_view stream) { // New column, near identical to `indices`, except with null values replaced. // `segmented_gather()` on a null index should produce a null row. if (not indices.nullable()) { return std::make_unique<column>(indices, stream); } auto const d_indices = column_device_view::create(indices, stream); // Replace null indices with MAX_SIZE_TYPE, so that gather() returns null for them. auto const null_replaced_iter_begin = cudf::detail::make_null_replacement_iterator(*d_indices, std::numeric_limits<size_type>::max()); auto index_child = make_numeric_column(data_type{type_id::INT32}, indices.size(), mask_state::UNALLOCATED, stream); thrust::copy_n(rmm::exec_policy(stream), null_replaced_iter_begin, indices.size(), index_child->mutable_view().begin<size_type>()); return index_child; } /** * @brief Helper to construct a column of indices, for use with `segmented_gather()`. * * When indices are specified as a size_type, e.g. `7`, * the column returned is: `{ 7, 7, 7, 7, 7 }`. * * The returned column can then be used to construct a lists column, for use * with `segmented_gather()`. */ std::unique_ptr<cudf::column> make_index_child(size_type index, size_type num_rows, rmm::cuda_stream_view stream) { auto index_child = // [index, index, index, ..., index] make_numeric_column(data_type{type_id::INT32}, num_rows, mask_state::UNALLOCATED, stream); thrust::fill_n( rmm::exec_policy(stream), index_child->mutable_view().begin<size_type>(), num_rows, index); return index_child; } /** * @brief Helper to construct offsets column for an index vector. * * Constructs the sequence: `{ 0, 1, 2, 3, ... num_lists + 1}`. * This may be used to construct an "index-list" column, where each list row * has a single element. */ std::unique_ptr<cudf::column> make_index_offsets(size_type num_lists, rmm::cuda_stream_view stream) { return cudf::detail::sequence(num_lists + 1, cudf::scalar_type_t<size_type>(0, true, stream), stream, rmm::mr::get_current_device_resource()); } } // namespace /** * @copydoc cudf::lists::extract_list_element * @tparam index_t The type used to specify the index values (either column_view or size_type) * @param stream CUDA stream used for device memory operations and kernel launches. */ template <typename index_t> std::unique_ptr<column> extract_list_element_impl(lists_column_view lists_column, index_t const& index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const num_lists = lists_column.size(); if (num_lists == 0) { return empty_like(lists_column.child()); } // Given an index (or indices vector), an index lists column may be constructed, // with each list row having a single element. // E.g. // 1. If index = 7, index_lists_column = { {7}, {7}, {7}, {7}, ... }. // 2. If indices = {4, 3, 2, 1, null}, // index_lists_column = { {4}, {3}, {2}, {1}, {MAX_SIZE_TYPE} }. auto const index_lists_column = make_lists_column(num_lists, make_index_offsets(num_lists, stream), make_index_child(index, num_lists, stream), 0, {}, stream); // We want the output of `segmented_gather` to be a lists column in which each list has exactly // one element, even for the null lists. // Thus, the input into `segmented_gather` should not be nullable. auto const lists_column_removed_null_mask = lists_column_view{ column_view{data_type{type_id::LIST}, lists_column.size(), nullptr, // data nullptr, // null_mask 0, // null_count lists_column.offset(), std::vector<column_view>{lists_column.child_begin(), lists_column.child_end()}}}; auto extracted_lists = segmented_gather(lists_column_removed_null_mask, index_lists_column->view(), out_of_bounds_policy::NULLIFY, stream, mr); auto output = std::move(extracted_lists->release().children[lists_column_view::child_column_index]); if (!lists_column.has_nulls()) { return output; } // The input lists column may have non-empty nulls if it is nullable, although this is rare. // In such cases, the extracted elements corresponding to these non-empty nulls may not be null. // Thus, we need to superimpose nulls from the input column into the output to make sure each // input null list always results in a null output row. return cudf::structs::detail::superimpose_nulls( lists_column.null_mask(), lists_column.null_count(), std::move(output), stream, mr); } /** * @copydoc cudf::lists::extract_list_element * @param stream CUDA stream used for device memory operations and kernel launches. */ std::unique_ptr<column> extract_list_element(lists_column_view lists_column, size_type const index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return detail::extract_list_element_impl(lists_column, index, stream, mr); } std::unique_ptr<column> extract_list_element(lists_column_view lists_column, column_view const& indices, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return detail::extract_list_element_impl(lists_column, indices, stream, mr); } } // namespace detail /** * @copydoc cudf::lists::extract_list_element(lists_column_view const&, * size_type, * rmm::mr::device_memory_resource*) */ std::unique_ptr<column> extract_list_element(lists_column_view const& lists_column, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::extract_list_element(lists_column, index, stream, mr); } /** * @copydoc cudf::lists::extract_list_element(lists_column_view const&, * column_view const&, * rmm::mr::device_memory_resource*) */ std::unique_ptr<column> extract_list_element(lists_column_view const& lists_column, column_view const& indices, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(indices.size() == lists_column.size(), "Index column must have as many elements as lists column."); return detail::extract_list_element(lists_column, indices, stream, mr); } } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/set_operations.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utilities.hpp" #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/copy_if.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/lists/detail/combine.hpp> #include <cudf/lists/detail/set_operations.hpp> #include <cudf/lists/detail/stream_compaction.hpp> #include <cudf/utilities/type_checks.hpp> #include <thrust/distance.h> #include <thrust/functional.h> #include <thrust/reduce.h> #include <thrust/scatter.h> #include <thrust/uninitialized_fill.h> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> namespace cudf::lists { namespace detail { namespace { /** * @brief Check if two input lists columns are valid input into the list operations. * @param lhs The left lists column * @param rhs The right lists column */ void check_compatibility(lists_column_view const& lhs, lists_column_view const& rhs) { CUDF_EXPECTS(lhs.size() == rhs.size(), "The input lists column must have the same size."); CUDF_EXPECTS(column_types_equal(lhs.child(), rhs.child()), "The input lists columns must have children having the same type structure"); } } // namespace std::unique_ptr<column> have_overlap(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { check_compatibility(lhs, rhs); // Algorithm: // - Generate labels for lhs and rhs child elements. // - Check existence for rows of the table {rhs_labels, rhs_child} in the table // {lhs_labels, lhs_child}. // - `reduce_by_key` with keys are rhs_labels and `logical_or` reduction on the existence reults // computed in the previous step. auto const lhs_child = lhs.get_sliced_child(stream); auto const rhs_child = rhs.get_sliced_child(stream); auto const lhs_labels = generate_labels(lhs, lhs_child.size(), stream, rmm::mr::get_current_device_resource()); auto const rhs_labels = generate_labels(rhs, rhs_child.size(), stream, rmm::mr::get_current_device_resource()); auto const lhs_table = table_view{{lhs_labels->view(), lhs_child}}; auto const rhs_table = table_view{{rhs_labels->view(), rhs_child}}; // Check existence for each row of the rhs_table in lhs_table. auto const contained = cudf::detail::contains( lhs_table, rhs_table, nulls_equal, nans_equal, stream, rmm::mr::get_current_device_resource()); auto const num_rows = lhs.size(); // This stores the unique label values, used as scatter map. auto list_indices = rmm::device_uvector<size_type>(num_rows, stream); // Stores the result of checking overlap for non-empty lists. auto overlap_results = rmm::device_uvector<bool>(num_rows, stream); auto const labels_begin = rhs_labels->view().begin<size_type>(); auto const end = thrust::reduce_by_key(rmm::exec_policy(stream), labels_begin, // keys labels_begin + rhs_labels->size(), // keys contained.begin(), // values to reduce list_indices.begin(), // out keys overlap_results.begin(), // out values thrust::equal_to{}, // comp for keys thrust::logical_or{}); // reduction op for values auto const num_non_empty_segments = thrust::distance(overlap_results.begin(), end.second); auto [null_mask, null_count] = cudf::detail::bitmask_and(table_view{{lhs.parent(), rhs.parent()}}, stream, mr); auto result = make_numeric_column( data_type{type_to_id<bool>()}, num_rows, std::move(null_mask), null_count, stream, mr); auto const result_begin = result->mutable_view().begin<bool>(); // `overlap_results` only stores the results of non-empty lists. // We need to initialize `false` for the entire output array then scatter these results over. thrust::uninitialized_fill( rmm::exec_policy(stream), result_begin, result_begin + num_rows, false); thrust::scatter(rmm::exec_policy(stream), overlap_results.begin(), overlap_results.begin() + num_non_empty_segments, list_indices.begin(), result_begin); // Reset null count, which was invalidated when calling to `mutable_view()`. result->set_null_count(null_count); return result; } std::unique_ptr<column> intersect_distinct(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { check_compatibility(lhs, rhs); // Algorithm: // - Generate labels for lhs and rhs child elements. // - Check existence for rows of the table {rhs_labels, rhs_child} in the table // {lhs_labels, lhs_child}. // - Extract rows of the rhs table using the existence results computed in the previous step. // - Remove duplicate rows, and build the output lists. auto const lhs_child = lhs.get_sliced_child(stream); auto const rhs_child = rhs.get_sliced_child(stream); auto const lhs_labels = generate_labels(lhs, lhs_child.size(), stream, rmm::mr::get_current_device_resource()); auto const rhs_labels = generate_labels(rhs, rhs_child.size(), stream, rmm::mr::get_current_device_resource()); auto const lhs_table = table_view{{lhs_labels->view(), lhs_child}}; auto const rhs_table = table_view{{rhs_labels->view(), rhs_child}}; auto const contained = cudf::detail::contains( lhs_table, rhs_table, nulls_equal, nans_equal, stream, rmm::mr::get_current_device_resource()); auto const intersect_table = cudf::detail::copy_if( rhs_table, [contained = contained.begin()] __device__(auto const idx) { return contained[idx]; }, stream, rmm::mr::get_current_device_resource()); // A stable algorithm is required to ensure that list labels remain contiguous. auto out_table = cudf::detail::stable_distinct(intersect_table->view(), {0, 1}, // indices of key columns duplicate_keep_option::KEEP_ANY, nulls_equal, nans_equal, stream, mr); auto const num_rows = lhs.size(); auto out_offsets = reconstruct_offsets(out_table->get_column(0).view(), num_rows, stream, mr); auto [null_mask, null_count] = cudf::detail::bitmask_and(table_view{{lhs.parent(), rhs.parent()}}, stream, mr); auto output = make_lists_column(num_rows, std::move(out_offsets), std::move(out_table->release().back()), null_count, std::move(null_mask), stream, mr); if (auto const output_cv = output->view(); cudf::detail::has_nonempty_nulls(output_cv, stream)) { return cudf::detail::purge_nonempty_nulls(output_cv, stream, mr); } return output; } std::unique_ptr<column> union_distinct(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { check_compatibility(lhs, rhs); // Algorithm: `return distinct(concatenate_rows(lhs, rhs))`. auto const union_col = lists::detail::concatenate_rows(table_view{{lhs.parent(), rhs.parent()}}, concatenate_null_policy::NULLIFY_OUTPUT_ROW, stream, rmm::mr::get_current_device_resource()); return cudf::lists::detail::distinct( lists_column_view{union_col->view()}, nulls_equal, nans_equal, stream, mr); } std::unique_ptr<column> difference_distinct(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { check_compatibility(lhs, rhs); // Algorithm: // - Generate labels for lhs and rhs child elements. // - Check existence for rows of the table {lhs_labels, lhs_child} in the table // {rhs_labels, rhs_child}. // - Invert the existence results computed in the previous step, resulting in difference results. // - Extract rows of the lhs table using that difference results. // - Remove duplicate rows, and build the output lists. auto const lhs_child = lhs.get_sliced_child(stream); auto const rhs_child = rhs.get_sliced_child(stream); auto const lhs_labels = generate_labels(lhs, lhs_child.size(), stream, rmm::mr::get_current_device_resource()); auto const rhs_labels = generate_labels(rhs, rhs_child.size(), stream, rmm::mr::get_current_device_resource()); auto const lhs_table = table_view{{lhs_labels->view(), lhs_child}}; auto const rhs_table = table_view{{rhs_labels->view(), rhs_child}}; auto const contained = cudf::detail::contains( rhs_table, lhs_table, nulls_equal, nans_equal, stream, rmm::mr::get_current_device_resource()); auto const difference_table = cudf::detail::copy_if( lhs_table, [contained = contained.begin()] __device__(auto const idx) { return !contained[idx]; }, stream, rmm::mr::get_current_device_resource()); // A stable algorithm is required to ensure that list labels remain contiguous. auto out_table = cudf::detail::stable_distinct(difference_table->view(), {0, 1}, // indices of key columns duplicate_keep_option::KEEP_ANY, nulls_equal, nans_equal, stream, mr); auto const num_rows = lhs.size(); auto out_offsets = reconstruct_offsets(out_table->get_column(0).view(), num_rows, stream, mr); auto [null_mask, null_count] = cudf::detail::bitmask_and(table_view{{lhs.parent(), rhs.parent()}}, stream, mr); auto output = make_lists_column(num_rows, std::move(out_offsets), std::move(out_table->release().back()), null_count, std::move(null_mask), stream, mr); if (auto const output_cv = output->view(); cudf::detail::has_nonempty_nulls(output_cv, stream)) { return cudf::detail::purge_nonempty_nulls(output_cv, stream, mr); } return output; } } // namespace detail std::unique_ptr<column> have_overlap(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::have_overlap(lhs, rhs, nulls_equal, nans_equal, stream, mr); } std::unique_ptr<column> intersect_distinct(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::intersect_distinct(lhs, rhs, nulls_equal, nans_equal, stream, mr); } std::unique_ptr<column> union_distinct(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::union_distinct(lhs, rhs, nulls_equal, nans_equal, stream, mr); } std::unique_ptr<column> difference_distinct(lists_column_view const& lhs, lists_column_view const& rhs, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::difference_distinct(lhs, rhs, nulls_equal, nans_equal, stream, mr); } } // namespace cudf::lists
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/reverse.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utilities.hpp" #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/lists/reverse.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> namespace cudf::lists { namespace detail { std::unique_ptr<column> reverse(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) { return cudf::empty_like(input.parent()); } auto const child = input.get_sliced_child(stream); // The labels are also a map from each list element to its corresponding zero-based list index. auto const labels = generate_labels(input, child.size(), stream, rmm::mr::get_current_device_resource()); // The offsets of the output lists column. auto out_offsets = get_normalized_offsets(input, stream, mr); // Build a gather map to copy the output list elements from the input list elements. auto gather_map = rmm::device_uvector<size_type>(child.size(), stream); // Build a segmented reversed order for the child column. thrust::for_each_n(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), child.size(), [list_offsets = out_offsets->view().begin<size_type>(), list_indices = labels->view().begin<size_type>(), gather_map = gather_map.begin()] __device__(auto const idx) { auto const list_idx = list_indices[idx]; auto const begin_offset = list_offsets[list_idx]; auto const end_offset = list_offsets[list_idx + 1]; // Reverse the order of elements within each list. gather_map[idx] = begin_offset + (end_offset - idx - 1); }); auto child_segmented_reversed = cudf::detail::gather(table_view{{child}}, device_span<size_type const>{gather_map.data(), gather_map.size()}, out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return cudf::make_lists_column(input.size(), std::move(out_offsets), std::move(child_segmented_reversed->release().front()), input.null_count(), cudf::detail::copy_bitmask(input.parent(), stream, mr), stream, mr); } } // namespace detail std::unique_ptr<column> reverse(lists_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::reverse(input, stream, mr); } } // namespace cudf::lists
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/lists/sequences.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sizes_to_offsets_iterator.cuh> #include <cudf/lists/detail/lists_column_factories.hpp> #include <cudf/lists/filling.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/scan.h> #include <thrust/tabulate.h> #include <limits> #include <optional> #include <stdexcept> namespace cudf::lists { namespace detail { namespace { template <typename T> struct tabulator { size_type const n_lists; size_type const n_elements; T const* const starts; T const* const steps; size_type const* const offsets; template <typename U> static std::enable_if_t<!cudf::is_duration<U>(), T> __device__ multiply(U x, size_type times) { return x * static_cast<T>(times); } template <typename U> static std::enable_if_t<cudf::is_duration<U>(), T> __device__ multiply(U x, size_type times) { return T{x.count() * times}; } auto __device__ operator()(size_type idx) const { auto const list_idx_end = thrust::upper_bound(thrust::seq, offsets, offsets + n_lists, idx); auto const list_idx = thrust::distance(offsets, list_idx_end) - 1; auto const list_offset = offsets[list_idx]; auto const list_step = steps ? steps[list_idx] : T{1}; return starts[list_idx] + multiply(list_step, idx - list_offset); } }; template <typename T, typename Enable = void> struct sequences_functor { template <typename... Args> static std::unique_ptr<column> invoke(Args&&...) { CUDF_FAIL("Unsupported per-list sequence type-agg combination."); } }; struct sequences_dispatcher { template <typename T> std::unique_ptr<column> operator()(size_type n_lists, size_type n_elements, column_view const& starts, std::optional<column_view> const& steps, size_type const* offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return sequences_functor<T>::invoke(n_lists, n_elements, starts, steps, offsets, stream, mr); } }; template <typename T> static constexpr bool is_supported() { return (cudf::is_numeric<T>() && !cudf::is_boolean<T>()) || cudf::is_duration<T>(); } template <typename T> struct sequences_functor<T, std::enable_if_t<is_supported<T>()>> { static std::unique_ptr<column> invoke(size_type n_lists, size_type n_elements, column_view const& starts, std::optional<column_view> const& steps, size_type const* offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto result = make_fixed_width_column(starts.type(), n_elements, mask_state::UNALLOCATED, stream, mr); if (starts.is_empty()) { return result; } auto const result_begin = result->mutable_view().template begin<T>(); // Use pointers instead of column_device_view to access start and step values should be enough. // This is because we don't need to check for nulls and only support numeric and duration types. auto const starts_begin = starts.template begin<T>(); auto const steps_begin = steps ? steps.value().template begin<T>() : nullptr; auto const op = tabulator<T>{n_lists, n_elements, starts_begin, steps_begin, offsets}; thrust::tabulate(rmm::exec_policy(stream), result_begin, result_begin + n_elements, op); return result; } }; std::unique_ptr<column> sequences(column_view const& starts, std::optional<column_view> const& steps, column_view const& sizes, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(!starts.has_nulls() && !sizes.has_nulls(), "starts and sizes input columns must not have nulls."); CUDF_EXPECTS(starts.size() == sizes.size(), "starts and sizes input columns must have the same number of rows."); CUDF_EXPECTS(cudf::is_index_type(sizes.type()), "Input sizes column must be of integer types."); if (steps) { auto const& steps_cv = steps.value(); CUDF_EXPECTS(!steps_cv.has_nulls(), "steps input column must not have nulls."); CUDF_EXPECTS(starts.size() == steps_cv.size(), "starts and steps input columns must have the same number of rows."); CUDF_EXPECTS(starts.type() == steps_cv.type(), "starts and steps input columns must have the same type."); } auto const n_lists = starts.size(); if (n_lists == 0) { return make_empty_lists_column(starts.type(), stream, mr); } // Generate list offsets for the output. auto list_offsets = make_numeric_column( data_type(type_to_id<size_type>()), n_lists + 1, mask_state::UNALLOCATED, stream, mr); auto const offsets_begin = list_offsets->mutable_view().template begin<size_type>(); auto const sizes_input_it = cudf::detail::indexalator_factory::make_input_iterator(sizes); // First copy the sizes since the exclusive_scan tries to read (n_lists+1) values thrust::copy_n(rmm::exec_policy(stream), sizes_input_it, sizes.size(), offsets_begin); auto const n_elements = cudf::detail::sizes_to_offsets( offsets_begin, offsets_begin + list_offsets->size(), offsets_begin, stream); CUDF_EXPECTS(n_elements <= std::numeric_limits<size_type>::max(), "Size of output exceeds the column size limit", std::overflow_error); auto child = type_dispatcher(starts.type(), sequences_dispatcher{}, n_lists, static_cast<size_type>(n_elements), starts, steps, offsets_begin, stream, mr); return make_lists_column(n_lists, std::move(list_offsets), std::move(child), 0, rmm::device_buffer(0, stream, mr), stream, mr); } } // anonymous namespace std::unique_ptr<column> sequences(column_view const& starts, column_view const& sizes, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return sequences(starts, std::nullopt, sizes, stream, mr); } std::unique_ptr<column> sequences(column_view const& starts, column_view const& steps, column_view const& sizes, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return sequences(starts, std::optional<column_view>{steps}, sizes, stream, mr); } } // namespace detail std::unique_ptr<column> sequences(column_view const& starts, column_view const& sizes, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sequences(starts, sizes, stream, mr); } std::unique_ptr<column> sequences(column_view const& starts, column_view const& steps, column_view const& sizes, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sequences(starts, steps, sizes, stream, mr); } } // namespace cudf::lists
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/stream_compaction/distinct.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <lists/utilities.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <rmm/cuda_stream_view.hpp> #include <memory> #include <utility> namespace cudf::lists { namespace detail { std::unique_ptr<column> distinct(lists_column_view const& input, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Algorithm: // - Generate labels for the child elements. // - Get distinct rows of the table {labels, child} using `stable_distinct`. // - Build the output lists column from the output distinct rows above. if (input.is_empty()) { return empty_like(input.parent()); } auto const child = input.get_sliced_child(stream); auto const labels = generate_labels(input, child.size(), stream, rmm::mr::get_current_device_resource()); auto const distinct_table = cudf::detail::stable_distinct(table_view{{labels->view(), child}}, // input table std::vector<size_type>{0, 1}, // keys duplicate_keep_option::KEEP_ANY, nulls_equal, nans_equal, stream, mr); auto out_offsets = reconstruct_offsets(distinct_table->get_column(0).view(), input.size(), stream, mr); return make_lists_column(input.size(), std::move(out_offsets), std::move(distinct_table->release().back()), input.null_count(), cudf::detail::copy_bitmask(input.parent(), stream, mr), stream, mr); } } // namespace detail std::unique_ptr<column> distinct(lists_column_view const& input, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::distinct(input, nulls_equal, nans_equal, stream, mr); } } // namespace cudf::lists
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/stream_compaction/apply_boolean_mask.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/fill.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/replace.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/lists/detail/stream_compaction.hpp> #include <cudf/lists/stream_compaction.hpp> #include <cudf/reduction/detail/segmented_reduction_functions.hpp> #include <cudf/utilities/bit.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/exec_policy.hpp> #include <thrust/reduce.h> #include <thrust/scan.h> namespace cudf::lists { namespace detail { std::unique_ptr<column> apply_boolean_mask(lists_column_view const& input, lists_column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(boolean_mask.child().type().id() == type_id::BOOL8, "Mask must be of type BOOL8."); CUDF_EXPECTS(input.size() == boolean_mask.size(), "Boolean masks column must have same number of rows as input."); auto const num_rows = input.size(); if (num_rows == 0) { return cudf::empty_like(input.parent()); } auto constexpr offset_data_type = data_type{type_id::INT32}; auto const boolean_mask_sliced_child = boolean_mask.get_sliced_child(stream); auto const make_filtered_child = [&] { auto filtered = cudf::detail::apply_boolean_mask( cudf::table_view{{input.get_sliced_child(stream)}}, boolean_mask_sliced_child, stream, mr) ->release(); return std::move(filtered.front()); }; auto const make_output_offsets = [&] { auto boolean_mask_sliced_offsets = cudf::detail::slice( boolean_mask.offsets(), {boolean_mask.offset(), boolean_mask.size() + 1}, stream) .front(); auto const sizes = cudf::reduction::detail::segmented_sum(boolean_mask_sliced_child, boolean_mask_sliced_offsets, offset_data_type, null_policy::EXCLUDE, std::nullopt, stream, rmm::mr::get_current_device_resource()); auto const d_sizes = column_device_view::create(*sizes, stream); auto const sizes_begin = cudf::detail::make_null_replacement_iterator(*d_sizes, size_type{0}); auto const sizes_end = sizes_begin + sizes->size(); auto output_offsets = cudf::make_numeric_column( offset_data_type, num_rows + 1, mask_state::UNALLOCATED, stream, mr); auto output_offsets_view = output_offsets->mutable_view(); // Could have attempted an exclusive_scan(), but it would not compute the last entry. // Instead, inclusive_scan(), followed by writing `0` to the head of the offsets column. thrust::inclusive_scan( rmm::exec_policy(stream), sizes_begin, sizes_end, output_offsets_view.begin<size_type>() + 1); CUDF_CUDA_TRY(cudaMemsetAsync( output_offsets_view.begin<size_type>(), 0, sizeof(size_type), stream.value())); return output_offsets; }; return cudf::make_lists_column(input.size(), make_output_offsets(), make_filtered_child(), input.null_count(), cudf::detail::copy_bitmask(input.parent(), stream, mr), stream, mr); } } // namespace detail std::unique_ptr<column> apply_boolean_mask(lists_column_view const& input, lists_column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::apply_boolean_mask(input, boolean_mask, stream, mr); } } // namespace cudf::lists
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/copying/gather.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/gather.cuh> #include <cudf/lists/detail/gather.cuh> #include <rmm/cuda_stream_view.hpp> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> namespace cudf { namespace lists { namespace detail { /** * @brief List gatherer function object. * * The iterator needed for gathering at level N+1 needs to reference the offsets * from level N and the "base" offsets used from level N-1. An example of * the gather map needed for level N+1 (see documentation for make_gather_data for * the full example) * * @code{.pseudo} * level N-1 offsets : [0, 2, 5, 10], gather map[0, 2] * * level N offsets : [0, 2, 7] * "base" offsets from level N-1 : [0, 5] * * desired output sequence for the level N+1 gather map * [0, 1, 5, 6, 7, 8, 9] * * The generation of this sequence in this functor works as follows * * step 1, generate row index sequence * [0, 0, 1, 1, 1, 1, 1] * step 2, generate row subindex sequence * [0, 1, 0, 1, 2, 3, 4] * step 3, add base offsets to get the final sequence * [0, 1, 5, 6, 7, 8, 9] * @endcode */ struct list_gatherer { using argument_type = size_type; using result_type = size_type; size_t offset_count; size_type const* base_offsets; size_type const* offsets; list_gatherer(gather_data const& gd) : offset_count{gd.base_offsets.size()}, base_offsets{gd.base_offsets.data()}, offsets{gd.offsets->mutable_view().data<size_type>()} { } __device__ result_type operator()(argument_type index) { // the "upper bound" of the span for a given offset is always offsets+1; size_type const* upper_bound_start = offsets + 1; // "step 1" from above auto const bound = thrust::upper_bound(thrust::seq, upper_bound_start, upper_bound_start + offset_count, index); size_type offset_index = thrust::distance(upper_bound_start, bound); // "step 2" from above size_type offset_subindex = offset_index == 0 ? index : index - offsets[offset_index]; // "step 3" from above return offset_subindex + base_offsets[offset_index]; } }; /** * @copydoc cudf::lists::detail::gather_list_leaf */ std::unique_ptr<column> gather_list_leaf(column_view const& column, gather_data const& gd, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // gather map iterator for this level (N) auto gather_map_begin = thrust::make_transform_iterator( thrust::make_counting_iterator<size_type>(0), list_gatherer{gd}); size_type gather_map_size = gd.gather_map_size; // call the normal gather // note : we don't need to bother checking for out-of-bounds here since // our inputs at this stage aren't coming from the user. auto gather_table = cudf::detail::gather(cudf::table_view({column}), gather_map_begin, gather_map_begin + gather_map_size, out_of_bounds_policy::DONT_CHECK, stream, mr); auto leaf_column = std::move(gather_table->release().front()); if (column.null_count() == 0) { leaf_column->set_null_mask(rmm::device_buffer{}, 0); } return leaf_column; } /** * @copydoc cudf::lists::detail::gather_list_nested */ std::unique_ptr<column> gather_list_nested(cudf::lists_column_view const& list, gather_data& gd, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // gather map iterator for this level (N) auto gather_map_begin = thrust::make_transform_iterator( thrust::make_counting_iterator<size_type>(0), list_gatherer{gd}); size_type gather_map_size = gd.gather_map_size; // if the gather map is empty, return an empty column if (gather_map_size == 0) { return empty_like(list.parent()); } // gather the bitmask, if relevant rmm::device_buffer null_mask{0, stream, mr}; size_type null_count = list.null_count(); if (null_count > 0) { auto list_cdv = column_device_view::create(list.parent(), stream); auto validity = cudf::detail::valid_if( gather_map_begin, gather_map_begin + gather_map_size, [cdv = *list_cdv] __device__(int index) { return cdv.is_valid(index); }, stream, mr); null_mask = std::move(validity.first); null_count = validity.second; } // generate gather_data for next level (N+1), potentially recycling the temporary // base_offsets buffer. gather_data child_gd = make_gather_data<false>( list, gather_map_begin, gather_map_size, std::move(gd.base_offsets), stream, mr); // the nesting case. if (list.child().type() == cudf::data_type{type_id::LIST}) { // gather children. auto child = gather_list_nested(list.get_sliced_child(stream), child_gd, stream, mr); // return the nested column return make_lists_column(gather_map_size, std::move(child_gd.offsets), std::move(child), null_count, std::move(null_mask), stream, mr); } // it's a leaf. do a regular gather auto child = gather_list_leaf(list.get_sliced_child(stream), child_gd, stream, mr); // assemble final column return make_lists_column(gather_map_size, std::move(child_gd.offsets), std::move(child), null_count, std::move(null_mask), stream, mr); } } // namespace detail } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/copying/concatenate.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/concatenate.hpp> #include <cudf/detail/concatenate_masks.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/detail/null_mask.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/lists/lists_column_view.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/transform.h> #include <algorithm> #include <memory> #include <numeric> namespace cudf { namespace lists { namespace detail { namespace { /** * @brief Merges the offsets child columns of multiple list columns into one. * * Since offsets are all relative to the start of their respective column, * all offsets are shifted to account for the new starting position * * @param[in] columns Vector of lists columns to concatenate * @param[in] total_list_count Total number of lists contained in the columns * @param[in] stream CUDA stream used for device memory operations * and kernel launches. * @param[in] mr Device memory resource used to allocate the * returned column's device memory. */ std::unique_ptr<column> merge_offsets(host_span<lists_column_view const> columns, size_type total_list_count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // outgoing offsets auto merged_offsets = cudf::make_fixed_width_column( data_type{type_id::INT32}, total_list_count + 1, mask_state::UNALLOCATED, stream, mr); mutable_column_device_view d_merged_offsets(*merged_offsets, 0, 0); // merge offsets // TODO : this could probably be done as a single gpu operation if done as a kernel. size_type shift = 0; size_type count = 0; std::for_each(columns.begin(), columns.end(), [&](lists_column_view const& c) { if (c.size() > 0) { // handle sliced columns int const local_shift = shift - (c.offset() > 0 ? cudf::detail::get_value<size_type>(c.offsets(), c.offset(), stream) : 0); column_device_view offsets(c.offsets(), nullptr, nullptr); thrust::transform( rmm::exec_policy(stream), offsets.begin<size_type>() + c.offset(), offsets.begin<size_type>() + c.offset() + c.size() + 1, d_merged_offsets.begin<size_type>() + count, [local_shift] __device__(size_type offset) { return offset + local_shift; }); shift += c.get_sliced_child(stream).size(); count += c.size(); } }); return merged_offsets; } } // namespace /** * @copydoc cudf::lists::detail::concatenate */ std::unique_ptr<column> concatenate(host_span<column_view const> columns, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::vector<lists_column_view> lists_columns; lists_columns.reserve(columns.size()); std::transform( columns.begin(), columns.end(), std::back_inserter(lists_columns), [](column_view const& c) { return lists_column_view(c); }); // concatenate children. also prep data needed for offset merging std::vector<column_view> children; children.reserve(columns.size()); size_type total_list_count = 0; std::for_each(lists_columns.begin(), lists_columns.end(), [&total_list_count, &children, stream](lists_column_view const& l) { // count total # of lists total_list_count += l.size(); children.push_back(l.get_sliced_child(stream)); }); auto data = cudf::detail::concatenate(children, stream, mr); // merge offsets auto offsets = merge_offsets(lists_columns, total_list_count, stream, mr); // if any of the input columns have nulls, construct the output mask bool const has_nulls = std::any_of(columns.begin(), columns.end(), [](auto const& col) { return col.has_nulls(); }); rmm::device_buffer null_mask = cudf::detail::create_null_mask( total_list_count, has_nulls ? mask_state::UNINITIALIZED : mask_state::UNALLOCATED, stream, mr); auto null_mask_data = static_cast<bitmask_type*>(null_mask.data()); auto const null_count = has_nulls ? cudf::detail::concatenate_masks(columns, null_mask_data, stream) : size_type{0}; // assemble into outgoing list column return make_lists_column(total_list_count, std::move(offsets), std::move(data), null_count, std::move(null_mask), stream, mr); } } // namespace detail } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/copying/segmented_gather.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy_range.cuh> #include <cudf/detail/gather.cuh> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/lists/detail/gather.cuh> #include <cudf/utilities/default_stream.hpp> #include <thrust/binary_search.h> #include <thrust/execution_policy.h> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace lists { namespace detail { std::unique_ptr<column> segmented_gather(lists_column_view const& value_column, lists_column_view const& gather_map, out_of_bounds_policy bounds_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_index_type(gather_map.child().type()), "Gather map should be list column of index type"); CUDF_EXPECTS(!gather_map.has_nulls(), "Gather map contains nulls", std::invalid_argument); CUDF_EXPECTS(value_column.size() == gather_map.size(), "Gather map and list column should be same size"); auto const gather_map_sliced_child = gather_map.get_sliced_child(stream); auto const gather_map_size = gather_map_sliced_child.size(); auto const gather_index_begin = gather_map.offsets_begin() + 1; auto const gather_index_end = gather_map.offsets_end(); auto const value_offsets = value_column.offsets_begin(); auto const value_device_view = column_device_view::create(value_column.parent(), stream); auto const map_begin = cudf::detail::indexalator_factory::make_input_iterator(gather_map_sliced_child); auto const out_of_bounds = [] __device__(auto const index, auto const list_size) { return index >= list_size || (index < 0 && -index > list_size); }; // Calculate Flattened gather indices (value_offset[row]+sub_index auto transformer = [values_lists_view = *value_device_view, value_offsets, map_begin, gather_index_begin, gather_index_end, bounds_policy, out_of_bounds] __device__(size_type index) -> size_type { // Get each row's offset. (Each row is a list). auto offset_idx = thrust::upper_bound( thrust::seq, gather_index_begin, gather_index_end, gather_index_begin[-1] + index) - gather_index_begin; // Get each sub_index in list in each row of gather_map. auto sub_index = map_begin[index]; auto list_is_null = values_lists_view.is_null(offset_idx); auto list_size = list_is_null ? 0 : (value_offsets[offset_idx + 1] - value_offsets[offset_idx]); auto wrapped_sub_index = sub_index < 0 ? sub_index + list_size : sub_index; auto constexpr null_idx = cuda::std::numeric_limits<cudf::size_type>::max(); // Add sub_index to value_column offsets, to get gather indices of child of value_column return (bounds_policy == out_of_bounds_policy::NULLIFY && out_of_bounds(sub_index, list_size)) ? null_idx : value_offsets[offset_idx] + wrapped_sub_index - value_offsets[0]; }; auto child_gather_index_begin = cudf::detail::make_counting_transform_iterator(0, transformer); // Call gather on child of value_column auto child_table = cudf::detail::gather(table_view({value_column.get_sliced_child(stream)}), child_gather_index_begin, child_gather_index_begin + gather_map_size, bounds_policy, stream, mr); auto child = std::move(child_table->release().front()); // Create list offsets from gather_map. auto output_offset = cudf::detail::allocate_like( gather_map.offsets(), gather_map.size() + 1, mask_allocation_policy::RETAIN, stream, mr); auto output_offset_view = output_offset->mutable_view(); cudf::detail::copy_range_in_place(gather_map.offsets(), output_offset_view, gather_map.offset(), gather_map.offset() + output_offset_view.size(), 0, stream); // Assemble list column & return auto null_mask = cudf::detail::copy_bitmask(value_column.parent(), stream, mr); size_type null_count = value_column.null_count(); return make_lists_column(gather_map.size(), std::move(output_offset), std::move(child), null_count, std::move(null_mask), stream, mr); } } // namespace detail std::unique_ptr<column> segmented_gather(lists_column_view const& source_column, lists_column_view const& gather_map_list, out_of_bounds_policy bounds_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::segmented_gather(source_column, gather_map_list, bounds_policy, stream, mr); } } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/copying/scatter_helper.