markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
** Predict the Big Mountain resort `Adult Weekend` price and print it out.** This is our expected price to present to management. Based on our model given the characteristics of the resort in comparison to other ski resorts and their unique characteristics.
price=model4.predict(features) price
_____no_output_____
MIT
models/GuidedCapstone_final_documentationStep6HL.ipynb
reetibhagat/big_mountain_resort
** Print the Big Mountain resort actual `Adult Weekend` price.**
ac=df[df['Name'].str.contains('Big Mountain')] print ("The actual Big Mountain Resort adult weekend price is $%s " % ' '.join(map(str, ac.AdultWeekend)))
The actual Big Mountain Resort adult weekend price is $81.0
MIT
models/GuidedCapstone_final_documentationStep6HL.ipynb
reetibhagat/big_mountain_resort
** As part of reviewing the results it is an important step to generate figures to visualize the data story. We can use the clusters we added to our data frame to create scatter plots for visualizing the Adult Weekend values compared to other characteristics. Run the example below to get you started and build two or three more figures to include in your data story telling.**
plt.scatter(df['summit_elev'], df['vertical_drop'], c=df['clusters'], s=50, cmap='viridis', label ='clusters',edgecolors='white') plt.scatter(ac['summit_elev'], ac['vertical_drop'], c='white', s=200,edgecolors='black') sns.despine() plt.xlabel('Summit Elevation (feet)') plt.ylabel('Vertical Elevation Drop (feet)') #plt.title('summit_elev by vertical_drop by cluster') plt.savefig('figures/fig1.png',bbox_inches='tight') sns.regplot(x="AdultWeekend", y="SkiableTerrain_ac", data=df[(df['SkiableTerrain_ac']<25000)], color ="#440154FF",scatter_kws={"s": 25}) plt.scatter(x="AdultWeekend", y="SkiableTerrain_ac", data=ac, c='white',s=200,edgecolors='black') sns.despine() plt.xlabel('Lift Ticket Price ($)') plt.ylabel('Skiable Area (acres)') plt.savefig('figures/fig2.png',bbox_inches='tight') sns.regplot(x="AdultWeekend", y="daysOpenLastYear", data=df,color ="#21908CFF",scatter_kws={"s": 25}) sns.despine() plt.scatter(x="AdultWeekend", y="daysOpenLastYear", data=ac, c='white',s=200,edgecolors='black') plt.xlabel('Lift Ticket Price ($)') plt.ylabel('Days Open Last Year') plt.savefig('figures/fig3.png',bbox_inches='tight') sns.set(style="ticks") sns.jointplot(x=df['AdultWeekend'], y=df['daysOpenLastYear'], kind="hex", color="#FDE725FF") sns.despine() plt.xlabel('Lift Ticket Price ($)') plt.ylabel('Days Open Last Year') plt.savefig('figures/fig4.png',bbox_inches='tight') plt.scatter(x="AdultWeekend", y="averageSnowfall", data=df_1, c='blue',s=200,edgecolors='black') plt.xlabel('Lift Ticket Price ($)') plt.ylabel('Average Snowfall') plt.savefig('figures/fig3.png',bbox_inches='tight')
_____no_output_____
MIT
models/GuidedCapstone_final_documentationStep6HL.ipynb
reetibhagat/big_mountain_resort
Finalize Code Making sure our code is well organized and easy to follow is an important step. This is the time where you need to review the notebooks and Python scripts you've created and clean them up so they are easy to follow and succinct in nature. Addtionally, we will also save our final model as a callable object using Pickle for future use in a data pipeline. Pickle is a module that serializes (and de-serializes) Python objects so that they can become executable objects like functions. It's used extensively in production environments where machine learning models are deployed on an industrial scale!** Run the example code below to save out your callable model. Notice that we save it in the models folder we created in our previous guided capstone step.**
import pickle s = pickle.dumps(model4) from joblib import dump, load dump(model4, 'models/regression_model_adultweekend.joblib')
_____no_output_____
MIT
models/GuidedCapstone_final_documentationStep6HL.ipynb
reetibhagat/big_mountain_resort
Finalize Documentation For model documentation, we want to save the model performance metrics as well as the features included in the final model. You could also save the model perfomance metrics and coefficients fo the other models you tried in case you want to refer to them later. ** Create a dataframe containing the coefficients and the model performance metrics and save it out as a csv file, then upload it to your github repository.**
performance_metrics=pd.DataFrame(abs(model4.coef_), X.columns, columns=['Coefficient']) performance_metrics['Mean Absolute Error']= mean_absolute_error(y_test, ypred) performance_metrics['Root Mean Squared Error']=np.sqrt(mean_squared_error(y_test, ypred)) performance_metrics['r2-testscore']=model4.score(X_test,y_test) performance_metrics['r2-trainscore']=model4.score(X_train,y_train) performance_metrics.to_csv(r'/Users/ajesh_mahto/Desktop/capstone_project/data/performance_metrics_model4.csv')
_____no_output_____
MIT
models/GuidedCapstone_final_documentationStep6HL.ipynb
reetibhagat/big_mountain_resort
2d. Distributed training and monitoring In this notebook, we refactor to use the Experimenter class instead of hand-coding our ML pipeline. This allows us to carry out evaluation as part of our training loop instead of as a separate step. It also adds in failure-handling that is necessary for distributed training capabilities.We also use TensorBoard to monitor the training.
import google.datalab.ml as ml import tensorflow as tf from tensorflow.contrib import layers print tf.__version__ # print ml.sdk_location import datalab.bigquery as bq import tensorflow as tf import numpy as np import shutil
_____no_output_____
Apache-2.0
courses/machine_learning/tensorflow/d_experiment.ipynb
AmirQureshi/code-to-run-
Input Read data created in Lab1a, but this time make it more general, so that we are reading in batches. Instead of using Pandas, we will use add a filename queue to the TensorFlow graph.
CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] LABEL_COLUMN = 'fare_amount' DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']] def read_dataset(filename, num_epochs=None, batch_size=512, mode=tf.contrib.learn.ModeKeys.TRAIN): def _input_fn(): filename_queue = tf.train.string_input_producer( [filename], num_epochs=num_epochs, shuffle=True) reader = tf.TextLineReader() _, value = reader.read_up_to(filename_queue, num_records=batch_size) value_column = tf.expand_dims(value, -1) columns = tf.decode_csv(value_column, record_defaults=DEFAULTS) features = dict(zip(CSV_COLUMNS, columns)) label = features.pop(LABEL_COLUMN) return features, label return _input_fn def get_train(): return read_dataset('./taxi-train.csv', num_epochs=100, mode=tf.contrib.learn.ModeKeys.TRAIN) def get_valid(): return read_dataset('./taxi-valid.csv', num_epochs=1, mode=tf.contrib.learn.ModeKeys.EVAL) def get_test(): return read_dataset('./taxi-test.csv', num_epochs=1, mode=tf.contrib.learn.ModeKeys.EVAL)
_____no_output_____
Apache-2.0
courses/machine_learning/tensorflow/d_experiment.ipynb
AmirQureshi/code-to-run-
Create features out of input data For now, pass these through. (same as previous lab)
INPUT_COLUMNS = [ layers.real_valued_column('pickuplon'), layers.real_valued_column('pickuplat'), layers.real_valued_column('dropofflat'), layers.real_valued_column('dropofflon'), layers.real_valued_column('passengers'), ] feature_cols = INPUT_COLUMNS
_____no_output_____
Apache-2.0
courses/machine_learning/tensorflow/d_experiment.ipynb
AmirQureshi/code-to-run-
Experiment framework
import tensorflow.contrib.learn as tflearn from tensorflow.contrib.learn.python.learn import learn_runner import tensorflow.contrib.metrics as metrics def experiment_fn(output_dir): return tflearn.Experiment( tflearn.LinearRegressor(feature_columns=feature_cols, model_dir=output_dir), train_input_fn=get_train(), eval_input_fn=get_valid(), eval_metrics={ 'rmse': tflearn.MetricSpec( metric_fn=metrics.streaming_root_mean_squared_error ) } ) shutil.rmtree('taxi_trained', ignore_errors=True) # start fresh each time learn_runner.run(experiment_fn, 'taxi_trained')
_____no_output_____
Apache-2.0
courses/machine_learning/tensorflow/d_experiment.ipynb
AmirQureshi/code-to-run-
Monitoring with TensorBoard
from google.datalab.ml import TensorBoard TensorBoard().start('./taxi_trained') TensorBoard().list() # to stop TensorBoard TensorBoard().stop(23002) print 'stopped TensorBoard' TensorBoard().list()
_____no_output_____
Apache-2.0
courses/machine_learning/tensorflow/d_experiment.ipynb
AmirQureshi/code-to-run-
Actor and Critic Method パッケージの準備
%load_ext autoreload %autoreload 2 %matplotlib inline from google.colab import drive drive.mount('/content/drive') import sys import os HOME_PATH = '/content/drive/MyDrive/Colab Notebooks/baby-steps-of-rl-ja/exercise/day_3' sys.path.append(HOME_PATH) import numpy as np import gym from el_agent import ELAgent from frozen_lake_util import show_q_value
_____no_output_____
Apache-2.0
exercise/day_3/actor_and_critic_method.ipynb
masatoomori/baby-steps-of-rl-ja
Actor の定義
class Actor(ELAgent): def __init__(self, env): super().__init__(epsilon=-1) n_row = env.observation_space.n n_col = env.action_space.n self.actions = list(range(env.action_space.n)) self.Q = np.random.uniform(0, 1, n_row * n_col).reshape((n_row, n_col)) def softmax(self, x): return np.exp(x) / np.sum(np.exp(x), axis=0) def policy(self, s): a = np.random.choice(self.actions, 1, p=self.softmax(self.Q[s])) return a[0]
_____no_output_____
Apache-2.0
exercise/day_3/actor_and_critic_method.ipynb
masatoomori/baby-steps-of-rl-ja
Critic の定義
class Critic(): def __init__(self, env): n_state = env.observation_space.n self.V = np.zeros(n_state)
_____no_output_____
Apache-2.0
exercise/day_3/actor_and_critic_method.ipynb
masatoomori/baby-steps-of-rl-ja
Actor & Critic 学習プロセスの定義
class ActorCritic(): def __init__(self, actor_class, critic_class): self.actor_class = actor_class self.critic_class = critic_class def train(self, env, episode_count=1000, gamma=0.9, learning_rate=0.1, render=False, report_interval=50): actor = self.actor_class(env) critic = self.critic_class(env) actor.init_log() for e in range(episode_count): s = env.reset() is_done = False while not is_done: if render: env.render() a = actor.policy(s) state, reward, is_done, info = env.step(a) gain = reward + gamma * critic.V[state] estimated = critic.V[s] td = gain - estimated actor.Q[s][a] += learning_rate * td critic.V[s] += learning_rate * td s = state else: actor.log(reward) if e != 0 and e % report_interval == 0: actor.show_reward_log(episode=e) return actor, critic
_____no_output_____
Apache-2.0
exercise/day_3/actor_and_critic_method.ipynb
masatoomori/baby-steps-of-rl-ja
Agent を学習させる
def train(): trainer = ActorCritic(Actor, Critic) env = gym.make("FrozenLakeEasy-v0") actor, critic = trainer.train(env, episode_count=3000) show_q_value(actor.Q) actor.show_reward_log() agent = train()
At Episode 50 average reward is 0.02 (+/-0.14). At Episode 100 average reward is 0.0 (+/-0.0). At Episode 150 average reward is 0.0 (+/-0.0). At Episode 200 average reward is 0.06 (+/-0.237). At Episode 250 average reward is 0.04 (+/-0.196). At Episode 300 average reward is 0.02 (+/-0.14). At Episode 350 average reward is 0.0 (+/-0.0). At Episode 400 average reward is 0.02 (+/-0.14). At Episode 450 average reward is 0.02 (+/-0.14). At Episode 500 average reward is 0.0 (+/-0.0). At Episode 550 average reward is 0.06 (+/-0.237). At Episode 600 average reward is 0.08 (+/-0.271). At Episode 650 average reward is 0.04 (+/-0.196). At Episode 700 average reward is 0.06 (+/-0.237). At Episode 750 average reward is 0.04 (+/-0.196). At Episode 800 average reward is 0.1 (+/-0.3). At Episode 850 average reward is 0.08 (+/-0.271). At Episode 900 average reward is 0.14 (+/-0.347). At Episode 950 average reward is 0.12 (+/-0.325). At Episode 1000 average reward is 0.3 (+/-0.458). At Episode 1050 average reward is 0.44 (+/-0.496). At Episode 1100 average reward is 0.46 (+/-0.498). At Episode 1150 average reward is 0.72 (+/-0.449). At Episode 1200 average reward is 0.84 (+/-0.367). At Episode 1250 average reward is 0.84 (+/-0.367). At Episode 1300 average reward is 0.88 (+/-0.325). At Episode 1350 average reward is 0.88 (+/-0.325). At Episode 1400 average reward is 0.94 (+/-0.237). At Episode 1450 average reward is 0.9 (+/-0.3). At Episode 1500 average reward is 0.9 (+/-0.3). At Episode 1550 average reward is 0.94 (+/-0.237). At Episode 1600 average reward is 0.92 (+/-0.271). At Episode 1650 average reward is 0.98 (+/-0.14). At Episode 1700 average reward is 0.92 (+/-0.271). At Episode 1750 average reward is 0.96 (+/-0.196). At Episode 1800 average reward is 0.94 (+/-0.237). At Episode 1850 average reward is 0.98 (+/-0.14). At Episode 1900 average reward is 0.98 (+/-0.14). At Episode 1950 average reward is 0.98 (+/-0.14). At Episode 2000 average reward is 1.0 (+/-0.0). At Episode 2050 average reward is 0.98 (+/-0.14). At Episode 2100 average reward is 0.98 (+/-0.14). At Episode 2150 average reward is 0.96 (+/-0.196). At Episode 2200 average reward is 1.0 (+/-0.0). At Episode 2250 average reward is 1.0 (+/-0.0). At Episode 2300 average reward is 1.0 (+/-0.0). At Episode 2350 average reward is 0.98 (+/-0.14). At Episode 2400 average reward is 0.98 (+/-0.14). At Episode 2450 average reward is 0.98 (+/-0.14). At Episode 2500 average reward is 0.96 (+/-0.196). At Episode 2550 average reward is 1.0 (+/-0.0). At Episode 2600 average reward is 0.98 (+/-0.14). At Episode 2650 average reward is 1.0 (+/-0.0). At Episode 2700 average reward is 0.98 (+/-0.14). At Episode 2750 average reward is 1.0 (+/-0.0). At Episode 2800 average reward is 1.0 (+/-0.0). At Episode 2850 average reward is 0.98 (+/-0.14). At Episode 2900 average reward is 0.98 (+/-0.14). At Episode 2950 average reward is 0.98 (+/-0.14).
