markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Visualize the new (upsampled) raw data: | fig,axes=plt.subplots(nrows=2,figsize=(8,6),sharex=True)
iiplot=np.arange(0,60*upsampfactor) # bins of stimulus to plot
ttplot=iiplot*dtStimhi # time bins of stimulus
axes[0].plot(ttplot,Stimhi[iiplot])
axes[0].set_title('raw stimulus (fine time bins)')
axes[0].set_ylabel('stim intensity')
# Should notice stimulus now constant for many bins in a row
sps,_=np.histogram(tsp,ttgridhi) # Bin the spike train and replot binned counts
axes[1].stem(ttplot,sps[iiplot])
axes[1].set_title('binned spike counts')
axes[1].set_ylabel('spike count')
axes[1].set_xlabel('time (s)')
axes[1].set_xlim(ttplot[0],ttplot[-1]) | <ipython-input-36-97db7153fd27>:9: UserWarning: In Matplotlib 3.3 individual lines on a stem plot will be added as a LineCollection instead of individual lines. This significantly improves the performance of a stem plot. To remove this warning and switch to the new behaviour, set the "use_line_collection" keyword argument to True.
axes[1].stem(ttplot,sps[iiplot])
| MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Divide data into "training" and "test" sets for cross-validation | trainfrac = .8 # fraction of data to use for training
ntrain = int(np.ceil(nThi*trainfrac)) # number of training samples
ntest = int(nThi-ntrain) # number of test samples
iitest = np.arange(ntest).astype(int) # time indices for test
iitrain = np.arange(ntest,nThi).astype(int) # time indices for training
stimtrain = Stimhi[iitrain] # training stimulus
stimtest = Stimhi[iitest] # test stimulus
spstrain = sps[iitrain]
spstest = sps[iitest]
print('Dividing data into training and test sets:\n')
print('Training: %d samples (%d spikes) \n'%(ntrain, sum(spstrain)))
print(' Test: %d samples (%d spikes)\n'%(ntest, sum(spstest))) | Dividing data into training and test sets:
Training: 28800 samples (2109 spikes)
Test: 7200 samples (557 spikes)
| MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Set the number of time bins of stimulus to use for predicting spikes | ntfilt = 20*upsampfactor # Try varying this, to see how performance changes! | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
build the design matrix, training data | Xtrain = np.c_[
np.ones((ntrain,1)),
hankel(np.r_[np.zeros(ntfilt-1),stimtrain[:-ntfilt+1]].reshape(-1,1),stimtrain[-ntfilt:])] | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Build design matrix for test data | Xtest = np.c_[
np.ones((ntest,1)),
hankel(np.r_[np.zeros(ntfilt-1),stimtest[:-ntfilt+1]].reshape(-1,1),stimtest[-ntfilt:])] | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Fit poisson GLM using ML Compute maximum likelihood estimate (using `scipy.optimize.fmin` instead of `sm.GLM`) | sta = (Xtrain.T@spstrain)/np.sum(spstrain) # compute STA for initialization | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Make loss function and minimize | jac_neglogli_poissGLM?
lossfun=lambda prs:neglogli_poissGLM(prs,Xtrain,spstrain,dtStimhi)
jacfun=lambda prs:jac_neglogli_poissGLM(prs,Xtrain,spstrain,dtStimhi)
hessfun=lambda prs:hess_neglogli_poissGLM(prs,Xtrain,spstrain,dtStimhi)
filtML=minimize(lossfun,x0=sta,method='trust-ncg',jac=jacfun, hess=hessfun).x
ttk=np.arange(-ntfilt+1,1)*dtStimhi
fig,axes=plt.subplots()
axes.plot(ttk,ttk*0,'k')
axes.plot(ttk,filtML[1:])
axes.set_xlabel('time before spike')
axes.set_ylabel('coefficient')
axes.set_title('Maximum likelihood filter estimate')
# % Looks bad due to lack of regularization! | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Ridge regression prior Now let's regularize by adding a penalty on the sum of squared filtercoefficients w(i) of the form: penalty(lambda) = lambda*(sum_i w(i).^2),where lambda is known as the "ridge" parameter. As noted in tutorial3,this is equivalent to placing an iid zero-mean Gaussian prior on the RFcoefficients with variance equal to 1/lambda. Lambda is thus the inversevariance or "precision" of the prior.To set lambda, we'll try a grid of values and usecross-validation (test error) to select which is best. Set up grid of lambda values (ridge parameters) | lamvals = 2.**np.arange(0,11,1) # it's common to use a log-spaced set of values
nlam = len(lamvals) | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Precompute some quantities (X'X and X'*y) for training and test data | Imat = np.eye(ntfilt+1) # identity matrix of size of filter + const
Imat[0,0] = 0 # remove penalty on constant dc offset | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Allocate space for train and test errors | negLtrain = np.zeros(nlam) # training error
negLtest = np.zeros(nlam) # test error
w_ridge = np.zeros((ntfilt+1,nlam)) # filters for each lambda | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Define train and test log-likelihood funcs | negLtrainfun = lambda prs:neglogli_poissGLM(prs,Xtrain,spstrain,dtStimhi)
jac_negLtrainfun = lambda prs:jac_neglogli_poissGLM(prs,Xtrain,spstrain,dtStimhi)
hess_negLtrainfun = lambda prs:hess_neglogli_poissGLM(prs,Xtrain,spstrain,dtStimhi)
negLtestfun = lambda prs:neglogli_poissGLM(prs,Xtest,spstest,dtStimhi)
jac_negLtestfun = lambda prs:jac_neglogli_poissGLM(prs,Xtest,spstest,dtStimhi)
hess_negLtestfun = lambda prs:hess_neglogli_poissGLM(prs,Xtest,spstest,dtStimhi) | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Now compute MAP estimate for each ridge parameter | wmap = filtML # initialize parameter estimate
fig,axes=plt.subplots()
axes.plot(ttk,ttk*0,'k') # initialize plot
for jj in range(nlam):
# Compute ridge-penalized MAP estimate
Cinv = lamvals[jj]*Imat # set inverse prior covariance
lossfun = lambda prs:neglogposterior(prs,negLtrainfun,Cinv)
jacfun=lambda prs:jac_neglogposterior(prs,jac_negLtrainfun,Cinv)
hessfun=lambda prs:hessian_neglogposterior(prs,hess_negLtrainfun,Cinv)
wmap=minimize(lossfun,x0=wmap,method='trust-ncg',jac=jacfun,hess=hessfun).x
# Compute negative logli
negLtrain[jj] = negLtrainfun(wmap) # training loss
negLtest[jj] = negLtestfun(wmap) # test loss
# store the filter
w_ridge[:,jj] = wmap
# plot it
axes.plot(ttk,wmap[1:])
axes.set_title(['ridge estimate: lambda = %.2f'%lamvals[jj]])
axes.set_xlabel('time before spike (s)')
# note that the esimate "shrinks" down as we increase lambda | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Plot filter estimates and errors for ridge estimates | fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(8,8))
axes[0,1].plot(ttk,w_ridge[1:,:])
axes[0,1].set_title('all ridge estimates')
axes[0,0].semilogx(lamvals,-negLtrain,'o-')
axes[0,0].set_title('training logli')
axes[1,0].semilogx(lamvals,-negLtest,'o-')
axes[1,0].set_title('test logli')
axes[1,0].set_xlabel('lambda')
# Notice that training error gets monotonically worse as we increase lambda
# However, test error has an dip at some optimal, intermediate value.
# Determine which lambda is best by selecting one with lowest test error
imin = np.argmin(negLtest)
filt_ridge= w_ridge[1:,imin]
axes[1,1].plot(ttk,ttk*0, 'k--')
axes[1,1].set_xlabel('time before spike (s)')
axes[1,1].set_title('best ridge estimate') | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
L2 smoothing prior Use penalty on the squared differences between filter coefficients,penalizing large jumps between successive filter elements. This isequivalent to placing an iid zero-mean Gaussian prior on the incrementsbetween filter coeffs. (See tutorial 3 for visualization of the priorcovariance).This matrix computes differences between adjacent coeffs | Dx1 = (np.diag(-np.ones(ntfilt),0)+np.diag(np.ones(ntfilt-1),1))[:-1,:]
Dx = Dx1.T@Dx1 # computes squared diffs | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Select smoothing penalty by cross-validation | lamvals = 2**np.arange(1,15) # grid of lambda values (ridge parameters)
nlam = len(lamvals) | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Embed `Dx` matrix in matrix with one extra row/column for constant coeff | D = block_diag(0,Dx) | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Allocate space for train and test errors | negLtrain_sm = np.zeros(nlam) # training error
negLtest_sm = np.zeros(nlam) # test error
w_smooth = np.zeros((ntfilt+1,nlam)) # filters for each lambda | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Now compute MAP estimate for each ridge parameter | fig,axes=plt.subplots()
axes.plot(ttk,ttk*0,'k') # initialize plot
wmap=filtML # initialize with ML fit
for jj in range(nlam):
# Compute MAP estimate
Cinv=lamvals[jj]*D # set inverse prior covariance
lossfun = lambda prs:neglogposterior(prs,negLtrainfun,Cinv)
jacfun=lambda prs:jac_neglogposterior(prs,jac_negLtrainfun,Cinv)
hessfun=lambda prs:hessian_neglogposterior(prs,hess_negLtrainfun,Cinv)
wmap=minimize(lossfun,x0=wmap,method='trust-ncg',jac=jacfun,hess=hessfun).x
# Compute negative logli
negLtrain_sm[jj]=negLtrainfun(wmap) # training loss
negLtest_sm[jj]=negLtestfun(wmap) # test loss
# store the filter
w_smooth[:,jj] = wmap
# plot it
axes.plot(ttk,wmap[1:])
axes.set_title('smoothing estimate: lambda = %.2f'%lamvals[jj])
axes.set_xlabel('time before spike (s)') | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Plot filter estimates and errors for smoothing estimates | fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(8,8))
axes[0,1].plot(ttk,w_smooth[1:,:])
axes[0,1].set_title('all smoothing estimates')
axes[0,0].semilogx(lamvals,-negLtrain_sm,'o-')
axes[0,0].set_title('training LL')
axes[1,0].semilogx(lamvals,-negLtest_sm,'o-')
axes[1,0].set_title('test LL')
axes[1,0].set_xlabel('lambda')