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/detail/valid_if.cuh> #include <cudf/lists/detail/copying.hpp> #include <cudf/lists/detail/scatter_helper.cuh> #include <cudf/strings/detail/strings_children.cuh> #include <cudf/utilities/span.hpp> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/transform.h> namespace cudf { namespace lists { namespace detail { /** * @brief Constructs null mask for a scattered list's child column * * @param parent_list_vector Vector of unbound_list_view, for parent lists column * @param parent_list_offsets List column offsets for parent lists column * @param source_lists Source lists column for scatter operation * @param target_lists Target lists column for scatter operation * @param num_child_rows Number of rows in child column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate child column's null mask * @return std::pair<rmm::device_buffer, size_type> Child column's null mask and null row count */ std::pair<rmm::device_buffer, size_type> construct_child_nullmask( rmm::device_uvector<unbound_list_view> const& parent_list_vector, column_view const& parent_list_offsets, cudf::detail::lists_column_device_view const& source_lists, cudf::detail::lists_column_device_view const& target_lists, size_type num_child_rows, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto is_valid_predicate = [d_list_vector = parent_list_vector.begin(), d_offsets = parent_list_offsets.template data<size_type>(), d_offsets_size = parent_list_offsets.size(), source_lists, target_lists] __device__(auto const& i) { auto list_start = thrust::upper_bound(thrust::seq, d_offsets, d_offsets + d_offsets_size, i) - 1; auto list_index = list_start - d_offsets; auto element_index = i - *list_start; auto list_row = d_list_vector[list_index]; return !list_row.bind_to_column(source_lists, target_lists).is_null(element_index); }; return cudf::detail::valid_if(thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(num_child_rows), is_valid_predicate, stream, mr); } /** * @brief (type_dispatch endpoint) Functor that constructs the child column result * of `scatter()`ing a list column. * * The protocol is as follows: * * Inputs: * 1. list_vector: A device_uvector of unbound_list_view, with each element * indicating the position, size, and which column the list * row came from. * 2. list_offsets: The offsets column for the (outer) lists column, each offset * marking the beginning of a list row. * 3. source_list: The lists-column that is the source of the scatter(). * 4. target_list: The lists-column that is the target of the scatter(). * * Output: A (possibly non-list) child column, which may be used in combination * with list_offsets to fully construct the outer list. * * Example: * * Consider the following scatter operation of two `list<int>` columns: * * 1. Source: [{9,9,9,9}, {8,8,8}], i.e. * a. Child: [9,9,9,9,8,8,8] * b. Offsets: [0, 4, 7] * * 2. Target: [{1,1}, {2,2}, {3,3}], i.e. * a. Child: [1,1,2,2,3,3] * b. Offsets: [0, 2, 4, 6] * * 3. Scatter-map: [2, 0] * * 4. Expected output: [{8,8,8}, {2,2}, {9,9,9,9}], i.e. * a. Child: [8,8,8,2,2,9,9,9,9] <--- THIS * b. Offsets: [0, 3, 5, 9] * * `list_child_constructor` constructs the Expected Child column indicated above. * * `list_child_constructor` expects to be called with the `Source`/`Target` * lists columns, along with the following: * * 1. list_vector: [ S[1](3), T[1](2), S[0](4) ] * Each unbound_list_view (e.g. S[1](3)) indicates: * a. Which column the row is bound to: S == Source, T == Target * b. The list index. E.g. S[1] indicates the 2nd list row of the Source column. * c. The row size. E.g. S[1](3) indicates that the row has 3 elements. * * 2. list_offsets: [0, 3, 5, 9] * The caller may construct this with an `inclusive_scan()` on `list_vector` * element sizes. */ struct list_child_constructor { private: /** * @brief Determine whether the child column type is supported with scattering lists. * * @tparam T The data type of the child column of the list being scattered. */ template <typename T> struct is_supported_child_type { static bool const value = cudf::is_fixed_width<T>() || std::is_same_v<T, string_view> || std::is_same_v<T, list_view> || std::is_same_v<T, struct_view>; }; public: // SFINAE catch-all, for unsupported child column types. template <typename T, typename... Args> std::enable_if_t<!is_supported_child_type<T>::value, std::unique_ptr<column>> operator()( Args&&... args) { CUDF_FAIL("list_child_constructor unsupported!"); } /** * @brief Implementation for fixed_width child column types. */ template <typename T> std::enable_if_t<cudf::is_fixed_width<T>(), std::unique_ptr<column>> operator()( rmm::device_uvector<unbound_list_view> const& list_vector, cudf::column_view const& list_offsets, cudf::lists_column_view const& source_lists_column_view, cudf::lists_column_view const& target_lists_column_view, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto source_column_device_view = column_device_view::create(source_lists_column_view.parent(), stream); auto target_column_device_view = column_device_view::create(target_lists_column_view.parent(), stream); auto source_lists = cudf::detail::lists_column_device_view(*source_column_device_view); auto target_lists = cudf::detail::lists_column_device_view(*target_column_device_view); auto const num_child_rows{ cudf::detail::get_value<size_type>(list_offsets, list_offsets.size() - 1, stream)}; auto child_null_mask = source_lists_column_view.child().nullable() || target_lists_column_view.child().nullable() ? construct_child_nullmask( list_vector, list_offsets, source_lists, target_lists, num_child_rows, stream, mr) : std::pair(rmm::device_buffer{}, 0); auto child_column = cudf::make_fixed_width_column(source_lists_column_view.child().type(), num_child_rows, std::move(child_null_mask.first), child_null_mask.second, stream, mr); thrust::transform( rmm::exec_policy_nosync(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(child_column->size()), child_column->mutable_view().begin<T>(), [offset_begin = list_offsets.begin<size_type>(), offset_size = list_offsets.size(), d_list_vector = list_vector.begin(), source_lists, target_lists] __device__(auto index) { auto const list_index_iter = thrust::upper_bound(thrust::seq, offset_begin, offset_begin + offset_size, index); auto const list_index = static_cast<size_type>(thrust::distance(offset_begin, list_index_iter) - 1); auto const intra_index = static_cast<size_type>(index - offset_begin[list_index]); auto actual_list_row = d_list_vector[list_index].bind_to_column(source_lists, target_lists); return actual_list_row.template element<T>(intra_index); }); child_column->set_null_count(child_null_mask.second); return child_column; } /** * @brief Implementation for list child columns that contain strings. */ template <typename T> std::enable_if_t<std::is_same_v<T, string_view>, std::unique_ptr<column>> operator()( rmm::device_uvector<unbound_list_view> const& list_vector, cudf::column_view const& list_offsets, cudf::lists_column_view const& source_lists_column_view, cudf::lists_column_view const& target_lists_column_view, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto source_column_device_view = column_device_view::create(source_lists_column_view.parent(), stream); auto target_column_device_view = column_device_view::create(target_lists_column_view.parent(), stream); auto source_lists = cudf::detail::lists_column_device_view(*source_column_device_view); auto target_lists = cudf::detail::lists_column_device_view(*target_column_device_view); auto const num_child_rows{ cudf::detail::get_value<size_type>(list_offsets, list_offsets.size() - 1, stream)}; if (num_child_rows == 0) { return make_empty_column(type_id::STRING); } auto string_views = rmm::device_uvector<string_view>(num_child_rows, stream); auto const null_string_view = string_view{nullptr, 0}; // placeholder for factory function thrust::transform( rmm::exec_policy_nosync(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(string_views.size()), string_views.begin(), [offset_begin = list_offsets.begin<size_type>(), offset_size = list_offsets.size(), d_list_vector = list_vector.begin(), source_lists, target_lists, null_string_view] __device__(auto index) { auto const list_index_iter = thrust::upper_bound(thrust::seq, offset_begin, offset_begin + offset_size, index); auto const list_index = static_cast<size_type>(thrust::distance(offset_begin, list_index_iter) - 1); auto const intra_index = static_cast<size_type>(index - offset_begin[list_index]); auto row_index = d_list_vector[list_index].row_index(); auto actual_list_row = d_list_vector[list_index].bind_to_column(source_lists, target_lists); auto lists_column = actual_list_row.get_column(); auto lists_offsets_ptr = lists_column.offsets().template data<size_type>(); auto child_strings_column = lists_column.child(); auto strings_offset = lists_offsets_ptr[row_index] + intra_index; if (child_strings_column.is_null(strings_offset)) { return null_string_view; } auto const d_str = child_strings_column.template element<string_view>(strings_offset); // ensure a string from an all-empty column is not mapped to the null placeholder auto const empty_string_view = string_view{}; return d_str.empty() ? empty_string_view : d_str; }); // string_views should now have been populated with source and target references. auto sv_span = cudf::device_span<string_view const>(string_views); return cudf::make_strings_column(sv_span, null_string_view, stream, mr); } /** * @brief (Recursively) Constructs a child column that is itself a list column. */ template <typename T> std::enable_if_t<std::is_same_v<T, list_view>, std::unique_ptr<column>> operator()( rmm::device_uvector<unbound_list_view> const& list_vector, cudf::column_view const& list_offsets, cudf::lists_column_view const& source_lists_column_view, cudf::lists_column_view const& target_lists_column_view, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto source_column_device_view = column_device_view::create(source_lists_column_view.parent(), stream); auto target_column_device_view = column_device_view::create(target_lists_column_view.parent(), stream); auto source_lists = cudf::detail::lists_column_device_view(*source_column_device_view); auto target_lists = cudf::detail::lists_column_device_view(*target_column_device_view); auto const num_child_rows{ cudf::detail::get_value<size_type>(list_offsets, list_offsets.size() - 1, stream)}; if (num_child_rows == 0) { // make an empty lists column using the input child type return empty_like(source_lists_column_view.child()); } auto child_list_views = rmm::device_uvector<unbound_list_view>(num_child_rows, stream, mr); // Convert from parent list_device_view instances to child list_device_views. // For instance, if a parent list_device_view has 3 elements, it should have 3 corresponding // child list_device_view instances. thrust::transform( rmm::exec_policy_nosync(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(child_list_views.size()), child_list_views.begin(), [offset_begin = list_offsets.begin<size_type>(), offset_size = list_offsets.size(), d_list_vector = list_vector.begin(), source_lists, target_lists] __device__(auto index) { auto const list_index_iter = thrust::upper_bound(thrust::seq, offset_begin, offset_begin + offset_size, index); auto const list_index = static_cast<size_type>(thrust::distance(offset_begin, list_index_iter) - 1); auto const intra_index = static_cast<size_type>(index - offset_begin[list_index]); auto label = d_list_vector[list_index].label(); auto row_index = d_list_vector[list_index].row_index(); auto actual_list_row = d_list_vector[list_index].bind_to_column(source_lists, target_lists); auto lists_column = actual_list_row.get_column(); auto child_lists_column = lists_column.child(); auto lists_offsets_ptr = lists_column.offsets().template data<size_type>(); auto child_lists_offsets_ptr = child_lists_column.child(lists_column_view::offsets_column_index) .template data<size_type>(); auto child_row_index = lists_offsets_ptr[row_index] + intra_index; auto size = child_lists_offsets_ptr[child_row_index + 1] - child_lists_offsets_ptr[child_row_index]; return unbound_list_view{label, child_row_index, size}; }); // child_list_views should now have been populated, with source and target references. auto begin = thrust::make_transform_iterator( child_list_views.begin(), [] __device__(auto const& row) { return row.size(); }); auto child_offsets = std::get<0>( cudf::detail::make_offsets_child_column(begin, begin + child_list_views.size(), stream, mr)); auto child_column = cudf::type_dispatcher<dispatch_storage_type>( source_lists_column_view.child().child(1).type(), list_child_constructor{}, child_list_views, child_offsets->view(), cudf::lists_column_view(source_lists_column_view.child()), cudf::lists_column_view(target_lists_column_view.child()), stream, mr); auto child_null_mask = source_lists_column_view.child().nullable() || target_lists_column_view.child().nullable() ? construct_child_nullmask( list_vector, list_offsets, source_lists, target_lists, num_child_rows, stream, mr) : std::pair(rmm::device_buffer{}, 0); return cudf::make_lists_column(num_child_rows, std::move(child_offsets), std::move(child_column), child_null_mask.second, // Null count std::move(child_null_mask.first), // Null mask stream, mr); } /** * @brief (Recursively) constructs child columns that are structs. */ template <typename T> std::enable_if_t<std::is_same_v<T, struct_view>, std::unique_ptr<column>> operator()( rmm::device_uvector<unbound_list_view> const& list_vector, cudf::column_view const& list_offsets, cudf::lists_column_view const& source_lists_column_view, cudf::lists_column_view const& target_lists_column_view, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto const source_column_device_view = column_device_view::create(source_lists_column_view.parent(), stream); auto const target_column_device_view = column_device_view::create(target_lists_column_view.parent(), stream); auto const source_lists = cudf::detail::lists_column_device_view(*source_column_device_view); auto const target_lists = cudf::detail::lists_column_device_view(*target_column_device_view); auto const source_structs = source_lists_column_view.child(); auto const target_structs = target_lists_column_view.child(); auto const num_child_rows{ cudf::detail::get_value<size_type>(list_offsets, list_offsets.size() - 1, stream)}; auto const num_struct_members = std::distance(source_structs.child_begin(), source_structs.child_end()); std::vector<std::unique_ptr<column>> child_columns; child_columns.reserve(num_struct_members); auto project_member_as_list_view = [](column_view const& structs_member, cudf::size_type const& structs_list_num_rows, column_view const& structs_list_offsets, bitmask_type const* structs_list_nullmask, cudf::size_type const& structs_list_null_count) { return lists_column_view(column_view(data_type{type_id::LIST}, structs_list_num_rows, nullptr, structs_list_nullmask, structs_list_null_count, 0, {structs_list_offsets, structs_member})); }; auto const iter_source_member_as_list = thrust::make_transform_iterator( thrust::make_counting_iterator<cudf::size_type>(0), [&](auto child_idx) { return project_member_as_list_view(source_structs.child(child_idx), source_lists_column_view.size(), source_lists_column_view.offsets(), source_lists_column_view.null_mask(), source_lists_column_view.null_count()); }); auto const iter_target_member_as_list = thrust::make_transform_iterator( thrust::make_counting_iterator<cudf::size_type>(0), [&](auto child_idx) { return project_member_as_list_view(target_structs.child(child_idx), target_lists_column_view.size(), target_lists_column_view.offsets(), target_lists_column_view.null_mask(), target_lists_column_view.null_count()); }); std::transform(iter_source_member_as_list, iter_source_member_as_list + num_struct_members, iter_target_member_as_list, std::back_inserter(child_columns), [&](auto source_struct_member_list_view, auto target_struct_member_list_view) { return cudf::type_dispatcher<dispatch_storage_type>( source_struct_member_list_view.child().type(), list_child_constructor{}, list_vector, list_offsets, source_struct_member_list_view, target_struct_member_list_view, stream, mr); }); auto child_null_mask = source_lists_column_view.child().nullable() || target_lists_column_view.child().nullable() ? construct_child_nullmask( list_vector, list_offsets, source_lists, target_lists, num_child_rows, stream, mr) : std::pair(rmm::device_buffer{}, 0); return cudf::make_structs_column(num_child_rows, std::move(child_columns), child_null_mask.second, std::move(child_null_mask.first), stream, mr); } }; std::unique_ptr<column> build_lists_child_column_recursive( data_type child_column_type, rmm::device_uvector<unbound_list_view> const& list_vector, cudf::column_view const& list_offsets, cudf::lists_column_view const& source_lists_column_view, cudf::lists_column_view const& target_lists_column_view, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return cudf::type_dispatcher<dispatch_storage_type>(child_column_type, list_child_constructor{}, list_vector, list_offsets, source_lists_column_view, target_lists_column_view, stream, mr); } } // namespace detail } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/copying/copying.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/copy_range.cuh> #include <cudf/detail/get_value.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/types.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <iostream> namespace cudf { namespace lists { namespace detail { // New lists column from a subset of a lists_column_view std::unique_ptr<cudf::column> copy_slice(lists_column_view const& lists, size_type start, size_type end, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (lists.is_empty() or start == end) { return cudf::empty_like(lists.parent()); } if (end < 0 || end > lists.size()) end = lists.size(); CUDF_EXPECTS(((start >= 0) && (start < end)), "Invalid slice range."); auto lists_count = end - start; auto offsets_count = lists_count + 1; // num_offsets always 1 more than num_lists // Account for the offset of the view: start += lists.offset(); end += lists.offset(); // Offsets at the beginning and end of the slice: auto offsets_data = lists.offsets().data<cudf::size_type>(); auto start_offset = cudf::detail::get_value<size_type>(lists.offsets(), start, stream); auto end_offset = cudf::detail::get_value<size_type>(lists.offsets(), end, stream); rmm::device_uvector<cudf::size_type> out_offsets(offsets_count, stream); // Compute the offsets column of the result: thrust::transform( rmm::exec_policy(stream), offsets_data + start, offsets_data + end + 1, // size of offsets column is 1 greater than slice length out_offsets.data(), [start_offset] __device__(cudf::size_type i) { return i - start_offset; }); auto offsets = std::make_unique<cudf::column>(cudf::data_type{cudf::type_id::INT32}, offsets_count, out_offsets.release(), rmm::device_buffer{}, 0); // Compute the child column of the result. // If the child of this lists column is itself a lists column, we call copy_slice() on it. // Otherwise, it is a column of the leaf type, so we call slice() on it and copy the resulting // view into a cudf::column: auto child = (lists.child().type() == cudf::data_type{type_id::LIST}) ? copy_slice(lists_column_view(lists.child()), start_offset, end_offset, stream, mr) : std::make_unique<cudf::column>( cudf::detail::slice(lists.child(), {start_offset, end_offset}, stream).front(), stream, mr); // Compute the null mask of the result: auto null_mask = cudf::detail::copy_bitmask(lists.null_mask(), start, end, stream, mr); auto null_count = cudf::detail::null_count( static_cast<bitmask_type const*>(null_mask.data()), 0, end - start, stream); return make_lists_column(lists_count, std::move(offsets), std::move(child), null_count, std::move(null_mask), stream, mr); } } // namespace detail } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/combine/concatenate_rows.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/concatenate.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/lists/combine.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_checks.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/reduce.h> #include <thrust/scan.h> namespace cudf { namespace lists { namespace detail { namespace { /** * @brief Generates the new set of offsets that regroups the concatenated-by-column inputs * into concatenated-by-rows inputs, and the associated null mask. * * If we have the following input columns: * * s1 = [{0, 1}, {2, 3, 4}, {5}, {}, {6, 7}] * s2 = [{8}, {9}, {}, {10, 11, 12}, {13, 14, 15, 16}] * * We can rearrange the child data using a normal concatenate and a gather such that * the resulting values are in the correct order. For the above example, the * child column would look like: * * {0, 1, 8, 2, 3, 4, 9, 5, 10, 11, 12, 6, 7, 13, 14, 15} * * Because we did a regular concatenate (and a subsequent gather to reorder the rows), * the top level rows of the list column would look like: * * (2N rows) * [{0, 1}, {8}, {2, 3, 4}, {9}, {5}, {10, 11, 12}, {6, 7}, {13, 14, 15, 16}] * * What we really want is: * * (N rows) * [{0, 1, 8}, {2, 3, 4, 9}, {5}, {10, 11, 12}, {6, 7, 13, 14, 15, 16}] * * We can do this by recomputing a new offsets column that does this regrouping. * */ std::tuple<std::unique_ptr<column>, rmm::device_buffer, size_type> generate_regrouped_offsets_and_null_mask(table_device_view const& input, bool build_null_mask, concatenate_null_policy null_policy, device_span<size_type const> row_null_counts, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // outgoing offsets. auto offsets = cudf::make_fixed_width_column( data_type{type_to_id<size_type>()}, input.num_rows() + 1, mask_state::UNALLOCATED, stream, mr); auto keys = thrust::make_transform_iterator(thrust::make_counting_iterator(size_t{0}), [num_columns = input.num_columns()] __device__( size_t i) -> size_type { return i / num_columns; }); // generate sizes for the regrouped rows auto values = thrust::make_transform_iterator( thrust::make_counting_iterator(size_t{0}), [input, row_null_counts = row_null_counts.data(), null_policy] __device__( size_t i) -> size_type { auto const col_index = i % input.num_columns(); auto const row_index = i / input.num_columns(); // nullify the whole output row if (row_null_counts) { if ((null_policy == concatenate_null_policy::NULLIFY_OUTPUT_ROW && row_null_counts[row_index] > 0) || (null_policy == concatenate_null_policy::IGNORE && row_null_counts[row_index] == input.num_columns())) { return 0; } } auto offsets = input.column(col_index).child(lists_column_view::offsets_column_index).data<size_type>() + input.column(col_index).offset(); return offsets[row_index + 1] - offsets[row_index]; }); thrust::reduce_by_key(rmm::exec_policy(stream), keys, keys + (input.num_rows() * input.num_columns()), values, thrust::make_discard_iterator(), offsets->mutable_view().begin<size_type>()); // convert to offsets thrust::exclusive_scan(rmm::exec_policy(stream), offsets->view().begin<size_type>(), offsets->view().begin<size_type>() + input.num_rows() + 1, offsets->mutable_view().begin<size_type>(), 0); // generate appropriate null mask auto [null_mask, null_count] = [&]() { // if the input doesn't contain nulls, no work to do if (!build_null_mask) { return std::pair<rmm::device_buffer, size_type>{rmm::device_buffer{}, 0}; } // row is null if -all- input rows are null if (null_policy == concatenate_null_policy::IGNORE) { return cudf::detail::valid_if( row_null_counts.begin(), row_null_counts.begin() + input.num_rows(), [num_columns = input.num_columns()] __device__(size_type null_count) { return null_count != num_columns; }, stream, mr); } // row is null if -any- input rows are null return cudf::detail::valid_if( row_null_counts.begin(), row_null_counts.begin() + input.num_rows(), [] __device__(size_type null_count) { return null_count == 0; }, stream, mr); }(); return {std::move(offsets), std::move(null_mask), null_count}; } rmm::device_uvector<size_type> generate_null_counts(table_device_view const& input, rmm::cuda_stream_view stream) { rmm::device_uvector<size_type> null_counts(input.num_rows(), stream); auto keys = thrust::make_transform_iterator(thrust::make_counting_iterator(size_t{0}), [num_columns = input.num_columns()] __device__( size_t i) -> size_type { return i / num_columns; }); auto null_values = thrust::make_transform_iterator( thrust::make_counting_iterator(size_t{0}), [input] __device__(size_t i) -> size_type { auto const col_index = i % input.num_columns(); auto const row_index = i / input.num_columns(); auto const& col = input.column(col_index); return col.null_mask() ? (bit_is_set(col.null_mask(), row_index + col.offset()) ? 0 : 1) : 0; }); thrust::reduce_by_key(rmm::exec_policy(stream), keys, keys + (input.num_rows() * input.num_columns()), null_values, thrust::make_discard_iterator(), null_counts.data()); return null_counts; } } // anonymous namespace /** * @copydoc cudf::lists::concatenate_rows * * @param stream CUDA stream used for device memory operations and kernel launches. */ std::unique_ptr<column> concatenate_rows(table_view const& input, concatenate_null_policy null_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.num_columns() > 0, "The input table must have at least one column."); auto const entry_type = lists_column_view(*input.begin()).child().type(); CUDF_EXPECTS( std::all_of(input.begin(), input.end(), [](column_view const& col) { return col.type().id() == cudf::type_id::LIST; }), "All columns of the input table must be of lists column type."); CUDF_EXPECTS( std::all_of(std::next(input.begin()), input.end(), [a = *input.begin()](column_view const& b) { return column_types_equal(a, b); }), "The types of entries in the input columns must be the same."); auto const num_rows = input.num_rows(); auto const num_cols = input.num_columns(); if (num_rows == 0) { return cudf::empty_like(input.column(0)); } if (num_cols == 1) { return std::make_unique<column>(*(input.begin()), stream, mr); } // concatenate the input table into one column. std::vector<column_view> cols(input.num_columns()); std::copy(input.begin(), input.end(), cols.begin()); auto concat = cudf::detail::concatenate(cols, stream, rmm::mr::get_current_device_resource()); // whether or not we should be generating a null mask at all auto const build_null_mask = concat->has_nulls(); auto input_dv = table_device_view::create(input, stream); // if the output needs a null mask, generate a vector of null counts per row of input, where the // count is the number of columns that contain a null for a given row. auto row_null_counts = build_null_mask ? generate_null_counts(*input_dv, stream) : rmm::device_uvector<size_type>{0, stream}; // if we have nulls, overlay an appropriate null mask onto the // concatenated column so that gather() sanitizes out the child data of rows that will ultimately // be nullified. if (build_null_mask) { auto [null_mask, null_count] = [&]() { auto iter = thrust::make_counting_iterator(size_t{0}); // IGNORE. Output row is nullified if all input rows are null. if (null_policy == concatenate_null_policy::IGNORE) { return cudf::detail::valid_if( iter, iter + (input.num_rows() * input.num_columns()), [num_rows = input.num_rows(), num_columns = input.num_columns(), row_null_counts = row_null_counts.data()] __device__(size_t i) -> size_type { auto const row_index = i % num_rows; return row_null_counts[row_index] != num_columns; }, stream, rmm::mr::get_current_device_resource()); } // NULLIFY_OUTPUT_ROW. Output row is nullfied if any input row is null return cudf::detail::valid_if( iter, iter + (input.num_rows() * input.num_columns()), [num_rows = input.num_rows(), row_null_counts = row_null_counts.data()] __device__(size_t i) -> size_type { auto const row_index = i % num_rows; return row_null_counts[row_index] == 0; }, stream, rmm::mr::get_current_device_resource()); }(); concat->set_null_mask(std::move(null_mask), null_count); } // perform the gather to rearrange the rows in desired child order. this will produce -almost- // what we want. the data of the children will be exactly what we want, but will be grouped as if // we had concatenated all the rows together instead of concatenating within the rows. To fix // this we can simply swap in a new set of offsets that re-groups them. bmo auto iter = thrust::make_transform_iterator( thrust::make_counting_iterator(size_t{0}), [num_columns = input.num_columns(), num_rows = input.num_rows()] __device__(size_t i) -> size_type { auto const src_col_index = i % num_columns; auto const src_row_index = i / num_columns; auto const concat_row_index = (src_col_index * num_rows) + src_row_index; return concat_row_index; }); auto gathered = cudf::detail::gather(table_view({*concat}), iter, iter + (input.num_columns() * input.num_rows()), out_of_bounds_policy::DONT_CHECK, stream, mr); // generate regrouped offsets and null mask auto [offsets, null_mask, null_count] = generate_regrouped_offsets_and_null_mask( *input_dv, build_null_mask, null_policy, row_null_counts, stream, mr); // reassemble the underlying child data with the regrouped offsets and null mask column& col = gathered->get_column(0); auto contents = col.release(); return cudf::make_lists_column( input.num_rows(), std::move(offsets), std::move(contents.children[lists_column_view::child_column_index]), null_count, std::move(null_mask), stream, mr); } } // namespace detail /** * @copydoc cudf::lists::concatenate_rows */ std::unique_ptr<column> concatenate_rows(table_view const& input, concatenate_null_policy null_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::concatenate_rows(input, null_policy, stream, mr); } } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/lists
rapidsai_public_repos/cudf/cpp/src/lists/combine/concatenate_list_elements.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sizes_to_offsets_iterator.cuh> #include <cudf/detail/valid_if.cuh> #include <cudf/lists/combine.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/logical.h> #include <thrust/scan.h> #include <thrust/sequence.h> #include <thrust/transform.h> namespace cudf { namespace lists { namespace detail { namespace { /** * @brief Concatenate lists within the same row into one list, ignoring any null list during * concatenation. */ std::unique_ptr<column> concatenate_lists_ignore_null(column_view const& input, bool build_null_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const num_rows = input.size(); auto out_offsets = make_numeric_column( data_type{type_to_id<size_type>()}, num_rows + 1, mask_state::UNALLOCATED, stream, mr); auto const d_out_offsets = out_offsets->mutable_view().template begin<size_type>(); auto const d_row_offsets = lists_column_view(input).offsets_begin(); auto const d_list_offsets = lists_column_view(lists_column_view(input).child()).offsets_begin(); // Concatenating the lists at the same row by converting the entry offsets from the child column // into row offsets of the root column. Those entry offsets are subtracted by the first entry // offset to output zero-based offsets. auto const iter = thrust::make_counting_iterator<size_type>(0); thrust::transform(rmm::exec_policy(stream), iter, iter + num_rows + 1, d_out_offsets, [d_row_offsets, d_list_offsets] __device__(auto const idx) { auto const start_offset = d_list_offsets[d_row_offsets[0]]; return d_list_offsets[d_row_offsets[idx]] - start_offset; }); // The child column of the output lists column is just copied from the input column. auto out_entries = std::make_unique<column>( lists_column_view(lists_column_view(input).get_sliced_child(stream)).get_sliced_child(stream), stream, mr); auto [null_mask, null_count] = [&] { if (!build_null_mask) return std::pair(cudf::detail::copy_bitmask(input, stream, mr), input.null_count()); // The output row will be null only if all lists on the input row are null. auto const lists_dv_ptr = column_device_view::create(lists_column_view(input).child(), stream); return cudf::detail::valid_if( iter, iter + num_rows, [d_row_offsets, lists_dv = *lists_dv_ptr, iter] __device__(auto const idx) { return thrust::any_of( thrust::seq, iter + d_row_offsets[idx], iter + d_row_offsets[idx + 1], [&] __device__(auto const list_idx) { return lists_dv.is_valid(list_idx); }); }, stream, mr); }(); return make_lists_column(num_rows, std::move(out_offsets), std::move(out_entries), null_count, null_count > 0 ? std::move(null_mask) : rmm::device_buffer{}, stream, mr); } /** * @brief Generate list offsets and list validities for the output lists column. * * This function is called only when (has_null_list == true and null_policy == NULLIFY_OUTPUT_ROW). */ std::pair<std::unique_ptr<column>, rmm::device_uvector<int8_t>> generate_list_offsets_and_validities(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const num_rows = input.size(); auto const lists_of_lists_dv_ptr = column_device_view::create(input, stream); auto const lists_dv_ptr = column_device_view::create(lists_column_view(input).child(), stream); auto const d_row_offsets = lists_column_view(input).offsets_begin(); auto const d_list_offsets = lists_column_view(lists_column_view(input).child()).offsets_begin(); // The array of int8_t stores validities for the output list elements. auto validities = rmm::device_uvector<int8_t>(num_rows, stream); // Compute output list sizes and validities. auto sizes_itr = cudf::detail::make_counting_transform_iterator( 0, [lists_of_lists_dv = *lists_of_lists_dv_ptr, lists_dv = *lists_dv_ptr, d_row_offsets, d_list_offsets, d_validities = validities.begin()] __device__(auto const idx) { if (d_row_offsets[idx] == d_row_offsets[idx + 1]) { // This is a null/empty row. d_validities[idx] = static_cast<int8_t>(lists_of_lists_dv.is_valid(idx)); return size_type{0}; } // The output row will not be null only if all lists on the input row are not null. auto const iter = thrust::make_counting_iterator<size_type>(0); auto const is_valid = thrust::all_of(thrust::seq, iter + d_row_offsets[idx], iter + d_row_offsets[idx + 1], [&] __device__(auto const list_idx) { return lists_dv.is_valid(list_idx); }); d_validities[idx] = static_cast<int8_t>(is_valid); if (!is_valid) { return size_type{0}; } // Compute size of the output list as sum of sizes of all lists in the current input row. return d_list_offsets[d_row_offsets[idx + 1]] - d_list_offsets[d_row_offsets[idx]]; }); // Compute offsets from sizes. auto out_offsets = std::get<0>( cudf::detail::make_offsets_child_column(sizes_itr, sizes_itr + num_rows, stream, mr)); return {std::move(out_offsets), std::move(validities)}; } /** * @brief Gather entries from the input lists column, ignoring rows that have null list elements. * * This function is called only when (has_null_list == true and null_policy == NULLIFY_OUTPUT_ROW). */ std::unique_ptr<column> gather_list_entries(column_view const& input, column_view const& output_list_offsets, size_type num_rows, size_type num_output_entries, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const child_col = lists_column_view(input).child(); auto const entry_col = lists_column_view(child_col).child(); auto const d_row_offsets = lists_column_view(input).offsets_begin(); auto const d_list_offsets = lists_column_view(child_col).offsets_begin(); auto gather_map = rmm::device_uvector<size_type>(num_output_entries, stream); // Fill the gather map with indices of the lists from the child column of the input column. thrust::for_each_n( rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), num_rows, [d_row_offsets, d_list_offsets, d_indices = gather_map.begin(), d_out_list_offsets = output_list_offsets.template begin<size_type>()] __device__(size_type const idx) { // The output row has been identified as a null/empty list during list size computation. if (d_out_list_offsets[idx + 1] == d_out_list_offsets[idx]) { return; } // The indices of the list elements on the row `idx` of the input column. thrust::sequence(thrust::seq, d_indices + d_out_list_offsets[idx], d_indices + d_out_list_offsets[idx + 1], d_list_offsets[d_row_offsets[idx]]); }); auto result = cudf::detail::gather(table_view{{entry_col}}, gather_map, out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(result->release()[0]); } std::unique_ptr<column> concatenate_lists_nullifying_rows(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Generate offsets and validities of the output lists column. auto [list_offsets, list_validities] = generate_list_offsets_and_validities(input, stream, mr); auto const offsets_view = list_offsets->view(); auto const num_rows = input.size(); auto const num_output_entries = cudf::detail::get_value<size_type>(offsets_view, num_rows, stream); auto list_entries = gather_list_entries(input, offsets_view, num_rows, num_output_entries, stream, mr); auto [null_mask, null_count] = cudf::detail::valid_if( list_validities.begin(), list_validities.end(), thrust::identity{}, stream, mr); return make_lists_column(num_rows, std::move(list_offsets), std::move(list_entries), null_count, null_count ? std::move(null_mask) : rmm::device_buffer{}, stream, mr); } } // namespace /** * @copydoc cudf::lists::concatenate_list_elements * * @param stream CUDA stream used for device memory operations and kernel launches. */ std::unique_ptr<column> concatenate_list_elements(column_view const& input, concatenate_null_policy null_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.type().id() == type_id::LIST, "Input column must be a lists column.", std::invalid_argument); auto const child = lists_column_view(input).child(); CUDF_EXPECTS(child.type().id() == type_id::LIST, "Child of the input lists column must also be a lists column.", std::invalid_argument); if (input.size() == 0) { return cudf::empty_like(input); } bool const has_null_list = child.has_nulls(); return (null_policy == concatenate_null_policy::IGNORE || !has_null_list) ? concatenate_lists_ignore_null(input, has_null_list, stream, mr) : concatenate_lists_nullifying_rows(input, stream, mr); } } // namespace detail /** * @copydoc cudf::lists::concatenate_list_elements */ std::unique_ptr<column> concatenate_list_elements(column_view const& input, concatenate_null_policy null_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::concatenate_list_elements(input, null_policy, stream, mr); } } // namespace lists } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/murmurhash3_x64_128.cu
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/algorithm.cuh> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/hashing/detail/murmurhash3_x64_128.cuh> #include <cudf/table/table_device_view.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/for_each.h> namespace cudf { namespace hashing { namespace detail { namespace { using hash_value_type = thrust::pair<uint64_t, uint64_t>; /** * @brief Computes the hash value of a row in the given table. * * @tparam Nullate A cudf::nullate type describing whether to check for nulls. */ template <typename Nullate> class murmur_device_row_hasher { public: murmur_device_row_hasher(Nullate nulls, table_device_view const& t, uint64_t seed, uint64_t* d_output1, uint64_t* d_output2) : _check_nulls(nulls), _input(t), _seed(seed), _output1(d_output1), _output2(d_output2) { } /** * @brief Return the hash value of a row in the given table. * * @param row_index The row index to compute the hash value of * @return The hash value of the row */ __device__ void operator()(size_type row_index) const noexcept { auto h = cudf::detail::accumulate( _input.begin(), _input.end(), hash_value_type{_seed, 0}, [row_index, nulls = this->_check_nulls] __device__(auto hash, auto column) { return cudf::type_dispatcher( column.type(), element_hasher_adapter{}, column, row_index, nulls, hash); }); _output1[row_index] = h.first; _output2[row_index] = h.second; } /** * @brief Computes the hash value of an element in the given column. */ class element_hasher_adapter { public: template <typename T, CUDF_ENABLE_IF(column_device_view::has_element_accessor<T>())> __device__ hash_value_type operator()(column_device_view const& col, size_type row_index, Nullate const _check_nulls, hash_value_type const _seed) const noexcept { if (_check_nulls && col.is_null(row_index)) { return {std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max()}; } auto const hasher = MurmurHash3_x64_128<T>{_seed.first}; return hasher(col.element<T>(row_index)); } template <typename T, CUDF_ENABLE_IF(not column_device_view::has_element_accessor<T>())> __device__ hash_value_type operator()(column_device_view const&, size_type, Nullate const, hash_value_type const) const noexcept { CUDF_UNREACHABLE("Unsupported type for MurmurHash3_x64_128"); } }; Nullate const _check_nulls; table_device_view const _input; uint64_t const _seed; uint64_t* _output1; uint64_t* _output2; }; } // namespace std::unique_ptr<table> murmurhash3_x64_128(table_view const& input, uint64_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto output1 = make_numeric_column( data_type(type_id::UINT64), input.num_rows(), mask_state::UNALLOCATED, stream, mr); auto output2 = make_numeric_column( data_type(type_id::UINT64), input.num_rows(), mask_state::UNALLOCATED, stream, mr); if (!input.is_empty()) { bool const nullable = has_nulls(input); auto const input_view = table_device_view::create(input, stream); auto d_output1 = output1->mutable_view().data<uint64_t>(); auto d_output2 = output2->mutable_view().data<uint64_t>(); // Compute the hash value for each row thrust::for_each_n(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), input.num_rows(), murmur_device_row_hasher(nullable, *input_view, seed, d_output1, d_output2)); } std::vector<std::unique_ptr<column>> out_columns(2); out_columns.front() = std::move(output1); out_columns.back() = std::move(output2); return std::make_unique<table>(std::move(out_columns)); } } // namespace detail std::unique_ptr<table> murmurhash3_x64_128(table_view const& input, uint64_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::murmurhash3_x64_128(input, seed, stream, mr); } } // namespace hashing } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/managed.cuh
/* * Copyright (c) 2017-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <new> struct managed { static void* operator new(size_t n) { void* ptr = nullptr; cudaError_t result = cudaMallocManaged(&ptr, n); if (cudaSuccess != result || 0 == ptr) throw std::bad_alloc(); return ptr; } static void operator delete(void* ptr) noexcept { auto const free_result = cudaFree(ptr); assert(free_result == cudaSuccess); } }; inline bool isPtrManaged(cudaPointerAttributes attr) { #if CUDART_VERSION >= 10000 return (attr.type == cudaMemoryTypeManaged); #else return attr.isManaged; #endif }
