markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
*Step 8: Visualization Check*
fig = plt.figure() ax1 = fig.add_subplot(2,2,1) ax1.set_title(str(channel_1_color + ' Filled')) ax1.imshow(filled_c1, cmap='gray') ax2 = fig.add_subplot(2,2,2) ax2.set_title(str(channel_2_color + ' Filled')) ax2.imshow(filled_c2, cmap='gray') fig.set_size_inches(10.5, 10.5, forward=True)
_____no_output_____
MIT
scripts/object_identification_basic.ipynb
hhelmbre/qdbvcella
*Step 9: Labeling Objects*
label_objects1, nb_labels1 = ndi.label(filled_c1) sizes1 = np.bincount(label_objects1.ravel()) mask_sizes1 = sizes1 > 100 mask_sizes1[0] = 0 cells_cleaned_c1 = mask_sizes1[label_objects1] label_objects2, nb_labels2 = ndi.label(filled_c2) sizes2 = np.bincount(label_objects2.ravel()) mask_sizes2 = sizes2 > 100 mask_sizes2[0] = 0 cells_cleaned_c2 = mask_sizes2[label_objects2] labeled_c1, _ = ndi.label(cells_cleaned_c1) labeled_c2, _ = ndi.label(cells_cleaned_c2)
_____no_output_____
MIT
scripts/object_identification_basic.ipynb
hhelmbre/qdbvcella
*Step 10: Visualization Check*
fig = plt.figure() ax1 = fig.add_subplot(2,2,1) ax1.set_title(str(channel_1_color + ' Labeled')) ax1.imshow(labeled_c1) ax2 = fig.add_subplot(2,2,2) ax2.set_title(str(channel_2_color + ' Labeled')) ax2.imshow(labeled_c2) fig.set_size_inches(10.5, 10.5, forward=True)
_____no_output_____
MIT
scripts/object_identification_basic.ipynb
hhelmbre/qdbvcella
*Step 11: Get Region Props*
regionprops_c1 = measure.regionprops(labeled_c1) regionprops_c2 = measure.regionprops(labeled_c2) df = pd.DataFrame(columns=['centroid x', 'centroid y','equiv_diam']) k = 1 for props in regionprops_c1: #Get the properties that I need for areas #Add them into a pandas dataframe that has the same number of rows as objects detected # centroid = props.centroid centroid_x = centroid[0] centroid_y = centroid[1] equiv_diam = props.equivalent_diameter df.loc[k] = [centroid_x, centroid_y, equiv_diam] k = k + 1 df2 = pd.DataFrame(columns=['centroid x', 'centroid y','equiv_diam']) k = 1 for props in regionprops_c2: #Get the properties that I need for areas #Add them into a pandas dataframe that has the same number of rows as objects detected # centroid = props.centroid centroid_x = centroid[0] centroid_y = centroid[1] equiv_diam = props.equivalent_diameter df2.loc[k] = [centroid_x, centroid_y, equiv_diam] k = k + 1 count_c1 = df.shape[0] print('Count ' + channel_1_color + ': ' + str(count_c1)) count_c2 = df2.shape[0] print('Count ' + channel_2_color + ': ' + str(count_c2))
Count Blue: 114 Count Green: 16
MIT
scripts/object_identification_basic.ipynb
hhelmbre/qdbvcella
E4 Sensor Concatenation This sensor concatenation file compiles all .csv files of subjects by sensor type. A column is added with the "Subject_ID" and arranges the data in order of ascending ID number. The output of this function is a csv file. *** **Input:** Properly formatted .csv files from the E4FileFormatter (DBDP preprocessing folder) **Output:** Each .csv file will consist of only one type of sensor data. A column for subject ID has been added. Data will be organized numerically, by subject ID. Headers will be based on the column names input into the function. ***
import pandas as pd import glob import os os.chdir('../00_source')
_____no_output_____
Apache-2.0
DigitalBiomarkers-HumanActivityRecognition/00_source/.ipynb_checkpoints/20_sensor_concat-checkpoint.ipynb
Big-Ideas-Lab/DBDP
Import & Concatenate Sensor Data of Choice**Functions:*** $\underline{data\_concat()}$ - reads all files in data directory (00_source) and concatenates those of one sensor type. Adds subject ID column to resulting .csv file > data = data type to be concatenated as a string > cols = column names in resulting dataframe as a list > file_name = output .csv file name as a string
# Select files of specific data and concat to one dataframe def data_concat(data, cols, file_name): """ data = data type to be concatenated as a string cols = column names in resulting dataframe as a list file_name = output csv file name as a string """ all_filenames = [i for i in glob.glob(f'*{data}.csv')] all_filenames = sorted(all_filenames) df = pd.concat([pd.read_csv(f, header=None).assign(Subject_ID=os.path.basename(f)) for f in all_filenames]) df['Subject_ID'] = df['Subject_ID'].str[:6] df.columns = cols df.to_csv(f"../20_Intermediate_files/{file_name}.csv", index = False) return df cols = ['Time', 'TEMP', 'Subject_ID'] data_concat("TEMP", cols, "20_Temp_Combined")
_____no_output_____
Apache-2.0
DigitalBiomarkers-HumanActivityRecognition/00_source/.ipynb_checkpoints/20_sensor_concat-checkpoint.ipynb
Big-Ideas-Lab/DBDP
variance
print(ind_data.info())
<class 'pandas.core.frame.DataFrame'> Index: 0 entries Empty DataFrameNone
MIT
jupyterexample/StudyPandas2.ipynb
newrey/QUANTAXIS
DataWe assume that data has already been downloaded via notebook [1_data.ipynb](1_data.ipynb). Training data (for input `X` with associated label masks `Y`) can be provided via lists of numpy arrays, where each image can have a different size. Alternatively, a single numpy array can also be used if all images have the same size. Input images can either be two-dimensional (single-channel) or three-dimensional (multi-channel) arrays, where the channel axis comes last. Label images need to be integer-valued.
X = sorted(glob('data/dsb2018/train/images/*.tif')) Y = sorted(glob('data/dsb2018/train/masks/*.tif')) assert all(Path(x).name==Path(y).name for x,y in zip(X,Y)) X = list(map(imread,X)) Y = list(map(imread,Y)) n_channel = 1 if X[0].ndim == 2 else X[0].shape[-1]
_____no_output_____
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
Normalize images and fill small label holes.
axis_norm = (0,1) # normalize channels independently # axis_norm = (0,1,2) # normalize channels jointly if n_channel > 1: print("Normalizing image channels %s." % ('jointly' if axis_norm is None or 2 in axis_norm else 'independently')) sys.stdout.flush() X = [normalize(x,1,99.8,axis=axis_norm) for x in tqdm(X)] Y = [fill_label_holes(y) for y in tqdm(Y)]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 447/447 [00:01<00:00, 462.35it/s] 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 447/447 [00:04<00:00, 111.61it/s]
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
Split into train and validation datasets.
assert len(X) > 1, "not enough training data" rng = np.random.RandomState(42) ind = rng.permutation(len(X)) n_val = max(1, int(round(0.15 * len(ind)))) ind_train, ind_val = ind[:-n_val], ind[-n_val:] X_val, Y_val = [X[i] for i in ind_val] , [Y[i] for i in ind_val] X_trn, Y_trn = [X[i] for i in ind_train], [Y[i] for i in ind_train] print('number of images: %3d' % len(X)) print('- training: %3d' % len(X_trn)) print('- validation: %3d' % len(X_val))
number of images: 447 - training: 380 - validation: 67
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
Training data consists of pairs of input image and label instances.
i = min(9, len(X)-1) img, lbl = X[i], Y[i] assert img.ndim in (2,3) img = img if img.ndim==2 else img[...,:3] plt.figure(figsize=(16,10)) plt.subplot(121); plt.imshow(img,cmap='gray'); plt.axis('off'); plt.title('Raw image') plt.subplot(122); plt.imshow(lbl,cmap=lbl_cmap); plt.axis('off'); plt.title('GT labels') None;
_____no_output_____
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
ConfigurationA `StarDist2D` model is specified via a `Config2D` object.
print(Config2D.__doc__) # 32 is a good default choice (see 1_data.ipynb) n_rays = 32 # Use OpenCL-based computations for data generator during training (requires 'gputools') use_gpu = False and gputools_available() # Predict on subsampled grid for increased efficiency and larger field of view grid = (2,2) conf = Config2D ( n_rays = n_rays, grid = grid, use_gpu = use_gpu, n_channel_in = n_channel, ) print(conf) vars(conf) if use_gpu: from csbdeep.utils.tf import limit_gpu_memory # adjust as necessary: limit GPU memory to be used by TensorFlow to leave some to OpenCL-based computations limit_gpu_memory(0.8)
_____no_output_____
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
**Note:** The trained `StarDist2D` model will *not* predict completed shapes for partially visible objects at the image boundary if `train_shape_completion=False` (which is the default option).
model = StarDist2D(conf, name='stardist', basedir='models')
Using default values: prob_thresh=0.5, nms_thresh=0.4.
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
Check if the neural network has a large enough field of view to see up to the boundary of most objects.
median_size = calculate_extents(list(Y), np.median) fov = np.array(model._axes_tile_overlap('YX')) if any(median_size > fov): print("WARNING: median object size larger than field of view of the neural network.")
