markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
TODO: Backpropagate the errorNow it's your turn to shine. Write the error term. Remember that this is given by the equation $$ (y-\hat{y}) \sigma'(x) $$ | # TODO: Write the error term formula
def error_term_formula(x, y, output):
return (y - output) * sigmoid_prime(x)
# Neural Network hyperparameters
epochs = 1000
learnrate = 0.5
# Training function
def train_nn(features, targets, epochs, learnrate):
# Use to same seed to make debugging easier
np.random.seed(42)
n_records, n_features = features.shape
last_loss = None
# Initialize weights
weights = np.random.normal(scale=1 / n_features**.5, size=n_features)
for e in range(epochs):
del_w = np.zeros(weights.shape)
for x, y in zip(features.values, targets):
# Loop through all records, x is the input, y is the target
# Activation of the output unit
# Notice we multiply the inputs and the weights here
# rather than storing h as a separate variable
output = sigmoid(np.dot(x, weights))
# The error, the target minus the network output
error = error_formula(y, output)
# The error term
error_term = error_term_formula(x, y, output)
# The gradient descent step, the error times the gradient times the inputs
del_w += error_term * x
# Update the weights here. The learning rate times the
# change in weights, divided by the number of records to average
weights += learnrate * del_w / n_records
# Printing out the mean square error on the training set
if e % (epochs / 10) == 0:
out = sigmoid(np.dot(features, weights))
loss = np.mean((out - targets) ** 2)
print("Epoch:", e)
if last_loss and last_loss < loss:
print("Train loss: ", loss, " WARNING - Loss Increasing")
else:
print("Train loss: ", loss)
last_loss = loss
print("=========")
print("Finished training!")
return weights
weights = train_nn(features, targets, epochs, learnrate) | Epoch: 0
Train loss: 0.27336783372760837
=========
Epoch: 100
Train loss: 0.2144589591438936
=========
Epoch: 200
Train loss: 0.21248210601845877
=========
Epoch: 300
Train loss: 0.21145849287875826
=========
Epoch: 400
Train loss: 0.2108945778573249
=========
Epoch: 500
Train loss: 0.21055121998038537
=========
Epoch: 600
Train loss: 0.21031564296367067
=========
Epoch: 700
Train loss: 0.2101342506838123
=========
Epoch: 800
Train loss: 0.20998112157065615
=========
Epoch: 900
Train loss: 0.20984348241982478
=========
Finished training!
| MIT | Introduction to Neural Networks/StudentAdmissions.ipynb | kushkul/Facebook-Pytorch-Scholarship-Challenge |
Calculating the Accuracy on the Test Data | # Calculate accuracy on test data
test_out = sigmoid(np.dot(features_test, weights))
predictions = test_out > 0.5
accuracy = np.mean(predictions == targets_test)
print("Prediction accuracy: {:.3f}".format(accuracy)) | Prediction accuracy: 0.800
| MIT | Introduction to Neural Networks/StudentAdmissions.ipynb | kushkul/Facebook-Pytorch-Scholarship-Challenge |
Lambda School Data Science*Unit 2, Sprint 2, Module 2*--- Random Forests Assignment- [ ] Read [βAdopting a Hypothesis-Driven Workflowβ](https://outline.com/5S5tsB), a blog post by a Lambda DS student about the Tanzania Waterpumps challenge.- [ ] Continue to participate in our Kaggle challenge.- [ ] Define a function to wrangle train, validate, and test sets in the same way. Clean outliers and engineer features.- [ ] Try Ordinal Encoding.- [ ] Try a Random Forest Classifier.- [ ] Submit your predictions to our Kaggle competition. (Go to our Kaggle InClass competition webpage. Use the blue **Submit Predictions** button to upload your CSV file. Or you can use the Kaggle API to submit your predictions.)- [ ] Commit your notebook to your fork of the GitHub repo. Stretch Goals Doing- [ ] Add your own stretch goal(s) !- [ ] Do more exploratory data analysis, data cleaning, feature engineering, and feature selection.- [ ] Try other [categorical encodings](https://contrib.scikit-learn.org/categorical-encoding/).- [ ] Get and plot your feature importances.- [ ] Make visualizations and share on Slack. ReadingTop recommendations in _**bold italic:**_ Decision Trees- A Visual Introduction to Machine Learning, [Part 1: A Decision Tree](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/), and _**[Part 2: Bias and Variance](http://www.r2d3.us/visual-intro-to-machine-learning-part-2/)**_- [Decision Trees: Advantages & Disadvantages](https://christophm.github.io/interpretable-ml-book/tree.htmladvantages-2)- [How a Russian mathematician constructed a decision tree β by hand β to solve a medical problem](http://fastml.com/how-a-russian-mathematician-constructed-a-decision-tree-by-hand-to-solve-a-medical-problem/)- [How decision trees work](https://brohrer.github.io/how_decision_trees_work.html)- [Letβs Write a Decision Tree Classifier from Scratch](https://www.youtube.com/watch?v=LDRbO9a6XPU) Random Forests- [_An Introduction to Statistical Learning_](http://www-bcf.usc.edu/~gareth/ISL/), Chapter 8: Tree-Based Methods- [Coloring with Random Forests](http://structuringtheunstructured.blogspot.com/2017/11/coloring-with-random-forests.html)- _**[Random Forests for Complete Beginners: The definitive guide to Random Forests and Decision Trees](https://victorzhou.com/blog/intro-to-random-forests/)**_ Categorical encoding for trees- [Are categorical variables getting lost in your random forests?](https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/)- [Beyond One-Hot: An Exploration of Categorical Variables](http://www.willmcginnis.com/2015/11/29/beyond-one-hot-an-exploration-of-categorical-variables/)- _**[Categorical Features and Encoding in Decision Trees](https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931)**_- _**[Coursera βΒ How to Win a Data Science Competition: Learn from Top Kagglers βΒ Concept of mean encoding](https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv)**_- [Mean (likelihood) encodings: a comprehensive study](https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study)- [The Mechanics of Machine Learning, Chapter 6: Categorically Speaking](https://mlbook.explained.ai/catvars.html) Imposter Syndrome- [Effort Shock and Reward Shock (How The Karate Kid Ruined The Modern World)](http://www.tempobook.com/2014/07/09/effort-shock-and-reward-shock/)- [How to manage impostor syndrome in data science](https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068)- ["I am not a real data scientist"](https://brohrer.github.io/imposter_syndrome.html)- _**[Imposter Syndrome in Data Science](https://caitlinhudon.com/2018/01/19/imposter-syndrome-in-data-science/)**_ More Categorical Encodings**1.** The article **[Categorical Features and Encoding in Decision Trees](https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931)** mentions 4 encodings:- **"Categorical Encoding":** This means using the raw categorical values as-is, not encoded. Scikit-learn doesn't support this, but some tree algorithm implementations do. For example, [Catboost](https://catboost.ai/), or R's [rpart](https://cran.r-project.org/web/packages/rpart/index.html) package.- **Numeric Encoding:** Synonymous with Label Encoding, or "Ordinal" Encoding with random order. We can use [category_encoders.OrdinalEncoder](https://contrib.scikit-learn.org/categorical-encoding/ordinal.html).- **One-Hot Encoding:** We can use [category_encoders.OneHotEncoder](http://contrib.scikit-learn.org/categorical-encoding/onehot.html).- **Binary Encoding:** We can use [category_encoders.BinaryEncoder](http://contrib.scikit-learn.org/categorical-encoding/binary.html).**2.** The short video **[Coursera β How to Win a Data Science Competition: Learn from Top Kagglers β Concept of mean encoding](https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv)** introduces an interesting idea: use both X _and_ y to encode categoricals.Category Encoders has multiple implementations of this general concept:- [CatBoost Encoder](http://contrib.scikit-learn.org/categorical-encoding/catboost.html)- [James-Stein Encoder](http://contrib.scikit-learn.org/categorical-encoding/jamesstein.html)- [Leave One Out](http://contrib.scikit-learn.org/categorical-encoding/leaveoneout.html)- [M-estimate](http://contrib.scikit-learn.org/categorical-encoding/mestimate.html)- [Target Encoder](http://contrib.scikit-learn.org/categorical-encoding/targetencoder.html)- [Weight of Evidence](http://contrib.scikit-learn.org/categorical-encoding/woe.html)Category Encoder's mean encoding implementations work for regression problems or binary classification problems. For multi-class classification problems, you will need to temporarily reformulate it as binary classification. For example:```pythonencoder = ce.TargetEncoder(min_samples_leaf=..., smoothing=...) Both parameters > 1 to avoid overfittingX_train_encoded = encoder.fit_transform(X_train, y_train=='functional')X_val_encoded = encoder.transform(X_train, y_val=='functional')```For this reason, mean encoding won't work well within pipelines for multi-class classification problems.**3.** The **[dirty_cat](https://dirty-cat.github.io/stable/)** library has a Target Encoder implementation that works with multi-class classification.```python dirty_cat.TargetEncoder(clf_type='multiclass-clf')```It also implements an interesting idea called ["Similarity Encoder" for dirty categories](https://www.slideshare.net/GaelVaroquaux/machine-learning-on-non-curated-data-154905090).However, it seems like dirty_cat doesn't handle missing values or unknown categories as well as category_encoders does. And you may need to use it with one column at a time, instead of with your whole dataframe.**4. [Embeddings](https://www.kaggle.com/learn/embeddings)** can work well with sparse / high cardinality categoricals._**I hope itβs not too frustrating or confusing that thereβs not one βcanonicalβ way to encode categoricals. Itβs an active area of research and experimentation! Maybe you can make your own contributions!**_ SetupYou can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab (run the code cell below). | %%capture
import sys
# If you're on Colab:
if 'google.colab' in sys.modules:
DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Kaggle-Challenge/master/data/'
!pip install category_encoders==2.*
# If you're working locally:
else:
DATA_PATH = '../data/'
import pandas as pd
from sklearn.model_selection import train_test_split
train = pd.merge(pd.read_csv(DATA_PATH+'waterpumps/train_features.csv'),
pd.read_csv(DATA_PATH+'waterpumps/train_labels.csv'))
test = pd.read_csv(DATA_PATH+'waterpumps/test_features.csv')
sample_submission = pd.read_csv(DATA_PATH+'waterpumps/sample_submission.csv')
train.shape, test.shape | _____no_output_____ | MIT | module2-random-forests/Ahvi_Blackwell_LS_DS_222_assignment.ipynb | ahvblackwelltech/DS-Unit-2-Kaggle-Challenge |
1. Define a function to wrangle train, validate, and test sets in the same way. Clean outliers and engineer features. | import pandas as pd
import numpy as np
%matplotlib inline
# Splitting the train into a train & val
train, val = train_test_split(train, train_size=0.80, test_size=0.02,
stratify=train['status_group'], random_state=42)
def wrangle(X):
X = X.copy()
X['latitude'] = X['latitude'].replace(-2e-08, 0)
cols_with_zeros = ['longitude', 'latitude', 'construction_year',
'gps_height', 'population']
for col in cols_with_zeros:
X[col] = X[col].replace(0, np.nan)
X[col+'_MISSING'] = X[col].isnull()
duplicates = ['quantity_group', 'payment_type']
X = X.drop(columns=duplicates)
unusable_variance = ['recorded_by', 'id']
X = X.drop(columns=unusable_variance)
X['date_recorded'] = pd.to_datetime(X['date_recorded'], infer_datetime_format=True)
X['year_recorded'] = X['date_recorded'].dt.year
X['month_recorded'] = X['date_recorded'].dt.month
X['day_recorded'] = X['date_recorded'].dt.day
X = X.drop(columns='date_recorded')
X['years'] = X['year_recorded'] - X['construction_year']
X['years_MISSING'] = X['years'].isnull()
return X