# Notice that training error gets monotonically worse as we increase lambda
# However, test error has an dip at some optimal, intermediate value.
# Determine which lambda is best by selecting one with lowest test error
imin = np.argmin(negLtest_sm)
filt_smooth= w_smooth[1:,imin]
axes[1,1].plot(ttk,ttk*0, 'k--')
axes[1,1].plot(ttk,filt_ridge,label='ridge')
axes[1,1].plot(ttk,filt_smooth,label='L2 smoothing')
axes[1,1].set_xlabel('time before spike (s)')
axes[1,1].set_title('best ridge estimate')
axes[1,1].legend()
# clearly the "L2 smoothing" filter looks better by eye! | _____no_output_____ | MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Last, lets see which one actually achieved lower test error | print('\nBest ridge test error: %.5f'%(-min(negLtest)))
print('Best smoothing test error: %.5f'%(-min(negLtest_sm))) |
Best ridge test error: 2093.80432
Best smoothing test error: 2095.67887
| MIT | mypython/t4_regularization_PoissonGLM.ipynb | disadone/GLMspiketraintutorial |
Bank Note AuthenticationData were extracted from images that were taken from genuine and forged banknote-like specimens. For digitization, an industrial camera usually used for inspection was used. The final images have 400 pixles. Due to the object lens and distance to the investigated object gray-scale pictures with a resolution of about 660 dpl were gained. Wavelet Transformation tool were sued to extract features from images. | #dataset link: https://kaggle.com/ritesaluja/bank-note-authentication-uci-data
import pandas as pd
import numpy as np
df = pd.read_csv('BankNote_Authentication.csv')
df.head()
df.tail()
df.describe()
#y=dependent and x=independent features
x=df.iloc[:,:-1] #present everything in the datasset except the last column
y=df.iloc[:,-1] #presenting only the last column from the dataset
x.head()
y.head()
# train test split
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(x,y, test_size=0.3, random_state=0)
# Implementing a Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier()
classifier.fit(x_train, y_train)
#prediction
y_pred = classifier.predict(x_test)
#checking for accuracy
from sklearn.metrics import accuracy_score
score = accuracy_score(y_test, y_pred)
score
# creating a pickle file using serialization
import pickle
pickle_file = open('./classifier.pkl', 'wb')
pickle.dump(classifier, pickle_file)
pickle_file.close()
import numpy as np
classifier.predict([[2,3,4,1]]) | _____no_output_____ | MIT | bank_note_auth.ipynb | josh-boat365/docker-ml |
Curso Python Programación Contenidos 📚Este curso se separa en varios notebooks (capítulos)* [00](00.ipynb) Introducción a Python y como empezar a correrlo en Google Colab* [01](01.ipynb) Tipos básicos de datos y operaciones (Numeros y Strings)* [02](02.ipynb) Manipulación de Strings * [03](03.ipynb) Estructuras de datos: Listas y Tuplas* [04](04.ipynb) Estructuras de datos (continuación): diccionarios* [05](05.ipynb) Control de Flujo: sentencias if, for, while, y try* [06](06.ipynb) Funciones* [07](07.ipynb) Clases y Pogramacion Orientada a Objetos (POO) básicoEste es un tutorial de introducción a python 3. Para un resumen/torpedo de toda la syntaxis de python puedes ir al siguiente link [Quick Reference Card](http://www.cs.put.poznan.pl/csobaniec/software/python/py-qrc.html) may be useful. Una version mas detallada a este tutorial esta disponible en la documentación oficial de python. https://docs.python.org/3/tutorial/ Introducción Google Colab Instalación 🖥️Para los fines de este curso trabajaremos con una herramienta online llamada Google Colab la cual tiene muchas ventajas frente a usar una instalación directa de python, algunas de las siguientes son:1. Servicio en linea igual para todos sin depender del sistema operativo2. Sistema de control de versiones, siempre puedes volver atrás igual que un Google Docs3. Texto y codigo en un mismo lugar, puedes explicar con "Markdown" tus programas y programar en un solo entorno4. Rendimiento, Google Colab corre los codigos por ti y te da recursos, no importa que tengas un mal procesador o una baja RAM.5. Es gratis Abriendo un Notebook desde Google Colab 🟠⚪ Para abrir un notebook del material del curso deberás seguir las siguientes instrucciones Instrucciones Abrir Notebook del Material1. Ingresa a https://colab.research.google.com en una pestaña nueva2. Selecciona la opción "GitHub" de la siguiente ventana (En caso de no ver esa ventana ve al paso 2.1 más abajo y luego continua con los demás )5. Copia el siguiente link https://github.com/domingo2000/Python-Lectures y pégalo en la primera línea que te deja ingresar texto, luego presiona la lupita.6. Por último selecciona el archivo .pynb que quieres abrir, en este caso el 00, !Listo, ahora solo sigue leyendo pero en Google Colab!.2.1. Selecciona "Archivo" o "File" Archivo > Open Notebookvuelve al paso 2. Jupyter Notebooks y Markdown 📕Cuando tu trabajas en colab en el fondo estás corriendo un Jupyter notebook, estos funcionan como un cuaderno, en el que puedes escribir texto o programar código en celdas diferentes. Mi primera celda de código ⌨️En primer lugar borraremos todo lo que se corre automáticamente cuando abres el archivo, para ello debemos presionar los siguientes menús en este orden. Edit > Clear all OutputLuego para correr cada celda de código en Colab solo debes hacer clic en el botón Alternativamente puedes presionar `shift + enter ↵` para correr la celda.A continuación se muestra tu primer codigo python con el clásico ``Hello World!`` | print("Hello World!") | Hello World!
| CC-BY-3.0 | 00.ipynb | domingo2000/Python-Lectures |
!Genial, acabas de correr tu primer programa de python! 😀 💻💻 Markdown ️⃣️⃣Markdown es un tipo de lenguaje de formateo de texto que busca que el texto sea fácil de leer tanto en el "codigo" como en la salida que este produce, todo el texto de este tutorial está escrito en markdown para que tengas una idea de que cosas se pueden hacer con el.Si haces doble click en esta celda te daras cuenta de como se estructura el markdown, al igual que las celdas de codigo, puedes correrlas presionando `shift + enter ↵` o presionando en una celda distinta a esta. Esctructura básicaPuedes escribir texto simple como este Puedes escribir Titulos usando los "" Puedes escribir Titulos usando los "" Puedes escribir Titulos usando los "" Puedes escribir Titulos usando los "" etc...Con esto ya debrías lograr expresar tus ideas en los bloques de texto, pero con las siguientes cosas puedes poner más énfasis y hacer un mejor trabajo.* Puedes poner tu texto en **Negrita** usando \*\*texto** (hazle doble click a la celda para ver como se escriben dichos tags)* Puedes poner tu texto en *Itálica* usando \*text\** Puedes ponerle ***ambas cosas*** usando \*\*\*texto\*\*\*Puedes hacer listas de cosas haciendo usando 1. y *1. Item 12. Item 23. Item 3* Item 3* Item 2* Item 1Si quieres buscar mas cosas que puedes hacer en markdown puedes ir a https://www.markdownguide.org/basic-syntax/Si quieres saber mas sobre markdown puedes encontrar mas información en https://es.wikipedia.org/wiki/Markdown ¿Que es Python?Python es un lenguaje moderno, robusto y de alto nivel de programación hoy es usado en gran medida en usos científicos variados y análisis de datos. Tiene la ventaja de ser bastante intuitivo y fácil de usar incluso si eres nuevo en la programación. Por otro lado tiene las desventajas de no ser tan rápido como otros lenguajes tipo C++, o Java, pero tiene la ventaja de ser mucho más rápido de programar debido a la syntaxis (Forma de escribir código) que este tiene.A continuación si corres la siguiente celda se mostrará un texto con la filosofía detrás de python, la cual sustenta este lenguaje y además son grandes consejos que te incentivan a escribir un **mejor codigo** | import this | The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
| CC-BY-3.0 | 00.ipynb | domingo2000/Python-Lectures |
Josephson Junction (Dolan) We'll be creating a Dolan style Josephson Junction. | # So, let us dive right in. For convenience, let's begin by enabling
# automatic reloading of modules when they change.
%load_ext autoreload
%autoreload 2
import qiskit_metal as metal
from qiskit_metal import designs, draw
from qiskit_metal import MetalGUI, Dict, open_docs
# Each time you create a new quantum circuit design,
# you start by instantiating a QDesign class.
# The design class `DesignPlanar` is best for 2D circuit designs.
design = designs.DesignPlanar()
#Launch Qiskit Metal GUI to interactively view, edit, and simulate QDesign: Metal GUI
gui = MetalGUI(design) | _____no_output_____ | Apache-2.0 | docs/circuit-examples/A.Qubits/08-JJ-Dolan.ipynb | Antonio-Aguiar/qiskit-metal |
A dolan style josephson junctionYou can create a dolan style josephson junction from the QComponent Library, `qiskit_metal.qlibrary.qubits`. `jj_dolan.py` is the file containing our josephson junction so `jj_dolan` is the module we import. The `jj_dolan` class is our josephson junction. Like all quantum components, `jj_dolan` inherits from `QComponent`. | from qiskit_metal.qlibrary.qubits.JJ_Dolan import jj_dolan
# Be aware of the default_options that can be overridden by user.
design.overwrite_enabled = True
jj2 = jj_dolan(design, 'JJ2', options=dict(x_pos="0.1", y_pos="0.0"))
gui.rebuild()
gui.autoscale()
gui.zoom_on_components(['JJ2'])
# Save screenshot as a .png formatted file.
gui.screenshot()
# Screenshot the canvas only as a .png formatted file.
gui.figure.savefig('shot.png')
from IPython.display import Image, display
_disp_ops = dict(width=500)
display(Image('shot.png', **_disp_ops))
| _____no_output_____ | Apache-2.0 | docs/circuit-examples/A.Qubits/08-JJ-Dolan.ipynb | Antonio-Aguiar/qiskit-metal |
Closing the Qiskit Metal GUI | gui.main_window.close() | _____no_output_____ | Apache-2.0 | docs/circuit-examples/A.Qubits/08-JJ-Dolan.ipynb | Antonio-Aguiar/qiskit-metal |
Creating VariablesUnlike other programming languages, Python has no command for declaring a variable.A variable is created the moment you first assign a value to it. | x = 5
y = "I TRAIN TECHNOLOGY"
print(x)
print(y)
# Variables do not need to be declared with any particular type and can even change type after they have been set.
x = 4 # x is of type int
x = "Sally" # x is now of type str
print(x) | Sally
| MIT | 1. Python Variables.ipynb | sivacheetas/matplotlib |
Variable Names1. A variable can have a short name (like x and y) or a more descriptive name (age, carname, total_volume). Rules for Python variables:2. A variable name must start with a letter or the underscore character3. A variable name cannot start with a number4. A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _ )5. Variable names are case-sensitive (age, Age and AGE are three different variables) NOTE: Remember that variables are case-sensitive | # # Output Variables