_____no_output_____
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
Training You can define a function/callable that applies augmentation to each batch of the data generator.
augmenter = None # def augmenter(X_batch, Y_batch): # """Augmentation for data batch. # X_batch is a list of input images (length at most batch_size) # Y_batch is the corresponding list of ground-truth label images # """ # # ... # return X_batch, Y_batch
_____no_output_____
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
We recommend to monitor the progress during training with [TensorBoard](https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard). You can start it in the shell from the current working directory like this: $ tensorboard --logdir=.Then connect to [http://localhost:6006/](http://localhost:6006/) with your browser.
quick_demo = True if quick_demo: print ( "NOTE: This is only for a quick demonstration!\n" " Please set the variable 'quick_demo = False' for proper (long) training.", file=sys.stderr, flush=True ) model.train(X_trn, Y_trn, validation_data=(X_val,Y_val), augmenter=augmenter, epochs=2, steps_per_epoch=10) print("====> Stopping training and loading previously trained demo model from disk.", file=sys.stderr, flush=True) model = StarDist2D(None, name='2D_demo', basedir='../../models/examples') model.basedir = None # to prevent files of the demo model to be overwritten (not needed for your model) else: model.train(X_trn, Y_trn, validation_data=(X_val,Y_val), augmenter=augmenter) None;
NOTE: This is only for a quick demonstration! Please set the variable 'quick_demo = False' for proper (long) training.
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
Threshold optimization While the default values for the probability and non-maximum suppression thresholds already yield good results in many cases, we still recommend to adapt the thresholds to your data. The optimized threshold values are saved to disk and will be automatically loaded with the model.
model.optimize_thresholds(X_val, Y_val)
NMS threshold = 0.3: 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 16/20 [00:46<00:17, 4.42s/it, 0.485 -> 0.796] NMS threshold = 0.4: 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 16/20 [00:46<00:17, 4.45s/it, 0.485 -> 0.796] NMS threshold = 0.5: 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 16/20 [00:50<00:18, 4.63s/it, 0.485 -> 0.796]
BSD-3-Clause
examples/2D/2_training.ipynb
feberhardt/stardist
View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving).
# Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize()
_____no_output_____
MIT
Datasets/Vectors/landsat_wrs2_grid.ipynb
YuePanEdward/earthengine-py-notebooks
Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function.
Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map
_____no_output_____
MIT
Datasets/Vectors/landsat_wrs2_grid.ipynb
YuePanEdward/earthengine-py-notebooks
Add Earth Engine Python script
# Add Earth Engine dataset dataset = ee.FeatureCollection('projects/google/wrs2_descending') empty = ee.Image().byte() Map.setCenter(-78, 36, 8) Map.addLayer(empty.paint(dataset, 0, 2), {}, 'Landsat WRS-2 grid')
_____no_output_____
MIT
Datasets/Vectors/landsat_wrs2_grid.ipynb
YuePanEdward/earthengine-py-notebooks
Display Earth Engine data layers
Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map
_____no_output_____
MIT
Datasets/Vectors/landsat_wrs2_grid.ipynb
YuePanEdward/earthengine-py-notebooks
Title : Longest Palindromic SubstringChapter : Dynamic ProgrammingLink : [YouTube](https://youtu.be/LYHFaO1lgYM)ChapterLink : [PlayList](https://youtube.com/playlist?list=PLDV-cCQnUlIa0owhTLK-VT994Qh6XTy4v)문제: μ£Όμ–΄μ§„ string sμ—μ„œ, κ°€μž₯ κΈ΄ palindromic substring을 returnν•˜μ—¬λΌ
def longestPalindrome(s: str) -> str: str_length = len(s) dp_table = [[0] * str_length for i in range(str_length)] for idx in range (str_length): dp_table[idx][idx] = 1 for idx in range (str_length -1): start_char = s[idx] end_char = s[idx+1] if start_char == end_char: dp_table[idx][idx+1] = 2 for idx in range (2, str_length): row = 0 col = idx while col < str_length: start_char = s[row] end_char = s[col] prev_count = dp_table[row+1][col-1] if start_char == end_char and prev_count != 0: dp_table[row][col] = prev_count + 2 row += 1 col += 1 max_length = 0 start_idx = 0 end_idx = 0 for row in range (str_length): for col in range (str_length): crnt_length = dp_table[row][col] if max_length < crnt_length: max_length = crnt_length start_idx = row end_idx = col sub_str = s[start_idx:end_idx+1] return sub_str print(longestPalindrome(s='baabc'))
_____no_output_____
MIT
dynamicProgramming/lgstPalSubstring.ipynb
NoCodeProgram/CodingTest
Create Temporary Datasets for AnalysisSimulate the proofcheck dataset until you get access to it
import pandas as pd mov_meta = pd.read_csv('movie_metadata.csv') mov_meta.head() # For the sake of simplicity only look at colmns with numeric data mov_meta_nrw=mov_meta._get_numeric_data() mov_meta_nrw.head() # variable of interest is gross and to make data similar to proofcheck will create binary variable # 1 if movie gross is greater than budget and 0 if not mov_meta_nrw['gross_bin'] = mov_meta_nrw['gross']>mov_meta_nrw['budget'] mov_meta_nrw.drop(['gross','budget'], axis=1,inplace=True) mov_meta_nrw.head() xtrain = mov_meta_nrw.iloc[:,:-1] ytrain = mov_meta_nrw.iloc[:,-1] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr_fit = lr.fit(xtrain,ytrain) type(ytrain) from sklearn import datasets dataset = datasets.load_iris() dataset
_____no_output_____
MIT
jupyter/model_comparison.ipynb
mseinstein/Proofcheck
This notebook shows:* How to launch the [**StarGANv1**](https://arxiv.org/abs/1711.09020) model for inference* Example of results for both * attrubutes **detection** * new face **generation** with desired attributesHere I use [**PyTorch** implementation](https://github.com/yunjey/stargan) of the StarGANv1 model.[StarGANv1](https://arxiv.org/abs/1711.09020) was chosen because:* It provides an ability to generate images **contitionally**. One can control the "amount" of each desired feature via input vector.* It can **train (relatively) fast** on (relatively) small resources.The model is pretty old though and has its own drawbacks:* It works well only with small resolution images (~128).* For bigger images the artifacts are inavoidable. They sometimes happen even for 128x128 images.The obvious improvement is to use newer model, e.g., [StarGANv2](https://arxiv.org/abs/1912.01865) which was released in April 2020. It generates much better images at much higher resolution. But it requires both huge resoruces and lots of time to train.Prior to running this notebook please download the pretrained models:```../scripts/get_models.sh``` Imports Imort necessary libraries
import os import sys os.environ["KMP_DUPLICATE_LIB_OK"] = "True" sys.path.extend(["../code/", "../stargan/"]) import torch import torchvision.transforms as T from PIL import Image import matplotlib.pyplot as plt from config import get_config from solver import Solver
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Load model Let's first load the config for the model. It is mostly default except for the:* model checkpoint path* style classes, their order and numberNote that in the original StarGANv1 model 5 classes are used: `[Black_Hair Blond_Hair Brown_Hair Male Young]`.I retrained the model **4** times for different **face parts**. Each face part has several classes connected to it (see `DataExploration` notebook):* **nose**: `[Big_Nose, Pointy_Nose]`* **mouth**: `[Mouth_Slightly_Open, Smiling]`* **eyes**: `[Arched_Eyebrows, Bushy_Eyebrows, Bags_Under_Eyes, Eyeglasses, Narrow_Eyes]`* **hair**: `[Black_Hair, Blond_Hair, Brown_Hair, Gray_Hair, Bald Bangs, Receding_Hairline, Straight_Hair, Wavy_Hair]`Here I show the examples only for **eyes** class. But all other classes works in the same way and prediction examples are shown in the repo and in other notebooks.
config = get_config(""" --model_save_dir ../models/celeba_128_eyes/ --test_iters 200000 --c_dim 5 --selected_attrs Arched_Eyebrows Bushy_Eyebrows Bags_Under_Eyes Eyeglasses Narrow_Eyes """)
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Load the model architecture with the provided config.
model = Solver(None, None, config)
Generator( (main): Sequential( (0): Conv2d(8, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) (1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) (9): ResidualBlock( (main): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (10): ResidualBlock( (main): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (11): ResidualBlock( (main): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (12): ResidualBlock( (main): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (13): ResidualBlock( (main): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (14): ResidualBlock( (main): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (15): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (16): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (17): ReLU(inplace=True) (18): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (19): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (20): ReLU(inplace=True) (21): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) (22): Tanh() ) ) G The number of parameters: 8430528 Discriminator( (main): Sequential( (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (3): LeakyReLU(negative_slope=0.01) (4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (5): LeakyReLU(negative_slope=0.01) (6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (7): LeakyReLU(negative_slope=0.01) (8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (9): LeakyReLU(negative_slope=0.01) (10): Conv2d(1024, 2048, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (11): LeakyReLU(negative_slope=0.01) ) (conv1): Conv2d(2048, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (conv2): Conv2d(2048, 5, kernel_size=(2, 2), stride=(1, 1), bias=False) ) D The number of parameters: 44762048
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Restore model weights.
model.restore_model(model.test_iters)
Loading the trained models from step 200000...
