markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Tables can be split, rearranged and combined. | df4 = df.copy()
df4
pieces = [df4[6:], df4[3:6], df4[:3]] # split row 2+3+3
pieces
df5 = pd.concat(pieces) # concantenate (rearrange/combine)
df5
df4+df5 # Operation between tables with original index sequence
df0 = df.loc[:,'Kedai A':'Kedai C'] # Slicing and extracting columns
pd.concat([df4, df0], axis = 1) # Concatenating columns (axis = 1 -> refers to column) | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
*** **_8.3 Plotting Functions_** ---Let us look on some of the simple plotting function on $Pandas$ (requires $Matplotlib$ library). | df_add = df.copy()
# Simple auto plotting
%matplotlib inline
df_add.cumsum().plot()
# Reposition the legend
import matplotlib.pyplot as plt
df_add.cumsum().plot()
plt.legend(bbox_to_anchor=[1.3, 1]) | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
In the above example, repositioning the legend requires the legend function in $Matplotlib$ library. Therefore, the $Matplotlib$ library must be explicitly imported. | df_add.cumsum().plot(kind='bar')
plt.legend(bbox_to_anchor=[1.3, 1])
df_add.cumsum().plot(kind='barh', stacked=True)
df_add.cumsum().plot(kind='hist', alpha=0.5)
df_add.cumsum().plot(kind='area', alpha=0.4, stacked=False)
plt.legend(bbox_to_anchor=[1.3, 1]) | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
A 3-dimensional plot can be projected on a canvas but requires the $Axes3D$ library with slightly complicated settings. | # Plotting a 3D bar plot
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
# Convert the time format into ordinary strings
time_series = pd.Series(df.index.format())
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(111, projection='3d')
# Plotting the bar graph column by column
for c, z in zip(['r', 'g', 'b', 'y','m'], np.arange(len(df.columns))):
xs = df.index
ys = df.values[:,z]
ax.bar(xs, ys, zs=z, zdir='y', color=c, alpha=0.5)
ax.set_zlabel('Z')
ax.set_xticklabels(time_series, va = 'baseline', ha = 'right', rotation = 15)
ax.set_yticks(np.arange(len(df.columns)))
ax.set_yticklabels(df.columns, va = 'center', ha = 'left', rotation = -42)
ax.view_init(30, -30)
fig.tight_layout() | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
*** **_8.4 Reading And Writing Data To File_** Data in **_DataFrame_** can be exported into **_csv_** (comma separated value) and **_Excel_** file. The users can also create a **_DataFrame_** from data in **_csv_** and **_Excel_** file, the data can then be processed. | # Export data to a csv file but separated with < TAB > rather than comma
# the default separation is with comma
df.to_csv('Tutorial8/Kedai.txt', sep='\t')
# Export to Excel file
df.to_excel('Tutorial8/Kedai.xlsx', sheet_name = 'Tarikh', index = True)
# Importing data from csv file (without header)
from_file = pd.read_csv('Tutorial8/Malaysian_Town.txt',sep='\t',header=None)
from_file.head()
# Importing data from Excel file (with header (the first row) that became the column names)
from_excel = pd.read_excel('Tutorial8/Malaysian_Town.xlsx','Sheet1')
from_excel.head() | _____no_output_____ | Artistic-2.0 | .ipynb_checkpoints/Tutorial 8 - Database and Data Analysis-checkpoint.ipynb | megatharun/basic-python-for-researcher |
Germany: LK Aurich (Niedersachsen)* Homepage of project: https://oscovida.github.io* Plots are explained at http://oscovida.github.io/plots.html* [Execute this Jupyter Notebook using myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Aurich.ipynb) | import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="Germany", subregion="LK Aurich", weeks=5);
overview(country="Germany", subregion="LK Aurich");
compare_plot(country="Germany", subregion="LK Aurich", dates="2020-03-15:");
# load the data
cases, deaths = germany_get_region(landkreis="LK Aurich")
# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="LK Aurich")
print(f'Population of country="Germany", subregion="LK Aurich": {inhabitants} people')
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 1000 rows
pd.set_option("max_rows", 1000)
# display the table
table | _____no_output_____ | CC-BY-4.0 | ipynb/Germany-Niedersachsen-LK-Aurich.ipynb | oscovida/oscovida.github.io |
Explore the data in your web browser- If you want to execute this notebook, [click here to use myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Aurich.ipynb)- and wait (~1 to 2 minutes)- Then press SHIFT+RETURN to advance code cell to code cell- See http://jupyter.org for more details on how to use Jupyter Notebook Acknowledgements:- Johns Hopkins University provides data for countries- Robert Koch Institute provides data for within Germany- Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)- Open source and scientific computing community for the data tools- Github for hosting repository and html files- Project Jupyter for the Notebook and binder service- The H2020 project Photon and Neutron Open Science Cloud ([PaNOSC](https://www.panosc.eu/))-------------------- | print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
| _____no_output_____ | CC-BY-4.0 | ipynb/Germany-Niedersachsen-LK-Aurich.ipynb | oscovida/oscovida.github.io |
Investigation of No-show Appointments Data Table of ContentsIntroductionData WranglingExploratory Data AnalysisConclusions IntroductionThe data includes some information about more than 100,000 Braxzilian medical appointments. It gives if the patient shows up or not for the appointment as well as some characteristics of patients and appointments. When we calculate overall no-show rate for all records, we see that it is pretty high; above 20%. It means more than one out of 5 patients does not show up at all. In this project, we specifically look at the associatons between no show-up rate and other variables and try to understand why the rate is at the level it is. | import pandas as pd
import seaborn as sb
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
Data Wrangling | # Load your data and print out a few lines. Perform operations to inspect data
# types and look for instances of missing or possibly errant data.
filename = 'noshowappointments-kagglev2-may-2016.csv'
df= pd.read_csv(filename)
df.head()
df.info() # no missing values | <class 'pandas.core.frame.DataFrame'>
RangeIndex: 110527 entries, 0 to 110526
Data columns (total 14 columns):
PatientId 110527 non-null float64
AppointmentID 110527 non-null int64
Gender 110527 non-null object
ScheduledDay 110527 non-null object
AppointmentDay 110527 non-null object
Age 110527 non-null int64
Neighbourhood 110527 non-null object
Scholarship 110527 non-null int64
Hipertension 110527 non-null int64
Diabetes 110527 non-null int64
Alcoholism 110527 non-null int64
Handcap 110527 non-null int64
SMS_received 110527 non-null int64
No-show 110527 non-null object
dtypes: float64(1), int64(8), object(5)
memory usage: 11.8+ MB
| MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
The data gives information about gender and age of the patient, neighbourhood of the hospital, if the patient has hypertension, diabetes, alcoholism or not, date and time of appointment and schedule, if the patient is registered in scholarship or not, and if SMS received or not as a reminder. When I look at the data types of columns, it is realized that AppointmentDay and ScheduledDay are recorded as object, or string to be more specific. And also, PatientId is recorded as float instead of integer. But I most probably will not make use of this information since it is very specific to the patient.The data seems pretty clear. There is no missing value or duplicated rows.First, I start with creating a dummy variable for No-show variable. So it makes easier for us to look at no show rate across different groups. | df.describe()
df.isnull().any().sum() # no missing value
df.duplicated().any() | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
Data Cleaning A dummy variable named no_showup is created. It takes the value 1 if the patient did not show up, and 0 otherwise. I omitted PatientId, AppointmentID and No-show columns. There are some rows with Age value of -1 which does not make much sense. So I dropped these rows.Other than that, the data seems pretty clean; no missing values, no duplicated rows. | df['No-show'].unique()
df['no_showup'] = np.where(df['No-show'] == 'Yes', 1, 0)
df.drop(['PatientId', 'AppointmentID', 'No-show'], axis = 1, inplace = True)
noshow = df.no_showup == 1
show = df.no_showup == 0
index = df[df.Age == -1].index
df.drop(index, inplace = True) | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
Exploratory Data Analysis What factors are important in predicting no-show rate? | plt.figure(figsize = (10,6))
df.Age[noshow].plot(kind = 'hist', alpha= 0.5, color= 'green', bins =20, label = 'no-show');
df.Age[show].plot(kind = 'hist', alpha= 0.4, color= 'orange', bins =20, label = 'show');
plt.legend();
plt.xlabel('Age');
plt.ylabel('Number of Patients'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
I started exploratory data analysis by first looking at the relationship between age and no_showup. By looking age distributions for patients who showed up and not showed up, we can not say much. There is a spike at around age 0, and no show up number is not that high compared to other ages. We can infer that adults are careful about babies' appointments. As age increases, the number of patients in both groups decreases, which is plausible taking general demographics into account. To be able to say more about showup rate across different age groups we need to look at ratio of one group to another.First, I created age bins which are equally spaced from age 0 to the maximum age which is 115. It is called age_bins. Basically, it shows which bin the age of patient falls in. So I can look at the no_showup rate across different age bins. | bin_edges = np.arange(0, df.Age.max()+3, 3)
df['age_bins'] = pd.cut(df.Age, bin_edges)
base_color = sb.color_palette()[0]
age_order = df.age_bins.unique().sort_values()
g= sb.FacetGrid(data= df, row= 'Gender', row_order = ['M', 'F'], height=4, aspect = 2);
g = g.map(sb.barplot, 'age_bins', 'no_showup', color = base_color, ci = None, order = age_order);
g.axes[0,0].set_ylabel('No-show Rate');
g.axes[1,0].set_ylabel('No-show Rate');
plt.xlabel('Age Intervals')
plt.xticks(rotation = 90); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
No-show rate is smaller than average for babies ((0-3] interval). Then it increases as age get larger and it reaches peak at around 15-18 depending on gender. After that point, as age gets larger the no-show rate gets smaller. So middle-aged and old people are much more careful about their doctor appointments which is understandable as you get older, your health might not be in a good condition, you become more concerned about your health and do not miss your appointments. Or another explanation might be that as person ages, it is more probable to have a health condition which requires close doctor watch which incentivizes you attend to your scheduled appointments.There are spikes at the end of graphs, I suspect this happens due to small number of patients in corresponding bins. There are only 5 people in (114,117] bin which proves my suspicion right. | df.groupby('age_bins').size().sort_values().head(8)