Apache-2.0
exercise/day_3/actor_and_critic_method.ipynb
masatoomori/baby-steps-of-rl-ja
[Oregon Curriculum Network](http://www.4dsolutions.net/ocn) [Discovering Math with Python](Introduction.ipynb) Quadrays and GrapheneBy AlexanderAlUS - Own work, CC BY-SA 3.0, Link"Graphene" refers to an hexagonal grid of cells, the vertexes being carbon atoms. However any hexagonal mesh, such as for game boards, might be referred to as a "graphene pattern".Quadrays are explained [in other Notebooks](QuadraysJN.ipynb). Four basis vectors emanate to the corners of a volume 1 tetrahedron of edges 2R or 1D, in the canonical version, where R and D refer respectively to the Radius and Diameter of imaginary spheres packed together, giving this home base tetrahedron.![quadrays](https://upload.wikimedia.org/wikipedia/commons/9/99/Quadray.gif)The Quadrays {2, 1, 1, 0}, meaning all 12 permutations of those numbers, fan out from (0,0,0,0) to the corners of a cuboctahedron.
from itertools import permutations g = permutations((2,1,1,0)) unique = {p for p in g} # set comprehension print(unique)
{(0, 1, 1, 2), (1, 0, 1, 2), (2, 0, 1, 1), (0, 2, 1, 1), (0, 1, 2, 1), (1, 2, 1, 0), (1, 1, 2, 0), (2, 1, 1, 0), (1, 0, 2, 1), (1, 2, 0, 1), (2, 1, 0, 1), (1, 1, 0, 2)}
MIT
GrapheneWithQrays.ipynb
4dsolutions/Python5
I have [elsewhere](Generating%20the%20FCC.ipynb) used this fact to algorithmically generate consecutive shells of 12, 42, 92, 162... spheres (balls) respectively; a growing cuboctahedron of $10 S^{2} + 2$ balls per shell S = 1,2,3... (1 when S=0).![Image of Cubocta](http://www.4dsolutions.net/ocn/graphics/cubanim.gif)However suppose we don't want to grow the grid omni-directionally, but only in a plane. Each ball will be surrounded by six neighbors meaning at the center of a hexagon.The cuboctahedron supplies four such hexagons i.e. its 24 edges comprise four hexagons orbiting the center. We may use any one of them. The AlgorithmThe algorithm begins with a planar subset of the vectors {2, 1, 1, 0} used to compute the six vertexes surrounding (0,0,0,0). We may call these six vertexes "carbons".Then hop to neighboring hexagon centers (where no carbon is located) using an additional set of vectors. From these new centers, compute the six surrounding carbons again, some of which will have already been found, as neighbors share fences, with three faces (centers) sharing each fence post (carbon). Using the Python set object, the algorithm filters to keep only unique carbons. Keep track of hexagon centers, a dual mesh, in a separate set. (0,0,0,0) will be the first center (ring0).If qrays r, s are 60 degrees apart on the same hexagon, pointing to neighboring carbons, then r + s will be the "hop" vector over the fence (edge) to the neighboring "yard" (face), or center. Once we have six vertex vectors from a center, computing the six hop vectors (for jumping over the fences) will be a matter of summing pairs of adjacent (60 degree separated) vectors. We only keep new centers i.e. those of the next ring (see below).What about edges?As we go around a hexagon in 60 degree increments, say in a clockwise direction, we will be finding edges in terms of adjacent ball pairs. To avoid redundancy, (ball_a, ball_b) -- any edge -- [will be sorted](https://github.com/4dsolutions/SAISOFT/blob/master/OrderingPolys.ipynb). Any two quadrays may be ordered as 4-tuples e.g. (2, 1, 1, 0) is "greater than" (2, 1, 0, 1). With unique representations of any edge, in the form of sorted tuples of qray namedtuples, we will be able to employ the same general technique employed with vertexes (carbons) and face centers: check the existing database for uniqueness and throw away (filter) anything already in the database. Sets will not allow duplicates.The first step is to isolate six of the twelve from {2, 1, 1, 0} that define a hexagon. ShapeVolumeVertex Inventory (sum of Quadrays)Tetrahedron1A,B,C,DInverse Tetrahedron1E,F,G,H = B+C+D, A+C+D, A+B+D, A+B+CDuo-Tet Cube3A through HOctahedron4I,J,K,L,M,N = A+B, A+C, A+D, B+C, B+D, C+DRhombic Dodecahedron6A through NCuboctahedron20O,P,Q,R,S,T = I+J, I+K, I+L, I+M, N+J, N+K; U,V,W,X,Y,Z = N+L, N+M, J+L, L+M, M+K, K+J&32;&32; One of the hexagons is TZOQXV. Do you see it in the above graphic? Another one is TYRQWS. If we regenerate all of the vectors A-Z mentioned above, we'll have a vocabulary suitable for graphene grid development, and then some.
from qrays import Qvector, IVM A, B, C, D = Qvector((1,0,0,0)), Qvector((0,1,0,0)), Qvector((0,0,1,0)), Qvector((0,0,0,1)) E,F,G,H = B+C+D, A+C+D, A+B+D, A+B+C I,J,K,L,M,N = A+B, A+C, A+D, B+C, B+D, C+D O,P,Q,R,S,T = I+J, I+K, I+L, I+M, N+J, N+K; U,V,W,X,Y,Z = N+L, N+M, J+L, L+M, M+K, K+J # two "beacons" of six spokes hexrays = [T, Z, O, Q, X, V] # to surrounding carbon atoms hoprays = [T+Z, Z+O, O+Q, Q+X, X+V, V+T] # to neighboring (vacant) hex centers (T.angle(Z), Z.angle(O), O.angle(Q), Q.angle(X), X.angle(V), V.angle(T))
_____no_output_____
MIT
GrapheneWithQrays.ipynb
4dsolutions/Python5
Lets verify that, going around the hexagon, each pair of consecutive hexrays is 60 degree apart. And ditto for hoprays, the vectors we'll use to jump over the fence to neighboring hexagon centers.
(hoprays[0].angle(hoprays[1]), hoprays[1].angle(hoprays[2]), hoprays[2].angle(hoprays[3]), hoprays[3].angle(hoprays[4]), hoprays[4].angle(hoprays[5]), hoprays[5].angle(hoprays[0]))
_____no_output_____
MIT
GrapheneWithQrays.ipynb
4dsolutions/Python5
Looks like we're in business!As with the growing cuboctahedron and the CCP packing, it makes sense to think in terms of consecutive rings.The [hexagonal coordination sequence](https://oeis.org/A008458) is generated by:
def A008458(n): # OEIS number if n == 0: return 1 return 6 * n [A008458(x) for x in range(10)]
_____no_output_____
MIT
GrapheneWithQrays.ipynb
4dsolutions/Python5
I will use this as a check as the algorithm generates multiple rings.
centers = {IVM(0,0,0,0)} # center face edges = set() # no duplicates permitted carbons = set() ring0 = [Qvector((0,0,0,0))] def next_ring(ring): """ Use only the most recently added hexagonal ring of face centers to compute the next ring, moving outward: 1, 6, 12, 18, 24... """ new_faces = [] for face in ring: verts = [] # CARBONS for spoke in hexrays: v = face + spoke carbons.add(v.coords) # just the namedtuple is added to the set verts.append(v) # EDGES for bond in zip(verts, verts[1:] + [verts[0]]): # adding carbon-to-carbon bonds if not already in the set edge = tuple(sorted([bond[0].coords, bond[1].coords])) edges.add(edge) # CENTERS for jump in hoprays: neighbor = face + jump previous = len(centers) centers.add(neighbor.coords) if len(centers) > previous: # if True, face is new new_faces.append(neighbor) return new_faces def rings(n): prev = ring0 for ring in range(n): print("Ring: {:3} Number: {:4}".format(ring, len(prev))) nxt = next_ring(prev) prev = nxt rings(12)
Ring: 0 Number: 1 Ring: 1 Number: 6 Ring: 2 Number: 12 Ring: 3 Number: 18 Ring: 4 Number: 24 Ring: 5 Number: 30 Ring: 6 Number: 36 Ring: 7 Number: 42 Ring: 8 Number: 48 Ring: 9 Number: 54 Ring: 10 Number: 60 Ring: 11 Number: 66
MIT
GrapheneWithQrays.ipynb
4dsolutions/Python5
Note these are the expected numbers for consecutive rings.Now that we have our database, it's time to generate some graphical output. As with the FCC, I'll use [POV-Ray's scene description language](http://www.4dsolutions.net/ocn/numeracy0.html) and then render in [POV-Ray](http://www.povray.org). We just want to look at the edges and carbon atom vertexes.
sph = """sphere { %s 0.1 texture { pigment { color rgb <1,0,0> } } }""" cyl = """cylinder { %s %s 0.05 texture { pigment { color rgb <1.0, 0.65, 0.0> } } }""" def make_graphene(fname="../c6xty/graphene.pov", append=True): """ Scan through carbons, edges, converting to XYZ and embedding in POV-Ray Scene Description Language """ if append: pov = open(fname, "a") else: pov = open(fname, "w") # graphene will be included as a single object in the # parent povray script, where lighting, camera position, # and background are defined print("#declare graphene = union{", file=pov) for atom in carbons: v = Qvector(atom).xyz() s = sph % "<{0.x}, {0.y}, {0.z}>".format(v) print(s, file=pov) for bond in edges: v0, v1 = bond v0 = Qvector(v0).xyz() v1 = Qvector(v1).xyz() c = cyl % ("<{0.x}, {0.y}, {0.z}>".format(v0), "<{0.x}, {0.y}, {0.z}>".format(v1)) print(c, file=pov) print("}\n", file=pov) make_graphene(append=False)
_____no_output_____
MIT
GrapheneWithQrays.ipynb
4dsolutions/Python5
(image-segmentation:relabel-sequential)= Sequential object (re-)labelingAs mentioned above, depending on the use-case it might be important to label objects in an image subsequently. It could for example be that a post-processing algorithm for label images crashes in case we pass a label image with missing labels. Hence, we should know how to relabel an image sequentially.