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Prediction example Let's read a test image.Note that the **face position and size** should be comparable to what the model has seen in the training data (CelebA). Here I do not use any face detector and crop the faces manually. But in production environment one needs to setup the face detector correspondingly.
image = Image.open("../data/test.jpg") image
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
The input to the network is **3x128x128 image in a range [-1; 1]** (note that the channels is the first dimension).Thus one need to do preprocessing in advance.
transform = [] transform.append(T.Resize(128)) transform.append(T.CenterCrop(128)) transform.append(T.ToTensor()) transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))) transform = T.Compose(transform)
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Create a batch of 1 image
x_real = torch.stack([transform(image)]) x_real.shape
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Attributes prediction Let's first predict the attbibutes of the image. To do so I use the **Discriminator** part of the network. In StarGAN architecture it predicts not only the fake/real label but also the classes/attributes/styles of the image.Here I call this vector **eigen style vector**. Note that due to the possible co-existence of multiple labels and the corresponding training procedure (Sigmoid + BCELoss instead of Softmax + CrossEntropyLoss) I use sigmoid activation function here and treat predicted labels separately (instead of softmax and 1-of-all).
with torch.no_grad(): eigen_style_vector = torch.sigmoid(model.D(x_real)[1])
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Below is the probability of each label. The photo indeed depicts a person with big and little bit arched eyebrows.
for proba, tag in zip(eigen_style_vector.numpy()[0], model.selected_attrs): print(f"{tag:20s}: {proba:.3f}")
Arched_Eyebrows : 0.334 Bushy_Eyebrows : 0.207 Bags_Under_Eyes : 0.054 Eyeglasses : 0.000 Narrow_Eyes : 0.081
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Now let's look at how well the **Generator** model can recreate the face without altering it using the just computed eigen style vector.
with torch.no_grad(): res_eigen = model.G(x_real, eigen_style_vector) res_eigen.shape
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Plot the original face and the reconstructed one:
plt.figure(figsize=(9, 8)) plt.subplot(121) _img = model.denorm(x_real).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Original", fontsize=16) plt.subplot(122) _img = model.denorm(res_eigen).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Eigen style reconstruction", fontsize=16);
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Looks good enough. Face modification using new attributes Now let's try to modify the face starting from the eigen style vector.Let's say, I want to **add eyeglasses**. To do so I am to set the corresponding style vector component to 1.
eigen_style_vector_modified_1 = eigen_style_vector.clone() eigen_style_vector_modified_1[:, 3] = 1
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Now the style vector looks the following:
for proba, tag in zip(eigen_style_vector_modified_1.numpy()[0], model.selected_attrs): print(f"{tag:20s}: {proba:.3f}")
Arched_Eyebrows : 0.334 Bushy_Eyebrows : 0.207 Bags_Under_Eyes : 0.054 Eyeglasses : 1.000 Narrow_Eyes : 0.081
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Let's try to generate face with this modified style vector:
with torch.no_grad(): res_modified_1 = model.G(x_real, eigen_style_vector_modified_1) res_modified_1.shape
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Plot the faces:
plt.figure(figsize=(13.5, 8)) plt.subplot(131) _img = model.denorm(x_real).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Original", fontsize=16) plt.subplot(132) _img = model.denorm(res_eigen).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Eigen style reconstruction", fontsize=16); plt.subplot(133) _img = model.denorm(res_modified_1).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Eyeglasses", fontsize=16);
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Now let's try to **change two attributes simultaneously**:* Make the eyes narrow* Add archness to the eyebrows
eigen_style_vector_modified_2 = eigen_style_vector.clone() eigen_style_vector_modified_2[:, 0] = 1 eigen_style_vector_modified_2[:, 4] = 1
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Now the style vector looks the following:
for proba, tag in zip(eigen_style_vector_modified_2.numpy()[0], model.selected_attrs): print(f"{tag:20s}: {proba:.3f}")
Arched_Eyebrows : 1.000 Bushy_Eyebrows : 0.207 Bags_Under_Eyes : 0.054 Eyeglasses : 0.000 Narrow_Eyes : 1.000
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Let's try to generate face with this modified style vector:
with torch.no_grad(): res_modified_2 = model.G(x_real, eigen_style_vector_modified_2) res_modified_2.shape
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
Plot the faces:
plt.figure(figsize=(18, 8)) plt.subplot(141) _img = model.denorm(x_real).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Original", fontsize=16) plt.subplot(142) _img = model.denorm(res_eigen).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Eigen style reconstruction", fontsize=16); plt.subplot(143) _img = model.denorm(res_modified_1).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Eyeglasses", fontsize=16); plt.subplot(144) _img = model.denorm(res_modified_2).numpy()[0].transpose((1, 2, 0)) plt.imshow(_img) plt.axis("off") plt.title("Arched eyebrows + Narrow", fontsize=16);
_____no_output_____
MIT
notebooks/11_InferenceEyes.ipynb
vladimir-chernykh/facestyle-gan
This example uses the [Universal Bank](https://www.kaggle.com/sriharipramod/bank-loan-classification) data set and some example code of running classification trees from chapter 9 of [Data Mining for Business Analytics](https://www.dataminingbook.com/book/python-edition)> The data include customer demographic information (age, income, etc.), the customer's relationship with the bank (mortgage, securities account, etc.), and the customer response to the last personal loan campaign (Personal Loan). Among these 5000 customers, only 480 (= 9.6%) accepted the personal loan that was offered to them in the earlier campaign[Source](https://www.kaggle.com/itsmesunil/campaign-for-selling-personal-loans)1. Train a decision tree classifier, print the tree and evaluate its accuracy.2. Prune the tree by changing its hyper parameters, evaluate the accuracy of the new tree.3. Using [grid search](https://scikit-learn.org/stable/modules/grid_search.html), perform a systematic tuning of the decision tree hyper parameters.
data = pd.read_csv('data/UniversalBank.csv') data.head()
_____no_output_____
MIT
43-workout-solution_decision_trees.ipynb
hanisaf/advanced-data-management-and-analytics
Courtesy - Statistics.com Data Description:ID Customer IDAge Customer's age in completed yearsExperience years of professional experienceIncome Annual income of the customer ($000)ZIPCode Home Address ZIP code.Family Family size of the customerCCAvg Avg. spending on credit cards per month ($000)Education Education Level. 1: Undergrad; 2: Graduate; 3: Advanced/ProfessionalMortgage Value of house mortgage if any. ($000)Personal Loan Did this customer accept the personal loan offered in the last campaign?Securities Account Does the customer have a securities account with the bank?CD Account Does the customer have a certificate of deposit (CD) account with the bank?Online Does the customer use internet banking facilities?CreditCard Does the customer use a credit card issued by UniversalBank?
bank_df = data.drop(columns=['ID', 'ZIP Code']) X = bank_df.drop(columns=['Personal Loan']) y = bank_df['Personal Loan'] train_X, valid_X, train_y, valid_y = train_test_split(X, y, test_size=0.4, random_state=1) dtree = DecisionTreeClassifier() dtree.fit(train_X, train_y) print(export_text(dtree, feature_names=list(X.columns))) print(confusion_matrix(train_y, dtree.predict(train_X))) print(confusion_matrix(valid_y, dtree.predict(valid_X))) accuracy_score(train_y, dtree.predict(train_X)), accuracy_score(valid_y, dtree.predict(valid_X)) dtree = DecisionTreeClassifier(max_depth=30, min_samples_split=20, min_impurity_decrease=0.01) dtree.fit(train_X, train_y) print(export_text(dtree, feature_names=list(X.columns))) print(confusion_matrix(train_y, dtree.predict(train_X))) print(confusion_matrix(valid_y, dtree.predict(valid_X))) accuracy_score(train_y, dtree.predict(train_X)), accuracy_score(valid_y, dtree.predict(valid_X)) # Start with an initial guess for parameters param_grid = { 'max_depth': [10, 20, 30, 40], 'min_samples_split': [20, 40, 60, 80, 100], 'min_impurity_decrease': [0, 0.0005, 0.001, 0.005, 0.01], } gridSearch = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=5, n_jobs=-1) gridSearch.fit(train_X, train_y) print('Score: ', gridSearch.best_score_) print('Parameters: ', gridSearch.best_params_) dtree = gridSearch.best_estimator_ print(confusion_matrix(train_y, dtree.predict(train_X))) print(confusion_matrix(valid_y, dtree.predict(valid_X))) accuracy_score(train_y, dtree.predict(train_X)), accuracy_score(valid_y, dtree.predict(valid_X)) print(export_text(dtree, feature_names=list(X.columns)))
|--- Income <= 110.50 | |--- CCAvg <= 2.95 | | |--- class: 0 | |--- CCAvg > 2.95 | | |--- CD Account <= 0.50 | | | |--- Income <= 92.50 | | | | |--- class: 0 | | | |--- Income > 92.50 | | | | |--- Education <= 1.50 | | | | | |--- class: 0 | | | | |--- Education > 1.50 | | | | | |--- class: 1 | | |--- CD Account > 0.50 | | | |--- class: 1 |--- Income > 110.50 | |--- Education <= 1.50 | | |--- Family <= 2.50 | | | |--- class: 0 | | |--- Family > 2.50 | | | |--- class: 1 | |--- Education > 1.50 | | |--- Income <= 116.50 | | | |--- CCAvg <= 3.50 | | | | |--- class: 0 | | | |--- CCAvg > 3.50 | | | | |--- class: 1 | | |--- Income > 116.50 | | | |--- class: 1
MIT
43-workout-solution_decision_trees.ipynb
hanisaf/advanced-data-management-and-analytics
Data Set-up and Cleaning
# Standard Library Imports import pandas as pd import numpy as np
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
For this section, I will be concatenating all the data sets into one large dataset. Load the datasets
inpatient = pd.read_csv('./data/Train_Inpatientdata-1542865627584.csv') outpatient = pd.read_csv('./data/Train_Outpatientdata-1542865627584.csv') beneficiary = pd.read_csv('./data/Train_Beneficiarydata-1542865627584.csv') fraud = pd.read_csv('./data/Train-1542865627584.csv') # Increase the max display options of the columns and rows pd.set_option('display.max_columns', 100)
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
Inspect the first 5 rows of the datasets
# Inspect the first 5 rows of the inpatient claims inpatient.head() # Inspect the first 5 rows of the outpatient claims outpatient.head() # Inspect the first 5 rows of the beneficiary dataset beneficiary.head() # Inspect the first 5 rows of the fraud column fraud.head()
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
Check the number of rows and columns for each dataset
inpatient.shape outpatient.shape beneficiary.shape fraud.shape
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
Some columns in the inpatient dataset are not in the outpatient dataset or in the fraud (target) dataset and vice versa. In order to make sense of the data I would have to merge them together. Combine the Inpatient, Outpatient, beneficiary and fraud datasets
# Map the inpatient and outpatient columns, 1 for outpatient, 0 for inpatient inpatient["IsOutpatient"] = 0 outpatient["IsOutpatient"] = 1 # Merging the datasets together patient_df = pd.concat([inpatient, outpatient],axis = 0) patient_df = patient_df.merge(beneficiary, how = 'left', on = 'BeneID').merge(fraud, how = 'left', on = 'Provider') print("The shape of the dataset after merging is:", patient_df.shape) # Inspect the final dataset after merging patient_df.head()
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
After merging the dataset, we now have a dataframe with the fraud target column.