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/md5_hash.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/hashing/detail/hash_functions.cuh> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/detail/strings_children.cuh> #include <cudf/strings/string_view.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/for_each.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <iterator> namespace cudf { namespace hashing { namespace detail { namespace { template <int capacity, typename hash_step_callable> struct hash_circular_buffer { uint8_t storage[capacity]; uint8_t* cur; int available_space{capacity}; hash_step_callable hash_step; __device__ inline hash_circular_buffer(hash_step_callable hash_step) : cur{storage}, hash_step{hash_step} { } __device__ inline void put(uint8_t const* in, int size) { int copy_start = 0; while (size >= available_space) { // The buffer will be filled by this chunk of data. Copy a chunk of the // data to fill the buffer and trigger a hash step. memcpy(cur, in + copy_start, available_space); hash_step(storage); size -= available_space; copy_start += available_space; cur = storage; available_space = capacity; } // The buffer will not be filled by the remaining data. That is, `size >= 0 // && size < capacity`. We copy the remaining data into the buffer but do // not trigger a hash step. memcpy(cur, in + copy_start, size); cur += size; available_space -= size; } __device__ inline void pad(int const space_to_leave) { if (space_to_leave > available_space) { memset(cur, 0x00, available_space); hash_step(storage); cur = storage; available_space = capacity; } memset(cur, 0x00, available_space - space_to_leave); cur += available_space - space_to_leave; available_space = space_to_leave; } __device__ inline uint8_t const& operator[](int idx) const { return storage[idx]; } }; // Get a uint8_t pointer to a column element and its size as a pair. template <typename Element> auto __device__ inline get_element_pointer_and_size(Element const& element) { if constexpr (is_fixed_width<Element>() && !is_chrono<Element>()) { return thrust::make_pair(reinterpret_cast<uint8_t const*>(&element), sizeof(Element)); } else { CUDF_UNREACHABLE("Unsupported type."); } } template <> auto __device__ inline get_element_pointer_and_size(string_view const& element) { return thrust::make_pair(reinterpret_cast<uint8_t const*>(element.data()), element.size_bytes()); } /** * Modified GPU implementation of * https://johnnylee-sde.github.io/Fast-unsigned-integer-to-hex-string/ * Copyright (c) 2015 Barry Clark * Licensed under the MIT license. * See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ void __device__ inline uint32ToLowercaseHexString(uint32_t num, char* destination) { // Transform 0xABCD'1234 => 0x0000'ABCD'0000'1234 => 0x0B0A'0D0C'0201'0403 uint64_t x = num; x = ((x & 0xFFFF'0000u) << 16) | ((x & 0xFFFF)); x = ((x & 0x000F'0000'000Fu) << 8) | ((x & 0x00F0'0000'00F0u) >> 4) | ((x & 0x0F00'0000'0F00u) << 16) | ((x & 0xF000'0000'F000) << 4); // Calculate a mask of ascii value offsets for bytes that contain alphabetical hex digits uint64_t offsets = (((x + 0x0606'0606'0606'0606) >> 4) & 0x0101'0101'0101'0101) * 0x27; x |= 0x3030'3030'3030'3030; x += offsets; std::memcpy(destination, reinterpret_cast<uint8_t*>(&x), 8); } // The MD5 algorithm and its hash/shift constants are officially specified in // RFC 1321. For convenience, these values can also be found on Wikipedia: // https://en.wikipedia.org/wiki/MD5 const __constant__ uint32_t md5_shift_constants[16] = { 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21}; const __constant__ uint32_t md5_hash_constants[64] = { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391, }; struct MD5Hasher { static constexpr int message_chunk_size = 64; __device__ inline MD5Hasher(char* result_location) : result_location(result_location), buffer(md5_hash_step{hash_values}) { } __device__ inline ~MD5Hasher() { // On destruction, finalize the message buffer and write out the current // hexadecimal hash value to the result location. // Add a one byte flag 0b10000000 to signal the end of the message. uint8_t constexpr end_of_message = 0x80; // The message length is appended to the end of the last chunk processed. uint64_t const message_length_in_bits = message_length * 8; buffer.put(&end_of_message, sizeof(end_of_message)); buffer.pad(sizeof(message_length_in_bits)); buffer.put(reinterpret_cast<uint8_t const*>(&message_length_in_bits), sizeof(message_length_in_bits)); for (int i = 0; i < 4; ++i) { uint32ToLowercaseHexString(hash_values[i], result_location + (8 * i)); } } MD5Hasher(MD5Hasher const&) = delete; MD5Hasher& operator=(MD5Hasher const&) = delete; MD5Hasher(MD5Hasher&&) = delete; MD5Hasher& operator=(MD5Hasher&&) = delete; template <typename Element> void __device__ inline process(Element const& element) { auto const normalized_element = normalize_nans_and_zeros(element); auto const [element_ptr, size] = get_element_pointer_and_size(normalized_element); buffer.put(element_ptr, size); message_length += size; } /** * @brief Core MD5 algorithm implementation. Processes a single 64-byte chunk, * updating the hash value so far. Does not zero out the buffer contents. */ struct md5_hash_step { uint32_t (&hash_values)[4]; void __device__ inline operator()(uint8_t const (&buffer)[message_chunk_size]) { uint32_t A = hash_values[0]; uint32_t B = hash_values[1]; uint32_t C = hash_values[2]; uint32_t D = hash_values[3]; for (int j = 0; j < message_chunk_size; j++) { uint32_t F; uint32_t g; // No default case is needed because j < 64. j / 16 is always 0, 1, 2, or 3. switch (j / 16) { case 0: F = (B & C) | ((~B) & D); g = j; break; case 1: F = (D & B) | ((~D) & C); g = (5 * j + 1) % 16; break; case 2: F = B ^ C ^ D; g = (3 * j + 5) % 16; break; case 3: F = C ^ (B | (~D)); g = (7 * j) % 16; break; } uint32_t buffer_element_as_int; memcpy(&buffer_element_as_int, &buffer[g * 4], 4); F = F + A + md5_hash_constants[j] + buffer_element_as_int; A = D; D = C; C = B; B = B + rotate_bits_left(F, md5_shift_constants[((j / 16) * 4) + (j % 4)]); } hash_values[0] += A; hash_values[1] += B; hash_values[2] += C; hash_values[3] += D; } }; char* result_location; hash_circular_buffer<message_chunk_size, md5_hash_step> buffer; uint64_t message_length = 0; uint32_t hash_values[4] = {0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476}; }; template <typename Hasher> struct HasherDispatcher { Hasher* hasher; column_device_view const& input_col; __device__ inline HasherDispatcher(Hasher* hasher, column_device_view const& input_col) : hasher{hasher}, input_col{input_col} { } template <typename Element> void __device__ inline operator()(size_type const row_index) const { if constexpr ((is_fixed_width<Element>() && !is_chrono<Element>()) || std::is_same_v<Element, string_view>) { hasher->process(input_col.element<Element>(row_index)); } else { (void)row_index; CUDF_UNREACHABLE("Unsupported type for hash function."); } } }; template <typename Hasher> struct ListHasherDispatcher { Hasher* hasher; column_device_view const& input_col; __device__ inline ListHasherDispatcher(Hasher* hasher, column_device_view const& input_col) : hasher{hasher}, input_col{input_col} { } template <typename Element> void __device__ inline operator()(size_type const offset_begin, size_type const offset_end) const { if constexpr ((is_fixed_width<Element>() && !is_chrono<Element>()) || std::is_same_v<Element, string_view>) { for (size_type i = offset_begin; i < offset_end; i++) { if (input_col.is_valid(i)) { hasher->process(input_col.element<Element>(i)); } } } else { (void)offset_begin; (void)offset_end; CUDF_UNREACHABLE("Unsupported type for hash function."); } } }; // MD5 supported leaf data type check inline bool md5_leaf_type_check(data_type dt) { return (is_fixed_width(dt) && !is_chrono(dt)) || (dt.id() == type_id::STRING); } } // namespace std::unique_ptr<column> md5(table_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.num_columns() == 0 || input.num_rows() == 0) { // Return the MD5 hash of a zero-length input. string_scalar const string_128bit("d41d8cd98f00b204e9orig98ecf8427e"); return make_column_from_scalar(string_128bit, input.num_rows(), stream, mr); } // Accepts string and fixed width columns, or single layer list columns holding those types CUDF_EXPECTS(std::all_of(input.begin(), input.end(), [](auto const& col) { if (col.type().id() == type_id::LIST) { return md5_leaf_type_check(lists_column_view(col).child().type()); } return md5_leaf_type_check(col.type()); }), "Unsupported column type for hash function."); // Digest size in bytes auto constexpr digest_size = 32; // Result column allocation and creation auto begin = thrust::make_constant_iterator(digest_size); auto [offsets_column, bytes] = cudf::detail::make_offsets_child_column(begin, begin + input.num_rows(), stream, mr); auto chars_column = strings::detail::create_chars_child_column(bytes, stream, mr); auto chars_view = chars_column->mutable_view(); auto d_chars = chars_view.data<char>(); auto const device_input = table_device_view::create(input, stream); // Hash each row, hashing each element sequentially left to right thrust::for_each( rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(input.num_rows()), [d_chars, device_input = *device_input] __device__(auto row_index) { MD5Hasher hasher(d_chars + (row_index * digest_size)); for (auto const& col : device_input) { if (col.is_valid(row_index)) { if (col.type().id() == type_id::LIST) { auto const data_col = col.child(lists_column_view::child_column_index); auto const offsets = col.child(lists_column_view::offsets_column_index); if (data_col.type().id() == type_id::LIST) { CUDF_UNREACHABLE("Nested list unsupported"); } auto const offset_begin = offsets.element<size_type>(row_index); auto const offset_end = offsets.element<size_type>(row_index + 1); cudf::type_dispatcher<dispatch_storage_type>( data_col.type(), ListHasherDispatcher(&hasher, data_col), offset_begin, offset_end); } else { cudf::type_dispatcher<dispatch_storage_type>( col.type(), HasherDispatcher(&hasher, col), row_index); } } } }); return make_strings_column( input.num_rows(), std::move(offsets_column), std::move(chars_column), 0, {}); } } // namespace detail std::unique_ptr<column> md5(table_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::md5(input, stream, mr); } } // namespace hashing } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/murmurhash3_x86_32.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/hashing/detail/murmurhash3_x86_32.cuh> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_device_view.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/tabulate.h> namespace cudf { namespace hashing { namespace detail { std::unique_ptr<column> murmurhash3_x86_32(table_view const& input, uint32_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto output = make_numeric_column(data_type(type_to_id<hash_value_type>()), input.num_rows(), mask_state::UNALLOCATED, stream, mr); // Return early if there's nothing to hash if (input.num_columns() == 0 || input.num_rows() == 0) { return output; } bool const nullable = has_nulls(input); auto const row_hasher = cudf::experimental::row::hash::row_hasher(input, stream); auto output_view = output->mutable_view(); // Compute the hash value for each row thrust::tabulate(rmm::exec_policy(stream), output_view.begin<hash_value_type>(), output_view.end<hash_value_type>(), row_hasher.device_hasher<MurmurHash3_x86_32>(nullable, seed)); return output; } } // namespace detail std::unique_ptr<column> murmurhash3_x86_32(table_view const& input, uint32_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::murmurhash3_x86_32(input, seed, stream, mr); } } // namespace hashing } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/hashing.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace hashing { namespace detail { std::unique_ptr<column> hash(table_view const& input, hash_id hash_function, uint32_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { switch (hash_function) { case (hash_id::HASH_MURMUR3): return murmurhash3_x86_32(input, seed, stream, mr); case (hash_id::HASH_SPARK_MURMUR3): return spark_murmurhash3_x86_32(input, seed, stream, mr); case (hash_id::HASH_MD5): return md5(input, stream, mr); default: CUDF_FAIL("Unsupported hash function."); } } } // namespace detail } // namespace hashing std::unique_ptr<column> hash(table_view const& input, hash_id hash_function, uint32_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return hashing::detail::hash(input, hash_function, seed, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/spark_murmurhash3_x86_32.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/hashing/detail/hash_functions.cuh> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_device_view.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/tabulate.h> namespace cudf { namespace hashing { namespace detail { namespace { using spark_hash_value_type = int32_t; template <typename Key, CUDF_ENABLE_IF(not cudf::is_nested<Key>())> struct Spark_MurmurHash3_x86_32 { using result_type = spark_hash_value_type; constexpr Spark_MurmurHash3_x86_32() = default; constexpr Spark_MurmurHash3_x86_32(uint32_t seed) : m_seed(seed) {} [[nodiscard]] __device__ inline uint32_t fmix32(uint32_t h) const { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } [[nodiscard]] __device__ inline uint32_t getblock32(std::byte const* data, cudf::size_type offset) const { // Read a 4-byte value from the data pointer as individual bytes for safe // unaligned access (very likely for string types). auto block = reinterpret_cast<uint8_t const*>(data + offset); return block[0] | (block[1] << 8) | (block[2] << 16) | (block[3] << 24); } [[nodiscard]] result_type __device__ inline operator()(Key const& key) const { return compute(key); } template <typename T> result_type __device__ inline compute(T const& key) const { return compute_bytes(reinterpret_cast<std::byte const*>(&key), sizeof(T)); } result_type __device__ inline compute_remaining_bytes(std::byte const* data, cudf::size_type len, cudf::size_type tail_offset, result_type h) const { // Process remaining bytes that do not fill a four-byte chunk using Spark's approach // (does not conform to normal MurmurHash3). for (auto i = tail_offset; i < len; i++) { // We require a two-step cast to get the k1 value from the byte. First, // we must cast to a signed int8_t. Then, the sign bit is preserved when // casting to uint32_t under 2's complement. Java preserves the sign when // casting byte-to-int, but C++ does not. uint32_t k1 = static_cast<uint32_t>(std::to_integer<int8_t>(data[i])); k1 *= c1; k1 = rotate_bits_left(k1, rot_c1); k1 *= c2; h ^= k1; h = rotate_bits_left(static_cast<uint32_t>(h), rot_c2); h = h * 5 + c3; } return h; } result_type __device__ compute_bytes(std::byte const* data, cudf::size_type const len) const { constexpr cudf::size_type BLOCK_SIZE = 4; cudf::size_type const nblocks = len / BLOCK_SIZE; cudf::size_type const tail_offset = nblocks * BLOCK_SIZE; result_type h = m_seed; // Process all four-byte chunks. for (cudf::size_type i = 0; i < nblocks; i++) { uint32_t k1 = getblock32(data, i * BLOCK_SIZE); k1 *= c1; k1 = rotate_bits_left(k1, rot_c1); k1 *= c2; h ^= k1; h = rotate_bits_left(static_cast<uint32_t>(h), rot_c2); h = h * 5 + c3; } h = compute_remaining_bytes(data, len, tail_offset, h); // Finalize hash. h ^= len; h = fmix32(h); return h; } private: uint32_t m_seed{cudf::DEFAULT_HASH_SEED}; static constexpr uint32_t c1 = 0xcc9e2d51; static constexpr uint32_t c2 = 0x1b873593; static constexpr uint32_t c3 = 0xe6546b64; static constexpr uint32_t rot_c1 = 15; static constexpr uint32_t rot_c2 = 13; }; template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<bool>::operator()( bool const& key) const { return compute<uint32_t>(key); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<int8_t>::operator()( int8_t const& key) const { return compute<uint32_t>(key); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<uint8_t>::operator()( uint8_t const& key) const { return compute<uint32_t>(key); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<int16_t>::operator()( int16_t const& key) const { return compute<uint32_t>(key); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<uint16_t>::operator()( uint16_t const& key) const { return compute<uint32_t>(key); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<float>::operator()( float const& key) const { return compute<float>(normalize_nans(key)); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<double>::operator()( double const& key) const { return compute<double>(normalize_nans(key)); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<cudf::string_view>::operator()( cudf::string_view const& key) const { auto const data = reinterpret_cast<std::byte const*>(key.data()); auto const len = key.size_bytes(); return compute_bytes(data, len); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<numeric::decimal32>::operator()( numeric::decimal32 const& key) const { return compute<uint64_t>(key.value()); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<numeric::decimal64>::operator()( numeric::decimal64 const& key) const { return compute<uint64_t>(key.value()); } template <> spark_hash_value_type __device__ inline Spark_MurmurHash3_x86_32<numeric::decimal128>::operator()( numeric::decimal128 const& key) const { // Generates the Spark MurmurHash3 hash value, mimicking the conversion: // java.math.BigDecimal.valueOf(unscaled_value, _scale).unscaledValue().toByteArray() // https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/hash.scala#L381 __int128_t const val = key.value(); constexpr cudf::size_type key_size = sizeof(__int128_t); std::byte const* data = reinterpret_cast<std::byte const*>(&val); // Small negative values start with 0xff..., small positive values start with 0x00... bool const is_negative = val < 0; std::byte const zero_value = is_negative ? std::byte{0xff} : std::byte{0x00}; // If the value can be represented with a shorter than 16-byte integer, the // leading bytes of the little-endian value are truncated and are not hashed. auto const reverse_begin = thrust::reverse_iterator(data + key_size); auto const reverse_end = thrust::reverse_iterator(data); auto const first_nonzero_byte = thrust::find_if_not(thrust::seq, reverse_begin, reverse_end, [zero_value](std::byte const& v) { return v == zero_value; }).base(); // Max handles special case of 0 and -1 which would shorten to 0 length otherwise cudf::size_type length = std::max(1, static_cast<cudf::size_type>(thrust::distance(data, first_nonzero_byte))); // Preserve the 2's complement sign bit by adding a byte back on if necessary. // e.g. 0x0000ff would shorten to 0x00ff. The 0x00 byte is retained to // preserve the sign bit, rather than leaving an "f" at the front which would // change the sign bit. However, 0x00007f would shorten to 0x7f. No extra byte // is needed because the leftmost bit matches the sign bit. Similarly for // negative values: 0xffff00 --> 0xff00 and 0xffff80 --> 0x80. if ((length < key_size) && (is_negative ^ bool(data[length - 1] & std::byte{0x80}))) { ++length; } // Convert to big endian by reversing the range of nonzero bytes. Only those bytes are hashed. __int128_t big_endian_value = 0; auto big_endian_data = reinterpret_cast<std::byte*>(&big_endian_value); thrust::reverse_copy(thrust::seq, data, data + length, big_endian_data); return compute_bytes(big_endian_data, length); } /** * @brief Computes the hash value of a row in the given table. * * This functor uses Spark conventions for Murmur hashing, which differs from * the Murmur implementation used in the rest of libcudf. These differences * include: * - Serially using the output hash as an input seed for the next item * - Ignorance of null values * * The serial use of hashes as seeds means that data of different nested types * can exhibit hash collisions. For example, a row of an integer column * containing a 1 will have the same hash as a lists column of integers * containing a list of [1] and a struct column of a single integer column * containing a struct of {1}. * * As a consequence of ignoring null values, inputs like [1], [1, null], and * [null, 1] have the same hash (an expected hash collision). This kind of * collision can also occur across a table of nullable columns and with nulls * in structs ({1, null} and {null, 1} have the same hash). The seed value (the * previous element's hash value) is returned as the hash if an element is * null. * * For additional differences such as special tail processing and decimal type * handling, refer to the Spark_MurmurHash3_x86_32 functor. * * @tparam hash_function Hash functor to use for hashing elements. Must be Spark_MurmurHash3_x86_32. * @tparam Nullate A cudf::nullate type describing whether to check for nulls. */ template <template <typename> class hash_function, typename Nullate> class spark_murmur_device_row_hasher { friend class cudf::experimental::row::hash::row_hasher; ///< Allow row_hasher to access private ///< members. public: /** * @brief Return the hash value of a row in the given table. * * @param row_index The row index to compute the hash value of * @return The hash value of the row */ __device__ auto operator()(size_type row_index) const noexcept { return cudf::detail::accumulate( _table.begin(), _table.end(), _seed, [row_index, nulls = this->_check_nulls] __device__(auto hash, auto column) { return cudf::type_dispatcher( column.type(), element_hasher_adapter<hash_function>{nulls, hash}, column, row_index); }); } private: /** * @brief Computes the hash value of an element in the given column. * * When the column is non-nested, this is a simple wrapper around the element_hasher. * When the column is nested, this uses a seed value to serially compute each * nested element, with the output hash becoming the seed for the next value. * This requires constructing a new hash functor for each nested element, * using the new seed from the previous element's hash. The hash of a null * element is the input seed (the previous element's hash). */ template <template <typename> class hash_fn> class element_hasher_adapter { public: __device__ element_hasher_adapter(Nullate check_nulls, uint32_t seed) noexcept : _check_nulls(check_nulls), _seed(seed) { } using hash_functor = cudf::experimental::row::hash::element_hasher<hash_fn, Nullate>; template <typename T, CUDF_ENABLE_IF(not cudf::is_nested<T>())> __device__ spark_hash_value_type operator()(column_device_view const& col, size_type row_index) const noexcept { auto const hasher = hash_functor{_check_nulls, _seed, _seed}; return hasher.template operator()<T>(col, row_index); } template <typename T, CUDF_ENABLE_IF(cudf::is_nested<T>())> __device__ spark_hash_value_type operator()(column_device_view const& col, size_type row_index) const noexcept { column_device_view curr_col = col.slice(row_index, 1); while (curr_col.type().id() == type_id::STRUCT || curr_col.type().id() == type_id::LIST) { if (curr_col.type().id() == type_id::STRUCT) { if (curr_col.num_child_columns() == 0) { return _seed; } // Non-empty structs are assumed to be decomposed and contain only one child curr_col = cudf::detail::structs_column_device_view(curr_col).get_sliced_child(0); } else if (curr_col.type().id() == type_id::LIST) { curr_col = cudf::detail::lists_column_device_view(curr_col).get_sliced_child(); } } return cudf::detail::accumulate( thrust::counting_iterator(0), thrust::counting_iterator(curr_col.size()), _seed, [curr_col, nulls = this->_check_nulls] __device__(auto hash, auto element_index) { auto const hasher = hash_functor{nulls, hash, hash}; return cudf::type_dispatcher<cudf::experimental::dispatch_void_if_nested>( curr_col.type(), hasher, curr_col, element_index); }); } Nullate const _check_nulls; ///< Whether to check for nulls uint32_t const _seed; ///< The seed to use for hashing, also returned for null elements }; CUDF_HOST_DEVICE spark_murmur_device_row_hasher(Nullate check_nulls, table_device_view t, uint32_t seed = DEFAULT_HASH_SEED) noexcept : _check_nulls{check_nulls}, _table{t}, _seed(seed) { // Error out if passed an unsupported hash_function static_assert( std::is_base_of_v<Spark_MurmurHash3_x86_32<int>, hash_function<int>>, "spark_murmur_device_row_hasher only supports the Spark_MurmurHash3_x86_32 hash function"); } Nullate const _check_nulls; table_device_view const _table; uint32_t const _seed; }; void check_hash_compatibility(table_view const& input) { using column_checker_fn_t = std::function<void(column_view const&)>; column_checker_fn_t check_column = [&](column_view const& c) { if (c.type().id() == type_id::LIST) { auto const& list_col = lists_column_view(c); CUDF_EXPECTS(list_col.child().type().id() != type_id::STRUCT, "Cannot compute hash of a table with a LIST of STRUCT columns."); check_column(list_col.child()); } else if (c.type().id() == type_id::STRUCT) { for (auto child = c.child_begin(); child != c.child_end(); ++child) { check_column(*child); } } }; for (column_view const& c : input) { check_column(c); } } } // namespace std::unique_ptr<column> spark_murmurhash3_x86_32(table_view const& input, uint32_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto output = make_numeric_column(data_type(type_to_id<spark_hash_value_type>()), input.num_rows(), mask_state::UNALLOCATED, stream, mr); // Return early if there's nothing to hash if (input.num_columns() == 0 || input.num_rows() == 0) { return output; } // Lists of structs are not supported check_hash_compatibility(input); bool const nullable = has_nested_nulls(input); auto const row_hasher = cudf::experimental::row::hash::row_hasher(input, stream); auto output_view = output->mutable_view(); // Compute the hash value for each row thrust::tabulate( rmm::exec_policy(stream), output_view.begin<spark_hash_value_type>(), output_view.end<spark_hash_value_type>(), row_hasher.device_hasher<Spark_MurmurHash3_x86_32, spark_murmur_device_row_hasher>(nullable, seed)); return output; } } // namespace detail std::unique_ptr<column> spark_murmurhash3_x86_32(table_view const& input, uint32_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::spark_murmurhash3_x86_32(input, seed, stream, mr); } } // namespace hashing } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/concurrent_unordered_map.cuh
/* * Copyright (c) 2017-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <hash/managed.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/hashing/detail/default_hash.cuh> #include <cudf/hashing/detail/hash_allocator.cuh> #include <cudf/hashing/detail/helper_functions.cuh> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/pair.h> #include <iostream> #include <iterator> #include <limits> #include <type_traits> #include <cuda/atomic> namespace { template <std::size_t N> struct packed { using type = void; }; template <> struct packed<sizeof(uint64_t)> { using type = uint64_t; }; template <> struct packed<sizeof(uint32_t)> { using type = uint32_t; }; template <typename pair_type> using packed_t = typename packed<sizeof(pair_type)>::type; /** * @brief Indicates if a pair type can be packed. * * When the size of the key,value pair being inserted into the hash table is * equal in size to a type where atomicCAS is natively supported, it is more * efficient to "pack" the pair and insert it with a single atomicCAS. * * Only integral key and value types may be packed because we use * bitwise equality comparison, which may not be valid for non-integral * types. * * Also, the `pair_type` must not contain any padding bits otherwise * accessing the packed value would be undefined. * * @tparam pair_type The pair type that will be packed * @return true If the pair type can be packed * @return false If the pair type cannot be packed */ template <typename pair_type, typename key_type = typename pair_type::first_type, typename value_type = typename pair_type::second_type> constexpr bool is_packable() { return std::is_integral_v<key_type> and std::is_integral_v<value_type> and not std::is_void_v<packed_t<pair_type>> and std::has_unique_object_representations_v<pair_type>; } /** * @brief Allows viewing a pair in a packed representation * * Used as an optimization for inserting when a pair can be inserted with a * single atomicCAS */ template <typename pair_type, typename Enable = void> union pair_packer; template <typename pair_type> union pair_packer<pair_type, std::enable_if_t<is_packable<pair_type>()>> { using packed_type = packed_t<pair_type>; packed_type packed; pair_type pair; __device__ pair_packer(pair_type _pair) : pair{_pair} {} __device__ pair_packer(packed_type _packed) : packed{_packed} {} }; } // namespace /** * Supports concurrent insert, but not concurrent insert and find. * * @note The user is responsible for the following stream semantics: * - Either the same stream should be used to create the map as is used by the kernels that access * it, or * - the stream used to create the map should be synchronized before it is accessed from a different * stream or from host code. * * TODO: * - add constructor that takes pointer to hash_table to avoid allocations */ template <typename Key, typename Element, typename Hasher = cudf::hashing::detail::default_hash<Key>, typename Equality = equal_to<Key>, typename Allocator = default_allocator<thrust::pair<Key, Element>>> class concurrent_unordered_map { public: using size_type = size_t; using hasher = Hasher; using key_equal = Equality; using allocator_type = Allocator; using key_type = Key; using mapped_type = Element; using value_type = thrust::pair<Key, Element>; using iterator = cycle_iterator_adapter<value_type*>; using const_iterator = cycle_iterator_adapter<value_type*> const; public: /** * @brief Factory to construct a new concurrent unordered map. * * Returns a `std::unique_ptr` to a new concurrent unordered map object. The * map is non-owning and trivially copyable and should be passed by value into * kernels. The `unique_ptr` contains a custom deleter that will free the * map's contents. * * @note The implementation of this unordered_map uses sentinel values to * indicate an entry in the hash table that is empty, i.e., if a hash bucket * is empty, the pair residing there will be equal to (unused_key, * unused_element). As a result, attempting to insert a key equal to *`unused_key` results in undefined behavior. * * @note All allocations, kernels and copies in the constructor take place * on stream but the constructor does not synchronize the stream. It is the user's * responsibility to synchronize or use the same stream to access the map. * * @param capacity The maximum number of pairs the map may hold * @param stream CUDA stream used for device memory operations and kernel launches. * @param unused_element The sentinel value to use for an empty value * @param unused_key The sentinel value to use for an empty key * @param hash_function The hash function to use for hashing keys * @param equal The equality comparison function for comparing if two keys are * equal * @param allocator The allocator to use for allocation the hash table's * storage */ static auto create(size_type capacity, rmm::cuda_stream_view stream, mapped_type const unused_element = std::numeric_limits<mapped_type>::max(), key_type const unused_key = std::numeric_limits<key_type>::max(), Hasher const& hash_function = hasher(), Equality const& equal = key_equal(), allocator_type const& allocator = allocator_type()) { CUDF_FUNC_RANGE(); using Self = concurrent_unordered_map<Key, Element, Hasher, Equality, Allocator>; // Note: need `(*p).destroy` instead of `p->destroy` here // due to compiler bug: https://github.com/rapidsai/cudf/pull/5692 auto deleter = [stream](Self* p) { (*p).destroy(stream); }; return std::unique_ptr<Self, std::function<void(Self*)>>{ new Self(capacity, unused_element, unused_key, hash_function, equal, allocator, stream), deleter}; } /** * @brief Returns an iterator to the first element in the map * * @note `__device__` code that calls this function should either run in the * same stream as `create()`, or the accessing stream either be running on the * same stream as create(), or the accessing stream should be appropriately * synchronized with the creating stream. * * @returns iterator to the first element in the map. */ __device__ iterator begin() { return iterator(m_hashtbl_values, m_hashtbl_values + m_capacity, m_hashtbl_values); } /** * @brief Returns a constant iterator to the first element in the map * * @note `__device__` code that calls this function should either run in the * same stream as `create()`, or the accessing stream either be running on the * same stream as create(), or the accessing stream should be appropriately * synchronized with the creating stream. * * @returns constant iterator to the first element in the map. */ __device__ const_iterator begin() const { return const_iterator(m_hashtbl_values, m_hashtbl_values + m_capacity, m_hashtbl_values); } /** * @brief Returns an iterator to the one past the last element in the map * * @note `__device__` code that calls this function should either run in the * same stream as `create()`, or the accessing stream either be running on the * same stream as create(), or the accessing stream should be appropriately * synchronized with the creating stream. * * @returns iterator to the one past the last element in the map. */ __device__ iterator end() { return iterator(m_hashtbl_values, m_hashtbl_values + m_capacity, m_hashtbl_values + m_capacity); } /** * @brief Returns a constant iterator to the one past the last element in the map * * @note When called in a device code, user should make sure that it should * either be running on the same stream as create(), or the accessing stream * should be appropriately synchronized with the creating stream. * * @returns constant iterator to the one past the last element in the map. */ __device__ const_iterator end() const { return const_iterator( m_hashtbl_values, m_hashtbl_values + m_capacity, m_hashtbl_values + m_capacity); } __host__ __device__ value_type* data() const { return m_hashtbl_values; } __host__ __device__ key_type get_unused_key() const { return m_unused_key; } __host__ __device__ mapped_type get_unused_element() const { return m_unused_element; } [[nodiscard]] __host__ __device__ size_type capacity() const { return m_capacity; } private: /** * @brief Enumeration of the possible results of attempting to insert into *a hash bucket */ enum class insert_result { CONTINUE, ///< Insert did not succeed, continue trying to insert ///< (collision) SUCCESS, ///< New pair inserted successfully DUPLICATE ///< Insert did not succeed, key is already present }; /** * @brief Specialization for value types that can be packed. * * When the size of the key,value pair being inserted is equal in size to *a type where atomicCAS is natively supported, this optimization path *will insert the pair in a single atomicCAS operation. */ template <typename pair_type = value_type> __device__ std::enable_if_t<is_packable<pair_type>(), insert_result> attempt_insert( value_type* const __restrict__ insert_location, value_type const& insert_pair) { pair_packer<pair_type> expected{thrust::make_pair(m_unused_key, m_unused_element)}; pair_packer<pair_type> desired{insert_pair}; using packed_type = typename pair_packer<pair_type>::packed_type; auto* insert_ptr = reinterpret_cast<packed_type*>(insert_location); cuda::atomic_ref<packed_type, cuda::thread_scope_device> ref{*insert_ptr}; auto const success = ref.compare_exchange_strong(expected.packed, desired.packed, cuda::std::memory_order_relaxed); if (success) { return insert_result::SUCCESS; } else if (m_equal(expected.pair.first, insert_pair.first)) { return insert_result::DUPLICATE; } return insert_result::CONTINUE; } /** * @brief Attempts to insert a key,value pair at the specified hash bucket. * * @param[in] insert_location Pointer to hash bucket to attempt insert * @param[in] insert_pair The pair to insert * @return Enum indicating result of insert attempt. */ template <typename pair_type = value_type> __device__ std::enable_if_t<not is_packable<pair_type>(), insert_result> attempt_insert( value_type* const __restrict__ insert_location, value_type const& insert_pair) { auto expected = m_unused_key; cuda::atomic_ref<key_type, cuda::thread_scope_device> ref{insert_location->first}; auto const key_success = ref.compare_exchange_strong(expected, insert_pair.first, cuda::std::memory_order_relaxed); // Hash bucket empty if (key_success) { insert_location->second = insert_pair.second; return insert_result::SUCCESS; } // Key already exists else if (m_equal(expected, insert_pair.first)) { return insert_result::DUPLICATE; } return insert_result::CONTINUE; } public: /** * @brief Attempts to insert a key, value pair into the map. * * Returns an iterator, boolean pair. * * If the new key already present in the map, the iterator points to * the location of the existing key and the boolean is `false` indicating * that the insert did not succeed. * * If the new key was not present, the iterator points to the location * where the insert occurred and the boolean is `true` indicating that the *insert succeeded. * * @param insert_pair The key and value pair to insert * @return Iterator, Boolean pair. Iterator is to the location of the *newly inserted pair, or the existing pair that prevented the insert. *Boolean indicates insert success. */ __device__ thrust::pair<iterator, bool> insert(value_type const& insert_pair) { size_type const key_hash{m_hf(insert_pair.first)}; size_type index{key_hash % m_capacity}; insert_result status{insert_result::CONTINUE}; value_type* current_bucket{nullptr}; while (status == insert_result::CONTINUE) { current_bucket = &m_hashtbl_values[index]; status = attempt_insert(current_bucket, insert_pair); index = (index + 1) % m_capacity; } bool const insert_success = status == insert_result::SUCCESS; return thrust::make_pair( iterator(m_hashtbl_values, m_hashtbl_values + m_capacity, current_bucket), insert_success); } /** * @brief Searches the map for the specified key. * * @note `find` is not threadsafe with `insert`. I.e., it is not safe to *do concurrent `insert` and `find` operations. * * @param k The key to search for * @return An iterator to the key if it exists, else map.end() */ __device__ const_iterator find(key_type const& k) const { size_type const key_hash = m_hf(k); size_type index = key_hash % m_capacity; value_type* current_bucket = &m_hashtbl_values[index]; while (true) { key_type const existing_key = current_bucket->first; if (m_unused_key == existing_key) { return this->end(); } if (m_equal(k, existing_key)) { return const_iterator(m_hashtbl_values, m_hashtbl_values + m_capacity, current_bucket); } index = (index + 1) % m_capacity; current_bucket = &m_hashtbl_values[index]; } } /** * @brief Searches the map for the specified key. * * This version of the find function specifies a hashing function and an * equality comparison. This allows the caller to use different functions * for insert and find (for example, when you want to insert keys from * one table and use find to match keys from a different table with the * keys from the first table). * * @note `find` is not threadsafe with `insert`. I.e., it is not safe to * do concurrent `insert` and `find` operations. * * @tparam find_hasher Type of hashing function * @tparam find_key_equal Type of equality comparison * * @param k The key to search for * @param f_hash The hashing function to use to hash this key * @param f_equal The equality function to use to compare this key with the * contents of the hash table * @return An iterator to the key if it exists, else map.end() */ template <typename find_hasher, typename find_key_equal> __device__ const_iterator find(key_type const& k, find_hasher f_hash, find_key_equal f_equal) const { size_type const key_hash = f_hash(k); size_type index = key_hash % m_capacity; value_type* current_bucket = &m_hashtbl_values[index]; while (true) { key_type const existing_key = current_bucket->first; if (m_unused_key == existing_key) { return this->end(); } if (f_equal(k, existing_key)) { return const_iterator(m_hashtbl_values, m_hashtbl_values + m_capacity, current_bucket); } index = (index + 1) % m_capacity; current_bucket = &m_hashtbl_values[index]; } } void assign_async(concurrent_unordered_map const& other, rmm::cuda_stream_view stream) { if (other.m_capacity <= m_capacity) { m_capacity = other.m_capacity; } else { m_allocator.deallocate(m_hashtbl_values, m_capacity, stream); m_capacity = other.m_capacity; m_capacity = other.m_capacity; m_hashtbl_values = m_allocator.allocate(m_capacity, stream); } CUDF_CUDA_TRY(cudaMemcpyAsync(m_hashtbl_values, other.m_hashtbl_values, m_capacity * sizeof(value_type), cudaMemcpyDefault, stream.value())); } void clear_async(rmm::cuda_stream_view stream) { constexpr int block_size = 128; init_hashtbl<<<((m_capacity - 1) / block_size) + 1, block_size, 0, stream.value()>>>( m_hashtbl_values, m_capacity, m_unused_key, m_unused_element); } void print() { for (size_type i = 0; i < m_capacity; ++i) { std::cout << i << ": " << m_hashtbl_values[i].first << "," << m_hashtbl_values[i].second << std::endl; } } void prefetch(int const dev_id, rmm::cuda_stream_view stream) { cudaPointerAttributes hashtbl_values_ptr_attributes; cudaError_t status = cudaPointerGetAttributes(&hashtbl_values_ptr_attributes, m_hashtbl_values); if (cudaSuccess == status && isPtrManaged(hashtbl_values_ptr_attributes)) { CUDF_CUDA_TRY(cudaMemPrefetchAsync( m_hashtbl_values, m_capacity * sizeof(value_type), dev_id, stream.value())); } CUDF_CUDA_TRY(cudaMemPrefetchAsync(this, sizeof(*this), dev_id, stream.value())); } /** * @brief Frees the contents of the map and destroys the map object. * * This function is invoked as the deleter of the `std::unique_ptr` returned * from the `create()` factory function. * * @param stream CUDA stream used for device memory operations and kernel launches. */ void destroy(rmm::cuda_stream_view stream) { m_allocator.deallocate(m_hashtbl_values, m_capacity, stream); delete this; } concurrent_unordered_map() = delete; concurrent_unordered_map(concurrent_unordered_map const&) = default; concurrent_unordered_map(concurrent_unordered_map&&) = default; concurrent_unordered_map& operator=(concurrent_unordered_map const&) = default; concurrent_unordered_map& operator=(concurrent_unordered_map&&) = default; ~concurrent_unordered_map() = default; private: hasher m_hf; key_equal m_equal; mapped_type m_unused_element; key_type m_unused_key; allocator_type m_allocator; size_type m_capacity; value_type* m_hashtbl_values; /** * @brief Private constructor used by `create` factory function. * * @param capacity The desired m_capacity of the hash table * @param unused_element The sentinel value to use for an empty value * @param unused_key The sentinel value to use for an empty key * @param hash_function The hash function to use for hashing keys * @param equal The equality comparison function for comparing if two keys *are equal * @param allocator The allocator to use for allocation the hash table's * storage * @param stream CUDA stream used for device memory operations and kernel launches. */ concurrent_unordered_map(size_type capacity, mapped_type const unused_element, key_type const unused_key, Hasher const& hash_function, Equality const& equal, allocator_type const& allocator, rmm::cuda_stream_view stream) : m_hf(hash_function), m_equal(equal), m_allocator(allocator), m_capacity(capacity), m_unused_element(unused_element), m_unused_key(unused_key) { m_hashtbl_values = m_allocator.allocate(m_capacity, stream); constexpr int block_size = 128; { cudaPointerAttributes hashtbl_values_ptr_attributes; cudaError_t status = cudaPointerGetAttributes(&hashtbl_values_ptr_attributes, m_hashtbl_values); if (cudaSuccess == status && isPtrManaged(hashtbl_values_ptr_attributes)) { int dev_id = 0; CUDF_CUDA_TRY(cudaGetDevice(&dev_id)); CUDF_CUDA_TRY(cudaMemPrefetchAsync( m_hashtbl_values, m_capacity * sizeof(value_type), dev_id, stream.value())); } } if (m_capacity > 0) { init_hashtbl<<<((m_capacity - 1) / block_size) + 1, block_size, 0, stream.value()>>>( m_hashtbl_values, m_capacity, m_unused_key, m_unused_element); } CUDF_CHECK_CUDA(stream.value()); } };
