markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Now let's split the data into a training set and a test set: | test_ratio = 0.2
test_size = int(m * test_ratio)
X_train = X_moons_with_bias[:-test_size]
X_test = X_moons_with_bias[-test_size:]
y_train = y_moons_column_vector[:-test_size]
y_test = y_moons_column_vector[-test_size:] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Ok, now let's create a small function to generate training batches. In this implementation we will just pick random instances from the training set for each batch. This means that a single batch may contain the same instance multiple times, and also a single epoch may not cover all the training instances (in fact it will generally cover only about two thirds of the instances). However, in practice this is not an issue and it simplifies the code: | def random_batch(X_train, y_train, batch_size):
rnd_indices = np.random.randint(0, len(X_train), batch_size)
X_batch = X_train[rnd_indices]
y_batch = y_train[rnd_indices]
return X_batch, y_batch | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Let's look at a small batch: | X_batch, y_batch = random_batch(X_train, y_train, 5)
X_batch
y_batch | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Great! Now that the data is ready to be fed to the model, we need to build that model. Let's start with a simple implementation, then we will add all the bells and whistles. First let's reset the default graph. | reset_graph() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
The _moons_ dataset has two input features, since each instance is a point on a plane (i.e., 2-Dimensional): | n_inputs = 2 | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Now let's build the Logistic Regression model. As we saw in chapter 4, this model first computes a weighted sum of the inputs (just like the Linear Regression model), and then it applies the sigmoid function to the result, which gives us the estimated probability for the positive class:$\hat{p} = h_\mathbf{\theta}(\mathbf{x}) = \sigma(\mathbf{\theta}^T \cdot \mathbf{x})$ Recall that $\mathbf{\theta}$ is the parameter vector, containing the bias term $\theta_0$ and the weights $\theta_1, \theta_2, \dots, \theta_n$. The input vector $\mathbf{x}$ contains a constant term $x_0 = 1$, as well as all the input features $x_1, x_2, \dots, x_n$.Since we want to be able to make predictions for multiple instances at a time, we will use an input matrix $\mathbf{X}$ rather than a single input vector. The $i^{th}$ row will contain the transpose of the $i^{th}$ input vector $(\mathbf{x}^{(i)})^T$. It is then possible to estimate the probability that each instance belongs to the positive class using the following equation:$ \hat{\mathbf{p}} = \sigma(\mathbf{X} \cdot \mathbf{\theta})$That's all we need to build the model: | X = tf.placeholder(tf.float32, shape=(None, n_inputs + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n_inputs + 1, 1], -1.0, 1.0, seed=42), name="theta")
logits = tf.matmul(X, theta, name="logits")
y_proba = 1 / (1 + tf.exp(-logits)) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
In fact, TensorFlow has a nice function `tf.sigmoid()` that we can use to simplify the last line of the previous code: | y_proba = tf.sigmoid(logits) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
As we saw in chapter 4, the log loss is a good cost function to use for Logistic Regression:$J(\mathbf{\theta}) = -\dfrac{1}{m} \sum\limits_{i=1}^{m}{\left[ y^{(i)} log\left(\hat{p}^{(i)}\right) + (1 - y^{(i)}) log\left(1 - \hat{p}^{(i)}\right)\right]}$One option is to implement it ourselves: | epsilon = 1e-7 # to avoid an overflow when computing the log
loss = -tf.reduce_mean(y * tf.log(y_proba + epsilon) + (1 - y) * tf.log(1 - y_proba + epsilon)) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
But we might as well use TensorFlow's `tf.losses.log_loss()` function: | loss = tf.losses.log_loss(y, y_proba) # uses epsilon = 1e-7 by default | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
The rest is pretty standard: let's create the optimizer and tell it to minimize the cost function: | learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
All we need now (in this minimal version) is the variable initializer: | init = tf.global_variables_initializer() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
And we are ready to train the model and use it for predictions! There's really nothing special about this code, it's virtually the same as the one we used earlier for Linear Regression: | n_epochs = 1000
batch_size = 50
n_batches = int(np.ceil(m / batch_size))
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
for batch_index in range(n_batches):
X_batch, y_batch = random_batch(X_train, y_train, batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
loss_val = loss.eval({X: X_test, y: y_test})
if epoch % 100 == 0:
print("Epoch:", epoch, "\tLoss:", loss_val)
y_proba_val = y_proba.eval(feed_dict={X: X_test, y: y_test}) | Epoch: 0 Loss: 0.792602
Epoch: 100 Loss: 0.343463
Epoch: 200 Loss: 0.30754
Epoch: 300 Loss: 0.292889
Epoch: 400 Loss: 0.285336
Epoch: 500 Loss: 0.280478
Epoch: 600 Loss: 0.278083
Epoch: 700 Loss: 0.276154
Epoch: 800 Loss: 0.27552
Epoch: 900 Loss: 0.274912
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Note: we don't use the epoch number when generating batches, so we could just have a single `for` loop rather than 2 nested `for` loops, but it's convenient to think of training time in terms of number of epochs (i.e., roughly the number of times the algorithm went through the training set). For each instance in the test set, `y_proba_val` contains the estimated probability that it belongs to the positive class, according to the model. For example, here are the first 5 estimated probabilities: | y_proba_val[:5] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
To classify each instance, we can go for maximum likelihood: classify as positive any instance whose estimated probability is greater or equal to 0.5: | y_pred = (y_proba_val >= 0.5)
y_pred[:5] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Depending on the use case, you may want to choose a different threshold than 0.5: make it higher if you want high precision (but lower recall), and make it lower if you want high recall (but lower precision). See chapter 3 for more details. Let's compute the model's precision and recall: | from sklearn.metrics import precision_score, recall_score
precision_score(y_test, y_pred)
recall_score(y_test, y_pred) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Let's plot these predictions to see what they look like: | y_pred_idx = y_pred.reshape(-1) # a 1D array rather than a column vector
plt.plot(X_test[y_pred_idx, 1], X_test[y_pred_idx, 2], 'go', label="Positive")
plt.plot(X_test[~y_pred_idx, 1], X_test[~y_pred_idx, 2], 'r^', label="Negative")
plt.legend()
plt.show() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Well, that looks pretty bad, doesn't it? But let's not forget that the Logistic Regression model has a linear decision boundary, so this is actually close to the best we can do with this model (unless we add more features, as we will show in a second). Now let's start over, but this time we will add all the bells and whistles, as listed in the exercise:* Define the graph within a `logistic_regression()` function that can be reused easily.* Save checkpoints using a `Saver` at regular intervals during training, and save the final model at the end of training.* Restore the last checkpoint upon startup if training was interrupted.* Define the graph using nice scopes so the graph looks good in TensorBoard.* Add summaries to visualize the learning curves in TensorBoard.* Try tweaking some hyperparameters such as the learning rate or the mini-batch size and look at the shape of the learning curve. Before we start, we will add 4 more features to the inputs: ${x_1}^2$, ${x_2}^2$, ${x_1}^3$ and ${x_2}^3$. This was not part of the exercise, but it will demonstrate how adding features can improve the model. We will do this manually, but you could also add them using `sklearn.preprocessing.PolynomialFeatures`. | X_train_enhanced = np.c_[X_train,