patient_df.describe() patient_df.dtypes # Convert columns with Date attributes to Datetime datatype : "ClaimStartDt", "ClaimEndDt", "AdmissionDt", "DischargeDt", "DOB", "DOD" patient_df[["ClaimStartDt", "ClaimEndDt", "AdmissionDt", "DischargeDt", "DOB", "DOD"]] = patient_df[["ClaimStartDt", "ClaimEndDt", "AdmissionDt", "DischargeDt", "DOB", "DOD"]].apply(pd.to_datetime, format = '%Y-%m-%d', errors = 'coerce') # Convert the Claims Procedure Code columns to object just as the Claims diagnoses code patient_df.loc[:, patient_df.columns.str.contains('ClmProcedureCode')] = patient_df.loc[:, patient_df.columns.str.contains('ClmProcedureCode')].astype(object) # Convert Race, County and State to objects patient_df[['Race', 'State', 'County' ]] = patient_df[['Race', 'State', 'County']].astype(object) # Investigate the RenalDiseasIndicator patient_df['RenalDiseaseIndicator'].value_counts() # Replace 'Y' with 1 in RenalDiseaseIndicator patient_df['RenalDiseaseIndicator'] = patient_df['RenalDiseaseIndicator'].replace({'Y': 1}) # Check to see if replacement worked patient_df['RenalDiseaseIndicator'].value_counts()
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
Change other binary variables to 0 and 1
# Change the Gender column and any column having 'ChronicCond' to binary variables to 0 and 1 chronic = patient_df.columns[patient_df.columns.str.contains("ChronicCond")].tolist() patient_df[chronic] = patient_df[chronic].apply(lambda x: np.where(x == 2,0,1)) patient_df['Gender'] = patient_df['Gender'].apply(lambda x: np.where(x == 2,0,1)) # Check to see if it changed patient_df['Gender'].value_counts() # Checking the change patient_df['ChronicCond_Alzheimer'].value_counts() # Check the data types again patient_df.dtypes # Save the data as 'patients' patient_df.to_csv('./data/patients.csv', index=False) patient_df.to_pickle('./data/patients.pkl')
_____no_output_____
CC0-1.0
1_Data_Cleaning.ipynb
oaagboro/Healthcare_Insurance_Fraud
Understanding the dataIn this first part, we load the data and perform some initial exploration on it. The main goal of this step is to acquire some basic knowledge about the data, how the various features are distributed, if there are missing values in it and so on.
### imports import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np %matplotlib inline # load hourly data hourly_data = pd.read_csv('../data/hour.csv')
_____no_output_____
MIT
Chapter01/Exercise1.03/Exercise1.03.ipynb
fenago/Applied_Data_Analytics
Check data format, number of missing values in the data and general statistics:
# print some generic statistics about the data print(f"Shape of data: {hourly_data.shape}") print(f"Number of missing values in the data: {hourly_data.isnull().sum().sum()}") # get statistics on the numerical columns hourly_data.describe().T # create a copy of the original data preprocessed_data = hourly_data.copy() # tranform seasons seasons_mapping = {1: 'winter', 2: 'spring', 3: 'summer', 4: 'fall'} preprocessed_data['season'] = preprocessed_data['season'].apply(lambda x: seasons_mapping[x]) # transform yr yr_mapping = {0: 2011, 1: 2012} preprocessed_data['yr'] = preprocessed_data['yr'].apply(lambda x: yr_mapping[x]) # transform weekday weekday_mapping = {0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday'} preprocessed_data['weekday'] = preprocessed_data['weekday'].apply(lambda x: weekday_mapping[x]) # transform weathersit weather_mapping = {1: 'clear', 2: 'cloudy', 3: 'light_rain_snow', 4: 'heavy_rain_snow'} preprocessed_data['weathersit'] = preprocessed_data['weathersit'].apply(lambda x: weather_mapping[x]) # transorm hum and windspeed preprocessed_data['hum'] = preprocessed_data['hum']*100 preprocessed_data['windspeed'] = preprocessed_data['windspeed']*67 # visualize preprocessed columns cols = ['season', 'yr', 'weekday', 'weathersit', 'hum', 'windspeed'] preprocessed_data[cols].sample(10, random_state=123)
_____no_output_____
MIT
Chapter01/Exercise1.03/Exercise1.03.ipynb
fenago/Applied_Data_Analytics
Registered vs casual use analysis
# assert that total numer of rides is equal to the sum of registered and casual ones assert (preprocessed_data.casual + preprocessed_data.registered == preprocessed_data.cnt).all(), \ 'Sum of casual and registered rides not equal to total number of rides' # plot distributions of registered vs casual rides sns.distplot(preprocessed_data['registered'], label='registered') sns.distplot(preprocessed_data['casual'], label='casual') plt.legend() plt.xlabel('rides') plt.ylabel("frequency") plt.title("Rides distributions") plt.savefig('figs/rides_distributions.png', format='png') # plot evolution of rides over time plot_data = preprocessed_data[['registered', 'casual', 'dteday']] ax = plot_data.groupby('dteday').sum().plot(figsize=(10,6)) ax.set_xlabel("time"); ax.set_ylabel("number of rides per day"); plt.savefig('figs/rides_daily.png', format='png') # create new dataframe with necessary for plotting columns, and # obtain number of rides per day, by grouping over each day plot_data = preprocessed_data[['registered', 'casual', 'dteday']] plot_data = plot_data.groupby('dteday').sum() # define window for computing the rolling mean and standard deviation window = 7 rolling_means = plot_data.rolling(window).mean() rolling_deviations = plot_data.rolling(window).std() # create a plot of the series, where we first plot the series of rolling means, # then we color the zone between the series of rolling means # +- 2 rolling standard deviations ax = rolling_means.plot(figsize=(10,6)) ax.fill_between(rolling_means.index, \ rolling_means['registered'] + 2*rolling_deviations['registered'], \ rolling_means['registered'] - 2*rolling_deviations['registered'], \ alpha = 0.2) ax.fill_between(rolling_means.index, \ rolling_means['casual'] + 2*rolling_deviations['casual'], \ rolling_means['casual'] - 2*rolling_deviations['casual'], \ alpha = 0.2) ax.set_xlabel("time"); ax.set_ylabel("number of rides per day"); plt.savefig('figs/rides_aggregated.png', format='png') # select relevant columns plot_data = preprocessed_data[['hr', 'weekday', 'registered', 'casual']] # transform the data into a format, in number of entries are computed as count, # for each distinct hr, weekday and type (registered or casual) plot_data = plot_data.melt(id_vars=['hr', 'weekday'], var_name='type', value_name='count') # create FacetGrid object, in which a grid plot is produced. # As columns, we have the various days of the week, # as rows, the different types (registered and casual) grid = sns.FacetGrid(plot_data, row='weekday', col='type', height=2.5,\ aspect=2.5, row_order=['Monday', 'Tuesday', \ 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']) # populate the FacetGrid with the specific plots grid.map(sns.barplot, 'hr', 'count', alpha=0.5) grid.savefig('figs/weekday_hour_distributions.png', format='png') # select subset of the data plot_data = preprocessed_data[['hr', 'season', 'registered', 'casual']] # unpivot data from wide to long format plot_data = plot_data.melt(id_vars=['hr', 'season'], var_name='type', \ value_name='count') # define FacetGrid grid = sns.FacetGrid(plot_data, row='season', \ col='type', height=2.5, aspect=2.5, \ row_order=['winter', 'spring', 'summer', 'fall']) # apply plotting function to each element in the grid grid.map(sns.barplot, 'hr', 'count', alpha=0.5) # save figure grid.savefig('figs/exercise_1_02_a.png', format='png') plot_data = preprocessed_data[['weekday', 'season', 'registered', 'casual']] plot_data = plot_data.melt(id_vars=['weekday', 'season'], var_name='type', value_name='count') grid = sns.FacetGrid(plot_data, row='season', col='type', height=2.5, aspect=2.5, row_order=['winter', 'spring', 'summer', 'fall']) grid.map(sns.barplot, 'weekday', 'count', alpha=0.5, order=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']) # save figure grid.savefig('figs/exercise_1_02_b.png', format='png')
_____no_output_____
MIT
Chapter01/Exercise1.03/Exercise1.03.ipynb
fenago/Applied_Data_Analytics
Exercise 1.03: Estimating average registered rides
# compute population mean of registered rides population_mean = preprocessed_data.registered.mean() # get sample of the data (summer 2011) sample = preprocessed_data[(preprocessed_data.season == "summer") &\ (preprocessed_data.yr == 2011)].registered # perform t-test and compute p-value from scipy.stats import ttest_1samp test_result = ttest_1samp(sample, population_mean) print(f"Test statistic: {test_result[0]:.03f}, p-value: {test_result[1]:.03f}") # get sample as 5% of the full data import random random.seed(111) sample_unbiased = preprocessed_data.registered.sample(frac=0.05) test_result_unbiased = ttest_1samp(sample_unbiased, population_mean) print(f"Unbiased test statistic: {test_result_unbiased[0]:.03f}, p-value: {test_result_unbiased[1]:.03f}")
_____no_output_____
MIT
