markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
We see that the ``first`` key in this example ``Series`` data is the tuple (0,0,0), corresponding to an x, y, z coordinate of an original movie.
key
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
The value in this case is a time series of 240 observations, represented as a 1d numpy array.
value.shape
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
We can extract a random subset of records and plot their time series, after converting to `TimeSeries` (which enables time-specific methods), and applying a simple baseline normalization. Here and elsewhere, we'll use the excellent ``seaborn`` package for styling figures, but this is entirely optional.
%matplotlib inline import matplotlib.pyplot as plt import seaborn as sns sns.set_context("notebook") examples = data.toTimeSeries().normalize().subset(50, thresh=0.05) sns.set_style('darkgrid') plt.plot(examples.T);
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
We can also compute a statistic for each record using the method:
means = data.seriesStdev() means.first()
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
``means`` is now itself a ``Series``, where the value of each record is the mean across time For this ``Series``, since the keys correspond to spatial coordinates, we can ``pack`` the results back into a local array. ``pack`` is an operation that converts ``Series`` data, with spatial coordinates as keys, into an n-dimensional numpy array. In this case, the result is 3D, reflecting the original input data.
img = means.pack() img.shape
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
``pack`` is an example of a local operation, meaning that all the data involved will be sent to the Spark driver node. For larger data sets, this can be very problematic - it's a good idea to downsample, subselect, or otherwise reduce the size of your data before attempting to ``pack`` large data sets!To look at this array as an image, we'll use `matplotlib` via a helper function included with Thunder.
from thunder import Colorize image = Colorize.image image(img[:,:,0])
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
It's also easy to export the result to a ``numpy`` or ``MAT`` file. ```tsc.export(img, "directory", "npy")tsc.export(img, "directory", "mat")``` This will put a ``npy`` file or ``MAT`` file called ``meanval`` in the folder ``directory`` in your current directory. You can also export to a location of Amazon S3 or Google Storage if path is specified with an `s3n://`or `gs://` prefix. Thunder includes several other toy data sets, to see the available ones:
tsc.loadExample()
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
Some of them are `Series`, some are `Images`, and some are associated `Params` (e.g. covariates). Let's load an `Images` dataset:
images = tsc.loadExample('mouse-images') images
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
Now every record is an key-value pair where the key is an identifier, and the value is an image
key, value = images.first()
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
The key is an integer
key
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
And the value is a two-dimensional array
value.shape
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
Although `images` is not an array, some syntactic sugar supports easy indexing:
im = images[0] image(im)
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
And we can now apply simple parallelized image processing routines
im = images.gaussianFilter(3).subsample(3)[0] image(im)
_____no_output_____
Apache-2.0
python/doc/tutorials/src/basic_usage.ipynb
broxtronix/thunder
Print Cirq Circuit and Statevector
# importing Qiskit from qiskit import Aer, transpile, assemble from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.visualization import plot_state_paulivec, plot_state_hinton, plot_state_city from qiskit.visualization import plot_state_qsphere # import basic plot tools from qiskit.visualization import plot_histogram, plot_bloch_multivector import matplotlib.pyplot as plt #get backend simulator sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(3) qc.h(0) qc.cx(0,1) qc.h(2) qc.s(2) #print circuit print(qc) #draw bloch spheres qc.save_statevector() statevector = sim.run(qc).result().get_statevector() print("\n") print(statevector) print("\n") plot_bloch_multivector(statevector) plot_state_city(statevector) plot_state_qsphere(statevector)
_____no_output_____
MIT
Paper Figures/Introspection Code/Introspection Qiskit.ipynb
Lilgabz/Quantum-Algorithm-Implementations
Args
class args: save_dir = "weights/" debug = True # model routings = 1 # hp batch_size = 32 lr = 0.001 lr_decay = 1.0 lam_recon = 0.392 # training epochs = 3 shift_fraction = 0.1 digit = 5
_____no_output_____
MIT
run.ipynb
ghetthub/capsnet
Load data
(x_train, y_train), (x_test, y_test) = capsulenet.load_mnist()
_____no_output_____
MIT
run.ipynb
ghetthub/capsnet
Define model
model, eval_model, manipulate_model = capsulenet.CapsNet(input_shape=x_train.shape[1:], n_class=len(np.unique(np.argmax(y_train, 1))), routings=args.routings)
_____no_output_____
MIT
run.ipynb
ghetthub/capsnet
Training
capsulenet.train(model=model, data=((x_train, y_train), (x_test, y_test)), args=args) capsulenet.test(eval_model, data=(x_test, y_test), args=args)
------------------------------Begin: test------------------------------ Test acc: 0.9784 Reconstructed images are saved to weights//real_and_recon.png ------------------------------End: test------------------------------
MIT
run.ipynb
ghetthub/capsnet
Recordá abrir en una nueva pestaña Modelos no paramétricos: K-Nearest Neighbours y Árboles de decisiónDocumentación:- KNN para clasificación: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.htmlsklearn.neighbors.KNeighborsClassifier- KNN para regresión: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.htmlsklearn.neighbors.KNeighborsRegressor- Árboles para clasificación: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html- Árboles para regresión: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html Seteo de librerias
import os import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import seaborn as sns import pandas as pd import numpy as np from sklearn.datasets import make_classification, make_blobs, load_breast_cancer from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, KFold # modelos from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.metrics import classification_report, confusion_matrix, accuracy_score DISPLAY_PRECISION = 4 pd.set_option("display.precision", DISPLAY_PRECISION)
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
1. KNN 1.1 Introducción: Fronteras de decisiónPara familirizarnos con este modelo y podervisualizar como quedan las fronteras de decisión empezaremos con un problema de clasificación binaria con dos features con un dataset de juguete que generaremos nosotros con la función [make_classification](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html).
# construyamos el dataset para un problema de clasificación binaria de dos dimensiones X, y = make_classification(n_samples=200, n_features=2, n_informative=2, n_redundant=0, n_classes=2,n_clusters_per_class=1, random_state=1, class_sep=1.1) # scatter plot, colores por etiquetas df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y)) colors = {0:'red', 1:'blue'} fig, ax = plt.subplots() grouped = df.groupby('label') for key, group in grouped: group.plot(ax=ax, kind='scatter', x='x', y='y', label=key, color=colors[key]) # instanciemos y entrenemos el modelo model = KNeighborsClassifier(n_neighbors=10,weights='uniform') model.fit(X,y) # visualicemos las predicciones # elegimos algunos colores de la lista de colores cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) # tenemos que armar una grilla y setear un step h = .02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) # usamos un pcolormesh Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # ploteamos también los puntos de entrenamiento plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("2-Class classification (k = %i, weights = '%s')" % (10, 'uniform')) plt.show() model = KNeighborsClassifier(n_neighbors=200,weights='uniform') model.fit(X,y) # visualicemos las predicciones # elegimos algunos colores de la lista de colores cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) # tenemos que armar una grilla y setear un step h = .02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) # usamos un pcolormesh Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # ploteamos también los puntos de entrenamiento plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("2-Class classification (k = %i, weights = '%s')" % (200, 'uniform')) plt.show() model = KNeighborsClassifier(n_neighbors=200,weights='distance') model.fit(X,y) # visualicemos las predicciones # elegimos algunos colores de la lista de colores cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) # tenemos que armar una grilla y setear un step h = .02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) # usamos un pcolormesh Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # ploteamos también los puntos de entrenamiento plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("2-Class classification (k = %i, weights = '%s')" % (200, 'distance')) plt.show()
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
1.2 Conjunto de datos de cáncer de mamaEl conjunto de datos etiquetado proviene de la "Base de datos (diagnóstico) de cáncer de mama de Wisconsin" disponible gratuitamente en la biblioteca sklearn de python. Para obtener más detalles, consulte:https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29Número de muestras: 569Número de funciones: 30 atributos numéricos y predictivosNúmero de clases: 2Las características se calculan a partir de una imagen digitalizada de una aspiración con aguja fina (FNA) de una masa mamaria. Describen las características de los núcleos celulares presentes en la imagen. Se calculan diez características de valor real para cada núcleo celular. La media, el error estándar y el "peor" o el más grande (la media de los tres valores más grandes) de estas características se calcularon para cada imagen, lo que dio como resultado 30 características. Por ejemplo, las medidas del radio son para el "radio medio", el "error estándar del radio" y el "peor radio". Todos los valores de las características se recodifican con cuatro dígitos significativos.Las dos clases objetivo corresponden a resultados negativos (benignos) y resultados positivos (malignos).Este conjunto de datos original se dividirá aleatoriamente en dos conjuntos para fines de entrenamiento y prueba.
data = load_breast_cancer() #print(data.DESCR) print("Descripción:") print(data.keys()) # dict_keys(['target_names', 'target', 'feature_names', 'data', 'DESCR']) print("---") # Note that we need to reverse the original '0' and '1' mapping in order to end up with this mapping: # Benign = 0 (negative class) # Malignant = 1 (positive class) data_clases = [data.target_names[1], data.target_names[0]] data_target = [1 if x==0 else 0 for x in list(data.target)] data_features = list(data.feature_names) print("Clases Target:") print("Clases", data_clases) print("---") print("Distribución de clases n=%d:" % len(data_target)) print(pd.Series(data_target).value_counts()) print("---") pd.DataFrame(data.data[:,:], columns=data_features).info() # separamos un 25% para test/held-out X = pd.DataFrame(data.data[:,:], columns=data_features) y = pd.Series(data_target) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
1.3 Overfitting: cantidad de vecinos y pesos
# veamos como le va a nuestro modelo variando la cantidad de vecinos y el tipo de peso valores_k = list(range(1,50,4)) resultados_train_u = [] resultados_test_u = [] resultados_train_w = [] resultados_test_w = [] for k in valores_k: # instanciamos el modelo uniforme clf_u = KNeighborsClassifier(n_neighbors=k, weights='uniform') clf_u.fit(X_train, y_train) y_train_pred = clf_u.predict(X_train) y_pred = clf_u.predict(X_test) resultados_train_u.append(accuracy_score(y_train, y_train_pred)) resultados_test_u.append(accuracy_score(y_test, y_pred)) clf_w = KNeighborsClassifier(n_neighbors=k, weights='distance') clf_w.fit(X_train, y_train) y_train_pred = clf_w.predict(X_train) y_pred = clf_w.predict(X_test) resultados_train_w.append(accuracy_score(y_train, y_train_pred)) resultados_test_w.append(accuracy_score(y_test, y_pred)) # veamos que paso en cada caso f, ax = plt.subplots(1,2,figsize=(14,5),sharey=True) ax[0].plot(valores_k, resultados_train_u, valores_k, resultados_test_u); ax[0].legend(['pesos uniformes - train', 'pesos uniformes - test']); ax[0].set(xlabel='k',ylabel='accuracy'); ax[1].plot(valores_k, resultados_train_w, valores_k, resultados_test_w); ax[1].legend(['pesos distancia - train', 'pesos distancia - test']); ax[1].set(xlabel='k'); # ahora busquemos nuestro mejor modelo usando validacion cruzada y gridsearchcv pero incluyamos otra distancia! model = KNeighborsClassifier() n_neighbors = np.array([1,2,3,5,8,10,15,20,30,50]) param_grid = {'n_neighbors': n_neighbors, 'weights':['uniform', 'distance'], 'metric':['euclidean', 'chebyshev', 'manhattan']} grid = GridSearchCV(estimator=model, param_grid=param_grid) grid.fit(X_train, y_train) print(grid.best_params_) pd.DataFrame(grid.cv_results_).sample(3) # evaluemos este clasificador usando el classification report print(classification_report(y_test, grid.best_estimator_.predict(X_test), target_names=data_clases))
precision recall f1-score support benign 0.96 0.98 0.97 90 malignant 0.96 0.92 0.94 53 accuracy 0.96 143 macro avg 0.96 0.95 0.95 143 weighted avg 0.96 0.96 0.96 143
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
1.4 Efectos de escalaDado que KNN esta basado en distancias si no usamos una distancia que involucra la varianza entre variables como la distancia de Mahalabois, nuestro modelo se verá afectado![image.png]()![image.png]()https://stats.stackexchange.com/questions/287425/why-do-you-need-to-scale-data-in-knn
XX,yy = make_classification(n_samples=400,n_features=2,n_classes=2, n_redundant=0,n_informative=2, n_clusters_per_class=2,random_state=48) XX[:,0] = XX[:,0]*30 + 150 print('Media x: {}'.format(np.mean(XX[:,0]))) print('SD x: {}'.format(np.std(XX[:,0]))) print('Media y: {}'.format(np.mean(XX[:,1]))) print('SD y: {}'.format(np.std(XX[:,1]))) kf = KFold(n_splits=5) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(XX, yy) print(cross_val_score(knn, XX, yy, cv=kf).mean()) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() XX_scaled = scaler.fit_transform(XX) print('Media x: {}'.format(np.mean(XX_scaled[:,0]))) print('SD x: {}'.format(np.std(XX_scaled[:,0]))) print('Media y: {}'.format(np.mean(XX_scaled[:,1]))) print('SD y: {}'.format(np.std(XX_scaled[:,1]))) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(XX, yy) print(cross_val_score(knn, XX_scaled, yy, cv=kf).mean())
0.9675
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
*** 2. Árboles de decisiónContinuaremos trabajando con el dataset de cancer de mama para familiarizarnos con los árboles de decisión 2.1 Mi primer arbolito
# instanciemos el modelo y entremoslo en el conjunto de autos arbol = DecisionTreeClassifier(criterion='gini', max_depth=2, min_samples_leaf=1, min_samples_split=2, ccp_alpha=0) arbol.fit(X_train,y_train) accuracy_score(y_train, arbol.predict(X_train)) # veamos que tan bien le fue a este modelo print(classification_report(y_true=y_test,y_pred=arbol.predict(X_test))) # visualicemos los errores de este árbol en una matriz de confusión cf_matrix = confusion_matrix(y_test, arbol.predict(X_test)) sns.heatmap(cf_matrix, annot=True);
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
2.2 Feature importanceLos árboles nos permiten definir una manera de medir la importancia de los features (o *Feature Importances*) basado en la ganancia de información obtenida cada vez que se utilizo cada feature para hacer un split. Para esto, una vez entrando el árbol, el método que utilizaremos es: ``` arbol.feature_importances_```
# calculando las 5 feature importances mas altas importances = pd.Series(arbol.feature_importances_).sort_values(ascending=False)[:5] importances f5_names = list(pd.Series(data.feature_names)[importances.index.to_list()]) fig, ax = plt.subplots() importances.plot.barh(ax=ax) ax.set_yticklabels(f5_names) ax.invert_yaxis()
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
2.3 Desbalance de clasesComo este dataset tiene un desbalance de clases, podes incluir eso en el modelo utilizando el parámetro class_weight que nos permite manejar directamente el desbalance
arbol = DecisionTreeClassifier(criterion='gini', max_depth=2, min_samples_leaf=1, min_samples_split=2, ccp_alpha=0, class_weight="balanced") arbol.fit(X_train, y_train) accuracy_score(y_train, arbol.predict(X_train)) print(classification_report(y_true=y_test,y_pred=arbol.predict(X_test))) cf_matrix = confusion_matrix(y_test, arbol.predict(X_test)) sns.heatmap(cf_matrix, annot=True);
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
2.4 VisualizaciónPara visualizar el árbol sklearn tiene el método tree.plot_tree:
plot_tree(arbol);
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
Podemos obtener una representación mas estilizada con la ayuda de las librerías *graphviz* + *dot*. Ref: https://towardsdatascience.com/visualizing-decision-trees-with-python-scikit-learn-graphviz-matplotlib-1c50b4aa68dc
# libreria from sklearn.externals.six import StringIO from IPython.display import Image from sklearn.tree import export_graphviz import pydotplus import matplotlib.pyplot as plt dot_data = StringIO() export_graphviz(arbol, out_file=dot_data, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) Image(graph.create_png())
/usr/local/lib/python3.7/dist-packages/sklearn/externals/six.py:31: FutureWarning: The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/). "(https://pypi.org/project/six/).", FutureWarning)
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
2.5 Overfitting: profundidad del árbol y post-pruningDado que los árboles son modelos que tienden a overfittear tenemos que recurrir a distintas técnicas para mitigar este problema. Veamos primero el efecto de la profundidad del árbol en el trade-off sesgo varianza.