train = wrangle(train)
val = wrangle(val)
test = wrangle(test)
# The target is status_group
target = 'status_group'
train_features = train.drop(columns=[target])
# Getting list of the numeric features
numeric_features = train_features.select_dtypes(include='number').columns.tolist()
cardinality = train_features.select_dtypes(exclude='number').nunique()
categorical_features = cardinality[cardinality <= 50].index.tolist()
# Combined the lists
features = numeric_features + categorical_features
# Arranging the data into X features matrix & y target vector
X_train = train[features]
y_train = train[target]
X_val = val[features]
y_val = val[target]
X_test = test[features]
# 38 features
print(X_train.shape, X_val.shape) | (47520, 38) (1188, 38)
| MIT | module2-random-forests/Ahvi_Blackwell_LS_DS_222_assignment.ipynb | ahvblackwelltech/DS-Unit-2-Kaggle-Challenge |
2. Try Ordinal Encoding | pip install category_encoders
%%time
import category_encoders as ce
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(
ce.OneHotEncoder(use_cat_names=True),
SimpleImputer(strategy='mean'),
RandomForestClassifier(n_jobs=-1, random_state=42)
)
pipeline.fit(X_train, y_train)
print('Validation Accuracy:', round(pipeline.score(X_val, y_val)))
encoder = pipeline.named_steps['onehotencoder']
encoded_df = encoder.transform(X_train)
print('X_train shape after encoding', encoded_df.shape)
# Now there are 182 features
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
rf = pipeline.named_steps['randomforestclassifier']
importances = pd.Series(rf.feature_importances_, encoded_df.columns)
n = 25
plt.figure(figsize=(10, n/2))
plt.title(f'Top {n} Features')
importances.sort_values()[-n:].plot.barh(color='grey');
# My Submission CSV
y_pred = pipeline.predict(X_test)
submission = sample_submission.copy()
submission['status_group'] = y_pred
submission.to_csv('ALB_submission_2.csv', index=False)
submission.head()
| _____no_output_____ | MIT | module2-random-forests/Ahvi_Blackwell_LS_DS_222_assignment.ipynb | ahvblackwelltech/DS-Unit-2-Kaggle-Challenge |
1. Load the pre-trained VGG-16 (only the feature extractor) | # Load the ImageNet VGG-16 model, ***excluding*** the latter part regarding the classifier
# Default of input_shape is 224x224x3 for VGG-16
img_w,img_h = 32,32
vgg_extractor = tf.keras.applications.vgg16.VGG16(weights = "imagenet", include_top=False, input_shape = (img_w, img_h, 3))
vgg_extractor.summary() | Metal device set to: Apple M1
systemMemory: 16.00 GB
maxCacheSize: 5.33 GB
| MIT | object-detection/ex12_05_keras_VGG16_transfer.ipynb | farofang/thai-traffic-signs |
2. Extend VGG-16 to match our requirement | # Freeze all layers in VGG-16
for i,layer in enumerate(vgg_extractor.layers):
print( f"Layer {i}: name = {layer.name} , trainable = {layer.trainable} => {False}" )
layer.trainable = False # freeze this layer
x = vgg_extractor.output
# Add our custom layer(s) to the end of the existing model
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(1024, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
new_outputs = tf.keras.layers.Dense(10, activation="softmax")(x)
# Create the final model
model = tf.keras.models.Model(inputs=vgg_extractor.input, outputs=new_outputs)
model.summary() | Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 32, 32, 3)] 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 32, 32, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 32, 32, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 16, 16, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 16, 16, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 16, 16, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 8, 8, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 8, 8, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 8, 8, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 8, 8, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 4, 4, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 4, 4, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 4, 4, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 4, 4, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 2, 2, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 2, 2, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 2, 2, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 2, 2, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 1, 1, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 512) 0
_________________________________________________________________
dense (Dense) (None, 1024) 525312
_________________________________________________________________
dropout (Dropout) (None, 1024) 0
_________________________________________________________________
dense_1 (Dense) (None, 10) 10250
=================================================================
Total params: 15,250,250
Trainable params: 535,562
Non-trainable params: 14,714,688
_________________________________________________________________
| MIT | object-detection/ex12_05_keras_VGG16_transfer.ipynb | farofang/thai-traffic-signs |
3. Prepare our own dataset | # Load CIFAR-10 color image dataset
(x_train , y_train), (x_test , y_test) = tf.keras.datasets.cifar10.load_data()
# Inspect the dataset
print( f"x_train: type={type(x_train)} dtype={x_train.dtype} shape={x_train.shape} max={x_train.max(axis=None)} min={x_train.min(axis=None)}" )
print( f"y_train: type={type(y_train)} dtype={y_train.dtype} shape={y_train.shape} max={max(y_train)} min={min(y_train)}" )
print( f"x_test: type={type(x_test)} dtype={x_test.dtype} shape={x_test.shape} max={x_test.max(axis=None)} min={x_test.min(axis=None)}" )
print( f"y_test: type={type(y_test)} dtype={y_test.dtype} shape={y_test.shape} max={max(y_test)} min={min(y_test)}" )
y_train[0:5]
cifar10_labels = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' ]
# Visualize the first five images in x_train
plt.figure(figsize=(15,5))
for i in range(5):
plt.subplot(150 + 1 + i).set_title( f"class no. {y_train[i]}: {cifar10_labels[ int(y_train[i]) ]}" )
plt.imshow( x_train[i] )
plt.setp( plt.gcf().get_axes(), xticks=[], yticks=[]) # remove all tick marks
plt.show()
# Preprocess CIFAR-10 dataset to match VGG-16's requirements
x_train_vgg = tf.keras.applications.vgg16.preprocess_input(x_train)
x_test_vgg = tf.keras.applications.vgg16.preprocess_input(x_test)
print( x_train_vgg.dtype, x_train_vgg.shape, np.min(x_train_vgg), np.max(x_train_vgg) )
print( x_test_vgg.dtype, x_test_vgg.shape, np.min(x_test_vgg), np.max(x_test_vgg) ) | _____no_output_____ | MIT | object-detection/ex12_05_keras_VGG16_transfer.ipynb | farofang/thai-traffic-signs |
4. Transfer learning | # Set loss function, optimizer and evaluation metric
model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["acc"] )
history = model.fit( x_train_vgg, y_train, batch_size=128, epochs=20, verbose=1, validation_data=(x_test_vgg,y_test) )
# Summarize history for accuracy
plt.figure(figsize=(15,5))
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Train accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.grid()
plt.show()
# Summarize history for loss
plt.figure(figsize=(15,5))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Train loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.grid()
plt.show() | _____no_output_____ | MIT | object-detection/ex12_05_keras_VGG16_transfer.ipynb | farofang/thai-traffic-signs |
5. Evaluate and test the model | # Evaluate the trained model on the test set
results = model.evaluate(x_test_vgg, y_test, batch_size=128)
print("test loss, test acc:", results)
# Test using the model on x_test_vgg[0]
i = 0
y_pred = model.predict( x_test_vgg[i].reshape(1,32,32,3) )
plt.imshow( x_test[i] )
plt.title( f"x_test[{i}]: predict=[{np.argmax(y_pred)}]{cifar10_labels[np.argmax(y_pred)]}, true={y_test[i]}{cifar10_labels[int(y_test[i])]}" )
plt.show()
# Test using the model on the first 20 images in x_test
for i in range(20):
y_pred = model.predict( x_test_vgg[i].reshape(1,32,32,3) )
plt.imshow( x_test[i] )
plt.title( f"x_test[{i}]: predict=[{np.argmax(y_pred)}]{cifar10_labels[np.argmax(y_pred)]}, true={y_test[i]}{cifar10_labels[int(y_test[i])]}" )
plt.show() | _____no_output_____ | MIT | object-detection/ex12_05_keras_VGG16_transfer.ipynb | farofang/thai-traffic-signs |
This notebook serves as a refresher with some basic Python code and functions 1) Define a variable called x, with initial value of 5. multiply by 2 four times and print the value each time | x = 5
for i in range(4):
x = x*2
print(i, x)
| 0 10
1 20
2 40
3 80
| MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
2) Define a list | p = [9, 4, -5, 0, 10.9]
# Get length of list
len(p)
# index of a specific element
p.index(0)
# first element in list
p[0]
print(sum(p)) | 18.9
| MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
3) Create a numpy array | import numpy as np
a = np.array([5, -19, 30, 10])
# Get first element
a[0]
# Get last element
a[-1]
# Get first 3 elements
print(a[0:3])
print(a[:3])
# Get size of the array
a.shape | _____no_output_____ | MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
4) Define a dictionary that stores the age of three students. Mark: 26, Camilla: 23, Jason: 30 | students = {'Mark':26,
'Camilla': 23,
'Jason':30}
students['Mark']
students.keys() | _____no_output_____ | MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
5) Create a square function | def square_number(x):
x2 = x**2
return x2
x_squared = square_number(5)
print(x_squared) | 25
| MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
6) List comprehension | # add 2 to every element in the numpy array
number_array = np.arange(10, 21)
print("original array:", number_array)
number_array_plus_two = [x+2 for x in number_array]
print("array plus 2:", number_array_plus_two)
# select only even numbers
even_numbers =[x for x in numbers_array if x%2==0]
print(even_numbers) | [10, 12, 14, 16, 18, 20]
| MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
7) Random numbers | np.random.seed(42)
rand_number = np.random.random(size =5)
print(rand_number)
np.random.seed(42)
rand_number2 = np.random.random(size =5)
print(rand_number2) | [0.37454012 0.95071431 0.73199394 0.59865848 0.15601864]
| MIT | .ipynb_checkpoints/Python_101-checkpoint.ipynb | abdelrahman-ayad/MiCM-StatsPython-F21 |
Imports and Paths | import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import pandas as pd
import os
import shutil
from skimage import io, transform
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
PATH = '/data/msnow/nih_cxr/' | _____no_output_____ | MIT | notebooks/pytorch/pytorch_benchmarking.ipynb | MichoelSnow/data_science |
Load the Data | df = pd.read_csv(f'{PATH}Data_Entry_2017.csv')
df.shape
df.head()
img_list = os.listdir(f'{PATH}images')
len(img_list) | _____no_output_____ | MIT | notebooks/pytorch/pytorch_benchmarking.ipynb | MichoelSnow/data_science |
Collate the data | df_pa = df.loc[df.view=='PA',:]
df_pa.reset_index(drop=True, inplace=True)
trn_sz = int(df_pa.shape[0]/2)
df_pa_trn = df_pa.loc[:trn_sz,:]
df_pa_tst = df_pa.loc[trn_sz:,:]
df_pa_tst.shape
pneumo = []
for i,v in df_pa_trn.iterrows():
if "pneumo" in v['labels'].lower():
pneumo.append('pneumo')
else:
pneumo.append('no pneumo')
df_pa_trn['pneumo'] = pneumo
pneumo = []
for i,v in df_pa_tst.iterrows():
if "pneumo" in v['labels'].lower():
pneumo.append(pneumo)
else:
pneumo.append('no pneumo')
df_pa_tst['pneumo'] = pneumo
df_pa_trn.shape | _____no_output_____ | MIT | notebooks/pytorch/pytorch_benchmarking.ipynb | MichoelSnow/data_science |
Copy images to train and test folders | # dst = os.path.join(PATH,'trn')
# src = os.path.join(PATH,'images')
# for i,v in df_pa_trn.iterrows():
# src2 = os.path.join(src,v.image)
# shutil.copy2(src2,dst)
# dst = os.path.join(PATH,'tst')
# src = os.path.join(PATH,'images')
# for i,v in df_pa_tst.iterrows():
# src2 = os.path.join(src,v.image)
# shutil.copy2(src2,dst) | _____no_output_____ | MIT | notebooks/pytorch/pytorch_benchmarking.ipynb | MichoelSnow/data_science |
Create the Dataset and Dataloader | class TDataset(Dataset):