# The Python print statement is often used to output variables.
#To combine both text and a variable, Python uses the + character:
x = "Scripting Programing"
print("Python is ",x, "Language")
x = "Python is "
y = "awesome"
z = x + y
print(z)
# For numbers, the + character works as a mathematical operator:
x = 5
y = 10
print(x + y)
# Create a variable named carname and assign the value Volvo to it.
car = "Volvo"
print(car) | Volvo
| MIT | 1. Python Variables.ipynb | sivacheetas/matplotlib |
Converting Rating.dat to Rating.csv | ratings_dataframe=pd.read_table("ratings.dat",sep="::")
ratings_dataframe.to_csv("ratings.csv",index=False)
ratings_dataframe=pd.read_csv("ratings.csv",header=None)
ratings_dataframe.columns=["UserID","MovieID","Rating","Timestamp"]
ratings_dataframe.columns
print(ratings_dataframe.shape)
ratings_dataframe.to_csv("ratings.csv",index=False) | _____no_output_____ | MIT | DatfiletoCSV.ipynb | karangupta26/Movie-Recommendation-system |
Converting Movies.dat to Movies.csv | movies_dataframe=pd.read_table("movies.dat",sep="::")
movies_dataframe.to_csv("movies.csv",index=False)
movies_dataframe=pd.read_csv("movies.csv",header=None)
movies_dataframe.columns=["MovieID","Title","Genres"]
movies_dataframe.columns
print(movies_dataframe.shape)
movies_dataframe.to_csv("movies.csv",index=False) | (3883, 3)
| MIT | DatfiletoCSV.ipynb | karangupta26/Movie-Recommendation-system |
Converting User.dat to User.csv | users_dataframe=pd.read_table("users.dat",sep="::")
users_dataframe.to_csv("users.csv",index=False)
users_dataframe=pd.read_csv("users.csv",header=None)
users_dataframe.columns=["UserID","Gender","Age","Occupation","Zip-code"]
users_dataframe.columns
users_dataframe.to_csv("users.csv",index=False) | _____no_output_____ | MIT | DatfiletoCSV.ipynb | karangupta26/Movie-Recommendation-system |
WeatherPy----Observations:1. In the northern hemisphere the tempature increases as the latitude increases. So as the we move away from the equator to the north - the tempature decreases. 2. In the southern hemisphere, the tempature increases as you get closer to the equator. 3. In the northern hemishere, the humidity increases as you move away for the equator (0 lattitude). | # Dependencies and Setup
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import requests
import time
from scipy.stats import linregress
# Import API key
from api_keys import weather_api_key
# Incorporated citipy to determine city based on latitude and longitude
from citipy import citipy
# Save config information.
url = "http://api.openweathermap.org/data/2.5/weather?"
units = "Imperial"
# Build partial query URL
query_url = f"{url}appid={weather_api_key}&units={units}&q="
# Range of latitudes and longitudes
lat_range = (-90, 90)
lng_range = (-180, 180)
# Output File (CSV)
output_data_file = "cities.csv"
| _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Generate Cities List | # List for holding lat_lngs and cities
lat_lngs = []
cities = []
# Create a set of random lat and lng combinations
lats = np.random.uniform(low=-90.000, high=90.000, size=1500)
lngs = np.random.uniform(low=-180.000, high=180.000, size=1500)
lat_lngs = zip(lats, lngs)
# Identify nearest city for each lat, lng combination
for lat_lng in lat_lngs:
city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name
# If the city is unique, then add it to a our cities list
if city not in cities:
cities.append(city)
# Print the city count to confirm sufficient count
len(cities) | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Perform API Calls* Perform a weather check on each city using a series of successive API calls.* Include a print log of each city as it'sbeing processed (with the city number and city name). | # set lists for the dataframe
city_two = []
cloudinesses = []
dates = []
humidities = []
lats = []
lngs = []
max_temps = []
wind_speeds = []
countries = []
# set initial count quantities for organization
count_one = 0
set_one = 1
# loops for creating dataframe columns
for city in cities:
try:
response = requests.get(query_url + city.replace(" ","&")).json()
cloudinesses.append(response['clouds']['all'])
countries.append(response['sys']['country'])
dates.append(response['dt'])
humidities.append(response['main']['humidity'])
lats.append(response['coord']['lat'])
lngs.append(response['coord']['lon'])
max_temps.append(response['main']['temp_max'])
wind_speeds.append(response['wind']['speed'])
if count_one > 48:
count_one = 1
set_one += 1
city_two.append(city)
else:
count_one += 1
city_two.append(city)
print(f"Processing Record {count_one} of Set {set_one} | {city}")
except Exception:
print("City not found. Skipping...")
print("------------------------------\nData Retrieval Complete\n------------------------------") | Processing Record 1 of Set 1 | vaini
Processing Record 2 of Set 1 | punta arenas
Processing Record 3 of Set 1 | cruzilia
Processing Record 4 of Set 1 | mahibadhoo
Processing Record 5 of Set 1 | mys shmidta
Processing Record 6 of Set 1 | castro
Processing Record 7 of Set 1 | lebu
Processing Record 8 of Set 1 | butaritari
Processing Record 9 of Set 1 | rikitea
Processing Record 10 of Set 1 | turangi
Processing Record 11 of Set 1 | norman wells
Processing Record 12 of Set 1 | ushuaia
Processing Record 13 of Set 1 | san cristobal
Processing Record 14 of Set 1 | san luis
Processing Record 15 of Set 1 | saint-philippe
Processing Record 16 of Set 1 | mugumu
Processing Record 17 of Set 1 | port alfred
Processing Record 18 of Set 1 | dikson
Processing Record 19 of Set 1 | naryan-mar
City not found. Skipping...
Processing Record 20 of Set 1 | ogembo
Processing Record 21 of Set 1 | port hedland
City not found. Skipping...
Processing Record 22 of Set 1 | thompson
Processing Record 23 of Set 1 | provideniya
Processing Record 24 of Set 1 | sukhumi
Processing Record 25 of Set 1 | airai
Processing Record 26 of Set 1 | arraial do cabo
Processing Record 27 of Set 1 | esperance
City not found. Skipping...
City not found. Skipping...
Processing Record 28 of Set 1 | kaitangata
City not found. Skipping...
Processing Record 29 of Set 1 | ponta do sol
Processing Record 30 of Set 1 | ribeira grande
City not found. Skipping...
Processing Record 31 of Set 1 | hermanus
Processing Record 32 of Set 1 | bredasdorp
Processing Record 33 of Set 1 | verkh-usugli
Processing Record 34 of Set 1 | mahebourg
Processing Record 35 of Set 1 | severo-kurilsk
Processing Record 36 of Set 1 | mataura
Processing Record 37 of Set 1 | haines junction
Processing Record 38 of Set 1 | port hardy
Processing Record 39 of Set 1 | praia
Processing Record 40 of Set 1 | ancud
Processing Record 41 of Set 1 | albany
City not found. Skipping...
Processing Record 42 of Set 1 | upernavik
Processing Record 43 of Set 1 | necocli
Processing Record 44 of Set 1 | ambulu
Processing Record 45 of Set 1 | souillac
Processing Record 46 of Set 1 | san patricio
Processing Record 47 of Set 1 | kushmurun
Processing Record 48 of Set 1 | busselton
Processing Record 49 of Set 1 | vao
Processing Record 1 of Set 2 | inverness
City not found. Skipping...
Processing Record 2 of Set 2 | gweta
Processing Record 3 of Set 2 | longyearbyen
Processing Record 4 of Set 2 | clyde river
Processing Record 5 of Set 2 | usvyaty
Processing Record 6 of Set 2 | grand river south east
Processing Record 7 of Set 2 | amahai
Processing Record 8 of Set 2 | kodiak
Processing Record 9 of Set 2 | kapaa
Processing Record 10 of Set 2 | lavrentiya
Processing Record 11 of Set 2 | cherskiy
Processing Record 12 of Set 2 | hobart
Processing Record 13 of Set 2 | sept-iles
Processing Record 14 of Set 2 | penapolis
Processing Record 15 of Set 2 | carutapera
Processing Record 16 of Set 2 | tecoanapa
Processing Record 17 of Set 2 | deer lake
Processing Record 18 of Set 2 | itarema
Processing Record 19 of Set 2 | bambous virieux
Processing Record 20 of Set 2 | sasykoli
Processing Record 21 of Set 2 | hilo
City not found. Skipping...
Processing Record 22 of Set 2 | qaanaaq
Processing Record 23 of Set 2 | yellowknife
Processing Record 24 of Set 2 | cacapava do sul
Processing Record 25 of Set 2 | fukue
Processing Record 26 of Set 2 | andra
Processing Record 27 of Set 2 | bengkulu
Processing Record 28 of Set 2 | yangshe
Processing Record 29 of Set 2 | gondanglegi
Processing Record 30 of Set 2 | les cayes
Processing Record 31 of Set 2 | bluff
Processing Record 32 of Set 2 | katherine
Processing Record 33 of Set 2 | yuzhno-kurilsk
Processing Record 34 of Set 2 | luderitz
Processing Record 35 of Set 2 | yokadouma
Processing Record 36 of Set 2 | khatanga
City not found. Skipping...