np.square(X_train[:, 1]),
np.square(X_train[:, 2]),
X_train[:, 1] ** 3,
X_train[:, 2] ** 3]
X_test_enhanced = np.c_[X_test,
np.square(X_test[:, 1]),
np.square(X_test[:, 2]),
X_test[:, 1] ** 3,
X_test[:, 2] ** 3] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
This is what the "enhanced" training set looks like: | X_train_enhanced[:5] | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Ok, next let's reset the default graph: | reset_graph() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Now let's define the `logistic_regression()` function to create the graph. We will leave out the definition of the inputs `X` and the targets `y`. We could include them here, but leaving them out will make it easier to use this function in a wide range of use cases (e.g. perhaps we will want to add some preprocessing steps for the inputs before we feed them to the Logistic Regression model). | def logistic_regression(X, y, initializer=None, seed=42, learning_rate=0.01):
n_inputs_including_bias = int(X.get_shape()[1])
with tf.name_scope("logistic_regression"):
with tf.name_scope("model"):
if initializer is None:
initializer = tf.random_uniform([n_inputs_including_bias, 1], -1.0, 1.0, seed=seed)
theta = tf.Variable(initializer, name="theta")
logits = tf.matmul(X, theta, name="logits")
y_proba = tf.sigmoid(logits)
with tf.name_scope("train"):
loss = tf.losses.log_loss(y, y_proba, scope="loss")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
loss_summary = tf.summary.scalar('log_loss', loss)
with tf.name_scope("init"):
init = tf.global_variables_initializer()
with tf.name_scope("save"):
saver = tf.train.Saver()
return y_proba, loss, training_op, loss_summary, init, saver | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Let's create a little function to get the name of the log directory to save the summaries for Tensorboard: | from datetime import datetime
def log_dir(prefix=""):
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
if prefix:
prefix += "-"
name = prefix + "run-" + now
return "{}/{}/".format(root_logdir, name) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Next, let's create the graph, using the `logistic_regression()` function. We will also create the `FileWriter` to save the summaries to the log directory for Tensorboard: | n_inputs = 2 + 4
logdir = log_dir("logreg")
X = tf.placeholder(tf.float32, shape=(None, n_inputs + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
y_proba, loss, training_op, loss_summary, init, saver = logistic_regression(X, y)
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph()) | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
At last we can train the model! We will start by checking whether a previous training session was interrupted, and if so we will load the checkpoint and continue training from the epoch number we saved. In this example we just save the epoch number to a separate file, but in chapter 11 we will see how to store the training step directly as part of the model, using a non-trainable variable called `global_step` that we pass to the optimizer's `minimize()` method.You can try interrupting training to verify that it does indeed restore the last checkpoint when you start it again. | n_epochs = 10001
batch_size = 50
n_batches = int(np.ceil(m / batch_size))
checkpoint_path = "/tmp/my_logreg_model.ckpt"
checkpoint_epoch_path = checkpoint_path + ".epoch"
final_model_path = "./my_logreg_model"
with tf.Session() as sess:
if os.path.isfile(checkpoint_epoch_path):
# if the checkpoint file exists, restore the model and load the epoch number
with open(checkpoint_epoch_path, "rb") as f:
start_epoch = int(f.read())
print("Training was interrupted. Continuing at epoch", start_epoch)
saver.restore(sess, checkpoint_path)
else:
start_epoch = 0
sess.run(init)
for epoch in range(start_epoch, n_epochs):
for batch_index in range(n_batches):
X_batch, y_batch = random_batch(X_train_enhanced, y_train, batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
loss_val, summary_str = sess.run([loss, loss_summary], feed_dict={X: X_test_enhanced, y: y_test})
file_writer.add_summary(summary_str, epoch)
if epoch % 500 == 0:
print("Epoch:", epoch, "\tLoss:", loss_val)
saver.save(sess, checkpoint_path)
with open(checkpoint_epoch_path, "wb") as f:
f.write(b"%d" % (epoch + 1))
saver.save(sess, final_model_path)
y_proba_val = y_proba.eval(feed_dict={X: X_test_enhanced, y: y_test})
os.remove(checkpoint_epoch_path) | Epoch: 0 Loss: 0.629985
Epoch: 500 Loss: 0.161224
Epoch: 1000 Loss: 0.119032
Epoch: 1500 Loss: 0.0973292
Epoch: 2000 Loss: 0.0836979
Epoch: 2500 Loss: 0.0743758
Epoch: 3000 Loss: 0.0675021
Epoch: 3500 Loss: 0.0622069
Epoch: 4000 Loss: 0.0580268
Epoch: 4500 Loss: 0.054563
Epoch: 5000 Loss: 0.0517083
Epoch: 5500 Loss: 0.0492377
Epoch: 6000 Loss: 0.0471673
Epoch: 6500 Loss: 0.0453766
Epoch: 7000 Loss: 0.0438187
Epoch: 7500 Loss: 0.0423742
Epoch: 8000 Loss: 0.0410892
Epoch: 8500 Loss: 0.0399709
Epoch: 9000 Loss: 0.0389202
Epoch: 9500 Loss: 0.0380107
Epoch: 10000 Loss: 0.0371557
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Once again, we can make predictions by just classifying as positive all the instances whose estimated probability is greater or equal to 0.5: | y_pred = (y_proba_val >= 0.5)
precision_score(y_test, y_pred)
recall_score(y_test, y_pred)
y_pred_idx = y_pred.reshape(-1) # a 1D array rather than a column vector
plt.plot(X_test[y_pred_idx, 1], X_test[y_pred_idx, 2], 'go', label="Positive")
plt.plot(X_test[~y_pred_idx, 1], X_test[~y_pred_idx, 2], 'r^', label="Negative")
plt.legend()
plt.show() | _____no_output_____ | Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Now that's much, much better! Apparently the new features really helped a lot. Try starting the tensorboard server, find the latest run and look at the learning curve (i.e., how the loss evaluated on the test set evolves as a function of the epoch number):```$ tensorboard --logdir=tf_logs``` Now you can play around with the hyperparameters (e.g. the `batch_size` or the `learning_rate`) and run training again and again, comparing the learning curves. You can even automate this process by implementing grid search or randomized search. Below is a simple implementation of a randomized search on both the batch size and the learning rate. For the sake of simplicity, the checkpoint mechanism was removed. | from scipy.stats import reciprocal
n_search_iterations = 10
for search_iteration in range(n_search_iterations):
batch_size = np.random.randint(1, 100)
learning_rate = reciprocal(0.0001, 0.1).rvs(random_state=search_iteration)
n_inputs = 2 + 4
logdir = log_dir("logreg")
print("Iteration", search_iteration)
print(" logdir:", logdir)
print(" batch size:", batch_size)
print(" learning_rate:", learning_rate)
print(" training: ", end="")
reset_graph()
X = tf.placeholder(tf.float32, shape=(None, n_inputs + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
y_proba, loss, training_op, loss_summary, init, saver = logistic_regression(
X, y, learning_rate=learning_rate)
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
n_epochs = 10001
n_batches = int(np.ceil(m / batch_size))
final_model_path = "./my_logreg_model_%d" % search_iteration
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
for batch_index in range(n_batches):
X_batch, y_batch = random_batch(X_train_enhanced, y_train, batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
loss_val, summary_str = sess.run([loss, loss_summary], feed_dict={X: X_test_enhanced, y: y_test})
file_writer.add_summary(summary_str, epoch)
if epoch % 500 == 0:
print(".", end="")
saver.save(sess, final_model_path)
print()
y_proba_val = y_proba.eval(feed_dict={X: X_test_enhanced, y: y_test})
y_pred = (y_proba_val >= 0.5)
print(" precision:", precision_score(y_test, y_pred))
print(" recall:", recall_score(y_test, y_pred)) | Iteration 0
logdir: tf_logs/logreg-run-20171017023201/
batch size: 54
learning_rate: 0.00443037524522
training: .....................
