repo_id
stringlengths
21
96
file_path
stringlengths
31
155
content
stringlengths
1
92.9M
__index_level_0__
int64
0
0
rapidsai_public_repos/cudf/cpp/src/quantiles
rapidsai_public_repos/cudf/cpp/src/quantiles/tdigest/tdigest_column_view.cpp
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/tdigest/tdigest.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/structs/structs_column_view.hpp> #include <cudf/tdigest/tdigest_column_view.hpp> namespace cudf { namespace tdigest { tdigest_column_view::tdigest_column_view(column_view const& col) : column_view(col) { // sanity check that this is actually tdigest data CUDF_EXPECTS(col.type().id() == type_id::STRUCT, "Encountered invalid tdigest column"); CUDF_EXPECTS(col.size() > 0, "tdigest columns must have > 0 rows"); CUDF_EXPECTS(col.offset() == 0, "Encountered a sliced tdigest column"); CUDF_EXPECTS(not col.nullable(), "Encountered nullable tdigest column"); structs_column_view scv(col); CUDF_EXPECTS(scv.num_children() == 3, "Encountered invalid tdigest column"); CUDF_EXPECTS(scv.child(min_column_index).type().id() == type_id::FLOAT64, "Encountered invalid tdigest column"); CUDF_EXPECTS(scv.child(max_column_index).type().id() == type_id::FLOAT64, "Encountered invalid tdigest column"); lists_column_view lcv(scv.child(centroid_column_index)); auto data = lcv.child(); CUDF_EXPECTS(data.type().id() == type_id::STRUCT, "Encountered invalid tdigest column"); CUDF_EXPECTS(data.num_children() == 2, "Encountered tdigest column with an invalid number of children"); auto mean = data.child(mean_column_index); CUDF_EXPECTS(mean.type().id() == type_id::FLOAT64, "Encountered invalid tdigest mean column"); auto weight = data.child(weight_column_index); CUDF_EXPECTS(weight.type().id() == type_id::FLOAT64, "Encountered invalid tdigest weight column"); } lists_column_view tdigest_column_view::centroids() const { return child(centroid_column_index); } column_view tdigest_column_view::means() const { auto c = centroids(); structs_column_view inner(c.parent().child(lists_column_view::child_column_index)); return inner.child(mean_column_index); } column_view tdigest_column_view::weights() const { auto c = centroids(); structs_column_view inner(c.parent().child(lists_column_view::child_column_index)); return inner.child(weight_column_index); } double const* tdigest_column_view::min_begin() const { return child(min_column_index).begin<double>(); } double const* tdigest_column_view::max_begin() const { return child(max_column_index).begin<double>(); } } // namespace tdigest } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/quantiles
rapidsai_public_repos/cudf/cpp/src/quantiles/tdigest/tdigest.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <quantiles/tdigest/tdigest_util.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/tdigest/tdigest.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/valid_if.cuh> #include <cudf/lists/lists_column_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/advance.h> #include <thrust/binary_search.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/fill.h> #include <thrust/functional.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/reduce.h> #include <thrust/scan.h> using namespace cudf::tdigest; namespace cudf { namespace tdigest { namespace detail { // https://developer.nvidia.com/blog/lerp-faster-cuda/ template <typename T> __device__ inline T lerp(T v0, T v1, T t) { return fma(t, v1, fma(-t, v0, v0)); } struct centroid { double mean; double weight; }; struct make_centroid { double const* means; double const* weights; __device__ centroid operator()(size_type i) { return {means[i], weights[i]}; } }; // kernel for computing percentiles on input tdigest (mean, weight) centroid data. template <typename CentroidIter> __global__ void compute_percentiles_kernel(device_span<size_type const> tdigest_offsets, column_device_view percentiles, CentroidIter centroids_, double const* min_, double const* max_, double const* cumulative_weight_, double* output) { auto const tid = cudf::detail::grid_1d::global_thread_id(); auto const num_tdigests = tdigest_offsets.size() - 1; auto const tdigest_index = tid / percentiles.size(); if (tdigest_index >= num_tdigests) { return; } auto const pindex = tid % percentiles.size(); // size of the digest we're querying auto const tdigest_size = tdigest_offsets[tdigest_index + 1] - tdigest_offsets[tdigest_index]; // no work to do. values will be set to null if (tdigest_size == 0 || !percentiles.is_valid(pindex)) { return; } output[tid] = [&]() { double const percentage = percentiles.element<double>(pindex); double const* cumulative_weight = cumulative_weight_ + tdigest_offsets[tdigest_index]; // centroids for this particular tdigest CentroidIter centroids = centroids_ + tdigest_offsets[tdigest_index]; // min and max for the digest double const* min_val = min_ + tdigest_index; double const* max_val = max_ + tdigest_index; double const total_weight = cumulative_weight[tdigest_size - 1]; // The following Arrow code serves as a basis for this computation // https://github.com/apache/arrow/blob/master/cpp/src/arrow/util/tdigest.cc#L280 double const weighted_q = percentage * total_weight; if (weighted_q <= 1) { return *min_val; } else if (weighted_q >= total_weight - 1) { return *max_val; } // determine what centroid this weighted quantile falls within. size_type const centroid_index = static_cast<size_type>(thrust::distance( cumulative_weight, thrust::lower_bound( thrust::seq, cumulative_weight, cumulative_weight + tdigest_size, weighted_q))); centroid c = centroids[centroid_index]; // diff == how far from the "center" of the centroid we are, // in unit weights. // visually: // // centroid of weight 7 // C <-- center of the centroid // |-------| // | | | // X Y Z // X has a diff of -2 (2 units to the left of the center of the centroid) // Y has a diff of 0 (directly in the middle of the centroid) // Z has a diff of 3 (3 units to the right of the center of the centroid) double const diff = weighted_q + c.weight / 2 - cumulative_weight[centroid_index]; // if we're completely within a centroid of weight 1, just return that. if (c.weight == 1 && std::abs(diff) < 0.5) { return c.mean; } // otherwise, interpolate between two centroids. // get the two centroids we want to interpolate between auto const look_left = diff < 0; auto const [lhs, rhs] = [&]() { if (look_left) { // if we're at the first centroid, "left" of us is the min value auto const first_centroid = centroid_index == 0; auto const lhs = first_centroid ? centroid{*min_val, 0} : centroids[centroid_index - 1]; auto const rhs = c; return std::pair<centroid, centroid>{lhs, rhs}; } else { // if we're at the last centroid, "right" of us is the max value auto const last_centroid = (centroid_index == tdigest_size - 1); auto const lhs = c; auto const rhs = last_centroid ? centroid{*max_val, 0} : centroids[centroid_index + 1]; return std::pair<centroid, centroid>{lhs, rhs}; } }(); // compute interpolation value t // total interpolation range. the total range of "space" between the lhs and rhs centroids. auto const tip = lhs.weight / 2 + rhs.weight / 2; // if we're looking left, diff is negative, so shift it so that we are interpolating // from lhs -> rhs. auto const t = (look_left) ? (diff + tip) / tip : diff / tip; // interpolate return lerp(lhs.mean, rhs.mean, t); }(); } /** * @brief Calculate approximate percentiles on a provided tdigest column. * * Produces a LIST column where each row `i` represents output from querying the * corresponding tdigest of from row `i` in `input`. The length of each output list * is the number of percentiles specified in `percentiles` * * @param input tdigest input data. One tdigest per row. * @param percentiles Desired percentiles in range [0, 1]. * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device * memory * * @returns Column of doubles containing requested percentile values. */ std::unique_ptr<column> compute_approx_percentiles(tdigest_column_view const& input, column_view const& percentiles, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { tdigest_column_view tdv(input); // offsets, representing the size of each tdigest auto offsets = tdv.centroids().offsets(); // compute summed weights auto weight = tdv.weights(); auto cumulative_weights = cudf::make_fixed_width_column(data_type{type_id::FLOAT64}, weight.size(), mask_state::UNALLOCATED, stream, rmm::mr::get_current_device_resource()); auto keys = cudf::detail::make_counting_transform_iterator( 0, [offsets_begin = offsets.begin<size_type>(), offsets_end = offsets.end<size_type>()] __device__(size_type i) { return thrust::distance( offsets_begin, thrust::prev(thrust::upper_bound(thrust::seq, offsets_begin, offsets_end, i))); }); thrust::inclusive_scan_by_key(rmm::exec_policy(stream), keys, keys + weight.size(), weight.begin<double>(), cumulative_weights->mutable_view().begin<double>()); auto percentiles_cdv = column_device_view::create(percentiles, stream); // leaf is a column of size input.size() * percentiles.size() auto const num_output_values = input.size() * percentiles.size(); // null percentiles become null results. auto [null_mask, null_count] = [&]() { return percentiles.null_count() != 0 ? cudf::detail::valid_if( thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(0) + num_output_values, [percentiles = *percentiles_cdv] __device__(size_type i) { return percentiles.is_valid(i % percentiles.size()); }, stream, mr) : std::pair<rmm::device_buffer, size_type>{rmm::device_buffer{}, 0}; }(); auto result = cudf::make_fixed_width_column( data_type{type_id::FLOAT64}, num_output_values, std::move(null_mask), null_count, stream, mr); auto centroids = cudf::detail::make_counting_transform_iterator( 0, make_centroid{tdv.means().begin<double>(), tdv.weights().begin<double>()}); constexpr size_type block_size = 256; cudf::detail::grid_1d const grid(percentiles.size() * input.size(), block_size); compute_percentiles_kernel<<<grid.num_blocks, block_size, 0, stream.value()>>>( {offsets.begin<size_type>(), static_cast<size_t>(offsets.size())}, *percentiles_cdv, centroids, tdv.min_begin(), tdv.max_begin(), cumulative_weights->view().begin<double>(), result->mutable_view().begin<double>()); return result; } std::unique_ptr<column> make_tdigest_column(size_type num_rows, std::unique_ptr<column>&& centroid_means, std::unique_ptr<column>&& centroid_weights, std::unique_ptr<column>&& tdigest_offsets, std::unique_ptr<column>&& min_values, std::unique_ptr<column>&& max_values, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(tdigest_offsets->size() == num_rows + 1, "Encountered unexpected offset count in make_tdigest_column"); CUDF_EXPECTS(centroid_means->size() == centroid_weights->size(), "Encountered unexpected centroid size mismatch in make_tdigest_column"); CUDF_EXPECTS(min_values->size() == num_rows, "Encountered unexpected min value count in make_tdigest_column"); CUDF_EXPECTS(max_values->size() == num_rows, "Encountered unexpected max value count in make_tdigest_column"); // inner struct column auto const centroids_size = centroid_means->size(); std::vector<std::unique_ptr<column>> inner_children; inner_children.push_back(std::move(centroid_means)); inner_children.push_back(std::move(centroid_weights)); auto tdigest_data = cudf::make_structs_column(centroids_size, std::move(inner_children), 0, {}, stream, mr); // grouped into lists auto tdigest = cudf::make_lists_column( num_rows, std::move(tdigest_offsets), std::move(tdigest_data), 0, {}, stream, mr); // create the final column std::vector<std::unique_ptr<column>> children; children.push_back(std::move(tdigest)); children.push_back(std::move(min_values)); children.push_back(std::move(max_values)); return make_structs_column(num_rows, std::move(children), 0, {}, stream, mr); } std::unique_ptr<column> make_empty_tdigest_column(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto offsets = cudf::make_fixed_width_column( data_type(type_id::INT32), 2, mask_state::UNALLOCATED, stream, mr); thrust::fill(rmm::exec_policy(stream), offsets->mutable_view().begin<size_type>(), offsets->mutable_view().end<size_type>(), 0); auto min_col = cudf::make_numeric_column(data_type(type_id::FLOAT64), 1, mask_state::UNALLOCATED, stream, mr); thrust::fill(rmm::exec_policy(stream), min_col->mutable_view().begin<double>(), min_col->mutable_view().end<double>(), 0); auto max_col = cudf::make_numeric_column(data_type(type_id::FLOAT64), 1, mask_state::UNALLOCATED, stream, mr); thrust::fill(rmm::exec_policy(stream), max_col->mutable_view().begin<double>(), max_col->mutable_view().end<double>(), 0); return make_tdigest_column(1, make_empty_column(type_id::FLOAT64), make_empty_column(type_id::FLOAT64), std::move(offsets), std::move(min_col), std::move(max_col), stream, mr); } /** * @brief Create an empty tdigest scalar. * * An empty tdigest scalar is a struct_scalar that contains a single row of length 0 * * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory. * * @returns An empty tdigest scalar. */ std::unique_ptr<scalar> make_empty_tdigest_scalar(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto contents = make_empty_tdigest_column(stream, mr)->release(); return std::make_unique<struct_scalar>( std::move(*std::make_unique<table>(std::move(contents.children))), true, stream, mr); } } // namespace detail std::unique_ptr<column> percentile_approx(tdigest_column_view const& input, column_view const& percentiles, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { tdigest_column_view tdv(input); CUDF_EXPECTS(percentiles.type().id() == type_id::FLOAT64, "percentile_approx expects float64 percentile inputs"); // output is a list column with each row containing percentiles.size() percentile values auto offsets = cudf::make_fixed_width_column( data_type{type_id::INT32}, input.size() + 1, mask_state::UNALLOCATED, stream, mr); auto const all_empty_rows = thrust::count_if(rmm::exec_policy(stream), detail::size_begin(input), detail::size_begin(input) + input.size(), [] __device__(auto const x) { return x == 0; }) == input.size(); auto row_size_iter = thrust::make_constant_iterator(all_empty_rows ? 0 : percentiles.size()); thrust::exclusive_scan(rmm::exec_policy(stream), row_size_iter, row_size_iter + input.size() + 1, offsets->mutable_view().begin<size_type>()); if (percentiles.size() == 0 || all_empty_rows) { return cudf::make_lists_column( input.size(), std::move(offsets), cudf::make_empty_column(type_id::FLOAT64), input.size(), cudf::detail::create_null_mask( input.size(), mask_state::ALL_NULL, rmm::cuda_stream_view(stream), mr), stream, mr); } // if any of the input digests are empty, nullify the corresponding output rows (values will be // uninitialized) auto [bitmask, null_count] = [stream, mr, &tdv]() { auto tdigest_is_empty = thrust::make_transform_iterator( detail::size_begin(tdv), [] __device__(size_type tdigest_size) -> size_type { return tdigest_size == 0; }); auto const null_count = thrust::reduce(rmm::exec_policy(stream), tdigest_is_empty, tdigest_is_empty + tdv.size(), 0); if (null_count == 0) { return std::pair<rmm::device_buffer, size_type>{rmm::device_buffer{}, null_count}; } return cudf::detail::valid_if( tdigest_is_empty, tdigest_is_empty + tdv.size(), thrust::logical_not{}, stream, mr); }(); return cudf::make_lists_column(input.size(), std::move(offsets), detail::compute_approx_percentiles(input, percentiles, stream, mr), null_count, std::move(bitmask), stream, mr); } } // namespace tdigest std::unique_ptr<column> percentile_approx(tdigest_column_view const& input, column_view const& percentiles, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return tdigest::percentile_approx(input, percentiles, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/groupby/groupby.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/groupby.hpp> #include <cudf/detail/groupby/group_replace_nulls.hpp> #include <cudf/detail/groupby/sort_helper.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/groupby.hpp> #include <cudf/reduction/detail/histogram.hpp> #include <cudf/strings/string_view.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/iterator/counting_iterator.h> #include <memory> #include <utility> namespace cudf { namespace groupby { // Constructor groupby::groupby(table_view const& keys, null_policy include_null_keys, sorted keys_are_sorted, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence) : _keys{keys}, _include_null_keys{include_null_keys}, _keys_are_sorted{keys_are_sorted}, _column_order{column_order}, _null_precedence{null_precedence} { } // Select hash vs. sort groupby implementation std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby::dispatch_aggregation( host_span<aggregation_request const> requests, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // If sort groupby has been called once on this groupby object, then // always use sort groupby from now on. Because once keys are sorted, // all the aggs that can be done by hash groupby are efficiently done by // sort groupby as well. // Only use hash groupby if the keys aren't sorted and all requests can be // satisfied with a hash implementation if (_keys_are_sorted == sorted::NO and not _helper and detail::hash::can_use_hash_groupby(requests)) { return detail::hash::groupby(_keys, requests, _include_null_keys, stream, mr); } else { return sort_aggregate(requests, stream, mr); } } // Destructor // Needs to be in source file because sort_groupby_helper was forward declared groupby::~groupby() = default; namespace { /** * @brief Factory to construct empty result columns. * * Adds special handling for COLLECT_LIST/COLLECT_SET, because: * 1. `make_empty_column()` does not support construction of nested columns. * 2. Empty lists need empty child columns, to persist type information. * Adds special handling for RANK, because it needs to return double type column when rank_method is * AVERAGE or percentage is true. */ struct empty_column_constructor { column_view values; aggregation const& agg; template <typename ValuesType, aggregation::Kind k> std::unique_ptr<cudf::column> operator()() const { using namespace cudf; using namespace cudf::detail; if constexpr (k == aggregation::Kind::COLLECT_LIST || k == aggregation::Kind::COLLECT_SET) { return make_lists_column( 0, make_empty_column(type_to_id<size_type>()), empty_like(values), 0, {}); } if constexpr (k == aggregation::Kind::HISTOGRAM) { return make_lists_column(0, make_empty_column(type_to_id<size_type>()), cudf::reduction::detail::make_empty_histogram_like(values), 0, {}); } if constexpr (k == aggregation::Kind::MERGE_HISTOGRAM) { return empty_like(values); } if constexpr (k == aggregation::Kind::RANK) { auto const& rank_agg = dynamic_cast<cudf::detail::rank_aggregation const&>(agg); if (rank_agg._method == cudf::rank_method::AVERAGE or rank_agg._percentage != rank_percentage::NONE) return make_empty_column(type_to_id<double>()); return make_empty_column(target_type(values.type(), k)); } // If `values` is LIST typed, and the aggregation results match the type, // construct empty results based on `values`. // Most generally, this applies if input type matches output type. // // Note: `target_type_t` is not recursive, and `ValuesType` does not consider children. // It is important that `COLLECT_LIST` and `COLLECT_SET` are handled before this // point, because `COLLECT_LIST(LIST)` produces `LIST<LIST>`, but `target_type_t` // wouldn't know the difference. if constexpr (std::is_same_v<target_type_t<ValuesType, k>, ValuesType>) { return empty_like(values); } return make_empty_column(target_type(values.type(), k)); } }; /// Make an empty table with appropriate types for requested aggs template <typename RequestType> auto empty_results(host_span<RequestType const> requests) { std::vector<aggregation_result> empty_results; std::transform( requests.begin(), requests.end(), std::back_inserter(empty_results), [](auto const& request) { std::vector<std::unique_ptr<column>> results; std::transform( request.aggregations.begin(), request.aggregations.end(), std::back_inserter(results), [&request](auto const& agg) { return cudf::detail::dispatch_type_and_aggregation( request.values.type(), agg->kind, empty_column_constructor{request.values, *agg}); }); return aggregation_result{std::move(results)}; }); return empty_results; } /// Verifies the agg requested on the request's values is valid template <typename RequestType> void verify_valid_requests(host_span<RequestType const> requests) { CUDF_EXPECTS( std::all_of( requests.begin(), requests.end(), [](auto const& request) { return std::all_of( request.aggregations.begin(), request.aggregations.end(), [&request](auto const& agg) { auto values_type = cudf::is_dictionary(request.values.type()) ? cudf::dictionary_column_view(request.values).keys().type() : request.values.type(); return cudf::detail::is_valid_aggregation(values_type, agg->kind); }); }), "Invalid type/aggregation combination."); } } // namespace // Compute aggregation requests std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby::aggregate( host_span<aggregation_request const> requests, rmm::mr::device_memory_resource* mr) { return aggregate(requests, cudf::get_default_stream(), mr); } // Compute aggregation requests std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby::aggregate( host_span<aggregation_request const> requests, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS( std::all_of(requests.begin(), requests.end(), [this](auto const& request) { return request.values.size() == _keys.num_rows(); }), "Size mismatch between request values and groupby keys."); verify_valid_requests(requests); if (_keys.num_rows() == 0) { return {empty_like(_keys), empty_results(requests)}; } return dispatch_aggregation(requests, stream, mr); } // Compute scan requests std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby::scan( host_span<scan_request const> requests, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS( std::all_of(requests.begin(), requests.end(), [this](auto const& request) { return request.values.size() == _keys.num_rows(); }), "Size mismatch between request values and groupby keys."); verify_valid_requests(requests); if (_keys.num_rows() == 0) { return std::pair(empty_like(_keys), empty_results(requests)); } return sort_scan(requests, cudf::get_default_stream(), mr); } groupby::groups groupby::get_groups(table_view values, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); auto const stream = cudf::get_default_stream(); auto grouped_keys = helper().sorted_keys(stream, mr); auto const& group_offsets = helper().group_offsets(stream); auto const group_offsets_vector = cudf::detail::make_std_vector_sync(group_offsets, stream); if (not values.is_empty()) { auto grouped_values = cudf::detail::gather(values, helper().key_sort_order(stream), cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return groupby::groups{ std::move(grouped_keys), std::move(group_offsets_vector), std::move(grouped_values)}; } else { return groupby::groups{std::move(grouped_keys), std::move(group_offsets_vector)}; } } std::pair<std::unique_ptr<table>, std::unique_ptr<table>> groupby::replace_nulls( table_view const& values, host_span<cudf::replace_policy const> replace_policies, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(_keys.num_rows() == values.num_rows(), "Size mismatch between group labels and value."); CUDF_EXPECTS(static_cast<cudf::size_type>(replace_policies.size()) == values.num_columns(), "Size mismatch between num_columns and replace_policies."); if (values.is_empty()) { return std::pair(empty_like(_keys), empty_like(values)); } auto const stream = cudf::get_default_stream(); auto const& group_labels = helper().group_labels(stream); std::vector<std::unique_ptr<column>> results; results.reserve(values.num_columns()); std::transform( thrust::make_counting_iterator(0), thrust::make_counting_iterator(values.num_columns()), std::back_inserter(results), [&](auto i) { bool nullable = values.column(i).nullable(); auto final_mr = nullable ? rmm::mr::get_current_device_resource() : mr; auto grouped_values = helper().grouped_values(values.column(i), stream, final_mr); return nullable ? detail::group_replace_nulls( *grouped_values, group_labels, replace_policies[i], stream, mr) : std::move(grouped_values); }); return std::pair(std::move(helper().sorted_keys(stream, mr)), std::make_unique<table>(std::move(results))); } // Get the sort helper object detail::sort::sort_groupby_helper& groupby::helper() { if (_helper) return *_helper; _helper = std::make_unique<detail::sort::sort_groupby_helper>( _keys, _include_null_keys, _keys_are_sorted, _null_precedence); return *_helper; }; std::pair<std::unique_ptr<table>, std::unique_ptr<table>> groupby::shift( table_view const& values, host_span<size_type const> offsets, std::vector<std::reference_wrapper<scalar const>> const& fill_values, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(values.num_columns() == static_cast<size_type>(fill_values.size()), "Mismatch number of fill_values and columns."); CUDF_EXPECTS( std::all_of(thrust::make_counting_iterator(0), thrust::make_counting_iterator(values.num_columns()), [&](auto i) { return values.column(i).type() == fill_values[i].get().type(); }), "values and fill_value should have the same type."); auto stream = cudf::get_default_stream(); std::vector<std::unique_ptr<column>> results; auto const& group_offsets = helper().group_offsets(stream); std::transform( thrust::make_counting_iterator(0), thrust::make_counting_iterator(values.num_columns()), std::back_inserter(results), [&](size_type i) { auto grouped_values = helper().grouped_values(values.column(i), stream, rmm::mr::get_current_device_resource()); return cudf::detail::segmented_shift( grouped_values->view(), group_offsets, offsets[i], fill_values[i].get(), stream, mr); }); return std::pair(helper().sorted_keys(stream, mr), std::make_unique<cudf::table>(std::move(results))); } } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/hash/groupby_kernels.cuh
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "multi_pass_kernels.cuh" #include <cudf/detail/aggregation/aggregation.cuh> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/groupby.hpp> #include <cudf/utilities/bit.hpp> #include <thrust/pair.h> namespace cudf { namespace groupby { namespace detail { namespace hash { /** * @brief Compute single-pass aggregations and store results into a sparse * `output_values` table, and populate `map` with indices of unique keys * * The hash map is built by inserting every row `i` from the `keys` and * `values` tables as a single (key,value) pair. When the pair is inserted, if * the key was not already present in the map, then the corresponding value is * simply copied to the output. If the key was already present in the map, * then the inserted `values` row is aggregated with the existing row. This * aggregation is done for every element `j` in the row by applying aggregation * operation `j` between the new and existing element. * * Instead of storing the entire rows from `input_keys` and `input_values` in * the hashmap, we instead store the row indices. For example, when inserting * row at index `i` from `input_keys` into the hash map, the value `i` is what * gets stored for the hash map's "key". It is assumed the `map` was constructed * with a custom comparator that uses these row indices to check for equality * between key rows. For example, comparing two keys `k0` and `k1` will compare * the two rows `input_keys[k0] ?= input_keys[k1]` * * Likewise, we store the row indices for the hash maps "values". These indices * index into the `output_values` table. For a given key `k` (which is an index * into `input_keys`), the corresponding value `v` indexes into `output_values` * and stores the result of aggregating rows from `input_values` from rows of * `input_keys` equivalent to the row at `k`. * * The exact size of the result is not known a priori, but can be upper bounded * by the number of rows in `input_keys` & `input_values`. Therefore, it is * assumed `output_values` has sufficient storage for an equivalent number of * rows. In this way, after all rows are aggregated, `output_values` will likely * be "sparse", meaning that not all rows contain the result of an aggregation. * * @tparam Map The type of the hash map */ template <typename Map> struct compute_single_pass_aggs_fn { Map map; table_device_view input_values; mutable_table_device_view output_values; aggregation::Kind const* __restrict__ aggs; bitmask_type const* __restrict__ row_bitmask; bool skip_rows_with_nulls; /** * @brief Construct a new compute_single_pass_aggs_fn functor object * * @param map Hash map object to insert key,value pairs into. * @param input_values The table whose rows will be aggregated in the values * of the hash map * @param output_values Table that stores the results of aggregating rows of * `input_values`. * @param aggs The set of aggregation operations to perform across the * columns of the `input_values` rows * @param row_bitmask Bitmask where bit `i` indicates the presence of a null * value in row `i` of input keys. Only used if `skip_rows_with_nulls` is `true` * @param skip_rows_with_nulls Indicates if rows in `input_keys` containing * null values should be skipped. It `true`, it is assumed `row_bitmask` is a * bitmask where bit `i` indicates the presence of a null value in row `i`. */ compute_single_pass_aggs_fn(Map map, table_device_view input_values, mutable_table_device_view output_values, aggregation::Kind const* aggs, bitmask_type const* row_bitmask, bool skip_rows_with_nulls) : map(map), input_values(input_values), output_values(output_values), aggs(aggs), row_bitmask(row_bitmask), skip_rows_with_nulls(skip_rows_with_nulls) { } __device__ void operator()(size_type i) { if (not skip_rows_with_nulls or cudf::bit_is_set(row_bitmask, i)) { auto result = map.insert(thrust::make_pair(i, i)); cudf::detail::aggregate_row<true, true>( output_values, result.first->second, input_values, i, aggs); } } }; } // namespace hash } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/hash/groupby.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/common/utils.hpp> #include <groupby/hash/groupby_kernels.cuh> #include <cudf/aggregation.hpp> #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.cuh> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/aggregation/result_cache.hpp> #include <cudf/detail/binaryop.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/groupby.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/replace.hpp> #include <cudf/detail/unary.hpp> #include <cudf/detail/utilities/algorithm.cuh> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/groupby.hpp> #include <cudf/hashing/detail/default_hash.cuh> #include <cudf/scalar/scalar.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/traits.cuh> #include <cudf/utilities/traits.hpp> #include <hash/concurrent_unordered_map.cuh> #include <rmm/cuda_stream_view.hpp> #include <thrust/copy.h> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <memory> #include <unordered_set> #include <utility> #include <cuda/std/atomic> namespace cudf { namespace groupby { namespace detail { namespace hash { namespace { // TODO: replace it with `cuco::static_map` // https://github.com/rapidsai/cudf/issues/10401 template <typename ComparatorType> using map_type = concurrent_unordered_map< cudf::size_type, cudf::size_type, cudf::experimental::row::hash::device_row_hasher<cudf::hashing::detail::default_hash, cudf::nullate::DYNAMIC>, ComparatorType>; /** * @brief List of aggregation operations that can be computed with a hash-based * implementation. */ constexpr std::array<aggregation::Kind, 12> hash_aggregations{aggregation::SUM, aggregation::PRODUCT, aggregation::MIN, aggregation::MAX, aggregation::COUNT_VALID, aggregation::COUNT_ALL, aggregation::ARGMIN, aggregation::ARGMAX, aggregation::SUM_OF_SQUARES, aggregation::MEAN, aggregation::STD, aggregation::VARIANCE}; // Could be hash: SUM, PRODUCT, MIN, MAX, COUNT_VALID, COUNT_ALL, ANY, ALL, // Compound: MEAN(SUM, COUNT_VALID), VARIANCE, STD(MEAN (SUM, COUNT_VALID), COUNT_VALID), // ARGMAX, ARGMIN // TODO replace with std::find in C++20 onwards. template <class T, size_t N> constexpr bool array_contains(std::array<T, N> const& haystack, T needle) { for (auto const& val : haystack) { if (val == needle) return true; } return false; } /** * @brief Indicates whether the specified aggregation operation can be computed * with a hash-based implementation. * * @param t The aggregation operation to verify * @return true `t` is valid for a hash based groupby * @return false `t` is invalid for a hash based groupby */ bool constexpr is_hash_aggregation(aggregation::Kind t) { return array_contains(hash_aggregations, t); } class groupby_simple_aggregations_collector final : public cudf::detail::simple_aggregations_collector { public: using cudf::detail::simple_aggregations_collector::visit; std::vector<std::unique_ptr<aggregation>> visit(data_type col_type, cudf::detail::min_aggregation const&) override { std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(col_type.id() == type_id::STRING ? make_argmin_aggregation() : make_min_aggregation()); return aggs; } std::vector<std::unique_ptr<aggregation>> visit(data_type col_type, cudf::detail::max_aggregation const&) override { std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(col_type.id() == type_id::STRING ? make_argmax_aggregation() : make_max_aggregation()); return aggs; } std::vector<std::unique_ptr<aggregation>> visit(data_type col_type, cudf::detail::mean_aggregation const&) override { (void)col_type; CUDF_EXPECTS(is_fixed_width(col_type), "MEAN aggregation expects fixed width type"); std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(make_sum_aggregation()); // COUNT_VALID aggs.push_back(make_count_aggregation()); return aggs; } std::vector<std::unique_ptr<aggregation>> visit(data_type, cudf::detail::var_aggregation const&) override { std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(make_sum_aggregation()); // COUNT_VALID aggs.push_back(make_count_aggregation()); return aggs; } std::vector<std::unique_ptr<aggregation>> visit(data_type, cudf::detail::std_aggregation const&) override { std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(make_sum_aggregation()); // COUNT_VALID aggs.push_back(make_count_aggregation()); return aggs; } std::vector<std::unique_ptr<aggregation>> visit( data_type, cudf::detail::correlation_aggregation const&) override { std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(make_sum_aggregation()); // COUNT_VALID aggs.push_back(make_count_aggregation()); return aggs; } }; template <typename ComparatorType> class hash_compound_agg_finalizer final : public cudf::detail::aggregation_finalizer { column_view col; data_type result_type; cudf::detail::result_cache* sparse_results; cudf::detail::result_cache* dense_results; device_span<size_type const> gather_map; map_type<ComparatorType> const& map; bitmask_type const* __restrict__ row_bitmask; rmm::cuda_stream_view stream; rmm::mr::device_memory_resource* mr; public: using cudf::detail::aggregation_finalizer::visit; hash_compound_agg_finalizer(column_view col, cudf::detail::result_cache* sparse_results, cudf::detail::result_cache* dense_results, device_span<size_type const> gather_map, map_type<ComparatorType> const& map, bitmask_type const* row_bitmask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : col(col), sparse_results(sparse_results), dense_results(dense_results), gather_map(gather_map), map(map), row_bitmask(row_bitmask), stream(stream), mr(mr) { result_type = cudf::is_dictionary(col.type()) ? cudf::dictionary_column_view(col).keys().type() : col.type(); } auto to_dense_agg_result(cudf::aggregation const& agg) { auto s = sparse_results->get_result(col, agg); auto dense_result_table = cudf::detail::gather(table_view({std::move(s)}), gather_map, out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(dense_result_table->release()[0]); } // Enables conversion of ARGMIN/ARGMAX into MIN/MAX auto gather_argminmax(aggregation const& agg) { auto arg_result = to_dense_agg_result(agg); // We make a view of ARG(MIN/MAX) result without a null mask and gather // using this map. The values in data buffer of ARG(MIN/MAX) result // corresponding to null values was initialized to ARG(MIN/MAX)_SENTINEL // which is an out of bounds index value (-1) and causes the gathered // value to be null. column_view null_removed_map( data_type(type_to_id<size_type>()), arg_result->size(), static_cast<void const*>(arg_result->view().template data<size_type>()), nullptr, 0); auto gather_argminmax = cudf::detail::gather(table_view({col}), null_removed_map, arg_result->nullable() ? cudf::out_of_bounds_policy::NULLIFY : cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(gather_argminmax->release()[0]); } // Declare overloads for each kind of aggregation to dispatch void visit(cudf::aggregation const& agg) override { if (dense_results->has_result(col, agg)) return; dense_results->add_result(col, agg, to_dense_agg_result(agg)); } void visit(cudf::detail::min_aggregation const& agg) override { if (dense_results->has_result(col, agg)) return; if (result_type.id() == type_id::STRING) { auto transformed_agg = make_argmin_aggregation(); dense_results->add_result(col, agg, gather_argminmax(*transformed_agg)); } else { dense_results->add_result(col, agg, to_dense_agg_result(agg)); } } void visit(cudf::detail::max_aggregation const& agg) override { if (dense_results->has_result(col, agg)) return; if (result_type.id() == type_id::STRING) { auto transformed_agg = make_argmax_aggregation(); dense_results->add_result(col, agg, gather_argminmax(*transformed_agg)); } else { dense_results->add_result(col, agg, to_dense_agg_result(agg)); } } void visit(cudf::detail::mean_aggregation const& agg) override { if (dense_results->has_result(col, agg)) return; auto sum_agg = make_sum_aggregation(); auto count_agg = make_count_aggregation(); this->visit(*sum_agg); this->visit(*count_agg); column_view sum_result = dense_results->get_result(col, *sum_agg); column_view count_result = dense_results->get_result(col, *count_agg); auto result = cudf::detail::binary_operation(sum_result, count_result, binary_operator::DIV, cudf::detail::target_type(result_type, aggregation::MEAN), stream, mr); dense_results->add_result(col, agg, std::move(result)); } void visit(cudf::detail::var_aggregation const& agg) override { if (dense_results->has_result(col, agg)) return; auto sum_agg = make_sum_aggregation(); auto count_agg = make_count_aggregation(); this->visit(*sum_agg); this->visit(*count_agg); column_view sum_result = sparse_results->get_result(col, *sum_agg); column_view count_result = sparse_results->get_result(col, *count_agg); auto values_view = column_device_view::create(col, stream); auto sum_view = column_device_view::create(sum_result, stream); auto count_view = column_device_view::create(count_result, stream); auto var_result = make_fixed_width_column( cudf::detail::target_type(result_type, agg.kind), col.size(), mask_state::ALL_NULL, stream); auto var_result_view = mutable_column_device_view::create(var_result->mutable_view(), stream); mutable_table_view var_table_view{{var_result->mutable_view()}}; cudf::detail::initialize_with_identity(var_table_view, {agg.kind}, stream); thrust::for_each_n( rmm::exec_policy(stream), thrust::make_counting_iterator(0), col.size(), ::cudf::detail::var_hash_functor<map_type<ComparatorType>>{ map, row_bitmask, *var_result_view, *values_view, *sum_view, *count_view, agg._ddof}); sparse_results->add_result(col, agg, std::move(var_result)); dense_results->add_result(col, agg, to_dense_agg_result(agg)); } void visit(cudf::detail::std_aggregation const& agg) override { if (dense_results->has_result(col, agg)) return; auto var_agg = make_variance_aggregation(agg._ddof); this->visit(*dynamic_cast<cudf::detail::var_aggregation*>(var_agg.get())); column_view variance = dense_results->get_result(col, *var_agg); auto result = cudf::detail::unary_operation(variance, unary_operator::SQRT, stream, mr); dense_results->add_result(col, agg, std::move(result)); } }; // flatten aggs to filter in single pass aggs std::tuple<table_view, std::vector<aggregation::Kind>, std::vector<std::unique_ptr<aggregation>>> flatten_single_pass_aggs(host_span<aggregation_request const> requests) { std::vector<column_view> columns; std::vector<std::unique_ptr<aggregation>> aggs; std::vector<aggregation::Kind> agg_kinds; for (auto const& request : requests) { auto const& agg_v = request.aggregations; std::unordered_set<aggregation::Kind> agg_kinds_set; auto insert_agg = [&](column_view const& request_values, std::unique_ptr<aggregation>&& agg) { if (agg_kinds_set.insert(agg->kind).second) { agg_kinds.push_back(agg->kind); aggs.push_back(std::move(agg)); columns.push_back(request_values); } }; auto values_type = cudf::is_dictionary(request.values.type()) ? cudf::dictionary_column_view(request.values).keys().type() : request.values.type(); for (auto&& agg : agg_v) { groupby_simple_aggregations_collector collector; for (auto& agg_s : agg->get_simple_aggregations(values_type, collector)) { insert_agg(request.values, std::move(agg_s)); } } } return std::make_tuple(table_view(columns), std::move(agg_kinds), std::move(aggs)); } /** * @brief Gather sparse results into dense using `gather_map` and add to * `dense_cache` * * @see groupby_null_templated() */ template <typename ComparatorType> void sparse_to_dense_results(table_view const& keys, host_span<aggregation_request const> requests, cudf::detail::result_cache* sparse_results, cudf::detail::result_cache* dense_results, device_span<size_type const> gather_map, map_type<ComparatorType> const& map, bool keys_have_nulls, null_policy include_null_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto row_bitmask = cudf::detail::bitmask_and(keys, stream, rmm::mr::get_current_device_resource()).first; bool skip_key_rows_with_nulls = keys_have_nulls and include_null_keys == null_policy::EXCLUDE; bitmask_type const* row_bitmask_ptr = skip_key_rows_with_nulls ? static_cast<bitmask_type*>(row_bitmask.data()) : nullptr; for (auto const& request : requests) { auto const& agg_v = request.aggregations; auto const& col = request.values; // Given an aggregation, this will get the result from sparse_results and // convert and return dense, compacted result auto finalizer = hash_compound_agg_finalizer( col, sparse_results, dense_results, gather_map, map, row_bitmask_ptr, stream, mr); for (auto&& agg : agg_v) { agg->finalize(finalizer); } } } // make table that will hold sparse results auto create_sparse_results_table(table_view const& flattened_values, std::vector<aggregation::Kind> aggs, rmm::cuda_stream_view stream) { // TODO single allocation - room for performance improvement std::vector<std::unique_ptr<column>> sparse_columns; std::transform( flattened_values.begin(), flattened_values.end(), aggs.begin(), std::back_inserter(sparse_columns), [stream](auto const& col, auto const& agg) { bool nullable = (agg == aggregation::COUNT_VALID or agg == aggregation::COUNT_ALL) ? false : (col.has_nulls() or agg == aggregation::VARIANCE or agg == aggregation::STD); auto mask_flag = (nullable) ? mask_state::ALL_NULL : mask_state::UNALLOCATED; auto col_type = cudf::is_dictionary(col.type()) ? cudf::dictionary_column_view(col).keys().type() : col.type(); return make_fixed_width_column( cudf::detail::target_type(col_type, agg), col.size(), mask_flag, stream); }); table sparse_table(std::move(sparse_columns)); mutable_table_view table_view = sparse_table.mutable_view(); cudf::detail::initialize_with_identity(table_view, aggs, stream); return sparse_table; } /** * @brief Computes all aggregations from `requests` that require a single pass * over the data and stores the results in `sparse_results` */ template <typename ComparatorType> void compute_single_pass_aggs(table_view const& keys, host_span<aggregation_request const> requests, cudf::detail::result_cache* sparse_results, map_type<ComparatorType>& map, bool keys_have_nulls, null_policy include_null_keys, rmm::cuda_stream_view stream) { // flatten the aggs to a table that can be operated on by aggregate_row auto const [flattened_values, agg_kinds, aggs] = flatten_single_pass_aggs(requests); // make table that will hold sparse results table sparse_table = create_sparse_results_table(flattened_values, agg_kinds, stream); // prepare to launch kernel to do the actual aggregation auto d_sparse_table = mutable_table_device_view::create(sparse_table, stream); auto d_values = table_device_view::create(flattened_values, stream); auto const d_aggs = cudf::detail::make_device_uvector_async( agg_kinds, stream, rmm::mr::get_current_device_resource()); auto const skip_key_rows_with_nulls = keys_have_nulls and include_null_keys == null_policy::EXCLUDE; auto row_bitmask = skip_key_rows_with_nulls ? cudf::detail::bitmask_and(keys, stream, rmm::mr::get_current_device_resource()).first : rmm::device_buffer{}; thrust::for_each_n(rmm::exec_policy(stream), thrust::make_counting_iterator(0), keys.num_rows(), hash::compute_single_pass_aggs_fn<map_type<ComparatorType>>{ map, *d_values, *d_sparse_table, d_aggs.data(), static_cast<bitmask_type*>(row_bitmask.data()), skip_key_rows_with_nulls}); // Add results back to sparse_results cache auto sparse_result_cols = sparse_table.release(); for (size_t i = 0; i < aggs.size(); i++) { // Note that the cache will make a copy of this temporary aggregation sparse_results->add_result( flattened_values.column(i), *aggs[i], std::move(sparse_result_cols[i])); } } /** * @brief Computes and returns a device vector containing all populated keys in * `map`. */ template <typename ComparatorType> rmm::device_uvector<size_type> extract_populated_keys(map_type<ComparatorType> const& map, size_type num_keys, rmm::cuda_stream_view stream) { rmm::device_uvector<size_type> populated_keys(num_keys, stream); auto const get_key = [] __device__(auto const& element) { return element.first; }; // first = key auto const key_used = [unused = map.get_unused_key()] __device__(auto key) { return key != unused; }; auto const key_itr = thrust::make_transform_iterator(map.data(), get_key); auto const end_it = cudf::detail::copy_if_safe( key_itr, key_itr + map.capacity(), populated_keys.begin(), key_used, stream); populated_keys.resize(std::distance(populated_keys.begin(), end_it), stream); return populated_keys; } /** * @brief Computes groupby using hash table. * * First, we create a hash table that stores the indices of unique rows in * `keys`. The upper limit on the number of values in this map is the number * of rows in `keys`. * * To store the results of aggregations, we create temporary sparse columns * which have the same size as input value columns. Using the hash map, we * determine the location within the sparse column to write the result of the * aggregation into. * * The sparse column results of all aggregations are stored into the cache * `sparse_results`. This enables the use of previously calculated results in * other aggregations. * * All the aggregations which can be computed in a single pass are computed * first, in a combined kernel. Then using these results, aggregations that * require multiple passes, will be computed. * * Finally, using the hash map, we generate a vector of indices of populated * values in sparse result columns. Then, for each aggregation originally * requested in `requests`, we gather sparse results into a column of dense * results using the aforementioned index vector. Dense results are stored into * the in/out parameter `cache`. */ std::unique_ptr<table> groupby(table_view const& keys, host_span<aggregation_request const> requests, cudf::detail::result_cache* cache, bool const keys_have_nulls, null_policy const include_null_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const num_keys = keys.num_rows(); auto const null_keys_are_equal = null_equality::EQUAL; auto const has_null = nullate::DYNAMIC{cudf::has_nested_nulls(keys)}; auto preprocessed_keys = cudf::experimental::row::hash::preprocessed_table::create(keys, stream); auto const comparator = cudf::experimental::row::equality::self_comparator{preprocessed_keys}; auto const row_hash = cudf::experimental::row::hash::row_hasher{std::move(preprocessed_keys)}; auto const d_row_hash = row_hash.device_hasher(has_null); size_type constexpr unused_key{std::numeric_limits<size_type>::max()}; size_type constexpr unused_value{std::numeric_limits<size_type>::max()}; // Cache of sparse results where the location of aggregate value in each // column is indexed by the hash map cudf::detail::result_cache sparse_results(requests.size()); auto const comparator_helper = [&](auto const d_key_equal) { using allocator_type = typename map_type<decltype(d_key_equal)>::allocator_type; auto const map = map_type<decltype(d_key_equal)>::create(compute_hash_table_size(num_keys), stream, unused_key, unused_value, d_row_hash, d_key_equal, allocator_type()); // Compute all single pass aggs first compute_single_pass_aggs( keys, requests, &sparse_results, *map, keys_have_nulls, include_null_keys, stream); // Extract the populated indices from the hash map and create a gather map. // Gathering using this map from sparse results will give dense results. auto gather_map = extract_populated_keys(*map, keys.num_rows(), stream); // Compact all results from sparse_results and insert into cache sparse_to_dense_results(keys, requests, &sparse_results, cache, gather_map, *map, keys_have_nulls, include_null_keys, stream, mr); return cudf::detail::gather(keys, gather_map, out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); }; if (cudf::detail::has_nested_columns(keys)) { auto const d_key_equal = comparator.equal_to<true>(has_null, null_keys_are_equal); return comparator_helper(d_key_equal); } else { auto const d_key_equal = comparator.equal_to<false>(has_null, null_keys_are_equal); return comparator_helper(d_key_equal); } } } // namespace /** * @brief Indicates if a set of aggregation requests can be satisfied with a * hash-based groupby implementation. * * @param requests The set of columns to aggregate and the aggregations to * perform * @return true A hash-based groupby should be used * @return false A hash-based groupby should not be used */ bool can_use_hash_groupby(host_span<aggregation_request const> requests) { return std::all_of(requests.begin(), requests.end(), [](aggregation_request const& r) { auto const v_type = is_dictionary(r.values.type()) ? cudf::dictionary_column_view(r.values).keys().type() : r.values.type(); // Currently, input values (not keys) of STRUCT and LIST types are not supported in any of // hash-based aggregations. For those situations, we fallback to sort-based aggregations. if (v_type.id() == type_id::STRUCT or v_type.id() == type_id::LIST) { return false; } return std::all_of(r.aggregations.begin(), r.aggregations.end(), [v_type](auto const& a) { return cudf::has_atomic_support(cudf::detail::target_type(v_type, a->kind)) and is_hash_aggregation(a->kind); }); }); } // Hash-based groupby std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby( table_view const& keys, host_span<aggregation_request const> requests, null_policy include_null_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { cudf::detail::result_cache cache(requests.size()); std::unique_ptr<table> unique_keys = groupby(keys, requests, &cache, cudf::has_nulls(keys), include_null_keys, stream, mr); return std::pair(std::move(unique_keys), extract_results(requests, cache, stream, mr)); } } // namespace hash } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/hash/multi_pass_kernels.cuh
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/aggregation.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/utilities/assert.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/type_dispatcher.hpp> #include <cuda/atomic> #include <cmath> namespace cudf { namespace detail { template <typename Map, bool target_has_nulls = true, bool source_has_nulls = true> struct var_hash_functor { Map const map; bitmask_type const* __restrict__ row_bitmask; mutable_column_device_view target; column_device_view source; column_device_view sum; column_device_view count; size_type ddof; var_hash_functor(Map const map, bitmask_type const* row_bitmask, mutable_column_device_view target, column_device_view source, column_device_view sum, column_device_view count, size_type ddof) : map(map), row_bitmask(row_bitmask), target(target), source(source), sum(sum), count(count), ddof(ddof) { } template <typename Source> constexpr static bool is_supported() { return is_numeric<Source>() && !is_fixed_point<Source>(); } template <typename Source> __device__ std::enable_if_t<!is_supported<Source>()> operator()(column_device_view const& source, size_type source_index, size_type target_index) noexcept { CUDF_UNREACHABLE("Invalid source type for std, var aggregation combination."); } template <typename Source> __device__ std::enable_if_t<is_supported<Source>()> operator()(column_device_view const& source, size_type source_index, size_type target_index) noexcept { using Target = target_type_t<Source, aggregation::VARIANCE>; using SumType = target_type_t<Source, aggregation::SUM>; using CountType = target_type_t<Source, aggregation::COUNT_VALID>; if (source_has_nulls and source.is_null(source_index)) return; CountType group_size = count.element<CountType>(target_index); if (group_size == 0 or group_size - ddof <= 0) return; auto x = static_cast<Target>(source.element<Source>(source_index)); auto mean = static_cast<Target>(sum.element<SumType>(target_index)) / group_size; Target result = (x - mean) * (x - mean) / (group_size - ddof); cuda::atomic_ref<Target, cuda::thread_scope_device> ref{target.element<Target>(target_index)}; ref.fetch_add(result, cuda::std::memory_order_relaxed); // STD sqrt is applied in finalize() if (target_has_nulls and target.is_null(target_index)) { target.set_valid(target_index); } } __device__ inline void operator()(size_type source_index) { if (row_bitmask == nullptr or cudf::bit_is_set(row_bitmask, source_index)) { auto result = map.find(source_index); auto target_index = result->second; auto col = source; auto source_type = source.type(); if (source_type.id() == type_id::DICTIONARY32) { col = source.child(cudf::dictionary_column_view::keys_column_index); source_type = col.type(); source_index = static_cast<size_type>(source.element<dictionary32>(source_index)); } type_dispatcher(source_type, *this, col, source_index, target_index); } } }; } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_product.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/span.hpp> #include <groupby/sort/group_single_pass_reduction_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_product(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher(values_type, group_reduction_dispatcher<aggregation::PRODUCT>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_m2.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/span.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/discard_iterator.h> #include <thrust/reduce.h> #include <thrust/transform.h> namespace cudf { namespace groupby { namespace detail { namespace { template <typename ResultType, typename Iterator> struct m2_transform { column_device_view const d_values; Iterator const values_iter; ResultType const* d_means; size_type const* d_group_labels; __device__ ResultType operator()(size_type const idx) const noexcept { if (d_values.is_null(idx)) { return 0.0; } auto const x = static_cast<ResultType>(values_iter[idx]); auto const group_idx = d_group_labels[idx]; auto const mean = d_means[group_idx]; auto const diff = x - mean; return diff * diff; } }; template <typename ResultType, typename Iterator> void compute_m2_fn(column_device_view const& values, Iterator values_iter, cudf::device_span<size_type const> group_labels, ResultType const* d_means, ResultType* d_result, rmm::cuda_stream_view stream) { auto m2_fn = m2_transform<ResultType, decltype(values_iter)>{ values, values_iter, d_means, group_labels.data()}; auto const itr = thrust::counting_iterator<size_type>(0); // Using a temporary buffer for intermediate transform results instead of // using the transform-iterator directly in thrust::reduce_by_key // improves compile-time significantly. auto m2_vals = rmm::device_uvector<ResultType>(values.size(), stream); thrust::transform(rmm::exec_policy(stream), itr, itr + values.size(), m2_vals.begin(), m2_fn); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), m2_vals.begin(), thrust::make_discard_iterator(), d_result); } struct m2_functor { template <typename T> std::enable_if_t<std::is_arithmetic_v<T>, std::unique_ptr<column>> operator()( column_view const& values, column_view const& group_means, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using result_type = cudf::detail::target_type_t<T, aggregation::Kind::M2>; auto result = make_numeric_column(data_type(type_to_id<result_type>()), group_means.size(), mask_state::UNALLOCATED, stream, mr); auto const values_dv_ptr = column_device_view::create(values, stream); auto const d_values = *values_dv_ptr; auto const d_means = group_means.data<result_type>(); auto const d_result = result->mutable_view().data<result_type>(); if (!cudf::is_dictionary(values.type())) { auto const values_iter = d_values.begin<T>(); compute_m2_fn(d_values, values_iter, group_labels, d_means, d_result, stream); } else { auto const values_iter = cudf::dictionary::detail::make_dictionary_iterator<T>(*values_dv_ptr); compute_m2_fn(d_values, values_iter, group_labels, d_means, d_result, stream); } // M2 column values should have the same bitmask as means's. if (group_means.nullable()) { result->set_null_mask(cudf::detail::copy_bitmask(group_means, stream, mr), group_means.null_count()); } return result; } template <typename T, typename... Args> std::enable_if_t<!std::is_arithmetic_v<T>, std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("Only numeric types are supported in M2 groupby aggregation"); } }; } // namespace std::unique_ptr<column> group_m2(column_view const& values, column_view const& group_means, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher(values_type, m2_functor{}, values, group_means, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_quantiles.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "group_reductions.hpp" #include <quantiles/quantiles_util.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> namespace cudf { namespace groupby { namespace detail { namespace { template <typename ResultType, typename Iterator> struct calculate_quantile_fn { Iterator values_iter; column_device_view d_group_size; mutable_column_device_view d_result; size_type const* d_group_offset; double const* d_quantiles; size_type num_quantiles; interpolation interpolation; size_type* null_count; __device__ void operator()(size_type i) { size_type segment_size = d_group_size.element<size_type>(i); auto d_itr = values_iter + d_group_offset[i]; thrust::transform(thrust::seq, d_quantiles, d_quantiles + num_quantiles, d_result.data<ResultType>() + i * num_quantiles, [d_itr, segment_size, interpolation = interpolation](auto q) { return cudf::detail::select_quantile_data<ResultType>( d_itr, segment_size, q, interpolation); }); size_type offset = i * num_quantiles; thrust::for_each_n(thrust::seq, thrust::make_counting_iterator(0), num_quantiles, [d_result = d_result, segment_size, offset, this](size_type j) { if (segment_size == 0) { d_result.set_null(offset + j); atomicAdd(this->null_count, 1); } else { d_result.set_valid(offset + j); } }); } }; struct quantiles_functor { template <typename T> std::enable_if_t<std::is_arithmetic_v<T>, std::unique_ptr<column>> operator()( column_view const& values, column_view const& group_sizes, cudf::device_span<size_type const> group_offsets, size_type const num_groups, device_span<double const> quantile, interpolation interpolation, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using ResultType = cudf::detail::target_type_t<T, aggregation::QUANTILE>; auto result = make_numeric_column(data_type(type_to_id<ResultType>()), group_sizes.size() * quantile.size(), mask_state::UNINITIALIZED, stream, mr); // TODO (dm): Support for no-materialize index indirection values // TODO (dm): Future optimization: add column order to aggregation request // so that sorting isn't required. Then add support for pre-sorted // prepare args to be used by lambda below auto values_view = column_device_view::create(values, stream); auto group_size_view = column_device_view::create(group_sizes, stream); auto result_view = mutable_column_device_view::create(result->mutable_view(), stream); auto null_count = rmm::device_scalar<cudf::size_type>(0, stream, mr); // For each group, calculate quantile if (!cudf::is_dictionary(values.type())) { auto values_iter = values_view->begin<T>(); thrust::for_each_n(rmm::exec_policy(stream), thrust::make_counting_iterator(0), num_groups, calculate_quantile_fn<ResultType, decltype(values_iter)>{ values_iter, *group_size_view, *result_view, group_offsets.data(), quantile.data(), static_cast<size_type>(quantile.size()), interpolation, null_count.data()}); } else { auto values_iter = cudf::dictionary::detail::make_dictionary_iterator<T>(*values_view); thrust::for_each_n(rmm::exec_policy(stream), thrust::make_counting_iterator(0), num_groups, calculate_quantile_fn<ResultType, decltype(values_iter)>{ values_iter, *group_size_view, *result_view, group_offsets.data(), quantile.data(), static_cast<size_type>(quantile.size()), interpolation, null_count.data()}); } result->set_null_count(null_count.value(stream)); return result; } template <typename T, typename... Args> std::enable_if_t<!std::is_arithmetic_v<T>, std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("Only arithmetic types are supported in quantiles"); } }; } // namespace // TODO: add optional check for is_sorted. Use context.flag_sorted std::unique_ptr<column> group_quantiles(column_view const& values, column_view const& group_sizes, cudf::device_span<size_type const> group_offsets, size_type const num_groups, std::vector<double> const& quantiles, interpolation interp, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto dv_quantiles = cudf::detail::make_device_uvector_async( quantiles, stream, rmm::mr::get_current_device_resource()); auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher(values_type, quantiles_functor{}, values, group_sizes, group_offsets, num_groups, dv_quantiles, interp, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_histogram.cu
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <lists/utilities.hpp> #include <cudf/aggregation.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/labeling/label_segments.cuh> #include <cudf/reduction/detail/histogram.hpp> #include <cudf/structs/structs_column_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <rmm/device_buffer.hpp> #include <thrust/gather.h> namespace cudf::groupby::detail { namespace { std::unique_ptr<column> build_histogram(column_view const& values, cudf::device_span<size_type const> group_labels, std::optional<column_view> const& partial_counts, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(static_cast<size_t>(values.size()) == group_labels.size(), "Size of values column should be the same as that of group labels.", std::invalid_argument); // Attach group labels to the input values. auto const labels_cv = column_view{data_type{type_to_id<size_type>()}, static_cast<size_type>(group_labels.size()), group_labels.data(), nullptr, 0}; auto const labeled_values = table_view{{labels_cv, values}}; // Build histogram for the labeled values. auto [distinct_indices, distinct_counts] = cudf::reduction::detail::compute_row_frequencies(labeled_values, partial_counts, stream, mr); // Gather the distinct rows for the output histogram. auto out_table = cudf::detail::gather(labeled_values, *distinct_indices, out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); // Build offsets for the output lists column containing output histograms. // Each list will be a histogram corresponding to one value group. auto out_offsets = cudf::lists::detail::reconstruct_offsets( out_table->get_column(0).view(), num_groups, stream, mr); std::vector<std::unique_ptr<column>> struct_children; struct_children.emplace_back(std::move(out_table->release().back())); struct_children.emplace_back(std::move(distinct_counts)); auto out_structs = make_structs_column(static_cast<size_type>(distinct_indices->size()), std::move(struct_children), 0, {}, stream, mr); return make_lists_column( num_groups, std::move(out_offsets), std::move(out_structs), 0, {}, stream, mr); } } // namespace std::unique_ptr<column> group_histogram(column_view const& values, cudf::device_span<size_type const> group_labels, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Empty group should be handled before reaching here. CUDF_EXPECTS(num_groups > 0, "Group should not be empty.", std::invalid_argument); return build_histogram(values, group_labels, std::nullopt, num_groups, stream, mr); } std::unique_ptr<column> group_merge_histogram(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Empty group should be handled before reaching here. CUDF_EXPECTS(num_groups > 0, "Group should not be empty.", std::invalid_argument); // The input must be a lists column without nulls. CUDF_EXPECTS(!values.has_nulls(), "The input column must not have nulls.", std::invalid_argument); CUDF_EXPECTS(values.type().id() == type_id::LIST, "The input of MERGE_HISTOGRAM aggregation must be a lists column.", std::invalid_argument); // Child of the input lists column must be a structs column without nulls, // and its second child is a columns of integer type having no nulls. auto const lists_cv = lists_column_view{values}; auto const histogram_cv = lists_cv.get_sliced_child(stream); CUDF_EXPECTS(!histogram_cv.has_nulls(), "Child of the input lists column must not have nulls.", std::invalid_argument); CUDF_EXPECTS(histogram_cv.type().id() == type_id::STRUCT && histogram_cv.num_children() == 2, "The input column has invalid histograms structure.", std::invalid_argument); CUDF_EXPECTS( cudf::is_integral(histogram_cv.child(1).type()) && !histogram_cv.child(1).has_nulls(), "The input column has invalid histograms structure.", std::invalid_argument); // Concatenate the histograms corresponding to the same key values. // That is equivalent to creating a new lists column (view) from the input lists column // with new offsets gathered as below. auto new_offsets = rmm::device_uvector<size_type>(num_groups + 1, stream); thrust::gather(rmm::exec_policy(stream), group_offsets.begin(), group_offsets.end(), lists_cv.offsets_begin(), new_offsets.begin()); // Generate labels for the new lists. auto key_labels = rmm::device_uvector<size_type>(histogram_cv.size(), stream); cudf::detail::label_segments( new_offsets.begin(), new_offsets.end(), key_labels.begin(), key_labels.end(), stream); auto const structs_cv = structs_column_view{histogram_cv}; auto const input_values = structs_cv.get_sliced_child(0, stream); auto const input_counts = structs_cv.get_sliced_child(1, stream); return build_histogram(input_values, key_labels, input_counts, num_groups, stream, mr); } } // namespace cudf::groupby::detail
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_sum_scan.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_scan_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> sum_scan(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return type_dispatcher(values.type(), group_scan_dispatcher<aggregation::SUM>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_single_pass_reduction_util.cuh
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <reductions/nested_type_minmax_util.cuh> #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/utilities/element_argminmax.cuh> #include <cudf/detail/valid_if.cuh> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/reduce.h> namespace cudf { namespace groupby { namespace detail { /** * @brief Value accessor for column which supports dictionary column too. * * This is similar to `value_accessor` in `column_device_view.cuh` but with support of dictionary * type. * * @tparam T Type of the underlying column. For dictionary column, type of the key column. */ template <typename T> struct value_accessor { column_device_view const col; bool const is_dict; value_accessor(column_device_view const& col) : col(col), is_dict(cudf::is_dictionary(col.type())) { } __device__ T value(size_type i) const { if (is_dict) { auto keys = col.child(dictionary_column_view::keys_column_index); return keys.element<T>(static_cast<size_type>(col.element<dictionary32>(i))); } else { return col.element<T>(i); } } __device__ auto operator()(size_type i) const { return value(i); } }; /** * @brief Null replaced value accessor for column which supports dictionary column too. * For null value, returns null `init` value * * @tparam SourceType Type of the underlying column. For dictionary column, type of the key column. * @tparam TargetType Type that is used for computation. */ template <typename SourceType, typename TargetType> struct null_replaced_value_accessor : value_accessor<SourceType> { using super_t = value_accessor<SourceType>; TargetType const init; bool const has_nulls; null_replaced_value_accessor(column_device_view const& col, TargetType const& init, bool const has_nulls) : super_t(col), init(init), has_nulls(has_nulls) { } __device__ TargetType operator()(size_type i) const { return has_nulls && super_t::col.is_null_nocheck(i) ? init : static_cast<TargetType>(super_t::value(i)); } }; // Error case when no other overload or specialization is available template <aggregation::Kind K, typename T, typename Enable = void> struct group_reduction_functor { template <typename... Args> static std::unique_ptr<column> invoke(Args&&...) { CUDF_FAIL("Unsupported groupby reduction type-agg combination."); } }; template <aggregation::Kind K> struct group_reduction_dispatcher { template <typename T> std::unique_ptr<column> operator()(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return group_reduction_functor<K, T>::invoke(values, num_groups, group_labels, stream, mr); } }; /** * @brief Check if the given aggregation K with data type T is supported in groupby reduction. */ template <aggregation::Kind K, typename T> static constexpr bool is_group_reduction_supported() { switch (K) { case aggregation::SUM: return cudf::is_numeric<T>() || cudf::is_duration<T>() || cudf::is_fixed_point<T>(); case aggregation::PRODUCT: return cudf::detail::is_product_supported<T>(); case aggregation::MIN: case aggregation::MAX: return cudf::is_fixed_width<T>() and is_relationally_comparable<T, T>(); case aggregation::ARGMIN: case aggregation::ARGMAX: return is_relationally_comparable<T, T>() or cudf::is_nested<T>(); default: return false; } } template <aggregation::Kind K, typename T> struct group_reduction_functor< K, T, std::enable_if_t<is_group_reduction_supported<K, T>() && !cudf::is_nested<T>()>> { static std::unique_ptr<column> invoke(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using SourceDType = device_storage_type_t<T>; using ResultType = cudf::detail::target_type_t<T, K>; using ResultDType = device_storage_type_t<ResultType>; auto result_type = is_fixed_point<ResultType>() ? data_type{type_to_id<ResultType>(), values.type().scale()} : data_type{type_to_id<ResultType>()}; std::unique_ptr<column> result = make_fixed_width_column(result_type, num_groups, mask_state::UNALLOCATED, stream, mr); if (values.is_empty()) { return result; } // Perform segmented reduction. auto const do_reduction = [&](auto const& inp_iter, auto const& out_iter, auto const& binop) { thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.data(), group_labels.data() + group_labels.size(), inp_iter, thrust::make_discard_iterator(), out_iter, thrust::equal_to{}, binop); }; auto const d_values_ptr = column_device_view::create(values, stream); auto const result_begin = result->mutable_view().template begin<ResultDType>(); if constexpr (K == aggregation::ARGMAX || K == aggregation::ARGMIN) { auto const count_iter = thrust::make_counting_iterator<ResultType>(0); auto const binop = cudf::detail::element_argminmax_fn<T>{ *d_values_ptr, values.has_nulls(), K == aggregation::ARGMIN}; do_reduction(count_iter, result_begin, binop); } else { using OpType = cudf::detail::corresponding_operator_t<K>; auto init = OpType::template identity<ResultDType>(); auto inp_values = cudf::detail::make_counting_transform_iterator( 0, null_replaced_value_accessor<SourceDType, ResultDType>{ *d_values_ptr, init, values.has_nulls()}); do_reduction(inp_values, result_begin, OpType{}); } if (values.has_nulls()) { rmm::device_uvector<bool> validity(num_groups, stream); do_reduction(cudf::detail::make_validity_iterator(*d_values_ptr), validity.begin(), thrust::logical_or{}); auto [null_mask, null_count] = cudf::detail::valid_if(validity.begin(), validity.end(), thrust::identity{}, stream, mr); result->set_null_mask(std::move(null_mask), null_count); } return result; } }; template <aggregation::Kind K, typename T> struct group_reduction_functor< K, T, std::enable_if_t<is_group_reduction_supported<K, T>() && cudf::is_nested<T>()>> { static std::unique_ptr<column> invoke(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // This is be expected to be size_type. using ResultType = cudf::detail::target_type_t<T, K>; auto result = make_fixed_width_column( data_type{type_to_id<ResultType>()}, num_groups, mask_state::UNALLOCATED, stream, mr); if (values.is_empty()) { return result; } // Perform segmented reduction to find ARGMIN/ARGMAX. auto const do_reduction = [&](auto const& inp_iter, auto const& out_iter, auto const& binop) { thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.data(), group_labels.data() + group_labels.size(), inp_iter, thrust::make_discard_iterator(), out_iter, thrust::equal_to{}, binop); }; auto const count_iter = thrust::make_counting_iterator<ResultType>(0); auto const result_begin = result->mutable_view().template begin<ResultType>(); auto const binop_generator = cudf::reduction::detail::comparison_binop_generator::create<K>(values, stream); do_reduction(count_iter, result_begin, binop_generator.binop()); if (values.has_nulls()) { // Generate bitmask for the output by segmented reduction of the input bitmask. auto const d_values_ptr = column_device_view::create(values, stream); auto validity = rmm::device_uvector<bool>(num_groups, stream); do_reduction(cudf::detail::make_validity_iterator(*d_values_ptr), validity.begin(), thrust::logical_or{}); auto [null_mask, null_count] = cudf::detail::valid_if(validity.begin(), validity.end(), thrust::identity{}, stream, mr); result->set_null_mask(std::move(null_mask), null_count); } return result; } }; } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_nth_element.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <thrust/iterator/discard_iterator.h> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/reduce.h> #include <thrust/scan.h> #include <thrust/scatter.h> #include <thrust/transform.h> #include <thrust/uninitialized_fill.h> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_nth_element(column_view const& values, column_view const& group_sizes, cudf::device_span<size_type const> group_labels, cudf::device_span<size_type const> group_offsets, size_type num_groups, size_type n, null_policy null_handling, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(static_cast<size_t>(values.size()) == group_labels.size(), "Size of values column should be same as that of group labels"); if (num_groups == 0) { return empty_like(values); } auto nth_index = rmm::device_uvector<size_type>(num_groups, stream); // TODO: replace with async version thrust::uninitialized_fill_n( rmm::exec_policy(stream), nth_index.begin(), num_groups, values.size()); // nulls_policy::INCLUDE (equivalent to pandas nth(dropna=None) but return nulls for n if (null_handling == null_policy::INCLUDE || !values.has_nulls()) { // Returns index of nth value. thrust::transform_if( rmm::exec_policy(stream), group_sizes.begin<size_type>(), group_sizes.end<size_type>(), group_offsets.begin(), group_sizes.begin<size_type>(), // stencil nth_index.begin(), [n] __device__(auto group_size, auto group_offset) { return group_offset + ((n < 0) ? group_size + n : n); }, [n] __device__(auto group_size) { // nth within group return (n < 0) ? group_size >= (-n) : group_size > n; }); } else { // skip nulls (equivalent to pandas nth(dropna='any')) // Returns index of nth value. auto values_view = column_device_view::create(values, stream); auto bitmask_iterator = thrust::make_transform_iterator(cudf::detail::make_validity_iterator(*values_view), [] __device__(auto b) { return static_cast<size_type>(b); }); rmm::device_uvector<size_type> intra_group_index(values.size(), stream); // intra group index for valids only. thrust::exclusive_scan_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), bitmask_iterator, intra_group_index.begin()); // group_size to recalculate n if n<0 rmm::device_uvector<size_type> group_count = [&] { if (n < 0) { rmm::device_uvector<size_type> group_count(num_groups, stream); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), bitmask_iterator, thrust::make_discard_iterator(), group_count.begin()); return group_count; } else { return rmm::device_uvector<size_type>(0, stream); } }(); // gather the valid index == n thrust::scatter_if(rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(values.size()), group_labels.begin(), // map thrust::make_counting_iterator<size_type>(0), // stencil nth_index.begin(), [n, bitmask_iterator, group_size = group_count.begin(), group_labels = group_labels.begin(), intra_group_index = intra_group_index.begin()] __device__(auto i) -> bool { auto nth = ((n < 0) ? group_size[group_labels[i]] + n : n); return (bitmask_iterator[i] && intra_group_index[i] == nth); }); } auto output_table = cudf::detail::gather(table_view{{values}}, nth_index, out_of_bounds_policy::NULLIFY, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); if (!output_table->get_column(0).has_nulls()) output_table->get_column(0).set_null_mask({}, 0); return std::make_unique<column>(std::move(output_table->get_column(0))); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_count.cu