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/hash/xxhash_64.cu
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/algorithm.cuh> #include <cudf/hashing/detail/hash_functions.cuh> #include <cudf/hashing/detail/hashing.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/tabulate.h> namespace cudf { namespace hashing { namespace detail { namespace { using hash_value_type = uint64_t; template <typename Key> struct XXHash_64 { using result_type = hash_value_type; constexpr XXHash_64() = default; constexpr XXHash_64(hash_value_type seed) : m_seed(seed) {} __device__ inline uint32_t getblock32(std::byte const* data, std::size_t offset) const { // Read a 4-byte value from the data pointer as individual bytes for safe // unaligned access (very likely for string types). auto block = reinterpret_cast<uint8_t const*>(data + offset); return block[0] | (block[1] << 8) | (block[2] << 16) | (block[3] << 24); } __device__ inline uint64_t getblock64(std::byte const* data, std::size_t offset) const { uint64_t result = getblock32(data, offset + 4); result = result << 32; return result | getblock32(data, offset); } result_type __device__ inline operator()(Key const& key) const { return compute(key); } template <typename T> result_type __device__ inline compute(T const& key) const { auto data = device_span<std::byte const>(reinterpret_cast<std::byte const*>(&key), sizeof(T)); return compute_bytes(data); } result_type __device__ inline compute_remaining_bytes(device_span<std::byte const>& in, std::size_t offset, result_type h64) const { // remaining data can be processed in 8-byte chunks if ((in.size() % 32) >= 8) { for (; offset <= in.size() - 8; offset += 8) { uint64_t k1 = getblock64(in.data(), offset) * prime2; k1 = rotate_bits_left(k1, 31) * prime1; h64 ^= k1; h64 = rotate_bits_left(h64, 27) * prime1 + prime4; } } // remaining data can be processed in 4-byte chunks if ((in.size() % 8) >= 4) { for (; offset <= in.size() - 4; offset += 4) { h64 ^= (getblock32(in.data(), offset) & 0xfffffffful) * prime1; h64 = rotate_bits_left(h64, 23) * prime2 + prime3; } } // and the rest if (in.size() % 4) { while (offset < in.size()) { h64 ^= (std::to_integer<uint8_t>(in[offset]) & 0xff) * prime5; h64 = rotate_bits_left(h64, 11) * prime1; ++offset; } } return h64; } result_type __device__ compute_bytes(device_span<std::byte const>& in) const { uint64_t offset = 0; uint64_t h64; // data can be processed in 32-byte chunks if (in.size() >= 32) { auto limit = in.size() - 32; uint64_t v1 = m_seed + prime1 + prime2; uint64_t v2 = m_seed + prime2; uint64_t v3 = m_seed; uint64_t v4 = m_seed - prime1; do { // pipeline 4*8byte computations v1 += getblock64(in.data(), offset) * prime2; v1 = rotate_bits_left(v1, 31); v1 *= prime1; offset += 8; v2 += getblock64(in.data(), offset) * prime2; v2 = rotate_bits_left(v2, 31); v2 *= prime1; offset += 8; v3 += getblock64(in.data(), offset) * prime2; v3 = rotate_bits_left(v3, 31); v3 *= prime1; offset += 8; v4 += getblock64(in.data(), offset) * prime2; v4 = rotate_bits_left(v4, 31); v4 *= prime1; offset += 8; } while (offset <= limit); h64 = rotate_bits_left(v1, 1) + rotate_bits_left(v2, 7) + rotate_bits_left(v3, 12) + rotate_bits_left(v4, 18); v1 *= prime2; v1 = rotate_bits_left(v1, 31); v1 *= prime1; h64 ^= v1; h64 = h64 * prime1 + prime4; v2 *= prime2; v2 = rotate_bits_left(v2, 31); v2 *= prime1; h64 ^= v2; h64 = h64 * prime1 + prime4; v3 *= prime2; v3 = rotate_bits_left(v3, 31); v3 *= prime1; h64 ^= v3; h64 = h64 * prime1 + prime4; v4 *= prime2; v4 = rotate_bits_left(v4, 31); v4 *= prime1; h64 ^= v4; h64 = h64 * prime1 + prime4; } else { h64 = m_seed + prime5; } h64 += in.size(); h64 = compute_remaining_bytes(in, offset, h64); return finalize(h64); } constexpr __host__ __device__ std::uint64_t finalize(std::uint64_t h) const noexcept { h ^= h >> 33; h *= prime2; h ^= h >> 29; h *= prime3; h ^= h >> 32; return h; } private: hash_value_type m_seed{}; static constexpr uint64_t prime1 = 0x9e3779b185ebca87ul; static constexpr uint64_t prime2 = 0xc2b2ae3d27d4eb4ful; static constexpr uint64_t prime3 = 0x165667b19e3779f9ul; static constexpr uint64_t prime4 = 0x85ebca77c2b2ae63ul; static constexpr uint64_t prime5 = 0x27d4eb2f165667c5ul; }; template <> hash_value_type __device__ inline XXHash_64<bool>::operator()(bool const& key) const { return compute(static_cast<uint8_t>(key)); } template <> hash_value_type __device__ inline XXHash_64<float>::operator()(float const& key) const { return compute(normalize_nans(key)); } template <> hash_value_type __device__ inline XXHash_64<double>::operator()(double const& key) const { return compute(normalize_nans(key)); } template <> hash_value_type __device__ inline XXHash_64<cudf::string_view>::operator()( cudf::string_view const& key) const { auto const len = key.size_bytes(); auto data = device_span<std::byte const>(reinterpret_cast<std::byte const*>(key.data()), len); return compute_bytes(data); } template <> hash_value_type __device__ inline XXHash_64<numeric::decimal32>::operator()( numeric::decimal32 const& key) const { return compute(key.value()); } template <> hash_value_type __device__ inline XXHash_64<numeric::decimal64>::operator()( numeric::decimal64 const& key) const { return compute(key.value()); } template <> hash_value_type __device__ inline XXHash_64<numeric::decimal128>::operator()( numeric::decimal128 const& key) const { return compute(key.value()); } /** * @brief Computes the hash value of a row in the given table. * * @tparam Nullate A cudf::nullate type describing whether to check for nulls. */ template <typename Nullate> class device_row_hasher { public: device_row_hasher(Nullate nulls, table_device_view const& t, hash_value_type seed) : _check_nulls(nulls), _table(t), _seed(seed) { } __device__ auto operator()(size_type row_index) const noexcept { return cudf::detail::accumulate( _table.begin(), _table.end(), _seed, [row_index, nulls = _check_nulls] __device__(auto hash, auto column) { return cudf::type_dispatcher( column.type(), element_hasher_adapter{}, column, row_index, nulls, hash); }); } /** * @brief Computes the hash value of an element in the given column. */ class element_hasher_adapter { public: template <typename T, CUDF_ENABLE_IF(column_device_view::has_element_accessor<T>())> __device__ hash_value_type operator()(column_device_view const& col, size_type const row_index, Nullate const _check_nulls, hash_value_type const _seed) const noexcept { if (_check_nulls && col.is_null(row_index)) { return std::numeric_limits<hash_value_type>::max(); } auto const hasher = XXHash_64<T>{_seed}; return hasher(col.element<T>(row_index)); } template <typename T, CUDF_ENABLE_IF(not column_device_view::has_element_accessor<T>())> __device__ hash_value_type operator()(column_device_view const&, size_type const, Nullate const, hash_value_type const) const noexcept { CUDF_UNREACHABLE("Unsupported type for XXHash_64"); } }; Nullate const _check_nulls; table_device_view const _table; hash_value_type const _seed; }; } // namespace std::unique_ptr<column> xxhash_64(table_view const& input, uint64_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto output = make_numeric_column(data_type(type_to_id<hash_value_type>()), input.num_rows(), mask_state::UNALLOCATED, stream, mr); // Return early if there's nothing to hash if (input.num_columns() == 0 || input.num_rows() == 0) { return output; } bool const nullable = has_nulls(input); auto const input_view = table_device_view::create(input, stream); auto output_view = output->mutable_view(); // Compute the hash value for each row thrust::tabulate(rmm::exec_policy(stream), output_view.begin<hash_value_type>(), output_view.end<hash_value_type>(), device_row_hasher(nullable, *input_view, seed)); return output; } } // namespace detail std::unique_ptr<column> xxhash_64(table_view const& input, uint64_t seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::xxhash_64(input, seed, stream, mr); } } // namespace hashing } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/one_hot_encode.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <algorithm> namespace cudf { namespace detail { template <typename DeviceComparatorType> struct ohe_equality_functor { ohe_equality_functor(size_type input_size, DeviceComparatorType d_equal) : _input_size(input_size), _d_equal(d_equal) { } auto __device__ operator()(size_type i) const noexcept { auto const element_index = cudf::experimental::row::lhs_index_type{i % _input_size}; auto const category_index = cudf::experimental::row::rhs_index_type{i / _input_size}; return _d_equal(element_index, category_index); } private: size_type _input_size; DeviceComparatorType _d_equal; }; std::pair<std::unique_ptr<column>, table_view> one_hot_encode(column_view const& input, column_view const& categories, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.type() == categories.type(), "Mismatch type between input and categories."); if (categories.is_empty()) { return {make_empty_column(type_id::BOOL8), table_view{}}; } if (input.is_empty()) { auto empty_data = make_empty_column(type_id::BOOL8); std::vector<column_view> views(categories.size(), empty_data->view()); return {std::move(empty_data), table_view{views}}; } auto const total_size = input.size() * categories.size(); auto all_encodings = make_numeric_column(data_type{type_id::BOOL8}, total_size, mask_state::UNALLOCATED, stream, mr); auto const t_lhs = table_view{{input}}; auto const t_rhs = table_view{{categories}}; auto const comparator = cudf::experimental::row::equality::two_table_comparator{t_lhs, t_rhs, stream}; auto const comparator_helper = [&](auto const d_equal) { thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(total_size), all_encodings->mutable_view().begin<bool>(), ohe_equality_functor<decltype(d_equal)>(input.size(), d_equal)); }; if (cudf::detail::has_nested_columns(t_lhs) or cudf::detail::has_nested_columns(t_rhs)) { auto const d_equal = comparator.equal_to<true>( nullate::DYNAMIC{has_nested_nulls(t_lhs) || has_nested_nulls(t_rhs)}); comparator_helper(d_equal); } else { auto const d_equal = comparator.equal_to<false>( nullate::DYNAMIC{has_nested_nulls(t_lhs) || has_nested_nulls(t_rhs)}); comparator_helper(d_equal); } auto const split_iter = make_counting_transform_iterator(1, [width = input.size()](auto i) { return i * width; }); std::vector<size_type> split_indices(split_iter, split_iter + categories.size() - 1); auto encodings_view = table_view{detail::split(all_encodings->view(), split_indices, stream)}; return {std::move(all_encodings), encodings_view}; } } // namespace detail std::pair<std::unique_ptr<column>, table_view> one_hot_encode(column_view const& input, column_view const& categories, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::one_hot_encode(input, categories, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/nans_to_nulls.cu
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_view.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/transform.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/null_mask.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { struct dispatch_nan_to_null { template <typename T> std::enable_if_t<std::is_floating_point_v<T>, std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type>> operator()(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto input_device_view_ptr = column_device_view::create(input, stream); auto input_device_view = *input_device_view_ptr; if (input.nullable()) { auto pred = [input_device_view] __device__(cudf::size_type idx) { return not(std::isnan(input_device_view.element<T>(idx)) || input_device_view.is_null_nocheck(idx)); }; auto mask = detail::valid_if(thrust::make_counting_iterator<cudf::size_type>(0), thrust::make_counting_iterator<cudf::size_type>(input.size()), pred, stream, mr); return std::pair(std::make_unique<rmm::device_buffer>(std::move(mask.first)), mask.second); } else { auto pred = [input_device_view] __device__(cudf::size_type idx) { return not(std::isnan(input_device_view.element<T>(idx))); }; auto mask = detail::valid_if(thrust::make_counting_iterator<cudf::size_type>(0), thrust::make_counting_iterator<cudf::size_type>(input.size()), pred, stream, mr); return std::pair(std::make_unique<rmm::device_buffer>(std::move(mask.first)), mask.second); } } template <typename T> std::enable_if_t<!std::is_floating_point_v<T>, std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type>> operator()(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FAIL("Input column can't be a non-floating type"); } }; std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type> nans_to_nulls( column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) { return std::pair(std::make_unique<rmm::device_buffer>(), 0); } return cudf::type_dispatcher(input.type(), dispatch_nan_to_null{}, input, stream, mr); } } // namespace detail std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type> nans_to_nulls( column_view const& input, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::nans_to_nulls(input, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/compute_column.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/ast/expressions.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/transform.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/scalar/scalar_device_view.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/transform.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/mr/device/device_memory_resource.hpp> namespace cudf { namespace detail { /** * @brief Kernel for evaluating an expression on a table to produce a new column. * * This evaluates an expression over a table to produce a new column. Also called an n-ary * transform. * * @tparam max_block_size The size of the thread block, used to set launch * bounds and minimize register usage. * @tparam has_nulls whether or not the output column may contain nulls. * * @param table The table device view used for evaluation. * @param device_expression_data Container of device data required to evaluate the desired * expression. * @param output_column The destination for the results of evaluating the expression. */ template <cudf::size_type max_block_size, bool has_nulls> __launch_bounds__(max_block_size) __global__ void compute_column_kernel(table_device_view const table, ast::detail::expression_device_view device_expression_data, mutable_column_device_view output_column) { // The (required) extern storage of the shared memory array leads to // conflicting declarations between different templates. The easiest // workaround is to declare an arbitrary (here char) array type then cast it // after the fact to the appropriate type. extern __shared__ char raw_intermediate_storage[]; ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = &intermediate_storage[threadIdx.x * device_expression_data.num_intermediates]; auto start_idx = cudf::detail::grid_1d::global_thread_id(); auto const stride = cudf::detail::grid_1d::grid_stride(); auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>(table, device_expression_data); for (thread_index_type row_index = start_idx; row_index < table.num_rows(); row_index += stride) { auto output_dest = ast::detail::mutable_column_expression_result<has_nulls>(output_column); evaluator.evaluate(output_dest, row_index, thread_intermediate_storage); } } std::unique_ptr<column> compute_column(table_view const& table, ast::expression const& expr, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // If evaluating the expression may produce null outputs we create a nullable // output column and follow the null-supporting expression evaluation code // path. auto const has_nulls = expr.may_evaluate_null(table, stream); auto const parser = ast::detail::expression_parser{expr, table, has_nulls, stream, mr}; auto const output_column_mask_state = has_nulls ? mask_state::UNINITIALIZED : mask_state::UNALLOCATED; auto output_column = cudf::make_fixed_width_column( parser.output_type(), table.num_rows(), output_column_mask_state, stream, mr); if (table.num_rows() == 0) { return output_column; } auto mutable_output_device = cudf::mutable_column_device_view::create(output_column->mutable_view(), stream); // Configure kernel parameters auto const& device_expression_data = parser.device_expression_data; int device_id; CUDF_CUDA_TRY(cudaGetDevice(&device_id)); int shmem_limit_per_block; CUDF_CUDA_TRY( cudaDeviceGetAttribute(&shmem_limit_per_block, cudaDevAttrMaxSharedMemoryPerBlock, device_id)); auto constexpr MAX_BLOCK_SIZE = 128; auto const block_size = parser.shmem_per_thread != 0 ? std::min(MAX_BLOCK_SIZE, shmem_limit_per_block / parser.shmem_per_thread) : MAX_BLOCK_SIZE; auto const config = cudf::detail::grid_1d{table.num_rows(), block_size}; auto const shmem_per_block = parser.shmem_per_thread * config.num_threads_per_block; // Execute the kernel auto table_device = table_device_view::create(table, stream); if (has_nulls) { cudf::detail::compute_column_kernel<MAX_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_per_block, stream.value()>>>( *table_device, device_expression_data, *mutable_output_device); } else { cudf::detail::compute_column_kernel<MAX_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_per_block, stream.value()>>>( *table_device, device_expression_data, *mutable_output_device); } CUDF_CHECK_CUDA(stream.value()); output_column->set_null_count( cudf::detail::null_count(mutable_output_device->null_mask(), 0, output_column->size(), stream)); return output_column; } } // namespace detail std::unique_ptr<column> compute_column(table_view const& table, ast::expression const& expr, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_column(table, expr, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/bools_to_mask.cu
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_view.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/transform.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/null_mask.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type> bools_to_mask( column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.type().id() == type_id::BOOL8, "Input is not of type bool"); if (input.is_empty()) { return std::pair(std::make_unique<rmm::device_buffer>(), 0); } auto input_device_view_ptr = column_device_view::create(input, stream); auto input_device_view = *input_device_view_ptr; auto pred = [] __device__(bool element) { return element; }; if (input.nullable()) { // Nulls are considered false auto input_begin = make_null_replacement_iterator<bool>(input_device_view, false); auto mask = detail::valid_if(input_begin, input_begin + input.size(), pred, stream, mr); return std::pair(std::make_unique<rmm::device_buffer>(std::move(mask.first)), mask.second); } else { auto mask = detail::valid_if( input_device_view.begin<bool>(), input_device_view.end<bool>(), pred, stream, mr); return std::pair(std::make_unique<rmm::device_buffer>(std::move(mask.first)), mask.second); } } } // namespace detail std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type> bools_to_mask( column_view const& input, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::bools_to_mask(input, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/encode.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/detail/transform.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/bit.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <memory> #include <numeric> #include <utility> #include <vector> namespace cudf { namespace detail { std::pair<std::unique_ptr<table>, std::unique_ptr<column>> encode( table_view const& input_table, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const num_cols = input_table.num_columns(); std::vector<size_type> drop_keys(num_cols); std::iota(drop_keys.begin(), drop_keys.end(), 0); auto distinct_keys = cudf::detail::distinct(input_table, drop_keys, duplicate_keep_option::KEEP_ANY, null_equality::EQUAL, nan_equality::ALL_EQUAL, stream, mr); std::vector<order> column_order(num_cols, order::ASCENDING); std::vector<null_order> null_precedence(num_cols, null_order::AFTER); auto sorted_unique_keys = cudf::detail::sort(distinct_keys->view(), column_order, null_precedence, stream, mr); auto indices_column = cudf::detail::lower_bound( sorted_unique_keys->view(), input_table, column_order, null_precedence, stream, mr); return std::pair(std::move(sorted_unique_keys), std::move(indices_column)); } } // namespace detail std::pair<std::unique_ptr<cudf::table>, std::unique_ptr<cudf::column>> encode( cudf::table_view const& input, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::encode(input, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/mask_to_bools.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/transform.hpp> #include <cudf/types.hpp> #include <cudf/utilities/bit.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> namespace cudf { namespace detail { std::unique_ptr<column> mask_to_bools(bitmask_type const* bitmask, size_type begin_bit, size_type end_bit, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const length = end_bit - begin_bit; CUDF_EXPECTS(length >= 0, "begin_bit should be less than or equal to end_bit"); CUDF_EXPECTS((bitmask != nullptr) or (length == 0), "nullmask is null"); auto out_col = make_fixed_width_column(data_type(type_id::BOOL8), length, mask_state::UNALLOCATED, stream, mr); if (length > 0) { auto mutable_view = out_col->mutable_view(); thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator<cudf::size_type>(begin_bit), thrust::make_counting_iterator<cudf::size_type>(end_bit), mutable_view.begin<bool>(), [bitmask] __device__(auto index) { return bit_is_set(bitmask, index); }); } return out_col; } } // namespace detail std::unique_ptr<column> mask_to_bools(bitmask_type const* bitmask, size_type begin_bit, size_type end_bit, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::mask_to_bools(bitmask, begin_bit, end_bit, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/row_bit_count.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/structs/structs_column_view.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/fill.h> #include <thrust/optional.h> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> namespace cudf { namespace detail { namespace { /** * @brief Struct which contains per-column information necessary to * traverse a column hierarchy on the gpu. * * When `row_bit_count` is called, the input column hierarchy is flattened into a * vector of column_device_views. For each one of them, we store a column_info * struct. The `depth` field represents the depth of the column in the original * hierarchy. * * As we traverse the hierarchy for each input row, we maintain a span representing * the start and end rows for the current nesting depth. At depth 0, this span is * always just 1 row. As we cross list boundaries int the hierarchy, this span * grows. So for each column we visit we always know how many rows of it are relevant * and can compute it's contribution to the overall size. * * An example using a list<list<int>> column, computing the size of row 1. * * { {{1, 2}, {3, 4}, {5, 6}}, {{7}, {8, 9, 10}, {11, 12, 13, 14}} } * * L0 = List<List<int32_t>>: * Length : 2 * Offsets : 0, 3, 6 * L1 = List<int32_t>: * Length : 6 * Offsets : 0, 2, 4, 6, 7, 10, 14 * I = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * * * span0 = [1, 2] row 1 is represented by the span [1, 2] * span1 = [L0.offsets[span0[0]], L0.offsets[span0[1]]] expand by the offsets of L0 * span1 = [3, 6] span applied to children of L0 * span2 = [L1.offsets[span1[0]], L1.offsets[span1[1]]] expand by the offsets of L1 * span2 = [6, 14] span applied to children of L1 * * The total size of our row is computed as: * (span0[1] - span0[0]) * sizeof(int) the cost of the offsets for L0 * + * (span1[1] - span1[0]) * sizeof(int) the cost of the offsets for L1 * + * (span2[1] - span2[0]) * sizeof(int) the cost of the integers in I * * `depth` represents our depth in the source column hierarchy. * * "branches" within the spans can occur when we have lists inside of structs. * consider a case where we are entering a struct<list, float> with a span of [4, 8]. * The internal list column will change that span to something else, say [5, 9]. * But when we finish processing the list column, the final float column wants to * go back and use the original span [4, 8]. * * [4, 8] [5, 9] [4, 8] * struct< list<> float> * * To accomplish this we maintain a stack of spans. Pushing the current span * whenever we enter a branch, and popping a span whenever we leave a branch. * * `branch_depth_start` represents the branch depth as we reach a new column. * if `branch_depth_start` is < the last branch depth we saw, we are returning * from a branch and should pop off the stack. * * `branch_depth_end` represents the new branch depth caused by this column. * if branch_depth_end > branch_depth_start, we are branching and need to * push the current span on the stack. * */ struct column_info { size_type depth; size_type branch_depth_start; size_type branch_depth_end; }; /** * @brief Struct which contains hierarchy information precomputed on the host. * * If the input data contains only fixed-width types, this preprocess step * produces the value `simple_per_row_size` which is a constant for every * row in the output. We can use this value and skip the more complicated * processing for lists, structs and strings entirely if `complex_type_count` * is 0. * */ struct hierarchy_info { hierarchy_info() {} // These two fields act as an optimization. If we find that the entire table // is just fixed-width types, we do not need to do the more expensive kernel call that // traverses the individual columns. So if complex_type_count is 0, we can just // return a column where every row contains the value simple_per_row_size size_type simple_per_row_size{0}; // in bits size_type complex_type_count{0}; // max depth of span branches present in the hierarchy. size_type max_branch_depth{0}; }; /** * @brief Function which flattens the incoming column hierarchy into a vector * of column_views and produces accompanying column_info and hierarchy_info * metadata. * * @param begin: Beginning of a range of column views * @param end: End of a range of column views * @param out: (output) Flattened vector of output column_views * @param info: (output) Additional per-output column_view metadata needed by the gpu * @param h_info: (output) Information about the hierarchy * @param cur_depth: Current absolute depth in the hierarchy * @param cur_branch_depth: Current branch depth * @param parent_index: Index into `out` representing our owning parent column */ template <typename ColIter> void flatten_hierarchy(ColIter begin, ColIter end, std::vector<cudf::column_view>& out, std::vector<column_info>& info, hierarchy_info& h_info, rmm::cuda_stream_view stream, size_type cur_depth = 0, size_type cur_branch_depth = 0, thrust::optional<int> parent_index = {}); /** * @brief Type-dispatched functor called by flatten_hierarchy. * */ struct flatten_functor { // fixed width template <typename T, std::enable_if_t<cudf::is_fixed_width<T>()>* = nullptr> void operator()(column_view const& col, std::vector<cudf::column_view>& out, std::vector<column_info>& info, hierarchy_info& h_info, rmm::cuda_stream_view, size_type cur_depth, size_type cur_branch_depth, thrust::optional<int>) { out.push_back(col); info.push_back({cur_depth, cur_branch_depth, cur_branch_depth}); h_info.simple_per_row_size += (sizeof(device_storage_type_t<T>) * CHAR_BIT) + (col.nullable() ? 1 : 0); } // strings template <typename T, std::enable_if_t<std::is_same_v<T, string_view>>* = nullptr> void operator()(column_view const& col, std::vector<cudf::column_view>& out, std::vector<column_info>& info, hierarchy_info& h_info, rmm::cuda_stream_view, size_type cur_depth, size_type cur_branch_depth, thrust::optional<int>) { out.push_back(col); info.push_back({cur_depth, cur_branch_depth, cur_branch_depth}); h_info.complex_type_count++; } // lists template <typename T, std::enable_if_t<std::is_same_v<T, list_view>>* = nullptr> void operator()(column_view const& col, std::vector<cudf::column_view>& out, std::vector<column_info>& info, hierarchy_info& h_info, rmm::cuda_stream_view stream, size_type cur_depth, size_type cur_branch_depth, thrust::optional<int> parent_index) { // track branch depth as we reach this list and after we pass it auto const branch_depth_start = cur_branch_depth; auto const is_list_inside_struct = parent_index && out[parent_index.value()].type().id() == type_id::STRUCT; if (is_list_inside_struct) { cur_branch_depth++; h_info.max_branch_depth = max(h_info.max_branch_depth, cur_branch_depth); } size_type const branch_depth_end = cur_branch_depth; out.push_back(col); info.push_back({cur_depth, branch_depth_start, branch_depth_end}); lists_column_view lcv(col); auto iter = cudf::detail::make_counting_transform_iterator( 0, [col = lcv.get_sliced_child(stream)](auto) { return col; }); h_info.complex_type_count++; flatten_hierarchy( iter, iter + 1, out, info, h_info, stream, cur_depth + 1, cur_branch_depth, out.size() - 1); } // structs template <typename T, std::enable_if_t<std::is_same_v<T, struct_view>>* = nullptr> void operator()(column_view const& col, std::vector<cudf::column_view>& out, std::vector<column_info>& info, hierarchy_info& h_info, rmm::cuda_stream_view stream, size_type cur_depth, size_type cur_branch_depth, thrust::optional<int>) { out.push_back(col); info.push_back({cur_depth, cur_branch_depth, cur_branch_depth}); h_info.simple_per_row_size += col.nullable() ? 1 : 0; structs_column_view scv(col); auto iter = cudf::detail::make_counting_transform_iterator( 0, [&scv, &stream](auto i) { return scv.get_sliced_child(i, stream); }); flatten_hierarchy(iter, iter + scv.num_children(), out, info, h_info, stream, cur_depth + 1, cur_branch_depth, out.size() - 1); } // everything else template <typename T, typename... Args> std::enable_if_t<!cudf::is_fixed_width<T>() && !std::is_same_v<T, string_view> && !std::is_same_v<T, list_view> && !std::is_same_v<T, struct_view>, void> operator()(Args&&...) { CUDF_FAIL("Unsupported column type in row_bit_count"); } }; template <typename ColIter> void flatten_hierarchy(ColIter begin, ColIter end, std::vector<cudf::column_view>& out, std::vector<column_info>& info, hierarchy_info& h_info, rmm::cuda_stream_view stream, size_type cur_depth, size_type cur_branch_depth, thrust::optional<int> parent_index) { std::for_each(begin, end, [&](column_view const& col) { cudf::type_dispatcher(col.type(), flatten_functor{}, col, out, info, h_info, stream, cur_depth, cur_branch_depth, parent_index); }); } /** * @brief Struct representing a span of rows. * */ struct row_span { size_type row_start, row_end; }; /** * @brief Functor for computing the size, in bits, of a `row_span` of rows for a given * `column_device_view` * */ struct row_size_functor { /** * @brief Computes size in bits of a span of rows in a fixed-width column. * * Computed as : ((# of rows) * sizeof(data type) * 8) * + * 1 bit per row for validity if applicable. */ template <typename T> __device__ size_type operator()(column_device_view const& col, row_span const& span) { auto const num_rows{span.row_end - span.row_start}; auto const element_size = sizeof(device_storage_type_t<T>) * CHAR_BIT; auto const validity_size = col.nullable() ? 1 : 0; return (element_size + validity_size) * num_rows; } }; /** * @brief Computes size in bits of a span of rows in a strings column. * * Computed as : ((# of rows) * sizeof(offset) * 8) + (total # of characters * 8)) * + * 1 bit per row for validity if applicable. */ template <> __device__ size_type row_size_functor::operator()<string_view>(column_device_view const& col, row_span const& span) { auto const num_rows{span.row_end - span.row_start}; if (num_rows == 0) { // For empty columns, the `span` cannot have a row size. return 0; } auto const& offsets = col.child(strings_column_view::offsets_column_index); auto const row_start{span.row_start + col.offset()}; auto const row_end{span.row_end + col.offset()}; if (row_start == row_end) { // Empty row contributes 0 bits to row_bit_count(). // Note: Validity bit doesn't count either. There are no rows in the child column // corresponding to this span. return 0; } auto const offsets_size = sizeof(size_type) * CHAR_BIT; auto const validity_size = col.nullable() ? 1 : 0; auto const chars_size = (offsets.data<size_type>()[row_end] - offsets.data<size_type>()[row_start]) * CHAR_BIT; return ((offsets_size + validity_size) * num_rows) + chars_size; } /** * @brief Computes size in bits of a span of rows in a list column. * * Computed as : ((# of rows) * sizeof(offset) * 8) * + * 1 bit per row for validity if applicable. */ template <> __device__ size_type row_size_functor::operator()<list_view>(column_device_view const& col, row_span const& span) { auto const num_rows{span.row_end - span.row_start}; auto const offsets_size = sizeof(size_type) * CHAR_BIT; auto const validity_size = col.nullable() ? 1 : 0; return (offsets_size + validity_size) * num_rows; } /** * @brief Computes size in bits of a span of rows in a struct column. * * Computed as : 1 bit per row for validity if applicable. */ template <> __device__ size_type row_size_functor::operator()<struct_view>(column_device_view const& col, row_span const& span) { auto const num_rows{span.row_end - span.row_start}; return (col.nullable() ? 1 : 0) * num_rows; // cost of validity } /** * @brief Kernel for computing per-row sizes in bits. * * @param cols An span of column_device_views representing a column hierarchy * @param info An span of column_info structs corresponding the elements in `cols` * @param output Output span of size (# rows) where per-row bit sizes are stored * @param max_branch_depth Maximum depth of the span stack needed per-thread */ __global__ void compute_row_sizes(device_span<column_device_view const> cols, device_span<column_info const> info, device_span<size_type> output, size_type max_branch_depth) { extern __shared__ row_span thread_branch_stacks[]; int const tid = threadIdx.x + blockIdx.x * blockDim.x; auto const num_rows = output.size(); if (tid >= num_rows) { return; } // my_branch_stack points to the last span prior to branching. a branch occurs only // when we are inside of a list contained within a struct column. row_span* my_branch_stack = thread_branch_stacks + (threadIdx.x * max_branch_depth); size_type branch_depth{0}; // current row span - always starts at 1 row. row_span cur_span{tid, tid + 1}; // output size size_type& size = output[tid]; size = 0; size_type last_branch_depth{0}; for (size_type idx = 0; idx < cols.size(); idx++) { column_device_view const& col = cols[idx]; // if we've returned from a branch, pop to the proper span if (info[idx].branch_depth_start < last_branch_depth) { branch_depth = info[idx].branch_depth_start; cur_span = my_branch_stack[branch_depth]; } // if we're entering a new branch, push the current span // NOTE: this case can happen (a pop and a push by the same column) // when we have a struct<list, list> if (info[idx].branch_depth_end > info[idx].branch_depth_start) { my_branch_stack[branch_depth++] = cur_span; } // if we're back at depth 0, this is a new top-level column, so reset // span info if (info[idx].depth == 0) { branch_depth = 0; last_branch_depth = 0; cur_span = row_span{tid, tid + 1}; } // add the contributing size of this row size += cudf::type_dispatcher(col.type(), row_size_functor{}, col, cur_span); // if this is a list column, update the working span from our offsets if (col.type().id() == type_id::LIST && col.size() > 0) { column_device_view const& offsets = col.child(lists_column_view::offsets_column_index); auto const base_offset = offsets.data<size_type>()[col.offset()]; cur_span.row_start = offsets.data<size_type>()[cur_span.row_start + col.offset()] - base_offset; cur_span.row_end = offsets.data<size_type>()[cur_span.row_end + col.offset()] - base_offset; } last_branch_depth = info[idx].branch_depth_end; } } } // anonymous namespace /** * @copydoc cudf::detail::row_bit_count * */ std::unique_ptr<column> row_bit_count(table_view const& t, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // no rows if (t.num_rows() <= 0) { return cudf::make_empty_column(type_id::INT32); } // flatten the hierarchy and determine some information about it. std::vector<cudf::column_view> cols; std::vector<column_info> info; hierarchy_info h_info; flatten_hierarchy(t.begin(), t.end(), cols, info, h_info, stream); CUDF_EXPECTS(info.size() == cols.size(), "Size/info mismatch"); // create output buffer and view auto output = cudf::make_fixed_width_column( data_type{type_id::INT32}, t.num_rows(), mask_state::UNALLOCATED, stream, mr); mutable_column_view mcv = output->mutable_view(); // simple case. if we have no complex types (lists, strings, etc), the per-row size is already // trivially computed if (h_info.complex_type_count <= 0) { thrust::fill(rmm::exec_policy(stream), mcv.begin<size_type>(), mcv.end<size_type>(), h_info.simple_per_row_size); return output; } // create a contiguous block of column_device_views auto d_cols = contiguous_copy_column_device_views<column_device_view>(cols, stream); // move stack info to the gpu rmm::device_uvector<column_info> d_info = cudf::detail::make_device_uvector_async(info, stream, rmm::mr::get_current_device_resource()); // each thread needs to maintain a stack of row spans of size max_branch_depth. we will use // shared memory to do this rather than allocating a potentially gigantic temporary buffer // of memory of size (# input rows * sizeof(row_span) * max_branch_depth). auto const shmem_per_thread = sizeof(row_span) * h_info.max_branch_depth; int device_id; CUDF_CUDA_TRY(cudaGetDevice(&device_id)); int shmem_limit_per_block; CUDF_CUDA_TRY( cudaDeviceGetAttribute(&shmem_limit_per_block, cudaDevAttrMaxSharedMemoryPerBlock, device_id)); constexpr int max_block_size = 256; auto const block_size = shmem_per_thread != 0 ? std::min(max_block_size, shmem_limit_per_block / static_cast<int>(shmem_per_thread)) : max_block_size; auto const shared_mem_size = shmem_per_thread * block_size; // should we be aborting if we reach some extremely small block size, or just if we hit 0? CUDF_EXPECTS(block_size > 0, "Encountered a column hierarchy too complex for row_bit_count"); cudf::detail::grid_1d grid{t.num_rows(), block_size, 1}; compute_row_sizes<<<grid.num_blocks, block_size, shared_mem_size, stream.value()>>>( {std::get<1>(d_cols), cols.size()}, {d_info.data(), info.size()}, {mcv.data<size_type>(), static_cast<std::size_t>(t.num_rows())}, h_info.max_branch_depth); return output; } } // namespace detail /** * @copydoc cudf::row_bit_count * */ std::unique_ptr<column> row_bit_count(table_view const& t, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::row_bit_count(t, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transform/transform.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/transform.hpp> #include <cudf/null_mask.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <jit_preprocessed_files/transform/jit/kernel.cu.jit.hpp> #include <jit/cache.hpp> #include <jit/parser.hpp> #include <jit/util.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace transformation { namespace jit { void unary_operation(mutable_column_view output, column_view input, std::string const& udf, data_type output_type, bool is_ptx, rmm::cuda_stream_view stream) { std::string kernel_name = jitify2::reflection::Template("cudf::transformation::jit::kernel") // .instantiate(cudf::type_to_name(output.type()), // list of template arguments cudf::type_to_name(input.type())); std::string cuda_source = is_ptx ? cudf::jit::parse_single_function_ptx(udf, // "GENERIC_UNARY_OP", cudf::type_to_name(output_type), {0}) : cudf::jit::parse_single_function_cuda(udf, // "GENERIC_UNARY_OP"); cudf::jit::get_program_cache(*transform_jit_kernel_cu_jit) .get_kernel( kernel_name, {}, {{"transform/jit/operation-udf.hpp", cuda_source}}, {"-arch=sm_."}) // ->configure_1d_max_occupancy(0, 0, 0, stream.value()) // ->launch(output.size(), // cudf::jit::get_data_ptr(output), cudf::jit::get_data_ptr(input)); } } // namespace jit } // namespace transformation namespace detail { std::unique_ptr<column> transform(column_view const& input, std::string const& unary_udf, data_type output_type, bool is_ptx, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_fixed_width(input.type()), "Unexpected non-fixed-width type."); std::unique_ptr<column> output = make_fixed_width_column( output_type, input.size(), copy_bitmask(input), input.null_count(), stream, mr); if (input.is_empty()) { return output; } mutable_column_view output_view = *output; // transform transformation::jit::unary_operation(output_view, input, unary_udf, output_type, is_ptx, stream); return output; } } // namespace detail std::unique_ptr<column> transform(column_view const& input, std::string const& unary_udf, data_type output_type, bool is_ptx, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::transform(input, unary_udf, output_type, is_ptx, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/transform
rapidsai_public_repos/cudf/cpp/src/transform/jit/kernel.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Include Jitify's cstddef header first #include <cstddef> #include <cuda/std/climits> #include <cuda/std/cstddef> #include <cuda/std/limits> #include <cuda/std/type_traits> #include <cudf/wrappers/durations.hpp> #include <cudf/wrappers/timestamps.hpp> #include <transform/jit/operation-udf.hpp> #include <cudf/types.hpp> #include <cudf/wrappers/timestamps.hpp> namespace cudf { namespace transformation { namespace jit { template <typename TypeOut, typename TypeIn> __global__ void kernel(cudf::size_type size, TypeOut* out_data, TypeIn* in_data) { // cannot use global_thread_id utility due to a JIT build issue by including // the `cudf/detail/utilities/cuda.cuh` header thread_index_type const start = threadIdx.x + blockIdx.x * blockDim.x; thread_index_type const stride = blockDim.x * gridDim.x; for (auto i = start; i < static_cast<thread_index_type>(size); i += stride) { GENERIC_UNARY_OP(&out_data[i], in_data[i]); } } } // namespace jit } // namespace transformation } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/transform
rapidsai_public_repos/cudf/cpp/src/transform/jit/operation-udf.hpp
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once // This file serves as a placeholder for user defined functions, so jitify can choose to override it // at runtime.