import numpy as np from skimage.io import imread from skimage.segmentation import relabel_sequential import pyclesperanto_prototype as cle
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
Our starting point is a label image with labels 1-8, where some labels are not present:
label_image = imread("../../data/label_map_with_index_gaps.tif") cle.imshow(label_image, labels=True)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
When measuring the maximum intensity in the image, we can see that this label image containing 4 labels is obviously not sequentially labeled.
np.max(label_image)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
We can use the `unique` function to figure out which labels are present:
np.unique(label_image)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
Sequential labelingWe can now relabel this image and remove these gaps using [scikit-image's `relabel_sequential()` function](https://scikit-image.org/docs/dev/api/skimage.segmentation.htmlskimage.segmentation.relabel_sequential). We're entering the `_` as additional return variables as we're not interested in them. This is necessary because the `relabel_sequential` function returns three things, but we only need the first.
relabeled, _, _ = relabel_sequential(label_image) cle.imshow(relabeled, labels=True)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
Afterwards, the unique labels should be sequential:
np.unique(relabeled)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
Also pyclesperanto has a function for relabeling label images sequentially. The result is supposed identical to the result in scikit-image. It just doesn't return the additional values.
relabeled1 = cle.relabel_sequential(label_image) cle.imshow(relabeled1, labels=True)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
Reverting sequential labelingIn some cases we apply an operation to a label image that returns a new label image with less labels that are sequentially labeled but the label-identity is lost. This happens for example when excluding labels from the label image that are too small.
large_labels = cle.exclude_small_labels(relabeled, maximum_size=260) cle.imshow(large_labels, labels=True, max_display_intensity=4) np.unique(large_labels)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
To restore the original label identities, we need to multiply a binary image representing the remaining labels with the original label image.
binary_remaining_labels = large_labels > 0 cle.imshow(binary_remaining_labels) large_labels_with_original_identity = binary_remaining_labels * relabeled cle.imshow(large_labels_with_original_identity, labels=True, max_display_intensity=4) np.unique(large_labels_with_original_identity)
_____no_output_____
CC-BY-4.0
docs/20_image_segmentation/15_sequential_labeling.ipynb
rayanirban/BioImageAnalysisNotebooks
Multiple single-step forecast models models studied in Zoumpekas et al (2020)
import random import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.callbacks import Callback from tensorflow.keras.layers import Dense, Input, Conv1D, LSTM, GRU, Bidirectional, Dropout, Flatten from tensorflow.keras import Model, Sequential from tensorflow.keras.initializers import RandomNormal from tensorflow.keras.regularizers import l2 from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping l2reg = l2(l2=0.0001) cnn2 = Sequential([ Input(shape=(6,2), name="conv1d_1_input"), Conv1D(80, kernel_size=3, strides=1, activation="relu", kernel_regularizer=l2reg, bias_regularizer=l2reg, name="conv1d_1"), Dropout(0.20, name="dropout_1"), Conv1D(2, kernel_size=3, strides=2, activation="linear", kernel_regularizer=l2reg, bias_regularizer=l2reg, name="conv1d_2"), Flatten(), Dense(1, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="dense_1") ]) cnn3 = Sequential([ Input(shape=(6,2), name="conv1d_1_input"), Conv1D(80, kernel_size=3, strides=1, activation="relu", kernel_regularizer=l2reg, bias_regularizer=l2reg, name="conv1d_1"), Dropout(0.20, name="dropout_1"), Conv1D(40, kernel_size=2, strides=1, activation="relu", kernel_regularizer=l2reg, bias_regularizer=l2reg, name="conv1d_2"), Dropout(0.20, name="dropout_2"), Conv1D(2, kernel_size=2, strides=2, activation="linear", kernel_regularizer=l2reg, bias_regularizer=l2reg, name="conv1d_3"), Flatten(), Dense(1, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="dense_1") ]) lstm = Sequential([ Input(shape=(6,2), name="lstm_1_input"), LSTM(50, activation="tanh", recurrent_dropout=0.2, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="lstm_1"), Dropout(0.20, name="dropout_1"), Dense(1, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="dense_1") ]) slstm = Sequential([ Input(shape=(6,2), name="lstm_1_input"), LSTM(50, activation="tanh", return_sequences=True, recurrent_dropout=0.2, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="lstm_1"), Dropout(0.20, name="dropout_1"), LSTM(50, activation="tanh", recurrent_dropout=0.2, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="lstm_2"), Dropout(0.20, name="dropout_2"), Dense(1, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="dense_1") ]) bilstm = Sequential([ Input(shape=(6,2), name="lstm_1_input"), Bidirectional(LSTM(50, activation="tanh", recurrent_dropout=0.2, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="lstm_1")), Dropout(0.20, name="dropout_1"), Dense(1, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="dense_1") ]) gru = Sequential([ Input(shape=(6,2), name="gru_1_input"), GRU(50, activation="tanh", recurrent_dropout=0.2, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="gru_1"), Dropout(0.20, name="dropout_1"), Dense(1, kernel_regularizer=l2reg, bias_regularizer=l2reg, name="dense_1") ]) from tensorflow.keras.utils import plot_model plot_model(cnn2, show_shapes=True, show_layer_names=True, dpi=64) plot_model(cnn3, show_shapes=True, show_layer_names=True, dpi=64) plot_model(lstm, show_shapes=True, show_layer_names=True, dpi=64) plot_model(slstm, show_shapes=True, show_layer_names=True, dpi=64) plot_model(bilstm, show_shapes=True, show_layer_names=True, dpi=64) plot_model(gru, show_shapes=True, show_layer_names=True, dpi=64) # Build data generator def datagen(data, seq_len, batch_size, targetcol): "As a generator to produce samples for Keras model" # Learn about the data's features and time axis input_cols = [c for c in data.columns if c != targetcol] # Infinite loop to generate a batch batch = [] while True: # Pick one position, then clip a sequence length while True: t = random.choice(data.index) n = (data.index == t).argmax() if n-seq_len+1 < 0: continue # this sample is not enough for one sequence length frame = data.iloc[n-seq_len+1:n+1][input_cols].T target = data.iloc[n+1][targetcol] # extract 2D array batch.append([frame, data.iloc[n+1][targetcol]]) break # if we get enough for a batch, dispatch if len(batch) == batch_size: X, y = zip(*batch) yield np.array(X, dtype="float32"), np.array(y, dtype="float32") batch = [] def read_data(filename): # Read data into pandas DataFrames X = pd.read_csv(filename, index_col="Timestamp") X.index = pd.to_datetime(X.index, unit="s") # target is next day closing price cols = X.columns X["Target"] = X["Close"].shift(-1) X.dropna(inplace=True) return X # Read data TRAINFILE = "dataset/Ethereum_price_data_train.csv" VALIDFILE = "dataset/EThereum_price_data_test_29_May_2018-30_December_2018.csv" df_train = read_data(TRAINFILE) df_valid = read_data(VALIDFILE) # Training in SGD with batch size 128 and 50 epochs seq_len = 2 batch_size = 128 n_epochs = 50 n_steps = 400 checkpoint_path = "cnn2-{epoch}-{val_loss:.0f}.h5" callbacks = [ ModelCheckpoint(checkpoint_path, monitor='val_loss', mode="max", verbose=0, save_best_only=True, save_weights_only=False, save_freq="epoch"), EarlyStopping(monitor="val_loss", patience=3, restore_best_weights=True) ] cnn2.compile(optimizer="adam", loss="mse") cnn2.fit(datagen(df_train, seq_len, batch_size, "Target"), validation_data=datagen(df_valid, seq_len, batch_size, "Target"), epochs=n_epochs, steps_per_epoch=n_steps, validation_steps=10, verbose=1, callbacks=callbacks)
Epoch 1/50 400/400 [==============================] - 52s 129ms/step - loss: 5134155.0000 - val_loss: 36836.4336 Epoch 2/50 400/400 [==============================] - 51s 128ms/step - loss: 784477.2500 - val_loss: 21840.3535 Epoch 3/50 400/400 [==============================] - 51s 129ms/step - loss: 224073.4531 - val_loss: 6584.0576 Epoch 4/50 400/400 [==============================] - 51s 129ms/step - loss: 84045.1719 - val_loss: 5507.8584 Epoch 5/50 400/400 [==============================] - 52s 129ms/step - loss: 38750.0430 - val_loss: 1258.1412 Epoch 6/50 400/400 [==============================] - 52s 130ms/step - loss: 20047.4297 - val_loss: 407.4286 Epoch 7/50 400/400 [==============================] - 51s 129ms/step - loss: 14825.2490 - val_loss: 1907.7725 Epoch 8/50 400/400 [==============================] - 51s 129ms/step - loss: 7697.8579 - val_loss: 310.8632 Epoch 9/50 400/400 [==============================] - 52s 129ms/step - loss: 3882.0569 - val_loss: 84.9826 Epoch 10/50 400/400 [==============================] - 51s 129ms/step - loss: 4043.2842 - val_loss: 1336.3011 Epoch 11/50 400/400 [==============================] - 51s 129ms/step - loss: 2533.0771 - val_loss: 73.1278 Epoch 12/50 400/400 [==============================] - 52s 129ms/step - loss: 1831.2122 - val_loss: 44.2584 Epoch 13/50 400/400 [==============================] - 51s 129ms/step - loss: 1814.2236 - val_loss: 39.1109 Epoch 14/50 400/400 [==============================] - 52s 129ms/step - loss: 1474.9673 - val_loss: 124.2770 Epoch 15/50 400/400 [==============================] - 51s 129ms/step - loss: 1204.8274 - val_loss: 39.5159 Epoch 16/50 400/400 [==============================] - 51s 129ms/step - loss: 3227.2451 - val_loss: 2031.0986
MIT
multimodel-1obs-1step.ipynb
righthandabacus/market_notebooks
Scaling Criteo: Triton Inference with HugeCTR OverviewThe last step is to deploy the ETL workflow and saved model to production. In the production setting, we want to transform the input data as during training (ETL). We need to apply the same mean/std for continuous features and use the same categorical mapping to convert the categories to continuous integer before we use the deep learning model for a prediction. Therefore, we deploy the NVTabular workflow with the HugeCTR model as an ensemble model to Triton Inference. The ensemble model guarantees that the same transformation are applied to the raw inputs. Learning objectivesIn this notebook, we learn how to deploy our models to production:- Use **NVTabular** to generate config and model files for Triton Inference Server- Deploy an ensemble of NVTabular workflow and HugeCTR model- Send example request to Triton Inference Server Inference with Triton and HugeCTRFirst, we need to generate the Triton Inference Server configurations and save the models in the correct format. In the previous notebooks [02-ETL-with-NVTabular](./02-ETL-with-NVTabular.ipynb) and [03-Training-with-HugeCTR](./03-Training-with-HugeCTR.ipynb) we saved the NVTabular workflow and HugeCTR model to disk. We will load them. Saving Ensemble Model for Triton Inference Server After training terminates, we can see that two `.model` files are generated. We need to move them inside a temporary folder, like `criteo_hugectr/1`. Let's create these folders.
import os import numpy as np
_____no_output_____
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
Now we move our saved `.model` files inside 1 folder. We use only the last snapshot after `9600` iterations.
os.system("mv *9600.model ./criteo_hugectr/1/")
_____no_output_____
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
Now we can save our models to be deployed at the inference stage. To do so we will use export_hugectr_ensemble method below. With this method, we can generate the config.pbtxt files automatically for each model. In doing so, we should also create a hugectr_params dictionary, and define the parameters like where the amazonreview.json file will be read, slots which corresponds to number of categorical features, `embedding_vector_size`, `max_nnz`, and `n_outputs` which is number of outputs.The script below creates an ensemble triton server model where- workflow is the the nvtabular workflow used in preprocessing,- hugectr_model_path is the HugeCTR model that should be served. - This path includes the .model files.name is the base name of the various triton models- output_path is the path where is model will be saved to.- cats are the categorical column names- conts are the continuous column names We need to load the NVTabular workflow first
import nvtabular as nvt BASE_DIR = os.environ.get("BASE_DIR", "/raid/data/criteo") input_path = os.path.join(BASE_DIR, "test_dask/output") workflow = nvt.Workflow.load(os.path.join(input_path, "workflow"))
_____no_output_____
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
Let's clear the directory
os.system("rm -rf /model/*") from nvtabular.inference.triton import export_hugectr_ensemble hugectr_params = dict() hugectr_params["config"] = "/model/criteo/1/criteo.json" hugectr_params["slots"] = 26 hugectr_params["max_nnz"] = 1 hugectr_params["embedding_vector_size"] = 128 hugectr_params["n_outputs"] = 1 export_hugectr_ensemble( workflow=workflow, hugectr_model_path="./criteo_hugectr/1/", hugectr_params=hugectr_params, name="criteo", output_path="/model/", label_columns=["label"], cats=["C" + str(x) for x in range(1, 27)], conts=["I" + str(x) for x in range(1, 14)], max_batch_size=64, )
_____no_output_____
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We can take a look at the generated files.