df.groupby('Gender').no_showup.mean() | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
There is no much difference across genders. No-show rates are close. | order_scholar = [0, 1]
g= sb.FacetGrid(data= df, col= 'Gender', col_order = ['M', 'F'], height=4);
g = g.map(sb.barplot, 'Scholarship', 'no_showup', order = order_scholar, color = base_color, ci = None,);
g.axes[0,0].set_ylabel('No-show Rate');
g.axes[0,1].set_ylabel('No-show Rate'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
If the patient is in Brazilian welfare program, then the probability of her not showing up for the appointment is larger than the probablity of a patient which is not registered in welfare program. There is no significant difference between males and females. | order_hyper = [0, 1]
g= sb.FacetGrid(data= df, col= 'Gender', col_order = ['M', 'F'], height=4);
g = g.map(sb.barplot, 'Hipertension', 'no_showup', order = order_hyper, color = base_color, ci = None,);
g.axes[0,0].set_ylabel('No-show Rate');
g.axes[0,1].set_ylabel('No-show Rate'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
When the patient has hypertension or diabetes, she would not want to miss doctor appointments. So having a disease to be watched closely incentivizes you to show up for your appointments. Again, being male or female does not make a significant difference in no-show rate. | order_diabetes = [0, 1]
sb.barplot(data =df, x = 'Diabetes', y = 'no_showup', hue = 'Gender', ci = None, order = order_diabetes);
sb.despine();
plt.ylabel('No-show Rate');
plt.legend(loc = 'lower right');
order_alcol = [0, 1]
sb.barplot(data =df, x = 'Alcoholism', y = 'no_showup', hue = 'Gender', ci = None, order = order_alcol);
sb.despine();
plt.ylabel('No-show Rate');
plt.legend(loc = 'lower right'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
The story for alcoholism is a bit different. If the patient is a male with alcoholism, the probability of his no showing up is smaller than the one of male with no alcoholism. On the other hand, having alcoholism makes a female patient's probability of not showing up larger. Here I suspect if the number of females having alcoholism is very small or not, but I see below that the numbers in both groups are comparable. | df.groupby(['Gender', 'Alcoholism']).size()
order_handcap = [0, 1, 2, 3, 4]
sb.barplot(data =df, x = 'Handcap', y = 'no_showup', hue = 'Gender', ci = None, order = order_handcap);
sb.despine();
plt.ylabel('No-show Rate');
plt.legend(loc = 'lower right');
df.groupby(['Handcap', 'Gender']).size() | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
We cannot see a significant difference across levels of Handcap variable. Label 4 for females is 1 but I do not pay attention to this since there are only 2 data points in this group. So being in different Handcap levels does not say much when predicting if a patient will show up. | plt.figure(figsize = (16,6))
sb.barplot(data = df, x='Neighbourhood', y='no_showup', color =base_color, ci = None);
plt.xticks(rotation = 90);
plt.ylabel('No-show Rate');
df.groupby('Neighbourhood').size().sort_values(ascending = True).head(10) | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
I want to see no-show rate in different neighborhoods. There is no significant difference across neighborhoods except ILHAS OCEÂNICAS DE TRINDADE. There are only 2 data points from this place in the dataset. The exceptions can occur with only 2 data points. Lastly, I want to look at how sending SMS to patients to remind their appointments effects no-show rate. | plt.figure(figsize = (5,5))
sb.barplot(data = df, x='SMS_received', y='no_showup', color =base_color, ci = None);
plt.title('No-show Rate vs SMS received');
plt.ylabel('No-show Rate'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
The association between SMS_received variable and no-show rate is very counterintuitive. I expect that when the patient receives SMS as a reminder, she is more likely to go to the appointment. Here the graph says exact opposite thing; when no SMS, the rate is around 16% whereas when SMS received it is more than 27%. It needs further and deeper examination. Understanding Negative Association between No-show Rate and SMS_received Variable | sb.barplot(data = df, x = 'SMS_received', y = 'no_showup', hue = 'Gender', ci = None);
plt.title('No-show Rate vs SMS received');
plt.ylabel('No-show Rate');
plt.legend(loc ='lower right'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
Gender does not make a significant impact on the rate with SMS and no SMS.Below I try to look at how no-show rate changes with time to appointment day. I convert ScheduledDay and AppointmentDay to datetime. There is no information about hour in AppointmentDay variable. It includes 00:00:00 for all rows whereas ScheduledDay column includes hour information.New variable named time_to_app represent time difference between AppointmentDay and ScheduledDay. It is supposed to be positive but because AppointmentDay includes 00:00:00 as hour for all appointments, time_to_app value is negative if both variables are on the same day. For example, if the patient schedules at 10 am for the appointment at 3pm the same day, time_to_app value for this appointment is (-1 days + 10 hours) since instead of 3 pm, midnight is recorded in AppointmentDay variable. | df['ScheduledDay'] = pd.to_datetime(df['ScheduledDay'])
df['AppointmentDay'] = pd.to_datetime(df['AppointmentDay'])
df['time_to_app']= df['AppointmentDay'] - df['ScheduledDay']
import datetime as dt
rows_to_drop = df[df.time_to_app < dt.timedelta(days = -1)].index
df.drop(rows_to_drop, inplace = True) | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
All time_to_app values smaller than 1 day are omitted since it points another error. | time_bins = [dt.timedelta(days=-1, hours= 0), dt.timedelta(days=-1, hours= 6), dt.timedelta(days=-1, hours= 12), dt.timedelta(days=-1, hours= 15),
dt.timedelta(days=-1, hours = 18),
dt.timedelta(days=1), dt.timedelta(days=2), dt.timedelta(days=3), dt.timedelta(days=7), dt.timedelta(days=15),
dt.timedelta(days=30), dt.timedelta(days=90), dt.timedelta(days=180)]
df['time_bins'] = pd.cut(df['time_to_app'], time_bins)
df.groupby('time_bins').size() | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
I created bins for time_to_app variable. They are not equally spaced. I notice that there are significant number of patients in (-1 days, 0 days] bin. I partitioned it into smaller time bins to see the picture. The number of points in each bin is given above.I group the data by time_bins and look at no-show rate. | plt.figure(figsize =(9,6))
sb.barplot(data= df, y ='time_bins', x = 'no_showup', hue = 'SMS_received', ci = None);
plt.xlabel('No-show Rate');
plt.ylabel('Time to Appointment'); | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
When patient schedules an appointment for the same day which represented by the first 4 upper rows in the graaph above, no-show rate is pretty smaller than the average rate higher than 20%. If patients schedule an appointment for the same day (meaning patients make a schedule several hours before the appointment hour), with more than 95% probability they show up in the appointment. And unless there is more than 2 days to the appointment at the time the patient schedules the appointment, he does not receive SMS as a reminder. This explains why we see counterintuitive negative association between no-show rate and SMS_received variable. All patients schedule an appointment for the same day fall in no SMS received group with very low no-show rate and high number of patients and they pull down averall no-show rate of the group substantially. At the end, the rate for no SMS ends up much smaller than the rate for SMS getting patients. We can see the effect of SMS on grouped data in the graph. SMS lowers no-show rate in every group including both 0 and 1 values for SMS_received variable. For instance, no-show rate when no SMS is a bit higher than 27% whereas it is 24% when SMS is sent for (3 days, 7 days) group. As time to appointment gets larger, SMS is being more effective. For example, SMS improves no-show rate by 3%, 5.5% and 7.7% when there are 3-7, 7-15, 30-90 days to appointment when it is scheduled, respectively.We can see the overall effect of SMS on no-show rate by taking only those groups which have both SMS sent and no SMS sent patients. Excluding time bins smaller than 2 days, it is found that the rate is 0.33% with no SMS, and 28% with SMS sent.But it is pretty interesting that patient attends appointment with high probability if it is the same day, and no-show rate jumps abruptly from below 5% to above 20% even if schedule day and appointment day are only 1 day apart. | sms_sent = df[( df.AppointmentDay - df.ScheduledDay) >= dt.timedelta(days = 2) ]
sms_sent.groupby('SMS_received').no_showup.mean() | _____no_output_____ | MIT | No-show-dataset-investigation.ipynb | ilkycakir/Investigate-A-Dataset-Medical-Appt-No-Shows |
Test for Embedding, to later move it into a layer | import numpy as np
# Set-up numpy generator for random numbers
random_number_generator = np.random.default_rng()
# First tokenize the protein sequence (or any sequence) in kmers.
def tokenize(protein_seqs, kmer_sz):
kmers = set()
# Loop over protein sequences
for protein_seq in protein_seqs:
# Loop over the whole sequence
for i in range(len(protein_seq) - (kmer_sz - 1)):
# Add kmers to the set, thus only unique kmers will remain
kmers.add(protein_seq[i: i + kmer_sz])
# Map kmers for one hot-encoding
kmer_to_id = dict()
id_to_kmer = dict()
for ind, kmer in enumerate(kmers):
kmer_to_id[kmer] = ind
id_to_kmer[ind] = kmer
vocab_sz = len(kmers)
assert vocab_sz == len(kmer_to_id.keys())
# Tokenize the protein sequence to integers
tokenized = []
for protein_seq in protein_seqs:
sequence = []
for i in range(len(protein_seq) - (kmer_sz -1)):
# Convert kmer to integer
kmer = protein_seq[i: i + kmer_sz]
sequence.append(kmer_to_id[kmer])
tokenized.append(sequence)
return tokenized, vocab_sz, kmer_to_id, id_to_kmer
# Embedding dictionary to embed the tokenized sequence
def embed(EMBEDDING_DIM, vocab_sz, rng):
embedding = {}
for i in range(vocab_sz):
# Use random number generator to fill the embedding with embedding_dimension random numbers
embedding[i] = rng.random(size=(embedding_dim, 1))
return embedding
if __name__ == '__main__':
# Globals
KMER_SIZE = 3 # Choose a Kmer_size (this is a hyperparameter which can be optimized)
EMBEDDING_DIM = 10 # Also a hyperparameter
# Store myoglobin protein sequence in a list of protein sequences
protein_seqs = ['MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG']
# Tokenize the protein sequence
tokenized_seqs, vocab_sz, kmer_to_id, id_to_kmer = tokenize(protein_seqs, KMER_SIZE)
embedding = embed(embedding_dim, vocab_sz, random_number_generator)
assert vocab_sz == len(embedding)
# Embed the tokenized protein sequence
for protein_seq in tokenized_seqs:
for token in protein_seq:
print(embedding[token])
break
# Embedding matrix to embed the tokenized sequence
def embed(embedding_dim, vocab_sz, rng):
embedding = rng.random(size=(embedding_dim, vocab_sz))
return embedding
emb = embed(EMBEDDING_DIM, vocab_sz, random_number_generator)