profundidad = list(range(1,20)) resultados_train = [] resultados_test = [] for depth in profundidad: # instanciamos el modelo uniforme arbol = DecisionTreeClassifier(criterion='gini', max_depth=depth, min_samples_leaf=1, min_samples_split=2, ccp_alpha=0, class_weight="balanced") arbol.fit(X_train, y_train) y_train_pred = arbol.predict(X_train) y_pred = arbol.predict(X_test) resultados_train.append(accuracy_score(y_train, y_train_pred)) resultados_test.append(accuracy_score(y_test, y_pred)) # veamos que paso en cada caso f, ax = plt.subplots(1,1,figsize=(14,5),sharey=True) ax.plot(profundidad, resultados_train, profundidad, resultados_test); ax.legend(['accuracy train', 'accuracy test']); ax.set(xlabel='profundidad',ylabel='accuracy'); # veamos que pasa con un árbol sin corte de profundidad np.random.seed(2021) arbol = DecisionTreeClassifier(criterion='gini', ccp_alpha=0) arbol.fit(X_train, y_train) #print(classification_report(y_true=y_test,y_pred=arbol.predict(X_test))) print('Accuracy en entrenamiento: %f' % accuracy_score(y_train,arbol.predict(X_train))) print('Accuracy en test: %f' % accuracy_score(y_test,arbol.predict(X_test))) # grafiquemos este árbol dot_data = StringIO() export_graphviz(arbol, out_file=dot_data, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) Image(graph.create_png())
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
Una técnica que nos permite mitigar el overfitting es lo que se conoce como post-prunning. El objetivo de esta técnica es *podar* el árbol entrenado, penalizando de alguna forma los árboles más complejos. El algortimo de poda que tenemos implementado en Scikit-Learn es el [Minimal Cost-Complexity Pruning](https://scikit-learn.org/stable/modules/tree.htmlminimal-cost-complexity-pruning). El hiperparámetro que controla esta penalización es ccp_alpha$\geq 0$, cuando este hiperparámetro es 0, no realizamos ningún tipo de poda, y a medida que aumentamos dicho hiperparámetro penalizaremos más fuertemente la cantidad de nodos terminales del árbol.
arbol = DecisionTreeClassifier(criterion='gini', ccp_alpha=0.01) arbol.fit(X_train, y_train) #print(classification_report(y_true=y_test,y_pred=arbol.predict(X_test))) print('Accuracy en entrenamiento: %f' % accuracy_score(y_train,arbol.predict(X_train))) print('Accuracy en test: %f' % accuracy_score(y_test,arbol.predict(X_test))) dot_data = StringIO() export_graphviz(arbol, out_file=dot_data, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) Image(graph.create_png()) # veamos como afecta el rendimiento y la profundidad del árbol ccp_alpha_vals = np.arange(0,1,0.05) resultados_train = [] resultados_test = [] profundidad = [] for ccp in ccp_alpha_vals: # instanciamos el modelo uniforme arbol = DecisionTreeClassifier(criterion='gini', ccp_alpha=ccp) arbol.fit(X_train, y_train) # guardamos la profundidad del árbol profundidad.append(arbol.tree_.max_depth) y_train_pred = arbol.predict(X_train) y_pred = arbol.predict(X_test) resultados_train.append(accuracy_score(y_train, y_train_pred)) resultados_test.append(accuracy_score(y_test, y_pred)) f,ax = plt.subplots(2,1,figsize=(12,8),sharex=True) ax[0].plot(ccp_alpha_vals, resultados_train, ccp_alpha_vals, resultados_test); ax[0].legend(['accuracy train', 'accuracy test']); ax[0].set(xlabel='ccp_alpha',ylabel='Accuracy'); ax[1].plot(ccp_alpha_vals, profundidad) ax[1].set(xlabel='ccp_alpha',ylabel='Profundidad');
_____no_output_____
MIT
MachineLearning/5_KNNyArbolesDeDecision/KNN_Arboles.ipynb
guillelencina/cursos-python
This notebook trains a N2V network in the first step and then finetunes it for segmentation.
# We import all our dependencies. import warnings warnings.filterwarnings('ignore') import sys sys.path.append('../../') from voidseg.models import Seg, SegConfig from n2v.models import N2VConfig, N2V import numpy as np from csbdeep.utils import plot_history from voidseg.utils.misc_utils import combine_train_test_data, shuffle_train_data, augment_data from voidseg.utils.seg_utils import * from n2v.utils.n2v_utils import manipulate_val_data from voidseg.utils.compute_precision_threshold import compute_threshold, precision from keras.optimizers import Adam from matplotlib import pyplot as plt from scipy import ndimage import tensorflow as tf import keras.backend as K import urllib import os import zipfile from tqdm import tqdm, tqdm_notebook
Using TensorFlow backend.
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Download DSB2018 data.From the Kaggle 2018 Data Science Bowl challenge, we take the same subset of data as has been used [here](https://github.com/mpicbg-csbd/stardist), showing a diverse collection of cell nuclei imaged by various fluorescence microscopes. We extracted 4870 image patches of size 128×128 from the training set and added Gaussian noise with mean 0 and sigma = 10 (n10), 20 (n20) and 40 (n40). This notebook shows results for n40 images.
# create a folder for our data if not os.path.isdir('./data'): os.mkdir('data') # check if data has been downloaded already zipPath="data/DSB.zip" if not os.path.exists(zipPath): #download and unzip data data = urllib.request.urlretrieve('https://owncloud.mpi-cbg.de/index.php/s/LIN4L4R9b2gebDX/download', zipPath) with zipfile.ZipFile(zipPath, 'r') as zip_ref: zip_ref.extractall("data")
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
The downloaded data is in `npz` format and the cell below extracts the training, validation and test data as numpy arrays
trainval_data = np.load('data/DSB/train_data/dsb2018_TrainVal40.npz') test_data = np.load('data/DSB/test_data/dsb2018_Test40.npz', allow_pickle=True) train_images = trainval_data['X_train'] val_images = trainval_data['X_val'] test_images = test_data['X_test'] train_masks = trainval_data['Y_train'] val_masks = trainval_data['Y_val'] test_masks = test_data['Y_test'] print("Shape of train_images: ", train_images.shape, ", Shape of train_masks: ", train_masks.shape) print("Shape of val_images: ", val_images.shape, ", Shape of val_masks: ", val_masks.shape) print("Shape of test_images: ", test_images.shape, ", Shape of test_masks: ", test_masks.shape)
Shape of train_images: (3800, 128, 128) , Shape of train_masks: (3800, 128, 128) Shape of val_images: (670, 128, 128) , Shape of val_masks: (670, 128, 128) Shape of test_images: (50,) , Shape of test_masks: (50,)
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Data preparation for training a N2V networkSince, we can use all the noisy data for training N2V network, we combine the noisy train_images and test_images and use them as input to the N2V network.
X, Y = combine_train_test_data(X_train=train_images,Y_train=train_masks,X_test=test_images,Y_test=test_masks) print("Combined Dataset Shape", X.shape) X_val = val_images Y_val = val_masks
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Next, we shuffle the training pairs and augment the training and validation data.
random_seed = 1 # Seed to shuffle training data (annotated GT and raw image pairs) X, Y = shuffle_train_data(X, Y, random_seed = random_seed) print("Training Data \n..................") X, Y = augment_data(X, Y) print("\n") print("Validation Data \n..................") X_val, Y_val = augment_data(X_val, Y_val) # Adding channel dimension X = X[..., np.newaxis] print(X.shape) X_val = X_val[..., np.newaxis] print(X_val.shape)
(34400, 128, 128, 1) (5360, 128, 128, 1)
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Let's look at one of our training and validation patches.
sl=0 plt.figure(figsize=(14,7)) plt.subplot(1,2,1) plt.imshow(X[sl,...,0], cmap='gray') plt.title('Training Patch'); plt.subplot(1,2,2) plt.imshow(X_val[sl,...,0], cmap='gray') plt.title('Validation Patch');
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Configure N2V Network The data preparation for training a denoising N2V network is now done. Next, we configure N2V network by specifying `N2VConfig` parameters.
config = N2VConfig(X, unet_kern_size=3, n_channel_out=1,train_steps_per_epoch=400, train_epochs=200, train_loss='mse', batch_norm=True, train_batch_size=128, n2v_perc_pix=0.784, n2v_patch_shape=(64, 64), unet_n_first = 32, unet_residual = False, n2v_manipulator='uniform_withCP', n2v_neighborhood_radius=5, unet_n_depth=4) # Let's look at the parameters stored in the config-object. vars(config) # a name used to identify the model model_name = 'n40_denoising' # the base directory in which our model will live basedir = 'models' # We are now creating our network model. model = N2V(config, model_name, basedir=basedir) model.prepare_for_training(metrics=())
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Now, we begin training the denoising N2V model. In case, a trained model is available, that model is loaded else a new model is trained.
# We are ready to start training now. query_weightpath = os.getcwd()+"/models/"+model_name weights_present = False for file in os.listdir(query_weightpath): if(file == "weights_best.h5"): print("Found weights of a trained N2V network, loading it for prediction!") weights_present = True break if(weights_present): model.load_weights("weights_best.h5") else: print("Did not find weights of a trained N2V network, training one from scratch!") history = model.train(X, X_val)
Found weights of a trained N2V network, loading it for prediction!
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Data preparation for segmentation stepNext, we normalize all raw data with the mean and std (standard deviation) of the raw `train_images`. Then, we shuffle the raw training images and the correponding Ground Truth (GT). Lastly, we fractionate the training pairs of raw images and corresponding GT to realize the case where not enough annotated, training data is available. For this fractionation, please specify `fraction` parameter below. It should be between 0 (exclusive) and 100 (inclusive).
fraction = 2 # Fraction of annotated GT and raw image pairs to use during training. random_seed = 1 # Seed to shuffle training data (annotated GT and raw image pairs). assert 0 <fraction<= 100, "Fraction should be between 0 and 100" mean, std = np.mean(train_images), np.std(train_images) X_normalized = normalize(train_images, mean, std) X_val_normalized = normalize(val_images, mean, std) X_test_normalized = normalize(test_images, mean, std) X_shuffled, Y_shuffled = shuffle_train_data(X_normalized, train_masks, random_seed = random_seed) X_frac, Y_frac = fractionate_train_data(X_shuffled, Y_shuffled, fraction = fraction) print("Training Data \n..................") X, Y_train_masks = augment_data(X_frac, Y_frac) print("\n") print("Validation Data \n..................") X_val, Y_val_masks = augment_data(X_val_normalized, val_masks)
Training Data .................. Raw image size after augmentation (608, 128, 128) Mask size after augmentation (608, 128, 128) Validation Data .................. Raw image size after augmentation (5360, 128, 128) Mask size after augmentation (5360, 128, 128)
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Next, we do a one-hot encoding of training and validation labels for training a 3-class U-Net. One-hot encoding will extract three channels from each labelled image, where the channels correspond to background, foreground and border.
X = X[...,np.newaxis] Y = convert_to_oneHot(Y_train_masks) X_val = X_val[...,np.newaxis] Y_val = convert_to_oneHot(Y_val_masks) print(X.shape, Y.shape) print(X_val.shape, Y_val.shape)
(608, 128, 128, 1) (608, 128, 128, 3) (5360, 128, 128, 1) (5360, 128, 128, 3)
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Let's look at one of our validation patches.
sl=0 plt.figure(figsize=(20,5)) plt.subplot(1,4,1) plt.imshow(X_val[sl,...,0]) plt.title('Raw validation image') plt.subplot(1,4,2) plt.imshow(Y_val[sl,...,0]) plt.title('1-hot encoded background') plt.subplot(1,4,3) plt.imshow(Y_val[sl,...,1]) plt.title('1-hot encoded foreground') plt.subplot(1,4,4) plt.imshow(Y_val[sl,...,2]) plt.title('1-hot encoded border')
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Configure Segmentation NetworkThe data preparation for segmentation is now done. Next, we configure a segmentation network by specifying `SegConfig` parameters. For example, one can increase `train_epochs` to get even better results at the expense of a longer computation. (This holds usually true for a large `fraction`.)
relative_weights = [1.0,1.0,5.0] # Relative weight of background, foreground and border class for training config = SegConfig(X, unet_kern_size=3, relative_weights = relative_weights, train_steps_per_epoch=400, train_epochs=3, batch_norm=True, train_batch_size=128, unet_n_first = 32, unet_n_depth=4) # Let's look at the parameters stored in the config-object. # a name used to identify the model model_name = 'seg_finetune' # the base directory in which our model will live basedir = 'models' # We are now creating our network model. seg_model = Seg(config, model_name, basedir=basedir) vars(config)
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
For finetuning, we initialize segmentation network with the best weights of the denoising N2V network trained above.
ft_layers = seg_model.keras_model.layers n2v_layers = model.keras_model.layers for i in range(0, len(n2v_layers)-2): ft_layers[i].set_weights(n2v_layers[i].get_weights()) for l in seg_model.keras_model.layers: l.trainable=True
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Now, we begin training the model for segmentation.
seg_model.train(X, Y, (X_val, Y_val))
Epoch 1/3 400/400 [==============================] - 152s 380ms/step - loss: 0.3040 - seg_crossentropy: 0.3040 - val_loss: 0.2867 - val_seg_crossentropy: 0.2867 Epoch 2/3 400/400 [==============================] - 143s 358ms/step - loss: 0.1202 - seg_crossentropy: 0.1202 - val_loss: 0.3895 - val_seg_crossentropy: 0.3895 Epoch 3/3 400/400 [==============================] - 142s 354ms/step - loss: 0.0760 - seg_crossentropy: 0.0760 - val_loss: 0.4506 - val_seg_crossentropy: 0.4506 Loading network weights from 'weights_best.h5'.
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Computing the best threshold on validation images (to maximize Average Precision score). The threshold so obtained will be used to get hard masks from probability images to be predicted on test images.