Processing Record 37 of Set 2 | atuona
Processing Record 38 of Set 2 | bethel
Processing Record 39 of Set 2 | ilulissat
Processing Record 40 of Set 2 | saint-pierre
Processing Record 41 of Set 2 | sayyan
Processing Record 42 of Set 2 | moose factory
Processing Record 43 of Set 2 | geraldton
Processing Record 44 of Set 2 | puerto ayora
City not found. Skipping...
Processing Record 45 of Set 2 | tuktoyaktuk
Processing Record 46 of Set 2 | chapleau
City not found. Skipping...
Processing Record 47 of Set 2 | munirabad
Processing Record 48 of Set 2 | tevriz
Processing Record 49 of Set 2 | saskylakh
Processing Record 1 of Set 3 | jamestown
Processing Record 2 of Set 3 | camana
Processing Record 3 of Set 3 | srikakulam
Processing Record 4 of Set 3 | lalawigan
Processing Record 5 of Set 3 | cape town
Processing Record 6 of Set 3 | hami
City not found. Skipping...
Processing Record 7 of Set 3 | montoro
Processing Record 8 of Set 3 | sistranda
Processing Record 9 of Set 3 | georgetown
Processing Record 10 of Set 3 | muisne
Processing Record 11 of Set 3 | burnie
Processing Record 12 of Set 3 | hambantota
City not found. Skipping...
Processing Record 13 of Set 3 | port elizabeth
Processing Record 14 of Set 3 | apeldoorn
Processing Record 15 of Set 3 | saint-augustin
Processing Record 16 of Set 3 | kohlu
Processing Record 17 of Set 3 | nabire
Processing Record 18 of Set 3 | bonavista
City not found. Skipping...
Processing Record 19 of Set 3 | aranos
Processing Record 20 of Set 3 | simao
Processing Record 21 of Set 3 | tautira
Processing Record 22 of Set 3 | umkomaas
Processing Record 23 of Set 3 | torbay
Processing Record 24 of Set 3 | tingi
City not found. Skipping...
Processing Record 25 of Set 3 | hithadhoo
Processing Record 26 of Set 3 | nikolskoye
Processing Record 27 of Set 3 | pangnirtung
Processing Record 28 of Set 3 | cabo san lucas
City not found. Skipping...
Processing Record 29 of Set 3 | vanimo
Processing Record 30 of Set 3 | zhucheng
Processing Record 31 of Set 3 | burgeo
Processing Record 32 of Set 3 | grand gaube
Processing Record 33 of Set 3 | ukiah
City not found. Skipping...
Processing Record 34 of Set 3 | sitka
Processing Record 35 of Set 3 | pacasmayo
Processing Record 36 of Set 3 | timizart
Processing Record 37 of Set 3 | guanambi
Processing Record 38 of Set 3 | matagami
Processing Record 39 of Set 3 | pochutla
Processing Record 40 of Set 3 | karratha
Processing Record 41 of Set 3 | marquette
Processing Record 42 of Set 3 | chuy
Processing Record 43 of Set 3 | kokstad
Processing Record 44 of Set 3 | banda aceh
Processing Record 45 of Set 3 | dingle
Processing Record 46 of Set 3 | leh
Processing Record 47 of Set 3 | hualmay
Processing Record 48 of Set 3 | new norfolk
Processing Record 49 of Set 3 | avarua
Processing Record 1 of Set 4 | padang
Processing Record 2 of Set 4 | bari
Processing Record 3 of Set 4 | turukhansk
City not found. Skipping...
City not found. Skipping...
Processing Record 4 of Set 4 | kruisfontein
Processing Record 5 of Set 4 | fernie
Processing Record 6 of Set 4 | enshi
City not found. Skipping...
Processing Record 7 of Set 4 | salalah
Processing Record 8 of Set 4 | rodas
Processing Record 9 of Set 4 | shatura
Processing Record 10 of Set 4 | kampot
City not found. Skipping...
Processing Record 11 of Set 4 | luxor
Processing Record 12 of Set 4 | moerai
Processing Record 13 of Set 4 | srednekolymsk
Processing Record 14 of Set 4 | novita
City not found. Skipping...
Processing Record 15 of Set 4 | bikin
Processing Record 16 of Set 4 | norton shores
Processing Record 17 of Set 4 | warmbad
Processing Record 18 of Set 4 | kazachinskoye
Processing Record 19 of Set 4 | namibe
Processing Record 20 of Set 4 | yanji
Processing Record 21 of Set 4 | poplar bluff
City not found. Skipping...
Processing Record 22 of Set 4 | miranda
City not found. Skipping...
Processing Record 23 of Set 4 | byron bay
Processing Record 24 of Set 4 | ngunguru
Processing Record 25 of Set 4 | chongwe
Processing Record 26 of Set 4 | shaoxing
Processing Record 27 of Set 4 | maceio
Processing Record 28 of Set 4 | korla
Processing Record 29 of Set 4 | jakar
Processing Record 30 of Set 4 | mineiros
Processing Record 31 of Set 4 | chapais
Processing Record 32 of Set 4 | soyo
Processing Record 33 of Set 4 | sarkand
Processing Record 34 of Set 4 | stonewall
Processing Record 35 of Set 4 | nicoya
Processing Record 36 of Set 4 | barrow
Processing Record 37 of Set 4 | mwense
Processing Record 38 of Set 4 | bati
| ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Convert Raw Data to DataFrame* Export the city data into a .csv.* Display the DataFrame |
# create a dictionary for establishing dataframe
weather_dict = {
"City":city_two,
"Cloudiness":cloudinesses,
"Country":countries,
"Date":dates,
"Humidity":humidities,
"Lat":lats,
"Lng":lngs,
"Max Temp":max_temps,
"Wind Speed":wind_speeds
}
weather_dict
# establish dataframe
weather_dataframe = pd.DataFrame(weather_dict)
weather_dataframe.to_csv (output_data_file, index = False)
# show the top of the dataframe
weather_dataframe.head()
weather_dataframe.count()
weather_dataframe.head() | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Plotting the Data* Use proper labeling of the plots using plot titles (including date of analysis) and axes labels.* Save the plotted figures as .pngs. Latitude vs. Temperature Plot | time.strftime('%x')
plt.scatter(weather_dataframe["Lat"],weather_dataframe["Max Temp"],edgecolors="black",facecolors="skyblue")
plt.title(f"City Latitude vs. Max Temperature {time.strftime('%x')}")
plt.xlabel("Latitude")
plt.ylabel("Max Temperature (F)")
plt.grid (b=True,which="major",axis="both",linestyle="-",color="lightgrey")
plt.savefig("Figures/fig1.png")
plt.show()
#This graph analyzes latitude vs tempature | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Latitude vs. Humidity Plot |
plt.scatter(weather_dataframe["Lat"],weather_dataframe["Humidity"],edgecolors="black",facecolors="skyblue")
plt.title("City Latitude vs. Humidity (%s)" % time.strftime('%x') )
plt.xlabel("Latitude")
plt.ylabel("Humidity (%)")
plt.ylim(15,105)
plt.grid (b=True,which="major",axis="both",linestyle="-",color="lightgrey")
plt.savefig("Figures/fig2.png")
plt.show()
#Analyzing the Humidity vs Latitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Latitude vs. Cloudiness Plot | plt.scatter(weather_dataframe["Lat"],weather_dataframe["Cloudiness"],edgecolors="black",facecolors="skyblue")
plt.title("City Latitude vs. Cloudiness (%s)" % time.strftime('%x') )
plt.xlabel("Latitude")
plt.ylabel("Cloudiness (%)")
plt.grid (b=True,which="major",axis="both",linestyle="-",color="lightgrey")
plt.savefig("Figures/fig3.png")
plt.show()
#Analyzes the latitude and cloudiness of the cities | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Latitude vs. Wind Speed Plot | plt.scatter(weather_dataframe["Lat"],weather_dataframe["Wind Speed"],edgecolors="black",facecolors="skyblue")
plt.title("City Latitude vs. Wind Speed (%s)" % time.strftime('%x') )
plt.xlabel("Latitude")
plt.ylabel("Wind Speed (mph)")
plt.ylim(-2,34)
plt.grid (b=True,which="major",axis="both",linestyle="-",color="lightgrey")
plt.savefig("Figures/fig4.png")
plt.show()
#This the relationship between latitude and windspeed | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Linear Regression | #Define x and y values
x_values = weather_dataframe['Lat']
y_values = weather_dataframe['Max Temp']
# Perform a linear regression on temperature vs. latitude
(slope, intercept, rvalue, pvalue, stderr) = linregress(x_values, y_values)
# Get regression values
regress_values = x_values * slope + intercept
print(regress_values)
# Create line equation string
line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2))
print(line_eq)
# Create Plot
plt.scatter(x_values,y_values)
plt.plot(x_values,regress_values,"r-")
# Label plot and annotate the line equation
plt.xlabel('Latitude')
plt.ylabel('Temperature')
plt.annotate(line_eq,(-40,0),fontsize=15,color="red")
# Print r square value
print(f"The r-squared is: {rvalue}")
# Show plot
plt.show()
# Create Northern and Southern Hemisphere DataFrames
south_df = weather_dataframe[weather_dataframe["Lat"] < 0]