emb.shape
# First tokenize the protein sequence (or any sequence) in kmers.
def tokenize(protein_seqs, kmer_sz):
kmers = set()
# Loop over protein sequences
for protein_seq in protein_seqs:
# Loop over the whole sequence
for i in range(len(protein_seq) - (kmer_sz - 1)):
# Add kmers to the set, thus only unique kmers will remain
kmers.add(protein_seq[i: i + kmer_sz])
# Map kmers for one hot-encoding
kmer_to_id = dict()
id_to_kmer = dict()
for ind, kmer in enumerate(kmers):
kmer_to_id[kmer] = ind
id_to_kmer[ind] = kmer
vocab_sz = len(kmers)
assert vocab_sz == len(kmer_to_id.keys())
# Tokenize the protein sequence to a one-hot-encoded matrix
tokenized = []
for protein_seq in protein_seqs:
sequence = []
for i in range(len(protein_seq) - (kmer_sz -1)):
# Convert kmer to integer
kmer = protein_seq[i: i + kmer_sz]
# One hot encode the kmer
x = kmer_to_id[kmer]
x_vec = np.zeros((vocab_sz, 1))
x_vec[x] = 1
sequence.append(x_vec)
tokenized.append(sequence)
return tokenized, vocab_sz, kmer_to_id, id_to_kmer
# Tokenize the protein sequence
tokenized_seqs, vocab_sz, kmer_to_id, id_to_kmer = tokenize(protein_seqs, KMER_SIZE)
for tokenized_seq in tokenized_seqs:
y = np.dot(emb, tokenized_seq)
y.shape
np.array() | _____no_output_____ | MIT | additional/notebooks/embedding.ipynb | Mees-Molenaar/protein_location |
Spectral encoding of categorical featuresAbout a year ago I was working on a regression model, which had over a million features. Needless to say, the training was super slow, and the model was overfitting a lot. After investigating this issue, I realized that most of the features were created using 1-hot encoding of the categorical features, and some of them had tens of thousands of unique values. The problem of mapping categorical features to lower-dimensional space is not new. Recently one of the popular way to deal with it is using entity embedding layers of a neural network. However that method assumes that neural networks are used. What if we decided to use tree-based algorithms instead? In tis case we can use Spectral Graph Theory methods to create low dimensional embedding of the categorical features.The idea came from spectral word embedding, spectral clustering and spectral dimensionality reduction algorithms.If you can define a similarity measure between different values of the categorical features, we can use spectral analysis methods to find the low dimensional representation of the categorical feature. From the similarity function (or kernel function) we can construct an Adjacency matrix, which is a symmetric matrix, where the ij element is the value of the kernel function between category values i and j:$$ A_{ij} = K(i,j) \tag{1}$$It is very important that I only need a Kernel function, not a high-dimensional representation. This means that 1-hot encoding step is not necessary here. Also for the kernel-base machine learning methods, the categorical variable encoding step is not necessary as well, because what matters is the kernel function between two points, which can be constructed using the individual kernel functions.Once the adjacency matrix is constructed, we can construct a degree matrix:$$ D_{ij} = \delta_{ij} \sum_{k}{A_{ik}} \tag{2} $$Here $\delta$ is the Kronecker delta symbol. The Laplacian matrix is the difference between the two:$$ L = D - A \tag{3} $$And the normalize Laplacian matrix is defined as:$$ \mathscr{L} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \tag{4} $$Following the Spectral Graph theory, we proceed with eigendecomposition of the normalized Laplacian matrix. The number of zero eigenvalues correspond to the number of connected components. In our case, let's assume that our categorical feature has two sets of values that are completely dissimilar. This means that the kernel function $K(i,j)$ is zero if $i$ and $j$ belong to different groups. In this case we will have two zero eigenvalues of the normalized Laplacian matrix.If there is only one connected component, we will have only one zero eigenvalue. Normally it is uninformative and is dropped to prevent multicollinearity of features. However we can keep it if we are planning to use tree-based models.The lower eigenvalues correspond to "smooth" eigenvectors (or modes), that are following the similarity function more closely. We want to keep only these eigenvectors and drop the eigenvectors with higher eigenvalues, because they are more likely represent noise. It is very common to look for a gap in the matrix spectrum and pick the eigenvalues below the gap. The resulting truncated eigenvectors can be normalized and represent embeddings of the categorical feature values. As an example, let's consider the Day of Week. 1-hot encoding assumes every day is similar to any other day ($K(i,j) = 1$). This is not a likely assumption, because we know that days of the week are different. For example, the bar attendance spikes on Fridays and Saturdays (at least in USA) because the following day is a weekend. Label encoding is also incorrect, because it will make the "distance" between Monday and Wednesday twice higher than between Monday and Tuesday. And the "distance" between Sunday and Monday will be six times higher, even though the days are next to each other. By the way, the label encoding corresponds to the kernel $K(i, j) = exp(-\gamma |i-j|)$ | import numpy as np
import pandas as pd
np.set_printoptions(linewidth=130)
def normalized_laplacian(A):
'Compute normalized Laplacian matrix given the adjacency matrix'
d = A.sum(axis=0)
D = np.diag(d)
L = D-A
D_rev_sqrt = np.diag(1/np.sqrt(d))
return D_rev_sqrt @ L @ D_rev_sqrt | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
We will consider an example, where weekdays are similar to each other, but differ a lot from the weekends. | #The adjacency matrix for days of the week
A_dw = np.array([[0,10,9,8,5,2,1],
[0,0,10,9,5,2,1],
[0,0,0,10,8,2,1],
[0,0,0,0,10,2,1],
[0,0,0,0,0,5,3],
[0,0,0,0,0,0,10],
[0,0,0,0,0,0,0]])
A_dw = A_dw + A_dw.T
A_dw
#The normalized Laplacian matrix for days of the week
L_dw_noem = normalized_laplacian(A_dw)
L_dw_noem
#The eigendecomposition of the normalized Laplacian matrix
sz, sv = np.linalg.eig(L_dw_noem)
sz | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
Notice, that the eigenvalues are not ordered here. Let's plot the eigenvalues, ignoring the uninformative zero. | %matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
sns.stripplot(data=sz[1:], jitter=False, );
| _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
We can see a pretty substantial gap between the first eigenvalue and the rest of the eigenvalues. If this does not give enough model performance, you can include the second eigenvalue, because the gap between it and the higher eigenvalues is also quite substantial. Let's print all eigenvectors: | sv | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
Look at the second eigenvector. The weekend values have a different size than the weekdays and Friday is close to zero. This proves the transitional role of Friday, that, being a day of the week, is also the beginning of the weekend.If we are going to pick two lowest non-zero eigenvalues, our categorical feature encoding will result in these category vectors: | #Picking only two eigenvectors
category_vectors = sv[:,[1,3]]
category_vectors
category_vector_frame=pd.DataFrame(category_vectors, index=['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'],
columns=['col1', 'col2']).reset_index()
sns.scatterplot(data=category_vector_frame, x='col1', y='col2', hue='index'); | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
In the plot above we see that Monday and Tuesday, and also Saturday and Sunday are clustered close together, while Wednesday, Thursday and Friday are far apart. Learning the kernel functionIn the previous example we assumed that the similarity function is given. Sometimes this is the case, where it can be defined based on the business rules. However it may be possible to learn it from data.One of the ways to compute the Kernel is using [Wasserstein distance](https://en.wikipedia.org/wiki/Wasserstein_metric). It is a good way to tell how far apart two distributions are. The idea is to estimate the data distribution (including the target variable, but excluding the categorical variable) for each value of the categorical variable. If for two values the distributions are similar, then the divergence will be small and the similarity value will be large. As a measure of similarity I choose the RBF kernel (Gaussian radial basis function):$$ A_{ij} = exp(-\gamma W(i, j)^2) \tag{5}$$Where $W(i,j)$ is the Wasserstein distance between the data distributions for the categories i and j, and $\gamma$ is a hyperparameter that has to be tuned To try this approach will will use [liquor sales data set](https://www.kaggle.com/residentmario/iowa-liquor-sales/downloads/iowa-liquor-sales.zip/1). To keep the file small I removed some columns and aggregated the data. | liq = pd.read_csv('Iowa_Liquor_agg.csv', dtype={'Date': 'str', 'Store Number': 'str', 'Category': 'str', 'orders': 'int', 'sales': 'float'},
parse_dates=True)
liq.Date = pd.to_datetime(liq.Date)
liq.head() | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
Since we care about sales, let's encode the day of week using the information from the sales columnLet's check the histogram first: | sns.distplot(liq.sales, kde=False); | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
We see that the distribution is very skewed, so let's try to use log of sales columns instead | sns.distplot(np.log10(1+liq.sales), kde=False); | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
This is much better. So we will use a log for our distribution | liq["log_sales"] = np.log10(1+liq.sales) | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
Here we will follow [this blog](https://amethix.com/entropy-in-machine-learning/) for computation of the Kullback-Leibler divergence.Also note, that since there are no liquor sales on Sunday, we consider only six days in a week | from scipy.stats import wasserstein_distance
from numpy import histogram
from scipy.stats import iqr
def dw_data(i):
return liq[liq.Date.dt.dayofweek == i].log_sales
def wass_from_data(i,j):
return wasserstein_distance(dw_data(i), dw_data(j)) if i > j else 0.0
distance_matrix = np.fromfunction(np.vectorize(wass_from_data), (6,6))
distance_matrix += distance_matrix.T
distance_matrix | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
As we already mentioned, the hyperparameter $\gamma$ has to be tuned. Here we just pick the value that will give a plausible result | gamma = 100
kernel = np.exp(-gamma * distance_matrix**2)
np.fill_diagonal(kernel, 0)
kernel
norm_lap = normalized_laplacian(kernel)
sz, sv = np.linalg.eig(norm_lap)
sz
sns.stripplot(data=sz[1:], jitter=False, ); | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
Ignoring the zero eigenvalue, we can see that there is a bigger gap between the first eigenvalue and the rest of the eigenvalues, even though the values are all in the range between 1 and 1.3. Looking at the eigenvectors, | sv | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
Ultimately the number of eigenvectors to use is another hyperparameter, that should be optimized on a supervised learning task. The Category field is another candidate to do spectral analysis, and is, probably, a better choice since it has more unique values | len(liq.Category.unique())
unique_categories = liq.Category.unique()
def dw_data_c(i):
return liq[liq.Category == unique_categories[int(i)]].log_sales
def wass_from_data_c(i,j):
return wasserstein_distance(dw_data_c(i), dw_data_c(j)) if i > j else 0.0
#WARNING: THIS WILL TAKE A LONG TIME
distance_matrix = np.fromfunction(np.vectorize(wass_from_data_c), (107,107))
distance_matrix += distance_matrix.T
distance_matrix
def plot_eigenvalues(gamma):
"Eigendecomposition of the kernel and plot of the eigenvalues"
kernel = np.exp(-gamma * distance_matrix**2)
np.fill_diagonal(kernel, 0)
norm_lap = normalized_laplacian(kernel)
sz, sv = np.linalg.eig(norm_lap)
sns.stripplot(data=sz[1:], jitter=True, );
plot_eigenvalues(100); | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
We can see, that a lot of eigenvalues are grouped around the 1.1 mark. The eigenvalues that are below that cluster can be used for encoding the Category feature.Please also note that this method is highly sensitive on selection of hyperparameter $\gamma$. For illustration let me pick a higher and a lower gamma | plot_eigenvalues(500);
plot_eigenvalues(10) | _____no_output_____ | Apache-2.0 | spectral-analysis/spectral-encoding-of-categorical-features.ipynb | mlarionov/machine_learning_POC |
TuplesIn Python tuples are very similar to lists, however, unlike lists they are *immutable* meaning they can not be changed. You would use tuples to present things that shouldn't be changed, such as days of the week, or dates on a calendar. In this section, we will get a brief overview of the following: 1.) Constructing Tuples 2.) Basic Tuple Methods 3.) Immutability 4.) When to Use TuplesYou'll have an intuition of how to use tuples based on what you've learned about lists. We can treat them very similarly with the major distinction being that tuples are immutable. Constructing TuplesThe construction of a tuples use () with elements separated by commas. For example: | # Create a tuple
t = (1,2,3)
# Check len just like a list
len(t)
# Can also mix object types
t = ('one',2)
# Show
t
# Use indexing just like we did in lists
t[0]
# Slicing just like a list
t[-1] | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/00-Python Object and Data Structure Basics/06-Tuples.ipynb | vivekparasharr/Learn-Programming |
Basic Tuple MethodsTuples have built-in methods, but not as many as lists do. Let's look at two of them: | # Use .index to enter a value and return the index
t.index('one')
# Use .count to count the number of times a value appears
t.count('one') | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/00-Python Object and Data Structure Basics/06-Tuples.ipynb | vivekparasharr/Learn-Programming |
ImmutabilityIt can't be stressed enough that tuples are immutable. To drive that point home: | t[0]= 'change' | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/00-Python Object and Data Structure Basics/06-Tuples.ipynb | vivekparasharr/Learn-Programming |
Because of this immutability, tuples can't grow. Once a tuple is made we can not add to it. | t.append('nope') | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/00-Python Object and Data Structure Basics/06-Tuples.ipynb | vivekparasharr/Learn-Programming |
Multivariate SuSiE and ENLOC model Aim This notebook aims to demonstrate a workflow of generating posterior inclusion probabilities (PIPs) from GWAS summary statistics using SuSiE regression and construsting SNP signal clusters from global eQTL analysis data obtained from multivariate SuSiE models. Methods overviewThis procedure assumes that molecular phenotype summary statistics and GWAS summary statistics are aligned and harmonized to have consistent allele coding (see [this module](../../misc/summary_stats_merger.html) for implementation details). Both molecular phenotype QTL and GWAS should be fine-mapped beforehand using mvSusiE or SuSiE. We further assume (and require) that molecular phenotype and GWAS data come from the same population ancestry. Violations from this assumption may not cause an error in the analysis computational workflow but the results obtained may not be valid. Input 1) GWAS Summary Statistics with the following columns: - chr: chromosome number - bp: base pair position - a1: effect allele - a2: other allele - beta: effect size - se: standard error of beta - z: z score2) eQTL data from multivariate SuSiE model with the following columns: - chr: chromosome number - bp: base pair position - a1: effect allele - a2: other allele - pip: posterior inclusion probability3) LD correlation matrix Output Intermediate files:1) GWAS PIP file with the following columns - var_id - ld_block - snp_pip - block_pip2) eQTL annotation file with the following columns - chr - bp - var_id - a1 - a2 - annotations, in the format: `gene:cs_num@tissue=snp_pip[cs_pip:cs_total_snps]`Final Outputs:1) Enrichment analysis result prefix.enloc.enrich.rst: estimated enrichment parameters and standard errors.2) Signal-level colocalization result prefix.enloc.sig.out: the main output from the colocalization analysis with the following format - column 1: signal cluster name (from eQTL analysis) - column 2: number of member SNPs - column 3: cluster PIP of eQTLs - column 4: cluster PIP of GWAS hits (without eQTL prior) - column 5: cluster PIP of GWAS hits (with eQTL prior) - column 6: regional colocalization probability (RCP)3) SNP-level colocalization result prefix.enloc.snp.out: SNP-level colocalization output with the following form at - column 1: signal cluster name - column 2: SNP name - column 3: SNP-level PIP of eQTLs - column 4: SNP-level PIP of GWAS (without eQTL prior) - column 5: SNP-level PIP of GWAS (with eQTL prior) - column 6: SNP-level colocalization probability4) Sorted list of colocalization signals Takes into consideration 3 situations: 1) "Major" and "minor" alleles flipped2) Different strand but same variant3) Remove variants with A/T and C/G alleles due to ambiguity Minimal working example | sos run mvenloc.ipynb merge \
--cwd output \
--eqtl-sumstats .. \
--gwas-sumstats ..
