markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Image Segmentation* This code is **only** `tensorflow API` version for [TensorFlow tutorials/Image Segmentation](https://github.com/tensorflow/models/blob/master/samples/outreach/blogs/segmentation_blogpost/image_segmentation.ipynb) which is made of `tf.keras`.* You can see the detail description [tutorial link](https://github.com/tensorflow/models/blob/master/samples/outreach/blogs/segmentation_blogpost/image_segmentation.ipynb) * I use below dataset instead of [carvana-image-masking-challenge dataset](https://www.kaggle.com/c/carvana-image-masking-challenge/rules) in TensorFlow Tutorials which is a kaggle competition dataset. * carvana-image-masking-challenge dataset: Too large dataset (14GB)* [Gastrointestinal Image ANAlys Challenges (GIANA)](https://giana.grand-challenge.org) Dataset (345MB) * Train data: 300 images with RGB channels (bmp format) * Train lables: 300 images with 1 channels (bmp format) * Image size: 574 x 500 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import functools
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib as mpl
mpl.rcParams['axes.grid'] = False
mpl.rcParams['figure.figsize'] = (12,12)
from sklearn.model_selection import train_test_split
from PIL import Image
from IPython.display import clear_output
import tensorflow as tf
slim = tf.contrib.slim
tf.logging.set_verbosity(tf.logging.INFO)
sess_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
os.environ["CUDA_VISIBLE_DEVICES"]="0" | /home/lab4all/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
| Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Get all the files Since this tutorial will be using a dataset from [Giana Dataset](https://giana.grand-challenge.org/Dates/). | # Unfortunately you cannot downlaod GIANA dataset from website
# So I upload zip file on my dropbox
# if you want to download from my dropbox uncomment below
#!wget https://goo.gl/mxikqa
#!mv mxikqa sd_train.zip
#!unzip sd_train.zip
#!mkdir ../../datasets
#!mv sd_train ../../datasets
#!rm sd_train.zip
dataset_dir = '../../datasets/sd_train'
img_dir = os.path.join(dataset_dir, "train")
label_dir = os.path.join(dataset_dir, "train_labels")
x_train_filenames = [os.path.join(img_dir, filename) for filename in os.listdir(img_dir)]
x_train_filenames.sort()
y_train_filenames = [os.path.join(label_dir, filename) for filename in os.listdir(label_dir)]
y_train_filenames.sort()
x_train_filenames, x_test_filenames, y_train_filenames, y_test_filenames = \
train_test_split(x_train_filenames, y_train_filenames, test_size=0.2, random_state=219)
num_train_examples = len(x_train_filenames)
num_test_examples = len(x_test_filenames)
print("Number of training examples: {}".format(num_train_examples))
print("Number of test examples: {}".format(num_test_examples)) | Number of training examples: 240
Number of test examples: 60
| Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Here's what the paths look like | x_train_filenames[:10]
y_train_filenames[:10]
y_test_filenames[:10] | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
VisualizeLet's take a look at some of the examples of different images in our dataset. | display_num = 5
r_choices = np.random.choice(num_train_examples, display_num)
plt.figure(figsize=(10, 15))
for i in range(0, display_num * 2, 2):
img_num = r_choices[i // 2]
x_pathname = x_train_filenames[img_num]
y_pathname = y_train_filenames[img_num]
plt.subplot(display_num, 2, i + 1)
plt.imshow(Image.open(x_pathname))
plt.title("Original Image")
example_labels = Image.open(y_pathname)
label_vals = np.unique(example_labels)
plt.subplot(display_num, 2, i + 2)
plt.imshow(example_labels)
plt.title("Masked Image")
plt.suptitle("Examples of Images and their Masks")
plt.show() | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Set up Let’s begin by setting up some parameters. We’ll standardize and resize all the shapes of the images. We’ll also set up some training parameters: | # Set hyperparameters
image_size = 128
img_shape = (image_size, image_size, 3)
batch_size = 8
max_epochs = 100
print_steps = 50
save_epochs = 50
train_dir = 'train/exp1' | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Build our input pipeline with `tf.data`Since we begin with filenames, we will need to build a robust and scalable data pipeline that will play nicely with our model. If you are unfamiliar with **tf.data** you should check out my other tutorial introducing the concept! Our input pipeline will consist of the following steps:1. Read the bytes of the file in from the filename - for both the image and the label. Recall that our labels are actually images with each pixel annotated as car or background (1, 0). 2. Decode the bytes into an image format3. Apply image transformations: (optional, according to input parameters) * `resize` - Resize our images to a standard size (as determined by eda or computation/memory restrictions) * The reason why this is optional is that U-Net is a fully convolutional network (e.g. with no fully connected units) and is thus not dependent on the input size. However, if you choose to not resize the images, you must use a batch size of 1, since you cannot batch variable image size together * Alternatively, you could also bucket your images together and resize them per mini-batch to avoid resizing images as much, as resizing may affect your performance through interpolation, etc. * `hue_delta` - Adjusts the hue of an RGB image by a random factor. This is only applied to the actual image (not our label image). The `hue_delta` must be in the interval `[0, 0.5]` * `horizontal_flip` - flip the image horizontally along the central axis with a 0.5 probability. This transformation must be applied to both the label and the actual image. * `width_shift_range` and `height_shift_range` are ranges (as a fraction of total width or height) within which to randomly translate the image either horizontally or vertically. This transformation must be applied to both the label and the actual image. * `rescale` - rescale the image by a certain factor, e.g. 1/ 255.4. Shuffle the data, repeat the data (so we can iterate over it multiple times across epochs), batch the data, then prefetch a batch (for efficiency).It is important to note that these transformations that occur in your data pipeline must be symbolic transformations. Why do we do these image transformations?This is known as **data augmentation**. Data augmentation "increases" the amount of training data by augmenting them via a number of random transformations. During training time, our model would never see twice the exact same picture. This helps prevent [overfitting](https://developers.google.com/machine-learning/glossary/overfitting) and helps the model generalize better to unseen data. Processing each pathname | def _process_pathnames(fname, label_path):
# We map this function onto each pathname pair
img_str = tf.read_file(fname)
img = tf.image.decode_bmp(img_str, channels=3)
label_img_str = tf.read_file(label_path)
label_img = tf.image.decode_bmp(label_img_str, channels=1)
resize = [image_size, image_size]
img = tf.image.resize_images(img, resize)
label_img = tf.image.resize_images(label_img, resize)
scale = 1 / 255.
img = tf.to_float(img) * scale
label_img = tf.to_float(label_img) * scale
return img, label_img
def get_baseline_dataset(filenames,
labels,
threads=5,
batch_size=batch_size,
max_epochs=max_epochs,
shuffle=True):
num_x = len(filenames)
# Create a dataset from the filenames and labels
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
# Map our preprocessing function to every element in our dataset, taking
# advantage of multithreading
dataset = dataset.map(_process_pathnames, num_parallel_calls=threads)
if shuffle:
dataset = dataset.shuffle(num_x * 10)
# It's necessary to repeat our data for all epochs
dataset = dataset.repeat(max_epochs).batch(batch_size)
return dataset | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Set up train and test datasetsNote that we apply image augmentation to our training dataset but not our validation dataset. | train_ds = get_baseline_dataset(x_train_filenames,
y_train_filenames)
test_ds = get_baseline_dataset(x_test_filenames,
y_test_filenames,
shuffle=False)
train_ds | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Plot some train data | temp_ds = get_baseline_dataset(x_train_filenames,
y_train_filenames,
batch_size=1,
max_epochs=1,
shuffle=False)
# Let's examine some of these augmented images
temp_iter = temp_ds.make_one_shot_iterator()
next_element = temp_iter.get_next()
with tf.Session() as sess:
batch_of_imgs, label = sess.run(next_element)
# Running next element in our graph will produce a batch of images
plt.figure(figsize=(10, 10))
img = batch_of_imgs[0]
plt.subplot(1, 2, 1)
plt.imshow(img)
plt.subplot(1, 2, 2)
plt.imshow(label[0, :, :, 0])
plt.show() | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Build the modelWe'll build the U-Net model. U-Net is especially good with segmentation tasks because it can localize well to provide high resolution segmentation masks. In addition, it works well with small datasets and is relatively robust against overfitting as the training data is in terms of the number of patches within an image, which is much larger than the number of training images itself. Unlike the original model, we will add batch normalization to each of our blocks. The Unet is built with an encoder portion and a decoder portion. The encoder portion is composed of a linear stack of [`Conv`](https://developers.google.com/machine-learning/glossary/convolution), `BatchNorm`, and [`Relu`](https://developers.google.com/machine-learning/glossary/ReLU) operations followed by a [`MaxPool`](https://developers.google.com/machine-learning/glossary/pooling). Each `MaxPool` will reduce the spatial resolution of our feature map by a factor of 2. We keep track of the outputs of each block as we feed these high resolution feature maps with the decoder portion. The Decoder portion is comprised of UpSampling2D, Conv, BatchNorm, and Relus. Note that we concatenate the feature map of the same size on the decoder side. Finally, we add a final Conv operation that performs a convolution along the channels for each individual pixel (kernel size of (1, 1)) that outputs our final segmentation mask in grayscale. | def conv_block(inputs, num_outputs, is_training, scope):
batch_norm_params = {'decay': 0.9,
'epsilon': 0.001,
'is_training': is_training,
'scope': 'batch_norm'}
with tf.variable_scope(scope) as scope:
with slim.arg_scope([slim.conv2d],
num_outputs=num_outputs,
kernel_size=[3, 3],
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
encoder = slim.conv2d(inputs, scope='conv1')
encoder = slim.conv2d(encoder, scope='conv2')
return encoder
def encoder_block(inputs, num_outputs, is_training, scope):
with tf.variable_scope(scope) as scope:
encoder = conv_block(inputs, num_outputs, is_training, scope)
encoder_pool = slim.max_pool2d(encoder, kernel_size=[2, 2], scope='pool')
return encoder_pool, encoder
def decoder_block(inputs, concat_tensor, num_outputs, is_training, scope):
batch_norm_params = {'decay': 0.9,
'epsilon': 0.001,
'is_training': is_training,
'scope': 'batch_norm'}
with tf.variable_scope(scope) as scope:
decoder = slim.conv2d_transpose(inputs, num_outputs,
kernel_size=[2, 2], stride=[2, 2],
activation_fn=None, scope='convT')
decoder = tf.concat([concat_tensor, decoder], axis=-1)
decoder = slim.batch_norm(decoder, **batch_norm_params)
decoder = tf.nn.relu(decoder)
with slim.arg_scope([slim.conv2d],
num_outputs=num_outputs,
kernel_size=[3, 3],
stride=[1, 1],
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
decoder = slim.conv2d(decoder, scope='conv1')
decoder = slim.conv2d(decoder, scope='conv2')
return decoder
class UNet(object):
def __init__(self, train_ds, test_ds):
self.train_ds = train_ds
self.test_ds = test_ds
def build_images(self):
# tf.data.Iterator.from_string_handle의 output_shapes는 default = None이지만 꼭 값을 넣는 게 좋음
self.handle = tf.placeholder(tf.string, shape=[])
self.iterator = tf.data.Iterator.from_string_handle(self.handle,
self.train_ds.output_types,
self.train_ds.output_shapes)
self.input_images, self.targets = self.iterator.get_next()
def inference(self, inputs, is_training, reuse=False):
with tf.variable_scope('', reuse=reuse) as scope:
# inputs: [128, 128, 3]
encoder0_pool, encoder0 = encoder_block(inputs, 32, is_training, 'encoder0')
# encoder0_pool: [64, 64, 32], encoder0: [128, 128, 32]
encoder1_pool, encoder1 = encoder_block(encoder0_pool, 64, is_training, 'encoder1')
# encoder1_pool: [32, 32, 64], encoder1: [64, 64, 64]
encoder2_pool, encoder2 = encoder_block(encoder1_pool, 128, is_training, 'encoder2')
# encoder2_pool: [16, 16, 128], encoder2: [32, 32, 128]
encoder3_pool, encoder3 = encoder_block(encoder2_pool, 256, is_training, 'encoder3')
# encoder3_pool: [8, 8, 256], encoder3: [16, 16, 256]
center = conv_block(encoder3_pool, 512, is_training, 'center')
# center: [8, 8, 512]
decoder3 = decoder_block(center, encoder3, 256, is_training, 'decoder3')
# decoder3 = [16, 16, 256]
decoder2 = decoder_block(decoder3, encoder2, 128, is_training, 'decoder2')
# decoder2 = [32, 32, 128]
decoder1 = decoder_block(decoder2, encoder1, 64, is_training, 'decoder1')
# decoder1 = [64, 64, 64]
decoder0 = decoder_block(decoder1, encoder0, 32, is_training, 'decoder0')
# decoder0 = [128, 128, 32]
logits = slim.conv2d(decoder0, 1, [1, 1], activation_fn=None, scope='outputs')
# logits = [128, 128, 1]
return logits
def dice_coeff(self, y_true, y_logits):
smooth = 1.