north_df = weather_dataframe[weather_dataframe["Lat"] >= 0] | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Northern Hemisphere - Max Temp vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(north_df['Lat'], north_df['Max Temp'])
# Call an function #2
annotate(equation, 0, 0)
# Set a title
plt.title('Northern Hemisphere - Max Temp vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Max Temp')
# Save the figure
plt.savefig('Northern Hemisphere - Max Temp vs. Latitude Linear Regression.png')
# This graph shows the relationship in the Nouthern Hemisphere between Temp vs. latitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Southern Hemisphere - Max Temp vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(south_df['Lat'], south_df['Max Temp'])
# Call an function #2
annotate(equation, -30, 50)
# Set a title
plt.title('Southern Hemisphere - Max Temp vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Max Temp')
# Save the figure
plt.savefig('Southern Hemisphere - Max Temp vs. Latitude Linear Regression.png')
# This graph shows the relationship in the southern Hemisphere between Temp vs. latitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Northern Hemisphere - Humidity (%) vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(north_df['Lat'], north_df['Humidity'])
# Call an function #2
annotate(equation, 40, 20)
# Set a title
plt.title('Northern Hemisphere - Humidity vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Humidity')
# Save the figure
plt.savefig('Northern Hemisphere - Humidity vs. Latitude Linear Regression.png') | The r-squared is : 0.41
| ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Southern Hemisphere - Humidity (%) vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(south_df['Lat'], south_df['Humidity'])
# Call an function #2
annotate(equation,-30, 20)
# Set a title
plt.title('Southern Hemisphere - Humidity vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Humidity')
# Save the figure
plt.savefig('Southern Hemisphere - Humidity vs. Latitude Linear Regression.png')
# This graph shows the relationship in the Southern Hemisphere between humidity vs. lattitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Northern Hemisphere - Cloudiness (%) vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(north_df['Lat'], north_df['Humidity'])
# Call an function #2
annotate(equation, 40, 20)
# Set a title
plt.title('Northern Hemisphere - Humidity vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Humidity')
# Save the figure
plt.savefig('Northern Hemisphere - Humidity vs. Latitude Linear Regression.png')
# This graph shows the relationship in the Northern Hemisphere between humidity vs. lattitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Southern Hemisphere - Cloudiness (%) vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(south_df['Lat'], south_df['Cloudiness'])
# Call an function #2
annotate(equation,-50, 10)
# Set a title
plt.title('Southern Hemisphere - Cloudiness vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Cloudiness')
# Save the figure
plt.savefig('Southern Hemisphere - Cloudiness vs. Lattude Linear Regression.png')
#This grpah shows the relationship in the southern hempisphere with cloudiness vs lattitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Northern Hemisphere - Wind Speed (mph) vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(north_df['Lat'], north_df['Wind Speed'])
# Call an function #2
annotate(equation,10, 35)
# Set a title
plt.title('Northern Hemisphere - Wind Speed vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Wind Speed')
# Save the figure
plt.savefig('Northern Hemisphere - Wind Speed vs. Latitude Linear Regression.png')
#The northern hemisphere is wind speed vs lattitude | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
Southern Hemisphere - Wind Speed (mph) vs. Latitude Linear Regression | def linear_agression(x,y):
print(f'The r-squared is : {round(linregress(x, y)[0],2)}')
(slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
regress_values = x * slope + intercept
line_eq = 'y = ' + str(round(slope,2)) + 'x + ' + str(round(intercept,2))
plt.scatter(x, y)
plt.plot(x,regress_values,'r-')
return line_eq
# Define a fuction for annotating
def annotate(line_eq, a, b):
plt.annotate(line_eq,(a,b),fontsize=15,color='red')
# Call an function #1
equation = linear_agression(south_df['Lat'], south_df['Wind Speed'])
# Call an function #2
annotate(equation, -50, 25)
# Set a title
plt.title('Southern Hemisphere - Wind Speed vs. Latitude Linear Regression')
# Set xlabel
plt.xlabel('Latitude')
# Set ylabel
plt.ylabel('Wind Speed')
# Save the figure
plt.savefig('Southern Hemisphere - Wind Speed vs. Latitude Linear Regression.png')
# This graph compares the southern hemisphere the wind speed vs lattitude. | _____no_output_____ | ADSL | starter_code/WeatherPy.ipynb | sruelle/python-api-challenge |
[모듈 6.1] 모델 배포 파이프라인 개발 (SageMaker Model Building Pipeline 모든 스텝)이 노트북은 아래와 같은 목차로 진행 됩니다. 전체를 모두 실행시에 완료 시간은 **약 5분** 소요 됩니다.- 0. SageMaker Model Building Pipeline 개요- 1. 파이프라인 변수 및 환경 설정- 2. 파이프라인 스텝 단계 정의 - (1) 모델 승인 상태 변경 람다 스텝 - (2) 배포할 세이지 메이커 모델 스텝 생성 - (3) 모델 앤드 포인트 배포를 위한 람다 스텝 생성 - 3. 모델 빌딩 파이프라인 정의 및 실행- 4. Pipleline 캐싱 및 파라미터 이용한 실행- 5. 정리 작업 --- 0.[모듈 6.1] 모델 배포 파이프라인 개요- 이 노트북은 다음과 같은 상황에 대한 파이프라인 입니다. - 모델 레제스트리에 여러개의 모델 패키지 그룹이 있습니다. - 모델 패키지 그룹에서 특정한 것을 선택하여 가장 최근에 저장된 모델 버전을 선택 합니다. - 선택된 모델 버전의 "모델 승인 상태"를 "Pending" 에서 "Approved" 로 변경 합니다. - 이 모델 버전에 대해서 세이지 메이커 모델을 생성합니다. - 세이지 메이커 모델을 기반으로 앤드포인트를 생성 합니다. 1. 파이프라인 변수 및 환경 설정 | import boto3
import sagemaker
import pandas as pd
region = boto3.Session().region_name
sagemaker_session = sagemaker.session.Session()
role = sagemaker.get_execution_role()
sm_client = boto3.client('sagemaker', region_name=region)
%store -r | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
(1) 모델 빌딩 파이프라인 변수 생성파이프라인에 인자로 넘길 변수는 아래 크게 3가지 종류가 있습니다.- 모델 레지스트리에 모델 등록시에 모델 승인 상태 값 | from sagemaker.workflow.parameters import (
ParameterInteger,
ParameterString,
ParameterFloat,
)
model_approval_status = ParameterString(
name="ModelApprovalStatus", default_value="PendingManualApproval"
)
| _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
2. 파이프라인 스텝 단계 정의 (1) 모델 승인 상태 변경 람다 스텝- 모델 레지스트리에서 해당 모델 패키지 그룹을 조회하고, 가장 최신 버전의 모델에 대해서 '모델 승인 상태 변경' 을 합니다. [에러] 아래와 같은 데러가 발생시에 `0.0.Setup-Environment.ipynb` 의 정책 추가 부분을 진행 해주세요.```ClientError: An error occurred (AccessDenied) when calling the CreateRole operation: User: arn:aws:sts::0287032915XX:assumed-role/AmazonSageMaker-ExecutionRole-20210827T141955/SageMaker is not authorized to perform: iam:CreateRole on resource: arn:aws:iam::0287032915XX:role/lambda-deployment-role``` | from src.iam_helper import create_lambda_role
lambda_role = create_lambda_role("lambda-deployment-role")
print("lambda_role: \n", lambda_role)
from sagemaker.lambda_helper import Lambda
from sagemaker.workflow.lambda_step import (
LambdaStep,
LambdaOutput,
LambdaOutputTypeEnum,
)
import time
current_time = time.strftime("%m-%d-%H-%M-%S", time.localtime())
function_name = "sagemaker-lambda-step-approve-model-deployment-" + current_time
print("function_name: \n", function_name)
# Lambda helper class can be used to create the Lambda function
func_approve_model = Lambda(
function_name=function_name,
execution_role_arn=lambda_role,
script="src/iam_change_model_approval.py",
handler="iam_change_model_approval.lambda_handler",
)
output_param_1 = LambdaOutput(output_name="statusCode", output_type=LambdaOutputTypeEnum.String)
output_param_2 = LambdaOutput(output_name="body", output_type=LambdaOutputTypeEnum.String)
output_param_3 = LambdaOutput(output_name="other_key", output_type=LambdaOutputTypeEnum.String)
step_approve_lambda = LambdaStep(
name="LambdaApproveModelStep",
lambda_func=func_approve_model,
inputs={
"model_package_group_name" : model_package_group_name,
"ModelApprovalStatus": "Approved",
},
outputs=[output_param_1, output_param_2, output_param_3],
)
| _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
(2) 배포할 세이지 메이커 모델 스텝 생성- 위의 람다 스텝에서 "모델 승인 상태" 를 변경한 모델에 대하여 '모델 레지스트리'에서 저장된 도커 컨테이너 이미지, 모델 아티펙트의 위치를 가져 옵니다.- 이후에 이 두개의 인자를 가지고 세이지 메이커 모델을 생성 합니다. | import boto3
sm_client = boto3.client('sagemaker')