Chapter01/Exercise1.03/Exercise1.03.ipynb
fenago/Applied_Data_Analytics
Finetuning of the pretrained Japanese BERT modelFinetune the pretrained model to solve multi-class classification problems. This notebook requires the following objects:- trained sentencepiece model (model and vocab files)- pretraiend Japanese BERT modelDataset is livedoor ニγƒ₯ースコーパス in https://www.rondhuit.com/download.html. We make test:dev:train = 2:2:6 datasets. Results:- Full training data - BERT with SentencePiece ``` precision recall f1-score support dokujo-tsushin 0.98 0.94 0.96 178 it-life-hack 0.96 0.97 0.96 172 kaden-channel 0.99 0.98 0.99 176 livedoor-homme 0.98 0.88 0.93 95 movie-enter 0.96 0.99 0.98 158 peachy 0.94 0.98 0.96 174 smax 0.98 0.99 0.99 167 sports-watch 0.98 1.00 0.99 190 topic-news 0.99 0.98 0.98 163 micro avg 0.97 0.97 0.97 1473 macro avg 0.97 0.97 0.97 1473 weighted avg 0.97 0.97 0.97 1473 ``` - sklearn GradientBoostingClassifier with MeCab ``` precision recall f1-score support dokujo-tsushin 0.89 0.86 0.88 178 it-life-hack 0.91 0.90 0.91 172 kaden-channel 0.90 0.94 0.92 176 livedoor-homme 0.79 0.74 0.76 95 movie-enter 0.93 0.96 0.95 158 peachy 0.87 0.92 0.89 174 smax 0.99 1.00 1.00 167 sports-watch 0.93 0.98 0.96 190 topic-news 0.96 0.86 0.91 163 micro avg 0.92 0.92 0.92 1473 macro avg 0.91 0.91 0.91 1473 weighted avg 0.92 0.92 0.91 1473 ```- Small training data (1/5 of full training data) - BERT with SentencePiece ``` precision recall f1-score support dokujo-tsushin 0.97 0.87 0.92 178 it-life-hack 0.86 0.86 0.86 172 kaden-channel 0.95 0.94 0.95 176 livedoor-homme 0.82 0.82 0.82 95 movie-enter 0.97 0.99 0.98 158 peachy 0.89 0.95 0.92 174 smax 0.94 0.96 0.95 167 sports-watch 0.97 0.97 0.97 190 topic-news 0.94 0.94 0.94 163 micro avg 0.93 0.93 0.93 1473 macro avg 0.92 0.92 0.92 1473 weighted avg 0.93 0.93 0.93 1473 ``` - sklearn GradientBoostingClassifier with MeCab ``` precision recall f1-score support dokujo-tsushin 0.82 0.71 0.76 178 it-life-hack 0.86 0.88 0.87 172 kaden-channel 0.91 0.87 0.89 176 livedoor-homme 0.67 0.63 0.65 95 movie-enter 0.87 0.95 0.91 158 peachy 0.70 0.78 0.73 174 smax 1.00 1.00 1.00 167 sports-watch 0.87 0.95 0.91 190 topic-news 0.92 0.82 0.87 163 micro avg 0.85 0.85 0.85 1473 macro avg 0.85 0.84 0.84 1473 weighted avg 0.86 0.85 0.85 1473 ```
import configparser import glob import os import pandas as pd import subprocess import sys import tarfile from urllib.request import urlretrieve CURDIR = os.getcwd() CONFIGPATH = os.path.join(CURDIR, os.pardir, 'config.ini') config = configparser.ConfigParser() config.read(CONFIGPATH)
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Data preparingYou need execute the following cells just once.
FILEURL = config['FINETUNING-DATA']['FILEURL'] FILEPATH = config['FINETUNING-DATA']['FILEPATH'] EXTRACTDIR = config['FINETUNING-DATA']['TEXTDIR']
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Download and unzip data.
%%time urlretrieve(FILEURL, FILEPATH) mode = "r:gz" tar = tarfile.open(FILEPATH, mode) tar.extractall(EXTRACTDIR) tar.close()
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Data preprocessing.
def extract_txt(filename): with open(filename) as text_file: # 0: URL, 1: timestamp text = text_file.readlines()[2:] text = [sentence.strip() for sentence in text] text = list(filter(lambda line: line != '', text)) return ''.join(text) categories = [ name for name in os.listdir( os.path.join(EXTRACTDIR, "text") ) if os.path.isdir( os.path.join(EXTRACTDIR, "text", name) ) ] categories = sorted(categories) categories table = str.maketrans({ '\n': '', '\t': 'γ€€', '\r': '', }) %%time all_text = [] all_label = [] for cat in categories: files = glob.glob(os.path.join(EXTRACTDIR, "text", cat, "{}*.txt".format(cat))) files = sorted(files) body = [ extract_txt(elem).translate(table) for elem in files ] label = [cat] * len(body) all_text.extend(body) all_label.extend(label) df = pd.DataFrame({'text' : all_text, 'label' : all_label}) df.head() df = df.sample(frac=1, random_state=23).reset_index(drop=True) df.head()
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Save data as tsv files. test:dev:train = 2:2:6. To check the usability of finetuning, we also prepare sampled training data (1/5 of full training data).
df[:len(df) // 5].to_csv( os.path.join(EXTRACTDIR, "test.tsv"), sep='\t', index=False) df[len(df) // 5:len(df)*2 // 5].to_csv( os.path.join(EXTRACTDIR, "dev.tsv"), sep='\t', index=False) df[len(df)*2 // 5:].to_csv( os.path.join(EXTRACTDIR, "train.tsv"), sep='\t', index=False) ### 1/5 of full training data. # df[:len(df) // 5].to_csv( os.path.join(EXTRACTDIR, "test.tsv"), sep='\t', index=False) # df[len(df) // 5:len(df)*2 // 5].to_csv( os.path.join(EXTRACTDIR, "dev.tsv"), sep='\t', index=False) # df[len(df)*2 // 5:].sample(frac=0.2, random_state=23).to_csv( os.path.join(EXTRACTDIR, "train.tsv"), sep='\t', index=False)
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Finetune pre-trained modelIt will take a lot of hours to execute the following cells on CPU environment. You can also use colab to recieve the power of TPU. You need to uplode the created data onto your GCS bucket.[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1zZH2GWe0U-7GjJ2w2duodFfEUptvHjcx)
PRETRAINED_MODEL_PATH = '../model/model.ckpt-1400000' FINETUNE_OUTPUT_DIR = '../model/livedoor_output' %%time # It will take many hours on CPU environment. !python3 ../src/run_classifier.py \ --task_name=livedoor \ --do_train=true \ --do_eval=true \ --data_dir=../data/livedoor \ --model_file=../model/wiki-ja.model \ --vocab_file=../model/wiki-ja.vocab \ --init_checkpoint={PRETRAINED_MODEL_PATH} \ --max_seq_length=512 \ --train_batch_size=4 \ --learning_rate=2e-5 \ --num_train_epochs=10 \ --output_dir={FINETUNE_OUTPUT_DIR}
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Predict using the finetuned modelLet's predict test data using the finetuned model.
import sys sys.path.append("../src") import tokenization_sentencepiece as tokenization from run_classifier import LivedoorProcessor from run_classifier import model_fn_builder from run_classifier import file_based_input_fn_builder from run_classifier import file_based_convert_examples_to_features from utils import str_to_value sys.path.append("../bert") import modeling import optimization import tensorflow as tf import configparser import json import glob import os import pandas as pd import tempfile bert_config_file = tempfile.NamedTemporaryFile(mode='w+t', encoding='utf-8', suffix='.json') bert_config_file.write(json.dumps({k:str_to_value(v) for k,v in config['BERT-CONFIG'].items()})) bert_config_file.seek(0) bert_config = modeling.BertConfig.from_json_file(bert_config_file.name) output_ckpts = glob.glob("{}/model.ckpt*data*".format(FINETUNE_OUTPUT_DIR)) latest_ckpt = sorted(output_ckpts)[-1] FINETUNED_MODEL_PATH = latest_ckpt.split('.data-00000-of-00001')[0] class FLAGS(object): '''Parameters.''' def __init__(self): self.model_file = "../model/wiki-ja.model" self.vocab_file = "../model/wiki-ja.vocab" self.do_lower_case = True self.use_tpu = False self.output_dir = "/dummy" self.data_dir = "../data/livedoor" self.max_seq_length = 512 self.init_checkpoint = FINETUNED_MODEL_PATH self.predict_batch_size = 4 # The following parameters are not used in predictions. # Just use to create RunConfig. self.master = None self.save_checkpoints_steps = 1 self.iterations_per_loop = 1 self.num_tpu_cores = 1 self.learning_rate = 0 self.num_warmup_steps = 0 self.num_train_steps = 0 self.train_batch_size = 0 self.eval_batch_size = 0 FLAGS = FLAGS() processor = LivedoorProcessor() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( model_file=FLAGS.model_file, vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=FLAGS.num_train_steps, num_warmup_steps=FLAGS.num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) predict_examples = processor.get_test_examples(FLAGS.data_dir) predict_file = tempfile.NamedTemporaryFile(mode='w+t', encoding='utf-8', suffix='.tf_record') file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file.name) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file.name, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) %%time # It will take a few hours on CPU environment. result = list(result) result[:2]
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Read test data set and add prediction results.
import pandas as pd test_df = pd.read_csv("../data/livedoor/test.tsv", sep='\t') test_df['predict'] = [ label_list[elem['probabilities'].argmax()] for elem in result ] test_df.head() sum( test_df['label'] == test_df['predict'] ) / len(test_df)
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
A littel more detailed check using `sklearn.metrics`.