!tree /model
/model ├── criteo │   ├── 1 │   │   ├── 0_opt_sparse_9600.model │   │   ├── 0_sparse_9600.model │   │   │   ├── emb_vector │   │   │   ├── key │   │   │   └── slot_id │   │   ├── _dense_9600.model │   │   ├── _opt_dense_9600.model │   │   └── criteo.json │   └── config.pbtxt ├── criteo_ens │   ├── 1 │   └── config.pbtxt └── criteo_nvt ├── 1 │   ├── model.py │   └── workflow │   ├── categories │   │   ├── unique.C1.parquet │   │   ├── unique.C10.parquet │   │   ├── unique.C11.parquet │   │   ├── unique.C12.parquet │   │   ├── unique.C13.parquet │   │   ├── unique.C14.parquet │   │   ├── unique.C15.parquet │   │   ├── unique.C16.parquet │   │   ├── unique.C17.parquet │   │   ├── unique.C18.parquet │   │   ├── unique.C19.parquet │   │   ├── unique.C2.parquet │   │   ├── unique.C20.parquet │   │   ├── unique.C21.parquet │   │   ├── unique.C22.parquet │   │   ├── unique.C23.parquet │   │   ├── unique.C24.parquet │   │   ├── unique.C25.parquet │   │   ├── unique.C26.parquet │   │   ├── unique.C3.parquet │   │   ├── unique.C4.parquet │   │   ├── unique.C5.parquet │   │   ├── unique.C6.parquet │   │   ├── unique.C7.parquet │   │   ├── unique.C8.parquet │   │   └── unique.C9.parquet │   ├── column_types.json │   ├── metadata.json │   └── workflow.pkl └── config.pbtxt 9 directories, 40 files
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We need to write a configuration file with the stored model weights and model configuration.
%%writefile '/model/ps.json' { "supportlonglong": true, "models": [ { "model": "criteo", "sparse_files": ["/model/criteo/1/0_sparse_9600.model"], "dense_file": "/model/criteo/1/_dense_9600.model", "network_file": "/model/criteo/1/criteo.json", "max_batch_size": "64", "gpucache": "true", "hit_rate_threshold": "0.9", "gpucacheper": "0.5", "num_of_worker_buffer_in_pool": "4", "num_of_refresher_buffer_in_pool": "1", "cache_refresh_percentage_per_iteration": 0.2, "deployed_device_list": ["0"], "default_value_for_each_table": ["0.0", "0.0"], } ], }
Overwriting /model/ps.json
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
Loading Ensemble Model with Triton Inference ServerWe have only saved the models for Triton Inference Server. We started Triton Inference Server in explicit mode, meaning that we need to send a request that Triton will load the ensemble model. We connect to the Triton Inference Server.
import tritonhttpclient try: triton_client = tritonhttpclient.InferenceServerClient(url="localhost:8000", verbose=True) print("client created.") except Exception as e: print("channel creation failed: " + str(e))
client created.
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We deactivate warnings.
import warnings warnings.filterwarnings("ignore")
_____no_output_____
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We check if the server is alive.
triton_client.is_server_live()
GET /v2/health/live, headers None <HTTPSocketPoolResponse status=200 headers={'content-length': '0', 'content-type': 'text/plain'}>
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We check the available models in the repositories:- criteo_ens: Ensemble - criteo_nvt: NVTabular - criteo: HugeCTR model
triton_client.get_model_repository_index()
POST /v2/repository/index, headers None <HTTPSocketPoolResponse status=200 headers={'content-type': 'application/json', 'content-length': '93'}> bytearray(b'[{"name":".ipynb_checkpoints"},{"name":"criteo"},{"name":"criteo_ens"},{"name":"criteo_nvt"}]')
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We load the models individually.
%%time triton_client.load_model(model_name="criteo_nvt") %%time triton_client.load_model(model_name="criteo") %%time triton_client.load_model(model_name="criteo_ens")
POST /v2/repository/models/criteo_ens/load, headers None <HTTPSocketPoolResponse status=200 headers={'content-type': 'application/json', 'content-length': '0'}> Loaded model 'criteo_ens' CPU times: user 4.7 ms, sys: 0 ns, total: 4.7 ms Wall time: 20.2 s
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
Example Request to Triton Inference ServerNow, the models are loaded and we can create a sample request. We read an example **raw batch** for inference.
# Get dataframe library - cudf or pandas from merlin.core.dispatch import get_lib df_lib = get_lib() # read in the workflow (to get input/output schema to call triton with) batch_path = os.path.join(BASE_DIR, "converted/criteo") batch = df_lib.read_parquet(os.path.join(batch_path, "*.parquet"), num_rows=3) batch = batch[[x for x in batch.columns if x != "label"]] print(batch)
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 ... C17 \ 0 5 110 <NA> 16 <NA> 1 0 14 7 1 ... -771205462 1 32 3 5 <NA> 1 0 0 61 5 0 ... -771205462 2 <NA> 233 1 146 1 0 0 99 7 0 ... -771205462 C18 C19 C20 C21 C22 C23 \ 0 -1206449222 -1793932789 -1014091992 351689309 632402057 -675152885 1 -1578429167 -1793932789 -20981661 -1556988767 -924717482 391309800 2 1653545869 -1793932789 -1014091992 351689309 632402057 -675152885 C24 C25 C26 0 2091868316 809724924 -317696227 1 1966410890 -1726799382 -1218975401 2 883538181 -10139646 -317696227 [3 rows x 39 columns]
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We prepare the batch for inference by using correct column names and data types. We use the same datatypes as defined in our dataframe.
batch.dtypes import tritonclient.http as httpclient from tritonclient.utils import np_to_triton_dtype inputs = [] col_names = list(batch.columns) col_dtypes = [np.int32] * len(col_names) for i, col in enumerate(batch.columns): d = batch[col].fillna(0).values_host.astype(col_dtypes[i]) d = d.reshape(len(d), 1) inputs.append(httpclient.InferInput(col_names[i], d.shape, np_to_triton_dtype(col_dtypes[i]))) inputs[i].set_data_from_numpy(d)
_____no_output_____
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
We send the request to the triton server and collect the last output.
# placeholder variables for the output outputs = [httpclient.InferRequestedOutput("OUTPUT0")] # build a client to connect to our server. # This InferenceServerClient object is what we'll be using to talk to Triton. # make the request with tritonclient.http.InferInput object response = triton_client.infer("criteo_ens", inputs, request_id="1", outputs=outputs) print("predicted sigmoid result:\n", response.as_numpy("OUTPUT0"))
POST /v2/models/criteo_ens/infer, headers {'Inference-Header-Content-Length': 3383} b'{"id":"1","inputs":[{"name":"I1","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I2","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I3","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I4","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I5","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I6","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I7","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I8","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I9","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I10","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I11","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I12","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"I13","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C1","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C2","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C3","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C4","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C5","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C6","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C7","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C8","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C9","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C10","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C11","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C12","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C13","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C14","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C15","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C16","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C17","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C18","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C19","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C20","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C21","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C22","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C23","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C24","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C25","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}},{"name":"C26","shape":[3,1],"datatype":"INT32","parameters":{"binary_data_size":12}}],"outputs":[{"name":"OUTPUT0","parameters":{"binary_data":true}}]}\x05\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00n\x00\x00\x00\x03\x00\x00\x00\xe9\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x01\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x92\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00=\x00\x00\x00c\x00\x00\x00\x07\x00\x00\x00\x05\x00\x00\x00\x07\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x002\x01\x00\x00U\x0c\x00\x00\x1d\x0c\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x01\x00\x00\x00y\rwb\x8d\xfd\xf3\xe5y\rwbX]\x1f\xe2\xa6\xff\xaa\xa0\x03B\x98\xad/D\xea\xaf\xd5\x15\xaao\r\xc6\xbeb\xcf\x7f\\\x94!4\x8a\xda\xeeIl8H\'\xb08#\x9f\xd6<M\x06U\xe7\xcbm\xcdo\xcbm\xcdo\xcbm\xcdo!\xaa\x805\x81\xed\x16\xabb\xeb\xf5\xb5\x03\x89\x80()lBC\x8b\xcc\xf2\xd1\xa6\xdf\xdeFT\xe1\xf5\x1d\x1f\x82N.\xc1}\x02.\xa9\xc0\xe9}\xc1}\x02.1B|\x0cd\xdcRf1B|\x0c\x1f\x1d\x98\x95\'N\xeb\x99\x84aq\x12\xb7\xff\xc5\x00\xb7\xff\xc5\x00\xb7\xff\xc5\x007\xe5N\xbe7\xe5N\xbe7\xe5N\xbe\xcct\x0b\x8a\x99\xfe\xbb\xf3\x0b\r\x0f\xf7\xfa>\xdcL\xfa>\xdcL\xfa>\xdcL\xaaV\x08\xd2\xaaV\x08\xd2\xaaV\x08\xd2\xba\x0b\x17\xb8\x11\x15\xeb\xa1\x8d\x1b\x8fb\x0b\xc2\x12\x95\x0b\xc2\x12\x95\x0b\xc2\x12\x95(/\x8e\xc3c\xd8\xbf\xfe(/\x8e\xc3]Z\xf6\x14\xa1<2\xa3]Z\xf6\x14\x89\xb0\xb1%V\xee\xe1\xc8\x89\xb0\xb1%\x0b\xfc\xc1\xd7\xe8\xe9R\x17\x0b\xfc\xc1\xd7\x9c`\xaf|\x8a\x0c5u\x05\xb9\xa94\xfckC0\xea!\x13\x99\x02He\xff\x1dW\x10\xedW\xe9W\xb7\x1dW\x10\xed' <HTTPSocketPoolResponse status=400 headers={'content-length': '122', 'content-type': 'text/plain'}>
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
Let's unload the model. We need to unload each model.