# 위에서 생성한 model_package_group_name 을 인자로 제공 합니다.
response = sm_client.list_model_packages(ModelPackageGroupName= model_package_group_name)
ModelPackageArn = response['ModelPackageSummaryList'][0]['ModelPackageArn']
sm_client.describe_model_package(ModelPackageName=ModelPackageArn)
response = sm_client.describe_model_package(ModelPackageName=ModelPackageArn)
image_uri_approved = response["InferenceSpecification"]["Containers"][0]["Image"]
ModelDataUrl_approved = response["InferenceSpecification"]["Containers"][0]["ModelDataUrl"]
print("image_uri_approved: ", image_uri_approved)
print("ModelDataUrl_approved: ", ModelDataUrl_approved)
from sagemaker.model import Model
model = Model(
image_uri= image_uri_approved,
model_data= ModelDataUrl_approved,
sagemaker_session=sagemaker_session,
role=role,
)
from sagemaker.inputs import CreateModelInput
from sagemaker.workflow.steps import CreateModelStep
inputs = CreateModelInput(
instance_type="ml.m5.large",
# accelerator_type="ml.eia1.medium",
)
step_create_best_model = CreateModelStep(
name="CreateFraudhModel",
model=model,
inputs=inputs,
)
step_create_best_model.add_depends_on([step_approve_lambda]) # step_approve_lambda 완료 후 실행 함. | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
(3) 모델 앤드 포인트 배포를 위한 람다 스텝 생성- 람다 함수는 입력으로 세이지 메이커 모델, 앤드 포인트 컨피그 및 앤드 포인트 이름을 받아서, 앤드포인트를 생성 함. | # model_name = project_prefix + "-lambda-model" + current_time
endpoint_config_name = "lambda-deploy-endpoint-config-" + current_time
endpoint_name = "lambda-deploy-endpoint-" + current_time
function_name = "sagemaker-lambda-step-endpoint-deploy-" + current_time
# print("model_name: \n", model_name)
print("endpoint_config_name: \n", endpoint_config_name)
print("endpoint_config_name: \n", len(endpoint_config_name))
print("endpoint_name: \n", endpoint_name)
print("function_name: \n", function_name)
# Lambda helper class can be used to create the Lambda function
func_deploy_model = Lambda(
function_name=function_name,
execution_role_arn=lambda_role,
script="src/iam_create_endpoint.py",
handler="iam_create_endpoint.lambda_handler",
timeout = 900, # 디폴트는 120초 임. 10분으로 연장
)
output_param_1 = LambdaOutput(output_name="statusCode", output_type=LambdaOutputTypeEnum.String)
output_param_2 = LambdaOutput(output_name="body", output_type=LambdaOutputTypeEnum.String)
output_param_3 = LambdaOutput(output_name="other_key", output_type=LambdaOutputTypeEnum.String)
step_deploy_lambda = LambdaStep(
name="LambdaDeployStep",
lambda_func=func_deploy_model,
inputs={
"model_name": step_create_best_model.properties.ModelName,
"endpoint_config_name": endpoint_config_name,
"endpoint_name": endpoint_name,
},
outputs=[output_param_1, output_param_2, output_param_3],
) | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
3.모델 빌딩 파이프라인 정의 및 실행위에서 정의한 아래의 4개의 스텝으로 파이프라인 정의를 합니다.- steps=[step_process, step_train, step_create_model, step_deploy],- 아래는 약 1분 정도 소요 됩니다. 이후 아래와 같이 실행 결과를 스튜디오에서 확인할 수 있습니다.-  | from sagemaker.workflow.pipeline import Pipeline
project_prefix = 'sagemaker-pipeline-phase2-deployment-step-by-step'
pipeline_name = project_prefix
pipeline = Pipeline(
name=pipeline_name,
parameters=[
model_approval_status,
],
steps=[step_approve_lambda, step_create_best_model, step_deploy_lambda],
)
import json
definition = json.loads(pipeline.definition())
# definition | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
파이프라인을 SageMaker에 제출하고 실행하기 | pipeline.upsert(role_arn=role) | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
디폴트값을 이용하여 파이프라인을 샐행합니다. | execution = pipeline.start() | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
파이프라인 운영: 파이프라인 대기 및 실행상태 확인워크플로우의 실행상황을 살펴봅니다. 실행이 완료될 때까지 기다립니다. | execution.wait() | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
실행된 단계들을 리스트업합니다. 파이프라인의 단계실행 서비스에 의해 시작되거나 완료된 단계를 보여줍니다. | execution.list_steps() | _____no_output_____ | Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
5. 정리 작업 변수 저장 | depolyment_endpoint_name = endpoint_name
%store depolyment_endpoint_name
all_deployment_pipeline_name = pipeline_name
%store all_deployment_pipeline_name | Stored 'depolyment_endpoint_name' (str)
Stored 'all_deployment_pipeline_name' (str)
| Apache-2.0 | phase02/6.1.deployment-pipeline.ipynb | gonsoomoon-ml/SageMaker-Pipelines-Step-By-Step |
**Chapter 9 – Up and running with TensorFlow** _This notebook contains all the sample code and solutions to the exercises in chapter 9._ Setup First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures: | # To support both python 2 and python 3
from __future__ import division, print_function, unicode_literals
# Common imports
import numpy as np
import os
# to make this notebook's output stable across runs
def reset_graph(seed=42):
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
# To plot pretty figures
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "tensorflow"
def save_fig(fig_id, tight_layout=True):
path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png")
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format='png', dpi=300) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Creating and running a graph | import tensorflow as tf
reset_graph()
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
f
sess = tf.Session()
sess.run(x.initializer)
sess.run(y.initializer)
result = sess.run(f)
print(result)
sess.close()
with tf.Session() as sess:
x.initializer.run()
y.initializer.run()
result = f.eval()
result
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
result = f.eval()
result
init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
init.run()
result = f.eval()
print(result)
sess.close()
result | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Managing graphs | reset_graph()
x1 = tf.Variable(1)
x1.graph is tf.get_default_graph()
graph = tf.Graph()
with graph.as_default():
x2 = tf.Variable(2)
x2.graph is graph
x2.graph is tf.get_default_graph()
w = tf.constant(3)
x = w + 2
y = x + 5
z = x * 3
with tf.Session() as sess:
print(y.eval()) # 10
print(z.eval()) # 15
with tf.Session() as sess:
y_val, z_val = sess.run([y, z])
print(y_val) # 10
print(z_val) # 15 | 10
15
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Linear Regression Using the Normal Equation | import numpy as np
from sklearn.datasets import fetch_california_housing
reset_graph()
housing = fetch_california_housing()
m, n = housing.data.shape
housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]
X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
XT = tf.transpose(X)
theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)
with tf.Session() as sess:
theta_value = theta.eval()
theta_value | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Compare with pure NumPy | X = housing_data_plus_bias
y = housing.target.reshape(-1, 1)
theta_numpy = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
print(theta_numpy) | [[ -3.69419202e+01]
[ 4.36693293e-01]
[ 9.43577803e-03]
[ -1.07322041e-01]
[ 6.45065694e-01]
[ -3.97638942e-06]
[ -3.78654266e-03]
[ -4.21314378e-01]
[ -4.34513755e-01]]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Compare with Scikit-Learn | from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing.data, housing.target.reshape(-1, 1))
print(np.r_[lin_reg.intercept_.reshape(-1, 1), lin_reg.coef_.T]) | [[ -3.69419202e+01]
[ 4.36693293e-01]
[ 9.43577803e-03]
[ -1.07322041e-01]
[ 6.45065694e-01]
[ -3.97638942e-06]
[ -3.78654265e-03]
[ -4.21314378e-01]
[ -4.34513755e-01]]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Using Batch Gradient Descent Gradient Descent requires scaling the feature vectors first. We could do this using TF, but let's just use Scikit-Learn for now. | from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_housing_data = scaler.fit_transform(housing.data)
scaled_housing_data_plus_bias = np.c_[np.ones((m, 1)), scaled_housing_data]
print(scaled_housing_data_plus_bias.mean(axis=0))
print(scaled_housing_data_plus_bias.mean(axis=1))
print(scaled_housing_data_plus_bias.mean())
print(scaled_housing_data_plus_bias.shape) | [ 1.00000000e+00 6.60969987e-17 5.50808322e-18 6.60969987e-17
-1.06030602e-16 -1.10161664e-17 3.44255201e-18 -1.07958431e-15
-8.52651283e-15]
[ 0.38915536 0.36424355 0.5116157 ..., -0.06612179 -0.06360587
0.01359031]
0.111111111111
(20640, 9)
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Manually computing the gradients | reset_graph()
n_epochs = 1000
learning_rate = 0.01
X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
gradients = 2/m * tf.matmul(tf.transpose(X), error)
training_op = tf.assign(theta, theta - learning_rate * gradients)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
if epoch % 100 == 0:
print("Epoch", epoch, "MSE =", mse.eval())
sess.run(training_op)
best_theta = theta.eval()
best_theta | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Using autodiff Same as above except for the `gradients = ...` line: | reset_graph()
n_epochs = 1000
learning_rate = 0.01
X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
gradients = tf.gradients(mse, [theta])[0]
training_op = tf.assign(theta, theta - learning_rate * gradients)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
if epoch % 100 == 0:
print("Epoch", epoch, "MSE =", mse.eval())
sess.run(training_op)
best_theta = theta.eval()
print("Best theta:")
print(best_theta) | Epoch 0 MSE = 9.16154
Epoch 100 MSE = 0.714501
Epoch 200 MSE = 0.566705
Epoch 300 MSE = 0.555572
Epoch 400 MSE = 0.548812
Epoch 500 MSE = 0.543636
Epoch 600 MSE = 0.539629
Epoch 700 MSE = 0.536509
Epoch 800 MSE = 0.534068
Epoch 900 MSE = 0.532147
Best theta:
[[ 2.06855249]
[ 0.88740271]
[ 0.14401658]
[-0.34770882]
[ 0.36178368]
[ 0.00393811]
[-0.04269556]
[-0.66145277]
[-0.6375277 ]]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
How could you find the partial derivatives of the following function with regards to `a` and `b`? | def my_func(a, b):
z = 0
for i in range(100):
z = a * np.cos(z + i) + z * np.sin(b - i)
return z
my_func(0.2, 0.3)
reset_graph()
a = tf.Variable(0.2, name="a")
b = tf.Variable(0.3, name="b")
z = tf.constant(0.0, name="z0")
for i in range(100):
z = a * tf.cos(z + i) + z * tf.sin(b - i)
grads = tf.gradients(z, [a, b])
init = tf.global_variables_initializer() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Let's compute the function at $a=0.2$ and $b=0.3$, and the partial derivatives at that point with regards to $a$ and with regards to $b$: | with tf.Session() as sess:
init.run()
print(z.eval())
print(sess.run(grads)) | -0.212537
[-1.1388494, 0.19671395]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Using a `GradientDescentOptimizer` | reset_graph()
n_epochs = 1000
learning_rate = 0.01
X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
if epoch % 100 == 0:
print("Epoch", epoch, "MSE =", mse.eval())
sess.run(training_op)
best_theta = theta.eval()
print("Best theta:")
print(best_theta) | Epoch 0 MSE = 9.16154
Epoch 100 MSE = 0.714501
Epoch 200 MSE = 0.566705
Epoch 300 MSE = 0.555572
Epoch 400 MSE = 0.548812
Epoch 500 MSE = 0.543636
Epoch 600 MSE = 0.539629
Epoch 700 MSE = 0.536509
Epoch 800 MSE = 0.534068
Epoch 900 MSE = 0.532147
Best theta:
[[ 2.06855249]
[ 0.88740271]
[ 0.14401658]
[-0.34770882]
[ 0.36178368]
[ 0.00393811]
[-0.04269556]
[-0.66145277]
[-0.6375277 ]]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Using a momentum optimizer | reset_graph()
n_epochs = 1000
learning_rate = 0.01
X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=0.9)
training_op = optimizer.minimize(mse)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
sess.run(training_op)
best_theta = theta.eval()
print("Best theta:")
print(best_theta) | Best theta:
[[ 2.06855798]
[ 0.82962859]
[ 0.11875337]
[-0.26554456]
[ 0.30571091]
[-0.00450251]
[-0.03932662]
[-0.89986444]
[-0.87052065]]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Feeding data to the training algorithm Placeholder nodes | reset_graph()
A = tf.placeholder(tf.float32, shape=(None, 3))
B = A + 5
with tf.Session() as sess:
B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})
print(B_val_1)
print(B_val_2) | [[ 9. 10. 11.]