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/aggregation.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/adjacent_difference.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/reduce.h> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_count_valid(column_view const& values, cudf::device_span<size_type const> group_labels, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(num_groups >= 0, "number of groups cannot be negative"); CUDF_EXPECTS(static_cast<size_t>(values.size()) == group_labels.size(), "Size of values column should be same as that of group labels"); auto result = make_numeric_column( data_type(type_to_id<size_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); if (num_groups == 0) { return result; } if (values.nullable()) { auto values_view = column_device_view::create(values, stream); // make_validity_iterator returns a boolean iterator that sums to 1 (1+1=1) // so we need to transform it to cast it to an integer type auto bitmask_iterator = thrust::make_transform_iterator(cudf::detail::make_validity_iterator(*values_view), [] __device__(auto b) { return static_cast<size_type>(b); }); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), bitmask_iterator, thrust::make_discard_iterator(), result->mutable_view().begin<size_type>()); } else { thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), thrust::make_constant_iterator(1), thrust::make_discard_iterator(), result->mutable_view().begin<size_type>()); } return result; } std::unique_ptr<column> group_count_all(cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(num_groups >= 0, "number of groups cannot be negative"); auto result = make_numeric_column( data_type(type_to_id<size_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); if (num_groups == 0) { return result; } thrust::adjacent_difference(rmm::exec_policy(stream), group_offsets.begin() + 1, group_offsets.end(), result->mutable_view().begin<size_type>()); return result; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_count_scan.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <thrust/iterator/constant_iterator.h> #include <thrust/scan.h> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> count_scan(cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::unique_ptr<column> result = make_fixed_width_column( data_type{type_id::INT32}, group_labels.size(), mask_state::UNALLOCATED, stream, mr); if (group_labels.empty()) { return result; } auto resultview = result->mutable_view(); // aggregation::COUNT_ALL thrust::exclusive_scan_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), thrust::make_constant_iterator<size_type>(1), resultview.begin<size_type>()); return result; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_rank_scan.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common_utils.cuh" #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/utilities/device_operators.cuh> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/functional.h> #include <thrust/iterator/reverse_iterator.h> #include <thrust/pair.h> #include <thrust/scan.h> #include <thrust/tabulate.h> #include <thrust/transform.h> namespace cudf { namespace groupby { namespace detail { namespace { template <bool forward, typename permuted_equal_t, typename value_resolver> struct unique_identifier { unique_identifier(size_type const* labels, size_type const* offsets, permuted_equal_t permuted_equal, value_resolver resolver) : _labels(labels), _offsets(offsets), _permuted_equal(permuted_equal), _resolver(resolver) { } auto __device__ operator()(size_type row_index) const noexcept { auto const group_start = _offsets[_labels[row_index]]; if constexpr (forward) { // First value of equal values is 1. return _resolver(row_index == group_start || !_permuted_equal(row_index, row_index - 1), row_index - group_start); } else { auto const group_end = _offsets[_labels[row_index] + 1]; // Last value of equal values is 1. return _resolver(row_index + 1 == group_end || !_permuted_equal(row_index, row_index + 1), row_index - group_start); } } private: size_type const* _labels; size_type const* _offsets; permuted_equal_t _permuted_equal; value_resolver _resolver; }; /** * @brief generate grouped row ranks or dense ranks using a row comparison then scan the results * * @tparam forward true if the rank scan computation should use forward iterator traversal (default) * else reverse iterator traversal * @tparam value_resolver flag value resolver function with boolean first and row number arguments * @tparam scan_operator scan function ran on the flag values * @param grouped_values input column to generate ranks for * @param value_order column of type INT32 that contains the order of the values in the * grouped_values column * @param group_labels ID of group that the corresponding value belongs to * @param group_offsets group index offsets with group ID indices * @param resolver flag value resolver * @param scan_op scan operation ran on the flag results * @param has_nulls true if nulls are included in the `grouped_values` column * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return std::unique_ptr<column> rank values */ template <bool forward, typename value_resolver, typename scan_operator> std::unique_ptr<column> rank_generator(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, value_resolver resolver, scan_operator scan_op, bool has_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const grouped_values_view = table_view{{grouped_values}}; auto const comparator = cudf::experimental::row::equality::self_comparator{grouped_values_view, stream}; auto ranks = make_fixed_width_column( data_type{type_to_id<size_type>()}, grouped_values.size(), mask_state::UNALLOCATED, stream, mr); auto mutable_ranks = ranks->mutable_view(); auto const comparator_helper = [&](auto const d_equal) { auto const permuted_equal = permuted_row_equality_comparator(d_equal, value_order.begin<size_type>()); thrust::tabulate(rmm::exec_policy(stream), mutable_ranks.begin<size_type>(), mutable_ranks.end<size_type>(), unique_identifier<forward, decltype(permuted_equal), value_resolver>( group_labels.begin(), group_offsets.begin(), permuted_equal, resolver)); }; if (cudf::detail::has_nested_columns(grouped_values_view)) { auto const d_equal = comparator.equal_to<true>(cudf::nullate::DYNAMIC{has_nulls}, null_equality::EQUAL); comparator_helper(d_equal); } else { auto const d_equal = comparator.equal_to<false>(cudf::nullate::DYNAMIC{has_nulls}, null_equality::EQUAL); comparator_helper(d_equal); } auto [group_labels_begin, mutable_rank_begin] = [&]() { if constexpr (forward) { return thrust::pair{group_labels.begin(), mutable_ranks.begin<size_type>()}; } else { return thrust::pair{thrust::reverse_iterator(group_labels.end()), thrust::reverse_iterator(mutable_ranks.end<size_type>())}; } }(); thrust::inclusive_scan_by_key(rmm::exec_policy(stream), group_labels_begin, group_labels_begin + group_labels.size(), mutable_rank_begin, mutable_rank_begin, thrust::equal_to{}, scan_op); return ranks; } } // namespace std::unique_ptr<column> min_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return rank_generator<true>( grouped_values, value_order, group_labels, group_offsets, [] __device__(bool unequal, auto row_index_in_group) { return unequal ? row_index_in_group + 1 : 0; }, DeviceMax{}, has_nested_nulls(table_view{{grouped_values}}), stream, mr); } std::unique_ptr<column> max_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return rank_generator<false>( grouped_values, value_order, group_labels, group_offsets, [] __device__(bool unequal, auto row_index_in_group) { return unequal ? row_index_in_group + 1 : std::numeric_limits<size_type>::max(); }, DeviceMin{}, has_nested_nulls(table_view{{grouped_values}}), stream, mr); } std::unique_ptr<column> first_rank_scan(column_view const& grouped_values, column_view const&, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto ranks = make_fixed_width_column( data_type{type_to_id<size_type>()}, group_labels.size(), mask_state::UNALLOCATED, stream, mr); auto mutable_ranks = ranks->mutable_view(); thrust::tabulate(rmm::exec_policy(stream), mutable_ranks.begin<size_type>(), mutable_ranks.end<size_type>(), [labels = group_labels.begin(), offsets = group_offsets.begin()] __device__(size_type row_index) { auto group_start = offsets[labels[row_index]]; return row_index - group_start + 1; }); return ranks; } std::unique_ptr<column> average_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto max_rank = max_rank_scan(grouped_values, value_order, group_labels, group_offsets, stream, rmm::mr::get_current_device_resource()); auto min_rank = min_rank_scan(grouped_values, value_order, group_labels, group_offsets, stream, rmm::mr::get_current_device_resource()); auto ranks = make_fixed_width_column( data_type{type_to_id<double>()}, group_labels.size(), mask_state::UNALLOCATED, stream, mr); auto mutable_ranks = ranks->mutable_view(); thrust::transform(rmm::exec_policy(stream), max_rank->view().begin<size_type>(), max_rank->view().end<size_type>(), min_rank->view().begin<size_type>(), mutable_ranks.begin<double>(), [] __device__(auto max_rank, auto min_rank) -> double { return min_rank + (max_rank - min_rank) / 2.0; }); return ranks; } std::unique_ptr<column> dense_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return rank_generator<true>( grouped_values, value_order, group_labels, group_offsets, [] __device__(bool const unequal, size_type const) { return unequal ? 1 : 0; }, DeviceSum{}, has_nested_nulls(table_view{{grouped_values}}), stream, mr); } std::unique_ptr<column> group_rank_to_percentage(rank_method const method, rank_percentage const percentage, column_view const& rank, column_view const& count, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(percentage != rank_percentage::NONE, "Percentage cannot be NONE"); auto ranks = make_fixed_width_column( data_type{type_to_id<double>()}, group_labels.size(), mask_state::UNALLOCATED, stream, mr); auto mutable_ranks = ranks->mutable_view(); auto one_normalized = [] __device__(auto const rank, auto const group_size) { return group_size == 1 ? 0.0 : ((rank - 1.0) / (group_size - 1)); }; if (method == rank_method::DENSE) { thrust::tabulate(rmm::exec_policy(stream), mutable_ranks.begin<double>(), mutable_ranks.end<double>(), [percentage, one_normalized, is_double = rank.type().id() == type_id::FLOAT64, dcount = count.begin<size_type>(), labels = group_labels.begin(), offsets = group_offsets.begin(), d_rank = rank.begin<double>(), s_rank = rank.begin<size_type>()] __device__(size_type row_index) -> double { double const r = is_double ? d_rank[row_index] : s_rank[row_index]; auto const count = dcount[labels[row_index]]; size_type const last_rank_index = offsets[labels[row_index]] + count - 1; auto const last_rank = s_rank[last_rank_index]; return percentage == rank_percentage::ZERO_NORMALIZED ? r / last_rank : one_normalized(r, last_rank); }); } else { thrust::tabulate(rmm::exec_policy(stream), mutable_ranks.begin<double>(), mutable_ranks.end<double>(), [percentage, one_normalized, is_double = rank.type().id() == type_id::FLOAT64, dcount = count.begin<size_type>(), labels = group_labels.begin(), d_rank = rank.begin<double>(), s_rank = rank.begin<size_type>()] __device__(size_type row_index) -> double { double const r = is_double ? d_rank[row_index] : s_rank[row_index]; auto const count = dcount[labels[row_index]]; return percentage == rank_percentage::ZERO_NORMALIZED ? r / count : one_normalized(r, count); }); } ranks->set_null_count(0); return ranks; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/sort_helper.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common_utils.cuh" #include <stream_compaction/stream_compaction_common.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/groupby/sort_helper.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/labeling/label_segments.cuh> #include <cudf/detail/scatter.hpp> #include <cudf/detail/sequence.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/strings/string_view.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/distance.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/unique.h> #include <algorithm> #include <numeric> #include <tuple> namespace cudf { namespace groupby { namespace detail { namespace sort { sort_groupby_helper::sort_groupby_helper(table_view const& keys, null_policy include_null_keys, sorted keys_pre_sorted, std::vector<null_order> const& null_precedence) : _keys(keys), _num_keys(-1), _keys_pre_sorted(keys_pre_sorted), _include_null_keys(include_null_keys), _null_precedence(null_precedence) { // Cannot depend on caller's sorting if the column contains nulls, // and null values are to be excluded. // Re-sort the data, to filter out nulls more easily. if (keys_pre_sorted == sorted::YES and include_null_keys == null_policy::EXCLUDE and has_nulls(keys)) { _keys_pre_sorted = sorted::NO; } }; size_type sort_groupby_helper::num_keys(rmm::cuda_stream_view stream) { if (_num_keys > -1) return _num_keys; if (_include_null_keys == null_policy::EXCLUDE and has_nulls(_keys)) { // The number of rows w/o null values `n` is indicated by number of valid bits // in the row bitmask. When `_include_null_keys == NO`, then only rows `[0, n)` // in the sorted keys are considered for grouping. _num_keys = keys_bitmask_column(stream).size() - keys_bitmask_column(stream).null_count(); } else { _num_keys = _keys.num_rows(); } return _num_keys; } column_view sort_groupby_helper::key_sort_order(rmm::cuda_stream_view stream) { auto sliced_key_sorted_order = [stream, this]() { return cudf::detail::slice(this->_key_sorted_order->view(), 0, this->num_keys(stream), stream); }; if (_key_sorted_order) { return sliced_key_sorted_order(); } if (_keys_pre_sorted == sorted::YES) { _key_sorted_order = cudf::detail::sequence(_keys.num_rows(), numeric_scalar<size_type>(0), numeric_scalar<size_type>(1), stream, rmm::mr::get_current_device_resource()); return sliced_key_sorted_order(); } if (_include_null_keys == null_policy::INCLUDE || !cudf::has_nulls(_keys)) { // SQL style auto const precedence = _null_precedence.empty() ? std::vector(_keys.num_columns(), null_order::AFTER) : _null_precedence; _key_sorted_order = cudf::detail::stable_sorted_order( _keys, {}, precedence, stream, rmm::mr::get_current_device_resource()); } else { // Pandas style // Temporarily prepend the keys table with a column that indicates the // presence of a null value within a row. This allows moving all rows that // contain a null value to the end of the sorted order. auto const augmented_keys = table_view({table_view({keys_bitmask_column(stream)}), _keys}); auto const precedence = [&]() { auto precedence = _null_precedence.empty() ? std::vector<null_order>(_keys.num_columns(), null_order::AFTER) : _null_precedence; precedence.insert(precedence.begin(), null_order::AFTER); return precedence; }(); _key_sorted_order = cudf::detail::stable_sorted_order( augmented_keys, {}, precedence, stream, rmm::mr::get_current_device_resource()); // All rows with one or more null values are at the end of the resulting sorted order. } return sliced_key_sorted_order(); } sort_groupby_helper::index_vector const& sort_groupby_helper::group_offsets( rmm::cuda_stream_view stream) { if (_group_offsets) return *_group_offsets; auto const size = num_keys(stream); // Create a temporary variable and only set _group_offsets right before the return. // This way, a 2nd (parallel) call to this will not be given a partially created object. auto group_offsets = std::make_unique<index_vector>(size + 1, stream); auto const comparator = cudf::experimental::row::equality::self_comparator{_keys, stream}; auto const sorted_order = key_sort_order(stream).data<size_type>(); decltype(group_offsets->begin()) result_end; if (cudf::detail::has_nested_columns(_keys)) { auto const d_key_equal = comparator.equal_to<true>( cudf::nullate::DYNAMIC{cudf::has_nested_nulls(_keys)}, null_equality::EQUAL); // Using a temporary buffer for intermediate transform results from the iterator containing // the comparator speeds up compile-time significantly without much degradation in // runtime performance over using the comparator directly in thrust::unique_copy. auto result = rmm::device_uvector<bool>(size, stream); auto const itr = thrust::make_counting_iterator<size_type>(0); auto const row_eq = permuted_row_equality_comparator(d_key_equal, sorted_order); auto const ufn = cudf::detail::unique_copy_fn<decltype(itr), decltype(row_eq)>{ itr, duplicate_keep_option::KEEP_FIRST, row_eq, size - 1}; thrust::transform(rmm::exec_policy(stream), itr, itr + size, result.begin(), ufn); result_end = thrust::copy_if(rmm::exec_policy(stream), itr, itr + size, result.begin(), group_offsets->begin(), thrust::identity<bool>{}); } else { auto const d_key_equal = comparator.equal_to<false>( cudf::nullate::DYNAMIC{cudf::has_nested_nulls(_keys)}, null_equality::EQUAL); result_end = thrust::unique_copy(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(size), group_offsets->begin(), permuted_row_equality_comparator(d_key_equal, sorted_order)); } auto const num_groups = thrust::distance(group_offsets->begin(), result_end); group_offsets->set_element_async(num_groups, size, stream); group_offsets->resize(num_groups + 1, stream); _group_offsets = std::move(group_offsets); return *_group_offsets; } sort_groupby_helper::index_vector const& sort_groupby_helper::group_labels( rmm::cuda_stream_view stream) { if (_group_labels) return *_group_labels; // Create a temporary variable and only set _group_labels right before the return. // This way, a 2nd (parallel) call to this will not be given a partially created object. auto group_labels = std::make_unique<index_vector>(num_keys(stream), stream); if (num_keys(stream)) { auto const& offsets = group_offsets(stream); cudf::detail::label_segments( offsets.begin(), offsets.end(), group_labels->begin(), group_labels->end(), stream); } _group_labels = std::move(group_labels); return *_group_labels; } column_view sort_groupby_helper::unsorted_keys_labels(rmm::cuda_stream_view stream) { if (_unsorted_keys_labels) return _unsorted_keys_labels->view(); column_ptr temp_labels = make_numeric_column( data_type(type_to_id<size_type>()), _keys.num_rows(), mask_state::ALL_NULL, stream); auto group_labels_view = cudf::column_view(data_type(type_to_id<size_type>()), group_labels(stream).size(), group_labels(stream).data(), nullptr, 0); auto scatter_map = key_sort_order(stream); std::unique_ptr<table> t_unsorted_keys_labels = cudf::detail::scatter(table_view({group_labels_view}), scatter_map, table_view({temp_labels->view()}), stream, rmm::mr::get_current_device_resource()); _unsorted_keys_labels = std::move(t_unsorted_keys_labels->release()[0]); return _unsorted_keys_labels->view(); } column_view sort_groupby_helper::keys_bitmask_column(rmm::cuda_stream_view stream) { if (_keys_bitmask_column) return _keys_bitmask_column->view(); auto [row_bitmask, null_count] = cudf::detail::bitmask_and(_keys, stream, rmm::mr::get_current_device_resource()); auto const zero = numeric_scalar<int8_t>(0); // Create a temporary variable and only set _keys_bitmask_column right before the return. // This way, a 2nd (parallel) call to this will not be given a partially created object. auto keys_bitmask_column = cudf::detail::sequence( _keys.num_rows(), zero, zero, stream, rmm::mr::get_current_device_resource()); keys_bitmask_column->set_null_mask(std::move(row_bitmask), null_count); _keys_bitmask_column = std::move(keys_bitmask_column); return _keys_bitmask_column->view(); } sort_groupby_helper::column_ptr sort_groupby_helper::sorted_values( column_view const& values, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { column_ptr values_sort_order = cudf::detail::stable_sorted_order(table_view({unsorted_keys_labels(stream), values}), {}, std::vector<null_order>(2, null_order::AFTER), stream, mr); // Zero-copy slice this sort order so that its new size is num_keys() column_view gather_map = cudf::detail::slice(values_sort_order->view(), 0, num_keys(stream), stream); auto sorted_values_table = cudf::detail::gather(table_view({values}), gather_map, cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(sorted_values_table->release()[0]); } sort_groupby_helper::column_ptr sort_groupby_helper::grouped_values( column_view const& values, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto gather_map = key_sort_order(stream); auto grouped_values_table = cudf::detail::gather(table_view({values}), gather_map, cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(grouped_values_table->release()[0]); } std::unique_ptr<table> sort_groupby_helper::unique_keys(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto idx_data = key_sort_order(stream).data<size_type>(); auto gather_map_it = thrust::make_transform_iterator( group_offsets(stream).begin(), [idx_data] __device__(size_type i) { return idx_data[i]; }); return cudf::detail::gather(_keys, gather_map_it, gather_map_it + num_groups(stream), out_of_bounds_policy::DONT_CHECK, stream, mr); } std::unique_ptr<table> sort_groupby_helper::sorted_keys(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return cudf::detail::gather(_keys, key_sort_order(stream), cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); } } // namespace sort } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_merge_lists.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/gather.h> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_merge_lists(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(values.type().id() == type_id::LIST, "Input to `group_merge_lists` must be a lists column."); CUDF_EXPECTS(!values.nullable(), "Input to `group_merge_lists` must be a non-nullable lists column."); auto offsets_column = make_numeric_column( data_type(type_to_id<size_type>()), num_groups + 1, mask_state::UNALLOCATED, stream, mr); // Generate offsets of the output lists column by gathering from the provided group offsets and // the input list offsets. // // For example: // values = [[2, 1], [], [4, -1, -2], [], [<NA>, 4, <NA>]] // list_offsets = [0, 2, 2, 5, 5 8] // group_offsets = [0, 3, 5] // // then, the output offsets_column is [0, 5, 8]. // thrust::gather(rmm::exec_policy(stream), group_offsets.begin(), group_offsets.end(), lists_column_view(values).offsets_begin(), offsets_column->mutable_view().template begin<size_type>()); // The child column of the output lists column is just copied from the input column. auto child_column = std::make_unique<column>(lists_column_view(values).get_sliced_child(stream), stream, mr); return make_lists_column(num_groups, std::move(offsets_column), std::move(child_column), 0, rmm::device_buffer{}, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_collect.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/copy_if.cuh> #include <cudf/strings/detail/strings_children.cuh> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/copy.h> #include <thrust/count.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <memory> namespace cudf { namespace groupby { namespace detail { /** * @brief Purge null entries in grouped values, and adjust group offsets. * * @param values Grouped values to be purged * @param offsets Offsets of groups' starting points * @param num_groups Number of groups * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory * @return Pair of null-eliminated grouped values and corresponding offsets */ std::pair<std::unique_ptr<column>, std::unique_ptr<column>> purge_null_entries( column_view const& values, column_view const& offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_device_view = column_device_view::create(values, stream); auto not_null_pred = [d_value = *values_device_view] __device__(auto i) { return d_value.is_valid_nocheck(i); }; // Purge null entries in grouped values. auto null_purged_entries = cudf::detail::copy_if(table_view{{values}}, not_null_pred, stream, mr)->release(); auto null_purged_values = std::move(null_purged_entries.front()); null_purged_values->set_null_mask(rmm::device_buffer{0, stream, mr}, 0); // Recalculate offsets after null entries are purged. rmm::device_uvector<size_type> null_purged_sizes(num_groups, stream); thrust::transform( rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(num_groups), null_purged_sizes.begin(), [d_offsets = offsets.template begin<size_type>(), not_null_pred] __device__(auto i) { return thrust::count_if(thrust::seq, thrust::make_counting_iterator<size_type>(d_offsets[i]), thrust::make_counting_iterator<size_type>(d_offsets[i + 1]), not_null_pred); }); auto null_purged_offsets = std::get<0>(cudf::detail::make_offsets_child_column( null_purged_sizes.cbegin(), null_purged_sizes.cend(), stream, mr)); return std::pair(std::move(null_purged_values), std::move(null_purged_offsets)); } std::unique_ptr<column> group_collect(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, null_policy null_handling, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto [child_column, offsets_column] = [null_handling, num_groups, &values, &group_offsets, stream, mr] { auto offsets_column = make_numeric_column( data_type(type_to_id<size_type>()), num_groups + 1, mask_state::UNALLOCATED, stream, mr); thrust::copy(rmm::exec_policy(stream), group_offsets.begin(), group_offsets.end(), offsets_column->mutable_view().template begin<size_type>()); // If column of grouped values contains null elements, and null_policy == EXCLUDE, // those elements must be filtered out, and offsets recomputed. if (null_handling == null_policy::EXCLUDE && values.has_nulls()) { return cudf::groupby::detail::purge_null_entries( values, offsets_column->view(), num_groups, stream, mr); } else { return std::pair(std::make_unique<cudf::column>(values, stream, mr), std::move(offsets_column)); } }(); return make_lists_column(num_groups, std::move(offsets_column), std::move(child_column), 0, rmm::device_buffer{0, stream, mr}, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_argmax.cu
/* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_single_pass_reduction_util.cuh> #include <cudf/detail/gather.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/gather.h> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_argmax(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, column_view const& key_sort_order, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto indices = type_dispatcher(values.type(), group_reduction_dispatcher<aggregation::ARGMAX>{}, values, num_groups, group_labels, stream, mr); // The functor returns the index of maximum in the sorted values. // We need the index of maximum in the original unsorted values. // So use indices to gather the sort order used to sort `values`. // Gather map cannot be null so we make a view with the mask removed. // The values in data buffer of indices corresponding to null values was // initialized to ARGMAX_SENTINEL. Using gather_if. // This can't use gather because nulls in gathered column will not store ARGMAX_SENTINEL. auto indices_view = indices->mutable_view(); thrust::gather_if(rmm::exec_policy(stream), indices_view.begin<size_type>(), // map first indices_view.end<size_type>(), // map last indices_view.begin<size_type>(), // stencil key_sort_order.begin<size_type>(), // input indices_view.begin<size_type>(), // result [] __device__(auto i) { return (i != cudf::detail::ARGMAX_SENTINEL); }); return indices; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_min_scan.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_scan_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> min_scan(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return type_dispatcher(values.type(), group_scan_dispatcher<aggregation::MIN>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_nunique.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/aggregation.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/reduce.h> namespace cudf { namespace groupby { namespace detail { namespace { template <bool has_nested_columns, typename Nullate> struct is_unique_iterator_fn { using comparator_type = typename cudf::experimental::row::equality::device_row_comparator<has_nested_columns, Nullate>; Nullate nulls; column_device_view const v; comparator_type equal; null_policy null_handling; size_type const* group_offsets; size_type const* group_labels; is_unique_iterator_fn(Nullate nulls, column_device_view const& v, comparator_type const& equal, null_policy null_handling, size_type const* group_offsets, size_type const* group_labels) : nulls{nulls}, v{v}, equal{equal}, null_handling{null_handling}, group_offsets{group_offsets}, group_labels{group_labels} { } __device__ size_type operator()(size_type i) const { auto const is_input_countable = !nulls || (null_handling == null_policy::INCLUDE || v.is_valid_nocheck(i)); auto const is_unique = is_input_countable && (group_offsets[group_labels[i]] == i || // first element or (not equal(i, i - 1))); // new unique value in sorted return static_cast<size_type>(is_unique); } }; } // namespace std::unique_ptr<column> group_nunique(column_view const& values, cudf::device_span<size_type const> group_labels, size_type const num_groups, cudf::device_span<size_type const> group_offsets, null_policy null_handling, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(num_groups >= 0, "number of groups cannot be negative"); CUDF_EXPECTS(static_cast<size_t>(values.size()) == group_labels.size(), "Size of values column should be same as that of group labels"); auto result = make_numeric_column( data_type(type_to_id<size_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); if (num_groups == 0) { return result; } auto const values_view = table_view{{values}}; auto const comparator = cudf::experimental::row::equality::self_comparator{values_view, stream}; auto const d_values_view = column_device_view::create(values, stream); auto d_result = rmm::device_uvector<size_type>(group_labels.size(), stream); auto const comparator_helper = [&](auto const d_equal) { auto fn = is_unique_iterator_fn{nullate::DYNAMIC{values.has_nulls()}, *d_values_view, d_equal, null_handling, group_offsets.data(), group_labels.data()}; thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(values.size()), d_result.begin(), fn); }; if (cudf::detail::has_nested_columns(values_view)) { auto const d_equal = comparator.equal_to<true>( cudf::nullate::DYNAMIC{cudf::has_nested_nulls(values_view)}, null_equality::EQUAL); comparator_helper(d_equal); } else { auto const d_equal = comparator.equal_to<false>( cudf::nullate::DYNAMIC{cudf::has_nested_nulls(values_view)}, null_equality::EQUAL); comparator_helper(d_equal); } // calling this with a vector instead of a transform iterator is 10x faster to compile; // it also helps that we are only calling it once for both conditions thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), d_result.begin(), thrust::make_discard_iterator(), result->mutable_view().begin<size_type>()); return result; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_reductions.hpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/aggregation.hpp> #include <cudf/column/column.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <memory> /** @internal @file Internal API in this file are mostly segmented reduction operations on column, * which are used in sort-based groupby aggregations. * */ namespace cudf { namespace groupby { namespace detail { /** * @brief Internal API to calculate groupwise sum * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_sum = [7, -3, 4, <NA>] * @endcode * * @param values Grouped values to get sum of * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_sum(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise product * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_product = [6, 2, 4, <NA>] * @endcode * * @param values Grouped values to get product of * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_product(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise minimum value * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_min = [1, -2, 4, <NA>] * @endcode * * @param values Grouped values to get minimum from * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_min(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise maximum value * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_max = [4, -1, 4, <NA>] * @endcode * * @param values Grouped values to get maximum from * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_max(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate group-wise indices of maximum values. * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_max = [2, 0, 0, <NA>] * @endcode * * @param values Grouped values to get maximum value's index from * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param key_sort_order Indices indicating sort order of groupby keys * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_argmax(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, column_view const& key_sort_order, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate group-wise indices of minimum values. * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_max = [1, 1, 0, <NA>] * @endcode * * @param values Grouped values to get minimum value's index from * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param key_sort_order Indices indicating sort order of groupby keys * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_argmin(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, column_view const& key_sort_order, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate number of non-null values in each group of * @p values * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * num_groups = 4 * * group_count_valid = [3, 2, 1, 0] * @endcode * * @param values Grouped values to get valid count of * @param group_labels ID of group that the corresponding value belongs to * @param num_groups Number of groups ( unique values in @p group_labels ) * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_count_valid(column_view const& values, cudf::device_span<size_type const> group_labels, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate number of values in each group of @p values * * @code{.pseudo} * group_offsets = [0, 3, 5, 7, 8] * num_groups = 4 * * group_count_all = [3, 2, 2, 1] * @endcode * * @param group_offsets Offsets of groups' starting points within @p values * @param num_groups Number of groups ( unique values in @p group_labels ) * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_count_all(cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to compute histogram for each group in @p values. * * The returned column is a lists column, each list corresponds to one input group and stores the * histogram of the distinct elements in that group in the form of `STRUCT<value, count>`. * * Note that the order of distinct elements in each output list is not specified. * * @code{.pseudo} * values = [2, 1, 1, 3, 5, 2, 2, 3, 1, 4] * group_labels = [0, 0, 0, 1, 1, 1, 1, 1, 2, 2] * num_groups = 3 * * output = [[<1, 2>, <2, 1>], [<2, 2>, <3, 2>, <5, 1>], [<1, 1>, <4, 1>]] * @endcode * * @param values Grouped values to compute histogram * @param group_labels ID of group that the corresponding value belongs to * @param num_groups Number of groups * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_histogram(column_view const& values, cudf::device_span<size_type const> group_labels, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate sum of squares of differences from means. * * If there are only nulls in the group, the output value of that group will be null. * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * group_means = [2.333333, -1.5, 4.0, <NA>] * group_m2(...) = [4.666666, 1.0, 0.0, <NA>] * @endcode * * @param values Grouped values to compute M2 values * @param group_means Pre-computed groupwise MEAN * @param group_labels ID of group corresponding value in @p values belongs to * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_m2(column_view const& values, column_view const& group_means, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise variance * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * group_means = [2.333333, -1.5, 4.0, <NA>] * group_sizes = [3, 2, 2, 1] * ddof = 1 * * group_var = [2.333333, 0.5, <NA>, <NA>] * @endcode * * @param values Grouped values to get variance of * @param group_means Pre-calculated groupwise MEAN * @param group_sizes Number of valid elements per group * @param group_labels ID of group corresponding value in @p values belongs to * @param ddof Delta degrees of freedom. The divisor used in calculation of * `var` is `N - ddof`, where `N` is the group size. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_var(column_view const& values, column_view const& group_means, column_view const& group_sizes, cudf::device_span<size_type const> group_labels, size_type ddof, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise quantiles * * @code{.pseudo} * values = [1, 2, 4, -2, -1, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * group_sizes = [3, 2, 2, 1] * num_groups = 4 * quantiles = [0.25, 0.5] * * group_quantiles = [1.5, 2, -1.75, -1.5, 4, 4, <NA>, <NA>] * @endcode * * @param values Grouped and sorted (within group) values to get quantiles from * @param group_sizes Number of valid elements per group * @param group_offsets Offsets of groups' starting points within @p values * @param quantiles List of quantiles q where q lies in [0,1] * @param interp Method to use when desired value lies between data points * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_quantiles(column_view const& values, column_view const& group_sizes, cudf::device_span<size_type const> group_offsets, size_type const num_groups, std::vector<double> const& quantiles, interpolation interp, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate number of unique values in each group of * @p values * * @code{.pseudo} * values = [2, 4, 4, -1, -2, <NA>, 4, <NA>] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * group_offsets = [0, 3, 5, 7, 8] * num_groups = 4 * * group_nunique(null_policy::EXCLUDE) = [2, 2, 1, 0] * group_nunique(null_policy::INCLUDE) = [2, 2, 2, 1] * @endcode * * @param values Grouped and sorted (within group) values to get unique count of * @param group_labels ID of group that the corresponding value belongs to * @param num_groups Number of groups ( unique values in @p group_labels ) * @param group_offsets Offsets of groups' starting points within @p values * @param null_handling Exclude nulls while counting if null_policy::EXCLUDE, * Include nulls if null_policy::INCLUDE. * Nulls are treated equal. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_nunique(column_view const& values, cudf::device_span<size_type const> group_labels, size_type const num_groups, cudf::device_span<size_type const> group_offsets, null_policy null_handling, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate nth values in each group of @p values * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_sizes = [3, 2, 2, 1] * group_labels = [0, 0, 0, 1, 1, 2, 2, 3] * group_offsets = [0, 3, 5, 7, 8] * num_groups = 4 * * group_nth_element(n=0, null_policy::EXCLUDE) = [2, -1, 4, <NA>] * group_nth_element(n=0, null_policy::INCLUDE) = [2, -1, <NA>, <NA>] * @endcode * * @param values Grouped values to get nth value of * @param group_sizes Number of elements per group * @param group_labels ID of group that the corresponding value belongs to * @param group_offsets Offsets of groups' starting points within @p values * @param num_groups Number of groups ( unique values in @p group_labels ) * @param n nth element to choose from each group of @p values * @param null_handling Exclude nulls while counting if null_policy::EXCLUDE, * Include nulls if null_policy::INCLUDE. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_nth_element(column_view const& values, column_view const& group_sizes, cudf::device_span<size_type const> group_labels, cudf::device_span<size_type const> group_offsets, size_type num_groups, size_type n, null_policy null_handling, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to collect grouped values into a lists column * * @code{.pseudo} * values = [2, 1, 4, -1, -2, <NA>, 4, <NA>] * group_offsets = [0, 3, 5, 7, 8] * num_groups = 4 * * group_collect(...) = [[2, 1, 4], [-1, -2], [<NA>, 4], [<NA>]] * @endcode * * @param values Grouped values to collect. * @param group_offsets Offsets of groups' starting points within @p values. * @param num_groups Number of groups. * @param null_handling Exclude nulls while counting if null_policy::EXCLUDE, * include nulls if null_policy::INCLUDE. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory. */ std::unique_ptr<column> group_collect(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, null_policy null_handling, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to merge grouped lists into one list. * * @code{.pseudo} * values = [[2, 1], [], [4, -1, -2], [], [<NA>, 4, <NA>]] * group_offsets = [0, 3, 5] * num_groups = 2 * * group_merge_lists(...) = [[2, 1, 4, -1, -2], [<NA>, 4, <NA>]] * @endcode * * @param values Grouped values (lists column) to collect. * @param group_offsets Offsets of groups' starting points within @p values. * @param num_groups Number of groups. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory. */ std::unique_ptr<column> group_merge_lists(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to merge grouped M2 values corresponding to the same key. * * The values of M2 are merged following the parallel algorithm described here: * `https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm` * * Merging M2 values require accessing to partial M2 values, means, and valid counts. Thus, the * input to this aggregation need to be a structs column containing tuples of 3 values * `(valid_count, mean, M2)`. * * This aggregation not only merges the partial results of `M2` but also merged all the partial * results of input aggregations (`COUNT_VALID`, `MEAN`, and `M2`). As such, the output will be a * structs column containing children columns of merged `COUNT_VALID`, `MEAN`, and `M2` values. * * @param values Grouped values (tuples of values `(valid_count, mean, M2)`) to merge. * @param group_offsets Offsets of groups' starting points within @p values. * @param num_groups Number of groups. * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_merge_m2(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to merge multiple output of HISTOGRAM aggregation. * * The input values column should be given as a lists column in the form of * `LIST<STRUCT<value, count>>`. * After merging, the order of distinct elements in each output list is not specified. * * @code{.pseudo} * values = [ [<1, 2>, <2, 1>], [<2, 2>], [<3, 2>, <2, 1>], [<1, 1>, <2, 1>] ] * group_offsets = [ 0, 2, 4] * num_groups = 2 * * output = [[<1, 2>, <2, 3>], [<1, 1>, <2, 2>, <3, 2>]]] * @endcode * * @param values Grouped values to get valid count of * @param group_offsets Offsets of groups' starting points within @p values * @param num_groups Number of groups * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_merge_histogram(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to find covariance of child columns of a non-nullable struct column. * * @param values_0 The first grouped values column to compute covariance * @param values_1 The second grouped values column to compute covariance * @param group_labels ID of group that the corresponding value belongs to * @param num_groups Number of groups. * @param count The count of valid rows of the grouped values of both columns * @param mean_0 The mean of the first grouped values column * @param mean_1 The mean of the second grouped values column * @param min_periods The minimum number of non-null rows required to consider the covariance * @param ddof The delta degrees of freedom used in the calculation of the variance * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_covariance(column_view const& values_0, column_view const& values_1, cudf::device_span<size_type const> group_labels, size_type num_groups, column_view const& count, column_view const& mean_0, column_view const& mean_1, size_type min_periods, size_type ddof, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to find correlation from covariance and standard deviation. * * @param covariance The covariance of two grouped values columns * @param stddev_0 The standard deviation of the first grouped values column * @param stddev_1 The standard deviation of the second grouped values column * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> group_correlation(column_view const& covariance, column_view const& stddev_0, column_view const& stddev_1, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/functors.hpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/column/column.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/result_cache.hpp> #include <cudf/detail/groupby/sort_helper.hpp> #include <cudf/types.hpp> #include <rmm/cuda_stream_view.hpp> #include <memory> namespace cudf { namespace groupby { namespace detail { /** * @brief Functor to dispatch aggregation with * * This functor is to be used with `aggregation_dispatcher` to compute the * appropriate aggregation. If the values on which to run the aggregation are * unchanged, then this functor should be re-used. This is because it stores * memoised sorted and/or grouped values and re-using will save on computation * of these values. */ struct store_result_functor { store_result_functor(column_view const& values, sort::sort_groupby_helper& helper, cudf::detail::result_cache& cache, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr, sorted keys_are_sorted = sorted::NO) : helper(helper), cache(cache), values(values), stream(stream), mr(mr), keys_are_sorted(keys_are_sorted) { } protected: /** * @brief Check if the groupby keys are presorted */ [[nodiscard]] bool is_presorted() const { return keys_are_sorted == sorted::YES; } /** * @brief Get the grouped values * * Computes the grouped values from @p values on first invocation and returns * the stored result on subsequent invocation */ column_view get_grouped_values() { if (is_presorted()) { return values; } // TODO (dm): After implementing single pass multi-agg, explore making a // cache of all grouped value columns rather than one at a time if (grouped_values) return grouped_values->view(); else if (sorted_values) // In scan, it wouldn't be ok to return sorted values when asked for grouped values. // It's overridden in scan implementation. return sorted_values->view(); else return (grouped_values = helper.grouped_values(values, stream, mr))->view(); }; /** * @brief Get the grouped and sorted values * * Computes the grouped and sorted (within each group) values from @p values * on first invocation and returns the stored result on subsequent invocation */ column_view get_sorted_values() { return sorted_values ? sorted_values->view() : (sorted_values = helper.sorted_values(values, stream, mr))->view(); }; protected: sort::sort_groupby_helper& helper; ///< Sort helper cudf::detail::result_cache& cache; ///< cache of results to store into column_view const& values; ///< Column of values to group and aggregate rmm::cuda_stream_view stream; ///< CUDA stream on which to execute kernels rmm::mr::device_memory_resource* mr; ///< Memory resource to allocate space for results sorted keys_are_sorted; ///< Whether the keys are sorted std::unique_ptr<column> sorted_values; ///< Memoised grouped and sorted values std::unique_ptr<column> grouped_values; ///< Memoised grouped values }; } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/common_utils.cuh
/* * Copyright (c) 2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/types.hpp> namespace cudf::groupby::detail { /** * @brief Functor to compare two rows of a table in given permutation order * * This is useful to identify unique elements in a sorted order table, when the permutation order is * the sorted order of the table. */ template <typename ComparatorT, typename Iterator> struct permuted_row_equality_comparator { /** * @brief Constructs a permuted comparator object which compares two rows of the table in given * permutation order * * @param comparator Equality comparator * @param permutation The permutation map that specifies the effective ordering of * `t`. Must be the same size as `t.num_rows()` */ permuted_row_equality_comparator(ComparatorT const& comparator, Iterator const permutation) : _comparator{comparator}, _permutation{permutation} { } /** * @brief Returns true if the two rows at the specified indices in the permuted * order are equivalent. * * For example, comparing rows `i` and `j` is equivalent to comparing * rows `permutation[i]` and `permutation[j]` in the original table. * * @param lhs The index of the first row * @param rhs The index of the second row * @returns true if the two specified rows in the permuted order are equivalent */ __device__ bool operator()(cudf::size_type lhs, cudf::size_type rhs) const { return _comparator(_permutation[lhs], _permutation[rhs]); }; private: ComparatorT const _comparator; Iterator const _permutation; }; } // namespace cudf::groupby::detail
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_merge_m2.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/structs/structs_column_view.hpp> #include <cudf/utilities/span.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/reduce.h> #include <thrust/transform.h> #include <thrust/tuple.h> namespace cudf { namespace groupby { namespace detail { namespace { /** * @brief Struct to store partial results for merging. */ template <class result_type> struct partial_result { size_type count; result_type mean; result_type M2; }; /** * @brief Functor to accumulate (merge) all partial results corresponding to the same key into a * final result storing in a member variable. It performs merging for the partial results of * `COUNT_VALID`, `MEAN`, and `M2` at the same time. */ template <class result_type> struct accumulate_fn { partial_result<result_type> merge_vals; void __device__ operator()(partial_result<result_type> const& partial_vals) noexcept { if (partial_vals.count == 0) { return; } auto const n_ab = merge_vals.count + partial_vals.count; auto const delta = partial_vals.mean - merge_vals.mean; merge_vals.M2 += partial_vals.M2 + (delta * delta) * static_cast<result_type>(merge_vals.count) * static_cast<result_type>(partial_vals.count) / n_ab; merge_vals.mean = (merge_vals.mean * merge_vals.count + partial_vals.mean * partial_vals.count) / n_ab; merge_vals.count = n_ab; } }; /** * @brief Functor to merge partial results of `COUNT_VALID`, `MEAN`, and `M2` aggregations * for a given group (key) index. */ template <class result_type> struct merge_fn { size_type const* const d_offsets; size_type const* const d_counts; result_type const* const d_means; result_type const* const d_M2s; auto __device__ operator()(size_type const group_idx) noexcept { auto const start_idx = d_offsets[group_idx], end_idx = d_offsets[group_idx + 1]; // This case should never happen, because all groups are non-empty as the results of // aggregation. Here we just to make sure we cover this case. if (start_idx == end_idx) { return thrust::make_tuple(size_type{0}, result_type{0}, result_type{0}, int8_t{0}); } // If `(n = d_counts[idx]) > 0` then `d_means[idx] != null` and `d_M2s[idx] != null`. // Otherwise (`n == 0`), these value (mean and M2) will always be nulls. // In such cases, reading `mean` and `M2` from memory will return garbage values. // By setting these values to zero when `n == 0`, we can safely merge the all-zero tuple without // affecting the final result. auto get_partial_result = [&] __device__(size_type idx) { { auto const n = d_counts[idx]; return n > 0 ? partial_result<result_type>{n, d_means[idx], d_M2s[idx]} : partial_result<result_type>{size_type{0}, result_type{0}, result_type{0}}; }; }; // Firstly, store tuple(count, mean, M2) of the first partial result in an accumulator. auto accumulator = accumulate_fn<result_type>{get_partial_result(start_idx)}; // Then, accumulate (merge) the remaining partial results into that accumulator. for (auto idx = start_idx + 1; idx < end_idx; ++idx) { accumulator(get_partial_result(idx)); } // Get the final result after merging. auto const& merge_vals = accumulator.merge_vals; // If there are all nulls in the partial results (i.e., sum of all valid counts is // zero), then the output is a null. auto const is_valid = int8_t{merge_vals.count > 0}; return thrust::make_tuple(merge_vals.count, merge_vals.mean, merge_vals.M2, is_valid); } }; } // namespace std::unique_ptr<column> group_merge_m2(column_view const& values, cudf::device_span<size_type const> group_offsets, size_type num_groups, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(values.type().id() == type_id::STRUCT, "Input to `group_merge_m2` must be a structs column."); CUDF_EXPECTS(values.num_children() == 3, "Input to `group_merge_m2` must be a structs column having 3 children columns."); using result_type = id_to_type<type_id::FLOAT64>; static_assert( std::is_same_v<cudf::detail::target_type_t<result_type, aggregation::Kind::M2>, result_type>); CUDF_EXPECTS(values.child(0).type().id() == type_id::INT32 && values.child(1).type().id() == type_to_id<result_type>() && values.child(2).type().id() == type_to_id<result_type>(), "Input to `group_merge_m2` must be a structs column having children columns " "containing tuples of (M2_value, mean, valid_count)."); auto result_counts = make_numeric_column( data_type(type_to_id<size_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); auto result_means = make_numeric_column( data_type(type_to_id<result_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); auto result_M2s = make_numeric_column( data_type(type_to_id<result_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); auto validities = rmm::device_uvector<int8_t>(num_groups, stream); // Perform merging for all the aggregations. Their output (and their validity data) are written // out concurrently through an output zip iterator. using iterator_tuple = thrust::tuple<size_type*, result_type*, result_type*, int8_t*>; using output_iterator = thrust::zip_iterator<iterator_tuple>; auto const out_iter = output_iterator{thrust::make_tuple(result_counts->mutable_view().template data<size_type>(), result_means->mutable_view().template data<result_type>(), result_M2s->mutable_view().template data<result_type>(), validities.begin())}; auto const count_valid = values.child(0); auto const mean_values = values.child(1); auto const M2_values = values.child(2); auto const iter = thrust::make_counting_iterator<size_type>(0); auto const fn = merge_fn<result_type>{group_offsets.begin(), count_valid.template begin<size_type>(), mean_values.template begin<result_type>(), M2_values.template begin<result_type>()}; thrust::transform(rmm::exec_policy(stream), iter, iter + num_groups, out_iter, fn); // Generate bitmask for the output. // Only mean and M2 values can be nullable. Count column must be non-nullable. auto [null_mask, null_count] = cudf::detail::valid_if(validities.begin(), validities.end(), thrust::identity{}, stream, mr); if (null_count > 0) { result_means->set_null_mask(null_mask, null_count, stream); // copy null_mask result_M2s->set_null_mask(std::move(null_mask), null_count); // take over null_mask } // Output is a structs column containing the merged values of `COUNT_VALID`, `MEAN`, and `M2`. std::vector<std::unique_ptr<column>> out_columns; out_columns.emplace_back(std::move(result_counts)); out_columns.emplace_back(std::move(result_means)); out_columns.emplace_back(std::move(result_M2s)); auto result = cudf::make_structs_column( num_groups, std::move(out_columns), 0, rmm::device_buffer{0, stream, mr}, stream, mr); return result; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_std.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "group_reductions.hpp" #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/dictionary/detail/iterator.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/span.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_scalar.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/reduce.h> #include <thrust/transform.h> namespace cudf { namespace groupby { namespace detail { namespace { template <typename ResultType, typename Iterator> struct var_transform { column_device_view const d_values; Iterator values_iter; ResultType const* d_means; size_type const* d_group_sizes; size_type const* d_group_labels; size_type ddof; __device__ ResultType operator()(size_type i) const { if (d_values.is_null(i)) return 0.0; auto x = static_cast<ResultType>(values_iter[i]); size_type group_idx = d_group_labels[i]; size_type group_size = d_group_sizes[group_idx]; // prevent divide by zero error if (group_size == 0 or group_size - ddof <= 0) return 0.0; ResultType mean = d_means[group_idx]; return (x - mean) * (x - mean) / (group_size - ddof); } }; template <typename ResultType, typename Iterator> void reduce_by_key_fn(column_device_view const& values, Iterator values_iter, cudf::device_span<size_type const> group_labels, ResultType const* d_means, size_type const* d_group_sizes, size_type ddof, ResultType* d_result, rmm::cuda_stream_view stream) { auto var_fn = var_transform<ResultType, decltype(values_iter)>{ values, values_iter, d_means, d_group_sizes, group_labels.data(), ddof}; auto const itr = thrust::make_counting_iterator<size_type>(0); // Using a temporary buffer for intermediate transform results instead of // using the transform-iterator directly in thrust::reduce_by_key // improves compile-time significantly. auto vars = rmm::device_uvector<ResultType>(values.size(), stream); thrust::transform(rmm::exec_policy(stream), itr, itr + values.size(), vars.begin(), var_fn); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), vars.begin(), thrust::make_discard_iterator(), d_result); } struct var_functor { template <typename T> std::enable_if_t<std::is_arithmetic_v<T>, std::unique_ptr<column>> operator()( column_view const& values, column_view const& group_means, column_view const& group_sizes, cudf::device_span<size_type const> group_labels, size_type ddof, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using ResultType = cudf::detail::target_type_t<T, aggregation::Kind::VARIANCE>; std::unique_ptr<column> result = make_numeric_column(data_type(type_to_id<ResultType>()), group_sizes.size(), mask_state::UNINITIALIZED, stream, mr); auto values_view = column_device_view::create(values, stream); auto d_values = *values_view; auto d_means = group_means.data<ResultType>(); auto d_group_sizes = group_sizes.data<size_type>(); auto d_result = result->mutable_view().data<ResultType>(); if (!cudf::is_dictionary(values.type())) { auto values_iter = d_values.begin<T>(); reduce_by_key_fn( d_values, values_iter, group_labels, d_means, d_group_sizes, ddof, d_result, stream); } else { auto values_iter = cudf::dictionary::detail::make_dictionary_iterator<T>(*values_view); reduce_by_key_fn( d_values, values_iter, group_labels, d_means, d_group_sizes, ddof, d_result, stream); } // set nulls auto result_view = mutable_column_device_view::create(*result, stream); auto null_count = rmm::device_scalar<cudf::size_type>(0, stream, mr); auto d_null_count = null_count.data(); thrust::for_each_n( rmm::exec_policy(stream), thrust::make_counting_iterator(0), group_sizes.size(), [d_result = *result_view, d_group_sizes, ddof, d_null_count] __device__(size_type i) { size_type group_size = d_group_sizes[i]; if (group_size == 0 or group_size - ddof <= 0) { d_result.set_null(i); // Assuming that typical data does not have too many nulls this // atomic shouldn't serialize the code too much. The alternatives // would be 1) writing a more complex kernel using cub/shmem to // increase parallelism, or 2) calling `cudf::count_nulls` after the // fact. (1) is more work than it's worth without benchmarking, and // this approach should outperform (2) unless large amounts of the // data is null. atomicAdd(d_null_count, 1); } else { d_result.set_valid(i); } }); result->set_null_count(null_count.value(stream)); return result; } template <typename T, typename... Args> std::enable_if_t<!std::is_arithmetic_v<T>, std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("Only numeric types are supported in std/variance"); } }; } // namespace std::unique_ptr<column> group_var(column_view const& values, column_view const& group_means, column_view const& group_sizes, cudf::device_span<size_type const> group_labels, size_type ddof, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher( values_type, var_functor{}, values, group_means, group_sizes, group_labels, ddof, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_scan.hpp
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/aggregation.hpp> #include <cudf/column/column.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <memory> namespace cudf { namespace groupby { namespace detail { /** * @brief Internal API to calculate groupwise cumulative sum * * @param values Grouped values to get sum of * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> sum_scan(column_view const& values, size_type num_groups, device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise cumulative minimum value * * @param values Grouped values to get minimum from * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> min_scan(column_view const& values, size_type num_groups, device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise cumulative maximum value * * @param values Grouped values to get maximum from * @param num_groups Number of groups * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory */ std::unique_ptr<column> max_scan(column_view const& values, size_type num_groups, device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate cumulative number of values in each group * * @param group_labels ID of group that the corresponding value belongs to * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return Column of type INT32 of count values */ std::unique_ptr<column> count_scan(device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise min rank value * * @param grouped_values column or struct column that rows within a group are sorted by * @param value_order column of type INT32 that contains the order of the values in the * grouped_values column * @param group_labels ID of group that the corresponding value belongs to * @param group_offsets group index offsets with group ID indices * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return Column of type size_type of rank values */ std::unique_ptr<column> min_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise max rank value * * @details @copydetails min_rank_scan(column_view const& grouped_values, * column_view const& value_order, * device_span<size_type const> group_labels, * device_span<size_type const> group_offsets, * rmm::cuda_stream_view stream, * rmm::mr::device_memory_resource* mr) */ std::unique_ptr<column> max_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise first rank value * * @details @copydetails min_rank_scan(column_view const& grouped_values, * column_view const& value_order, * device_span<size_type const> group_labels, * device_span<size_type const> group_offsets, * rmm::cuda_stream_view stream, * rmm::mr::device_memory_resource* mr) */ std::unique_ptr<column> first_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise average rank value * * @details @copydetails min_rank_scan(column_view const& grouped_values, * column_view const& value_order, * device_span<size_type const> group_labels, * device_span<size_type const> group_offsets, * rmm::cuda_stream_view stream, * rmm::mr::device_memory_resource* mr) */ std::unique_ptr<column> average_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Internal API to calculate groupwise dense rank value * * @param grouped_values column or struct column that rows within a group are sorted by * @param group_labels ID of group that the corresponding value belongs to * @param group_offsets group index offsets with group ID indices * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return Column of type size_type of dense rank values */ std::unique_ptr<column> dense_rank_scan(column_view const& grouped_values, column_view const& value_order, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Convert groupwise rank to groupwise percentage rank * * @param method rank method * @param percentage enum to denote the type of conversion ranks to percentage in range (0,1] * @param rank Groupwise rank column * @param count Groupwise count column * @param group_labels ID of group that the corresponding value belongs to * @param group_offsets group index offsets with group ID indices * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory * @return Column of type double of rank values */ std::unique_ptr<column> group_rank_to_percentage(rank_method const method, rank_percentage const percentage, column_view const& rank, column_view const& count, device_span<size_type const> group_labels, device_span<size_type const> group_offsets, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_correlation.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_reductions.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/span.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/reduce.h> #include <thrust/transform.h> #include <thrust/tuple.h> #include <type_traits> namespace cudf { namespace groupby { namespace detail { namespace { template <typename T> constexpr bool is_double_convertible() { return std::is_convertible_v<T, double> || std::is_constructible_v<double, T>; } struct is_double_convertible_impl { template <typename T> bool operator()() { return is_double_convertible<T>(); } }; /** * @brief Typecasts each element of the column to `CastType` */ template <typename CastType> struct type_casted_accessor { template <typename Element> __device__ inline CastType operator()(cudf::size_type i, column_device_view const& col) const { if constexpr (column_device_view::has_element_accessor<Element>() and std::is_convertible_v<Element, CastType>) return static_cast<CastType>(col.element<Element>(i)); (void)i; (void)col; return {}; } }; template <typename ResultType> struct covariance_transform { column_device_view const d_values_0, d_values_1; ResultType const *d_means_0, *d_means_1; size_type const* d_group_sizes; size_type const* d_group_labels; size_type ddof{1}; // TODO update based on bias. __device__ static ResultType value(column_device_view const& view, size_type i) { bool const is_dict = view.type().id() == type_id::DICTIONARY32; i = is_dict ? static_cast<size_type>(view.element<dictionary32>(i)) : i; auto values_col = is_dict ? view.child(dictionary_column_view::keys_column_index) : view; return type_dispatcher(values_col.type(), type_casted_accessor<ResultType>{}, i, values_col); } __device__ ResultType operator()(size_type i) { if (d_values_0.is_null(i) or d_values_1.is_null(i)) return 0.0; // This has to be device dispatch because x and y type may differ auto const x = value(d_values_0, i); auto const y = value(d_values_1, i); size_type const group_idx = d_group_labels[i]; size_type const group_size = d_group_sizes[group_idx]; // prevent divide by zero error if (group_size == 0 or group_size - ddof <= 0) return 0.0; ResultType const xmean = d_means_0[group_idx]; ResultType const ymean = d_means_1[group_idx]; return (x - xmean) * (y - ymean) / (group_size - ddof); } }; } // namespace std::unique_ptr<column> group_covariance(column_view const& values_0, column_view const& values_1, cudf::device_span<size_type const> group_labels, size_type num_groups, column_view const& count, column_view const& mean_0, column_view const& mean_1, size_type min_periods, size_type ddof, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using result_type = id_to_type<type_id::FLOAT64>; static_assert( std::is_same_v<cudf::detail::target_type_t<result_type, aggregation::Kind::CORRELATION>, result_type>); // check if each child type can be converted to float64. auto get_base_type = [](auto const& col) { return (col.type().id() == type_id::DICTIONARY32 ? col.child(dictionary_column_view::keys_column_index) : col) .type(); }; bool const is_convertible = type_dispatcher(get_base_type(values_0), is_double_convertible_impl{}) and type_dispatcher(get_base_type(values_1), is_double_convertible_impl{}); CUDF_EXPECTS(is_convertible, "Input to `group_correlation` must be columns of type convertible to float64."); auto mean0_ptr = mean_0.begin<result_type>(); auto mean1_ptr = mean_1.begin<result_type>(); auto d_values_0 = column_device_view::create(values_0, stream); auto d_values_1 = column_device_view::create(values_1, stream); covariance_transform<result_type> covariance_transform_op{*d_values_0, *d_values_1, mean0_ptr, mean1_ptr, count.data<size_type>(), group_labels.begin(), ddof}; auto result = make_numeric_column( data_type(type_to_id<result_type>()), num_groups, mask_state::UNALLOCATED, stream, mr); auto d_result = result->mutable_view().begin<result_type>(); auto corr_iter = thrust::make_transform_iterator(thrust::make_counting_iterator(0), covariance_transform_op); thrust::reduce_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), corr_iter, thrust::make_discard_iterator(), d_result); auto is_null = [ddof, min_periods] __device__(size_type group_size) { return not(group_size == 0 or group_size - ddof <= 0 or group_size < min_periods); }; auto [new_nullmask, null_count] = cudf::detail::valid_if(count.begin<size_type>(), count.end<size_type>(), is_null, stream, mr); if (null_count != 0) { result->set_null_mask(std::move(new_nullmask), null_count); } return result; } std::unique_ptr<column> group_correlation(column_view const& covariance, column_view const& stddev_0, column_view const& stddev_1, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using result_type = id_to_type<type_id::FLOAT64>; CUDF_EXPECTS(covariance.type().id() == type_id::FLOAT64, "Covariance result must be FLOAT64"); auto stddev0_ptr = stddev_0.begin<result_type>(); auto stddev1_ptr = stddev_1.begin<result_type>(); auto stddev_iter = thrust::make_zip_iterator(thrust::make_tuple(stddev0_ptr, stddev1_ptr)); auto result = make_numeric_column(covariance.type(), covariance.size(), cudf::detail::copy_bitmask(covariance, stream, mr), covariance.null_count(), stream, mr); auto d_result = result->mutable_view().begin<result_type>(); thrust::transform(rmm::exec_policy(stream), covariance.begin<result_type>(), covariance.end<result_type>(), stddev_iter, d_result, [] __device__(auto const covariance, auto const stddev) { return covariance / thrust::get<0>(stddev) / thrust::get<1>(stddev); }); result->set_null_count(covariance.null_count()); return result; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_max_scan.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_scan_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> max_scan(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return type_dispatcher(values.type(), group_scan_dispatcher<aggregation::MAX>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/aggregate.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/common/utils.hpp> #include <groupby/sort/functors.hpp> #include <groupby/sort/group_reductions.hpp> #include <cudf/aggregation.hpp> #include <cudf/column/column.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/aggregation/result_cache.hpp> #include <cudf/detail/binaryop.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/groupby/sort_helper.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/tdigest/tdigest.hpp> #include <cudf/detail/unary.