!pip install scikit-learn from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix print(classification_report(test_df['label'], test_df['predict'])) print(confusion_matrix(test_df['label'], test_df['predict']))
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Simple baseline model.
import pandas as pd from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix train_df = pd.read_csv("../data/livedoor/train.tsv", sep='\t') dev_df = pd.read_csv("../data/livedoor/dev.tsv", sep='\t') test_df = pd.read_csv("../data/livedoor/test.tsv", sep='\t') !apt-get install -q -y mecab libmecab-dev mecab-ipadic mecab-ipadic-utf8 !pip install mecab-python3==0.7 from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.ensemble import GradientBoostingClassifier import MeCab m = MeCab.Tagger("-Owakati") train_dev_df = pd.concat([train_df, dev_df]) train_dev_xs = train_dev_df['text'].apply(lambda x: m.parse(x)) train_dev_ys = train_dev_df['label'] test_xs = test_df['text'].apply(lambda x: m.parse(x)) test_ys = test_df['label'] vectorizer = TfidfVectorizer(max_features=750) train_dev_xs_ = vectorizer.fit_transform(train_dev_xs) test_xs_ = vectorizer.transform(test_xs)
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
The following set up is not exactly identical to that of BERT because inside Classifier it uses `train_test_split` with shuffle. In addition, parameters are not well tuned, however, we think it's enough to check the power of BERT.
%%time model = GradientBoostingClassifier(n_estimators=200, validation_fraction=len(train_df)/len(dev_df), n_iter_no_change=5, tol=0.01, random_state=23) ### 1/5 of full training data. # model = GradientBoostingClassifier(n_estimators=200, # validation_fraction=len(dev_df)/len(train_df), # n_iter_no_change=5, # tol=0.01, # random_state=23) model.fit(train_dev_xs_, train_dev_ys) print(classification_report(test_ys, model.predict(test_xs_))) print(confusion_matrix(test_ys, model.predict(test_xs_)))
_____no_output_____
Apache-2.0
notebook/finetune-to-livedoor-corpus.ipynb
minhpqn/bert-japanese
Copyright 2019 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Mixed precision View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewMixed precision is the use of both 16-bit and 32-bit floating-point types in a model during training to make it run faster and use less memory. By keeping certain parts of the model in the 32-bit types for numeric stability, the model will have a lower step time and train equally as well in terms of the evaluation metrics such as accuracy. This guide describes how to use the experimental Keras mixed precision API to speed up your models. Using this API can improve performance by more than 3 times on modern GPUs and 60% on TPUs. Note: The Keras mixed precision API is currently experimental and may change. Today, most models use the float32 dtype, which takes 32 bits of memory. However, there are two lower-precision dtypes, float16 and bfloat16, each which take 16 bits of memory instead. Modern accelerators can run operations faster in the 16-bit dtypes, as they have specialized hardware to run 16-bit computations and 16-bit dtypes can be read from memory faster.NVIDIA GPUs can run operations in float16 faster than in float32, and TPUs can run operations in bfloat16 faster than float32. Therefore, these lower-precision dtypes should be used whenever possible on those devices. However, variables and a few computations should still be in float32 for numeric reasons so that the model trains to the same quality. The Keras mixed precision API allows you to use a mix of either float16 or bfloat16 with float32, to get the performance benefits from float16/bfloat16 and the numeric stability benefits from float32.Note: In this guide, the term "numeric stability" refers to how a model's quality is affected by the use of a lower-precision dtype instead of a higher precision dtype. We say an operation is "numerically unstable" in float16 or bfloat16 if running it in one of those dtypes causes the model to have worse evaluation accuracy or other metrics compared to running the operation in float32. Setup The Keras mixed precision API is available in TensorFlow 2.1.
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.mixed_precision import experimental as mixed_precision
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Supported hardwareWhile mixed precision will run on most hardware, it will only speed up models on recent NVIDIA GPUs and Cloud TPUs. NVIDIA GPUs support using a mix of float16 and float32, while TPUs support a mix of bfloat16 and float32.Among NVIDIA GPUs, those with compute capability 7.0 or higher will see the greatest performance benefit from mixed precision because they have special hardware units, called Tensor Cores, to accelerate float16 matrix multiplications and convolutions. Older GPUs offer no math performance benefit for using mixed precision, however memory and bandwidth savings can enable some speedups. You can look up the compute capability for your GPU at NVIDIA's [CUDA GPU web page](https://developer.nvidia.com/cuda-gpus). Examples of GPUs that will benefit most from mixed precision include RTX GPUs, the Titan V, and the V100. Note: If running this guide in Google Colab, the GPU runtime typically has a P100 connected. The P100 has compute capability 6.0 and is not expected to show a significant speedup.You can check your GPU type with the following. The command only exists if theNVIDIA drivers are installed, so the following will raise an error otherwise.
!nvidia-smi -L
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
All Cloud TPUs support bfloat16.Even on CPUs and older GPUs, where no speedup is expected, mixed precision APIs can still be used for unit testing, debugging, or just to try out the API. Setting the dtype policy To use mixed precision in Keras, you need to create a `tf.keras.mixed_precision.experimental.Policy`, typically referred to as a *dtype policy*. Dtype policies specify the dtypes layers will run in. In this guide, you will construct a policy from the string `'mixed_float16'` and set it as the global policy. This will will cause subsequently created layers to use mixed precision with a mix of float16 and float32.
policy = mixed_precision.Policy('mixed_float16') mixed_precision.set_policy(policy)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
The policy specifies two important aspects of a layer: the dtype the layer's computations are done in, and the dtype of a layer's variables. Above, you created a `mixed_float16` policy (i.e., a `mixed_precision.Policy` created by passing the string `'mixed_float16'` to its constructor). With this policy, layers use float16 computations and float32 variables. Computations are done in float16 for performance, but variables must be kept in float32 for numeric stability. You can directly query these properties of the policy.
print('Compute dtype: %s' % policy.compute_dtype) print('Variable dtype: %s' % policy.variable_dtype)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
As mentioned before, the `mixed_float16` policy will most significantly improve performance on NVIDIA GPUs with compute capability of at least 7.0. The policy will run on other GPUs and CPUs but may not improve performance. For TPUs, the `mixed_bfloat16` policy should be used instead. Building the model Next, let's start building a simple model. Very small toy models typically do not benefit from mixed precision, because overhead from the TensorFlow runtime typically dominates the execution time, making any performance improvement on the GPU negligible. Therefore, let's build two large `Dense` layers with 4096 units each if a GPU is used.
inputs = keras.Input(shape=(784,), name='digits') if tf.config.list_physical_devices('GPU'): print('The model will run with 4096 units on a GPU') num_units = 4096 else: # Use fewer units on CPUs so the model finishes in a reasonable amount of time print('The model will run with 64 units on a CPU') num_units = 64 dense1 = layers.Dense(num_units, activation='relu', name='dense_1') x = dense1(inputs) dense2 = layers.Dense(num_units, activation='relu', name='dense_2') x = dense2(x)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Each layer has a policy and uses the global policy by default. Each of the `Dense` layers therefore have the `mixed_float16` policy because you set the global policy to `mixed_float16` previously. This will cause the dense layers to do float16 computations and have float32 variables. They cast their inputs to float16 in order to do float16 computations, which causes their outputs to be float16 as a result. Their variables are float32 and will be cast to float16 when the layers are called to avoid errors from dtype mismatches.
print('x.dtype: %s' % x.dtype.name) # 'kernel' is dense1's variable print('dense1.kernel.dtype: %s' % dense1.kernel.dtype.name)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Next, create the output predictions. Normally, you can create the output predictions as follows, but this is not always numerically stable with float16.