[ 12. 13. 14.]]
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Mini-batch Gradient Descent | n_epochs = 1000
learning_rate = 0.01
reset_graph()
X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)
init = tf.global_variables_initializer()
n_epochs = 10
batch_size = 100
n_batches = int(np.ceil(m / batch_size))
def fetch_batch(epoch, batch_index, batch_size):
np.random.seed(epoch * n_batches + batch_index) # not shown in the book
indices = np.random.randint(m, size=batch_size) # not shown
X_batch = scaled_housing_data_plus_bias[indices] # not shown
y_batch = housing.target.reshape(-1, 1)[indices] # not shown
return X_batch, y_batch
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
for batch_index in range(n_batches):
X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
best_theta = theta.eval()
best_theta | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Saving and restoring a model | reset_graph()
n_epochs = 1000 # not shown in the book
learning_rate = 0.01 # not shown
X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X") # not shown
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y") # not shown
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions") # not shown
error = y_pred - y # not shown
mse = tf.reduce_mean(tf.square(error), name="mse") # not shown
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) # not shown
training_op = optimizer.minimize(mse) # not shown
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
if epoch % 100 == 0:
print("Epoch", epoch, "MSE =", mse.eval()) # not shown
save_path = saver.save(sess, "/tmp/my_model.ckpt")
sess.run(training_op)
best_theta = theta.eval()
save_path = saver.save(sess, "/tmp/my_model_final.ckpt")
best_theta
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_model_final.ckpt")
best_theta_restored = theta.eval() # not shown in the book
np.allclose(best_theta, best_theta_restored) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
If you want to have a saver that loads and restores `theta` with a different name, such as `"weights"`: | saver = tf.train.Saver({"weights": theta}) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
By default the saver also saves the graph structure itself in a second file with the extension `.meta`. You can use the function `tf.train.import_meta_graph()` to restore the graph structure. This function loads the graph into the default graph and returns a `Saver` that can then be used to restore the graph state (i.e., the variable values): | reset_graph()
# notice that we start with an empty graph.
saver = tf.train.import_meta_graph("/tmp/my_model_final.ckpt.meta") # this loads the graph structure
theta = tf.get_default_graph().get_tensor_by_name("theta:0") # not shown in the book
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_model_final.ckpt") # this restores the graph's state
best_theta_restored = theta.eval() # not shown in the book
np.allclose(best_theta, best_theta_restored) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
This means that you can import a pretrained model without having to have the corresponding Python code to build the graph. This is very handy when you keep tweaking and saving your model: you can load a previously saved model without having to search for the version of the code that built it. Visualizing the graph inside Jupyter | from IPython.display import clear_output, Image, display, HTML
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = b"<stripped %d bytes>"%size
return strip_def
def show_graph(graph_def, max_const_size=32):
"""Visualize TensorFlow graph."""
if hasattr(graph_def, 'as_graph_def'):
graph_def = graph_def.as_graph_def()
strip_def = strip_consts(graph_def, max_const_size=max_const_size)
code = """
<script>
function load() {{
document.getElementById("{id}").pbtxt = {data};
}}
</script>
<link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()>
<div style="height:600px">
<tf-graph-basic id="{id}"></tf-graph-basic>
</div>
""".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))
iframe = """
<iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe>
""".format(code.replace('"', '"'))
display(HTML(iframe))
show_graph(tf.get_default_graph()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Using TensorBoard | reset_graph()
from datetime import datetime
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
logdir = "{}/run-{}/".format(root_logdir, now)
n_epochs = 1000
learning_rate = 0.01
X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)
init = tf.global_variables_initializer()
mse_summary = tf.summary.scalar('MSE', mse)
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
n_epochs = 10
batch_size = 100
n_batches = int(np.ceil(m / batch_size))
with tf.Session() as sess: # not shown in the book
sess.run(init) # not shown
for epoch in range(n_epochs): # not shown
for batch_index in range(n_batches):
X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
if batch_index % 10 == 0:
summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})
step = epoch * n_batches + batch_index
file_writer.add_summary(summary_str, step)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
best_theta = theta.eval() # not shown
file_writer.close()
best_theta | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Name scopes | reset_graph()
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
logdir = "{}/run-{}/".format(root_logdir, now)
n_epochs = 1000
learning_rate = 0.01
X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)
init = tf.global_variables_initializer()
mse_summary = tf.summary.scalar('MSE', mse)
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
n_epochs = 10
batch_size = 100
n_batches = int(np.ceil(m / batch_size))
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
for batch_index in range(n_batches):
X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
if batch_index % 10 == 0:
summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})
step = epoch * n_batches + batch_index
file_writer.add_summary(summary_str, step)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
best_theta = theta.eval()
file_writer.flush()
file_writer.close()
print("Best theta:")
print(best_theta)
print(error.op.name)
print(mse.op.name)
reset_graph()
a1 = tf.Variable(0, name="a") # name == "a"
a2 = tf.Variable(0, name="a") # name == "a_1"
with tf.name_scope("param"): # name == "param"
a3 = tf.Variable(0, name="a") # name == "param/a"
with tf.name_scope("param"): # name == "param_1"
a4 = tf.Variable(0, name="a") # name == "param_1/a"
for node in (a1, a2, a3, a4):
print(node.op.name)
with tf.name_scope("loss") as scope:
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse") | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Modularity An ugly flat code: | reset_graph()
n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
w1 = tf.Variable(tf.random_normal((n_features, 1)), name="weights1")
w2 = tf.Variable(tf.random_normal((n_features, 1)), name="weights2")
b1 = tf.Variable(0.0, name="bias1")
b2 = tf.Variable(0.0, name="bias2")
z1 = tf.add(tf.matmul(X, w1), b1, name="z1")
z2 = tf.add(tf.matmul(X, w2), b2, name="z2")
relu1 = tf.maximum(z1, 0., name="relu1")
relu2 = tf.maximum(z1, 0., name="relu2") # Oops, cut&paste error! Did you spot it?
output = tf.add(relu1, relu2, name="output") | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Much better, using a function to build the ReLUs: | reset_graph()
def relu(X):
w_shape = (int(X.get_shape()[1]), 1)
w = tf.Variable(tf.random_normal(w_shape), name="weights")
b = tf.Variable(0.0, name="bias")
z = tf.add(tf.matmul(X, w), b, name="z")
return tf.maximum(z, 0., name="relu")
n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")
file_writer = tf.summary.FileWriter("logs/relu1", tf.get_default_graph()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Even better using name scopes: | reset_graph()
def relu(X):
with tf.name_scope("relu"):
w_shape = (int(X.get_shape()[1]), 1) # not shown in the book
w = tf.Variable(tf.random_normal(w_shape), name="weights") # not shown
b = tf.Variable(0.0, name="bias") # not shown
z = tf.add(tf.matmul(X, w), b, name="z") # not shown
return tf.maximum(z, 0., name="max") # not shown
n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")
file_writer = tf.summary.FileWriter("logs/relu2", tf.get_default_graph())
file_writer.close() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Sharing Variables Sharing a `threshold` variable the classic way, by defining it outside of the `relu()` function then passing it as a parameter: | reset_graph()
def relu(X, threshold):
with tf.name_scope("relu"):
w_shape = (int(X.get_shape()[1]), 1) # not shown in the book
w = tf.Variable(tf.random_normal(w_shape), name="weights") # not shown
b = tf.Variable(0.0, name="bias") # not shown
z = tf.add(tf.matmul(X, w), b, name="z") # not shown
return tf.maximum(z, threshold, name="max")
threshold = tf.Variable(0.0, name="threshold")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X, threshold) for i in range(5)]
output = tf.add_n(relus, name="output")
reset_graph()
def relu(X):
with tf.name_scope("relu"):
if not hasattr(relu, "threshold"):
relu.threshold = tf.Variable(0.0, name="threshold")
w_shape = int(X.get_shape()[1]), 1 # not shown in the book
w = tf.Variable(tf.random_normal(w_shape), name="weights") # not shown
b = tf.Variable(0.0, name="bias") # not shown
z = tf.add(tf.matmul(X, w), b, name="z") # not shown
return tf.maximum(z, relu.threshold, name="max")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")
reset_graph()
with tf.variable_scope("relu"):
threshold = tf.get_variable("threshold", shape=(),
initializer=tf.constant_initializer(0.0))
with tf.variable_scope("relu", reuse=True):
threshold = tf.get_variable("threshold")
with tf.variable_scope("relu") as scope:
scope.reuse_variables()
threshold = tf.get_variable("threshold")
reset_graph()
def relu(X):
with tf.variable_scope("relu", reuse=True):
threshold = tf.get_variable("threshold")
w_shape = int(X.get_shape()[1]), 1 # not shown
w = tf.Variable(tf.random_normal(w_shape), name="weights") # not shown
b = tf.Variable(0.0, name="bias") # not shown
z = tf.add(tf.matmul(X, w), b, name="z") # not shown
return tf.maximum(z, threshold, name="max")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
with tf.variable_scope("relu"):
threshold = tf.get_variable("threshold", shape=(),
initializer=tf.constant_initializer(0.0))
relus = [relu(X) for relu_index in range(5)]
output = tf.add_n(relus, name="output")
file_writer = tf.summary.FileWriter("logs/relu6", tf.get_default_graph())
file_writer.close()
reset_graph()
def relu(X):
with tf.variable_scope("relu"):
threshold = tf.get_variable("threshold", shape=(), initializer=tf.constant_initializer(0.0))
w_shape = (int(X.get_shape()[1]), 1)
w = tf.Variable(tf.random_normal(w_shape), name="weights")
b = tf.Variable(0.0, name="bias")
z = tf.add(tf.matmul(X, w), b, name="z")
return tf.maximum(z, threshold, name="max")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
with tf.variable_scope("", default_name="") as scope:
first_relu = relu(X) # create the shared variable
scope.reuse_variables() # then reuse it
relus = [first_relu] + [relu(X) for i in range(4)]
output = tf.add_n(relus, name="output")
file_writer = tf.summary.FileWriter("logs/relu8", tf.get_default_graph())
file_writer.close()
reset_graph()
def relu(X):
threshold = tf.get_variable("threshold", shape=(),
initializer=tf.constant_initializer(0.0))
w_shape = (int(X.get_shape()[1]), 1) # not shown in the book
w = tf.Variable(tf.random_normal(w_shape), name="weights") # not shown
b = tf.Variable(0.0, name="bias") # not shown
z = tf.add(tf.matmul(X, w), b, name="z") # not shown
return tf.maximum(z, threshold, name="max")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = []
for relu_index in range(5):
with tf.variable_scope("relu", reuse=(relu_index >= 1)) as scope:
relus.append(relu(X))
output = tf.add_n(relus, name="output")
file_writer = tf.summary.FileWriter("logs/relu9", tf.get_default_graph())
file_writer.close() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Extra material | reset_graph()
with tf.variable_scope("my_scope"):
x0 = tf.get_variable("x", shape=(), initializer=tf.constant_initializer(0.))