def __init__(self, df, root_dir, transform=None):
"""
Args:
df (dataframe): df with all the annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
# self.landmarks_frame = pd.read_csv(csv_file)
self.df = df
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir,self.df.image[idx])
image = io.imread(img_name)
categ = self.df.pneumo[idx]
return image, categ
aa = trainset[0]
trainset = TDataset(df_pa_trn,f'{PATH}trn')
testset = TDataset(df_pa_tst,f'{PATH}tst')
trainloader = DataLoader(trainset, batch_size=4,shuffle=True, num_workers=4)
testloader = DataLoader(testset, batch_size=4,shuffle=False, num_workers=4)
aa[0].shape | _____no_output_____ | MIT | notebooks/pytorch/pytorch_benchmarking.ipynb | MichoelSnow/data_science |
Define and train a CNN | class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
# 6 input image channel, 16 output channels, 5x5 square convolution kernel
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
print(f'input shape {x.shape}')
x = self.pool(F.relu(self.conv1(x)))
print(f'Lin (1,6,5) + relu + pool shape {x.shape}')
x = self.pool(F.relu(self.conv2(x)))
print(f'Lin (6,16,5) + relu + pool shape {x.shape}')
x = x.view(x.shape[0],-1)
print(f'reshape shape {x.shape}')
# x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
# x = self.fc3(x)
return x
net = Net()
input = torch.randn(1, 1, 1024,1024)
out = net(input)
# print(out)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for i, data in enumerate(trainloader, 0):
break
inputs, labels = data
tst = inputs.view(-1,1,1024,1024)
tst = tst.type('torch.FloatTensor')
out = net(tst)
16*253*253
tst.shape
# tst = inputs[:,None,:,:]
tst.type(torch.FloatTensor)
type(tst)
list(net.parameters())[0].size()
net(tst)
conv1_tst(tst)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training') | _____no_output_____ | MIT | notebooks/pytorch/pytorch_benchmarking.ipynb | MichoelSnow/data_science |
Compute LCMV inverse solution on evoked data in volume source spaceCompute LCMV inverse solution on an auditory evoked dataset in a volume sourcespace. It stores the solution in a nifti file for visualisation e.g. withFreeview. | # Author: Alexandre Gramfort <[email protected]>
#
# License: BSD (3-clause)
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.beamformer import lcmv
from nilearn.plotting import plot_stat_map
from nilearn.image import index_img
print(__doc__)
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-vol-7-fwd.fif' | _____no_output_____ | BSD-3-Clause | 0.12/_downloads/plot_lcmv_beamformer_volume.ipynb | drammock/mne-tools.github.io |
Get epochs | event_id, tmin, tmax = 1, -0.2, 0.5
# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True, proj=True)
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
events = mne.read_events(event_fname)
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
exclude='bads', selection=left_temporal_channels)
# Pick the channels of interest
raw.pick_channels([raw.ch_names[pick] for pick in picks])
# Re-normalize our empty-room projectors, so they are fine after subselection
raw.info.normalize_proj()
# Read epochs
proj = False # already applied
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
baseline=(None, 0), preload=True, proj=proj,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
evoked = epochs.average()
forward = mne.read_forward_solution(fname_fwd)
# Read regularized noise covariance and compute regularized data covariance
noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='shrunk')
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15,
method='shrunk')
# Run free orientation (vector) beamformer. Source orientation can be
# restricted by setting pick_ori to 'max-power' (or 'normal' but only when
# using a surface-based source space)
stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, pick_ori=None)
# Save result in stc files
stc.save('lcmv-vol')
stc.crop(0.0, 0.2)
# Save result in a 4D nifti file
img = mne.save_stc_as_volume('lcmv_inverse.nii.gz', stc,
forward['src'], mri_resolution=False)
t1_fname = data_path + '/subjects/sample/mri/T1.mgz'
# Plotting with nilearn ######################################################
plot_stat_map(index_img(img, 61), t1_fname, threshold=0.8,
title='LCMV (t=%.1f s.)' % stc.times[61])
# plot source time courses with the maximum peak amplitudes
plt.figure()
plt.plot(stc.times, stc.data[np.argsort(np.max(stc.data, axis=1))[-40:]].T)
plt.xlabel('Time (ms)')
plt.ylabel('LCMV value')
plt.show() | _____no_output_____ | BSD-3-Clause | 0.12/_downloads/plot_lcmv_beamformer_volume.ipynb | drammock/mne-tools.github.io |
Speeding-up gradient-boostingIn this notebook, we present a modified version of gradient boosting whichuses a reduced number of splits when building the different trees. Thisalgorithm is called "histogram gradient boosting" in scikit-learn.We previously mentioned that random-forest is an efficient algorithm sinceeach tree of the ensemble can be fitted at the same time independently.Therefore, the algorithm scales efficiently with both the number of cores andthe number of samples.In gradient-boosting, the algorithm is a sequential algorithm. It requiresthe `N-1` trees to have been fit to be able to fit the tree at stage `N`.Therefore, the algorithm is quite computationally expensive. The mostexpensive part in this algorithm is the search for the best split in thetree which is a brute-force approach: all possible split are evaluated andthe best one is picked. We explained this process in the notebook "tree indepth", which you can refer to.To accelerate the gradient-boosting algorithm, one could reduce the number ofsplits to be evaluated. As a consequence, the statistical performance of sucha tree would be reduced. However, since we are combining several trees in agradient-boosting, we can add more estimators to overcome this issue.We will make a naive implementation of such algorithm using building blocksfrom scikit-learn. First, we will load the California housing dataset. | from sklearn.datasets import fetch_california_housing
data, target = fetch_california_housing(return_X_y=True, as_frame=True)
target *= 100 # rescale the target in k$ | _____no_output_____ | CC-BY-4.0 | notebooks/ensemble_hist_gradient_boosting.ipynb | ThomasBourgeois/scikit-learn-mooc |
NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. We will make a quick benchmark of the original gradient boosting. | from sklearn.model_selection import cross_validate
from sklearn.ensemble import GradientBoostingRegressor
gradient_boosting = GradientBoostingRegressor(n_estimators=200)
cv_results_gbdt = cross_validate(gradient_boosting, data, target, n_jobs=-1)
print("Gradient Boosting Decision Tree")
print(f"R2 score via cross-validation: "
f"{cv_results_gbdt['test_score'].mean():.3f} +/- "
f"{cv_results_gbdt['test_score'].std():.3f}")
print(f"Average fit time: "
f"{cv_results_gbdt['fit_time'].mean():.3f} seconds")
print(f"Average score time: "
f"{cv_results_gbdt['score_time'].mean():.3f} seconds") | _____no_output_____ | CC-BY-4.0 | notebooks/ensemble_hist_gradient_boosting.ipynb | ThomasBourgeois/scikit-learn-mooc |
We recall that a way of accelerating the gradient boosting is to reduce thenumber of split considered within the tree building. One way is to bin thedata before to give them into the gradient boosting. A transformer called`KBinsDiscretizer` is doing such transformation. Thus, we can pipelinethis preprocessing with the gradient boosting.We can first demonstrate the transformation done by the `KBinsDiscretizer`. | import numpy as np
from sklearn.preprocessing import KBinsDiscretizer
discretizer = KBinsDiscretizer(
n_bins=256, encode="ordinal", strategy="quantile")
data_trans = discretizer.fit_transform(data)
data_trans | _____no_output_____ | CC-BY-4.0 | notebooks/ensemble_hist_gradient_boosting.ipynb | ThomasBourgeois/scikit-learn-mooc |
NoteThe code cell above will generate a couple of warnings. Indeed, for some ofthe features, we requested too much bins in regard of the data dispersionfor those features. The smallest bins will be removed.We see that the discretizer transforms the original data into an integer.This integer represents the bin index when the distribution by quantile isperformed. We can check the number of bins per feature. | [len(np.unique(col)) for col in data_trans.T] | _____no_output_____ | CC-BY-4.0 | notebooks/ensemble_hist_gradient_boosting.ipynb | ThomasBourgeois/scikit-learn-mooc |
After this transformation, we see that we have at most 256 unique values perfeatures. Now, we will use this transformer to discretize data beforetraining the gradient boosting regressor. | from sklearn.pipeline import make_pipeline
gradient_boosting = make_pipeline(
discretizer, GradientBoostingRegressor(n_estimators=200))
cv_results_gbdt = cross_validate(gradient_boosting, data, target, n_jobs=-1)
print("Gradient Boosting Decision Tree with KBinsDiscretizer")
print(f"R2 score via cross-validation: "
f"{cv_results_gbdt['test_score'].mean():.3f} +/- "
f"{cv_results_gbdt['test_score'].std():.3f}")
print(f"Average fit time: "
f"{cv_results_gbdt['fit_time'].mean():.3f} seconds")
print(f"Average score time: "
f"{cv_results_gbdt['score_time'].mean():.3f} seconds") | _____no_output_____ | CC-BY-4.0 | notebooks/ensemble_hist_gradient_boosting.ipynb | ThomasBourgeois/scikit-learn-mooc |
Here, we see that the fit time has been drastically reduced but that thestatistical performance of the model is identical. Scikit-learn provides aspecific classes which are even more optimized for large dataset, called`HistGradientBoostingClassifier` and `HistGradientBoostingRegressor`. Eachfeature in the dataset `data` is first binned by computing histograms, whichare later used to evaluate the potential splits. The number of splits toevaluate is then much smaller. This algorithm becomes much more efficientthan gradient boosting when the dataset has over 10,000 samples.Below we will give an example for a large dataset and we will comparecomputation times with the experiment of the previous section. | from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingRegressor
histogram_gradient_boosting = HistGradientBoostingRegressor(
max_iter=200, random_state=0)
cv_results_hgbdt = cross_validate(gradient_boosting, data, target, n_jobs=-1)
print("Histogram Gradient Boosting Decision Tree")
print(f"R2 score via cross-validation: "
f"{cv_results_hgbdt['test_score'].mean():.3f} +/- "
f"{cv_results_hgbdt['test_score'].std():.3f}")
print(f"Average fit time: "
f"{cv_results_hgbdt['fit_time'].mean():.3f} seconds")
print(f"Average score time: "
f"{cv_results_hgbdt['score_time'].mean():.3f} seconds") | _____no_output_____ | CC-BY-4.0 | notebooks/ensemble_hist_gradient_boosting.ipynb | ThomasBourgeois/scikit-learn-mooc |
Select only numeric columns | train_data_raw2 = clean_func(train_data_raw)
train_data = train_data_raw2.iloc[:, train_data_raw2.columns != target]
train_data_target = train_data_raw2[target].values
X_train,X_test,Y_train,Y_test = train_test_split(train_data
,train_data_target
,test_size=0.3
,random_state=42) | _____no_output_____ | MIT | notebooks/titanic_explore4_recursive_feature_elimination.ipynb | EmilMachine/kaggle_titanic |
Models- logreg- random forest random forest naive | model_rf = RandomForestClassifier(
n_estimators=100
)
model_rf.fit(X_train, Y_train)
# Cross Validation RF
scores = cross_val_score(model_rf, X_train, Y_train, cv=10)
print(scores)
pred_rf = model_rf.predict(X_test)
metrics.accuracy_score(Y_test,pred_rf) | _____no_output_____ | MIT | notebooks/titanic_explore4_recursive_feature_elimination.ipynb | EmilMachine/kaggle_titanic |
Random Forest Grid Search | model_rf_gs = RandomForestClassifier()
# parmeter dict
param_grid = dict(
n_estimators=np.arange(60,101,20)
, min_samples_leaf=np.arange(2,4,1)