triton_client.unload_model(model_name="criteo_ens") triton_client.unload_model(model_name="criteo_nvt") triton_client.unload_model(model_name="criteo")
POST /v2/repository/models/criteo_ens/unload, headers None {"parameters":{"unload_dependents":false}} <HTTPSocketPoolResponse status=200 headers={'content-type': 'application/json', 'content-length': '0'}> Loaded model 'criteo_ens' POST /v2/repository/models/criteo_nvt/unload, headers None {"parameters":{"unload_dependents":false}} <HTTPSocketPoolResponse status=200 headers={'content-type': 'application/json', 'content-length': '0'}> Loaded model 'criteo_nvt' POST /v2/repository/models/criteo/unload, headers None {"parameters":{"unload_dependents":false}} <HTTPSocketPoolResponse status=200 headers={'content-type': 'application/json', 'content-length': '0'}> Loaded model 'criteo'
Apache-2.0
examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
mikemckiernan/NVTabular
NNCLR* Nearest- Neighbor Contrastive Learning of visual Representations (NNCLR), samples the nearest neighbors from the dataset in the latent space, and treats them as positives. This provides more semantic variations than pre-defined transformations.* NNCLR Formulated by Google Research and DeepMind![image.png]()
# !pip install lightly av torch-summary import torch from torch import nn import torchvision from lightly.data import LightlyDataset from lightly.data import SimCLRCollateFunction from lightly.loss import NTXentLoss from lightly.models.modules import NNCLRProjectionHead from lightly.models.modules import NNCLRPredictionHead from lightly.models.modules import NNMemoryBankModule class NNCLR(nn.Module): def __init__(self, backbone): super().__init__() self.backbone = backbone self.projection_head = NNCLRProjectionHead(512, 512, 128) self.prediction_head = NNCLRPredictionHead(128, 512, 128) def forward(self, x): y = self.backbone(x).flatten(start_dim=1) z = self.projection_head(y) p = self.prediction_head(z) z = z.detach() return z, p resnet = torchvision.models.resnet18() backbone = nn.Sequential(*list(resnet.children())[:-1]) model = NNCLR(backbone) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) memory_bank = NNMemoryBankModule(size=4096) memory_bank.to(device) cifar10 = torchvision.datasets.CIFAR10("datasets/cifar10", download=True) dataset = LightlyDataset.from_torch_dataset(cifar10) collate_fn = SimCLRCollateFunction(input_size=32) dataloader = torch.utils.data.DataLoader( dataset, batch_size=256, collate_fn=collate_fn, shuffle=True, drop_last=True, num_workers=8, ) criterion = NTXentLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.06) print("Starting Training") for epoch in range(5): total_loss = 0 for (x0, x1), _, _ in dataloader: x0 = x0.to(device) x1 = x1.to(device) z0, p0 = model(x0) z1, p1 = model(x1) z0 = memory_bank(z0, update=False) z1 = memory_bank(z1, update=True) loss = 0.5 * (criterion(z0, p1) + criterion(z1, p0)) total_loss += loss.detach() loss.backward() optimizer.step() optimizer.zero_grad() avg_loss = total_loss / len(dataloader) print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}")
Starting Training
MIT
Pytorch/NNCLR.ipynb
ashishpatel26/Self-Supervisedd-Learning
Predictive Modelling: XGBoost Imports
%load_ext autoreload %autoreload 2 # Pandas and numpy import pandas as pd import numpy as np # from IPython.display import display, clear_output import sys import time # Libraries for Visualization import matplotlib.pyplot as plt import seaborn as sns from src.visualization.visualize import plot_corr_matrix, plot_multi, plot_norm_dist, plot_feature_importances # Some custom tools from src.data.tools import check_for_missing_vals # from src.models.predict_model import avg_model, run_combinations #from src.models.train_model import run_combinations # Alpaca API import alpaca_trade_api as tradeapi # Pickle import pickle import os from pathlib import Path # To load variables from .env file into system environment from dotenv import find_dotenv, load_dotenv from atomm.Indicators import MomentumIndicators from atomm.DataManager.main import MSDataManager from atomm.Tools import calc_open_position, calc_returns from src.visualization.visualize import plot_confusion_matrix from atomm.Methods import BlockingTimeSeriesSplit, PurgedKFold import time # scikit-learn from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score, TimeSeriesSplit from xgboost import XGBClassifier from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix from sklearn.metrics import accuracy_score, recall_score, f1_score, precision_score from sklearn.model_selection import train_test_split, TimeSeriesSplit from xgboost import XGBClassifier from sklearn.ensemble import BaggingClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression # For BayesianHyperparameter Optimization from atomm.Models.Tuning import search_space, BayesianSearch from hyperopt import space_eval # Visualization libraries import seaborn as sns import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix import matplotlib.gridspec as gridspec #import matplotlib.style as style from scipy import stats # Load environment variables load_dotenv(find_dotenv())
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Loading the data
data_base_dir = os.environ.get('DATA_DIR_BASE_PATH') data_base_dir !pwd fname = os.path.join(data_base_dir, 'processed', 'index.h5') fname = Path(fname) #fname = '../data/processed/index.h5' # Load dataset from HDF storage with pd.HDFStore(fname) as storage: djia = storage.get('nyse/cleaned/rand_symbols') y_2c = storage.get('nyse/engineered/target_two_class') y_3c = storage.get('nyse/engineered/target_three_class') df_moments = storage.get('nyse/engineered/features') #print(storage.info()) # Create copies of the pristine data X = df_moments.copy() y = y_3c.copy() y2 = y_2c.copy() prices = djia.copy() forecast_horizon = [1, 3, 5, 7, 10, 15, 20, 25, 30] input_window_size = [3, 5, 7, 10, 15, 20, 25, 30] ti_list = ['macd', 'rsi', 'stoc', 'roc', 'bbu', 'bbl', 'ema', 'atr', 'adx', 'cci', 'williamsr', 'stocd'] symbol_list = df_moments.columns.get_level_values(0).unique() df_moments.columns.get_level_values(1).unique()
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Imputing missing values
X.shape check_for_missing_vals(X)
No missing values found in dataframe
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Prices values
prices.shape check_for_missing_vals(prices) y_3c.shape check_for_missing_vals(y_3c) y2.shape check_for_missing_vals(y2)
No missing values found in dataframe
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
No missing values, and sizes of ```y.shape[0]``` and```X.shape[0]``` match. Scaling the features
from sklearn.preprocessing import MinMaxScaler, StandardScaler #scale = MinMaxScaler() scale = StandardScaler() scaled = scale.fit_transform(X) scaled.shape #X_scaled = pd.DataFrame(data=scaled, columns=X.columns) X_scaled = X
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Train-Test Split
# Use 70/30 train/test splits test_p = .3 # Scaled, three-class test_size = int((1 - test_p) * X_scaled.shape[0]) X_train, X_test, y_train, y_test = X_scaled[:test_size], X_scaled[test_size:], y_3c[:test_size], y_3c[test_size:] prices_train, prices_test = djia[:test_size], djia[test_size:] # Unscaled, two-class test_size = int((1 - test_p) * X.shape[0]) X_train, X_test, y_train, y_test = X[:test_size], X[test_size:], y2[:test_size], y2[test_size:] prices_train, prices_test = djia[:test_size], djia[test_size:] # Scaled, two-class test_size = int((1 - test_p) * X.shape[0]) X_train, X_test, y_train, y_test = X_scaled[:test_size], X_scaled[test_size:], y2[:test_size], y2[test_size:] prices_train, prices_test = djia[:test_size], djia[test_size:] #test_size = test_p #X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_3c, test_size=test_size, random_state=101)
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Model
symbol_list symbol = 'T' n1 = 15 n2 = 15 n_estimators = 10 # set up cross validation splits tscv = TimeSeriesSplit(n_splits=5) btscv = BlockingTimeSeriesSplit(n_splits=5) #ppcv = PurgedKFold(n_splits=5) # Creates a list of features for a given lookback window (n1) features = [f'{x}_{n1}' for x in ti_list] # Creates a list of all features all_features = [f'{x}_{n}' for x in ti_list for n in input_window_size]
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Single lookback/lookahead combination
clf_svc1 = OneVsRestClassifier( BaggingClassifier( SVC( kernel='rbf', class_weight='balanced' ), max_samples=.4, n_estimators=n_estimators, n_jobs=-1) ) clf_svc1.fit(X_train[symbol][[f'{x}_{n}' for x in ti_list]], y_train[symbol][f'signal_{n}']) y_pred_svc1 = clf_svc1.predict(X_test[symbol][[f'{x}_{n}' for x in ti_list]]) print('Accuracy Score: ', accuracy_score(y_pred_svc1, y_test[symbol][f'signal_{n}'])) print(classification_report(y_pred_svc1, y_test[symbol][f'signal_{n}'])) plot_confusion_matrix( clf_svc1, X_test[symbol][[f'{x}_{n}' for x in ti_list]], y_test[symbol][f'signal_{n}'], normalize='all' )
Accuracy Score: 0.5400340715502555 precision recall f1-score support 0 0.91 0.52 0.66 505 1 0.19 0.68 0.29 82 accuracy 0.54 587 macro avg 0.55 0.60 0.48 587 weighted avg 0.81 0.54 0.61 587
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
All combinations Averaging across all 50 randomly selected stocks
avg_results, scores_dict, preds_dict, params_dict, returns_dict = avg_model( symbol_list, forecast_horizon, input_window_size, X_train, X_test, y_train, y_test, prices_test, model=clf_svc1, silent = False )
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Hyperparamter Optimization: GridSearch
gsearch_xgb.best_score_
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Hyperparamter Optimization: Bayesian Optimization XGBoost
n1=15 n2=15 symbol='T' y_train[symbol][f'signal_{n2}'].value_counts() symbol_list # Optimizing for accuracy_score model = XGBClassifier bsearch_xgba, clf_bsearch_xgba, params_bsearch_xgba = BayesianSearch( search_space(model), model, X_train[symbol][features], y_train[symbol][f'signal_{n2}'], X_test[symbol][features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='accuracy_score' ) y_pred_bsearch_xgba = clf_bsearch_xgba.predict(X_test[symbol][features]) print('Recall Score: ', recall_score(y_pred_bsearch_xgba, y_test[symbol][f'signal_{n2}'])) print(classification_report(y_pred_bsearch_xgba, y_test[symbol][f'signal_{n2}'])) plot_confusion_matrix( clf_bsearch_xgba, X_test[symbol][features], y_test[symbol][f'signal_{n2}'], ) calc_returns(y_pred_bsearch_xgba, djia[symbol][test_size:]) # Optimizing for recall_score model = XGBClassifier bsearch_xgbb, clf_bsearch_xgbb, params_bsearch_xgbb = BayesianSearch( search_space(model), model, X_train[symbol][features], y_train[symbol][f'signal_{n2}'], X_test[symbol][features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='recall_score' ) y_pred_bsearch_xgbb = clf_bsearch_xgbb.predict(X_test[symbol][features]) print('Recall Score: ', recall_score(y_pred_bsearch_xgbb, y_test[symbol][f'signal_{n2}'])) print(classification_report(y_pred_bsearch_xgbb, y_test[symbol][f'signal_{n2}'])) plot_confusion_matrix( clf_bsearch_xgbb, X_test[symbol][features], y_test[symbol][f'signal_{n2}'], ) calc_returns(y_pred_bsearch_xgbb, djia[symbol][test_size:]) # f1_score as scoring metric model = XGBClassifier bsearch_xgbc, clf_bsearch_xgbc, params_bsearch_xgbc = BayesianSearch( search_space(model), model, X_train[symbol][features], y_train[symbol][f'signal_{n2}'], X_test[symbol][features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='f1_score' ) y_pred_bsearch_xgbc = clf_bsearch_xgbc.predict(X_test[symbol][features]) print('Recall Score: ', recall_score(y_pred_bsearch_xgbb, y_test[symbol][f'signal_{n2}'])) print(classification_report(y_pred_bsearch_xgbc, y_test[symbol][f'signal_{n2}'])) plot_confusion_matrix( clf_bsearch_xgbc, X_test[symbol][features], y_test[symbol][f'signal_{n2}'], ) calc_returns(y_pred_bsearch_xgbc, djia[symbol][test_size:]) # Precision as scoring metric model = XGBClassifier bsearch_xgbd, clf_bsearch_xgbd, params_bsearch_xgbd = BayesianSearch( search_space(model), model, X_train[symbol][features], y_train[symbol][f'signal_{n2}'], X_test[symbol][features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='precision_score' ) y_pred_bsearch_xgbd = clf_bsearch_xgbd.predict(X_test[symbol][features]) print('Recall Score: ', recall_score(y_pred_bsearch_xgbd, y_test[symbol][f'signal_{n2}'])) print(classification_report(y_pred_bsearch_xgbd, y_test[symbol][f'signal_{n2}'])) plot_confusion_matrix( clf_bsearch_xgbd, X_test[symbol][features], y_test[symbol][f'signal_{n2}'], ) calc_returns(y_pred_bsearch_xgbd, djia[symbol][test_size:])