threshold=seg_model.optimize_thresholds(X_val_normalized.astype(np.float32), val_masks)
Computing best threshold:
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
Prediction on test images to get segmentation result
predicted_images, precision_result=seg_model.predict_label_masks(X_test_normalized, test_masks, threshold) print("Average precision over all test images at IOU = 0.5: ", precision_result) plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(predicted_images[22]) plt.title('Prediction') plt.subplot(1,2,2) plt.imshow(test_masks[22]) plt.title('Ground Truth')
_____no_output_____
BSD-3-Clause
examples/DSB2018/U-Net_Finetune.ipynb
psteinb/VoidSeg
3 Maneras de Programar a una Red Neuronal - DOTCSV Código inicial
import numpy as np import scipy as sc import matplotlib.pyplot as plt from sklearn.datasets import make_circles # Creamos nuestros datos artificiales, donde buscaremos clasificar # dos anillos concéntricos de datos. X, Y = make_circles(n_samples=500, factor=0.5, noise=0.05) # Resolución del mapa de predicción. res = 100 # Coordendadas del mapa de predicción. _x0 = np.linspace(-1.5, 1.5, res) _x1 = np.linspace(-1.5, 1.5, res) # Input con cada combo de coordenadas del mapa de predicción. _pX = np.array(np.meshgrid(_x0, _x1)).T.reshape(-1, 2) # Objeto vacio a 0.5 del mapa de predicción. _pY = np.zeros((res, res)) + 0.5 # Visualización del mapa de predicción. plt.figure(figsize=(8, 8)) plt.pcolormesh(_x0, _x1, _pY, cmap="coolwarm", vmin=0, vmax=1) # Visualización de la nube de datos. plt.scatter(X[Y == 0,0], X[Y == 0,1], c="skyblue") plt.scatter(X[Y == 1,0], X[Y == 1,1], c="salmon") plt.tick_params(labelbottom=False, labelleft=False)
_____no_output_____
MIT
2.3.1_3_Maneras_de_Programar_a_una_Red_Neuronal.ipynb
txusser/Master_IA_Sanidad
Tensorflow
import tensorflow as tf from matplotlib import animation from IPython.core.display import display, HTML # Definimos los puntos de entrada de la red, para la matriz X e Y. iX = tf.placeholder('float', shape=[None, X.shape[1]]) iY = tf.placeholder('float', shape=[None]) lr = 0.01 # learning rate nn = [2, 16, 8, 1] # número de neuronas por capa. # Capa 1 W1 = tf.Variable(tf.random_normal([nn[0], nn[1]]), name='Weights_1') b1 = tf.Variable(tf.random_normal([nn[1]]), name='bias_1') l1 = tf.nn.relu(tf.add(tf.matmul(iX, W1), b1)) # Capa 2 W2 = tf.Variable(tf.random_normal([nn[1], nn[2]]), name='Weights_2') b2 = tf.Variable(tf.random_normal([nn[2]]), name='bias_2') l2 = tf.nn.relu(tf.add(tf.matmul(l1, W2), b2)) # Capa 3 W3 = tf.Variable(tf.random_normal([nn[2], nn[3]]), name='Weights_3') b3 = tf.Variable(tf.random_normal([nn[3]]), name='bias_3') # Vector de predicciones de Y. pY = tf.nn.sigmoid(tf.add(tf.matmul(l2, W3), b3))[:, 0] # Evaluación de las predicciones. loss = tf.losses.mean_squared_error(pY, iY) # Definimos al optimizador de la red, para que minimice el error. optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.05).minimize(loss) n_steps = 1000 # Número de ciclos de entrenamiento. iPY = [] # Aquí guardaremos la evolución de las predicción, para la animación. with tf.Session() as sess: # Inicializamos todos los parámetros de la red, las matrices W y b. sess.run(tf.global_variables_initializer()) # Iteramos n pases de entrenamiento. for step in range(n_steps): # Evaluamos al optimizador, a la función de coste y al tensor de salida pY. # La evaluación del optimizer producirá el entrenamiento de la red. _, _loss, _pY = sess.run([optimizer, loss, pY], feed_dict={ iX : X, iY : Y }) # Cada 25 iteraciones, imprimimos métricas. if step % 25 == 0: # Cálculo del accuracy. acc = np.mean(np.round(_pY) == Y) # Impresión de métricas. print('Step', step, '/', n_steps, '- Loss = ', _loss, '- Acc =', acc) # Obtenemos predicciones para cada punto de nuestro mapa de predicción _pX. _pY = sess.run(pY, feed_dict={ iX : _pX }).reshape((res, res)) # Y lo guardamos para visualizar la animación. iPY.append(_pY) # ----- CÓDIGO ANIMACIÓN ----- # ims = [] fig = plt.figure(figsize=(10, 10)) print("--- Generando animación ---") for fr in range(len(iPY)): im = plt.pcolormesh(_x0, _x1, iPY[fr], cmap="coolwarm", animated=True) # Visualización de la nube de datos. plt.scatter(X[Y == 0,0], X[Y == 0,1], c="skyblue") plt.scatter(X[Y == 1,0], X[Y == 1,1], c="salmon") # plt.title("Resultado Clasificación") plt.tick_params(labelbottom=False, labelleft=False) ims.append([im]) ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000) HTML(ani.to_html5_video())
Step 0 / 1000 - Loss = 0.29063216 - Acc = 0.562 Step 25 / 1000 - Loss = 0.18204297 - Acc = 0.632 Step 50 / 1000 - Loss = 0.1471082 - Acc = 0.79 Step 75 / 1000 - Loss = 0.13354021 - Acc = 0.854 Step 100 / 1000 - Loss = 0.122594796 - Acc = 0.902 Step 125 / 1000 - Loss = 0.111153014 - Acc = 0.942 Step 150 / 1000 - Loss = 0.09965967 - Acc = 0.956 Step 175 / 1000 - Loss = 0.08899061 - Acc = 0.968 Step 200 / 1000 - Loss = 0.07819476 - Acc = 0.98 Step 225 / 1000 - Loss = 0.06843367 - Acc = 0.984 Step 250 / 1000 - Loss = 0.059809823 - Acc = 0.992 Step 275 / 1000 - Loss = 0.051961992 - Acc = 0.994 Step 300 / 1000 - Loss = 0.04506078 - Acc = 0.996 Step 325 / 1000 - Loss = 0.03921565 - Acc = 0.998 Step 350 / 1000 - Loss = 0.034442045 - Acc = 1.0 Step 375 / 1000 - Loss = 0.030614918 - Acc = 1.0 Step 400 / 1000 - Loss = 0.027491104 - Acc = 1.0 Step 425 / 1000 - Loss = 0.024817096 - Acc = 1.0 Step 450 / 1000 - Loss = 0.022489877 - Acc = 1.0 Step 475 / 1000 - Loss = 0.020462362 - Acc = 1.0 Step 500 / 1000 - Loss = 0.018674525 - Acc = 1.0 Step 525 / 1000 - Loss = 0.01712375 - Acc = 1.0 Step 550 / 1000 - Loss = 0.015800532 - Acc = 1.0 Step 575 / 1000 - Loss = 0.014612312 - Acc = 1.0 Step 600 / 1000 - Loss = 0.013566933 - Acc = 1.0 Step 625 / 1000 - Loss = 0.012653999 - Acc = 1.0 Step 650 / 1000 - Loss = 0.011832824 - Acc = 1.0 Step 675 / 1000 - Loss = 0.011105223 - Acc = 1.0 Step 700 / 1000 - Loss = 0.010456048 - Acc = 1.0 Step 725 / 1000 - Loss = 0.009875296 - Acc = 1.0 Step 750 / 1000 - Loss = 0.009351645 - Acc = 1.0 Step 775 / 1000 - Loss = 0.008877279 - Acc = 1.0 Step 800 / 1000 - Loss = 0.0084480485 - Acc = 1.0 Step 825 / 1000 - Loss = 0.008039233 - Acc = 1.0 Step 850 / 1000 - Loss = 0.0076591335 - Acc = 1.0 Step 875 / 1000 - Loss = 0.0073076617 - Acc = 1.0 Step 900 / 1000 - Loss = 0.0069831987 - Acc = 1.0 Step 925 / 1000 - Loss = 0.0066823033 - Acc = 1.0 Step 950 / 1000 - Loss = 0.0064092586 - Acc = 1.0 Step 975 / 1000 - Loss = 0.0061591878 - Acc = 1.0 --- Generando animación ---
MIT
2.3.1_3_Maneras_de_Programar_a_una_Red_Neuronal.ipynb
txusser/Master_IA_Sanidad
Keras
import tensorflow as tf import tensorflow.keras as kr from IPython.core.display import display, HTML lr = 0.01 # learning rate nn = [2, 16, 8, 1] # número de neuronas por capa. # Creamos el objeto que contendrá a nuestra red neuronal, como # secuencia de capas. model = kr.Sequential() # Añadimos la capa 1 l1 = model.add(kr.layers.Dense(nn[1], activation='relu')) # Añadimos la capa 2 l2 = model.add(kr.layers.Dense(nn[2], activation='relu')) # Añadimos la capa 3 l3 = model.add(kr.layers.Dense(nn[3], activation='sigmoid')) # Compilamos el modelo, definiendo la función de coste y el optimizador. model.compile(loss='mse', optimizer=kr.optimizers.SGD(lr=0.05), metrics=['acc']) # Y entrenamos al modelo. Los callbacks model.fit(X, Y, epochs=100)
Epoch 1/100 500/500 [==============================] - 0s 111us/sample - loss: 0.2468 - acc: 0.5040 Epoch 2/100 500/500 [==============================] - 0s 37us/sample - loss: 0.2457 - acc: 0.5100 Epoch 3/100 500/500 [==============================] - 0s 40us/sample - loss: 0.2446 - acc: 0.5040 Epoch 4/100 500/500 [==============================] - 0s 37us/sample - loss: 0.2434 - acc: 0.5160 Epoch 5/100 500/500 [==============================] - 0s 36us/sample - loss: 0.2422 - acc: 0.5200 Epoch 6/100 500/500 [==============================] - 0s 39us/sample - loss: 0.2412 - acc: 0.5400 Epoch 7/100 500/500 [==============================] - 0s 38us/sample - loss: 0.2400 - acc: 0.5460 Epoch 8/100 500/500 [==============================] - 0s 38us/sample - loss: 0.2388 - acc: 0.5780 Epoch 9/100 500/500 [==============================] - 0s 41us/sample - loss: 0.2376 - acc: 0.5840 Epoch 10/100 500/500 [==============================] - 0s 41us/sample - loss: 0.2363 - acc: 0.5960 Epoch 11/100 500/500 [==============================] - 0s 38us/sample - loss: 0.2350 - acc: 0.6280 Epoch 12/100 500/500 [==============================] - 0s 40us/sample - loss: 0.2336 - acc: 0.6220 Epoch 13/100 500/500 [==============================] - 0s 41us/sample - loss: 0.2320 - acc: 0.6280 Epoch 14/100 500/500 [==============================] - 0s 36us/sample - loss: 0.2305 - acc: 0.6580 Epoch 15/100 500/500 [==============================] - 0s 41us/sample - loss: 0.2289 - acc: 0.6640 Epoch 16/100 500/500 [==============================] - 0s 39us/sample - loss: 0.2272 - acc: 0.7040 Epoch 17/100 500/500 [==============================] - 0s 40us/sample - loss: 0.2255 - acc: 0.7140 Epoch 18/100 500/500 [==============================] - 0s 47us/sample - loss: 0.2238 - acc: 0.7280 Epoch 19/100 500/500 [==============================] - 0s 42us/sample - loss: 0.2221 - acc: 0.7440 Epoch 20/100 500/500 [==============================] - 0s 41us/sample - loss: 0.2201 - acc: 0.7620 Epoch 21/100 500/500 [==============================] - 0s 37us/sample - loss: 0.2181 - acc: 0.7740 Epoch 22/100 500/500 [==============================] - 0s 50us/sample - loss: 0.2161 - acc: 0.7900 Epoch 23/100 500/500 [==============================] - 0s 39us/sample - loss: 0.2140 - acc: 0.8040 Epoch 24/100 500/500 [==============================] - 0s 38us/sample - loss: 0.2119 - acc: 0.8020 Epoch 25/100 500/500 [==============================] - 0s 48us/sample - loss: 0.2095 - acc: 0.8440 Epoch 26/100 500/500 [==============================] - 0s 44us/sample - loss: 0.2072 - acc: 0.8280 Epoch 27/100 500/500 [==============================] - 0s 43us/sample - loss: 0.2048 - acc: 0.8620 Epoch 28/100 500/500 [==============================] - 0s 41us/sample - loss: 0.2023 - acc: 0.8720 Epoch 29/100 500/500 [==============================] - 0s 39us/sample - loss: 0.1997 - acc: 0.8700 Epoch 30/100 500/500 [==============================] - 0s 37us/sample - loss: 0.1970 - acc: 0.8940 Epoch 31/100 500/500 [==============================] - 0s 43us/sample - loss: 0.1941 - acc: 0.9100 Epoch 32/100 500/500 [==============================] - 0s 46us/sample - loss: 0.1910 - acc: 0.9220 Epoch 33/100 500/500 [==============================] - 0s 38us/sample - loss: 0.1877 - acc: 0.9260 Epoch 34/100 500/500 [==============================] - 0s 37us/sample - loss: 0.1843 - acc: 0.9380 Epoch 35/100 500/500 [==============================] - 0s 40us/sample - loss: 0.1811 - acc: 0.9360 Epoch 36/100 500/500 [==============================] - 0s 41us/sample - loss: 0.1779 - acc: 0.9480 Epoch 37/100 500/500 [==============================] - 0s 44us/sample - loss: 0.1748 - acc: 0.9520 Epoch 38/100 500/500 [==============================] - 0s 45us/sample - loss: 0.1713 - acc: 0.9580 Epoch 39/100 500/500 [==============================] - 0s 47us/sample - loss: 0.1680 - acc: 0.9620 Epoch 40/100 500/500 [==============================] - 0s 39us/sample - loss: 0.1646 - acc: 0.9660 Epoch 41/100 500/500 [==============================] - 0s 44us/sample - loss: 0.1610 - acc: 0.9660 Epoch 42/100 500/500 [==============================] - 0s 38us/sample - loss: 0.1576 - acc: 0.9720 Epoch 43/100 500/500 [==============================] - 0s 38us/sample - loss: 0.1538 - acc: 0.9760 Epoch 44/100 500/500 [==============================] - 0s 37us/sample - loss: 0.1503 - acc: 0.9740 Epoch 45/100 500/500 [==============================] - 0s 42us/sample - loss: 0.1463 - acc: 0.9780 Epoch 46/100 500/500 [==============================] - 0s 44us/sample - loss: 0.1426 - acc: 0.9800 Epoch 47/100 500/500 [==============================] - 0s 44us/sample - loss: 0.1386 - acc: 0.9840 Epoch 48/100 500/500 [==============================] - 0s 46us/sample - loss: 0.1346 - acc: 0.9860 Epoch 49/100 500/500 [==============================] - 0s 48us/sample - loss: 0.1305 - acc: 0.9920 Epoch 50/100 500/500 [==============================] - 0s 40us/sample - loss: 0.1263 - acc: 0.9960 Epoch 51/100 500/500 [==============================] - 0s 38us/sample - loss: 0.1221 - acc: 0.9980 Epoch 52/100 500/500 [==============================] - 0s 38us/sample - loss: 0.1180 - acc: 1.0000 Epoch 53/100 500/500 [==============================] - 0s 36us/sample - loss: 0.1137 - acc: 0.9980 Epoch 54/100 500/500 [==============================] - 0s 42us/sample - loss: 0.1094 - acc: 1.0000 Epoch 55/100 500/500 [==============================] - 0s 43us/sample - loss: 0.1051 - acc: 1.0000 Epoch 56/100 500/500 [==============================] - 0s 44us/sample - loss: 0.1011 - acc: 1.0000 Epoch 57/100 500/500 [==============================] - 0s 41us/sample - loss: 0.0969 - acc: 1.0000 Epoch 58/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0930 - acc: 1.0000 Epoch 59/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0891 - acc: 1.0000 Epoch 60/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0855 - acc: 1.0000 Epoch 61/100 500/500 [==============================] - 0s 41us/sample - loss: 0.0819 - acc: 1.0000 Epoch 62/100 500/500 [==============================] - 0s 40us/sample - loss: 0.0785 - acc: 1.0000 Epoch 63/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0752 - acc: 1.0000 Epoch 64/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0719 - acc: 1.0000 Epoch 65/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0689 - acc: 1.0000 Epoch 66/100 500/500 [==============================] - 0s 41us/sample - loss: 0.0660 - acc: 1.0000 Epoch 67/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0632 - acc: 1.0000 Epoch 68/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0606 - acc: 1.0000 Epoch 69/100 500/500 [==============================] - 0s 44us/sample - loss: 0.0581 - acc: 1.0000 Epoch 70/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0556 - acc: 1.0000 Epoch 71/100 500/500 [==============================] - 0s 40us/sample - loss: 0.0533 - acc: 1.0000 Epoch 72/100 500/500 [==============================] - 0s 47us/sample - loss: 0.0511 - acc: 1.0000 Epoch 73/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0491 - acc: 1.0000 Epoch 74/100 500/500 [==============================] - 0s 43us/sample - loss: 0.0471 - acc: 1.0000 Epoch 75/100 500/500 [==============================] - 0s 41us/sample - loss: 0.0452 - acc: 1.0000 Epoch 76/100 500/500 [==============================] - 0s 40us/sample - loss: 0.0434 - acc: 1.0000 Epoch 77/100 500/500 [==============================] - 0s 40us/sample - loss: 0.0418 - acc: 1.0000 Epoch 78/100 500/500 [==============================] - 0s 40us/sample - loss: 0.0401 - acc: 1.0000 Epoch 79/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0386 - acc: 1.0000 Epoch 80/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0371 - acc: 1.0000 Epoch 81/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0358 - acc: 1.0000 Epoch 82/100 500/500 [==============================] - 0s 51us/sample - loss: 0.0344 - acc: 1.0000 Epoch 83/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0332 - acc: 1.0000 Epoch 84/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0320 - acc: 1.0000 Epoch 85/100 500/500 [==============================] - 0s 41us/sample - loss: 0.0309 - acc: 1.0000 Epoch 86/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0298 - acc: 1.0000 Epoch 87/100 500/500 [==============================] - 0s 41us/sample - loss: 0.0288 - acc: 1.0000 Epoch 88/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0278 - acc: 1.0000 Epoch 89/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0269 - acc: 1.0000 Epoch 90/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0260 - acc: 1.0000 Epoch 91/100 500/500 [==============================] - 0s 42us/sample - loss: 0.0251 - acc: 1.0000 Epoch 92/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0243 - acc: 1.0000 Epoch 93/100 500/500 [==============================] - 0s 42us/sample - loss: 0.0235 - acc: 1.0000 Epoch 94/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0228 - acc: 1.0000 Epoch 95/100 500/500 [==============================] - 0s 43us/sample - loss: 0.0221 - acc: 1.0000 Epoch 96/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0215 - acc: 1.0000 Epoch 97/100 500/500 [==============================] - 0s 39us/sample - loss: 0.0208 - acc: 1.0000 Epoch 98/100 500/500 [==============================] - 0s 38us/sample - loss: 0.0202 - acc: 1.0000 Epoch 99/100 500/500 [==============================] - 0s 40us/sample - loss: 0.0196 - acc: 1.0000 Epoch 100/100 500/500 [==============================] - 0s 37us/sample - loss: 0.0190 - acc: 1.0000