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/filling/sequence.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/filling.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/scalar/scalar_device_view.cuh> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/sequence.h> #include <thrust/tabulate.h> namespace cudf { namespace detail { namespace { // This functor only exists here because using a lambda directly in the tabulate() call generates // the cryptic // __T289 link error. This seems to be related to lambda usage within functions using SFINAE. template <typename T> struct tabulator { cudf::numeric_scalar_device_view<T> const n_init; cudf::numeric_scalar_device_view<T> const n_step; T __device__ operator()(cudf::size_type i) { return n_init.value() + (static_cast<T>(i) * n_step.value()); } }; template <typename T> struct const_tabulator { cudf::numeric_scalar_device_view<T> const n_init; T __device__ operator()(cudf::size_type i) { return n_init.value() + static_cast<T>(i); } }; /** * @brief Functor called by the `type_dispatcher` to generate the sequence specified * by init and step. */ struct sequence_functor { template <typename T, std::enable_if_t<cudf::is_numeric<T>() and not cudf::is_boolean<T>()>* = nullptr> std::unique_ptr<column> operator()(size_type size, scalar const& init, scalar const& step, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto result = make_fixed_width_column(init.type(), size, mask_state::UNALLOCATED, stream, mr); auto result_device_view = mutable_column_device_view::create(*result, stream); auto n_init = get_scalar_device_view(static_cast<cudf::scalar_type_t<T>&>(const_cast<scalar&>(init))); auto n_step = get_scalar_device_view(static_cast<cudf::scalar_type_t<T>&>(const_cast<scalar&>(step))); // not using thrust::sequence because it requires init and step to be passed as // constants, not iterators. to do that we would have to retrieve the scalar values off the gpu, // which is undesirable from a performance perspective. thrust::tabulate(rmm::exec_policy(stream), result_device_view->begin<T>(), result_device_view->end<T>(), tabulator<T>{n_init, n_step}); return result; } template <typename T, std::enable_if_t<cudf::is_numeric<T>() and not cudf::is_boolean<T>()>* = nullptr> std::unique_ptr<column> operator()(size_type size, scalar const& init, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto result = make_fixed_width_column(init.type(), size, mask_state::UNALLOCATED, stream, mr); auto result_device_view = mutable_column_device_view::create(*result, stream); auto n_init = get_scalar_device_view(static_cast<cudf::scalar_type_t<T>&>(const_cast<scalar&>(init))); // not using thrust::sequence because it requires init and step to be passed as // constants, not iterators. to do that we would have to retrieve the scalar values off the gpu, // which is undesirable from a performance perspective. thrust::tabulate(rmm::exec_policy(stream), result_device_view->begin<T>(), result_device_view->end<T>(), const_tabulator<T>{n_init}); return result; } template <typename T, typename... Args> std::enable_if_t<not cudf::is_numeric<T>() or cudf::is_boolean<T>(), std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("Unsupported sequence scalar type"); } }; } // anonymous namespace std::unique_ptr<column> sequence(size_type size, scalar const& init, scalar const& step, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(init.type() == step.type(), "init and step must be of the same type."); CUDF_EXPECTS(size >= 0, "size must be >= 0"); CUDF_EXPECTS(is_numeric(init.type()), "Input scalar types must be numeric"); return type_dispatcher(init.type(), sequence_functor{}, size, init, step, stream, mr); } std::unique_ptr<column> sequence(size_type size, scalar const& init, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(size >= 0, "size must be >= 0"); CUDF_EXPECTS(is_numeric(init.type()), "init scalar type must be numeric"); return type_dispatcher(init.type(), sequence_functor{}, size, init, stream, mr); } } // namespace detail std::unique_ptr<column> sequence(size_type size, scalar const& init, scalar const& step, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sequence(size, init, step, stream, mr); } std::unique_ptr<column> sequence(size_type size, scalar const& init, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sequence(size, init, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/filling/repeat.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/repeat.hpp> #include <cudf/filling.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/binary_search.h> #include <thrust/functional.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_output_iterator.h> #include <thrust/reduce.h> #include <thrust/scan.h> #include <thrust/sort.h> #include <limits> #include <memory> namespace { struct count_accessor { cudf::scalar const* p_scalar = nullptr; template <typename T> std::enable_if_t<std::is_integral_v<T>, cudf::size_type> operator()(rmm::cuda_stream_view stream) { using ScalarType = cudf::scalar_type_t<T>; #if 1 // TODO: temporary till cudf::scalar's value() function is marked as const auto p_count = const_cast<ScalarType*>(static_cast<ScalarType const*>(this->p_scalar)); #else auto p_count = static_cast<ScalarType const*>(this->p_scalar); #endif auto count = p_count->value(stream); // static_cast is necessary due to bool CUDF_EXPECTS(static_cast<int64_t>(count) <= std::numeric_limits<cudf::size_type>::max(), "count should not exceed the column size limit", std::overflow_error); return static_cast<cudf::size_type>(count); } template <typename T> std::enable_if_t<not std::is_integral_v<T>, cudf::size_type> operator()(rmm::cuda_stream_view) { CUDF_FAIL("count value should be a integral type."); } }; struct count_checker { cudf::column_view const& count; template <typename T> std::enable_if_t<std::is_integral_v<T>, void> operator()(rmm::cuda_stream_view stream) { // static_cast is necessary due to bool if (static_cast<int64_t>(std::numeric_limits<T>::max()) > std::numeric_limits<cudf::size_type>::max()) { auto max = thrust::reduce( rmm::exec_policy(stream), count.begin<T>(), count.end<T>(), 0, thrust::maximum<T>()); CUDF_EXPECTS(max <= std::numeric_limits<cudf::size_type>::max(), "count exceeds the column size limit", std::overflow_error); } } template <typename T> std::enable_if_t<not std::is_integral_v<T>, void> operator()(rmm::cuda_stream_view) { CUDF_FAIL("count value type should be integral."); } }; } // namespace namespace cudf { namespace detail { std::unique_ptr<table> repeat(table_view const& input_table, column_view const& count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input_table.num_rows() == count.size(), "in and count must have equal size"); CUDF_EXPECTS(not count.has_nulls(), "count cannot contain nulls"); if (input_table.num_rows() == 0) { return cudf::empty_like(input_table); } auto count_iter = cudf::detail::indexalator_factory::make_input_iterator(count); rmm::device_uvector<cudf::size_type> offsets(count.size(), stream); thrust::inclusive_scan( rmm::exec_policy(stream), count_iter, count_iter + count.size(), offsets.begin()); size_type output_size{offsets.back_element(stream)}; rmm::device_uvector<size_type> indices(output_size, stream); thrust::upper_bound(rmm::exec_policy(stream), offsets.begin(), offsets.end(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(output_size), indices.begin()); return gather( input_table, indices.begin(), indices.end(), out_of_bounds_policy::DONT_CHECK, stream, mr); } std::unique_ptr<table> repeat(table_view const& input_table, size_type count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if ((input_table.num_rows() == 0) || (count == 0)) { return cudf::empty_like(input_table); } CUDF_EXPECTS(count >= 0, "count value should be non-negative"); CUDF_EXPECTS(input_table.num_rows() <= std::numeric_limits<size_type>::max() / count, "The resulting table exceeds the column size limit", std::overflow_error); auto output_size = input_table.num_rows() * count; auto map_begin = cudf::detail::make_counting_transform_iterator( 0, [count] __device__(auto i) { return i / count; }); auto map_end = map_begin + output_size; return gather(input_table, map_begin, map_end, out_of_bounds_policy::DONT_CHECK, stream, mr); } } // namespace detail std::unique_ptr<table> repeat(table_view const& input_table, column_view const& count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::repeat(input_table, count, stream, mr); } std::unique_ptr<table> repeat(table_view const& input_table, size_type count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::repeat(input_table, count, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/filling/fill.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy_range.cuh> #include <cudf/detail/fill.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/detail/search.hpp> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/filling.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/strings/detail/fill.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/iterator/constant_iterator.h> #include <memory> namespace { template <typename T> void in_place_fill(cudf::mutable_column_view& destination, cudf::size_type begin, cudf::size_type end, cudf::scalar const& value, rmm::cuda_stream_view stream) { using ScalarType = cudf::scalar_type_t<T>; auto p_scalar = static_cast<ScalarType const*>(&value); T fill_value = p_scalar->value(stream); bool is_valid = p_scalar->is_valid(stream); cudf::detail::copy_range(thrust::make_constant_iterator(fill_value), thrust::make_constant_iterator(is_valid), destination, begin, end, stream); } struct in_place_fill_range_dispatch { cudf::scalar const& value; cudf::mutable_column_view& destination; template <typename T> std::enable_if_t<cudf::is_fixed_width<T>() && not cudf::is_fixed_point<T>(), void> operator()( cudf::size_type begin, cudf::size_type end, rmm::cuda_stream_view stream) { in_place_fill<T>(destination, begin, end, value, stream); } template <typename T> std::enable_if_t<cudf::is_fixed_point<T>(), void> operator()(cudf::size_type begin, cudf::size_type end, rmm::cuda_stream_view stream) { auto unscaled = static_cast<cudf::fixed_point_scalar<T> const&>(value).value(stream); using RepType = typename T::rep; auto s = cudf::numeric_scalar<RepType>(unscaled, value.is_valid(stream)); in_place_fill<RepType>(destination, begin, end, s, stream); } template <typename T, typename... Args> std::enable_if_t<not cudf::is_fixed_width<T>(), void> operator()(Args&&...) { CUDF_FAIL("in-place fill does not work for variable width types."); } }; struct out_of_place_fill_range_dispatch { cudf::scalar const& value; cudf::column_view const& input; template <typename T, typename... Args> std::enable_if_t<not cudf::is_rep_layout_compatible<T>() and not cudf::is_fixed_point<T>(), std::unique_ptr<cudf::column>> operator()(Args...) { CUDF_FAIL("Unsupported type in fill."); } template <typename T, CUDF_ENABLE_IF(cudf::is_rep_layout_compatible<T>() or cudf::is_fixed_point<T>())> std::unique_ptr<cudf::column> operator()(cudf::size_type begin, cudf::size_type end, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.type() == value.type(), "Data type mismatch."); auto p_ret = std::make_unique<cudf::column>(input, stream, mr); if (end != begin) { // otherwise no fill if (!p_ret->nullable() && !value.is_valid(stream)) { p_ret->set_null_mask( cudf::detail::create_null_mask(p_ret->size(), cudf::mask_state::ALL_VALID, stream, mr), 0); } auto ret_view = p_ret->mutable_view(); using DeviceType = cudf::device_storage_type_t<T>; in_place_fill<DeviceType>(ret_view, begin, end, value, stream); p_ret->set_null_count(ret_view.null_count()); } return p_ret; } }; template <> std::unique_ptr<cudf::column> out_of_place_fill_range_dispatch::operator()<cudf::string_view>( cudf::size_type begin, cudf::size_type end, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.type() == value.type(), "Data type mismatch."); using ScalarType = cudf::scalar_type_t<cudf::string_view>; auto p_scalar = static_cast<ScalarType const*>(&value); return cudf::strings::detail::fill( cudf::strings_column_view(input), begin, end, *p_scalar, stream, mr); } template <> std::unique_ptr<cudf::column> out_of_place_fill_range_dispatch::operator()<cudf::dictionary32>( cudf::size_type begin, cudf::size_type end, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) return std::make_unique<cudf::column>(input, stream, mr); cudf::dictionary_column_view const target(input); CUDF_EXPECTS(target.keys().type() == value.type(), "Data type mismatch."); // if the scalar is invalid, then just copy the column and fill the null mask if (!value.is_valid(stream)) { auto result = std::make_unique<cudf::column>(input, stream, mr); auto mview = result->mutable_view(); cudf::detail::set_null_mask(mview.null_mask(), begin, end, false, stream); result->set_null_count(input.null_count() + (end - begin)); return result; } // add the scalar to get the output dictionary key-set auto scalar_column = cudf::make_column_from_scalar(value, 1, stream); auto target_matched = cudf::dictionary::detail::add_keys(target, scalar_column->view(), stream, mr); cudf::column_view const target_indices = cudf::dictionary_column_view(target_matched->view()).get_indices_annotated(); // get the index of the key just added auto index_of_value = cudf::dictionary::detail::get_index( target_matched->view(), value, stream, rmm::mr::get_current_device_resource()); // now call fill using just the indices column and the new index auto new_indices = cudf::type_dispatcher(target_indices.type(), out_of_place_fill_range_dispatch{*index_of_value, target_indices}, begin, end, stream, mr); auto const indices_type = new_indices->type(); auto const output_size = new_indices->size(); // record these auto const null_count = new_indices->null_count(); // before the release() auto contents = new_indices->release(); // create the new indices column from the result auto indices_column = std::make_unique<cudf::column>(indices_type, static_cast<cudf::size_type>(output_size), std::move(*(contents.data.release())), rmm::device_buffer{0, stream, mr}, 0); // take the keys from matched column std::unique_ptr<cudf::column> keys_column(std::move(target_matched->release().children.back())); // create column with keys_column and indices_column return cudf::make_dictionary_column(std::move(keys_column), std::move(indices_column), std::move(*(contents.null_mask.release())), null_count); } } // namespace namespace cudf { namespace detail { void fill_in_place(mutable_column_view& destination, size_type begin, size_type end, scalar const& value, rmm::cuda_stream_view stream) { CUDF_EXPECTS(cudf::is_fixed_width(destination.type()), "In-place fill does not support variable-sized types."); CUDF_EXPECTS((begin >= 0) && (end <= destination.size()) && (begin <= end), "Range is out of bounds."); CUDF_EXPECTS(destination.nullable() || value.is_valid(stream), "destination should be nullable or value should be non-null."); CUDF_EXPECTS(destination.type() == value.type(), "Data type mismatch."); if (end != begin) { // otherwise no-op cudf::type_dispatcher( destination.type(), in_place_fill_range_dispatch{value, destination}, begin, end, stream); } return; } std::unique_ptr<column> fill(column_view const& input, size_type begin, size_type end, scalar const& value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS((begin >= 0) && (end <= input.size()) && (begin <= end), "Range is out of bounds."); return cudf::type_dispatcher( input.type(), out_of_place_fill_range_dispatch{value, input}, begin, end, stream, mr); } } // namespace detail void fill_in_place(mutable_column_view& destination, size_type begin, size_type end, scalar const& value, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::fill_in_place(destination, begin, end, value, stream); } std::unique_ptr<column> fill(column_view const& input, size_type begin, size_type end, scalar const& value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::fill(input, begin, end, value, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/filling/calendrical_month_sequence.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/detail/calendrical_month_sequence.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> namespace cudf { namespace detail { std::unique_ptr<cudf::column> calendrical_month_sequence(size_type size, scalar const& init, size_type months, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return type_dispatcher( init.type(), calendrical_month_sequence_functor{}, size, init, months, stream, mr); } } // namespace detail std::unique_ptr<cudf::column> calendrical_month_sequence(size_type size, scalar const& init, size_type months, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::calendrical_month_sequence(size, init, months, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/sort_column.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "sort_column_impl.cuh" #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <thrust/sequence.h> namespace cudf { namespace detail { /** * @copydoc * sorted_order(column_view&,order,null_order,rmm::cuda_stream_view,rmm::mr::device_memory_resource*) */ template <> std::unique_ptr<column> sorted_order<false>(column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto sorted_indices = cudf::make_numeric_column( data_type(type_to_id<size_type>()), input.size(), mask_state::UNALLOCATED, stream, mr); mutable_column_view indices_view = sorted_indices->mutable_view(); thrust::sequence( rmm::exec_policy(stream), indices_view.begin<size_type>(), indices_view.end<size_type>(), 0); cudf::type_dispatcher<dispatch_storage_type>(input.type(), column_sorted_order_fn<false>{}, input, indices_view, column_order == order::ASCENDING, null_precedence, stream); return sorted_indices; } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/segmented_sort.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "segmented_sort_impl.cuh" #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/sorting.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/binary_search.h> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { rmm::device_uvector<size_type> get_segment_indices(size_type num_rows, column_view const& offsets, rmm::cuda_stream_view stream) { rmm::device_uvector<size_type> segment_ids(num_rows, stream); auto offset_begin = offsets.begin<size_type>(); auto offset_end = offsets.end<size_type>(); auto counting_iter = thrust::make_counting_iterator<size_type>(0); thrust::transform(rmm::exec_policy(stream), counting_iter, counting_iter + segment_ids.size(), segment_ids.begin(), [offset_begin, offset_end] __device__(auto idx) { if (offset_begin == offset_end || idx < *offset_begin) { return idx; } if (idx >= *(offset_end - 1)) { return idx + 1; } return static_cast<size_type>( *thrust::upper_bound(thrust::seq, offset_begin, offset_end, idx)); }); return segment_ids; } std::unique_ptr<column> segmented_sorted_order(table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return segmented_sorted_order_common<sort_method::UNSTABLE>( keys, segment_offsets, column_order, null_precedence, stream, mr); } std::unique_ptr<table> segmented_sort_by_key(table_view const& values, table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return segmented_sort_by_key_common<sort_method::UNSTABLE>( values, keys, segment_offsets, column_order, null_precedence, stream, mr); } } // namespace detail std::unique_ptr<column> segmented_sorted_order(table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::segmented_sorted_order( keys, segment_offsets, column_order, null_precedence, stream, mr); } std::unique_ptr<table> segmented_sort_by_key(table_view const& values, table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::segmented_sort_by_key( values, keys, segment_offsets, column_order, null_precedence, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/stable_segmented_sort.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "segmented_sort_impl.cuh" #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/sorting.hpp> #include <cudf/utilities/default_stream.hpp> namespace cudf { namespace detail { std::unique_ptr<column> stable_segmented_sorted_order( table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return segmented_sorted_order_common<sort_method::STABLE>( keys, segment_offsets, column_order, null_precedence, stream, mr); } std::unique_ptr<table> stable_segmented_sort_by_key(table_view const& values, table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return segmented_sort_by_key_common<sort_method::STABLE>( values, keys, segment_offsets, column_order, null_precedence, stream, mr); } } // namespace detail std::unique_ptr<column> stable_segmented_sorted_order( table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::stable_segmented_sorted_order( keys, segment_offsets, column_order, null_precedence, stream, mr); } std::unique_ptr<table> stable_segmented_sort_by_key(table_view const& values, table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::stable_segmented_sort_by_key( values, keys, segment_offsets, column_order, null_precedence, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/sort_impl.cuh
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "sort_column_impl.cuh" #include <cudf/column/column_factories.hpp> namespace cudf { namespace detail { /** * @copydoc * sorted_order(table_view&,std::vector<order>,std::vector<null_order>,rmm::mr::device_memory_resource*) * * @tparam stable Whether to use stable sort * @param stream CUDA stream used for device memory operations and kernel launches */ template <bool stable> std::unique_ptr<column> sorted_order(table_view input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.num_rows() == 0 or input.num_columns() == 0) { return cudf::make_numeric_column(data_type(type_to_id<size_type>()), 0); } if (not column_order.empty()) { CUDF_EXPECTS(static_cast<std::size_t>(input.num_columns()) == column_order.size(), "Mismatch between number of columns and column order."); } if (not null_precedence.empty()) { CUDF_EXPECTS(static_cast<std::size_t>(input.num_columns()) == null_precedence.size(), "Mismatch between number of columns and null_precedence size."); } // fast-path for single column sort if (input.num_columns() == 1 and not cudf::is_nested(input.column(0).type())) { auto const single_col = input.column(0); auto const col_order = column_order.empty() ? order::ASCENDING : column_order.front(); auto const null_prec = null_precedence.empty() ? null_order::BEFORE : null_precedence.front(); return sorted_order<stable>(single_col, col_order, null_prec, stream, mr); } std::unique_ptr<column> sorted_indices = cudf::make_numeric_column( data_type(type_to_id<size_type>()), input.num_rows(), mask_state::UNALLOCATED, stream, mr); mutable_column_view mutable_indices_view = sorted_indices->mutable_view(); thrust::sequence(rmm::exec_policy(stream), mutable_indices_view.begin<size_type>(), mutable_indices_view.end<size_type>(), 0); auto const do_sort = [&](auto const comparator) { // Compiling `thrust::*sort*` APIs is expensive. // Thus, we should optimize that by using constexpr condition to only compile what we need. if constexpr (stable) { thrust::stable_sort(rmm::exec_policy(stream), mutable_indices_view.begin<size_type>(), mutable_indices_view.end<size_type>(), comparator); } else { thrust::sort(rmm::exec_policy(stream), mutable_indices_view.begin<size_type>(), mutable_indices_view.end<size_type>(), comparator); } }; auto const comp = cudf::experimental::row::lexicographic::self_comparator( input, column_order, null_precedence, stream); if (cudf::detail::has_nested_columns(input)) { auto const comparator = comp.less<true>(nullate::DYNAMIC{has_nested_nulls(input)}); do_sort(comparator); } else { auto const comparator = comp.less<false>(nullate::DYNAMIC{has_nested_nulls(input)}); do_sort(comparator); } return sorted_indices; } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/stable_sort_column.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "sort_column_impl.cuh" #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <thrust/sequence.h> namespace cudf { namespace detail { /** * @copydoc * sorted_order(column_view&,order,null_order,rmm::cuda_stream_view,rmm::mr::device_memory_resource*) */ template <> std::unique_ptr<column> sorted_order<true>(column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto sorted_indices = cudf::make_numeric_column( data_type(type_to_id<size_type>()), input.size(), mask_state::UNALLOCATED, stream, mr); mutable_column_view indices_view = sorted_indices->mutable_view(); thrust::sequence( rmm::exec_policy(stream), indices_view.begin<size_type>(), indices_view.end<size_type>(), 0); cudf::type_dispatcher<dispatch_storage_type>(input.type(), column_sorted_order_fn<true>{}, input, indices_view, column_order == order::ASCENDING, null_precedence, stream); return sorted_indices; } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/segmented_sort_impl.cuh
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/sequence.hpp> #include <cudf/detail/sorting.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <cub/device/device_segmented_sort.cuh> namespace cudf { namespace detail { /** * @brief The enum specifying which sorting method to use (stable or unstable). */ enum class sort_method { STABLE, UNSTABLE }; /** * @brief Functor performs faster segmented sort on eligible columns */ template <sort_method method> struct column_fast_sort_fn { /** * @brief Run-time check for faster segmented sort on an eligible column * * Fast segmented sort can handle integral types including * decimal types if dispatch_storage_type is used but it does not support int128. */ static bool is_fast_sort_supported(column_view const& col) { return !col.has_nulls() and (cudf::is_integral(col.type()) || (cudf::is_fixed_point(col.type()) and (col.type().id() != type_id::DECIMAL128))); } /** * @brief Compile-time check for supporting fast segmented sort for a specific type * * The dispatch_storage_type means we can check for integral types to * include fixed-point types but the CUB limitation means we need to exclude int128. */ template <typename T> static constexpr bool is_fast_sort_supported() { return cudf::is_integral<T>() and !std::is_same_v<__int128, T>; } template <typename T> void fast_sort(column_view const& input, column_view const& segment_offsets, mutable_column_view& indices, bool ascending, rmm::cuda_stream_view stream) { // CUB's segmented sort functions cannot accept iterators. // We create a temporary column here for it to use. auto temp_col = cudf::detail::allocate_like(input, input.size(), mask_allocation_policy::NEVER, stream, rmm::mr::get_current_device_resource()); mutable_column_view output_view = temp_col->mutable_view(); // DeviceSegmentedSort is faster than DeviceSegmentedRadixSort at this time auto fast_sort_impl = [stream](bool ascending, [[maybe_unused]] auto&&... args) { rmm::device_buffer d_temp_storage; size_t temp_storage_bytes = 0; if (ascending) { if constexpr (method == sort_method::STABLE) { cub::DeviceSegmentedSort::StableSortPairs( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); d_temp_storage = rmm::device_buffer{temp_storage_bytes, stream}; cub::DeviceSegmentedSort::StableSortPairs( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); } else { cub::DeviceSegmentedSort::SortPairs( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); d_temp_storage = rmm::device_buffer{temp_storage_bytes, stream}; cub::DeviceSegmentedSort::SortPairs( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); } } else { if constexpr (method == sort_method::STABLE) { cub::DeviceSegmentedSort::StableSortPairsDescending( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); d_temp_storage = rmm::device_buffer{temp_storage_bytes, stream}; cub::DeviceSegmentedSort::StableSortPairsDescending( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); } else { cub::DeviceSegmentedSort::SortPairsDescending( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); d_temp_storage = rmm::device_buffer{temp_storage_bytes, stream}; cub::DeviceSegmentedSort::SortPairsDescending( d_temp_storage.data(), temp_storage_bytes, std::forward<decltype(args)>(args)...); } } }; fast_sort_impl(ascending, input.begin<T>(), output_view.begin<T>(), indices.begin<size_type>(), indices.begin<size_type>(), input.size(), segment_offsets.size() - 1, segment_offsets.begin<size_type>(), segment_offsets.begin<size_type>() + 1, stream.value()); } template <typename T, CUDF_ENABLE_IF(is_fast_sort_supported<T>())> void operator()(column_view const& input, column_view const& segment_offsets, mutable_column_view& indices, bool ascending, rmm::cuda_stream_view stream) { fast_sort<T>(input, segment_offsets, indices, ascending, stream); } template <typename T, CUDF_ENABLE_IF(!is_fast_sort_supported<T>())> void operator()( column_view const&, column_view const&, mutable_column_view&, bool, rmm::cuda_stream_view) { CUDF_FAIL("Column type cannot be used with fast-sort function"); } }; /** * @brief Performs faster sort on eligible columns * * Check the `is_fast_sort_supported()==true` on the input column before using this function. * * @param input Column to sort * @param segment_offsets Identifies segments to sort within * @param column_order Sort ascending or descending * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory */ template <sort_method method> std::unique_ptr<column> fast_segmented_sorted_order(column_view const& input, column_view const& segment_offsets, order const& column_order, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Unfortunately, CUB's segmented sort functions cannot accept iterators. // We have to build a pre-filled sequence of indices as input. auto sorted_indices = cudf::detail::sequence(input.size(), numeric_scalar<size_type>{0, true, stream}, stream, mr); auto indices_view = sorted_indices->mutable_view(); cudf::type_dispatcher<dispatch_storage_type>(input.type(), column_fast_sort_fn<method>{}, input, segment_offsets, indices_view, column_order == order::ASCENDING, stream); return sorted_indices; } /** * @brief Builds indices to identify segments to sort * * The segments are added to the input table-view keys so they * are lexicographically sorted within the segmented groups. * * ``` * Example 1: * num_rows = 10 * offsets = {0, 3, 7, 10} * segment-indices -> { 3,3,3, 7,7,7,7, 10,10,10 } * ``` * * ``` * Example 2: (offsets do not cover all indices) * num_rows = 10 * offsets = {3, 7} * segment-indices -> { 0,1,2, 7,7,7,7, 8,9,10 } * ``` * * @param num_rows Total number of rows in the input keys to sort * @param offsets The offsets identifying the segments * @param stream CUDA stream used for device memory operations and kernel launches */ rmm::device_uvector<size_type> get_segment_indices(size_type num_rows, column_view const& offsets, rmm::cuda_stream_view stream); /** * @brief Segmented sorted-order utility * * Returns the indices that map the column to a segmented sorted table. * Automatically handles calling accelerated code paths as appropriate. * * @tparam method Specifies sort is stable or not * @param keys Table to sort * @param segment_offsets Identifies the segments within the keys * @param column_order Sort order for each column in the keys * @param null_precedence Where to place the null entries for each column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource to allocate any returned objects */ template <sort_method method> std::unique_ptr<column> segmented_sorted_order_common( table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (keys.num_rows() == 0 || keys.num_columns() == 0) { return cudf::make_empty_column(type_to_id<size_type>()); } CUDF_EXPECTS(segment_offsets.type() == data_type(type_to_id<size_type>()), "segment offsets should be size_type"); if (not column_order.empty()) { CUDF_EXPECTS(static_cast<std::size_t>(keys.num_columns()) == column_order.size(), "Mismatch between number of columns and column order."); } if (not null_precedence.empty()) { CUDF_EXPECTS(static_cast<std::size_t>(keys.num_columns()) == null_precedence.size(), "Mismatch between number of columns and null_precedence size."); } // the average row size for which to prefer fast sort constexpr cudf::size_type MAX_AVG_LIST_SIZE_FOR_FAST_SORT{100}; // the maximum row count for which to prefer fast sort constexpr cudf::size_type MAX_LIST_SIZE_FOR_FAST_SORT{1 << 18}; // fast-path for single column sort: // - single-column table // - not stable-sort // - no nulls and allowable fixed-width type // - size and width are limited -- based on benchmark results if (keys.num_columns() == 1 and column_fast_sort_fn<method>::is_fast_sort_supported(keys.column(0)) and (segment_offsets.size() > 0) and (((keys.num_rows() / segment_offsets.size()) < MAX_AVG_LIST_SIZE_FOR_FAST_SORT) or (keys.num_rows() < MAX_LIST_SIZE_FOR_FAST_SORT))) { auto const col_order = column_order.empty() ? order::ASCENDING : column_order.front(); return fast_segmented_sorted_order<method>( keys.column(0), segment_offsets, col_order, stream, mr); } // Get segment id of each element in all segments. auto segment_ids = get_segment_indices(keys.num_rows(), segment_offsets, stream); // insert segment id before all columns. std::vector<column_view> keys_with_segid; keys_with_segid.reserve(keys.num_columns() + 1); keys_with_segid.push_back(column_view( data_type(type_to_id<size_type>()), segment_ids.size(), segment_ids.data(), nullptr, 0)); keys_with_segid.insert(keys_with_segid.end(), keys.begin(), keys.end()); auto segid_keys = table_view(keys_with_segid); auto prepend_default = [](auto const& vector, auto default_value) { if (vector.empty()) return vector; std::remove_cv_t<std::remove_reference_t<decltype(vector)>> pre_vector; pre_vector.reserve(pre_vector.size() + 1); pre_vector.push_back(default_value); pre_vector.insert(pre_vector.end(), vector.begin(), vector.end()); return pre_vector; }; auto child_column_order = prepend_default(column_order, order::ASCENDING); auto child_null_precedence = prepend_default(null_precedence, null_order::AFTER); // return sorted order of child columns if constexpr (method == sort_method::STABLE) { return detail::stable_sorted_order( segid_keys, child_column_order, child_null_precedence, stream, mr); } else { return detail::sorted_order(segid_keys, child_column_order, child_null_precedence, stream, mr); } } template <sort_method method> std::unique_ptr<table> segmented_sort_by_key_common(table_view const& values, table_view const& keys, column_view const& segment_offsets, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(values.num_rows() == keys.num_rows(), "Mismatch in number of rows for values and keys"); auto sorted_order = segmented_sorted_order_common<method>(keys, segment_offsets, column_order, null_precedence, stream, rmm::mr::get_current_device_resource()); // Gather segmented sort of child value columns return detail::gather(values, sorted_order->view(), out_of_bounds_policy::DONT_CHECK, detail::negative_index_policy::NOT_ALLOWED, stream, mr); } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/sort.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "sort_impl.cuh" #include <cudf/column/column.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/sorting.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/functional.h> #include <thrust/sort.h> namespace cudf { namespace detail { std::unique_ptr<column> sorted_order(table_view const& input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return sorted_order<false>(input, column_order, null_precedence, stream, mr); } std::unique_ptr<table> sort_by_key(table_view const& values, table_view const& keys, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(values.num_rows() == keys.num_rows(), "Mismatch in number of rows for values and keys"); auto sorted_order = detail::sorted_order( keys, column_order, null_precedence, stream, rmm::mr::get_current_device_resource()); return detail::gather(values, sorted_order->view(), out_of_bounds_policy::DONT_CHECK, detail::negative_index_policy::NOT_ALLOWED, stream, mr); } struct inplace_column_sort_fn { template <typename T, std::enable_if_t<cudf::is_fixed_width<T>()>* = nullptr> void operator()(mutable_column_view& col, bool ascending, rmm::cuda_stream_view stream) const { CUDF_EXPECTS(!col.has_nulls(), "Nulls not supported for in-place sort"); if (ascending) { thrust::sort(rmm::exec_policy(stream), col.begin<T>(), col.end<T>(), thrust::less<T>()); } else { thrust::sort(rmm::exec_policy(stream), col.begin<T>(), col.end<T>(), thrust::greater<T>()); } } template <typename T, std::enable_if_t<!cudf::is_fixed_width<T>()>* = nullptr> void operator()(mutable_column_view&, bool, rmm::cuda_stream_view) const { CUDF_FAIL("Column type must be relationally comparable and fixed-width"); } }; std::unique_ptr<table> sort(table_view const& input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); // fast-path sort conditions: single, non-floating-point, fixed-width column with no nulls if (input.num_columns() == 1 && !input.column(0).has_nulls() && cudf::is_fixed_width(input.column(0).type()) && !cudf::is_floating_point(input.column(0).type())) { auto output = std::make_unique<column>(input.column(0), stream, mr); auto view = output->mutable_view(); bool ascending = (column_order.empty() ? true : column_order.front() == order::ASCENDING); cudf::type_dispatcher<dispatch_storage_type>( output->type(), inplace_column_sort_fn{}, view, ascending, stream); std::vector<std::unique_ptr<column>> columns; columns.emplace_back(std::move(output)); return std::make_unique<table>(std::move(columns)); } return detail::sort_by_key( input, input, column_order, null_precedence, cudf::get_default_stream(), mr); } } // namespace detail std::unique_ptr<column> sorted_order(table_view const& input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sorted_order(input, column_order, null_precedence, stream, mr); } std::unique_ptr<table> sort(table_view const& input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sort(input, column_order, null_precedence, stream, mr); } std::unique_ptr<table> sort_by_key(table_view const& values, table_view const& keys, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sort_by_key(values, keys, column_order, null_precedence, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/sort_column_impl.cuh