# INCORRECT: softmax and model output will be float16, when it should be float32 outputs = layers.Dense(10, activation='softmax', name='predictions')(x) print('Outputs dtype: %s' % outputs.dtype.name)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
A softmax activation at the end of the model should be float32. Because the dtype policy is `mixed_float16`, the softmax activation would normally have a float16 compute dtype and output a float16 tensors.This can be fixed by separating the Dense and softmax layers, and by passing `dtype='float32'` to the softmax layer
# CORRECT: softmax and model output are float32 x = layers.Dense(10, name='dense_logits')(x) outputs = layers.Activation('softmax', dtype='float32', name='predictions')(x) print('Outputs dtype: %s' % outputs.dtype.name)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Passing `dtype='float32'` to the softmax layer constructor overrides the layer's dtype policy to be the `float32` policy, which does computations and keeps variables in float32. Equivalently, we could have instead passed `dtype=mixed_precision.Policy('float32')`; layers always convert the dtype argument to a policy. Because the `Activation` layer has no variables, the policy's variable dtype is ignored, but the policy's compute dtype of float32 causes softmax and the model output to be float32. Adding a float16 softmax in the middle of a model is fine, but a softmax at the end of the model should be in float32. The reason is that if the intermediate tensor flowing from the softmax to the loss is float16 or bfloat16, numeric issues may occur.You can override the dtype of any layer to be float32 by passing `dtype='float32'` if you think it will not be numerically stable with float16 computations. But typically, this is only necessary on the last layer of the model, as most layers have sufficient precision with `mixed_float16` and `mixed_bfloat16`.Even if the model does not end in a softmax, the outputs should still be float32. While unnecessary for this specific model, the model outputs can be cast to float32 with the following:
# The linear activation is an identity function. So this simply casts 'outputs' # to float32. In this particular case, 'outputs' is already float32 so this is a # no-op. outputs = layers.Activation('linear', dtype='float32')(outputs)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Next, finish and compile the model, and generate input data.
model = keras.Model(inputs=inputs, outputs=outputs) model.compile(loss='sparse_categorical_crossentropy', optimizer=keras.optimizers.RMSprop(), metrics=['accuracy']) (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(60000, 784).astype('float32') / 255 x_test = x_test.reshape(10000, 784).astype('float32') / 255
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
This example cast the input data from int8 to float32. We don't cast to float16 since the division by 255 is on the CPU, which runs float16 operations slower than float32 operations. In this case, the performance difference in negligible, but in general you should run input processing math in float32 if it runs on the CPU. The first layer of the model will cast the inputs to float16, as each layer casts floating-point inputs to its compute dtype.The initial weights of the model are retrieved. This will allow training from scratch again by loading the weights.
initial_weights = model.get_weights()
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Training the model with Model.fitNext, train the model.
history = model.fit(x_train, y_train, batch_size=8192, epochs=5, validation_split=0.2) test_scores = model.evaluate(x_test, y_test, verbose=2) print('Test loss:', test_scores[0]) print('Test accuracy:', test_scores[1])
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Notice the model prints the time per sample in the logs: for example, "4us/sample". The first epoch may be slower as TensorFlow spends some time optimizing the model, but afterwards the time per sample should stabilize. If you are running this guide in Colab, you can compare the performance of mixed precision with float32. To do so, change the policy from `mixed_float16` to `float32` in the "Setting the dtype policy" section, then rerun all the cells up to this point. On GPUs with at least compute capability 7.0, you should see the time per sample significantly increase, indicating mixed precision sped up the model. For example, with a Titan V GPU, the per-sample time increases from 4us to 12us. Make sure to change the policy back to `mixed_float16` and rerun the cells before continuing with the guide.For many real-world models, mixed precision also allows you to double the batch size without running out of memory, as float16 tensors take half the memory. This does not apply however to this toy model, as you can likely run the model in any dtype where each batch consists of the entire MNIST dataset of 60,000 images.If running mixed precision on a TPU, you will not see as much of a performance gain compared to running mixed precision on GPUs. This is because TPUs already do certain ops in bfloat16 under the hood even with the default dtype policy of `float32`. TPU hardware does not support float32 for certain ops which are numerically stable in bfloat16, such as matmul. For such ops the TPU backend will silently use bfloat16 internally instead. As a consequence, passing `dtype='float32'` to layers which use such ops may have no numerical effect, however it is unlikely running such layers with bfloat16 computations will be harmful. Loss scalingLoss scaling is a technique which `tf.keras.Model.fit` automatically performs with the `mixed_float16` policy to avoid numeric underflow. This section describes loss scaling and how to customize its behavior. Underflow and OverflowThe float16 data type has a narrow dynamic range compared to float32. This means values above $65504$ will overflow to infinity and values below $6.0 \times 10^{-8}$ will underflow to zero. float32 and bfloat16 have a much higher dynamic range so that overflow and underflow are not a problem.For example:
x = tf.constant(256, dtype='float16') (x ** 2).numpy() # Overflow x = tf.constant(1e-5, dtype='float16') (x ** 2).numpy() # Underflow
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
In practice, overflow with float16 rarely occurs. Additionally, underflow also rarely occurs during the forward pass. However, during the backward pass, gradients can underflow to zero. Loss scaling is a technique to prevent this underflow. Loss scaling backgroundThe basic concept of loss scaling is simple: simply multiply the loss by some large number, say $1024$. We call this number the *loss scale*. This will cause the gradients to scale by $1024$ as well, greatly reducing the chance of underflow. Once the final gradients are computed, divide them by $1024$ to bring them back to their correct values.The pseudocode for this process is:```loss_scale = 1024loss = model(inputs)loss *= loss_scale We assume `grads` are float32. We do not want to divide float16 gradientsgrads = compute_gradient(loss, model.trainable_variables)grads /= loss_scale```Choosing a loss scale can be tricky. If the loss scale is too low, gradients may still underflow to zero. If too high, the opposite the problem occurs: the gradients may overflow to infinity.To solve this, TensorFlow dynamically determines the loss scale so you do not have to choose one manually. If you use `tf.keras.Model.fit`, loss scaling is done for you so you do not have to do any extra work. This is explained further in the next section. Choosing the loss scaleEach dtype policy optionally has an associated `tf.mixed_precision.experimental.LossScale` object, which represents a fixed or dynamic loss scale. By default, the loss scale for the `mixed_float16` policy is a `tf.mixed_precision.experimental.DynamicLossScale`, which dynamically determines the loss scale value. Other policies do not have a loss scale by default, as it is only necessary when float16 is used. You can query the loss scale of the policy:
loss_scale = policy.loss_scale print('Loss scale: %s' % loss_scale)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
The loss scale prints a lot of internal state, but you can ignore it. The most important part is the `current_loss_scale` part, which shows the loss scale's current value. You can instead use a static loss scale by passing a number when constructing a dtype policy.
new_policy = mixed_precision.Policy('mixed_float16', loss_scale=1024) print(new_policy.loss_scale)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
The dtype policy constructor always converts the loss scale to a `LossScale` object. In this case, it's converted to a `tf.mixed_precision.experimental.FixedLossScale`, the only other `LossScale` subclass other than `DynamicLossScale`. Note: *Using anything other than a dynamic loss scale is not recommended*. Choosing a fixed loss scale can be difficult, as making it too low will cause the model to not train as well, and making it too high will cause Infs or NaNs to appear in the gradients. A dynamic loss scale is typically near the optimal loss scale, so you do not have to do any work. Currently, dynamic loss scales are a bit slower than fixed loss scales, but the performance will be improved in the future. Models, like layers, each have a dtype policy. If present, a model uses its policy's loss scale to apply loss scaling in the `tf.keras.Model.fit` method. This means if `Model.fit` is used, you do not have to worry about loss scaling at all: The `mixed_float16` policy will have a dynamic loss scale by default, and `Model.fit` will apply it.With custom training loops, the model will ignore the policy's loss scale, and you will have to apply it manually. This is explained in the next section. Training the model with a custom training loop So far, you trained a Keras model with mixed precision using `tf.keras.Model.fit`. Next, you will use mixed precision with a custom training loop. If you do not already know what a custom training loop is, please read [the Custom training guide](../tutorials/customization/custom_training_walkthrough.ipynb) first. Running a custom training loop with mixed precision requires two changes over running it in float32:1. Build the model with mixed precision (you already did this)2. Explicitly use loss scaling if `mixed_float16` is used. For step (2), you will use the `tf.keras.mixed_precision.experimental.LossScaleOptimizer` class, which wraps an optimizer and applies loss scaling. It takes two arguments: the optimizer and the loss scale. Construct one as follows to use a dynamic loss scale
optimizer = keras.optimizers.RMSprop() optimizer = mixed_precision.LossScaleOptimizer(optimizer, loss_scale='dynamic')
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Passing `'dynamic'` is equivalent to passing `tf.mixed_precision.experimental.DynamicLossScale()`. Next, define the loss object and the `tf.data.Dataset`s.
loss_object = tf.keras.losses.SparseCategoricalCrossentropy() train_dataset = (tf.data.Dataset.from_tensor_slices((x_train, y_train)) .shuffle(10000).batch(8192)) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(8192)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Next, define the training step function. Two new methods from the loss scale optimizer are used in order to scale the loss and unscale the gradients:* `get_scaled_loss(loss)`: Multiplies the loss by the loss scale* `get_unscaled_gradients(gradients)`: Takes in a list of scaled gradients as inputs, and divides each one by the loss scale to unscale themThese functions must be used in order to prevent underflow in the gradients. `LossScaleOptimizer.apply_gradients` will then apply gradients if none of them have Infs or NaNs. It will also update the loss scale, halving it if the gradients had Infs or NaNs and potentially increasing it otherwise.
@tf.function def train_step(x, y): with tf.GradientTape() as tape: predictions = model(x) loss = loss_object(y, predictions) scaled_loss = optimizer.get_scaled_loss(loss) scaled_gradients = tape.gradient(scaled_loss, model.trainable_variables) gradients = optimizer.get_unscaled_gradients(scaled_gradients) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) return loss
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
The `LossScaleOptimizer` will likely skip the first few steps at the start of training. The loss scale starts out high so that the optimal loss scale can quickly be determined. After a few steps, the loss scale will stabilize and very few steps will be skipped. This process happens automatically and does not affect training quality. Now define the test step.