MIT
2.3.1_3_Maneras_de_Programar_a_una_Red_Neuronal.ipynb
txusser/Master_IA_Sanidad
Sklearn
import sklearn as sk import sklearn.neural_network from IPython.core.display import display, HTML lr = 0.01 # learning rate nn = [2, 16, 8, 1] # número de neuronas por capa. # Creamos el objeto del modelo de red neuronal multicapa. clf = sk.neural_network.MLPRegressor(solver='sgd', learning_rate_init=lr, hidden_layer_sizes=tuple(nn[1:]), verbose=True, n_iter_no_change=1000, batch_size = 64) # Y lo entrenamos con nuestro datos. clf.fit(X, Y)
Iteration 1, loss = 0.66391606 Iteration 2, loss = 0.29448667 Iteration 3, loss = 0.13429471 Iteration 4, loss = 0.13165037 Iteration 5, loss = 0.13430276 Iteration 6, loss = 0.12556423 Iteration 7, loss = 0.12292571 Iteration 8, loss = 0.12204933 Iteration 9, loss = 0.12175702 Iteration 10, loss = 0.12129750 Iteration 11, loss = 0.12073281 Iteration 12, loss = 0.12028767 Iteration 13, loss = 0.11983928 Iteration 14, loss = 0.11939207 Iteration 15, loss = 0.11909108 Iteration 16, loss = 0.11836549 Iteration 17, loss = 0.11771654 Iteration 18, loss = 0.11703195 Iteration 19, loss = 0.11636100 Iteration 20, loss = 0.11559426 Iteration 21, loss = 0.11475135 Iteration 22, loss = 0.11391514 Iteration 23, loss = 0.11296898 Iteration 24, loss = 0.11183055 Iteration 25, loss = 0.11070522 Iteration 26, loss = 0.10945900 Iteration 27, loss = 0.10807801 Iteration 28, loss = 0.10653328 Iteration 29, loss = 0.10483565 Iteration 30, loss = 0.10299502 Iteration 31, loss = 0.10109678 Iteration 32, loss = 0.09868998 Iteration 33, loss = 0.09625805 Iteration 34, loss = 0.09356631 Iteration 35, loss = 0.09051455 Iteration 36, loss = 0.08720220 Iteration 37, loss = 0.08356481 Iteration 38, loss = 0.07956683 Iteration 39, loss = 0.07531904 Iteration 40, loss = 0.07057397 Iteration 41, loss = 0.06558903 Iteration 42, loss = 0.06042358 Iteration 43, loss = 0.05469307 Iteration 44, loss = 0.04914731 Iteration 45, loss = 0.04335916 Iteration 46, loss = 0.03773750 Iteration 47, loss = 0.03259090 Iteration 48, loss = 0.02785086 Iteration 49, loss = 0.02361280 Iteration 50, loss = 0.02024953 Iteration 51, loss = 0.01725262 Iteration 52, loss = 0.01477666 Iteration 53, loss = 0.01294427 Iteration 54, loss = 0.01150503 Iteration 55, loss = 0.01036948 Iteration 56, loss = 0.00950101 Iteration 57, loss = 0.00882902 Iteration 58, loss = 0.00840145 Iteration 59, loss = 0.00797252 Iteration 60, loss = 0.00769409 Iteration 61, loss = 0.00743825 Iteration 62, loss = 0.00731249 Iteration 63, loss = 0.00711639 Iteration 64, loss = 0.00700836 Iteration 65, loss = 0.00685081 Iteration 66, loss = 0.00670581 Iteration 67, loss = 0.00659854 Iteration 68, loss = 0.00655539 Iteration 69, loss = 0.00642937 Iteration 70, loss = 0.00637203 Iteration 71, loss = 0.00619710 Iteration 72, loss = 0.00614971 Iteration 73, loss = 0.00593245 Iteration 74, loss = 0.00579465 Iteration 75, loss = 0.00565489 Iteration 76, loss = 0.00553982 Iteration 77, loss = 0.00541618 Iteration 78, loss = 0.00532437 Iteration 79, loss = 0.00525496 Iteration 80, loss = 0.00514261 Iteration 81, loss = 0.00511693 Iteration 82, loss = 0.00499175 Iteration 83, loss = 0.00497192 Iteration 84, loss = 0.00491734 Iteration 85, loss = 0.00470830 Iteration 86, loss = 0.00461381 Iteration 87, loss = 0.00455140 Iteration 88, loss = 0.00446001 Iteration 89, loss = 0.00440248 Iteration 90, loss = 0.00430629 Iteration 91, loss = 0.00427582 Iteration 92, loss = 0.00420453 Iteration 93, loss = 0.00413087 Iteration 94, loss = 0.00406708 Iteration 95, loss = 0.00399991 Iteration 96, loss = 0.00394088 Iteration 97, loss = 0.00390739 Iteration 98, loss = 0.00384822 Iteration 99, loss = 0.00379567 Iteration 100, loss = 0.00372736 Iteration 101, loss = 0.00364839 Iteration 102, loss = 0.00359586 Iteration 103, loss = 0.00356903 Iteration 104, loss = 0.00350804 Iteration 105, loss = 0.00346888 Iteration 106, loss = 0.00341325 Iteration 107, loss = 0.00338402 Iteration 108, loss = 0.00334556 Iteration 109, loss = 0.00331617 Iteration 110, loss = 0.00327267 Iteration 111, loss = 0.00322546 Iteration 112, loss = 0.00316221 Iteration 113, loss = 0.00311790 Iteration 114, loss = 0.00308636 Iteration 115, loss = 0.00305983 Iteration 116, loss = 0.00307628 Iteration 117, loss = 0.00302102 Iteration 118, loss = 0.00299013 Iteration 119, loss = 0.00294987 Iteration 120, loss = 0.00295874 Iteration 121, loss = 0.00292606 Iteration 122, loss = 0.00289585 Iteration 123, loss = 0.00288184 Iteration 124, loss = 0.00286175 Iteration 125, loss = 0.00284965 Iteration 126, loss = 0.00286328 Iteration 127, loss = 0.00283168 Iteration 128, loss = 0.00285682 Iteration 129, loss = 0.00279665 Iteration 130, loss = 0.00278923 Iteration 131, loss = 0.00278239 Iteration 132, loss = 0.00276704 Iteration 133, loss = 0.00275697 Iteration 134, loss = 0.00275890 Iteration 135, loss = 0.00275535 Iteration 136, loss = 0.00282983 Iteration 137, loss = 0.00275359 Iteration 138, loss = 0.00272988 Iteration 139, loss = 0.00269894 Iteration 140, loss = 0.00272954 Iteration 141, loss = 0.00268760 Iteration 142, loss = 0.00267833 Iteration 143, loss = 0.00267846 Iteration 144, loss = 0.00269751 Iteration 145, loss = 0.00266955 Iteration 146, loss = 0.00265685 Iteration 147, loss = 0.00268063 Iteration 148, loss = 0.00265680 Iteration 149, loss = 0.00263361 Iteration 150, loss = 0.00262043 Iteration 151, loss = 0.00262108 Iteration 152, loss = 0.00262173 Iteration 153, loss = 0.00263316 Iteration 154, loss = 0.00259775 Iteration 155, loss = 0.00258960 Iteration 156, loss = 0.00263879 Iteration 157, loss = 0.00259500 Iteration 158, loss = 0.00257932 Iteration 159, loss = 0.00259434 Iteration 160, loss = 0.00256704 Iteration 161, loss = 0.00258173 Iteration 162, loss = 0.00253499 Iteration 163, loss = 0.00253539 Iteration 164, loss = 0.00253766 Iteration 165, loss = 0.00255039 Iteration 166, loss = 0.00253523 Iteration 167, loss = 0.00253166 Iteration 168, loss = 0.00252858 Iteration 169, loss = 0.00253196 Iteration 170, loss = 0.00251232 Iteration 171, loss = 0.00252011 Iteration 172, loss = 0.00251934 Iteration 173, loss = 0.00249041 Iteration 174, loss = 0.00249983 Iteration 175, loss = 0.00249816 Iteration 176, loss = 0.00249634 Iteration 177, loss = 0.00249739 Iteration 178, loss = 0.00249030 Iteration 179, loss = 0.00246445 Iteration 180, loss = 0.00250390 Iteration 181, loss = 0.00247568 Iteration 182, loss = 0.00247083 Iteration 183, loss = 0.00247611 Iteration 184, loss = 0.00246227 Iteration 185, loss = 0.00245628 Iteration 186, loss = 0.00245701 Iteration 187, loss = 0.00246615 Iteration 188, loss = 0.00244919 Iteration 189, loss = 0.00245754 Iteration 190, loss = 0.00245784 Iteration 191, loss = 0.00243623 Iteration 192, loss = 0.00245733 Iteration 193, loss = 0.00245661 Iteration 194, loss = 0.00242044 Iteration 195, loss = 0.00241922 Iteration 196, loss = 0.00242431 Iteration 197, loss = 0.00242330 Iteration 198, loss = 0.00245886 Iteration 199, loss = 0.00242789 Iteration 200, loss = 0.00240292
MIT
2.3.1_3_Maneras_de_Programar_a_una_Red_Neuronal.ipynb
txusser/Master_IA_Sanidad
Arctic Project in Linear Regression: K-fold + Y:Area Import libraries
library(MASS) library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────── tidyverse 1.3.0 ── ✔ ggplot2 3.3.2 ✔ purrr  0.3.4 ✔ tibble  3.0.4 ✔ dplyr  1.0.2 ✔ tidyr  1.1.2 ✔ stringr 1.4.0 ✔ readr  1.4.0 ✔ forcats 0.5.0 ── Conflicts ─────────────────────────────────────────────────────── tidyverse_conflicts() ── ✖ dplyr::filter() masks stats::filter() ✖ dplyr::lag() masks stats::lag() ✖ dplyr::select() masks MASS::select()
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Load data
arctic <- read.csv("arctic_data.csv",stringsAsFactors = F)
_____no_output_____
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Data segmentation
folds <- cut(seq(1,nrow(arctic)), breaks = 10, labels = FALSE)
_____no_output_____
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Prediction
prediction <- as.data.frame( sapply(1:10, FUN = function(i) # loop 1:K { testID <- which(folds == i, arr.ind = TRUE) test <- arctic[testID, ] train <- arctic[-testID, ] # set K-fold # print(test) # if needed # linear regression model <- lm(area~rainfall+daylight+population+CO2+ozone+ocean_temp+land_temp,data=train) # print(summary(model)) # if needed # prediction output predict(model,test) }))
_____no_output_____
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Table gathering and merging
pred_gather <- gather(data=prediction, key="fold",value="prediction",1:10) result <- as.data.frame(cbind(arctic[,c(1,6)],pred_gather))
_____no_output_____
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Calculate value of R^2
result["R^2"] <- ((result$area-result$prediction)^2) R_square <- sum(result$`R^2`)/490
_____no_output_____
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Plot line chart (Prediction vs True) with title, legend, and specific size of figure
{plot(result$observation,result$area,type ='l',ylim = c(0,1.5),lwd = '2',xlab = "Date", ylab = "Value",xaxt='n') lines(result$observation,result$prediction,lty=1,col='red',lwd = '2') axis(1,at=c(1,61,121,181,241,301,361,421,481), labels=c("Jan 1980","Jan 1985","Jan 1990","Jan 1995","Jan 2000","Jan 2005","Jan 2010","Jan 2015","Jan 2020")) title(main = list("Linear Regression", cex = 1.5, col = "red", font = 3)) legend("topright", inset=.05, c("Prediction","True"), bty = 'n', lty=c(1, 1), col=c("red", "black"),lwd =c(2, 2)) options(repr.plot.width=20, repr.plot.height=10) }
_____no_output_____
MIT
.ipynb_checkpoints/1-linear_regression_K-fold_area-checkpoint.ipynb
UCL-BENV0091-Antarctic/antarctic
Data extraction and Pairing of Insulin Inputs to Glucose Measurements in the ICU Interactive notebook: Part IIAuthors: [Aldo Robles Arévalo](mailto:[email protected]); Jason Maley; Lawrence Baker; Susana M. da Silva Vieira; João M. da Costa Sousa; Stan Finkelstein; Jesse D. Raffa; Roselyn Cristelle; Leo Celi; Francis DeMichele OverviewThis notebook contains the pairing of pre-processed glucose readings and insulin inputs from the Medical Information Mart for Intensive Care (MIMIC).The curation is detailed in *1.0-ara-data-curation-I.ipynb*. General instructionsTo perform the queries, do not forget to specify your project ID that grants you access to the MIMIC database hosted in *bigQuery*. Substitute `projectid` variable with the name of that project. In case you want to save the dataframes to your *BigQuery* project, uncomment and substitute `your_dataset` with the name of your *BigQuery* dataset and execute.You can also save the created dataframes and figures in your Google Drive account. After mounting your drive, substitute `base_dir` variable with the path of the folder where you want to save them. In this notebook that folder was named `Insulin Therapy ICU` and `MyDrive` is the parent folder. Figures are saved in the path *Insulin Therapy ICU/DataExtraction/MIMIC_III/Figures/*, you should change it according to your needs or create the folders with the exact names in your Google Drive. Pairing rulesOnce merged the insulin inputs and glucose readings from the *1.0-ara-data-curation-I.ipynb* notebok, now we continue with the **pairing** of an insulin event with a preceding glucose reading.The goal is to link each insulin dose with the nearest glucose measurement. For this complex task, the following rules were implemented. This operation is done in BigQuery. The following rules or assumptions are proposed:1. **Rule 1**: A glucose reading should precede a regular insulin administration by up to 90 minutes. This basis for this time window is derived from the diabetic ketoacidosis guidelines which recommend measuring glucose values every 60 minutes while receiving an insulin infusion. An additional 30 minutes were added, 90 minutes in total, to this interval to account for the time it may take for providers to register the event. 2. **Rule 2**: When a regular insulin event is not preceded, but instead followed, by a blood glucose measurement, this glucose reading is paired with the regular insulin administration if they are recorded within 90 minutes of each other.3. **Rule 3**: Sometimes a regular insulin infusion/bolus appears between 2 blood glucose measurements. In this case, the higher glucose value is paired with the regular insulin entry as long as they are entered within 90 minutes of each other.4. **Rule 4**: When a regular insulin bolus occurs very close to a regular insulin infusion rate, it is assumed that the patient was given a bolus and then commenced on an infusion. Both regular insulin entries are paired with the preceding blood glucose measurement, or the posterior glucose reading in case its value is higher than the preceding blood glucose and is entered within 90 minutes of the insulin dose.5. No glucose values below 90 mg/dL is paired with a subsequent regular insulin bolus or infusion. No clinician will treat this low of a blood glucose value with a regular insulin bolus or infusion. Code Import dependencies and libraries
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import matplotlib.colors as colors from scipy import stats from datetime import datetime import time import warnings # Below imports are used to print out pretty pandas dataframes from IPython.display import display, HTML # Imports for accessing data using Google BigQuery. from google.cloud import bigquery from google.colab import files, auth auth.authenticate_user() print('Authenticated') %load_ext google.colab.data_table # Function to submit query to BigQuery def q(query,projectid): client = bigquery.Client(location="US",project=projectid) # Location must match that of the dataset(s) referenced in the query. query_job = client.query(query, location="US",) return query_job.to_dataframe() #Rounding (for heatmap categories) def myround(x, base): return int(base * round(float(x)/base)) def convert_to_datetime(df,time_cols): for t_col in time_cols: df[t_col] = pd.to_datetime(df[t_col]) return(df) from google.colab import drive drive.mount('/content/gdrive') # Select your own folder base_dir = "/content/gdrive/My Drive/Insulin Therapy ICU"
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Adjusted datasets* **Note 1**: Substitute `your_dataset` with the name of your dataset ID (Line 850) where you hosted/stored the tables created in the `1.0-ara-pairing-I.ipynb` notebook. * **Note 2**: The table `glucose_insulin_ICU` was created in `1.0-ara-pairing-I.ipynb` notebook. It is equivalent to `glucose_insulin_ICU.csv`.