precision: 0.979797979798
recall: 0.979797979798
Iteration 1
logdir: tf_logs/logreg-run-20171017023408/
batch size: 22
learning_rate: 0.00178264971514
training: .....................
precision: 0.979797979798
recall: 0.979797979798
Iteration 2
logdir: tf_logs/logreg-run-20171017024015/
batch size: 74
learning_rate: 0.00203228544324
training: .....................
precision: 0.969696969697
recall: 0.969696969697
Iteration 3
logdir: tf_logs/logreg-run-20171017024240/
batch size: 58
learning_rate: 0.00449152382514
training: .....................
precision: 0.979797979798
recall: 0.979797979798
Iteration 4
logdir: tf_logs/logreg-run-20171017024543/
batch size: 61
learning_rate: 0.0796323472178
training: .....................
precision: 0.980198019802
recall: 1.0
Iteration 5
logdir: tf_logs/logreg-run-20171017024839/
batch size: 92
learning_rate: 0.000463425058329
training: .....................
precision: 0.912621359223
recall: 0.949494949495
Iteration 6
logdir: tf_logs/logreg-run-20171017025008/
batch size: 74
learning_rate: 0.0477068184194
training: .....................
precision: 0.98
recall: 0.989898989899
Iteration 7
logdir: tf_logs/logreg-run-20171017025145/
batch size: 58
learning_rate: 0.000169404470952
training: .....................
precision: 0.9
recall: 0.909090909091
Iteration 8
logdir: tf_logs/logreg-run-20171017025352/
batch size: 61
learning_rate: 0.0417146119941
training: .....................
precision: 0.980198019802
recall: 1.0
Iteration 9
logdir: tf_logs/logreg-run-20171017025548/
batch size: 92
learning_rate: 0.000107429229684
training: .....................
precision: 0.882352941176
recall: 0.757575757576
| Apache-2.0 | 09_up_and_running_with_tensorflow.ipynb | JeffRisberg/SciKit_and_Data_Science |
Problem set 2: Finding the Walras equilibrium in a multi-agent economy [](https://mybinder.org/v2/gh/NumEconCopenhagen/exercises-2020/master?urlpath=lab/tree/PS2/problem_set_2.ipynb) | %load_ext autoreload
%autoreload 2 | _____no_output_____ | MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
Tasks Drawing random numbers Replace the missing lines in the code below to get the same output as in the answer. | import numpy as np
np.random.seed(1986)
# Define state, which makes sure that the code is randomized.
state = np.random.get_state()
for i in range(3):
# Reset the random state three times, because the range is 3. The state makes sure that if we change the range
# we will not change the random numbers generated in the first numbers of the range.
np.random.set_state(state)
for j in range(2):
x = np.random.uniform()
print(f'({i},{j}): x = {x:.3f}') | (0,0): x = 0.569
(0,1): x = 0.077
(1,0): x = 0.569
(1,1): x = 0.077
(2,0): x = 0.569
(2,1): x = 0.077
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Answer:** See A1.py Find the expectated value Find the expected value and the expected variance$$ \mathbb{E}[g(x)] \approx \frac{1}{N}\sum_{i=1}^{N} g(x_i)$$$$ \mathbb{VAR}[g(x)] \approx \frac{1}{N}\sum_{i=1}^{N} \left( g(x_i) - \frac{1}{N}\sum_{i=1}^{N} g(x_i) \right)^2$$where $ x_i \sim \mathcal{N}(0,\sigma) $ and$$ g(x,\omega)=\begin{cases}x & \text{if }x\in[-\omega,\omega]\\-\omega & \text{if }x<-\omega\\\omega & \text{if }x>\omega\end{cases} $$ | sigma = 3.14
omega = 2
N = 10000
np.random.seed(1986)
# Set state
state = np.random.get_state()
np.random.set_state(state)
# Define x as a normal distribution
x = np.random.normal(loc=0, scale=sigma, size=N)
# Define function g(x,omega)
def g_function(x,omega):
# g_function has to give the value g. Because x is an array changes in g must not affect x.
g = x.copy()
# We describe the conditions in the function.
g[x < -omega] = -omega
g[x > omega] = omega
# Define what the function has to return, in this case the value which is given by the condition.
return g
# Calculate mean and variance
mean = np.mean(g_function(x,omega))
variance = np.var(g_function(x-mean,omega))
# Print the results
print(f'mean = {mean:.5f} variance = {variance:.5f}') | mean = -0.00264 variance = 2.69804
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Answer:** See A2.py Interactive histogram **First task:** Consider the code below. Fill in the missing lines so the figure is plotted. | # a. import
import math
import pickle
import numpy as np
from scipy.stats import norm # normal distribution
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
import ipywidgets as widgets
# b. plotting figure
def fitting_normal(X,mu_guess,sigma_guess):
# i. normal distribution from guess
F = norm(loc=mu_guess,scale=sigma_guess)
# ii. x-values
x_low = F.ppf(0.001)
x_high = F.ppf(0.999)
x = np.linspace(x_low,x_high,100)
# iii. figure
fig = plt.figure(dpi=100)
ax = fig.add_subplot(1,1,1)
ax.plot(x,F.pdf(x),lw=2)
ax.hist(X,bins=100,density=True,histtype='stepfilled');
ax.set_ylim([0,0.5])
ax.set_xlim([-6,6])
# c. parameters
mu_true = 2
sigma_true = 1
mu_guess = 1
sigma_guess = 2
# d. random draws
X = np.random.normal(loc=mu_true,scale=sigma_true,size=10**6)
# e. figure
try:
fitting_normal(X,mu_guess,sigma_guess)
except:
print('failed') | _____no_output_____ | MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Second task:** Create an interactive version of the figure with sliders for $\mu$ and $\sigma$. | # Write out which arguments to interactive_figure you want to be changing or staying fixed
widgets.interact(fitting_normal,
X=widgets.fixed(X),
mu_guess=widgets.FloatSlider(description="$\mu$", min=-5, max=5, step=1, value=1),
sigma_guess=widgets.FloatSlider(description="$\sigma$", min=0.1, max=10, step = 0.1, value=2)
); | _____no_output_____ | MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Answer:** See A3.py Modules 1. Call the function `myfun` from the module `mymodule` present in this folder.2. Open VSCode and open the `mymodule.py`, add a new function and call it from this notebook. | import mymodule as mm
from mymodule import myfun
mm.myfun(1)
mm.gitgood(1) | hello world!
Git Good!