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/groupby.hpp> #include <cudf/lists/detail/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <rmm/cuda_stream_view.hpp> #include <memory> #include <unordered_map> #include <utility> namespace cudf { namespace groupby { namespace detail { /** * @brief Functor to dispatch aggregation with * * This functor is to be used with `aggregation_dispatcher` to compute the * appropriate aggregation. If the values on which to run the aggregation are * unchanged, then this functor should be re-used. This is because it stores * memoised sorted and/or grouped values and re-using will save on computation * of these values. */ struct aggregate_result_functor final : store_result_functor { using store_result_functor::store_result_functor; template <aggregation::Kind k> void operator()(aggregation const& agg) { CUDF_FAIL("Unsupported aggregation."); } }; template <> void aggregate_result_functor::operator()<aggregation::COUNT_VALID>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, get_grouped_values().nullable() ? detail::group_count_valid( get_grouped_values(), helper.group_labels(stream), helper.num_groups(stream), stream, mr) : detail::group_count_all( helper.group_offsets(stream), helper.num_groups(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::COUNT_ALL>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::group_count_all(helper.group_offsets(stream), helper.num_groups(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::HISTOGRAM>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::group_histogram( get_grouped_values(), helper.group_labels(stream), helper.num_groups(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::SUM>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::group_sum( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::PRODUCT>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::group_product( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::ARGMAX>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result(values, agg, detail::group_argmax(get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), helper.key_sort_order(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::ARGMIN>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result(values, agg, detail::group_argmin(get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), helper.key_sort_order(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::MIN>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto result = [&]() { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); if (cudf::is_fixed_width(values_type)) { return detail::group_min( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr); } else { auto argmin_agg = make_argmin_aggregation(); operator()<aggregation::ARGMIN>(*argmin_agg); column_view argmin_result = cache.get_result(values, *argmin_agg); // We make a view of ARGMIN result without a null mask and gather using // this mask. The values in data buffer of ARGMIN result corresponding // to null values was initialized to ARGMIN_SENTINEL which is an out of // bounds index value and causes the gathered value to be null. column_view null_removed_map( data_type(type_to_id<size_type>()), argmin_result.size(), static_cast<void const*>(argmin_result.template data<size_type>()), nullptr, 0); auto transformed_result = cudf::detail::gather(table_view({values}), null_removed_map, argmin_result.nullable() ? cudf::out_of_bounds_policy::NULLIFY : cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(transformed_result->release()[0]); } }(); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::MAX>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto result = [&]() { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); if (cudf::is_fixed_width(values_type)) { return detail::group_max( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr); } else { auto argmax_agg = make_argmax_aggregation(); operator()<aggregation::ARGMAX>(*argmax_agg); column_view argmax_result = cache.get_result(values, *argmax_agg); // We make a view of ARGMAX result without a null mask and gather using // this mask. The values in data buffer of ARGMAX result corresponding // to null values was initialized to ARGMAX_SENTINEL which is an out of // bounds index value and causes the gathered value to be null. column_view null_removed_map( data_type(type_to_id<size_type>()), argmax_result.size(), static_cast<void const*>(argmax_result.template data<size_type>()), nullptr, 0); auto transformed_result = cudf::detail::gather(table_view({values}), null_removed_map, argmax_result.nullable() ? cudf::out_of_bounds_policy::NULLIFY : cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(transformed_result->release()[0]); } }(); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::MEAN>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto sum_agg = make_sum_aggregation(); auto count_agg = make_count_aggregation(); operator()<aggregation::SUM>(*sum_agg); operator()<aggregation::COUNT_VALID>(*count_agg); column_view sum_result = cache.get_result(values, *sum_agg); column_view count_result = cache.get_result(values, *count_agg); // TODO (dm): Special case for timestamp. Add target_type_impl for it. // Blocked until we support operator+ on timestamps auto col_type = cudf::is_dictionary(values.type()) ? cudf::dictionary_column_view(values).keys().type() : values.type(); auto result = cudf::detail::binary_operation(sum_result, count_result, binary_operator::DIV, cudf::detail::target_type(col_type, aggregation::MEAN), stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::M2>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto const mean_agg = make_mean_aggregation(); operator()<aggregation::MEAN>(*mean_agg); auto const mean_result = cache.get_result(values, *mean_agg); cache.add_result( values, agg, detail::group_m2(get_grouped_values(), mean_result, helper.group_labels(stream), stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::VARIANCE>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto& var_agg = dynamic_cast<cudf::detail::var_aggregation const&>(agg); auto mean_agg = make_mean_aggregation(); auto count_agg = make_count_aggregation(); operator()<aggregation::MEAN>(*mean_agg); operator()<aggregation::COUNT_VALID>(*count_agg); column_view mean_result = cache.get_result(values, *mean_agg); column_view group_sizes = cache.get_result(values, *count_agg); auto result = detail::group_var(get_grouped_values(), mean_result, group_sizes, helper.group_labels(stream), var_agg._ddof, stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::STD>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto& std_agg = dynamic_cast<cudf::detail::std_aggregation const&>(agg); auto var_agg = make_variance_aggregation(std_agg._ddof); operator()<aggregation::VARIANCE>(*var_agg); column_view var_result = cache.get_result(values, *var_agg); auto result = cudf::detail::unary_operation(var_result, unary_operator::SQRT, stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::QUANTILE>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto count_agg = make_count_aggregation(); operator()<aggregation::COUNT_VALID>(*count_agg); column_view group_sizes = cache.get_result(values, *count_agg); auto& quantile_agg = dynamic_cast<cudf::detail::quantile_aggregation const&>(agg); auto result = detail::group_quantiles(get_sorted_values(), group_sizes, helper.group_offsets(stream), helper.num_groups(stream), quantile_agg._quantiles, quantile_agg._interpolation, stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::MEDIAN>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto count_agg = make_count_aggregation(); operator()<aggregation::COUNT_VALID>(*count_agg); column_view group_sizes = cache.get_result(values, *count_agg); auto result = detail::group_quantiles(get_sorted_values(), group_sizes, helper.group_offsets(stream), helper.num_groups(stream), {0.5}, interpolation::LINEAR, stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::NUNIQUE>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto& nunique_agg = dynamic_cast<cudf::detail::nunique_aggregation const&>(agg); auto result = detail::group_nunique(get_sorted_values(), helper.group_labels(stream), helper.num_groups(stream), helper.group_offsets(stream), nunique_agg._null_handling, stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::NTH_ELEMENT>(aggregation const& agg) { if (cache.has_result(values, agg)) return; auto& nth_element_agg = dynamic_cast<cudf::detail::nth_element_aggregation const&>(agg); auto count_agg = make_count_aggregation(nth_element_agg._null_handling); if (count_agg->kind == aggregation::COUNT_VALID) { operator()<aggregation::COUNT_VALID>(*count_agg); } else if (count_agg->kind == aggregation::COUNT_ALL) { operator()<aggregation::COUNT_ALL>(*count_agg); } else { CUDF_FAIL("Wrong count aggregation kind"); } column_view group_sizes = cache.get_result(values, *count_agg); cache.add_result(values, agg, detail::group_nth_element(get_grouped_values(), group_sizes, helper.group_labels(stream), helper.group_offsets(stream), helper.num_groups(stream), nth_element_agg._n, nth_element_agg._null_handling, stream, mr)); } template <> void aggregate_result_functor::operator()<aggregation::COLLECT_LIST>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } auto const null_handling = dynamic_cast<cudf::detail::collect_list_aggregation const&>(agg)._null_handling; auto result = detail::group_collect(get_grouped_values(), helper.group_offsets(stream), helper.num_groups(stream), null_handling, stream, mr); cache.add_result(values, agg, std::move(result)); } template <> void aggregate_result_functor::operator()<aggregation::COLLECT_SET>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } auto const null_handling = dynamic_cast<cudf::detail::collect_set_aggregation const&>(agg)._null_handling; auto const collect_result = detail::group_collect(get_grouped_values(), helper.group_offsets(stream), helper.num_groups(stream), null_handling, stream, rmm::mr::get_current_device_resource()); auto const nulls_equal = dynamic_cast<cudf::detail::collect_set_aggregation const&>(agg)._nulls_equal; auto const nans_equal = dynamic_cast<cudf::detail::collect_set_aggregation const&>(agg)._nans_equal; cache.add_result( values, agg, lists::detail::distinct( lists_column_view{collect_result->view()}, nulls_equal, nans_equal, stream, mr)); } /** * @brief Perform merging for the lists that correspond to the same key value. * * This aggregation is similar to `COLLECT_LIST` with the following differences: * - It requires the input values to be a non-nullable lists column, and * - The values (lists) corresponding to the same key will not result in a list of lists as output * from `COLLECT_LIST`. Instead, those lists will result in a list generated by merging them * together. * * In practice, this aggregation is used to merge the partial results of multiple (distributed) * groupby `COLLECT_LIST` aggregations into a final `COLLECT_LIST` result. Those distributed * aggregations were executed on different values columns partitioned from the original values * column, then their results were (vertically) concatenated before given as the values column for * this aggregation. */ template <> void aggregate_result_functor::operator()<aggregation::MERGE_LISTS>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } cache.add_result( values, agg, detail::group_merge_lists( get_grouped_values(), helper.group_offsets(stream), helper.num_groups(stream), stream, mr)); } /** * @brief Perform merging for the lists corresponding to the same key value, then dropping duplicate * list entries. * * This aggregation is similar to `COLLECT_SET` with the following differences: * - It requires the input values to be a non-nullable lists column, and * - The values (lists) corresponding to the same key will result in a list generated by merging * them together then dropping duplicate entries. * * In practice, this aggregation is used to merge the partial results of multiple (distributed) * groupby `COLLECT_LIST` or `COLLECT_SET` aggregations into a final `COLLECT_SET` result. Those * distributed aggregations were executed on different values columns partitioned from the original * values column, then their results were (vertically) concatenated before given as the values * column for this aggregation. * * Firstly, this aggregation performs `MERGE_LISTS` to concatenate the input lists (corresponding to * the same key) into intermediate lists, then it calls `lists::distinct` on them to * remove duplicate list entries. As such, the input (partial results) to this aggregation should be * generated by (distributed) `COLLECT_LIST` aggregations, not `COLLECT_SET`, to avoid unnecessarily * removing duplicate entries for the partial results. * * Since duplicate list entries will be removed, the parameters `null_equality` and `nan_equality` * are needed for calling `lists::distinct`. */ template <> void aggregate_result_functor::operator()<aggregation::MERGE_SETS>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } auto const merged_result = detail::group_merge_lists(get_grouped_values(), helper.group_offsets(stream), helper.num_groups(stream), stream, rmm::mr::get_current_device_resource()); auto const& merge_sets_agg = dynamic_cast<cudf::detail::merge_sets_aggregation const&>(agg); cache.add_result(values, agg, lists::detail::distinct(lists_column_view{merged_result->view()}, merge_sets_agg._nulls_equal, merge_sets_agg._nans_equal, stream, mr)); } /** * @brief Perform merging for the M2 values that correspond to the same key value. * * The partial results input to this aggregation is a structs column with children are columns * generated by three other groupby aggregations: `COUNT_VALID`, `MEAN`, and `M2` that were * performed on partitioned datasets. After distributedly computed, the results output from these * aggregations are (vertically) concatenated before assembling into a structs column given as the * values column for this aggregation. * * For recursive merging of `M2` values, the aggregations values of all input (`COUNT_VALID`, * `MEAN`, and `M2`) are all merged and stored in the output of this aggregation. As such, the * output will be a structs column containing children columns of merged `COUNT_VALID`, `MEAN`, and * `M2` values. * * The values of M2 are merged following the parallel algorithm described here: * https://www.wikiwand.com/en/Algorithms_for_calculating_variance#/Parallel_algorithm */ template <> void aggregate_result_functor::operator()<aggregation::MERGE_M2>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } cache.add_result( values, agg, detail::group_merge_m2( get_grouped_values(), helper.group_offsets(stream), helper.num_groups(stream), stream, mr)); } /** * @brief Perform merging for multiple histograms that correspond to the same key value. * * The partial results input to this aggregation is a structs column that is concatenated from * multiple outputs of HISTOGRAM aggregations. */ template <> void aggregate_result_functor::operator()<aggregation::MERGE_HISTOGRAM>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } cache.add_result( values, agg, detail::group_merge_histogram( get_grouped_values(), helper.group_offsets(stream), helper.num_groups(stream), stream, mr)); } /** * @brief Creates column views with only valid elements in both input column views * * @param column_0 The first column * @param column_1 The second column * @return tuple with new null mask (if null masks of input differ) and new column views */ auto column_view_with_common_nulls(column_view const& column_0, column_view const& column_1) { auto [new_nullmask, null_count] = cudf::bitmask_and(table_view{{column_0, column_1}}); if (null_count == 0) { return std::make_tuple(std::move(new_nullmask), column_0, column_1); } auto column_view_with_new_nullmask = [](auto const& col, void* nullmask, auto null_count) { return column_view(col.type(), col.size(), col.head(), static_cast<cudf::bitmask_type const*>(nullmask), null_count, col.offset(), std::vector(col.child_begin(), col.child_end())); }; auto new_column_0 = null_count == column_0.null_count() ? column_0 : column_view_with_new_nullmask(column_0, new_nullmask.data(), null_count); auto new_column_1 = null_count == column_1.null_count() ? column_1 : column_view_with_new_nullmask(column_1, new_nullmask.data(), null_count); return std::make_tuple(std::move(new_nullmask), new_column_0, new_column_1); } /** * @brief Perform covariance between two child columns of non-nullable struct column. * */ template <> void aggregate_result_functor::operator()<aggregation::COVARIANCE>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } CUDF_EXPECTS(values.type().id() == type_id::STRUCT, "Input to `groupby covariance` must be a structs column."); CUDF_EXPECTS(values.num_children() == 2, "Input to `groupby covariance` must be a structs column having 2 children columns."); auto const& cov_agg = dynamic_cast<cudf::detail::covariance_aggregation const&>(agg); // Covariance only for valid values in both columns. // in non-identical null mask cases, this prevents caching of the results - STD, MEAN, COUNT. auto [_, values_child0, values_child1] = column_view_with_common_nulls(values.child(0), values.child(1)); auto mean_agg = make_mean_aggregation(); aggregate_result_functor(values_child0, helper, cache, stream, mr).operator()<aggregation::MEAN>(*mean_agg); aggregate_result_functor(values_child1, helper, cache, stream, mr).operator()<aggregation::MEAN>(*mean_agg); auto const mean0 = cache.get_result(values_child0, *mean_agg); auto const mean1 = cache.get_result(values_child1, *mean_agg); auto count_agg = make_count_aggregation(); auto const count = cache.get_result(values_child0, *count_agg); cache.add_result(values, agg, detail::group_covariance(get_grouped_values().child(0), get_grouped_values().child(1), helper.group_labels(stream), helper.num_groups(stream), count, mean0, mean1, cov_agg._min_periods, cov_agg._ddof, stream, mr)); } /** * @brief Perform correlation between two child columns of non-nullable struct column. * */ template <> void aggregate_result_functor::operator()<aggregation::CORRELATION>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } CUDF_EXPECTS(values.type().id() == type_id::STRUCT, "Input to `groupby correlation` must be a structs column."); CUDF_EXPECTS( values.num_children() == 2, "Input to `groupby correlation` must be a structs column having 2 children columns."); CUDF_EXPECTS(not values.nullable(), "Input to `groupby correlation` must be a non-nullable structs column."); auto const& corr_agg = dynamic_cast<cudf::detail::correlation_aggregation const&>(agg); CUDF_EXPECTS(corr_agg._type == correlation_type::PEARSON, "Only Pearson correlation is supported."); // Correlation only for valid values in both columns. // in non-identical null mask cases, this prevents caching of the results - STD, MEAN, COUNT auto [_, values_child0, values_child1] = column_view_with_common_nulls(values.child(0), values.child(1)); auto std_agg = make_std_aggregation(); aggregate_result_functor(values_child0, helper, cache, stream, mr).operator()<aggregation::STD>(*std_agg); aggregate_result_functor(values_child1, helper, cache, stream, mr).operator()<aggregation::STD>(*std_agg); // Compute covariance here to avoid repeated computation of mean & count auto cov_agg = make_covariance_aggregation(corr_agg._min_periods); if (not cache.has_result(values, *cov_agg)) { auto mean_agg = make_mean_aggregation(); auto const mean0 = cache.get_result(values_child0, *mean_agg); auto const mean1 = cache.get_result(values_child1, *mean_agg); auto count_agg = make_count_aggregation(); auto const count = cache.get_result(values_child0, *count_agg); auto const& cov_agg_obj = dynamic_cast<cudf::detail::covariance_aggregation const&>(*cov_agg); cache.add_result(values, *cov_agg, detail::group_covariance(get_grouped_values().child(0), get_grouped_values().child(1), helper.group_labels(stream), helper.num_groups(stream), count, mean0, mean1, cov_agg_obj._min_periods, cov_agg_obj._ddof, stream, mr)); } auto const stddev0 = cache.get_result(values_child0, *std_agg); auto const stddev1 = cache.get_result(values_child1, *std_agg); auto const covariance = cache.get_result(values, *cov_agg); cache.add_result( values, agg, detail::group_correlation(covariance, stddev0, stddev1, stream, mr)); } /** * @brief Generate a tdigest column from a grouped set of numeric input values. * * The tdigest column produced is of the following structure: * * struct { * // centroids for the digest * list { * struct { * double // mean * double // weight * }, * ... * } * // these are from the input stream, not the centroids. they are used * // during the percentile_approx computation near the beginning or * // end of the quantiles * double // min * double // max * } * * Each output row is a single tdigest. The length of the row is the "size" of the * tdigest, each element of which represents a weighted centroid (mean, weight). */ template <> void aggregate_result_functor::operator()<aggregation::TDIGEST>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } auto const max_centroids = dynamic_cast<cudf::detail::tdigest_aggregation const&>(agg).max_centroids; auto count_agg = make_count_aggregation(); operator()<aggregation::COUNT_VALID>(*count_agg); column_view valid_counts = cache.get_result(values, *count_agg); cache.add_result(values, agg, cudf::tdigest::detail::group_tdigest( get_sorted_values(), helper.group_offsets(stream), helper.group_labels(stream), {valid_counts.begin<size_type>(), static_cast<size_t>(valid_counts.size())}, helper.num_groups(stream), max_centroids, stream, mr)); } /** * @brief Generate a merged tdigest column from a grouped set of input tdigest columns. * * The tdigest column produced is of the following structure: * * struct { * // centroids for the digest * list { * struct { * double // mean * double // weight * }, * ... * } * // these are from the input stream, not the centroids. they are used * // during the percentile_approx computation near the beginning or * // end of the quantiles * double // min * double // max * } * * Each output row is a single tdigest. The length of the row is the "size" of the * tdigest, each element of which represents a weighted centroid (mean, weight). */ template <> void aggregate_result_functor::operator()<aggregation::MERGE_TDIGEST>(aggregation const& agg) { if (cache.has_result(values, agg)) { return; } auto const max_centroids = dynamic_cast<cudf::detail::merge_tdigest_aggregation const&>(agg).max_centroids; cache.add_result(values, agg, cudf::tdigest::detail::group_merge_tdigest(get_grouped_values(), helper.group_offsets(stream), helper.group_labels(stream), helper.num_groups(stream), max_centroids, stream, mr)); } } // namespace detail // Sort-based groupby std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby::sort_aggregate( host_span<aggregation_request const> requests, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // We're going to start by creating a cache of results so that aggs that // depend on other aggs will not have to be recalculated. e.g. mean depends on // sum and count. std depends on mean and count cudf::detail::result_cache cache(requests.size()); for (auto const& request : requests) { auto store_functor = detail::aggregate_result_functor(request.values, helper(), cache, stream, mr); for (auto const& agg : request.aggregations) { // TODO (dm): single pass compute all supported reductions cudf::detail::aggregation_dispatcher(agg->kind, store_functor, *agg); } } auto results = detail::extract_results(requests, cache, stream, mr); return std::pair(helper().unique_keys(stream, mr), std::move(results)); } } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_scan_util.cuh
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <reductions/nested_type_minmax_util.cuh> #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/aggregation/aggregation.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/structs/utilities.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/scan.h> namespace cudf { namespace groupby { namespace detail { // Error case when no other overload or specialization is available template <aggregation::Kind K, typename T, typename Enable = void> struct group_scan_functor { template <typename... Args> static std::unique_ptr<column> invoke(Args&&...) { CUDF_FAIL("Unsupported groupby scan type-agg combination."); } }; template <aggregation::Kind K> struct group_scan_dispatcher { template <typename T> std::unique_ptr<column> operator()(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return group_scan_functor<K, T>::invoke(values, num_groups, group_labels, stream, mr); } }; /** * @brief Check if the given aggregation K with data type T is supported in groupby scan. */ template <aggregation::Kind K, typename T> static constexpr bool is_group_scan_supported() { if (K == aggregation::SUM) return cudf::is_numeric<T>() || cudf::is_duration<T>() || cudf::is_fixed_point<T>(); else if (K == aggregation::MIN or K == aggregation::MAX) return not cudf::is_dictionary<T>() and (is_relationally_comparable<T, T>() or std::is_same_v<T, cudf::struct_view>); else return false; } template <aggregation::Kind K, typename T> struct group_scan_functor<K, T, std::enable_if_t<is_group_scan_supported<K, T>()>> { static std::unique_ptr<column> invoke(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using DeviceType = device_storage_type_t<T>; using OpType = cudf::detail::corresponding_operator_t<K>; using ResultType = cudf::detail::target_type_t<T, K>; using ResultDeviceType = device_storage_type_t<ResultType>; auto result_type = is_fixed_point<T>() ? data_type{type_to_id<ResultType>(), values.type().scale()} : data_type{type_to_id<ResultType>()}; std::unique_ptr<column> result = make_fixed_width_column(result_type, values.size(), mask_state::UNALLOCATED, stream, mr); if (values.is_empty()) { return result; } auto result_table = mutable_table_view({*result}); cudf::detail::initialize_with_identity(result_table, {K}, stream); auto result_view = mutable_column_device_view::create(result->mutable_view(), stream); auto values_view = column_device_view::create(values, stream); // Perform segmented scan. auto const do_scan = [&](auto const& inp_iter, auto const& out_iter, auto const& binop) { thrust::inclusive_scan_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), inp_iter, out_iter, thrust::equal_to{}, binop); }; if (values.has_nulls()) { auto input = thrust::make_transform_iterator( make_null_replacement_iterator(*values_view, OpType::template identity<DeviceType>()), thrust::identity<ResultDeviceType>{}); do_scan(input, result_view->begin<ResultDeviceType>(), OpType{}); result->set_null_mask(cudf::detail::copy_bitmask(values, stream, mr), values.null_count()); } else { auto input = thrust::make_transform_iterator(values_view->begin<DeviceType>(), thrust::identity<ResultDeviceType>{}); do_scan(input, result_view->begin<ResultDeviceType>(), OpType{}); } return result; } }; template <aggregation::Kind K> struct group_scan_functor<K, cudf::string_view, std::enable_if_t<is_group_scan_supported<K, cudf::string_view>()>> { static std::unique_ptr<column> invoke(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using OpType = cudf::detail::corresponding_operator_t<K>; if (values.is_empty()) { return cudf::make_empty_column(cudf::type_id::STRING); } // create an empty output vector we can fill with string_view instances auto results_vector = rmm::device_uvector<string_view>(values.size(), stream); auto values_view = column_device_view::create(values, stream); // Perform segmented scan. auto const do_scan = [&](auto const& inp_iter, auto const& out_iter, auto const& binop) { thrust::inclusive_scan_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), inp_iter, out_iter, thrust::equal_to{}, binop); }; if (values.has_nulls()) { auto input = make_null_replacement_iterator( *values_view, OpType::template identity<string_view>(), values.has_nulls()); do_scan(input, results_vector.begin(), OpType{}); } else { do_scan(values_view->begin<string_view>(), results_vector.begin(), OpType{}); } // turn the string_view vector into a strings column auto results = make_strings_column(results_vector, string_view{}, stream, mr); if (values.has_nulls()) results->set_null_mask(cudf::detail::copy_bitmask(values, stream, mr), values.null_count()); return results; } }; template <aggregation::Kind K> struct group_scan_functor<K, cudf::struct_view, std::enable_if_t<is_group_scan_supported<K, cudf::struct_view>()>> { static std::unique_ptr<column> invoke(column_view const& values, size_type num_groups, cudf::device_span<cudf::size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (values.is_empty()) { return cudf::empty_like(values); } // Create a gather map containing indices of the prefix min/max elements within each group. auto gather_map = rmm::device_uvector<size_type>(values.size(), stream); auto const binop_generator = cudf::reduction::detail::comparison_binop_generator::create<K>(values, stream); thrust::inclusive_scan_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.end(), thrust::make_counting_iterator<size_type>(0), gather_map.begin(), thrust::equal_to{}, binop_generator.binop()); // // Gather the children elements of the prefix min/max struct elements first. // // Typically, we should use `get_sliced_child` for each child column to properly handle the // input if it is a sliced view. However, since the input to this function is just generated // from groupby internal APIs which is never a sliced view, we just use `child_begin` and // `child_end` iterators for simplicity. auto scanned_children = cudf::detail::gather( table_view(std::vector<column_view>{values.child_begin(), values.child_end()}), gather_map, cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr) ->release(); // After gathering the children elements, we need to push down nulls from the root structs // column to them. if (values.has_nulls()) { for (std::unique_ptr<column>& child : scanned_children) { child = structs::detail::superimpose_nulls( values.null_mask(), values.null_count(), std::move(child), stream, mr); } } return make_structs_column(values.size(), std::move(scanned_children), values.null_count(), cudf::detail::copy_bitmask(values, stream, mr), stream, mr); } }; } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_argmin.cu
/* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_single_pass_reduction_util.cuh> #include <cudf/detail/gather.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/gather.h> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_argmin(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, column_view const& key_sort_order, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto indices = type_dispatcher(values.type(), group_reduction_dispatcher<aggregation::ARGMIN>{}, values, num_groups, group_labels, stream, mr); // The functor returns the index of minimum in the sorted values. // We need the index of minimum in the original unsorted values. // So use indices to gather the sort order used to sort `values`. // The values in data buffer of indices corresponding to null values was // initialized to ARGMIN_SENTINEL. Using gather_if. // This can't use gather because nulls in gathered column will not store ARGMIN_SENTINEL. auto indices_view = indices->mutable_view(); thrust::gather_if(rmm::exec_policy(stream), indices_view.begin<size_type>(), // map first indices_view.end<size_type>(), // map last indices_view.begin<size_type>(), // stencil key_sort_order.begin<size_type>(), // input indices_view.begin<size_type>(), // result [] __device__(auto i) { return (i != cudf::detail::ARGMIN_SENTINEL); }); return indices; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_sum.cu
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/utilities/span.hpp> #include <groupby/sort/group_single_pass_reduction_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_sum(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher(values_type, group_reduction_dispatcher<aggregation::SUM>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/scan.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/common/utils.hpp> #include <groupby/sort/functors.hpp> #include <groupby/sort/group_reductions.hpp> #include <groupby/sort/group_scan.hpp> #include <cudf/aggregation.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/detail/aggregation/result_cache.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/scatter.hpp> #include <cudf/detail/sequence.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/structs/utilities.hpp> #include <cudf/groupby.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/table/table.hpp> #include <cudf/types.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <memory> namespace cudf { namespace groupby { namespace detail { /** * @brief Functor to dispatch aggregation with * * This functor is to be used with `aggregation_dispatcher` to compute the * appropriate aggregation. If the values on which to run the aggregation are * unchanged, then this functor should be re-used. This is because it stores * memoised sorted and/or grouped values and re-using will save on computation * of these values. */ struct scan_result_functor final : store_result_functor { using store_result_functor::store_result_functor; template <aggregation::Kind k> void operator()(aggregation const& agg) { CUDF_FAIL("Unsupported groupby scan aggregation"); } private: column_view get_grouped_values() { // early exit if presorted if (is_presorted()) { return values; } // TODO (dm): After implementing single pass multi-agg, explore making a // cache of all grouped value columns rather than one at a time if (grouped_values) return grouped_values->view(); else return (grouped_values = helper.grouped_values(values, stream, mr))->view(); }; }; template <> void scan_result_functor::operator()<aggregation::SUM>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::sum_scan( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr)); } template <> void scan_result_functor::operator()<aggregation::MIN>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::min_scan( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr)); } template <> void scan_result_functor::operator()<aggregation::MAX>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result( values, agg, detail::max_scan( get_grouped_values(), helper.num_groups(stream), helper.group_labels(stream), stream, mr)); } template <> void scan_result_functor::operator()<aggregation::COUNT_ALL>(aggregation const& agg) { if (cache.has_result(values, agg)) return; cache.add_result(values, agg, detail::count_scan(helper.group_labels(stream), stream, mr)); } template <> void scan_result_functor::operator()<aggregation::RANK>(aggregation const& agg) { if (cache.has_result(values, agg)) return; CUDF_EXPECTS(!cudf::structs::detail::is_or_has_nested_lists(values), "Unsupported list type in grouped rank scan."); auto const& rank_agg = dynamic_cast<cudf::detail::rank_aggregation const&>(agg); auto const& group_labels = helper.group_labels(stream); auto const group_labels_view = column_view(cudf::device_span<size_type const>(group_labels)); auto const gather_map = [&]() { if (is_presorted()) { // assumes both keys and values are sorted, Spark does this. return cudf::detail::sequence(group_labels.size(), *cudf::make_fixed_width_scalar(size_type{0}, stream), stream, rmm::mr::get_current_device_resource()); } else { auto sort_order = (rank_agg._method == rank_method::FIRST ? cudf::detail::stable_sorted_order : cudf::detail::sorted_order); return sort_order(table_view({group_labels_view, get_grouped_values()}), {order::ASCENDING, rank_agg._column_order}, {null_order::AFTER, rank_agg._null_precedence}, stream, rmm::mr::get_current_device_resource()); } }(); auto rank_scan = [&]() { switch (rank_agg._method) { case rank_method::FIRST: return detail::first_rank_scan; case rank_method::AVERAGE: return detail::average_rank_scan; case rank_method::DENSE: return detail::dense_rank_scan; case rank_method::MIN: return detail::min_rank_scan; case rank_method::MAX: return detail::max_rank_scan; default: CUDF_FAIL("Unsupported rank method in groupby scan"); } }(); auto result = rank_scan(get_grouped_values(), *gather_map, helper.group_labels(stream), helper.group_offsets(stream), stream, rmm::mr::get_current_device_resource()); if (rank_agg._percentage != rank_percentage::NONE) { auto count = get_grouped_values().nullable() and rank_agg._null_handling == null_policy::EXCLUDE ? detail::group_count_valid(get_grouped_values(), helper.group_labels(stream), helper.num_groups(stream), stream, rmm::mr::get_current_device_resource()) : detail::group_count_all(helper.group_offsets(stream), helper.num_groups(stream), stream, rmm::mr::get_current_device_resource()); result = detail::group_rank_to_percentage(rank_agg._method, rank_agg._percentage, *result, *count, helper.group_labels(stream), helper.group_offsets(stream), stream, mr); } result = std::move( cudf::detail::scatter(table_view{{*result}}, *gather_map, table_view{{*result}}, stream, mr) ->release()[0]); if (rank_agg._null_handling == null_policy::EXCLUDE) { auto const values = get_grouped_values(); result->set_null_mask(cudf::detail::copy_bitmask(values, stream, mr), values.null_count()); } cache.add_result(values, agg, std::move(result)); } } // namespace detail // Sort-based groupby std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby::sort_scan( host_span<scan_request const> requests, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // We're going to start by creating a cache of results so that aggs that // depend on other aggs will not have to be recalculated. e.g. mean depends on // sum and count. std depends on mean and count cudf::detail::result_cache cache(requests.size()); for (auto const& request : requests) { auto store_functor = detail::scan_result_functor(request.values, helper(), cache, stream, mr, _keys_are_sorted); for (auto const& aggregation : request.aggregations) { // TODO (dm): single pass compute all supported reductions cudf::detail::aggregation_dispatcher(aggregation->kind, store_functor, *aggregation); } } auto results = detail::extract_results(requests, cache, stream, mr); return std::pair(helper().sorted_keys(stream, mr), std::move(results)); } } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_min.cu
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_single_pass_reduction_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_min(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher(values_type, group_reduction_dispatcher<aggregation::MIN>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_replace_nulls.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/groupby/group_replace_nulls.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/replace/nulls.cuh> #include <cudf/replace.hpp> #include <rmm/device_uvector.hpp> #include <thrust/functional.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/reverse_iterator.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/scan.h> #include <thrust/tuple.h> #include <utility> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_replace_nulls(cudf::column_view const& grouped_value, device_span<size_type const> group_labels, cudf::replace_policy replace_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { cudf::size_type size = grouped_value.size(); auto device_in = cudf::column_device_view::create(grouped_value, stream); auto index = thrust::make_counting_iterator<cudf::size_type>(0); auto valid_it = cudf::detail::make_validity_iterator(*device_in); auto in_begin = thrust::make_zip_iterator(thrust::make_tuple(index, valid_it)); rmm::device_uvector<cudf::size_type> gather_map(size, stream); auto gm_begin = thrust::make_zip_iterator( thrust::make_tuple(gather_map.begin(), thrust::make_discard_iterator())); auto func = cudf::detail::replace_policy_functor(); thrust::equal_to<cudf::size_type> eq; if (replace_policy == cudf::replace_policy::PRECEDING) { thrust::inclusive_scan_by_key(rmm::exec_policy(stream), group_labels.begin(), group_labels.begin() + size, in_begin, gm_begin, eq, func); } else { auto gl_rbegin = thrust::make_reverse_iterator(group_labels.begin() + size); auto in_rbegin = thrust::make_reverse_iterator(in_begin + size); auto gm_rbegin = thrust::make_reverse_iterator(gm_begin + size); thrust::inclusive_scan_by_key( rmm::exec_policy(stream), gl_rbegin, gl_rbegin + size, in_rbegin, gm_rbegin, eq, func); } auto output = cudf::detail::gather(cudf::table_view({grouped_value}), gather_map, cudf::out_of_bounds_policy::DONT_CHECK, cudf::detail::negative_index_policy::NOT_ALLOWED, stream, mr); return std::move(output->release()[0]); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/sort/group_max.cu
/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <groupby/sort/group_single_pass_reduction_util.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace groupby { namespace detail { std::unique_ptr<column> group_max(column_view const& values, size_type num_groups, cudf::device_span<size_type const> group_labels, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_type = cudf::is_dictionary(values.type()) ? dictionary_column_view(values).keys().type() : values.type(); return type_dispatcher(values_type, group_reduction_dispatcher<aggregation::MAX>{}, values, num_groups, group_labels, stream, mr); } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src/groupby
rapidsai_public_repos/cudf/cpp/src/groupby/common/utils.hpp
/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/detail/aggregation/result_cache.hpp> #include <cudf/detail/groupby.hpp> #include <cudf/utilities/span.hpp> #include <memory> #include <vector> namespace cudf { namespace groupby { namespace detail { template <typename RequestType> inline std::vector<aggregation_result> extract_results(host_span<RequestType const> requests, cudf::detail::result_cache& cache, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::vector<aggregation_result> results(requests.size()); std::unordered_map<std::pair<column_view, std::reference_wrapper<aggregation const>>, column_view, cudf::detail::pair_column_aggregation_hash, cudf::detail::pair_column_aggregation_equal_to> repeated_result; for (size_t i = 0; i < requests.size(); i++) { for (auto&& agg : requests[i].aggregations) { if (cache.has_result(requests[i].values, *agg)) { results[i].results.emplace_back(cache.release_result(requests[i].values, *agg)); repeated_result[{requests[i].values, *agg}] = results[i].results.back()->view(); } else { auto it = repeated_result.find({requests[i].values, *agg}); if (it != repeated_result.end()) { results[i].results.emplace_back(std::make_unique<column>(it->second, stream, mr)); } else { CUDF_FAIL("Cannot extract result from the cache"); } } } } return results; } } // namespace detail } // namespace groupby } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_semi.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "join_common_utils.cuh" #include "join_common_utils.hpp" #include "mixed_join_kernels_semi.cuh" #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/ast/expressions.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/join.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/fill.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/scan.h> #include <optional> #include <utility> namespace cudf { namespace detail { namespace { /** * @brief Device functor to create a pair of hash value and index for a given row. */ struct make_pair_function_semi { __device__ __forceinline__ cudf::detail::pair_type operator()(size_type i) const noexcept { // The value is irrelevant since we only ever use the hash map to check for // membership of a particular row index. return cuco::make_pair(static_cast<hash_value_type>(i), 0); } }; /** * @brief Equality comparator that composes two row_equality comparators. */ class double_row_equality { public: double_row_equality(row_equality equality_comparator, row_equality conditional_comparator) : _equality_comparator{equality_comparator}, _conditional_comparator{conditional_comparator} { } __device__ bool operator()(size_type lhs_row_index, size_type rhs_row_index) const noexcept { using experimental::row::lhs_index_type; using experimental::row::rhs_index_type; return _equality_comparator(lhs_index_type{lhs_row_index}, rhs_index_type{rhs_row_index}) && _conditional_comparator(lhs_index_type{lhs_row_index}, rhs_index_type{rhs_row_index}); } private: row_equality _equality_comparator; row_equality _conditional_comparator; }; } // namespace std::unique_ptr<rmm::device_uvector<size_type>> mixed_join_semi( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, join_kind join_type, std::optional<std::pair<std::size_t, device_span<size_type const>>> output_size_data, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS((join_type != join_kind::INNER_JOIN) && (join_type != join_kind::LEFT_JOIN) && (join_type != join_kind::FULL_JOIN), "Inner, left, and full joins should use mixed_join."); CUDF_EXPECTS(left_conditional.num_rows() == left_equality.num_rows(), "The left conditional and equality tables must have the same number of rows."); CUDF_EXPECTS(right_conditional.num_rows() == right_equality.num_rows(), "The right conditional and equality tables must have the same number of rows."); auto const right_num_rows{right_conditional.num_rows()}; auto const left_num_rows{left_conditional.num_rows()}; auto const swap_tables = (join_type == join_kind::INNER_JOIN) && (right_num_rows > left_num_rows); // The "outer" table is the larger of the two tables. The kernels are // launched with one thread per row of the outer table, which also means that // it is the probe table for the hash auto const outer_num_rows{swap_tables ? right_num_rows : left_num_rows}; // We can immediately filter out cases where the right table is empty. In // some cases, we return all the rows of the left table with a corresponding // null index for the right table; in others, we return an empty output. if (right_num_rows == 0) { switch (join_type) { // Anti and semi return all the row indices from left // with a corresponding NULL from the right. case join_kind::LEFT_ANTI_JOIN: return get_trivial_left_join_indices( left_conditional, stream, rmm::mr::get_current_device_resource()) .first; // Inner and left semi joins return empty output because no matches can exist. case join_kind::LEFT_SEMI_JOIN: return std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr); default: CUDF_FAIL("Invalid join kind."); break; } } else if (left_num_rows == 0) { switch (join_type) { // Anti and semi joins both return empty sets. case join_kind::LEFT_ANTI_JOIN: case join_kind::LEFT_SEMI_JOIN: return std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr); default: CUDF_FAIL("Invalid join kind."); break; } } // If evaluating the expression may produce null outputs we create a nullable // output column and follow the null-supporting expression evaluation code // path. auto const has_nulls = cudf::nullate::DYNAMIC{ cudf::has_nulls(left_equality) || cudf::has_nulls(right_equality) || binary_predicate.may_evaluate_null(left_conditional, right_conditional, stream)}; auto const parser = ast::detail::expression_parser{ binary_predicate, left_conditional, right_conditional, has_nulls, stream, mr}; CUDF_EXPECTS(parser.output_type().id() == type_id::BOOL8, "The expression must produce a boolean output."); // TODO: The non-conditional join impls start with a dictionary matching, // figure out what that is and what it's needed for (and if conditional joins // need to do the same). auto& probe = swap_tables ? right_equality : left_equality; auto& build = swap_tables ? left_equality : right_equality; auto probe_view = table_device_view::create(probe, stream); auto build_view = table_device_view::create(build, stream); auto left_conditional_view = table_device_view::create(left_conditional, stream); auto right_conditional_view = table_device_view::create(right_conditional, stream); auto const preprocessed_build = experimental::row::equality::preprocessed_table::create(build, stream); auto const preprocessed_probe = experimental::row::equality::preprocessed_table::create(probe, stream); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const equality_probe = row_comparator.equal_to<false>(has_nulls, compare_nulls); semi_map_type hash_table{compute_hash_table_size(build.num_rows()), cuco::empty_key{std::numeric_limits<hash_value_type>::max()}, cuco::empty_value{cudf::detail::JoinNoneValue}, detail::hash_table_allocator_type{default_allocator<char>{}, stream}, stream.value()}; // Create hash table containing all keys found in right table // TODO: To add support for nested columns we will need to flatten in many // places. However, this probably isn't worth adding any time soon since we // won't be able to support AST conditions for those types anyway. auto const build_nulls = cudf::nullate::DYNAMIC{cudf::has_nulls(build)}; auto const row_hash_build = cudf::experimental::row::hash::row_hasher{preprocessed_build}; auto const hash_build = row_hash_build.device_hasher(build_nulls); // Since we may see multiple rows that are identical in the equality tables // but differ in the conditional tables, the equality comparator used for // insertion must account for both sets of tables. An alternative solution // would be to use a multimap, but that solution would store duplicates where // equality and conditional rows are equal, so this approach is preferable. // One way to make this solution even more efficient would be to only include // the columns of the conditional table that are used by the expression, but // that requires additional plumbing through the AST machinery and is out of // scope for now. auto const row_comparator_build = cudf::experimental::row::equality::two_table_comparator{preprocessed_build, preprocessed_build}; auto const equality_build_equality = row_comparator_build.equal_to<false>(build_nulls, compare_nulls); auto const preprocessed_build_condtional = experimental::row::equality::preprocessed_table::create( swap_tables ? left_conditional : right_conditional, stream); auto const row_comparator_conditional_build = cudf::experimental::row::equality::two_table_comparator{preprocessed_build_condtional, preprocessed_build_condtional}; auto const equality_build_conditional = row_comparator_conditional_build.equal_to<false>(build_nulls, compare_nulls); double_row_equality equality_build{equality_build_equality, equality_build_conditional}; make_pair_function_semi pair_func_build{}; auto iter = cudf::detail::make_counting_transform_iterator(0, pair_func_build); // skip rows that are null here. if ((compare_nulls == null_equality::EQUAL) or (not nullable(build))) { hash_table.insert(iter, iter + right_num_rows, hash_build, equality_build, stream.value()); } else { thrust::counting_iterator<cudf::size_type> stencil(0); auto const [row_bitmask, _] = cudf::detail::bitmask_and(build, stream, rmm::mr::get_current_device_resource()); row_is_valid pred{static_cast<bitmask_type const*>(row_bitmask.data())}; // insert valid rows hash_table.insert_if( iter, iter + right_num_rows, stencil, pred, hash_build, equality_build, stream.value()); } auto hash_table_view = hash_table.get_device_view(); // For inner joins we support optimizing the join by launching one thread for // whichever table is larger rather than always using the left table. detail::grid_1d const config(outer_num_rows, DEFAULT_JOIN_BLOCK_SIZE); auto const shmem_size_per_block = parser.shmem_per_thread * config.num_threads_per_block; join_kind const kernel_join_type = join_type == join_kind::FULL_JOIN ? join_kind::LEFT_JOIN : join_type; // If the join size data was not provided as an input, compute it here. std::size_t join_size; // Using an optional because we only need to allocate a new vector if one was // not passed as input, and rmm::device_uvector is not default constructible std::optional<rmm::device_uvector<size_type>> matches_per_row{}; device_span<size_type const> matches_per_row_span{}; auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(has_nulls); if (output_size_data.has_value()) { join_size = output_size_data->first; matches_per_row_span = output_size_data->second; } else { // Allocate storage for the counter used to get the size of the join output rmm::device_scalar<std::size_t> size(0, stream, mr); matches_per_row = rmm::device_uvector<size_type>{static_cast<std::size_t>(outer_num_rows), stream, mr}; // Note that the view goes out of scope after this else statement, but the // data owned by matches_per_row stays alive so the data pointer is valid. auto mutable_matches_per_row_span = cudf::device_span<size_type>{ matches_per_row->begin(), static_cast<std::size_t>(outer_num_rows)}; matches_per_row_span = cudf::device_span<size_type const>{ matches_per_row->begin(), static_cast<std::size_t>(outer_num_rows)}; if (has_nulls) { compute_mixed_join_output_size_semi<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), mutable_matches_per_row_span); } else { compute_mixed_join_output_size_semi<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), mutable_matches_per_row_span); } join_size = size.value(stream); } if (join_size == 0) { return std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr); } // Given the number of matches per row, we need to compute the offsets for insertion. auto join_result_offsets = rmm::device_uvector<size_type>{static_cast<std::size_t>(outer_num_rows), stream, mr}; thrust::exclusive_scan(rmm::exec_policy{stream}, matches_per_row_span.begin(), matches_per_row_span.end(), join_result_offsets.begin()); auto left_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto const& join_output_l = left_indices->data(); if (has_nulls) { mixed_join_semi<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, join_output_l, parser.device_expression_data, join_result_offsets.data(), swap_tables); } else { mixed_join_semi<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, join_output_l, parser.device_expression_data, join_result_offsets.data(), swap_tables); } return left_indices; } std::pair<std::size_t, std::unique_ptr<rmm::device_uvector<size_type>>> compute_mixed_join_output_size_semi(table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, join_kind join_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS( (join_type != join_kind::INNER_JOIN) && (join_type != join_kind::LEFT_JOIN) && (join_type != join_kind::FULL_JOIN), "Inner, left, and full join size estimation should use compute_mixed_join_output_size."); CUDF_EXPECTS(left_conditional.num_rows() == left_equality.num_rows(), "The left conditional and equality tables must have the same number of rows."); CUDF_EXPECTS(right_conditional.num_rows() == right_equality.num_rows(), "The right conditional and equality tables must have the same number of rows."); auto const right_num_rows{right_conditional.num_rows()}; auto const left_num_rows{left_conditional.num_rows()}; auto const swap_tables = (join_type == join_kind::INNER_JOIN) && (right_num_rows > left_num_rows); // The "outer" table is the larger of the two tables. The kernels are // launched with one thread per row of the outer table, which also means that // it is the probe table for the hash auto const outer_num_rows{swap_tables ? right_num_rows : left_num_rows}; auto matches_per_row = std::make_unique<rmm::device_uvector<size_type>>( static_cast<std::size_t>(outer_num_rows), stream, mr); auto matches_per_row_span = cudf::device_span<size_type>{ matches_per_row->begin(), static_cast<std::size_t>(outer_num_rows)}; // We can immediately filter out cases where one table is empty. In // some cases, we return all the rows of the other table with a corresponding // null index for the empty table; in others, we return an empty output. if (right_num_rows == 0) { switch (join_type) { // Left, left anti, and full all return all the row indices from left // with a corresponding NULL from the right. case join_kind::LEFT_ANTI_JOIN: { thrust::fill(matches_per_row->begin(), matches_per_row->end(), 1); return {left_num_rows, std::move(matches_per_row)}; } // Inner and left semi joins return empty output because no matches can exist. case join_kind::LEFT_SEMI_JOIN: return {0, std::move(matches_per_row)}; default: CUDF_FAIL("Invalid join kind."); break; } } else if (left_num_rows == 0) { switch (join_type) { // Left, left anti, left semi, and inner joins all return empty sets. case join_kind::LEFT_ANTI_JOIN: case join_kind::LEFT_SEMI_JOIN: { thrust::fill(matches_per_row->begin(), matches_per_row->end(), 0); return {0, std::move(matches_per_row)}; } default: CUDF_FAIL("Invalid join kind."); break; } } // If evaluating the expression may produce null outputs we create a nullable // output column and follow the null-supporting expression evaluation code // path. auto const has_nulls = cudf::nullate::DYNAMIC{ cudf::has_nulls(left_equality) || cudf::has_nulls(right_equality) || binary_predicate.may_evaluate_null(left_conditional, right_conditional, stream)}; auto const parser = ast::detail::expression_parser{ binary_predicate, left_conditional, right_conditional, has_nulls, stream, mr}; CUDF_EXPECTS(parser.output_type().id() == type_id::BOOL8, "The expression must produce a boolean output."); // TODO: The non-conditional join impls start with a dictionary matching, // figure out what that is and what it's needed for (and if conditional joins // need to do the same). auto& probe = swap_tables ? right_equality : left_equality; auto& build = swap_tables ? left_equality : right_equality; auto probe_view = table_device_view::create(probe, stream); auto build_view = table_device_view::create(build, stream); auto left_conditional_view = table_device_view::create(left_conditional, stream); auto right_conditional_view = table_device_view::create(right_conditional, stream); auto const preprocessed_build = experimental::row::equality::preprocessed_table::create(build, stream); auto const preprocessed_probe = experimental::row::equality::preprocessed_table::create(probe, stream); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const equality_probe = row_comparator.equal_to<false>(has_nulls, compare_nulls); semi_map_type hash_table{compute_hash_table_size(build.num_rows()), cuco::empty_key{std::numeric_limits<hash_value_type>::max()}, cuco::empty_value{cudf::detail::JoinNoneValue}, detail::hash_table_allocator_type{default_allocator<char>{}, stream}, stream.value()}; // Create hash table containing all keys found in right table // TODO: To add support for nested columns we will need to flatten in many // places. However, this probably isn't worth adding any time soon since we // won't be able to support AST conditions for those types anyway. auto const build_nulls = cudf::nullate::DYNAMIC{cudf::has_nulls(build)}; auto const row_hash_build = cudf::experimental::row::hash::row_hasher{preprocessed_build}; auto const hash_build = row_hash_build.device_hasher(build_nulls); // Since we may see multiple rows that are identical in the equality tables // but differ in the conditional tables, the equality comparator used for // insertion must account for both sets of tables. An alternative solution // would be to use a multimap, but that solution would store duplicates where // equality and conditional rows are equal, so this approach is preferable. // One way to make this solution even more efficient would be to only include // the columns of the conditional table that are used by the expression, but // that requires additional plumbing through the AST machinery and is out of // scope for now. auto const row_comparator_build = cudf::experimental::row::equality::two_table_comparator{preprocessed_build, preprocessed_build}; auto const equality_build_equality = row_comparator_build.equal_to<false>(build_nulls, compare_nulls); auto const preprocessed_build_condtional = experimental::row::equality::preprocessed_table::create( swap_tables ? left_conditional : right_conditional, stream); auto const row_comparator_conditional_build = cudf::experimental::row::equality::two_table_comparator{preprocessed_build_condtional, preprocessed_build_condtional}; auto const equality_build_conditional = row_comparator_conditional_build.equal_to<false>(build_nulls, compare_nulls); double_row_equality equality_build{equality_build_equality, equality_build_conditional}; make_pair_function_semi pair_func_build{}; auto iter = cudf::detail::make_counting_transform_iterator(0, pair_func_build); // skip rows that are null here. if ((compare_nulls == null_equality::EQUAL) or (not nullable(build))) { hash_table.insert(iter, iter + right_num_rows, hash_build, equality_build, stream.value()); } else { thrust::counting_iterator<cudf::size_type> stencil(0); auto const [row_bitmask, _] = cudf::detail::bitmask_and(build, stream, rmm::mr::get_current_device_resource()); row_is_valid pred{static_cast<bitmask_type const*>(row_bitmask.data())}; // insert valid rows hash_table.insert_if( iter, iter + right_num_rows, stencil, pred, hash_build, equality_build, stream.value()); } auto hash_table_view = hash_table.get_device_view(); // For inner joins we support optimizing the join by launching one thread for // whichever table is larger rather than always using the left table. detail::grid_1d const config(outer_num_rows, DEFAULT_JOIN_BLOCK_SIZE); auto const shmem_size_per_block = parser.shmem_per_thread * config.num_threads_per_block; // Allocate storage for the counter used to get the size of the join output rmm::device_scalar<std::size_t> size(0, stream, mr); auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(has_nulls); // Determine number of output rows without actually building the output to simply // find what the size of the output will be. if (has_nulls) { compute_mixed_join_output_size_semi<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), matches_per_row_span); } else { compute_mixed_join_output_size_semi<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), matches_per_row_span); } return {size.value(stream), std::move(matches_per_row)}; } } // namespace detail std::pair<std::size_t, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_left_semi_join_size( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_mixed_join_output_size_semi(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::LEFT_SEMI_JOIN, cudf::get_default_stream(), mr); } std::unique_ptr<rmm::device_uvector<size_type>> mixed_left_semi_join( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, std::optional<std::pair<std::size_t, device_span<size_type const>>> output_size_data, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::mixed_join_semi(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::LEFT_SEMI_JOIN, output_size_data, cudf::get_default_stream(), mr); } std::pair<std::size_t, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_left_anti_join_size( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_mixed_join_output_size_semi(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::LEFT_ANTI_JOIN, cudf::get_default_stream(), mr); } std::unique_ptr<rmm::device_uvector<size_type>> mixed_left_anti_join( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, std::optional<std::pair<std::size_t, device_span<size_type const>>> output_size_data, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::mixed_join_semi(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::LEFT_ANTI_JOIN, output_size_data, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/join.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "join_common_utils.hpp" #include <cudf/detail/gather.cuh> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/join.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> inner_join(table_view const& left_input, table_view const& right_input, null_equality compare_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Make sure any dictionary columns have matched key sets. // This will return any new dictionary columns created as well as updated table_views. auto matched = cudf::dictionary::detail::match_dictionaries( {left_input, right_input}, stream, rmm::mr::get_current_device_resource()); // temporary objects returned // now rebuild the table views with the updated ones auto const left = matched.second.front(); auto const right = matched.second.back(); auto const has_nulls = cudf::has_nested_nulls(left) || cudf::has_nested_nulls(right) ? cudf::nullable_join::YES : cudf::nullable_join::NO; // For `inner_join`, we can freely choose either the `left` or `right` table to use for // building/probing the hash map. Because building is typically more expensive than probing, we // build the hash map from the smaller table. if (right.num_rows() > left.num_rows()) { cudf::hash_join hj_obj(left, has_nulls, compare_nulls, stream); auto [right_result, left_result] = hj_obj.inner_join(right, std::nullopt, stream, mr); return std::pair(std::move(left_result), std::move(right_result)); } else { cudf::hash_join hj_obj(right, has_nulls, compare_nulls, stream); return hj_obj.inner_join(left, std::nullopt, stream, mr); } } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> left_join(table_view const& left_input, table_view const& right_input, null_equality compare_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Make sure any dictionary columns have matched key sets. // This will return any new dictionary columns created as well as updated table_views. auto matched = cudf::dictionary::detail::match_dictionaries( {left_input, right_input}, // these should match stream, rmm::mr::get_current_device_resource()); // temporary objects returned // now rebuild the table views with the updated ones table_view const left = matched.second.front(); table_view const right = matched.second.back(); auto const has_nulls = cudf::has_nested_nulls(left) || cudf::has_nested_nulls(right) ? cudf::nullable_join::YES : cudf::nullable_join::NO; cudf::hash_join hj_obj(right, has_nulls, compare_nulls, stream); return hj_obj.left_join(left, std::nullopt, stream, mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> full_join(table_view const& left_input, table_view const& right_input, null_equality compare_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Make sure any dictionary columns have matched key sets. // This will return any new dictionary columns created as well as updated table_views. auto matched = cudf::dictionary::detail::match_dictionaries( {left_input, right_input}, // these should match stream, rmm::mr::get_current_device_resource()); // temporary objects returned // now rebuild the table views with the updated ones table_view const left = matched.second.front(); table_view const right = matched.second.back(); auto const has_nulls = cudf::has_nested_nulls(left) || cudf::has_nested_nulls(right) ? cudf::nullable_join::YES : cudf::nullable_join::NO; cudf::hash_join hj_obj(right, has_nulls, compare_nulls, stream); return hj_obj.full_join(left, std::nullopt, stream, mr); } } // namespace detail std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> inner_join(table_view const& left, table_view const& right, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::inner_join(left, right, compare_nulls, cudf::get_default_stream(), mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> left_join(table_view const& left, table_view const& right, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::left_join(left, right, compare_nulls, cudf::get_default_stream(), mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> full_join(table_view const& left, table_view const& right, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::full_join(left, right, compare_nulls, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_size_kernel.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mixed_join_size_kernel.cuh" namespace cudf { namespace detail { template __global__ void compute_mixed_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, false>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_size_kernel.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "join_common_utils.cuh" #include "join_common_utils.hpp" #include "mixed_join_common_utils.cuh" #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> #include <cooperative_groups.h> #include <cub/cub.cuh> #include <thrust/iterator/discard_iterator.h> namespace cudf { namespace detail { namespace cg = cooperative_groups; template <int block_size, bool has_nulls> __launch_bounds__(block_size) __global__ void compute_mixed_join_output_size( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row) { // The (required) extern storage of the shared memory array leads to // conflicting declarations between different templates. The easiest // workaround is to declare an arbitrary (here char) array type then cast it // after the fact to the appropriate type. extern __shared__ char raw_intermediate_storage[]; cudf::ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<cudf::ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = intermediate_storage + (threadIdx.x * device_expression_data.num_intermediates); std::size_t thread_counter{0}; cudf::size_type const start_idx = threadIdx.x + blockIdx.x * block_size; cudf::size_type const stride = block_size * gridDim.x; cudf::size_type const left_num_rows = left_table.num_rows(); cudf::size_type const right_num_rows = right_table.num_rows(); auto const outer_num_rows = (swap_tables ? right_num_rows : left_num_rows); auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>( left_table, right_table, device_expression_data); auto const empty_key_sentinel = hash_table_view.get_empty_key_sentinel(); make_pair_function pair_func{hash_probe, empty_key_sentinel}; // Figure out the number of elements for this key. cg::thread_block_tile<1> this_thread = cg::this_thread(); // TODO: Address asymmetry in operator. auto count_equality = pair_expression_equality<has_nulls>{ evaluator, thread_intermediate_storage, swap_tables, equality_probe}; for (cudf::size_type outer_row_index = start_idx; outer_row_index < outer_num_rows; outer_row_index += stride) { auto query_pair = pair_func(outer_row_index); if (join_type == join_kind::LEFT_JOIN || join_type == join_kind::FULL_JOIN) { matches_per_row[outer_row_index] = hash_table_view.pair_count_outer(this_thread, query_pair, count_equality); } else { matches_per_row[outer_row_index] = hash_table_view.pair_count(this_thread, query_pair, count_equality); } thread_counter += matches_per_row[outer_row_index]; } using BlockReduce = cub::BlockReduce<cudf::size_type, block_size>; __shared__ typename BlockReduce::TempStorage temp_storage; std::size_t block_counter = BlockReduce(temp_storage).Sum(thread_counter); // Add block counter to global counter if (threadIdx.x == 0) { cuda::atomic_ref<std::size_t, cuda::thread_scope_device> ref{*output_size}; ref.fetch_add(block_counter, cuda::std::memory_order_relaxed); } } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/join_common_utils.cuh