# Flatten
y_true_f = tf.reshape(y_true, [-1])
y_pred_f = tf.reshape(tf.nn.sigmoid(y_logits), [-1])
intersection = tf.reduce_sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)
return score
def dice_loss(self, y_true, y_logits):
loss = 1 - self.dice_coeff(y_true, y_logits)
return loss
def bce_dice_loss(self, y_true, y_logits):
loss = tf.losses.sigmoid_cross_entropy(y_true, y_logits) + self.dice_loss(y_true, y_logits)
return loss
def build(self):
self.global_step = tf.train.get_or_create_global_step()
self.build_images()
self.logits = self.inference(self.input_images, is_training=True)
self.logits_val = self.inference(self.input_images, is_training=False, reuse=True)
self.predicted_images = tf.nn.sigmoid(self.logits_val)
self.loss = self.bce_dice_loss(self.targets, self.logits)
print("complete model build.") | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Create a model (UNet) | model = UNet(train_ds=train_ds, test_ds=test_ds)
model.build()
# show info for trainable variables
t_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(t_vars, print_info=True)
opt = tf.train.AdamOptimizer(learning_rate=2e-4)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
opt_op = opt.minimize(model.loss, global_step=model.global_step)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1000) | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Train a model | %%time
sess = tf.Session(config=sess_config)
sess.run(tf.global_variables_initializer())
tf.logging.info('Start Session.')
train_iterator = train_ds.make_one_shot_iterator()
train_handle = sess.run(train_iterator.string_handle())
test_iterator = test_ds.make_one_shot_iterator()
test_handle = sess.run(test_iterator.string_handle())
# save loss values for plot
loss_history = []
pre_epochs = 0
while True:
try:
start_time = time.time()
_, global_step_, loss = sess.run([opt_op,
model.global_step,
model.loss],
feed_dict={model.handle: train_handle})
epochs = global_step_ * batch_size / float(num_train_examples)
duration = time.time() - start_time
if global_step_ % print_steps == 0:
clear_output(wait=True)
examples_per_sec = batch_size / float(duration)
print("Epochs: {:.2f} global_step: {} loss: {:.3f} ({:.2f} examples/sec; {:.3f} sec/batch)".format(
epochs, global_step_, loss, examples_per_sec, duration))
loss_history.append([epochs, loss])
# print sample image
img, label, predicted_label = sess.run([model.input_images, model.targets, model.predicted_images],
feed_dict={model.handle: test_handle})
plt.figure(figsize=(10, 20))
plt.subplot(1, 3, 1)
plt.imshow(img[0,: , :, :])
plt.title("Input image")
plt.subplot(1, 3, 2)
plt.imshow(label[0, :, :, 0])
plt.title("Actual Mask")
plt.subplot(1, 3, 3)
plt.imshow(predicted_label[0, :, :, 0])
plt.title("Predicted Mask")
plt.show()
# save model checkpoint periodically
if int(epochs) % save_epochs == 0 and pre_epochs != int(epochs):
tf.logging.info('Saving model with global step {} (= {} epochs) to disk.'.format(global_step_, int(epochs)))
saver.save(sess, train_dir + 'model.ckpt', global_step=global_step_)
pre_epochs = int(epochs)
except tf.errors.OutOfRangeError:
print("End of dataset") # ==> "End of dataset"
tf.logging.info('Saving model with global step {} (= {} epochs) to disk.'.format(global_step_, int(epochs)))
saver.save(sess, train_dir + 'model.ckpt', global_step=global_step_)
break
tf.logging.info('complete training...') | Epochs: 98.33 global_step: 2950 loss: 0.090 (248.52 examples/sec; 0.032 sec/batch)
| Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Plot the loss | loss_history = np.asarray(loss_history)
plt.plot(loss_history[:,0], loss_history[:,1])
plt.show() | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Evaluate the test dataset and Plot | test_ds_eval = get_baseline_dataset(x_test_filenames,
y_test_filenames,
batch_size=num_test_examples,
max_epochs=1,
shuffle=False)
test_iterator_eval = test_ds_eval.make_one_shot_iterator()
test_handle_eval = sess.run(test_iterator_eval.string_handle())
mean_iou, mean_iou_op = tf.metrics.mean_iou(labels=tf.to_int32(tf.round(model.targets)),
predictions=tf.to_int32(tf.round(model.predicted_images)),
num_classes=2,
name='mean_iou')
sess.run(tf.local_variables_initializer())
sess.run(mean_iou_op, feed_dict={model.handle: test_handle_eval})
print("mean iou:", sess.run(mean_iou)) | mean iou: 0.87998605
| Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Visualize testset | test_ds_visual = get_baseline_dataset(x_test_filenames,
y_test_filenames,
batch_size=1,
max_epochs=1,
shuffle=False)
test_iterator_visual = test_ds_visual.make_one_shot_iterator()
test_handle_visual = sess.run(test_iterator_visual.string_handle())
# Let's visualize some of the outputs
# Running next element in our graph will produce a batch of images
plt.figure(figsize=(10, 20))
for i in range(5):
#img, label, predicted_label = sess.run([model.input_images, model.targets, model.predicted_images],
img, label, predicted_label = sess.run([model.input_images,
tf.to_int32(tf.round(model.targets)),
tf.to_int32(tf.round(model.predicted_images))],
feed_dict={model.handle: test_handle_visual})
plt.subplot(5, 3, 3 * i + 1)
plt.imshow(img[0,: , :, :])
plt.title("Input image")
plt.subplot(5, 3, 3 * i + 2)
plt.imshow(label[0, :, :, 0])
plt.title("Actual Mask")
plt.subplot(5, 3, 3 * i + 3)
plt.imshow(predicted_label[0, :, :, 0])
plt.title("Predicted Mask")
plt.suptitle("Examples of Input Image, Label, and Prediction")
plt.show() | _____no_output_____ | Apache-2.0 | tf.version.1/06.images/01.image_segmentation.ipynb | jinhwanhan/tensorflow.tutorials |
Green's function============== Fundamental solution------------------------------- | from sympy import *
init_printing()
x1, x2, xi1, xi2 = symbols('x_1 x_2 xi_1 xi_2')
E = -1/(2*pi) * log(sqrt((x1-xi1)**2 + (x2-xi2)**2))
E | _____no_output_____ | MIT | PythonCodes/Exercises/Class-SEAS/green/.ipynb_checkpoints/green-checkpoint.ipynb | Nicolucas/C-Scripts |
**Task**: Check that $\nabla^2_\xi E = 0$ for $x \neq \xi$.*Hint*: https://docs.sympy.org/latest/tutorial/calculus.htmlderivatives | diff(E,x,2) | _____no_output_____ | MIT | PythonCodes/Exercises/Class-SEAS/green/.ipynb_checkpoints/green-checkpoint.ipynb | Nicolucas/C-Scripts |
Directional derivative------------------------------ | n1, n2 = symbols('n_1 n_2') | _____no_output_____ | MIT | PythonCodes/Exercises/Class-SEAS/green/.ipynb_checkpoints/green-checkpoint.ipynb | Nicolucas/C-Scripts |
**Task**: Compute the directional derivative $\frac{\partial E}{\partial n}$. **Task** (optional): Write a function which returns the directional derivative of an expression. | def ddn(expr):
pass | _____no_output_____ | MIT | PythonCodes/Exercises/Class-SEAS/green/.ipynb_checkpoints/green-checkpoint.ipynb | Nicolucas/C-Scripts |
Multidimensional Pattern identification with SAX In-site viewThis script performs pattern identification over the {time, attribute} cuboid, that covers the intra-building frame. It serves for within-site exploration on how a given building operates across time and building-specific attributes.The data is first normalized then transformed using SAX over normalized daily sequences. Motifs are identified across buildings, and a final clustering phase is executed over the reduced counts of sequences. Results are presented visually allowing interpretable analytics. | # Import modules
import pandas as pd
import numpy as np
import time
from sklearn.cluster import KMeans
import sklearn.metrics as metrics
from collections import Counter
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# Plotting modules
from plotly.offline import init_notebook_mode
init_notebook_mode(connected = True)
import matplotlib.pyplot as plt
plt.rcdefaults()
# Importing utility script
import utils as ut
# Version
version = "v1.0"
# Path definition
path_data = "..\\data\\cube\\"
path_fig_out = "..\\figures\\insite_view\\" | _____no_output_____ | MIT | code/04_Mining_CuboidB.ipynb | JulienLeprince/multidimensional-building-data-cube-pattern-identification |
Read | # Read Cuboid
blg_id = "Fox_education_Melinda"
df = pd.read_csv(path_data + "cuboid_B_"+blg_id+".csv", index_col="timestamp")
# Format index to datetime object
df.index = pd.to_datetime(df.index, format='%Y-%m-%d %H:%M:%S')
df.head() | _____no_output_____ | MIT | code/04_Mining_CuboidB.ipynb | JulienLeprince/multidimensional-building-data-cube-pattern-identification |
Pre-Mining Motifs identification | # SAX Parameters
day_number_of_pieces = 4
alphabet_size = 3
scaler_function = StandardScaler()
# Normalize per attribute
df_normalized = ut.scale_df_columns_NanRobust(df, df.columns, scaler=scaler_function)
# Perform SAX transformation
sax_dict, counts, sax_data = ut.SAX_mining(df_normalized, W=day_number_of_pieces, A=alphabet_size)
# Plot the sequence counts per attribute
for meter in df.columns.values:
fig = ut.counter_plot(counts[meter], title=meter)
fig.savefig(path_fig_out+"SAXcounts_StandardScaler_blg_"+blg_id+"_meter_"+meter+"_"+version+".jpg", dpi=300, bbox_inches='tight')
# Reformating sax results for plotting
sax_dict_data, index_map_dictionary = dict(), dict()
for meter in sax_data:
sax_dict_data[meter], index_map_dictionary[meter] = ut.sax_df_reformat(sax_data, sax_dict, meter)
# Plotting all SAX sequences and saving figure
fig = ut.SAX_dailyhm_visualization(sax_dict_data, sax_dict, index_map_dictionary)
ut.png_output([len(sax_dict.keys())*250, 800])
fig.show()
fig.write_image(path_fig_out+"SAX_blg_"+blg_id+"_"+version+".png")
# Filter discords from established threshold
threshold = 10 # motif number threshold
indexes = dict()
for meter in df.columns.values:
df_count = pd.DataFrame.from_dict(Counter(sax_dict[meter]), orient='index').rename(columns={0:'count'})
df_count.fillna(0)
motifs = df_count[df_count.values > threshold]
indexes[meter] = [i for i,x in enumerate(sax_dict[meter]) if x in list(motifs.index)] # returns all indexes | _____no_output_____ | MIT | code/04_Mining_CuboidB.ipynb | JulienLeprince/multidimensional-building-data-cube-pattern-identification |
Mining Attribute motifs clusteringAttribute daily profile motifs are clustered together resulting in a reduced number of typical patterns from the previous motif identification thanks to SAX trasnformation. | # Identify optimal cluster number
wcss, sil = [], []
for meter in sax_data:
wcss_l, sil_l = ut.elbow_method(sax_data[meter].iloc[indexes[meter]].interpolate(method='linear').transpose(), n_cluster_max=20)
wcss.append(wcss_l)
sil.append(sil_l)
# Get similarity index quantiles (cross attributes)
arr_sil, arr_wcss = np.array(sil), np.array(wcss)
wcss_med = np.quantile(arr_wcss, .5, axis=0)
sil_med = np.quantile(arr_sil, .5, axis=0)
err_wcss = [np.quantile(arr_wcss, .25, axis=0), np.quantile(arr_wcss, .75, axis=0)]
err_sil = [np.quantile(arr_sil, .25, axis=0), np.quantile(arr_sil, .75, axis=0)]
# Plots
plt.rcParams.update({'font.size': 12})
plt.rcParams['font.sans-serif'] = ['Times New Roman']
fig = ut.similarity_index_werror_plot(wcss_med, sil_med, err_wcss, err_sil)
fig.savefig(path_fig_out+"blg_"+blg_id+"_cluster_SimilarityIndex_"+version+".jpg", dpi=300, bbox_inches='tight')
## Clustering identified motifs
# Cluster the identified motifs
nb_clusters_opt = 4
kmeans = KMeans(n_clusters=nb_clusters_opt, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans_pred_y, clust_sax_data = dict(), dict()
for meter in df.columns.values:
clust_sax_data[meter] = sax_data[meter].iloc[indexes[meter]]
kmeans_pred_y[meter] = kmeans.fit_predict(clust_sax_data[meter].interpolate(method='linear', limit_direction='both'))
# Reformating cluster results for plotting
clust_dict_data, index_map_dictionary = dict(), dict()
max_shape = 0
for meter in sax_data:
clust_dict_data[meter], index_map_dictionary[meter] = ut.sax_df_reformat(clust_sax_data, kmeans_pred_y, meter)
max_shape = max(max_shape, max(np.shape(clust_dict_data[meter])))
# Adjusting reformaating from variable attribute motifs lengths
for meter in sax_data:
# Defining width of empty dataframe to add
space_btw_saxseq = max_shape - max(np.shape(clust_dict_data[meter]))
# Creating empty frame
empty_sax_df = pd.DataFrame(columns=sax_data[meter].columns, index=[' ']*space_btw_saxseq)