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Answer:** See A4.py Git 1. Try to go to your own personal GitHub main page and create a new repository. Then put your solution to this problem set in it.2. Pair up with a fellow student. Clone each others repositories and run the code in them. **IMPORTANT:** You will need **git** for the data project in a few needs. Better learn it know. Remember, that the teaching assistants are there to help you. Problem Consider an **exchange economy** with1. 2 goods, $(x_1,x_2)$2. $N$ consumers indexed by $j \in \{1,2,\dots,N\}$3. Preferences are Cobb-Douglas with truncated normally *heterogenous* coefficients $$ \begin{aligned} u^{j}(x_{1},x_{2}) & = x_{1}^{\alpha_{j}}x_{2}^{1-\alpha_{j}}\\ & \tilde{\alpha}_{j}\sim\mathcal{N}(\mu,\sigma)\\ & \alpha_j = \max(\underline{\mu},\min(\overline{\mu},\tilde{\alpha}_{j})) \end{aligned} $$4. Endowments are *heterogenous* and given by $$ \begin{aligned} \boldsymbol{e}^{j}&=(e_{1}^{j},e_{2}^{j}) \\ & & e_i^j \sim f, f(x,\beta_i) = 1/\beta_i \exp(-x/\beta) \end{aligned} $$ **Problem:** Write a function to solve for the equilibrium. You can use the following parameters: | # a. parameters
N = 10000
mu = 0.5
sigma = 0.2
mu_low = 0.1
mu_high = 0.9
beta1 = 1.3
beta2 = 2.1
seed = 1986
# b. draws of random numbers
np.random.seed(seed)
alphatilde = np.random.normal(loc=mu, scale=sigma, size=N)
alpha = np.fmax(mu_low,np.fmin(mu_high, alphatilde))
e1 = np.random.exponential(scale=beta1, size=N)
e2 = np.random.exponential(scale=beta2, size=N)
# c. demand function
def demand_good_1_func(alpha, p1, p2, e1, e2):
I = e1*p1+e2*p2
return alpha*I/p1
# d. excess demand function
def excess_demand_func(alpha, p1, p2, e1, e2):
# Define aggregate supply and demand for good 1
demand = np.sum(demand_good_1_func(alpha, p1, p2, e1, e2))
supply = sum(e1)
# Excess demand is demand supply subtracted from demand
excess_demand = demand - supply
return excess_demand
# e. find equilibrium function
def find_equilibrium(alphas, p1, p2, e1, e2, kappa=0.5, eps=1e-8, maxiter=500):
t = 0
# using a while loop as we don't know number of iterations a priori
while True:
# a. step 1: excess demand
Z1 = excess_demand_func(alpha, p1, p2, e1, e2)
# b: step 2: stop?
if np.abs(Z1) < eps or t >= maxiter:
print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {Z1:14.8f}')
break
# c. step 3: update p1
p1 = p1 + kappa*Z1/alphas.size
# d. step 4: print only every 25th iteration using the modulus operator
if t < 5 or t%25 == 0:
print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {Z1:14.8f}')
elif t == 5:
print(' ...')
t += 1
return p1
# f. call find equilibrium function
p1 = 1.8
p2 = 1
kappa = 0.5
eps = 1e-8
find_equilibrium(alpha,p1,p2,e1,e2,kappa=kappa,eps=eps) | 0: p1 = 1.76747251 -> excess demand -> -650.54980224
1: p1 = 1.74035135 -> excess demand -> -542.42310867
2: p1 = 1.71789246 -> excess demand -> -449.17798560
3: p1 = 1.69940577 -> excess demand -> -369.73361992
4: p1 = 1.68426754 -> excess demand -> -302.76467952
...
25: p1 = 1.62115861 -> excess demand -> -3.00036721
50: p1 = 1.62056537 -> excess demand -> -0.01087860
75: p1 = 1.62056322 -> excess demand -> -0.00003940
100: p1 = 1.62056321 -> excess demand -> -0.00000014
112: p1 = 1.62056321 -> excess demand -> -0.00000001
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Hint:** The code structure is exactly the same as for the exchange economy considered in the lecture. The code for solving that exchange economy is reproduced in condensed form below. | # a. parameters
N = 1000
k = 2
mu_low = 0.1
mu_high = 0.9
seed = 1986
# b. draws of random numbers
np.random.seed(seed)
alphas = np.random.uniform(low=mu_low,high=mu_high,size=N)
# c. demand function
def demand_good_1_func(alpha,p1,p2,k):
I = k*p1+p2
return alpha*I/p1
# d. excess demand function
def excess_demand_good_1_func(alphas,p1,p2,k):
# a. demand
demand = np.sum(demand_good_1_func(alphas,p1,p2,))
# b. supply
supply = k*alphas.size
# c. excess demand
excess_demand = demand-supply
return excess_demand
# e. find equilibrium function
def find_equilibrium(alphas,p1,p2,k,kappa=0.5,eps=1e-8,maxiter=500):
t = 0
while True:
# a. step 1: excess demand
Z1 = excess_demand_good_1_func(alphas,p1,p2,k)
# b: step 2: stop?
if np.abs(Z1) < eps or t >= maxiter:
print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {Z1:14.8f}')
break
# c. step 3: update p1
p1 = p1 + kappa*Z1/alphas.size
# d. step 4: return
if t < 5 or t%25 == 0:
print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {Z1:14.8f}')
elif t == 5:
print(' ...')
t += 1
return p1
# e. call find equilibrium function
p1 = 1.4
p2 = 1
kappa = 0.1
eps = 1e-8
p1 = find_equilibrium(alphas,p1,p2,k,kappa=kappa,eps=eps) | 0: p1 = 1.33690689 -> excess demand -> -630.93108302
1: p1 = 1.27551407 -> excess demand -> -613.92820358
2: p1 = 1.21593719 -> excess demand -> -595.76882769
3: p1 = 1.15829785 -> excess demand -> -576.39340748
4: p1 = 1.10272273 -> excess demand -> -555.75114178
...