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "join_common_utils.hpp" #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/experimental/row_operators.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <cub/cub.cuh> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { /** * @brief Remaps a hash value to a new value if it is equal to the specified sentinel value. * * @param hash The hash value to potentially remap * @param sentinel The reserved value */ template <typename H, typename S> constexpr auto remap_sentinel_hash(H hash, S sentinel) { // Arbitrarily choose hash - 1 return (hash == sentinel) ? (hash - 1) : hash; } /** * @brief Device functor to create a pair of {hash_value, row_index} for a given row. * * @tparam T Type of row index, must be convertible to `size_type`. * @tparam Hasher The type of internal hasher to compute row hash. */ template <typename Hasher, typename T = size_type> class make_pair_function { public: CUDF_HOST_DEVICE make_pair_function(Hasher const& hash, hash_value_type const empty_key_sentinel) : _hash{hash}, _empty_key_sentinel{empty_key_sentinel} { } __device__ __forceinline__ auto operator()(size_type i) const noexcept { // Compute the hash value of row `i` auto row_hash_value = remap_sentinel_hash(_hash(i), _empty_key_sentinel); return cuco::make_pair(row_hash_value, T{i}); } private: Hasher _hash; hash_value_type const _empty_key_sentinel; }; /** * @brief Device functor to determine if a row is valid. */ class row_is_valid { public: row_is_valid(bitmask_type const* row_bitmask) : _row_bitmask{row_bitmask} {} __device__ __inline__ bool operator()(size_type const& i) const noexcept { return cudf::bit_is_set(_row_bitmask, i); } private: bitmask_type const* _row_bitmask; }; /** * @brief Device functor to determine if two pairs are identical. * * This equality comparator is designed for use with cuco::static_multimap's * pair* APIs, which will compare equality based on comparing (key, value) * pairs. In the context of joins, these pairs are of the form * (row_hash, row_id). A hash probe hit indicates that hash of a probe row's hash is * equal to the hash of the hash of some row in the multimap, at which point we need an * equality comparator that will check whether the contents of the rows are * identical. This comparator does so by verifying key equality (i.e. that * probe_row_hash == build_row_hash) and then using a row_equality_comparator * to compare the contents of the row indices that are stored as the payload in * the hash map. * * @tparam Comparator The row comparator type to perform row equality comparison from row indices. */ template <typename DeviceComparator> class pair_equality { public: pair_equality(DeviceComparator check_row_equality) : _check_row_equality{std::move(check_row_equality)} { } // The parameters are build/probe rather than left/right because the operator // is called by cuco's kernels with parameters in this order (note that this // is an implementation detail that we should eventually stop relying on by // defining operators with suitable heterogeneous typing). Rather than // converting to left/right semantics, we can operate directly on build/probe template <typename LhsPair, typename RhsPair> __device__ __forceinline__ bool operator()(LhsPair const& lhs, RhsPair const& rhs) const noexcept { using experimental::row::lhs_index_type; using experimental::row::rhs_index_type; return lhs.first == rhs.first and _check_row_equality(lhs_index_type{rhs.second}, rhs_index_type{lhs.second}); } private: DeviceComparator _check_row_equality; }; /** * @brief Computes the trivial left join operation for the case when the * right table is empty. * * In this case all the valid indices of the left table * are returned with their corresponding right indices being set to * JoinNoneValue, i.e. -1. * * @param left Table of left columns to join * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the result * * @return Join output indices vector pair */ std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> get_trivial_left_join_indices(table_view const& left, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Builds the hash table based on the given `build_table`. * * @tparam MultimapType The type of the hash table * * @param build Table of columns used to build join hash. * @param preprocessed_build shared_ptr to cudf::experimental::row::equality::preprocessed_table for * build * @param hash_table Build hash table. * @param has_nulls Flag to denote if build or probe tables have nested nulls * @param nulls_equal Flag to denote nulls are equal or not. * @param bitmask Bitmask to denote whether a row is valid. * @param stream CUDA stream used for device memory operations and kernel launches. * */ template <typename MultimapType> void build_join_hash_table( cudf::table_view const& build, std::shared_ptr<experimental::row::equality::preprocessed_table> const& preprocessed_build, MultimapType& hash_table, bool has_nulls, null_equality nulls_equal, [[maybe_unused]] bitmask_type const* bitmask, rmm::cuda_stream_view stream) { CUDF_EXPECTS(0 != build.num_columns(), "Selected build dataset is empty"); CUDF_EXPECTS(0 != build.num_rows(), "Build side table has no rows"); auto const row_hash = experimental::row::hash::row_hasher{preprocessed_build}; auto const hash_build = row_hash.device_hasher(nullate::DYNAMIC{has_nulls}); auto const empty_key_sentinel = hash_table.get_empty_key_sentinel(); make_pair_function pair_func{hash_build, empty_key_sentinel}; auto const iter = cudf::detail::make_counting_transform_iterator(0, pair_func); size_type const build_table_num_rows{build.num_rows()}; if (nulls_equal == cudf::null_equality::EQUAL or (not nullable(build))) { hash_table.insert(iter, iter + build_table_num_rows, stream.value()); } else { thrust::counting_iterator<size_type> stencil(0); row_is_valid pred{bitmask}; // insert valid rows hash_table.insert_if(iter, iter + build_table_num_rows, stencil, pred, stream.value()); } } // Convenient alias for a pair of unique pointers to device uvectors. using VectorPair = std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>>; /** * @brief Takes two pairs of vectors and returns a single pair where the first * element is a vector made from concatenating the first elements of both input * pairs and the second element is a vector made from concatenating the second * elements of both input pairs. * * This function's primary use is for computing the indices of a full join by * first performing a left join, then separately getting the complementary * right join indices, then finally calling this function to concatenate the * results. In this case, each input VectorPair contains the left and right * indices from a join. * * Note that this is a destructive operation, in that at least one of a or b * will be invalidated (by a move) by this operation. Calling code should * assume that neither input VectorPair is valid after this function executes. * * @param a The first pair of vectors. * @param b The second pair of vectors. * @param stream CUDA stream used for device memory operations and kernel launches * * @return A pair of vectors containing the concatenated output. */ VectorPair concatenate_vector_pairs(VectorPair& a, VectorPair& b, rmm::cuda_stream_view stream); /** * @brief Creates a table containing the complement of left join indices. * * This table has two columns. The first one is filled with JoinNoneValue(-1) * and the second one contains values from 0 to right_table_row_count - 1 * excluding those found in the right_indices column. * * @param right_indices Vector of indices * @param left_table_row_count Number of rows of left table * @param right_table_row_count Number of rows of right table * @param stream CUDA stream used for device memory operations and kernel launches. * @param mr Device memory resource used to allocate the returned vectors. * * @return Pair of vectors containing the left join indices complement */ std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> get_left_join_indices_complement(std::unique_ptr<rmm::device_uvector<size_type>>& right_indices, size_type left_table_row_count, size_type right_table_row_count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Device functor to determine if an index is contained in a range. */ template <typename T> struct valid_range { T start, stop; __host__ __device__ valid_range(T const begin, T const end) : start(begin), stop(end) {} __host__ __device__ __forceinline__ bool operator()(T const index) { return ((index >= start) && (index < stop)); } }; /** * @brief Adds a pair of indices to the shared memory cache * * @param[in] first The first index in the pair * @param[in] second The second index in the pair * @param[in,out] current_idx_shared Pointer to shared index that determines * where in the shared memory cache the pair will be written * @param[in] warp_id The ID of the warp of the calling the thread * @param[out] joined_shared_l Pointer to the shared memory cache for left indices * @param[out] joined_shared_r Pointer to the shared memory cache for right indices */ __inline__ __device__ void add_pair_to_cache(size_type const first, size_type const second, size_type* current_idx_shared, int const warp_id, size_type* joined_shared_l, size_type* joined_shared_r) { size_type my_current_idx{atomicAdd(current_idx_shared + warp_id, size_type(1))}; // its guaranteed to fit into the shared cache joined_shared_l[my_current_idx] = first; joined_shared_r[my_current_idx] = second; } template <int num_warps, cudf::size_type output_cache_size> __device__ void flush_output_cache(unsigned int const activemask, cudf::size_type const max_size, int const warp_id, int const lane_id, cudf::size_type* current_idx, cudf::size_type current_idx_shared[num_warps], size_type join_shared_l[num_warps][output_cache_size], size_type join_shared_r[num_warps][output_cache_size], size_type* join_output_l, size_type* join_output_r) { // count how many active threads participating here which could be less than warp_size int num_threads = __popc(activemask); cudf::size_type output_offset = 0; if (0 == lane_id) { output_offset = atomicAdd(current_idx, current_idx_shared[warp_id]); } // No warp sync is necessary here because we are assuming that ShuffleIndex // is internally using post-CUDA 9.0 synchronization-safe primitives // (__shfl_sync instead of __shfl). __shfl is technically not guaranteed to // be safe by the compiler because it is not required by the standard to // converge divergent branches before executing. output_offset = cub::ShuffleIndex<detail::warp_size>(output_offset, 0, activemask); for (int shared_out_idx = lane_id; shared_out_idx < current_idx_shared[warp_id]; shared_out_idx += num_threads) { cudf::size_type thread_offset = output_offset + shared_out_idx; if (thread_offset < max_size) { join_output_l[thread_offset] = join_shared_l[warp_id][shared_out_idx]; join_output_r[thread_offset] = join_shared_r[warp_id][shared_out_idx]; } } } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_kernel.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mixed_join_kernel.cuh" namespace cudf { namespace detail { template __global__ void mixed_join<DEFAULT_JOIN_BLOCK_SIZE, false>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, size_type* join_output_l, size_type* join_output_r, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_size_kernel_nulls.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mixed_join_size_kernel.cuh" namespace cudf { namespace detail { template __global__ void compute_mixed_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, true>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/join_common_utils.hpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/detail/join.hpp> #include <cudf/hashing/detail/default_hash.cuh> #include <cudf/hashing/detail/hash_allocator.cuh> #include <cudf/hashing/detail/helper_functions.cuh> #include <cudf/join.hpp> #include <cudf/table/row_operators.cuh> #include <cudf/table/table_view.hpp> #include <rmm/mr/device/polymorphic_allocator.hpp> #include <cuco/static_map.cuh> #include <cuco/static_multimap.cuh> #include <cuda/atomic> #include <limits> namespace cudf { namespace detail { constexpr int DEFAULT_JOIN_BLOCK_SIZE = 128; constexpr int DEFAULT_JOIN_CACHE_SIZE = 128; constexpr size_type JoinNoneValue = std::numeric_limits<size_type>::min(); using pair_type = cuco::pair<hash_value_type, size_type>; using hash_type = cuco::murmurhash3_32<hash_value_type>; using hash_table_allocator_type = rmm::mr::stream_allocator_adaptor<default_allocator<char>>; using multimap_type = cudf::hash_join::impl_type::map_type; // Multimap type used for mixed joins. TODO: This is a temporary alias used // until the mixed joins are converted to using CGs properly. Right now it's // using a cooperative group of size 1. using mixed_multimap_type = cuco::static_multimap<hash_value_type, size_type, cuda::thread_scope_device, hash_table_allocator_type, cuco::double_hashing<1, hash_type, hash_type>>; using semi_map_type = cuco:: static_map<hash_value_type, size_type, cuda::thread_scope_device, hash_table_allocator_type>; using row_hash_legacy = cudf::row_hasher<cudf::hashing::detail::default_hash, cudf::nullate::DYNAMIC>; using row_equality_legacy = cudf::row_equality_comparator<cudf::nullate::DYNAMIC>; bool is_trivial_join(table_view const& left, table_view const& right, join_kind join_type); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "join_common_utils.cuh" #include "join_common_utils.hpp" #include "mixed_join_kernels.cuh" #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/ast/expressions.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/join.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/span.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/fill.h> #include <thrust/scan.h> #include <optional> #include <utility> namespace cudf { namespace detail { std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_join( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, join_kind join_type, std::optional<std::pair<std::size_t, device_span<size_type const>>> const& output_size_data, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(left_conditional.num_rows() == left_equality.num_rows(), "The left conditional and equality tables must have the same number of rows."); CUDF_EXPECTS(right_conditional.num_rows() == right_equality.num_rows(), "The right conditional and equality tables must have the same number of rows."); CUDF_EXPECTS((join_type != join_kind::LEFT_SEMI_JOIN) && (join_type != join_kind::LEFT_ANTI_JOIN), "Left semi and anti joins should use mixed_join_semi."); auto const right_num_rows{right_conditional.num_rows()}; auto const left_num_rows{left_conditional.num_rows()}; auto const swap_tables = (join_type == join_kind::INNER_JOIN) && (right_num_rows > left_num_rows); // The "outer" table is the larger of the two tables. The kernels are // launched with one thread per row of the outer table, which also means that // it is the probe table for the hash auto const outer_num_rows{swap_tables ? right_num_rows : left_num_rows}; // We can immediately filter out cases where the right table is empty. In // some cases, we return all the rows of the left table with a corresponding // null index for the right table; in others, we return an empty output. if (right_num_rows == 0) { switch (join_type) { // Left and full joins all return all the row indices from // left with a corresponding NULL from the right. case join_kind::LEFT_JOIN: case join_kind::FULL_JOIN: return get_trivial_left_join_indices( left_conditional, stream, rmm::mr::get_current_device_resource()); // Inner joins return empty output because no matches can exist. case join_kind::INNER_JOIN: return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); default: CUDF_FAIL("Invalid join kind."); break; } } else if (left_num_rows == 0) { switch (join_type) { // Left and inner joins all return empty sets. case join_kind::LEFT_JOIN: case join_kind::INNER_JOIN: return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); // Full joins need to return the trivial complement. case join_kind::FULL_JOIN: { auto ret_flipped = get_trivial_left_join_indices( right_conditional, stream, rmm::mr::get_current_device_resource()); return std::pair(std::move(ret_flipped.second), std::move(ret_flipped.first)); } default: CUDF_FAIL("Invalid join kind."); break; } } // If evaluating the expression may produce null outputs we create a nullable // output column and follow the null-supporting expression evaluation code // path. auto const has_nulls = cudf::nullate::DYNAMIC{ cudf::has_nulls(left_equality) || cudf::has_nulls(right_equality) || binary_predicate.may_evaluate_null(left_conditional, right_conditional, stream)}; auto const parser = ast::detail::expression_parser{ binary_predicate, left_conditional, right_conditional, has_nulls, stream, mr}; CUDF_EXPECTS(parser.output_type().id() == type_id::BOOL8, "The expression must produce a boolean output."); // TODO: The non-conditional join impls start with a dictionary matching, // figure out what that is and what it's needed for (and if conditional joins // need to do the same). auto& probe = swap_tables ? right_equality : left_equality; auto& build = swap_tables ? left_equality : right_equality; auto probe_view = table_device_view::create(probe, stream); auto build_view = table_device_view::create(build, stream); // Don't use multimap_type because we want a CG size of 1. mixed_multimap_type hash_table{ compute_hash_table_size(build.num_rows()), cuco::empty_key{std::numeric_limits<hash_value_type>::max()}, cuco::empty_value{cudf::detail::JoinNoneValue}, stream.value(), detail::hash_table_allocator_type{default_allocator<char>{}, stream}}; // TODO: To add support for nested columns we will need to flatten in many // places. However, this probably isn't worth adding any time soon since we // won't be able to support AST conditions for those types anyway. auto const row_bitmask = cudf::detail::bitmask_and(build, stream, rmm::mr::get_current_device_resource()).first; auto const preprocessed_build = experimental::row::equality::preprocessed_table::create(build, stream); build_join_hash_table(build, preprocessed_build, hash_table, has_nulls, compare_nulls, static_cast<bitmask_type const*>(row_bitmask.data()), stream); auto hash_table_view = hash_table.get_device_view(); auto left_conditional_view = table_device_view::create(left_conditional, stream); auto right_conditional_view = table_device_view::create(right_conditional, stream); // For inner joins we support optimizing the join by launching one thread for // whichever table is larger rather than always using the left table. detail::grid_1d const config(outer_num_rows, DEFAULT_JOIN_BLOCK_SIZE); auto const shmem_size_per_block = parser.shmem_per_thread * config.num_threads_per_block; join_kind const kernel_join_type = join_type == join_kind::FULL_JOIN ? join_kind::LEFT_JOIN : join_type; // If the join size data was not provided as an input, compute it here. std::size_t join_size; // Using an optional because we only need to allocate a new vector if one was // not passed as input, and rmm::device_uvector is not default constructible std::optional<rmm::device_uvector<size_type>> matches_per_row{}; device_span<size_type const> matches_per_row_span{}; auto const preprocessed_probe = experimental::row::equality::preprocessed_table::create(probe, stream); auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(has_nulls); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const equality_probe = row_comparator.equal_to<false>(has_nulls, compare_nulls); if (output_size_data.has_value()) { join_size = output_size_data->first; matches_per_row_span = output_size_data->second; } else { // Allocate storage for the counter used to get the size of the join output rmm::device_scalar<std::size_t> size(0, stream, mr); matches_per_row = rmm::device_uvector<size_type>{static_cast<std::size_t>(outer_num_rows), stream, mr}; // Note that the view goes out of scope after this else statement, but the // data owned by matches_per_row stays alive so the data pointer is valid. auto mutable_matches_per_row_span = cudf::device_span<size_type>{ matches_per_row->begin(), static_cast<std::size_t>(outer_num_rows)}; matches_per_row_span = cudf::device_span<size_type const>{ matches_per_row->begin(), static_cast<std::size_t>(outer_num_rows)}; if (has_nulls) { compute_mixed_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), mutable_matches_per_row_span); } else { compute_mixed_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), mutable_matches_per_row_span); } join_size = size.value(stream); } // The initial early exit clauses guarantee that we will not reach this point // unless both the left and right tables are non-empty. Under that // constraint, neither left nor full joins can return an empty result since // at minimum we are guaranteed null matches for all non-matching rows. In // all other cases (inner, left semi, and left anti joins) if we reach this // point we can safely return an empty result. if (join_size == 0) { return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); } // Given the number of matches per row, we need to compute the offsets for insertion. auto join_result_offsets = rmm::device_uvector<size_type>{static_cast<std::size_t>(outer_num_rows), stream, mr}; thrust::exclusive_scan(rmm::exec_policy{stream}, matches_per_row_span.begin(), matches_per_row_span.end(), join_result_offsets.begin()); auto left_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto right_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto const& join_output_l = left_indices->data(); auto const& join_output_r = right_indices->data(); if (has_nulls) { mixed_join<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, join_output_l, join_output_r, parser.device_expression_data, join_result_offsets.data(), swap_tables); } else { mixed_join<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, kernel_join_type, hash_table_view, join_output_l, join_output_r, parser.device_expression_data, join_result_offsets.data(), swap_tables); } auto join_indices = std::pair(std::move(left_indices), std::move(right_indices)); // For full joins, get the indices in the right table that were not joined to // by any row in the left table. if (join_type == join_kind::FULL_JOIN) { auto complement_indices = detail::get_left_join_indices_complement( join_indices.second, left_num_rows, right_num_rows, stream, mr); join_indices = detail::concatenate_vector_pairs(join_indices, complement_indices, stream); } return join_indices; } std::pair<std::size_t, std::unique_ptr<rmm::device_uvector<size_type>>> compute_mixed_join_output_size(table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, join_kind join_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Until we add logic to handle the number of non-matches in the right table, // full joins are not supported in this function. Note that this does not // prevent actually performing full joins since we do that by calculating the // left join and then concatenating the complementary right indices. CUDF_EXPECTS(join_type != join_kind::FULL_JOIN, "Size estimation is not available for full joins."); CUDF_EXPECTS( (join_type != join_kind::LEFT_SEMI_JOIN) && (join_type != join_kind::LEFT_ANTI_JOIN), "Left semi and anti join size estimation should use compute_mixed_join_output_size_semi."); CUDF_EXPECTS(left_conditional.num_rows() == left_equality.num_rows(), "The left conditional and equality tables must have the same number of rows."); CUDF_EXPECTS(right_conditional.num_rows() == right_equality.num_rows(), "The right conditional and equality tables must have the same number of rows."); auto const right_num_rows{right_conditional.num_rows()}; auto const left_num_rows{left_conditional.num_rows()}; auto const swap_tables = (join_type == join_kind::INNER_JOIN) && (right_num_rows > left_num_rows); // The "outer" table is the larger of the two tables. The kernels are // launched with one thread per row of the outer table, which also means that // it is the probe table for the hash auto const outer_num_rows{swap_tables ? right_num_rows : left_num_rows}; auto matches_per_row = std::make_unique<rmm::device_uvector<size_type>>( static_cast<std::size_t>(outer_num_rows), stream, mr); auto matches_per_row_span = cudf::device_span<size_type>{ matches_per_row->begin(), static_cast<std::size_t>(outer_num_rows)}; // We can immediately filter out cases where one table is empty. In // some cases, we return all the rows of the other table with a corresponding // null index for the empty table; in others, we return an empty output. if (right_num_rows == 0) { switch (join_type) { // Left, left anti, and full all return all the row indices from left // with a corresponding NULL from the right. case join_kind::LEFT_JOIN: case join_kind::FULL_JOIN: { thrust::fill(matches_per_row->begin(), matches_per_row->end(), 1); return {left_num_rows, std::move(matches_per_row)}; } // Inner and left semi joins return empty output because no matches can exist. case join_kind::INNER_JOIN: { thrust::fill(matches_per_row->begin(), matches_per_row->end(), 0); return {0, std::move(matches_per_row)}; } default: CUDF_FAIL("Invalid join kind."); break; } } else if (left_num_rows == 0) { switch (join_type) { // Left, left anti, left semi, and inner joins all return empty sets. case join_kind::LEFT_JOIN: case join_kind::INNER_JOIN: { thrust::fill(matches_per_row->begin(), matches_per_row->end(), 0); return {0, std::move(matches_per_row)}; } // Full joins need to return the trivial complement. case join_kind::FULL_JOIN: { thrust::fill(matches_per_row->begin(), matches_per_row->end(), 1); return {right_num_rows, std::move(matches_per_row)}; } default: CUDF_FAIL("Invalid join kind."); break; } } // If evaluating the expression may produce null outputs we create a nullable // output column and follow the null-supporting expression evaluation code // path. auto const has_nulls = cudf::nullate::DYNAMIC{ cudf::has_nulls(left_equality) || cudf::has_nulls(right_equality) || binary_predicate.may_evaluate_null(left_conditional, right_conditional, stream)}; auto const parser = ast::detail::expression_parser{ binary_predicate, left_conditional, right_conditional, has_nulls, stream, mr}; CUDF_EXPECTS(parser.output_type().id() == type_id::BOOL8, "The expression must produce a boolean output."); // TODO: The non-conditional join impls start with a dictionary matching, // figure out what that is and what it's needed for (and if conditional joins // need to do the same). auto& probe = swap_tables ? right_equality : left_equality; auto& build = swap_tables ? left_equality : right_equality; auto probe_view = table_device_view::create(probe, stream); auto build_view = table_device_view::create(build, stream); // Don't use multimap_type because we want a CG size of 1. mixed_multimap_type hash_table{ compute_hash_table_size(build.num_rows()), cuco::empty_key{std::numeric_limits<hash_value_type>::max()}, cuco::empty_value{cudf::detail::JoinNoneValue}, stream.value(), detail::hash_table_allocator_type{default_allocator<char>{}, stream}}; // TODO: To add support for nested columns we will need to flatten in many // places. However, this probably isn't worth adding any time soon since we // won't be able to support AST conditions for those types anyway. auto const row_bitmask = cudf::detail::bitmask_and(build, stream, rmm::mr::get_current_device_resource()).first; auto const preprocessed_build = experimental::row::equality::preprocessed_table::create(build, stream); build_join_hash_table(build, preprocessed_build, hash_table, has_nulls, compare_nulls, static_cast<bitmask_type const*>(row_bitmask.data()), stream); auto hash_table_view = hash_table.get_device_view(); auto left_conditional_view = table_device_view::create(left_conditional, stream); auto right_conditional_view = table_device_view::create(right_conditional, stream); // For inner joins we support optimizing the join by launching one thread for // whichever table is larger rather than always using the left table. detail::grid_1d const config(outer_num_rows, DEFAULT_JOIN_BLOCK_SIZE); auto const shmem_size_per_block = parser.shmem_per_thread * config.num_threads_per_block; // Allocate storage for the counter used to get the size of the join output rmm::device_scalar<std::size_t> size(0, stream, mr); auto const preprocessed_probe = experimental::row::equality::preprocessed_table::create(probe, stream); auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(has_nulls); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const equality_probe = row_comparator.equal_to<false>(has_nulls, compare_nulls); // Determine number of output rows without actually building the output to simply // find what the size of the output will be. if (has_nulls) { compute_mixed_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), matches_per_row_span); } else { compute_mixed_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_conditional_view, *right_conditional_view, *probe_view, *build_view, hash_probe, equality_probe, join_type, hash_table_view, parser.device_expression_data, swap_tables, size.data(), matches_per_row_span); } return {size.value(stream), std::move(matches_per_row)}; } } // namespace detail std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_inner_join( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, std::optional<std::pair<std::size_t, device_span<size_type const>>> const output_size_data, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::mixed_join(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::INNER_JOIN, output_size_data, cudf::get_default_stream(), mr); } std::pair<std::size_t, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_inner_join_size( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_mixed_join_output_size(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::INNER_JOIN, cudf::get_default_stream(), mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_left_join( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, std::optional<std::pair<std::size_t, device_span<size_type const>>> const output_size_data, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::mixed_join(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::LEFT_JOIN, output_size_data, cudf::get_default_stream(), mr); } std::pair<std::size_t, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_left_join_size( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_mixed_join_output_size(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::LEFT_JOIN, cudf::get_default_stream(), mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> mixed_full_join( table_view const& left_equality, table_view const& right_equality, table_view const& left_conditional, table_view const& right_conditional, ast::expression const& binary_predicate, null_equality compare_nulls, std::optional<std::pair<std::size_t, device_span<size_type const>>> const output_size_data, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::mixed_join(left_equality, right_equality, left_conditional, right_conditional, binary_predicate, compare_nulls, detail::join_kind::FULL_JOIN, output_size_data, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/hash_join.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "join_common_utils.cuh" #include <cudf/copying.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/join.hpp> #include <cudf/detail/structs/utilities.hpp> #include <cudf/join.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_buffer.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/count.h> #include <thrust/functional.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/scatter.h> #include <thrust/tuple.h> #include <thrust/uninitialized_fill.h> #include <cstddef> #include <iostream> #include <numeric> namespace cudf { namespace detail { namespace { /** * @brief Calculates the exact size of the join output produced when * joining two tables together. * * @throw cudf::logic_error if join is not INNER_JOIN or LEFT_JOIN * * @param build_table The right hand table * @param probe_table The left hand table * @param preprocessed_build shared_ptr to cudf::experimental::row::equality::preprocessed_table for * build_table * @param preprocessed_probe shared_ptr to cudf::experimental::row::equality::preprocessed_table for * probe_table * @param hash_table A hash table built on the build table that maps the index * of every row to the hash value of that row * @param join The type of join to be performed * @param has_nulls Flag to denote if build or probe tables have nested nulls * @param nulls_equal Flag to denote nulls are equal or not * @param stream CUDA stream used for device memory operations and kernel launches * * @return The exact size of the output of the join operation */ std::size_t compute_join_output_size( table_view const& build_table, table_view const& probe_table, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const& preprocessed_build, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const& preprocessed_probe, cudf::detail::multimap_type const& hash_table, join_kind join, bool has_nulls, cudf::null_equality nulls_equal, rmm::cuda_stream_view stream) { size_type const build_table_num_rows{build_table.num_rows()}; size_type const probe_table_num_rows{probe_table.num_rows()}; // If the build table is empty, we know exactly how large the output // will be for the different types of joins and can return immediately if (0 == build_table_num_rows) { switch (join) { // Inner join with an empty table will have no output case join_kind::INNER_JOIN: return 0; // Left join with an empty table will have an output of NULL rows // equal to the number of rows in the probe table case join_kind::LEFT_JOIN: return probe_table_num_rows; default: CUDF_FAIL("Unsupported join type"); } } auto const probe_nulls = cudf::nullate::DYNAMIC{has_nulls}; auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(probe_nulls); auto const empty_key_sentinel = hash_table.get_empty_key_sentinel(); auto const iter = cudf::detail::make_counting_transform_iterator( 0, make_pair_function{hash_probe, empty_key_sentinel}); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const comparator_helper = [&](auto device_comparator) { pair_equality equality{device_comparator}; if (join == join_kind::LEFT_JOIN) { return hash_table.pair_count_outer( iter, iter + probe_table_num_rows, equality, stream.value()); } else { return hash_table.pair_count(iter, iter + probe_table_num_rows, equality, stream.value()); } }; if (cudf::detail::has_nested_columns(probe_table)) { auto const device_comparator = row_comparator.equal_to<true>(has_nulls, nulls_equal); return comparator_helper(device_comparator); } else { auto const device_comparator = row_comparator.equal_to<false>(has_nulls, nulls_equal); return comparator_helper(device_comparator); } } /** * @brief Probes the `hash_table` built from `build_table` for tuples in `probe_table`, * and returns the output indices of `build_table` and `probe_table` as a combined table. * Behavior is undefined if the provided `output_size` is smaller than the actual output size. * * @param build_table Table of build side columns to join * @param probe_table Table of probe side columns to join * @param preprocessed_build shared_ptr to cudf::experimental::row::equality::preprocessed_table for * build_table * @param preprocessed_probe shared_ptr to cudf::experimental::row::equality::preprocessed_table for * probe_table * @param hash_table Hash table built from `build_table` * @param join The type of join to be performed * @param has_nulls Flag to denote if build or probe tables have nested nulls * @param compare_nulls Controls whether null join-key values should match or not * @param output_size Optional value which allows users to specify the exact output size * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned vectors * * @return Join output indices vector pair. */ std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> probe_join_hash_table( cudf::table_view const& build_table, cudf::table_view const& probe_table, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const& preprocessed_build, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const& preprocessed_probe, cudf::detail::multimap_type const& hash_table, join_kind join, bool has_nulls, null_equality compare_nulls, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Use the output size directly if provided. Otherwise, compute the exact output size auto const probe_join_type = (join == cudf::detail::join_kind::FULL_JOIN) ? cudf::detail::join_kind::LEFT_JOIN : join; std::size_t const join_size = output_size ? *output_size : compute_join_output_size(build_table, probe_table, preprocessed_build, preprocessed_probe, hash_table, probe_join_type, has_nulls, compare_nulls, stream); // If output size is zero, return immediately if (join_size == 0) { return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); } auto left_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto right_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto const probe_nulls = cudf::nullate::DYNAMIC{has_nulls}; auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(probe_nulls); auto const empty_key_sentinel = hash_table.get_empty_key_sentinel(); auto const iter = cudf::detail::make_counting_transform_iterator( 0, make_pair_function{hash_probe, empty_key_sentinel}); cudf::size_type const probe_table_num_rows = probe_table.num_rows(); auto const out1_zip_begin = thrust::make_zip_iterator( thrust::make_tuple(thrust::make_discard_iterator(), left_indices->begin())); auto const out2_zip_begin = thrust::make_zip_iterator( thrust::make_tuple(thrust::make_discard_iterator(), right_indices->begin())); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const comparator_helper = [&](auto device_comparator) { pair_equality equality{device_comparator}; if (join == cudf::detail::join_kind::FULL_JOIN or join == cudf::detail::join_kind::LEFT_JOIN) { [[maybe_unused]] auto [out1_zip_end, out2_zip_end] = hash_table.pair_retrieve_outer(iter, iter + probe_table_num_rows, out1_zip_begin, out2_zip_begin, equality, stream.value()); if (join == cudf::detail::join_kind::FULL_JOIN) { auto const actual_size = thrust::distance(out1_zip_begin, out1_zip_end); left_indices->resize(actual_size, stream); right_indices->resize(actual_size, stream); } } else { hash_table.pair_retrieve(iter, iter + probe_table_num_rows, out1_zip_begin, out2_zip_begin, equality, stream.value()); } }; if (cudf::detail::has_nested_columns(probe_table)) { auto const device_comparator = row_comparator.equal_to<true>(probe_nulls, compare_nulls); comparator_helper(device_comparator); } else { auto const device_comparator = row_comparator.equal_to<false>(probe_nulls, compare_nulls); comparator_helper(device_comparator); } return std::pair(std::move(left_indices), std::move(right_indices)); } /** * @brief Probes the `hash_table` built from `build_table` for tuples in `probe_table` twice, * and returns the output size of a full join operation between `build_table` and `probe_table`. * TODO: this is a temporary solution as part of `full_join_size`. To be refactored during * cuco integration. * * @param build_table Table of build side columns to join * @param probe_table Table of probe side columns to join * @param preprocessed_build shared_ptr to cudf::experimental::row::equality::preprocessed_table for * build_table * @param preprocessed_probe shared_ptr to cudf::experimental::row::equality::preprocessed_table for * probe_table * @param hash_table Hash table built from `build_table` * @param has_nulls Flag to denote if build or probe tables have nested nulls * @param compare_nulls Controls whether null join-key values should match or not * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the intermediate vectors * * @return Output size of full join. */ std::size_t get_full_join_size( cudf::table_view const& build_table, cudf::table_view const& probe_table, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const& preprocessed_build, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const& preprocessed_probe, cudf::detail::multimap_type const& hash_table, bool has_nulls, null_equality compare_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::size_t join_size = compute_join_output_size(build_table, probe_table, preprocessed_build, preprocessed_probe, hash_table, cudf::detail::join_kind::LEFT_JOIN, has_nulls, compare_nulls, stream); // If output size is zero, return immediately if (join_size == 0) { return join_size; } auto left_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto right_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto const probe_nulls = cudf::nullate::DYNAMIC{has_nulls}; auto const row_hash = cudf::experimental::row::hash::row_hasher{preprocessed_probe}; auto const hash_probe = row_hash.device_hasher(probe_nulls); auto const empty_key_sentinel = hash_table.get_empty_key_sentinel(); auto const iter = cudf::detail::make_counting_transform_iterator( 0, make_pair_function{hash_probe, empty_key_sentinel}); cudf::size_type const probe_table_num_rows = probe_table.num_rows(); auto const out1_zip_begin = thrust::make_zip_iterator( thrust::make_tuple(thrust::make_discard_iterator(), left_indices->begin())); auto const out2_zip_begin = thrust::make_zip_iterator( thrust::make_tuple(thrust::make_discard_iterator(), right_indices->begin())); auto const row_comparator = cudf::experimental::row::equality::two_table_comparator{preprocessed_probe, preprocessed_build}; auto const comparator_helper = [&](auto device_comparator) { pair_equality equality{device_comparator}; hash_table.pair_retrieve_outer( iter, iter + probe_table_num_rows, out1_zip_begin, out2_zip_begin, equality, stream.value()); }; if (cudf::detail::has_nested_columns(probe_table)) { auto const device_comparator = row_comparator.equal_to<true>(probe_nulls, compare_nulls); comparator_helper(device_comparator); } else { auto const device_comparator = row_comparator.equal_to<false>(probe_nulls, compare_nulls); comparator_helper(device_comparator); } // Release intermediate memory allocation left_indices->resize(0, stream); auto const left_table_row_count = probe_table.num_rows(); auto const right_table_row_count = build_table.num_rows(); std::size_t left_join_complement_size; // If left table is empty then all rows of the right table should be represented in the joined // indices. if (left_table_row_count == 0) { left_join_complement_size = right_table_row_count; } else { // Assume all the indices in invalid_index_map are invalid auto invalid_index_map = std::make_unique<rmm::device_uvector<size_type>>(right_table_row_count, stream); thrust::uninitialized_fill( rmm::exec_policy(stream), invalid_index_map->begin(), invalid_index_map->end(), int32_t{1}); // Functor to check for index validity since left joins can create invalid indices valid_range<size_type> valid(0, right_table_row_count); // invalid_index_map[index_ptr[i]] = 0 for i = 0 to right_table_row_count // Thus specifying that those locations are valid thrust::scatter_if(rmm::exec_policy(stream), thrust::make_constant_iterator(0), thrust::make_constant_iterator(0) + right_indices->size(), right_indices->begin(), // Index locations right_indices->begin(), // Stencil - Check if index location is valid invalid_index_map->begin(), // Output indices valid); // Stencil Predicate // Create list of indices that have been marked as invalid left_join_complement_size = thrust::count_if(rmm::exec_policy(stream), invalid_index_map->begin(), invalid_index_map->end(), thrust::identity()); } return join_size + left_join_complement_size; } } // namespace template <typename Hasher> hash_join<Hasher>::hash_join(cudf::table_view const& build, bool has_nulls, cudf::null_equality compare_nulls, rmm::cuda_stream_view stream) : _has_nulls(has_nulls), _is_empty{build.num_rows() == 0}, _nulls_equal{compare_nulls}, _hash_table{compute_hash_table_size(build.num_rows()), cuco::empty_key{std::numeric_limits<hash_value_type>::max()}, cuco::empty_value{cudf::detail::JoinNoneValue}, stream.value(), detail::hash_table_allocator_type{default_allocator<char>{}, stream}}, _build{build}, _preprocessed_build{ cudf::experimental::row::equality::preprocessed_table::create(_build, stream)} { CUDF_FUNC_RANGE(); CUDF_EXPECTS(0 != build.num_columns(), "Hash join build table is empty"); if (_is_empty) { return; } auto const row_bitmask = cudf::detail::bitmask_and(build, stream, rmm::mr::get_current_device_resource()).first; cudf::detail::build_join_hash_table(_build, _preprocessed_build, _hash_table, _has_nulls, _nulls_equal, reinterpret_cast<bitmask_type const*>(row_bitmask.data()), stream); } template <typename Hasher> std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join<Hasher>::inner_join(cudf::table_view const& probe, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_FUNC_RANGE(); return compute_hash_join(probe, cudf::detail::join_kind::INNER_JOIN, output_size, stream, mr); } template <typename Hasher> std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join<Hasher>::left_join(cudf::table_view const& probe, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_FUNC_RANGE(); return compute_hash_join(probe, cudf::detail::join_kind::LEFT_JOIN, output_size, stream, mr); } template <typename Hasher> std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join<Hasher>::full_join(cudf::table_view const& probe, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_FUNC_RANGE(); return compute_hash_join(probe, cudf::detail::join_kind::FULL_JOIN, output_size, stream, mr); } template <typename Hasher> std::size_t hash_join<Hasher>::inner_join_size(cudf::table_view const& probe, rmm::cuda_stream_view stream) const { CUDF_FUNC_RANGE(); // Return directly if build table is empty if (_is_empty) { return 0; } CUDF_EXPECTS(_has_nulls || !cudf::has_nested_nulls(probe), "Probe table has nulls while build table was not hashed with null check."); auto const preprocessed_probe = cudf::experimental::row::equality::preprocessed_table::create(probe, stream); return cudf::detail::compute_join_output_size(_build, probe, _preprocessed_build, preprocessed_probe, _hash_table, cudf::detail::join_kind::INNER_JOIN, _has_nulls, _nulls_equal, stream); } template <typename Hasher> std::size_t hash_join<Hasher>::left_join_size(cudf::table_view const& probe, rmm::cuda_stream_view stream) const { CUDF_FUNC_RANGE(); // Trivial left join case - exit early if (_is_empty) { return probe.num_rows(); } CUDF_EXPECTS(_has_nulls || !cudf::has_nested_nulls(probe), "Probe table has nulls while build table was not hashed with null check."); auto const preprocessed_probe = cudf::experimental::row::equality::preprocessed_table::create(probe, stream); return cudf::detail::compute_join_output_size(_build, probe, _preprocessed_build, preprocessed_probe, _hash_table, cudf::detail::join_kind::LEFT_JOIN, _has_nulls, _nulls_equal, stream); } template <typename Hasher> std::size_t hash_join<Hasher>::full_join_size(cudf::table_view const& probe, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_FUNC_RANGE(); // Trivial left join case - exit early if (_is_empty) { return probe.num_rows(); } CUDF_EXPECTS(_has_nulls || !cudf::has_nested_nulls(probe), "Probe table has nulls while build table was not hashed with null check."); auto const preprocessed_probe = cudf::experimental::row::equality::preprocessed_table::create(probe, stream); return cudf::detail::get_full_join_size(_build, probe, _preprocessed_build, preprocessed_probe, _hash_table, _has_nulls, _nulls_equal, stream, mr); } template <typename Hasher> std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join<Hasher>::probe_join_indices(cudf::table_view const& probe_table, cudf::detail::join_kind join, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { // Trivial left join case - exit early if (_is_empty and join != cudf::detail::join_kind::INNER_JOIN) { return get_trivial_left_join_indices(probe_table, stream, mr); } CUDF_EXPECTS(!_is_empty, "Hash table of hash join is null."); CUDF_EXPECTS(_has_nulls || !cudf::has_nested_nulls(probe_table), "Probe table has nulls while build table was not hashed with null check."); auto const preprocessed_probe = cudf::experimental::row::equality::preprocessed_table::create(probe_table, stream); auto join_indices = cudf::detail::probe_join_hash_table(_build, probe_table, _preprocessed_build, preprocessed_probe, _hash_table, join, _has_nulls, _nulls_equal, output_size, stream, mr); if (join == cudf::detail::join_kind::FULL_JOIN) { auto complement_indices = detail::get_left_join_indices_complement( join_indices.second, probe_table.num_rows(), _build.num_rows(), stream, mr); join_indices = detail::concatenate_vector_pairs(join_indices, complement_indices, stream); } return join_indices; } template <typename Hasher> std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join<Hasher>::compute_hash_join(cudf::table_view const& probe, cudf::detail::join_kind join, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_EXPECTS(0 != probe.num_columns(), "Hash join probe table is empty"); CUDF_EXPECTS(_build.num_columns() == probe.num_columns(), "Mismatch in number of columns to be joined on"); CUDF_EXPECTS(_has_nulls || !cudf::has_nested_nulls(probe), "Probe table has nulls while build table was not hashed with null check."); if (is_trivial_join(probe, _build, join)) { return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); } CUDF_EXPECTS(std::equal(std::cbegin(_build), std::cend(_build), std::cbegin(probe), std::cend(probe), [](auto const& b, auto const& p) { return b.type() == p.type(); }), "Mismatch in joining column data types"); return probe_join_indices(probe, join, output_size, stream, mr); } } // namespace detail hash_join::~hash_join() = default; hash_join::hash_join(cudf::table_view const& build, null_equality compare_nulls, rmm::cuda_stream_view stream) // If we cannot know beforehand about null existence then let's assume that there are nulls. : hash_join(build, nullable_join::YES, compare_nulls, stream) { } hash_join::hash_join(cudf::table_view const& build, nullable_join has_nulls, null_equality compare_nulls, rmm::cuda_stream_view stream) : _impl{std::make_unique<impl_type const>( build, has_nulls == nullable_join::YES, compare_nulls, stream)} { } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join::inner_join(cudf::table_view const& probe, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { return _impl->inner_join(probe, output_size, stream, mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join::left_join(cudf::table_view const& probe, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { return _impl->left_join(probe, output_size, stream, mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> hash_join::full_join(cudf::table_view const& probe, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { return _impl->full_join(probe, output_size, stream, mr); } std::size_t hash_join::inner_join_size(cudf::table_view const& probe, rmm::cuda_stream_view stream) const { return _impl->inner_join_size(probe, stream); } std::size_t hash_join::left_join_size(cudf::table_view const& probe, rmm::cuda_stream_view stream) const { return _impl->left_join_size(probe, stream); } std::size_t hash_join::full_join_size(cudf::table_view const& probe, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { return _impl->full_join_size(probe, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/conditional_join.hpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "join_common_utils.hpp" #include <cudf/ast/expressions.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <optional> namespace cudf { namespace detail { /** * @brief Computes the join operation between two tables and returns the * output indices of left and right table as a combined table * * @param left Table of left columns to join * @param right Table of right columns to join * tables have been flipped, meaning the output indices should also be flipped * @param JoinKind The type of join to be performed * @param stream CUDA stream used for device memory operations and kernel launches * * @return Join output indices vector pair */ std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> conditional_join(table_view const& left, table_view const& right, ast::expression const& binary_predicate, join_kind JoinKind, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); /** * @brief Computes the size of a join operation between two tables without * materializing the result and returns the total size value. * * @param left Table of left columns to join * @param right Table of right columns to join * tables have been flipped, meaning the output indices should also be flipped * @param JoinKind The type of join to be performed * @param stream CUDA stream used for device memory operations and kernel launches * * @return Join output indices vector pair */ std::size_t compute_conditional_join_output_size(table_view const& left, table_view const& right, ast::expression const& binary_predicate, join_kind JoinKind, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_kernels.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <join/join_common_utils.hpp> #include <join/mixed_join_common_utils.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> namespace cudf { namespace detail { /** * @brief Computes the output size of joining the left table to the right table. * * This method probes the hash table with each row in the probe table using a * custom equality comparator that also checks that the conditional expression * evaluates to true between the left/right tables when a match is found * between probe and build rows. * * @tparam block_size The number of threads per block for this kernel * @tparam has_nulls Whether or not the inputs may contain nulls. * * @param[in] left_table The left table * @param[in] right_table The right table * @param[in] probe The table with which to probe the hash table for matches. * @param[in] build The table with which the hash table was built. * @param[in] hash_probe The hasher used for the probe table. * @param[in] equality_probe The equality comparator used when probing the hash table. * @param[in] join_type The type of join to be performed * @param[in] hash_table_view The hash table built from `build`. * @param[in] device_expression_data Container of device data required to evaluate the desired * expression. * @param[in] swap_tables If true, the kernel was launched with one thread per right row and * the kernel needs to internally loop over left rows. Otherwise, loop over right rows. * @param[out] output_size The resulting output size * @param[out] matches_per_row The number of matches in one pair of * equality/conditional tables for each row in the other pair of tables. If * swap_tables is true, matches_per_row corresponds to the right_table, * otherwise it corresponds to the left_table. Note that corresponding swap of * left/right tables to determine which is the build table and which is the * probe table has already happened on the host. */ template <int block_size, bool has_nulls> __global__ void compute_mixed_join_output_size( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row); /** * @brief Performs a join using the combination of a hash lookup to identify * equal rows between one pair of tables and the evaluation of an expression * containing an arbitrary expression. * * This method probes the hash table with each row in the probe table using a * custom equality comparator that also checks that the conditional expression * evaluates to true between the left/right tables when a match is found * between probe and build rows. * * @tparam block_size The number of threads per block for this kernel * @tparam has_nulls Whether or not the inputs may contain nulls. * * @param[in] left_table The left table * @param[in] right_table The right table * @param[in] probe The table with which to probe the hash table for matches. * @param[in] build The table with which the hash table was built. * @param[in] hash_probe The hasher used for the probe table. * @param[in] equality_probe The equality comparator used when probing the hash table. * @param[in] join_type The type of join to be performed * @param[in] hash_table_view The hash table built from `build`. * @param[out] join_output_l The left result of the join operation * @param[out] join_output_r The right result of the join operation * @param[in] device_expression_data Container of device data required to evaluate the desired * expression. * @param[in] join_result_offsets The starting indices in join_output[l|r] * where the matches for each row begin. Equivalent to a prefix sum of * matches_per_row. * @param[in] swap_tables If true, the kernel was launched with one thread per right row and * the kernel needs to internally loop over left rows. Otherwise, loop over right rows. */ template <cudf::size_type block_size, bool has_nulls> __global__ void mixed_join(table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, size_type* join_output_l, size_type* join_output_r, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/conditional_join_kernels.cuh
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <join/join_common_utils.cuh> #include <join/join_common_utils.hpp> #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/table_device_view.cuh> #include <cub/cub.cuh> namespace cudf { namespace detail { /** * @brief Computes the output size of joining the left table to the right table. * * This method uses a nested loop to iterate over the left and right tables and count the number of * matches according to a boolean expression. * * @tparam block_size The number of threads per block for this kernel * @tparam has_nulls Whether or not the inputs may contain nulls. * * @param[in] left_table The left table * @param[in] right_table The right table * @param[in] join_type The type of join to be performed * @param[in] device_expression_data Container of device data required to evaluate the desired * expression. * @param[in] swap_tables If true, the kernel was launched with one thread per right row and * the kernel needs to internally loop over left rows. Otherwise, loop over right rows. * @param[out] output_size The resulting output size */ template <int block_size, bool has_nulls> __global__ void compute_conditional_join_output_size( table_device_view left_table, table_device_view right_table, join_kind join_type, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size) { // The (required) extern storage of the shared memory array leads to // conflicting declarations between different templates. The easiest // workaround is to declare an arbitrary (here char) array type then cast it // after the fact to the appropriate type. extern __shared__ char raw_intermediate_storage[]; cudf::ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<cudf::ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = &intermediate_storage[threadIdx.x * device_expression_data.num_intermediates]; std::size_t thread_counter{0}; auto const start_idx = cudf::detail::grid_1d::global_thread_id(); auto const stride = cudf::detail::grid_1d::grid_stride(); cudf::thread_index_type const left_num_rows = left_table.num_rows(); cudf::thread_index_type const right_num_rows = right_table.num_rows(); auto const outer_num_rows = (swap_tables ? right_num_rows : left_num_rows); auto const inner_num_rows = (swap_tables ? left_num_rows : right_num_rows); auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>( left_table, right_table, device_expression_data); for (cudf::thread_index_type outer_row_index = start_idx; outer_row_index < outer_num_rows; outer_row_index += stride) { bool found_match = false; for (cudf::thread_index_type inner_row_index = 0; inner_row_index < inner_num_rows; ++inner_row_index) { auto output_dest = cudf::ast::detail::value_expression_result<bool, has_nulls>(); cudf::size_type const left_row_index = swap_tables ? inner_row_index : outer_row_index; cudf::size_type const right_row_index = swap_tables ? outer_row_index : inner_row_index; evaluator.evaluate( output_dest, left_row_index, right_row_index, 0, thread_intermediate_storage); if (output_dest.is_valid() && output_dest.value()) { if ((join_type != join_kind::LEFT_ANTI_JOIN) && !(join_type == join_kind::LEFT_SEMI_JOIN && found_match)) { ++thread_counter; } found_match = true; } } if ((join_type == join_kind::LEFT_JOIN || join_type == join_kind::LEFT_ANTI_JOIN || join_type == join_kind::FULL_JOIN) && (!found_match)) { ++thread_counter; } } using BlockReduce = cub::BlockReduce<cudf::size_type, block_size>; __shared__ typename BlockReduce::TempStorage temp_storage; std::size_t block_counter = BlockReduce(temp_storage).Sum(thread_counter); // Add block counter to global counter if (threadIdx.x == 0) { cuda::atomic_ref<std::size_t, cuda::thread_scope_device> ref{*output_size}; ref.fetch_add(block_counter, cuda::std::memory_order_relaxed); } } /** * @brief Performs a join conditioned on a predicate to find all matching rows * between the left and right tables and generate the output for the desired * Join operation. * * @tparam block_size The number of threads per block for this kernel * @tparam output_cache_size The side of the shared memory buffer to cache join * output results * @tparam has_nulls Whether or not the inputs may contain nulls. * * @param[in] left_table The left table * @param[in] right_table The right table * @param[in] join_type The type of join to be performed * @param[out] join_output_l The left result of the join operation * @param[out] join_output_r The right result of the join operation * @param[in,out] current_idx A global counter used by threads to coordinate * writes to the global output * @param device_expression_data Container of device data required to evaluate the desired * expression. * @param[in] max_size The maximum size of the output * @param[in] swap_tables If true, the kernel was launched with one thread per right row and * the kernel needs to internally loop over left rows. Otherwise, loop over right rows. */ template <cudf::size_type block_size, cudf::size_type output_cache_size, bool has_nulls> __global__ void conditional_join(table_device_view left_table, table_device_view right_table, join_kind join_type, cudf::size_type* join_output_l, cudf::size_type* join_output_r, cudf::size_type* current_idx, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const max_size, bool const swap_tables) { constexpr int num_warps = block_size / detail::warp_size; __shared__ cudf::size_type current_idx_shared[num_warps]; __shared__ cudf::size_type join_shared_l[num_warps][output_cache_size]; __shared__ cudf::size_type join_shared_r[num_warps][output_cache_size]; // Normally the casting of a shared memory array is used to create multiple // arrays of different types from the shared memory buffer, but here it is // used to circumvent conflicts between arrays of different types between // different template instantiations due to the extern specifier. extern __shared__ char raw_intermediate_storage[]; cudf::ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<cudf::ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = &intermediate_storage[threadIdx.x * device_expression_data.num_intermediates]; int const warp_id = threadIdx.x / detail::warp_size; int const lane_id = threadIdx.x % detail::warp_size; cudf::thread_index_type const left_num_rows = left_table.num_rows(); cudf::thread_index_type const right_num_rows = right_table.num_rows(); cudf::thread_index_type const outer_num_rows = (swap_tables ? right_num_rows : left_num_rows); cudf::thread_index_type const inner_num_rows = (swap_tables ? left_num_rows : right_num_rows); if (0 == lane_id) { current_idx_shared[warp_id] = 0; } __syncwarp(); auto outer_row_index = cudf::detail::grid_1d::global_thread_id(); unsigned int const activemask = __ballot_sync(0xffff'ffffu, outer_row_index < outer_num_rows); auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>( left_table, right_table, device_expression_data); if (outer_row_index < outer_num_rows) { bool found_match = false; for (thread_index_type inner_row_index(0); inner_row_index < inner_num_rows; ++inner_row_index) { auto output_dest = cudf::ast::detail::value_expression_result<bool, has_nulls>(); auto const left_row_index = swap_tables ? inner_row_index : outer_row_index; auto const right_row_index = swap_tables ? outer_row_index : inner_row_index; evaluator.evaluate( output_dest, left_row_index, right_row_index, 0, thread_intermediate_storage); if (output_dest.is_valid() && output_dest.value()) { // If the rows are equal, then we have found a true match // In the case of left anti joins we only add indices from left after // the loop if we have found _no_ matches from the right. // In the case of left semi joins we only add the first match (note // that the current logic relies on the fact that we process all right // table rows for a single left table row on a single thread so that no // synchronization of found_match is required). if ((join_type != join_kind::LEFT_ANTI_JOIN) && !(join_type == join_kind::LEFT_SEMI_JOIN && found_match)) { add_pair_to_cache(left_row_index, right_row_index, current_idx_shared, warp_id, join_shared_l[warp_id], join_shared_r[warp_id]); } found_match = true; } __syncwarp(activemask); // flush output cache if next iteration does not fit auto const do_flush = current_idx_shared[warp_id] + detail::warp_size >= output_cache_size; auto const flush_mask = __ballot_sync(activemask, do_flush); if (do_flush) { flush_output_cache<num_warps, output_cache_size>(flush_mask, max_size, warp_id, lane_id, current_idx, current_idx_shared, join_shared_l, join_shared_r, join_output_l, join_output_r); __syncwarp(flush_mask); if (0 == lane_id) { current_idx_shared[warp_id] = 0; } } __syncwarp(activemask); } // Left, left anti, and full joins all require saving left columns that // aren't present in the right. if ((join_type == join_kind::LEFT_JOIN || join_type == join_kind::LEFT_ANTI_JOIN || join_type == join_kind::FULL_JOIN) && (!found_match)) { // TODO: This code assumes that swap_tables is false for all join // kinds aside from inner joins. Once the code is generalized to handle // other joins we'll want to switch the variable in the line below back // to the left_row_index, but for now we can assume that they are // equivalent inside this conditional. add_pair_to_cache(outer_row_index, static_cast<cudf::size_type>(JoinNoneValue), current_idx_shared, warp_id, join_shared_l[warp_id], join_shared_r[warp_id]); } __syncwarp(activemask); // final flush of output cache auto const do_flush = current_idx_shared[warp_id] > 0; auto const flush_mask = __ballot_sync(activemask, do_flush); if (do_flush) { flush_output_cache<num_warps, output_cache_size>(flush_mask, max_size, warp_id, lane_id, current_idx, current_idx_shared, join_shared_l, join_shared_r, join_output_l, join_output_r); } } } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/cross_join.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/copying.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/repeat.hpp> #include <cudf/detail/reshape.hpp> #include <cudf/filling.hpp> #include <cudf/join.hpp> #include <cudf/reshape.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { /** * @copydoc cudf::cross_join * * @param stream CUDA stream used for device memory operations and kernel launches */ std::unique_ptr<cudf::table> cross_join(cudf::table_view const& left, cudf::table_view const& right, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(0 != left.num_columns(), "Left table is empty"); CUDF_EXPECTS(0 != right.num_columns(), "Right table is empty"); // If left or right table has no rows, return an empty table with all columns if ((0 == left.num_rows()) || (0 == right.num_rows())) { auto empty_left_columns = empty_like(left)->release(); auto empty_right_columns = empty_like(right)->release(); std::move(empty_right_columns.begin(), empty_right_columns.end(), std::back_inserter(empty_left_columns)); return std::make_unique<table>(std::move(empty_left_columns)); } // Repeat left table auto left_repeated = detail::repeat(left, right.num_rows(), stream, mr); // Tile right table auto right_tiled = detail::tile(right, left.num_rows(), stream, mr); // Concatenate all repeated/tiled columns into one table auto left_repeated_columns = left_repeated->release(); auto right_tiled_columns = right_tiled->release(); std::move(right_tiled_columns.begin(), right_tiled_columns.end(), std::back_inserter(left_repeated_columns)); return std::make_unique<table>(std::move(left_repeated_columns)); } } // namespace detail std::unique_ptr<cudf::table> cross_join(cudf::table_view const& left, cudf::table_view const& right, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::cross_join(left, right, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/conditional_join.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/ast/expressions.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/join.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <join/conditional_join.hpp> #include <join/conditional_join_kernels.cuh> #include <join/join_common_utils.cuh> #include <join/join_common_utils.hpp> #include <rmm/cuda_stream_view.hpp> #include <optional> namespace cudf { namespace detail { std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> conditional_join(table_view const& left, table_view const& right, ast::expression const& binary_predicate, join_kind join_type, std::optional<std::size_t> output_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // We can immediately filter out cases where the right table is empty. In // some cases, we return all the rows of the left table with a corresponding // null index for the right table; in others, we return an empty output. auto right_num_rows{right.num_rows()}; auto left_num_rows{left.num_rows()}; if (right_num_rows == 0) { switch (join_type) { // Left, left anti, and full all return all the row indices from left // with a corresponding NULL from the right. case join_kind::LEFT_JOIN: case join_kind::LEFT_ANTI_JOIN: case join_kind::FULL_JOIN: return get_trivial_left_join_indices(left, stream, rmm::mr::get_current_device_resource()); // Inner and left semi joins return empty output because no matches can exist. case join_kind::INNER_JOIN: case join_kind::LEFT_SEMI_JOIN: return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); default: CUDF_FAIL("Invalid join kind."); break; } } else if (left_num_rows == 0) { switch (join_type) { // Left, left anti, left semi, and inner joins all return empty sets. case join_kind::LEFT_JOIN: case join_kind::LEFT_ANTI_JOIN: case join_kind::INNER_JOIN: case join_kind::LEFT_SEMI_JOIN: return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); // Full joins need to return the trivial complement. case join_kind::FULL_JOIN: { auto ret_flipped = get_trivial_left_join_indices(right, stream, rmm::mr::get_current_device_resource()); return std::pair(std::move(ret_flipped.second), std::move(ret_flipped.first)); } default: CUDF_FAIL("Invalid join kind."); break; } } // If evaluating the expression may produce null outputs we create a nullable // output column and follow the null-supporting expression evaluation code // path. auto const has_nulls = binary_predicate.may_evaluate_null(left, right, stream); auto const parser = ast::detail::expression_parser{binary_predicate, left, right, has_nulls, stream, mr}; CUDF_EXPECTS(parser.output_type().id() == type_id::BOOL8, "The expression must produce a boolean output."); auto left_table = table_device_view::create(left, stream); auto right_table = table_device_view::create(right, stream); // For inner joins we support optimizing the join by launching one thread for // whichever table is larger rather than always using the left table. auto swap_tables = (join_type == join_kind::INNER_JOIN) && (right_num_rows > left_num_rows); detail::grid_1d const config(swap_tables ? right_num_rows : left_num_rows, DEFAULT_JOIN_BLOCK_SIZE); auto const shmem_size_per_block = parser.shmem_per_thread * config.num_threads_per_block; join_kind const kernel_join_type = join_type == join_kind::FULL_JOIN ? join_kind::LEFT_JOIN : join_type; // If the join size was not provided as an input, compute it here. std::size_t join_size; if (output_size.has_value()) { join_size = *output_size; } else { // Allocate storage for the counter used to get the size of the join output rmm::device_scalar<std::size_t> size(0, stream, mr); if (has_nulls) { compute_conditional_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_table, *right_table, kernel_join_type, parser.device_expression_data, swap_tables, size.data()); } else { compute_conditional_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_table, *right_table, kernel_join_type, parser.device_expression_data, swap_tables, size.data()); } join_size = size.value(stream); } // The initial early exit clauses guarantee that we will not reach this point // unless both the left and right tables are non-empty. Under that // constraint, neither left nor full joins can return an empty result since // at minimum we are guaranteed null matches for all non-matching rows. In // all other cases (inner, left semi, and left anti joins) if we reach this // point we can safely return an empty result. if (join_size == 0) { return std::pair(std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr), std::make_unique<rmm::device_uvector<size_type>>(0, stream, mr)); } rmm::device_scalar<size_type> write_index(0, stream); auto left_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto right_indices = std::make_unique<rmm::device_uvector<size_type>>(join_size, stream, mr); auto const& join_output_l = left_indices->data(); auto const& join_output_r = right_indices->data(); if (has_nulls) { conditional_join<DEFAULT_JOIN_BLOCK_SIZE, DEFAULT_JOIN_CACHE_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_table, *right_table, kernel_join_type, join_output_l, join_output_r, write_index.data(), parser.device_expression_data, join_size, swap_tables); } else { conditional_join<DEFAULT_JOIN_BLOCK_SIZE, DEFAULT_JOIN_CACHE_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_table, *right_table, kernel_join_type, join_output_l, join_output_r, write_index.data(), parser.device_expression_data, join_size, swap_tables); } auto join_indices = std::pair(std::move(left_indices), std::move(right_indices)); // For full joins, get the indices in the right table that were not joined to // by any row in the left table. if (join_type == join_kind::FULL_JOIN) { auto complement_indices = detail::get_left_join_indices_complement( join_indices.second, left_num_rows, right_num_rows, stream, mr); join_indices = detail::concatenate_vector_pairs(join_indices, complement_indices, stream); } return join_indices; } std::size_t compute_conditional_join_output_size(table_view const& left, table_view const& right, ast::expression const& binary_predicate, join_kind join_type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Until we add logic to handle the number of non-matches in the right table, // full joins are not supported in this function. Note that this does not // prevent actually performing full joins since we do that by calculating the // left join and then concatenating the complementary right indices. CUDF_EXPECTS(join_type != join_kind::FULL_JOIN, "Size estimation is not available for full joins."); // We can immediately filter out cases where one table is empty. In // some cases, we return all the rows of the other table with a corresponding // null index for the empty table; in others, we return an empty output. auto right_num_rows{right.num_rows()}; auto left_num_rows{left.num_rows()}; if (right_num_rows == 0) { switch (join_type) { // Left, left anti, and full all return all the row indices from left // with a corresponding NULL from the right. case join_kind::LEFT_JOIN: case join_kind::LEFT_ANTI_JOIN: case join_kind::FULL_JOIN: return left_num_rows; // Inner and left semi joins return empty output because no matches can exist. case join_kind::INNER_JOIN: case join_kind::LEFT_SEMI_JOIN: return 0; default: CUDF_FAIL("Invalid join kind."); break; } } else if (left_num_rows == 0) { switch (join_type) { // Left, left anti, left semi, and inner joins all return empty sets. case join_kind::LEFT_JOIN: case join_kind::LEFT_ANTI_JOIN: case join_kind::INNER_JOIN: case join_kind::LEFT_SEMI_JOIN: return 0; // Full joins need to return the trivial complement. case join_kind::FULL_JOIN: return right_num_rows; default: CUDF_FAIL("Invalid join kind."); break; } } // Prepare output column. Whether or not the output column is nullable is // determined by whether any of the columns in the input table are nullable. // If none of the input columns actually contain nulls, we can still use the // non-nullable version of the expression evaluation code path for // performance, so we capture that information as well. auto const has_nulls = binary_predicate.may_evaluate_null(left, right, stream); auto const parser = ast::detail::expression_parser{binary_predicate, left, right, has_nulls, stream, mr}; CUDF_EXPECTS(parser.output_type().id() == type_id::BOOL8, "The expression must produce a boolean output."); auto left_table = table_device_view::create(left, stream); auto right_table = table_device_view::create(right, stream); // For inner joins we support optimizing the join by launching one thread for // whichever table is larger rather than always using the left table. auto swap_tables = (join_type == join_kind::INNER_JOIN) && (right_num_rows > left_num_rows); detail::grid_1d const config(swap_tables ? right_num_rows : left_num_rows, DEFAULT_JOIN_BLOCK_SIZE); auto const shmem_size_per_block = parser.shmem_per_thread * config.num_threads_per_block; // Allocate storage for the counter used to get the size of the join output rmm::device_scalar<std::size_t> size(0, stream, mr); // Determine number of output rows without actually building the output to simply // find what the size of the output will be. if (has_nulls) { compute_conditional_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, true> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_table, *right_table, join_type, parser.device_expression_data, swap_tables, size.data()); } else { compute_conditional_join_output_size<DEFAULT_JOIN_BLOCK_SIZE, false> <<<config.num_blocks, config.num_threads_per_block, shmem_size_per_block, stream.value()>>>( *left_table, *right_table, join_type, parser.device_expression_data, swap_tables, size.data()); } return size.value(stream); } } // namespace detail std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> conditional_inner_join(table_view const& left, table_view const& right, ast::expression const& binary_predicate, std::optional<std::size_t> output_size, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::conditional_join(left, right, binary_predicate, detail::join_kind::INNER_JOIN, output_size, cudf::get_default_stream(), mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> conditional_left_join(table_view const& left, table_view const& right, ast::expression const& binary_predicate, std::optional<std::size_t> output_size, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::conditional_join(left, right, binary_predicate, detail::join_kind::LEFT_JOIN, output_size, cudf::get_default_stream(), mr); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> conditional_full_join(table_view const& left, table_view const& right, ast::expression const& binary_predicate, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::conditional_join(left, right, binary_predicate, detail::join_kind::FULL_JOIN, {}, cudf::get_default_stream(), mr); } std::unique_ptr<rmm::device_uvector<size_type>> conditional_left_semi_join( table_view const& left, table_view const& right, ast::expression const& binary_predicate, std::optional<std::size_t> output_size, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return std::move(detail::conditional_join(left, right, binary_predicate, detail::join_kind::LEFT_SEMI_JOIN, output_size, cudf::get_default_stream(), mr) .first); } std::unique_ptr<rmm::device_uvector<size_type>> conditional_left_anti_join( table_view const& left, table_view const& right, ast::expression const& binary_predicate, std::optional<std::size_t> output_size, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return std::move(detail::conditional_join(left, right, binary_predicate, detail::join_kind::LEFT_ANTI_JOIN, output_size, cudf::get_default_stream(), mr) .first); } std::size_t conditional_inner_join_size(table_view const& left, table_view const& right, ast::expression const& binary_predicate, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_conditional_join_output_size( left, right, binary_predicate, detail::join_kind::INNER_JOIN, cudf::get_default_stream(), mr); } std::size_t conditional_left_join_size(table_view const& left, table_view const& right, ast::expression const& binary_predicate, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::compute_conditional_join_output_size( left, right, binary_predicate, detail::join_kind::LEFT_JOIN, cudf::get_default_stream(), mr); } std::size_t conditional_left_semi_join_size(table_view const& left, table_view const& right, ast::expression const& binary_predicate, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return std::move(detail::compute_conditional_join_output_size(left, right, binary_predicate, detail::join_kind::LEFT_SEMI_JOIN, cudf::get_default_stream(), mr)); } std::size_t conditional_left_anti_join_size(table_view const& left, table_view const& right, ast::expression const& binary_predicate, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return std::move(detail::compute_conditional_join_output_size(left, right, binary_predicate, detail::join_kind::LEFT_ANTI_JOIN, cudf::get_default_stream(), mr)); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_kernels_semi.