# Import dataset adjusted or aligned projectid = "YOUR_PROJECT_ID" # <-- Add your project ID query =""" WITH pg AS( SELECT p1.* -- Column GLC_AL that would gather paired glucose values according to the proposed rules ,(CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings, select the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN (LAG(p1.GLC,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN (LAG(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another insulin event AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.GLC,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the POSTERIOR glucose (1 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.GLC,1) OVER(w)) -- Otherwise, return null value and finish CASE clause ELSE null END ) AS GLC_AL -- --------------------------------------------------------------------------------------------- -- Column GLCTIMER_AL that would gather the timestamp of the paired glucose reading , (CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings,vselect the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN (LAG(p1.TIMER,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN (LAG(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.TIMER,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the timestamp of the POSTERIOR glucose (1 rows below) measurement that gathers the -- previous conditions THEN (LEAD(p1.TIMER,1) OVER(w)) -- Otherwise, return null value and finish CASE clause ELSE null END ) AS GLCTIMER_AL -- ----------------------------------------------------------------------------------------------- -- Column GLCSOURCE_AL that would indicate whether is fingerstick or lab analyzer sample of -- the paired glucose reading , (CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings,vselect the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN (LAG(p1.GLCSOURCE,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN (LAG(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the whether is figerstick or lab analyzer the POSTERIOR glucose (1 rows below) measurement -- that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,1) OVER(w)) -- Otherwise, return null value and finish CASE clause ELSE null END ) AS GLCSOURCE_AL -- --------------------------------------------------------------------------------------------- -- Column RULE that indicateS which pairing rule is applied for the i^th case , (CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings,vselect the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN 1 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN 3 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 90 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN 1 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 90) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the Rule number applied THEN 2 -- Otherwise, return null value and finish CASE clause ELSE null END ) AS RULE FROM `your_dataset.glucose_insulin_ICU` AS p1 WINDOW w AS(PARTITION BY CAST(p1.HADM_ID AS INT64) ORDER BY p1.TIMER) ) -- Create a colum that identifies the glucose readings were paired and are duplicated in pg SELECT pg.* , (CASE WHEN pg.GLCSOURCE_AL IS null AND (LEAD(pg.GLCTIMER_AL,1) OVER(x) = pg.GLCTIMER) THEN 1 WHEN pg.GLCSOURCE_AL IS null AND (LAG(pg.GLCTIMER_AL,1) OVER(x) = pg.GLCTIMER) AND LAG(endtime,1) OVER(x) IS NOT null THEN 1 ELSE null END) AS Repeated FROM pg WINDOW x AS(PARTITION BY ICUSTAY_ID ORDER BY pg.timer) """ ICUinputs_adjusted = q(query,projectid) del query # Convert dtypes ICUinputs_adjusted[["Repeated","INFXSTOP","RULE"]] = ICUinputs_adjusted[ ["Repeated","INFXSTOP","RULE"]].apply(pd.to_numeric, errors='coerce') # Remove values that are repeated due to the SQL query ICUinputs_adjusted = ICUinputs_adjusted[ICUinputs_adjusted['Repeated']!=1] # Get statistics display(HTML('<h5>Contains the following information</h5>')) print("Entries: {}".format(ICUinputs_adjusted.shape[0])) print("Patients: {}".format(ICUinputs_adjusted['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(ICUinputs_adjusted['HADM_ID'].nunique())) print('ICU stays: {}'.format(ICUinputs_adjusted['ICUSTAY_ID'].nunique())) # Rules display(HTML('<h5>Frequency of the rules</h5>')) print(ICUinputs_adjusted['RULE'].value_counts())
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Boluses of short-acting insulin
# Filtering for only short insulin boluses and all sources of glucose short_BOL_adjusted = ICUinputs_adjusted[ (ICUinputs_adjusted['INSULINTYPE']=="Short") & (ICUinputs_adjusted['EVENT'].str.contains('BOLUS'))].copy() # Get statistics display(HTML('<h5>Contains the following information</h5>')) print("Entries: {}".format(short_BOL_adjusted.shape[0])) print("Patients: {}".format(short_BOL_adjusted['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(short_BOL_adjusted['HADM_ID'].nunique())) print('ICU stays: {}'.format(short_BOL_adjusted['ICUSTAY_ID'].nunique())) display(short_BOL_adjusted[['INPUT','GLC_AL']].describe()) # Save as CSV file, uncomment and modify as needed. # short_BOL_adjusted.to_csv(base_dir+"/DataExtraction/BolusesCUR.csv", index=False, # encoding='utf8', header = True) # Aligned and not aligned entries display(HTML('<h2>Boluses entries of short-acting insulin<h2>')) print("Entries that were aligned: {}".format( short_BOL_adjusted.shape[0]-short_BOL_adjusted.loc[np.isnan( short_BOL_adjusted.RULE),'RULE'].shape[0])) print("Entries that weren't aligned: {}".format( short_BOL_adjusted.loc[np.isnan(short_BOL_adjusted.RULE),'RULE'].shape[0])) print("Non-paired percentage: {:0.2f}%".format( short_BOL_adjusted.loc[np.isnan( short_BOL_adjusted.RULE),'RULE'].shape[0]/short_BOL_adjusted.shape[0]*100)) warnings.simplefilter('ignore') # From Part1 Notebook P99_bol_s = 18.0 # Heatmap short_BOL_heat = short_BOL_adjusted.dropna(subset=['GLC_AL']).copy() short_BOL_heat['A'] = ((short_BOL_heat['GLCTIMER_AL'] - short_BOL_heat['STARTTIME'])/pd.Timedelta('1 minute'))*60 short_BOL_heat=short_BOL_heat.set_index('A') #Define the cell size on the heat map glc_base=25 ins_base=2 #Define heatmap limits xlow=0 xhigh=P99_bol_s ylow=90 yhigh=400 xhigh-=ins_base #create categories for constructing the heatmap short_BOL_heat['glc_cat']=(short_BOL_heat['GLC_AL'].apply( lambda x: myround(x, glc_base))/glc_base) short_BOL_heat['ins_cat']=(short_BOL_heat['INPUT'].apply( lambda x: myround(x, ins_base))/ins_base) #create dataframe for the heatmap using pivot_table heat_df=pd.pivot_table(short_BOL_heat, values='ICUSTAY_ID', index=['glc_cat'] , columns=['ins_cat'], aggfunc='count') #trim the heatmap dataframe based on the lmits specificed heat_df=heat_df.loc[ylow/glc_base:yhigh/glc_base:,xlow/ins_base:xhigh/ins_base:] #create labels for the x and y ticks heat_xtick=np.arange(xlow, xhigh+ins_base*2, ins_base) heat_ytick=np.arange(ylow, yhigh+glc_base*1, glc_base) #plot heatmap sns.set(style="ticks", font_scale=1.2) fig, ax = plt.subplots(1, 1, figsize = (12, 12)) ax=sns.heatmap(heat_df, robust=True, annot=True, cmap="BuPu", fmt="2.0f" , xticklabels=heat_xtick, yticklabels=heat_ytick , norm=colors.PowerNorm(gamma=1./2.)) #titles plt.title(f"Glucose readings prior to a bolus of short-acting insulin\n(n={int(heat_df.sum().values.sum())})", fontsize=25) plt.ylabel("Blood glucose (mg/dL)", fontsize=20) plt.xlabel("Insulin dose (U)", fontsize=20) #invert axis and offset labels ax.invert_yaxis() ax.set_yticks(np.arange(0, ((yhigh-ylow)/glc_base)+1)) ax.set_xticks(np.arange(0, ((xhigh-xlow)/ins_base)+2)) # Save figure, uncomment if needed. fig.savefig(base_dir+'/DataExtraction/ShortBolusHeatMap.png', bbox_inches='tight', dpi=fig.dpi)
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Infusions of short-acting insulin
warnings.simplefilter('default') # Filtering for only short insulin infusions and all sources of glucose short_INF_adjusted = ICUinputs_adjusted[ (ICUinputs_adjusted['INSULINTYPE']=="Short") & (ICUinputs_adjusted['EVENT'].str.contains('INFUSION'))].copy() # Get statistics display(HTML('<h5>Counts</h5>')) print("Entries: {}".format(short_INF_adjusted.shape[0])) print("Patients: {}".format(short_INF_adjusted['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(short_INF_adjusted['HADM_ID'].nunique())) print('ICU stays: {}'.format(short_INF_adjusted['ICUSTAY_ID'].nunique())) display(short_INF_adjusted[['INPUT_HRS','GLC_AL']].describe()) warnings.simplefilter('ignore') # Heatmap short_INF_heat = short_INF_adjusted.dropna(subset=['GLC_AL']).copy() short_INF_heat['A'] = ((short_INF_heat['GLCTIMER_AL'] - short_INF_heat['STARTTIME'])/pd.Timedelta('1 minute'))*60 short_INF_heat=short_INF_heat.set_index('A') #Define the cell size on the heat map glc_base=25 ins_base=2 #Define heatmap limits xlow=0 xhigh=P99_bol_s ylow=90 yhigh=400 xhigh-=ins_base #create categories for constructing the heatmap short_INF_heat['glc_cat']=(short_INF_heat['GLC_AL'].apply( lambda x: myround(x, glc_base))/glc_base) short_INF_heat['ins_cat']=(short_INF_heat['INPUT'].apply( lambda x: myround(x, ins_base))/ins_base) #create dataframe for the heatmap using pivot_table heat_df_i=pd.pivot_table(short_INF_heat, values='ICUSTAY_ID', index=['glc_cat'] , columns=['ins_cat'], aggfunc='count') #trim the heatmap dataframe based on the lmits specificed heat_df_i=heat_df_i.loc[ylow/glc_base:yhigh/glc_base:,xlow/ins_base:xhigh/ins_base:] #create labels for the x and y ticks heat_xtick=np.arange(xlow, xhigh+ins_base*2, ins_base) heat_ytick=np.arange(ylow, yhigh+glc_base*1, glc_base) #plot heatmap sns.set(style="ticks", font_scale=1.2) fig, ax = plt.subplots(1, 1, figsize = (12, 12)) ax=sns.heatmap(heat_df_i, robust=True, annot=True, cmap="BuPu", fmt="2.0f" , xticklabels=heat_xtick, yticklabels=heat_ytick , norm=colors.PowerNorm(gamma=1./2.)) #titles plt.title(f"Glucose readings prior to infusions of short-acting insulin\n(n={int(heat_df_i.sum().values.sum())})", fontsize=25) plt.ylabel("Blood glucose (mg/dL)", fontsize=20) plt.xlabel("Insulin dose (U/hr)", fontsize=20) #invert axis and offset labels ax.invert_yaxis() ax.set_yticks(np.arange(0, ((yhigh-ylow)/glc_base)+1)) ax.set_xticks(np.arange(0, ((xhigh-xlow)/ins_base)+2)) # Save figure, uncomment if needed. fig.savefig(base_dir+'/DataExtraction/ShortInfxnHeatMap.png', bbox_inches='tight',dpi=fig.dpi)
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Boluses of intermediate-acting insulin
warnings.simplefilter('default') # Filtering for only short insulin infusions and all sources of glucose inter_BOL_adjusted = ICUinputs_adjusted[ (ICUinputs_adjusted['INSULINTYPE']=="Intermediate") & (ICUinputs_adjusted['EVENT'].str.contains('BOLUS'))].copy() # Get statistics display(HTML('<h5>Contains the following information</h5>')) print("Entries: {}".format(inter_BOL_adjusted.shape[0])) print("Patients: {}".format(inter_BOL_adjusted['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(inter_BOL_adjusted['HADM_ID'].nunique())) print('ICU stays: {}'.format(inter_BOL_adjusted['ICUSTAY_ID'].nunique())) display(inter_BOL_adjusted[['INPUT','GLC_AL']].describe()) # Aligned and not aligned entries display(HTML('<h2>Boluses entries of intermediate-acting insulin<h2>')) print("Entries that were aligned: {}".format( inter_BOL_adjusted.shape[0]-inter_BOL_adjusted.loc[np.isnan( inter_BOL_adjusted.RULE),'RULE'].shape[0])) print("Entries that weren't aligned: {}".format( inter_BOL_adjusted.loc[np.isnan(inter_BOL_adjusted.RULE),'RULE'].shape[0])) print("Non-paired percentage: {:0.2f}%".format( inter_BOL_adjusted.loc[np.isnan( inter_BOL_adjusted.RULE),'RULE'].shape[0]/inter_BOL_adjusted.shape[0]*100))
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Boluses of long-acting insulin
warnings.simplefilter('default') # Filtering for only short insulin infusions and all sources of glucose long_BOL_adjusted = ICUinputs_adjusted[ (ICUinputs_adjusted['INSULINTYPE']=="Long") & (ICUinputs_adjusted['EVENT'].str.contains('BOLUS'))].copy() # Get statistics display(HTML('<h5>Contains the following information</h5>')) print("Entries: {}".format(long_BOL_adjusted.shape[0])) print("Patients: {}".format(long_BOL_adjusted['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(long_BOL_adjusted['HADM_ID'].nunique())) print('ICU stays: {}'.format(long_BOL_adjusted['ICUSTAY_ID'].nunique())) display(long_BOL_adjusted[['INPUT','GLC_AL']].describe()) # Aligned and not aligned entries display(HTML('<h2>Boluses entries of long-acting insulin<h2>')) print("Entries that were aligned: {}".format( long_BOL_adjusted.shape[0]-long_BOL_adjusted.loc[np.isnan( long_BOL_adjusted.RULE),'RULE'].shape[0])) print("Entries that weren't aligned: {}".format( long_BOL_adjusted.loc[np.isnan(long_BOL_adjusted.RULE),'RULE'].shape[0])) print("Non-paired percentage: {:0.2f}%".format( long_BOL_adjusted.loc[np.isnan( long_BOL_adjusted.RULE),'RULE'].shape[0]/long_BOL_adjusted.shape[0]*100))
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Non-adjusted datasetsTo complement this analysis, and to show the difference between implementing and not implementing the proposed rules, three cohorts were created: a) no pairing rules applied, b) paired a glucose reading recorded within 60 minutes of the insulin event instead of 90 minutes, and c) pairing a glucose reading. Scenario CGlucose readings CURATED and insulin inputs CURATED but NO RULES* **Note 1**: Add the name of your dataset hosted in BigQuery (Line 45). * **Note 2**: The table `glucose_insulin_ICU` was created in `1.0-ara-pairing-I.ipynb` notebook. It is equivalent to `glucose_insulin_ICU.csv`.