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/column/column_device_view.cuh> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/sequence.h> #include <thrust/sort.h> namespace cudf { namespace detail { /** * @brief Sort indices of a single column. * * This API offers fast sorting for primitive types. It cannot handle nested types and will not * consider `NaN` as equivalent to other `NaN`. * * @tparam stable Whether to use stable sort * @param input Column to sort. The column data is not modified. * @param column_order Ascending or descending sort order * @param null_precedence How null rows are to be ordered * @param stable True if sort should be stable * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return Sorted indices for the input column. */ template <bool stable> std::unique_ptr<column> sorted_order(column_view const& input, order column_order, null_order null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Comparator functor needed for single column sort. * * @tparam Column element type. */ template <typename T> struct simple_comparator { __device__ bool operator()(size_type lhs, size_type rhs) { if (has_nulls) { bool lhs_null{d_column.is_null(lhs)}; bool rhs_null{d_column.is_null(rhs)}; if (lhs_null || rhs_null) { if (!ascending) thrust::swap(lhs_null, rhs_null); return (null_precedence == cudf::null_order::BEFORE ? !rhs_null : !lhs_null); } } return relational_compare(d_column.element<T>(lhs), d_column.element<T>(rhs)) == (ascending ? weak_ordering::LESS : weak_ordering::GREATER); } column_device_view const d_column; bool has_nulls; bool ascending; null_order null_precedence{}; }; template <bool stable> struct column_sorted_order_fn { /** * @brief Compile time check for allowing faster sort. * * Faster sort is defined for fixed-width types where only * the primitive comparators thrust::greater or thrust::less * are needed. * * Floating point is removed here for special handling of NaNs * which require the row-comparator. */ template <typename T> static constexpr bool is_faster_sort_supported() { return cudf::is_fixed_width<T>() && !cudf::is_floating_point<T>(); } /** * @brief Sorts fixed-width columns using faster thrust sort. * * Should not be called if `input.has_nulls()==true` * * @param input Column to sort * @param indices Output sorted indices * @param ascending True if sort order is ascending * @param stream CUDA stream used for device memory operations and kernel launches */ template <typename T> void faster_sort(column_view const& input, mutable_column_view& indices, bool ascending, rmm::cuda_stream_view stream) { // A thrust sort on a column of primitive types will use a radix sort. // For other fixed-width types, thrust will use merge-sort. // But this also requires making a copy of the input data. auto temp_col = column(input, stream); auto d_col = temp_col.mutable_view(); auto const do_sort = [&](auto const comp) { // Compiling `thrust::*sort*` APIs is expensive. // Thus, we should optimize that by using constexpr condition to only compile what we need. if constexpr (stable) { thrust::stable_sort_by_key(rmm::exec_policy(stream), d_col.begin<T>(), d_col.end<T>(), indices.begin<size_type>(), comp); } else { thrust::sort_by_key(rmm::exec_policy(stream), d_col.begin<T>(), d_col.end<T>(), indices.begin<size_type>(), comp); } }; if (ascending) { do_sort(thrust::less<T>{}); } else { do_sort(thrust::greater<T>{}); } } /** * @brief Sorts a single column with a relationally comparable type. * * This is used when a comparator is required. * * @param input Column to sort * @param indices Output sorted indices * @param ascending True if sort order is ascending * @param null_precedence How null rows are to be ordered * @param stream CUDA stream used for device memory operations and kernel launches */ template <typename T> void sorted_order(column_view const& input, mutable_column_view& indices, bool ascending, null_order null_precedence, rmm::cuda_stream_view stream) { auto keys = column_device_view::create(input, stream); auto comp = simple_comparator<T>{*keys, input.has_nulls(), ascending, null_precedence}; // Compiling `thrust::*sort*` APIs is expensive. // Thus, we should optimize that by using constexpr condition to only compile what we need. if constexpr (stable) { thrust::stable_sort( rmm::exec_policy(stream), indices.begin<size_type>(), indices.end<size_type>(), comp); } else { thrust::sort( rmm::exec_policy(stream), indices.begin<size_type>(), indices.end<size_type>(), comp); } } template <typename T, CUDF_ENABLE_IF(cudf::is_relationally_comparable<T, T>())> void operator()(column_view const& input, mutable_column_view& indices, bool ascending, null_order null_precedence, rmm::cuda_stream_view stream) { if constexpr (is_faster_sort_supported<T>()) { if (input.has_nulls()) { sorted_order<T>(input, indices, ascending, null_precedence, stream); } else { faster_sort<T>(input, indices, ascending, stream); } } else { sorted_order<T>(input, indices, ascending, null_precedence, stream); } } template <typename T, CUDF_ENABLE_IF(not cudf::is_relationally_comparable<T, T>())> void operator()(column_view const&, mutable_column_view&, bool, null_order, rmm::cuda_stream_view) { CUDF_FAIL("Column type must be relationally comparable"); } }; } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/rank.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/sorting.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/permutation_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/pair.h> #include <thrust/reduce.h> #include <thrust/scan.h> #include <thrust/scatter.h> #include <thrust/sequence.h> #include <thrust/transform.h> #include <thrust/tuple.h> namespace cudf { namespace detail { namespace { template <typename PermutationIteratorType, typename DeviceComparatorType> struct unique_functor { unique_functor(PermutationIteratorType permute, DeviceComparatorType device_comparator) : _permute(permute), _device_comparator(device_comparator) { } auto __device__ operator()(size_type index) const noexcept { return static_cast<size_type>(index == 0 || not _device_comparator(_permute[index], _permute[index - 1])); } private: PermutationIteratorType _permute; DeviceComparatorType _device_comparator; }; // Assign rank from 1 to n unique values. Equal values get same rank value. rmm::device_uvector<size_type> sorted_dense_rank(column_view input_col, column_view sorted_order_view, rmm::cuda_stream_view stream) { auto const t_input = table_view{{input_col}}; auto const comparator = cudf::experimental::row::equality::self_comparator{t_input, stream}; auto const sorted_index_order = thrust::make_permutation_iterator( sorted_order_view.begin<size_type>(), thrust::make_counting_iterator<size_type>(0)); auto const input_size = input_col.size(); rmm::device_uvector<size_type> dense_rank_sorted(input_size, stream); auto const comparator_helper = [&](auto const device_comparator) { thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(input_size), dense_rank_sorted.data(), unique_functor<decltype(sorted_index_order), decltype(device_comparator)>{ sorted_index_order, device_comparator}); }; if (cudf::detail::has_nested_columns(t_input)) { auto const device_comparator = comparator.equal_to<true>(nullate::DYNAMIC{has_nested_nulls(t_input)}); comparator_helper(device_comparator); } else { auto const device_comparator = comparator.equal_to<false>(nullate::DYNAMIC{has_nested_nulls(t_input)}); comparator_helper(device_comparator); } thrust::inclusive_scan(rmm::exec_policy(stream), dense_rank_sorted.begin(), dense_rank_sorted.end(), dense_rank_sorted.data()); return dense_rank_sorted; } /** * @brief Breaks the ties among equal value groups using binary operator and * transform this tied value to final rank. * * @param dense_rank dense rank of sorted input column (acts as key for value * groups). * @param tie_iter iterator of rank to break ties among equal value groups. * @param sorted_order_view sorted order indices of input column * @param rank_iter output rank iterator * @param tie_breaker tie breaking operator. For example, maximum & minimum. * @param transformer transform after tie breaking (useful for average). * @param stream CUDA stream used for device memory operations and kernel launches. */ template <typename TieType, typename outputIterator, typename TieBreaker, typename Transformer, typename TieIterator> void tie_break_ranks_transform(cudf::device_span<size_type const> dense_rank_sorted, TieIterator tie_iter, column_view const& sorted_order_view, outputIterator rank_iter, TieBreaker tie_breaker, Transformer transformer, rmm::cuda_stream_view stream) { auto const input_size = sorted_order_view.size(); // algorithm: reduce_by_key(dense_rank, 1, n, reduction_tie_breaker) // reduction_tie_breaker = min, max, min_count rmm::device_uvector<TieType> tie_sorted(sorted_order_view.size(), stream); thrust::reduce_by_key(rmm::exec_policy(stream), dense_rank_sorted.begin(), dense_rank_sorted.end(), tie_iter, thrust::make_discard_iterator(), tie_sorted.begin(), thrust::equal_to{}, tie_breaker); auto sorted_tied_rank = thrust::make_transform_iterator( dense_rank_sorted.begin(), [tied_rank = tie_sorted.begin(), transformer] __device__(auto dense_pos) { return transformer(tied_rank[dense_pos - 1]); }); thrust::scatter(rmm::exec_policy(stream), sorted_tied_rank, sorted_tied_rank + input_size, sorted_order_view.begin<size_type>(), rank_iter); } template <typename outputType> void rank_first(column_view sorted_order_view, mutable_column_view rank_mutable_view, rmm::cuda_stream_view stream) { // stable sort order ranking (no ties) thrust::scatter(rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(1), thrust::make_counting_iterator<size_type>(rank_mutable_view.size() + 1), sorted_order_view.begin<size_type>(), rank_mutable_view.begin<outputType>()); } template <typename outputType> void rank_dense(cudf::device_span<size_type const> dense_rank_sorted, column_view sorted_order_view, mutable_column_view rank_mutable_view, rmm::cuda_stream_view stream) { // All equal values have same rank and rank always increases by 1 between groups thrust::scatter(rmm::exec_policy(stream), dense_rank_sorted.begin(), dense_rank_sorted.end(), sorted_order_view.begin<size_type>(), rank_mutable_view.begin<outputType>()); } template <typename outputType> void rank_min(cudf::device_span<size_type const> group_keys, column_view sorted_order_view, mutable_column_view rank_mutable_view, rmm::cuda_stream_view stream) { // min of first in the group // All equal values have min of ranks among them. // algorithm: reduce_by_key(dense_rank, 1, n, min), scatter tie_break_ranks_transform<size_type>(group_keys, thrust::make_counting_iterator<size_type>(1), sorted_order_view, rank_mutable_view.begin<outputType>(), thrust::minimum{}, thrust::identity{}, stream); } template <typename outputType> void rank_max(cudf::device_span<size_type const> group_keys, column_view sorted_order_view, mutable_column_view rank_mutable_view, rmm::cuda_stream_view stream) { // max of first in the group // All equal values have max of ranks among them. // algorithm: reduce_by_key(dense_rank, 1, n, max), scatter tie_break_ranks_transform<size_type>(group_keys, thrust::make_counting_iterator<size_type>(1), sorted_order_view, rank_mutable_view.begin<outputType>(), thrust::maximum{}, thrust::identity{}, stream); } // Returns index, count template <typename T> struct index_counter { __device__ T operator()(size_type i) { return T{i, 1}; } }; void rank_average(cudf::device_span<size_type const> group_keys, column_view sorted_order_view, mutable_column_view rank_mutable_view, rmm::cuda_stream_view stream) { // k, k+1, .. k+n-1 // average = (n*k+ n*(n-1)/2)/n // average = k + (n-1)/2 = min + (count-1)/2 // Calculate Min of ranks and Count of equal values // algorithm: reduce_by_key(dense_rank, 1, n, min_count) // transform(min+(count-1)/2), scatter using MinCount = thrust::pair<size_type, size_type>; tie_break_ranks_transform<MinCount>( group_keys, // Use device functor with return type. Cannot use device lambda due to limitation. // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#extended-lambda-restrictions cudf::detail::make_counting_transform_iterator(1, index_counter<MinCount>{}), sorted_order_view, rank_mutable_view.begin<double>(), [] __device__(auto rank_count1, auto rank_count2) { return MinCount{std::min(rank_count1.first, rank_count2.first), rank_count1.second + rank_count2.second}; }, [] __device__(MinCount minrank_count) { // min+(count-1)/2 return static_cast<double>(thrust::get<0>(minrank_count)) + (static_cast<double>(thrust::get<1>(minrank_count)) - 1) / 2.0; }, stream); } } // anonymous namespace std::unique_ptr<column> rank(column_view const& input, rank_method method, order column_order, null_policy null_handling, null_order null_precedence, bool percentage, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { data_type const output_type = (percentage or method == rank_method::AVERAGE) ? data_type(type_id::FLOAT64) : data_type(type_to_id<size_type>()); std::unique_ptr<column> rank_column = [&null_handling, &output_type, &input, &stream, &mr] { // na_option=keep assign NA to NA values if (null_handling == null_policy::EXCLUDE) return make_numeric_column(output_type, input.size(), detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); else return make_numeric_column(output_type, input.size(), mask_state::UNALLOCATED, stream, mr); }(); auto rank_mutable_view = rank_column->mutable_view(); std::unique_ptr<column> sorted_order = (method == rank_method::FIRST) ? detail::stable_sorted_order( table_view{{input}}, {column_order}, {null_precedence}, stream, mr) : detail::sorted_order(table_view{{input}}, {column_order}, {null_precedence}, stream, mr); column_view sorted_order_view = sorted_order->view(); // dense: All equal values have same rank and rank always increases by 1 between groups // acts as key for min, max, average to denote equal value groups rmm::device_uvector<size_type> const dense_rank_sorted = [&method, &input, &sorted_order_view, &stream] { if (method != rank_method::FIRST) return sorted_dense_rank(input, sorted_order_view, stream); else return rmm::device_uvector<size_type>(0, stream); }(); if (output_type.id() == type_id::FLOAT64) { switch (method) { case rank_method::FIRST: rank_first<double>(sorted_order_view, rank_mutable_view, stream); break; case rank_method::DENSE: rank_dense<double>(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; case rank_method::MIN: rank_min<double>(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; case rank_method::MAX: rank_max<double>(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; case rank_method::AVERAGE: rank_average(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; default: CUDF_FAIL("Unexpected rank_method for rank()"); } } else { switch (method) { case rank_method::FIRST: rank_first<size_type>(sorted_order_view, rank_mutable_view, stream); break; case rank_method::DENSE: rank_dense<size_type>(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; case rank_method::MIN: rank_min<size_type>(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; case rank_method::MAX: rank_max<size_type>(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; case rank_method::AVERAGE: rank_average(dense_rank_sorted, sorted_order_view, rank_mutable_view, stream); break; default: CUDF_FAIL("Unexpected rank_method for rank()"); } } // pct inplace transform if (percentage) { auto rank_iter = rank_mutable_view.begin<double>(); size_type const count = (null_handling == null_policy::EXCLUDE) ? input.size() - input.null_count() : input.size(); auto drs = dense_rank_sorted.data(); bool const is_dense = (method == rank_method::DENSE); thrust::transform(rmm::exec_policy(stream), rank_iter, rank_iter + input.size(), rank_iter, [is_dense, drs, count] __device__(double r) -> double { return is_dense ? r / drs[count - 1] : r / count; }); } return rank_column; } } // namespace detail std::unique_ptr<column> rank(column_view const& input, rank_method method, order column_order, null_policy null_handling, null_order null_precedence, bool percentage, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::rank( input, method, column_order, null_handling, null_precedence, percentage, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/stable_sort.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "sort_impl.cuh" #include <cudf/column/column.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/sorting.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { std::unique_ptr<column> stable_sorted_order(table_view const& input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return sorted_order<true>(input, column_order, null_precedence, stream, mr); } std::unique_ptr<table> stable_sort_by_key(table_view const& values, table_view const& keys, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(values.num_rows() == keys.num_rows(), "Mismatch in number of rows for values and keys"); auto sorted_order = detail::stable_sorted_order( keys, column_order, null_precedence, stream, rmm::mr::get_current_device_resource()); return detail::gather(values, sorted_order->view(), out_of_bounds_policy::DONT_CHECK, detail::negative_index_policy::NOT_ALLOWED, stream, mr); } } // namespace detail std::unique_ptr<column> stable_sorted_order(table_view const& input, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::stable_sorted_order(input, column_order, null_precedence, stream, mr); } std::unique_ptr<table> stable_sort_by_key(table_view const& values, table_view const& keys, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::stable_sort_by_key(values, keys, column_order, null_precedence, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/sort/is_sorted.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/count.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/sort.h> #include <thrust/transform.h> namespace cudf { namespace detail { bool is_sorted(cudf::table_view const& in, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream) { auto const comparator = experimental::row::lexicographic::self_comparator{in, column_order, null_precedence, stream}; if (cudf::detail::has_nested_columns(in)) { auto const device_comparator = comparator.less<true>(has_nested_nulls(in)); // Using a temporary buffer for intermediate transform results from the lambda containing // the comparator speeds up compile-time significantly over using the comparator directly // in thrust::is_sorted. auto d_results = rmm::device_uvector<bool>(in.num_rows(), stream); thrust::transform(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(in.num_rows()), d_results.begin(), [device_comparator] __device__(auto idx) -> bool { return (idx == 0) || device_comparator(idx - 1, idx); }); return thrust::count(rmm::exec_policy(stream), d_results.begin(), d_results.end(), false) == 0; } else { auto const device_comparator = comparator.less<false>(has_nested_nulls(in)); return thrust::is_sorted(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(in.num_rows()), device_comparator); } } } // namespace detail bool is_sorted(cudf::table_view const& in, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); if (in.num_columns() == 0 || in.num_rows() == 0) { return true; } if (not column_order.empty()) { CUDF_EXPECTS(static_cast<unsigned int>(in.num_columns()) == column_order.size(), "Number of columns in the table doesn't match the vector column_order's size .\n"); } if (not null_precedence.empty()) { CUDF_EXPECTS( static_cast<unsigned int>(in.num_columns()) == null_precedence.size(), "Number of columns in the table doesn't match the vector null_precedence's size .\n"); } return detail::is_sorted(in, column_order, null_precedence, stream); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/unary/null_ops.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/unary.hpp> #include <cudf/utilities/default_stream.hpp> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { std::unique_ptr<column> is_null(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto input_device_view = column_device_view::create(input, stream); auto device_view = *input_device_view; auto predicate = [device_view] __device__(auto index) { return (device_view.is_null(index)); }; return detail::true_if(thrust::make_counting_iterator(0), thrust::make_counting_iterator(input.size()), input.size(), predicate, stream, mr); } std::unique_ptr<column> is_valid(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto input_device_view = column_device_view::create(input, stream); auto device_view = *input_device_view; auto predicate = [device_view] __device__(auto index) { return device_view.is_valid(index); }; return detail::true_if(thrust::make_counting_iterator(0), thrust::make_counting_iterator(input.size()), input.size(), predicate, stream, mr); } } // namespace detail std::unique_ptr<column> is_null(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::is_null(input, stream, mr); } std::unique_ptr<column> is_valid(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::is_valid(input, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/unary/unary_ops.cuh
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/unary.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/transform.h> namespace cudf { namespace unary { template <typename T, typename Tout, typename F> struct launcher { static std::unique_ptr<cudf::column> launch(cudf::column_view const& input, cudf::unary_operator op, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::unique_ptr<cudf::column> output = [&] { if (op == cudf::unary_operator::NOT) { auto type = cudf::data_type{cudf::type_id::BOOL8}; auto size = input.size(); return std::make_unique<column>(type, size, rmm::device_buffer{size * cudf::size_of(type), 0, mr}, cudf::detail::copy_bitmask(input, stream, mr), input.null_count()); } else { return cudf::detail::allocate_like( input, input.size(), mask_allocation_policy::NEVER, stream, mr); } }(); if (input.is_empty()) return output; auto output_view = output->mutable_view(); CUDF_EXPECTS(input.size() > 0, "Launcher requires input size to be non-zero."); CUDF_EXPECTS(input.size() == output_view.size(), "Launcher requires input and output size to be equal."); if (input.nullable()) output->set_null_mask( rmm::device_buffer{input.null_mask(), bitmask_allocation_size_bytes(input.size())}, input.null_count()); thrust::transform( rmm::exec_policy(stream), input.begin<T>(), input.end<T>(), output_view.begin<Tout>(), F{}); CUDF_CHECK_CUDA(stream.value()); return output; } }; } // namespace unary } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/unary/nan_ops.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/unary.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { struct nan_dispatcher { template <typename T, typename Predicate> std::enable_if_t<std::is_floating_point_v<T>, std::unique_ptr<column>> operator()( cudf::column_view const& input, Predicate predicate, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto input_device_view = column_device_view::create(input, stream); if (input.has_nulls()) { auto input_pair_iterator = make_pair_iterator<T, true>(*input_device_view); return true_if(input_pair_iterator, input_pair_iterator + input.size(), input.size(), predicate, stream, mr); } else { auto input_pair_iterator = make_pair_iterator<T, false>(*input_device_view); return true_if(input_pair_iterator, input_pair_iterator + input.size(), input.size(), predicate, stream, mr); } } template <typename T, typename Predicate> std::enable_if_t<!std::is_floating_point_v<T>, std::unique_ptr<column>> operator()( cudf::column_view const& input, Predicate predicate, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FAIL("NAN is not supported in a Non-floating point type column"); } }; std::unique_ptr<column> is_nan(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto predicate = [] __device__(auto element_validity_pair) { return element_validity_pair.second and std::isnan(element_validity_pair.first); }; return cudf::type_dispatcher(input.type(), nan_dispatcher{}, input, predicate, stream, mr); } std::unique_ptr<column> is_not_nan(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto predicate = [] __device__(auto element_validity_pair) { return !element_validity_pair.second or !std::isnan(element_validity_pair.first); }; return cudf::type_dispatcher(input.type(), nan_dispatcher{}, input, predicate, stream, mr); } } // namespace detail std::unique_ptr<column> is_nan(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::is_nan(input, stream, mr); } std::unique_ptr<column> is_not_nan(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::is_not_nan(input, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/unary/math_ops.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/copying.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/unary.hpp> #include <cudf/dictionary/detail/encode.hpp> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/transform.h> #include <cmath> #include <type_traits> namespace cudf { namespace detail { namespace { // trig functions struct DeviceSin { template <typename T> __device__ T operator()(T data) { return std::sin(data); } }; struct DeviceCos { template <typename T> __device__ T operator()(T data) { return std::cos(data); } }; struct DeviceTan { template <typename T> __device__ T operator()(T data) { return std::tan(data); } }; struct DeviceArcSin { template <typename T> __device__ T operator()(T data) { return std::asin(data); } }; struct DeviceArcCos { template <typename T> __device__ T operator()(T data) { return std::acos(data); } }; struct DeviceArcTan { template <typename T> __device__ T operator()(T data) { return std::atan(data); } }; struct DeviceSinH { template <typename T> __device__ T operator()(T data) { return std::sinh(data); } }; struct DeviceCosH { template <typename T> __device__ T operator()(T data) { return std::cosh(data); } }; struct DeviceTanH { template <typename T> __device__ T operator()(T data) { return std::tanh(data); } }; struct DeviceArcSinH { template <typename T> __device__ T operator()(T data) { return std::asinh(data); } }; struct DeviceArcCosH { template <typename T> __device__ T operator()(T data) { return std::acosh(data); } }; struct DeviceArcTanH { template <typename T> __device__ T operator()(T data) { return std::atanh(data); } }; // exponential functions struct DeviceExp { template <typename T> __device__ T operator()(T data) { return std::exp(data); } }; struct DeviceLog { template <typename T> __device__ T operator()(T data) { return std::log(data); } }; struct DeviceSqrt { template <typename T> __device__ T operator()(T data) { return std::sqrt(data); } }; struct DeviceCbrt { template <typename T> __device__ T operator()(T data) { return std::cbrt(data); } }; // rounding functions struct DeviceCeil { template <typename T> __device__ T operator()(T data) { return std::ceil(data); } }; struct DeviceFloor { template <typename T> __device__ T operator()(T data) { return std::floor(data); } }; struct DeviceAbs { template <typename T> std::enable_if_t<std::is_signed_v<T>, T> __device__ operator()(T data) { return std::abs(data); } template <typename T> std::enable_if_t<!std::is_signed_v<T>, T> __device__ operator()(T data) { return data; } }; struct DeviceRInt { template <typename T> std::enable_if_t<std::is_floating_point_v<T>, T> __device__ operator()(T data) { return std::rint(data); } // Dummy to handle other types, will never be executed template <typename T> std::enable_if_t<!std::is_floating_point_v<T>, T> __device__ operator()(T data) { return data; } }; // bitwise op struct DeviceInvert { template <typename T> __device__ T operator()(T data) { return ~data; } }; // logical op struct DeviceNot { template <typename T> __device__ bool operator()(T data) { return !data; } }; // fixed_point ops /* * Ceiling is calculated using integer division. When we divide by `n`, we get the integer part of * the `fixed_point` number. For a negative number, this is all that is needed since the ceiling * operation is defined as the least integer greater than the value. For a positive number, we may * need to round up if the `fixed_point` number has a fractional part. This is handled by comparing * the truncated value to the original value and if they are not equal, the result needs to be * incremented by `n`. */ template <typename T> struct fixed_point_ceil { T n; // 10^-scale (value required to determine integer part of fixed_point number) __device__ T operator()(T data) { T const a = (data / n) * n; // result of integer division return a + (data > 0 && a != data ? n : 0); // add 1 if positive and not round number } }; /* * Floor is calculated using integer division. When we divide by `n`, we get the integer part of * the `fixed_point` number. For a positive number, this is all that is needed since the floor * operation is defined as the greatest integer less than the value. For a negative number, we may * need to round down if the `fixed_point` number has a fractional part. This is handled by * comparing the truncated value to the original value and if they are not equal, the result needs * to be decremented by `n`. */ template <typename T> struct fixed_point_floor { T n; // 10^-scale (value required to determine integer part of fixed_point number) __device__ T operator()(T data) { T const a = (data / n) * n; // result of integer division return a - (data < 0 && a != data ? n : 0); // subtract 1 if negative and not round number } }; template <typename T> struct fixed_point_abs { T n; __device__ T operator()(T data) { return numeric::detail::abs(data); } }; template <typename T, template <typename> typename FixedPointFunctor> std::unique_ptr<column> unary_op_with(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using Type = device_storage_type_t<T>; using FixedPointUnaryOpFunctor = FixedPointFunctor<Type>; // When scale is >= 0 and unary_operator is CEIL or FLOOR, the unary_operation is a no-op if (input.type().scale() >= 0 && (std::is_same_v<FixedPointUnaryOpFunctor, fixed_point_ceil<Type>> || std::is_same_v<FixedPointUnaryOpFunctor, fixed_point_floor<Type>>)) return std::make_unique<cudf::column>(input, stream, mr); auto result = cudf::make_fixed_width_column(input.type(), input.size(), detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); auto out_view = result->mutable_view(); Type n = 10; for (int i = 1; i < -input.type().scale(); ++i) { n *= 10; } thrust::transform(rmm::exec_policy(stream), input.begin<Type>(), input.end<Type>(), out_view.begin<Type>(), FixedPointUnaryOpFunctor{n}); result->set_null_count(input.null_count()); return result; } template <typename OutputType, typename UFN, typename InputIterator> std::unique_ptr<cudf::column> transform_fn(InputIterator begin, InputIterator end, rmm::device_buffer&& null_mask, size_type null_count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const size = cudf::distance(begin, end); std::unique_ptr<cudf::column> output = make_fixed_width_column(data_type{type_to_id<OutputType>()}, size, std::forward<rmm::device_buffer>(null_mask), null_count, stream, mr); if (size == 0) return output; auto output_view = output->mutable_view(); thrust::transform(rmm::exec_policy(stream), begin, end, output_view.begin<OutputType>(), UFN{}); output->set_null_count(null_count); return output; } template <typename T, typename UFN> std::unique_ptr<cudf::column> transform_fn(cudf::dictionary_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto dictionary_view = cudf::column_device_view::create(input.parent(), stream); auto dictionary_itr = dictionary::detail::make_dictionary_iterator<T>(*dictionary_view); auto default_mr = rmm::mr::get_current_device_resource(); // call unary-op using temporary output buffer auto output = transform_fn<T, UFN>(dictionary_itr, dictionary_itr + input.size(), detail::copy_bitmask(input.parent(), stream, default_mr), input.null_count(), stream, default_mr); return cudf::dictionary::detail::encode( output->view(), dictionary::detail::get_indices_type_for_size(output->size()), stream, mr); } template <typename UFN> struct MathOpDispatcher { template <typename T, std::enable_if_t<std::is_arithmetic_v<T>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return transform_fn<T, UFN>(input.begin<T>(), input.end<T>(), cudf::detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); } struct dictionary_dispatch { template <typename T, std::enable_if_t<std::is_arithmetic_v<T>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::dictionary_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return transform_fn<T, UFN>(input, stream, mr); } template <typename T, typename... Args> std::enable_if_t<!std::is_arithmetic_v<T>, std::unique_ptr<cudf::column>> operator()(Args&&...) { CUDF_FAIL("dictionary keys must be numeric for this operation"); } }; template < typename T, std::enable_if_t<!std::is_arithmetic_v<T> and std::is_same_v<T, dictionary32>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) return empty_like(input); auto dictionary_col = dictionary_column_view(input); return type_dispatcher( dictionary_col.keys().type(), dictionary_dispatch{}, dictionary_col, stream, mr); } template <typename T, typename... Args> std::enable_if_t<!std::is_arithmetic_v<T> and !std::is_same_v<T, dictionary32>, std::unique_ptr<cudf::column>> operator()(Args&&...) { CUDF_FAIL("Unsupported data type for operation"); } }; template <typename UFN> struct BitwiseOpDispatcher { template <typename T, std::enable_if_t<std::is_integral_v<T>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return transform_fn<T, UFN>(input.begin<T>(), input.end<T>(), cudf::detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); } struct dictionary_dispatch { template <typename T, std::enable_if_t<std::is_integral_v<T>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::dictionary_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return transform_fn<T, UFN>(input, stream, mr); } template <typename T, typename... Args> std::enable_if_t<!std::is_integral_v<T>, std::unique_ptr<cudf::column>> operator()(Args&&...) { CUDF_FAIL("dictionary keys type not supported for this operation"); } }; template <typename T, std::enable_if_t<!std::is_integral_v<T> and std::is_same_v<T, dictionary32>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) return empty_like(input); auto dictionary_col = dictionary_column_view(input); return type_dispatcher( dictionary_col.keys().type(), dictionary_dispatch{}, dictionary_col, stream, mr); } template <typename T, typename... Args> std::enable_if_t<!std::is_integral_v<T> and !std::is_same_v<T, dictionary32>, std::unique_ptr<cudf::column>> operator()(Args&&...) { CUDF_FAIL("Unsupported datatype for operation"); } }; template <typename UFN> struct LogicalOpDispatcher { private: template <typename T> static constexpr bool is_supported() { return std::is_arithmetic_v<T> || std::is_same_v<T, bool>; } public: template <typename T, std::enable_if_t<is_supported<T>()>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return transform_fn<bool, UFN>(input.begin<T>(), input.end<T>(), cudf::detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); } struct dictionary_dispatch { template <typename T, std::enable_if_t<is_supported<T>()>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::dictionary_column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto dictionary_view = cudf::column_device_view::create(input.parent(), stream); auto dictionary_itr = dictionary::detail::make_dictionary_iterator<T>(*dictionary_view); return transform_fn<bool, UFN>(dictionary_itr, dictionary_itr + input.size(), cudf::detail::copy_bitmask(input.parent(), stream, mr), input.null_count(), stream, mr); } template <typename T, typename... Args> std::enable_if_t<!is_supported<T>(), std::unique_ptr<cudf::column>> operator()(Args&&...) { CUDF_FAIL("dictionary keys type not supported for this operation"); } }; template <typename T, std::enable_if_t<!is_supported<T>() and std::is_same_v<T, dictionary32>>* = nullptr> std::unique_ptr<cudf::column> operator()(cudf::column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.is_empty()) return make_empty_column(cudf::data_type{cudf::type_id::BOOL8}); auto dictionary_col = dictionary_column_view(input); return type_dispatcher( dictionary_col.keys().type(), dictionary_dispatch{}, dictionary_col, stream, mr); } template <typename T, typename... Args> std::enable_if_t<!is_supported<T>() and !std::is_same_v<T, dictionary32>, std::unique_ptr<cudf::column>> operator()(Args&&...) { CUDF_FAIL("Unsupported datatype for operation"); } }; struct FixedPointOpDispatcher { template <typename T, typename... Args> std::enable_if_t<not cudf::is_fixed_point<T>(), std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("FixedPointOpDispatcher only for fixed_point"); } template <typename T> std::enable_if_t<cudf::is_fixed_point<T>(), std::unique_ptr<column>> operator()( column_view const& input, cudf::unary_operator op, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // clang-format off switch (op) { case cudf::unary_operator::CEIL: return unary_op_with<T, fixed_point_ceil>(input, stream, mr); case cudf::unary_operator::FLOOR: return unary_op_with<T, fixed_point_floor>(input, stream, mr); case cudf::unary_operator::ABS: return unary_op_with<T, fixed_point_abs>(input, stream, mr); default: CUDF_FAIL("Unsupported fixed_point unary operation"); } // clang-format on } }; } // namespace std::unique_ptr<cudf::column> unary_operation(cudf::column_view const& input, cudf::unary_operator op, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (cudf::is_fixed_point(input.type())) return type_dispatcher(input.type(), detail::FixedPointOpDispatcher{}, input, op, stream, mr); switch (op) { case cudf::unary_operator::SIN: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceSin>{}, input, stream, mr); case cudf::unary_operator::COS: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceCos>{}, input, stream, mr); case cudf::unary_operator::TAN: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceTan>{}, input, stream, mr); case cudf::unary_operator::ARCSIN: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceArcSin>{}, input, stream, mr); case cudf::unary_operator::ARCCOS: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceArcCos>{}, input, stream, mr); case cudf::unary_operator::ARCTAN: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceArcTan>{}, input, stream, mr); case cudf::unary_operator::SINH: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceSinH>{}, input, stream, mr); case cudf::unary_operator::COSH: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceCosH>{}, input, stream, mr); case cudf::unary_operator::TANH: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceTanH>{}, input, stream, mr); case cudf::unary_operator::ARCSINH: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceArcSinH>{}, input, stream, mr); case cudf::unary_operator::ARCCOSH: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceArcCosH>{}, input, stream, mr); case cudf::unary_operator::ARCTANH: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceArcTanH>{}, input, stream, mr); case cudf::unary_operator::EXP: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceExp>{}, input, stream, mr); case cudf::unary_operator::LOG: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceLog>{}, input, stream, mr); case cudf::unary_operator::SQRT: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceSqrt>{}, input, stream, mr); case cudf::unary_operator::CBRT: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceCbrt>{}, input, stream, mr); case cudf::unary_operator::CEIL: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceCeil>{}, input, stream, mr); case cudf::unary_operator::FLOOR: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceFloor>{}, input, stream, mr); case cudf::unary_operator::ABS: return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceAbs>{}, input, stream, mr); case cudf::unary_operator::RINT: CUDF_EXPECTS( (input.type().id() == type_id::FLOAT32) or (input.type().id() == type_id::FLOAT64), "rint expects floating point values"); return cudf::type_dispatcher( input.type(), detail::MathOpDispatcher<detail::DeviceRInt>{}, input, stream, mr); case cudf::unary_operator::BIT_INVERT: return cudf::type_dispatcher( input.type(), detail::BitwiseOpDispatcher<detail::DeviceInvert>{}, input, stream, mr); case cudf::unary_operator::NOT: return cudf::type_dispatcher( input.type(), detail::LogicalOpDispatcher<detail::DeviceNot>{}, input, stream, mr); default: CUDF_FAIL("Undefined unary operation"); } } } // namespace detail std::unique_ptr<cudf::column> unary_operation(cudf::column_view const& input, cudf::unary_operator op, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::unary_operation(input, op, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/unary/cast_ops.