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <join/join_common_utils.cuh> #include <join/join_common_utils.hpp> #include <join/mixed_join_common_utils.cuh> #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> #include <cub/cub.cuh> namespace cudf { namespace detail { namespace cg = cooperative_groups; template <cudf::size_type block_size, bool has_nulls> __launch_bounds__(block_size) __global__ void mixed_join_semi(table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, size_type* join_output_l, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables) { // Normally the casting of a shared memory array is used to create multiple // arrays of different types from the shared memory buffer, but here it is // used to circumvent conflicts between arrays of different types between // different template instantiations due to the extern specifier. extern __shared__ char raw_intermediate_storage[]; cudf::ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<cudf::ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = &intermediate_storage[threadIdx.x * device_expression_data.num_intermediates]; cudf::size_type const left_num_rows = left_table.num_rows(); cudf::size_type const right_num_rows = right_table.num_rows(); auto const outer_num_rows = (swap_tables ? right_num_rows : left_num_rows); cudf::size_type outer_row_index = threadIdx.x + blockIdx.x * block_size; auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>( left_table, right_table, device_expression_data); if (outer_row_index < outer_num_rows) { // Figure out the number of elements for this key. auto equality = single_expression_equality<has_nulls>{ evaluator, thread_intermediate_storage, swap_tables, equality_probe}; if ((join_type == join_kind::LEFT_ANTI_JOIN) != (hash_table_view.contains(outer_row_index, hash_probe, equality))) { *(join_output_l + join_result_offsets[outer_row_index]) = outer_row_index; } } } template __global__ void mixed_join_semi<DEFAULT_JOIN_BLOCK_SIZE, true>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, size_type* join_output_l, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables); template __global__ void mixed_join_semi<DEFAULT_JOIN_BLOCK_SIZE, false>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, size_type* join_output_l, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/join_utils.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "join_common_utils.cuh" #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/functional.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/scatter.h> #include <thrust/sequence.h> #include <thrust/uninitialized_fill.h> namespace cudf { namespace detail { bool is_trivial_join(table_view const& left, table_view const& right, join_kind join_type) { // If there is nothing to join, then send empty table with all columns if (left.is_empty() || right.is_empty()) { return true; } // If left join and the left table is empty, return immediately if ((join_kind::LEFT_JOIN == join_type) && (0 == left.num_rows())) { return true; } // If Inner Join and either table is empty, return immediately if ((join_kind::INNER_JOIN == join_type) && ((0 == left.num_rows()) || (0 == right.num_rows()))) { return true; } // If left semi join (contains) and right table is empty, // return immediately if ((join_kind::LEFT_SEMI_JOIN == join_type) && (0 == right.num_rows())) { return true; } return false; } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> get_trivial_left_join_indices(table_view const& left, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto left_indices = std::make_unique<rmm::device_uvector<size_type>>(left.num_rows(), stream, mr); thrust::sequence(rmm::exec_policy(stream), left_indices->begin(), left_indices->end(), 0); auto right_indices = std::make_unique<rmm::device_uvector<size_type>>(left.num_rows(), stream, mr); thrust::uninitialized_fill( rmm::exec_policy(stream), right_indices->begin(), right_indices->end(), JoinNoneValue); return std::pair(std::move(left_indices), std::move(right_indices)); } VectorPair concatenate_vector_pairs(VectorPair& a, VectorPair& b, rmm::cuda_stream_view stream) { CUDF_EXPECTS((a.first->size() == a.second->size()), "Mismatch between sizes of vectors in vector pair"); CUDF_EXPECTS((b.first->size() == b.second->size()), "Mismatch between sizes of vectors in vector pair"); if (a.first->is_empty()) { return std::move(b); } else if (b.first->is_empty()) { return std::move(a); } auto original_size = a.first->size(); a.first->resize(a.first->size() + b.first->size(), stream); a.second->resize(a.second->size() + b.second->size(), stream); thrust::copy( rmm::exec_policy(stream), b.first->begin(), b.first->end(), a.first->begin() + original_size); thrust::copy(rmm::exec_policy(stream), b.second->begin(), b.second->end(), a.second->begin() + original_size); return std::move(a); } std::pair<std::unique_ptr<rmm::device_uvector<size_type>>, std::unique_ptr<rmm::device_uvector<size_type>>> get_left_join_indices_complement(std::unique_ptr<rmm::device_uvector<size_type>>& right_indices, size_type left_table_row_count, size_type right_table_row_count, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // Get array of indices that do not appear in right_indices // Vector allocated for unmatched result auto right_indices_complement = std::make_unique<rmm::device_uvector<size_type>>(right_table_row_count, stream); // If left table is empty in a full join call then all rows of the right table // should be represented in the joined indices. This is an optimization since // if left table is empty and full join is called all the elements in // right_indices will be JoinNoneValue, i.e. -1. This if path should // produce exactly the same result as the else path but will be faster. if (left_table_row_count == 0) { thrust::sequence(rmm::exec_policy(stream), right_indices_complement->begin(), right_indices_complement->end(), 0); } else { // Assume all the indices in invalid_index_map are invalid auto invalid_index_map = std::make_unique<rmm::device_uvector<size_type>>(right_table_row_count, stream); thrust::uninitialized_fill( rmm::exec_policy(stream), invalid_index_map->begin(), invalid_index_map->end(), int32_t{1}); // Functor to check for index validity since left joins can create invalid indices valid_range<size_type> valid(0, right_table_row_count); // invalid_index_map[index_ptr[i]] = 0 for i = 0 to right_table_row_count // Thus specifying that those locations are valid thrust::scatter_if(rmm::exec_policy(stream), thrust::make_constant_iterator(0), thrust::make_constant_iterator(0) + right_indices->size(), right_indices->begin(), // Index locations right_indices->begin(), // Stencil - Check if index location is valid invalid_index_map->begin(), // Output indices valid); // Stencil Predicate size_type begin_counter = static_cast<size_type>(0); size_type end_counter = static_cast<size_type>(right_table_row_count); // Create list of indices that have been marked as invalid size_type indices_count = thrust::copy_if(rmm::exec_policy(stream), thrust::make_counting_iterator(begin_counter), thrust::make_counting_iterator(end_counter), invalid_index_map->begin(), right_indices_complement->begin(), thrust::identity{}) - right_indices_complement->begin(); right_indices_complement->resize(indices_count, stream); } auto left_invalid_indices = std::make_unique<rmm::device_uvector<size_type>>(right_indices_complement->size(), stream); thrust::uninitialized_fill(rmm::exec_policy(stream), left_invalid_indices->begin(), left_invalid_indices->end(), JoinNoneValue); return std::pair(std::move(left_invalid_indices), std::move(right_indices_complement)); } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_kernels_semi.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <join/join_common_utils.hpp> #include <join/mixed_join_common_utils.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> namespace cudf { namespace detail { /** * @brief Computes the output size of joining the left table to the right table for semi/anti joins. * * This method probes the hash table with each row in the probe table using a * custom equality comparator that also checks that the conditional expression * evaluates to true between the left/right tables when a match is found * between probe and build rows. * * @tparam block_size The number of threads per block for this kernel * @tparam has_nulls Whether or not the inputs may contain nulls. * * @param[in] left_table The left table * @param[in] right_table The right table * @param[in] probe The table with which to probe the hash table for matches. * @param[in] build The table with which the hash table was built. * @param[in] hash_probe The hasher used for the probe table. * @param[in] equality_probe The equality comparator used when probing the hash table. * @param[in] join_type The type of join to be performed * @param[in] hash_table_view The hash table built from `build`. * @param[in] device_expression_data Container of device data required to evaluate the desired * expression. * @param[in] swap_tables If true, the kernel was launched with one thread per right row and * the kernel needs to internally loop over left rows. Otherwise, loop over right rows. * @param[out] output_size The resulting output size * @param[out] matches_per_row The number of matches in one pair of * equality/conditional tables for each row in the other pair of tables. If * swap_tables is true, matches_per_row corresponds to the right_table, * otherwise it corresponds to the left_table. Note that corresponding swap of * left/right tables to determine which is the build table and which is the * probe table has already happened on the host. */ template <int block_size, bool has_nulls> __global__ void compute_mixed_join_output_size_semi( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row); /** * @brief Performs a semi/anti join using the combination of a hash lookup to * identify equal rows between one pair of tables and the evaluation of an * expression containing an arbitrary expression. * * This method probes the hash table with each row in the probe table using a * custom equality comparator that also checks that the conditional expression * evaluates to true between the left/right tables when a match is found * between probe and build rows. * * @tparam block_size The number of threads per block for this kernel * @tparam has_nulls Whether or not the inputs may contain nulls. * * @param[in] left_table The left table * @param[in] right_table The right table * @param[in] probe The table with which to probe the hash table for matches. * @param[in] build The table with which the hash table was built. * @param[in] hash_probe The hasher used for the probe table. * @param[in] equality_probe The equality comparator used when probing the hash table. * @param[in] join_type The type of join to be performed * @param[in] hash_table_view The hash table built from `build`. * @param[out] join_output_l The left result of the join operation * @param[in] device_expression_data Container of device data required to evaluate the desired * expression. * @param[in] join_result_offsets The starting indices in join_output[l|r] * where the matches for each row begin. Equivalent to a prefix sum of * matches_per_row. * @param[in] swap_tables If true, the kernel was launched with one thread per right row and * the kernel needs to internally loop over left rows. Otherwise, loop over right rows. */ template <cudf::size_type block_size, bool has_nulls> __global__ void mixed_join_semi(table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, size_type* join_output_l, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_common_utils.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <join/join_common_utils.hpp> #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/experimental/row_operators.cuh> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <cub/cub.cuh> namespace cudf { namespace detail { using row_hash = cudf::experimental::row::hash::device_row_hasher<cudf::hashing::detail::default_hash, cudf::nullate::DYNAMIC>; // // This alias is used by mixed_joins, which support only non-nested types using row_equality = cudf::experimental::row::equality::strong_index_comparator_adapter< cudf::experimental::row::equality::device_row_comparator<false, cudf::nullate::DYNAMIC>>; /** * @brief Equality comparator for use with cuco map methods that require expression evaluation. * * This class just defines the construction of the class and the necessary * attributes, specifically the equality operator for the non-conditional parts * of the operator and the evaluator used for the conditional. */ template <bool has_nulls> struct expression_equality { __device__ expression_equality( cudf::ast::detail::expression_evaluator<has_nulls> const& evaluator, cudf::ast::detail::IntermediateDataType<has_nulls>* thread_intermediate_storage, bool const swap_tables, row_equality const& equality_probe) : evaluator{evaluator}, thread_intermediate_storage{thread_intermediate_storage}, swap_tables{swap_tables}, equality_probe{equality_probe} { } cudf::ast::detail::IntermediateDataType<has_nulls>* thread_intermediate_storage; cudf::ast::detail::expression_evaluator<has_nulls> const& evaluator; bool const swap_tables; row_equality const& equality_probe; }; /** * @brief Equality comparator for cuco::static_map queries. * * This equality comparator is designed for use with cuco::static_map's APIs. A * probe hit indicates that the hashes of the keys are equal, at which point * this comparator checks whether the keys themselves are equal (using the * provided equality_probe) and then evaluates the conditional expression */ template <bool has_nulls> struct single_expression_equality : expression_equality<has_nulls> { using expression_equality<has_nulls>::expression_equality; // The parameters are build/probe rather than left/right because the operator // is called by cuco's kernels with parameters in this order (note that this // is an implementation detail that we should eventually stop relying on by // defining operators with suitable heterogeneous typing). Rather than // converting to left/right semantics, we can operate directly on build/probe // until we get to the expression evaluator, which needs to convert back to // left/right semantics because the conditional expression need not be // commutative. // TODO: The input types should really be size_type. __device__ __forceinline__ bool operator()(hash_value_type const build_row_index, hash_value_type const probe_row_index) const noexcept { using cudf::experimental::row::lhs_index_type; using cudf::experimental::row::rhs_index_type; auto output_dest = cudf::ast::detail::value_expression_result<bool, has_nulls>(); // Two levels of checks: // 1. The contents of the columns involved in the equality condition are equal. // 2. The predicate evaluated on the relevant columns (already encoded in the evaluator) // evaluates to true. if (this->equality_probe(lhs_index_type{probe_row_index}, rhs_index_type{build_row_index})) { auto const lrow_idx = this->swap_tables ? build_row_index : probe_row_index; auto const rrow_idx = this->swap_tables ? probe_row_index : build_row_index; this->evaluator.evaluate(output_dest, static_cast<size_type>(lrow_idx), static_cast<size_type>(rrow_idx), 0, this->thread_intermediate_storage); return (output_dest.is_valid() && output_dest.value()); } return false; } }; /** * @brief Equality comparator for cuco::static_multimap queries. * * This equality comparator is designed for use with cuco::static_multimap's * pair* APIs, which will compare equality based on comparing (key, value) * pairs. In the context of joins, these pairs are of the form * (row_hash, row_id). A hash probe hit indicates that hash of a probe row's hash is * equal to the hash of the hash of some row in the multimap, at which point we need an * equality comparator that will check whether the contents of the rows are * identical. This comparator does so by verifying key equality (i.e. that * probe_row_hash == build_row_hash) and then using a row_equality_comparator * to compare the contents of the row indices that are stored as the payload in * the hash map. */ template <bool has_nulls> struct pair_expression_equality : public expression_equality<has_nulls> { using expression_equality<has_nulls>::expression_equality; // The parameters are build/probe rather than left/right because the operator // is called by cuco's kernels with parameters in this order (note that this // is an implementation detail that we should eventually stop relying on by // defining operators with suitable heterogeneous typing). Rather than // converting to left/right semantics, we can operate directly on build/probe // until we get to the expression evaluator, which needs to convert back to // left/right semantics because the conditional expression need not be // commutative. __device__ __forceinline__ bool operator()(pair_type const& build_row, pair_type const& probe_row) const noexcept { using cudf::experimental::row::lhs_index_type; using cudf::experimental::row::rhs_index_type; auto output_dest = cudf::ast::detail::value_expression_result<bool, has_nulls>(); // Three levels of checks: // 1. Row hashes of the columns involved in the equality condition are equal. // 2. The contents of the columns involved in the equality condition are equal. // 3. The predicate evaluated on the relevant columns (already encoded in the evaluator) // evaluates to true. if ((probe_row.first == build_row.first) && this->equality_probe(lhs_index_type{probe_row.second}, rhs_index_type{build_row.second})) { auto const lrow_idx = this->swap_tables ? build_row.second : probe_row.second; auto const rrow_idx = this->swap_tables ? probe_row.second : build_row.second; this->evaluator.evaluate( output_dest, lrow_idx, rrow_idx, 0, this->thread_intermediate_storage); return (output_dest.is_valid() && output_dest.value()); } return false; } }; } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_kernel_nulls.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mixed_join_kernel.cuh" namespace cudf { namespace detail { template __global__ void mixed_join<DEFAULT_JOIN_BLOCK_SIZE, true>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, size_type* join_output_l, size_type* join_output_r, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/semi_join.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <join/join_common_utils.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/join.hpp> #include <cudf/table/table.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/distance.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/sequence.h> #include <thrust/transform.h> namespace cudf { namespace detail { std::unique_ptr<rmm::device_uvector<cudf::size_type>> left_semi_anti_join( join_kind const kind, cudf::table_view const& left_keys, cudf::table_view const& right_keys, null_equality compare_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(0 != left_keys.num_columns(), "Left table is empty"); CUDF_EXPECTS(0 != right_keys.num_columns(), "Right table is empty"); if (is_trivial_join(left_keys, right_keys, kind)) { return std::make_unique<rmm::device_uvector<cudf::size_type>>(0, stream, mr); } if ((join_kind::LEFT_ANTI_JOIN == kind) && (0 == right_keys.num_rows())) { auto result = std::make_unique<rmm::device_uvector<cudf::size_type>>(left_keys.num_rows(), stream, mr); thrust::sequence(rmm::exec_policy(stream), result->begin(), result->end()); return result; } // Materialize a `flagged` boolean array to generate a gather map. // Previously, the gather map was generated directly without this array but by calling to // `map.contains` inside the `thrust::copy_if` kernel. However, that led to increasing register // usage and reducing performance, as reported here: https://github.com/rapidsai/cudf/pull/10511. auto const flagged = cudf::detail::contains(right_keys, left_keys, compare_nulls, nan_equality::ALL_EQUAL, stream, rmm::mr::get_current_device_resource()); auto const left_num_rows = left_keys.num_rows(); auto gather_map = std::make_unique<rmm::device_uvector<cudf::size_type>>(left_num_rows, stream, mr); // gather_map_end will be the end of valid data in gather_map auto gather_map_end = thrust::copy_if(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(left_num_rows), gather_map->begin(), [kind, d_flagged = flagged.begin()] __device__(size_type const idx) { return *(d_flagged + idx) == (kind == join_kind::LEFT_SEMI_JOIN); }); gather_map->resize(thrust::distance(gather_map->begin(), gather_map_end), stream); return gather_map; } } // namespace detail std::unique_ptr<rmm::device_uvector<cudf::size_type>> left_semi_join( cudf::table_view const& left, cudf::table_view const& right, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::left_semi_anti_join( detail::join_kind::LEFT_SEMI_JOIN, left, right, compare_nulls, cudf::get_default_stream(), mr); } std::unique_ptr<rmm::device_uvector<cudf::size_type>> left_anti_join( cudf::table_view const& left, cudf::table_view const& right, null_equality compare_nulls, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::left_semi_anti_join( detail::join_kind::LEFT_ANTI_JOIN, left, right, compare_nulls, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_size_kernels_semi.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <join/join_common_utils.cuh> #include <join/join_common_utils.hpp> #include <join/mixed_join_common_utils.cuh> #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> #include <cub/cub.cuh> namespace cudf { namespace detail { namespace cg = cooperative_groups; template <int block_size, bool has_nulls> __launch_bounds__(block_size) __global__ void compute_mixed_join_output_size_semi( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row) { // The (required) extern storage of the shared memory array leads to // conflicting declarations between different templates. The easiest // workaround is to declare an arbitrary (here char) array type then cast it // after the fact to the appropriate type. extern __shared__ char raw_intermediate_storage[]; cudf::ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<cudf::ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = intermediate_storage + (threadIdx.x * device_expression_data.num_intermediates); std::size_t thread_counter{0}; cudf::size_type const start_idx = threadIdx.x + blockIdx.x * block_size; cudf::size_type const stride = block_size * gridDim.x; cudf::size_type const left_num_rows = left_table.num_rows(); cudf::size_type const right_num_rows = right_table.num_rows(); auto const outer_num_rows = (swap_tables ? right_num_rows : left_num_rows); auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>( left_table, right_table, device_expression_data); // TODO: Address asymmetry in operator. auto equality = single_expression_equality<has_nulls>{ evaluator, thread_intermediate_storage, swap_tables, equality_probe}; for (cudf::size_type outer_row_index = start_idx; outer_row_index < outer_num_rows; outer_row_index += stride) { matches_per_row[outer_row_index] = ((join_type == join_kind::LEFT_ANTI_JOIN) != (hash_table_view.contains(outer_row_index, hash_probe, equality))); thread_counter += matches_per_row[outer_row_index]; } using BlockReduce = cub::BlockReduce<cudf::size_type, block_size>; __shared__ typename BlockReduce::TempStorage temp_storage; std::size_t block_counter = BlockReduce(temp_storage).Sum(thread_counter); // Add block counter to global counter if (threadIdx.x == 0) { cuda::atomic_ref<std::size_t, cuda::thread_scope_device> ref{*output_size}; ref.fetch_add(block_counter, cuda::std::memory_order_relaxed); } } template __global__ void compute_mixed_join_output_size_semi<DEFAULT_JOIN_BLOCK_SIZE, true>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row); template __global__ void compute_mixed_join_output_size_semi<DEFAULT_JOIN_BLOCK_SIZE, false>( table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::semi_map_type::device_view hash_table_view, ast::detail::expression_device_view device_expression_data, bool const swap_tables, std::size_t* output_size, cudf::device_span<cudf::size_type> matches_per_row); } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/join/mixed_join_kernel.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "join_common_utils.cuh" #include "join_common_utils.hpp" #include "mixed_join_common_utils.cuh" #include <cudf/ast/detail/expression_evaluator.cuh> #include <cudf/ast/detail/expression_parser.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/span.hpp> #include <cooperative_groups.h> #include <cub/cub.cuh> #include <thrust/iterator/discard_iterator.h> namespace cudf { namespace detail { namespace cg = cooperative_groups; template <cudf::size_type block_size, bool has_nulls> __launch_bounds__(block_size) __global__ void mixed_join(table_device_view left_table, table_device_view right_table, table_device_view probe, table_device_view build, row_hash const hash_probe, row_equality const equality_probe, join_kind const join_type, cudf::detail::mixed_multimap_type::device_view hash_table_view, size_type* join_output_l, size_type* join_output_r, cudf::ast::detail::expression_device_view device_expression_data, cudf::size_type const* join_result_offsets, bool const swap_tables) { // Normally the casting of a shared memory array is used to create multiple // arrays of different types from the shared memory buffer, but here it is // used to circumvent conflicts between arrays of different types between // different template instantiations due to the extern specifier. extern __shared__ char raw_intermediate_storage[]; cudf::ast::detail::IntermediateDataType<has_nulls>* intermediate_storage = reinterpret_cast<cudf::ast::detail::IntermediateDataType<has_nulls>*>(raw_intermediate_storage); auto thread_intermediate_storage = &intermediate_storage[threadIdx.x * device_expression_data.num_intermediates]; cudf::size_type const left_num_rows = left_table.num_rows(); cudf::size_type const right_num_rows = right_table.num_rows(); auto const outer_num_rows = (swap_tables ? right_num_rows : left_num_rows); cudf::size_type outer_row_index = threadIdx.x + blockIdx.x * block_size; auto evaluator = cudf::ast::detail::expression_evaluator<has_nulls>( left_table, right_table, device_expression_data); auto const empty_key_sentinel = hash_table_view.get_empty_key_sentinel(); make_pair_function pair_func{hash_probe, empty_key_sentinel}; if (outer_row_index < outer_num_rows) { // Figure out the number of elements for this key. cg::thread_block_tile<1> this_thread = cg::this_thread(); // Figure out the number of elements for this key. auto query_pair = pair_func(outer_row_index); auto equality = pair_expression_equality<has_nulls>{ evaluator, thread_intermediate_storage, swap_tables, equality_probe}; auto probe_key_begin = thrust::make_discard_iterator(); auto probe_value_begin = swap_tables ? join_output_r + join_result_offsets[outer_row_index] : join_output_l + join_result_offsets[outer_row_index]; auto contained_key_begin = thrust::make_discard_iterator(); auto contained_value_begin = swap_tables ? join_output_l + join_result_offsets[outer_row_index] : join_output_r + join_result_offsets[outer_row_index]; if (join_type == join_kind::LEFT_JOIN || join_type == join_kind::FULL_JOIN) { hash_table_view.pair_retrieve_outer(this_thread, query_pair, probe_key_begin, probe_value_begin, contained_key_begin, contained_value_begin, equality); } else { hash_table_view.pair_retrieve(this_thread, query_pair, probe_key_begin, probe_value_begin, contained_key_begin, contained_value_begin, equality); } } } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/scalar/scalar_factories.cpp
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/null_mask.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <cudf/detail/copy.hpp> #include <cudf/lists/lists_column_view.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace { struct scalar_construction_helper { template <typename T, typename ScalarType = scalar_type_t<T>, std::enable_if_t<is_fixed_width<T>() and not is_fixed_point<T>()>* = nullptr> std::unique_ptr<scalar> operator()(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { using Type = device_storage_type_t<T>; auto s = new ScalarType(Type{}, false, stream, mr); return std::unique_ptr<scalar>(s); } template <typename T, typename ScalarType = scalar_type_t<T>, std::enable_if_t<is_fixed_point<T>()>* = nullptr> std::unique_ptr<scalar> operator()(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { using Type = device_storage_type_t<T>; auto s = new ScalarType(Type{}, numeric::scale_type{0}, false, stream, mr); return std::unique_ptr<scalar>(s); } template <typename T, typename... Args, std::enable_if_t<not is_fixed_width<T>()>* = nullptr> std::unique_ptr<scalar> operator()(Args... args) const { CUDF_FAIL("Invalid type."); } }; } // namespace // Allocate storage for a single numeric element std::unique_ptr<scalar> make_numeric_scalar(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_numeric(type), "Invalid, non-numeric type."); return type_dispatcher(type, scalar_construction_helper{}, stream, mr); } // Allocate storage for a single timestamp element std::unique_ptr<scalar> make_timestamp_scalar(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_timestamp(type), "Invalid, non-timestamp type."); return type_dispatcher(type, scalar_construction_helper{}, stream, mr); } // Allocate storage for a single duration element std::unique_ptr<scalar> make_duration_scalar(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_duration(type), "Invalid, non-duration type."); return type_dispatcher(type, scalar_construction_helper{}, stream, mr); } // Allocate storage for a single fixed width element std::unique_ptr<scalar> make_fixed_width_scalar(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(is_fixed_width(type), "Invalid, non-fixed-width type."); return type_dispatcher(type, scalar_construction_helper{}, stream, mr); } std::unique_ptr<scalar> make_list_scalar(column_view elements, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return std::make_unique<list_scalar>(elements, true, stream, mr); } std::unique_ptr<scalar> make_struct_scalar(table_view const& data, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return std::make_unique<struct_scalar>(data, true, stream, mr); } std::unique_ptr<scalar> make_struct_scalar(host_span<column_view const> data, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return std::make_unique<struct_scalar>(data, true, stream, mr); } namespace { struct default_scalar_functor { data_type type; template <typename T, std::enable_if_t<not is_fixed_point<T>()>* = nullptr> std::unique_ptr<cudf::scalar> operator()(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return make_fixed_width_scalar(data_type(type_to_id<T>()), stream, mr); } template <typename T, std::enable_if_t<is_fixed_point<T>()>* = nullptr> std::unique_ptr<cudf::scalar> operator()(rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const scale_ = numeric::scale_type{type.scale()}; auto s = make_fixed_point_scalar<T>(0, scale_, stream, mr); s->set_valid_async(false, stream); return s; } }; template <> std::unique_ptr<cudf::scalar> default_scalar_functor::operator()<string_view>( rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return std::unique_ptr<scalar>(new string_scalar("", false, stream, mr)); } template <> std::unique_ptr<cudf::scalar> default_scalar_functor::operator()<dictionary32>( rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FAIL("dictionary type not supported"); } template <> std::unique_ptr<cudf::scalar> default_scalar_functor::operator()<list_view>( rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FAIL("list_view type not supported"); } template <> std::unique_ptr<cudf::scalar> default_scalar_functor::operator()<struct_view>( rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FAIL("struct_view type not supported"); } } // namespace std::unique_ptr<scalar> make_default_constructed_scalar(data_type type, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return type_dispatcher(type, default_scalar_functor{type}, stream, mr); } std::unique_ptr<scalar> make_empty_scalar_like(column_view const& column, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { std::unique_ptr<scalar> result; switch (column.type().id()) { case type_id::LIST: { auto const empty_child = empty_like(lists_column_view(column).child()); result = make_list_scalar(empty_child->view(), stream, mr); result->set_valid_async(false, stream); break; } case type_id::STRUCT: // The input column must have at least 1 row to extract a scalar (row) from it. result = detail::get_element(column, 0, stream, mr); result->set_valid_async(false, stream); break; default: result = make_default_constructed_scalar(column.type(), stream, mr); } return result; } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/scalar/scalar.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/structs/utilities.hpp> #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/string_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_buffer.hpp> #include <thrust/iterator/counting_iterator.h> #include <string> namespace cudf { scalar::scalar(data_type type, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : _type(type), _is_valid(is_valid, stream, mr) { } scalar::scalar(scalar const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : _type(other.type()), _is_valid(other._is_valid, stream, mr) { } data_type scalar::type() const noexcept { return _type; } void scalar::set_valid_async(bool is_valid, rmm::cuda_stream_view stream) { _is_valid.set_value_async(is_valid, stream); } bool scalar::is_valid(rmm::cuda_stream_view stream) const { return _is_valid.value(stream); } bool* scalar::validity_data() { return _is_valid.data(); } bool const* scalar::validity_data() const { return _is_valid.data(); } string_scalar::string_scalar(std::string const& string, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::STRING), is_valid, stream, mr), _data(string.data(), string.size(), stream, mr) { CUDF_EXPECTS( string.size() <= static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max()), "Data exceeds the string size limit", std::overflow_error); } string_scalar::string_scalar(string_scalar const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(other, stream, mr), _data(other._data, stream, mr) { } string_scalar::string_scalar(rmm::device_scalar<value_type>& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : string_scalar(data.value(stream), is_valid, stream, mr) { } string_scalar::string_scalar(value_type const& source, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::STRING), is_valid, stream, mr), _data(source.data(), source.size_bytes(), stream, mr) { } string_scalar::string_scalar(rmm::device_buffer&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::STRING), is_valid, stream, mr), _data(std::move(data)) { } string_scalar::value_type string_scalar::value(rmm::cuda_stream_view stream) const { return value_type{data(), size()}; } size_type string_scalar::size() const { return _data.size(); } char const* string_scalar::data() const { return static_cast<char const*>(_data.data()); } string_scalar::operator std::string() const { return this->to_string(cudf::get_default_stream()); } std::string string_scalar::to_string(rmm::cuda_stream_view stream) const { std::string result; result.resize(_data.size()); CUDF_CUDA_TRY( cudaMemcpyAsync(&result[0], _data.data(), _data.size(), cudaMemcpyDefault, stream.value())); stream.synchronize(); return result; } template <typename T> fixed_point_scalar<T>::fixed_point_scalar(rep_type value, numeric::scale_type scale, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{data_type{type_to_id<T>(), static_cast<int32_t>(scale)}, is_valid, stream, mr}, _data{value, stream, mr} { } template <typename T> fixed_point_scalar<T>::fixed_point_scalar(rep_type value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{data_type{type_to_id<T>(), 0}, is_valid, stream, mr}, _data{value, stream, mr} { } template <typename T> fixed_point_scalar<T>::fixed_point_scalar(T value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{data_type{type_to_id<T>(), value.scale()}, is_valid, stream, mr}, _data{value.value(), stream, mr} { } template <typename T> fixed_point_scalar<T>::fixed_point_scalar(rmm::device_scalar<rep_type>&& data, numeric::scale_type scale, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{data_type{type_to_id<T>(), scale}, is_valid, stream, mr}, _data{std::move(data)} { } template <typename T> fixed_point_scalar<T>::fixed_point_scalar(fixed_point_scalar<T> const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{other, stream, mr}, _data(other._data, stream, mr) { } template <typename T> typename fixed_point_scalar<T>::rep_type fixed_point_scalar<T>::value( rmm::cuda_stream_view stream) const { return _data.value(stream); } template <typename T> T fixed_point_scalar<T>::fixed_point_value(rmm::cuda_stream_view stream) const { return value_type{ numeric::scaled_integer<rep_type>{_data.value(stream), numeric::scale_type{type().scale()}}}; } template <typename T> fixed_point_scalar<T>::operator value_type() const { return this->fixed_point_value(cudf::get_default_stream()); } template <typename T> typename fixed_point_scalar<T>::rep_type* fixed_point_scalar<T>::data() { return _data.data(); } template <typename T> typename fixed_point_scalar<T>::rep_type const* fixed_point_scalar<T>::data() const { return _data.data(); } /** * @brief These define the valid fixed-point scalar types. * * See `is_fixed_point` in @see cudf/utilities/traits.hpp * * Adding a new supported type only requires adding the appropriate line here * and does not require updating the scalar.hpp file. */ template class fixed_point_scalar<numeric::decimal32>; template class fixed_point_scalar<numeric::decimal64>; template class fixed_point_scalar<numeric::decimal128>; namespace detail { template <typename T> fixed_width_scalar<T>::fixed_width_scalar(T value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_to_id<T>()), is_valid, stream, mr), _data(value, stream, mr) { } template <typename T> fixed_width_scalar<T>::fixed_width_scalar(rmm::device_scalar<T>&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_to_id<T>()), is_valid, stream, mr), _data{std::move(data)} { } template <typename T> fixed_width_scalar<T>::fixed_width_scalar(fixed_width_scalar<T> const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{other, stream, mr}, _data(other._data, stream, mr) { } template <typename T> void fixed_width_scalar<T>::set_value(T value, rmm::cuda_stream_view stream) { _data.set_value_async(value, stream); this->set_valid_async(true, stream); } template <typename T> T fixed_width_scalar<T>::value(rmm::cuda_stream_view stream) const { return _data.value(stream); } template <typename T> T* fixed_width_scalar<T>::data() { return _data.data(); } template <typename T> T const* fixed_width_scalar<T>::data() const { return _data.data(); } template <typename T> fixed_width_scalar<T>::operator value_type() const { return this->value(cudf::get_default_stream()); } /** * @brief These define the valid fixed-width scalar types. * * See `is_fixed_width` in @see cudf/utilities/traits.hpp * * Adding a new supported type only requires adding the appropriate line here * and does not require updating the scalar.hpp file. */ template class fixed_width_scalar<bool>; template class fixed_width_scalar<int8_t>; template class fixed_width_scalar<int16_t>; template class fixed_width_scalar<int32_t>; template class fixed_width_scalar<int64_t>; template class fixed_width_scalar<__int128_t>; template class fixed_width_scalar<uint8_t>; template class fixed_width_scalar<uint16_t>; template class fixed_width_scalar<uint32_t>; template class fixed_width_scalar<uint64_t>; template class fixed_width_scalar<float>; template class fixed_width_scalar<double>; template class fixed_width_scalar<timestamp_D>; template class fixed_width_scalar<timestamp_s>; template class fixed_width_scalar<timestamp_ms>; template class fixed_width_scalar<timestamp_us>; template class fixed_width_scalar<timestamp_ns>; template class fixed_width_scalar<duration_D>; template class fixed_width_scalar<duration_s>; template class fixed_width_scalar<duration_ms>; template class fixed_width_scalar<duration_us>; template class fixed_width_scalar<duration_ns>; } // namespace detail template <typename T> numeric_scalar<T>::numeric_scalar(T value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : detail::fixed_width_scalar<T>(value, is_valid, stream, mr) { } template <typename T> numeric_scalar<T>::numeric_scalar(rmm::device_scalar<T>&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : detail::fixed_width_scalar<T>(std::forward<rmm::device_scalar<T>>(data), is_valid, stream, mr) { } template <typename T> numeric_scalar<T>::numeric_scalar(numeric_scalar<T> const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : detail::fixed_width_scalar<T>{other, stream, mr} { } /** * @brief These define the valid numeric scalar types. * * See `is_numeric` in @see cudf/utilities/traits.hpp * * Adding a new supported type only requires adding the appropriate line here * and does not require updating the scalar.hpp file. */ template class numeric_scalar<bool>; template class numeric_scalar<int8_t>; template class numeric_scalar<int16_t>; template class numeric_scalar<int32_t>; template class numeric_scalar<int64_t>; template class numeric_scalar<__int128_t>; template class numeric_scalar<uint8_t>; template class numeric_scalar<uint16_t>; template class numeric_scalar<uint32_t>; template class numeric_scalar<uint64_t>; template class numeric_scalar<float>; template class numeric_scalar<double>; template <typename T> chrono_scalar<T>::chrono_scalar(T value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : detail::fixed_width_scalar<T>(value, is_valid, stream, mr) { } template <typename T> chrono_scalar<T>::chrono_scalar(rmm::device_scalar<T>&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : detail::fixed_width_scalar<T>(std::forward<rmm::device_scalar<T>>(data), is_valid, stream, mr) { } template <typename T> chrono_scalar<T>::chrono_scalar(chrono_scalar<T> const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : detail::fixed_width_scalar<T>{other, stream, mr} { } /** * @brief These define the valid chrono scalar types. * * See `is_chrono` in @see cudf/utilities/traits.hpp * * Adding a new supported type only requires adding the appropriate line here * and does not require updating the scalar.hpp file. */ template class chrono_scalar<timestamp_D>; template class chrono_scalar<timestamp_s>; template class chrono_scalar<timestamp_ms>; template class chrono_scalar<timestamp_us>; template class chrono_scalar<timestamp_ns>; template class chrono_scalar<duration_D>; template class chrono_scalar<duration_s>; template class chrono_scalar<duration_ms>; template class chrono_scalar<duration_us>; template class chrono_scalar<duration_ns>; template <typename T> duration_scalar<T>::duration_scalar(rep_type value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : chrono_scalar<T>(T{value}, is_valid, stream, mr) { } template <typename T> duration_scalar<T>::duration_scalar(duration_scalar<T> const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : chrono_scalar<T>{other, stream, mr} { } template <typename T> typename duration_scalar<T>::rep_type duration_scalar<T>::count() { return this->value().count(); } /** * @brief These define the valid duration scalar types. * * See `is_duration` in @see cudf/utilities/traits.hpp * * Adding a new supported type only requires adding the appropriate line here * and does not require updating the scalar.hpp file. */ template class duration_scalar<duration_D>; template class duration_scalar<duration_s>; template class duration_scalar<duration_ms>; template class duration_scalar<duration_us>; template class duration_scalar<duration_ns>; template <typename T> typename timestamp_scalar<T>::rep_type timestamp_scalar<T>::ticks_since_epoch() { return this->value().time_since_epoch().count(); } /** * @brief These define the valid timestamp scalar types. * * See `is_timestamp` in @see cudf/utilities/traits.hpp * * Adding a new supported type only requires adding the appropriate line here * and does not require updating the scalar.hpp file. */ template class timestamp_scalar<timestamp_D>; template class timestamp_scalar<timestamp_s>; template class timestamp_scalar<timestamp_ms>; template class timestamp_scalar<timestamp_us>; template class timestamp_scalar<timestamp_ns>; template <typename T> template <typename D> timestamp_scalar<T>::timestamp_scalar(D const& value, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : chrono_scalar<T>(T{typename T::duration{value}}, is_valid, stream, mr) { } template <typename T> timestamp_scalar<T>::timestamp_scalar(timestamp_scalar<T> const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : chrono_scalar<T>{other, stream, mr} { } #define TS_CTOR(TimestampType, DurationType) \ template timestamp_scalar<TimestampType>::timestamp_scalar( \ DurationType const&, bool, rmm::cuda_stream_view, rmm::mr::device_memory_resource*); /** * @brief These are the valid combinations of duration types to timestamp types. */ TS_CTOR(timestamp_D, duration_D) TS_CTOR(timestamp_D, int32_t) TS_CTOR(timestamp_s, duration_D) TS_CTOR(timestamp_s, duration_s) TS_CTOR(timestamp_s, int64_t) TS_CTOR(timestamp_ms, duration_D) TS_CTOR(timestamp_ms, duration_s) TS_CTOR(timestamp_ms, duration_ms) TS_CTOR(timestamp_ms, int64_t) TS_CTOR(timestamp_us, duration_D) TS_CTOR(timestamp_us, duration_s) TS_CTOR(timestamp_us, duration_ms) TS_CTOR(timestamp_us, duration_us) TS_CTOR(timestamp_us, int64_t) TS_CTOR(timestamp_ns, duration_D) TS_CTOR(timestamp_ns, duration_s) TS_CTOR(timestamp_ns, duration_ms) TS_CTOR(timestamp_ns, duration_us) TS_CTOR(timestamp_ns, duration_ns) TS_CTOR(timestamp_ns, int64_t) list_scalar::list_scalar(cudf::column_view const& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::LIST), is_valid, stream, mr), _data(data, stream, mr) { } list_scalar::list_scalar(cudf::column&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::LIST), is_valid, stream, mr), _data(std::move(data)) { } list_scalar::list_scalar(list_scalar const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{other, stream, mr}, _data(other._data, stream, mr) { } column_view list_scalar::view() const { return _data.view(); } struct_scalar::struct_scalar(struct_scalar const& other, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar{other, stream, mr}, _data(other._data, stream, mr) { } struct_scalar::struct_scalar(table_view const& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::STRUCT), is_valid, stream, mr), _data{init_data(table{data}, is_valid, stream, mr)} { assert_valid_size(); } struct_scalar::struct_scalar(host_span<column_view const> data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::STRUCT), is_valid, stream, mr), _data{init_data( table{table_view{std::vector<column_view>{data.begin(), data.end()}}}, is_valid, stream, mr)} { assert_valid_size(); } struct_scalar::struct_scalar(table&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) : scalar(data_type(type_id::STRUCT), is_valid, stream, mr), _data{init_data(std::move(data), is_valid, stream, mr)} { assert_valid_size(); } table_view struct_scalar::view() const { return _data.view(); } void struct_scalar::assert_valid_size() { auto const tv = _data.view(); CUDF_EXPECTS( std::all_of(tv.begin(), tv.end(), [](column_view const& col) { return col.size() == 1; }), "Struct scalar inputs must have exactly 1 row"); } table struct_scalar::init_data(table&& data, bool is_valid, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (is_valid) { return std::move(data); } auto data_cols = data.release(); // push validity mask down auto const validity = cudf::detail::create_null_mask( 1, mask_state::ALL_NULL, stream, rmm::mr::get_current_device_resource()); for (auto& col : data_cols) { col = cudf::structs::detail::superimpose_nulls( static_cast<bitmask_type const*>(validity.data()), 1, std::move(col), stream, mr); } return table{std::move(data_cols)}; } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/transpose/transpose.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/reshape.hpp> #include <cudf/detail/transpose.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/transpose.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> namespace cudf { namespace detail { std::pair<std::unique_ptr<column>, table_view> transpose(table_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // If there are no rows in the input, return successfully if (input.num_columns() == 0 || input.num_rows() == 0) { return {std::make_unique<column>(), table_view{}}; } // Check datatype homogeneity auto const dtype = input.column(0).type(); CUDF_EXPECTS( std::all_of( input.begin(), input.end(), [dtype](auto const& col) { return dtype == col.type(); }), "Column type mismatch"); auto output_column = cudf::detail::interleave_columns(input, stream, mr); auto one_iter = thrust::make_counting_iterator<size_type>(1); auto splits_iter = thrust::make_transform_iterator( one_iter, [width = input.num_columns()](size_type idx) { return idx * width; }); auto splits = std::vector<size_type>(splits_iter, splits_iter + input.num_rows() - 1); auto output_column_views = detail::split(output_column->view(), splits, stream); return {std::move(output_column), table_view(output_column_views)}; } } // namespace detail std::pair<std::unique_ptr<column>, table_view> transpose(table_view const& input, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::transpose(input, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/distinct.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "distinct_helpers.hpp" #include <cudf/column/column_view.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/copy.h> #include <thrust/distance.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <utility> #include <vector> namespace cudf { namespace detail { rmm::device_uvector<size_type> get_distinct_indices(table_view const& input, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.num_rows() == 0 or input.num_columns() == 0) { return rmm::device_uvector<size_type>(0, stream, mr); } auto map = hash_map_type{compute_hash_table_size(input.num_rows()), cuco::empty_key{-1}, cuco::empty_value{std::numeric_limits<size_type>::min()}, detail::hash_table_allocator_type{default_allocator<char>{}, stream}, stream.value()}; auto const preprocessed_input = cudf::experimental::row::hash::preprocessed_table::create(input, stream); auto const has_nulls = nullate::DYNAMIC{cudf::has_nested_nulls(input)}; auto const has_nested_columns = cudf::detail::has_nested_columns(input); auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input); auto const key_hasher = row_hasher.device_hasher(has_nulls); auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input); auto const pair_iter = cudf::detail::make_counting_transform_iterator( size_type{0}, [] __device__(size_type const i) { return cuco::make_pair(i, i); }); auto const insert_keys = [&](auto const value_comp) { if (has_nested_columns) { auto const key_equal = row_comp.equal_to<true>(has_nulls, nulls_equal, value_comp); map.insert(pair_iter, pair_iter + input.num_rows(), key_hasher, key_equal, stream.value()); } else { auto const key_equal = row_comp.equal_to<false>(has_nulls, nulls_equal, value_comp); map.insert(pair_iter, pair_iter + input.num_rows(), key_hasher, key_equal, stream.value()); } }; if (nans_equal == nan_equality::ALL_EQUAL) { using nan_equal_comparator = cudf::experimental::row::equality::nan_equal_physical_equality_comparator; insert_keys(nan_equal_comparator{}); } else { using nan_unequal_comparator = cudf::experimental::row::equality::physical_equality_comparator; insert_keys(nan_unequal_comparator{}); } auto output_indices = rmm::device_uvector<size_type>(map.get_size(), stream, mr); // If we don't care about order, just gather indices of distinct keys taken from map. if (keep == duplicate_keep_option::KEEP_ANY) { map.retrieve_all(output_indices.begin(), thrust::make_discard_iterator(), stream.value()); return output_indices; } // For other keep options, reduce by row on rows that compare equal. auto const reduction_results = reduce_by_row(map, std::move(preprocessed_input), input.num_rows(), has_nulls, has_nested_columns, keep, nulls_equal, nans_equal, stream, rmm::mr::get_current_device_resource()); // Extract the desired output indices from reduction results. auto const map_end = [&] { if (keep == duplicate_keep_option::KEEP_NONE) { // Reduction results with `KEEP_NONE` are either group sizes of equal rows, or `0`. // Thus, we only output index of the rows in the groups having group size of `1`. return thrust::copy_if(rmm::exec_policy(stream), thrust::make_counting_iterator(0), thrust::make_counting_iterator(input.num_rows()), output_indices.begin(), [reduction_results = reduction_results.begin()] __device__( auto const idx) { return reduction_results[idx] == size_type{1}; }); } // Reduction results with `KEEP_FIRST` and `KEEP_LAST` are row indices of the first/last row in // each group of equal rows (which are the desired output indices), or the value given by // `reduction_init_value()`. return thrust::copy_if(rmm::exec_policy(stream), reduction_results.begin(), reduction_results.end(), output_indices.begin(), [init_value = reduction_init_value(keep)] __device__(auto const idx) { return idx != init_value; }); }(); output_indices.resize(thrust::distance(output_indices.begin(), map_end), stream); return output_indices; } std::unique_ptr<table> distinct(table_view const& input, std::vector<size_type> const& keys, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.num_rows() == 0 or input.num_columns() == 0 or keys.empty()) { return empty_like(input); } auto const gather_map = get_distinct_indices(input.select(keys), keep, nulls_equal, nans_equal, stream, rmm::mr::get_current_device_resource()); return detail::gather(input, gather_map, out_of_bounds_policy::DONT_CHECK, negative_index_policy::NOT_ALLOWED, stream, mr); } } // namespace detail std::unique_ptr<table> distinct(table_view const& input, std::vector<size_type> const& keys, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::distinct( input, keys, keep, nulls_equal, nans_equal, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/apply_boolean_mask.cu
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_view.hpp> #include <cudf/detail/copy_if.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <algorithm> namespace { // Returns true if the mask is true and valid (non-null) for index i // This is the filter functor for apply_boolean_mask template <bool has_nulls = true> struct boolean_mask_filter { boolean_mask_filter(cudf::column_device_view const& boolean_mask) : boolean_mask{boolean_mask} {} __device__ inline bool operator()(cudf::size_type i) { if (true == has_nulls) { bool valid = boolean_mask.is_valid(i); bool is_true = boolean_mask.data<bool>()[i]; return is_true && valid; } else { return boolean_mask.data<bool>()[i]; } } protected: cudf::column_device_view boolean_mask; }; } // namespace namespace cudf { namespace detail { /* * Filters a table_view using a column_view of boolean values as a mask. * * calls copy_if() with the `boolean_mask_filter` functor. */ std::unique_ptr<table> apply_boolean_mask(table_view const& input, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (boolean_mask.is_empty()) { return empty_like(input); } CUDF_EXPECTS(boolean_mask.type().id() == type_id::BOOL8, "Mask must be Boolean type"); // zero-size inputs are OK, but otherwise input size must match mask size CUDF_EXPECTS(input.num_rows() == 0 || input.num_rows() == boolean_mask.size(), "Column size mismatch"); auto device_boolean_mask = cudf::column_device_view::create(boolean_mask, stream); if (boolean_mask.has_nulls()) { return detail::copy_if(input, boolean_mask_filter<true>{*device_boolean_mask}, stream, mr); } else { return detail::copy_if(input, boolean_mask_filter<false>{*device_boolean_mask}, stream, mr); } } } // namespace detail /* * Filters a table_view using a column_view of boolean values as a mask. */ std::unique_ptr<table> apply_boolean_mask(table_view const& input, column_view const& boolean_mask, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::apply_boolean_mask(input, boolean_mask, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/distinct_count.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stream_compaction_common.cuh" #include "stream_compaction_common.hpp" #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <cuco/static_set.cuh> #include <thrust/count.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/logical.h> #include <cmath> #include <cstddef> #include <type_traits> #include <utility> #include <vector> namespace cudf { namespace detail { namespace { /** * @brief Functor to check for `NaN` at an index in a `column_device_view`. * * @tparam T The type of `column_device_view` */ template <typename T> struct check_for_nan { /* * @brief Construct from a column_device_view. * * @param[in] input The `column_device_view` */ check_for_nan(cudf::column_device_view input) : _input{input} {} /** * @brief Operator to be called to check for `NaN` at `index` in `_input` * * @param[in] index The index at which the `NaN` needs to be checked in `input` * * @returns bool true if value at `index` is `NaN` and not null, else false */ __device__ bool operator()(size_type index) const noexcept { return std::isnan(_input.data<T>()[index]) and _input.is_valid(index); } cudf::column_device_view _input; }; /** * @brief A structure to be used along with type_dispatcher to check if a * `column_view` has `NaN`. */ struct has_nans { /** * @brief Checks if `input` has `NaN` * * @note This will be applicable only for floating point type columns. * * @param[in] input The `column_view` which will be checked for `NaN` * @param[in] stream CUDA stream used for device memory operations and kernel launches. * * @returns bool true if `input` has `NaN` else false */ template <typename T, std::enable_if_t<std::is_floating_point_v<T>>* = nullptr> bool operator()(column_view const& input, rmm::cuda_stream_view stream) { auto input_device_view = cudf::column_device_view::create(input, stream); auto device_view = *input_device_view; return thrust::any_of(rmm::exec_policy(stream), thrust::counting_iterator<cudf::size_type>(0), thrust::counting_iterator<cudf::size_type>(input.size()), check_for_nan<T>(device_view)); } /** * @brief Checks if `input` has `NaN` * * @note This will be applicable only for non-floating point type columns. And * non-floating point columns can never have `NaN`, so it will always return * false * * @param[in] input The `column_view` which will be checked for `NaN` * @param[in] stream CUDA stream used for device memory operations and kernel launches. * * @returns bool Always false as non-floating point columns can't have `NaN` */ template <typename T, std::enable_if_t<not std::is_floating_point_v<T>>* = nullptr> bool operator()(column_view const&, rmm::cuda_stream_view) { return false; } }; } // namespace cudf::size_type distinct_count(table_view const& keys, null_equality nulls_equal, rmm::cuda_stream_view stream) { auto const num_rows = keys.num_rows(); if (num_rows == 0) { return 0; } // early exit for empty input auto const has_nulls = nullate::DYNAMIC{cudf::has_nested_nulls(keys)}; auto const preprocessed_input = cudf::experimental::row::hash::preprocessed_table::create(keys, stream); auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input); auto const hash_key = row_hasher.device_hasher(has_nulls); auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input); auto const comparator_helper = [&](auto const row_equal) { using hasher_type = decltype(hash_key); auto key_set = cuco::experimental::static_set{ cuco::experimental::extent{compute_hash_table_size(num_rows)}, cuco::empty_key<cudf::size_type>{-1}, row_equal, cuco::experimental::linear_probing<1, hasher_type>{hash_key}, detail::hash_table_allocator_type{default_allocator<char>{}, stream}, stream.value()}; auto const iter = thrust::counting_iterator<cudf::size_type>(0); // when nulls are equal, we skip hashing any row that has a null // in every column to improve efficiency. if (nulls_equal == null_equality::EQUAL and has_nulls) { thrust::counting_iterator<size_type> stencil(0); // We must consider a row if any of its column entries is valid, // hence OR together the validities of the columns. auto const [row_bitmask, null_count] = cudf::detail::bitmask_or(keys, stream, rmm::mr::get_current_device_resource()); // Unless all columns have a null mask, row_bitmask will be // null, and null_count will be zero. Equally, unless there is // some row which is null in all columns, null_count will be // zero. So, it is only when null_count is not zero that we need // to do a filtered insertion. if (null_count > 0) { row_validity pred{static_cast<bitmask_type const*>(row_bitmask.data())}; return key_set.insert_if(iter, iter + num_rows, stencil, pred, stream.value()) + 1; } } // otherwise, insert all return key_set.insert(iter, iter + num_rows, stream.value()); }; if (cudf::detail::has_nested_columns(keys)) { auto const row_equal = row_comp.equal_to<true>(has_nulls, nulls_equal); return comparator_helper(row_equal); } else { auto const row_equal = row_comp.equal_to<false>(has_nulls, nulls_equal); return comparator_helper(row_equal); } } cudf::size_type distinct_count(column_view const& input, null_policy null_handling, nan_policy nan_handling, rmm::cuda_stream_view stream) { if (0 == input.size() or input.null_count() == input.size()) { return 0; } auto count = detail::distinct_count(table_view{{input}}, null_equality::EQUAL, stream); // Check for nulls. If the null policy is EXCLUDE and null values were found, // we decrement the count. auto const has_null = input.has_nulls(); if (null_handling == null_policy::EXCLUDE and has_null) { --count; } // Check for NaNs. There are two cases that can lead to decrementing the // count. The first case is when the input has no nulls, but has NaN values // handled as a null via NAN_IS_NULL and has a policy to EXCLUDE null values // from the count. The second case is when the input has null values and NaN // values handled as nulls via NAN_IS_NULL. Regardless of whether the null // policy is set to EXCLUDE, we decrement the count to avoid double-counting // null and NaN as distinct entities. auto const has_nan_as_null = (nan_handling == nan_policy::NAN_IS_NULL) and cudf::type_dispatcher(input.type(), has_nans{}, input, stream); if (has_nan_as_null and (has_null or null_handling == null_policy::EXCLUDE)) { --count; } return count; } } // namespace detail cudf::size_type distinct_count(column_view const& input, null_policy null_handling, nan_policy nan_handling) { CUDF_FUNC_RANGE(); return detail::distinct_count(input, null_handling, nan_handling, cudf::get_default_stream()); } cudf::size_type distinct_count(table_view const& input, null_equality nulls_equal) { CUDF_FUNC_RANGE(); return detail::distinct_count(input, nulls_equal, cudf::get_default_stream()); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/stream_compaction_common.cuh
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "stream_compaction_common.hpp" #include <cudf/stream_compaction.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/distance.h> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { /**  * @brief Device functor to determine if a row is valid.  */ class row_validity { public: row_validity(bitmask_type const* row_bitmask) : _row_bitmask{row_bitmask} {} __device__ inline bool operator()(size_type const& i) const noexcept { return cudf::bit_is_set(_row_bitmask, i); } private: bitmask_type const* _row_bitmask; }; template <typename InputIterator, typename BinaryPredicate> struct unique_copy_fn { /** * @brief Functor for unique_copy() * * The logic here is equivalent to: * @code * ((keep == duplicate_keep_option::KEEP_LAST) || * (i == 0 || !comp(iter[i], iter[i - 1]))) && * ((keep == duplicate_keep_option::KEEP_FIRST) || * (i == last_index || !comp(iter[i], iter[i + 1]))) * @endcode * * It is written this way so that the `comp` comparator * function appears only once minimizing the inlining * required and reducing the compile time. */ __device__ bool operator()(size_type i) { size_type boundary = 0; size_type offset = 1; auto keep_option = duplicate_keep_option::KEEP_LAST; do { if ((keep != keep_option) && (i != boundary) && comp(iter[i], iter[i - offset])) { return false; } keep_option = duplicate_keep_option::KEEP_FIRST; boundary = last_index; offset = -offset; } while (offset < 0); return true; } InputIterator iter; duplicate_keep_option const keep; BinaryPredicate comp; size_type const last_index; }; /** * @brief Copies unique elements from the range [first, last) to output iterator `output`. * * In a consecutive group of duplicate elements, depending on parameter `keep`, * only the first element is copied, or the last element is copied or neither is copied. * * @return End of the range to which the elements are copied. */ template <typename InputIterator, typename OutputIterator, typename BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator output, BinaryPredicate comp, duplicate_keep_option const keep, rmm::cuda_stream_view stream) { size_type const last_index = thrust::distance(first, last) - 1; return thrust::copy_if( rmm::exec_policy(stream), first, last, thrust::counting_iterator<size_type>(0), output, unique_copy_fn<InputIterator, BinaryPredicate>{first, keep, comp, last_index}); } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/drop_nulls.cu
/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy_if.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/count.h> #include <thrust/execution_policy.h> namespace { // Returns true if the mask is true for index i in at least keep_threshold // columns struct valid_table_filter { __device__ inline bool operator()(cudf::size_type i) { auto valid = [i](auto column_device_view) { return column_device_view.is_valid(i); }; auto count = thrust::count_if(thrust::seq, keys_device_view.begin(), keys_device_view.end(), valid); return (count >= keep_threshold); } valid_table_filter() = delete; ~valid_table_filter() = default; valid_table_filter(cudf::table_device_view const& keys_device_view, cudf::size_type keep_threshold) : keep_threshold(keep_threshold), keys_device_view(keys_device_view) { } protected: cudf::size_type keep_threshold; cudf::size_type num_columns; cudf::table_device_view keys_device_view; }; } // namespace namespace cudf { namespace detail { /* * Filters a table to remove null elements. */ std::unique_ptr<table> drop_nulls(table_view const& input, std::vector<size_type> const& keys, cudf::size_type keep_threshold, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto keys_view = input.select(keys); if (keys_view.num_columns() == 0 || keys_view.num_rows() == 0 || not cudf::has_nulls(keys_view)) { return std::make_unique<table>(input, stream, mr); } auto keys_device_view = cudf::table_device_view::create(keys_view, stream); return cudf::detail::copy_if( input, valid_table_filter{*keys_device_view, keep_threshold}, stream, mr); } } // namespace detail /* * Filters a table to remove null elements. */ std::unique_ptr<table> drop_nulls(table_view const& input, std::vector<size_type> const& keys, cudf::size_type keep_threshold, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::drop_nulls(input, keys, keep_threshold, cudf::get_default_stream(), mr); } /* * Filters a table to remove null elements. */ std::unique_ptr<table> drop_nulls(table_view const& input, std::vector<size_type> const& keys, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::drop_nulls(input, keys, keys.size(), cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/distinct_helpers.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "distinct_helpers.hpp" #include <cudf/detail/hash_reduce_by_row.cuh> namespace cudf::detail { namespace { /** * @brief The functor to find the first/last/all duplicate row for rows that compared equal. */ template <typename MapView, typename KeyHasher, typename KeyEqual> struct reduce_fn : reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type> { duplicate_keep_option const keep; reduce_fn(MapView const& d_map, KeyHasher const& d_hasher, KeyEqual const& d_equal, duplicate_keep_option const keep, size_type* const d_output) : reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type>{d_map, d_hasher, d_equal, d_output}, keep{keep} { } __device__ void operator()(size_type const idx) const { auto const out_ptr = this->get_output_ptr(idx); if (keep == duplicate_keep_option::KEEP_FIRST) { // Store the smallest index of all rows that are equal. atomicMin(out_ptr, idx); } else if (keep == duplicate_keep_option::KEEP_LAST) { // Store the greatest index of all rows that are equal. atomicMax(out_ptr, idx); } else { // Count the number of rows in each group of rows that are compared equal. atomicAdd(out_ptr, size_type{1}); } } }; /** * @brief The builder to construct an instance of `reduce_fn` functor base on the given * value of the `duplicate_keep_option` member variable. */ struct reduce_func_builder { duplicate_keep_option const keep; template <typename MapView, typename KeyHasher, typename KeyEqual> auto build(MapView const& d_map, KeyHasher const& d_hasher, KeyEqual const& d_equal, size_type* const d_output) { return reduce_fn<MapView, KeyHasher, KeyEqual>{d_map, d_hasher, d_equal, keep, d_output}; } }; } // namespace // This function is split from `distinct.cu` to improve compile time. rmm::device_uvector<size_type> reduce_by_row( hash_map_type const& map, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input, size_type num_rows, cudf::nullate::DYNAMIC has_nulls, bool has_nested_columns, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(keep != duplicate_keep_option::KEEP_ANY, "This function should not be called with KEEP_ANY"); return hash_reduce_by_row(map, preprocessed_input, num_rows, has_nulls, has_nested_columns, nulls_equal, nans_equal, reduce_func_builder{keep}, reduction_init_value(keep), stream, mr); } } // namespace cudf::detail
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/stream_compaction_common.hpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cudf/hashing/detail/hash_allocator.cuh> #include <cudf/hashing/detail/helper_functions.cuh> #include <cudf/table/row_operators.cuh> #include <cudf/table/table_device_view.cuh> #include <rmm/mr/device/polymorphic_allocator.hpp> #include <cuco/static_map.cuh> #include <limits> namespace cudf { namespace detail { using hash_table_allocator_type = rmm::mr::stream_allocator_adaptor<default_allocator<char>>; using hash_map_type = cuco::static_map<size_type, size_type, cuda::thread_scope_device, hash_table_allocator_type>; } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/drop_nans.cu
/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy_if.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/count.h> #include <thrust/execution_policy.h> namespace { struct dispatch_is_not_nan { template <typename T> std::enable_if_t<std::is_floating_point_v<T>, bool> __device__ operator()(cudf::column_device_view col_device_view, cudf::size_type i) { return col_device_view.is_valid(i) ? not std::isnan(col_device_view.element<T>(i)) : true; } template <typename T> std::enable_if_t<not std::is_floating_point_v<T>, bool> __device__ operator()(cudf::column_device_view, cudf::size_type) { return true; } }; // Returns true if the mask is true and it is not NaN for index i in at least keep_threshold // columns struct valid_table_filter { __device__ inline bool operator()(cudf::size_type i) { auto valid = [i](auto col_device_view) { return cudf::type_dispatcher( col_device_view.type(), dispatch_is_not_nan{}, col_device_view, i); }; auto count = thrust::count_if(thrust::seq, keys_device_view.begin(), keys_device_view.end(), valid); return (count >= keep_threshold); } valid_table_filter() = delete; ~valid_table_filter() = default; valid_table_filter(cudf::table_device_view const& keys_device_view, cudf::size_type keep_threshold) : keep_threshold(keep_threshold), keys_device_view(keys_device_view) { } protected: cudf::size_type keep_threshold; cudf::size_type num_columns; cudf::table_device_view keys_device_view; }; } // namespace namespace cudf { namespace detail { /* * Filters a table to remove nans elements. */ std::unique_ptr<table> drop_nans(table_view const& input, std::vector<size_type> const& keys, cudf::size_type keep_threshold, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto keys_view = input.select(keys); if (keys_view.num_columns() == 0 || keys_view.num_rows() == 0) { return std::make_unique<table>(input, stream, mr); } if (std::any_of(keys_view.begin(), keys_view.end(), [](auto col) { return not is_floating_point(col.type()); })) { CUDF_FAIL("Key column is not of type floating-point"); } auto keys_device_view = cudf::table_device_view::create(keys_view, stream); return cudf::detail::copy_if( input, valid_table_filter{*keys_device_view, keep_threshold}, stream, mr); } } // namespace detail /* * Filters a table to remove nan elements. */ std::unique_ptr<table> drop_nans(table_view const& input, std::vector<size_type> const& keys, cudf::size_type keep_threshold, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::drop_nans(input, keys, keep_threshold, cudf::get_default_stream(), mr); } /* * Filters a table to remove nan elements. */ std::unique_ptr<table> drop_nans(table_view const& input, std::vector<size_type> const& keys, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::drop_nans(input, keys, keys.size(), cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/distinct_helpers.hpp
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stream_compaction_common.hpp" #include <cudf/stream_compaction.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/types.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> namespace cudf::detail { /** * @brief Return the reduction identity used to initialize results of `hash_reduce_by_row`. * * @param keep A value of `duplicate_keep_option` type, must not be `KEEP_ANY`. * @return The initial reduction value. */ auto constexpr reduction_init_value(duplicate_keep_option keep) { switch (keep) { case duplicate_keep_option::KEEP_FIRST: return std::numeric_limits<size_type>::max(); case duplicate_keep_option::KEEP_LAST: return std::numeric_limits<size_type>::min(); case duplicate_keep_option::KEEP_NONE: return size_type{0}; default: CUDF_UNREACHABLE("This function should not be called with KEEP_ANY"); } } /** * @brief Perform a reduction on groups of rows that are compared equal. * * This is essentially a reduce-by-key operation with keys are non-contiguous rows and are compared * equal. A hash table is used to find groups of equal rows. * * Depending on the `keep` parameter, the reduction operation for each row group is: * - If `keep == KEEP_FIRST`: min of row indices in the group. * - If `keep == KEEP_LAST`: max of row indices in the group. * - If `keep == KEEP_NONE`: count of equivalent rows (group size). * * Note that this function is not needed when `keep == KEEP_NONE`. * * At the beginning of the operation, the entire output array is filled with a value given by * the `reduction_init_value()` function. Then, the reduction result for each row group is written * into the output array at the index of an unspecified row in the group. * * @param map The auxiliary map to perform reduction * @param preprocessed_input The preprocessed of the input rows for computing row hashing and row * comparisons * @param num_rows The number of all input rows * @param has_nulls Indicate whether the input rows has any nulls at any nested levels * @param has_nested_columns Indicates whether the input table has any nested columns * @param keep The parameter to determine what type of reduction to perform * @param nulls_equal Flag to specify whether null elements should be considered as equal * @param nans_equal Flag to specify whether NaN values in floating point column should be * considered equal. * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned vector * @return A device_uvector containing the reduction results */ rmm::device_uvector<size_type> reduce_by_row( hash_map_type const& map, std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input, size_type num_rows, cudf::nullate::DYNAMIC has_nulls, bool has_nested_columns, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr); } // namespace cudf::detail
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/unique_count_column.cu