# Adding empty frame to the df
clust_dict_data[meter] = clust_dict_data[meter].append(empty_sax_df)
# Plotting cluster results results
fig = ut.SAX_dailyhm_visualization(clust_dict_data, sax_dict, index_map_dictionary)
ut.png_output([len(clust_dict_data.keys())*250, 800])
fig.show()
fig.write_image(path_fig_out+"clust_blg_"+blg_id+"_"+version+".png") | _____no_output_____ | MIT | code/04_Mining_CuboidB.ipynb | JulienLeprince/multidimensional-building-data-cube-pattern-identification |
Practical Session 2: Classification algorithms*Notebook by Ekaterina Kochmar* 0.1 Your taskIn practical 1, you worked with the housing prices and bike sharing datasets on the tasks that required you to predict some value (e.g., price of a house) or amount (e.g., the count of rented bikes, or the number of registered users) based on a number of attributes – age of the house, number of rooms, income level of the house owners for the house price prediction (or weather conditions and time of the day for the prediction of the number of rented bikes). That is, you were predicting some continuous value.This time, your task is to predict a particular category the instance belongs to based on its characteristics. This type of tasks is called *classification*. Assignment: Handwritten digits datasetThe dataset that you will use in this assignment is the [*digits* dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) which contains $1797$ images of $10$ hand-written digits. The digits have been preprocessed so that $32 \times 32$ bitmaps are divided into non-overlapping blocks of $4 \times 4$ and the number of on pixels are counted in each block. This generates an input matrix of $8 \times 8$ where each element is an integer in the range of $[0, ..., 16]$. This reduces dimensionality and gives invariance to small distortions.For further information on NIST preprocessing routines applied to this data, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, *NIST Form-Based Handprint Recognition System*, NISTIR 5469, 1994.As before, use the `sklearn`'s data uploading routines to load the dataset and get the data fields: | from sklearn import datasets
digits = datasets.load_digits()
list(digits.keys())
digits
X, y = digits["data"], digits["target"]
X.shape
y.shape | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
You can access the digits and visualise them using the following code (feel free to select another digit): | import matplotlib
from matplotlib import pyplot as plt
some_digit = X[3]
some_digit_image = some_digit.reshape(8, 8)
plt.imshow(some_digit_image, cmap=matplotlib.cm.binary, interpolation="nearest")
plt.axis("off")
plt.show()
y[3] | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
For the rest of the practical, apply the data preprocessing techniques, implement and evaluate the classification models on the digits dataset using the steps that you applied above to the iris dataset. Step 2: Splitting the data into training and test subsets | from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
split.get_n_splits(X, y)
print(split)
for train_index, test_index in split.split(X, y):
print("TRAIN:", len(train_index), "TEST:", len(test_index))
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) | StratifiedShuffleSplit(n_splits=1, random_state=42, test_size=0.2,
train_size=None)
TRAIN: 1437 TEST: 360
(1437, 64) (1437,) (360, 64) (360,)
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Check proportions | import pandas as pd
# def original_proportions(data):
# props = {}
# for value in set(data["target"]):
# data_value = [i for i in data["target"] if i==value]
# props[value] = len(data_value) / len(data["target"])
# return props
def subset_proportions(subset):
props = {}
for value in set(subset):
data_value = [i for i in subset if i==value]
props[value] = len(data_value) / len(subset)
return props
compare_props = pd.DataFrame({
"Overall": subset_proportions(digits["target"]),
"Stratified tr": subset_proportions(y_train),
"Stratified ts": subset_proportions(y_test),
})
compare_props["Strat. tr %error"] = 100 * compare_props["Stratified tr"] / compare_props["Overall"] - 100
compare_props["Strat. ts %error"] = 100 * compare_props["Stratified ts"] / compare_props["Overall"] - 100
compare_props.sort_index() | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Case 1: Binary Classification | y_train_zero = (y_train == 0) # will return True when the label is 0 (i.e., zero)
y_test_zero = (y_test == 0)
y_test_zero
zero_example = X_test[10]
| _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Perceptron | from sklearn.linear_model import SGDClassifier
sgd = SGDClassifier(max_iter=5, tol=None, random_state=42,
loss="perceptron", eta0=1, learning_rate="constant", penalty=None)
sgd.fit(X_train, y_train_zero)
sgd.predict([zero_example]) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Trying it for label 1 | y_train_one = (y_train == 1) # True when the label is 1 (i.e., versicolor)
y_test_one = (y_test == 1)
y_test_one
one_example = X_test[40]
print("Class", y_test[40], "(", digits.target_names[y_test[40]], ")")
sgd.fit(X_train, y_train_one)
print(sgd.predict([one_example])) | Class 1 ( 1 )
[ True]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Perceptron did well Logistic Regression | from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train_zero)
print(log_reg.predict([zero_example]))
log_reg.fit(X_train, y_train_one)
log_reg.predict([one_example]) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Looks like Logistic regression didn't get the 1 Naive Bayes | from sklearn.naive_bayes import GaussianNB, MultinomialNB
gnb = MultinomialNB() # or:
gnb = GaussianNB()
gnb.fit(X_train, y_train_zero)
gnb.predict([zero_example])
gnb.fit(X_train, y_train_one)
gnb.predict([one_example]) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Naive Bayes did good Step 3: Evaluation Performance measures- Acc for cross-val | from sklearn.model_selection import cross_val_score
print(cross_val_score(log_reg, X_train, y_train_zero, cv=5, scoring="accuracy"))
print(cross_val_score(gnb, X_train, y_train_zero, cv=5, scoring="accuracy"))
print(cross_val_score(sgd, X_train, y_train_zero, cv=5, scoring="accuracy"))
print(cross_val_score(log_reg, X_train, y_train_one, cv=5, scoring="accuracy"))
print(cross_val_score(gnb, X_train, y_train_one, cv=5, scoring="accuracy"))
print(cross_val_score(sgd, X_train, y_train_one, cv=5, scoring="accuracy")) | [0.97916667 0.97916667 0.96515679 0.97212544 0.95470383]
[0.61805556 0.62847222 0.61324042 0.66550523 0.51916376]
[0.97222222 0.95486111 0.95470383 0.95470383 0.95818815]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Brute force predicting only non-ones | from sklearn.base import BaseEstimator
import numpy as np
np.random.seed(42)
class NotXClassifier(BaseEstimator):
def fit(self, X, y=None):
pass
def predict(self, X):
return np.zeros((len(X), 1), dtype=bool)
notone_clf = NotXClassifier()
cross_val_score(notone_clf, X_train, y_train_one, cv=5, scoring="accuracy") | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
- Confusion Matrix | from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
y_train_pred = cross_val_predict(log_reg, X_train, y_train_zero, cv=5)
confusion_matrix(y_train_zero, y_train_pred)
y_train_pred = cross_val_predict(gnb, X_train, y_train_zero, cv=5)
confusion_matrix(y_train_zero, y_train_pred)
y_train_pred = cross_val_predict(log_reg, X_train, y_train_one, cv=5)
confusion_matrix(y_train_one, y_train_pred)
y_train_pred = cross_val_predict(gnb, X_train, y_train_one, cv=5)
confusion_matrix(y_train_one, y_train_pred) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
- precision, recall, f1 | from sklearn.metrics import precision_score, recall_score, f1_score
y_train_pred = cross_val_predict(gnb, X_train, y_train_one, cv=5)
precision = precision_score(y_train_one, y_train_pred) # == 36 / (36 + 5)
recall = recall_score(y_train_one, y_train_pred) # == 36 / (36 + 4)
f1 = f1_score(y_train_one, y_train_pred)
print(precision, recall, f1)
y_train_pred = cross_val_predict(log_reg, X_train, y_train_one, cv=5)
precision = precision_score(y_train_one, y_train_pred) # == 15 / (15 + 9)
recall = recall_score(y_train_one, y_train_pred) # == 15 / (15 + 25)
f1 = f1_score(y_train_one, y_train_pred)
print(precision, recall, f1) | 0.20454545454545456 0.9863013698630136 0.3388235294117647
0.832258064516129 0.8835616438356164 0.8571428571428571
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Oh no, poor gnb - Precision-recall treade-off Confidence score | log_reg.fit(X_train, y_train_one)
y_scores = log_reg.decision_function([one_example])
y_scores
threshold = 0
y_one_pred = (y_scores > threshold)
y_one_pred
threshold = -2
y_one_pred = (y_scores > threshold)
y_one_pred | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Confidence scores | y_scores = cross_val_predict(log_reg, X_train, y_train_one, cv=5, method="decision_function")
y_scores | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Plot precision vs recall | from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_train_one, y_scores)
def plot_pr_vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g--", label="Recall")
plt.xlabel("Threshold")
plt.legend(loc="upper right")
plt.ylim([0, 1])
plot_pr_vs_threshold(precisions, recalls, thresholds)
plt.show()
def plot_precision_vs_recall(precisions, recalls):
plt.plot(recalls, precisions, "b-", linewidth=2)
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.axis([0, 1, 0, 1])
plot_precision_vs_recall(precisions, recalls)
plt.show() | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
- The Receiver Operating Characteristic (ROC) | from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_one, y_scores)
def plot_roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], "k--")
plt.axis([0, 1, 0, 1.01])
plt.xlabel("False positive rate (fpr)")
plt.ylabel("True positive rate (tpr)")
plot_roc_curve(fpr, tpr)
plt.show()
# Area
from sklearn.metrics import roc_auc_score
roc_auc_score(y_train_one, y_scores)
# Now with GNB
y_probas_gnb = cross_val_predict(gnb, X_train, y_train_one, cv=3, method="predict_proba")
y_scores_gnb = y_probas_gnb[:, 1] # score = proba of the positive class
fpr_gnb, tpr_gnb, thresholds_gnb = roc_curve(y_train_one, y_scores_gnb)
plt.plot(fpr, tpr, "b:", label="Logistic Regression")
plot_roc_curve(fpr_gnb, tpr_gnb, "Gaussian Naive Bayes")
plt.legend(loc="lower right")
plt.show()
#Area
roc_auc_score(y_train_one, y_scores_gnb) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Looks like Logistic Regression outperformed Gaussian Naive Bayes Step 4: Data transformations Kernel trick- with gamma = 1 we get EXTREMELY bad results- gamma = 0.001 solves that | from sklearn.kernel_approximation import RBFSampler
rbf_features = RBFSampler(gamma=0.001, random_state=42)
X_train_features = rbf_features.fit_transform(X_train)
print(X_train.shape, "->", X_train_features.shape)
sgd_rbf = SGDClassifier(max_iter=100, random_state=42, loss="perceptron",
eta0=1, learning_rate="constant", penalty=None)
sgd_rbf.fit(X_train_features, y_train_one)
sgd_rbf.score(X_train_features, y_train_one)
print(X_train_features[0]) | (1437, 64) -> (1437, 100)
[-0.08948691 0.07840032 0.13012926 0.01843734 0.05243378 0.12363736
-0.13138175 0.12487656 -0.06774296 -0.13116408 0.14131867 0.13014406
-0.1412175 0.01781151 0.08980399 0.14045931 0.06150205 0.11652648
0.13544217 -0.11087697 0.13594337 -0.0800289 0.0574227 0.01216671
0.11133797 0.00604765 0.12907269 0.04008129 0.10124134 0.14130664
0.09733658 -0.14111269 0.11467299 -0.03910098 -0.05214749 -0.05723397
-0.02252198 -0.1064269 0.00072984 -0.08188124 0.01504524 -0.1212134
-0.0339027 0.10711778 0.01232271 -0.10386685 -0.08298496 0.13956306
-0.03454778 0.14113989 -0.09677051 0.03187626 -0.07078854 -0.12390397
0.13693932 0.09349667 -0.12903172 0.0018465 -0.02683269 -0.062455
0.14121793 -0.01998847 0.13880371 0.13414756 -0.14132905 0.13276154
-0.14141921 -0.05054704 0.12889829 0.13459871 -0.03282508 0.13367935
-0.06263253 -0.11907552 0.14105804 0.13411986 0.06823374 0.08644726