sos run mvenloc.ipynb eqtl \
--cwd output \
--sumstats-file .. \
--ld-region ..
sos run mvenloc.ipynb gwas \
--cwd output \
--sumstats-file .. \
--ld-region ..
sos run mvenloc.ipynb enloc \
--cwd output \
--eqtl-pip .. \
--gwas-pip .. | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Summary | head enloc.enrich.out
head enloc.sig.out
head enloc.snp.out | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Command interface | sos run mvenloc.ipynb -h | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Implementation | [global]
parameter: cwd = path
parameter: container = "" | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Step 0: data formatting Extract common SNPS between the GWAS summary statistics and eQTL data | [merger]
# eQTL summary statistics as a list of RData
parameter: eqtl_sumstats = path
# GWAS summary stats in gz format
parameter: gwas_sumstats = path
input: eqtl_sumstats, gwas_sumstats
output: f"{cwd:a}/{eqtl_sumstats:bn}.standardized.gz", f"{cwd:a}/{gwas_sumstats:bn}.standardized.gz"
R: expand = "${ }"
###
# functions
###
allele.qc = function(a1,a2,ref1,ref2) {
# a1 and a2 are the first data-set
# ref1 and ref2 are the 2nd data-set
# Make all the alleles into upper-case, as A,T,C,G:
a1 = toupper(a1)
a2 = toupper(a2)
ref1 = toupper(ref1)
ref2 = toupper(ref2)
# Strand flip, to change the allele representation in the 2nd data-set
strand_flip = function(ref) {
flip = ref
flip[ref == "A"] = "T"
flip[ref == "T"] = "A"
flip[ref == "G"] = "C"
flip[ref == "C"] = "G"
flip
}
flip1 = strand_flip(ref1)
flip2 = strand_flip(ref2)
snp = list()
# Remove strand ambiguous SNPs (scenario 3)
snp[["keep"]] = !((a1=="A" & a2=="T") | (a1=="T" & a2=="A") | (a1=="C" & a2=="G") | (a1=="G" & a2=="C"))
# Remove non-ATCG coding
snp[["keep"]][ a1 != "A" & a1 != "T" & a1 != "G" & a1 != "C" ] = F
snp[["keep"]][ a2 != "A" & a2 != "T" & a2 != "G" & a2 != "C" ] = F
# as long as scenario 1 is involved, sign_flip will return TRUE
snp[["sign_flip"]] = (a1 == ref2 & a2 == ref1) | (a1 == flip2 & a2 == flip1)
# as long as scenario 2 is involved, strand_flip will return TRUE
snp[["strand_flip"]] = (a1 == flip1 & a2 == flip2) | (a1 == flip2 & a2 == flip1)
# remove other cases, eg, tri-allelic, one dataset is A C, the other is A G, for example.
exact_match = (a1 == ref1 & a2 == ref2)
snp[["keep"]][!(exact_match | snp[["sign_flip"]] | snp[["strand_flip"]])] = F
return(snp)
}
# Extract information from RData
eqtl.split = function(eqtl){
rows = length(eqtl)
chr = vector(length = rows)
pos = vector(length = rows)
a1 = vector(length = rows)
a2 = vector(length = rows)
for (i in 1:rows){
split1 = str_split(eqtl[i], ":")
split2 = str_split(split1[[1]][2], "_")
chr[i]= split1[[1]][1]
pos[i] = split2[[1]][1]
a1[i] = split2[[1]][2]
a2[i] = split2[[1]][3]
}
eqtl.df = data.frame(eqtl,chr,pos,a1,a2)
}
remove.dup = function(df){
df = df %>% arrange(PosGRCh37, -N)
df = df[!duplicated(df$PosGRCh37),]
return(df)
}
###
# Code
###
# gene regions:
# 1 = ENSG00000203710
# 2 = ENSG00000064687
# 3 = ENSG00000203710
# eqtl
gene.name = scan(${_input[0]:r}, what='character')
# initial filter of gwas variants that are in eqtl
gwas = gwas_sumstats
gwas_filter = gwas[which(gwas$id %in% var),]
# create eqtl df
eqtl.df = eqtl.split(eqtl$var)
# allele flip
f_gwas = gwas %>% filter(chr %in% eqtl.df$chr & PosGRCh37 %in% eqtl.df$pos)
eqtl.df.f = eqtl.df %>% filter(pos %in% f_gwas$PosGRCh37)
# check if there are duplicate pos
length(unique(f_gwas$PosGRCh37))
# multiple snps with same pos
dup.pos = f_gwas %>% group_by(PosGRCh37) %>% filter(n() > 1)
f_gwas = remove.dup(f_gwas)
qc = allele.qc(f_gwas$testedAllele, f_gwas$otherAllele, eqtl.df.f$a1, eqtl.df.f$a2)
keep = as.data.frame(qc$keep)
sign = as.data.frame(qc$sign_flip)
strand = as.data.frame(qc$strand_flip)
# sign flip
f_gwas$z[qc$sign_flip] = -1 * f_gwas$z[qc$sign_flip]
f_gwas$testedAllele[qc$sign_flip] = eqtl.df.f$a1[qc$sign_flip]
f_gwas$otherAllele[qc$sign_flip] = eqtl.df.f$a2[qc$sign_flip]
f_gwas$testedAllele[qc$strand_flip] = eqtl.df.f$a1[qc$strand_flip]
f_gwas$otherAllele[qc$strand_flip] = eqtl.df.f$a2[qc$strand_flip]
# remove ambigiuous
if ( sum(!qc$keep) > 0 ) {
eqtl.df.f = eqtl.df.f[qc$keep,]
f_gwas = f_gwas[qc$keep,]
} | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Extract common SNPS between the summary statistics and LD | [eqtl_1, gwas_1 (filter LD file and sumstat file)]
parameter: sumstat_file = path
# LD and region information: chr, start, end, LD file
paramter: ld_region = path
input: sumstat_file, for_each = 'ld_region'
output: f"{cwd:a}/{sumstat_file:bn}_{region[0]}_{region[1]}_{region[2]}.z.rds",
f"{cwd:a}/{sumstat_file:bn}_{region[0]}_{region[1]}_{region[2]}.ld.rds"
R:
# FIXME: need to filter both ways for sumstats and for LD
# lds filtered
eqtl_id = which(var %in% eqtl.df.f$eqtl)
ld_f = ld[eqtl_id, eqtl_id]
# ld missing
miss = which(is.na(ld_f), arr.ind=TRUE)
miss_r = unique(as.data.frame(miss)$row)
miss_c = unique(as.data.frame(miss)$col)
total_miss = unique(union(miss_r,miss_c))
# FIXME: LD should not have missing data if properly processed by our pipeline
# In the future we should throw an error when it happens
if (length(total_miss)!=0){
ld_f2 = ld_f[-total_miss,]
ld_f2 = ld_f2[,-total_miss]
dim(ld_f2)
}else{ld_f2 = ld_f}
f_gwas.f = f_gwas %>% filter(id %in% eqtl_id.f$eqtl)
| _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Step 1: fine-mapping | [eqtl_2, gwas_2 (finemapping)]
# FIXME: RDS file should have included region information
output: f"{_input[0]:nn}.susieR.rds", f"{_input[0]:nn}.susieR_plot.rds"
R:
susie_results = susieR::susie_rss(z = f_gwas.f$z,R = ld_f2, check_prior = F)
susieR::susie_plot(susie_results,"PIP")
susie_results$z = f_gwas.f$z
susieR::susie_plot(susie_results,"z_original") | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Step 2: fine-mapping results processing Construct eQTL annotation file using eQTL SNP PIPs and credible sets | [eqtl_3 (create signal cluster using CS)]
output: f"{_input[0]:nn}.enloc_annot.gz"
R:
cs = eqtl[["sets"]][["cs"]][["L1"]]
o_id = which(var %in% eqtl_id.f$eqtl)
pip = eqtl$pip[o_id]
eqtl_annot = cbind(eqtl_id.f, pip) %>% mutate(gene = gene.name,cluster = -1, cluster_pip = 0, total_snps = 0)
for(snp in cs){
eqtl_annot$cluster[snp] = 1
eqtl_annot$cluster_pip[snp] = eqtl[["sets"]][["coverage"]]
eqtl_annot$total_snps[snp] = length(cs)
}
eqtl_annot1 = eqtl_annot %>% filter(cluster != -1)%>%
mutate(annot = sprintf("%s:%d@=%e[%e:%d]",gene,cluster,pip,cluster_pip,total_snps)) %>%
select(c(chr,pos,eqtl,a1,a2,annot))
# FIXME: repeats whole process (extracting+fine-mapping+cs creation) 3 times before this next step
eqtl_annot_comb = rbind(eqtl_annot3, eqtl_annot1, eqtl_annot2)
# FIXME: write to a zip file
write.table(eqtl_annot_comb, file = "eqtl.annot.txt", col.names = T, row.names = F, quote = F) | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Export GWAS PIP | [gwas_3 (format PIP into enloc GWAS input)]
output: f"{_input[0]:nn}.enloc_gwas.gz"
R:
gwas_annot1 = f_gwas.f %>% mutate(pip = susie_results$pip)
# FIXME: repeat whole process (extracting common snps + fine-mapping) 3 times before the next steps
gwas_annot_comb = rbind(gwas_annot3, gwas_annot1, gwas_annot2)
gwas_loc_annot = gwas_annot_comb %>% select(id, chr, PosGRCh37,z)
write.table(gwas_loc_annot, file = "loc.gwas.txt", col.names = F, row.names = F, quote = F)
bash:
perl format2torus.pl loc.gwas.txt > loc2.gwas.txt
R:
loc = data.table::fread("loc2.gwas.txt")
loc = loc[["V2"]]
gwas_annot_comb2 = gwas_annot_comb %>% select(id, chr, PosGRCh37,pip)
gwas_annot_comb2 = cbind(gwas_annot_comb2, loc) %>% select(id, loc, pip)
write.table(gwas_annot_comb2, file = "gwas.pip.txt", col.names = F, row.names = F, quote = F)
bash:
perl format2torus.pl gwas.pip.txt | gzip --best > gwas.pip.gz | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Step 3: Colocalization with FastEnloc | [enloc]
# eQTL summary statistics as a list of RData
# FIXME: to replace later
parameter: eqtl_pip = path
# GWAS summary stats in gz format
parameter: gwas_pip = path
input: eqtl_pip, gwas_pip
output: f"{cwd:a}/{eqtl_pip:bnn}.{gwas_pip:bnn}.xx.gz"
bash:
fastenloc -eqtl eqtl.annot.txt.gz -gwas gwas.pip.txt.gz
sort -grk6 prefix.enloc.sig.out | gzip --best > prefix.enloc.sig.sorted.gz
rm -f prefix.enloc.sig.out | _____no_output_____ | MIT | pipeline/mvenloc.ipynb | seriousbamboo/xqtl-pipeline |
Guided Investigation - Anomaly Lookup__Notebook Version:__ 1.0__Python Version:__ Python 3.6 (including Python 3.6 - AzureML)__Required Packages:__ azure 4.0.0, azure-cli-profile 2.1.4__Platforms Supported:__ - Azure Notebooks Free Compute - Azure Notebook on DSVM __Data Source Required:__ - Log Analytics tables DescriptionGain insights into the possible root cause of an alert by searching for related anomalies on the corresponding entities around the alert’s time. This notebook will provide valuable leads for an alert’s investigation, listing all suspicious increase in event counts or their properties around the time of the alert, and linking to the corresponding raw records in Log Analytics for the investigator to focus on and interpret.When you switch between Azure Notebooks Free Compute and Data Science Virtual Machine (DSVM), you may need to select Python version: please select Python 3.6 for Free Compute, and Python 3.6 - AzureML for DSVM. Table of Contents1. Initialize Azure Resource Management Clients2. Looking up for anomaly entities 1. Initialize Azure Resource Management Clients | # only run once
!pip install --upgrade Azure-Sentinel-Utilities
!pip install azure-cli-core
# User Input and Save to Environmental store
import os
from SentinelWidgets import WidgetViewHelper
env_dir = %env
helper = WidgetViewHelper()
# Enter Tenant Domain
helper.set_env(env_dir, 'tenant_domain')