/* * Copyright (c) 2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/count.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <cmath> namespace cudf { namespace detail { namespace { /** * @brief A functor to be used along with device type_dispatcher to check if * the row `index` of `column_device_view` is `NaN`. */ struct check_nan { // Check if a value is `NaN` for floating point type columns template <typename T, std::enable_if_t<std::is_floating_point_v<T>>* = nullptr> __device__ inline bool operator()(column_device_view const& input, size_type index) { return std::isnan(input.data<T>()[index]); } // Non-floating point type columns can never have `NaN`, so it will always return false. template <typename T, std::enable_if_t<not std::is_floating_point_v<T>>* = nullptr> __device__ inline bool operator()(column_device_view const&, size_type) { return false; } }; } // namespace cudf::size_type unique_count(column_view const& input, null_policy null_handling, nan_policy nan_handling, rmm::cuda_stream_view stream) { auto const num_rows = input.size(); if (num_rows == 0 or num_rows == input.null_count()) { return 0; } auto const count_nulls = null_handling == null_policy::INCLUDE; auto const nan_is_null = nan_handling == nan_policy::NAN_IS_NULL; auto const should_check_nan = cudf::is_floating_point(input.type()); auto input_device_view = cudf::column_device_view::create(input, stream); auto device_view = *input_device_view; auto input_table_view = table_view{{input}}; auto table_ptr = cudf::table_device_view::create(input_table_view, stream); row_equality_comparator comp(nullate::DYNAMIC{cudf::has_nulls(input_table_view)}, *table_ptr, *table_ptr, null_equality::EQUAL); return thrust::count_if( rmm::exec_policy(stream), thrust::counting_iterator<cudf::size_type>(0), thrust::counting_iterator<cudf::size_type>(num_rows), [count_nulls, nan_is_null, should_check_nan, device_view, comp] __device__(cudf::size_type i) { auto const is_null = device_view.is_null(i); auto const is_nan = nan_is_null and should_check_nan and cudf::type_dispatcher(device_view.type(), check_nan{}, device_view, i); if (not count_nulls and (is_null or (nan_is_null and is_nan))) { return false; } if (i == 0) { return true; } if (count_nulls and nan_is_null and (is_nan or is_null)) { auto const prev_is_nan = should_check_nan and cudf::type_dispatcher(device_view.type(), check_nan{}, device_view, i - 1); return not(prev_is_nan or device_view.is_null(i - 1)); } return not comp(i, i - 1); }); } } // namespace detail cudf::size_type unique_count(column_view const& input, null_policy null_handling, nan_policy nan_handling) { CUDF_FUNC_RANGE(); return detail::unique_count(input, null_handling, nan_handling, cudf::get_default_stream()); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/stable_distinct.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy_if.cuh> #include <cudf/detail/stream_compaction.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/span.hpp> #include <thrust/iterator/constant_iterator.h> #include <thrust/scatter.h> #include <thrust/uninitialized_fill.h> namespace cudf { namespace detail { std::unique_ptr<table> stable_distinct(table_view const& input, std::vector<size_type> const& keys, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (input.num_rows() == 0 or input.num_columns() == 0 or keys.empty()) { return empty_like(input); } auto const distinct_indices = get_distinct_indices(input.select(keys), keep, nulls_equal, nans_equal, stream, rmm::mr::get_current_device_resource()); // The only difference between this implementation and the unstable version // is that the stable implementation must retain the input order. The // distinct indices are not sorted, so we cannot simply copy the rows in the // order of the distinct indices and retain the input order. Instead, we use // a boolean mask to indicate which rows to copy to the output. This avoids // the need to sort the distinct indices, which is slower. auto const output_markers = [&] { auto markers = rmm::device_uvector<bool>(input.num_rows(), stream); thrust::uninitialized_fill(rmm::exec_policy(stream), markers.begin(), markers.end(), false); thrust::scatter( rmm::exec_policy(stream), thrust::constant_iterator<bool>(true, 0), thrust::constant_iterator<bool>(true, static_cast<size_type>(distinct_indices.size())), distinct_indices.begin(), markers.begin()); return markers; }(); return cudf::detail::apply_boolean_mask( input, cudf::device_span<bool const>(output_markers), stream, mr); } } // namespace detail std::unique_ptr<table> stable_distinct(table_view const& input, std::vector<size_type> const& keys, duplicate_keep_option keep, null_equality nulls_equal, nan_equality nans_equal, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::stable_distinct( input, keys, keep, nulls_equal, nans_equal, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/unique_count.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/count.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> namespace cudf { namespace detail { cudf::size_type unique_count(table_view const& keys, null_equality nulls_equal, rmm::cuda_stream_view stream) { auto const row_comp = cudf::experimental::row::equality::self_comparator(keys, stream); if (cudf::detail::has_nested_columns(keys)) { auto const comp = row_comp.equal_to<true>(nullate::DYNAMIC{has_nested_nulls(keys)}, nulls_equal); // Using a temporary buffer for intermediate transform results from the lambda containing // the comparator speeds up compile-time significantly without much degradation in // runtime performance over using the comparator directly in thrust::count_if. auto d_results = rmm::device_uvector<bool>(keys.num_rows(), stream); thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(keys.num_rows()), d_results.begin(), [comp] __device__(auto i) { return (i == 0 or not comp(i, i - 1)); }); return static_cast<size_type>( thrust::count(rmm::exec_policy(stream), d_results.begin(), d_results.end(), true)); } else { auto const comp = row_comp.equal_to<false>(nullate::DYNAMIC{has_nested_nulls(keys)}, nulls_equal); // Using thrust::copy_if with the comparator directly will compile more slowly but // improves runtime by up to 2x over the transform/count approach above. return thrust::count_if( rmm::exec_policy(stream), thrust::counting_iterator<cudf::size_type>(0), thrust::counting_iterator<cudf::size_type>(keys.num_rows()), [comp] __device__(cudf::size_type i) { return (i == 0 or not comp(i, i - 1)); }); } } } // namespace detail cudf::size_type unique_count(table_view const& input, null_equality nulls_equal) { CUDF_FUNC_RANGE(); return detail::unique_count(input, nulls_equal, cudf::get_default_stream()); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/stream_compaction/unique.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stream_compaction_common.cuh" #include "stream_compaction_common.hpp" #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/sorting.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/stream_compaction.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/distance.h> #include <thrust/execution_policy.h> #include <thrust/iterator/counting_iterator.h> #include <utility> #include <vector> namespace cudf { namespace detail { std::unique_ptr<table> unique(table_view const& input, std::vector<size_type> const& keys, duplicate_keep_option keep, null_equality nulls_equal, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // If keep is KEEP_ANY, just alias it to KEEP_FIRST. if (keep == duplicate_keep_option::KEEP_ANY) { keep = duplicate_keep_option::KEEP_FIRST; } auto const num_rows = input.num_rows(); if (num_rows == 0 or input.num_columns() == 0 or keys.empty()) { return empty_like(input); } auto unique_indices = make_numeric_column( data_type{type_to_id<size_type>()}, num_rows, mask_state::UNALLOCATED, stream, mr); auto mutable_view = mutable_column_device_view::create(*unique_indices, stream); auto keys_view = input.select(keys); auto comp = cudf::experimental::row::equality::self_comparator(keys_view, stream); size_type const unique_size = [&] { if (cudf::detail::has_nested_columns(keys_view)) { // Using a temporary buffer for intermediate transform results from the functor containing // the comparator speeds up compile-time significantly without much degradation in // runtime performance over using the comparator directly in thrust::unique_copy. auto row_equal = comp.equal_to<true>(nullate::DYNAMIC{has_nested_nulls(keys_view)}, nulls_equal); auto d_results = rmm::device_uvector<bool>(num_rows, stream); auto itr = thrust::make_counting_iterator<size_type>(0); thrust::transform( rmm::exec_policy(stream), itr, itr + num_rows, d_results.begin(), unique_copy_fn<decltype(itr), decltype(row_equal)>{itr, keep, row_equal, num_rows - 1}); auto result_end = thrust::copy_if(rmm::exec_policy(stream), itr, itr + num_rows, d_results.begin(), mutable_view->begin<size_type>(), thrust::identity<bool>{}); return static_cast<size_type>(thrust::distance(mutable_view->begin<size_type>(), result_end)); } else { // Using thrust::unique_copy with the comparator directly will compile more slowly but // improves runtime by up to 2x over the transform/copy_if approach above. auto row_equal = comp.equal_to<false>(nullate::DYNAMIC{has_nested_nulls(keys_view)}, nulls_equal); auto result_end = unique_copy(thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(num_rows), mutable_view->begin<size_type>(), row_equal, keep, stream); return static_cast<size_type>(thrust::distance(mutable_view->begin<size_type>(), result_end)); } }(); auto indices_view = cudf::detail::slice(column_view(*unique_indices), 0, unique_size, stream); // gather unique rows and return return detail::gather(input, indices_view, out_of_bounds_policy::DONT_CHECK, detail::negative_index_policy::NOT_ALLOWED, stream, mr); } } // namespace detail std::unique_ptr<table> unique(table_view const& input, std::vector<size_type> const& keys, duplicate_keep_option const keep, null_equality nulls_equal, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::unique(input, keys, keep, nulls_equal, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/aggregation/aggregation.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/aggregation.hpp> #include <cudf/detail/aggregation/aggregation.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <memory> namespace cudf { namespace detail { // simple_aggregations_collector ---------------------------------------- std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, aggregation const& agg) { std::vector<std::unique_ptr<aggregation>> aggs; aggs.push_back(agg.clone()); return aggs; } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, sum_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, product_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, min_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, max_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, count_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, histogram_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, any_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, all_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, sum_of_squares_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, mean_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, m2_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, var_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, std_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, median_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, quantile_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, argmax_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, argmin_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, nunique_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, nth_element_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, row_number_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, rank_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, collect_list_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, collect_set_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, lead_lag_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, udf_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, merge_lists_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, merge_sets_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, merge_m2_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, merge_histogram_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, covariance_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, correlation_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, tdigest_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } std::vector<std::unique_ptr<aggregation>> simple_aggregations_collector::visit( data_type col_type, merge_tdigest_aggregation const& agg) { return visit(col_type, static_cast<aggregation const&>(agg)); } // aggregation_finalizer ---------------------------------------- void aggregation_finalizer::visit(aggregation const& agg) {} void aggregation_finalizer::visit(sum_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(product_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(min_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(max_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(count_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(histogram_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(any_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(all_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(sum_of_squares_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(mean_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(m2_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(var_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(std_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(median_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(quantile_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(argmax_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(argmin_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(nunique_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(nth_element_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(row_number_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(rank_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(collect_list_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(collect_set_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(lead_lag_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(udf_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(merge_lists_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(merge_sets_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(merge_m2_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(merge_histogram_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(covariance_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(correlation_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(tdigest_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } void aggregation_finalizer::visit(merge_tdigest_aggregation const& agg) { visit(static_cast<aggregation const&>(agg)); } } // namespace detail std::vector<std::unique_ptr<aggregation>> aggregation::get_simple_aggregations( data_type col_type, cudf::detail::simple_aggregations_collector& collector) const { return collector.visit(col_type, *this); } /// Factory to create a SUM aggregation template <typename Base> std::unique_ptr<Base> make_sum_aggregation() { return std::make_unique<detail::sum_aggregation>(); } template std::unique_ptr<aggregation> make_sum_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_sum_aggregation<rolling_aggregation>(); template std::unique_ptr<groupby_aggregation> make_sum_aggregation<groupby_aggregation>(); template std::unique_ptr<groupby_scan_aggregation> make_sum_aggregation<groupby_scan_aggregation>(); template std::unique_ptr<reduce_aggregation> make_sum_aggregation<reduce_aggregation>(); template std::unique_ptr<scan_aggregation> make_sum_aggregation<scan_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_sum_aggregation<segmented_reduce_aggregation>(); /// Factory to create a PRODUCT aggregation template <typename Base> std::unique_ptr<Base> make_product_aggregation() { return std::make_unique<detail::product_aggregation>(); } template std::unique_ptr<aggregation> make_product_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_product_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_product_aggregation<reduce_aggregation>(); template std::unique_ptr<scan_aggregation> make_product_aggregation<scan_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_product_aggregation<segmented_reduce_aggregation>(); /// Factory to create a MIN aggregation template <typename Base> std::unique_ptr<Base> make_min_aggregation() { return std::make_unique<detail::min_aggregation>(); } template std::unique_ptr<aggregation> make_min_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_min_aggregation<rolling_aggregation>(); template std::unique_ptr<groupby_aggregation> make_min_aggregation<groupby_aggregation>(); template std::unique_ptr<groupby_scan_aggregation> make_min_aggregation<groupby_scan_aggregation>(); template std::unique_ptr<reduce_aggregation> make_min_aggregation<reduce_aggregation>(); template std::unique_ptr<scan_aggregation> make_min_aggregation<scan_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_min_aggregation<segmented_reduce_aggregation>(); /// Factory to create a MAX aggregation template <typename Base> std::unique_ptr<Base> make_max_aggregation() { return std::make_unique<detail::max_aggregation>(); } template std::unique_ptr<aggregation> make_max_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_max_aggregation<rolling_aggregation>(); template std::unique_ptr<groupby_aggregation> make_max_aggregation<groupby_aggregation>(); template std::unique_ptr<groupby_scan_aggregation> make_max_aggregation<groupby_scan_aggregation>(); template std::unique_ptr<reduce_aggregation> make_max_aggregation<reduce_aggregation>(); template std::unique_ptr<scan_aggregation> make_max_aggregation<scan_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_max_aggregation<segmented_reduce_aggregation>(); /// Factory to create a COUNT aggregation template <typename Base> std::unique_ptr<Base> make_count_aggregation(null_policy null_handling) { auto kind = (null_handling == null_policy::INCLUDE) ? aggregation::COUNT_ALL : aggregation::COUNT_VALID; return std::make_unique<detail::count_aggregation>(kind); } template std::unique_ptr<aggregation> make_count_aggregation<aggregation>( null_policy null_handling); template std::unique_ptr<rolling_aggregation> make_count_aggregation<rolling_aggregation>( null_policy null_handling); template std::unique_ptr<groupby_aggregation> make_count_aggregation<groupby_aggregation>( null_policy null_handling); template std::unique_ptr<groupby_scan_aggregation> make_count_aggregation<groupby_scan_aggregation>( null_policy null_handling); /// Factory to create a HISTOGRAM aggregation template <typename Base> std::unique_ptr<Base> make_histogram_aggregation() { return std::make_unique<detail::histogram_aggregation>(); } template std::unique_ptr<aggregation> make_histogram_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_histogram_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_histogram_aggregation<reduce_aggregation>(); /// Factory to create a ANY aggregation template <typename Base> std::unique_ptr<Base> make_any_aggregation() { return std::make_unique<detail::any_aggregation>(); } template std::unique_ptr<aggregation> make_any_aggregation<aggregation>(); template std::unique_ptr<reduce_aggregation> make_any_aggregation<reduce_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_any_aggregation<segmented_reduce_aggregation>(); /// Factory to create a ALL aggregation template <typename Base> std::unique_ptr<Base> make_all_aggregation() { return std::make_unique<detail::all_aggregation>(); } template std::unique_ptr<aggregation> make_all_aggregation<aggregation>(); template std::unique_ptr<reduce_aggregation> make_all_aggregation<reduce_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_all_aggregation<segmented_reduce_aggregation>(); /// Factory to create a SUM_OF_SQUARES aggregation template <typename Base> std::unique_ptr<Base> make_sum_of_squares_aggregation() { return std::make_unique<detail::sum_of_squares_aggregation>(); } template std::unique_ptr<aggregation> make_sum_of_squares_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_sum_of_squares_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_sum_of_squares_aggregation<reduce_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_sum_of_squares_aggregation<segmented_reduce_aggregation>(); /// Factory to create a MEAN aggregation template <typename Base> std::unique_ptr<Base> make_mean_aggregation() { return std::make_unique<detail::mean_aggregation>(); } template std::unique_ptr<aggregation> make_mean_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_mean_aggregation<rolling_aggregation>(); template std::unique_ptr<groupby_aggregation> make_mean_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_mean_aggregation<reduce_aggregation>(); template std::unique_ptr<segmented_reduce_aggregation> make_mean_aggregation<segmented_reduce_aggregation>(); /// Factory to create a M2 aggregation template <typename Base> std::unique_ptr<Base> make_m2_aggregation() { return std::make_unique<detail::m2_aggregation>(); } template std::unique_ptr<aggregation> make_m2_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_m2_aggregation<groupby_aggregation>(); /// Factory to create a VARIANCE aggregation template <typename Base> std::unique_ptr<Base> make_variance_aggregation(size_type ddof) { return std::make_unique<detail::var_aggregation>(ddof); } template std::unique_ptr<aggregation> make_variance_aggregation<aggregation>(size_type ddof); template std::unique_ptr<rolling_aggregation> make_variance_aggregation<rolling_aggregation>( size_type ddof); template std::unique_ptr<groupby_aggregation> make_variance_aggregation<groupby_aggregation>( size_type ddof); template std::unique_ptr<reduce_aggregation> make_variance_aggregation<reduce_aggregation>( size_type ddof); template std::unique_ptr<segmented_reduce_aggregation> make_variance_aggregation<segmented_reduce_aggregation>(size_type ddof); /// Factory to create a STD aggregation template <typename Base> std::unique_ptr<Base> make_std_aggregation(size_type ddof) { return std::make_unique<detail::std_aggregation>(ddof); } template std::unique_ptr<aggregation> make_std_aggregation<aggregation>(size_type ddof); template std::unique_ptr<rolling_aggregation> make_std_aggregation<rolling_aggregation>( size_type ddof); template std::unique_ptr<groupby_aggregation> make_std_aggregation<groupby_aggregation>( size_type ddof); template std::unique_ptr<reduce_aggregation> make_std_aggregation<reduce_aggregation>( size_type ddof); template std::unique_ptr<segmented_reduce_aggregation> make_std_aggregation<segmented_reduce_aggregation>(size_type ddof); /// Factory to create a MEDIAN aggregation template <typename Base> std::unique_ptr<Base> make_median_aggregation() { return std::make_unique<detail::median_aggregation>(); } template std::unique_ptr<aggregation> make_median_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_median_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_median_aggregation<reduce_aggregation>(); /// Factory to create a QUANTILE aggregation template <typename Base> std::unique_ptr<Base> make_quantile_aggregation(std::vector<double> const& quantiles, interpolation interp) { return std::make_unique<detail::quantile_aggregation>(quantiles, interp); } template std::unique_ptr<aggregation> make_quantile_aggregation<aggregation>( std::vector<double> const& quantiles, interpolation interp); template std::unique_ptr<groupby_aggregation> make_quantile_aggregation<groupby_aggregation>( std::vector<double> const& quantiles, interpolation interp); template std::unique_ptr<reduce_aggregation> make_quantile_aggregation<reduce_aggregation>( std::vector<double> const& quantiles, interpolation interp); /// Factory to create an ARGMAX aggregation template <typename Base> std::unique_ptr<Base> make_argmax_aggregation() { return std::make_unique<detail::argmax_aggregation>(); } template std::unique_ptr<aggregation> make_argmax_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_argmax_aggregation<rolling_aggregation>(); template std::unique_ptr<groupby_aggregation> make_argmax_aggregation<groupby_aggregation>(); /// Factory to create an ARGMIN aggregation template <typename Base> std::unique_ptr<Base> make_argmin_aggregation() { return std::make_unique<detail::argmin_aggregation>(); } template std::unique_ptr<aggregation> make_argmin_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_argmin_aggregation<rolling_aggregation>(); template std::unique_ptr<groupby_aggregation> make_argmin_aggregation<groupby_aggregation>(); /// Factory to create an NUNIQUE aggregation template <typename Base> std::unique_ptr<Base> make_nunique_aggregation(null_policy null_handling) { return std::make_unique<detail::nunique_aggregation>(null_handling); } template std::unique_ptr<aggregation> make_nunique_aggregation<aggregation>( null_policy null_handling); template std::unique_ptr<groupby_aggregation> make_nunique_aggregation<groupby_aggregation>( null_policy null_handling); template std::unique_ptr<reduce_aggregation> make_nunique_aggregation<reduce_aggregation>( null_policy null_handling); template std::unique_ptr<segmented_reduce_aggregation> make_nunique_aggregation<segmented_reduce_aggregation>(null_policy null_handling); /// Factory to create an NTH_ELEMENT aggregation template <typename Base> std::unique_ptr<Base> make_nth_element_aggregation(size_type n, null_policy null_handling) { return std::make_unique<detail::nth_element_aggregation>(n, null_handling); } template std::unique_ptr<aggregation> make_nth_element_aggregation<aggregation>( size_type n, null_policy null_handling); template std::unique_ptr<groupby_aggregation> make_nth_element_aggregation<groupby_aggregation>( size_type n, null_policy null_handling); template std::unique_ptr<reduce_aggregation> make_nth_element_aggregation<reduce_aggregation>( size_type n, null_policy null_handling); template std::unique_ptr<rolling_aggregation> make_nth_element_aggregation<rolling_aggregation>( size_type n, null_policy null_handling); /// Factory to create a ROW_NUMBER aggregation template <typename Base> std::unique_ptr<Base> make_row_number_aggregation() { return std::make_unique<detail::row_number_aggregation>(); } template std::unique_ptr<aggregation> make_row_number_aggregation<aggregation>(); template std::unique_ptr<rolling_aggregation> make_row_number_aggregation<rolling_aggregation>(); /// Factory to create a RANK aggregation template <typename Base> std::unique_ptr<Base> make_rank_aggregation(rank_method method, order column_order, null_policy null_handling, null_order null_precedence, rank_percentage percentage) { return std::make_unique<detail::rank_aggregation>( method, column_order, null_handling, null_precedence, percentage); } template std::unique_ptr<aggregation> make_rank_aggregation<aggregation>( rank_method method, order column_order, null_policy null_handling, null_order null_precedence, rank_percentage percentage); template std::unique_ptr<groupby_scan_aggregation> make_rank_aggregation<groupby_scan_aggregation>( rank_method method, order column_order, null_policy null_handling, null_order null_precedence, rank_percentage percentage); template std::unique_ptr<scan_aggregation> make_rank_aggregation<scan_aggregation>( rank_method method, order column_order, null_policy null_handling, null_order null_precedence, rank_percentage percentage); /// Factory to create a COLLECT_LIST aggregation template <typename Base> std::unique_ptr<Base> make_collect_list_aggregation(null_policy null_handling) { return std::make_unique<detail::collect_list_aggregation>(null_handling); } template std::unique_ptr<aggregation> make_collect_list_aggregation<aggregation>( null_policy null_handling); template std::unique_ptr<rolling_aggregation> make_collect_list_aggregation<rolling_aggregation>( null_policy null_handling); template std::unique_ptr<groupby_aggregation> make_collect_list_aggregation<groupby_aggregation>( null_policy null_handling); template std::unique_ptr<reduce_aggregation> make_collect_list_aggregation<reduce_aggregation>( null_policy null_handling); /// Factory to create a COLLECT_SET aggregation template <typename Base> std::unique_ptr<Base> make_collect_set_aggregation(null_policy null_handling, null_equality nulls_equal, nan_equality nans_equal) { return std::make_unique<detail::collect_set_aggregation>(null_handling, nulls_equal, nans_equal); } template std::unique_ptr<aggregation> make_collect_set_aggregation<aggregation>( null_policy null_handling, null_equality nulls_equal, nan_equality nans_equal); template std::unique_ptr<rolling_aggregation> make_collect_set_aggregation<rolling_aggregation>( null_policy null_handling, null_equality nulls_equal, nan_equality nans_equal); template std::unique_ptr<groupby_aggregation> make_collect_set_aggregation<groupby_aggregation>( null_policy null_handling, null_equality nulls_equal, nan_equality nans_equal); template std::unique_ptr<reduce_aggregation> make_collect_set_aggregation<reduce_aggregation>( null_policy null_handling, null_equality nulls_equal, nan_equality nans_equal); /// Factory to create a LAG aggregation template <typename Base> std::unique_ptr<Base> make_lag_aggregation(size_type offset) { return std::make_unique<detail::lead_lag_aggregation>(aggregation::LAG, offset); } template std::unique_ptr<aggregation> make_lag_aggregation<aggregation>(size_type offset); template std::unique_ptr<rolling_aggregation> make_lag_aggregation<rolling_aggregation>( size_type offset); /// Factory to create a LEAD aggregation template <typename Base> std::unique_ptr<Base> make_lead_aggregation(size_type offset) { return std::make_unique<detail::lead_lag_aggregation>(aggregation::LEAD, offset); } template std::unique_ptr<aggregation> make_lead_aggregation<aggregation>(size_type offset); template std::unique_ptr<rolling_aggregation> make_lead_aggregation<rolling_aggregation>( size_type offset); /// Factory to create a UDF aggregation template <typename Base> std::unique_ptr<Base> make_udf_aggregation(udf_type type, std::string const& user_defined_aggregator, data_type output_type) { auto* a = new detail::udf_aggregation{type == udf_type::PTX ? aggregation::PTX : aggregation::CUDA, user_defined_aggregator, output_type}; return std::unique_ptr<detail::udf_aggregation>(a); } template std::unique_ptr<aggregation> make_udf_aggregation<aggregation>( udf_type type, std::string const& user_defined_aggregator, data_type output_type); template std::unique_ptr<rolling_aggregation> make_udf_aggregation<rolling_aggregation>( udf_type type, std::string const& user_defined_aggregator, data_type output_type); /// Factory to create a MERGE_LISTS aggregation template <typename Base> std::unique_ptr<Base> make_merge_lists_aggregation() { return std::make_unique<detail::merge_lists_aggregation>(); } template std::unique_ptr<aggregation> make_merge_lists_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_merge_lists_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_merge_lists_aggregation<reduce_aggregation>(); /// Factory to create a MERGE_SETS aggregation template <typename Base> std::unique_ptr<Base> make_merge_sets_aggregation(null_equality nulls_equal, nan_equality nans_equal) { return std::make_unique<detail::merge_sets_aggregation>(nulls_equal, nans_equal); } template std::unique_ptr<aggregation> make_merge_sets_aggregation<aggregation>(null_equality, nan_equality); template std::unique_ptr<groupby_aggregation> make_merge_sets_aggregation<groupby_aggregation>( null_equality, nan_equality); template std::unique_ptr<reduce_aggregation> make_merge_sets_aggregation<reduce_aggregation>( null_equality, nan_equality); /// Factory to create a MERGE_M2 aggregation template <typename Base> std::unique_ptr<Base> make_merge_m2_aggregation() { return std::make_unique<detail::merge_m2_aggregation>(); } template std::unique_ptr<aggregation> make_merge_m2_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_merge_m2_aggregation<groupby_aggregation>(); /// Factory to create a MERGE_HISTOGRAM aggregation template <typename Base> std::unique_ptr<Base> make_merge_histogram_aggregation() { return std::make_unique<detail::merge_histogram_aggregation>(); } template std::unique_ptr<aggregation> make_merge_histogram_aggregation<aggregation>(); template std::unique_ptr<groupby_aggregation> make_merge_histogram_aggregation<groupby_aggregation>(); template std::unique_ptr<reduce_aggregation> make_merge_histogram_aggregation<reduce_aggregation>(); /// Factory to create a COVARIANCE aggregation template <typename Base> std::unique_ptr<Base> make_covariance_aggregation(size_type min_periods, size_type ddof) { return std::make_unique<detail::covariance_aggregation>(min_periods, ddof); } template std::unique_ptr<aggregation> make_covariance_aggregation<aggregation>( size_type min_periods, size_type ddof); template std::unique_ptr<groupby_aggregation> make_covariance_aggregation<groupby_aggregation>( size_type min_periods, size_type ddof); /// Factory to create a CORRELATION aggregation template <typename Base> std::unique_ptr<Base> make_correlation_aggregation(correlation_type type, size_type min_periods) { return std::make_unique<detail::correlation_aggregation>(type, min_periods); } template std::unique_ptr<aggregation> make_correlation_aggregation<aggregation>( correlation_type type, size_type min_periods); template std::unique_ptr<groupby_aggregation> make_correlation_aggregation<groupby_aggregation>( correlation_type type, size_type min_periods); template <typename Base> std::unique_ptr<Base> make_tdigest_aggregation(int max_centroids) { return std::make_unique<detail::tdigest_aggregation>(max_centroids); } template std::unique_ptr<aggregation> make_tdigest_aggregation<aggregation>(int max_centroids); template std::unique_ptr<groupby_aggregation> make_tdigest_aggregation<groupby_aggregation>( int max_centroids); template std::unique_ptr<reduce_aggregation> make_tdigest_aggregation<reduce_aggregation>( int max_centroids); template <typename Base> std::unique_ptr<Base> make_merge_tdigest_aggregation(int max_centroids) { return std::make_unique<detail::merge_tdigest_aggregation>(max_centroids); } template std::unique_ptr<aggregation> make_merge_tdigest_aggregation<aggregation>( int max_centroids); template std::unique_ptr<groupby_aggregation> make_merge_tdigest_aggregation<groupby_aggregation>( int max_centroids); template std::unique_ptr<reduce_aggregation> make_merge_tdigest_aggregation<reduce_aggregation>( int max_centroids); namespace detail { namespace { struct target_type_functor { data_type type; template <typename Source, aggregation::Kind k> constexpr data_type operator()() const noexcept { using Type = target_type_t<Source, k>; auto const id = type_to_id<Type>(); return cudf::is_fixed_point<Type>() ? data_type{id, type.scale()} : data_type{id}; } }; struct is_valid_aggregation_impl { template <typename Source, aggregation::Kind k> constexpr bool operator()() const noexcept { return is_valid_aggregation<Source, k>(); } }; } // namespace // Return target data_type for the given source_type and aggregation data_type target_type(data_type source, aggregation::Kind k) { return dispatch_type_and_aggregation(source, k, target_type_functor{source}); } // Verifies the aggregation `k` is valid on the type `source` bool is_valid_aggregation(data_type source, aggregation::Kind k) { return dispatch_type_and_aggregation(source, k, is_valid_aggregation_impl{}); } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/aggregation/result_cache.cpp
/* * Copyright (c) 2019, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/aggregation/result_cache.hpp> namespace cudf { namespace detail { bool result_cache::has_result(column_view const& input, aggregation const& agg) const { return _cache.count({input, agg}); } void result_cache::add_result(column_view const& input, aggregation const& agg, std::unique_ptr<column>&& col) { // We can't guarantee that agg will outlive the cache, so we need to take ownership of a copy. // To allow lookup by reference, make the key a reference and keep the owner in the value pair. auto owned_agg = agg.clone(); auto const& key = *owned_agg; // try_emplace doesn't update/insert if already present _cache.try_emplace({input, key}, std::move(owned_agg), std::move(col)); } column_view result_cache::get_result(column_view const& input, aggregation const& agg) const { auto result_it = _cache.find({input, agg}); CUDF_EXPECTS(result_it != _cache.end(), "Result does not exist in cache"); return result_it->second.second->view(); } std::unique_ptr<column> result_cache::release_result(column_view const& input, aggregation const& agg) { auto node = _cache.extract({input, agg}); CUDF_EXPECTS(not node.empty(), "Result does not exist in cache"); return std::move(node.mapped().second); } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/aggregation/aggregation.cu
/* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/aggregation/aggregation.cuh> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { void initialize_with_identity(mutable_table_view& table, std::vector<aggregation::Kind> const& aggs, rmm::cuda_stream_view stream) { // TODO: Initialize all the columns in a single kernel instead of invoking one // kernel per column for (size_type i = 0; i < table.num_columns(); ++i) { auto col = table.column(i); dispatch_type_and_aggregation(col.type(), aggs[i], identity_initializer{}, col, stream); } } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/round/round.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/copy_range.cuh> #include <cudf/detail/fill.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/round.hpp> #include <cudf/detail/unary.hpp> #include <cudf/fixed_point/fixed_point.hpp> #include <cudf/fixed_point/temporary.hpp> #include <cudf/round.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/transform.h> #include <thrust/uninitialized_fill.h> #include <type_traits> namespace cudf { namespace detail { namespace { // anonymous inline float __device__ generic_round(float f) { return roundf(f); } inline double __device__ generic_round(double d) { return ::round(d); } inline float __device__ generic_round_half_even(float f) { return rintf(f); } inline double __device__ generic_round_half_even(double d) { return rint(d); } inline float __device__ generic_modf(float a, float* b) { return modff(a, b); } inline double __device__ generic_modf(double a, double* b) { return modf(a, b); } template <typename T, std::enable_if_t<cuda::std::is_signed_v<T>>* = nullptr> T __device__ generic_abs(T value) { return numeric::detail::abs(value); } template <typename T, std::enable_if_t<not cuda::std::is_signed_v<T>>* = nullptr> T __device__ generic_abs(T value) { return value; } template <typename T, std::enable_if_t<cuda::std::is_signed_v<T>>* = nullptr> int16_t __device__ generic_sign(T value) { return value < 0 ? -1 : 1; } // this is needed to suppress warning: pointless comparison of unsigned integer with zero template <typename T, std::enable_if_t<not cuda::std::is_signed_v<T>>* = nullptr> int16_t __device__ generic_sign(T) { return 1; } template <typename T> constexpr inline auto is_supported_round_type() { return (cudf::is_numeric<T>() && not std::is_same_v<T, bool>) || cudf::is_fixed_point<T>(); } template <typename T> struct half_up_zero { T n; // unused in the decimal_places = 0 case template <typename U = T, std::enable_if_t<cudf::is_floating_point<U>()>* = nullptr> __device__ U operator()(U e) { return generic_round(e); } template <typename U = T, std::enable_if_t<cuda::std::is_integral_v<U>>* = nullptr> __device__ U operator()(U) { assert(false); // Should never get here. Just for compilation return U{}; } }; template <typename T> struct half_up_positive { T n; template <typename U = T, std::enable_if_t<cudf::is_floating_point<U>()>* = nullptr> __device__ U operator()(U e) { T integer_part; T const fractional_part = generic_modf(e, &integer_part); return integer_part + generic_round(fractional_part * n) / n; } template <typename U = T, std::enable_if_t<cuda::std::is_integral_v<U>>* = nullptr> __device__ U operator()(U) { assert(false); // Should never get here. Just for compilation return U{}; } }; template <typename T> struct half_up_negative { T n; template <typename U = T, std::enable_if_t<cudf::is_floating_point<U>()>* = nullptr> __device__ U operator()(U e) { return generic_round(e / n) * n; } template <typename U = T, std::enable_if_t<cuda::std::is_integral_v<U>>* = nullptr> __device__ U operator()(U e) { auto const down = (e / n) * n; // result from rounding down return down + generic_sign(e) * (generic_abs(e - down) >= n / 2 ? n : 0); } }; template <typename T> struct half_even_zero { T n; // unused in the decimal_places = 0 case template <typename U = T, std::enable_if_t<cudf::is_floating_point<U>()>* = nullptr> __device__ U operator()(U e) { return generic_round_half_even(e); } template <typename U = T, std::enable_if_t<cuda::std::is_integral_v<U>>* = nullptr> __device__ U operator()(U) { assert(false); // Should never get here. Just for compilation return U{}; } }; template <typename T> struct half_even_positive { T n; template <typename U = T, std::enable_if_t<cudf::is_floating_point<U>()>* = nullptr> __device__ U operator()(U e) { T integer_part; T const fractional_part = generic_modf(e, &integer_part); return integer_part + generic_round_half_even(fractional_part * n) / n; } template <typename U = T, std::enable_if_t<cuda::std::is_integral_v<U>>* = nullptr> __device__ U operator()(U) { assert(false); // Should never get here. Just for compilation return U{}; } }; template <typename T> struct half_even_negative { T n; template <typename U = T, std::enable_if_t<cudf::is_floating_point<U>()>* = nullptr> __device__ U operator()(U e) { return generic_round_half_even(e / n) * n; } template <typename U = T, std::enable_if_t<cuda::std::is_integral_v<U>>* = nullptr> __device__ U operator()(U e) { auto const down_over_n = e / n; // use this to determine HALF_EVEN case auto const down = down_over_n * n; // result from rounding down auto const diff = generic_abs(e - down); auto const adjustment = (diff > n / 2) or (diff == n / 2 && generic_abs(down_over_n) % 2 == 1) ? n : 0; return down + generic_sign(e) * adjustment; } }; template <typename T> struct half_up_fixed_point { T n; __device__ T operator()(T e) { return half_up_negative<T>{n}(e) / n; } }; template <typename T> struct half_even_fixed_point { T n; __device__ T operator()(T e) { return half_even_negative<T>{n}(e) / n; } }; template <typename T, template <typename> typename RoundFunctor, std::enable_if_t<not cudf::is_fixed_point<T>()>* = nullptr> std::unique_ptr<column> round_with(column_view const& input, int32_t decimal_places, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using Functor = RoundFunctor<T>; if (decimal_places >= 0 && std::is_integral_v<T>) return std::make_unique<cudf::column>(input, stream, mr); auto result = cudf::make_fixed_width_column(input.type(), input.size(), detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); auto out_view = result->mutable_view(); T const n = std::pow(10, std::abs(decimal_places)); thrust::transform( rmm::exec_policy(stream), input.begin<T>(), input.end<T>(), out_view.begin<T>(), Functor{n}); result->set_null_count(input.null_count()); return result; } template <typename T, template <typename> typename RoundFunctor, std::enable_if_t<cudf::is_fixed_point<T>()>* = nullptr> std::unique_ptr<column> round_with(column_view const& input, int32_t decimal_places, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using namespace numeric; using Type = device_storage_type_t<T>; using FixedPointRoundFunctor = RoundFunctor<Type>; if (input.type().scale() == -decimal_places) return std::make_unique<cudf::column>(input, stream, mr); auto const result_type = data_type{input.type().id(), scale_type{-decimal_places}}; // if rounding to more precision than fixed_point is capable of, just need to rescale // note: decimal_places has the opposite sign of numeric::scale_type (therefore have to negate) if (input.type().scale() > -decimal_places) return cudf::detail::cast(input, result_type, stream, mr); auto result = cudf::make_fixed_width_column(result_type, input.size(), detail::copy_bitmask(input, stream, mr), input.null_count(), stream, mr); auto out_view = result->mutable_view(); auto const scale_movement = -decimal_places - input.type().scale(); // If scale_movement is larger than max precision of current type, the pow operation will // overflow. Under this circumstance, we can simply output a zero column because no digits can // survive such a large scale movement. if (scale_movement > cuda::std::numeric_limits<Type>::digits10) { thrust::uninitialized_fill(rmm::exec_policy(stream), out_view.template begin<Type>(), out_view.template end<Type>(), static_cast<Type>(0)); } else { Type n = 10; for (int i = 1; i < scale_movement; ++i) { n *= 10; } thrust::transform(rmm::exec_policy(stream), input.begin<Type>(), input.end<Type>(), out_view.begin<Type>(), FixedPointRoundFunctor{n}); } result->set_null_count(input.null_count()); return result; } struct round_type_dispatcher { template <typename T, typename... Args> std::enable_if_t<not is_supported_round_type<T>(), std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("Type not support for cudf::round"); } template <typename T> std::enable_if_t<is_supported_round_type<T>(), std::unique_ptr<column>> operator()( column_view const& input, int32_t decimal_places, cudf::rounding_method method, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // clang-format off switch (method) { case cudf::rounding_method::HALF_UP: if (is_fixed_point<T>()) return round_with<T, half_up_fixed_point>(input, decimal_places, stream, mr); else if (decimal_places == 0) return round_with<T, half_up_zero >(input, decimal_places, stream, mr); else if (decimal_places > 0) return round_with<T, half_up_positive >(input, decimal_places, stream, mr); else return round_with<T, half_up_negative >(input, decimal_places, stream, mr); case cudf::rounding_method::HALF_EVEN: if (is_fixed_point<T>()) return round_with<T, half_even_fixed_point>(input, decimal_places, stream, mr); else if (decimal_places == 0) return round_with<T, half_even_zero >(input, decimal_places, stream, mr); else if (decimal_places > 0) return round_with<T, half_even_positive >(input, decimal_places, stream, mr); else return round_with<T, half_even_negative >(input, decimal_places, stream, mr); default: CUDF_FAIL("Undefined rounding method"); } // clang-format on } }; } // anonymous namespace std::unique_ptr<column> round(column_view const& input, int32_t decimal_places, cudf::rounding_method method, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(cudf::is_numeric(input.type()) || cudf::is_fixed_point(input.type()), "Only integral/floating point/fixed point currently supported."); if (input.is_empty()) { if (is_fixed_point(input.type())) { auto const type = data_type{input.type().id(), numeric::scale_type{-decimal_places}}; return make_empty_column(type); } return empty_like(input); } return type_dispatcher( input.type(), round_type_dispatcher{}, input, decimal_places, method, stream, mr); } } // namespace detail std::unique_ptr<column> round(column_view const& input, int32_t decimal_places, rounding_method method, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::round(input, decimal_places, method, cudf::get_default_stream(), mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/pack.cpp
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/contiguous_split.hpp> #include <cudf/detail/contiguous_split.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { namespace { /** * @brief The data that is stored as anonymous bytes in the `packed_columns` metadata * field. * * The metadata field of the `packed_columns` struct is simply an array of these. * This struct is exposed here because it is needed by both contiguous_split, pack * and unpack. */ struct serialized_column { serialized_column() = default; serialized_column(data_type _type, size_type _size, size_type _null_count, int64_t _data_offset, int64_t _null_mask_offset, size_type _num_children) : type(_type), size(_size), null_count(_null_count), data_offset(_data_offset), null_mask_offset(_null_mask_offset), num_children(_num_children), pad(0) { } data_type type; size_type size; size_type null_count; int64_t data_offset; // offset into contiguous data buffer, or -1 if column data is null int64_t null_mask_offset; // offset into contiguous data buffer, or -1 if column data is null size_type num_children; // Explicitly pad to avoid uninitialized padding bits, allowing `serialized_column` to be bit-wise // comparable int pad; }; /** * @brief Deserialize a single column into a column_view * * Deserializes a single column (it's children are assumed to be already deserialized) * non-recursively. * * @param serial_column Serialized column information * @param children Children for the column * @param base_ptr Base pointer for the entire contiguous buffer from which all columns * were serialized into * @return Fully formed column_view */ column_view deserialize_column(serialized_column serial_column, std::vector<column_view> const& children, uint8_t const* base_ptr) { auto const data_ptr = serial_column.data_offset != -1 ? base_ptr + serial_column.data_offset : nullptr; auto const null_mask_ptr = serial_column.null_mask_offset != -1 ? reinterpret_cast<bitmask_type const*>(base_ptr + serial_column.null_mask_offset) : nullptr; return column_view(serial_column.type, serial_column.size, data_ptr, null_mask_ptr, serial_column.null_count, 0, children); } /** * @brief Build and add metadata for a column and all of it's children, recursively * * * @param mb metadata_builder instance * @param col Column to build metadata for * @param base_ptr Base pointer for the entire contiguous buffer from which all columns * were serialized into * @param data_size Size of the incoming buffer */ void build_column_metadata(metadata_builder& mb, column_view const& col, uint8_t const* base_ptr, size_t data_size) { uint8_t const* data_ptr = col.size() == 0 || !col.head<uint8_t>() ? nullptr : col.head<uint8_t>(); if (data_ptr != nullptr) { CUDF_EXPECTS(data_ptr >= base_ptr && data_ptr < base_ptr + data_size, "Encountered column data outside the range of input buffer"); } int64_t const data_offset = data_ptr ? data_ptr - base_ptr : -1; uint8_t const* null_mask_ptr = col.size() == 0 || !col.nullable() ? nullptr : reinterpret_cast<uint8_t const*>(col.null_mask()); if (null_mask_ptr != nullptr) { CUDF_EXPECTS(null_mask_ptr >= base_ptr && null_mask_ptr < base_ptr + data_size, "Encountered column null mask outside the range of input buffer"); } int64_t const null_mask_offset = null_mask_ptr ? null_mask_ptr - base_ptr : -1; // add metadata mb.add_column_info_to_meta( col.type(), col.size(), col.null_count(), data_offset, null_mask_offset, col.num_children()); std::for_each( col.child_begin(), col.child_end(), [&mb, &base_ptr, &data_size](column_view const& col) { build_column_metadata(mb, col, base_ptr, data_size); }); } } // anonymous namespace /** * @copydoc cudf::detail::pack */ packed_columns pack(cudf::table_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // do a contiguous_split with no splits to get the memory for the table // arranged as we want it auto contig_split_result = cudf::detail::contiguous_split(input, {}, stream, mr); return contig_split_result.empty() ? packed_columns{} : std::move(contig_split_result[0].data); } std::vector<uint8_t> pack_metadata(table_view const& table, uint8_t const* contiguous_buffer, size_t buffer_size, metadata_builder& builder) { std::for_each( table.begin(), table.end(), [&builder, contiguous_buffer, buffer_size](column_view const& col) { build_column_metadata(builder, col, contiguous_buffer, buffer_size); }); return builder.build(); } class metadata_builder_impl { public: metadata_builder_impl(size_type const num_root_columns) { metadata.reserve(num_root_columns); } void add_column_info_to_meta(data_type const col_type, size_type const col_size, size_type const col_null_count, int64_t const data_offset, int64_t const null_mask_offset, size_type const num_children) { metadata.emplace_back( col_type, col_size, col_null_count, data_offset, null_mask_offset, num_children); } std::vector<uint8_t> build() const { auto output = std::vector<uint8_t>(metadata.size() * sizeof(detail::serialized_column)); std::memcpy(output.data(), metadata.data(), output.size()); return output; } void clear() { // Clear all, except the first metadata entry storing the number of top level columns that // was added upon object construction. metadata.resize(1); } private: std::vector<detail::serialized_column> metadata; }; /** * @copydoc cudf::detail::unpack */ table_view unpack(uint8_t const* metadata, uint8_t const* gpu_data) { // gpu data can be null if everything is empty but the metadata must always be valid CUDF_EXPECTS(metadata != nullptr, "Encountered invalid packed column input"); auto serialized_columns = reinterpret_cast<serialized_column const*>(metadata); uint8_t const* base_ptr = gpu_data; // first entry is a stub where size == the total # of top level columns (see pack_metadata above) auto const num_columns = serialized_columns[0].size; size_t current_index = 1; std::function<std::vector<column_view>(size_type)> get_columns; get_columns = [&serialized_columns, &current_index, base_ptr, &get_columns](size_t num_columns) { std::vector<column_view> cols; for (size_t i = 0; i < num_columns; i++) { auto serial_column = serialized_columns[current_index]; current_index++; std::vector<column_view> children = get_columns(serial_column.num_children); cols.emplace_back(deserialize_column(serial_column, children, base_ptr)); } return cols; }; return table_view{get_columns(num_columns)}; } metadata_builder::metadata_builder(size_type const num_root_columns) : impl(std::make_unique<metadata_builder_impl>(num_root_columns + 1 /*one more extra metadata entry as below*/)) { // first metadata entry is a stub indicating how many total (top level) columns // there are impl->add_column_info_to_meta(data_type{type_id::EMPTY}, num_root_columns, 0, -1, -1, 0); } metadata_builder::~metadata_builder() = default; void metadata_builder::add_column_info_to_meta(data_type const col_type, size_type const col_size, size_type const col_null_count, int64_t const data_offset, int64_t const null_mask_offset, size_type const num_children) { impl->add_column_info_to_meta( col_type, col_size, col_null_count, data_offset, null_mask_offset, num_children); } std::vector<uint8_t> metadata_builder::build() const { return impl->build(); } void metadata_builder::clear() { return impl->clear(); } } // namespace detail /** * @copydoc cudf::pack */ packed_columns pack(cudf::table_view const& input, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::pack(input, cudf::get_default_stream(), mr); } /** * @copydoc cudf::pack_metadata */ std::vector<uint8_t> pack_metadata(table_view const& table, uint8_t const* contiguous_buffer, size_t buffer_size) { CUDF_FUNC_RANGE(); if (table.is_empty()) { return std::vector<uint8_t>{}; } auto builder = cudf::detail::metadata_builder(table.num_columns()); return detail::pack_metadata(table, contiguous_buffer, buffer_size, builder); } /** * @copydoc cudf::unpack */ table_view unpack(packed_columns const& input) { CUDF_FUNC_RANGE(); return input.metadata->size() == 0 ? table_view{} : detail::unpack(input.metadata->data(), reinterpret_cast<uint8_t const*>(input.gpu_data->data())); } /** * @copydoc cudf::unpack(uint8_t const*, uint8_t const* ) */ table_view unpack(uint8_t const* metadata, uint8_t const* gpu_data) { CUDF_FUNC_RANGE(); return detail::unpack(metadata, gpu_data); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/scatter.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/scatter.cuh> #include <cudf/detail/scatter.hpp> #include <cudf/detail/stream_compaction.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/dictionary/detail/search.hpp> #include <cudf/lists/list_view.hpp> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/strings/detail/scatter.cuh> #include <cudf/strings/string_view.cuh> #include <cudf/structs/struct_view.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/count.h> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/permutation_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/scatter.h> #include <thrust/sequence.h> namespace cudf { namespace detail { namespace { template <bool mark_true, typename MapIterator> __global__ void marking_bitmask_kernel(mutable_column_device_view destination, MapIterator scatter_map, size_type num_scatter_rows) { auto row = cudf::detail::grid_1d::global_thread_id(); auto const stride = cudf::detail::grid_1d::grid_stride(); while (row < num_scatter_rows) { size_type const output_row = scatter_map[row]; if (mark_true) { destination.set_valid(output_row); } else { destination.set_null(output_row); } row += stride; } } template <typename MapIterator> void scatter_scalar_bitmask_inplace(std::reference_wrapper<scalar const> const& source, MapIterator scatter_map, size_type num_scatter_rows, column& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { constexpr size_type block_size = 256; size_type const grid_size = grid_1d(num_scatter_rows, block_size).num_blocks; auto const source_is_valid = source.get().is_valid(stream); if (target.nullable() or not source_is_valid) { if (not target.nullable()) { // Target must have a null mask if the source is not valid auto mask = detail::create_null_mask(target.size(), mask_state::ALL_VALID, stream, mr); target.set_null_mask(std::move(mask), 0); } auto target_view = mutable_column_device_view::create(target, stream); auto bitmask_kernel = source_is_valid ? marking_bitmask_kernel<true, decltype(scatter_map)> : marking_bitmask_kernel<false, decltype(scatter_map)>; bitmask_kernel<<<grid_size, block_size, 0, stream.value()>>>( *target_view, scatter_map, num_scatter_rows); target.set_null_count( cudf::detail::null_count(target.view().null_mask(), 0, target.size(), stream)); } } template <typename Element, typename MapIterator> struct column_scalar_scatterer_impl { std::unique_ptr<column> operator()(std::reference_wrapper<scalar const> const& source, MapIterator scatter_iter, size_type scatter_rows, column_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_EXPECTS(source.get().type() == target.type(), "scalar and column types must match"); // make a copy of data and null mask from source auto result = std::make_unique<column>(target, stream, mr); auto result_view = result->mutable_view(); // Use permutation iterator with constant index to dereference scalar data auto scalar_impl = static_cast<scalar_type_t<Element> const*>(&source.get()); auto scalar_iter = thrust::make_permutation_iterator(scalar_impl->data(), thrust::make_constant_iterator(0)); thrust::scatter(rmm::exec_policy_nosync(stream), scalar_iter, scalar_iter + scatter_rows, scatter_iter, result_view.begin<Element>()); scatter_scalar_bitmask_inplace(source, scatter_iter, scatter_rows, *result, stream, mr); return result; } }; template <typename MapIterator> struct column_scalar_scatterer_impl<string_view, MapIterator> { std::unique_ptr<column> operator()(std::reference_wrapper<scalar const> const& source, MapIterator scatter_iter, size_type scatter_rows, column_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { CUDF_EXPECTS(source.get().type() == target.type(), "scalar and column types must match"); auto const scalar_impl = static_cast<string_scalar const*>(&source.get()); auto const source_view = string_view(scalar_impl->data(), scalar_impl->size()); auto const begin = thrust::make_constant_iterator(source_view); auto const end = begin + scatter_rows; auto result = strings::detail::scatter(begin, end, scatter_iter, target, stream, mr); scatter_scalar_bitmask_inplace(source, scatter_iter, scatter_rows, *result, stream, mr); return result; } }; template <typename MapIterator> struct column_scalar_scatterer_impl<list_view, MapIterator> { std::unique_ptr<column> operator()(std::reference_wrapper<scalar const> const& source, MapIterator scatter_iter, size_type scatter_rows, column_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto result = lists::detail::scatter(source, scatter_iter, scatter_iter + scatter_rows, target, stream, mr); scatter_scalar_bitmask_inplace(source, scatter_iter, scatter_rows, *result, stream, mr); return result; } }; template <typename MapIterator> struct column_scalar_scatterer_impl<dictionary32, MapIterator> { std::unique_ptr<column> operator()(std::reference_wrapper<scalar const> const& source, MapIterator scatter_iter, size_type scatter_rows, column_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto dict_target = dictionary::detail::add_keys(dictionary_column_view(target), make_column_from_scalar(source.get(), 1, stream)->view(), stream, mr); auto dict_view = dictionary_column_view(dict_target->view()); auto scalar_index = dictionary::detail::get_index( dict_view, source.get(), stream, rmm::mr::get_current_device_resource()); auto scalar_iter = thrust::make_permutation_iterator( indexalator_factory::make_input_iterator(*scalar_index), thrust::make_constant_iterator(0)); auto new_indices = std::make_unique<column>(dict_view.get_indices_annotated(), stream, mr); auto target_iter = indexalator_factory::make_output_iterator(new_indices->mutable_view()); thrust::scatter(rmm::exec_policy_nosync(stream), scalar_iter, scalar_iter + scatter_rows, scatter_iter, target_iter); // build the dictionary indices column from the result auto const indices_type = new_indices->type(); auto const output_size = new_indices->size(); auto const null_count = new_indices->null_count(); auto contents = new_indices->release(); auto indices_column = std::make_unique<column>(indices_type, static_cast<size_type>(output_size), std::move(*(contents.data.release())), rmm::device_buffer{}, 0); // use the keys from the matched column std::unique_ptr<column> keys_column(std::move(dict_target->release().children.back())); // create the output column auto result = make_dictionary_column(std::move(keys_column), std::move(indices_column), std::move(*(contents.null_mask.release())), null_count); scatter_scalar_bitmask_inplace(source, scatter_iter, scatter_rows, *result, stream, mr); return result; } }; template <typename MapIterator> struct column_scalar_scatterer { template <typename Element> std::unique_ptr<column> operator()(std::reference_wrapper<scalar const> const& source, MapIterator scatter_iter, size_type scatter_rows, column_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { column_scalar_scatterer_impl<Element, MapIterator> scatterer{}; return scatterer(source, scatter_iter, scatter_rows, target, stream, mr); } }; template <typename MapIterator> struct column_scalar_scatterer_impl<struct_view, MapIterator> { std::unique_ptr<column> operator()(std::reference_wrapper<scalar const> const& source, MapIterator scatter_iter, size_type scatter_rows, column_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { // For each field of `source`, copy construct a scalar from the field // and dispatch to the corresponding scalar scatterer auto typed_s = static_cast<struct_scalar const*>(&source.get()); size_type const n_fields = typed_s->view().num_columns(); CUDF_EXPECTS(n_fields == target.num_children(), "Mismatched number of fields."); auto scatter_functor = column_scalar_scatterer<decltype(scatter_iter)>{}; auto fields_iter_begin = make_counting_transform_iterator(0, [&](auto const& i) { auto row_slr = detail::get_element( typed_s->view().column(i), 0, stream, rmm::mr::get_current_device_resource()); return type_dispatcher<dispatch_storage_type>(row_slr->type(), scatter_functor, *row_slr, scatter_iter, scatter_rows, target.child(i), stream, mr); }); std::vector<std::unique_ptr<column>> fields(fields_iter_begin, fields_iter_begin + n_fields); // Compute null mask rmm::device_buffer null_mask = target.nullable() ? detail::copy_bitmask(target, stream, mr) : detail::create_null_mask(target.size(), mask_state::UNALLOCATED, stream, mr); column null_mask_stub(data_type{type_id::STRUCT}, target.size(), rmm::device_buffer{}, std::move(null_mask), target.null_count()); scatter_scalar_bitmask_inplace(source, scatter_iter, scatter_rows, null_mask_stub, stream, mr); size_type null_count = null_mask_stub.null_count(); auto contents = null_mask_stub.release(); // Null mask pushdown inside factory method return make_structs_column( target.size(), std::move(fields), null_count, std::move(*contents.null_mask), stream, mr); } }; } // namespace std::unique_ptr<table> scatter(table_view const& source, column_view const& scatter_map, table_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(source.num_columns() == target.num_columns(), "Number of columns in source and target not equal"); CUDF_EXPECTS(scatter_map.size() <= source.num_rows(), "Size of scatter map must be equal to or less than source rows"); CUDF_EXPECTS(std::equal(source.begin(), source.end(), target.begin(), [](auto const& col1, auto const& col2) { return col1.type().id() == col2.type().id(); }), "Column types do not match between source and target"); CUDF_EXPECTS(not scatter_map.has_nulls(), "Scatter map contains nulls"); if (scatter_map.is_empty()) { return std::make_unique<table>(target, stream, mr); } // create index type normalizing iterator for the scatter_map auto map_begin = indexalator_factory::make_input_iterator(scatter_map); auto map_end = map_begin + scatter_map.size(); return detail::scatter(source, map_begin, map_end, target, stream, mr); } std::unique_ptr<table> scatter(table_view const& source, device_span<size_type const> const scatter_map, table_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(scatter_map.size() <= static_cast<size_t>(std::numeric_limits<size_type>::max()), "scatter map size exceeds the column size limit", std::overflow_error); auto map_col = column_view(data_type{type_to_id<size_type>()}, static_cast<size_type>(scatter_map.size()), scatter_map.data(), nullptr, 0); return detail::scatter(source, map_col, target, stream, mr); } std::unique_ptr<table> scatter(std::vector<std::reference_wrapper<scalar const>> const& source, column_view const& indices, table_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(source.size() == static_cast<size_t>(target.num_columns()), "Number of columns in source and target not equal"); CUDF_EXPECTS(not indices.has_nulls(), "indices contains nulls"); if (indices.is_empty()) { return std::make_unique<table>(target, stream, mr); } // Create normalizing iterator for indices column auto map_begin = indexalator_factory::make_input_iterator(indices); // Optionally check map index values are within the number of target rows. auto const n_rows = target.num_rows(); // Transform negative indices to index + target size auto scatter_rows = indices.size(); // note: the intermediate ((in % n_rows) + n_rows) will overflow a size_type for any value of `in` // > (2^31)/2, but the end result after the final (% n_rows) will fit. so we'll do the computation // using a signed 64 bit value. auto scatter_iter = thrust::make_transform_iterator( map_begin, [n_rows = static_cast<int64_t>(n_rows)] __device__(size_type in) -> size_type { return ((static_cast<int64_t>(in) % n_rows) + n_rows) % n_rows; }); // Dispatch over data type per column auto result = std::vector<std::unique_ptr<column>>(target.num_columns()); auto scatter_functor = column_scalar_scatterer<decltype(scatter_iter)>{}; std::transform(source.begin(), source.end(), target.begin(), result.begin(), [=](auto const& source_scalar, auto const& target_col) { return type_dispatcher<dispatch_storage_type>(target_col.type(), scatter_functor, source_scalar, scatter_iter, scatter_rows, target_col, stream, mr); }); return std::make_unique<table>(std::move(result)); } std::unique_ptr<column> boolean_mask_scatter(column_view const& input, column_view const& target, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto indices = cudf::make_numeric_column( data_type{type_id::INT32}, target.size(), mask_state::UNALLOCATED, stream); auto mutable_indices = indices->mutable_view(); thrust::sequence(rmm::exec_policy_nosync(stream), mutable_indices.begin<size_type>(), mutable_indices.end<size_type>(), 0); // The scatter map is actually a table with only one column, which is scatter map. auto scatter_map = detail::apply_boolean_mask( table_view{{indices->view()}}, boolean_mask, stream, rmm::mr::get_current_device_resource()); auto output_table = detail::scatter( table_view{{input}}, scatter_map->get_column(0).view(), table_view{{target}}, stream, mr); // There is only one column in output_table return std::make_unique<column>(std::move(output_table->get_column(0))); } std::unique_ptr<column> boolean_mask_scatter(scalar const& input, column_view const& target, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return detail::copy_if_else(input, target, boolean_mask, stream, mr); } std::unique_ptr<table> boolean_mask_scatter(table_view const& input, table_view const& target, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.num_columns() == target.num_columns(), "Mismatch in number of input columns and target columns"); CUDF_EXPECTS(boolean_mask.size() == target.num_rows(), "Boolean mask size and number of target rows mismatch"); CUDF_EXPECTS(boolean_mask.type().id() == type_id::BOOL8, "Mask must be of Boolean type"); // Count valid pair of input and columns as per type at each column index i CUDF_EXPECTS( std::all_of(thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(target.num_columns()), [&input, &target](auto index) { return ((input.column(index).type().id()) == (target.column(index).type().id())); }), "Type mismatch in input column and target column"); if (target.num_rows() != 0) { std::vector<std::unique_ptr<column>> out_columns(target.num_columns()); std::transform( input.begin(), input.end(), target.begin(), out_columns.begin(), [&boolean_mask, mr, stream](auto const& input_column, auto const& target_column) { return boolean_mask_scatter(input_column, target_column, boolean_mask, stream, mr); }); return std::make_unique<table>(std::move(out_columns)); } else { return empty_like(target); } } std::unique_ptr<table> boolean_mask_scatter( std::vector<std::reference_wrapper<scalar const>> const& input, table_view const& target, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(static_cast<size_type>(input.size()) == target.num_columns(), "Mismatch in number of scalars and target columns"); CUDF_EXPECTS(boolean_mask.size() == target.num_rows(), "Boolean mask size and number of target rows mismatch"); CUDF_EXPECTS(boolean_mask.type().id() == type_id::BOOL8, "Mask must be of Boolean type"); // Count valid pair of input and columns as per type at each column/scalar index i CUDF_EXPECTS( std::all_of(thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(target.num_columns()), [&input, &target](auto index) { return (input[index].get().type().id() == target.column(index).type().id()); }), "Type mismatch in input scalar and target column"); if (target.num_rows() != 0) { std::vector<std::unique_ptr<column>> out_columns(target.num_columns()); std::transform(input.begin(), input.end(), target.begin(), out_columns.begin(), [&boolean_mask, mr, stream](auto const& scalar, auto const& target_column) { return boolean_mask_scatter( scalar.get(), target_column, boolean_mask, stream, mr); }); return std::make_unique<table>(std::move(out_columns)); } else { return empty_like(target); } } } // namespace detail std::unique_ptr<table> scatter(table_view const& source, column_view const& scatter_map, table_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::scatter(source, scatter_map, target, stream, mr); } std::unique_ptr<table> scatter(std::vector<std::reference_wrapper<scalar const>> const& source, column_view const& indices, table_view const& target, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::scatter(source, indices, target, stream, mr); } std::unique_ptr<table> boolean_mask_scatter(table_view const& input, table_view const& target, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::boolean_mask_scatter(input, target, boolean_mask, stream, mr); } std::unique_ptr<table> boolean_mask_scatter( std::vector<std::reference_wrapper<scalar const>> const& input, table_view const& target, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::boolean_mask_scatter(input, target, boolean_mask, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/slice.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/transform_iterator.h> #include <algorithm> namespace cudf { namespace detail { template <typename ColumnView> ColumnView slice(ColumnView const& input, size_type begin, size_type end, rmm::cuda_stream_view stream) { CUDF_EXPECTS(begin >= 0, "Invalid beginning of range."); CUDF_EXPECTS(end >= begin, "Invalid end of range."); CUDF_EXPECTS(end <= input.size(), "Slice range out of bounds."); std::vector<ColumnView> children{}; children.reserve(input.num_children()); for (size_type index = 0; index < input.num_children(); index++) { children.emplace_back(input.child(index)); } return ColumnView( input.type(), end - begin, input.head(), input.null_mask(), input.null_count() ? cudf::detail::null_count(input.null_mask(), begin, end, stream) : 0, input.offset() + begin, children); } template column_view slice<column_view>(column_view const&, size_type, size_type, rmm::cuda_stream_view); template mutable_column_view slice<mutable_column_view>(mutable_column_view const&, size_type, size_type, rmm::cuda_stream_view); std::vector<column_view> slice(column_view const& input, host_span<size_type const> indices, rmm::cuda_stream_view stream) { CUDF_EXPECTS(indices.size() % 2 == 0, "indices size must be even"); if (indices.empty()) return {}; // need to shift incoming indices by the column offset to generate the correct bit ranges // to count auto indices_iter = cudf::detail::make_counting_transform_iterator( 0, [offset = input.offset(), &indices](size_type index) { return indices[index] + offset; }); auto null_counts = cudf::detail::segmented_null_count( input.null_mask(), indices_iter, indices_iter + indices.size(), stream); auto const children = std::vector<column_view>(input.child_begin(), input.child_end()); auto op = [&](auto i) { auto begin = indices[2 * i]; auto end = indices[2 * i + 1]; CUDF_EXPECTS(begin >= 0, "Starting index cannot be negative."); CUDF_EXPECTS(end >= begin, "End index cannot be smaller than the starting index."); CUDF_EXPECTS(end <= input.size(), "Slice range out of bounds."); return column_view{input.type(), end - begin, input.head(), input.null_mask(), null_counts[i], input.offset() + begin, children}; }; auto begin = cudf::detail::make_counting_transform_iterator(0, op); return std::vector<column_view>{begin, begin + indices.size() / 2}; } std::vector<table_view> slice(table_view const& input, host_span<size_type const> indices, rmm::cuda_stream_view stream) { CUDF_EXPECTS(indices.size() % 2 == 0, "indices size must be even"); if (indices.empty()) { return {}; } // 2d arrangement of column_views that represent the outgoing table_views sliced_table[i][j] // where i is the i'th column of the j'th table_view auto op = [&indices, &stream](auto const& c) { return cudf::detail::slice(c, indices, stream); }; auto f = thrust::make_transform_iterator(input.begin(), op); auto sliced_table = std::vector<std::vector<cudf::column_view>>(f, f + input.num_columns()); sliced_table.reserve(indices.size() + 1); std::vector<cudf::table_view> result{}; // distribute columns into outgoing table_views size_t num_output_tables = indices.size() / 2; for (size_t i = 0; i < num_output_tables; i++) { std::vector<cudf::column_view> table_columns; for (size_type j = 0; j < input.num_columns(); j++) { table_columns.emplace_back(sliced_table[j][i]); } result.emplace_back(table_view{table_columns}); } return result; } std::vector<column_view> slice(column_view const& input, std::initializer_list<size_type> indices, rmm::cuda_stream_view stream) { return detail::slice(input, host_span<size_type const>(indices.begin(), indices.size()), stream); } std::vector<table_view> slice(table_view const& input, std::initializer_list<size_type> indices, rmm::cuda_stream_view stream) { return detail::slice(input, host_span<size_type const>(indices.begin(), indices.size()), stream); }; } // namespace detail std::vector<column_view> slice(column_view const& input, host_span<size_type const> indices, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::slice(input, indices, stream); } std::vector<table_view> slice(table_view const& input, host_span<size_type const> indices, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::slice(input, indices, stream); }; std::vector<column_view> slice(column_view const& input, std::initializer_list<size_type> indices, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::slice(input, indices, stream); } std::vector<table_view> slice(table_view const& input, std::initializer_list<size_type> indices, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::slice(input, indices, stream); }; } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/copy_range.