# GLUCOSE READINGS CURATED AND INSULIN INPUTS CURATED but no RULES query = """ SELECT pg.* , (CASE WHEN pg.GLCSOURCE_AL IS null AND (LEAD(pg.GLCTIMER_AL,1) OVER(PARTITION BY pg.ICUSTAY_ID ORDER BY pg.TIMER) = pg.GLCTIMER) THEN 1 WHEN pg.GLCSOURCE_AL IS null AND (LAG(pg.GLCTIMER_AL,1) OVER(PARTITION BY pg.ICUSTAY_ID ORDER BY pg.timer) = pg.GLCTIMER) AND LAG(endtime,1) OVER(PARTITION BY ICUSTAY_ID ORDER BY timer) IS NOT null THEN 1 ELSE null END) AS Repeated FROM(SELECT p1.* , (CASE -- Select the previous glucose value regardless the time distance WHEN p1.EVENT IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') THEN (LAG(p1.GLC,1) OVER(w)) ELSE null END ) AS GLC_AL , (CASE -- Select the previous glucose value regardless the time distance WHEN p1.EVENT IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') THEN (LAG(p1.TIMER,1) OVER(w)) ELSE null END ) AS GLCTIMER_AL , (CASE -- Select the previous glucose value regardless the time distance WHEN p1.EVENT IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') THEN (LAG(p1.GLCSOURCE,1) OVER(w)) ELSE null END ) AS GLCSOURCE_AL , (CASE -- Select the previous glucose value regardless the time distance WHEN p1.EVENT IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') THEN 1 ELSE null END ) AS RULE FROM `your_dataset.glucose_insulin_ICU` AS p1 WINDOW w AS(PARTITION BY CAST(p1.HADM_ID AS INT64) ORDER BY p1.TIMER) ) AS pg """ glc_curALins_cur = q(query,projectid) qwe = glc_curALins_cur[(glc_curALins_cur['INSULINTYPE']=="Short") & (glc_curALins_cur['EVENT'].str.contains('BOLUS'))].copy() display(HTML('<h4>Statistics for both glucose readings and insulin inputs CURATED</h4>')) print("Total entries: {}".format(glc_curALins_cur.shape[0])) display(qwe[['INPUT','GLC_AL']].describe()) display(HTML('<h5>Contains the following information (only for short-acting)</h5>')) print("Boluses of short-acting insulin: {}".format(qwe.shape[0])) print("Patients: {} out of {}".format(qwe['SUBJECT_ID'].nunique(), glc_curALins_cur['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(qwe['HADM_ID'].nunique())) print('ICU stays: {}'.format(qwe['ICUSTAY_ID'].nunique())) # Rules display(HTML('<h5>Frequency of the rules</h5>')) print(qwe['RULE'].value_counts()) # Save as CSV file, uncomment and modify as needed. # qwe.to_csv(base_dir+"/DataExtraction/BolusesCUR_nr.csv", index=False, # encoding='utf8', header = True) del query,qwe
/usr/lib/python3.6/json/decoder.py:355: ResourceWarning: unclosed <ssl.SSLSocket fd=63, family=AddressFamily.AF_INET, type=2049, proto=6, laddr=('172.28.0.2', 52706), raddr=('74.125.142.95', 443)> obj, end = self.scan_once(s, idx) /usr/lib/python3.6/json/decoder.py:355: ResourceWarning: unclosed <ssl.SSLSocket fd=64, family=AddressFamily.AF_INET, type=2049, proto=6, laddr=('172.28.0.2', 52660), raddr=('74.125.20.95', 443)> obj, end = self.scan_once(s, idx)
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Scenario BGlucose reading CURATED and inulin inputs CURATED paired with rules (60 min)* **Note 1**: Substitute `your_dataset` with the name of your dataset ID (Line 849) where you hosted/stored the tables created in the `1.0-ara-pairing-I.ipynb` notebook. * **Note 2**: The table `glucose_insulin_ICU` was created in `1.0-ara-pairing-I.ipynb` notebook. It is equivalent to `glucose_insulin_ICU.csv`.
# Import dataset adjusted or aligned with 60 min query =""" WITH pg AS( SELECT p1.* -- Column GLC_AL that would gather paired glucose values according to the proposed rules ,(CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings, select the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN (LAG(p1.GLC,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN (LAG(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another insulin event AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.GLC,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLC,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the POSTERIOR glucose (1 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.GLC,1) OVER(w)) -- Otherwise, return null value and finish CASE clause ELSE null END ) AS GLC_AL -- --------------------------------------------------------------------------------------------- -- Column GLCTIMER_AL that would gather the timestamp of the paired glucose reading , (CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings,vselect the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN (LAG(p1.TIMER,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN (LAG(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.TIMER,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.TIMER,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the timestamp of the POSTERIOR glucose (1 rows below) measurement that gathers the -- previous conditions THEN (LEAD(p1.TIMER,1) OVER(w)) -- Otherwise, return null value and finish CASE clause ELSE null END ) AS GLCTIMER_AL -- ----------------------------------------------------------------------------------------------- -- Column GLCSOURCE_AL that would indicate whether is fingerstick or lab analyzer sample of -- the paired glucose reading , (CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings,vselect the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN (LAG(p1.GLCSOURCE,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN (LAG(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,2) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN (LAG(p1.GLCSOURCE,1) OVER(w)) -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the whether is figerstick or lab analyzer the POSTERIOR glucose (1 rows below) measurement -- that gathers the previous conditions THEN (LEAD(p1.GLCSOURCE,1) OVER(w)) -- Otherwise, return null value and finish CASE clause ELSE null END ) AS GLCSOURCE_AL -- --------------------------------------------------------------------------------------------- -- Column RULE that indicateS which pairing rule is applied for the i^th case , (CASE -- 1ST CLAUSE -- When previous and following rows are glucose readings,vselect the glucose value that -- has the shortest time distance to insulin bolus/infusion. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding and posterior glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Posterior glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes AND ( -- Preceding glucose ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN 1 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 2ND CLAUSE -- In case the posterior glucose reading is higher than the preceding -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding and posterior glucose measurements AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Time-gap between glucose and insulin, should be equal or less than 90 minutes -- Preceding glucose AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose AND ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose values is higher than the preceding glucose AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN 3 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 3RD CLAUSE -- When previous timestamp is an insulin bolus/infusion event -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above and regular insulin AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND (LAG(p1.INSULINTYPE,2) OVER(w)) IN('Short') -- One row above there is another insulin event AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a shortime or equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Preceding glucose 2 rows above is equal or greater than 90 min AND (LAG(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose value is lower than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) >= LEAD(p1.GLC,1) OVER(w) -- Return the preceding glucose value 2 rows above THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 4TH CLAUSE -- When previous timestamp is for Insulin bolus/infusion but posterior glucose -- is higher than the preceding glucose 2 rows above. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 2 rows above AND (LAG(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row above there is another regular insulin AND (LAG(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LAG(p1.INSULINTYPE,1) OVER(w)) IN('Short') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,1) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Posterior glucose value is higher than the preceding glucose 2 rows above AND LAG(p1.GLC,2) OVER(w) < LEAD(p1.GLC,1) OVER(w) -- Return the POSTERIOR glucose measurement that gathers the previous conditions THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 5TH CLAUSE -- When posterior timestamp is for Insulin bolus/infusion but preceding is glucose -- and there is a glucose 2 rows below. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a shorter OR equal time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Preceding glucose reading is greater or equal to 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Preceding glucose 2 rows above occured up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is lower than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) >= LEAD(p1.GLC,2) OVER(w) -- Return the PRECEDING glucose (1 row above) measurement that gathers the previous conditions THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 6TH CLAUSE -- When posterior glucose reading (2 rows below) is higher than preceding glucose. -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 2 rows below AND (LEAD(p1.GLCSOURCE,2) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- One row BELOW there is another regular insulin AND (LEAD(p1.EVENT,1) OVER(w)) IN('BOLUS_INYECTION','BOLUS_PUSH','INFUSION') AND (LEAD(p1.INSULINTYPE,1) OVER(w)) IN('Short') AND ( -- Preceding glucose has a longer time-gap to insulin than the posterior ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,2) OVER(w)), p1.TIMER, MINUTE)) ) -- Posterior glucose reading is greater or equal to 90 mg/dL AND (LEAD(p1.GLC,2) OVER(w)) >= 90 -- Posterior glucose (2 rows below) occurs within 90 minutes AND ABS(TIMESTAMP_DIFF(LEAD(p1.timer,2) OVER(w), p1.timer, MINUTE)) <= 60 -- Preceding glucose 1 row above occures up to 90 minutes before AND ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60 -- Posterior glucose value (2 rows below) is higher than the preceding glucose 1 row above AND LAG(p1.GLC,1) OVER(w) < LEAD(p1.GLC,2) OVER(w) -- Return the POSTERIOR glucose (2 rows below) measurement that gathers the previous conditions THEN 4 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 7TH CLAUSE -- When it is the last insulin dose and record in an ICU stay -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Identify preceding glucose reading AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin, should be equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Preceding glucose should be equal or greater than 90 mg/dL AND (LAG(p1.GLC,1) OVER(w)) >= 90 -- Return the PRECEDING glucose measurement that gathers the previous conditions THEN 1 -- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- 8TH CLAUSE -- When there is no preceding glucose reading within 90 min, but there is a posterior -- glucose within 90 min -- Identify an insulin event either bolus or infusion WHEN p1.EVENT IN('BOLUS_INYECTION', 'BOLUS_PUSH', 'INFUSION') -- Regular insulin or short-acting AND p1.INSULINTYPE IN('Short') -- Identify preceding glucose reading 1 row above AND (LAG(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Identify posterior glucose reading 1 row below AND (LEAD(p1.GLCSOURCE,1) OVER(w)) IN('BLOOD', 'FINGERSTICK') -- Time-gap between preceding glucose and insulin is greater than 90 minutes AND (ABS(TIMESTAMP_DIFF((LAG(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) > 90) -- Time-gap between posterior glucose and insulin is equal or less than 90 minutes AND (ABS(TIMESTAMP_DIFF((LEAD(p1.TIMER,1) OVER(w)), p1.TIMER, MINUTE)) <= 60) -- Posterior glucose should be equal or greater than 90 mg/dL AND (LEAD(p1.GLC,1) OVER(w)) >= 90 -- Return the Rule number applied THEN 2 -- Otherwise, return null value and finish CASE clause ELSE null END ) AS RULE FROM `your_dataset.glucose_insulin_ICU` AS p1 WINDOW w AS(PARTITION BY CAST(p1.HADM_ID AS INT64) ORDER BY p1.TIMER) ) -- Create a colum that identifies the glucose readings were paired and are duplicated in pg SELECT pg.* , (CASE WHEN pg.GLCSOURCE_AL IS null AND (LEAD(pg.GLCTIMER_AL,1) OVER(x) = pg.GLCTIMER) THEN 1 WHEN pg.GLCSOURCE_AL IS null AND (LAG(pg.GLCTIMER_AL,1) OVER(x) = pg.GLCTIMER) AND LAG(endtime,1) OVER(x) IS NOT null THEN 1 ELSE null END) AS Repeated FROM pg WINDOW x AS(PARTITION BY ICUSTAY_ID ORDER BY pg.timer) """ ICU60min_adjusted = q(query,projectid) del query # Convert dtypes ICU60min_adjusted[["Repeated","INFXSTOP","RULE"]] = ICU60min_adjusted[ ["Repeated","INFXSTOP","RULE"]].apply(pd.to_numeric, errors='coerce') # Remove values that are repeated due to the SQL query ICU60min_adjusted = ICU60min_adjusted[ICU60min_adjusted['Repeated']!=1] # Get statistics display(HTML('<h5>Contains the following information</h5>')) print("Entries: {}".format(ICU60min_adjusted.shape[0])) print("Patients: {}".format(ICU60min_adjusted['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(ICU60min_adjusted['HADM_ID'].nunique())) print('ICU stays: {}'.format(ICU60min_adjusted['ICUSTAY_ID'].nunique())) # Rules display(HTML('<h5>Frequency of the rules</h5>')) print(ICU60min_adjusted['RULE'].value_counts())
/usr/lib/python3.6/json/decoder.py:355: ResourceWarning: unclosed <ssl.SSLSocket fd=80, family=AddressFamily.AF_INET, type=2049, proto=6, laddr=('172.28.0.2', 52770), raddr=('74.125.20.95', 443)> obj, end = self.scan_once(s, idx) /usr/lib/python3.6/json/decoder.py:355: ResourceWarning: unclosed <ssl.SSLSocket fd=79, family=AddressFamily.AF_INET, type=2049, proto=6, laddr=('172.28.0.2', 53808), raddr=('74.125.195.95', 443)> obj, end = self.scan_once(s, idx)
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Boluses of short-acting insulin
# Filtering for only short insulin boluses and all sources of glucose short_BOL_60 = ICU60min_adjusted[(ICU60min_adjusted['INSULINTYPE']=="Short") & (ICU60min_adjusted['EVENT'].str.contains('BOLUS'))].copy() # Get statistics display(HTML('<h5>Contains the following information</h5>')) print("Entries: {}".format(short_BOL_60.shape[0])) print("Patients: {}".format(short_BOL_60['SUBJECT_ID'].nunique())) print("Hospital admissions: {}".format(short_BOL_60['HADM_ID'].nunique())) print('ICU stays: {}'.format(short_BOL_60['ICUSTAY_ID'].nunique())) display(short_BOL_60[['INPUT','GLC_AL']].describe()) # Save as CSV file, uncomment and modify as needed. # short_BOL_60.to_csv(base_dir+"/DataExtraction/BolusesCUR_60.csv", index=False, # encoding='utf8', header = True)
_____no_output_____
MIT
notebooks/ICUglycemia/Notebooks/2_0_ara_pairing_II.ipynb
aldo-arevalo/mimic-code
Loops and Conditions loops provides the methods of iteration while condition allows or blocks the code execution when specified conditionis meet. For Loop and while Loop
L = ['apple', 'banana','kite','cellphone'] for item in L: print(item) range(5), range(5,100), sum(range(100)) L=[] for k in range(10): L.append(10*k) L D = {} for i in range(5): for j in range(5): if i == j : D.update({(i,j) : 10*i+j}) elif i!=j : D.update({(i,j): 100*i+j}) print(D) for i, item in enumerate(['apple', 'banana','kite','cellphone']): print("The",i,"th element is:", item) A=[10*k**2+5*k+1 for k in range(10)] print(A) AA=[[10*x**2+5*y+1 for x in range(3)] for y in range(3)] print(AA) for i in range(3): for j in range(3): print("The", "(",i,",",j,")","th element is: ", AA[i][j]) i=0 while i<5: print( i, "th turn") i = i+1 for i in range(10): print(i) if i == 3: break import random as random for i in range(10): r = random.uniform(1,10) if r<2 and r>0: print("It is smaller than 2 and greater than 1","|",r) elif r<4 and r>2: print("It is smaller than 4 and greater than 2","|",r) elif r<6 and r>4: print("It is smaller tha 6 and greater than 4","|",r) elif r<8 and r>6: print("It is smaller than 8 and greate than 6","|",r) elif r<10 and r>8: print("It is smaller than 10 and greater than 8","|",r) s = 0 for i in range(1000+1): s = s+i s s = 0 LE = [] for i in range(1001): if i%2 ==0: LE.append(i) s= s+i s, sum(LE)
_____no_output_____
MIT
loop.ipynb
dineshyadav2020/P_W_Files
Copyright 2019 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Transformer Chatbot Run in Google Colab View source on GitHub This tutorial trains a Transformer model to be a chatbot. This is an advanced example that assumes knowledge of [text generation](https://tensorflow.org/alpha/tutorials/text/text_generation), [attention](https://www.tensorflow.org/alpha/tutorials/text/nmt_with_attention) and [transformer](https://www.tensorflow.org/alpha/tutorials/text/transformer).The core idea behind the Transformer model is *self-attention*—the ability to attend to different positions of the input sequence to compute a representation of that sequence. Transformer creates stacks of self-attention layers and is explained below in the sections *Scaled dot product attention* and *Multi-head attention*.Note: The model architecture is identical to the example in [Transformer model for language understanding](https://www.tensorflow.org/alpha/tutorials/text/transformer), and we demonstrate how to implement the same model in the Functional approach instead of Subclassing.