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
XGBoost with all features
# Accuracy as scoring metric n1=15 n2=15 symbol='T' model = XGBClassifier bsearch_xgb1, clf_bsearch_xgb1, params_bsearch_xgb1 = BayesianSearch( search_space(model), model, X_train[symbol][all_features], y_train[symbol][f'signal_{n2}'], X_test[symbol][all_features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='accuracy_score' ) y_pred_xgb1 = clf_bsearch_xgb1.predict(X_test[symbol][all_features]) print('Accuracy Score: ', accuracy_score(y_pred_xgb1, y_test[symbol][f'signal_{n1}'])) print(classification_report(y_pred_xgb1, y_test[symbol][f'signal_{n1}'])) plot_confusion_matrix( clf_bsearch_xgb1, X_test[symbol][all_features], y_test[symbol][f'signal_{n1}'], ) calc_returns(y_pred_xgb1, djia[symbol][test_size:]) # Recall as scoring metric model = XGBClassifier bsearch_xgb2, clf_bsearch_xgb2, params_bsearch_xgb2 = BayesianSearch( search_space(model), model, X_train[symbol][all_features], y_train[symbol][f'signal_{n2}'], X_test[symbol][all_features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='recall_score' ) y_pred_xgb2 = clf_bsearch_xgb2.predict(X_test[symbol][all_features]) print('Recall Score: ', recall_score(y_pred_xgb2, y_test[symbol][f'signal_{n1}'])) print(classification_report(y_pred_xgb2, y_test[symbol][f'signal_{n1}'])) plot_confusion_matrix( clf_bsearch_xgb2, X_test[symbol][all_features], y_test[symbol][f'signal_{n1}'] ) calc_returns(y_pred_xgb2, djia[symbol][test_size:]) # f1_score as scoring metric model = XGBClassifier bsearch_xgb3, clf_bsearch_xgb3, params_bsearch_xgb3 = BayesianSearch( search_space(model), model, X_train[symbol][all_features], y_train[symbol][f'signal_{n2}'], X_test[symbol][all_features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='f1_score' ) y_pred_xgb3 = clf_bsearch_xgb3.predict(X_test[symbol][all_features]) print('F1 Score: ', f1_score(y_pred_xgb3, y_test[symbol][f'signal_{n1}'])) print(classification_report(y_pred_xgb3, y_test[symbol][f'signal_{n1}'])) plot_confusion_matrix( clf_bsearch_xgb3, X_test[symbol][all_features], y_test[symbol][f'signal_{n1}'] ) calc_returns(y_pred_xgb3, djia[symbol][test_size:]) # precision_score as scoring metric model = XGBClassifier bsearch_xgb4, clf_bsearch_xgb4, params_bsearch_xgb4 = BayesianSearch( search_space(model), model, X_train[symbol][all_features], y_train[symbol][f'signal_{n2}'], X_test[symbol][all_features], y_test[symbol][f'signal_{n2}'], num_eval=100, scoring_metric='precision_score' ) y_pred_xgb4 = clf_bsearch_xgb4.predict(X_test[symbol][all_features]) print('Precision Score: ', precision_score(y_pred_xgb4, y_test[symbol][f'signal_{n1}'], average='weighted')) print(classification_report(y_pred_xgb4, y_test[symbol][f'signal_{n1}'])) plot_confusion_matrix( clf_bsearch_xgb4, X_test[symbol][all_features], y_test[symbol][f'signal_{n1}'] ) calc_returns(y_pred_xgb4, djia[symbol][test_size:])
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Running on all 50 stocks on best model
#best_params = {'bootstrap': False, 'criterion': 'gini', 'max_depth': 218, 'max_features': 1, 'min_samples_leaf': 19, 'n_estimators': 423} #model_2a = (n_jobs=-1, **params_rf4) avg_results, scores_dict, preds_dict, params_dict, returns_dict = avg_model( symbol_list, forecast_horizon, input_window_size, ti_list, X_train, X_test, y_train, y_test, prices_test, model=clf_rf4, silent = False ) #best_params = {'bootstrap': False, 'criterion': 'gini', 'max_depth': 218, 'max_features': 1, 'min_samples_leaf': 19, 'n_estimators': 423} #model_2a = (n_jobs=-1, **params_rf4) avg_results, scores_dict, preds_dict, params_dict, returns_dict = avg_model( symbol_list, forecast_horizon, input_window_size, ti_list, X_train, X_test, y_train, y_test, prices_test, model=RandomForestClassifier, silent = False, hyper_optimize=True, n_eval=10, )
_____no_output_____
MIT
notebooks/06e_Predictive_Modeling-XGBoost-Copy1.ipynb
robindoering86/capstone_nf
Settings
%env TF_KERAS = 1 import os sep_local = os.path.sep import sys sys.path.append('..'+sep_local+'..') print(sep_local) os.chdir('..'+sep_local+'..'+sep_local+'..'+sep_local+'..'+sep_local+'..') print(os.getcwd()) import tensorflow as tf print(tf.__version__)
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Dataset loading
dataset_name='pokemon' images_dir = 'C:\\Users\\Khalid\\Documents\projects\\pokemon\DS06\\' validation_percentage = 20 valid_format = 'png' from training.generators.file_image_generator import create_image_lists, get_generators imgs_list = create_image_lists( image_dir=images_dir, validation_pct=validation_percentage, valid_imgae_formats=valid_format ) inputs_shape= image_size=(200, 200, 3) batch_size = 32 latents_dim = 32 intermediate_dim = 50 training_generator, testing_generator = get_generators( images_list=imgs_list, image_dir=images_dir, image_size=image_size, batch_size=batch_size, class_mode=None ) import tensorflow as tf train_ds = tf.data.Dataset.from_generator( lambda: training_generator, output_types=tf.float32 , output_shapes=tf.TensorShape((batch_size, ) + image_size) ) test_ds = tf.data.Dataset.from_generator( lambda: testing_generator, output_types=tf.float32 , output_shapes=tf.TensorShape((batch_size, ) + image_size) ) _instance_scale=1.0 for data in train_ds: _instance_scale = float(data[0].numpy().max()) break _instance_scale import numpy as np from collections.abc import Iterable if isinstance(inputs_shape, Iterable): _outputs_shape = np.prod(inputs_shape) _outputs_shape
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Model's Layers definition
units=20 c=50 enc_lays = [ tf.keras.layers.Conv2D(filters=units, kernel_size=3, strides=(2, 2), activation='relu'), tf.keras.layers.Conv2D(filters=units*9, kernel_size=3, strides=(2, 2), activation='relu'), tf.keras.layers.Flatten(), # No activation tf.keras.layers.Dense(latents_dim) ] dec_lays = [ tf.keras.layers.Dense(units=c*c*units, activation=tf.nn.relu), tf.keras.layers.Reshape(target_shape=(c , c, units)), tf.keras.layers.Conv2DTranspose(filters=units, kernel_size=3, strides=(2, 2), padding="SAME", activation='relu'), tf.keras.layers.Conv2DTranspose(filters=units*3, kernel_size=3, strides=(2, 2), padding="SAME", activation='relu'), # No activation tf.keras.layers.Conv2DTranspose(filters=3, kernel_size=3, strides=(1, 1), padding="SAME") ]
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Model definition
model_name = dataset_name+'AE_Convolutional_reconst_1ell_01psnr' experiments_dir='experiments'+sep_local+model_name from training.autoencoding_basic.autoencoders.autoencoder import autoencoder as AE inputs_shape=image_size variables_params = \ [ { 'name': 'inference', 'inputs_shape':inputs_shape, 'outputs_shape':latents_dim, 'layers': enc_lays } , { 'name': 'generative', 'inputs_shape':latents_dim, 'outputs_shape':inputs_shape, 'layers':dec_lays } ] from utils.data_and_files.file_utils import create_if_not_exist _restore = os.path.join(experiments_dir, 'var_save_dir') create_if_not_exist(_restore) _restore #to restore trained model, set filepath=_restore ae = AE( name=model_name, latents_dim=latents_dim, batch_size=batch_size, variables_params=variables_params, filepath=None ) from evaluation.quantitive_metrics.peak_signal_to_noise_ratio import prepare_psnr from statistical.losses_utilities import similarty_to_distance from statistical.ae_losses import expected_loglikelihood_with_lower_bound as ellwlb ae.compile(loss={'x_logits': lambda x_true, x_logits: ellwlb(x_true, x_logits)+ 0.1*similarity_to_distance(prepare_psnr([ae.batch_size]+ae.get_inputs_shape()))(x_true, x_logits)})
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Callbacks
from training.callbacks.sample_generation import SampleGeneration from training.callbacks.save_model import ModelSaver es = tf.keras.callbacks.EarlyStopping( monitor='loss', min_delta=1e-12, patience=12, verbose=1, restore_best_weights=False ) ms = ModelSaver(filepath=_restore) csv_dir = os.path.join(experiments_dir, 'csv_dir') create_if_not_exist(csv_dir) csv_dir = os.path.join(csv_dir, ae.name+'.csv') csv_log = tf.keras.callbacks.CSVLogger(csv_dir, append=True) csv_dir image_gen_dir = os.path.join(experiments_dir, 'image_gen_dir') create_if_not_exist(image_gen_dir) sg = SampleGeneration(latents_shape=latents_dim, filepath=image_gen_dir, gen_freq=5, save_img=True, gray_plot=False)
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Model Training
ae.fit( x=train_ds, input_kw=None, steps_per_epoch=int(1e4), epochs=int(1e6), verbose=2, callbacks=[ es, ms, csv_log, sg], workers=-1, use_multiprocessing=True, validation_data=test_ds, validation_steps=int(1e4) )
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Model Evaluation inception_score
from evaluation.generativity_metrics.inception_metrics import inception_score is_mean, is_sigma = inception_score(ae, tolerance_threshold=1e-6, max_iteration=200) print(f'inception_score mean: {is_mean}, sigma: {is_sigma}')
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Frechet_inception_distance
from evaluation.generativity_metrics.inception_metrics import frechet_inception_distance fis_score = frechet_inception_distance(ae, training_generator, tolerance_threshold=1e-6, max_iteration=10, batch_size=32) print(f'frechet inception distance: {fis_score}')
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
perceptual_path_length_score
from evaluation.generativity_metrics.perceptual_path_length import perceptual_path_length_score ppl_mean_score = perceptual_path_length_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200, batch_size=32) print(f'perceptual path length score: {ppl_mean_score}')
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
precision score
from evaluation.generativity_metrics.precision_recall import precision_score _precision_score = precision_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200) print(f'precision score: {_precision_score}')
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
recall score
from evaluation.generativity_metrics.precision_recall import recall_score _recall_score = recall_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200) print(f'recall score: {_recall_score}')
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Image Generation image reconstruction Training dataset
%load_ext autoreload %autoreload 2 from training.generators.image_generation_testing import reconstruct_from_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'reconstruct_training_images_like_a_batch_dir') create_if_not_exist(save_dir) reconstruct_from_a_batch(ae, training_generator, save_dir) from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'reconstruct_testing_images_like_a_batch_dir') create_if_not_exist(save_dir) reconstruct_from_a_batch(ae, testing_generator, save_dir)
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
with Randomness
from training.generators.image_generation_testing import generate_images_like_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'generate_training_images_like_a_batch_dir') create_if_not_exist(save_dir) generate_images_like_a_batch(ae, training_generator, save_dir) from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'generate_testing_images_like_a_batch_dir') create_if_not_exist(save_dir) generate_images_like_a_batch(ae, testing_generator, save_dir)
_____no_output_____
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Complete Randomness
from training.generators.image_generation_testing import generate_images_randomly from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'random_synthetic_dir') create_if_not_exist(save_dir) generate_images_randomly(ae, save_dir) from training.generators.image_generation_testing import interpolate_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'interpolate_dir') create_if_not_exist(save_dir) interpolate_a_batch(ae, testing_generator, save_dir)
100%|██████████| 15/15 [00:00<00:00, 19.90it/s]
MIT
notebooks/pokemon/basic/convolutional/AE/pokemonAE_Convolutional_reconst_1ellwlb_01psnr.ipynb
Fidan13/Generative_Models
Compute ICA on MEG data and remove artifacts============================================ICA is fit to MEG raw data.The sources matching the ECG and EOG are automatically found and displayed.Subsequently, artifact detection and rejection quality are assessed.