25: p1 = 0.53269252 -> excess demand -> -53.80455643
50: p1 = 0.50897770 -> excess demand -> -0.27125769
75: p1 = 0.50886603 -> excess demand -> -0.00120613
100: p1 = 0.50886553 -> excess demand -> -0.00000536
125: p1 = 0.50886553 -> excess demand -> -0.00000002
130: p1 = 0.50886553 -> excess demand -> -0.00000001
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Answers:** See A5.py Save and load Consider the code below and fill in the missing lines so the code can run without any errors. | import pickle
# a. create some data
my_data = {}
my_data['A'] = {'a':1,'b':2}
my_data['B'] = np.array([1,2,3])
my_data['C'] = (1,4,2)
my_np_data = {}
my_np_data['D'] = np.array([1,2,3])
my_np_data['E'] = np.zeros((5,8))
my_np_data['F'] = np.ones((7,3,8))
# c. save with pickle
with open(f'data.p', 'wb') as f:
pickle.dump(my_data,f)
# d. save with numpy
np.savez(f'data.npz', **my_np_data)
# a. try
def load_all():
with open(f'data.p', 'rb') as f:
data = pickle.load(f)
A = data['A']
B = data['B']
C = data['C']
with np.load(f'data.npz') as data:
D = data['D']
E = data['E']
F = data['F']
print('variables loaded without error')
try:
load_all()
except:
print('failed') | variables loaded without error
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
**Answer:** See A6.py Extra Problems Multiple goods Solve the main problem extended with multiple goods: $$\begin{aligned}u^{j}(x_{1},x_{2}) & = x_{1}^{\alpha^1_{j}} \cdot x_{2}^{\alpha^2_{j}} \cdots x_{M}^{\alpha^M_{j}}\\ & \alpha_j = [\alpha^1_{j},\alpha^2_{j},\dots,\alpha^M_{j}] \\ & \log(\alpha_j) \sim \mathcal{N}(0,\Sigma) \\\end{aligned}$$where $\Sigma$ is a valid covariance matrix. | # a. choose parameters
N = 10000
J = 3
# b. choose Sigma
Sigma_lower = np.array([[1, 0, 0], [0.5, 1, 0], [0.25, -0.5, 1]])
Sigma_upper = Sigma_lower.T
Sigma = Sigma_upper@Sigma_lower
print(Sigma)
# c. draw random numbers
alphas = np.exp(np.random.multivariate_normal(np.zeros(J), Sigma, 10000))
print(np.mean(alphas,axis=0))
print(np.corrcoef(alphas.T))
def demand_good_1_func(alpha,p1,p2,k):
I = k*p1+p2
return alpha*I/p1
def demand_good_2_func(alpha,p1,p2,k):
I = k*p1+p2
return (1-alpha)*I/p2
def excess_demand_good_1_func(alphas,p1,p2,k):
# a. demand
demand = np.sum(demand_good_1_func(alphas,p1,p2,k))
# b. supply
supply = k*alphas.size
# c. excess demand
excess_demand = demand-supply
return excess_demand
def excess_demand_good_2_func(alphas,p1,p2,k):
# a. demand
demand = np.sum(demand_good_2_func(alphas,p1,p2,k))
# b. supply
supply = alphas.size
# c. excess demand
excess_demand = demand-supply
return excess_demand
def find_equilibrium(alphas,p1_guess,p2,k,kappa=0.5,eps=1e-8,maxiter=500):
t = 0
p1 = p1_guess
# using a while loop as we don't know number of iterations a priori
while True:
# a. step 1: excess demand
Z1 = excess_demand_good_1_func(alphas,p1,p2,k)
# b: step 2: stop?
if np.abs(Z1) < eps or t >= maxiter:
print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {Z1:14.8f}')
break
# c. step 3: update p1
p1 = p1 + kappa*Z1/alphas.size
# d. step 4: print only every 25th iteration using the modulus operator
if t < 5 or t%25 == 0:
print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {Z1:14.8f}')
elif t == 5:
print(' ...')
t += 1
return p1 | [[ 1.3125 0.375 0.25 ]
[ 0.375 1.25 -0.5 ]
[ 0.25 -0.5 1. ]]
[1.91709082 1.91100849 1.63670693]
[[ 1. 0.19955924 0.15149459]
[ 0.19955924 1. -0.16150109]
[ 0.15149459 -0.16150109 1. ]]
| MIT | Magnus/Problem sets/PS2/problem_set_2.ipynb | NumEconCopenhagen/projects-2022-git-good |
Cleaning the Philippine Standard Geographic Code Dataset | import pandas as pd
import xlrd
import re | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Import the PSGC Excel file.The Philippine Statistics Authority publishes an updated PSGC file every quarter in the form of an Excel file. The latest link is here: https://psa.gov.ph/classification/psgc/ | psgc_excel = pd.read_excel("data/raw/PSGC_Publication_Sept2018.xlsx",sheet_name="PSGC")
psgc_excel.to_csv('data/raw/raw-psgc.csv.gz',encoding="utf-8",compression="gzip")
psgc = pd.read_csv('data/raw/raw-psgc.csv.gz',encoding="utf-8")
psgc.info() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Convert "Code" column to a string and ensure it has leading zeros and is 9-char long. | psgc.loc[:,"Code"] = psgc.Code.astype(str).str.zfill(9) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Drop unused columns: | psgc = psgc.loc[:,['Code','Name','Inter-Level']] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Normalize column names | psgc.columns = ['code','location','interlevel']
psgc.head()
psgc['interlevel'].value_counts()
psgc.head() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Create a duplicate of the original PSGC dataframe | og_psgc = psgc.copy() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Helpers We see that a lot of the locations in the PSGC have alternate names or aliases for each location contained in parentheses. Let's create a regular expression pattern that will extract these as aliases and append these as additional rows to each subset of the data. | extract_in_paren = re.compile(r'\(+([^\(\)]+)\)*')
remove_in_paren = "\(.+\)"
def expand_in_paren(df):
'''
Denotes original locations
'''
df['original'] = True
'''
Creates a copy of the rows that contain parentheses or have aliases.
'''
has_paren = df[df.location.str.contains("[\(\)]")]
has_paren['original'] = False
'''
Splits locations that contain parentheses into two elements -- what's before the parentheses, and what's within them
Each of these items is treated as a separate possible alias and appended to the original datasete
'''
for i in [0,1]:
aliases = has_paren.copy()
aliases['location'] = has_paren.location.str.replace("\)","").str.split("\(").str.get(i).str.strip()
df = df.append(aliases,ignore_index=True)
return df.sort_values(by=["code","original"]).reset_index(drop=True) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Clean regions | regions = psgc[psgc['interlevel'] == 'Reg'].copy() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Alternate names inside parens so we expand those out to a new column named `alias`. | regions = expand_in_paren(regions)
regions | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Clean provinces | provinces = psgc[psgc['interlevel'] == 'Prov'].copy()
provinces.head() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Seems normal... But let's check for parens just in case: | provinces[provinces['location'].str.contains('[\(\)]')] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Sneaky alternate names! | provinces = expand_in_paren(provinces)
provinces | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Clean districts | districts = psgc[psgc['interlevel'] == 'Dist'].copy()
districts | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
No one writes `NTH DISTRICT (Not a Province)` in their addresses. Let's remove these instances altogether rather than extract these as aliases. | districts['location'] = (districts['location']
.str.replace('\(Not a Province\)', '')
.str.strip()
.str.split(',',n=1)
.str.get(1))
districts | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Clean municipalities | municipalities = psgc[psgc['interlevel'] == 'Mun'].copy() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Checking for alternate names in parentheses: | municipalities[municipalities['location'].str.contains('[\(\)]')] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