0.09729963 0.14135676 -0.04737141 0.0218788 0.09904029 -0.12565361
0.1260095 0.04542973 0.08625159 -0.06465836 0.09918457 0.13192078
0.10236442 0.13360416 -0.081419 -0.09102759 0.13254435 -0.05242659
0.04783216 -0.14066595 -0.02853276 -0.11711412]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
- Precision, recall and F1 : non-kernel vs kernel GNB | y_train_pred = cross_val_predict(sgd, X_train, y_train_one, cv=5)
precision = precision_score(y_train_one, y_train_pred)
recall = recall_score(y_train_one, y_train_pred)
f1 = f1_score(y_train_one, y_train_pred)
print(precision, recall, f1)
y_train_pred = cross_val_predict(sgd_rbf, X_train_features, y_train_one, cv=5)
precision = precision_score(y_train_one, y_train_pred)
recall = recall_score(y_train_one, y_train_pred)
f1 = f1_score(y_train_one, y_train_pred)
print(precision, recall, f1) | 0.8270676691729323 0.7534246575342466 0.7885304659498208
0.9154929577464789 0.8904109589041096 0.9027777777777778
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Case 2: Multi-class classification | sgd.fit(X_train, y_train) # i.e., all instances, not just one class
print(sgd.predict([zero_example]))
print(sgd.predict([one_example])) | [0]
[1]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
half good | sgd_rbf.fit(X_train_features, y_train) # i.e., all instances, not just one class
X_test_features = rbf_features.transform(X_test)
zero_rbf_example = X_test_features[10] # note that you need to transform the test data in the same way, too
one_rbf_example = X_test_features[3]
print(sgd_rbf.predict([zero_rbf_example]))
print(sgd_rbf.predict([one_rbf_example])) | [0]
[6]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
half good | zero_scores = sgd_rbf.decision_function([zero_rbf_example])
print(zero_scores)
# check which class gets the maximum score
prediction = np.argmax(zero_scores)
print(prediction)
# check which class this corresponds to in the classifier
print(sgd_rbf.classes_[prediction])
print(digits.target_names[sgd_rbf.classes_[prediction]])
| [[ 1.32752637 -8.43047571 -0.56672488 -3.41607774 -2.43529497 -2.63031545
-3.12302686 -2.30546944 -3.48919124 -6.71624512]]
0
0
0
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
good | # with the kernel
one_scores = sgd_rbf.decision_function([one_rbf_example])
print(one_scores)
prediction = np.argmax(one_scores)
print(prediction)
print(digits.target_names[sgd_rbf.classes_[prediction]]) | [[-1.43787351 -1.87790689 -2.6351228 -3.70534368 -2.11141745 -3.57570642
-0.83998359 -3.2773025 -2.55029636 -3.2336616 ]]
6
6
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
): | # without the kernel
one_scores = sgd.decision_function([one_example])
print(one_scores)
prediction = np.argmax(one_scores)
print(prediction)
print(digits.target_names[sgd.classes_[prediction]]) | [[-10026. -333. -5977. -2605. -5370. -6327. -7540. -2234. -1181.
-6917.]]
1
1
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
One VS One | from sklearn.multiclass import OneVsOneClassifier
ovo_clf = OneVsOneClassifier(SGDClassifier(max_iter=100, random_state=42, loss="perceptron",
eta0=1, learning_rate="constant", penalty=None))
ovo_clf.fit(X_train_features, y_train)
ovo_clf.predict([one_rbf_example])
len(ovo_clf.estimators_) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
10-way Naive Bayes | gnb.fit(X_train, y_train)
gnb.predict([one_example]) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
wowIt correctly classifies the *one* example, so let's check how confident it is about this prediction (use `predict_proba` with `NaiveBayes` and `decision_function` with the `SGDClassifier`): | gnb.predict_proba([one_example]) | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Cross-validation performance | print(cross_val_score(sgd_rbf, X_train_features, y_train, cv=5, scoring="accuracy"))
print(cross_val_score(ovo_clf, X_train_features, y_train, cv=5, scoring="accuracy"))
print(cross_val_score(gnb, X_train, y_train, cv=5, scoring="accuracy")) | [0.9375 0.90625 0.91637631 0.91986063 0.90592334]
[0.93402778 0.92013889 0.92334495 0.91986063 0.91986063]
[0.85416667 0.83333333 0.81881533 0.85365854 0.77700348]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
ScalingLet's apply scaling | from sklearn.preprocessing import StandardScaler, MinMaxScaler
#scaler = StandardScaler()
scalar = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))
X_train_features_scaled = scaler.fit_transform(X_train_features.astype(np.float64))
print(cross_val_score(sgd_rbf, X_train_features_scaled, y_train, cv=5, scoring="accuracy"))
print(cross_val_score(ovo_clf, X_train_features_scaled, y_train, cv=5, scoring="accuracy"))
print(cross_val_score(gnb, X_train_scaled, y_train, cv=5, scoring="accuracy")) | [0.93402778 0.90625 0.8989547 0.87108014 0.87456446]
[0.94444444 0.9375 0.90940767 0.92682927 0.89198606]
[0.79166667 0.78472222 0.76655052 0.80836237 0.72473868]
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
- StandardScaler() only made things worse[0.93402778 0.90625 0.8989547 0.87108014 0.87456446][0.94444444 0.9375 0.90940767 0.92682927 0.89198606][0.79166667 0.78472222 0.76655052 0.80836237 0.72473868]- MinMaxScaler() gives exact same values Step 5: Error Analysis | y_train_pred = cross_val_predict(sgd_rbf, X_train_features_scaled, y_train, cv=3)
conf_mx = confusion_matrix(y_train, y_train_pred)
conf_mx
plt.imshow(conf_mx, cmap = "jet")
plt.show()
row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums
np.fill_diagonal(norm_conf_mx, 0)
plt.imshow(norm_conf_mx, cmap = "jet")
plt.show()
y_train_pred = cross_val_predict(sgd, X_train_features_scaled, y_train, cv=3)
conf_mx = confusion_matrix(y_train, y_train_pred)
conf_mx
plt.imshow(conf_mx, cmap = "jet")
plt.show()
row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums
np.fill_diagonal(norm_conf_mx, 0)
plt.imshow(norm_conf_mx, cmap = "jet")
plt.show()
y_train_pred = cross_val_predict(ovo_clf, X_train_features_scaled, y_train, cv=3)
conf_mx = confusion_matrix(y_train, y_train_pred)
conf_mx
plt.imshow(conf_mx, cmap = "jet")
plt.show()
row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums
np.fill_diagonal(norm_conf_mx, 0)
plt.imshow(norm_conf_mx, cmap = "jet")
plt.show() | _____no_output_____ | Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Final step – evaluating on the test set | # non-kernel perceptron
from sklearn.metrics import accuracy_score
y_pred = sgd.predict(X_test)
accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
print(precision, recall, f1)
# kernel perceptron
from sklearn.metrics import accuracy_score
X_test_features_scaled = scaler.transform(X_test_features.astype(np.float64))
y_pred = sgd_rbf.predict(X_test_features_scaled)
accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
print(precision, recall, f1) | 0.9330274822584538 0.9305555555555556 0.9299190345492117
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
The OvO SGD classifier: | # One vs one
from sklearn.metrics import accuracy_score
X_test_features_scaled = scaler.transform(X_test_features.astype(np.float64))
y_pred = ovo_clf.predict(X_test_features_scaled)
accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
print(precision, recall, f1) | 0.9038423919737274 0.8944444444444445 0.8906734076041858
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Naive Bayes | #Naive Bayes
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
print(precision, recall, f1) | 0.8479871939298477 0.8111111111111111 0.8150828576150382
| Apache-2.0 | DSPNP_practical2/DSPNP_notebook2_digits.ipynb | frantu08/Data_Science_Unit_20-21 |
Collision Avoidance - Data CollectionIf you ran through the basic motion notebook, hopefully you're enjoying how easy it can be to make your Jetbot move around! Thats very cool! But what's even cooler, is making JetBot move around all by itself! This is a super hard task, that has many different approaches but the whole problem is usually broken down into easier sub-problems. It could be argued that one of the mostimportant sub-problems to solve, is the problem of preventing the robot from entering dangerous situations! We're calling this *collision avoidance*. In this set of notebooks, we're going to attempt to solve the problem using deep learning and a single, very versatile, sensor: the camera. You'll see how with a neural network, camera, and the NVIDIA Jetson Nano, we can teach the robot a very useful behavior!The approach we take to avoiding collisions is to create a virtual "safety bubble" around the robot. Within this safety bubble, the robot is able to spin in a circle without hitting any objects (or other dangerous situations like falling off a ledge). Of course, the robot is limited by what's in it's field of vision, and we can't prevent objects from being placed behind the robot, etc. But we can prevent the robot from entering these scenarios itself.The way we'll do this is super simple: First, we'll manually place the robot in scenarios where it's "safety bubble" is violated, and label these scenarios ``blocked``. We save a snapshot of what the robot sees along with this label.Second, we'll manually place the robot in scenarios where it's safe to move forward a bit, and label these scenarios ``free``. Likewise, we save a snapshot along with this label.That's all that we'll do in this notebook; data collection. Once we have lots of images and labels, we'll upload this data to a GPU enabled machine where we'll *train* a neural network to predict whether the robot's safety bubble is being violated based off of the image it sees. We'll use this to implement a simple collision avoidance behavior in the end :)> IMPORTANT NOTE: When JetBot spins in place, it actually spins about the center between the two wheels, not the center of the robot chassis itself. This is an important detail to remember when you're trying to estimate whether the robot's safety bubble is violated or not. But don't worry, you don't have to be exact. If in doubt it's better to lean on the cautious side (a big safety bubble). We want to make sure JetBot doesn't enter a scenario that it couldn't get out of by turning in place. Display live camera feedSo let's get started. First, let's initialize and display our camera like we did in the *teleoperation* notebook. > Our neural network takes a 224x224 pixel image as input. We'll set our camera to that size to minimize the filesize of our dataset (we've tested that it works for this task).> In some scenarios it may be better to collect data in a larger image size and downscale to the desired size later. | import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
from jetbot import Camera, bgr8_to_jpeg
#
camera = Camera.instance(width=224, height=224)
image = widgets.Image(format='jpeg', width=224, height=224) # this width and height doesn't necessarily have to match the camera
camera_link = traitlets.dlink((camera, 'value'), (image, 'value'), transform=bgr8_to_jpeg)
| _____no_output_____ | MIT | .ipynb_checkpoints/data_collection-collisionavoidance_Jetbot_Joystick-checkpoint.ipynb | tomMEM/Jetbot-Project |
Awesome, next let's create a few directories where we'll store all our data. We'll create a folder ``dataset`` that will contain two sub-folders ``free`` and ``blocked``, where we'll place the images for each scenario. | import os
blocked_dir = 'dataset/blocked'
free_dir = 'dataset/free'
# we have this "try/except" statement because these next functions can throw an error if the directories exist already
try:
os.makedirs(free_dir)
os.makedirs(blocked_dir)
except FileExistsError:
print('Directories are not created because they already exist') | Directories are not created because they already exist
| MIT | .ipynb_checkpoints/data_collection-collisionavoidance_Jetbot_Joystick-checkpoint.ipynb | tomMEM/Jetbot-Project |
If you refresh the Jupyter file browser on the left, you should now see those directories appear. Next, let's create and display some buttons that we'll use to save snapshotsfor each class label. We'll also add some text boxes that will display how many images of each category that we've collected so far. This is useful because we want to makesure we collect about as many ``free`` images as ``blocked`` images. It also helps to know how many images we've collected overall. | button_layout = widgets.Layout(width='128px', height='64px')