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/detail/binaryop.hpp> #include <cudf/detail/fill.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/unary.hpp> #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/null_mask.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/unary.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/transform.h> namespace cudf { namespace detail { namespace { // anonymous namespace template <typename _TargetT> struct unary_cast { template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_numeric<SourceT>() && cudf::is_numeric<TargetT>())>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { return static_cast<TargetT>(element); } template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_timestamp<SourceT>() && cudf::is_timestamp<TargetT>())>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { // Convert source tick counts into target tick counts without blindly truncating them // by dividing the respective duration time periods (which may not work for time before // UNIX epoch) return TargetT{cuda::std::chrono::floor<TargetT::duration>(element.time_since_epoch())}; } template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_duration<SourceT>() && cudf::is_duration<TargetT>())>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { return TargetT{cuda::std::chrono::floor<TargetT>(element)}; } template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<cudf::is_numeric<SourceT>() && cudf::is_duration<TargetT>()>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { return TargetT{static_cast<typename TargetT::rep>(element)}; } template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_timestamp<SourceT>() && cudf::is_duration<TargetT>())>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { return TargetT{cuda::std::chrono::floor<TargetT>(element.time_since_epoch())}; } template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<cudf::is_duration<SourceT>() && cudf::is_numeric<TargetT>()>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { return static_cast<TargetT>(element.count()); } template < typename SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_duration<SourceT>() && cudf::is_timestamp<TargetT>())>* = nullptr> __device__ inline TargetT operator()(SourceT const element) { return TargetT{cuda::std::chrono::floor<TargetT::duration>(element)}; } }; template <typename _SourceT, typename _TargetT> struct fixed_point_unary_cast { numeric::scale_type scale; using FixedPointT = std::conditional_t<cudf::is_fixed_point<_SourceT>(), _SourceT, _TargetT>; using DeviceT = device_storage_type_t<FixedPointT>; template < typename SourceT = _SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_fixed_point<_SourceT>() && cudf::is_numeric<TargetT>())>* = nullptr> __device__ inline TargetT operator()(DeviceT const element) { auto const fp = SourceT{numeric::scaled_integer<DeviceT>{element, scale}}; return static_cast<TargetT>(fp); } template < typename SourceT = _SourceT, typename TargetT = _TargetT, std::enable_if_t<(cudf::is_numeric<_SourceT>() && cudf::is_fixed_point<TargetT>())>* = nullptr> __device__ inline DeviceT operator()(SourceT const element) { return TargetT{element, scale}.value(); } }; template <typename From, typename To> constexpr inline auto is_supported_non_fixed_point_cast() { return cudf::is_fixed_width<To>() && // Disallow fixed_point here (requires different specialization) !(cudf::is_fixed_point<From>() || cudf::is_fixed_point<To>()) && // Disallow conversions between timestamps and numeric !(cudf::is_timestamp<From>() && is_numeric<To>()) && !(cudf::is_timestamp<To>() && is_numeric<From>()); } template <typename From, typename To> constexpr inline auto is_supported_fixed_point_cast() { return (cudf::is_fixed_point<From>() && cudf::is_numeric<To>()) || (cudf::is_numeric<From>() && cudf::is_fixed_point<To>()) || (cudf::is_fixed_point<From>() && cudf::is_fixed_point<To>()); } template <typename From, typename To> constexpr inline auto is_supported_cast() { return is_supported_non_fixed_point_cast<From, To>() || is_supported_fixed_point_cast<From, To>(); } template <typename From, typename To> struct device_cast { __device__ To operator()(From element) { return static_cast<To>(element); } }; /** * @brief Takes a `fixed_point` column_view as @p input and returns a `fixed_point` column with new * @p scale * * @tparam T Type of the `fixed_point` column_view (`decimal32`, `decimal64` or `decimal128`) * @param input Input `column_view` * @param scale `scale` of the returned `column` * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * * @return std::unique_ptr<column> Returned column with new @p scale */ template <typename T, std::enable_if_t<is_fixed_point<T>()>* = nullptr> std::unique_ptr<column> rescale(column_view input, numeric::scale_type scale, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using namespace numeric; using RepType = device_storage_type_t<T>; auto const type = cudf::data_type{cudf::type_to_id<T>(), scale}; if (input.type().scale() >= scale) { auto const scalar = make_fixed_point_scalar<T>(0, scale_type{scale}, stream); return detail::binary_operation(input, *scalar, binary_operator::ADD, type, stream, mr); } else { auto const diff = input.type().scale() - scale; // The value of fixed point scalar will overflow if the scale difference is larger than the // max digits of underlying integral type. Under this condition, the output values can be // nothing other than zero value. Therefore, we simply return a zero column. if (-diff > cuda::std::numeric_limits<RepType>::digits10) { auto const scalar = make_fixed_point_scalar<T>(0, scale_type{scale}, stream); auto output_column = make_column_from_scalar(*scalar, input.size(), stream, mr); if (input.nullable()) { auto const null_mask = detail::copy_bitmask(input, stream, mr); output_column->set_null_mask(std::move(null_mask), input.null_count()); } return output_column; } RepType scalar_value = 10; for (int i = 1; i < -diff; ++i) { scalar_value *= 10; } auto const scalar = make_fixed_point_scalar<T>(scalar_value, scale_type{diff}, stream); return detail::binary_operation(input, *scalar, binary_operator::DIV, type, stream, mr); } }; template <typename _SourceT> struct dispatch_unary_cast_to { column_view input; dispatch_unary_cast_to(column_view inp) : input(inp) {} template <typename TargetT, typename SourceT = _SourceT, std::enable_if_t<is_supported_non_fixed_point_cast<SourceT, TargetT>()>* = nullptr> std::unique_ptr<column> operator()(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const size = input.size(); auto output = std::make_unique<column>(type, size, rmm::device_buffer{size * cudf::size_of(type), stream, mr}, detail::copy_bitmask(input, stream, mr), input.null_count()); mutable_column_view output_mutable = *output; thrust::transform(rmm::exec_policy(stream), input.begin<SourceT>(), input.end<SourceT>(), output_mutable.begin<TargetT>(), unary_cast<TargetT>{}); return output; } template < typename TargetT, typename SourceT = _SourceT, std::enable_if_t<cudf::is_fixed_point<SourceT>() && cudf::is_numeric<TargetT>()>* = nullptr> std::unique_ptr<column> operator()(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const size = input.size(); auto output = std::make_unique<column>(type, size, rmm::device_buffer{size * cudf::size_of(type), stream, mr}, detail::copy_bitmask(input, stream, mr), input.null_count()); mutable_column_view output_mutable = *output; using DeviceT = device_storage_type_t<SourceT>; auto const scale = numeric::scale_type{input.type().scale()}; thrust::transform(rmm::exec_policy(stream), input.begin<DeviceT>(), input.end<DeviceT>(), output_mutable.begin<TargetT>(), fixed_point_unary_cast<SourceT, TargetT>{scale}); return output; } template < typename TargetT, typename SourceT = _SourceT, std::enable_if_t<cudf::is_numeric<SourceT>() && cudf::is_fixed_point<TargetT>()>* = nullptr> std::unique_ptr<column> operator()(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const size = input.size(); auto output = std::make_unique<column>(type, size, rmm::device_buffer{size * cudf::size_of(type), stream, mr}, detail::copy_bitmask(input, stream, mr), input.null_count()); mutable_column_view output_mutable = *output; using DeviceT = device_storage_type_t<TargetT>; auto const scale = numeric::scale_type{type.scale()}; thrust::transform(rmm::exec_policy(stream), input.begin<SourceT>(), input.end<SourceT>(), output_mutable.begin<DeviceT>(), fixed_point_unary_cast<SourceT, TargetT>{scale}); return output; } template <typename TargetT, typename SourceT = _SourceT, std::enable_if_t<cudf::is_fixed_point<SourceT>() && cudf::is_fixed_point<TargetT>() && std::is_same_v<SourceT, TargetT>>* = nullptr> std::unique_ptr<column> operator()(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.type() == type) { return std::make_unique<column>(input, stream, mr); // TODO add test for this } return detail::rescale<TargetT>(input, numeric::scale_type{type.scale()}, stream, mr); } template <typename TargetT, typename SourceT = _SourceT, std::enable_if_t<cudf::is_fixed_point<SourceT>() && cudf::is_fixed_point<TargetT>() && not std::is_same_v<SourceT, TargetT>>* = nullptr> std::unique_ptr<column> operator()(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using namespace numeric; using SourceDeviceT = device_storage_type_t<SourceT>; using TargetDeviceT = device_storage_type_t<TargetT>; auto casted = [&]() { auto const size = input.size(); auto output = std::make_unique<column>(cudf::data_type{type.id(), input.type().scale()}, size, rmm::device_buffer{size * cudf::size_of(type), stream}, detail::copy_bitmask(input, stream, mr), input.null_count()); mutable_column_view output_mutable = *output; thrust::transform(rmm::exec_policy(stream), input.begin<SourceDeviceT>(), input.end<SourceDeviceT>(), output_mutable.begin<TargetDeviceT>(), device_cast<SourceDeviceT, TargetDeviceT>{}); return output; }; if (input.type().scale() == type.scale()) return casted(); if constexpr (sizeof(SourceDeviceT) < sizeof(TargetDeviceT)) { // device_cast BEFORE rescale when SourceDeviceT is < TargetDeviceT auto temporary = casted(); return detail::rescale<TargetT>(*temporary, scale_type{type.scale()}, stream, mr); } else { // device_cast AFTER rescale when SourceDeviceT is > TargetDeviceT to avoid overflow auto temporary = detail::rescale<SourceT>(input, scale_type{type.scale()}, stream, mr); return detail::cast(*temporary, type, stream, mr); } } template <typename TargetT, typename SourceT = _SourceT, std::enable_if_t<not is_supported_cast<SourceT, TargetT>()>* = nullptr> std::unique_ptr<column> operator()(data_type, rmm::cuda_stream_view, rmm::mr::device_memory_resource*) { if (!cudf::is_fixed_width<TargetT>()) CUDF_FAIL("Column type must be numeric or chrono or decimal32/64/128"); else if (cudf::is_fixed_point<SourceT>()) CUDF_FAIL("Currently only decimal32/64/128 to floating point/integral is supported"); else if (cudf::is_timestamp<SourceT>() && is_numeric<TargetT>()) CUDF_FAIL("Timestamps can be created only from duration"); else CUDF_FAIL("Timestamps cannot be converted to numeric without converting it to a duration"); } }; struct dispatch_unary_cast_from { column_view input; dispatch_unary_cast_from(column_view inp) : input(inp) {} template <typename T, std::enable_if_t<cudf::is_fixed_width<T>()>* = nullptr> std::unique_ptr<column> operator()(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return type_dispatcher(type, dispatch_unary_cast_to<T>{input}, type, stream, mr); } template <typename T, typename... Args> std::enable_if_t<!cudf::is_fixed_width<T>(), std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("Column type must be numeric or chrono or decimal32/64/128"); } }; } // anonymous namespace std::unique_ptr<column> cast(column_view const& input, data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_fixed_width(type), "Unary cast type must be fixed-width."); return type_dispatcher(input.type(), detail::dispatch_unary_cast_from{input}, type, stream, mr); } } // namespace detail std::unique_ptr<column> cast(column_view const& input, data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::cast(input, type, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/quantiles/quantiles_util.hpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cmath> #include <cudf/detail/utilities/assert.cuh> #include <cudf/types.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> namespace cudf { namespace detail { template <typename Result, typename T> CUDF_HOST_DEVICE inline Result get_array_value(T const* devarr, size_type location) { T result; #if defined(__CUDA_ARCH__) result = devarr[location]; #else CUDF_CUDA_TRY(cudaMemcpy(&result, devarr + location, sizeof(T), cudaMemcpyDefault)); #endif return static_cast<Result>(result); } namespace interpolate { template <typename Result, typename T> CUDF_HOST_DEVICE inline Result linear(T lhs, T rhs, double frac) { // TODO: safe operation to avoid overflow/underflow // double can fully represent int8-32 value range. // Since the fraction part of double is 52 bits, // double cannot fully represent int64. // Underflow may occur when converting int64 to double // detail: https://github.com/rapidsai/cudf/issues/1417 auto dlhs = static_cast<double>(lhs); auto drhs = static_cast<double>(rhs); double one_minus_frac = 1.0 - frac; return static_cast<Result>(one_minus_frac * dlhs + frac * drhs); } template <typename Result, typename T> CUDF_HOST_DEVICE inline Result midpoint(T lhs, T rhs) { // TODO: try std::midpoint (C++20) if available auto dlhs = static_cast<double>(lhs); auto drhs = static_cast<double>(rhs); return static_cast<Result>(dlhs / 2 + drhs / 2); } template <typename Result> CUDF_HOST_DEVICE inline Result midpoint(int64_t lhs, int64_t rhs) { // caring to avoid integer overflow and underflow between int64_t and Result( double ) int64_t half = lhs / 2 + rhs / 2; int64_t rest = lhs % 2 + rhs % 2; return static_cast<Result>(static_cast<Result>(half) + static_cast<Result>(rest) * 0.5); } template <> CUDF_HOST_DEVICE inline int64_t midpoint(int64_t lhs, int64_t rhs) { // caring to avoid integer overflow int64_t half = lhs / 2 + rhs / 2; int64_t rest = lhs % 2 + rhs % 2; int64_t result = half; // rounding toward zero result += (half >= 0 && rest != 0) ? rest / 2 : 0; result += (half < 0 && rest != 0) ? 1 : 0; return result; } } // namespace interpolate struct quantile_index { size_type lower; size_type higher; size_type nearest; double fraction; CUDF_HOST_DEVICE inline quantile_index(size_type count, double quantile) { quantile = std::min(std::max(quantile, 0.0), 1.0); double val = quantile * (count - 1); lower = std::floor(val); higher = static_cast<size_type>(std::ceil(val)); nearest = static_cast<size_type>(std::nearbyint(val)); fraction = val - lower; } }; #ifdef __CUDACC__ #pragma nv_exec_check_disable #endif /* @brief computes a quantile value. * * Computes a value for a quantile by interpolating between two values on either * side of the desired quantile. * * `get_value` must have signature: `T <T>(size_type)` where T can be * `static_cast` to `Result`. * * @param[in] get_value Gets the value at a given index in range [0, size]. * @param[in] size Number of values indexed by `get_value`. * @param[in] q Desired quantile in range [0, 1]. * @param[in] interp Strategy used to interpolate between the two values * on either side of the desired quantile. * * @returns Value of the desired quantile. */ template <typename Result, typename ValueAccessor> CUDF_HOST_DEVICE inline Result select_quantile(ValueAccessor get_value, size_type size, double q, interpolation interp) { if (size < 2) { return get_value(0); } quantile_index idx(size, q); switch (interp) { case interpolation::LINEAR: return interpolate::linear<Result>(get_value(idx.lower), get_value(idx.higher), idx.fraction); case interpolation::MIDPOINT: return interpolate::midpoint<Result>(get_value(idx.lower), get_value(idx.higher)); case interpolation::LOWER: return static_cast<Result>(get_value(idx.lower)); case interpolation::HIGHER: return static_cast<Result>(get_value(idx.higher)); case interpolation::NEAREST: return static_cast<Result>(get_value(idx.nearest)); default: { #ifndef __CUDA_ARCH__ CUDF_FAIL("Invalid interpolation operation for quantiles."); #else CUDF_UNREACHABLE("Invalid interpolation operation for quantiles"); #endif } } } template <typename Result, typename Iterator> CUDF_HOST_DEVICE inline Result select_quantile_data(Iterator begin, size_type size, double q, interpolation interp) { if (size == 0) return static_cast<Result>(*begin); quantile_index idx(size, q); switch (interp) { case interpolation::LOWER: return static_cast<Result>(*(begin + idx.lower)); case interpolation::HIGHER: return static_cast<Result>(*(begin + idx.higher)); case interpolation::NEAREST: return static_cast<Result>(*(begin + idx.nearest)); case interpolation::LINEAR: return interpolate::linear<Result>(*(begin + idx.lower), *(begin + idx.higher), idx.fraction); case interpolation::MIDPOINT: return interpolate::midpoint<Result>(*(begin + idx.lower), *(begin + idx.higher)); default: { #ifndef __CUDA_ARCH__ CUDF_FAIL("Invalid interpolation operation for quantiles."); #else CUDF_UNREACHABLE("Invalid interpolation operation for quantiles"); #endif } } } template <typename Iterator> CUDF_HOST_DEVICE inline bool select_quantile_validity(Iterator begin, size_type size, double q, interpolation interp) { quantile_index idx(size, q); switch (interp) { case interpolation::HIGHER: return *(begin + idx.higher); case interpolation::LOWER: return *(begin + idx.lower); case interpolation::NEAREST: return *(begin + idx.nearest); case interpolation::LINEAR: case interpolation::MIDPOINT: return *(begin + idx.lower) and *(begin + idx.higher); default: { #ifndef __CUDA_ARCH__ CUDF_FAIL("Invalid interpolation operation for quantiles."); #else CUDF_UNREACHABLE("Invalid interpolation operation for quantiles"); #endif } } } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/quantiles/quantile.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <quantiles/quantiles_util.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/permutation_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/transform.h> #include <memory> #include <vector> namespace cudf { namespace detail { template <bool exact, typename SortMapIterator> struct quantile_functor { SortMapIterator ordered_indices; size_type size; std::vector<double> const& q; interpolation interp; bool retain_types; rmm::cuda_stream_view stream; rmm::mr::device_memory_resource* mr; template <typename T> std::enable_if_t<not std::is_arithmetic_v<T> and not cudf::is_fixed_point<T>(), std::unique_ptr<column>> operator()(column_view const& input) { CUDF_FAIL("quantile does not support non-numeric types"); } template <typename T> std::enable_if_t<std::is_arithmetic_v<T> or cudf::is_fixed_point<T>(), std::unique_ptr<column>> operator()(column_view const& input) { using StorageType = cudf::device_storage_type_t<T>; using ExactResult = std::conditional_t<exact and not cudf::is_fixed_point<T>(), double, T>; using StorageResult = cudf::device_storage_type_t<ExactResult>; auto const type = is_fixed_point(input.type()) ? input.type() : data_type{type_to_id<StorageResult>()}; auto output = make_fixed_width_column(type, q.size(), mask_state::UNALLOCATED, stream, mr); if (output->size() == 0) { return output; } if (input.is_empty()) { auto mask = cudf::detail::create_null_mask(output->size(), mask_state::ALL_NULL, stream, mr); output->set_null_mask(std::move(mask), output->size()); return output; } auto d_input = column_device_view::create(input, stream); auto d_output = mutable_column_device_view::create(output->mutable_view(), stream); auto q_device = cudf::detail::make_device_uvector_sync(q, stream, rmm::mr::get_current_device_resource()); if (!cudf::is_dictionary(input.type())) { auto sorted_data = thrust::make_permutation_iterator(input.data<StorageType>(), ordered_indices); thrust::transform(rmm::exec_policy(stream), q_device.begin(), q_device.end(), d_output->template begin<StorageResult>(), [sorted_data, interp = interp, size = size] __device__(double q) { return select_quantile_data<StorageResult>(sorted_data, size, q, interp); }); } else { auto sorted_data = thrust::make_permutation_iterator( dictionary::detail::make_dictionary_iterator<T>(*d_input), ordered_indices); thrust::transform(rmm::exec_policy(stream), q_device.begin(), q_device.end(), d_output->template begin<StorageResult>(), [sorted_data, interp = interp, size = size] __device__(double q) { return select_quantile_data<StorageResult>(sorted_data, size, q, interp); }); } if (input.nullable()) { auto sorted_validity = thrust::make_transform_iterator( ordered_indices, [input = *d_input] __device__(size_type idx) { return input.is_valid_nocheck(idx); }); auto [mask, null_count] = valid_if( q_device.begin(), q_device.end(), [sorted_validity, interp = interp, size = size] __device__(double q) { return select_quantile_validity(sorted_validity, size, q, interp); }, stream, mr); output->set_null_mask(std::move(mask), null_count); } return output; } }; template <bool exact, typename SortMapIterator> std::unique_ptr<column> quantile(column_view const& input, SortMapIterator ordered_indices, size_type size, std::vector<double> const& q, interpolation interp, bool retain_types, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto functor = quantile_functor<exact, SortMapIterator>{ ordered_indices, size, q, interp, retain_types, stream, mr}; auto input_type = cudf::is_dictionary(input.type()) && !input.is_empty() ? dictionary_column_view(input).keys().type() : input.type(); return type_dispatcher(input_type, functor, input); } std::unique_ptr<column> quantile(column_view const& input, std::vector<double> const& q, interpolation interp, column_view const& indices, bool exact, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (indices.is_empty()) { auto begin = thrust::make_counting_iterator<size_type>(0); if (exact) { return quantile<true>(input, begin, input.size(), q, interp, exact, stream, mr); } else { return quantile<false>(input, begin, input.size(), q, interp, exact, stream, mr); } } else { CUDF_EXPECTS(indices.type() == data_type{type_to_id<size_type>()}, "`indices` type must be `INT32`."); if (exact) { return quantile<true>( input, indices.begin<size_type>(), indices.size(), q, interp, exact, stream, mr); } else { return quantile<false>( input, indices.begin<size_type>(), indices.size(), q, interp, exact, stream, mr); } } } } // namespace detail std::unique_ptr<column> quantile(column_view const& input, std::vector<double> const& q, interpolation interp, column_view const& ordered_indices, bool exact, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::quantile(input, q, interp, ordered_indices, exact, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/quantiles/quantiles.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <quantiles/quantiles_util.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <memory> #include <vector> namespace cudf { namespace detail { template <typename SortMapIterator> std::unique_ptr<table> quantiles(table_view const& input, SortMapIterator sortmap, std::vector<double> const& q, interpolation interp, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto quantile_idx_lookup = [sortmap, interp, size = input.num_rows()] __device__(double q) { auto selector = [sortmap] __device__(auto idx) { return sortmap[idx]; }; return detail::select_quantile<size_type>(selector, size, q, interp); }; auto const q_device = cudf::detail::make_device_uvector_async(q, stream, rmm::mr::get_current_device_resource()); auto quantile_idx_iter = thrust::make_transform_iterator(q_device.begin(), quantile_idx_lookup); return detail::gather(input, quantile_idx_iter, quantile_idx_iter + q.size(), out_of_bounds_policy::DONT_CHECK, stream, mr); } std::unique_ptr<table> quantiles(table_view const& input, std::vector<double> const& q, interpolation interp, cudf::sorted is_input_sorted, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (q.empty()) { return empty_like(input); } CUDF_EXPECTS(interp == interpolation::HIGHER || interp == interpolation::LOWER || interp == interpolation::NEAREST, "multi-column quantiles require a non-arithmetic interpolation strategy."); CUDF_EXPECTS(input.num_rows() > 0, "multi-column quantiles require at least one input row."); if (is_input_sorted == sorted::YES) { return detail::quantiles( input, thrust::make_counting_iterator<size_type>(0), q, interp, stream, mr); } else { auto sorted_idx = detail::sorted_order( input, column_order, null_precedence, stream, rmm::mr::get_current_device_resource()); return detail::quantiles(input, sorted_idx->view().data<size_type>(), q, interp, stream, mr); } } } // namespace detail std::unique_ptr<table> quantiles(table_view const& input, std::vector<double> const& q, interpolation interp, cudf::sorted is_input_sorted, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::quantiles(input, q, interp, is_input_sorted, column_order, null_precedence, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/quantiles
rapidsai_public_repos/cudf/cpp/src/quantiles/tdigest/tdigest_aggregation.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <quantiles/tdigest/tdigest_util.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/concatenate.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/merge.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/tdigest/tdigest.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/lists/lists_column_view.hpp> #include <cudf/utilities/span.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/advance.h> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/functional.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/merge.h> #include <thrust/pair.h> #include <thrust/reduce.h> #include <thrust/remove.h> #include <thrust/replace.h> #include <thrust/scan.h> #include <thrust/transform.h> #include <thrust/tuple.h> namespace cudf { namespace tdigest { namespace detail { namespace { // the most representative point within a cluster of similar // values. {mean, weight} // NOTE: Using a tuple here instead of a struct to take advantage of // thrust zip iterators for output. using centroid = thrust::tuple<double, double, bool>; // make a centroid from a scalar with a weight of 1. template <typename T> struct make_centroid { column_device_view const col; centroid operator() __device__(size_type index) const { auto const is_valid = col.is_valid(index); auto const mean = is_valid ? static_cast<double>(col.element<T>(index)) : 0.0; auto const weight = is_valid ? 1.0 : 0.0; return {mean, weight, is_valid}; } }; // make a centroid from a scalar with a weight of 1. this functor // assumes any value index it is passed is not null template <typename T> struct make_centroid_no_nulls { column_device_view const col; centroid operator() __device__(size_type index) const { return {static_cast<double>(col.element<T>(index)), 1.0, true}; } }; // make a centroid from an input stream of mean/weight values. struct make_weighted_centroid { double const* mean; double const* weight; centroid operator() __device__(size_type index) { return {mean[index], weight[index], true}; } }; // merge two centroids struct merge_centroids { centroid operator() __device__(centroid const& lhs, centroid const& rhs) const { bool const lhs_valid = thrust::get<2>(lhs); bool const rhs_valid = thrust::get<2>(rhs); if (!lhs_valid && !rhs_valid) { return {0, 0, false}; } if (!lhs_valid) { return rhs; } if (!rhs_valid) { return lhs; } double const lhs_mean = thrust::get<0>(lhs); double const rhs_mean = thrust::get<0>(rhs); double const lhs_weight = thrust::get<1>(lhs); double const rhs_weight = thrust::get<1>(rhs); double const new_weight = lhs_weight + rhs_weight; return {(lhs_mean * lhs_weight + rhs_mean * rhs_weight) / new_weight, new_weight, true}; } }; /** * @brief A functor which returns the nearest cumulative weight in the grouped input stream prior to * the specified next weight limit. * * This functor assumes the weight for all scalars is simply 1. Under this assumption, * the nearest weight that will be <= the next limit is simply the nearest integer < the limit, * which we can get by just taking floor(next_limit). For example if our next limit is 3.56, the * nearest whole number <= it is floor(3.56) == 3. */ struct nearest_value_scalar_weights_grouped { size_type const* group_offsets; thrust::pair<double, int> operator() __device__(double next_limit, size_type group_index) const { double const f = floor(next_limit); auto const relative_weight_index = max(0, static_cast<int>(next_limit) - 1); auto const group_size = group_offsets[group_index + 1] - group_offsets[group_index]; return {f, relative_weight_index < group_size ? relative_weight_index : group_size - 1}; } }; /** * @brief A functor which returns the nearest cumulative weight in the input stream prior to the * specified next weight limit. * * This functor assumes the weight for all scalars is simply 1. Under this assumption, * the nearest weight that will be <= the next limit is simply the nearest integer < the limit, * which we can get by just taking floor(next_limit). For example if our next limit is 3.56, the * nearest whole number <= it is floor(3.56) == 3. */ struct nearest_value_scalar_weights { size_type const input_size; thrust::pair<double, int> operator() __device__(double next_limit, size_type) const { double const f = floor(next_limit); auto const relative_weight_index = max(0, static_cast<int>(next_limit) - 1); return {f, relative_weight_index < input_size ? relative_weight_index : input_size - 1}; } }; /** * @brief A functor which returns the nearest cumulative weight in the input stream prior to the * specified next weight limit. * * This functor assumes we are dealing with grouped, sorted, weighted centroids. */ template <typename GroupOffsetsIter> struct nearest_value_centroid_weights { double const* cumulative_weights; GroupOffsetsIter outer_offsets; // groups size_type const* inner_offsets; // tdigests within a group thrust::pair<double, int> operator() __device__(double next_limit, size_type group_index) const { auto const tdigest_begin = outer_offsets[group_index]; auto const tdigest_end = outer_offsets[group_index + 1]; auto const num_weights = inner_offsets[tdigest_end] - inner_offsets[tdigest_begin]; // NOTE: as it is today, this functor will never be called for any digests that are empty, but // I'll leave this check here for safety. if (num_weights == 0) { return thrust::pair<double, int>{0, 0}; } double const* group_cumulative_weights = cumulative_weights + inner_offsets[tdigest_begin]; auto const index = ((thrust::lower_bound(thrust::seq, group_cumulative_weights, group_cumulative_weights + num_weights, next_limit)) - group_cumulative_weights); return index == 0 ? thrust::pair<double, int>{0, 0} : thrust::pair<double, int>{group_cumulative_weights[index - 1], static_cast<int>(index) - 1}; } }; /** * @brief A functor which returns the cumulative input weight for a given index in a * set of grouped input values. * * This functor assumes the weight for all scalars is simply 1. Under this assumption, * the cumulative weight for a given value index I is simply I+1. */ struct cumulative_scalar_weight_grouped { cudf::device_span<size_type const> group_offsets; cudf::device_span<size_type const> group_labels; std::tuple<size_type, size_type, double> operator() __device__(size_type value_index) const { auto const group_index = group_labels[value_index]; auto const relative_value_index = value_index - group_offsets[group_index]; return {group_index, relative_value_index, relative_value_index + 1}; } }; /** * @brief A functor which returns the cumulative input weight for a given index in a * set of input values. * * This functor assumes the weight for all scalars is simply 1. Under this assumption, * the cumulative weight for a given value index I is simply I+1. */ struct cumulative_scalar_weight { std::tuple<size_type, size_type, double> operator() __device__(size_type value_index) const { return {0, value_index, value_index + 1}; } }; /** * @brief A functor which returns the cumulative input weight for a given index in a * set of grouped input centroids. * * This functor assumes we are dealing with grouped, weighted centroids. */ template <typename GroupLabelsIter, typename GroupOffsetsIter> struct cumulative_centroid_weight { double const* cumulative_weights; GroupLabelsIter group_labels; GroupOffsetsIter outer_offsets; // groups cudf::device_span<size_type const> inner_offsets; // tdigests with a group std::tuple<size_type, size_type, double> operator() __device__(size_type value_index) const { auto const tdigest_index = static_cast<size_type>( thrust::upper_bound(thrust::seq, inner_offsets.begin(), inner_offsets.end(), value_index) - inner_offsets.begin()) - 1; auto const group_index = group_labels[tdigest_index]; auto const first_tdigest_index = outer_offsets[group_index]; auto const first_weight_index = inner_offsets[first_tdigest_index]; auto const relative_value_index = value_index - first_weight_index; double const* group_cumulative_weights = cumulative_weights + first_weight_index; return {group_index, relative_value_index, group_cumulative_weights[relative_value_index]}; } }; // retrieve group info (total weight, size, start offset) of scalar inputs by group index. struct scalar_group_info_grouped { size_type const* group_valid_counts; size_type const* group_offsets; __device__ thrust::tuple<double, size_type, size_type> operator()(size_type group_index) const { return {static_cast<double>(group_valid_counts[group_index]), group_offsets[group_index + 1] - group_offsets[group_index], group_offsets[group_index]}; } }; // retrieve group info (total weight, size, start offset) of scalar inputs struct scalar_group_info { double const total_weight; size_type const size; __device__ thrust::tuple<double, size_type, size_type> operator()(size_type) const { return {total_weight, size, 0}; } }; // retrieve group info of centroid inputs by group index template <typename GroupOffsetsIter> struct centroid_group_info { double const* cumulative_weights; GroupOffsetsIter outer_offsets; size_type const* inner_offsets; __device__ thrust::tuple<double, size_type, size_type> operator()(size_type group_index) const { // if there's no weights in this group of digests at all, return 0. auto const group_start = inner_offsets[outer_offsets[group_index]]; auto const group_end = inner_offsets[outer_offsets[group_index + 1]]; auto const num_weights = group_end - group_start; auto const last_weight_index = group_end - 1; return num_weights == 0 ? thrust::tuple<double, size_type, size_type>{0, num_weights, group_start} : thrust::tuple<double, size_type, size_type>{ cumulative_weights[last_weight_index], num_weights, group_start}; } }; struct tdigest_min { __device__ double operator()(thrust::tuple<double, size_type> const& t) const { auto const min = thrust::get<0>(t); auto const size = thrust::get<1>(t); return size > 0 ? min : std::numeric_limits<double>::max(); } }; struct tdigest_max { __device__ double operator()(thrust::tuple<double, size_type> const& t) const { auto const max = thrust::get<0>(t); auto const size = thrust::get<1>(t); return size > 0 ? max : std::numeric_limits<double>::lowest(); } }; // a monotonically increasing scale function which produces a distribution // of centroids that is more densely packed in the middle of the input // than at the ends. __device__ double scale_func_k1(double quantile, double delta_norm) { double k = delta_norm * asin(2.0 * quantile - 1.0); k += 1.0; double const q = (sin(k / delta_norm) + 1.0) / 2.0; return q; } // convert a single-row tdigest column to a scalar. std::unique_ptr<scalar> to_tdigest_scalar(std::unique_ptr<column>&& tdigest, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(tdigest->size() == 1, "Encountered invalid tdigest column when converting to scalar"); auto contents = tdigest->release(); return std::make_unique<struct_scalar>(table(std::move(contents.children)), true, stream, mr); } /** * @brief Compute a set of cluster limits (brackets, essentially) for a * given tdigest based on the specified delta and the total weight of values * to be added. * * The number of clusters generated will always be <= delta_, where delta_ is * a reasonably small number likely << 10000. * * Each input group gets an independent set of clusters generated. 