In some cases the words "Capital" are contained in parentheses but these are not aliases. Safe to strip! | municipalities['location'] = municipalities['location'].str.replace('\(Capital\)', '').str.strip()
municipalities
municipalities = expand_in_paren(municipalities)
municipalities.head(30) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Clean cities | cities = psgc[psgc['interlevel'] == 'City'].copy()
cities.head(30) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Here we go with the `(Capital)` thing again. | cities['location'] = cities['location'].str.replace('\(Capital\)', '').str.strip() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Checking if there are still stuff with parens: | cities[cities['location'].str.contains('[\(\)]')].head() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
A few alterate names! | cities = expand_in_paren(cities)
cities | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Now what about those `CITY` pre/suffixes? | cities[cities['location'].str.contains('CITY')] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Let's strip any prefixes of "CITY OF" and suffixes of "CITY." | cities['location'] = (cities['location']
.str.replace('^.*CITY OF', '') #stripping prefixes
.str.strip()
.str.replace('CITY$', '') #stripping suffixes
.str.strip())
cities | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Clean sub-municipalitiesManila is the only city-slash-district that has submunicipalities. | sub_municipalities = psgc[psgc['interlevel'] == 'SubMun'].copy()
sub_municipalities | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Nothing special! Clean barangays | barangays = psgc[psgc['interlevel'] == 'Bgy'].copy()
barangays | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
We see alternate names again but notice the `(Pob.)` suffixes. A quick Google search shows that it's short for `Poblacion` which is used to denote the commercial and industrial center of a city. Let's stash those and add them as aliases | barangays_pob = barangays[barangays.location.str.contains('\(Pob.\)')].copy()
barangays['location'] = (barangays['location']
.str.replace('(\(Pob\.\))', '') #totally do away with any poblacion suffixes
.str.strip())
barangays['location'].head(30) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
How many other barangay names contain parentheses? | barangays[barangays.location.str.contains(r'[\(\)]')] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
While parentheses often contain aliases, sometimes, these are not aliases but the name of the municipality in which the barangay is located. For example, barangays in the municipality of Dumalneg have the `(Dumalneg)` denoted in parentheses. We'll go ahead and extract parenthetical names as aliases for now, but we'll later remove instances in which aliases are equal to the municipality name. | barangays = expand_in_paren(barangays) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Let's check for more weird characters: | barangays[barangays['location'].str.contains(r'[^a-zA-Z0-9\sÑñ\(\)]')] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Lets extract the strings that follow a "Brgy No. X" as aliases. | pat_barangay = re.compile('(B[gr]y. No. \d+\-?\w?),? (.+)')
len(barangays[barangays.location.str.contains(pat_barangay)])
def expand_barangays(df):
'''
Denotes original locations
'''
df['original'] = True
'''
Creates a copy of the rows that contain barangay pattern
'''
matches_pattern = df[df.location.str.contains(pat_barangay)]
matches_pattern['original'] = False
'''
Splits locations that into two elements -- Brgy No X and the name that comes after it
Each of these items is treated as a separate possible alias and appended to the original datasete
'''
for i in [0,1]:
aliases = matches_pattern.copy()
aliases['location'] = matches_pattern.location.str.extract(pat_barangay)[i]#.str.get(i).str.strip()
aliases['location'] = aliases['location'].str.strip()
df = df.append(aliases,ignore_index=True)
return df.sort_values(by=["code","original"]).reset_index(drop=True)
#print len(barangays)
barangays = expand_barangays(barangays)
#print len(barangays)
barangays.head() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Add barangays that are `Poblacion` as aliases | barangays_pob['original'] = False
barangays = barangays.append(barangays_pob, ignore_index=True)
barangays[barangays.code == '012801001'] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Last check! | barangays.info()
barangays[barangays.code == "012812026"] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
ARMM: Cotabato and Isabela City | armm = psgc[psgc['interlevel'].isnull()].copy()
armm
armm['location'] = armm['location'].str.replace('\(Not a Province\)', '')
armm
armm['location'] = (armm['location']
.str.replace('^.*CITY OF', '')
.str.strip()
.str.replace('CITY$', '')
.str.strip())
armm
armm['original'] = True
armm | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
All together now | merged = pd.concat([
regions,
provinces,
districts,
municipalities,
cities,
sub_municipalities,
barangays,
armm
],ignore_index=True).sort_index().fillna('')
merged.info() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Are counts still correct? | psgc['interlevel'].value_counts()
merged['interlevel'].value_counts()
merged.code.nunique(), psgc.code.nunique() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Normalize numbers: | spanish = merged[merged['location'].str.contains(' (UNO|DOS|TRES|KUATRO|SINGKO)$',case=False)].copy()
spanish
for i, s in enumerate([
'Uno',
'Dos',
'Tres',
'Kuatro',
'Singko',
]):
spanish['location'] = spanish['location'].str.replace(' {}$'.format(s), ' {}'.format(i + 1))
spanish
spanish['original'] = False
spanish
roman = merged[merged['location'].str.contains('\s(X{0,3})(IX|IV|V?I{0,3})$')].copy()
for i, s in enumerate('I,II,III,IV,V,VI,VII,VIII,IX,X,XI,XII,XIII,XIV,XV,XVI,XVII,XVIII,XIX,XX,XXI,XXII'.split(',')):
roman['location'] = roman['location'].str.replace(' {}$'.format(s), ' {}'.format(i + 1))
roman['original'] = False
roman | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Provide alternate names for locations with President names | president = merged[merged.location.str.contains('PRES\.', flags=re.IGNORECASE)].copy()
president['location'] = president['location'].str.replace('^PRES\.', 'PRESIDENT')
president['location'] = president['location'].str.replace('^Pres\.', 'President')
president['original'] = False
president | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Add alternative names to Metro Manila | metro_manila = pd.DataFrame([{"code":"130000000","interlevel":"Reg","location":"Metro Manila","original":False},
{"code":"130000000","interlevel":"Reg","location":"Metropolitan Manila","original":False}])
metro_manila | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Add Ñ -> N as an alternate name | merged[merged.location.str.contains('Las Piñas',case=False)]
enye = merged[merged.location.str.contains(r'[Ññ]')].copy()
enye.head()
enye['location'] = (enye['location'].str.replace('Ñ', 'N')
.str.replace('ñ','n'))
enye.head() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Concat the alternates to the main dataframe | clean_psgc = (pd.concat([merged, spanish, roman, president], ignore_index=True)
.sort_values('code')
.reset_index(drop=True)) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Last check for weird stuff! | clean_psgc[clean_psgc['location'].str.contains('[^a-zA-Z0-9 \-.,\']')] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