from __future__ import absolute_import, division, print_function, unicode_literals try: # The %tensorflow_version magic only works in colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf tf.random.set_seed(1234) !pip install tfds-nightly import tensorflow_datasets as tfds import os import re import numpy as np import matplotlib.pyplot as plt
Collecting tf-nightly-gpu-2.0-preview==2.0.0.dev20190520 [?25l Downloading https://files.pythonhosted.org/packages/c9/c1/fcaf4f6873777da2cd3a7a8ac3c9648cef7c7413f13b8135521eb9b9804a/tf_nightly_gpu_2.0_preview-2.0.0.dev20190520-cp36-cp36m-manylinux1_x86_64.whl (349.0MB)  |████████████████████████████████| 349.0MB 31kB/s [?25hRequirement already satisfied: tfds-nightly in /usr/local/lib/python3.6/dist-packages (1.0.2.dev201905140105) Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (0.33.4) Requirement already satisfied: gast>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (0.2.2) Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (1.1.0) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (1.12.0) Collecting wrapt>=1.11.1 (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) Downloading https://files.pythonhosted.org/packages/67/b2/0f71ca90b0ade7fad27e3d20327c996c6252a2ffe88f50a95bba7434eda9/wrapt-1.11.1.tar.gz Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (1.16.3) Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (3.7.1) Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (0.7.1) Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (1.15.0) Collecting tb-nightly<1.15.0a0,>=1.14.0a0 (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) [?25l Downloading https://files.pythonhosted.org/packages/6f/99/4220b50dc87814988e969cc859c07d070423bea820bc24d16c2023057eb6/tb_nightly-1.14.0a20190520-py3-none-any.whl (3.1MB)  |████████████████████████████████| 3.1MB 33.7MB/s [?25hCollecting google-pasta>=0.1.6 (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) [?25l Downloading https://files.pythonhosted.org/packages/f9/68/a14620bfb042691f532dcde8576ff82ee82e4c003cdc0a3dbee5f289cee6/google_pasta-0.1.6-py3-none-any.whl (51kB)  |████████████████████████████████| 61kB 27.4MB/s [?25hRequirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (1.0.7) Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (1.0.9) Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (0.7.1) Collecting tensorflow-estimator-2.0-preview (from tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) [?25l Downloading https://files.pythonhosted.org/packages/71/e7/779651eca277d48486ae03d007162d37c93449bc29358fbe748e13639734/tensorflow_estimator_2.0_preview-1.14.0.dev2019052000-py2.py3-none-any.whl (427kB)  |████████████████████████████████| 430kB 51.7MB/s [?25hRequirement already satisfied: promise in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (2.2.1) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (0.16.0) Requirement already satisfied: dill in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (0.2.9) Requirement already satisfied: psutil in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (5.4.8) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (2.21.0) Requirement already satisfied: tensorflow-metadata in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (0.13.0) Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from tfds-nightly) (4.28.1) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (41.0.1) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tb-nightly<1.15.0a0,>=1.14.0a0->tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (0.15.3) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tb-nightly<1.15.0a0,>=1.14.0a0->tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (3.1) Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.6->tf-nightly-gpu-2.0-preview==2.0.0.dev20190520) (2.8.0) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->tfds-nightly) (1.24.3) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->tfds-nightly) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->tfds-nightly) (2019.3.9) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->tfds-nightly) (2.8) Requirement already satisfied: googleapis-common-protos in /usr/local/lib/python3.6/dist-packages (from tensorflow-metadata->tfds-nightly) (1.5.10) Building wheels for collected packages: wrapt Building wheel for wrapt (setup.py) ... [?25l[?25hdone Stored in directory: /root/.cache/pip/wheels/89/67/41/63cbf0f6ac0a6156588b9587be4db5565f8c6d8ccef98202fc Successfully built wrapt ERROR: thinc 6.12.1 has requirement wrapt<1.11.0,>=1.10.0, but you'll have wrapt 1.11.1 which is incompatible. Installing collected packages: wrapt, tb-nightly, google-pasta, tensorflow-estimator-2.0-preview, tf-nightly-gpu-2.0-preview Found existing installation: wrapt 1.10.11 Uninstalling wrapt-1.10.11: Successfully uninstalled wrapt-1.10.11 Successfully installed google-pasta-0.1.6 tb-nightly-1.14.0a20190520 tensorflow-estimator-2.0-preview-1.14.0.dev2019052000 tf-nightly-gpu-2.0-preview-2.0.0.dev20190520 wrapt-1.11.1
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Prepare Dataset We will use the conversations in movies and TV shows provided by [Cornell Movie-Dialogs Corpus](https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html), which contains more than 220 thousands conversational exchanges between more than 10k pairs of movie characters, as our dataset.`movie_conversations.txt` contains list of the conversation IDs and `movie_lines.text` contains the text of assoicated with each conversation ID. For further information regarding the dataset, please check the README file in the zip file.
path_to_zip = tf.keras.utils.get_file( 'cornell_movie_dialogs.zip', origin= 'http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip', extract=True) path_to_dataset = os.path.join( os.path.dirname(path_to_zip), "cornell movie-dialogs corpus") path_to_movie_lines = os.path.join(path_to_dataset, 'movie_lines.txt') path_to_movie_conversations = os.path.join(path_to_dataset, 'movie_conversations.txt')
Downloading data from http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip 9920512/9916637 [==============================] - 1s 0us/step
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Load and preprocess dataTo keep this example simple and fast, we are limiting the maximum number of training samples to`MAX_SAMPLES=25000` and the maximum length of the sentence to be `MAX_LENGTH=40`.We preprocess our dataset in the following order:* Extract `MAX_SAMPLES` conversation pairs into list of `questions` and `answers.* Preprocess each sentence by removing special characters in each sentence.* Build tokenizer (map text to ID and ID to text) using [TensorFlow Datasets SubwordTextEncoder](https://www.tensorflow.org/datasets/api_docs/python/tfds/features/text/SubwordTextEncoder).* Tokenize each sentence and add `START_TOKEN` and `END_TOKEN` to indicate the start and end of each sentence.* Filter out sentence that has more than `MAX_LENGTH` tokens.* Pad tokenized sentences to `MAX_LENGTH`
# Maximum number of samples to preprocess MAX_SAMPLES = 50000 def preprocess_sentence(sentence): sentence = sentence.lower().strip() # creating a space between a word and the punctuation following it # eg: "he is a boy." => "he is a boy ." sentence = re.sub(r"([?.!,])", r" \1 ", sentence) sentence = re.sub(r'[" "]+', " ", sentence) # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",") sentence = re.sub(r"[^a-zA-Z?.!,]+", " ", sentence) sentence = sentence.strip() # adding a start and an end token to the sentence return sentence def load_conversations(): # dictionary of line id to text id2line = {} with open(path_to_movie_lines, errors='ignore') as file: lines = file.readlines() for line in lines: parts = line.replace('\n', '').split(' +++$+++ ') id2line[parts[0]] = parts[4] inputs, outputs = [], [] with open(path_to_movie_conversations, 'r') as file: lines = file.readlines() for line in lines: parts = line.replace('\n', '').split(' +++$+++ ') # get conversation in a list of line ID conversation = [line[1:-1] for line in parts[3][1:-1].split(', ')] for i in range(len(conversation) - 1): inputs.append(preprocess_sentence(id2line[conversation[i]])) outputs.append(preprocess_sentence(id2line[conversation[i + 1]])) if len(inputs) >= MAX_SAMPLES: return inputs, outputs return inputs, outputs questions, answers = load_conversations() print('Sample question: {}'.format(questions[20])) print('Sample answer: {}'.format(answers[20])) # Build tokenizer using tfds for both questions and answers tokenizer = tfds.features.text.SubwordTextEncoder.build_from_corpus( questions + answers, target_vocab_size=2**13) # Define start and end token to indicate the start and end of a sentence START_TOKEN, END_TOKEN = [tokenizer.vocab_size], [tokenizer.vocab_size + 1] # Vocabulary size plus start and end token VOCAB_SIZE = tokenizer.vocab_size + 2 print('Tokenized sample question: {}'.format(tokenizer.encode(questions[20]))) # Maximum sentence length MAX_LENGTH = 40 # Tokenize, filter and pad sentences def tokenize_and_filter(inputs, outputs): tokenized_inputs, tokenized_outputs = [], [] for (sentence1, sentence2) in zip(inputs, outputs): # tokenize sentence sentence1 = START_TOKEN + tokenizer.encode(sentence1) + END_TOKEN sentence2 = START_TOKEN + tokenizer.encode(sentence2) + END_TOKEN # check tokenized sentence max length if len(sentence1) <= MAX_LENGTH and len(sentence2) <= MAX_LENGTH: tokenized_inputs.append(sentence1) tokenized_outputs.append(sentence2) # pad tokenized sentences tokenized_inputs = tf.keras.preprocessing.sequence.pad_sequences( tokenized_inputs, maxlen=MAX_LENGTH, padding='post') tokenized_outputs = tf.keras.preprocessing.sequence.pad_sequences( tokenized_outputs, maxlen=MAX_LENGTH, padding='post') return tokenized_inputs, tokenized_outputs questions, answers = tokenize_and_filter(questions, answers) print('Vocab size: {}'.format(VOCAB_SIZE)) print('Number of samples: {}'.format(len(questions)))
Vocab size: 8333 Number of samples: 44095
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Create `tf.data.Dataset`We are going to use the [tf.data.Dataset API](https://www.tensorflow.org/api_docs/python/tf/data) to contruct our input pipline in order to utilize features like caching and prefetching to speed up the training process.The transformer is an auto-regressive model: it makes predictions one part at a time, and uses its output so far to decide what to do next.During training this example uses teacher-forcing. Teacher forcing is passing the true output to the next time step regardless of what the model predicts at the current time step.As the transformer predicts each word, self-attention allows it to look at the previous words in the input sequence to better predict the next word.To prevent the model from peaking at the expected output the model uses a look-ahead mask.Target is divided into `decoder_inputs` which padded as an input to the decoder and `cropped_targets` for calculating our loss and accuracy.
BATCH_SIZE = 64 BUFFER_SIZE = 20000 # decoder inputs use the previous target as input # remove START_TOKEN from targets dataset = tf.data.Dataset.from_tensor_slices(( { 'inputs': questions, 'dec_inputs': answers[:, :-1] }, { 'outputs': answers[:, 1:] }, )) dataset = dataset.cache() dataset = dataset.shuffle(BUFFER_SIZE) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) print(dataset)
<PrefetchDataset shapes: ({inputs: (None, 40), dec_inputs: (None, 39)}, {outputs: (None, 39)}), types: ({inputs: tf.int32, dec_inputs: tf.int32}, {outputs: tf.int32})>
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Attention Scaled dot product AttentionThe scaled dot-product attention function used by the transformer takes three inputs: Q (query), K (key), V (value). The equation used to calculate the attention weights is:$$\Large{Attention(Q, K, V) = softmax_k(\frac{QK^T}{\sqrt{d_k}}) V} $$As the softmax normalization is done on the `key`, its values decide the amount of importance given to the `query`.The output represents the multiplication of the attention weights and the `value` vector. This ensures that the words we want to focus on are kept as is and the irrelevant words are flushed out.The dot-product attention is scaled by a factor of square root of the depth. This is done because for large values of depth, the dot product grows large in magnitude pushing the softmax function where it has small gradients resulting in a very hard softmax. For example, consider that `query` and `key` have a mean of 0 and variance of 1. Their matrix multiplication will have a mean of 0 and variance of `dk`. Hence, *square root of `dk`* is used for scaling (and not any other number) because the matmul of `query` and `key` should have a mean of 0 and variance of 1, so that we get a gentler softmax.The mask is multiplied with *-1e9 (close to negative infinity).* This is done because the mask is summed with the scaled matrix multiplication of `query` and `key` and is applied immediately before a softmax. The goal is to zero out these cells, and large negative inputs to softmax are near zero in the output.
def scaled_dot_product_attention(query, key, value, mask): """Calculate the attention weights. """ matmul_qk = tf.matmul(query, key, transpose_b=True) # scale matmul_qk depth = tf.cast(tf.shape(key)[-1], tf.float32) logits = matmul_qk / tf.math.sqrt(depth) # add the mask to zero out padding tokens if mask is not None: logits += (mask * -1e9) # softmax is normalized on the last axis (seq_len_k) attention_weights = tf.nn.softmax(logits, axis=-1) output = tf.matmul(attention_weights, value) return output
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Multi-head attentionMulti-head attention consists of four parts:* Linear layers and split into heads.* Scaled dot-product attention.* Concatenation of heads.* Final linear layer.Each multi-head attention block gets three inputs; Q (query), K (key), V (value). These are put through linear (Dense) layers and split up into multiple heads. The `scaled_dot_product_attention` defined above is applied to each head (broadcasted for efficiency). An appropriate mask must be used in the attention step. The attention output for each head is then concatenated (using `tf.transpose`, and `tf.reshape`) and put through a final `Dense` layer.Instead of one single attention head, `query`, `key`, and `value` are split into multiple heads because it allows the model to jointly attend to information at different positions from different representational spaces. After the split each head has a reduced dimensionality, so the total computation cost is the same as a single head attention with full dimensionality.
class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, name="multi_head_attention"): super(MultiHeadAttention, self).__init__(name=name) self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.query_dense = tf.keras.layers.Dense(units=d_model) self.key_dense = tf.keras.layers.Dense(units=d_model) self.value_dense = tf.keras.layers.Dense(units=d_model) self.dense = tf.keras.layers.Dense(units=d_model) def split_heads(self, inputs, batch_size): inputs = tf.reshape( inputs, shape=(batch_size, -1, self.num_heads, self.depth)) return tf.transpose(inputs, perm=[0, 2, 1, 3]) def call(self, inputs): query, key, value, mask = inputs['query'], inputs['key'], inputs[ 'value'], inputs['mask'] batch_size = tf.shape(query)[0] # linear layers query = self.query_dense(query) key = self.key_dense(key) value = self.value_dense(value) # split heads query = self.split_heads(query, batch_size) key = self.split_heads(key, batch_size) value = self.split_heads(value, batch_size) # scaled dot-product attention scaled_attention = scaled_dot_product_attention(query, key, value, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # concatenation of heads concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) # final linear layer outputs = self.dense(concat_attention) return outputs
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Transformer Masking `create_padding_mask` and `create_look_ahead` are helper functions to creating masks to mask out padded tokens, we are going to use these helper functions as `tf.keras.layers.Lambda` layers.Mask all the pad tokens (value `0`) in the batch to ensure the model does not treat padding as input.
def create_padding_mask(x): mask = tf.cast(tf.math.equal(x, 0), tf.float32) # (batch_size, 1, 1, sequence length) return mask[:, tf.newaxis, tf.newaxis, :] print(create_padding_mask(tf.constant([[1, 2, 0, 3, 0], [0, 0, 0, 4, 5]])))
tf.Tensor( [[[[0. 0. 1. 0. 1.]]] [[[1. 1. 1. 0. 0.]]]], shape=(2, 1, 1, 5), dtype=float32)
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Look-ahead mask to mask the future tokens in a sequence.We also mask out pad tokens.i.e. To predict the third word, only the first and second word will be used
def create_look_ahead_mask(x): seq_len = tf.shape(x)[1] look_ahead_mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0) padding_mask = create_padding_mask(x) return tf.maximum(look_ahead_mask, padding_mask) print(create_look_ahead_mask(tf.constant([[1, 2, 0, 4, 5]])))
tf.Tensor( [[[[0. 1. 1. 1. 1.] [0. 0. 1. 1. 1.] [0. 0. 1. 1. 1.] [0. 0. 1. 0. 1.] [0. 0. 1. 0. 0.]]]], shape=(1, 1, 5, 5), dtype=float32)
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Positional encodingSince this model doesn't contain any recurrence or convolution, positional encoding is added to give the model some information about the relative position of the words in the sentence. The positional encoding vector is added to the embedding vector. Embeddings represent a token in a d-dimensional space where tokens with similar meaning will be closer to each other. But the embeddings do not encode the relative position of words in a sentence. So after adding the positional encoding, words will be closer to each other based on the *similarity of their meaning and their position in the sentence*, in the d-dimensional space.See the notebook on [positional encoding](https://github.com/tensorflow/examples/blob/master/community/en/position_encoding.ipynb) to learn more about it. The formula for calculating the positional encoding is as follows:$$\Large{PE_{(pos, 2i)} = sin(pos / 10000^{2i / d_{model}})} $$$$\Large{PE_{(pos, 2i+1)} = cos(pos / 10000^{2i / d_{model}})} $$
class PositionalEncoding(tf.keras.layers.Layer): def __init__(self, position, d_model): super(PositionalEncoding, self).__init__() self.pos_encoding = self.positional_encoding(position, d_model) def get_angles(self, position, i, d_model): angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32)) return position * angles def positional_encoding(self, position, d_model): angle_rads = self.get_angles( position=tf.range(position, dtype=tf.float32)[:, tf.newaxis], i=tf.range(d_model, dtype=tf.float32)[tf.newaxis, :], d_model=d_model) # apply sin to even index in the array sines = tf.math.sin(angle_rads[:, 0::2]) # apply cos to odd index in the array cosines = tf.math.cos(angle_rads[:, 1::2]) pos_encoding = tf.concat([sines, cosines], axis=-1) pos_encoding = pos_encoding[tf.newaxis, ...] return tf.cast(pos_encoding, tf.float32) def call(self, inputs): return inputs + self.pos_encoding[:, :tf.shape(inputs)[1], :] sample_pos_encoding = PositionalEncoding(50, 512) plt.pcolormesh(sample_pos_encoding.pos_encoding.numpy()[0], cmap='RdBu') plt.xlabel('Depth') plt.xlim((0, 512)) plt.ylabel('Position') plt.colorbar() plt.show()
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Encoder LayerEach encoder layer consists of sublayers:1. Multi-head attention (with padding mask) 2. 2 dense layers followed by dropoutEach of these sublayers has a residual connection around it followed by a layer normalization. Residual connections help in avoiding the vanishing gradient problem in deep networks.The output of each sublayer is `LayerNorm(x + Sublayer(x))`. The normalization is done on the `d_model` (last) axis.