# Enter Azure Subscription Id
helper.set_env(env_dir, 'subscription_id')
# Enter Azure Resource Group
helper.set_env(env_dir, 'resource_group')
env_dir = %env
if 'tenant_domain' in env_dir:
tenant_domain = env_dir['tenant_domain']
if 'subscription_id' in env_dir:
subscription_id = env_dir['subscription_id']
if 'resource_group' in env_dir:
resource_group = env_dir['resource_group']
from azure.loganalytics import LogAnalyticsDataClient
from azure.loganalytics.models import QueryBody
from azure.mgmt.loganalytics import LogAnalyticsManagementClient
import SentinelAzure
from SentinelAnomalyLookup import AnomalyFinder, AnomalyLookupViewHelper
from pandas.io.json import json_normalize
import sys
import timeit
import datetime as dt
import pandas as pd
import copy
from IPython.display import HTML
# Authentication to Log Analytics
from azure.common.client_factory import get_client_from_cli_profile
from azure.common.credentials import get_azure_cli_credentials
# please enter your tenant domain below, for Microsoft, using: microsoft.onmicrosoft.com
!az login --tenant $tenant_domain
la_client = get_client_from_cli_profile(LogAnalyticsManagementClient, subscription_id = subscription_id)
la = SentinelAzure.azure_loganalytics_helper.LogAnalyticsHelper(la_client)
creds, _ = get_azure_cli_credentials(resource="https://api.loganalytics.io")
la_data_client = LogAnalyticsDataClient(creds) | _____no_output_____ | MIT | Notebooks/Guided Investigation - Anomaly Lookup.ipynb | CrisRomeo/Azure-Sentinel |
2. Looking up for anomaly entities | # Select a workspace
selected_workspace = WidgetViewHelper.select_log_analytics_workspace(la)
display(selected_workspace)
import ipywidgets as widgets
workspace_id = la.get_workspace_id(selected_workspace.value)
#DateTime format: 2019-07-15T07:05:20.000
q_timestamp = widgets.Text(value='2019-09-15',description='DateTime: ')
display(q_timestamp)
#Entity format: computer
q_entity = widgets.Text(value='computer',description='Entity for search: ')
display(q_entity)
anomaly_lookup = AnomalyFinder(workspace_id, la_data_client)
selected_tables = WidgetViewHelper.select_multiple_tables(anomaly_lookup)
display(selected_tables)
# This action may take a few minutes or more, please be patient.
start = timeit.default_timer()
anomalies, queries = anomaly_lookup.run(q_timestamp.value, q_entity.value, list(selected_tables.value))
display(anomalies)
if queries is not None:
url = WidgetViewHelper.construct_url_for_log_analytics_logs(tenant_domain, subscription_id, resource_group, selected_workspace.value)
WidgetViewHelper.display_html(WidgetViewHelper.copy_to_clipboard(url, queries, 'Add queries to clipboard and go to Log Analytics'))
print('==================')
print('Elapsed time: ', timeit.default_timer() - start, ' seconds') | _____no_output_____ | MIT | Notebooks/Guided Investigation - Anomaly Lookup.ipynb | CrisRomeo/Azure-Sentinel |
4 - Train models and make predictions Motivation- **`tf.keras`** API offers built-in functions for training, validation and prediction.- Those functions are easy to use and enable you to train any ML model.- They also give you a high level of customizability. Objectives- Understand the common training workflow in TensorFlow.- Set an optimizer, a loss functions, and metrics with `Model.compile()`- Create custom losses and metrics from scratch- Train your model with `Model.fit()`- Evaluate your model with `Model.evaluate()`- Make predictions with `Model.predict()`- Discover useful callbacks during training like checkpointing and learning rate scheduling- Create custom callbacks to get 100% control on your training- Practise what you learned on a concrete example | import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
tf.__version__ | _____no_output_____ | Apache-2.0 | 4 - Train models and make predictions.ipynb | oyiakoumis/tensorflow2-course |
Table of contents:* [Overview](overview)* [Part 1: Setting an optimizer, a loss function, and metrics](part-1)* [Part 2: Training models and make predictions](part-2)* [Part 3: Using callbacks](part-3)* [Part 4: Exercise](part-4)* [Summary](summary)* [Where to go next](next) Overview - Model training and evaluation works exactly the same whether your model is a Sequential model, a model built with the Functional API, or a model written from scratch via model subclassing.- Here's what the typical end-to-end workflow looks like: - Define optimizer, training loss, and evaluation metrics (via `Model.compile()`) - Train your model on your training data (via `Model.fit()`) - Validate on a holdout set generated from the original training data - Evaluate the model on the test data (via `Model.evaluate()`) In the next sections we will use the **MNIST dataset** to explained in details how to train a model with the `keras.Model`'s methods listed above. As a reminder from chapter 2, the **MNIST dataset** is a large dataset of handwritten digits. Each image is a 28x28 matrix having values between 0 and 255.The following code cells build a `tf.data` pipeline for the MNIST dataset, splitting the dataset into a training set, a validation set and a test set (resp. 60%, 20%, and 20%), and build a simple artificial neural network model (ANN) for classification. | # Load the MNIST dataset
train, test = tf.keras.datasets.mnist.load_data()
# Overview of the dataset:
images, labels = train
print(type(images), type(labels))
print(images.shape, labels.shape)
# First 9 images of the training set:
plt.figure(figsize=(3,3))
for i in range(9):
plt.subplot(3,3,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(images[i], cmap=plt.cm.binary)
plt.show()
# creates tf.data.Dataset
train_ds = tf.data.Dataset.from_tensor_slices(train)
test_ds = tf.data.Dataset.from_tensor_slices(test)
# split train into train and validation
num_val = train_ds.cardinality().numpy() * 0.2
train_ds = train_ds.skip(num_val)
val_ds = train_ds.take(num_val)
def configure_dataset(ds, is_training=True):
if is_training:
ds = ds.shuffle(48000).repeat()
ds = ds.batch(64)
ds = ds.map(lambda image, label: (image/255, label), num_parallel_calls=tf.data.AUTOTUNE)
ds = ds.prefetch(tf.data.AUTOTUNE)
return ds
train_ds = configure_dataset(train_ds, is_training=True)
val_ds = configure_dataset(val_ds, is_training=False)
# Build the model:
model = keras.Sequential([
keras.Input(shape=(28, 28), name="digits"),
layers.Flatten(),
layers.Dense(64, activation="relu", name="dense_1"),
layers.Dense(64, activation="relu", name="dense_2"),
layers.Dense(10, activation="softmax", name="predictions"),
])
model.summary() | Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten (Flatten) (None, 784) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 50240
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
_________________________________________________________________
predictions (Dense) (None, 10) 650
=================================================================
Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0
_________________________________________________________________
| Apache-2.0 | 4 - Train models and make predictions.ipynb | oyiakoumis/tensorflow2-course |
CLIP GradCAM ColabThis Colab notebook uses [GradCAM](https://arxiv.org/abs/1610.02391) on OpenAI's [CLIP](https://openai.com/blog/clip/) model to produce a heatmap highlighting which regions in an image activate the most to a given caption.**Note:** Currently only works with the ResNet variants of CLIP. ViT support coming soon. | #@title Install dependencies
#@markdown Please execute this cell by pressing the _Play_ button
#@markdown on the left.
#@markdown **Note**: This installs the software on the Colab
#@markdown notebook in the cloud and not on your computer.
%%capture
!pip install ftfy regex tqdm matplotlib opencv-python scipy scikit-image
!pip install git+https://github.com/openai/CLIP.git
import numpy as np
import torch
import os
import torch.nn as nn
import torch.nn.functional as F
import cv2
import urllib.request
import matplotlib.pyplot as plt
import clip
from PIL import Image
from skimage import transform as skimage_transform
from scipy.ndimage import filters
#@title Helper functions
#@markdown Some helper functions for overlaying heatmaps on top
#@markdown of images and visualizing with matplotlib.
def normalize(x: np.ndarray) -> np.ndarray:
# Normalize to [0, 1].
x = x - x.min()
if x.max() > 0:
x = x / x.max()
return x
# Modified from: https://github.com/salesforce/ALBEF/blob/main/visualization.ipynb
def getAttMap(img, attn_map, blur=True):
if blur:
attn_map = filters.gaussian_filter(attn_map, 0.02*max(img.shape[:2]))
attn_map = normalize(attn_map)
cmap = plt.get_cmap('jet')
attn_map_c = np.delete(cmap(attn_map), 3, 2)
attn_map = 1*(1-attn_map**0.7).reshape(attn_map.shape + (1,))*img + \
(attn_map**0.7).reshape(attn_map.shape+(1,)) * attn_map_c
return attn_map
def viz_attn(img, attn_map, blur=True):
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
axes[0].imshow(img)
axes[1].imshow(getAttMap(img, attn_map, blur))
for ax in axes:
ax.axis("off")
plt.show()
def load_image(img_path, resize=None):
image = Image.open(image_path).convert("RGB")
if resize is not None:
image = image.resize((resize, resize))
return np.asarray(image).astype(np.float32) / 255.
#@title GradCAM: Gradient-weighted Class Activation Mapping
#@markdown Our gradCAM implementation registers a forward hook
#@markdown on the model at the specified layer. This allows us
#@markdown to save the intermediate activations and gradients
#@markdown at that layer.
#@markdown To visualize which parts of the image activate for
#@markdown a given caption, we use the caption as the target
#@markdown label and backprop through the network using the
#@markdown image as the input.