free_button = widgets.Button(description='add free', button_style='success', layout=button_layout)
blocked_button = widgets.Button(description='add blocked', button_style='danger', layout=button_layout)
free_count = widgets.IntText(layout=button_layout, value=len(os.listdir(free_dir)))
blocked_count = widgets.IntText(layout=button_layout, value=len(os.listdir(blocked_dir)))
x=0 #from here TB
controller = widgets.Controller(index=0) # replace with index of your controller
button_layout = widgets.Layout(width='200px', height='64px') #TB
free_left = widgets.FloatText(layout=button_layout, value=x, description='forward') #TB
free_right = widgets.FloatText(layout=button_layout, value=x, description='turning') #TB
motorleft = widgets.FloatText(layout=button_layout, value=x, description='Motor Left') #TB
motorright = widgets.FloatText(layout=button_layout, value=x, description='Motor Right') #TB
speed_widget = widgets.FloatSlider(value=0.5, min=0.05, max=1.0, step=0.001, description='speed')
#TB higher speed requires smaller turn_gain values: 2.5 for speed 0.22, around 2 for speed 0.4
turn_gain_widget = widgets.FloatSlider(value=1, min=0.05, step=0.001, max=4.0, description='turn sensitivity')
#TB value different for different forward speed, but very small differences
motoradjustment_widget = widgets.FloatSlider(value=0.02, min=0.00, max=0.2, step=0.0001, description='motoradjustment')
from jetbot import Robot
import traitlets
import math
robot = Robot()
#TB to show the controller values
left_link = traitlets.dlink((controller.axes[1], 'value'), (free_left, 'value'), transform=lambda x: -x)
right_link = traitlets.dlink((controller.axes[0], 'value'), (free_right, 'value'), transform=lambda x: -x)
def on_value_change(change):
x= free_right.value
y= free_left.value
leftnew, rightnew = steering(x, y)
motorright.value= round(float(leftnew),2)
motorleft.value= round(float(rightnew + motoradjustment_widget.value),2) # adjust the motor that lags behind
#motoradjustment value important to keep bot driving straight, small offset-values like 0.05
robot.right_motor.value=motorright.value
robot.left_motor.value=motorleft.value
def steering(x, y):
#script from stackexchange of user Pedro Werneck
#https://electronics.stackexchange.com/questions/19669/algorithm-for-mixing-2-axis-analog-input-to-control-a-differential-motor-drive
# convert to polar
r = math.hypot(x, y)
t = math.atan2(y, x)
# rotate by 45 degrees
t += math.pi / -4.0
# back to cartesian
left = r * math.cos(t)
right = r * math.sin(t)
# rescale the new coords
left = left * math.sqrt(2)
right = right * math.sqrt(2)
# clamp to -1/+1
scalefactor= speed_widget.value
left = max(scalefactor*-1.0, min(left, scalefactor))
right = max(scalefactor*-1.0, min(right, scalefactor))
#gamma correction for response sensitivity of joystick while turning : TB
gamma=turn_gain_widget.value #using slider for joystick 1-4, for object recognition 2-40
if left <0 :
left= -1* (((abs(left)/scalefactor)**(1/gamma))*scalefactor)
else:
left= ((abs(left)/scalefactor)**(1/gamma))*scalefactor
if right <0:
right= -1*(((abs(right)/scalefactor)**(1/gamma))*scalefactor)
else:
right= ((abs(right)/scalefactor)**(1/gamma))*scalefactor
return left, right
free_left.observe(on_value_change, names='value')
free_right.observe(on_value_change, names='value')
#left_link = traitlets.dlink((motorleft, 'value'), (robot.left_motor, 'value'))
#right_link = traitlets.dlink((motorright, 'value'), (robot.right_motor, 'value'))
from jetbot import Heartbeat
def handle_heartbeat_status(change):
if change['new'] == Heartbeat.Status.dead:
camera_link.unlink()
left_link.unlink()
right_link.unlink()
robot.stop()
heartbeat = Heartbeat(period=0.5)
# attach the callback function to heartbeat status
heartbeat.observe(handle_heartbeat_status, names='status') | _____no_output_____ | MIT | .ipynb_checkpoints/data_collection-collisionavoidance_Jetbot_Joystick-checkpoint.ipynb | tomMEM/Jetbot-Project |
Right now, these buttons wont do anything. We have to attach functions to save images for each category to the buttons' ``on_click`` event. We'll save the valueof the ``Image`` widget (rather than the camera), because it's already in compressed JPEG format!To make sure we don't repeat any file names (even across different machines!) we'll use the ``uuid`` package in python, which defines the ``uuid1`` method to generatea unique identifier. This unique identifier is generated from information like the current time and the machine address. | from uuid import uuid1
snapshot_image = widgets.Image(format='jpeg', width=224, height=224)
def save_snapshot(directory):
image_path = os.path.join(directory, str(uuid1()) + '.jpg')
with open(image_path, 'wb') as f:
f.write(image.value)
# display snapshot that was saved
snapshot_image.value = image.value
def save_free(change):
global free_dir, free_count
if change['new']:
save_snapshot(free_dir)
free_count.value = len(os.listdir(free_dir))
def save_blocked(change):
global blocked_dir, blocked_count
if change['new']:
save_snapshot(blocked_dir)
blocked_count.value = len(os.listdir(blocked_dir))
def save_free_button():
global free_dir, free_count
save_snapshot(free_dir)
free_count.value = len(os.listdir(free_dir))
def save_blocked_button():
global blocked_dir, blocked_count
save_snapshot(blocked_dir)
blocked_count.value = len(os.listdir(blocked_dir))
# attach the callbacks, we use a 'lambda' function to ignore the
# parameter that the on_click event would provide to our function
# because we don't need it.
controller.buttons[5].observe(save_free, names='value') #TB gamepad button number 5
controller.buttons[7].observe(save_blocked, names='value') #TB gamepad button numer 7
free_button.on_click(lambda x: save_free_button())
blocked_button.on_click(lambda x: save_blocked_button())
#display(image)
display(widgets.HBox([image, snapshot_image]))
display(controller)
display(widgets.VBox([
speed_widget,
turn_gain_widget,
motoradjustment_widget,
]))
display(widgets.HBox([free_left, free_right, motorleft, motorright]))
display(widgets.HBox([free_count, free_button]))
display(widgets.HBox([blocked_count, blocked_button]))
import time
camera.unobserve_all()
time.sleep(1.0)
robot.stop() | _____no_output_____ | MIT | .ipynb_checkpoints/data_collection-collisionavoidance_Jetbot_Joystick-checkpoint.ipynb | tomMEM/Jetbot-Project |
Great! Now the buttons above should save images to the ``free`` and ``blocked`` directories. You can use the Jupyter Lab file browser to view these files!Now go ahead and collect some data 1. Place the robot in a scenario where it's blocked and press ``add blocked``2. Place the robot in a scenario where it's free and press ``add free``3. Repeat 1, 2> REMINDER: You can move the widgets to new windows by right clicking the cell and clicking ``Create New View for Output``. Or, you can just re-display them> together as we will belowHere are some tips for labeling data1. Try different orientations2. Try different lighting3. Try varied object / collision types; walls, ledges, objects4. Try different textured floors / objects; patterned, smooth, glass, etc.Ultimately, the more data we have of scenarios the robot will encounter in the real world, the better our collision avoidance behavior will be. It's importantto get *varied* data (as described by the above tips) and not just a lot of data, but you'll probably need at least 100 images of each class (that's not a science, just a helpful tip here). But don't worry, it goes pretty fast once you get going :) NextOnce you've collected enough data, we'll need to copy that data to our GPU desktop or cloud machine for training. First, we can call the following *terminal* command to compressour dataset folder into a single *zip* file.> The ! prefix indicates that we want to run the cell as a *shell* (or *terminal*) command.> The -r flag in the zip command below indicates *recursive* so that we include all nested files, the -q flag indicates *quiet* so that the zip command doesn't print any output | !zip -r -q dataset.zip dataset | _____no_output_____ | MIT | .ipynb_checkpoints/data_collection-collisionavoidance_Jetbot_Joystick-checkpoint.ipynb | tomMEM/Jetbot-Project |
The Performance Of Models Trained On The MNIST Dataset On Custom-Drawn Images | import numpy as np
import tensorflow as tf
import sklearn, sklearn.linear_model, sklearn.multiclass, sklearn.naive_bayes
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams["figure.figsize"] = (10, 10)
plt.rcParams.update({'font.size': 12}) | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Defining the data | (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Making 1D versions of the MNIST images for the one-vs-rest classifier | train_images_flat = train_images.reshape((train_images.shape[0], train_images.shape[1] * train_images.shape[2])) / 255.0
test_images_flat = test_images.reshape((test_images.shape[0], test_images.shape[1] * test_images.shape[2])) / 255.0 | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Making a 4D dataset and categorical labels for the neural net | train_images = np.expand_dims(train_images, axis=-1) / 255.0
test_images = np.expand_dims(test_images, axis=-1) / 255.0
#train_images = train_images.reshape(60000, 28, 28, 1)
#test_images = test_images.reshape(10000, 28, 28, 1)
train_labels_cat = tf.keras.utils.to_categorical(train_labels)
test_labels_cat = tf.keras.utils.to_categorical(test_labels)
def plot_images(images, labels, rows=5, cols=5, label='Label'):
fig, axes = plt.subplots(rows, cols)
fig.figsize=(15, 15)
indices = np.random.choice(len(images), rows * cols)
counter = 0
for i in range(rows):
for j in range(cols):
axes[i, j].imshow(images[indices[counter]])
axes[i, j].set_title(f"{label}: {labels[indices[counter]]}")
axes[i, j].set_xticks([])
axes[i, j].set_yticks([])
counter += 1
plt.tight_layout()
plt.show()
plot_images(train_images, train_labels) | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Training Defining and training the one-vs-rest classifier | log_reg = sklearn.linear_model.SGDClassifier(loss='log', max_iter=1000, penalty='l2')
classifier = sklearn.multiclass.OneVsRestClassifier(log_reg)
classifier.fit(train_images_flat, train_labels) | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Defining and training the neural net | from tensorflow.keras import Sequential
from tensorflow.keras import layers
def create_model():
model = Sequential([
layers.Conv2D(64, 5, activation='relu', input_shape=(28, 28, 1)),
layers.MaxPool2D(2),
layers.Conv2D(128, 5, activation='relu'),
layers.MaxPool2D(2),
layers.GlobalAveragePooling2D(),
layers.Dense(10, activation='softmax')
])
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
model = create_model()
model.summary()
train_gen = tf.keras.preprocessing.image.ImageDataGenerator(zoom_range=0.3,
height_shift_range=0.10,
width_shift_range=0.10,
rotation_range=10)
train_datagen = train_gen.flow(train_images, train_labels_cat, batch_size=256)
'''def scheduler(epoch):
initial_lr = 0.001
lr = initial_lr * np.exp(-0.1 * epoch)
return lr
from tensorflow.keras.callbacks import LearningRateScheduler
lr_scheduler = LearningRateScheduler(scheduler, verbose=1)'''
history = model.fit(train_datagen, initial_epoch=0, epochs=30, batch_size=256,
validation_data=(test_images, test_labels_cat))
model.save('cnn-64-128-5-aug')
#model.load_weights('cnn-64-128-5-aug') | INFO:tensorflow:Assets written to: cnn-64-128-5-aug\assets
| MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Assessing model performance Loading drawn images | def read_images(filepaths, reverse=False):
images = []
images_flat = []
for filepath in filepaths:
image = tf.io.read_file(filepath)
image = tf.image.decode_image(image, channels=1)
image = tf.image.resize(image, (28, 28))
if reverse:
image = np.where(image == 255, 0, 255)
else:
image = image.numpy()
image = image / 255.0
images.append(image)
images_flat.append(image.reshape(28 * 28))