# Authors: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import mne from mne.preprocessing import ICA from mne.preprocessing import create_ecg_epochs, create_eog_epochs from mne.datasets import sample
_____no_output_____
BSD-3-Clause
0.16/_downloads/plot_ica_from_raw.ipynb
drammock/mne-tools.github.io
Setup paths and prepare raw data.
data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(1, None, fir_design='firwin') # already lowpassed @ 40 raw.annotations = mne.Annotations([1], [10], 'BAD') raw.plot(block=True) # For the sake of example we annotate first 10 seconds of the recording as # 'BAD'. This part of data is excluded from the ICA decomposition by default. # To turn this behavior off, pass ``reject_by_annotation=False`` to # :meth:`mne.preprocessing.ICA.fit`. raw.annotations = mne.Annotations([0], [10], 'BAD')
_____no_output_____
BSD-3-Clause
0.16/_downloads/plot_ica_from_raw.ipynb
drammock/mne-tools.github.io
1) Fit ICA model using the FastICA algorithm.Other available choices are ``picard``, ``infomax`` or ``extended-infomax``.NoteThe default method in MNE is FastICA, which along with Infomax is one of the most widely used ICA algorithm. Picard is a new algorithm that is expected to converge faster than FastICA and Infomax, especially when the aim is to recover accurate maps with a low tolerance parameter, see [1]_ for more information.We pass a float value between 0 and 1 to select n_components based on thepercentage of variance explained by the PCA components.
ica = ICA(n_components=0.95, method='fastica', random_state=0, max_iter=100) picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude='bads') ica.fit(raw, picks=picks, decim=3, reject=dict(mag=4e-12, grad=4000e-13), verbose='warning') # low iterations -> does not fully converge # maximum number of components to reject n_max_ecg, n_max_eog = 3, 1 # here we don't expect horizontal EOG components
_____no_output_____
BSD-3-Clause
0.16/_downloads/plot_ica_from_raw.ipynb
drammock/mne-tools.github.io
2) identify bad components by analyzing latent sources.
title = 'Sources related to %s artifacts (red)' # generate ECG epochs use detection via phase statistics ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=picks) ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps') ica.plot_scores(scores, exclude=ecg_inds, title=title % 'ecg', labels='ecg') show_picks = np.abs(scores).argsort()[::-1][:5] ica.plot_sources(raw, show_picks, exclude=ecg_inds, title=title % 'ecg') ica.plot_components(ecg_inds, title=title % 'ecg', colorbar=True) ecg_inds = ecg_inds[:n_max_ecg] ica.exclude += ecg_inds # detect EOG by correlation eog_inds, scores = ica.find_bads_eog(raw) ica.plot_scores(scores, exclude=eog_inds, title=title % 'eog', labels='eog') show_picks = np.abs(scores).argsort()[::-1][:5] ica.plot_sources(raw, show_picks, exclude=eog_inds, title=title % 'eog') ica.plot_components(eog_inds, title=title % 'eog', colorbar=True) eog_inds = eog_inds[:n_max_eog] ica.exclude += eog_inds
_____no_output_____
BSD-3-Clause
0.16/_downloads/plot_ica_from_raw.ipynb
drammock/mne-tools.github.io
3) Assess component selection and unmixing quality.
# estimate average artifact ecg_evoked = ecg_epochs.average() ica.plot_sources(ecg_evoked, exclude=ecg_inds) # plot ECG sources + selection ica.plot_overlay(ecg_evoked, exclude=ecg_inds) # plot ECG cleaning eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average() ica.plot_sources(eog_evoked, exclude=eog_inds) # plot EOG sources + selection ica.plot_overlay(eog_evoked, exclude=eog_inds) # plot EOG cleaning # check the amplitudes do not change ica.plot_overlay(raw) # EOG artifacts remain # To save an ICA solution you can say: # ica.save('my_ica.fif') # You can later load the solution by saying: # from mne.preprocessing import read_ica # read_ica('my_ica.fif') # Apply the solution to Raw, Epochs or Evoked like this: # ica.apply(epochs)
_____no_output_____
BSD-3-Clause
0.16/_downloads/plot_ica_from_raw.ipynb
drammock/mne-tools.github.io
Torch Hub Inference TutorialIn this tutorial you'll learn:- how to load a pretrained model using Torch Hub - run inference to classify the action in a demo video Install and Import modules If `torch`, `torchvision` and `pytorchvideo` are not installed, run the following cell:
try: import torch except ModuleNotFoundError: !pip install torch torchvision import os import sys import torch if torch.__version__=='1.6.0+cu101' and sys.platform.startswith('linux'): !pip install pytorchvideo else: need_pytorchvideo=False try: # Running notebook locally import pytorchvideo except ModuleNotFoundError: need_pytorchvideo=True if need_pytorchvideo: # Install from GitHub !pip install "git+https://github.com/facebookresearch/pytorchvideo.git" import json from torchvision.transforms import Compose, Lambda from torchvision.transforms._transforms_video import ( CenterCropVideo, NormalizeVideo, ) from pytorchvideo.data.encoded_video import EncodedVideo from pytorchvideo.transforms import ( ApplyTransformToKey, ShortSideScale, UniformTemporalSubsample, UniformCropVideo ) from typing import Dict
_____no_output_____
Apache-2.0
tutorials/torchhub_inference_tutorial.ipynb
Spencer551/pytorchvideo
Setup Download the id to label mapping for the Kinetics 400 dataset on which the Torch Hub models were trained. This will be used to get the category label names from the predicted class ids.
!wget https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json with open("kinetics_classnames.json", "r") as f: kinetics_classnames = json.load(f) # Create an id to label name mapping kinetics_id_to_classname = {} for k, v in kinetics_classnames.items(): kinetics_id_to_classname[v] = str(k).replace('"', "")
_____no_output_____
Apache-2.0
tutorials/torchhub_inference_tutorial.ipynb
Spencer551/pytorchvideo
Load Model using Torch Hub APIPyTorchVideo provides several pretrained models through Torch Hub. Available models are described in [model zoo documentation](https://github.com/facebookresearch/pytorchvideo/blob/main/docs/source/model_zoo.mdkinetics-400). Here we are selecting the `slowfast_r50` model which was trained using a 8x8 setting on the Kinetics 400 dataset. NOTE: to run on GPU in Google Colab, in the menu bar selet: Runtime -> Change runtime type -> Harware Accelerator -> GPU
# Device on which to run the model # Set to cuda to load on GPU device = "cpu" # Pick a pretrained model model_name = "slowfast_r50" model = torch.hub.load("facebookresearch/pytorchvideo:main", model=model_name, pretrained=True) # Set to eval mode and move to desired device model = model.to(device) model = model.eval()
_____no_output_____
Apache-2.0
tutorials/torchhub_inference_tutorial.ipynb
Spencer551/pytorchvideo
Define the transformations for the input required by the modelBefore passing the video into the model we need to apply some input transforms and sample a clip of the correct duration.NOTE: The input transforms are specific to the model. If you choose a different model than the example in this tutorial, please refer to the code provided in the Torch Hub documentation and copy over the relevant transforms:- [SlowFast](https://pytorch.org/hub/facebookresearch_pytorchvideo_slowfast/)- [X3D](https://pytorch.org/hub/facebookresearch_pytorchvideo_x3d/)- [Slow](https://pytorch.org/hub/facebookresearch_pytorchvideo_resnet/)
#################### # SlowFast transform #################### side_size = 256 mean = [0.45, 0.45, 0.45] std = [0.225, 0.225, 0.225] crop_size = 256 num_frames = 32 sampling_rate = 2 frames_per_second = 30 alpha = 4 class PackPathway(torch.nn.Module): """ Transform for converting video frames as a list of tensors. """ def __init__(self): super().__init__() def forward(self, frames: torch.Tensor): fast_pathway = frames # Perform temporal sampling from the fast pathway. slow_pathway = torch.index_select( frames, 1, torch.linspace( 0, frames.shape[1] - 1, frames.shape[1] // alpha ).long(), ) frame_list = [slow_pathway, fast_pathway] return frame_list transform = ApplyTransformToKey( key="video", transform=Compose( [ UniformTemporalSubsample(num_frames), Lambda(lambda x: x/255.0), NormalizeVideo(mean, std), ShortSideScale( size=side_size ), CenterCropVideo(crop_size), PackPathway() ] ), ) # The duration of the input clip is also specific to the model. clip_duration = (num_frames * sampling_rate)/frames_per_second
_____no_output_____
Apache-2.0
tutorials/torchhub_inference_tutorial.ipynb
Spencer551/pytorchvideo
Load an example videoWe can test the classification of an example video from the kinetics validation set such as this [archery video](https://www.youtube.com/watch?v=3and4vWkW4s).
# Download the example video file !wget https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4 # Load the example video video_path = "archery.mp4" # Select the duration of the clip to load by specifying the start and end duration # The start_sec should correspond to where the action occurs in the video start_sec = 0 end_sec = start_sec + clip_duration # Initialize an EncodedVideo helper class video = EncodedVideo.from_path(video_path) # Load the desired clip video_data = video.get_clip(start_sec=start_sec, end_sec=end_sec) # Apply a transform to normalize the video input video_data = transform(video_data) # Move the inputs to the desired device inputs = video_data["video"] inputs = [i.to(device)[None, ...] for i in inputs]
_____no_output_____
Apache-2.0
tutorials/torchhub_inference_tutorial.ipynb
Spencer551/pytorchvideo
Get model predictions
# Pass the input clip through the model preds = model(inputs) # Get the predicted classes post_act = torch.nn.Softmax(dim=1) preds = post_act(preds) pred_classes = preds.topk(k=5).indices # Map the predicted classes to the label names pred_class_names = [kinetics_id_to_classname[int(i)] for i in pred_classes[0]] print("Predicted labels: %s" % ", ".join(pred_class_names))
_____no_output_____
Apache-2.0
tutorials/torchhub_inference_tutorial.ipynb
Spencer551/pytorchvideo
ANN Metrics
def recall(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1(y_true, y_pred): myPrecision = precision(y_true, y_pred) myRecall = recall(y_true, y_pred) return 2*((myPrecision*myRecall)/(myPrecision+myRecall+K.epsilon()))
_____no_output_____
MIT
Boda/ensemble/NN.ipynb
UVA-DSI-2019-Capstones/UVACyber
ANN Model
tests[tests.label == 1] df = pd.read_csv('/scratch/by8jj/stratified samples/ensemble model/file.csv') len(df) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(df.drop('label', axis = 1), df.label, test_size=0.2) X_train['label'] = y_train X_train df_mal = X_train[X_train['label'] == 1] df_ben = X_train[X_train['label'] == 0].sample(frac = 1)[:len(df_mal)] df_bal = pd.concat([df_mal, df_ben]).sample(frac = 1) df_bal y = df_bal.label.tolist() X = np.matrix(df_bal.drop(labels = ['label'], axis = 1)).astype(np.float) print(X.shape) model = models.Sequential() model.add(Dense(2, input_dim=4, kernel_initializer='uniform', activation='relu')) model.add(Dropout(0.4)) model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid')) adam = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0000002, amsgrad=False) model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy',f1,recall,precision]) result = model.fit(X, y, epochs=20, batch_size=256, verbose=1, validation_split=0.3) y_pred = model.predict(np.matrix(X_test).astype(np.float)) y_pred = [x[0] for x in y_pred] temp = [x if x>0.5 else 0 for x in y_pred] pred = pd.DataFrame({'test':y_test, 'pred': y_pred}) pred temp = [1 if x>0.8 else 0 for x in y_pred] cm= confusion_matrix(y_test, temp) tn, fp, fn, tp = cm.ravel() precision=tp/(tp+fp) recall=tp/(tp+fn) fpr = fp/(fp+ tn) accuracy = (tp + tn)/(tn + tp + fn + fp) F1 = 2 * (precision * recall) / (precision + recall) print("precision:", precision*100) print("recall:", recall*100) print("false positive rate:", fpr*100) print("accuracy", accuracy*100) print("F1-score", F1)
precision: 81.6491971891807 recall: 89.35790853042899 false positive rate: 1.0073213698881054 accuracy 98.5325078797032 F1-score 0.8532980501964162
MIT
Boda/ensemble/NN.ipynb
UVA-DSI-2019-Capstones/UVACyber
Submitting various things for end of grant.