x1 = tf.Variable(0., name="x")
x2 = tf.Variable(0., name="x")
with tf.variable_scope("my_scope", reuse=True):
x3 = tf.get_variable("x")
x4 = tf.Variable(0., name="x")
with tf.variable_scope("", default_name="", reuse=True):
x5 = tf.get_variable("my_scope/x")
print("x0:", x0.op.name)
print("x1:", x1.op.name)
print("x2:", x2.op.name)
print("x3:", x3.op.name)
print("x4:", x4.op.name)
print("x5:", x5.op.name)
print(x0 is x3 and x3 is x5) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
The first `variable_scope()` block first creates the shared variable `x0`, named `my_scope/x`. For all operations other than shared variables (including non-shared variables), the variable scope acts like a regular name scope, which is why the two variables `x1` and `x2` have a name with a prefix `my_scope/`. Note however that TensorFlow makes their names unique by adding an index: `my_scope/x_1` and `my_scope/x_2`.The second `variable_scope()` block reuses the shared variables in scope `my_scope`, which is why `x0 is x3`. Once again, for all operations other than shared variables it acts as a named scope, and since it's a separate block from the first one, the name of the scope is made unique by TensorFlow (`my_scope_1`) and thus the variable `x4` is named `my_scope_1/x`.The third block shows another way to get a handle on the shared variable `my_scope/x` by creating a `variable_scope()` at the root scope (whose name is an empty string), then calling `get_variable()` with the full name of the shared variable (i.e. `"my_scope/x"`). Strings | reset_graph()
text = np.array("Do you want some café?".split())
text_tensor = tf.constant(text)
with tf.Session() as sess:
print(text_tensor.eval()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Implementing a Home-Made Computation Graph | class Const(object):
def __init__(self, value):
self.value = value
def evaluate(self):
return self.value
def __str__(self):
return str(self.value)
class Var(object):
def __init__(self, init_value, name):
self.value = init_value
self.name = name
def evaluate(self):
return self.value
def __str__(self):
return self.name
class BinaryOperator(object):
def __init__(self, a, b):
self.a = a
self.b = b
class Add(BinaryOperator):
def evaluate(self):
return self.a.evaluate() + self.b.evaluate()
def __str__(self):
return "{} + {}".format(self.a, self.b)
class Mul(BinaryOperator):
def evaluate(self):
return self.a.evaluate() * self.b.evaluate()
def __str__(self):
return "({}) * ({})".format(self.a, self.b)
x = Var(3, name="x")
y = Var(4, name="y")
f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2
print("f(x,y) =", f)
print("f(3,4) =", f.evaluate()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Computing gradients Mathematical differentiation | df_dx = Mul(Const(2), Mul(x, y)) # df/dx = 2xy
df_dy = Add(Mul(x, x), Const(1)) # df/dy = x² + 1
print("df/dx(3,4) =", df_dx.evaluate())
print("df/dy(3,4) =", df_dy.evaluate()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Numerical differentiation | def gradients(func, vars_list, eps=0.0001):
partial_derivatives = []
base_func_eval = func.evaluate()
for var in vars_list:
original_value = var.value
var.value = var.value + eps
tweaked_func_eval = func.evaluate()
var.value = original_value
derivative = (tweaked_func_eval - base_func_eval) / eps
partial_derivatives.append(derivative)
return partial_derivatives
df_dx, df_dy = gradients(f, [x, y])
print("df/dx(3,4) =", df_dx)
print("df/dy(3,4) =", df_dy) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Symbolic differentiation | Const.derive = lambda self, var: Const(0)
Var.derive = lambda self, var: Const(1) if self is var else Const(0)
Add.derive = lambda self, var: Add(self.a.derive(var), self.b.derive(var))
Mul.derive = lambda self, var: Add(Mul(self.a, self.b.derive(var)), Mul(self.a.derive(var), self.b))
x = Var(3.0, name="x")
y = Var(4.0, name="y")
f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2
df_dx = f.derive(x) # 2xy
df_dy = f.derive(y) # x² + 1
print("df/dx(3,4) =", df_dx.evaluate())
print("df/dy(3,4) =", df_dy.evaluate()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Automatic differentiation (autodiff) – forward mode | class DualNumber(object):
def __init__(self, value=0.0, eps=0.0):
self.value = value
self.eps = eps
def __add__(self, b):
return DualNumber(self.value + self.to_dual(b).value,
self.eps + self.to_dual(b).eps)
def __radd__(self, a):
return self.to_dual(a).__add__(self)
def __mul__(self, b):
return DualNumber(self.value * self.to_dual(b).value,
self.eps * self.to_dual(b).value + self.value * self.to_dual(b).eps)
def __rmul__(self, a):
return self.to_dual(a).__mul__(self)
def __str__(self):
if self.eps:
return "{:.1f} + {:.1f}ε".format(self.value, self.eps)
else:
return "{:.1f}".format(self.value)
def __repr__(self):
return str(self)
@classmethod
def to_dual(cls, n):
if hasattr(n, "value"):
return n
else:
return cls(n) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
$3 + (3 + 4 \epsilon) = 6 + 4\epsilon$ | 3 + DualNumber(3, 4) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
$(3 + 4ε)\times(5 + 7ε) = 3 \times 5 + 3 \times 7ε + 4ε \times 5 + 4ε \times 7ε = 15 + 21ε + 20ε + 28ε^2 = 15 + 41ε + 28 \times 0 = 15 + 41ε$ | DualNumber(3, 4) * DualNumber(5, 7)
x.value = DualNumber(3.0)
y.value = DualNumber(4.0)
f.evaluate()
x.value = DualNumber(3.0, 1.0) # 3 + ε
y.value = DualNumber(4.0) # 4
df_dx = f.evaluate().eps
x.value = DualNumber(3.0) # 3
y.value = DualNumber(4.0, 1.0) # 4 + ε
df_dy = f.evaluate().eps
df_dx
df_dy | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Autodiff – Reverse mode | class Const(object):
def __init__(self, value):
self.value = value
def evaluate(self):
return self.value
def backpropagate(self, gradient):
pass
def __str__(self):
return str(self.value)
class Var(object):
def __init__(self, init_value, name):
self.value = init_value
self.name = name
self.gradient = 0
def evaluate(self):
return self.value
def backpropagate(self, gradient):
self.gradient += gradient
def __str__(self):
return self.name
class BinaryOperator(object):
def __init__(self, a, b):
self.a = a
self.b = b
class Add(BinaryOperator):
def evaluate(self):
self.value = self.a.evaluate() + self.b.evaluate()
return self.value
def backpropagate(self, gradient):
self.a.backpropagate(gradient)
self.b.backpropagate(gradient)
def __str__(self):
return "{} + {}".format(self.a, self.b)
class Mul(BinaryOperator):
def evaluate(self):
self.value = self.a.evaluate() * self.b.evaluate()
return self.value
def backpropagate(self, gradient):
self.a.backpropagate(gradient * self.b.value)
self.b.backpropagate(gradient * self.a.value)
def __str__(self):
return "({}) * ({})".format(self.a, self.b)
x = Var(3, name="x")
y = Var(4, name="y")
f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2
result = f.evaluate()
f.backpropagate(1.0)
print("f(x,y) =", f)
print("f(3,4) =", result)
print("df_dx =", x.gradient)
print("df_dy =", y.gradient) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Autodiff – reverse mode (using TensorFlow) | reset_graph()
x = tf.Variable(3., name="x")
y = tf.Variable(4., name="y")
f = x*x*y + y + 2
gradients = tf.gradients(f, [x, y])
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
f_val, gradients_val = sess.run([f, gradients])
f_val, gradients_val | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Exercise solutions 1. to 11. See appendix A. 12. Logistic Regression with Mini-Batch Gradient Descent using TensorFlow First, let's create the moons dataset using Scikit-Learn's `make_moons()` function: | from sklearn.datasets import make_moons
m = 1000
X_moons, y_moons = make_moons(m, noise=0.1, random_state=42) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Let's take a peek at the dataset: | plt.plot(X_moons[y_moons == 1, 0], X_moons[y_moons == 1, 1], 'go', label="Positive")
plt.plot(X_moons[y_moons == 0, 0], X_moons[y_moons == 0, 1], 'r^', label="Negative")
plt.legend()
plt.show() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
We must not forget to add an extra bias feature ($x_0 = 1$) to every instance. For this, we just need to add a column full of 1s on the left of the input matrix $\mathbf{X}$: | X_moons_with_bias = np.c_[np.ones((m, 1)), X_moons] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Let's check: | X_moons_with_bias[:5] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Looks good. Now let's reshape `y_train` to make it a column vector (i.e. a 2D array with a single column): | y_moons_column_vector = y_moons.reshape(-1, 1) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.