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_factories.hpp> #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/copy_range.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/dictionary/dictionary_factories.hpp> #include <cudf/strings/detail/copy_range.cuh> #include <cudf/strings/strings_column_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/constant_iterator.h> #include <memory> namespace { template <typename T> void in_place_copy_range(cudf::column_view const& source, cudf::mutable_column_view& target, cudf::size_type source_begin, cudf::size_type source_end, cudf::size_type target_begin, rmm::cuda_stream_view stream) { auto p_source_device_view = cudf::column_device_view::create(source, stream); if (source.has_nulls()) { cudf::detail::copy_range( cudf::detail::make_null_replacement_iterator<T>(*p_source_device_view, T()) + source_begin, cudf::detail::make_validity_iterator(*p_source_device_view) + source_begin, target, target_begin, target_begin + (source_end - source_begin), stream); } else { cudf::detail::copy_range(p_source_device_view->begin<T>() + source_begin, thrust::make_constant_iterator(true), // dummy target, target_begin, target_begin + (source_end - source_begin), stream); } } struct in_place_copy_range_dispatch { cudf::column_view const& source; cudf::mutable_column_view& target; template <typename T, CUDF_ENABLE_IF(cudf::is_rep_layout_compatible<T>())> void operator()(cudf::size_type source_begin, cudf::size_type source_end, cudf::size_type target_begin, rmm::cuda_stream_view stream) { in_place_copy_range<T>(source, target, source_begin, source_end, target_begin, stream); } template <typename T, typename... Args> void operator()(Args&&...) { CUDF_FAIL("Unsupported type for in-place copy."); } }; struct out_of_place_copy_range_dispatch { cudf::column_view const& source; cudf::column_view const& target; template <typename T, CUDF_ENABLE_IF(cudf::is_rep_layout_compatible<T>())> std::unique_ptr<cudf::column> operator()( cudf::size_type source_begin, cudf::size_type source_end, cudf::size_type target_begin, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()) { auto p_ret = std::make_unique<cudf::column>(target, stream, mr); if ((!p_ret->nullable()) && source.has_nulls(source_begin, source_end)) { p_ret->set_null_mask( cudf::detail::create_null_mask(p_ret->size(), cudf::mask_state::ALL_VALID, stream, mr), 0); } if (source_end != source_begin) { // otherwise no-op auto ret_view = p_ret->mutable_view(); in_place_copy_range<T>(source, ret_view, source_begin, source_end, target_begin, stream); p_ret->set_null_count(ret_view.null_count()); } return p_ret; } template <typename T, typename... Args> std::enable_if_t<not cudf::is_rep_layout_compatible<T>(), std::unique_ptr<cudf::column>> operator()(Args...) { CUDF_FAIL("Unsupported type for out of place copy."); } }; template <> std::unique_ptr<cudf::column> out_of_place_copy_range_dispatch::operator()<cudf::string_view>( cudf::size_type source_begin, cudf::size_type source_end, cudf::size_type target_begin, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto target_end = target_begin + (source_end - source_begin); auto p_source_device_view = cudf::column_device_view::create(source, stream); if (source.has_nulls()) { return cudf::strings::detail::copy_range( cudf::detail::make_null_replacement_iterator<cudf::string_view>(*p_source_device_view, cudf::string_view()) + source_begin, cudf::detail::make_validity_iterator(*p_source_device_view) + source_begin, cudf::strings_column_view(target), target_begin, target_end, stream, mr); } else { return cudf::strings::detail::copy_range( p_source_device_view->begin<cudf::string_view>() + source_begin, thrust::make_constant_iterator(true), cudf::strings_column_view(target), target_begin, target_end, stream, mr); } } template <> std::unique_ptr<cudf::column> out_of_place_copy_range_dispatch::operator()<cudf::dictionary32>( cudf::size_type source_begin, cudf::size_type source_end, cudf::size_type target_begin, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // check the keys in the source and target cudf::dictionary_column_view const dict_source(source); cudf::dictionary_column_view const dict_target(target); CUDF_EXPECTS(dict_source.keys().type() == dict_target.keys().type(), "dictionary keys must be the same type"); // combine keys so both dictionaries have the same set auto target_matched = cudf::dictionary::detail::add_keys(dict_target, dict_source.keys(), stream, mr); auto const target_view = cudf::dictionary_column_view(target_matched->view()); auto source_matched = cudf::dictionary::detail::set_keys( dict_source, target_view.keys(), stream, rmm::mr::get_current_device_resource()); auto const source_view = cudf::dictionary_column_view(source_matched->view()); // build the new indices by calling in_place_copy_range on just the indices auto const source_indices = source_view.get_indices_annotated(); auto target_contents = target_matched->release(); auto target_indices(std::move(target_contents.children.front())); cudf::mutable_column_view new_indices( target_indices->type(), dict_target.size(), target_indices->mutable_view().head(), static_cast<cudf::bitmask_type*>(target_contents.null_mask->data()), dict_target.null_count()); cudf::type_dispatcher(new_indices.type(), in_place_copy_range_dispatch{source_indices, new_indices}, source_begin, source_end, target_begin, stream); auto null_count = new_indices.null_count(); auto indices_column = std::make_unique<cudf::column>(new_indices.type(), new_indices.size(), std::move(*(target_indices->release().data.release())), rmm::device_buffer{0, stream, mr}, 0); // take the keys from the matched column allocated using mr auto keys_column(std::move(target_contents.children.back())); // create column with keys_column and indices_column return make_dictionary_column(std::move(keys_column), std::move(indices_column), std::move(*(target_contents.null_mask.release())), null_count); } } // namespace namespace cudf { namespace detail { void copy_range_in_place(column_view const& source, mutable_column_view& target, size_type source_begin, size_type source_end, size_type target_begin, rmm::cuda_stream_view stream) { CUDF_EXPECTS(cudf::is_fixed_width(target.type()), "In-place copy_range does not support variable-sized types."); CUDF_EXPECTS((source_begin >= 0) && (source_end <= source.size()) && (source_begin <= source_end) && (target_begin >= 0) && (target_begin <= target.size() - (source_end - source_begin)), "Range is out of bounds."); CUDF_EXPECTS(target.type() == source.type(), "Data type mismatch."); CUDF_EXPECTS(target.nullable() || not source.has_nulls(), "target should be nullable if source has null values."); if (source_end != source_begin) { // otherwise no-op cudf::type_dispatcher<dispatch_storage_type>(target.type(), in_place_copy_range_dispatch{source, target}, source_begin, source_end, target_begin, stream); } } std::unique_ptr<column> copy_range(column_view const& source, column_view const& target, size_type source_begin, size_type source_end, size_type target_begin, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS((source_begin >= 0) && (source_end <= source.size()) && (source_begin <= source_end) && (target_begin >= 0) && (target_begin <= target.size() - (source_end - source_begin)), "Range is out of bounds."); CUDF_EXPECTS(target.type() == source.type(), "Data type mismatch."); return cudf::type_dispatcher<dispatch_storage_type>( target.type(), out_of_place_copy_range_dispatch{source, target}, source_begin, source_end, target_begin, stream, mr); } } // namespace detail void copy_range_in_place(column_view const& source, mutable_column_view& target, size_type source_begin, size_type source_end, size_type target_begin, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::copy_range_in_place( source, target, source_begin, source_end, target_begin, stream); } std::unique_ptr<column> copy_range(column_view const& source, column_view const& target, size_type source_begin, size_type source_end, size_type target_begin, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::copy_range(source, target, source_begin, source_end, target_begin, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/get_element.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/is_element_valid.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/lists/detail/copying.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/scalar/scalar_device_view.cuh> #include <cudf/scalar/scalar_factories.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { namespace { struct get_element_functor { template <typename T, std::enable_if_t<is_fixed_width<T>() && !is_fixed_point<T>()>* p = nullptr> std::unique_ptr<scalar> operator()(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto s = make_fixed_width_scalar(data_type(type_to_id<T>()), stream, mr); using ScalarType = cudf::scalar_type_t<T>; auto typed_s = static_cast<ScalarType*>(s.get()); auto device_s = get_scalar_device_view(*typed_s); auto device_col = column_device_view::create(input, stream); device_single_thread( [device_s, d_col = *device_col, index] __device__() mutable { device_s.set_value(d_col.element<T>(index)); device_s.set_valid(d_col.is_valid(index)); }, stream); return s; } template <typename T, std::enable_if_t<std::is_same_v<T, string_view>>* p = nullptr> std::unique_ptr<scalar> operator()(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto device_col = column_device_view::create(input, stream); rmm::device_scalar<string_view> temp_data(stream, mr); rmm::device_scalar<bool> temp_valid(stream, mr); device_single_thread( [buffer = temp_data.data(), validity = temp_valid.data(), d_col = *device_col, index] __device__() mutable { *buffer = d_col.element<string_view>(index); *validity = d_col.is_valid(index); }, stream); return std::make_unique<string_scalar>(temp_data, temp_valid.value(stream), stream, mr); } template <typename T, std::enable_if_t<std::is_same_v<T, dictionary32>>* p = nullptr> std::unique_ptr<scalar> operator()(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto dict_view = dictionary_column_view(input); auto indices_iter = detail::indexalator_factory::make_input_iterator(dict_view.indices()); numeric_scalar<size_type> key_index_scalar{index, true, stream}; auto d_key_index = get_scalar_device_view(key_index_scalar); auto d_col = column_device_view::create(input, stream); // retrieve the indices value at index device_single_thread( [d_key_index, d_col = *d_col, indices_iter, index] __device__() mutable { d_key_index.set_value(indices_iter[index]); d_key_index.set_valid(d_col.is_valid(index)); }, stream); if (!key_index_scalar.is_valid(stream)) { auto null_result = make_default_constructed_scalar(dict_view.keys().type(), stream, mr); null_result->set_valid_async(false, stream); return null_result; } // retrieve the key element using the key-index return type_dispatcher(dict_view.keys().type(), get_element_functor{}, dict_view.keys(), key_index_scalar.value(stream), stream, mr); } template <typename T, std::enable_if_t<std::is_same_v<T, list_view>>* p = nullptr> std::unique_ptr<scalar> operator()(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { bool valid = is_element_valid_sync(input, index, stream); auto const child_col_idx = lists_column_view::child_column_index; if (valid) { lists_column_view lcv(input); // Make a copy of the row auto row_slice_contents = lists::detail::copy_slice(lcv, index, index + 1, stream, mr)->release(); // Construct scalar with row data return std::make_unique<list_scalar>( std::move(*row_slice_contents.children[child_col_idx]), valid, stream, mr); } else { auto empty_row_contents = empty_like(input)->release(); return std::make_unique<list_scalar>( std::move(*empty_row_contents.children[child_col_idx]), valid, stream, mr); } } template <typename T, std::enable_if_t<cudf::is_fixed_point<T>()>* p = nullptr> std::unique_ptr<scalar> operator()(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using Type = typename T::rep; auto device_col = column_device_view::create(input, stream); rmm::device_scalar<Type> temp_data(stream, mr); rmm::device_scalar<bool> temp_valid(stream, mr); device_single_thread( [buffer = temp_data.data(), validity = temp_valid.data(), d_col = *device_col, index] __device__() mutable { *buffer = d_col.element<Type>(index); *validity = d_col.is_valid(index); }, stream); return std::make_unique<fixed_point_scalar<T>>(std::move(temp_data), numeric::scale_type{input.type().scale()}, temp_valid.value(stream), stream, mr); } template <typename T, std::enable_if_t<std::is_same_v<T, struct_view>>* p = nullptr> std::unique_ptr<scalar> operator()(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { bool valid = is_element_valid_sync(input, index, stream); auto row_contents = std::make_unique<column>(slice(input, index, index + 1, stream), stream, mr)->release(); auto scalar_contents = table(std::move(row_contents.children)); return std::make_unique<struct_scalar>(std::move(scalar_contents), valid, stream, mr); } }; } // namespace std::unique_ptr<scalar> get_element(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(index >= 0 and index < input.size(), "Index out of bounds"); return type_dispatcher(input.type(), get_element_functor{}, input, index, stream, mr); } } // namespace detail std::unique_ptr<scalar> get_element(column_view const& input, size_type index, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::get_element(input, index, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/split.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <rmm/cuda_stream_view.hpp> #include <algorithm> namespace cudf { namespace detail { namespace { template <typename T> std::vector<T> split(T const& input, size_type column_size, host_span<size_type const> splits, rmm::cuda_stream_view stream) { if (splits.empty() or column_size == 0) { return std::vector<T>{input}; } CUDF_EXPECTS(splits.back() <= column_size, "splits can't exceed size of input columns"); // If the size is not zero, the split will always start at `0` std::vector<size_type> indices{0}; std::for_each(splits.begin(), splits.end(), [&indices](auto split) { indices.push_back(split); // This for end indices.push_back(split); // This for the start }); indices.push_back(column_size); // This to include rest of the elements return detail::slice(input, indices, stream); } }; // anonymous namespace std::vector<cudf::column_view> split(cudf::column_view const& input, host_span<size_type const> splits, rmm::cuda_stream_view stream) { return split(input, input.size(), splits, stream); } std::vector<cudf::table_view> split(cudf::table_view const& input, host_span<size_type const> splits, rmm::cuda_stream_view stream) { if (input.num_columns() == 0) { return {}; } return split(input, input.column(0).size(), splits, stream); } std::vector<column_view> split(column_view const& input, std::initializer_list<size_type> splits, rmm::cuda_stream_view stream) { return detail::split(input, host_span<size_type const>(splits.begin(), splits.size()), stream); } std::vector<table_view> split(table_view const& input, std::initializer_list<size_type> splits, rmm::cuda_stream_view stream) { return detail::split(input, host_span<size_type const>(splits.begin(), splits.size()), stream); } } // namespace detail std::vector<cudf::column_view> split(cudf::column_view const& input, host_span<size_type const> splits, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::split(input, splits, stream); } std::vector<cudf::table_view> split(cudf::table_view const& input, host_span<size_type const> splits, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::split(input, splits, stream); } std::vector<column_view> split(column_view const& input, std::initializer_list<size_type> splits, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::split(input, splits, stream); } std::vector<table_view> split(table_view const& input, std::initializer_list<size_type> splits, rmm::cuda_stream_view stream) { CUDF_FUNC_RANGE(); return detail::split(input, splits, stream); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/copy.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy.hpp> #include <cudf/detail/copy_if_else.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/scatter.hpp> #include <cudf/dictionary/dictionary_column_view.hpp> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/detail/copy_if_else.cuh> #include <cudf/strings/string_view.cuh> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/copy.h> #include <thrust/distance.h> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { namespace { template <typename T, typename Enable = void> struct copy_if_else_functor_impl { template <typename... Args> std::unique_ptr<column> operator()(Args&&...) { CUDF_FAIL("Unsupported type for copy_if_else."); } }; /** * @brief Functor to fetch a device-view for the specified scalar/column_view. */ struct get_iterable_device_view { template <typename T, CUDF_ENABLE_IF(std::is_same_v<T, cudf::column_view>)> auto operator()(T const& input, rmm::cuda_stream_view stream) { return cudf::column_device_view::create(input, stream); } template <typename T, CUDF_ENABLE_IF(std::is_same_v<T, cudf::scalar>)> auto operator()(T const& input, rmm::cuda_stream_view) { return &input; } }; template <typename T> struct copy_if_else_functor_impl<T, std::enable_if_t<is_rep_layout_compatible<T>()>> { template <typename Left, typename Right, typename Filter> std::unique_ptr<column> operator()(Left const& lhs_h, Right const& rhs_h, size_type size, bool left_nullable, bool right_nullable, Filter filter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto p_lhs = get_iterable_device_view{}(lhs_h, stream); auto p_rhs = get_iterable_device_view{}(rhs_h, stream); auto const& lhs = *p_lhs; auto const& rhs = *p_rhs; auto lhs_iter = cudf::detail::make_optional_iterator<T>(lhs, nullate::DYNAMIC{left_nullable}); auto rhs_iter = cudf::detail::make_optional_iterator<T>(rhs, nullate::DYNAMIC{right_nullable}); return detail::copy_if_else(left_nullable || right_nullable, lhs_iter, lhs_iter + size, rhs_iter, filter, lhs.type(), stream, mr); } }; /** * @brief Specialization of copy_if_else_functor for string_views. */ template <> struct copy_if_else_functor_impl<string_view> { template <typename Left, typename Right, typename Filter> std::unique_ptr<column> operator()(Left const& lhs_h, Right const& rhs_h, size_type size, bool left_nullable, bool right_nullable, Filter filter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using T = string_view; auto p_lhs = get_iterable_device_view{}(lhs_h, stream); auto p_rhs = get_iterable_device_view{}(rhs_h, stream); auto const& lhs = *p_lhs; auto const& rhs = *p_rhs; auto lhs_iter = cudf::detail::make_optional_iterator<T>(lhs, nullate::DYNAMIC{left_nullable}); auto rhs_iter = cudf::detail::make_optional_iterator<T>(rhs, nullate::DYNAMIC{right_nullable}); return strings::detail::copy_if_else(lhs_iter, lhs_iter + size, rhs_iter, filter, stream, mr); } }; /** * @brief Adapter to negate predicates. */ template <typename Predicate> class logical_not { public: explicit logical_not(Predicate predicate) : _pred{predicate} {} bool __device__ operator()(size_type i) const { return not _pred(i); } private: Predicate _pred; }; /** * @brief Implementation of copy_if_else() with gather()/scatter(). * * Handles nested-typed column views. Uses the iterator `is_left` to decide what row to pick for * the output column. * * Uses `rhs` as the destination for scatter. First gathers indices of rows to copy from lhs. * * @tparam Filter Bool iterator producing `true` for indices of output rows to copy from `lhs` and * `false` for indices of output rows to copy from `rhs` * @param lhs Left-hand side input column view * @param rhs Right-hand side input column view * @param size The size of the output column, inputs rows are iterated from 0 to `size - 1` * @param is_left Predicate for picking rows from `lhs` on `true` or `rhs` on `false` * @param stream The stream on which to perform the allocation * @param mr The resource used to allocate the device storage * @return Column with rows populated according to the `is_left` predicate */ template <typename Filter> std::unique_ptr<column> scatter_gather_based_if_else(cudf::column_view const& lhs, cudf::column_view const& rhs, size_type size, Filter is_left, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto gather_map = rmm::device_uvector<size_type>{static_cast<std::size_t>(size), stream}; auto const gather_map_end = thrust::copy_if(rmm::exec_policy(stream), thrust::make_counting_iterator(size_type{0}), thrust::make_counting_iterator(size_type{size}), gather_map.begin(), is_left); gather_map.resize(thrust::distance(gather_map.begin(), gather_map_end), stream); auto const scatter_src_lhs = cudf::detail::gather(table_view{std::vector<column_view>{lhs}}, gather_map, out_of_bounds_policy::DONT_CHECK, negative_index_policy::NOT_ALLOWED, stream, rmm::mr::get_current_device_resource()); auto result = cudf::detail::scatter( table_view{std::vector<column_view>{scatter_src_lhs->get_column(0).view()}}, gather_map, table_view{std::vector<column_view>{rhs}}, stream, mr); return std::move(result->release()[0]); } template <typename Filter> std::unique_ptr<column> scatter_gather_based_if_else(cudf::scalar const& lhs, cudf::column_view const& rhs, size_type size, Filter is_left, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto scatter_map = rmm::device_uvector<size_type>{static_cast<std::size_t>(size), stream}; auto const scatter_map_end = thrust::copy_if(rmm::exec_policy(stream), thrust::make_counting_iterator(size_type{0}), thrust::make_counting_iterator(size_type{size}), scatter_map.begin(), is_left); auto const scatter_map_size = std::distance(scatter_map.begin(), scatter_map_end); auto scatter_source = std::vector<std::reference_wrapper<scalar const>>{std::ref(lhs)}; auto scatter_map_column_view = cudf::column_view{cudf::data_type{cudf::type_id::INT32}, static_cast<cudf::size_type>(scatter_map_size), scatter_map.begin(), nullptr, 0}; auto result = cudf::detail::scatter( scatter_source, scatter_map_column_view, table_view{std::vector<column_view>{rhs}}, stream, mr); return std::move(result->release()[0]); } template <typename Filter> std::unique_ptr<column> scatter_gather_based_if_else(cudf::column_view const& lhs, cudf::scalar const& rhs, size_type size, Filter is_left, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return scatter_gather_based_if_else(rhs, lhs, size, logical_not{is_left}, stream, mr); } template <typename Filter> std::unique_ptr<column> scatter_gather_based_if_else(cudf::scalar const& lhs, cudf::scalar const& rhs, size_type size, Filter is_left, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto rhs_col = cudf::make_column_from_scalar(rhs, size, stream, mr); return scatter_gather_based_if_else(lhs, rhs_col->view(), size, is_left, stream, mr); } template <> struct copy_if_else_functor_impl<struct_view> { template <typename Left, typename Right, typename Filter> std::unique_ptr<column> operator()(Left const& lhs, Right const& rhs, size_type size, bool, bool, Filter filter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return scatter_gather_based_if_else(lhs, rhs, size, filter, stream, mr); } }; template <> struct copy_if_else_functor_impl<list_view> { template <typename Left, typename Right, typename Filter> std::unique_ptr<column> operator()(Left const& lhs, Right const& rhs, size_type size, bool, bool, Filter filter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return scatter_gather_based_if_else(lhs, rhs, size, filter, stream, mr); } }; template <> struct copy_if_else_functor_impl<dictionary32> { template <typename Left, typename Right, typename Filter> std::unique_ptr<column> operator()(Left const& lhs, Right const& rhs, size_type size, bool, bool, Filter filter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return scatter_gather_based_if_else(lhs, rhs, size, filter, stream, mr); } }; /** * @brief Functor called by the `type_dispatcher` to invoke copy_if_else on combinations * of column_view and scalar */ struct copy_if_else_functor { template <typename T, typename Left, typename Right, typename Filter> std::unique_ptr<column> operator()(Left const& lhs, Right const& rhs, size_type size, bool left_nullable, bool right_nullable, Filter filter, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { copy_if_else_functor_impl<T> copier{}; return copier(lhs, rhs, size, left_nullable, right_nullable, filter, stream, mr); } }; // wrap up boolean_mask into a filter lambda template <typename Left, typename Right> std::unique_ptr<column> copy_if_else(Left const& lhs, Right const& rhs, bool left_nullable, bool right_nullable, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(boolean_mask.type() == data_type(type_id::BOOL8), "Boolean mask column must be of type type_id::BOOL8"); if (boolean_mask.is_empty()) { return cudf::empty_like(lhs); } auto bool_mask_device_p = column_device_view::create(boolean_mask, stream); column_device_view bool_mask_device = *bool_mask_device_p; auto const has_nulls = boolean_mask.has_nulls(); auto filter = [bool_mask_device, has_nulls] __device__(cudf::size_type i) { return (!has_nulls || bool_mask_device.is_valid_nocheck(i)) and bool_mask_device.element<bool>(i); }; // always dispatch on dictionary-type if either input is a dictionary auto dispatch_type = cudf::is_dictionary(rhs.type()) ? rhs.type() : lhs.type(); return cudf::type_dispatcher<dispatch_storage_type>(dispatch_type, copy_if_else_functor{}, lhs, rhs, boolean_mask.size(), left_nullable, right_nullable, filter, stream, mr); } }; // namespace std::unique_ptr<column> copy_if_else(column_view const& lhs, column_view const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(boolean_mask.size() == lhs.size(), "Boolean mask column must be the same size as lhs and rhs columns"); CUDF_EXPECTS(lhs.size() == rhs.size(), "Both columns must be of the size"); CUDF_EXPECTS(lhs.type() == rhs.type(), "Both inputs must be of the same type"); return copy_if_else(lhs, rhs, lhs.has_nulls(), rhs.has_nulls(), boolean_mask, stream, mr); } std::unique_ptr<column> copy_if_else(scalar const& lhs, column_view const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(boolean_mask.size() == rhs.size(), "Boolean mask column must be the same size as rhs column"); auto rhs_type = cudf::is_dictionary(rhs.type()) ? cudf::dictionary_column_view(rhs).keys_type() : rhs.type(); CUDF_EXPECTS(lhs.type() == rhs_type, "Both inputs must be of the same type"); return copy_if_else(lhs, rhs, !lhs.is_valid(stream), rhs.has_nulls(), boolean_mask, stream, mr); } std::unique_ptr<column> copy_if_else(column_view const& lhs, scalar const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(boolean_mask.size() == lhs.size(), "Boolean mask column must be the same size as lhs column"); auto lhs_type = cudf::is_dictionary(lhs.type()) ? cudf::dictionary_column_view(lhs).keys_type() : lhs.type(); CUDF_EXPECTS(lhs_type == rhs.type(), "Both inputs must be of the same type"); return copy_if_else(lhs, rhs, lhs.has_nulls(), !rhs.is_valid(stream), boolean_mask, stream, mr); } std::unique_ptr<column> copy_if_else(scalar const& lhs, scalar const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(lhs.type() == rhs.type(), "Both inputs must be of the same type"); return copy_if_else( lhs, rhs, !lhs.is_valid(stream), !rhs.is_valid(stream), boolean_mask, stream, mr); } }; // namespace detail std::unique_ptr<column> copy_if_else(column_view const& lhs, column_view const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::copy_if_else(lhs, rhs, boolean_mask, stream, mr); } std::unique_ptr<column> copy_if_else(scalar const& lhs, column_view const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::copy_if_else(lhs, rhs, boolean_mask, stream, mr); } std::unique_ptr<column> copy_if_else(column_view const& lhs, scalar const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::copy_if_else(lhs, rhs, boolean_mask, stream, mr); } std::unique_ptr<column> copy_if_else(scalar const& lhs, scalar const& rhs, column_view const& boolean_mask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::copy_if_else(lhs, rhs, boolean_mask, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/purge_nonempty_nulls.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/utilities/default_stream.hpp> #include <thrust/count.h> #include <thrust/iterator/counting_iterator.h> namespace cudf { namespace detail { using cudf::type_id; namespace { /// Check if nonempty-null checks can be skipped for a given type. bool type_may_have_nonempty_nulls(cudf::type_id const& type) { return type == type_id::STRING || type == type_id::LIST || type == type_id::STRUCT; } /// Check if the (STRING/LIST) column has any null rows with non-zero length. bool has_nonempty_null_rows(cudf::column_view const& input, rmm::cuda_stream_view stream) { if (not input.has_nulls()) { return false; } // No nulls => no dirty rows. if ((input.size() == input.null_count()) && (input.num_children() == 0)) { return false; } // Cross-reference nullmask and offsets. auto const type = input.type().id(); auto const offsets = (type == type_id::STRING) ? (strings_column_view{input}).offsets_begin() : (lists_column_view{input}).offsets_begin(); auto const d_input = cudf::column_device_view::create(input, stream); auto const is_dirty_row = [d_input = *d_input, offsets] __device__(size_type const& row_idx) { return d_input.is_null_nocheck(row_idx) && (offsets[row_idx] != offsets[row_idx + 1]); }; auto const row_begin = thrust::counting_iterator<cudf::size_type>(0); auto const row_end = row_begin + input.size(); return thrust::count_if(rmm::exec_policy(stream), row_begin, row_end, is_dirty_row) > 0; } } // namespace /** * @copydoc cudf::detail::has_nonempty_nulls */ bool has_nonempty_nulls(cudf::column_view const& input, rmm::cuda_stream_view stream) { auto const type = input.type().id(); if (not type_may_have_nonempty_nulls(type)) { return false; } // For types with variable-length rows, check if any rows are "dirty". // A dirty row is a null row with non-zero length. if ((type == type_id::STRING || type == type_id::LIST) && has_nonempty_null_rows(input, stream)) { return true; } // For complex types, check if child columns need purging. if ((type == type_id::STRUCT || type == type_id::LIST) && std::any_of(input.child_begin(), input.child_end(), [stream](auto const& child) { return cudf::detail::has_nonempty_nulls(child, stream); })) { return true; } return false; } std::unique_ptr<column> purge_nonempty_nulls(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // If not compound types (LIST/STRING/STRUCT/DICTIONARY) then just copy the input into output. if (!cudf::is_compound(input.type())) { return std::make_unique<column>(input, stream, mr); } // Implement via identity gather. auto gathered_table = cudf::detail::gather(table_view{{input}}, thrust::make_counting_iterator(0), thrust::make_counting_iterator(input.size()), out_of_bounds_policy::DONT_CHECK, stream, mr); return std::move(gathered_table->release().front()); } } // namespace detail /** * @copydoc cudf::may_have_nonempty_nulls */ bool may_have_nonempty_nulls(column_view const& input) { auto const type = input.type().id(); if (not detail::type_may_have_nonempty_nulls(type)) { return false; } if ((type == type_id::STRING || type == type_id::LIST) && input.has_nulls()) { return true; } if ((type == type_id::STRUCT || type == type_id::LIST) && std::any_of(input.child_begin(), input.child_end(), may_have_nonempty_nulls)) { return true; } return false; } /** * @copydoc cudf::has_nonempty_nulls */ bool has_nonempty_nulls(column_view const& input, rmm::cuda_stream_view stream) { return detail::has_nonempty_nulls(input, stream); } /** * @copydoc cudf::purge_nonempty_nulls(column_view const&, rmm::mr::device_memory_resource*) */ std::unique_ptr<cudf::column> purge_nonempty_nulls(column_view const& input, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return detail::purge_nonempty_nulls(input, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/contiguous_split.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/column/column_view.hpp> #include <cudf/contiguous_split.hpp> #include <cudf/detail/contiguous_split.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/structs/structs_column_view.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/bit.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/binary_search.h> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/discard_iterator.h> #include <thrust/iterator/iterator_categories.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/pair.h> #include <thrust/reduce.h> #include <thrust/scan.h> #include <thrust/transform.h> #include <thrust/tuple.h> #include <cstddef> #include <numeric> namespace cudf { namespace { // Align all column size allocations to this boundary so that all output column buffers // start at that alignment. static constexpr std::size_t split_align = 64; // The size that contiguous split uses internally as the GPU unit of work. // The number of `desired_batch_size` batches equals the number of CUDA blocks // that will be used for the main kernel launch (`copy_partitions`). static constexpr std::size_t desired_batch_size = 1 * 1024 * 1024; /** * @brief Struct which contains information on a source buffer. * * The definition of "buffer" used throughout this module is a component piece of a * cudf column. So for example, a fixed-width column with validity would have 2 associated * buffers : the data itself and the validity buffer. contiguous_split operates by breaking * each column up into it's individual components and copying each one as a separate kernel * block. */ struct src_buf_info { src_buf_info(cudf::type_id _type, int const* _offsets, int _offset_stack_pos, int _parent_offsets_index, bool _is_validity, size_type _column_offset) : type(_type), offsets(_offsets), offset_stack_pos(_offset_stack_pos), parent_offsets_index(_parent_offsets_index), is_validity(_is_validity), column_offset(_column_offset) { } cudf::type_id type; int const* offsets; // a pointer to device memory offsets if I am an offset buffer int offset_stack_pos; // position in the offset stack buffer int parent_offsets_index; // immediate parent that has offsets, or -1 if none bool is_validity; // if I am a validity buffer size_type column_offset; // offset in the case of a sliced column }; /** * @brief Struct which contains information on a destination buffer. * * Similar to src_buf_info, dst_buf_info contains information on a destination buffer we * are going to copy to. If we have N input buffers (which come from X columns), and * M partitions, then we have N*M destination buffers. */ struct dst_buf_info { // constant across all copy commands for this buffer std::size_t buf_size; // total size of buffer, including padding int num_elements; // # of elements to be copied int element_size; // size of each element in bytes int num_rows; // # of rows to be copied(which may be different from num_elements in the case of // validity or offset buffers) int src_element_index; // element index to start reading from my associated source buffer std::size_t dst_offset; // my offset into the per-partition allocation int value_shift; // amount to shift values down by (for offset buffers) int bit_shift; // # of bits to shift right by (for validity buffers) size_type valid_count; // validity count for this block of work int src_buf_index; // source buffer index int dst_buf_index; // destination buffer index }; /** * @brief Copy a single buffer of column data, shifting values (for offset columns), * and validity (for validity buffers) as necessary. * * Copies a single partition of a source column buffer to a destination buffer. Shifts * element values by value_shift in the case of a buffer of offsets (value_shift will * only ever be > 0 in that case). Shifts elements bitwise by bit_shift in the case of * a validity buffer (bit_shift will only ever be > 0 in that case). This function assumes * value_shift and bit_shift will never be > 0 at the same time. * * This function expects: * - src may be a misaligned address * - dst must be an aligned address * * This function always does the ALU work related to value_shift and bit_shift because it is * entirely memory-bandwidth bound. * * @param dst Destination buffer * @param src Source buffer * @param t Thread index * @param num_elements Number of elements to copy * @param element_size Size of each element in bytes * @param src_element_index Element index to start copying at * @param stride Size of the kernel block * @param value_shift Shift incoming 4-byte offset values down by this amount * @param bit_shift Shift incoming data right by this many bits * @param num_rows Number of rows being copied * @param valid_count Optional pointer to a value to store count of set bits */ template <int block_size> __device__ void copy_buffer(uint8_t* __restrict__ dst, uint8_t const* __restrict__ src, int t, std::size_t num_elements, std::size_t element_size, std::size_t src_element_index, uint32_t stride, int value_shift, int bit_shift, std::size_t num_rows, size_type* valid_count) { src += (src_element_index * element_size); size_type thread_valid_count = 0; // handle misalignment. read 16 bytes in 4 byte reads. write in a single 16 byte store. std::size_t const num_bytes = num_elements * element_size; // how many bytes we're misaligned from 4-byte alignment uint32_t const ofs = reinterpret_cast<uintptr_t>(src) % 4; std::size_t pos = t * 16; stride *= 16; while (pos + 20 <= num_bytes) { // read from the nearest aligned address. uint32_t const* in32 = reinterpret_cast<uint32_t const*>((src + pos) - ofs); uint4 v = uint4{in32[0], in32[1], in32[2], in32[3]}; if (ofs || bit_shift) { v.x = __funnelshift_r(v.x, v.y, ofs * 8 + bit_shift); v.y = __funnelshift_r(v.y, v.z, ofs * 8 + bit_shift); v.z = __funnelshift_r(v.z, v.w, ofs * 8 + bit_shift); v.w = __funnelshift_r(v.w, in32[4], ofs * 8 + bit_shift); } v.x -= value_shift; v.y -= value_shift; v.z -= value_shift; v.w -= value_shift; reinterpret_cast<uint4*>(dst)[pos / 16] = v; if (valid_count) { thread_valid_count += (__popc(v.x) + __popc(v.y) + __popc(v.z) + __popc(v.w)); } pos += stride; } // copy trailing bytes if (t == 0) { std::size_t remainder; if (num_bytes < 16) { remainder = num_bytes; } else { std::size_t const last_bracket = (num_bytes / 16) * 16; remainder = num_bytes - last_bracket; if (remainder < 4) { // we had less than 20 bytes for the last possible 16 byte copy, so copy 16 + the extra remainder += 16; } } // if we're performing a value shift (offsets), or a bit shift (validity) the # of bytes and // alignment must be a multiple of 4. value shifting and bit shifting are mutually exclusive // and will never both be true at the same time. if (value_shift || bit_shift) { std::size_t idx = (num_bytes - remainder) / 4; uint32_t v = remainder > 0 ? (reinterpret_cast<uint32_t const*>(src)[idx] - value_shift) : 0; constexpr size_type rows_per_element = 32; auto const have_trailing_bits = ((num_elements * rows_per_element) - num_rows) < bit_shift; while (remainder) { // if we're at the very last word of a validity copy, we do not always need to read the next // word to get the final trailing bits. auto const read_trailing_bits = bit_shift > 0 && remainder == 4 && have_trailing_bits; uint32_t const next = (read_trailing_bits || remainder > 4) ? (reinterpret_cast<uint32_t const*>(src)[idx + 1] - value_shift) : 0; uint32_t const val = (v >> bit_shift) | (next << (32 - bit_shift)); if (valid_count) { thread_valid_count += __popc(val); } reinterpret_cast<uint32_t*>(dst)[idx] = val; v = next; idx++; remainder -= 4; } } else { while (remainder) { std::size_t const idx = num_bytes - remainder--; uint32_t const val = reinterpret_cast<uint8_t const*>(src)[idx]; if (valid_count) { thread_valid_count += __popc(val); } reinterpret_cast<uint8_t*>(dst)[idx] = val; } } } if (valid_count) { if (num_bytes == 0) { if (!t) { *valid_count = 0; } } else { using BlockReduce = cub::BlockReduce<size_type, block_size>; __shared__ typename BlockReduce::TempStorage temp_storage; size_type block_valid_count{BlockReduce(temp_storage).Sum(thread_valid_count)}; if (!t) { // we may have copied more bits than there are actual rows in the output. // so we need to subtract off the count of any bits that shouldn't have been // considered during the copy step. std::size_t const max_row = (num_bytes * 8); std::size_t const slack_bits = max_row > num_rows ? max_row - num_rows : 0; auto const slack_mask = set_most_significant_bits(slack_bits); if (slack_mask > 0) { uint32_t const last_word = reinterpret_cast<uint32_t*>(dst + (num_bytes - 4))[0]; block_valid_count -= __popc(last_word & slack_mask); } *valid_count = block_valid_count; } } } } /** * @brief Kernel which copies data from multiple source buffers to multiple * destination buffers. * * When doing a contiguous_split on X columns comprising N total internal buffers * with M splits, we end up having to copy N*M source/destination buffer pairs. * These logical copies are further subdivided to distribute the amount of work * to be done as evenly as possible across the multiprocessors on the device. * This kernel is arranged such that each block copies 1 source/destination pair. * * @param index_to_buffer A function that given a `buf_index` returns the destination buffer * @param src_bufs Input source buffers * @param buf_info Information on the range of values to be copied for each destination buffer */ template <int block_size, typename IndexToDstBuf> __global__ void copy_partitions(IndexToDstBuf index_to_buffer, uint8_t const** src_bufs, dst_buf_info* buf_info) { auto const buf_index = blockIdx.x; auto const src_buf_index = buf_info[buf_index].src_buf_index; // copy, shifting offsets and validity bits as needed copy_buffer<block_size>( index_to_buffer(buf_index) + buf_info[buf_index].dst_offset, src_bufs[src_buf_index], threadIdx.x, buf_info[buf_index].num_elements, buf_info[buf_index].element_size, buf_info[buf_index].src_element_index, blockDim.x, buf_info[buf_index].value_shift, buf_info[buf_index].bit_shift, buf_info[buf_index].num_rows, buf_info[buf_index].valid_count > 0 ? &buf_info[buf_index].valid_count : nullptr); } // The block of functions below are all related: // // compute_offset_stack_size() // setup_src_buf_data() // count_src_bufs() // setup_source_buf_info() // build_output_columns() // // Critically, they all traverse the hierarchy of source columns and their children // in a specific order to guarantee they produce various outputs in a consistent // way. For example, setup_src_buf_info() produces a series of information // structs that must appear in the same order that setup_src_buf_data() produces // buffers. // // So please be careful if you change the way in which these functions and // functors traverse the hierarchy. /** * @brief Returns whether or not the specified type is a column that contains offsets. */ bool is_offset_type(type_id id) { return (id == type_id::STRING or id == type_id::LIST); } /** * @brief Compute total device memory stack size needed to process nested * offsets per-output buffer. * * When determining the range of rows to be copied for each output buffer * we have to recursively apply the stack of offsets from our parent columns * (lists or strings). We want to do this computation on the gpu because offsets * are stored in device memory. However we don't want to do recursion on the gpu, so * each destination buffer gets a "stack" of space to work with equal in size to * it's offset nesting depth. This function computes the total size of all of those * stacks. * * This function is called recursively in the case of nested types. * * @param begin Beginning of input columns * @param end End of input columns * @param offset_depth Current offset nesting depth * * @returns Total offset stack size needed for this range of columns */ template <typename InputIter> std::size_t compute_offset_stack_size(InputIter begin, InputIter end, int offset_depth = 0) { return std::accumulate(begin, end, 0, [offset_depth](auto stack_size, column_view const& col) { auto const num_buffers = 1 + (col.nullable() ? 1 : 0); return stack_size + (offset_depth * num_buffers) + compute_offset_stack_size( col.child_begin(), col.child_end(), offset_depth + is_offset_type(col.type().id())); }); } /** * @brief Retrieve all buffers for a range of source columns. * * Retrieve the individual buffers that make up a range of input columns. * * This function is called recursively in the case of nested types. * * @param begin Beginning of input columns * @param end End of input columns * @param out_buf Iterator into output buffer infos * * @returns next output buffer iterator */ template <typename InputIter, typename OutputIter> OutputIter setup_src_buf_data(InputIter begin, InputIter end, OutputIter out_buf) { std::for_each(begin, end, [&out_buf](column_view const& col) { if (col.nullable()) { *out_buf = reinterpret_cast<uint8_t const*>(col.null_mask()); out_buf++; } // NOTE: we're always returning the base pointer here. column-level offset is accounted // for later. Also, for some column types (string, list, struct) this pointer will be null // because there is no associated data with the root column. *out_buf = col.head<uint8_t>(); out_buf++; out_buf = setup_src_buf_data(col.child_begin(), col.child_end(), out_buf); }); return out_buf; } /** * @brief Count the total number of source buffers we will be copying * from. * * This count includes buffers for all input columns. For example a * fixed-width column with validity would be 2 buffers (data, validity). * A string column with validity would be 3 buffers (chars, offsets, validity). * * This function is called recursively in the case of nested types. * * @param begin Beginning of input columns * @param end End of input columns * * @returns total number of source buffers for this range of columns */ template <typename InputIter> size_type count_src_bufs(InputIter begin, InputIter end) { auto buf_iter = thrust::make_transform_iterator(begin, [](column_view const& col) { auto const children_counts = count_src_bufs(col.child_begin(), col.child_end()); return 1 + (col.nullable() ? 1 : 0) + children_counts; }); return std::accumulate(buf_iter, buf_iter + std::distance(begin, end), 0); } /** * @brief Computes source buffer information for the copy kernel. * * For each input column to be split we need to know several pieces of information * in the copy kernel. This function traverses the input columns and prepares this * information for the gpu. * * This function is called recursively in the case of nested types. * * @param begin Beginning of input columns * @param end End of input columns * @param head Beginning of source buffer info array * @param current Current source buffer info to be written to * @param offset_stack_pos Integer representing our current offset nesting depth * (how many list or string levels deep we are) * @param parent_offset_index Index into src_buf_info output array indicating our nearest * containing list parent. -1 if we have no list parent * @param offset_depth Current offset nesting depth (how many list levels deep we are) * * @returns next src_buf_output after processing this range of input columns */ // setup source buf info template <typename InputIter> std::pair<src_buf_info*, size_type> setup_source_buf_info(InputIter begin, InputIter end, src_buf_info* head, src_buf_info* current, rmm::cuda_stream_view stream, int offset_stack_pos = 0, int parent_offset_index = -1, int offset_depth = 0); /** * @brief Functor that builds source buffer information based on input columns. * * Called by setup_source_buf_info to build information for a single source column. This function * will recursively call setup_source_buf_info in the case of nested types. */ struct buf_info_functor { src_buf_info* head; template <typename T> std::pair<src_buf_info*, size_type> operator()(column_view const& col, src_buf_info* current, int offset_stack_pos, int parent_offset_index, int offset_depth, rmm::cuda_stream_view) { if (col.nullable()) { std::tie(current, offset_stack_pos) = add_null_buffer(col, current, offset_stack_pos, parent_offset_index, offset_depth); } // info for the data buffer *current = src_buf_info( col.type().id(), nullptr, offset_stack_pos, parent_offset_index, false, col.offset()); return {current + 1, offset_stack_pos + offset_depth}; } template <typename T, typename... Args> std::enable_if_t<std::is_same_v<T, cudf::dictionary32>, std::pair<src_buf_info*, size_type>> operator()(Args&&...) { CUDF_FAIL("Unsupported type"); } private: std::pair<src_buf_info*, size_type> add_null_buffer(column_view const& col, src_buf_info* current, int offset_stack_pos, int parent_offset_index, int offset_depth) { // info for the validity buffer *current = src_buf_info( type_id::INT32, nullptr, offset_stack_pos, parent_offset_index, true, col.offset()); return {current + 1, offset_stack_pos + offset_depth}; } }; template <> std::pair<src_buf_info*, size_type> buf_info_functor::operator()<cudf::string_view>( column_view const& col, src_buf_info* current, int offset_stack_pos, int parent_offset_index, int offset_depth, rmm::cuda_stream_view) { if (col.nullable()) { std::tie(current, offset_stack_pos) = add_null_buffer(col, current, offset_stack_pos, parent_offset_index, offset_depth); } // string columns hold no actual data, but we need to keep a record // of it so we know it's size when we are constructing the output columns *current = src_buf_info( type_id::STRING, nullptr, offset_stack_pos, parent_offset_index, false, col.offset()); current++; offset_stack_pos += offset_depth; // string columns don't necessarily have children if (col.num_children() > 0) { CUDF_EXPECTS(col.num_children() == 2, "Encountered malformed string column"); strings_column_view scv(col); // info for the offsets buffer auto offset_col = current; CUDF_EXPECTS(not scv.offsets().nullable(), "Encountered nullable string offsets column"); *current = src_buf_info(type_id::INT32, // note: offsets can be null in the case where the string column // has been created with empty_like(). scv.offsets().begin<cudf::id_to_type<type_id::INT32>>(), offset_stack_pos, parent_offset_index, false, col.offset()); current++; offset_stack_pos += offset_depth; // since we are crossing an offset boundary, calculate our new depth and parent offset index. offset_depth++; parent_offset_index = offset_col - head; // prevent appending buf_info for non-existent chars buffer CUDF_EXPECTS(not scv.chars().nullable(), "Encountered nullable string chars column"); // info for the chars buffer *current = src_buf_info( type_id::INT8, nullptr, offset_stack_pos, parent_offset_index, false, col.offset()); current++; offset_stack_pos += offset_depth; } return {current, offset_stack_pos}; } template <> std::pair<src_buf_info*, size_type> buf_info_functor::operator()<cudf::list_view>( column_view const& col, src_buf_info* current, int offset_stack_pos, int parent_offset_index, int offset_depth, rmm::cuda_stream_view stream) { lists_column_view lcv(col); if (col.nullable()) { std::tie(current, offset_stack_pos) = add_null_buffer(col, current, offset_stack_pos, parent_offset_index, offset_depth); } // list columns hold no actual data, but we need to keep a record // of it so we know it's size when we are constructing the output columns *current = src_buf_info( type_id::LIST, nullptr, offset_stack_pos, parent_offset_index, false, col.offset()); current++; offset_stack_pos += offset_depth; CUDF_EXPECTS(col.num_children() == 2, "Encountered malformed list column"); // info for the offsets buffer auto offset_col = current; *current = src_buf_info(type_id::INT32, // note: offsets can be null in the case where the lists column // has been created with empty_like(). lcv.offsets().begin<cudf::id_to_type<type_id::INT32>>(), offset_stack_pos, parent_offset_index, false, col.offset()); current++; offset_stack_pos += offset_depth; // since we are crossing an offset boundary, calculate our new depth and parent offset index. offset_depth++; parent_offset_index = offset_col - head; return setup_source_buf_info(col.child_begin() + 1, col.child_end(), head, current, stream, offset_stack_pos, parent_offset_index, offset_depth); } template <> std::pair<src_buf_info*, size_type> buf_info_functor::operator()<cudf::struct_view>( column_view const& col, src_buf_info* current, int offset_stack_pos, int parent_offset_index, int offset_depth, rmm::cuda_stream_view stream) { if (col.nullable()) { std::tie(current, offset_stack_pos) = add_null_buffer(col, current, offset_stack_pos, parent_offset_index, offset_depth); } // struct columns hold no actual data, but we need to keep a record // of it so we know it's size when we are constructing the output columns *current = src_buf_info( type_id::STRUCT, nullptr, offset_stack_pos, parent_offset_index, false, col.offset()); current++; offset_stack_pos += offset_depth; // recurse on children cudf::structs_column_view scv(col); std::vector<column_view> sliced_children; sliced_children.reserve(scv.num_children()); std::transform( thrust::make_counting_iterator(0), thrust::make_counting_iterator(scv.num_children()), std::back_inserter(sliced_children), [&scv, &stream](size_type child_index) { return scv.get_sliced_child(child_index, stream); }); return setup_source_buf_info(sliced_children.begin(), sliced_children.end(), head, current, stream, offset_stack_pos, parent_offset_index, offset_depth); } template <typename InputIter> std::pair<src_buf_info*, size_type> setup_source_buf_info(InputIter begin, InputIter end, src_buf_info* head, src_buf_info* current, rmm::cuda_stream_view stream, int offset_stack_pos, int parent_offset_index, int offset_depth) { std::for_each(begin, end, [&](column_view const& col) { std::tie(current, offset_stack_pos) = cudf::type_dispatcher(col.type(), buf_info_functor{head}, col, current, offset_stack_pos, parent_offset_index, offset_depth, stream); }); return {current, offset_stack_pos}; } /** * @brief Given a column, processed split buffers, and a metadata builder, populate * the metadata for this column in the builder, and return a tuple of: * column size, data offset, bitmask offset and null count. * * @param src column_view to create metadata from * @param current_info dst_buf_info pointer reference, pointing to this column's buffer info * This is a pointer reference because it is updated by this function as the * columns's validity and data buffers are visited * @param mb A metadata_builder instance to update with the column's packed metadata * @param use_src_null_count True for the chunked_pack case where current_info has invalid null * count information. The null count should be taken * from `src` because this case is restricted to a single partition * (no splits) * @returns a std::tuple containing: * column size, data offset, bitmask offset, and null count */ template <typename BufInfo> std::tuple<size_type, int64_t, int64_t, size_type> build_output_column_metadata( column_view const& src, BufInfo& current_info, detail::metadata_builder& mb, bool use_src_null_count) { auto [bitmask_offset, null_count] = [&]() { if (src.nullable()) { // offsets in the existing serialized_column metadata are int64_t // that's the reason for the casting in this code. int64_t const bitmask_offset = current_info->num_elements == 0 ? -1 // this means that the bitmask buffer pointer should be nullptr : static_cast<int64_t>(current_info->dst_offset); // use_src_null_count is used for the chunked contig split case, where we have // no splits: the null_count is just the source column's null_count size_type const null_count = use_src_null_count ? src.null_count() : (current_info->num_elements == 0 ? 0 : (current_info->num_rows - current_info->valid_count)); ++current_info; return std::pair(bitmask_offset, null_count); } return std::pair(static_cast<int64_t>(-1), 0); }(); // size/data pointer for the column auto const col_size = static_cast<size_type>(current_info->num_elements); int64_t const data_offset = src.num_children() > 0 || col_size == 0 || src.head() == nullptr ? -1 : static_cast<int64_t>(current_info->dst_offset); mb.add_column_info_to_meta( src.type(), col_size, null_count, data_offset, bitmask_offset, src.num_children()); ++current_info; return {col_size, data_offset, bitmask_offset, null_count}; } /** * @brief Given a set of input columns and processed split buffers, produce * output columns. * * After performing the split we are left with 1 large buffer per incoming split * partition. We need to traverse this buffer and distribute the individual * subpieces that represent individual columns and children to produce the final * output columns. * * This function is called recursively in the case of nested types. * * @param begin Beginning of input columns * @param end End of input columns * @param info_begin Iterator of dst_buf_info structs containing information about each * copied buffer * @param out_begin Output iterator of column views * @param base_ptr Pointer to the base address of copied data for the working partition * * @returns new dst_buf_info iterator after processing this range of input columns */ template <typename InputIter, typename BufInfo, typename Output> BufInfo build_output_columns(InputIter begin, InputIter end, BufInfo info_begin, Output out_begin, uint8_t const* const base_ptr, detail::metadata_builder& mb) { auto current_info = info_begin; std::transform(begin, end, out_begin, [&current_info, base_ptr, &mb](column_view const& src) { auto [col_size, data_offset, bitmask_offset, null_count] = build_output_column_metadata<BufInfo>(src, current_info, mb, false); auto const bitmask_ptr = base_ptr != nullptr && bitmask_offset != -1 ? reinterpret_cast<bitmask_type const*>(base_ptr + static_cast<uint64_t>(bitmask_offset)) : nullptr; // size/data pointer for the column uint8_t const* data_ptr = base_ptr != nullptr && data_offset != -1 ? base_ptr + static_cast<uint64_t>(data_offset) : nullptr; // children auto children = std::vector<column_view>{}; children.reserve(src.num_children()); current_info = build_output_columns( src.child_begin(), src.child_end(), current_info, std::back_inserter(children), base_ptr, mb); return column_view{ src.type(), col_size, data_ptr, bitmask_ptr, null_count, 0, std::move(children)}; }); return current_info; } /** * @brief Given a set of input columns, processed split buffers, and a metadata_builder, * append column metadata using the builder. * * After performing the split we are left with 1 large buffer per incoming split * partition. We need to traverse this buffer and distribute the individual * subpieces that represent individual columns and children to produce the final * output columns. * * This function is called recursively in the case of nested types. * * @param begin Beginning of input columns * @param end End of input columns * @param info_begin Iterator of dst_buf_info structs containing information about each * copied buffer * @param mb packed column metadata builder * * @returns new dst_buf_info iterator after processing this range of input columns */ template <typename InputIter, typename BufInfo> BufInfo populate_metadata(InputIter begin, InputIter end, BufInfo info_begin, detail::metadata_builder& mb) { auto current_info = info_begin; std::for_each(begin, end, [&current_info, &mb](column_view const& src) { build_output_column_metadata<BufInfo>(src, current_info, mb, true); // children current_info = populate_metadata(src.child_begin(), src.child_end(), current_info, mb); }); return current_info; } /** * @brief Functor that retrieves the size of a destination buffer */ struct buf_size_functor { dst_buf_info const* ci; std::size_t operator() __device__(int index) { return ci[index].buf_size; } }; /** * @brief Functor that retrieves the split "key" for a given output * buffer index. * * The key is simply the partition index. */ struct split_key_functor { int const num_src_bufs; int operator() __device__(int buf_index) const { return buf_index / num_src_bufs; } }; /** * @brief Output iterator for writing values to the dst_offset field of the * dst_buf_info struct */ struct dst_offset_output_iterator { dst_buf_info* c; using value_type = std::size_t; using difference_type = std::size_t; using pointer = std::size_t*; using reference = std::size_t&; using iterator_category = thrust::output_device_iterator_tag; dst_offset_output_iterator operator+ __host__ __device__(int i) { return {c + i}; } void operator++ __host__ __device__() { c++; } reference operator[] __device__(int i) { return dereference(c + i); } reference operator* __device__() { return dereference(c); } private: reference __device__ dereference(dst_buf_info* c) { return c->dst_offset; } }; /** * @brief Output iterator for writing values to the valid_count field of the * dst_buf_info struct */ struct dst_valid_count_output_iterator { dst_buf_info* c; using value_type = size_type; using difference_type = size_type; using pointer = size_type*; using reference = size_type&; using iterator_category = thrust::output_device_iterator_tag; dst_valid_count_output_iterator operator+ __host__ __device__(int i) { return dst_valid_count_output_iterator{c + i}; } void operator++ __host__ __device__() { c++; } reference operator[] __device__(int i) { return dereference(c + i); } reference operator* __device__() { return dereference(c); } private: reference __device__ dereference(dst_buf_info* c) { return c->valid_count; } }; /** * @brief Functor for computing size of data elements for a given cudf type. * * Note: columns types which themselves inherently have no data (strings, lists, * structs) return 0. */ struct size_of_helper { template <typename T> constexpr std::enable_if_t<not is_fixed_width<T>(), int> __device__ operator()() const { return 0; } template <typename T> constexpr std::enable_if_t<is_fixed_width<T>(), int> __device__ operator()() const noexcept { return sizeof(cudf::device_storage_type_t<T>); } }; /** * @brief Functor for returning the number of batches an input buffer is being * subdivided into during the repartitioning step. * * Note: columns types which themselves inherently have no data (strings, lists, * structs) return 0. */ struct num_batches_func { thrust::pair<std::size_t, std::size_t> const* const batches; __device__ std::size_t operator()(size_type i) const { return thrust::get<0>(batches[i]); } }; /** * @brief Get the size in bytes of a batch described by `dst_buf_info`. */ struct batch_byte_size_function { size_type const num_batches; dst_buf_info const* const infos; __device__ std::size_t operator()(size_type i) const { if (i == num_batches) { return 0; } auto const& buf = *(infos + i); std::size_t const bytes = static_cast<std::size_t>(buf.num_elements) * static_cast<std::size_t>(buf.element_size); return util::round_up_unsafe(bytes, split_align); } }; /** * @brief Get the input buffer index given the output buffer index. */ struct out_to_in_index_function { size_type const* const batch_offsets; int const num_bufs; __device__ int operator()(size_type i) const { return static_cast<size_type>( thrust::upper_bound(thrust::seq, batch_offsets, batch_offsets + num_bufs + 1, i) - batch_offsets) - 1; } }; // packed block of memory 1: split indices and src_buf_info structs struct packed_split_indices_and_src_buf_info { packed_split_indices_and_src_buf_info(cudf::table_view const& input, std::vector<size_type> const& splits, std::size_t num_partitions, cudf::size_type num_src_bufs, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) : indices_size( cudf::util::round_up_safe((num_partitions + 1) * sizeof(size_type), split_align)), src_buf_info_size( cudf::util::round_up_safe(num_src_bufs * sizeof(src_buf_info), split_align)), // host-side h_indices_and_source_info(indices_size + src_buf_info_size), h_indices{reinterpret_cast<size_type*>(h_indices_and_source_info.data())}, h_src_buf_info{ reinterpret_cast<src_buf_info*>(h_indices_and_source_info.data() + indices_size)} { // compute splits -> indices. // these are row numbers per split h_indices[0] = 0; h_indices[num_partitions] = input.column(0).size(); std::copy(splits.begin(), splits.end(), std::next(h_indices)); // setup source buf info setup_source_buf_info(input.begin(), input.end(), h_src_buf_info, h_src_buf_info, stream); offset_stack_partition_size = compute_offset_stack_size(input.begin(), input.end()); offset_stack_size = offset_stack_partition_size * num_partitions * sizeof(size_type); // device-side // gpu-only : stack space needed for nested list offset calculation d_indices_and_source_info = rmm::device_buffer(indices_size + src_buf_info_size + offset_stack_size, stream, temp_mr); d_indices = reinterpret_cast<size_type*>(d_indices_and_source_info.data()); d_src_buf_info = reinterpret_cast<src_buf_info*>( reinterpret_cast<uint8_t*>(d_indices_and_source_info.data()) + indices_size); d_offset_stack = reinterpret_cast<size_type*>(reinterpret_cast<uint8_t*>(d_indices_and_source_info.data()) + indices_size + src_buf_info_size); CUDF_CUDA_TRY(cudaMemcpyAsync( d_indices, h_indices, indices_size + src_buf_info_size, cudaMemcpyDefault, stream.value())); } size_type const indices_size; std::size_t const src_buf_info_size; std::size_t offset_stack_size; std::vector<uint8_t> h_indices_and_source_info; rmm::device_buffer d_indices_and_source_info; size_type* const h_indices; src_buf_info* const h_src_buf_info; int offset_stack_partition_size; size_type* d_indices; src_buf_info* d_src_buf_info; size_type* d_offset_stack; }; // packed block of memory 2: partition buffer sizes and dst_buf_info structs struct packed_partition_buf_size_and_dst_buf_info { packed_partition_buf_size_and_dst_buf_info(std::size_t num_partitions, std::size_t num_bufs, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) : stream(stream), buf_sizes_size{cudf::util::round_up_safe(num_partitions * sizeof(std::size_t), split_align)}, dst_buf_info_size{cudf::util::round_up_safe(num_bufs * sizeof(dst_buf_info), split_align)}, // host-side h_buf_sizes_and_dst_info(buf_sizes_size + dst_buf_info_size), h_buf_sizes{reinterpret_cast<std::size_t*>(h_buf_sizes_and_dst_info.data())}, h_dst_buf_info{ reinterpret_cast<dst_buf_info*>(h_buf_sizes_and_dst_info.data() + buf_sizes_size)}, // device-side d_buf_sizes_and_dst_info(buf_sizes_size + dst_buf_info_size, stream, temp_mr), d_buf_sizes{reinterpret_cast<std::size_t*>(d_buf_sizes_and_dst_info.data())}, // destination buffer info d_dst_buf_info{reinterpret_cast<dst_buf_info*>( static_cast<uint8_t*>(d_buf_sizes_and_dst_info.data()) + buf_sizes_size)} { } void copy_to_host() { // DtoH buf sizes and col info back to the host CUDF_CUDA_TRY(cudaMemcpyAsync(h_buf_sizes, d_buf_sizes, buf_sizes_size + dst_buf_info_size, cudaMemcpyDefault, stream.value())); } rmm::cuda_stream_view const stream; // buffer sizes and destination info (used in batched copies) std::size_t const buf_sizes_size; std::size_t const dst_buf_info_size; std::vector<uint8_t> h_buf_sizes_and_dst_info; std::size_t* const h_buf_sizes; dst_buf_info* const h_dst_buf_info; rmm::device_buffer d_buf_sizes_and_dst_info; std::size_t* const d_buf_sizes; dst_buf_info* const d_dst_buf_info; }; // Packed block of memory 3: // Pointers to source and destination buffers (and stack space on the // gpu for offset computation) struct packed_src_and_dst_pointers { packed_src_and_dst_pointers(cudf::table_view const& input, std::size_t num_partitions, cudf::size_type num_src_bufs, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) : stream(stream), src_bufs_size{cudf::util::round_up_safe(num_src_bufs * sizeof(uint8_t*), split_align)}, dst_bufs_size{cudf::util::round_up_safe(num_partitions * sizeof(uint8_t*), split_align)}, // host-side h_src_and_dst_buffers(src_bufs_size + dst_bufs_size), h_src_bufs{reinterpret_cast<uint8_t const**>(h_src_and_dst_buffers.data())}, h_dst_bufs{reinterpret_cast<uint8_t**>(h_src_and_dst_buffers.data() + src_bufs_size)}, // device-side d_src_and_dst_buffers{rmm::device_buffer(src_bufs_size + dst_bufs_size, stream, temp_mr)}, d_src_bufs{reinterpret_cast<uint8_t const**>(d_src_and_dst_buffers.data())}, d_dst_bufs{reinterpret_cast<uint8_t**>( reinterpret_cast<uint8_t*>(d_src_and_dst_buffers.data()) + src_bufs_size)} { // setup src buffers setup_src_buf_data(input.begin(), input.end(), h_src_bufs); } void copy_to_device() { CUDF_CUDA_TRY(cudaMemcpyAsync(d_src_and_dst_buffers.data(), h_src_and_dst_buffers.data(), src_bufs_size + dst_bufs_size, cudaMemcpyDefault, stream.value())); } rmm::cuda_stream_view const stream; std::size_t const src_bufs_size; std::size_t const dst_bufs_size; std::vector<uint8_t> h_src_and_dst_buffers; uint8_t const** const h_src_bufs; uint8_t** const h_dst_bufs; rmm::device_buffer d_src_and_dst_buffers; uint8_t const** const d_src_bufs; uint8_t** const d_dst_bufs; }; /** * @brief Create an instance of `packed_src_and_dst_pointers` populating destination * partitition buffers (if any) from `out_buffers`. In the chunked_pack case * `out_buffers` is empty, and the destination pointer is provided separately * to the `copy_partitions` kernel. * * @param input source table view * @param num_partitions the number of partitions (1 meaning no splits) * @param num_src_bufs number of buffers for the source columns including children * @param out_buffers the destination buffers per partition if in the non-chunked case * @param stream Optional CUDA stream on which to execute kernels * @param temp_mr A memory resource for temporary and scratch space * * @returns new unique pointer to packed_src_and_dst_pointers */ std::unique_ptr<packed_src_and_dst_pointers> setup_src_and_dst_pointers( cudf::table_view const& input, std::size_t num_partitions, cudf::size_type num_src_bufs, std::vector<rmm::device_buffer>& out_buffers, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) { auto src_and_dst_pointers = std::make_unique<packed_src_and_dst_pointers>( input, num_partitions, num_src_bufs, stream, temp_mr); std::transform( out_buffers.begin(), out_buffers.end(), src_and_dst_pointers->h_dst_bufs, [](auto& buf) { return static_cast<uint8_t*>(buf.data()); }); // copy the struct to device memory to access from the kernel src_and_dst_pointers->copy_to_device(); return src_and_dst_pointers; } /** * @brief Create an instance of `packed_partition_buf_size_and_dst_buf_info` containing * the partition-level dst_buf_info structs for each partition and column buffer. * * @param input source table view * @param splits the numeric value (in rows) for each split, empty for 1 partition * @param num_partitions the number of partitions create (1 meaning no splits) * @param num_src_bufs number of buffers for the source columns including children * @param num_bufs num_src_bufs times the number of partitions * @param stream Optional CUDA stream on which to execute kernels * @param temp_mr A memory resource for temporary and scratch space * * @returns new unique pointer to `packed_partition_buf_size_and_dst_buf_info` */ std::unique_ptr<packed_partition_buf_size_and_dst_buf_info> compute_splits( cudf::table_view const& input, std::vector<size_type> const& splits, std::size_t num_partitions, cudf::size_type num_src_bufs, std::size_t num_bufs, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) { auto partition_buf_size_and_dst_buf_info = std::make_unique<packed_partition_buf_size_and_dst_buf_info>( num_partitions, num_bufs, stream, temp_mr); auto const d_dst_buf_info = partition_buf_size_and_dst_buf_info->d_dst_buf_info; auto const d_buf_sizes = partition_buf_size_and_dst_buf_info->d_buf_sizes; auto const split_indices_and_src_buf_info = packed_split_indices_and_src_buf_info( input, splits, num_partitions, num_src_bufs, stream, temp_mr); auto const d_src_buf_info = split_indices_and_src_buf_info.d_src_buf_info; auto const offset_stack_partition_size = split_indices_and_src_buf_info.offset_stack_partition_size; auto const d_offset_stack = split_indices_and_src_buf_info.d_offset_stack; auto const d_indices = split_indices_and_src_buf_info.d_indices; // compute sizes of each column in each partition, including alignment. thrust::transform( rmm::exec_policy(stream, temp_mr), thrust::make_counting_iterator<std::size_t>(0), thrust::make_counting_iterator<std::size_t>(num_bufs), d_dst_buf_info, [d_src_buf_info, offset_stack_partition_size, d_offset_stack, d_indices, num_src_bufs] __device__(std::size_t t) { int const split_index = t / num_src_bufs; int const src_buf_index = t % num_src_bufs; auto const& src_info = d_src_buf_info[src_buf_index]; // apply nested offsets (lists and string columns). // // We can't just use the incoming row indices to figure out where to read from in a // nested list situation. We have to apply offsets every time we cross a boundary // (list or string). This loop applies those offsets so that our incoming row_index_start // and row_index_end get transformed to our final values. // int const stack_pos = src_info.offset_stack_pos + (split_index * offset_stack_partition_size); size_type* offset_stack = &d_offset_stack[stack_pos]; int parent_offsets_index = src_info.parent_offsets_index; int stack_size = 0; int root_column_offset = src_info.column_offset; while (parent_offsets_index >= 0) { offset_stack[stack_size++] = parent_offsets_index; root_column_offset = d_src_buf_info[parent_offsets_index].column_offset; parent_offsets_index = d_src_buf_info[parent_offsets_index].parent_offsets_index; } // make sure to include the -column- offset on the root column in our calculation. int row_start = d_indices[split_index] + root_column_offset; int row_end = d_indices[split_index + 1] + root_column_offset; while (stack_size > 0) { stack_size--; auto const offsets = d_src_buf_info[offset_stack[stack_size]].offsets; // this case can happen when you have empty string or list columns constructed with // empty_like() if (offsets != nullptr) { row_start = offsets[row_start]; row_end = offsets[row_end]; } } // final element indices and row count int const out_element_index = src_info.is_validity ? row_start / 32 : row_start; int const num_rows = row_end - row_start; // if I am an offsets column, all my values need to be shifted int const value_shift = src_info.offsets == nullptr ? 