#, criterion = ["gini","entropy"]
#, max_features = np.arange(0.1,0.5,0.1)
)
print(param_grid)
grid = GridSearchCV(model_rf_gs,param_grid=param_grid,scoring = "accuracy", cv = 5)
grid.fit(train_data, train_data_target)
""
# model_rf.fit(train_data, train_data[target])
# print(grid)
# for i in ['params',"mean_train_score","mean_test_score"]:
# print(i)
# print(grid.cv_results_[i])
# grid.cv_results_
print(grid.best_params_)
print(grid.best_score_)
model_rf_gs_best = RandomForestClassifier(**grid.best_params_)
model_rf_gs_best.fit(X_train,Y_train)
## print feture importance
model = model_rf_gs_best
feature_names = X_train.columns.values
feature_importance2 = sorted(zip(map(lambda x: round(x, 4), model.feature_importances_), feature_names), reverse=True)
print(len(feature_importance2))
for feature in feature_importance2:
print('%f:%s' % feature )
###
# Recursive feature elimination
from sklearn.feature_selection import RFECV
model = model_rf_gs_best
rfecv = RFECV(estimator=model, step=1, cv=3, scoring='accuracy')
rfecv.fit(X_train,Y_train)
import matplotlib.pyplot as plt
from sklearn import base
model = model_rf_gs_best
print("Optimal number of features : %d" % rfecv.n_features_)
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.title('Recursive feature elemination')
plt.xlabel('Nr of features')
plt.ylabel('Acc')
feature_short = feature_names[rfecv.support_]
print('== Feature short list ==')
print(feature_short)
model_simple = base.clone(model)
model_simple.fit(X_train[feature_short],Y_train)
| Optimal number of features : 16
== Feature short list ==
['PassengerId' 'Pclass' 'Age' 'SibSp' 'Parch' 'Fare' 'female' 'male'
'embarked_cobh' 'embark_queenstown' 'embark_southampton' 'Cabin_letter_B'
'Cabin_letter_C' 'Cabin_letter_D' 'Cabin_letter_E' 'Cabin_letter_empty']
| MIT | notebooks/titanic_explore4_recursive_feature_elimination.ipynb | EmilMachine/kaggle_titanic |
- Converge about 16- let us comare 16 vs full features on test set |
Y_pred = model.predict(X_test)
model_score = metrics.accuracy_score(Y_test,Y_pred)
Y_pred_simple = model_simple.predict(X_test[feature_short])
model_simple_score = metrics.accuracy_score(Y_test,Y_pred_simple)
print("model acc: %.3f" % model_score)
print("simple model acc: %.3f" % model_simple_score) | model acc: 0.806
simple model acc: 0.825
| MIT | notebooks/titanic_explore4_recursive_feature_elimination.ipynb | EmilMachine/kaggle_titanic |
Amazon Sentiment Data | %load_ext autoreload
%autoreload 2
import lxmls.readers.sentiment_reader as srs
from lxmls.deep_learning.utils import AmazonData
corpus = srs.SentimentCorpus("books")
data = AmazonData(corpus=corpus) | _____no_output_____ | MIT | labs/notebooks/non_linear_classifiers/exercise_4.ipynb | mpc97/lxmls |
Implement Pytorch Forward pass As the final exercise today implement the log `forward()` method in lxmls/deep_learning/pytorch_models/mlp.pyUse the previous exercise as reference. After you have completed this you can run both systems for comparison. | # Model
geometry = [corpus.nr_features, 20, 2]
activation_functions = ['sigmoid', 'softmax']
# Optimization
learning_rate = 0.05
num_epochs = 10
batch_size = 30
import numpy as np
from lxmls.deep_learning.pytorch_models.mlp import PytorchMLP
model = PytorchMLP(
geometry=geometry,
activation_functions=activation_functions,
learning_rate=learning_rate
)
# Get batch iterators for train and test
train_batches = data.batches('train', batch_size=batch_size)
test_set = data.batches('test', batch_size=None)[0]
# Epoch loop
for epoch in range(num_epochs):
# Batch loop
for batch in train_batches:
model.update(input=batch['input'], output=batch['output'])
# Prediction for this epoch
hat_y = model.predict(input=test_set['input'])
# Evaluation
accuracy = 100*np.mean(hat_y == test_set['output'])
# Inform user
print("Epoch %d: accuracy %2.2f %%" % (epoch+1, accuracy)) | _____no_output_____ | MIT | labs/notebooks/non_linear_classifiers/exercise_4.ipynb | mpc97/lxmls |
Explore endangered languages from UNESCO Atlas of the World's Languages in Danger InputEndangered languages- https://www.kaggle.com/the-guardian/extinct-languages/version/1 (updated in 2016)- original data: http://www.unesco.org/languages-atlas/index.php?hl=en&page=atlasmap (published in 2010)Countries of the world- https://www.ethnologue.com/sites/default/files/CountryCodes.tab Output- `endangered_languages_europe.csv` Imports | import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt | _____no_output_____ | MIT | notebooks/Eszti/unesco_endangered_lang_europe.ipynb | e8725144/lang-changes |
Load data | df = pd.read_csv("../../data/endangerment/extinct_languages.csv")
print(df.shape)
print(df.dtypes)
df.head()
df.columns
ENDANGERMENT_MAP = {
"Vulnerable": 1,
"Definitely endangered": 2,
"Severely endangered": 3,
"Critically endangered": 4,
"Extinct": 5,
}
df["Endangerment code"] = df["Degree of endangerment"].apply(lambda x: ENDANGERMENT_MAP[x])
df[["Degree of endangerment", "Endangerment code"]] | _____no_output_____ | MIT | notebooks/Eszti/unesco_endangered_lang_europe.ipynb | e8725144/lang-changes |
Distribution of the degree of endangerment | plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
df["Degree of endangerment"].hist(figsize=(15,5)).get_figure().savefig('endangered_hist.png', format="png") | _____no_output_____ | MIT | notebooks/Eszti/unesco_endangered_lang_europe.ipynb | e8725144/lang-changes |
Show distribution on map | countries_map = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))
countries_map.head()
# Plot Europe
fig, ax = plt.subplots(figsize=(20, 10))
countries_map.plot(color='lightgrey', ax=ax)
plt.xlim([-30, 50])
plt.ylim([30, 75])
df.plot(
x="Longitude",
y="Latitude",
kind="scatter",
title="Endangered languages in Europe (1=Vulnerable, 5=Extinct)",
c="Endangerment code",
colormap="YlOrRd",
ax=ax,
)
plt.show() | _____no_output_____ | MIT | notebooks/Eszti/unesco_endangered_lang_europe.ipynb | e8725144/lang-changes |
Get endangered languages only for Europe | countries = pd.read_csv("../../data/general/country_codes.tsv", sep="\t")
europe = countries[countries["Area"] == "Europe"]
europe
europe_countries = set(europe["Name"].to_list())
europe_countries
df[df["Countries"].isna()]
df = df[df["Countries"].notna()]
df[df["Countries"].isna()]
df["In Europe"] = df["Countries"].apply(lambda x: len(europe_countries.intersection(set(x.split(",")))) > 0)
df_europe = df.loc[df["In Europe"] == True]
print(df_europe.shape)
df_europe.head(20)
# Plot only European endangered languages
fig, ax = plt.subplots(figsize=(20, 10))
countries_map.plot(color='lightgrey', ax=ax)
plt.xlim([-30, 50])
plt.ylim([30, 75])
df_europe.plot(
x="Longitude",
y="Latitude",
kind="scatter",
title="Endangered languages in Europe",
c="Endangerment code",
colormap="YlOrRd",
ax=ax,
)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.xlabel('Longitude', fontsize=18)
plt.ylabel('Latitude', fontsize=18)
plt.title("Endangered languages in Europe (1=Vulnerable, 5=Extinct)", fontsize=18)
plt.show()
fig.savefig("endangered_languages_in_europe.png", format="png", bbox_inches="tight") | _____no_output_____ | MIT | notebooks/Eszti/unesco_endangered_lang_europe.ipynb | e8725144/lang-changes |
Save output | df_europe.to_csv("../../data/endangerment/endangered_languages_europe.csv", index=False) | _____no_output_____ | MIT | notebooks/Eszti/unesco_endangered_lang_europe.ipynb | e8725144/lang-changes |
Polynomials Class | from sympy import *
import numpy as np
x = Symbol('x')
class polinomio:
def __init__(self, coefficienti: list):
self.coefficienti = coefficienti
self.grado = 0 if len(self.coefficienti) == 0 else len(
self.coefficienti) - 1
i = 0
while i < len(self.coefficienti):
if self.coefficienti[0] == 0:
self.coefficienti.pop(0)
i += 1
# scrittura del polinomio:
def __str__(self):
output = ""
for i in range(0, len(self.coefficienti)):
# and x[grado_polinomio]!=0):
if (((self.coefficienti[i] == 1 or self.coefficienti[i] == 1.0) and self.grado-i == 1)):
output += "x "
if self.grado-i == 1 and (self.coefficienti[i] != 0 and self.coefficienti[i] != 1 and self.coefficienti[i] != -1 and self.coefficienti[i] != 1.0 and self.coefficienti[i] != -1.0):
output += "{}x ".format(self.coefficienti[i])
if self.coefficienti[i] == 0:
pass
# continue
if self.grado-i != 0 and self.grado-i != 1 and (self.coefficienti[i] != 0 and self.coefficienti[i] != 1 and self.coefficienti[i] != -1 and self.coefficienti[i] != 1.0 and self.coefficienti[i] != -1.0):
output += "{}x^{} ".format(
self.coefficienti[i], self.grado-i)
# continue
#print(x[i], "$x^", grado_polinomio-i, "$ + ")
if (self.coefficienti[i] == 1 or self.coefficienti[i] == 1.0) and self.grado-i != 1 and self.grado-i != 0:
output += "x^{} ".format(self.grado-i)
# continue
elif (self.coefficienti[i] == -1 or self.coefficienti[i] == -1.0) and self.grado-i != 1 and self.grado-i != 0:
output += "- x^{} ".format(self.grado-i)
# continue
elif self.coefficienti[i] != 0 and self.grado-i == 0 and (self.coefficienti[i] != 1 or self.coefficienti[i] != 1.0):
output += "{} ".format(self.coefficienti[i])
elif self.coefficienti[i] != 0 and self.grado-i == 0 and (self.coefficienti[i] == 1 or self.coefficienti[i] == 1.0):
output += "1 "
if ((self.coefficienti[i] == -1 or self.coefficienti[i] == -1.0) and self.grado-i == 1):
output += "- x "
if (i != self.grado and self.grado-i != 0) and self.coefficienti[i+1] > 0:
output += "+ "
continue
return output
def latex(self):
latex_polinomio = 0
for i in range(0, len(self.coefficienti)):
# and x[grado_polinomio]!=0):
if (((self.coefficienti[i] == 1 or self.coefficienti[i] == 1.0) and self.grado-i == 1)):
latex_polinomio += x
if self.grado-i == 1 and (self.coefficienti[i] != 0 and self.coefficienti[i] != 1 and self.coefficienti[i] != -1 and self.coefficienti[i] != 1.0 and self.coefficienti[i] != -1.0):
latex_polinomio += self.coefficienti[i]*x
if self.coefficienti[i] == 0:
pass
# continue
if self.grado-i != 0 and self.grado-i != 1 and (self.coefficienti[i] != 0 and self.coefficienti[i] != 1 and self.coefficienti[i] != -1 and self.coefficienti[i] != 1.0 and self.coefficienti[i] != -1.0):
latex_polinomio += self.coefficienti[i]*x**(self.grado-i)
# continue
#print(x[i], "$x^", grado_polinomio-i, "$ + ")
if (self.coefficienti[i] == 1 or self.coefficienti[i] == 1.0) and self.grado-i != 1 and self.grado-i != 0:
latex_polinomio += x**(self.grado-i)
# continue
elif (self.coefficienti[i] == -1 or self.coefficienti[i] == -1.0) and self.grado-i != 1 and self.grado-i != 0:
latex_polinomio += -x**(self.grado-i)
# continue
elif self.coefficienti[i] != 0 and self.grado-i == 0 and (self.coefficienti[i] != 1 or self.coefficienti[i] != 1.0):
latex_polinomio += self.coefficienti[i]
elif self.coefficienti[i] != 0 and self.grado-i == 0 and (self.coefficienti[i] == 1 or self.coefficienti[i] == 1.0):
latex_polinomio += 1
if ((self.coefficienti[i] == -1 or self.coefficienti[i] == -1.0) and self.grado-i == 1):
latex_polinomio += -x
# if (i != self.grado and self.grado-i != 0) and self.coefficienti[i+1] > 0:
# latex_polinomio += +
# continue
return latex_polinomio
def __add__(self, y):
if type(y).__name__ != "polinomio":
raise Exception(
f"You are trying to sum a polinomio with a {type(y).__name__}")
c = []
n = min(len(self.coefficienti), len(y.coefficienti))
m = max(len(self.coefficienti), len(y.coefficienti))
d = []
if m == len(self.coefficienti):
d = self.coefficienti
else:
d = y.coefficienti
for i in range(0, m-n):
c.append(d[i])
if m == len(self.coefficienti):
for j in range(m-n, m):
z = self.coefficienti[j] + y.coefficienti[j-m+n]
c.append(z)
else:
for j in range(m-n, m):
z = self.coefficienti[j-m+n] + y.coefficienti[j]
c.append(z)
i = 0
while i < len(c):
if c[0] == 0:
c.pop(0)
i += 1
d = polinomio(c)
return d
def __sub__(self, y):
c = []
for i in y.coefficienti:
c.append(-i)
f = self + polinomio(c)
return f
def __mul__(self, y):
grado_prodotto = self.grado + y.grado