#@markdown In the case of CLIP models with resnet encoders,
#@markdown we save the activation and gradients at the
#@markdown layer before the attention pool, i.e., layer4.
class Hook:
"""Attaches to a module and records its activations and gradients."""
def __init__(self, module: nn.Module):
self.data = None
self.hook = module.register_forward_hook(self.save_grad)
def save_grad(self, module, input, output):
self.data = output
output.requires_grad_(True)
output.retain_grad()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
self.hook.remove()
@property
def activation(self) -> torch.Tensor:
return self.data
@property
def gradient(self) -> torch.Tensor:
return self.data.grad
# Reference: https://arxiv.org/abs/1610.02391
def gradCAM(
model: nn.Module,
input: torch.Tensor,
target: torch.Tensor,
layer: nn.Module
) -> torch.Tensor:
# Zero out any gradients at the input.
if input.grad is not None:
input.grad.data.zero_()
# Disable gradient settings.
requires_grad = {}
for name, param in model.named_parameters():
requires_grad[name] = param.requires_grad
param.requires_grad_(False)
# Attach a hook to the model at the desired layer.
assert isinstance(layer, nn.Module)
with Hook(layer) as hook:
# Do a forward and backward pass.
output = model(input)
output.backward(target)
grad = hook.gradient.float()
act = hook.activation.float()
# Global average pool gradient across spatial dimension
# to obtain importance weights.
alpha = grad.mean(dim=(2, 3), keepdim=True)
# Weighted combination of activation maps over channel
# dimension.
gradcam = torch.sum(act * alpha, dim=1, keepdim=True)
# We only want neurons with positive influence so we
# clamp any negative ones.
gradcam = torch.clamp(gradcam, min=0)
# Resize gradcam to input resolution.
gradcam = F.interpolate(
gradcam,
input.shape[2:],
mode='bicubic',
align_corners=False)
# Restore gradient settings.
for name, param in model.named_parameters():
param.requires_grad_(requires_grad[name])
return gradcam
#@title Run
#@markdown #### Image & Caption settings
image_url = 'https://images2.minutemediacdn.com/image/upload/c_crop,h_706,w_1256,x_0,y_64/f_auto,q_auto,w_1100/v1554995050/shape/mentalfloss/516438-istock-637689912.jpg' #@param {type:"string"}
image_caption = 'the cat' #@param {type:"string"}
#@markdown ---
#@markdown #### CLIP model settings
clip_model = "RN50" #@param ["RN50", "RN101", "RN50x4", "RN50x16"]
saliency_layer = "layer4" #@param ["layer4", "layer3", "layer2", "layer1"]
#@markdown ---
#@markdown #### Visualization settings
blur = True #@param {type:"boolean"}
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load(clip_model, device=device, jit=False)
# Download the image from the web.
image_path = 'image.png'
urllib.request.urlretrieve(image_url, image_path)
image_input = preprocess(Image.open(image_path)).unsqueeze(0).to(device)
image_np = load_image(image_path, model.visual.input_resolution)
text_input = clip.tokenize([image_caption]).to(device)
attn_map = gradCAM(
model.visual,
image_input,
model.encode_text(text_input).float(),
getattr(model.visual, saliency_layer)
)
attn_map = attn_map.squeeze().detach().cpu().numpy()
viz_attn(image_np, attn_map, blur) | _____no_output_____ | MIT | demos/CLIP_GradCAM_Visualization.ipynb | AdMoR/clipit |
Capstone Project - Flight Delays Does weather events have impact the delay of flights (Brazil)? It is important to see this notebook with the step-by-step of the dataset cleaning process:[https://github.com/davicsilva/dsintensive/blob/master/notebooks/flightDelayPrepData_v2.ipynb](https://github.com/davicsilva/dsintensive/blob/master/notebooks/flightDelayPrepData_v2.ipynb) | from datetime import datetime
# Pandas and NumPy
import pandas as pd
import numpy as np
# Matplotlib for additional customization
from matplotlib import pyplot as plt
%matplotlib inline
# Seaborn for plotting and styling
import seaborn as sns
# 1. Flight delay: any flight with (real_departure - planned_departure >= 15 minutes)
# 2. The Brazilian Federal Agency for Civil Aviation (ANAC) does not define exactly what is a "flight delay" (in minutes)
# 3. Anyway, the ANAC has a resolution for this subject: https://goo.gl/YBwbMy (last access: nov, 15th, 2017)
# ---
# DELAY, for this analysis, is defined as greater than 15 minutes (local flights only)
DELAY = 15 | _____no_output_____ | Apache-2.0 | notebooks/capstone-flightDelay.ipynb | davicsilva/dsintensive |
1 - Local flights dataset. For now, only flights from January to September, 2017**A note about date columns on this dataset*** In the original dataset (CSV file from ANAC), the date was not in ISO8601 format (e.g. '2017-10-31 09:03:00')* To fix this I used regex (regular expression) to transform this column directly on CSV file* The original date was "31/10/2017 09:03" (october, 31, 2017 09:03) | #[flights] dataset_01 => all "Active Regular Flights" from 2017, from january to september
#source: http://www.anac.gov.br/assuntos/dados-e-estatisticas/historico-de-voos
#Last access this website: nov, 14th, 2017
flights = pd.read_csv('data/arf2017ISO.csv', sep = ';', dtype = str)
flights['departure-est'] = flights[['departure-est']].apply(lambda row: row.str.replace("(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4}) (?P<HOUR>\d{2}):(?P<MIN>\d{2})", "\g<year>/\g<month>/\g<day> \g<HOUR>:\g<MIN>:00"), axis=1)
flights['departure-real'] = flights[['departure-real']].apply(lambda row: row.str.replace("(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4}) (?P<HOUR>\d{2}):(?P<MIN>\d{2})", "\g<year>/\g<month>/\g<day> \g<HOUR>:\g<MIN>:00"), axis=1)
flights['arrival-est'] = flights[['arrival-est']].apply(lambda row: row.str.replace("(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4}) (?P<HOUR>\d{2}):(?P<MIN>\d{2})", "\g<year>/\g<month>/\g<day> \g<HOUR>:\g<MIN>:00"), axis=1)
flights['arrival-real'] = flights[['arrival-real']].apply(lambda row: row.str.replace("(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4}) (?P<HOUR>\d{2}):(?P<MIN>\d{2})", "\g<year>/\g<month>/\g<day> \g<HOUR>:\g<MIN>:00"), axis=1)
# Departure and Arrival columns: from 'object' to 'date' format
flights['departure-est'] = pd.to_datetime(flights['departure-est'], errors='ignore')
flights['departure-real'] = pd.to_datetime(flights['departure-real'], errors='ignore')
flights['arrival-est'] = pd.to_datetime(flights['arrival-est'], errors='ignore')
flights['arrival-real'] = pd.to_datetime(flights['arrival-real'], errors='ignore')
# translate the flight status from portuguese to english
flights['flight-status'] = flights[['flight-status']].apply(lambda row: row.str.replace("REALIZADO", "ACCOMPLISHED"), axis=1)
flights['flight-status'] = flights[['flight-status']].apply(lambda row: row.str.replace("CANCELADO", "CANCELED"), axis=1)
flights.head()
flights.size
flights.to_csv("flights_csv.csv") | _____no_output_____ | Apache-2.0 | notebooks/capstone-flightDelay.ipynb | davicsilva/dsintensive |
Some EDA's tasks | # See: https://stackoverflow.com/questions/37287938/sort-pandas-dataframe-by-value
#
df_departures = flights.groupby(['airport-A']).size().reset_index(name='number_departures')
df_departures.sort_values(by=['number_departures'], ascending=False, inplace=True)
df_departures | _____no_output_____ | Apache-2.0 | notebooks/capstone-flightDelay.ipynb | davicsilva/dsintensive |
2 - Local airports (list with all the ~600 brazilian public airports)Source: https://goo.gl/mNFuPt (a XLS spreadsheet in portuguese; last access on nov, 15th, 2017) | # Airports dataset: all brazilian public airports (updated until october, 2017)
airports = pd.read_csv('data/brazilianPublicAirports-out2017.csv', sep = ';', dtype= str)
airports.head()
# Merge "flights" dataset with "airports" in order to identify
# local flights (origin and destination are in Brazil)
flights = pd.merge(flights, airports, left_on="airport-A", right_on="airport", how='left')
flights = pd.merge(flights, airports, left_on="airport-B", right_on="airport", how='left')
flights.tail() | _____no_output_____ | Apache-2.0 | notebooks/capstone-flightDelay.ipynb | davicsilva/dsintensive |
3 - List of codes (two letters) used when there was a flight delay (departure)I have found two lists that define two-letter codes used by the aircraft crew to justify the delay of the flights: a short and a long one.Source: https://goo.gl/vUC8BX (last access: nov, 15th, 2017) | # ------------------------------------------------------------------
# List of codes (two letters) used to justify a delay on the flight
# - delayCodesShortlist.csv: list with YYY codes
# - delayCodesLongList.csv: list with XXX codes
# ------------------------------------------------------------------
delaycodes = pd.read_csv('data/delayCodesShortlist.csv', sep = ';', dtype = str)
delaycodesLongList = pd.read_csv('data/delayCodesLonglist.csv', sep = ';', dtype = str)
delaycodes.head() | _____no_output_____ | Apache-2.0 | notebooks/capstone-flightDelay.ipynb | davicsilva/dsintensive |
4 - The Weather data from https://www.wunderground.com/historyFrom this website I captured a sample data from local airport (Campinas, SP, Brazil): January to September, 2017.The website presents data like this (see [https://goo.gl/oKwzyH](https://goo.gl/oKwzyH)): | # Weather sample: load the CSV with weather historical data (from Campinas, SP, Brazil, 2017)
weather = pd.read_csv('data/DataScience-Intensive-weatherAtCampinasAirport-2017-Campinas_Airport_2017Weather.csv', \
sep = ',', dtype = str)
weather["date"] = weather["year"].map(str) + "-" + weather["month"].map(str) + "-" + weather["day"].map(str)
weather["date"] = pd.to_datetime(weather['date'],errors='ignore')
weather.head() | _____no_output_____ | Apache-2.0 | notebooks/capstone-flightDelay.ipynb | davicsilva/dsintensive |
Request workspace add | t0 = time.time()
ekos = EventHandler(**paths)
request = ekos.test_requests['request_workspace_add_1']
response_workspace_add = ekos.request_workspace_add(request)
ekos.write_test_response('request_workspace_add_1', response_workspace_add)
# request = ekos.test_requests['request_workspace_add_2']
# response_workspace_add = ekos.request_workspace_add(request)
# ekos.write_test_response('request_workspace_add_2', response_workspace_add)
print('-'*50)
print('Time for request: {}'.format(time.time()-t0)) | 2018-09-20 19:02:54,811 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 19:02:54,814 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 19:02:55,637 event_handler.py 128 __init__ DEBUG Time for mapping: 0.8230469226837158
2018-09-20 19:02:55,671 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.8610491752624512
2018-09-20 19:02:55,684 event_handler.py 50 f DEBUG Start: "request_workspace_add"
2018-09-20 19:02:55,689 event_handler.py 4257 request_workspace_add DEBUG Start: request_workspace_add
2018-09-20 19:02:55,713 event_handler.py 422 copy_workspace DEBUG Trying to copy workspace "default_workspace". Copy has alias "New test workspace"
2018-09-20 19:02:55,844 event_handler.py 2984 load_workspace DEBUG Trying to load new workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace"
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Update workspace uuid in test requests | update_workspace_uuid_in_test_requests() | 2018-09-20 19:02:56,883 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 19:02:56,886 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 19:02:57,796 event_handler.py 128 __init__ DEBUG Time for mapping: 0.9100518226623535
2018-09-20 19:02:57,854 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.9720554351806641
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request workspace import default data | # ekos = EventHandler(**paths)
# # When copying data the first time all sources has status=0, i.e. no data will be loaded.
# request = ekos.test_requests['request_workspace_import_default_data']
# response_import_data = ekos.request_workspace_import_default_data(request)
# ekos.write_test_response('request_workspace_import_default_data', response_import_data)
| _____no_output_____ | MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Import data from sharkweb | ekos = EventHandler(**paths)
request = ekos.test_requests['request_sharkweb_import']
response_sharkweb_import = ekos.request_sharkweb_import(request)
ekos.write_test_response('request_sharkweb_import', response_sharkweb_import)
ekos.data_params
ekos.selection_dicts
# ekos = EventHandler(**paths)
# ekos.mapping_objects['sharkweb_mapping'].df | _____no_output_____ | MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request data source list/edit | ekos = EventHandler(**paths)
request = ekos.test_requests['request_workspace_data_sources_list']
response = ekos.request_workspace_data_sources_list(request)
ekos.write_test_response('request_workspace_data_sources_list', response)
request = response
request['data_sources'][0]['status'] = False
request['data_sources'][1]['status'] = False
request['data_sources'][2]['status'] = False
request['data_sources'][3]['status'] = False
# request['data_sources'][4]['status'] = True
# Edit data source
response = ekos.request_workspace_data_sources_edit(request)
ekos.write_test_response('request_workspace_data_sources_edit', response)
| 2018-09-20 19:31:23,369 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 19:31:23,373 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 19:31:24,259 event_handler.py 128 __init__ DEBUG Time for mapping: 0.8860509395599365
2018-09-20 19:31:24,295 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.9250528812408447
2018-09-20 19:31:24,301 event_handler.py 50 f DEBUG Start: "request_workspace_data_sources_list"
2018-09-20 19:31:24,305 event_handler.py 4480 request_workspace_data_sources_list DEBUG Start: request_workspace_data_sources_list
2018-09-20 19:31:24,342 event_handler.py 2991 load_workspace DEBUG Trying to load new workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace"
2018-09-20 19:31:24,845 event_handler.py 3009 load_workspace INFO Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace loaded."