return np.array(images), np.array(images_flat)
filepaths = tf.io.gfile.glob('images/*.png')
list.sort(filepaths, key=lambda x: int(x[12:-4]))
images, images_flat = read_images(filepaths, True)
images.shape | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Creating labels for the one-vs-rest classifier and the neural net | labels = 100 * [0] + 98 * [1] + 100 * [2] + 101 * [3] + 99 * [4] + 111 * [5] + 89 * [6] + 110 * [7] + 93 * [8] + 112 * [9]
labels = np.array(labels)
labels.shape
labels_cat = tf.keras.utils.to_categorical(labels)
labels_cat.shape
labels_cat[0] | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Plotting the drawn images and their corresponding labels | plot_images(images, labels) | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Evaluating model performance Neural net on MNIST test dataset | model.evaluate(test_images, test_labels_cat)
from sklearn.metrics import classification_report, confusion_matrix
predictions = np.argmax(model.predict(test_images), axis=-1)
conf_mat = confusion_matrix(test_labels, predictions)
conf_mat
class_report = classification_report(test_labels, predictions, output_dict=True)
class_report | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Neural net on drawn images | model.evaluate(images, labels_cat)
predictions = np.argmax(model.predict(images), axis=-1)
rows, cols = 5, 5
fig, axes = plt.subplots(rows, cols)
fig.figsize=(15, 15)
indices = np.random.choice(len(images), rows * cols)
counter = 0
for i in range(rows):
for j in range(cols):
axes[i, j].imshow(images[indices[counter]])
axes[i, j].set_title(f"Prediction: {predictions[indices[counter]]}\n"
f"True label: {labels[indices[counter]]}")
axes[i, j].set_xticks([])
axes[i, j].set_yticks([])
counter += 1
plt.tight_layout()
plt.show() | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Plotting wrong predictions | wrong_predictions = list(filter(lambda x: x[1][0] != x[1][1], list(enumerate(zip(predictions, labels)))))
len(wrong_predictions)
cols, rows = 5, 5
fig, axes = plt.subplots(rows, cols)
fig.figsize=(15, 15)
counter = 0
for i in range(rows):
for j in range(cols):
axes[i, j].imshow(images[wrong_predictions[counter][0]])
axes[i, j].set_title(f"Prediction: {wrong_predictions[counter][1][0]}\n"
f"True label: {wrong_predictions[counter][1][1]}")
axes[i, j].set_xticks([])
axes[i, j].set_yticks([])
counter += 1
plt.tight_layout()
plt.show()
from sklearn.metrics import classification_report, confusion_matrix
conf_mat = confusion_matrix(labels, predictions)
conf_mat
class_report = classification_report(labels, predictions, output_dict=True)
class_report | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
One-vs-rest classifier on MNIST test dataset | classifier.score(test_images_flat, test_labels)
predictions = classifier.predict(test_images_flat)
conf_mat = confusion_matrix(test_labels, predictions)
conf_mat
class_report = classification_report(test_labels, predictions, output_dict=True)
class_report | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
One-vs-rest classifier on drawn images | classifier.score(images_flat, labels)
predictions = classifier.predict(images_flat)
conf_mat = confusion_matrix(labels, predictions)
conf_mat
class_report = classification_report(labels, predictions, output_dict=True)
class_report | _____no_output_____ | MIT | notebooks/digit-classification-test.ipynb | MovsisyanM/digit-recognizer |
Plot Comparison Between Algorithms Expects the input data to contain CSV files containing rewards per timestep | import os
import numpy as np
%reload_ext autoreload
%autoreload 2 | _____no_output_____ | MIT | plot/plotFromRewards.ipynb | architsakhadeo/OHT |
We need to read the CSV files (from a function in another file) to get the reward at each timestep for each run of each algorithm. Only the `dataPath` directories will be loaded.`load_data` loads the CSV files containing rewards as a python list of Pandas DataFrames.`dataPath` contains the exact path of the directories containing the CSV files. This path is relative to the `data` directory. It assumes every element will be path for a different algorithm. It will overwrite if two paths are for different parameter settings of the same algorithm.Expects there to be more than 1 input CSV file. | dataPath = ['esarsa/alpha-0.015625_driftProb--1,-1,-1,-1_driftScale-1000_enable-debug-0_epsilon-0.05_gamma-0.95_lambda-0.8_sensorLife-1,1,1,1_tiles-4_tilings-32',
'dqn/alpha-0.015625_driftProb--1,-1,-1,-1_driftScale-100_enable-debug-0_epsilon-0.05_gamma-0.95_lambda-0.8_sensorLife-1,1,1,1_tiles-4_tilings-32/']
basePath = '../data/'
algorithms = [dataPath[i].split('/')[0] for i in range(len(dataPath))]
Data = {}
from loadFromRewards import load_data
for i in range(len(dataPath)):
if os.path.isdir(basePath + dataPath[i]) == True:
Data[algorithms[i]] = load_data(basePath+dataPath[i])
print('Data will be stored for', ', '.join([k for k in Data.keys()]))
print('Loaded the rewards data from the csv files') | Data will be stored for esarsa
Loaded the rewards data from the csv files
| MIT | plot/plotFromRewards.ipynb | architsakhadeo/OHT |
The rewards can be transformed into the following values of transformation =1. 'Returns'2. 'Failures'3. 'Average-Rewards'4. 'Rewards' (no change)----------------------------------------------------------------------------------------------There is an additional parameter of window which can be any non-negative integer. It is used for the 'Average-Rewards' transformation to maintain a moving average over a sliding window. By default window is 0.- If window is 500 and timesteps are 10000, then the first element is the average of the performances of timesteps from 1 - 500. The second element is the average of the performances of timesteps from 2 - 501. The last element is the average of the performances of timesteps from 9501 - 10000.----------------------------------------------------------------------------------------------`transform_data` transforms the absolute failure timesteps (python list of Pandas DataFrames) into the respective `transformation` (a numpy array of numpy arrays) for plotting | plottingData = {}
from loadFromRewards import transform_data
transformation = 'Returns'
window = 2500
for alg, data in Data.items():
plottingData[alg] = transform_data(alg, data, transformation, window)
print('Data will be plotted for', ', '.join([k for k in plottingData.keys()]))
print('The stored rewards are transformed to: ', transformation) | 0 esarsa
Data will be plotted for esarsa
The stored rewards are transformed to: Returns
| MIT | plot/plotFromRewards.ipynb | architsakhadeo/OHT |
Here, we can plot the following statistics:1. Mean of all the runs2. Median run3. Run with the best performance (highest return, or equivalently least failures)4. Run with the worst performance (lowest return, or equivalently most failures)5. Mean along with the confidence interval (Currently, plots the mean along with 95% confidence interval, but should be changed to make it adaptive to any confidence interval)6. Mean along with percentile regions (Plots the mean and shades the region between the run with the lower percentile and the run with the upper percentile)----------------------------------------------------------------------------------------------Details:plotBest, plotWorst, plotMeanAndPercentileRegions sort the performances based on their final performance ----------------------------------------------------Mean, Median, MeanAndConfidenceInterval are all symmetric plots so 'Failures' does not affect their plots Best, Worst, MeanAndPercentileRegions are all asymmetric plots so 'Failures' affects their plots, and has to be treated in the following way: ----------------------------------------------------1. plotBest for Returns will plot the run with the highest return (least failures) plotBest for Failures will plot the run with the least failures and not the highest failures2. plotWorst for Returns will plot the run with the lowest return (most failures) plotWorst for Failures will plot the run with the most failures and not the least failures3. plotMeanAndPercentileRegions for Returns uses the lower variable to select the run with the 'lower' percentile and uses the upper variable to select the run with the 'upper' percentile plotMeanAndPercentileRegions for Failures uses the lower variable along with some calculations to select the run with 'upper' percentile and uses the upper variable along with some calculations to select the run with the 'lower' percentile ----------------------------------------------------------------------------------------------Caution:- Jupyter notebooks (mostly) or matplotlib gives an error when displaying very dense plots. For example: plotting best and worst case for transformation of 'Rewards' for 'example' algorithm, or when trying to zoom into dense plots. Most of the plots for 'Rewards' and 'example' fail. | from stats import getMean, getMedian, getBest, getWorst, getConfidenceIntervalOfMean, getRegion
# Add color, linestyles as needed
def plotMean(xAxis, data, color):
mean = getMean(data)
plt.plot(xAxis, mean, label=alg+'-mean', color=color)
def plotMedian(xAxis, data, color):
median = getMedian(data)
plt.plot(xAxis, median, label=alg+'-median', color=color)
def plotBest(xAxis, data, transformation, color):
best = getBest(data, transformation)
plt.plot(xAxis, best, label=alg+'-best', color=color)
def plotWorst(xAxis, data, transformation, color):
worst = getWorst(data, transformation)
plt.plot(xAxis, worst, label=alg+'-worst', color=color)
def plotMeanAndConfidenceInterval(xAxis, data, confidence, color):
plotMean(xAxis, data, color=color)
lowerBound, upperBound = getConfidenceIntervalOfMean(data, confidence)
plt.fill_between(xAxis, lowerBound, upperBound, alpha=0.25, color=color)
def plotMeanAndPercentileRegions(xAxis, data, lower, upper, transformation, color):
plotMean(xAxis, data, color)
lowerRun, upperRun = getRegion(data, lower, upper, transformation)
plt.fill_between(xAxis, lowerRun, upperRun, alpha=0.25, color=color) | _____no_output_____ | MIT | plot/plotFromRewards.ipynb | architsakhadeo/OHT |
Details:- X axis for 'Average-Rewards' will start from 'window' timesteps and end with the final timesteps- Need to add color (shades), linestyle as per requirements- Currently plot one at a time by commenting out the others otherwise, it displays different colors for all. | # For saving figures
#%matplotlib inline
# For plotting in the jupyter notebook
%matplotlib notebook
import matplotlib.pyplot as plt
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
for alg, data in plottingData.items():
lenRun = len(data[0])
xAxis = np.array([i for i in range(1,lenRun+1)])
if transformation == 'Average-Rewards':
xAxis += (window-1)
if alg == 'esarsa':
color = colors[0]
if alg == 'hand':
color = colors[1]
plotMean(xAxis, data, color=color)
#plotMedian(xAxis, data, color=color)
#plotBest(xAxis, data, transformation=transformation, color=color)
#plotWorst(xAxis, data, transformation=transformation, color=color)
#plotMeanAndConfidenceInterval(xAxis, data, confidence=0.95, color=color)
#plotMeanAndPercentileRegions(xAxis, data, lower=0.025, upper=0.975, transformation=transformation, color=color)
#plt.title('Rewards averaged with sliding window of 1000 timesteps across 100 runs', pad=25, fontsize=10)
plt.xlabel('Timesteps', labelpad=35)
plt.ylabel(transformation, rotation=0, labelpad=45)
plt.rcParams['figure.figsize'] = [8, 5.33]
plt.legend(loc=0)
plt.yticks()
plt.xticks()
plt.tight_layout()
#plt.savefig('../img/'+transformation+'.png',dpi=500, bbox_inches='tight') | _____no_output_____ | MIT | plot/plotFromRewards.ipynb | architsakhadeo/OHT |
Classification with MNIST Dataset and ResNet networkThis script sets up a ResNet-style network to classify digits from the MNIST dataset. | import keras
import keras.backend as K
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Input, Conv2D, Dense, Flatten, MaxPooling2D, Add, Activation, Dropout
from keras.optimizers import SGD
from matplotlib import pyplot as plt
import numpy as np | Using TensorFlow backend.