def encoder_layer(units, d_model, num_heads, dropout, name="encoder_layer"): inputs = tf.keras.Input(shape=(None, d_model), name="inputs") padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") attention = MultiHeadAttention( d_model, num_heads, name="attention")({ 'query': inputs, 'key': inputs, 'value': inputs, 'mask': padding_mask }) attention = tf.keras.layers.Dropout(rate=dropout)(attention) attention = tf.keras.layers.LayerNormalization( epsilon=1e-6)(inputs + attention) outputs = tf.keras.layers.Dense(units=units, activation='relu')(attention) outputs = tf.keras.layers.Dense(units=d_model)(outputs) outputs = tf.keras.layers.Dropout(rate=dropout)(outputs) outputs = tf.keras.layers.LayerNormalization( epsilon=1e-6)(attention + outputs) return tf.keras.Model( inputs=[inputs, padding_mask], outputs=outputs, name=name) sample_encoder_layer = encoder_layer( units=512, d_model=128, num_heads=4, dropout=0.3, name="sample_encoder_layer") tf.keras.utils.plot_model( sample_encoder_layer, to_file='encoder_layer.png', show_shapes=True)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
EncoderThe Encoder consists of:1. Input Embedding2. Positional Encoding3. `num_layers` encoder layersThe input is put through an embedding which is summed with the positional encoding. The output of this summation is the input to the encoder layers. The output of the encoder is the input to the decoder.
def encoder(vocab_size, num_layers, units, d_model, num_heads, dropout, name="encoder"): inputs = tf.keras.Input(shape=(None,), name="inputs") padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") embeddings = tf.keras.layers.Embedding(vocab_size, d_model)(inputs) embeddings *= tf.math.sqrt(tf.cast(d_model, tf.float32)) embeddings = PositionalEncoding(vocab_size, d_model)(embeddings) outputs = tf.keras.layers.Dropout(rate=dropout)(embeddings) for i in range(num_layers): outputs = encoder_layer( units=units, d_model=d_model, num_heads=num_heads, dropout=dropout, name="encoder_layer_{}".format(i), )([outputs, padding_mask]) return tf.keras.Model( inputs=[inputs, padding_mask], outputs=outputs, name=name) sample_encoder = encoder( vocab_size=8192, num_layers=2, units=512, d_model=128, num_heads=4, dropout=0.3, name="sample_encoder") tf.keras.utils.plot_model( sample_encoder, to_file='encoder.png', show_shapes=True)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Decoder LayerEach decoder layer consists of sublayers:1. Masked multi-head attention (with look ahead mask and padding mask)2. Multi-head attention (with padding mask). `value` and `key` receive the *encoder output* as inputs. `query` receives the *output from the masked multi-head attention sublayer.*3. 2 dense layers followed by dropoutEach of these sublayers has a residual connection around it followed by a layer normalization. The output of each sublayer is `LayerNorm(x + Sublayer(x))`. The normalization is done on the `d_model` (last) axis.As `query` receives the output from decoder's first attention block, and `key` receives the encoder output, the attention weights represent the importance given to the decoder's input based on the encoder's output. In other words, the decoder predicts the next word by looking at the encoder output and self-attending to its own output. See the demonstration above in the scaled dot product attention section.
def decoder_layer(units, d_model, num_heads, dropout, name="decoder_layer"): inputs = tf.keras.Input(shape=(None, d_model), name="inputs") enc_outputs = tf.keras.Input(shape=(None, d_model), name="encoder_outputs") look_ahead_mask = tf.keras.Input( shape=(1, None, None), name="look_ahead_mask") padding_mask = tf.keras.Input(shape=(1, 1, None), name='padding_mask') attention1 = MultiHeadAttention( d_model, num_heads, name="attention_1")(inputs={ 'query': inputs, 'key': inputs, 'value': inputs, 'mask': look_ahead_mask }) attention1 = tf.keras.layers.LayerNormalization( epsilon=1e-6)(attention1 + inputs) attention2 = MultiHeadAttention( d_model, num_heads, name="attention_2")(inputs={ 'query': attention1, 'key': enc_outputs, 'value': enc_outputs, 'mask': padding_mask }) attention2 = tf.keras.layers.Dropout(rate=dropout)(attention2) attention2 = tf.keras.layers.LayerNormalization( epsilon=1e-6)(attention2 + attention1) outputs = tf.keras.layers.Dense(units=units, activation='relu')(attention2) outputs = tf.keras.layers.Dense(units=d_model)(outputs) outputs = tf.keras.layers.Dropout(rate=dropout)(outputs) outputs = tf.keras.layers.LayerNormalization( epsilon=1e-6)(outputs + attention2) return tf.keras.Model( inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], outputs=outputs, name=name) sample_decoder_layer = decoder_layer( units=512, d_model=128, num_heads=4, dropout=0.3, name="sample_decoder_layer") tf.keras.utils.plot_model( sample_decoder_layer, to_file='decoder_layer.png', show_shapes=True)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
DecoderThe Decoder consists of:1. Output Embedding2. Positional Encoding3. N decoder layersThe target is put through an embedding which is summed with the positional encoding. The output of this summation is the input to the decoder layers. The output of the decoder is the input to the final linear layer.
def decoder(vocab_size, num_layers, units, d_model, num_heads, dropout, name='decoder'): inputs = tf.keras.Input(shape=(None,), name='inputs') enc_outputs = tf.keras.Input(shape=(None, d_model), name='encoder_outputs') look_ahead_mask = tf.keras.Input( shape=(1, None, None), name='look_ahead_mask') padding_mask = tf.keras.Input(shape=(1, 1, None), name='padding_mask') embeddings = tf.keras.layers.Embedding(vocab_size, d_model)(inputs) embeddings *= tf.math.sqrt(tf.cast(d_model, tf.float32)) embeddings = PositionalEncoding(vocab_size, d_model)(embeddings) outputs = tf.keras.layers.Dropout(rate=dropout)(embeddings) for i in range(num_layers): outputs = decoder_layer( units=units, d_model=d_model, num_heads=num_heads, dropout=dropout, name='decoder_layer_{}'.format(i), )(inputs=[outputs, enc_outputs, look_ahead_mask, padding_mask]) return tf.keras.Model( inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], outputs=outputs, name=name) sample_decoder = decoder( vocab_size=8192, num_layers=2, units=512, d_model=128, num_heads=4, dropout=0.3, name="sample_decoder") tf.keras.utils.plot_model( sample_decoder, to_file='decoder.png', show_shapes=True)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
TransformerTransformer consists of the encoder, decoder and a final linear layer. The output of the decoder is the input to the linear layer and its output is returned.
def transformer(vocab_size, num_layers, units, d_model, num_heads, dropout, name="transformer"): inputs = tf.keras.Input(shape=(None,), name="inputs") dec_inputs = tf.keras.Input(shape=(None,), name="dec_inputs") enc_padding_mask = tf.keras.layers.Lambda( create_padding_mask, output_shape=(1, 1, None), name='enc_padding_mask')(inputs) # mask the future tokens for decoder inputs at the 1st attention block look_ahead_mask = tf.keras.layers.Lambda( create_look_ahead_mask, output_shape=(1, None, None), name='look_ahead_mask')(dec_inputs) # mask the encoder outputs for the 2nd attention block dec_padding_mask = tf.keras.layers.Lambda( create_padding_mask, output_shape=(1, 1, None), name='dec_padding_mask')(inputs) enc_outputs = encoder( vocab_size=vocab_size, num_layers=num_layers, units=units, d_model=d_model, num_heads=num_heads, dropout=dropout, )(inputs=[inputs, enc_padding_mask]) dec_outputs = decoder( vocab_size=vocab_size, num_layers=num_layers, units=units, d_model=d_model, num_heads=num_heads, dropout=dropout, )(inputs=[dec_inputs, enc_outputs, look_ahead_mask, dec_padding_mask]) outputs = tf.keras.layers.Dense(units=vocab_size, name="outputs")(dec_outputs) return tf.keras.Model(inputs=[inputs, dec_inputs], outputs=outputs, name=name) sample_transformer = transformer( vocab_size=8192, num_layers=4, units=512, d_model=128, num_heads=4, dropout=0.3, name="sample_transformer") tf.keras.utils.plot_model( sample_transformer, to_file='transformer.png', show_shapes=True)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Train model Initialize modelTo keep this example small and relatively fast, the values for *num_layers, d_model, and units* have been reduced. See the [paper](https://arxiv.org/abs/1706.03762) for all the other versions of the transformer.
tf.keras.backend.clear_session() # Hyper-parameters NUM_LAYERS = 2 D_MODEL = 256 NUM_HEADS = 8 UNITS = 512 DROPOUT = 0.1 model = transformer( vocab_size=VOCAB_SIZE, num_layers=NUM_LAYERS, units=UNITS, d_model=D_MODEL, num_heads=NUM_HEADS, dropout=DROPOUT)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Loss functionSince the target sequences are padded, it is important to apply a padding mask when calculating the loss.
def loss_function(y_true, y_pred): y_true = tf.reshape(y_true, shape=(-1, MAX_LENGTH - 1)) loss = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction='none')(y_true, y_pred) mask = tf.cast(tf.not_equal(y_true, 0), tf.float32) loss = tf.multiply(loss, mask) return tf.reduce_mean(loss)
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Custom learning rateUse the Adam optimizer with a custom learning rate scheduler according to the formula in the [paper](https://arxiv.org/abs/1706.03762).$$\Large{lrate = d_{model}^{-0.5} * min(step{\_}num^{-0.5}, step{\_}num * warmup{\_}steps^{-1.5})}$$
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, d_model, warmup_steps=4000): super(CustomSchedule, self).__init__() self.d_model = d_model self.d_model = tf.cast(self.d_model, tf.float32) self.warmup_steps = warmup_steps def __call__(self, step): arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps**-1.5) return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) sample_learning_rate = CustomSchedule(d_model=128) plt.plot(sample_learning_rate(tf.range(200000, dtype=tf.float32))) plt.ylabel("Learning Rate") plt.xlabel("Train Step")
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Compile Model
learning_rate = CustomSchedule(D_MODEL) optimizer = tf.keras.optimizers.Adam( learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9) def accuracy(y_true, y_pred): # ensure labels have shape (batch_size, MAX_LENGTH - 1) y_true = tf.reshape(y_true, shape=(-1, MAX_LENGTH - 1)) accuracy = tf.metrics.SparseCategoricalAccuracy()(y_true, y_pred) return accuracy model.compile(optimizer=optimizer, loss=loss_function, metrics=[accuracy])
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Fit modelTrain our transformer by simply calling `model.fit()`
EPOCHS = 20 model.fit(dataset, epochs=EPOCHS)
Epoch 1/20 689/689 [==============================] - 97s 141ms/step - loss: 2.1146 - accuracy: 0.0249 Epoch 2/20 689/689 [==============================] - 81s 118ms/step - loss: 1.5008 - accuracy: 0.0530 Epoch 3/20 689/689 [==============================] - 82s 119ms/step - loss: 1.3940 - accuracy: 0.0653 Epoch 4/20 689/689 [==============================] - 82s 118ms/step - loss: 1.3313 - accuracy: 0.0719 Epoch 5/20 689/689 [==============================] - 82s 119ms/step - loss: 1.2744 - accuracy: 0.0765 Epoch 6/20 689/689 [==============================] - 82s 119ms/step - loss: 1.2223 - accuracy: 0.0801 Epoch 7/20 689/689 [==============================] - 82s 118ms/step - loss: 1.1670 - accuracy: 0.0832 Epoch 8/20 689/689 [==============================] - 82s 119ms/step - loss: 1.1050 - accuracy: 0.0861 Epoch 9/20 689/689 [==============================] - 82s 119ms/step - loss: 1.0503 - accuracy: 0.0889 Epoch 10/20 689/689 [==============================] - 82s 120ms/step - loss: 1.0002 - accuracy: 0.0917 Epoch 11/20 689/689 [==============================] - 82s 118ms/step - loss: 0.9540 - accuracy: 0.0945 Epoch 12/20 689/689 [==============================] - 82s 119ms/step - loss: 0.9122 - accuracy: 0.0973 Epoch 13/20 689/689 [==============================] - 82s 118ms/step - loss: 0.8744 - accuracy: 0.1001 Epoch 14/20 689/689 [==============================] - 82s 119ms/step - loss: 0.8396 - accuracy: 0.1029 Epoch 15/20 689/689 [==============================] - 82s 119ms/step - loss: 0.8082 - accuracy: 0.1056 Epoch 16/20 689/689 [==============================] - 82s 119ms/step - loss: 0.7799 - accuracy: 0.1082 Epoch 17/20 689/689 [==============================] - 82s 118ms/step - loss: 0.7540 - accuracy: 0.1108 Epoch 18/20 689/689 [==============================] - 82s 119ms/step - loss: 0.7300 - accuracy: 0.1134 Epoch 19/20 689/689 [==============================] - 82s 119ms/step - loss: 0.7076 - accuracy: 0.1158 Epoch 20/20 689/689 [==============================] - 82s 118ms/step - loss: 0.6881 - accuracy: 0.1183
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Evaluate and predictThe following steps are used for evaluation:* Apply the same preprocessing method we used to create our dataset for the input sentence.* Tokenize the input sentence and add `START_TOKEN` and `END_TOKEN`. * Calculate the padding masks and the look ahead masks.* The decoder then outputs the predictions by looking at the encoder output and its own output.* Select the last word and calculate the argmax of that.* Concatentate the predicted word to the decoder input as pass it to the decoder.* In this approach, the decoder predicts the next word based on the previous words it predicted.Note: The model used here has less capacity and trained on a subset of the full dataset, hence its performance can be further improved.
def evaluate(sentence): sentence = preprocess_sentence(sentence) sentence = tf.expand_dims( START_TOKEN + tokenizer.encode(sentence) + END_TOKEN, axis=0) output = tf.expand_dims(START_TOKEN, 0) for i in range(MAX_LENGTH): predictions = model(inputs=[sentence, output], training=False) # select the last word from the seq_len dimension predictions = predictions[:, -1:, :] predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) # return the result if the predicted_id is equal to the end token if tf.equal(predicted_id, END_TOKEN[0]): break # concatenated the predicted_id to the output which is given to the decoder # as its input. output = tf.concat([output, predicted_id], axis=-1) return tf.squeeze(output, axis=0) def predict(sentence): prediction = evaluate(sentence) predicted_sentence = tokenizer.decode( [i for i in prediction if i < tokenizer.vocab_size]) print('Input: {}'.format(sentence)) print('Output: {}'.format(predicted_sentence)) return predicted_sentence
_____no_output_____
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Let's test our model!
output = predict('Where have you been?') output = predict("It's a trap") # feed the model with its previous output sentence = 'I am not crazy, my mother had me tested.' for _ in range(5): sentence = predict(sentence) print('')
Input: I am not crazy, my mother had me tested. Output: you re a good man , roy . that s a good man , roy , you re a little girl , that s a good man . you re a little girl . Input: you re a good man , roy . that s a good man , roy , you re a little girl , that s a good man . you re a little girl . Output: i m glad you re not a drug addict . Input: i m glad you re not a drug addict . Output: the inheritance . Input: the inheritance . Output: no , i don t know what to do . i just like to tell you . Input: no , i don t know what to do . i just like to tell you . Output: i m not sure . i m not gonna mention my name .
Apache-2.0
community/en/transformer_chatbot.ipynb
xuekun90/examples
Copyright 2020 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup
!pip install tensorflow==2.3.1
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
Install TensorFlow Quantum:
!pip install tensorflow-quantum
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
Now import TensorFlow and the module dependencies:
import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one:
qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit)
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
Along with an observable:
pauli_x = cirq.X(qubit) pauli_x
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$
def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state_vector = sim.simulate(my_circuit, params).final_state_vector return op.expectation_from_state_vector(final_state_vector, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha))
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this:
def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha))
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with:
expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]])
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate:
sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]])
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum
This can quickly compound into a serious accuracy problem when it comes to gradients:
# Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend()
_____no_output_____
Apache-2.0
docs/tutorials/gradients.ipynb
HectorIGH/quantum