d = [[], []]
for i in range(len(self.coefficienti)):
for j in range(len(y.coefficienti)):
d[0].append(self.coefficienti[i]*y.coefficienti[j])
d[1].append(i+j) # grado del monomio
d[1] = d[1][::-1]
# print(d)
for i in range(grado_prodotto+1):
if d[1].count(grado_prodotto-i) > 1:
j = d[1].index(grado_prodotto - i)
#print("j vale: ", j)
z = j+1
while z < len(d[1]):
if d[1][z] == d[1][j]:
#print("z vale:", z)
d[0][j] = d[0][j]+d[0][z]
d[1].pop(z)
d[0].pop(z)
# print(d)
z += 1
i = 0
while i < len(d[0]):
if d[0][0] == 0:
d[0].pop(0)
i += 1
return polinomio(d[0])
def __pow__(self, var: int):
p = self
i = 0
while i < var-1:
p *= self
i += 1
return p
def __truediv__(self, y, c=[]):
d = []
s = self.grado
v = y.grado
grado_polinomio_risultante = s-v
output = 0
if grado_polinomio_risultante > 0:
d.append(self.coefficienti[0]/y.coefficienti[0])
i = 0
while i < grado_polinomio_risultante:
d.append(0)
i += 1
c.append(d[0])
a = polinomio(d)
g = a*y
f = self - g
if (f.grado - y.grado) == 0 and (len(f.coefficienti)-len(c)) > 1:
c.append(0)
if (f.grado-y.grado) < 0 and f.grado != 0:
j = 0
while j < y.grado-f.grado:
c.append(0)
self = f
return f.__truediv__(y, c)
elif grado_polinomio_risultante == 0:
d.append(self.coefficienti[0]/y.coefficienti[0])
c.append(d[0])
a = polinomio(d)
g = a*y
f = self - g
if f.grado == 0 and (f.coefficienti == [] or f.coefficienti[0] == 0):
return polinomio(c).latex()
elif f.grado >= 0:
self = f
return f.__truediv__(y, c)
elif grado_polinomio_risultante < 0:
output += polinomio(c).latex() + self.latex()/y.latex()
# output += self.latex()/y.latex()
# output += y.latex()
# if polinomio(c).grado != 0:
# output += "+"
# output += "(" + str(self) + ")/("
# output += str(y) + ")"
return output
elif s == 0:
return polinomio(c).latex()
def __eq__(self, y):
equality = 0
if len(self.coefficienti) != len(y.coefficienti):
return False
for i in range(len(self.coefficienti)):
if self.coefficienti[i] == y.coefficienti[i]:
equality += 1
if equality == len(self.coefficienti):
return True
else:
return False
def __ne__(self, y):
inequality = 0
if len(self.coefficienti) != len(y.coefficienti):
return True
else:
for i in range(len(self.coefficienti)):
if self.coefficienti[i] != y.coefficienti[i]:
inequality += 1
if inequality == len(self.coefficienti):
return True
else:
return False
a = [1, 1, 2, 1, 1]
b = [1, 1, 2, 1, 1]
c = polinomio(a)
d = polinomio(b)
(c+d).latex()
# a = [1, 0, 2, 0, 1]
# b = [1, 0, 1]
# c = polinomio(a)
# d = polinomio(b)
# c/d
a = [1,1,1]
b = [1,0]
c = polinomio(a)
d = polinomio(b)
(c*d).latex()
a = [1]
b = [1,1]
c = polinomio(a)
d = polinomio(b)
c/d
# a = [3,3,3]
# b = [3]
# c = polinomio(a)
# d = polinomio(b)
# c/d
a = [1, 1, 2, 1, 1]
b = [1, 1, 2, 1, 1]
c = polinomio(a)
d = polinomio(b)
print(c+d) | 2x^4 + 2x^3 + 4x^2 + 2x + 2
| MIT | Polinomi.ipynb | RiccardoTancredi/Polynomials |
Function to list overlapping Landsat 8 scenesThis function is based on the following tutorial: http://geologyandpython.com/get-landsat-8.htmlThis function uses the area of interest (AOI) to retrieve overlapping Landsat 8 scenes. It will also output on the scenes with the largest portion of overlap and with less than 5% cloud cover. | def landsat_scene_list(aoi, start_date, end_date):
'''Creates a list of Landsat 8, level 1, tier 1
scenes that overlap with an aoi and are captured
within a specified date range.
Parameters
----------
aoi : str
The path to a shape file of an aoi with geometry.
start-date : str
The first date from which to start looking for
Landsat image capture in the format yyyy-mm,dd,
e.g. '2017-10-01'.
end-date : str
The last date from which to looking for
Landsat image capture in the format yyyy-mm,dd,
e.g. '2017-10-31'.
Returns
-------
wrs : shapefile
A catalog of Landsat 8 scenes.
scenes : geopandas.geodataframe.GeoDataFrame
A dataframe containing the information
of Landsat 8, Level 1, Tier 1 scenes that
overlap with the aoi.
'''
# Download Landsat 8 catalog from USGS (get_data auto unzips)
USGS_url = 'https://landsat.usgs.gov/sites/default/files/documents/WRS2_descending.zip'
et.data.get_data(url=USGS_url, replace=True)
# Open Landsat catalog
wrs = gpd.GeoDataFrame.from_file(os.path.join('data', 'earthpy-downloads',
'WRS2_descending',
'WRS2_descending.shp'))
# Find polygons that intersect Landsat catalog and aoi
wrs_intersection = wrs[wrs.intersects(aoi.geometry[0])]
# Calculated paths and rows
paths, rows = wrs_intersection['PATH'].values, wrs_intersection['ROW'].values
# Iterate through each Polygon of paths and rows intersecting the area
for i, row in wrs_intersection.iterrows():
# Create a string for the name containing the path and row of this Polygon
name = 'path: %03d, row: %03d' % (row.PATH, row.ROW)
# Removing scenes with small amounts of overlap using threshold of intersection area
b = (paths > 23) & (paths < 26)
paths = paths[b]
rows = rows[b]
# # Path(s) and row(s) covering the intersection
# ############################ WHY NOT PRINTING? ###################################
# for i, (path, row) in enumerate(zip(paths, rows)):
# print('Image', i+1, ' - path:', path, 'row:', row)
# Check scene availability in Amazon S3 bucket list of Landsat scenes
s3_scenes = pd.read_csv('http://landsat-pds.s3.amazonaws.com/c1/L8/scene_list.gz',
compression='gzip', parse_dates=['acquisitionDate'],
index_col=['acquisitionDate'])
# Capture only Landsat T1 scenes within dates of interest
scene_mask = (s3_scenes.index > start_date) & (s3_scenes.index <= end_date)
scene_dates = s3_scenes.loc[scene_mask]
scene_product = scene_dates[scene_dates['productId'].str.contains("_T1")]
# Geodataframe of scenes with <5% cloud cover, the url to retrieve them
#############################row.ROW and row.PATH will need to be fixed##################
scenes = scene_product[(scene_product.path == row.PATH) &
(scene_product.row == row.ROW) &
(scene_product.cloudCover <= 5)]
return wrs, scenes | _____no_output_____ | BSD-3-Clause | notebooks/testing/previously in ignored file/f-Find-Overlapping-Landsat-Scenes-TEST.ipynb | sarahmjaffe/sagebrush-ecosystem-modeling-with-landsat8 |
TEST**Can DELETE everything below once tested and approved!** | # WILL DELETE WHEN FUNCTIONS ARE SEPARATED OUT
def NEON_site_extent(path_to_NEON_boundaries, site):
'''Extracts a NEON site extent from an individual site as
long as the original NEON site extent shape file contains
a column named 'siteID'.
Parameters
----------
path_to_NEON_boundaries : str
The path to a shape file that contains the list
of all NEON site extents, also known as field
sampling boundaries (can be found at NEON and
ESRI sites)
site : str
One siteID contains 4 capital letters,
e.g. CPER, HARV, ONAQ or SJER.
Returns
-------
site_boundary : geopandas.geodataframe.GeoDataFrame
A vector containing a single polygon
per the site specified.
'''
NEON_boundaries = gpd.read_file(path_to_NEON_boundaries)
boundaries_indexed = NEON_boundaries.set_index(['siteID'])
site_boundary = boundaries_indexed.loc[[site]]
site_boundary.reset_index(inplace=True)
return site_boundary
# Import packages
import os
from glob import glob
import requests
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import folium
import geopandas as gpd
import rasterio as rio
#from bs4 import BeautifulSoup
import shutil
import earthpy as et
# Set working directory
os.chdir(os.path.join(et.io.HOME, 'earth-analytics'))
# Download shapefile of all NEON site boundaries
url = 'https://www.neonscience.org/sites/default/files/Field_Sampling_Boundaries_2020.zip'
et.data.get_data(url=url, replace=True)
# Create path to shapefile
terrestrial_sites = os.path.join(
'data', 'earthpy-downloads',
'Field_Sampling_Boundaries_2020',
'terrestrialSamplingBoundaries.shp')
# Retrieving the boundaries of CPER
aoi = NEON_site_extent(terrestrial_sites, 'ONAQ')
# Test out new landsat retrieval process
scene_catalog, scene_df = landsat_scene_list(aoi, '2017-10-01', '2017-10-31')
# Visualize the catalog
scene_catalog.head(3)
# Visualize the scenes of interest based on the input parameters
scene_df | _____no_output_____ | BSD-3-Clause | notebooks/testing/previously in ignored file/f-Find-Overlapping-Landsat-Scenes-TEST.ipynb | sarahmjaffe/sagebrush-ecosystem-modeling-with-landsat8 |
Copyright 2019 The TensorFlow Authors. | #@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#@title MIT License
#
# Copyright (c) 2017 François Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE. | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Menyimpan dan memuat model Liht di TensorFlow.org Jalankan di Google Colab Lihat kode di GitHub Unduh notebook Progres dari model dapat disimpan ketika proses training dan setelah training. Ini berarti sebuah model dapat melanjutkan proses training dengan kondisi yang sama dengan ketika proses training sebelumnya dihentikan dan dapat menghindari waktu training yang panjng. Menyimpan juga berarti Anda dapat membagikan model Anda dan orang lain dapat membuat ulang proyek Anda. Ketika mempublikasikan hasil riset dan teknik dari suatu model, kebanyakan praktisi *machine learning* membagikan:* kode untuk membuat model, dan* berat, atau parameter, dari sebuah modelMembagikan data ini akan membantu orang lain untuk memahami bagaimana model bekerja dan mencoba model tersebut dengan data yang baru.Perhatian: Hati-hati dengan kode yang tidak dapat dipercayaβmodel-model TensorFlow adalah kode. Lihat [Menggunakan TensorFlow dengan aman](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) untuk lebih detail. OpsiTerdapat beberapa cara untuk menyimpan model TensorFlowβbergantung kepada API yang Anda gunakan. Panduan ini menggunakan [tf.keras](https://www.tensorflow.org/guide/keras), sebuah API tingkat tinggi yang digunakan untuk membangun dan melatih model di TensorFlow. Untuk pendekatan lainnya, lihat panduan Tensorflow [Simpan dan Restorasi](https://www.tensorflow.org/guide/saved_model) atau [Simpan sesuai keinginan](https://www.tensorflow.org/guide/eagerobject-based_saving). Pengaturan Instal dan import Install dan import TensorFlow dan beberapa *dependency*: | try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
!pip install pyyaml h5py # Required to save models in HDF5 format
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import tensorflow as tf
from tensorflow import keras
print(tf.version.VERSION) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Memperoleh datasetUntuk menunjukan bagaimana cara untuk menyimpan dan memuat berat dari model, Anda akan menggunakan [Dataset MNIST](http://yann.lecun.com/exdb/mnist/). Untuk mempercepat operasi ini, gunakan hanya 1000 data pertama: | (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Mendefinisikan sebuah model Mulai dengan membangun sebuah model sekuensial sederhana: | # Define a simple sequential model
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation='relu', input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
# Create a basic model instance
model = create_model()
# Display the model's architecture
model.summary() | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Menyimpan cek poin ketika proses training You can use a trained model without having to retrain it, or pick-up training where you left offβin case the training process was interrupted. The `tf.keras.callbacks.ModelCheckpoint` callback allows to continually save the model both *during* and at *the end* of training.Anda dapat menggunakan model terlatih tanpa harus melatihnya kembali, atau melanjutkan proses training di titik di mana proses training sebelumnya berhenti. *Callback* `tf.keras.callbacks.ModelCheckpoint` memungkinkan sebuah model untuk disimpan ketika dan setelah proses training dilakukan. Penggunaan *callback* cek poinBuat sebuah callback `tf.keras.callbacks.ModelCheckpoint` yang menyimpan berat hanya ketika proses training berlangsung: | checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create a callback that saves the model's weights