0 : src_info.offsets[row_start]; // if I am a validity column, we may need to shift bits int const bit_shift = src_info.is_validity ? row_start % 32 : 0; // # of rows isn't necessarily the same as # of elements to be copied. auto const num_elements = [&]() { if (src_info.offsets != nullptr && num_rows > 0) { return num_rows + 1; } else if (src_info.is_validity) { return (num_rows + 31) / 32; } return num_rows; }(); int const element_size = cudf::type_dispatcher(data_type{src_info.type}, size_of_helper{}); std::size_t const bytes = static_cast<std::size_t>(num_elements) * static_cast<std::size_t>(element_size); return dst_buf_info{util::round_up_unsafe(bytes, split_align), num_elements, element_size, num_rows, out_element_index, 0, value_shift, bit_shift, src_info.is_validity ? 1 : 0, src_buf_index, split_index}; }); // compute total size of each partition // key is the split index { auto const keys = cudf::detail::make_counting_transform_iterator( 0, split_key_functor{static_cast<int>(num_src_bufs)}); auto values = cudf::detail::make_counting_transform_iterator(0, buf_size_functor{d_dst_buf_info}); thrust::reduce_by_key(rmm::exec_policy(stream, temp_mr), keys, keys + num_bufs, values, thrust::make_discard_iterator(), d_buf_sizes); } // compute start offset for each output buffer for each split { auto const keys = cudf::detail::make_counting_transform_iterator( 0, split_key_functor{static_cast<int>(num_src_bufs)}); auto values = cudf::detail::make_counting_transform_iterator(0, buf_size_functor{d_dst_buf_info}); thrust::exclusive_scan_by_key(rmm::exec_policy(stream, temp_mr), keys, keys + num_bufs, values, dst_offset_output_iterator{d_dst_buf_info}, std::size_t{0}); } partition_buf_size_and_dst_buf_info->copy_to_host(); stream.synchronize(); return partition_buf_size_and_dst_buf_info; } /** * @brief Struct containing information about the actual batches we will send to the * `copy_partitions` kernel and the number of iterations we need to carry out this copy. * * For the non-chunked contiguous_split case, this contains the batched dst_buf_infos and the * number of iterations is going to be 1 since the non-chunked case is single pass. * * For the chunked_pack case, this also contains the batched dst_buf_infos for all * iterations in addition to helping keep the state about what batches have been copied so far * and what are the sizes (in bytes) of each iteration. */ struct chunk_iteration_state { chunk_iteration_state(rmm::device_uvector<dst_buf_info> _d_batched_dst_buf_info, rmm::device_uvector<size_type> _d_batch_offsets, std::vector<std::size_t>&& _h_num_buffs_per_iteration, std::vector<std::size_t>&& _h_size_of_buffs_per_iteration, std::size_t total_size) : num_iterations(_h_num_buffs_per_iteration.size()), current_iteration{0}, starting_batch{0}, d_batched_dst_buf_info(std::move(_d_batched_dst_buf_info)), d_batch_offsets(std::move(_d_batch_offsets)), h_num_buffs_per_iteration(std::move(_h_num_buffs_per_iteration)), h_size_of_buffs_per_iteration(std::move(_h_size_of_buffs_per_iteration)), total_size(total_size) { } static std::unique_ptr<chunk_iteration_state> create( rmm::device_uvector<thrust::pair<std::size_t, std::size_t>> const& batches, int num_bufs, dst_buf_info* d_orig_dst_buf_info, std::size_t const* const h_buf_sizes, std::size_t num_partitions, std::size_t user_buffer_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr); /** * @brief As of the time of the call, return the starting 1MB batch index, and the * number of batches to copy. * * @return the current iteration's starting_batch and batch count as a pair */ std::pair<std::size_t, std::size_t> get_current_starting_index_and_buff_count() const { CUDF_EXPECTS(current_iteration < num_iterations, "current_iteration cannot exceed num_iterations"); auto count_for_current = h_num_buffs_per_iteration[current_iteration]; return {starting_batch, count_for_current}; } /** * @brief Advance the iteration state if there are iterations left, updating the * starting batch and returning the amount of bytes were copied in the iteration * we just finished. * @throws cudf::logic_error If the state was at the last iteration before entering * this function. * @return size in bytes that were copied in the finished iteration */ std::size_t advance_iteration() { CUDF_EXPECTS(current_iteration < num_iterations, "current_iteration cannot exceed num_iterations"); std::size_t bytes_copied = h_size_of_buffs_per_iteration[current_iteration]; starting_batch += h_num_buffs_per_iteration[current_iteration]; ++current_iteration; return bytes_copied; } /** * Returns true if there are iterations left. */ bool has_more_copies() const { return current_iteration < num_iterations; } rmm::device_uvector<dst_buf_info> d_batched_dst_buf_info; ///< dst_buf_info per 1MB batch rmm::device_uvector<size_type> const d_batch_offsets; ///< Offset within a batch per dst_buf_info std::size_t const total_size; ///< The aggregate size of all iterations int const num_iterations; ///< The total number of iterations int current_iteration; ///< Marks the current iteration being worked on private: std::size_t starting_batch; ///< Starting batch index for the current iteration std::vector<std::size_t> const h_num_buffs_per_iteration; ///< The count of batches per iteration std::vector<std::size_t> const h_size_of_buffs_per_iteration; ///< The size in bytes per iteration }; std::unique_ptr<chunk_iteration_state> chunk_iteration_state::create( rmm::device_uvector<thrust::pair<std::size_t, std::size_t>> const& batches, int num_bufs, dst_buf_info* d_orig_dst_buf_info, std::size_t const* const h_buf_sizes, std::size_t num_partitions, std::size_t user_buffer_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) { rmm::device_uvector<size_type> d_batch_offsets(num_bufs + 1, stream, temp_mr); auto const buf_count_iter = cudf::detail::make_counting_transform_iterator( 0, [num_bufs, num_batches = num_batches_func{batches.begin()}] __device__(size_type i) { return i == num_bufs ? 0 : num_batches(i); }); thrust::exclusive_scan(rmm::exec_policy(stream, temp_mr), buf_count_iter, buf_count_iter + num_bufs + 1, d_batch_offsets.begin(), 0); auto const num_batches_iter = cudf::detail::make_counting_transform_iterator(0, num_batches_func{batches.begin()}); size_type const num_batches = thrust::reduce( rmm::exec_policy(stream, temp_mr), num_batches_iter, num_batches_iter + batches.size()); auto out_to_in_index = out_to_in_index_function{d_batch_offsets.begin(), num_bufs}; auto const iter = thrust::make_counting_iterator(0); // load up the batches as d_dst_buf_info rmm::device_uvector<dst_buf_info> d_batched_dst_buf_info(num_batches, stream, temp_mr); thrust::for_each( rmm::exec_policy(stream, temp_mr), iter, iter + num_batches, [d_orig_dst_buf_info, d_batched_dst_buf_info = d_batched_dst_buf_info.begin(), batches = batches.begin(), d_batch_offsets = d_batch_offsets.begin(), out_to_in_index] __device__(size_type i) { size_type const in_buf_index = out_to_in_index(i); size_type const batch_index = i - d_batch_offsets[in_buf_index]; auto const batch_size = thrust::get<1>(batches[in_buf_index]); dst_buf_info const& in = d_orig_dst_buf_info[in_buf_index]; // adjust info dst_buf_info& out = d_batched_dst_buf_info[i]; out.element_size = in.element_size; out.value_shift = in.value_shift; out.bit_shift = in.bit_shift; out.valid_count = in.valid_count; // valid count will be set to 1 if this is a validity buffer out.src_buf_index = in.src_buf_index; out.dst_buf_index = in.dst_buf_index; size_type const elements_per_batch = out.element_size == 0 ? 0 : batch_size / out.element_size; out.num_elements = ((batch_index + 1) * elements_per_batch) > in.num_elements ? in.num_elements - (batch_index * elements_per_batch) : elements_per_batch; size_type const rows_per_batch = // if this is a validity buffer, each element is a bitmask_type, which // corresponds to 32 rows. out.valid_count > 0 ? elements_per_batch * static_cast<size_type>(cudf::detail::size_in_bits<bitmask_type>()) : elements_per_batch; out.num_rows = ((batch_index + 1) * rows_per_batch) > in.num_rows ? in.num_rows - (batch_index * rows_per_batch) : rows_per_batch; out.src_element_index = in.src_element_index + (batch_index * elements_per_batch); out.dst_offset = in.dst_offset + (batch_index * batch_size); // out.bytes and out.buf_size are unneeded here because they are only used to // calculate real output buffer sizes. the data we are generating here is // purely intermediate for the purposes of doing more uniform copying of data // underneath the final structure of the output }); /** * In the chunked case, this is the code that fixes up the offsets of each batch * and prepares each iteration. Given the batches computed before, it figures * out the number of batches that will fit in an iteration of `user_buffer_size`. * * Specifically, offsets for batches are reset to the 0th byte when a new iteration * of `user_buffer_size` bytes is needed. */ if (user_buffer_size != 0) { // copy the batch offsets back to host std::vector<std::size_t> h_offsets(num_batches + 1); { rmm::device_uvector<std::size_t> offsets(h_offsets.size(), stream, temp_mr); auto const batch_byte_size_iter = cudf::detail::make_counting_transform_iterator( 0, batch_byte_size_function{num_batches, d_batched_dst_buf_info.begin()}); thrust::exclusive_scan(rmm::exec_policy(stream, temp_mr), batch_byte_size_iter, batch_byte_size_iter + num_batches + 1, offsets.begin()); CUDF_CUDA_TRY(cudaMemcpyAsync(h_offsets.data(), offsets.data(), sizeof(std::size_t) * offsets.size(), cudaMemcpyDefault, stream.value())); // the next part is working on the CPU, so we want to synchronize here stream.synchronize(); } std::vector<std::size_t> num_batches_per_iteration; std::vector<std::size_t> size_of_batches_per_iteration; std::vector<std::size_t> accum_size_per_iteration; std::size_t accum_size = 0; { auto current_offset_it = h_offsets.begin(); // figure out how many iterations we need, while fitting batches to iterations // with no more than user_buffer_size bytes worth of batches while (current_offset_it != h_offsets.end()) { // next_iteration_it points to the batch right above the boundary (the batch // that didn't fit). auto next_iteration_it = std::lower_bound(current_offset_it, h_offsets.end(), // We add the cumulative size + 1 because we want to find what would fit // within a buffer of user_buffer_size (up to user_buffer_size). // Since h_offsets is a prefix scan, we add the size we accumulated so // far so we are looking for the next user_buffer_sized boundary. user_buffer_size + accum_size + 1); // we subtract 1 from the number of batch here because next_iteration_it points // to the batch that didn't fit, so it's one off. auto batches_in_iter = std::distance(current_offset_it, next_iteration_it) - 1; // to get the amount of bytes in this iteration we get the prefix scan size // and subtract the cumulative size so far, leaving the bytes belonging to this // iteration auto iter_size_bytes = *(current_offset_it + batches_in_iter) - accum_size; accum_size += iter_size_bytes; num_batches_per_iteration.push_back(batches_in_iter); size_of_batches_per_iteration.push_back(iter_size_bytes); accum_size_per_iteration.push_back(accum_size); if (next_iteration_it == h_offsets.end()) { break; } current_offset_it += batches_in_iter; } } // apply changed offset { auto d_accum_size_per_iteration = cudf::detail::make_device_uvector_async(accum_size_per_iteration, stream, temp_mr); // we want to update the offset of batches for every iteration, except the first one (because // offsets in the first iteration are all 0 based) auto num_batches_in_first_iteration = num_batches_per_iteration[0]; auto const iter = thrust::make_counting_iterator(num_batches_in_first_iteration); auto num_iterations = accum_size_per_iteration.size(); thrust::for_each( rmm::exec_policy(stream, temp_mr), iter, iter + num_batches - num_batches_in_first_iteration, [num_iterations, d_batched_dst_buf_info = d_batched_dst_buf_info.begin(), d_accum_size_per_iteration = d_accum_size_per_iteration.begin()] __device__(size_type i) { auto prior_iteration_size = thrust::upper_bound(thrust::seq, d_accum_size_per_iteration, d_accum_size_per_iteration + num_iterations, d_batched_dst_buf_info[i].dst_offset) - 1; d_batched_dst_buf_info[i].dst_offset -= *prior_iteration_size; }); } return std::make_unique<chunk_iteration_state>(std::move(d_batched_dst_buf_info), std::move(d_batch_offsets), std::move(num_batches_per_iteration), std::move(size_of_batches_per_iteration), accum_size); } else { // we instantiate an "iteration state" for the regular single pass contiguous_split // consisting of 1 iteration with all of the batches and totalling `total_size` bytes. auto const total_size = std::reduce(h_buf_sizes, h_buf_sizes + num_partitions); // 1 iteration with the whole size return std::make_unique<chunk_iteration_state>( std::move(d_batched_dst_buf_info), std::move(d_batch_offsets), std::move(std::vector<std::size_t>{static_cast<std::size_t>(num_batches)}), std::move(std::vector<std::size_t>{total_size}), total_size); } } /** * @brief Create an instance of `chunk_iteration_state` containing 1MB batches of work * that are further grouped into chunks or iterations. * * This function handles both the `chunked_pack` case: when `user_buffer_size` is non-zero, * and the single-shot `contiguous_split` case. * * @param num_bufs num_src_bufs times the number of partitions * @param d_dst_buf_info dst_buf_info per partition produced in `compute_splits` * @param h_buf_sizes size in bytes of a partition (accessible from host) * @param num_partitions the number of partitions (1 meaning no splits) * @param user_buffer_size if non-zero, it is the size in bytes that 1MB batches should be * grouped in, as different iterations. * @param stream Optional CUDA stream on which to execute kernels * @param temp_mr A memory resource for temporary and scratch space * * @returns new unique pointer to `chunk_iteration_state` */ std::unique_ptr<chunk_iteration_state> compute_batches(int num_bufs, dst_buf_info* const d_dst_buf_info, std::size_t const* const h_buf_sizes, std::size_t num_partitions, std::size_t user_buffer_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* temp_mr) { // Since we parallelize at one block per copy, performance is vulnerable to situations where we // have small numbers of copies to do (a combination of small numbers of splits and/or columns), // so we will take the actual set of outgoing source/destination buffers and further partition // them into much smaller batches in order to drive up the number of blocks and overall // occupancy. rmm::device_uvector<thrust::pair<std::size_t, std::size_t>> batches(num_bufs, stream, temp_mr); thrust::transform( rmm::exec_policy(stream, temp_mr), d_dst_buf_info, d_dst_buf_info + num_bufs, batches.begin(), [desired_batch_size = desired_batch_size] __device__( dst_buf_info const& buf) -> thrust::pair<std::size_t, std::size_t> { // Total bytes for this incoming partition std::size_t const bytes = static_cast<std::size_t>(buf.num_elements) * static_cast<std::size_t>(buf.element_size); // This clause handles nested data types (e.g. list or string) that store no data in the row // columns, only in their children. if (bytes == 0) { return {1, 0}; } // The number of batches we want to subdivide this buffer into std::size_t const num_batches = std::max( std::size_t{1}, util::round_up_unsafe(bytes, desired_batch_size) / desired_batch_size); // NOTE: leaving batch size as a separate parameter for future tuning // possibilities, even though in the current implementation it will be a // constant. return {num_batches, desired_batch_size}; }); return chunk_iteration_state::create(batches, num_bufs, d_dst_buf_info, h_buf_sizes, num_partitions, user_buffer_size, stream, temp_mr); } void copy_data(int num_batches_to_copy, int starting_batch, uint8_t const** d_src_bufs, uint8_t** d_dst_bufs, rmm::device_uvector<dst_buf_info>& d_dst_buf_info, uint8_t* user_buffer, rmm::cuda_stream_view stream) { constexpr size_type block_size = 256; if (user_buffer != nullptr) { auto index_to_buffer = [user_buffer] __device__(unsigned int) { return user_buffer; }; copy_partitions<block_size><<<num_batches_to_copy, block_size, 0, stream.value()>>>( index_to_buffer, d_src_bufs, d_dst_buf_info.data() + starting_batch); } else { auto index_to_buffer = [d_dst_bufs, dst_buf_info = d_dst_buf_info.data(), user_buffer] __device__(unsigned int buf_index) { auto const dst_buf_index = dst_buf_info[buf_index].dst_buf_index; return d_dst_bufs[dst_buf_index]; }; copy_partitions<block_size><<<num_batches_to_copy, block_size, 0, stream.value()>>>( index_to_buffer, d_src_bufs, d_dst_buf_info.data() + starting_batch); } } /** * @brief Function that checks an input table_view and splits for specific edge cases. * * It will return true if the input is "empty" (no rows or columns), which means * special handling has to happen in the calling code. * * @param input table_view of source table to be split * @param splits the splits specified by the user, or an empty vector if no splits * @returns true if the input is empty, false otherwise */ bool check_inputs(cudf::table_view const& input, std::vector<size_type> const& splits) { if (input.num_columns() == 0) { return true; } if (splits.size() > 0) { CUDF_EXPECTS(splits.back() <= input.column(0).size(), "splits can't exceed size of input columns"); } size_type begin = 0; for (auto end : splits) { CUDF_EXPECTS(begin >= 0, "Starting index cannot be negative."); CUDF_EXPECTS(end >= begin, "End index cannot be smaller than the starting index."); CUDF_EXPECTS(end <= input.column(0).size(), "Slice range out of bounds."); begin = end; } return input.column(0).size() == 0; } }; // anonymous namespace namespace detail { /** * @brief A helper struct containing the state of contiguous_split, whether the caller * is using the single-pass contiguous_split or chunked_pack. * * It exposes an iterator-like pattern where contiguous_split_state::has_next() * returns true when there is work to be done, and false otherwise. * * contiguous_split_state::contiguous_split() performs a single-pass contiguous_split * and is valid iff contiguous_split_state is instantiated with 0 for the user_buffer_size. * * contiguous_split_state::contiguous_split_chunk(device_span) is only valid when * user_buffer_size > 0. It should be called as long as has_next() returns true. The * device_span passed to contiguous_split_chunk must be allocated in stream `stream` by * the user. * * None of the methods are thread safe. */ struct contiguous_split_state { contiguous_split_state(cudf::table_view const& input, std::size_t user_buffer_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr, rmm::mr::device_memory_resource* temp_mr) : contiguous_split_state(input, {}, user_buffer_size, stream, mr, temp_mr) { } contiguous_split_state(cudf::table_view const& input, std::vector<size_type> const& splits, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr, rmm::mr::device_memory_resource* temp_mr) : contiguous_split_state(input, splits, 0, stream, mr, temp_mr) { } bool has_next() const { return !is_empty && chunk_iter_state->has_more_copies(); } std::size_t get_total_contiguous_size() const { return is_empty ? 0 : chunk_iter_state->total_size; } std::vector<packed_table> contiguous_split() { CUDF_EXPECTS(user_buffer_size == 0, "Cannot contiguous split with a user buffer"); if (is_empty || input.num_columns() == 0) { return make_packed_tables(); } auto const num_batches_total = std::get<1>(chunk_iter_state->get_current_starting_index_and_buff_count()); // perform the copy. copy_data(num_batches_total, 0 /* starting at buffer for single-shot 0*/, src_and_dst_pointers->d_src_bufs, src_and_dst_pointers->d_dst_bufs, chunk_iter_state->d_batched_dst_buf_info, nullptr, stream); // these "orig" dst_buf_info pointers describe the prior-to-batching destination // buffers per partition auto d_orig_dst_buf_info = partition_buf_size_and_dst_buf_info->d_dst_buf_info; auto h_orig_dst_buf_info = partition_buf_size_and_dst_buf_info->h_dst_buf_info; // postprocess valid_counts: apply the valid counts computed by copy_data for each // batch back to the original dst_buf_infos auto const keys = cudf::detail::make_counting_transform_iterator( 0, out_to_in_index_function{chunk_iter_state->d_batch_offsets.begin(), (int)num_bufs}); auto values = thrust::make_transform_iterator( chunk_iter_state->d_batched_dst_buf_info.begin(), [] __device__(dst_buf_info const& info) { return info.valid_count; }); thrust::reduce_by_key(rmm::exec_policy(stream, temp_mr), keys, keys + num_batches_total, values, thrust::make_discard_iterator(), dst_valid_count_output_iterator{d_orig_dst_buf_info}); CUDF_CUDA_TRY(cudaMemcpyAsync(h_orig_dst_buf_info, d_orig_dst_buf_info, partition_buf_size_and_dst_buf_info->dst_buf_info_size, cudaMemcpyDefault, stream.value())); stream.synchronize(); // not necessary for the non-chunked case, but it makes it so further calls to has_next // return false, just in case chunk_iter_state->advance_iteration(); return make_packed_tables(); } cudf::size_type contiguous_split_chunk(cudf::device_span<uint8_t> const& user_buffer) { CUDF_FUNC_RANGE(); CUDF_EXPECTS( user_buffer.size() == user_buffer_size, "Cannot use a device span smaller than the output buffer size configured at instantiation!"); CUDF_EXPECTS(has_next(), "Cannot call contiguous_split_chunk with has_next() == false!"); auto [starting_batch, num_batches_to_copy] = chunk_iter_state->get_current_starting_index_and_buff_count(); // perform the copy. copy_data(num_batches_to_copy, starting_batch, src_and_dst_pointers->d_src_bufs, src_and_dst_pointers->d_dst_bufs, chunk_iter_state->d_batched_dst_buf_info, user_buffer.data(), stream); // We do not need to post-process null counts since the null count info is // taken from the source table in the contiguous_split_chunk case (no splits) return chunk_iter_state->advance_iteration(); } std::unique_ptr<std::vector<uint8_t>> build_packed_column_metadata() { CUDF_EXPECTS(num_partitions == 1, "build_packed_column_metadata supported only without splits"); if (input.num_columns() == 0) { return std::unique_ptr<std::vector<uint8_t>>(); } if (is_empty) { // this is a bit ugly, but it was done to re-use make_empty_packed_table between the // regular contiguous_split and chunked_pack cases. auto empty_packed_tables = std::move(make_empty_packed_table().front()); return std::move(empty_packed_tables.data.metadata); } auto& h_dst_buf_info = partition_buf_size_and_dst_buf_info->h_dst_buf_info; auto cur_dst_buf_info = h_dst_buf_info; detail::metadata_builder mb{input.num_columns()}; populate_metadata(input.begin(), input.end(), cur_dst_buf_info, mb); return std::make_unique<std::vector<uint8_t>>(std::move(mb.build())); } private: contiguous_split_state(cudf::table_view const& input, std::vector<size_type> const& splits, std::size_t user_buffer_size, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr, rmm::mr::device_memory_resource* temp_mr) : input(input), user_buffer_size(user_buffer_size), stream(stream), mr(mr), temp_mr(temp_mr), is_empty{check_inputs(input, splits)}, num_partitions{splits.size() + 1}, num_src_bufs{count_src_bufs(input.begin(), input.end())}, num_bufs{num_src_bufs * num_partitions} { // if the table we are about to contig split is empty, we have special // handling where metadata is produced and a 0-byte contiguous buffer // is the result. if (is_empty) { return; } // First pass over the source tables to generate a `dst_buf_info` per split and column buffer // (`num_bufs`). After this, contiguous_split uses `dst_buf_info` to further subdivide the work // into 1MB batches in `compute_batches` partition_buf_size_and_dst_buf_info = std::move( compute_splits(input, splits, num_partitions, num_src_bufs, num_bufs, stream, temp_mr)); // Second pass: uses `dst_buf_info` to break down the work into 1MB batches. chunk_iter_state = compute_batches(num_bufs, partition_buf_size_and_dst_buf_info->d_dst_buf_info, partition_buf_size_and_dst_buf_info->h_buf_sizes, num_partitions, user_buffer_size, stream, temp_mr); // allocate output partition buffers, in the non-chunked case if (user_buffer_size == 0) { out_buffers.reserve(num_partitions); auto h_buf_sizes = partition_buf_size_and_dst_buf_info->h_buf_sizes; std::transform(h_buf_sizes, h_buf_sizes + num_partitions, std::back_inserter(out_buffers), [stream = stream, mr = mr](std::size_t bytes) { return rmm::device_buffer{bytes, stream, mr}; }); } src_and_dst_pointers = std::move(setup_src_and_dst_pointers( input, num_partitions, num_src_bufs, out_buffers, stream, temp_mr)); } std::vector<packed_table> make_packed_tables() { if (input.num_columns() == 0) { return std::vector<packed_table>(); } if (is_empty) { return make_empty_packed_table(); } std::vector<packed_table> result; result.reserve(num_partitions); std::vector<column_view> cols; cols.reserve(input.num_columns()); auto& h_dst_buf_info = partition_buf_size_and_dst_buf_info->h_dst_buf_info; auto& h_dst_bufs = src_and_dst_pointers->h_dst_bufs; auto cur_dst_buf_info = h_dst_buf_info; detail::metadata_builder mb(input.num_columns()); for (std::size_t idx = 0; idx < num_partitions; idx++) { // traverse the buffers and build the columns. cur_dst_buf_info = build_output_columns(input.begin(), input.end(), cur_dst_buf_info, std::back_inserter(cols), h_dst_bufs[idx], mb); // pack the columns result.emplace_back(packed_table{ cudf::table_view{cols}, packed_columns{std::make_unique<std::vector<uint8_t>>(mb.build()), std::make_unique<rmm::device_buffer>(std::move(out_buffers[idx]))}}); cols.clear(); mb.clear(); } return result; } std::vector<packed_table> make_empty_packed_table() { // sanitize the inputs (to handle corner cases like sliced tables) std::vector<cudf::column_view> empty_column_views; empty_column_views.reserve(input.num_columns()); std::transform(input.begin(), input.end(), std::back_inserter(empty_column_views), [](column_view const& col) { return cudf::empty_like(col)->view(); }); table_view empty_inputs(empty_column_views); // build the empty results std::vector<packed_table> result; result.reserve(num_partitions); auto const iter = thrust::make_counting_iterator(0); std::transform(iter, iter + num_partitions, std::back_inserter(result), [&empty_inputs](int partition_index) { return packed_table{empty_inputs, packed_columns{std::make_unique<std::vector<uint8_t>>( pack_metadata(empty_inputs, nullptr, 0)), std::make_unique<rmm::device_buffer>()}}; }); return result; } cudf::table_view const input; ///< The input table_view to operate on std::size_t const user_buffer_size; ///< The size of the user buffer for the chunked_pack case rmm::cuda_stream_view const stream; rmm::mr::device_memory_resource* const mr; ///< The memory resource for any data returned // this resource defaults to `mr` for the contiguous_split case, but it can be useful for the // `chunked_pack` case to allocate scratch/temp memory in a pool rmm::mr::device_memory_resource* const temp_mr; ///< The memory resource for scratch/temp space // whether the table was empty to begin with (0 rows or 0 columns) and should be metadata-only bool const is_empty; ///< True if the source table has 0 rows or 0 columns // This can be 1 if `contiguous_split` is just packing and not splitting std::size_t const num_partitions; ///< The number of partitions to produce size_type const num_src_bufs; ///< Number of source buffers including children std::size_t const num_bufs; ///< Number of source buffers including children * number of splits std::unique_ptr<packed_partition_buf_size_and_dst_buf_info> partition_buf_size_and_dst_buf_info; ///< Per-partition buffer size and destination buffer info std::unique_ptr<packed_src_and_dst_pointers> src_and_dst_pointers; ///< Src. and dst. pointers for `copy_partition` // // State around the chunked pattern // // chunked_pack will have 1 or more "chunks" to iterate on, defined in chunk_iter_state // contiguous_split will have a single "chunk" in chunk_iter_state, so no iteration. std::unique_ptr<chunk_iteration_state> chunk_iter_state; ///< State object for chunk iteration state // Two API usages are allowed: // - `chunked_pack`: for this mode, the user will provide a buffer that must be at least 1MB. // The behavior is "chunked" in that it will contiguously copy up until the user specified // `user_buffer_size` limit, exposing a next() call for the user to invoke. Note that in this // mode, no partitioning occurs, hence the name "pack". // // - `contiguous_split` (default): when the user doesn't provide their own buffer, // `contiguous_split` will allocate a buffer per partition and will place contiguous results in // each buffer. // std::vector<rmm::device_buffer> out_buffers; ///< Buffers allocated for a regular `contiguous_split` }; std::vector<packed_table> contiguous_split(cudf::table_view const& input, std::vector<size_type> const& splits, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { // `temp_mr` is the same as `mr` for contiguous_split as it allocates all // of its memory from the default memory resource in cuDF auto temp_mr = mr; auto state = contiguous_split_state(input, splits, stream, mr, temp_mr); return state.contiguous_split(); } }; // namespace detail std::vector<packed_table> contiguous_split(cudf::table_view const& input, std::vector<size_type> const& splits, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::contiguous_split(input, splits, cudf::get_default_stream(), mr); } chunked_pack::chunked_pack(cudf::table_view const& input, std::size_t user_buffer_size, rmm::mr::device_memory_resource* temp_mr) { CUDF_EXPECTS(user_buffer_size >= desired_batch_size, "The output buffer size must be at least 1MB in size"); // We pass `nullptr` for the first `mr` in `contiguous_split_state` to indicate // that it does not allocate any user-bound data for the `chunked_pack` case. state = std::make_unique<detail::contiguous_split_state>( input, user_buffer_size, cudf::get_default_stream(), nullptr, temp_mr); } // required for the unique_ptr to work with a incomplete type (contiguous_split_state) chunked_pack::~chunked_pack() = default; std::size_t chunked_pack::get_total_contiguous_size() const { return state->get_total_contiguous_size(); } bool chunked_pack::has_next() const { return state->has_next(); } std::size_t chunked_pack::next(cudf::device_span<uint8_t> const& user_buffer) { return state->contiguous_split_chunk(user_buffer); } std::unique_ptr<std::vector<uint8_t>> chunked_pack::build_metadata() const { return state->build_packed_column_metadata(); } std::unique_ptr<chunked_pack> chunked_pack::create(cudf::table_view const& input, std::size_t user_buffer_size, rmm::mr::device_memory_resource* temp_mr) { return std::make_unique<chunked_pack>(input, user_buffer_size, temp_mr); } }; // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/copy.cpp
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/lists/lists_column_view.hpp> #include <cudf/table/table.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/transform_iterator.h> #include <algorithm> namespace cudf { namespace detail { namespace { inline mask_state should_allocate_mask(mask_allocation_policy mask_alloc, bool mask_exists) { if ((mask_alloc == mask_allocation_policy::ALWAYS) || (mask_alloc == mask_allocation_policy::RETAIN && mask_exists)) { return mask_state::UNINITIALIZED; } else { return mask_state::UNALLOCATED; } } /** * @brief Functor to produce an empty column of the same type as the * input scalar. * * In the case of nested types, full column hierarchy is preserved. */ template <typename T> struct scalar_empty_like_functor_impl { std::unique_ptr<column> operator()(scalar const& input) { return cudf::make_empty_column(input.type()); } }; template <> struct scalar_empty_like_functor_impl<cudf::list_view> { std::unique_ptr<column> operator()(scalar const& input) { auto ls = static_cast<list_scalar const*>(&input); // TODO: add a manual constructor for lists_column_view. column_view offsets{cudf::data_type{cudf::type_id::INT32}, 0, nullptr, nullptr, 0}; std::vector<column_view> children; children.push_back(offsets); children.push_back(ls->view()); column_view lcv{cudf::data_type{cudf::type_id::LIST}, 0, nullptr, nullptr, 0, 0, children}; return empty_like(lcv); } }; template <> struct scalar_empty_like_functor_impl<cudf::struct_view> { std::unique_ptr<column> operator()(scalar const& input) { auto ss = static_cast<struct_scalar const*>(&input); // TODO: add a manual constructor for structs_column_view // TODO: add cudf::get_element() support for structs cudf::table_view tbl = ss->view(); std::vector<column_view> children(tbl.begin(), tbl.end()); column_view scv{cudf::data_type{cudf::type_id::STRUCT}, 0, nullptr, nullptr, 0, 0, children}; return empty_like(scv); } }; template <> struct scalar_empty_like_functor_impl<cudf::dictionary32> { std::unique_ptr<column> operator()(scalar const& input) { CUDF_FAIL("Dictionary scalars not supported"); } }; struct scalar_empty_like_functor { template <typename T> std::unique_ptr<column> operator()(scalar const& input) { scalar_empty_like_functor_impl<T> func; return func(input); } }; } // namespace /* * Creates an uninitialized new column of the specified size and same type as * the `input`. Supports only fixed-width types. */ std::unique_ptr<column> allocate_like(column_view const& input, size_type size, mask_allocation_policy mask_alloc, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); CUDF_EXPECTS(is_fixed_width(input.type()), "Expects only fixed-width type column"); mask_state allocate_mask = should_allocate_mask(mask_alloc, input.nullable()); return std::make_unique<column>(input.type(), size, rmm::device_buffer(size * size_of(input.type()), stream, mr), detail::create_null_mask(size, allocate_mask, stream, mr), 0); } } // namespace detail /* * Initializes and returns an empty column of the same type as the `input`. */ std::unique_ptr<column> empty_like(column_view const& input) { CUDF_FUNC_RANGE(); std::vector<std::unique_ptr<column>> children; std::transform(input.child_begin(), input.child_end(), std::back_inserter(children), [](column_view const& col) { return empty_like(col); }); return std::make_unique<cudf::column>( input.type(), 0, rmm::device_buffer{}, rmm::device_buffer{}, 0, std::move(children)); } /* * Initializes and returns an empty column of the same type as the `input`. */ std::unique_ptr<column> empty_like(scalar const& input) { CUDF_FUNC_RANGE(); return type_dispatcher(input.type(), detail::scalar_empty_like_functor{}, input); }; /* * Creates a table of empty columns with the same types as the `input_table` */ std::unique_ptr<table> empty_like(table_view const& input_table) { CUDF_FUNC_RANGE(); std::vector<std::unique_ptr<column>> columns(input_table.num_columns()); std::transform(input_table.begin(), input_table.end(), columns.begin(), [&](column_view in_col) { return empty_like(in_col); }); return std::make_unique<table>(std::move(columns)); } std::unique_ptr<column> allocate_like(column_view const& input, mask_allocation_policy mask_alloc, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::allocate_like(input, input.size(), mask_alloc, stream, mr); } std::unique_ptr<column> allocate_like(column_view const& input, size_type size, mask_allocation_policy mask_alloc, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::allocate_like(input, size, mask_alloc, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/sample.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_factories.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/iterator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/counting_iterator.h> #include <thrust/random.h> #include <thrust/random/uniform_int_distribution.h> #include <thrust/shuffle.h> namespace cudf { namespace detail { std::unique_ptr<table> sample(table_view const& input, size_type const n, sample_with_replacement replacement, int64_t const seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(n >= 0, "expected number of samples should be non-negative"); auto const num_rows = input.num_rows(); if ((n > num_rows) and (replacement == sample_with_replacement::FALSE)) { CUDF_FAIL("If n > number of rows, then multiple sampling of the same row should be allowed"); } if (n == 0) return cudf::empty_like(input); if (replacement == sample_with_replacement::TRUE) { auto RandomGen = [seed, num_rows] __device__(auto i) { thrust::default_random_engine rng(seed); thrust::uniform_int_distribution<size_type> dist{0, num_rows - 1}; rng.discard(i); return dist(rng); }; auto begin = cudf::detail::make_counting_transform_iterator(0, RandomGen); return detail::gather(input, begin, begin + n, out_of_bounds_policy::DONT_CHECK, stream, mr); } else { auto gather_map = make_numeric_column(data_type{type_id::INT32}, num_rows, mask_state::UNALLOCATED, stream); auto gather_map_mutable_view = gather_map->mutable_view(); // Shuffle all the row indices thrust::shuffle_copy(rmm::exec_policy(stream), thrust::counting_iterator<size_type>(0), thrust::counting_iterator<size_type>(num_rows), gather_map_mutable_view.begin<size_type>(), thrust::default_random_engine(seed)); auto gather_map_view = (n == num_rows) ? gather_map->view() : cudf::detail::slice(gather_map->view(), {0, n}, stream)[0]; return detail::gather(input, gather_map_view.begin<size_type>(), gather_map_view.end<size_type>(), out_of_bounds_policy::DONT_CHECK, stream, mr); } } } // namespace detail std::unique_ptr<table> sample(table_view const& input, size_type const n, sample_with_replacement replacement, int64_t const seed, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::sample(input, n, replacement, seed, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/gather.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/indexalator.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/iterator/transform_iterator.h> namespace cudf { namespace detail { std::unique_ptr<table> gather(table_view const& source_table, column_view const& gather_map, out_of_bounds_policy bounds_policy, negative_index_policy neg_indices, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(not gather_map.has_nulls(), "gather_map contains nulls"); // create index type normalizing iterator for the gather_map auto map_begin = indexalator_factory::make_input_iterator(gather_map); auto map_end = map_begin + gather_map.size(); if (neg_indices == negative_index_policy::ALLOWED) { cudf::size_type n_rows = source_table.num_rows(); auto idx_converter = [n_rows] __device__(size_type in) { return in < 0 ? in + n_rows : in; }; return gather(source_table, thrust::make_transform_iterator(map_begin, idx_converter), thrust::make_transform_iterator(map_end, idx_converter), bounds_policy, stream, mr); } return gather(source_table, map_begin, map_end, bounds_policy, stream, mr); } std::unique_ptr<table> gather(table_view const& source_table, device_span<size_type const> const gather_map, out_of_bounds_policy bounds_policy, negative_index_policy neg_indices, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(gather_map.size() <= static_cast<size_t>(std::numeric_limits<size_type>::max()), "gather map size exceeds the column size limit", std::overflow_error); auto map_col = column_view(data_type{type_to_id<size_type>()}, static_cast<size_type>(gather_map.size()), gather_map.data(), nullptr, 0); return gather(source_table, map_col, bounds_policy, neg_indices, stream, mr); } } // namespace detail std::unique_ptr<table> gather(table_view const& source_table, column_view const& gather_map, out_of_bounds_policy bounds_policy, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); auto index_policy = is_unsigned(gather_map.type()) ? detail::negative_index_policy::NOT_ALLOWED : detail::negative_index_policy::ALLOWED; return detail::gather(source_table, gather_map, bounds_policy, index_policy, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/concatenate.cu
/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column.hpp> #include <cudf/column/column_device_view.cuh> #include <cudf/detail/concatenate_masks.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/get_value.cuh> #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/cuda.cuh> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/dictionary/detail/concatenate.hpp> #include <cudf/lists/detail/concatenate.hpp> #include <cudf/strings/detail/concatenate.hpp> #include <cudf/structs/detail/concatenate.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_device_view.cuh> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/advance.h> #include <thrust/binary_search.h> #include <thrust/copy.h> #include <thrust/execution_policy.h> #include <thrust/functional.h> #include <thrust/host_vector.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform_scan.h> #include <algorithm> #include <numeric> #include <utility> namespace cudf { namespace detail { namespace { // From benchmark data, the fused kernel optimization appears to perform better // when there are more than a trivial number of columns, or when the null mask // can also be computed at the same time constexpr bool use_fused_kernel_heuristic(bool const has_nulls, size_t const num_columns) { return has_nulls || num_columns > 4; } auto create_device_views(host_span<column_view const> views, rmm::cuda_stream_view stream) { // Create device views for each input view using CDViewPtr = decltype(column_device_view::create(std::declval<column_view>(), std::declval<rmm::cuda_stream_view>())); auto device_view_owners = std::vector<CDViewPtr>(views.size()); std::transform(views.begin(), views.end(), device_view_owners.begin(), [stream](auto const& col) { return column_device_view::create(col, stream); }); // Assemble contiguous array of device views auto device_views = thrust::host_vector<column_device_view>(); device_views.reserve(views.size()); std::transform(device_view_owners.cbegin(), device_view_owners.cend(), std::back_inserter(device_views), [](auto const& col) { return *col; }); auto d_views = make_device_uvector_async(device_views, stream, rmm::mr::get_current_device_resource()); // Compute the partition offsets auto offsets = thrust::host_vector<size_t>(views.size() + 1); thrust::transform_inclusive_scan( thrust::host, device_views.cbegin(), device_views.cend(), std::next(offsets.begin()), [](auto const& col) { return col.size(); }, thrust::plus{}); auto d_offsets = make_device_uvector_async(offsets, stream, rmm::mr::get_current_device_resource()); auto const output_size = offsets.back(); return std::make_tuple( std::move(device_view_owners), std::move(d_views), std::move(d_offsets), output_size); } /** * @brief Concatenates the null mask bits of all the column device views in the * `views` array to the destination bitmask. * * @tparam block_size Block size for using with single_lane_block_sum_reduce * * @param views Array of column_device_view * @param output_offsets Prefix sum of sizes of elements of `views` * @param number_of_views Size of `views` array * @param dest_mask The output buffer to copy null masks into * @param number_of_mask_bits The total number of null masks bits that are being copied * @param out_valid_count To hold the total number of valid bits set */ template <size_type block_size> __global__ void concatenate_masks_kernel(column_device_view const* views, size_t const* output_offsets, size_type number_of_views, bitmask_type* dest_mask, size_type number_of_mask_bits, size_type* out_valid_count) { auto tidx = cudf::detail::grid_1d::global_thread_id(); auto const stride = cudf::detail::grid_1d::grid_stride(); auto active_mask = __ballot_sync(0xFFFF'FFFFu, tidx < number_of_mask_bits); size_type warp_valid_count = 0; while (tidx < number_of_mask_bits) { auto const mask_index = static_cast<cudf::size_type>(tidx); size_type const source_view_index = thrust::upper_bound( thrust::seq, output_offsets, output_offsets + number_of_views, mask_index) - output_offsets - 1; bool bit_is_set = true; if (source_view_index < number_of_views) { size_type const column_element_index = mask_index - output_offsets[source_view_index]; bit_is_set = views[source_view_index].is_valid(column_element_index); } bitmask_type const new_word = __ballot_sync(active_mask, bit_is_set); if (threadIdx.x % detail::warp_size == 0) { dest_mask[word_index(mask_index)] = new_word; warp_valid_count += __popc(new_word); } tidx += stride; active_mask = __ballot_sync(active_mask, tidx < number_of_mask_bits); } using detail::single_lane_block_sum_reduce; auto const block_valid_count = single_lane_block_sum_reduce<block_size, 0>(warp_valid_count); if (threadIdx.x == 0) { atomicAdd(out_valid_count, block_valid_count); } } } // namespace size_type concatenate_masks(device_span<column_device_view const> d_views, device_span<size_t const> d_offsets, bitmask_type* dest_mask, size_type output_size, rmm::cuda_stream_view stream) { rmm::device_scalar<size_type> d_valid_count(0, stream); constexpr size_type block_size{256}; cudf::detail::grid_1d config(output_size, block_size); concatenate_masks_kernel<block_size> <<<config.num_blocks, config.num_threads_per_block, 0, stream.value()>>>( d_views.data(), d_offsets.data(), static_cast<size_type>(d_views.size()), dest_mask, output_size, d_valid_count.data()); return output_size - d_valid_count.value(stream); } size_type concatenate_masks(host_span<column_view const> views, bitmask_type* dest_mask, rmm::cuda_stream_view stream) { // Preprocess and upload inputs to device memory auto const device_views = create_device_views(views, stream); auto const& d_views = std::get<1>(device_views); auto const& d_offsets = std::get<2>(device_views); auto const output_size = std::get<3>(device_views); return concatenate_masks(d_views, d_offsets, dest_mask, output_size, stream); } namespace { template <typename T, size_type block_size, bool Nullable> __global__ void fused_concatenate_kernel(column_device_view const* input_views, size_t const* input_offsets, size_type num_input_views, mutable_column_device_view output_view, size_type* out_valid_count) { auto const output_size = output_view.size(); auto* output_data = output_view.data<T>(); auto output_index = cudf::detail::grid_1d::global_thread_id(); auto const stride = cudf::detail::grid_1d::grid_stride(); size_type warp_valid_count = 0; unsigned active_mask; if (Nullable) { active_mask = __ballot_sync(0xFFFF'FFFFu, output_index < output_size); } while (output_index < output_size) { // Lookup input index by searching for output index in offsets auto const offset_it = thrust::prev(thrust::upper_bound( thrust::seq, input_offsets, input_offsets + num_input_views, output_index)); size_type const partition_index = offset_it - input_offsets; // Copy input data to output auto const offset_index = output_index - *offset_it; auto const& input_view = input_views[partition_index]; auto const* input_data = input_view.data<T>(); output_data[output_index] = input_data[offset_index]; if (Nullable) { bool const bit_is_set = input_view.is_valid(offset_index); bitmask_type const new_word = __ballot_sync(active_mask, bit_is_set); // First thread writes bitmask word if (threadIdx.x % detail::warp_size == 0) { output_view.null_mask()[word_index(output_index)] = new_word; } warp_valid_count += __popc(new_word); } output_index += stride; if (Nullable) { active_mask = __ballot_sync(active_mask, output_index < output_size); } } if (Nullable) { using detail::single_lane_block_sum_reduce; auto block_valid_count = single_lane_block_sum_reduce<block_size, 0>(warp_valid_count); if (threadIdx.x == 0) { atomicAdd(out_valid_count, block_valid_count); } } } template <typename T> std::unique_ptr<column> fused_concatenate(host_span<column_view const> views, bool const has_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using mask_policy = cudf::mask_allocation_policy; // Preprocess and upload inputs to device memory auto const device_views = create_device_views(views, stream); auto const& d_views = std::get<1>(device_views); auto const& d_offsets = std::get<2>(device_views); auto const output_size = std::get<3>(device_views); CUDF_EXPECTS(output_size <= static_cast<std::size_t>(std::numeric_limits<size_type>::max()), "Total number of concatenated rows exceeds the column size limit", std::overflow_error); // Allocate output auto const policy = has_nulls ? mask_policy::ALWAYS : mask_policy::NEVER; auto out_col = detail::allocate_like(views.front(), output_size, policy, stream, mr); auto out_view = out_col->mutable_view(); auto d_out_view = mutable_column_device_view::create(out_view, stream); rmm::device_scalar<size_type> d_valid_count(0, stream); // Launch kernel constexpr size_type block_size{256}; cudf::detail::grid_1d config(output_size, block_size); auto const kernel = has_nulls ? fused_concatenate_kernel<T, block_size, true> : fused_concatenate_kernel<T, block_size, false>; kernel<<<config.num_blocks, config.num_threads_per_block, 0, stream.value()>>>( d_views.data(), d_offsets.data(), static_cast<size_type>(d_views.size()), *d_out_view, d_valid_count.data()); if (has_nulls) { out_col->set_null_count(output_size - d_valid_count.value(stream)); } else { out_col->set_null_count(0); // prevent null count from being materialized } return out_col; } template <typename T> std::unique_ptr<column> for_each_concatenate(host_span<column_view const> views, bool const has_nulls, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { size_type const total_element_count = std::accumulate(views.begin(), views.end(), 0, [](auto accumulator, auto const& v) { return accumulator + v.size(); }); using mask_policy = cudf::mask_allocation_policy; auto const policy = has_nulls ? mask_policy::ALWAYS : mask_policy::NEVER; auto col = cudf::detail::allocate_like(views.front(), total_element_count, policy, stream, mr); auto m_view = col->mutable_view(); auto count = 0; for (auto& v : views) { thrust::copy(rmm::exec_policy(stream), v.begin<T>(), v.end<T>(), m_view.begin<T>() + count); count += v.size(); } // If concatenated column is nullable, proceed to calculate it if (has_nulls) { col->set_null_count( cudf::detail::concatenate_masks(views, (col->mutable_view()).null_mask(), stream)); } else { col->set_null_count(0); // prevent null count from being materialized } return col; } struct concatenate_dispatch { host_span<column_view const> views; rmm::cuda_stream_view stream; rmm::mr::device_memory_resource* mr; // fixed width template <typename T> std::unique_ptr<column> operator()() { bool const has_nulls = std::any_of(views.begin(), views.end(), [](auto const& col) { return col.has_nulls(); }); // Use a heuristic to guess when the fused kernel will be faster if (use_fused_kernel_heuristic(has_nulls, views.size())) { return fused_concatenate<T>(views, has_nulls, stream, mr); } else { return for_each_concatenate<T>(views, has_nulls, stream, mr); } } }; template <> std::unique_ptr<column> concatenate_dispatch::operator()<cudf::dictionary32>() { return cudf::dictionary::detail::concatenate(views, stream, mr); } template <> std::unique_ptr<column> concatenate_dispatch::operator()<cudf::string_view>() { return cudf::strings::detail::concatenate(views, stream, mr); } template <> std::unique_ptr<column> concatenate_dispatch::operator()<cudf::list_view>() { return cudf::lists::detail::concatenate(views, stream, mr); } template <> std::unique_ptr<column> concatenate_dispatch::operator()<cudf::struct_view>() { return cudf::structs::detail::concatenate(views, stream, mr); } void bounds_and_type_check(host_span<column_view const> cols, rmm::cuda_stream_view stream); /** * @brief Functor for traversing child columns and recursively verifying concatenation * bounds and types. */ class traverse_children { public: // nothing to do for simple types. template <typename T> void operator()(host_span<column_view const>, rmm::cuda_stream_view) { } private: // verify length of concatenated offsets. void check_offsets_size(host_span<column_view const> cols) { // offsets. we can't just add up the total sizes of all offset child columns because each one // has an extra value, regardless of the # of parent rows. So we have to add up the total # of // rows in the base column and add 1 at the end size_t const total_offset_count = std::accumulate(cols.begin(), cols.end(), std::size_t{}, [](size_t a, auto const& b) -> size_t { return a + b.size(); }) + 1; CUDF_EXPECTS(total_offset_count <= static_cast<size_t>(std::numeric_limits<size_type>::max()), "Total number of concatenated offsets exceeds the column size limit", std::overflow_error); } }; template <> void traverse_children::operator()<cudf::string_view>(host_span<column_view const> cols, rmm::cuda_stream_view stream) { // verify offsets check_offsets_size(cols); // chars size_t const total_char_count = std::accumulate( cols.begin(), cols.end(), std::size_t{}, [stream](size_t a, auto const& b) -> size_t { strings_column_view scv(b); return a + (scv.is_empty() ? 0 // if the column is unsliced, skip the offset retrieval. : scv.offset() > 0 ? cudf::detail::get_value<size_type>( scv.offsets(), scv.offset() + scv.size(), stream) - cudf::detail::get_value<size_type>(scv.offsets(), scv.offset(), stream) // if the offset() is 0, it can still be sliced to a shorter length. in this case // we only need to read a single offset. otherwise just return the full length // (chars_size()) : scv.size() + 1 == scv.offsets().size() ? scv.chars_size() : cudf::detail::get_value<size_type>(scv.offsets(), scv.size(), stream)); }); CUDF_EXPECTS(total_char_count <= static_cast<size_t>(std::numeric_limits<size_type>::max()), "Total number of concatenated chars exceeds the column size limit", std::overflow_error); } template <> void traverse_children::operator()<cudf::struct_view>(host_span<column_view const> cols, rmm::cuda_stream_view stream) { // march each child auto child_iter = thrust::make_counting_iterator(0); auto const num_children = cols.front().num_children(); std::vector<column_view> nth_children; nth_children.reserve(cols.size()); std::for_each(child_iter, child_iter + num_children, [&](auto child_index) { std::transform(cols.begin(), cols.end(), std::back_inserter(nth_children), [child_index, stream](column_view const& col) { structs_column_view scv(col); return scv.get_sliced_child(child_index, stream); }); bounds_and_type_check(nth_children, stream); nth_children.clear(); }); } template <> void traverse_children::operator()<cudf::list_view>(host_span<column_view const> cols, rmm::cuda_stream_view stream) { // verify offsets check_offsets_size(cols); // recurse into the child columns std::vector<column_view> nth_children; nth_children.reserve(cols.size()); std::transform( cols.begin(), cols.end(), std::back_inserter(nth_children), [stream](column_view const& col) { lists_column_view lcv(col); return lcv.get_sliced_child(stream); }); bounds_and_type_check(nth_children, stream); } /** * @brief Verifies that the sum of the sizes of all the columns to be concatenated * will not exceed the max value of size_type, and verifies all column types match * * @param columns_to_concat Span of columns to check * * @throws cudf::logic_error if the total length of the concatenated columns would * exceed the max value of size_type * * @throws cudf::logic_error if all of the input column types don't match */ void bounds_and_type_check(host_span<column_view const> cols, rmm::cuda_stream_view stream) { CUDF_EXPECTS(std::all_of(cols.begin(), cols.end(), [expected_type = cols.front().type()](auto const& c) { return c.type() == expected_type; }), "Type mismatch in columns to concatenate."); // total size of all concatenated rows size_t const total_row_count = std::accumulate(cols.begin(), cols.end(), std::size_t{}, [](size_t a, auto const& b) { return a + static_cast<size_t>(b.size()); }); CUDF_EXPECTS(total_row_count <= static_cast<size_t>(std::numeric_limits<size_type>::max()), "Total number of concatenated rows exceeds the column size limit", std::overflow_error); // traverse children cudf::type_dispatcher(cols.front().type(), traverse_children{}, cols, stream); } } // anonymous namespace // Concatenates the elements from a vector of column_views std::unique_ptr<column> concatenate(host_span<column_view const> columns_to_concat, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(not columns_to_concat.empty(), "Unexpected empty list of columns to concatenate."); // verify all types match and that we won't overflow size_type in output size bounds_and_type_check(columns_to_concat, stream); if (std::all_of(columns_to_concat.begin(), columns_to_concat.end(), [](column_view const& c) { return c.is_empty(); })) { return empty_like(columns_to_concat.front()); } return type_dispatcher<dispatch_storage_type>( columns_to_concat.front().type(), concatenate_dispatch{columns_to_concat, stream, mr}); } std::unique_ptr<table> concatenate(host_span<table_view const> tables_to_concat, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (tables_to_concat.empty()) { return std::make_unique<table>(); } table_view const first_table = tables_to_concat.front(); CUDF_EXPECTS(std::all_of(tables_to_concat.begin(), tables_to_concat.end(), [&first_table](auto const& t) { return t.num_columns() == first_table.num_columns(); }), "Mismatch in table columns to concatenate."); std::vector<std::unique_ptr<column>> concat_columns; for (size_type i = 0; i < first_table.num_columns(); ++i) { std::vector<column_view> cols; std::transform(tables_to_concat.begin(), tables_to_concat.end(), std::back_inserter(cols), [i](auto const& t) { return t.column(i); }); // verify all types match and that we won't overflow size_type in output size bounds_and_type_check(cols, stream); concat_columns.emplace_back(detail::concatenate(cols, stream, mr)); } return std::make_unique<table>(std::move(concat_columns)); } rmm::device_buffer concatenate_masks(host_span<column_view const> views, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { bool const has_nulls = std::any_of(views.begin(), views.end(), [](column_view const col) { return col.has_nulls(); }); if (has_nulls) { size_type const total_element_count = std::accumulate(views.begin(), views.end(), 0, [](auto accumulator, auto const& v) { return accumulator + v.size(); }); rmm::device_buffer null_mask = cudf::detail::create_null_mask(total_element_count, mask_state::UNINITIALIZED, stream, mr); detail::concatenate_masks(views, static_cast<bitmask_type*>(null_mask.data()), stream); return null_mask; } // no nulls, so return an empty device buffer return rmm::device_buffer{0, stream, mr}; } } // namespace detail rmm::device_buffer concatenate_masks(host_span<column_view const> views, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::concatenate_masks(views, stream, mr); } // Concatenates the elements from a vector of column_views std::unique_ptr<column> concatenate(host_span<column_view const> columns_to_concat, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::concatenate(columns_to_concat, stream, mr); } std::unique_ptr<table> concatenate(host_span<table_view const> tables_to_concat, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::concatenate(tables_to_concat, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/shift.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_device_view.cuh> #include <cudf/copying.hpp> #include <cudf/detail/copy.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/valid_if.cuh> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/detail/copying.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/default_stream.hpp> #include <cudf/utilities/error.hpp> #include <cudf/utilities/traits.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/copy.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/transform.h> #include <algorithm> #include <iterator> #include <memory> namespace cudf { namespace { inline bool __device__ out_of_bounds(size_type size, size_type idx) { return idx < 0 || idx >= size; } std::pair<rmm::device_buffer, size_type> create_null_mask(column_device_view const& input, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto const size = input.size(); auto func_validity = [size, offset, fill = fill_value.validity_data(), input] __device__(size_type idx) { auto src_idx = idx - offset; return out_of_bounds(size, src_idx) ? *fill : input.is_valid(src_idx); }; return detail::valid_if(thrust::make_counting_iterator<size_type>(0), thrust::make_counting_iterator<size_type>(size), func_validity, stream, mr); } struct shift_functor { template <typename T, typename... Args> std::enable_if_t<not cudf::is_fixed_width<T>() and not std::is_same_v<cudf::string_view, T>, std::unique_ptr<column>> operator()(Args&&...) { CUDF_FAIL("shift only supports fixed-width or string types."); } template <typename T, typename... Args> std::enable_if_t<std::is_same_v<cudf::string_view, T>, std::unique_ptr<column>> operator()( column_view const& input, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto output = cudf::strings::detail::shift( cudf::strings_column_view(input), offset, fill_value, stream, mr); if (input.nullable() || not fill_value.is_valid(stream)) { auto const d_input = column_device_view::create(input, stream); auto [null_mask, null_count] = create_null_mask(*d_input, offset, fill_value, stream, mr); output->set_null_mask(std::move(null_mask), null_count); } return output; } template <typename T> std::enable_if_t<cudf::is_fixed_width<T>(), std::unique_ptr<column>> operator()( column_view const& input, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { using ScalarType = cudf::scalar_type_t<T>; auto& scalar = static_cast<ScalarType const&>(fill_value); auto device_input = column_device_view::create(input, stream); auto output = detail::allocate_like(input, input.size(), mask_allocation_policy::NEVER, stream, mr); auto device_output = mutable_column_device_view::create(*output, stream); auto const scalar_is_valid = scalar.is_valid(stream); if (input.nullable() || not scalar_is_valid) { auto [null_mask, null_count] = create_null_mask(*device_input, offset, fill_value, stream, mr); output->set_null_mask(std::move(null_mask), null_count); } auto const size = input.size(); auto index_begin = thrust::make_counting_iterator<size_type>(0); auto index_end = thrust::make_counting_iterator<size_type>(size); auto data = device_output->data<T>(); // avoid assigning elements we know to be invalid. if (not scalar_is_valid) { if (std::abs(offset) > size) { return output; } if (offset > 0) { index_begin = thrust::make_counting_iterator<size_type>(offset); data = data + offset; } else if (offset < 0) { index_end = thrust::make_counting_iterator<size_type>(size + offset); } } auto func_value = [size, offset, fill = scalar.data(), input = *device_input] __device__(size_type idx) { auto src_idx = idx - offset; return out_of_bounds(size, src_idx) ? *fill : input.element<T>(src_idx); }; thrust::transform(rmm::exec_policy(stream), index_begin, index_end, data, func_value); return output; } }; } // anonymous namespace namespace detail { std::unique_ptr<column> shift(column_view const& input, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS(input.type() == fill_value.type(), "shift requires each fill value type to match the corresponding column type."); if (input.is_empty()) { return empty_like(input); } return type_dispatcher<dispatch_storage_type>( input.type(), shift_functor{}, input, offset, fill_value, stream, mr); } } // namespace detail std::unique_ptr<column> shift(column_view const& input, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::shift(input, offset, fill_value, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/reverse.cu
/* * Copyright (c) 2021-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/device_uvector.hpp> #include <rmm/exec_policy.hpp> #include <rmm/mr/device/per_device_resource.hpp> #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_output_iterator.h> #include <thrust/scan.h> namespace cudf { namespace detail { std::unique_ptr<table> reverse(table_view const& source_table, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { size_type num_rows = source_table.num_rows(); auto elements = make_counting_transform_iterator(0, [num_rows] __device__(auto i) { return num_rows - i - 1; }); auto elements_end = elements + source_table.num_rows(); return gather(source_table, elements, elements_end, out_of_bounds_policy::DONT_CHECK, stream, mr); } std::unique_ptr<column> reverse(column_view const& source_column, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return std::move( cudf::detail::reverse(table_view({source_column}), stream, mr)->release().front()); } } // namespace detail std::unique_ptr<table> reverse(table_view const& source_table, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::reverse(source_table, stream, mr); } std::unique_ptr<column> reverse(column_view const& source_column, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::reverse(source_column, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/copying/segmented_shift.cu
/* * Copyright (c) 2021-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/copy.hpp> #include <cudf/detail/copy_if_else.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/scalar/scalar.hpp> #include <cudf/strings/detail/copy_if_else.cuh> #include <cudf/strings/string_view.cuh> #include <cudf/types.hpp> #include <cudf/utilities/traits.hpp> #include <rmm/cuda_stream_view.hpp> #include <thrust/binary_search.h> #include <thrust/execution_policy.h> #include <thrust/iterator/transform_iterator.h> namespace cudf { namespace detail { namespace { /** * @brief Common filter function to convert index values into copy-if-else left/right result. * * The offset position is used to identify which segment to copy from. */ struct segmented_shift_filter { device_span<size_type const> const segment_offsets; size_type const offset; __device__ bool operator()(size_type const i) const { auto const segment_bound_idx = thrust::upper_bound(thrust::seq, segment_offsets.begin(), segment_offsets.end(), i) - (offset > 0); auto const left_idx = *segment_bound_idx + (offset < 0 ? offset : 0); auto const right_idx = *segment_bound_idx + (offset > 0 ? offset : 0); return not(left_idx <= i and i < right_idx); }; }; template <typename T, typename Enable = void> struct segmented_shift_functor { template <typename... Args> std::unique_ptr<column> operator()(Args&&...) { CUDF_FAIL("Unsupported type for segmented_shift."); } }; /** * @brief Segmented shift specialization for representation layout compatible types. */ template <typename T> struct segmented_shift_functor<T, std::enable_if_t<is_rep_layout_compatible<T>()>> { std::unique_ptr<column> operator()(column_view const& segmented_values, device_span<size_type const> segment_offsets, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_device_view = column_device_view::create(segmented_values, stream); bool nullable = not fill_value.is_valid(stream) or segmented_values.nullable(); auto input_iterator = cudf::detail::make_optional_iterator<T>( *values_device_view, nullate::DYNAMIC{segmented_values.has_nulls()}) - offset; auto fill_iterator = cudf::detail::make_optional_iterator<T>(fill_value, nullate::YES{}); return copy_if_else(nullable, input_iterator, input_iterator + segmented_values.size(), fill_iterator, segmented_shift_filter{segment_offsets, offset}, segmented_values.type(), stream, mr); } }; /** * @brief Segmented shift specialization for `string_view`. */ template <> struct segmented_shift_functor<string_view> { std::unique_ptr<column> operator()(column_view const& segmented_values, device_span<size_type const> segment_offsets, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { auto values_device_view = column_device_view::create(segmented_values, stream); auto input_iterator = make_optional_iterator<cudf::string_view>( *values_device_view, nullate::DYNAMIC{segmented_values.has_nulls()}) - offset; auto fill_iterator = make_optional_iterator<cudf::string_view>(fill_value, nullate::YES{}); return strings::detail::copy_if_else(input_iterator, input_iterator + segmented_values.size(), fill_iterator, segmented_shift_filter{segment_offsets, offset}, stream, mr); } }; /** * @brief Functor to instantiate the specializations for segmented shift and * forward arguments. */ struct segmented_shift_functor_forwarder { template <typename T> std::unique_ptr<column> operator()(column_view const& segmented_values, device_span<size_type const> segment_offsets, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { segmented_shift_functor<T> shifter; return shifter(segmented_values, segment_offsets, offset, fill_value, stream, mr); } }; } // namespace std::unique_ptr<column> segmented_shift(column_view const& segmented_values, device_span<size_type const> segment_offsets, size_type offset, scalar const& fill_value, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { if (segmented_values.is_empty()) { return empty_like(segmented_values); } if (offset == 0) { return std::make_unique<column>(segmented_values, stream, mr); }; return type_dispatcher<dispatch_storage_type>(segmented_values.type(), segmented_shift_functor_forwarder{}, segmented_values, segment_offsets, offset, fill_value, stream, mr); } } // namespace detail } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/search/contains_column.cu
/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/detail/null_mask.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/search.hpp> #include <cudf/dictionary/detail/search.hpp> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/table/table_view.hpp> #include <rmm/cuda_stream_view.hpp> namespace cudf { namespace detail { namespace { struct contains_column_dispatch { template <typename Element> std::unique_ptr<column> operator()(column_view const& haystack, column_view const& needles, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { auto result_v = detail::contains(table_view{{haystack}}, table_view{{needles}}, null_equality::EQUAL, nan_equality::ALL_EQUAL, stream, mr); return std::make_unique<column>( std::move(result_v), detail::copy_bitmask(needles, stream, mr), needles.null_count()); } }; template <> std::unique_ptr<column> contains_column_dispatch::operator()<dictionary32>( column_view const& haystack_in, column_view const& needles_in, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) const { dictionary_column_view const haystack(haystack_in); dictionary_column_view const needles(needles_in); // first combine keys so both dictionaries have the same set auto needles_matched = dictionary::detail::add_keys( needles, haystack.keys(), stream, rmm::mr::get_current_device_resource()); auto const needles_view = dictionary_column_view(needles_matched->view()); auto haystack_matched = dictionary::detail::set_keys( haystack, needles_view.keys(), stream, rmm::mr::get_current_device_resource()); auto const haystack_view = dictionary_column_view(haystack_matched->view()); // now just use the indices for the contains column_view const haystack_indices = haystack_view.get_indices_annotated(); column_view const needles_indices = needles_view.get_indices_annotated(); return cudf::type_dispatcher(haystack_indices.type(), contains_column_dispatch{}, haystack_indices, needles_indices, stream, mr); } } // namespace std::unique_ptr<column> contains(column_view const& haystack, column_view const& needles, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return cudf::type_dispatcher( haystack.type(), contains_column_dispatch{}, haystack, needles, stream, mr); } } // namespace detail std::unique_ptr<column> contains(column_view const& haystack, column_view const& needles, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::contains(haystack, needles, stream, mr); } } // namespace cudf
0
rapidsai_public_repos/cudf/cpp/src
rapidsai_public_repos/cudf/cpp/src/search/search_ordered.cu
/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cudf/column/column_factories.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/detail/utilities/vector_factories.hpp> #include <cudf/dictionary/detail/update_keys.hpp> #include <cudf/table/experimental/row_operators.cuh> #include <cudf/table/table_device_view.cuh> #include <cudf/table/table_view.hpp> #include <cudf/utilities/default_stream.hpp> #include <rmm/cuda_stream_view.hpp> #include <rmm/exec_policy.hpp> #include <thrust/binary_search.h> namespace cudf { namespace detail { namespace { std::unique_ptr<column> search_ordered(table_view const& haystack, table_view const& needles, bool find_first, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_EXPECTS( column_order.empty() or static_cast<std::size_t>(haystack.num_columns()) == column_order.size(), "Mismatch between number of columns and column order."); CUDF_EXPECTS(null_precedence.empty() or static_cast<std::size_t>(haystack.num_columns()) == null_precedence.size(), "Mismatch between number of columns and null precedence."); // Allocate result column auto result = make_numeric_column( data_type{type_to_id<size_type>()}, needles.num_rows(), mask_state::UNALLOCATED, stream, mr); auto const out_it = result->mutable_view().data<size_type>(); // Handle empty inputs if (haystack.num_rows() == 0) { CUDF_CUDA_TRY( cudaMemsetAsync(out_it, 0, needles.num_rows() * sizeof(size_type), stream.value())); return result; } // This utility will ensure all corresponding dictionary columns have matching keys. // It will return any new dictionary columns created as well as updated table_views. auto const matched = dictionary::detail::match_dictionaries( {haystack, needles}, stream, rmm::mr::get_current_device_resource()); auto const& matched_haystack = matched.second.front(); auto const& matched_needles = matched.second.back(); auto const comparator = cudf::experimental::row::lexicographic::two_table_comparator( matched_haystack, matched_needles, column_order, null_precedence, stream); auto const has_nulls = has_nested_nulls(matched_haystack) or has_nested_nulls(matched_needles); auto const haystack_it = cudf::experimental::row::lhs_iterator(0); auto const needles_it = cudf::experimental::row::rhs_iterator(0); if (cudf::detail::has_nested_columns(haystack) || cudf::detail::has_nested_columns(needles)) { auto const d_comparator = comparator.less<true>(nullate::DYNAMIC{has_nulls}); if (find_first) { thrust::lower_bound(rmm::exec_policy(stream), haystack_it, haystack_it + haystack.num_rows(), needles_it, needles_it + needles.num_rows(), out_it, d_comparator); } else { thrust::upper_bound(rmm::exec_policy(stream), haystack_it, haystack_it + haystack.num_rows(), needles_it, needles_it + needles.num_rows(), out_it, d_comparator); } } else { auto const d_comparator = comparator.less<false>(nullate::DYNAMIC{has_nulls}); if (find_first) { thrust::lower_bound(rmm::exec_policy(stream), haystack_it, haystack_it + haystack.num_rows(), needles_it, needles_it + needles.num_rows(), out_it, d_comparator); } else { thrust::upper_bound(rmm::exec_policy(stream), haystack_it, haystack_it + haystack.num_rows(), needles_it, needles_it + needles.num_rows(), out_it, d_comparator); } } return result; } } // namespace std::unique_ptr<column> lower_bound(table_view const& haystack, table_view const& needles, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return search_ordered(haystack, needles, true, column_order, null_precedence, stream, mr); } std::unique_ptr<column> upper_bound(table_view const& haystack, table_view const& needles, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { return search_ordered(haystack, needles, false, column_order, null_precedence, stream, mr); } } // namespace detail // external APIs std::unique_ptr<column> lower_bound(table_view const& haystack, table_view const& needles, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::lower_bound(haystack, needles, column_order, null_precedence, stream, mr); } std::unique_ptr<column> upper_bound(table_view const& haystack, table_view const& needles, std::vector<order> const& column_order, std::vector<null_order> const& null_precedence, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::upper_bound(haystack, needles, column_order, null_precedence, stream, mr); } } // namespace cudf
0