We can probably still split with `&` and `/` but this is good enough for now. Combine the cleaned up PSGC and remove the duplicates | clean_psgc.drop_duplicates(subset=['code', 'location', 'interlevel'], inplace=True)
clean_psgc.reset_index(drop=True).sort_values('code', inplace=True) | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Check that we have both the original name and the alternate ones | clean_psgc[clean_psgc.code.str.contains('086000000')]
clean_psgc[clean_psgc.code.str.contains('012801001')]
clean_psgc.info() | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Cleaning out rows in which the alternate name of the barangay was just the name of its parent municipality or city | clean_psgc['municipality_code'] = clean_psgc.code.str.slice(0,6)+"000"
clean_psgc['municipality'] = clean_psgc['municipality_code'].map(municipalities[municipalities.original==True].set_index('code').location)
clean_psgc.head(10)
clean_psgc['drop'] = (clean_psgc.municipality == clean_psgc.location.str.upper()) & (clean_psgc.interlevel == "Bgy")
barangay_and_muni_same_name = clean_psgc.groupby('code').drop.value_counts().unstack()[False][clean_psgc.groupby('code').drop.value_counts().unstack()[False].isnull()].index
clean_psgc.loc[clean_psgc.code.isin(barangay_and_muni_same_name),"drop"] = False
clean_psgc[clean_psgc.code == '013301034']
clean_psgc = clean_psgc.loc[clean_psgc['drop'] ==False,['code','interlevel','location','original']].reset_index(drop=True)
clean_psgc[clean_psgc.code == "133900000"] | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Create aliases for Legazpi and Ozamiz | zplaces = clean_psgc[clean_psgc.location.str.upper().isin(["LEGAZPI","OZAMIZ"])].copy()
zplaces.loc[:,'location'] = ["LEGASPI","OZAMIS"]
zplaces
clean_psgc = clean_psgc.append(zplaces,ignore_index=True)
clean_psgc
clean_psgc.to_csv('data/processed/clean-psgc.csv.gz', index=False, compression='gzip') | _____no_output_____ | MIT | Cleaning_PSGC.ipynb | thinkingmachines/psgc |
Structural Topic ModelThis R notebook reproduces the Structural Topic Model used in Step 1 of the Computational Grounded Theory project.Note: This notebook produces the model and then saves it. Producing the model can take quite a bit of time to run, upwards of four hours. To explore the topic models produced skip directly to the next notebook, `02-TopicExploration.ipynb`. Requirements and DependenciesModel created using R 3.4.0 Main libary: stm_1.2.2 Dependencies:* tm_0.7-1* NLP_0.1-10* SnowballC_0.5.1 | library(stm)
### Load Data
df <- read.csv('../data/comparativewomensmovement_dataset.csv', sep='\t')
##Pre-Processing
temp<-textProcessor(documents=df$text_string,metadata=df)
meta<-temp$meta
vocab<-temp$vocab
docs<-temp$documents
out <- prepDocuments(docs, vocab, meta)
docs<-out$documents
vocab<-out$vocab
meta <-out$meta
##Produce Models
### Model search across numbers of topics
storage <- manyTopics(docs,vocab,K=c(20,30,40,50), prevalence=~org, data=meta, seed = 1234)
mod.20 <- storage$out[[1]]
mod.30 <- storage$out[[2]]
mod.40 <- storage$out[[3]]
mod.50 <- storage$out[[4]]
##Save Full Model, with four different topic models saved
save.image("../data/stm_all.RData") | _____no_output_____ | BSD-3-Clause | 01-Step1-PatternDetection/.ipynb_checkpoints/01-StructuralTopicModel-checkpoint.ipynb | cxomni/computational-grounded-theory |
IntroductionThe bike has 20 gears which are the categories/labels of the classification. Features are cadence and speed with data of the trainings app. We train our model with data sets of all 20 gears (means 20 tcx files loaded with labeled oberservations). | from sklearn.model_selection import train_test_split
from src.regression import validate_lin_reg
from src.tcx import Tcx, COLUMN_NAME_SPEED, COLUMN_NAME_WATTS, COLUMN_NAME_CADENCE
from src.test_data import TrainDataSet
from src.visu import plot2d
import matplotlib.pyplot as plt
tcx_app_gear7: Tcx = Tcx.read_tcx(file_path='test/tcx/cadence_1612535177298-gear7.tcx')
tcx_app_gear20: Tcx = Tcx.read_tcx(file_path='test/tcx/cadence_1612535671464-gear20.tcx')
tcx_tacx_gear7: Tcx = Tcx.read_tcx(file_path='test/tcx/tacx-activity_6225123072-gear7-resistance3.tcx')
tcx_tacx_gear20: Tcx = Tcx.read_tcx(file_path='test/tcx/tacx-activity_6225123072-gear7-resistance3.tcx')
# generate test data
dts_gear7: TrainDataSet = TrainDataSet(tcx_app_gear7)
dts_gear20: TrainDataSet = TrainDataSet(tcx_app_gear20)
dts_tacx_gear7: TrainDataSet = TrainDataSet(tcx_tacx_gear7) | _____no_output_____ | MIT | regression_by_cadence.ipynb | bruennijs/indoor-virtual-power-prediction |
ProblemFind cadence for a gear that the tacx data set is of. the app data will measure speed and a linear regression model of the same gear predicts the cadence by that speed. A second linear regression model maps cadence to power of the tacx data set. Solution Train (app data)* X of of gear _n_ in app data set: [speed]* Y -> [cadence] Linear model | from sklearn.linear_model import LinearRegression
X_train, y_train = dts_gear7.cadence_to_speed()
lr_app_gear7 = LinearRegression().fit(X_train, y_train) | _____no_output_____ | MIT | regression_by_cadence.ipynb | bruennijs/indoor-virtual-power-prediction |
Train (tacx)* X of of gear _n_ in app data set: [cadence]* Y -> [power] AnalyzeLet us first plot the features to see which regression model fits best | X, y = dts_tacx_gear7.cadence_to_power()
plot2d(X.iloc[:,0], y, point_color='red', legend_label='gear 7 (tacx)')
plt.show() | _____no_output_____ | MIT | regression_by_cadence.ipynb | bruennijs/indoor-virtual-power-prediction |
Linear model | from sklearn.linear_model import LinearRegression
lr_tacx_gear7 = LinearRegression().fit(X, y) | _____no_output_____ | MIT | regression_by_cadence.ipynb | bruennijs/indoor-virtual-power-prediction |
ValidationCross validation with X_test of tacx data and validate the score of the predicted values | random_state = 2
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=random_state)
validate_lin_reg(X_train, y_train, X_test, y_test, LinearRegression())
| Shape X_train/X_test: (357, 1)/(90, 1)
Error R²: 1.00
MSE error (mean squared error / variance): 1.06
sqrt(MSE) (standard deviation): 1.03
Max error: 2.8912017526499483
estimator.coefficients: [1.70889424]
Cross validation: [0.99506023 0.99816251 0.9957887 0.99589043 0.99734035]
| MIT | regression_by_cadence.ipynb | bruennijs/indoor-virtual-power-prediction |
Learning objectives:* Introduction to lists.* How to create and access elements from a list.* Adding, removing and changing the elements of the list. | alist = [2,3,45,'python', -98]
alist
names = ['Tom', 'Mak', 'Arjun', 'Rahul']
names
blist = [1,2,3,4, [-1, -2, -3], 'python', names]
blist | _____no_output_____ | MIT | module_2_programming/lists.ipynb | wiplane/foundations-of-datascience-ml |
Access elements of a list | alist
alist[2]
alist[3]
alist[4]
alist[-1]
alist[-5] | _____no_output_____ | MIT | module_2_programming/lists.ipynb | wiplane/foundations-of-datascience-ml |
Modifying a list | alist
alist[3] = 50
print(alist)
alist.append(100)
alist
alist.insert(3, 1000)
print(alist)
alist.pop()
alist
alist.remove(1000)
alist | _____no_output_____ | MIT | module_2_programming/lists.ipynb | wiplane/foundations-of-datascience-ml |
Slicing a list to obtain a subset of values | alist = [9, 10, -1, 2, 5, 7]
alist
alist[1:4:1]
alist[1:4]
alist[1:4:2]
alist[:]
alist[2:]
alist[:4] | _____no_output_____ | MIT | module_2_programming/lists.ipynb | wiplane/foundations-of-datascience-ml |
Sort a list | item_prices = [1200, 200, 25, 500.45, 234, 540]