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
# Train the model with the new callback
model.fit(train_images,
train_labels,
epochs=10,
validation_data=(test_images,test_labels),
callbacks=[cp_callback]) # Pass callback to training
# This may generate warnings related to saving the state of the optimizer.
# These warnings (and similar warnings throughout this notebook)
# are in place to discourage outdated usage, and can be ignored. | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
This creates a single collection of TensorFlow checkpoint files that are updated at the end of each epoch: | !ls {checkpoint_dir} | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Create a new, untrained model. When restoring a model from weights-only, you must have a model with the same architecture as the original model. Since it's the same model architecture, you can share weights despite that it's a different *instance* of the model.Now rebuild a fresh, untrained model, and evaluate it on the test set. An untrained model will perform at chance levels (~10% accuracy): | # Create a basic model instance
model = create_model()
# Evaluate the model
loss, acc = model.evaluate(test_images, test_labels, verbose=2)
print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Then load the weights from the checkpoint and re-evaluate: | # Loads the weights
model.load_weights(checkpoint_path)
# Re-evaluate the model
loss,acc = model.evaluate(test_images, test_labels, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Checkpoint callback optionsThe callback provides several options to provide unique names for checkpoints and adjust the checkpointing frequency.Train a new model, and save uniquely named checkpoints once every five epochs: | # Include the epoch in the file name (uses `str.format`)
checkpoint_path = "training_2/cp-{epoch:04d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create a callback that saves the model's weights every 5 epochs
cp_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
verbose=1,
save_weights_only=True,
period=5)
# Create a new model instance
model = create_model()
# Save the weights using the `checkpoint_path` format
model.save_weights(checkpoint_path.format(epoch=0))
# Train the model with the new callback
model.fit(train_images,
train_labels,
epochs=50,
callbacks=[cp_callback],
validation_data=(test_images,test_labels),
verbose=0) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Sekarang, lihat hasil cek poin dan pilih yang terbaru: | !ls {checkpoint_dir}
latest = tf.train.latest_checkpoint(checkpoint_dir)
latest | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Catatan: secara default format tensorflow hanya menyimpan 5 cek poin terbaru.Untuk tes, reset model dan muat cek poin terakhir: | # Create a new model instance
model = create_model()
# Load the previously saved weights
model.load_weights(latest)
# Re-evaluate the model
loss, acc = model.evaluate(test_images, test_labels, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Apa sajakah file-file ini? Kode di atas menyimpan berat dari model ke sebuah kumpulan [cek poin](https://www.tensorflow.org/guide/saved_modelsave_and_restore_variables)-file yang hanya berisikan berat dari model yan sudah dilatih dalam format biner. Cek poin terdiri atas:* Satu atau lebih bagian (*shard*) yang berisi berat dari model Anda.* Sebuah file index yang mengindikasikan suatu berat disimpan pada *shard* yang mana.Jika Anda hanya melakukan proses training dari sebuah model pada sebuah komputer, Anda akan hanya memiliki satu *shard* dengan sufiks `.data-00000-of-00001` Menyimpan berat secara manualAnda telah melihat bagaimana caranya memuat berat yang telah disimpan sebelumnya menjadi model. Menyimpannya secara manual dapat dilakukan dengan mudah dengan *method* `Model.save_weights`. Secara default, `tf.keras`βdan `save_weights` menggunakan format TensorFlow [cek poin](../../guide/keras/checkpoints) dengan ekstensi `.ckpt` (menyimpan dalam format [HDF5](https://js.tensorflow.org/tutorials/import-keras.html) dengan ekstensi `.h5` dijelaskan dalam panduan ini [Menyimpan dan serialisasi model](../../guide/keras/save_and_serializeweights-only_saving_in_savedmodel_format)): | # Save the weights
model.save_weights('./checkpoints/my_checkpoint')
# Create a new model instance
model = create_model()
# Restore the weights
model.load_weights('./checkpoints/my_checkpoint')
# Evaluate the model
loss,acc = model.evaluate(test_images, test_labels, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Menyimpan keseluruhan modelGunakan [`model.save`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelsave) untuk menyimpan arsitektur dari model, berat, dan konfigurasi training dalam satu file/folder. Hal ini menyebabkan Anda dapat melakukan ekspor dari suatu model sehingga model tersebut dapat digunakan tanpa harus mengakses kode Python secara langsung*. Karena kondisi optimizer dipulihkan, Anda dapat melanjutkan proses training tepat ketika proses training sebelumnya ditinggalkan.Meneyimpan sebuah model fungsional sangat bergunaβAnda dapat memuatnya di TensorFlow.js [HDF5](https://js.tensorflow.org/tutorials/import-keras.html), [Saved Model](https://js.tensorflow.org/tutorials/import-saved-model.html)) dan kemudian melatih dan menggunakan model tersebut di web browser, atau mengubahnya sehingga dapat beroperasi di perangkat *mobile* menggunakan TensorFlw Lite [HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Saved Model](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_))\*Objek-objek custom (model subkelas atau layer) membutuhkan perhatian lebih ketika proses disimpan atau dimuat. Lihat bagian **Penyimpanan objek custom** di bawah. Format HDF5Keras menyediakan format penyimpanan menggunakan menggunakan [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) | # Create and train a new model instance.
model = create_model()
model.fit(train_images, train_labels, epochs=5)
# Save the entire model to a HDF5 file.
# The '.h5' extension indicates that the model shuold be saved to HDF5.
model.save('my_model.h5') | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Sekarang, buat ulang model dari file tersebut: | # Recreate the exact same model, including its weights and the optimizer
new_model = tf.keras.models.load_model('my_model.h5')
# Show the model architecture
new_model.summary() | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Cek akurasi dari model: | loss, acc = new_model.evaluate(test_images, test_labels, verbose=2)
print('Restored model, accuracy: {:5.2f}%'.format(100*acc)) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Teknik ini menyimpan semuanya:* Nilai berat* Konfigurasi model (arsitektur)* konfigurasi dari optimizerKeras menyimpan model dengan cara menginspeksi arsitekturnya. Saat ini, belum bisa menyimpan optimizer TensorFlow (dari `tf.train`). Ketika menggunakannya, Anda harus mengkompilasi kembali model setelah dimuat, dan Anda akan kehilangan kondisi dari optimizer. Format SavedModel Format SavedModel adalah suatu cara lainnya untuk melakukan serialisasi model. Model yang disimpan dalam format ini dapat direstorasi menggunakan `tf.keras.models.load_model` dan kompatibel dengan TensorFlow Serving. [Panduan SavedModel](https://www.tensorflow.org/guide/saved_model) menjelaskan detail bagaimana untuk menyediakan/memeriksa SavedModel. Kode di bawah ini mengilustrasikan langkah-langkah yang dilakukan untuk menyimpan dan memuat kembali model. | # Create and train a new model instance.
model = create_model()
model.fit(train_images, train_labels, epochs=5)
# Save the entire model as a SavedModel.
!mkdir -p saved_model
model.save('saved_model/my_model') | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Format SavedModel merupakan direktori yang berisi sebuah *protobuf binary* dan sebuah cek poin TensorFlow. Mememiksa direktori dari model tersimpan: | # my_model directory
!ls saved_model
# Contains an assets folder, saved_model.pb, and variables folder.
!ls saved_model/my_model | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Muat ulang Keras model yang baru dari model tersimpan: | new_model = tf.keras.models.load_model('saved_model/my_model')
# Check its architecture
new_model.summary() | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
Model yang sudah terestorasi dikompilasi dengan argument yang sama dengan model asli. Coba lakukan evaluasi dan prediksi menggunakan model tersebut: | # Evaluate the restored model
loss, acc = new_model.evaluate(test_images, test_labels, verbose=2)
print('Restored model, accuracy: {:5.2f}%'.format(100*acc))
print(new_model.predict(test_images).shape) | _____no_output_____ | Apache-2.0 | site/id/tutorials/keras/save_and_load.ipynb | NarimaneHennouni/docs-l10n |
μ¦μμ ν΅ν λ°μ΄ν°μ
ν¬κΈ° νμ₯ 1. Google Driveμ μ°λ | from google.colab import drive
drive.mount("/content/gdrive")
path = "gdrive/'My Drive'/'Colab Notebooks'/CNN"
!ls gdrive/'My Drive'/'Colab Notebooks'/CNN/datasets | cats_and_dogs_small
| MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
2. λͺ¨λΈ μμ± | from tensorflow.keras import layers, models, optimizers | _____no_output_____ | MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
0. Sequential κ°μ²΄ μμ±1. conv layer(filter32, kernel size(3,3), activation 'relu', input_shape()2. pooling layer(pool_size(2,2))3. conv layer(filter 64, kernel size(3,3), activation 'relu'4. pooling layer(pool_size(2,2))5. conv layer(filter 128, kernel size(3,3), activation 'relu'6. pooling layer(pool_size(2,2))7. conv layer(filter 128, kernel size(3,3), activation 'relu'8. pooling layer(pool_size(2,2))-------9. flatten layer10. Dense layer 512, relu11. Dense layer 1, sigmoid | model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
from tensorflow.keras import optimizers
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['accuracy'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator | _____no_output_____ | MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
3. λ°μ΄ν° μ μ²λ¦¬ | import os
base_dir = '/content/gdrive/My Drive/Colab Notebooks/CNN/datasets/cats_and_dogs_small'
train_dir = os.path.join(base_dir,'train')
validation_dir = os.path.join(base_dir,'validation')
test_dir=os.path.join(base_dir,'test')
# [μ½λμμ±]
# train_datagenμ΄λΌλ ImageDataGenerator κ°μ²΄ μμ±
# train_datagenμ μ¦μ μ΅μ
# 1. scale : 0~1
# 2. νμ κ°λ λ²μ : -40~+40
# 3. μνμ΄λ λ²μ : μ 체 λλΉμ 20% λΉμ¨
# 4. μμ§μ΄λ λ²μ : μ 체 λμ΄μ 20% λΉμ¨
# 5. μ λ¨ λ³ν(shearing) κ°λ λ²μ : 10%
# 6. μ¬μ§ νλ λ²μ : 20%
# 7. μ΄λ―Έμ§λ₯Ό μνμΌλ‘ λ€μ§κΈ° : True
# 8. νμ μ΄λ κ°λ‘/μΈλ‘ μ΄λμΌλ‘ μΈν΄ μλ‘κ² μμ±ν΄μΌ ν ν½μ
μ μ±μΈ μ λ΅ : 'nearest'
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.1,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir, target_size=(150,150), batch_size=20,class_mode='binary')
validation_generator = validation_datagen.flow_from_directory(
validation_dir, target_size=(150,150), batch_size=20,class_mode='binary')
test_generator = test_datagen.flow_from_directory(
test_dir, target_size=(150,150), batch_size=20,class_mode='binary')
| Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
| MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
4. λͺ¨λΈ νλ ¨ | history = model.fit_generator(train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50) | WARNING:tensorflow:From <ipython-input-16-c480ae1e8dcf>:5: Model.fit_generator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
Please use Model.fit, which supports generators.