2018-09-20 19:31:24,858 event_handler.py 54 f DEBUG Stop: "request_workspace_data_sources_list". Time for running method was 0.5530316829681396
2018-09-20 19:31:24,864 event_handler.py 50 f DEBUG Start: "request_workspace_data_sources_edit"
2018-09-20 19:31:24,869 event_handler.py 4438 request_workspace_data_sources_edit DEBUG Start: request_workspace_data_sources_list
2018-09-20 19:31:24,910 event_handler.py 3002 load_workspace DEBUG Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace" is already loaded. Set reload=True if you want to reload the workspace.
2018-09-20 19:31:25,055 workspaces.py 1842 load_all_data DEBUG Data has been loaded from existing all_data.pickle file.
2018-09-20 19:31:25,058 event_handler.py 50 f DEBUG Start: "request_workspace_data_sources_list"
2018-09-20 19:31:25,063 event_handler.py 4480 request_workspace_data_sources_list DEBUG Start: request_workspace_data_sources_list
2018-09-20 19:31:25,099 event_handler.py 3002 load_workspace DEBUG Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace" is already loaded. Set reload=True if you want to reload the workspace.
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset add | ekos = EventHandler(**paths)
request = ekos.test_requests['request_subset_add_1']
response_subset_add = ekos.request_subset_add(request)
ekos.write_test_response('request_subset_add_1', response_subset_add)
update_subset_uuid_in_test_requests(subset_alias='mw_subset') | 2018-09-20 19:05:16,853 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 19:05:16,857 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 19:05:17,716 event_handler.py 128 __init__ DEBUG Time for mapping: 0.8590488433837891
2018-09-20 19:05:17,754 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.9010515213012695
2018-09-20 19:05:17,789 event_handler.py 2984 load_workspace DEBUG Trying to load new workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace"
2018-09-20 19:05:18,278 event_handler.py 3002 load_workspace INFO Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace loaded."
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset get data filter | ekos = EventHandler(**paths)
update_subset_uuid_in_test_requests(subset_alias='mw_subset')
request = ekos.test_requests['request_subset_get_data_filter']
response_subset_get_data_filter = ekos.request_subset_get_data_filter(request)
ekos.write_test_response('request_subset_get_data_filter', response_subset_get_data_filter)
# import re
# string = """{
# "workspace_uuid": "52725df4-b4a0-431c-a186-5e542fc6a3a4",
# "data_sources": [
# {
# "status": true,
# "loaded": false,
# "filename": "physicalchemical_sharkweb_data_all_2013-2014_20180916.txt",
# "datatype": "physicalchemical"
# }
# ]
# }"""
# r = re.sub('"workspace_uuid": ".{36}"', '"workspace_uuid": "new"', string) | _____no_output_____ | MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset set data filter | ekos = EventHandler(**paths)
update_subset_uuid_in_test_requests(subset_alias='mw_subset')
request = ekos.test_requests['request_subset_set_data_filter']
response_subset_set_data_filter = ekos.request_subset_set_data_filter(request)
ekos.write_test_response('request_subset_set_data_filter', response_subset_set_data_filter)
| 2018-09-20 13:54:00,112 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 13:54:00,112 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 13:54:00,912 event_handler.py 128 __init__ DEBUG Time for mapping: 0.8000011444091797
2018-09-20 13:54:00,942 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.8300011157989502
2018-09-20 13:54:00,942 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 13:54:00,952 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 13:54:01,762 event_handler.py 128 __init__ DEBUG Time for mapping: 0.8100011348724365
2018-09-20 13:54:01,792 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.8500008583068848
2018-09-20 13:54:01,822 event_handler.py 2887 load_workspace DEBUG Trying to load new workspace "fccc7645-8501-4541-975b-bdcfb40a5092" with alias "New test workspace"
2018-09-20 13:54:02,262 event_handler.py 2905 load_workspace INFO Workspace "fccc7645-8501-4541-975b-bdcfb40a5092" with alias "New test workspace loaded."
2018-09-20 13:54:02,452 event_handler.py 50 f DEBUG Start: "request_subset_set_data_filter"
2018-09-20 13:54:02,452 event_handler.py 3249 request_subset_set_data_filter DEBUG Start: request_subset_get_indicator_settings
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset get indicator settings | ekos = EventHandler(**paths)
request = ekos.test_requests['request_subset_get_indicator_settings']
# request = ekos.test_requests['request_subset_get_indicator_settings_no_areas']
# print(request['subset']['subset_uuid'])
# request['subset']['subset_uuid'] = 'fel'
# print(request['subset']['subset_uuid'])
response_subset_get_indicator_settings = ekos.request_subset_get_indicator_settings(request)
ekos.write_test_response('request_subset_get_indicator_settings', response_subset_get_indicator_settings) | 2018-09-20 06:50:41,643 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 06:50:41,643 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 06:50:42,330 event_handler.py 128 __init__ DEBUG Time for mapping: 0.6864011287689209
2018-09-20 06:50:42,361 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.7176012992858887
2018-09-20 06:50:42,361 event_handler.py 50 f DEBUG Start: "request_subset_get_indicator_settings"
2018-09-20 06:50:42,361 event_handler.py 3416 request_subset_get_indicator_settings DEBUG Start: request_subset_get_indicator_settings
2018-09-20 06:50:42,392 event_handler.py 2887 load_workspace DEBUG Trying to load new workspace "1a349dfd-5e08-4617-85a8-5bdde050a4ee" with alias "New test workspace"
2018-09-20 06:50:42,798 event_handler.py 2905 load_workspace INFO Workspace "1a349dfd-5e08-4617-85a8-5bdde050a4ee" with alias "New test workspace loaded."
2018-09-20 06:50:42,829 workspaces.py 1842 load_all_data DEBUG Data has been loaded from existing all_data.pickle file.
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset set indicator settings | ekos = EventHandler(**paths)
request = ekos.test_requests['request_subset_set_indicator_settings']
response_subset_set_indicator_settings = ekos.request_subset_set_indicator_settings(request)
ekos.write_test_response('request_subset_set_indicator_settings', response_subset_set_indicator_settings) | 2018-09-20 12:09:08,454 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 12:09:08,454 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 12:09:09,234 event_handler.py 128 __init__ DEBUG Time for mapping: 0.780001163482666
2018-09-20 12:09:09,264 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.8100008964538574
2018-09-20 12:09:09,284 event_handler.py 50 f DEBUG Start: "request_subset_set_indicator_settings"
2018-09-20 12:09:09,294 event_handler.py 3627 request_subset_set_indicator_settings DEBUG Start: request_subset_set_indicator_settings
2018-09-20 12:09:09,324 event_handler.py 2887 load_workspace DEBUG Trying to load new workspace "1a349dfd-5e08-4617-85a8-5bdde050a4ee" with alias "New test workspace"
2018-09-20 12:09:09,444 logger.py 85 add_log DEBUG
2018-09-20 12:09:09,444 logger.py 86 add_log DEBUG ========================================================================================================================
2018-09-20 12:09:09,454 logger.py 87 add_log DEBUG ### Log added for log_id "cc264e56-f958-4ec4-932d-bc0cc1d2caf8" at locaton: D:\git\ekostat_calculator\workspaces\1a349dfd-5e08-4617-85a8-5bdde050a4ee\log\subset_cc264e56-f958-4ec4-932d-bc0cc1d2caf8.log
2018-09-20 12:09:09,454 logger.py 88 add_log DEBUG ------------------------------------------------------------------------------------------------------------------------
2018-09-20 12:09:09,544 logger.py 85 add_log DEBUG
2018-09-20 12:09:09,554 logger.py 86 add_log DEBUG ========================================================================================================================
2018-09-20 12:09:09,554 logger.py 87 add_log DEBUG ### Log added for log_id "default_subset" at locaton: D:\git\ekostat_calculator\workspaces\1a349dfd-5e08-4617-85a8-5bdde050a4ee\log\subset_default_subset.log
2018-09-20 12:09:09,564 logger.py 88 add_log DEBUG ------------------------------------------------------------------------------------------------------------------------
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset calculate status | ekos = EventHandler(**paths)
request = ekos.test_requests['request_subset_calculate_status']
response = ekos.request_subset_calculate_status(request)
ekos.write_test_response('request_subset_calculate_status', response) | 2018-09-20 19:05:31,914 event_handler.py 117 __init__ DEBUG Start EventHandler: event_handler
2018-09-20 19:05:31,917 event_handler.py 152 _load_mapping_objects DEBUG Loading mapping files from pickle file.
2018-09-20 19:05:32,790 event_handler.py 128 __init__ DEBUG Time for mapping: 0.8740499019622803
2018-09-20 19:05:32,826 event_handler.py 133 __init__ DEBUG Time for initiating EventHandler: 0.9130520820617676
2018-09-20 19:05:32,831 event_handler.py 50 f DEBUG Start: "request_subset_calculate_status"
2018-09-20 19:05:32,837 event_handler.py 3296 request_subset_calculate_status DEBUG Start: request_subset_calculate_status
2018-09-20 19:05:32,871 event_handler.py 2984 load_workspace DEBUG Trying to load new workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace"
2018-09-20 19:05:33,359 event_handler.py 3002 load_workspace INFO Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace loaded."
2018-09-20 19:05:33,453 workspaces.py 1842 load_all_data DEBUG Data has been loaded from existing all_data.pickle file.
2018-09-20 19:05:33,493 event_handler.py 2995 load_workspace DEBUG Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace" is already loaded. Set reload=True if you want to reload the workspace.
2018-09-20 19:05:33,530 event_handler.py 2995 load_workspace DEBUG Workspace "a377ee26-cd2d-411b-999c-073cd7a3dbd4" with alias "New test workspace" is already loaded. Set reload=True if you want to reload the workspace.
| MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Request subset result get | ekos = EventHandler(**paths)
request = ekos.test_requests['request_workspace_result']
response_workspace_result = ekos.request_workspace_result(request)
ekos.write_test_response('request_workspace_result', response_workspace_result)
response_workspace_result['subset']['a4e53080-2c68-40d5-957f-8cc4dbf77815']['result']['SE552170-130626']['result']['indicator_din_winter']['data']
workspace_uuid = 'fccc7645-8501-4541-975b-bdcfb40a5092'
subset_uuid = 'a4e53080-2c68-40d5-957f-8cc4dbf77815'
result = ekos.dict_data_timeseries(workspace_uuid=workspace_uuid,
subset_uuid=subset_uuid,
viss_eu_cd='SE575150-162700',
element_id='indicator_din_winter')
print(result['datasets'][0]['x'])
print()
print(result['y'])
for k in range(len(result['datasets'])):
print(result['datasets'][k]['x'])
import datetime
# Extend date list
start_year = all_dates[0].year
end_year = all_dates[-1].year+1
date_intervall = []
for year in range(start_year, end_year+1):
for month in range(1, 13):
d = datetime.datetime(year, month, 1)
if d >= all_dates[0] and d <= all_dates[-1]:
date_intervall.append(d)
extended_dates = sorted(set(all_dates + date_intervall))
# Loop dates and add/remove values
new_x = []
new_y = dict((item, []) for item in date_to_y)
for date in extended_dates:
if date in date_intervall:
new_x.append(date.strftime('%y-%b'))
else:
new_x.append('')
for i in new_y:
new_y[i].append(date_to_y[i].get(date, None))
# new_y = {}
# for i in date_to_y:
# new_y[i] = []
# for date in all_dates:
# d = date_to_y[i].get(date)
# if d:
# new_y[i].append(d)
# else:
# new_y[i].append(None)
new_y[0]
import datetime
year_list = range(2011, 2013+1)
month_list = range(1, 13)
date_list = []
for year in year_list:
for month in month_list:
date_list.append(datetime.datetime(year, month, 1))
date_list
a
y[3][i]
sorted(pd.to_datetime(df['SDATE']))
| _____no_output_____ | MIT | notebooks/.ipynb_checkpoints/mw_requests_flow-checkpoint.ipynb | lvikt/ekostat_calculator |
Notebook prirejen s strani http://www.pieriandata.com NumPy Indexing and SelectionIn this lecture we will discuss how to select elements or groups of elements from an array. | import numpy as np
#Creating sample array
arr = np.arange(0,11)
#Show
arr | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
Bracket Indexing and SelectionThe simplest way to pick one or some elements of an array looks very similar to python lists: | #Get a value at an index
arr[8]
#Get values in a range
arr[1:5]
#Get values in a range
arr[0:5]
# l = ['a', 'b', 'c']
# l[0:2] | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
BroadcastingNumPy arrays differ from normal Python lists because of their ability to broadcast. With lists, you can only reassign parts of a list with new parts of the same size and shape. That is, if you wanted to replace the first 5 elements in a list with a new value, you would have to pass in a new 5 element list. With NumPy arrays, you can broadcast a single value across a larger set of values: | l = list(range(10))
l
l[0:5] = [100,100,100,100,100]
l
#Setting a value with index range (Broadcasting)
arr[0:5]=100
#Show
arr
# Reset array, we'll see why I had to reset in a moment
arr = np.arange(0,11)
#Show
arr
#Important notes on Slices
slice_of_arr = arr[0:6]
#Show slice
slice_of_arr
#Change Slice
slice_of_arr[:]=99
#Show Slice again
slice_of_arr | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
Now note the changes also occur in our original array! | arr | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
Data is not copied, it's a view of the original array! This avoids memory problems! | #To get a copy, need to be explicit
arr_copy = arr.copy()
arr_copy | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
Indexing a 2D array (matrices)The general format is **arr_2d[row][col]** or **arr_2d[row,col]**. I recommend using the comma notation for clarity. | arr_2d = np.array(([5,10,15],[20,25,30],[35,40,45]))
#Show
arr_2d
#Indexing row
arr_2d[1]
# Format is arr_2d[row][col] or arr_2d[row,col]
# Getting individual element value
arr_2d[1][0]
# Getting individual element value
arr_2d[1,0]
# 2D array slicing
#Shape (2,2) from top right corner
arr_2d[:2,1:]
#Shape bottom row
arr_2d[2]
#Shape bottom row
arr_2d[2,:] | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
More Indexing HelpIndexing a 2D matrix can be a bit confusing at first, especially when you start to add in step size. Try google image searching *NumPy indexing* to find useful images, like this one: Image source: http://www.scipy-lectures.org/intro/numpy/numpy.html Conditional SelectionThis is a very fundamental concept that will directly translate to pandas later on, make sure you understand this part!Let's briefly go over how to use brackets for selection based off of comparison operators. | arr = np.arange(1,11)
arr
arr > 4
bool_arr = arr>4
bool_arr
arr[bool_arr]
arr[arr>2]
x = 2
arr[arr>x] | _____no_output_____ | MIT | theory/NumPy/01-NumPy-Indexing-and-Selection.ipynb | CrtomirJuren/python-delavnica |
Chapter 4: Linear models[Link to outline](https://docs.google.com/document/d/1fwep23-95U-w1QMPU31nOvUnUXE2X3s_Dbk5JuLlKAY/editheading=h.9etj7aw4al9w)Concept map: Notebook setup | import numpy as np
import pandas as pd
import scipy as sp
import seaborn as sns
from scipy.stats import uniform, norm
# notebooks figs setup
%matplotlib inline
import matplotlib.pyplot as plt
sns.set(rc={'figure.figsize':(8,5)})
blue, orange = sns.color_palette()[0], sns.color_palette()[1]
# silence annoying warnings
import warnings
warnings.filterwarnings('ignore') | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
4.1 Linear models for relationship between two numeric variables- def'n linear model: **y ~ m*x + b**, a.k.a. linear regression- Amy has collected a new dataset: - Instead of receiving a fixed amount of stats training (100 hours), **each employee now receives a variable amount of stats training (anywhere from 0 hours to 100 hours)** - Amy has collected ELV values after one year as previously - Goal find best fit line for relationship $\textrm{ELV} \sim \beta_0 + \beta_1\!*\!\textrm{hours}$- Limitation: **we assume the change in ELV is proportional to number of hours** (i.e. linear relationship). Other types of hours-ELV relationship possible, but we will not be able to model them correctly (see figure below). New dataset - The `hours` column contains the `x` values (how many hours of statistics training did the employee receive), - The `ELV` column contains the `y` values (the employee ELV after one year) | # Load data into a pandas dataframe
df2 = pd.read_excel("data/ELV_vs_hours.ods", sheet_name="Data")
# df2
df2.describe()
# plot ELV vs. hours data
sns.scatterplot(x='hours', y='ELV', data=df2)
# linear model plot (preview)
# sns.lmplot(x='hours', y='ELV', data=df2, ci=False) | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Types of linear relationship between input and outputDifferent possible relationships between the number of hours of stats training and ELV gains: 4.2 Fitting linear models- Main idea: use `fit` method from `statsmodels.ols` and a formula (approach 1)- Visual inspection- Results of linear model fit are: - `beta0` = $\beta_0$ = baseline ELV (y-intercept) - `beta1` = $\beta_1$ = increase in ELV for each additional hour of stats training (slope)- Five more alternative fitting methods (bonus material): 2. fit using statsmodels `OLS` 3. solution using `linregress` from `scipy` 4. solution using `optimize` from `scipy` 5. linear algebra solution using `numpy` 6. solution using `LinearRegression` model from scikit-learn Using statsmodels formula APIThe `statsmodels` Python library offers a convenient way to specify statistics model as a "formula" that describes the relationship we're looking for.Mathematically, the linear model is written:$\large \textrm{ELV} \ \ \sim \ \ \beta_0\cdot 1 \ + \ \beta_1\cdot\textrm{hours}$and the formula is:`ELV ~ 1 + hours`Note the variables $\beta_0$ and $\beta_1$ are omitted, since the whole point of fitting a linear model is to find these coefficients. The parameters of the model are:- Instead of $\beta_0$, the constant parameter will be called `Intercept`- Instead of a new name $\beta_1$, we'll call it `hours` coefficient (i.e. the coefficient associated with the `hours` variable in the model) | import statsmodels.formula.api as smf
model = smf.ols('ELV ~ 1 + hours', data=df2)
result = model.fit()
# extact the best-fit model parameters
beta0, beta1 = result.params
beta0, beta1
# data points
sns.scatterplot(x='hours', y='ELV', data=df2)
# linear model for data
x = df2['hours'].values # input = hours
ymodel = beta0 + beta1*x # output = ELV
sns.lineplot(x, ymodel)
result.summary() | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Alternative model fitting methods2. fit using statsmodels [`OLS`](https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.OLS.html)3. solution using [`linregress`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html) from `scipy`4. solution using [`minimize`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html) from `scipy`5. [linear algebra](https://numpy.org/doc/stable/reference/routines.linalg.html) solution using `numpy`6. solution using [`LinearRegression`](https://scikit-learn.org/stable/modules/linear_model.htmlordinary-least-squares) model from scikit-learn Data pre-processingThe `statsmodels` formula `ols` approach we used above was able to get the datadirectly from the dataframe `df2`, but some of the other model fitting methodsrequire data to be provided as regular arrays: the x-values and the y-values. | # extract hours and ELV data from df2
x = df2['hours'].values # hours data as an array
y = df2['ELV'].values # ELV data as an array
x.shape, y.shape
# x | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Two of the approaches required "packaging" the x-values along with a column of ones,to form a matrix (called a design matrix). Luckily `statsmodels` provides a convenient function for this: | import statsmodels.api as sm
# add a column of ones to the x data
X = sm.add_constant(x)
X.shape
# X | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
____ 2. fit using statsmodels OLS | model2 = sm.OLS(y, X)
result2 = model2.fit()
# result2.summary()
result2.params | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
____ 3. solution using `linregress` from `scipy` | from scipy.stats import linregress
result3 = linregress(x, y)
result3.intercept, result3.slope | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
____ 4. Using an optimization approach | from scipy.optimize import minimize
def sse(beta, x=x, y=y):
"""Compute the sum-of-squared-errors objective function."""
sumse = 0.0
for xi, yi in zip(x, y):
yi_pred = beta[0] + beta[1]*xi
ei = (yi_pred-yi)**2
sumse += ei
return sumse
result4 = minimize(sse, x0=[0,0])
beta0, beta1 = result4.x
beta0, beta1 | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
____ 5. Linear algebra solutionWe obtain the least squares solution using the Moore–Penrose inverse formula:$$ \large \vec{\beta} = (X^{\sf T} X)^{-1}X^{\sf T}\; \vec{y}$$ | # 5. linear algebra solution using `numpy`
import numpy as np
result5 = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
beta0, beta1 = result5
beta0, beta1 | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
_____ Using scikit-learn | # 6. solution using `LinearRegression` from scikit-learn
from sklearn import linear_model
model6 = linear_model.LinearRegression()
model6.fit(x[:,np.newaxis], y)
model6.intercept_, model6.coef_ | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
4.3 Interpreting linear models- model fit checks - $R^2$ [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination) = the proportion of the variation in the dependent variable that is predictable from the independent variable - plot of residuals - many other: see [scikit docs](https://scikit-learn.org/stable/modules/model_evaluation.htmlregression-metrics)- hypothesis tests - is slope zero or nonzero? (and CI interval) - caution: cannot make any cause-and-effect claims; only a correlation- Predictions - given best-fir model obtained from data, we can make predictions (interpolations), e.g., what is the expected ELV after 50 hours of stats training? Interpreting the resultsLet's review some of the other data included in the `results.summary()` report for the linear model fit we did earlier. | result.summary() | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Model parameters | beta0, beta1 = result.params
result.params | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
The $R^2$ coefficient of determination$R^2 = 1$ corresponds to perfect prediction | result.rsquared | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Hypothesis testing for slope coefficientIs there a non-zero slope coefficient?- **null hypothesis $H_0$**: `hours` has no effect on `ELV`, which is equivalent to $\beta_1 = 0$: $$ \large H_0: \qquad \textrm{ELV} \sim \mathcal{N}(\color{red}{\beta_0}, \sigma^2) \qquad \qquad \qquad $$- **alternative hypothesis $H_A$**: `hours` has an effect on `ELV`, and the slope is not zero, $\beta_1 \neq 0$: $$ \large H_A: \qquad \textrm{ELV} \sim \mathcal{N}\left( \color{blue}{\beta_0 + \beta_1\!\cdot\!\textrm{hours}}, \ \sigma^2 \right) $$ | # p-value under the null hypotheis of zero slope or "no effect of `hours` on `ELV`"
result.pvalues.loc['hours']
# 95% confidence interval for the hours-slope parameter
# result.conf_int()
CI_hours = list(result.conf_int().loc['hours'])
CI_hours | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Predictions using the modelWe can use the model we obtained to predict (interpolate) the ELV for future employees. | sns.scatterplot(x='hours', y='ELV', data=df2)
ymodel = beta0 + beta1*x
sns.lineplot(x, ymodel) | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
What ELV can we expect from a new employee that takes 50 hours of stats training? | result.predict({'hours':[50]})
result.predict({'hours':[100]}) | _____no_output_____ | MIT | stats_overview/04_LINEAR_MODELS.ipynb | minireference/noBSstatsnotebooks |
Subsets and Splits