item_prices
##sort the list
item_prices.sort()
print(item_prices)
item_prices.sort(reverse=True)
print(item_prices)
names
names.sort()
names
len(names)
len(item_prices)
item_prices. | _____no_output_____ | MIT | module_2_programming/lists.ipynb | wiplane/foundations-of-datascience-ml |
Dragon curve example from the [L-systems](../../topics/geometry/lsystems.ipynb) topic notebook in ``examples/topics/geometry``.Most examples work across multiple plotting backends, this example is also available for:* [Bokeh - dragon_curve](../bokeh/dragon_curve.ipynb) | import holoviews as hv
import numpy as np
hv.extension('matplotlib') | _____no_output_____ | BSD-3-Clause | examples/gallery/demos/matplotlib/dragon_curve.ipynb | jsignell/holoviews |
L-system definition The following class is a simplified version of the approach used in the [L-systems](../../topics/geometry/lsystems.ipynb) notebook, made specifically for plotting the [Dragon Curve](https://en.wikipedia.org/wiki/Dragon_curve). | class DragonCurve(object):
"L-system agent that follows rules to generate the Dragon Curve"
initial ='FX'
productions = {'X':'X+YF+', 'Y':'-FX-Y'}
dragon_rules = {'F': lambda t,d,a: t.forward(d),
'B': lambda t,d,a: t.back(d),
'+': lambda t,d,a: t.rotate(-a),
'-': lambda t,d,a: t.rotate(a),
'X':lambda t,d,a: None,
'Y':lambda t,d,a: None }
def __init__(self, x=0,y=0, iterations=1):
self.heading = 0
self.distance = 5
self.angle = 90
self.x, self.y = x,y
self.trace = [(self.x, self.y)]
self.process(self.expand(iterations), self.distance, self.angle)
def process(self, instructions, distance, angle):
for i in instructions:
self.dragon_rules[i](self, distance, angle)
def expand(self, iterations):
"Expand an initial symbol with the given production rules"
expansion = self.initial
for i in range(iterations):
intermediate = ""
for ch in expansion:
intermediate = intermediate + self.productions.get(ch,ch)
expansion = intermediate
return expansion
def forward(self, distance):
self.x += np.cos(2*np.pi * self.heading/360.0)
self.y += np.sin(2*np.pi * self.heading/360.0)
self.trace.append((self.x,self.y))
def rotate(self, angle):
self.heading += angle
def back(self, distance):
self.heading += 180
self.forward(distance)
self.heading += 180
@property
def path(self):
return hv.Path([self.trace]) | _____no_output_____ | BSD-3-Clause | examples/gallery/demos/matplotlib/dragon_curve.ipynb | jsignell/holoviews |
Plot | %%output size=200
%%opts Path {+framewise} [xaxis=None yaxis=None title_format=''] (color='black' linewidth=1)
def pad_extents(path):
"Add 5% padding around the path"
minx, maxx = path.range('x')
miny, maxy = path.range('y')
xpadding = ((maxx-minx) * 0.1)/2
ypadding = ((maxy-miny) * 0.1)/2
path.extents = (minx-xpadding, miny-ypadding, maxx+xpadding, maxy+ypadding)
return path
hmap = hv.HoloMap(kdims='Iteration')
for i in range(7,17):
path = DragonCurve(-200, 0, i).path
hmap[i] = pad_extents(path)
hmap | _____no_output_____ | BSD-3-Clause | examples/gallery/demos/matplotlib/dragon_curve.ipynb | jsignell/holoviews |
Netflix user behaviour Requirements[Jupyter Notebook](https://jupyter.org/install) [Apache Toree](https://toree.incubator.apache.org/) [sampleDataNetflix.tsv](https://guicaro.com/sampleDataNetflix.tsv) placed in local filesystem and path updated in 1) below Notes* I used a combination of Jupyter notebook and the Apache Toree project as it makes it easy and fast to explore a dataset. * I was part of the team that came up with [Apache Toree (aka The Spark Kernel)](https://twitter.com/guicaro/status/543541995247910917), and till now I think it's still the only Jupyter kernel that ties to a Spark Session and is backed by Apache. It solved many issues for us back when we were developing applications in Spark. Future* I was hoping to use [Voila](https://github.com/voila-dashboards/voila) project to create an interactive dashboard for data scientists where they could move a slider widget to change the parameters in my SQL queries, thus, change the time window to search. So, for example, say a data scientist would want to search for users only between 8 and 9 in the morning.* I wanted to randomly generate a bigger dataset using rules so that we could at least have more data to play with 1. Let's read our data We will read in a TSV file and try to infer schema since it is not very complex data types we are using | val sessions = spark.read.option("header", "true")
.option("sep", "\t")
.option("inferSchema","true")
.csv("/Users/memo/Desktop/netflixSpark/sampleDataNetflix.tsv")
sessions.printSchema
sessions.show(2) | +-------+---------------+--------------------+----------+--------+----+----------+
|user_id|navigation_page| url|session_id| date|hour| timestamp|
+-------+---------------+--------------------+----------+--------+----+----------+
| 1001| HomePage|https://www.netfl...| 6001|20181125| 11|1543145019|
| 1001| OriginalsGenre|https://www.netfl...| 6001|20181125| 11|1543144483|
+-------+---------------+--------------------+----------+--------+----+----------+
only showing top 2 rows
| MIT | Netflix Exploration.ipynb | guicaro/guicaro.github.io |
2. Let's create a temp SQL table to use of the SQL magic in Apache Toree to get our information | sessions.registerTempTable("SESSIONS") | _____no_output_____ | MIT | Netflix Exploration.ipynb | guicaro/guicaro.github.io |
a) Find all users who have visited OurPlanetTitle Page. Using DISTINCT to show unique users | %%SQL select distinct user_id
from SESSIONS
where navigation_page = 'OurPlanetTitle' | _____no_output_____ | MIT | Netflix Exploration.ipynb | guicaro/guicaro.github.io |
b) Find all users who have visited OurPlanetTitle Page only once. Showing the page visits just for validation, can be easily removed from the projection list in query | %%SQL select user_id, count(user_id) as page_visits
from SESSIONS
where navigation_page = 'OurPlanetTitle'
group by user_id
having page_visits == 1 | _____no_output_____ | MIT | Netflix Exploration.ipynb | guicaro/guicaro.github.io |
c) Find all users who have visited HomePage -> OriginalsGenre -> OurPlanetTitle -> HomePage Making sure we filter for the same path using the timestamps and making sure it's all within the same `session_id` | %%SQL select distinct a.user_id
from sessions a,
sessions b,
sessions c,
sessions d
where a.user_id = b.user_id
and b.user_id = c.user_id
and c.user_id = d.user_id
and a.navigation_page = 'HomePage'
and b.navigation_page = 'OriginalsGenre'
and c.navigation_page = 'OurPlanetTitle'
and d.navigation_page = 'HomePage'
and a.timestamp < b.timestamp
and b.timestamp < c.timestamp
and c.timestamp < d.timestamp
and a.session_id = b.session_id
and b.session_id = c.session_id
and c.session_id = d.session_id | _____no_output_____ | MIT | Netflix Exploration.ipynb | guicaro/guicaro.github.io |
d) Find all users who landed on LogIn Page from a Title Page The like operator is not the most performant but the SQL optimizer should be able to tell that my 2nd where clause can improve selectivity of this query. I am using the `timestamp` column to make sure that a before landing on a **Login** page, the user first comes from a **Title** page | %%SQL select a.user_id
from sessions a,
sessions b
where a.user_id = b.user_id
and b.navigation_page = 'LogIn'
and a.navigation_page like '%Title'
and a.timestamp < b.timestamp | _____no_output_____ | MIT | Netflix Exploration.ipynb | guicaro/guicaro.github.io |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.