|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A corpus for plant and chemical entities and for the relationships between them. |
|
The corpus contains 2218 plant and chemical entities and 600 plant-chemical |
|
relationships which are drawn from 1109 sentences in 245 PubMed abstracts. |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, Iterator, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{choi2016corpus, |
|
title = {A corpus for plant-chemical relationships in the biomedical domain}, |
|
author = { |
|
Choi, Wonjun and Kim, Baeksoo and Cho, Hyejin and Lee, Doheon and Lee, |
|
Hyunju |
|
}, |
|
year = 2016, |
|
journal = {BMC bioinformatics}, |
|
publisher = {Springer}, |
|
volume = 17, |
|
number = 1, |
|
pages = {1--15} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "pcr" |
|
_DISPLAYNAME = "PCR" |
|
|
|
_DESCRIPTION = """ |
|
A corpus for plant / herb and chemical entities and for the relationships \ |
|
between them. The corpus contains 2218 plant and chemical entities and 600 \ |
|
plant-chemical relationships which are drawn from 1109 sentences in 245 PubMed \ |
|
abstracts. |
|
""" |
|
|
|
_HOMEPAGE = "http://210.107.182.73/plantchemcorpus.htm" |
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = {_DATASETNAME: "http://210.107.182.73/1109_corpus_units_STformat.tar"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.EVENT_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class PCRDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The corpus of plant-chemical relation consists of plants / herbs and |
|
chemicals and relations between them. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="pcr_source", |
|
version=SOURCE_VERSION, |
|
description="PCR source schema", |
|
schema="source", |
|
subset_id="pcr", |
|
), |
|
BigBioConfig( |
|
name="pcr_fixed_source", |
|
version=SOURCE_VERSION, |
|
description="PCR (with fixed offsets) source schema", |
|
schema="source", |
|
subset_id="pcr_fixed", |
|
), |
|
BigBioConfig( |
|
name="pcr_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="PCR BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="pcr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pcr_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
|
|
"trigger": { |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
}, |
|
"arguments": [ |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
}, |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
data_dir = data_dir / "1109 corpus units" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dir": data_dir}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir: Path) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.schema == "source": |
|
for file in data_dir.iterdir(): |
|
if not str(file).endswith(".txt"): |
|
continue |
|
|
|
example = parsing.parse_brat_file(file) |
|
example = parsing.brat_parse_to_bigbio_kb(example) |
|
example = self._to_source_example(example) |
|
|
|
|
|
if self.config.subset_id == "pcr_fixed" and example["document_id"] in [ |
|
"463", |
|
"509", |
|
"566", |
|
]: |
|
example = self._fix_example(example) |
|
|
|
yield example["document_id"], example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for file in data_dir.iterdir(): |
|
if not str(file).endswith(".txt"): |
|
continue |
|
|
|
example = parsing.parse_brat_file(file) |
|
example = parsing.brat_parse_to_bigbio_kb(example) |
|
|
|
document_id = example["document_id"] |
|
example["id"] = document_id |
|
|
|
|
|
if document_id in ["463", "509", "566"]: |
|
example = self._fix_example(example) |
|
|
|
yield example["id"], example |
|
|
|
def _to_source_example(self, bigbio_example: Dict) -> Dict: |
|
""" |
|
Converts an example in BigBio-KB scheme to an example according to the source scheme |
|
""" |
|
source_example = bigbio_example.copy() |
|
source_example["text"] = bigbio_example["passages"][0]["text"][0] |
|
|
|
source_example.pop("passages", None) |
|
source_example.pop("relations", None) |
|
source_example.pop("coreferences", None) |
|
|
|
return source_example |
|
|
|
def _fix_example(self, example: Dict) -> Dict: |
|
""" |
|
Fixes by the example by adapting the offsets of the trigger word of the first |
|
event. In the official annotation data the end offset is incorrect (for 3 examples). |
|
""" |
|
first_event = example["events"][0] |
|
trigger_text = first_event["trigger"]["text"][0] |
|
offsets = first_event["trigger"]["offsets"][0] |
|
|
|
real_offsets = [offsets[0], offsets[0] + len(trigger_text)] |
|
example["events"][0]["trigger"]["offsets"] = [real_offsets] |
|
|
|
return example |
|
|