import os import sys import requests import pandas import paramiko import json from IPython import display from curation_common import * from htsworkflow.submission.encoded import DCCValidator PANDAS_ODF = os.path.expanduser('~/src/pandasodf') if PANDAS_ODF not in sys.path: sys.path.append(PANDAS_ODF) from pandasodf import ODFReader from htsworkflow.submission.encoded import Document from htsworkflow.submission.aws_submission import run_aws_cp # live server & control file server = ENCODED('www.encodeproject.org') spreadsheet_name = os.path.expanduser('~diane/woldlab/ENCODE/10x_mouse_limb_20181219.ods') # test server & datafile #server = ENCODED('test.encodedcc.org') #spreadsheet_name = os.path.expanduser('~diane/woldlab/ENCODE/10x_mouse_limb_20181219-testserver.ods') server.load_netrc() validator = DCCValidator(server) award = 'UM1HG009443'
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Submit Documents Example Document submission
#atac_uuid = '0fc44318-b802-474e-8199-f3b6d708eb6f' #atac = Document(os.path.expanduser('~/proj/encode3-curation/Wold_Lab_ATAC_Seq_protocol_December_2016.pdf'), # 'general protocol', # 'ATAC-Seq experiment protocol for Wold lab', # ) #body = atac.create_if_needed(server, atac_uuid) #print(body['@id'])
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Submit Annotations
#sheet = gcat.get_file(spreadsheet_name, fmt='pandas_excel') #annotations = sheet.parse('Annotations', header=0) #created = server.post_sheet('/annotations/', annotations, verbose=True, dry_run=True) #print(len(created)) #if created: # annotations.to_excel('/tmp/annotations.xlsx', index=False)
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Register Biosamples
book = ODFReader(spreadsheet_name) biosample = book.parse('Biosample', header=0) created = server.post_sheet('/biosamples/', biosample, verbose=True, dry_run=True, validator=validator) print(len(created)) if created: biosample.to_excel('/dev/shm/biosamples.xlsx', index=False)
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Register Libraries
print(spreadsheet_name) book = ODFReader(spreadsheet_name) libraries = book.parse('Library', header=0) created = server.post_sheet('/libraries/', libraries, verbose=True, dry_run=True, validator=validator) print(len(created)) if created: libraries.to_excel('/dev/shm/libraries.xlsx', index=False)
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Register Experiments
book = ODFReader(spreadsheet_name) experiments = book.parse('Experiment', header=0) created = server.post_sheet('/experiments/', experiments, verbose=True, dry_run=False, validator=validator) print(len(created)) if created: experiments.to_excel('/dev/shm/experiments.xlsx', index=False)
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Register Replicates
book = ODFReader(spreadsheet_name) replicates = book.parse('Replicate', header=0) created = server.post_sheet('/replicates/', replicates, verbose=True, dry_run=True, validator=validator) print(len(created)) if created: replicates.to_excel('/dev/shm/replicates.xlsx', index=False)
_____no_output_____
BSD-3-Clause
10x-3-to-13-submission.ipynb
detrout/encode4-curation
Image extraction from folders and creating image set
def CreateTrainSet(positive_path, negative_path, IMAGE_WIDTH, IMAGE_HEIGHT, Positive_Images=1200): # getting all file names from positive path positives = os.listdir(positive_path) positive_files = [os.path.join(positive_path, file_name) for file_name in positives if file_name.endswith('.jpg')] positive_files.sort() # getting all file names from negative path negatives = os.listdir(negative_path) negative_files = [os.path.join(negative_path, file_name) for file_name in negatives if file_name.endswith('.jpg')] negative_files.sort() # creating train label np array for pos=0 and neg=1 pos_labels = np.zeros(Positive_Images) neg_labels = np.ones(len(negative_files)) train_labels = np.concatenate((pos_labels, neg_labels), axis=0).astype(int) # add positive images to train_image np array pos_images = np.zeros((Positive_Images, IMAGE_HEIGHT, IMAGE_WIDTH)) for filename in positive_files[0: Positive_Images]: img = cv2.imread(filename, 0) img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT)) pos_images[positive_files.index(filename)] = img # add negative images to train_image np array neg_images = np.zeros((len(negative_files), IMAGE_HEIGHT, IMAGE_WIDTH)) for filename in negative_files: img = cv2.imread(filename, 0) img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT)) neg_images[negative_files.index(filename)] = img train_images = np.zeros((len(positive_files)+len(negative_files), IMAGE_HEIGHT, IMAGE_WIDTH)) train_images = np.concatenate((pos_images, neg_images), axis=0).astype(int) return train_images, train_labels Positive_Images = 1200 print(f"Path exists: {os.path.isdir(positive_path) and os.path.isdir(negative_path)}") IMAGE_WIDTH = 64 IMAGE_HEIGHT = 128 R_train_images, train_labels = CreateTrainSet(positive_path, negative_path, IMAGE_WIDTH, IMAGE_HEIGHT, Positive_Images) print("train_images: ", R_train_images.shape) print("train_labels: ", train_labels.shape) print(R_train_images[0]) print(train_labels[0]) print(R_train_images[-1]) print(train_labels[-1])
Path exists: True train_images: (1480, 128, 64) train_labels: (1480,) [[196 197 201 ... 124 119 117] [195 197 200 ... 125 118 115] [195 196 200 ... 126 116 111] ... [181 181 181 ... 182 181 181] [178 178 177 ... 184 184 184] [176 176 175 ... 186 186 186]] 0 [[198 198 197 ... 123 113 106] [196 196 196 ... 121 115 113] [194 194 194 ... 121 123 128] ... [247 247 246 ... 246 245 245] [250 250 248 ... 244 244 244] [247 247 246 ... 246 247 247]] 1
MIT
Part2.ipynb
ismailfaruk/ECSE415-Final-Project
Getting Hog features and creating training feature set
# returns HoG features, and orderd features def HoG_features(images): cell_size = (8,8) block_size = (4,4) nbins = 4 # all images have same shape img_size = images[0].shape # creating HoG object hog = cv2.HOGDescriptor(_winSize=(img_size[1] // cell_size[1] * cell_size[1], img_size[0] // cell_size[0] * cell_size[0]), _blockSize=(block_size[1] * cell_size[1], block_size[0] * cell_size[0]), _blockStride=(cell_size[1], cell_size[0]), _cellSize=(cell_size[1], cell_size[0]), _nbins=nbins) features = [] for i in range(images.shape[0]): # Compute HoG features features.append(hog.compute((images[i]).astype(np.uint8)).reshape(1, -1)) # Stack arrays in sequence vertically features = np.vstack(features) return features # getting HoG features train_features = HoG_features(R_train_images) print("trained_features_reshaped: ", train_features.shape) print("trained_features_reshaped[0]: ", train_features[0])
trained_features_reshaped: (1480, 4160) trained_features_reshaped[0]: [0.03915166 0.0065741 0.00676362 ... 0.0232183 0.02239115 0.00087363]
MIT
Part2.ipynb
ismailfaruk/ECSE415-Final-Project
Non-linear SVM Classifier
def NonLinear_SVM(train_features, train_labels, gamma, C, random_state=None): # creating non-linear svc object, RBF kernel is default clf = svm.SVC(C=C, gamma=gamma, random_state=random_state) # fit and predict clf.fit(train_features, train_labels) return clf def predict(clf, test_features, test_labels): predict = clf.predict(test_features) # using accruacy score from metrics lib and multiply 100 to get precentage accuracy = accuracy_score(test_labels, predict)*100 return accuracy
_____no_output_____
MIT
Part2.ipynb
ismailfaruk/ECSE415-Final-Project
1 Fold Validation
k_fold = 5 pos_count = Positive_Images neg_count = 280 pos_train_split = int(pos_count*4/k_fold) neg_train_split = int(pos_count+neg_count*4/k_fold) print(f"train_size: {pos_train_split+neg_train_split-pos_count}") print(f"test_size: {pos_count-pos_train_split+neg_count-neg_train_split+pos_count}") # splitting all pos and neg into 4/5 for train and 1/5 split for test train_features_split = np.concatenate((train_features[: pos_train_split], train_features[pos_count: neg_train_split]), axis=0) train_labels_split = np.concatenate((train_labels[: pos_train_split], train_labels[pos_count: neg_train_split]), axis=0) val_features_split = np.concatenate((train_features[pos_train_split:pos_count], train_features[neg_train_split:]), axis=0) val_labels_split = np.concatenate((train_labels[pos_train_split:pos_count], train_labels[neg_train_split:]), axis=0) print(f"train_split: {train_features_split.shape} and {train_labels_split.shape}") print(f"val_split: {val_features_split.shape} and {val_labels_split.shape}") MIN_ACCURACY = 50 GammaList = ['auto', 'scale'] C_List = [0.01, 0.1, 1, 10, 100, 1000] Best_SVM = {"gamma":None, "C":None, "accuracy":0} for gamma in GammaList: for C in C_List: clf = NonLinear_SVM(train_features_split, train_labels_split, gamma, C) accuracy = predict(clf, val_features_split, val_labels_split) if round(accuracy, 2) > MIN_ACCURACY: print(f"Gamma: {gamma}, C: {C}, Accuracy: {round(accuracy, 2)}%") if round(accuracy, 2) > Best_SVM["accuracy"]: Best_SVM["gamma"] = gamma Best_SVM["C"] = C Best_SVM["accuracy"] = round(accuracy, 2) print("Best parameters: ", Best_SVM)
_____no_output_____
MIT
Part2.ipynb
ismailfaruk/ECSE415-Final-Project
5 Fold Cross Validation
def k_fold_SVC(train_features, train_labels, train_index, val_index, k_folds): total_accuracy = 0 for i in range(k_folds): x_train, x_val = train_features[train_index], train_features[val_index] y_train, y_val = train_labels[train_index], train_labels[val_index] clf = NonLinear_SVM(x_train, y_train, gamma, C) total_accuracy += predict(clf, x_val, y_val) avg_accuracy = total_accuracy/k_folds return avg_accuracy # 5 fold cross validation dataset k_folds = 5 kf = KFold(n_splits=k_folds, shuffle=True) kf.get_n_splits(train_features) MIN_ACCURACY = 50 GammaList = ['auto', 'scale'] C_List = [0.01, 0.1, 1, 10, 100, 1000] Best_SVM = {"gamma":None, "C":None, "accuracy":0} for gamma in GammaList: for C in C_List: start_time = time.time() for train_index, val_index in kf.split(train_features): accuracy = k_fold_SVC(train_features, train_labels, train_index, val_index, 5) time_taken = (time.time() - (start_time))/k_folds if round(accuracy, 2) > MIN_ACCURACY: print(f"Gamma: {gamma}, C: {C}, Accuracy: {round(accuracy, 2)}%, time taken to train/test: {round(time_taken, 2)}") if round(accuracy, 2) > Best_SVM["accuracy"]: Best_SVM["gamma"] = gamma Best_SVM["C"] = C Best_SVM["accuracy"] = round(accuracy, 2) print("Best parameters: ", Best_SVM)
_____no_output_____
MIT
Part2.ipynb
ismailfaruk/ECSE415-Final-Project
Using Optimal Paramaeters for SVM Classifier
# Optimal SVM Classifer gamma = "scale" C = 10 Optimal_Clf = NonLinear_SVM(train_features_split, train_labels_split, gamma, C) accuracy = predict(clf, val_features_split, val_labels_split) print(f"Gamma: {gamma}, C: {C}, Accuracy: {round(accuracy, 2)}%")
Gamma: scale, C: 10, Accuracy: 96.62%
MIT
Part2.ipynb
ismailfaruk/ECSE415-Final-Project