@tf.function def test_step(x): return model(x, training=False)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Load the initial weights of the model, so you can retrain from scratch.
model.set_weights(initial_weights)
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Finally, run the custom training loop.
for epoch in range(5): epoch_loss_avg = tf.keras.metrics.Mean() test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy( name='test_accuracy') for x, y in train_dataset: loss = train_step(x, y) epoch_loss_avg(loss) for x, y in test_dataset: predictions = test_step(x) test_accuracy.update_state(y, predictions) print('Epoch {}: loss={}, test accuracy={}'.format(epoch, epoch_loss_avg.result(), test_accuracy.result()))
_____no_output_____
Apache-2.0
site/en/guide/mixed_precision.ipynb
DorianKodelja/docs
Tabular Datasets As we have already discovered, Elements are simple wrappers around your data that provide a semantically meaningful representation. HoloViews can work with a wide variety of data types, but many of them can be categorized as either: * **Tabular:** Tables of flat columns, or * **Gridded:** Array-like data on 2-dimensional or N-dimensional grids These two general data types are explained in detail in the [Tabular Data](../user_guide/07-Tabular_Datasets.ipynb) and [Gridded Data](../user_guide/08-Gridded_Datasets.ipynb) user guides, including all the many supported formats (including Python dictionaries of NumPy arrays, pandas ``DataFrames``, dask ``DataFrames``, and xarray ``DataArrays`` and ``Datasets``). In this Getting-Started guide we provide a quick overview and introduction to two of the most flexible and powerful formats: columnar **pandas** DataFrames (in this section), and gridded **xarray** Datasets (in the next section). TabularTabular data (also called columnar data) is one of the most common, general, and versatile data formats, corresponding to how data is laid out in a spreadsheet. There are many different ways to put data into a tabular format, but for interactive analysis having [**tidy data**](http://www.jeannicholashould.com/tidy-data-in-python.html) provides flexibility and simplicity. For tidy data, the **columns** of the table represent **variables** or **dimensions** and the **rows** represent **observations**. The best way to understand this format is to look at such a dataset:
import numpy as np import pandas as pd import holoviews as hv hv.extension('bokeh', 'matplotlib') diseases = pd.read_csv('../assets/diseases.csv.gz') diseases.head()
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
This particular dataset was the subject of an excellent piece of visual journalism in the [Wall Street Journal](http://graphics.wsj.com/infectious-diseases-and-vaccines/b02g20t20w15). The WSJ data details the incidence of various diseases over time, and was downloaded from the [University of Pittsburgh's Project Tycho](http://www.tycho.pitt.edu/). We can see we have 5 data columns, which each correspond either to independent variables that specify a particular measurement ('Year', 'Week', 'State'), or observed/dependent variables reporting what was then actually measured (the 'measles' or 'pertussis' incidence). Knowing the distinction between those two types of variables is crucial for doing visualizations, but unfortunately the tabular format does not declare this information. Plotting 'Week' against 'State' would not be meaningful, whereas 'measles' for each 'State' (averaging or summing across the other dimensions) would be fine, and there's no way to deduce those constraints from the tabular format. Accordingly, we will first make a HoloViews object called a ``Dataset`` that declares the independent variables (called key dimensions or **kdims** in HoloViews) and dependent variables (called value dimensions or **vdims**) that you want to work with:
vdims = [('measles', 'Measles Incidence'), ('pertussis', 'Pertussis Incidence')] ds = hv.Dataset(diseases, ['Year', 'State'], vdims)
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
Here we've used an optional tuple-based syntax **``(name,label)``** to specify a more meaningful description for the ``vdims``, while using the original short descriptions for the ``kdims``. We haven't yet specified what to do with the ``Week`` dimension, but we are only interested in yearly averages, so let's just tell HoloViews to average over all remaining dimensions:
ds = ds.aggregate(function=np.mean) ds
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
(We'll cover aggregations like ``np.mean`` in detail later, but here the important bit is simply that the ``Week`` dimension can now be ignored.)The ``repr`` shows us both the ``kdims`` (in square brackets) and the ``vdims`` (in parentheses) of the ``Dataset``. Because it can hold arbitrary combinations of dimensions, a ``Dataset`` is *not* immediately visualizable. There's no single clear mapping from these four dimensions onto a two-dimensional page, hence the textual representation shown above.To make this data visualizable, we'll need to provide a bit more metadata, by selecting one of the large library of Elements that can help answer the questions we want to ask about the data. Perhaps the most obvious representation of this dataset is as a ``Curve`` displaying the incidence for each year, for each state. We could pull out individual columns one by one from the original dataset, but now that we have declared information about the dimensions, the cleanest approach is to map the dimensions of our ``Dataset`` onto the dimensions of an Element using ``.to``:
%%opts Curve [width=600 height=250] {+framewise} (ds.to(hv.Curve, 'Year', 'measles') + ds.to(hv.Curve, 'Year', 'pertussis')).cols(1)
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
Here we specified two ``Curve`` elements showing measles and pertussis incidence respectively (the vdims), per year (the kdim), and laid them out in a vertical column. You'll notice that even though we specified only the short name for the value dimensions, the plot shows the longer names ("Measles Incidence", "Pertussis Incidence") that we declared on the ``Dataset``.You'll also notice that we automatically received a dropdown menu to select which ``State`` to view. Each ``Curve`` ignores unused value dimensions, because additional measurements don't affect each other, but HoloViews has to do *something* with every key dimension for every such plot. If the ``State`` (or any other key dimension) isn't somehow plotted or aggregated over, then HoloViews has to leave choosing a value for it to the user, hence the selection widget. Other options for what to do with extra dimensions or just extra data ranges are illustrated below. SelectingOne of the most common thing we might want to do is to select only a subset of the data. The ``select`` method makes this extremely easy, letting you select a single value, a list of values supplied as a list, or a range of values supplied as a tuple. Here we will use ``select`` to display the measles incidence in four states over one decade. After applying the selection, we use the ``.to`` method as shown earlier, now displaying the data as ``Bars`` indexed by 'Year' and 'State' key dimensions and displaying the 'Measles Incidence' value dimension:
%%opts Bars [width=800 height=400 tools=['hover'] group_index=1 legend_position='top_left'] states = ['New York', 'New Jersey', 'California', 'Texas'] ds.select(State=states, Year=(1980, 1990)).to(hv.Bars, ['Year', 'State'], 'measles').sort()
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
FacetingAbove we already saw what happens to key dimensions that we didn't explicitly assign to the Element using the ``.to`` method: they are grouped over, popping up a set of widgets so the user can select the values to show at any one time. However, using widgets is not always the most effective way to view the data, and a ``Dataset`` lets you specify other alternatives using the ``.overlay``, ``.grid`` and ``.layout`` methods. For instance, we can lay out each state separately using ``.grid``:
%%opts Curve [width=200] (color='indianred') grouped = ds.select(State=states, Year=(1930, 2005)).to(hv.Curve, 'Year', 'measles') grouped.grid('State')
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
Or we can take the same grouped object and ``.overlay`` the individual curves instead of laying them out in a grid:
%%opts Curve [width=600] (color=Cycle(values=['indianred', 'slateblue', 'lightseagreen', 'coral'])) grouped.overlay('State')
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
These faceting methods even compose together, meaning that if we had more key dimensions we could ``.overlay`` one dimension, ``.grid`` another and have a widget for any other remaining key dimensions. AggregatingInstead of selecting a subset of the data, another common operation supported by HoloViews is computing aggregates. When we first loaded this dataset, we aggregated over the 'Week' column to compute the mean incidence for every year, thereby reducing our data significantly. The ``aggregate`` method is therefore very useful to compute statistics from our data.A simple example using our dataset is to compute the mean and standard deviation of the Measles Incidence by ``'Year'``. We can express this simply by passing the key dimensions to aggregate over (in this case just the 'Year') along with a function and optional ``spreadfn`` to compute the statistics we want. The ``spread_fn`` will append the name of the function to the dimension name so we can reference the computed value separately. Once we have computed the aggregate, we can simply cast it to a ``Curve`` and ``ErrorBars``:
%%opts Curve [width=600] agg = ds.aggregate('Year', function=np.mean, spreadfn=np.std) (hv.Curve(agg) * hv.ErrorBars(agg,vdims=['measles', 'measles_std'])).redim.range(measles=(0, None))
_____no_output_____
BSD-3-Clause
examples/getting_started/3-Tabular_Datasets.ipynb
adsbxchange/holoviews
First steps with xmovie
import warnings import matplotlib.pyplot as plt import xarray as xr from shapely.errors import ShapelyDeprecationWarning from xmovie import Movie warnings.filterwarnings( action='ignore', category=ShapelyDeprecationWarning, # in cartopy ) warnings.filterwarnings( action="ignore", category=UserWarning, message=r"No `(vmin|vmax)` provided. Data limits are calculated from input. Depending on the input this can take long. Pass `\1` to avoid this step" ) %matplotlib inline
_____no_output_____
MIT
docs/examples/quickstart.ipynb
zmoon/xmovie
Basics
# Load test dataset ds = xr.tutorial.open_dataset('air_temperature').isel(time=slice(0, 150)) # Create movie object mov = Movie(ds.air)
_____no_output_____
MIT
docs/examples/quickstart.ipynb
zmoon/xmovie
Preview movie frames
# Preview 10th frame mov.preview(10) plt.savefig("movie_preview.png") ! rm -f frame*.png *.mp4 *.gif
rm: cannot remove 'frame*.png': No such file or directory rm: cannot remove '*.mp4': No such file or directory rm: cannot remove '*.gif': No such file or directory
MIT
docs/examples/quickstart.ipynb
zmoon/xmovie
Create movie files
mov.save('movie.mp4') # Use to save a high quality mp4 movie mov.save('movie_gif.gif') # Use to save a gif
Movie created at movie.mp4 Movie created at movie_mp4.mp4 GIF created at movie_gif.gif
MIT
docs/examples/quickstart.ipynb
zmoon/xmovie