| MIT | mnist/resnet_mnist.ipynb | jonathanventura/nncookbook |
Use a Keras utility function to load the MNIST dataset. We select only zeros and ones to do binary classification. | (x_train, y_train), (x_test, y_test) = mnist.load_data()
y_train = keras.utils.to_categorical(y_train,10)
y_test = keras.utils.to_categorical(y_test,10) | _____no_output_____ | MIT | mnist/resnet_mnist.ipynb | jonathanventura/nncookbook |
Resize the images to vectors and convert their datatype and range. | x_train = np.expand_dims(x_train,axis=-1)
x_test = np.expand_dims(x_test,axis=-1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
x_train = x_train*2.-1.
x_test = x_test*2.-1. | _____no_output_____ | MIT | mnist/resnet_mnist.ipynb | jonathanventura/nncookbook |
Build a multi-class classifier model. | def res_block(x,c,s=1):
if K.shape(x)[3] <> c or s <> 1:
x_save = Conv2D(c,1,strides=s,activation=None)(x)
else:
x_save = x
x = Conv2D(c,3,strides=s,padding='same',activation='relu',kernel_initializer='he_normal')(x)
x = Conv2D(c,3,padding='same',activation=None,kernel_initializer='he_normal')(x)
x = Add()([x,x_save])
x = Activation('relu')(x)
return x
x_in = Input((28,28,1))
x = res_block(x_in,64,2)
x = res_block(x,64)
x = res_block(x,128,2)
x = res_block(x,128)
x = res_block(x,256,2)
x = res_block(x,256)
x = Flatten()(x)
x = Dense(200,kernel_initializer='he_normal')(x)
x = Dropout(0.5)(x)
x = Dense(10,activation='softmax',kernel_initializer='he_normal')(x)
model = Model(inputs=x_in,outputs=x)
model.summary() | ____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 28, 28, 1) 0
____________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 14, 14, 64) 640 input_1[0][0]
____________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 14, 14, 64) 36928 conv2d_2[0][0]
____________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 14, 14, 64) 128 input_1[0][0]
____________________________________________________________________________________________________
add_1 (Add) (None, 14, 14, 64) 0 conv2d_3[0][0]
conv2d_1[0][0]
____________________________________________________________________________________________________
activation_1 (Activation) (None, 14, 14, 64) 0 add_1[0][0]
____________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 14, 14, 64) 36928 activation_1[0][0]
____________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 14, 14, 64) 36928 conv2d_5[0][0]
____________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 14, 14, 64) 4160 activation_1[0][0]
____________________________________________________________________________________________________
add_2 (Add) (None, 14, 14, 64) 0 conv2d_6[0][0]
conv2d_4[0][0]
____________________________________________________________________________________________________
activation_2 (Activation) (None, 14, 14, 64) 0 add_2[0][0]
____________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 7, 7, 128) 73856 activation_2[0][0]
____________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 7, 7, 128) 147584 conv2d_8[0][0]
____________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 7, 7, 128) 8320 activation_2[0][0]
____________________________________________________________________________________________________
add_3 (Add) (None, 7, 7, 128) 0 conv2d_9[0][0]
conv2d_7[0][0]
____________________________________________________________________________________________________
activation_3 (Activation) (None, 7, 7, 128) 0 add_3[0][0]
____________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 7, 7, 128) 147584 activation_3[0][0]
____________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 7, 7, 128) 147584 conv2d_11[0][0]
____________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 7, 7, 128) 16512 activation_3[0][0]
____________________________________________________________________________________________________
add_4 (Add) (None, 7, 7, 128) 0 conv2d_12[0][0]
conv2d_10[0][0]
____________________________________________________________________________________________________
activation_4 (Activation) (None, 7, 7, 128) 0 add_4[0][0]
____________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 4, 4, 256) 295168 activation_4[0][0]
____________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 4, 4, 256) 590080 conv2d_14[0][0]
____________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 4, 4, 256) 33024 activation_4[0][0]
____________________________________________________________________________________________________
add_5 (Add) (None, 4, 4, 256) 0 conv2d_15[0][0]
conv2d_13[0][0]
____________________________________________________________________________________________________
activation_5 (Activation) (None, 4, 4, 256) 0 add_5[0][0]
____________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, 4, 4, 256) 590080 activation_5[0][0]
____________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 4, 4, 256) 590080 conv2d_17[0][0]
____________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 4, 4, 256) 65792 activation_5[0][0]
____________________________________________________________________________________________________
add_6 (Add) (None, 4, 4, 256) 0 conv2d_18[0][0]
conv2d_16[0][0]
____________________________________________________________________________________________________
activation_6 (Activation) (None, 4, 4, 256) 0 add_6[0][0]
____________________________________________________________________________________________________
flatten_1 (Flatten) (None, 4096) 0 activation_6[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (None, 200) 819400 flatten_1[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 200) 0 dense_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 10) 2010 dropout_1[0][0]
====================================================================================================
Total params: 3,642,786
Trainable params: 3,642,786
Non-trainable params: 0
____________________________________________________________________________________________________
| MIT | mnist/resnet_mnist.ipynb | jonathanventura/nncookbook |
Set up the model to optimize the categorical crossentropy loss using stochastic gradient descent. | model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy']) | _____no_output_____ | MIT | mnist/resnet_mnist.ipynb | jonathanventura/nncookbook |
Optimize the model over the training data. | history = model.fit(x_train, y_train,
batch_size=100,
epochs=20,
verbose=1,
validation_data=(x_test, y_test))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['Training Loss','Testing Loss'])
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.legend(['Training Accuracy','Testing Accuracy'])
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show() | _____no_output_____ | MIT | mnist/resnet_mnist.ipynb | jonathanventura/nncookbook |
Base class | #export
class ProgressBar():
update_every,first_its = 0.2,5
def __init__(self, gen, total=None, display=True, leave=True, parent=None, master=None, comment=''):
self.gen,self.parent,self.master,self.comment = gen,parent,master,comment
self.total = len(gen) if total is None else total
self.last_v = 0
if parent is None: self.leave,self.display = leave,display
else:
self.leave,self.display=False,False
parent.add_child(self)
self.last_v = None
def on_iter_begin(self):
if self.master is not None: self.master.on_iter_begin()
def on_interrupt(self):
if self.master is not None: self.master.on_interrupt()
def on_iter_end(self):
if self.master is not None: self.master.on_iter_end()
def on_update(self, val, text): pass
def __iter__(self):
if self.total != 0: self.update(0)
try:
for i,o in enumerate(self.gen):
if i >= self.total: break
yield o
self.update(i+1)
except Exception as e:
self.on_interrupt()
raise e
def update(self, val):
if self.last_v is None:
self.on_iter_begin()
self.last_v = 0
if val == 0:
self.start_t = self.last_t = time.time()
self.pred_t,self.last_v,self.wait_for = 0,0,1
self.update_bar(0)
elif val <= self.first_its or val >= self.last_v + self.wait_for or val >= self.total:
cur_t = time.time()
avg_t = (cur_t - self.start_t) / val
self.wait_for = max(int(self.update_every / (avg_t+1e-8)),1)
self.pred_t = avg_t * self.total
self.last_v,self.last_t = val,cur_t
self.update_bar(val)
if val >= self.total:
self.on_iter_end()
self.last_v = None
def update_bar(self, val):
elapsed_t = self.last_t - self.start_t
remaining_t = format_time(self.pred_t - elapsed_t)
elapsed_t = format_time(elapsed_t)
end = '' if len(self.comment) == 0 else f' {self.comment}'
if self.total == 0:
warn("Your generator is empty.")