Epoch 1/30
100/100 [==============================] - 526s 5s/step - loss: 0.6970 - accuracy: 0.5140 - val_loss: 0.6874 - val_accuracy: 0.5410
Epoch 2/30
100/100 [==============================] - 23s 229ms/step - loss: 0.6865 - accuracy: 0.5545 - val_loss: 0.6869 - val_accuracy: 0.5320
Epoch 3/30
100/100 [==============================] - 22s 225ms/step - loss: 0.6742 - accuracy: 0.5895 - val_loss: 0.6685 - val_accuracy: 0.5890
Epoch 4/30
100/100 [==============================] - 23s 226ms/step - loss: 0.6668 - accuracy: 0.6040 - val_loss: 0.6377 - val_accuracy: 0.6310
Epoch 5/30
100/100 [==============================] - 23s 227ms/step - loss: 0.6580 - accuracy: 0.6155 - val_loss: 0.6327 - val_accuracy: 0.6370
Epoch 6/30
100/100 [==============================] - 23s 229ms/step - loss: 0.6377 - accuracy: 0.6310 - val_loss: 0.6227 - val_accuracy: 0.6420
Epoch 7/30
100/100 [==============================] - 23s 233ms/step - loss: 0.6299 - accuracy: 0.6495 - val_loss: 0.6394 - val_accuracy: 0.6020
Epoch 8/30
100/100 [==============================] - 23s 225ms/step - loss: 0.6145 - accuracy: 0.6640 - val_loss: 0.5787 - val_accuracy: 0.6870
Epoch 9/30
100/100 [==============================] - 22s 225ms/step - loss: 0.6018 - accuracy: 0.6680 - val_loss: 0.6183 - val_accuracy: 0.6330
Epoch 10/30
100/100 [==============================] - 23s 227ms/step - loss: 0.5918 - accuracy: 0.6940 - val_loss: 0.6036 - val_accuracy: 0.6570
Epoch 11/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5928 - accuracy: 0.6690 - val_loss: 0.6776 - val_accuracy: 0.6090
Epoch 12/30
100/100 [==============================] - 22s 223ms/step - loss: 0.5764 - accuracy: 0.6960 - val_loss: 0.5405 - val_accuracy: 0.7140
Epoch 13/30
100/100 [==============================] - 22s 222ms/step - loss: 0.5730 - accuracy: 0.7060 - val_loss: 0.5361 - val_accuracy: 0.7180
Epoch 14/30
100/100 [==============================] - 22s 225ms/step - loss: 0.5678 - accuracy: 0.6925 - val_loss: 0.5781 - val_accuracy: 0.6880
Epoch 15/30
100/100 [==============================] - 23s 229ms/step - loss: 0.5682 - accuracy: 0.6990 - val_loss: 0.5299 - val_accuracy: 0.7190
Epoch 16/30
100/100 [==============================] - 23s 225ms/step - loss: 0.5564 - accuracy: 0.7070 - val_loss: 0.5587 - val_accuracy: 0.6990
Epoch 17/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5492 - accuracy: 0.7155 - val_loss: 0.5078 - val_accuracy: 0.7350
Epoch 18/30
100/100 [==============================] - 23s 227ms/step - loss: 0.5573 - accuracy: 0.7065 - val_loss: 0.5177 - val_accuracy: 0.7370
Epoch 19/30
100/100 [==============================] - 23s 229ms/step - loss: 0.5490 - accuracy: 0.7140 - val_loss: 0.6353 - val_accuracy: 0.6600
Epoch 20/30
100/100 [==============================] - 24s 236ms/step - loss: 0.5443 - accuracy: 0.7075 - val_loss: 0.4860 - val_accuracy: 0.7640
Epoch 21/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5408 - accuracy: 0.7230 - val_loss: 0.5099 - val_accuracy: 0.7400
Epoch 22/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5256 - accuracy: 0.7405 - val_loss: 0.5177 - val_accuracy: 0.7410
Epoch 23/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5321 - accuracy: 0.7390 - val_loss: 0.5267 - val_accuracy: 0.7250
Epoch 24/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5251 - accuracy: 0.7385 - val_loss: 0.6157 - val_accuracy: 0.6870
Epoch 25/30
100/100 [==============================] - 22s 224ms/step - loss: 0.5353 - accuracy: 0.7305 - val_loss: 0.5214 - val_accuracy: 0.7300
Epoch 26/30
100/100 [==============================] - 23s 225ms/step - loss: 0.5129 - accuracy: 0.7460 - val_loss: 0.5402 - val_accuracy: 0.7170
Epoch 27/30
100/100 [==============================] - 22s 223ms/step - loss: 0.5099 - accuracy: 0.7550 - val_loss: 0.4921 - val_accuracy: 0.7560
Epoch 28/30
100/100 [==============================] - 23s 226ms/step - loss: 0.5256 - accuracy: 0.7350 - val_loss: 0.4778 - val_accuracy: 0.7600
Epoch 29/30
100/100 [==============================] - 23s 228ms/step - loss: 0.5287 - accuracy: 0.7350 - val_loss: 0.5037 - val_accuracy: 0.7450
Epoch 30/30
100/100 [==============================] - 23s 228ms/step - loss: 0.5062 - accuracy: 0.7485 - val_loss: 0.5342 - val_accuracy: 0.7140
| MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
5. μ±λ₯ μκ°ν | import matplotlib.pyplot as plt
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) +1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.show() | _____no_output_____ | MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
* accμ val_acc λͺ¨λ μ¦κ°νλ κ²½ν₯μ 보μ κ³Όμ ν©μ΄ λ°μνμ§ μμμ | plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show() | _____no_output_____ | MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
6. λͺ¨λΈ νκ°νκΈ° | test_loss, test_accuracy = model.evaluate_generator(test_generator, steps=50)
print(test_loss)
print(test_accuracy) | 0.5713947415351868
0.7160000205039978
| MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
7. λͺ¨λΈ μ μ₯ | model.save('/content/gdrive/My Drive/Colab Notebooks/CNN/datasets/cats_and_dogs_small_augmentation.h5') | _____no_output_____ | MIT | 03_CNN/04_2_CatAndDog_Augmentation.ipynb | seungbinahn/START_AI |
Start Julia evironment | # Install any required python packages here
# !pip install <packages>
# Here we install Julia
%%capture
%%shell
if ! command -v julia 3>&1 > /dev/null
then
wget -q 'https://julialang-s3.julialang.org/bin/linux/x64/1.6/julia-1.6.2-linux-x86_64.tar.gz' \
-O /tmp/julia.tar.gz
tar -x -f /tmp/julia.tar.gz -C /usr/local --strip-components 1
rm /tmp/julia.tar.gz
fi
julia -e 'using Pkg; pkg"add IJulia; precompile;"'
echo 'Done' | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
After you run the first cell (the the cell directly above this text), go to Colab's menu bar and select **Edit** and select **Notebook settings** from the drop down. Select *Julia 1.6* in Runtime type. You can also select your prefered harwdware acceleration (defaults to GPU). You should see something like this:> Click on SAVE**We are ready to get going** | VERSION | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
**The next three cells are for GPU benchmarking. If you are using this notebook for the first time and have GPU enabled, you can give it a try.** Import all the Julia Packages Here, we first import all the required packages. CUDA is used to offload some of the processing to the gpu, Flux is the package for putting together the NN. MLDatasets contains the MNIST dataset which we will use in this example. Images contains some functionality to actually view images. Makie, and CairoMakie are used for plotting. | import Pkg
Pkg.add(["CUDA","Flux","MLDatasets","Images","Makie","CairoMakie","ImageMagick"])
using CUDA, Flux, MLDatasets, Images, Makie, Statistics, CairoMakie,ImageMagick
using Base.Iterators: partition | [32m[1m Resolving[22m[39m package versions...
[32m[1m No Changes[22m[39m to `~/.julia/environments/v1.6/Project.toml`
[32m[1m No Changes[22m[39m to `~/.julia/environments/v1.6/Manifest.toml`
| MIT | MNIST.ipynb | coenarrow/MNistTests |
Let's look at the functions we can call from the MNIST set itself | names(MNIST) | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
Let's assume we want to get the training data from the MNIST package. Now, let's see what we get returned if we call that function | Base.return_types(MNIST.traindata) | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
This does not mean a heck of a lot to me initially, but we can basically see we get 2 tuples returned. So let's go ahead and assign some x and y to each of the tuples so we can probe further. | x, y = MNIST.traindata(); | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
Let's now further investigate the x | size(x) | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
We know from the MNIST dataset, that the set contains 60000 images, each of size 28x28. So clearly we are looking at the images themselves. So this is our input. Let's plot an example to make sure. | i = rand(1:60000)
heatmap(x[:,:,i],colormap = :grays) | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
Similarly, let's have a quick look at the size of y. I expect this is the label associated with the images | y[i] | _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
And then let's check that the image above is labelled as what we expect. | y[7]
show(names(Images))
?imshow
names(ImageShow)
| _____no_output_____ | MIT | MNIST.ipynb | coenarrow/MNistTests |
μ»΄νμΌλ¬μμ λ³μ, 쑰건문 λ€λ£¨κΈ°λ³μλ₯Ό λ€λ£¨κΈ° μν΄μλ κΈ°κ³μνμ λ©λͺ¨λ¦¬λ₯Ό μΆκ°νκ³ λ©λͺ¨λ¦¬ μ°μ°μ μν μ κΈμΈμ΄ λͺ
λ Ήμ μΆκ°νλ€.쑰건문μ λ€λ£¨κΈ° μν΄μλ μ€νμ½λλ₯Ό μμ°¨μ μΌλ‘λ§ μ€ννλ κ²μ΄ μλλΌ νΉμ μ½λ μμΉλ‘ μ΄λνμ¬ μ€ννλ μ κΈμΈμ΄ λͺ
λ Ήμ μΆκ°νλ€. | data Expr = Var Name -- x
| Val Value -- n
| Add Expr Expr -- e1 + e2
-- | Sub Expr Expr
-- | Mul Expr Expr
-- | Div Expr Expr
| If Expr Expr Expr -- if e then e1 else e0
deriving Show
type Name = String -- λ³μμ μ΄λ¦μ λ¬Έμμ΄λ‘ νν
type Value = Int -- μμκ°μ μ μ
type Stack = [Value]
data Inst = ADD | PUSH Value -- μ€ν λͺ
λ Ή
| GOTO Code | JMPZ Code -- μ€νμ½λ λͺ
λ Ή
| READ Addr -- λ©λͺ¨λ¦¬ λͺ
λ Ή
deriving Show
type Code = [Inst]
-- type Env = [ (Name, Value) ] λΌλ μΈν°νλ¦¬ν° μ€ν νκ²½μ
-- λ λ¨κ³λ‘ μλμ κ°μ΄ λλλ€
type SymTbl = [ (Name, Addr) ] -- μ»΄νμΌ λ¨κ³μμ μ¬μ©νλ μ¬λ³Ό ν
μ΄λΈ
type Memory = [ (Addr, Value) ] -- κΈ°κ³(κ°μλ¨Έμ ) μ€ν λ¨κ³μμ μ¬μ©νλ λ©λͺ¨λ¦¬
type Addr = Int -- μ£Όμλ μ μλ‘ νν
-- μ΄μ Kontλ μ€νλ§μ΄ μλλΌ μΈ μμλ‘ μ΄λ£¨μ΄μ§ κΈ°κ³μνλ₯Ό λ³νμν€λ ν¨μ νμ
μ΄λ€
type Kont = (Stack,Memory,Code) -> (Stack,Memory,Code)
-- λ μ΄μ μ€νν μ½λκ° μλ κΈ°κ³μνλ‘ λ³νμν€λ ν¨μ
haltK :: Kont
haltK (s, mem, _) = (s, mem, [])
-- μ€ν λͺ
λ Ήμ μ€νμν€κΈ° μν κΈ°κ³μνλ³ν ν¨μλ€
pushK :: Int -> Kont
pushK n (s, mem, code) = (n:s, mem, code)
addK :: Kont
addK (n2:n1:s, mem, code) = ((n1+n2):s, mem, code)
-- μ€νμ½λ λͺ
λ Ήμ μ€νμν€κΈ° μν κΈ°κ³μνλ³ν ν¨μλ€
jmpzK :: Code -> Kont
jmpzK code (0:s, mem, _) = (s, mem, code) -- μ€ν 맨 μ κ°μ΄ 0μ΄λ©΄ μλ‘μ΄ code μμΉλ‘ μ ν
jmpzK _ (_:s, mem, c) = (s, mem, c) -- μ€ν 맨 μκ° 0μ΄ μλλ©΄ μλ μ€ννλ μ½λ cμ€ν
gotoK :: Code -> Kont
gotoK code (s, mem, _) = (s, mem, code) -- 무쑰건 μλ‘μ΄ code μμΉλ‘ μ΄λ
-- λ©λͺ¨λ¦¬ λͺ
λ Ήμ μ€νμν€κΈ° μν κΈ°κ³μνλ³ν ν¨μ
-- (λ©λͺ¨λ¦¬μμ κ°μ μ½μ΄ μ€ν 맨 μμ μλλ€)
readK a (s, mem, code) = case lookup a mem of
Nothing -> error (show a ++ " uninitialized memory address")
Just v -> (v:s, mem, code)
compile :: SymTbl -> Expr -> Code
compile tbl (Var x) = case lookup x tbl of
Nothing -> error (x ++ " not found")