1 thread * per group. * * This kernel is called in a two-pass style. Once to compute the per-group * cluster sizes and total # of clusters, and once to compute the actual * weight limits per cluster. * * @param delta tdigest compression level * @param num_groups The number of input groups * @param nearest_weight A functor which returns the nearest weight in the input * stream that falls before our current cluster limit * @param group_info A functor which returns the info for the specified group (total * weight, size and start offset) * @param group_cluster_wl Output. The set of cluster weight limits for each group. * @param group_num_clusters Output. The number of output clusters for each input group. * @param group_cluster_offsets Offsets per-group to the start of it's clusters * @param has_nulls Whether or not the input contains nulls * */ template <typename GroupInfo, typename NearestWeightFunc, typename CumulativeWeight> __global__ void generate_cluster_limits_kernel(int delta, size_type num_groups, NearestWeightFunc nearest_weight, GroupInfo group_info, CumulativeWeight cumulative_weight, double* group_cluster_wl, size_type* group_num_clusters, size_type const* group_cluster_offsets, bool has_nulls) { int const tid = threadIdx.x + blockIdx.x * blockDim.x; auto const group_index = tid; if (group_index >= num_groups) { return; } // we will generate at most delta clusters. double const delta_norm = static_cast<double>(delta) / (2.0 * M_PI); double total_weight; size_type group_size, group_start; thrust::tie(total_weight, group_size, group_start) = group_info(group_index); // start at the correct place based on our cluster offset. double* cluster_wl = group_cluster_wl ? group_cluster_wl + group_cluster_offsets[group_index] : nullptr; // a group with nothing in it. group_num_clusters[group_index] = 0; if (total_weight <= 0) { // if the input contains nulls we can potentially have a group that generates no // clusters because -all- of the input values are null. in that case, the reduce_by_key call // in the tdigest generation step will need a location to store the unused reduction value for // that group of nulls. these "stubs" will be postprocessed out afterwards. if (has_nulls) { group_num_clusters[group_index] = 1; } return; } double cur_limit = 0.0; double cur_weight = 0.0; double next_limit = -1.0; int last_inserted_index = -1; // group-relative index into the input stream // compute the first cluster limit double nearest_w; int nearest_w_index; // group-relative index into the input stream while (true) { cur_weight = next_limit < 0 ? 0 : max(cur_weight + 1, nearest_w); if (cur_weight >= total_weight) { break; } // based on where we are closing the cluster off (not including the incoming weight), // compute the next cluster limit double const quantile = cur_weight / total_weight; next_limit = total_weight * scale_func_k1(quantile, delta_norm); // if the next limit is < the cur limit, we're past the end of the distribution, so we're done. if (next_limit <= cur_limit) { if (cluster_wl) { cluster_wl[group_num_clusters[group_index]] = total_weight; } group_num_clusters[group_index]++; break; } // compute the weight we will be at in the input values just before closing off the current // cluster (because adding the next value will cross the current limit). // NOTE: can't use structured bindings here. thrust::tie(nearest_w, nearest_w_index) = nearest_weight(next_limit, group_index); // because of the way the scale functions work, it is possible to generate clusters // in such a way that we end up with "gaps" where there are no input values that // fall into a given cluster. An example would be this: // // cluster weight limits = 0.00003, 1.008, 3.008 // // input values(weight) = A(1), B(2), C(3) // // naively inserting these values into the clusters simply by taking a lower_bound, // we would get the following distribution of input values into those 3 clusters. // (), (A), (B,C) // // whereas what we really want is: // // (A), (B), (C) // // to fix this, we will artificially adjust the output cluster limits to guarantee // at least 1 input value will be put in each cluster during the reduction step. // this does not affect final centroid results as we still use the "real" weight limits // to compute subsequent clusters - the purpose is only to allow cluster selection // during the reduction step to be trivial. // double adjusted_next_limit = next_limit; int adjusted_w_index = nearest_w_index; if ((last_inserted_index < 0) || // if we haven't inserted anything yet (nearest_w_index == last_inserted_index)) { // if we land in the same bucket as the previous cap // force the value into this bucket adjusted_w_index = (last_inserted_index == group_size - 1) ? last_inserted_index : max(adjusted_w_index, last_inserted_index + 1); // the "adjusted" cluster limit must be high enough so that this value will fall in the // bucket. NOTE: cumulative_weight expects an absolute index into the input value stream, not // a group-relative index [[maybe_unused]] auto [r, i, adjusted_w] = cumulative_weight(adjusted_w_index + group_start); adjusted_next_limit = max(next_limit, adjusted_w); // update the weight with our adjusted value. nearest_w = adjusted_w; } if (cluster_wl) { cluster_wl[group_num_clusters[group_index]] = adjusted_next_limit; } last_inserted_index = adjusted_w_index; group_num_clusters[group_index]++; cur_limit = next_limit; } } /** * @brief Compute a set of cluster limits (brackets, essentially) for a * given tdigest based on the specified delta and the total weight of values * to be added. * * The number of clusters generated will always be <= delta_, where delta_ is * a reasonably small number likely << 10000. * * Each input group gets an independent set of clusters generated. * * @param delta_ tdigest compression level * @param num_groups The number of input groups * @param nearest_weight A functor which returns the nearest weight in the input * stream that falls before our current cluster limit * @param group_info A functor which returns the info for the specified group (total weight, * size and start offset) * @param has_nulls Whether or not the input data contains nulls * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory * * @returns A tuple containing the set of cluster weight limits for each group, a set of * list-style offsets indicating group sizes, and the total number of clusters */ template <typename GroupInfo, typename NearestWeight, typename CumulativeWeight> std::tuple<rmm::device_uvector<double>, std::unique_ptr<column>, size_type> generate_group_cluster_info(int delta, size_type num_groups, NearestWeight nearest_weight, GroupInfo group_info, CumulativeWeight cumulative_weight, bool has_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { constexpr size_type block_size = 256; cudf::detail::grid_1d const grid(num_groups, block_size); // compute number of clusters per group // each thread computes 1 set of clusters (# of cluster sets == # of groups) rmm::device_uvector<size_type> group_num_clusters(num_groups, stream); generate_cluster_limits_kernel<<<grid.num_blocks, block_size, 0, stream.value()>>>( delta, num_groups, nearest_weight, group_info, cumulative_weight, nullptr, group_num_clusters.begin(), nullptr, has_nulls); // generate group cluster offsets (where the clusters for a given group start and end) auto group_cluster_offsets = cudf::make_numeric_column( data_type{type_id::INT32}, num_groups + 1, mask_state::UNALLOCATED, stream, mr); auto cluster_size = cudf::detail::make_counting_transform_iterator( 0, [group_num_clusters = group_num_clusters.begin(), num_groups] __device__(size_type index) { return index == num_groups ? 0 : group_num_clusters[index]; }); thrust::exclusive_scan(rmm::exec_policy(stream), cluster_size, cluster_size + num_groups + 1, group_cluster_offsets->mutable_view().begin<size_type>(), 0); // total # of clusters size_type total_clusters = cudf::detail::get_value<size_type>(group_cluster_offsets->view(), num_groups, stream); // fill in the actual cluster weight limits rmm::device_uvector<double> group_cluster_wl(total_clusters, stream); generate_cluster_limits_kernel<<<grid.num_blocks, block_size, 0, stream.value()>>>( delta, num_groups, nearest_weight, group_info, cumulative_weight, group_cluster_wl.begin(), group_num_clusters.begin(), group_cluster_offsets->view().begin<size_type>(), has_nulls); return {std::move(group_cluster_wl), std::move(group_cluster_offsets), static_cast<size_type>(total_clusters)}; } std::unique_ptr<column> build_output_column(size_type num_rows, std::unique_ptr<column>&& means, std::unique_ptr<column>&& weights, std::unique_ptr<column>&& offsets, std::unique_ptr<column>&& min_col, std::unique_ptr<column>&& max_col, bool has_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // whether or not this weight is a stub auto is_stub_weight = [weights = weights->view().begin<double>()] __device__(size_type i) { return weights[i] == 0; }; // whether or not this particular tdigest is a stub auto is_stub_digest = [offsets = offsets->view().begin<size_type>(), is_stub_weight] __device__( size_type i) { return is_stub_weight(offsets[i]) ? 1 : 0; }; size_type const num_stubs = [&]() { if (!has_nulls) { return 0; } auto iter = cudf::detail::make_counting_transform_iterator(0, is_stub_digest); return thrust::reduce(rmm::exec_policy(stream), iter, iter + num_rows); }(); // if there are no stub tdigests, we can return immediately. if (num_stubs == 0) { return cudf::tdigest::detail::make_tdigest_column(num_rows, std::move(means), std::move(weights), std::move(offsets), std::move(min_col), std::move(max_col), stream, mr); } // otherwise we need to strip out the stubs. auto remove_stubs = [&](column_view const& col, size_type num_stubs) { auto result = cudf::make_numeric_column( data_type{type_id::FLOAT64}, col.size() - num_stubs, mask_state::UNALLOCATED, stream, mr); thrust::remove_copy_if(rmm::exec_policy(stream), col.begin<double>(), col.end<double>(), thrust::make_counting_iterator(0), result->mutable_view().begin<double>(), is_stub_weight); return result; }; // remove from the means and weights column auto _means = remove_stubs(*means, num_stubs); auto _weights = remove_stubs(*weights, num_stubs); // adjust offsets. rmm::device_uvector<size_type> sizes(num_rows, stream); thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + num_rows, sizes.begin(), [offsets = offsets->view().begin<size_type>()] __device__(size_type i) { return offsets[i + 1] - offsets[i]; }); auto iter = cudf::detail::make_counting_transform_iterator( 0, [sizes = sizes.begin(), is_stub_digest, num_rows] __device__(size_type i) { return i == num_rows || is_stub_digest(i) ? 0 : sizes[i]; }); thrust::exclusive_scan(rmm::exec_policy(stream), iter, iter + num_rows + 1, offsets->mutable_view().begin<size_type>(), 0); // assemble final column return cudf::tdigest::detail::make_tdigest_column(num_rows, std::move(_means), std::move(_weights), std::move(offsets), std::move(min_col), std::move(max_col), stream, mr); } /** * @brief Compute a column of tdigests. * * Assembles the output tdigest column based on the specified delta, a stream of * input values (either scalar or centroids), and an assortment of per-group * clustering information. * * This function is effectively just a reduce_by_key that performs a reduction * from input values -> centroid clusters as defined by the cluster weight * boundaries. * * @param delta tdigest compression level * @param values_begin Beginning of the range of input values. * @param values_end End of the range of input values. * @param cumulative_weight Functor which returns cumulative weight and group information for * an absolute input value index. * @param min_col Column containing the minimum value per group. * @param max_col Column containing the maximum value per group. * @param group_cluster_wl Cluster weight limits for each group. * @param group_cluster_offsets R-value reference of offsets into the cluster weight limits. * @param total_clusters Total number of clusters in all groups. * @param has_nulls Whether or not the input contains nulls * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory * * @returns A tdigest column with 1 row per output tdigest. */ template <typename CentroidIter, typename CumulativeWeight> std::unique_ptr<column> compute_tdigests(int delta, CentroidIter centroids_begin, CentroidIter centroids_end, CumulativeWeight group_cumulative_weight, std::unique_ptr<column>&& min_col, std::unique_ptr<column>&& max_col, rmm::device_uvector<double> const& group_cluster_wl, std::unique_ptr<column>&& group_cluster_offsets, size_type total_clusters, bool has_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // the output for each group is a column of data that represents the tdigest. since we want 1 row // per group, each row will be a list the length of the tdigest for that group. so our output // column is of the form: // struct { // centroids for the digest // list { // struct { // double // mean // double // weight // } // } // double // min // double // max // } // if (total_clusters == 0) { return cudf::tdigest::detail::make_empty_tdigest_column(stream, mr); } // each input group represents an individual tdigest. within each tdigest, we want the keys // to represent cluster indices (for example, if a tdigest had 100 clusters, the keys should fall // into the range 0-99). But since we have multiple tdigests, we need to keep the keys unique // between the groups, so we add our group start offset. auto keys = thrust::make_transform_iterator( thrust::make_counting_iterator(0), [delta, group_cluster_wl = group_cluster_wl.data(), group_cluster_offsets = group_cluster_offsets->view().begin<size_type>(), group_cumulative_weight] __device__(size_type value_index) -> size_type { // get group index, relative value index within the group and cumulative weight. [[maybe_unused]] auto [group_index, relative_value_index, cumulative_weight] = group_cumulative_weight(value_index); auto const num_clusters = group_cluster_offsets[group_index + 1] - group_cluster_offsets[group_index]; if (num_clusters == 0) { return group_cluster_offsets[group_index]; } // compute start of cluster weight limits for this group double const* weight_limits = group_cluster_wl + group_cluster_offsets[group_index]; // local cluster index size_type const group_cluster_index = min(num_clusters - 1, static_cast<size_type>( thrust::lower_bound( thrust::seq, weight_limits, weight_limits + num_clusters, cumulative_weight) - weight_limits)); // add the cluster offset to generate a globally unique key return group_cluster_index + group_cluster_offsets[group_index]; }); // mean and weight data auto centroid_means = cudf::make_numeric_column( data_type{type_id::FLOAT64}, total_clusters, mask_state::UNALLOCATED, stream, mr); auto centroid_weights = cudf::make_numeric_column( data_type{type_id::FLOAT64}, total_clusters, mask_state::UNALLOCATED, stream, mr); // reduce the centroids down by key. cudf::mutable_column_view mean_col(*centroid_means); cudf::mutable_column_view weight_col(*centroid_weights); // reduce the centroids into the clusters auto output = thrust::make_zip_iterator(thrust::make_tuple( mean_col.begin<double>(), weight_col.begin<double>(), thrust::make_discard_iterator())); auto const num_values = std::distance(centroids_begin, centroids_end); thrust::reduce_by_key(rmm::exec_policy(stream), keys, keys + num_values, // keys centroids_begin, // values thrust::make_discard_iterator(), // key output output, // output thrust::equal_to{}, // key equality check merge_centroids{}); // create final tdigest column return build_output_column(group_cluster_offsets->size() - 1, std::move(centroid_means), std::move(centroid_weights), std::move(group_cluster_offsets), std::move(min_col), std::move(max_col), has_nulls, stream, mr); } // return the min/max value of scalar inputs by group index template <typename T> struct get_scalar_minmax_grouped { column_device_view const col; device_span<size_type const> group_offsets; size_type const* group_valid_counts; __device__ thrust::tuple<double, double> operator()(size_type group_index) { auto const valid_count = group_valid_counts[group_index]; return valid_count > 0 ? thrust::make_tuple( static_cast<double>(col.element<T>(group_offsets[group_index])), static_cast<double>(col.element<T>(group_offsets[group_index] + valid_count - 1))) : thrust::make_tuple(0.0, 0.0); } }; // return the min/max value of scalar inputs template <typename T> struct get_scalar_minmax { column_device_view const col; size_type const valid_count; __device__ thrust::tuple<double, double> operator()(size_type) { return valid_count > 0 ? thrust::make_tuple(static_cast<double>(col.element<T>(0)), static_cast<double>(col.element<T>(valid_count - 1))) : thrust::make_tuple(0.0, 0.0); } }; struct typed_group_tdigest { template <typename T, std::enable_if_t<cudf::is_numeric<T>() || cudf::is_fixed_point<T>()>* = nullptr> std::unique_ptr<column> operator()(column_view const& col, cudf::device_span<size_type const> group_offsets, cudf::device_span<size_type const> group_labels, cudf::device_span<size_type const> group_valid_counts, size_type num_groups, int delta, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // first, generate cluster weight information for each input group auto [group_cluster_wl, group_cluster_offsets, total_clusters] = generate_group_cluster_info( delta, num_groups, nearest_value_scalar_weights_grouped{group_offsets.begin()}, scalar_group_info_grouped{group_valid_counts.begin(), group_offsets.begin()}, cumulative_scalar_weight_grouped{group_offsets, group_labels}, col.null_count() > 0, stream, mr); // device column view. handy because the .element() function // automatically handles fixed-point conversions for us auto d_col = cudf::column_device_view::create(col, stream); // compute min and max columns auto min_col = cudf::make_numeric_column( data_type{type_id::FLOAT64}, num_groups, mask_state::UNALLOCATED, stream, mr); auto max_col = cudf::make_numeric_column( data_type{type_id::FLOAT64}, num_groups, mask_state::UNALLOCATED, stream, mr); thrust::transform( rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + num_groups, thrust::make_zip_iterator(thrust::make_tuple(min_col->mutable_view().begin<double>(), max_col->mutable_view().begin<double>())), get_scalar_minmax_grouped<T>{*d_col, group_offsets, group_valid_counts.begin()}); // for simple input values, the "centroids" all have a weight of 1. auto scalar_to_centroid = cudf::detail::make_counting_transform_iterator(0, make_centroid<T>{*d_col}); // generate the final tdigest return compute_tdigests(delta, scalar_to_centroid, scalar_to_centroid + col.size(), cumulative_scalar_weight_grouped{group_offsets, group_labels}, std::move(min_col), std::move(max_col), group_cluster_wl, std::move(group_cluster_offsets), total_clusters, col.null_count() > 0, stream, mr); } template <typename T, typename... Args, std::enable_if_t<!cudf::is_numeric<T>() && !cudf::is_fixed_point<T>()>* = nullptr> std::unique_ptr<column> operator()(Args&&...) { CUDF_FAIL("Non-numeric type in group_tdigest"); } }; struct typed_reduce_tdigest { // this function assumes col is sorted in ascending order with nulls at the end template < typename T, typename std::enable_if_t<cudf::is_numeric<T>() || cudf::is_fixed_point<T>()>* = nullptr> std::unique_ptr<scalar> operator()(column_view const& col, int delta, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // treat this the same as the groupby path with a single group. Note: even though // there is only 1 group there are still multiple keys within the group that represent // the clustering of (N input values) -> (1 output centroid), so the final computation // remains a reduce_by_key() and not a reduce(). // // additionally we get a few optimizations. // - since we only ever have 1 "group" that is sorted with nulls at the end, // we can simply process just the non-null values and act as if the column // is non-nullable, allowing us to process fewer values than if we were doing a groupby. // // - several of the functors used during the reduction are cheaper than during a groupby. auto const valid_count = col.size() - col.null_count(); // first, generate cluster weight information for each input group auto [cluster_wl, cluster_offsets, total_clusters] = generate_group_cluster_info(delta, 1, nearest_value_scalar_weights{valid_count}, scalar_group_info{static_cast<double>(valid_count), valid_count}, cumulative_scalar_weight{}, false, stream, mr); // device column view. handy because the .element() function // automatically handles fixed-point conversions for us auto d_col = cudf::column_device_view::create(col, stream); // compute min and max columns auto min_col = cudf::make_numeric_column( data_type{type_id::FLOAT64}, 1, mask_state::UNALLOCATED, stream, mr); auto max_col = cudf::make_numeric_column( data_type{type_id::FLOAT64}, 1, mask_state::UNALLOCATED, stream, mr); thrust::transform( rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + 1, thrust::make_zip_iterator(thrust::make_tuple(min_col->mutable_view().begin<double>(), max_col->mutable_view().begin<double>())), get_scalar_minmax<T>{*d_col, valid_count}); // for simple input values, the "centroids" all have a weight of 1. auto scalar_to_centroid = cudf::detail::make_counting_transform_iterator(0, make_centroid_no_nulls<T>{*d_col}); // generate the final tdigest and wrap it in a struct_scalar return to_tdigest_scalar(compute_tdigests(delta, scalar_to_centroid, scalar_to_centroid + valid_count, cumulative_scalar_weight{}, std::move(min_col), std::move(max_col), cluster_wl, std::move(cluster_offsets), total_clusters, false, stream, mr), stream, mr); } template < typename T, typename... Args, typename std::enable_if_t<!cudf::is_numeric<T>() && !cudf::is_fixed_point<T>()>* = nullptr> std::unique_ptr<scalar> operator()(Args&&...) { CUDF_FAIL("Non-numeric type in group_tdigest"); } }; // utility for merge_tdigests. template <typename GroupOffsetsIter> struct group_num_weights_func { GroupOffsetsIter outer_offsets; size_type const* inner_offsets; __device__ size_type operator()(size_type group_index) { auto const tdigest_begin = outer_offsets[group_index]; auto const tdigest_end = outer_offsets[group_index + 1]; return inner_offsets[tdigest_end] - inner_offsets[tdigest_begin]; } }; // utility for merge_tdigests. struct group_is_empty { __device__ bool operator()(size_type group_size) { return group_size == 0; } }; // utility for merge_tdigests. template <typename GroupLabelsIter> struct group_key_func { GroupLabelsIter group_labels; size_type const* inner_offsets; size_type num_inner_offsets; __device__ size_type operator()(size_type index) { // what -original- tdigest index this absolute index corresponds to auto const iter = thrust::prev( thrust::upper_bound(thrust::seq, inner_offsets, inner_offsets + num_inner_offsets, index)); auto const tdigest_index = thrust::distance(inner_offsets, iter); // what group index the original tdigest belongs to return group_labels[tdigest_index]; } }; template <typename HGroupOffsetIter, typename GroupOffsetIter, typename GroupLabelIter> std::unique_ptr<column> merge_tdigests(tdigest_column_view const& tdv, HGroupOffsetIter h_outer_offsets, GroupOffsetIter group_offsets, GroupLabelIter group_labels, size_t num_group_labels, size_type num_groups, int max_centroids, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // thrust::merge and thrust::merge_by_key don't provide what we need. What we would need is an // algorithm like a super-merge that takes two layers of keys: one which identifies the outer // grouping of tdigests, and one which identifies the inner groupings of the tdigests within the // outer groups. // TODO: investigate replacing the iterative merge with a single stable_sort_by_key. // bring tdigest offsets back to the host auto tdigest_offsets = tdv.centroids().offsets(); std::vector<size_type> h_inner_offsets(tdigest_offsets.size()); cudaMemcpyAsync(h_inner_offsets.data(), tdigest_offsets.begin<size_type>(), sizeof(size_type) * tdigest_offsets.size(), cudaMemcpyDefault, stream); stream.synchronize(); // extract all means and weights into a table cudf::table_view tdigests_unsliced({tdv.means(), tdv.weights()}); // generate the merged (but not yet compressed) tdigests for each group. std::vector<std::unique_ptr<table>> tdigests; tdigests.reserve(num_groups); std::transform(h_outer_offsets, h_outer_offsets + num_groups, std::next(h_outer_offsets), std::back_inserter(tdigests), [&](auto tdigest_start, auto tdigest_end) { // the range of tdigests in this group auto const num_tdigests = tdigest_end - tdigest_start; // slice each tdigest from the input std::vector<table_view> unmerged_tdigests; unmerged_tdigests.reserve(num_tdigests); auto offset_iter = std::next(h_inner_offsets.begin(), tdigest_start); std::transform( offset_iter, offset_iter + num_tdigests, std::next(offset_iter), std::back_inserter(unmerged_tdigests), [&](size_type start, size_type end) { return cudf::detail::slice(tdigests_unsliced, {start, end}, stream); }); // merge return cudf::detail::merge(unmerged_tdigests, {0}, {order::ASCENDING}, {}, stream, rmm::mr::get_current_device_resource()); }); // generate min and max values auto merged_min_col = cudf::make_numeric_column( data_type{type_id::FLOAT64}, num_groups, mask_state::UNALLOCATED, stream, mr); auto min_iter = thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple( tdv.min_begin(), cudf::tdigest::detail::size_begin(tdv))), tdigest_min{}); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels, group_labels + num_group_labels, min_iter, thrust::make_discard_iterator(), merged_min_col->mutable_view().begin<double>(), thrust::equal_to{}, // key equality check thrust::minimum{}); auto merged_max_col = cudf::make_numeric_column( data_type{type_id::FLOAT64}, num_groups, mask_state::UNALLOCATED, stream, mr); auto max_iter = thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple( tdv.max_begin(), cudf::tdigest::detail::size_begin(tdv))), tdigest_max{}); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels, group_labels + num_group_labels, max_iter, thrust::make_discard_iterator(), merged_max_col->mutable_view().begin<double>(), thrust::equal_to{}, // key equality check thrust::maximum{}); // for any empty groups, set the min and max to be 0. not technically necessary but it makes // testing simpler. auto group_num_weights = cudf::detail::make_counting_transform_iterator( 0, group_num_weights_func<decltype(group_offsets)>{group_offsets, tdigest_offsets.begin<size_type>()}); thrust::replace_if(rmm::exec_policy(stream), merged_min_col->mutable_view().begin<double>(), merged_min_col->mutable_view().end<double>(), group_num_weights, group_is_empty{}, 0); thrust::replace_if(rmm::exec_policy(stream), merged_max_col->mutable_view().begin<double>(), merged_max_col->mutable_view().end<double>(), group_num_weights, group_is_empty{}, 0); // concatenate all the merged tdigests back into one table. std::vector<table_view> tdigest_views; tdigest_views.reserve(num_groups); std::transform(tdigests.begin(), tdigests.end(), std::back_inserter(tdigest_views), [](std::unique_ptr<table> const& t) { return t->view(); }); auto merged = cudf::detail::concatenate(tdigest_views, stream, rmm::mr::get_current_device_resource()); // generate cumulative weights auto merged_weights = merged->get_column(1).view(); auto cumulative_weights = cudf::make_numeric_column( data_type{type_id::FLOAT64}, merged_weights.size(), mask_state::UNALLOCATED, stream); auto keys = cudf::detail::make_counting_transform_iterator( 0, group_key_func<decltype(group_labels)>{ group_labels, tdigest_offsets.begin<size_type>(), tdigest_offsets.size()}); thrust::inclusive_scan_by_key(rmm::exec_policy(stream), keys, keys + cumulative_weights->size(), merged_weights.begin<double>(), cumulative_weights->mutable_view().begin<double>()); auto const delta = max_centroids; // generate cluster info auto [group_cluster_wl, group_cluster_offsets, total_clusters] = generate_group_cluster_info( delta, num_groups, nearest_value_centroid_weights<decltype(group_offsets)>{ cumulative_weights->view().begin<double>(), group_offsets, tdigest_offsets.begin<size_type>()}, centroid_group_info<decltype(group_offsets)>{cumulative_weights->view().begin<double>(), group_offsets, tdigest_offsets.begin<size_type>()}, cumulative_centroid_weight<decltype(group_labels), decltype(group_offsets)>{ cumulative_weights->view().begin<double>(), group_labels, group_offsets, {tdigest_offsets.begin<size_type>(), static_cast<size_t>(tdigest_offsets.size())}}, false, stream, mr); // input centroid values auto centroids = cudf::detail::make_counting_transform_iterator( 0, make_weighted_centroid{merged->get_column(0).view().begin<double>(), merged_weights.begin<double>()}); // compute the tdigest return compute_tdigests( delta, centroids, centroids + merged->num_rows(), cumulative_centroid_weight<decltype(group_labels), decltype(group_offsets)>{ cumulative_weights->view().begin<double>(), group_labels, group_offsets, {tdigest_offsets.begin<size_type>(), static_cast<size_t>(tdigest_offsets.size())}}, std::move(merged_min_col), std::move(merged_max_col), group_cluster_wl, std::move(group_cluster_offsets), total_clusters, false, stream, mr); } } // anonymous namespace std::unique_ptr<scalar> reduce_tdigest(column_view const& col, int max_centroids, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (col.size() == 0) { return cudf::tdigest::detail::make_empty_tdigest_scalar(stream, mr); } // since this isn't coming out of a groupby, we need to sort the inputs in ascending // order with nulls at the end. table_view t({col}); auto sorted = cudf::detail::sort( t, {order::ASCENDING}, {null_order::AFTER}, stream, rmm::mr::get_current_device_resource()); auto const delta = max_centroids; return cudf::type_dispatcher( col.type(), typed_reduce_tdigest{}, sorted->get_column(0), delta, stream, mr); } std::unique_ptr<scalar> reduce_merge_tdigest(column_view const& input, int max_centroids, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { tdigest_column_view tdv(input); if (input.size() == 0) { return cudf::tdigest::detail::make_empty_tdigest_scalar(stream, mr); } auto h_group_offsets = cudf::detail::make_counting_transform_iterator( 0, [size = input.size()](size_type i) { return i == 0 ? 0 : size; }); auto group_offsets = cudf::detail::make_counting_transform_iterator( 0, [size = input.size()] __device__(size_type i) { return i == 0 ? 0 : size; }); auto group_labels = thrust::make_constant_iterator(0); return to_tdigest_scalar(merge_tdigests(tdv, h_group_offsets, group_offsets, group_labels, input.size(), 1, max_centroids, stream, mr), stream, mr); } std::unique_ptr<column> group_tdigest(column_view const& col, cudf::device_span<size_type const> group_offsets, cudf::device_span<size_type const> group_labels, cudf::device_span<size_type const> group_valid_counts, size_type num_groups, int max_centroids, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (col.size() == 0) { return cudf::tdigest::detail::make_empty_tdigest_column(stream, mr); } auto const delta = max_centroids; return cudf::type_dispatcher(col.type(), typed_group_tdigest{}, col, group_offsets, group_labels, group_valid_counts, num_groups, delta, stream, mr); } std::unique_ptr<column> group_merge_tdigest(column_view const& input, cudf::device_span<size_type const> group_offsets, cudf::device_span<size_type const> group_labels, size_type num_groups, int max_centroids, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { tdigest_column_view tdv(input); if (num_groups == 0 || input.size() == 0) { return cudf::tdigest::detail::make_empty_tdigest_column(stream, mr); } // bring group offsets back to the host std::vector<size_type> h_group_offsets(group_offsets.size()); cudaMemcpyAsync(h_group_offsets.data(), group_offsets.begin(), sizeof(size_type) * group_offsets.size(), cudaMemcpyDefault, stream); return merge_tdigests(tdv, h_group_offsets.begin(), group_offsets.data(), group_labels.data(), group_labels.size(), num_groups, max_centroids, stream, mr); } } // namespace detail } // namespace tdigest } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/quantiles
rapidsai_public_repos/cudf/cpp/src/quantiles/tdigest/tdigest_util.cuh
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/detail/iterator.cuh> #include <cudf/tdigest/tdigest_column_view.hpp> namespace cudf { namespace tdigest { namespace detail { /** * @brief Functor to compute the size of each tdigest of a column */ struct tdigest_size_fn { size_type const* offsets; ///< Offsets of the t-digest column /** * @brief Returns size of the each tdigest in the column * * @param tdigest_index Index of the tdigest in the column * @return Size of the tdigest */ __device__ size_type operator()(size_type tdigest_index) { return offsets[tdigest_index + 1] - offsets[tdigest_index]; } }; /** * @brief Returns an iterator that returns the size of each tdigest * in the column (each row is 1 digest) * * @return An iterator that returns the size of each tdigest in the column */ inline auto size_begin(tdigest_column_view const& tdv) { return cudf::detail::make_counting_transform_iterator( 0, tdigest_size_fn{tdv.centroids().offsets_begin()}); } } // namespace detail } // namespace tdigest } // namespace cudf
0