Just a -> [READ a]
compile tbl (Val n) = [PUSH n]
compile tbl (Add e1 e2) = compile tbl e1 ++ compile tbl e2 ++ [ADD]
compile tbl (If e e1 e0) =
compile tbl e ++ [JMPZ c0] ++ c1 ++ [GOTO []] ++ c0
where
c1 = compile tbl e1
c0 = compile tbl e0
step :: Inst -> Kont
step (PUSH n) = pushK n
step ADD = addK
step (GOTO c) = gotoK c
step (JMPZ c) = jmpzK c
step (READ a) = readK a
run :: Kont
run (s, mem, []) = (s, mem, [])
run (s, mem, c:cs) = run (step c (s, mem, cs))
import Data.List (union)
vars (Var x) = [x]
vars (Val _) = []
vars (Add e1 e2) = vars e1 `union` vars e2
vars (If e e1 e0) = vars e `union` vars e1 `union` vars e0
-- μΈν°ν리ν°μμλ μλ μμ μ€ννλ €λ©΄ [("x",2),("y",3)]μ κ°μ
-- μ€ννκ²½μ λ§λ€μ΄ νλ°©μ μ€ννλ©΄ λμ§λ§ μ»΄νμΌλ¬μλ λ λ¨κ³
e0 = Add (Add (Var "x") (Var "y")) (Val 100)
e0
-- μ»΄νμΌν λλ λ³μλ₯Ό λ©λͺ¨λ¦¬ μ£Όμμ λμμν€λ μ¬λ³Όν
μ΄λΈμ΄ νμ
code0 = compile [("x",102),("y",103)] e0
code0
-- μ€νν λλ ν΄λΉ μ£Όμμ μ μ ν κ°μ ν λΉν λ©λͺ¨λ¦¬κ° νμ
vm0 = ([], [(102,7), (103,3)], code0)
run vm0
{- b = 2, x = 12, y = 123 -}
-- if b then (x + 3) else y
e1 = If (Var "b") (Add (Var "x") (Val 3)) (Var "y")
-- (if b then (x + 3) else y) + 1000
e2 = e1 `Add` Val 1000
tbl0 = [("b",101),("x",102),("y",103)]
tbl0
mem0 = [(101,2), (102,12), (103,123)]
mem0
code1 = compile tbl0 e1
code1
code2 = compile tbl0 e2
code2
{-
import GHC.HeapView
putStr =<< ppHeapGraph <$> buildHeapGraph 15 code2 (asBox code2)
-}
-- μμλλ‘ e1μ κ³μ° κ²°κ³Ό μ€ν 맨 μμ 15κ° λμ¨λ€
run ([], mem0, code1)
-- e2μ κ³μ° κ²°κ³Όλ 1015μ΄μ΄μΌ νλλ° e1κ³Ό λ§μ°¬κ°μ§λ‘ 15κ° λμ΄λ²λ¦°λ€
run ([], mem0, code2) | _____no_output_____ | MIT | 0917 Compilers with variables and conditionals.ipynb | hnu-pl/compiler2019fall |
μλλ e2λ₯Ό μ»΄νμΌν code2λ₯Ό μ€νν κ²°κ³Όκ° μ μνλ λλ‘ λμ€μ§ μλμ§ μ’λ μμΈν μ΄ν΄λ³΄κΈ° μν΄step ν¨μλ₯Ό νλ¨κ³μ© νΈμΆν΄ κ°λ©° κ°κ°μ λͺ
λ Ή μ€ν μ νμ κΈ°κ³μν vm0,...,vm6λ₯Ό μμλ³Έ λ΄μ©μ΄λ€. | vm0@(s0, _,c0:cs0) = ([], mem0, code2)
vm0
vm1@(s1,mem1,c1:cs1) = step c0 (s0,mem0,cs0)
vm1
vm2@(s2,mem2,c2:cs2) = step c1 (s1,mem1,cs1)
vm2
vm3@(s3,mem3,c3:cs3) = step c2 (s2,mem2,cs2)
vm3
vm4@(s4,mem4,c4:cs4) = step c3 (s3,mem3,cs3)
vm4
vm5@(s5,mem5,c5:cs5) = step c4 (s4,mem4,cs4)
vm5
vm6 = step c5 (s5,mem5,cs5)
vm6 | _____no_output_____ | MIT | 0917 Compilers with variables and conditionals.ipynb | hnu-pl/compiler2019fall |
BASIC PYTHON FOR RESEARCHERS _by_ [**_Megat Harun Al Rashid bin Megat Ahmad_**](https://www.researchgate.net/profile/Megat_Harun_Megat_Ahmad) last updated: April 14, 2016 ------- _8. Database and Data Analysis_ ---$Pandas$ is an open source library for data analysis in _Python_. It gives _Python_ similar capabilities to _R_ programming language and even though it is possible to run _R_ in _Jupyter Notebook_, it would be more practical to do data analysis with a _Python_ friendly syntax. Similar to other libraries, the first step to use $Pandas$ is to import the library and usually together with the $Numpy$ library. | import pandas as pd
import numpy as np | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
*** **_8.1 Data Structures_** Data structures (similar to _Sequence_ in _Python_) of $Pandas$ revolves around the **_Series_** and **_DataFrame_** structures. Both are fast as they are built on top of $Numpy$. A **_Series_** is a one-dimensional object with a lot of similar properties similar to a list or dictionary in _Python_'s _Sequence_. Each element or item in a **_Series_** will be assigned by default an index label from _0_ to _N-1_ (where _N_ is the length of the **_Series_**) and it can contains the various type of _Python_'s data. | # Creating a series (with different type of data)
s1 = pd.Series([34, 'Material', 4*np.pi, 'Reactor', [100,250,500,750], 'kW'])
s1 | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
The index of a **_Series_** can be specified during its creation and giving it a similar function to a dictionary. | # Creating a series with specified index
lt = [34, 'Material', 4*np.pi, 'Reactor', [100,250,500,750], 'kW']
s2 = pd.Series(lt, index = ['b1', 'r1', 'solid angle', 18, 'reactor power', 'unit'])
s2 | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
Data can be extracted by specifying the element position or index (similar to list/dictionary). | s1[3], s2['solid angle'] | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
**_Series_** can also be constructed from a dictionary. | pop_cities = {'Kuala Lumpur':1588750, 'Seberang Perai':818197, 'Kajang':795522,
'Klang':744062, 'Subang Jaya':708296}
cities = pd.Series(pop_cities)
cities | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
The elements can be sort using the $Series.order()$ function. This will not change the structure of the original variable. | cities.order(ascending=False)
cities | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
Another sorting function is the $sort()$ function but this will change the structure of the **_Series_** variable. | # Sorting with descending values
cities.sort(ascending=False)
cities
cities | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
Conditions can be applied to the elements. | # cities with population less than 800,000
cities[cities<800000]
# cities with population between 750,000 and 800,000
cities[cities<800000][cities>750000] | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
---A **_DataFrame_** is a 2-dimensional data structure with named rows and columns. It is similar to _R_'s _data.frame_ object and function like a spreadsheet. **_DataFrame_** can be considered to be made of series of **_Series_** data according to the column names. **_DataFrame_** can be created by passing a 2-dimensional array of data and specifying the rows and columns names. | # Creating a DataFrame by passing a 2-D numpy array of random number
# Creating first the date-time index using date_range function
# and checking it.
dates = pd.date_range('20140801', periods = 8, freq = 'D')
dates
# Creating the column names as list
Kedai = ['Kedai A', 'Kedai B', 'Kedai C', 'Kedai D', 'Kedai E']
# Creating the DataFrame with specified rows and columns
df = pd.DataFrame(np.random.randn(8,5),index=dates,columns=Kedai)
df | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
---Some of the useful functions that can be applied to a **_DataFrame_** include: | df.head() # Displaying the first five (default) rows
df.head(3) # Displaying the first three (specified) rows
df.tail(2) # Displaying the last two (specified) rows
df.index # Showing the index of rows
df.columns # Showing the fields of columns
df.values # Showing the data only in its original 2-D array
df.describe() # Simple statistical data for each column
df.T # Transposing the DataFrame (index becomes column and vice versa)
df.sort_index(axis=1,ascending=False) # Sorting with descending column
df.sort(columns='Kedai D') # Sorting according to ascending specific column
df['Kedai A'] # Extract specific column (using python list syntax)
df['Kedai A'][2:4] # Slicing specific column (using python list syntax)
df[2:4] # Slicing specific row data (using python list syntax)
# Slicing specific index range
df['2014-08-03':'2014-08-05']
# Slicing specific index range for a particular column
df['2014-08-03':'2014-08-05']['Kedai B']
# Using the loc() function
# Slicing specific index and column ranges
df.loc['2014-08-03':'2014-08-05','Kedai B':'Kedai D']
# Slicing specific index range with specific column names
df.loc['2014-08-03':'2014-08-05',['Kedai B','Kedai D']]
# Possibly not yet to have something like this
df.loc[['2014-08-01','2014-08-03':'2014-08-05'],['Kedai B','Kedai D']]
# Using the iloc() function
df.iloc[3] # Specific row location
df.iloc[:,3] # Specific column location (all rows)
df.iloc[2:4,1:3] # Python like slicing for range
df.iloc[[2,4],[1,3]] # Slicing with python like list
# Conditionals on the data
df>0 # Array values > 0 OR
df[df>0] # Directly getting the value | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
**_NaN_** means empty, missing data or unavailable. | df[df['Kedai B']<0] # With reference to specific value in a column (e.g. Kedai B)
df2 = df.copy() # Made a copy of a database
df2
# Adding column
df2['Tambah'] = ['satu','satu','dua','tiga','empat','tiga','lima','enam']
df2
# Adding row using append() function. The previous loc() is possibly deprecated.
# Assign a new name to the new row (with the same format)
new_row_name = pd.date_range('20140809', periods = 1, freq = 'D')
# Appending new row with new data
df2.append(list(np.random.randn(5))+['sembilan'])
# Renaming the new row (here actually is a reassignment)
df2 = df2.rename(index={10: new_row_name[0]})
df2
# Assigning new data to a row
df2.loc['2014-08-05'] = list(np.random.randn(5))+['tujuh']
df2
# Assigning new data to a specific element
df2.loc['2014-08-05','Tambah'] = 'lapan'
df2
# Using the isin() function (returns boolean data frame)
df2.isin(['satu','tiga'])
# Select specific row based on additonal column
df2[df2['Tambah'].isin(['satu','tiga'])]
# Use previous command - select certain column based on selected additional column
df2[df2['Tambah'].isin(['satu','tiga'])].loc[:,'Kedai B':'Kedai D']
# Select > 0 from previous cell...
(df2[df2['Tambah'].isin(['satu','tiga'])].loc[:,'Kedai B':'Kedai D']>0) | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
*** **_8.2 Data Operations_** We have seen few operations previously on **_Series_** and **_DataFrame_** and here this will be explored further. | df.mean() # Statistical mean (column) - same as df.mean(0), 0 means column
df.mean(1) # Statistical mean (row) - 1 means row
df.mean()['Kedai C':'Kedai E'] # Statistical mean (range of columns)
df.max() # Statistical max (column)
df.max()['Kedai C'] # Statistical max (specific column)
df.max(1)['2014-08-04':'2014-08-07'] # Statistical max (specific row)
df.max(1)[dates[3]] # Statistical max (specific row by variable) | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
---Other statistical functions can be checked by typing df.__. The data in a **_DataFrame_** can be represented by a variable declared using the $lambda$ operator. | df.apply(lambda x: x.max() - x.min()) # Operating array values with function
df.apply(lambda z: np.log(z)) # Operating array values with function | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
Replacing, rearranging and operations of data between columns can be done much like spreadsheet. | df3 = df.copy()
df3[r'Kedai A^2/Kedai E'] = df3['Kedai A']**2/df3['Kedai E']
df3 | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
Subsets and Splits