self.on_update(0, '100% [0/0]')
else: self.on_update(val, f'{100 * val/self.total:.2f}% [{val}/{self.total} {elapsed_t}<{remaining_t}{end}]')
class VerboseProgressBar(ProgressBar):
def on_iter_begin(self): super().on_iter_begin(); print("on_iter_begin")
def on_interrupt(self): print("on_interrupt")
def on_iter_end(self): print("on_iter_end"); super().on_iter_end()
def on_update(self, val, text): print(f"on_update {val}")
from contextlib import redirect_stdout
import io
tst_pb = VerboseProgressBar(range(6))
s = io.StringIO()
with redirect_stdout(s):
for i in tst_pb: time.sleep(0.1)
assert s.getvalue() == '\n'.join(['on_iter_begin'] + [f'on_update {i}' for i in range(7)] + ['on_iter_end']) + '\n'
tst_pb = VerboseProgressBar(range(6))
s = io.StringIO()
with redirect_stdout(s):
for i in range(7):
tst_pb.update(i)
time.sleep(0.1)
assert s.getvalue() == '\n'.join(['on_iter_begin'] + [f'on_update {i}' for i in range(7)] + ['on_iter_end']) + '\n'
#export
class MasterBar(ProgressBar):
def __init__(self, gen, cls, total=None):
self.main_bar = cls(gen, total=total, display=False, master=self)
def on_iter_begin(self): pass
def on_interrupt(self): pass
def on_iter_end(self): pass
def add_child(self, child): pass
def write(self, line): pass
def update_graph(self, graphs, x_bounds, y_bounds): pass
def __iter__(self):
for o in self.main_bar:
yield o
def update(self, val): self.main_bar.update(val)
class VerboseMasterBar(MasterBar):
def __init__(self, gen, total=None): super().__init__(gen, VerboseProgressBar, total=total)
def on_iter_begin(self): print("master_on_iter_begin")
def on_interrupt(self): print("master_on_interrupt")
def on_iter_end(self): print("master_on_iter_end")
#def on_update(self, val, text): print(f"master_on_update {val}")
tst_mb = VerboseMasterBar(range(6))
for i in tst_mb: time.sleep(0.1)
#hide
#Test an empty progress bar doesn't crash
for i in ProgressBar([]): pass | _____no_output_____ | Apache-2.0 | nbs/01_fastprogress.ipynb | hsm/fastprogress |
Notebook progress bars | #export
if IN_NOTEBOOK:
try:
from IPython.display import clear_output, display, HTML
import matplotlib.pyplot as plt
import ipywidgets as widgets
except:
warn("Couldn't import ipywidgets properly, progress bar will use console behavior")
IN_NOTEBOOK = False
#export
class NBOutput():
def __init__(self, to_display):
self.out = widgets.Output()
display(self.out)
with self.out:
display(to_display)
def update(self, to_update):
with self.out:
clear_output(wait=True)
display(to_update)
#export
class NBProgressBar(ProgressBar):
def on_iter_begin(self):
super().on_iter_begin()
self.progress = html_progress_bar(0, self.total, "")
if self.display:
display(HTML(html_progress_bar_styles))
self.out = NBOutput(HTML(self.progress))
self.is_active=True
def on_interrupt(self):
self.on_update(0, 'Interrupted', interrupted=True)
super().on_interrupt()
self.on_iter_end()
def on_iter_end(self):
if not self.leave and self.display: self.out.update(HTML(''))
self.is_active=False
super().on_iter_end()
def on_update(self, val, text, interrupted=False):
self.progress = html_progress_bar(val, self.total, text, interrupted)
if self.display: self.out.update(HTML(self.progress))
elif self.parent is not None: self.parent.show()
tst = NBProgressBar(range(100))
for i in tst: time.sleep(0.05)
tst = NBProgressBar(range(100))
for i in range(50):
time.sleep(0.05)
tst.update(i)
tst.on_interrupt()
#hide
for i in NBProgressBar([]): pass
#export
class NBMasterBar(MasterBar):
names = ['train', 'valid']
def __init__(self, gen, total=None, hide_graph=False, order=None, clean_on_interrupt=False, total_time=False):
super().__init__(gen, NBProgressBar, total)
if order is None: order = ['pb1', 'text', 'pb2']
self.hide_graph,self.order = hide_graph,order
self.report,self.clean_on_interrupt,self.total_time = [],clean_on_interrupt,total_time
self.inner_dict = {'pb1':self.main_bar, 'text':""}
self.text,self.lines = "",[]
def on_iter_begin(self):
self.html_code = '\n'.join([html_progress_bar(0, self.main_bar.total, ""), ""])
display(HTML(html_progress_bar_styles))
self.out = NBOutput(HTML(self.html_code))
def on_interrupt(self):
if self.clean_on_interrupt: self.out.update(HTML(''))
def on_iter_end(self):
if hasattr(self, 'imgs_fig'):
plt.close()
self.imgs_out.update(self.imgs_fig)
if hasattr(self, 'graph_fig'):
plt.close()
self.graph_out.update(self.graph_fig)
if self.text.endswith('<p>'): self.text = self.text[:-3]
if self.total_time:
total_time = format_time(time.time() - self.main_bar.start_t)
self.text = f'Total time: {total_time} <p>' + self.text
if hasattr(self, 'out'): self.out.update(HTML(self.text))
def add_child(self, child):
self.child = child
self.inner_dict['pb2'] = self.child
#self.show()
def show(self):
self.inner_dict['text'] = self.text
to_show = [name for name in self.order if name in self.inner_dict.keys()]
self.html_code = '\n'.join([getattr(self.inner_dict[n], 'progress', self.inner_dict[n]) for n in to_show])
self.out.update(HTML(self.html_code))
def write(self, line, table=False):
if not table: self.text += line + "<p>"
else:
self.lines.append(line)
self.text = text2html_table(self.lines)
def show_imgs(self, imgs, titles=None, cols=4, imgsize=4, figsize=None):
if self.hide_graph: return
rows = len(imgs)//cols if len(imgs)%cols == 0 else len(imgs)//cols + 1
plt.close()
if figsize is None: figsize = (imgsize*cols, imgsize*rows)
self.imgs_fig, imgs_axs = plt.subplots(rows, cols, figsize=figsize)
if titles is None: titles = [None] * len(imgs)
for img, ax, title in zip(imgs, imgs_axs.flatten(), titles): img.show(ax=ax, title=title)
for ax in imgs_axs.flatten()[len(imgs):]: ax.axis('off')
if not hasattr(self, 'imgs_out'): self.imgs_out = NBOutput(self.imgs_fig)
else: self.imgs_out.update(self.imgs_fig)
def update_graph(self, graphs, x_bounds=None, y_bounds=None, figsize=(6,4)):
if self.hide_graph: return
if not hasattr(self, 'graph_fig'):
self.graph_fig, self.graph_ax = plt.subplots(1, figsize=figsize)
self.graph_out = NBOutput(self.graph_ax.figure)
self.graph_ax.clear()
if len(self.names) < len(graphs): self.names += [''] * (len(graphs) - len(self.names))
for g,n in zip(graphs,self.names): self.graph_ax.plot(*g, label=n)
self.graph_ax.legend(loc='upper right')
if x_bounds is not None: self.graph_ax.set_xlim(*x_bounds)
if y_bounds is not None: self.graph_ax.set_ylim(*y_bounds)
self.graph_out.update(self.graph_ax.figure)
mb = NBMasterBar(range(5))
for i in mb:
for j in NBProgressBar(range(10), parent=mb, comment=f'first bar stat'):
time.sleep(0.01)
#mb.child.comment = f'second bar stat'
mb.write(f'Finished loop {i}.')
mb = NBMasterBar(range(5))
mb.update(0)
for i in range(5):
for j in NBProgressBar(range(10), parent=mb):
time.sleep(0.01)
#mb.child.comment = f'second bar stat'
mb.main_bar.comment = f'first bar stat'
mb.write(f'Finished loop {i}.')
mb.update(i+1) | _____no_output_____ | Apache-2.0 | nbs/01_fastprogress.ipynb | hsm/fastprogress |
Console progress bars | #export
NO_BAR = False
WRITER_FN = print
FLUSH = True
SAVE_PATH = None
SAVE_APPEND = False
MAX_COLS = 160
#export
def printing():
return False if NO_BAR else (stdout.isatty() or IN_NOTEBOOK)
#export
class ConsoleProgressBar(ProgressBar):
fill:str='█'
end:str='\r'
def __init__(self, gen, total=None, display=True, leave=True, parent=None, master=None, txt_len=60):
self.cols,_ = shutil.get_terminal_size((100, 40))
if self.cols > MAX_COLS: self.cols=MAX_COLS
self.length = self.cols-txt_len
self.max_len,self.prefix = 0,''
#In case the filling char returns an encoding error
try: print(self.fill, end='\r', flush=FLUSH)
except: self.fill = 'X'
super().__init__(gen, total, display, leave, parent, master)
def on_interrupt(self):
super().on_interrupt()
self.on_iter_end()
def on_iter_end(self):
if not self.leave and printing():
print(f'\r{self.prefix}' + ' ' * (self.max_len - len(f'\r{self.prefix}')), end='\r', flush=FLUSH)
super().on_iter_end()
def on_update(self, val, text):
if self.display:
if self.length > self.cols-len(text)-len(self.prefix)-4:
self.length = self.cols-len(text)-len(self.prefix)-4
filled_len = int(self.length * val // self.total) if self.total else 0
bar = self.fill * filled_len + '-' * (self.length - filled_len)
to_write = f'\r{self.prefix} |{bar}| {text}'
if val >= self.total: end = '\r'
else: end = self.end
if len(to_write) > self.max_len: self.max_len=len(to_write)
if printing(): WRITER_FN(to_write, end=end, flush=FLUSH)
tst = ConsoleProgressBar(range(100))
for i in tst: time.sleep(0.05)
tst = ConsoleProgressBar(range(100))
for i in range(50):
time.sleep(0.05)
tst.update(i)
tst.on_interrupt()
#export
def print_and_maybe_save(line):
WRITER_FN(line)
if SAVE_PATH is not None:
attr = "a" if os.path.exists(SAVE_PATH) else "w"
with open(SAVE_PATH, attr) as f: f.write(line + '\n')
#export
class ConsoleMasterBar(MasterBar):
def __init__(self, gen, total=None, hide_graph=False, order=None, clean_on_interrupt=False, total_time=False):
super().__init__(gen, ConsoleProgressBar, total)
self.total_time = total_time
def add_child(self, child):
self.child = child
v = 0 if self.main_bar.last_v is None else self.main_bar.last_v
self.child.prefix = f'Epoch {v+1}/{self.main_bar.total} :'
self.child.display = True
def on_iter_begin(self):
super().on_iter_begin()
if SAVE_PATH is not None and os.path.exists(SAVE_PATH) and not SAVE_APPEND:
with open(SAVE_PATH, 'w') as f: f.write('')
def write(self, line, table=False):
if table:
text = ''
if not hasattr(self, 'names'):
self.names = [name + ' ' * (8-len(name)) if len(name) < 8 else name for name in line]
text = ' '.join(self.names)
else:
for (t,name) in zip(line,self.names): text += t + ' ' * (2 + len(name)-len(t))
print_and_maybe_save(text)
else: print_and_maybe_save(line)
if self.total_time:
total_time = format_time(time() - self.start_t)
print_and_maybe_save(f'Total time: {total_time}')
def show_imgs(*args, **kwargs): pass
def update_graph(*args, **kwargs): pass
mb = ConsoleMasterBar(range(5))
for i in mb:
for j in ConsoleProgressBar(range(10), parent=mb):
time.sleep(0.01)
#mb.child.comment = f'second bar stat'
mb.main_bar.comment = f'first bar stat'
mb.write(f'Finished loop {i}.')
mb = ConsoleMasterBar(range(5))
mb.update(0)
for i in range(5):
for j in ConsoleProgressBar(range(10), parent=mb):
time.sleep(0.01)
#mb.child.comment = f'second bar stat'
mb.main_bar.comment = f'first bar stat'
mb.write(f'Finished loop {i}.')
mb.update(i+1)
# confirming a kwarg can be passed to ConsoleMasterBar instance
mb.update_graph([[1,2],[3,4]], figsize=(10,5,))
mb.show_imgs(figsize=(10,5,))
#export
if IN_NOTEBOOK: master_bar, progress_bar = NBMasterBar, NBProgressBar
else: master_bar, progress_bar = ConsoleMasterBar, ConsoleProgressBar
#export
_all_ = ['master_bar', 'progress_bar']
#export
def force_console_behavior():
"Return the console progress bars"
return ConsoleMasterBar, ConsoleProgressBar
#export
def workaround_empty_console_output():
"Change console output behaviour to correctly show progress in consoles not recognizing \r at the end of line"
ConsoleProgressBar.end = '' | _____no_output_____ | Apache-2.0 | nbs/01_fastprogress.ipynb | hsm/fastprogress |
Export - | from nbdev.export import notebook2script
notebook2script() | _____no_output_____ | Apache-2.0 | nbs/01_fastprogress.ipynb | hsm/fastprogress |
Impotations de dependances | import numpy as np
import pandas as pd
#import matplotlib.pyplot as plt
#import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
#from sklearn.cluster import KMeans
#from sklearn.model_selection import train_test_split
#from sklearn.ensemble import RandomForestRegressor
#from sklearn import metrics
| _____no_output_____ | MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
chargement des données du fichier csv dans une trame de données pendas |
diabet_data = pd.read_csv('/content/diabete.csv') | _____no_output_____ | MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
lecture des donnes du tableau | pd.read_csv
| _____no_output_____ | MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
les 5 premiers lignes du tableau | diabet_data.head()
# le nombre de ligne et de colonnes dans notre base de donnes
diabet_data.shape
#Pour obtenir les mesures statistique de cette donnee.
diabet_data.describe() | _____no_output_____ | MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
le nombre de diabetique et le non diabetique 0--> non Diabetique1--> Diabetique | diabet_data['diabete'].value_counts()
diabet_data.groupby('diabete').mean()
#Sepearation de données et les etiquettes
X=diabet_data.drop(columns='diabete', axis=1)
Y=diabet_data['diabete']
#lecture de X
print(X)
print(Y) | 0 1
1 0
2 1
3 0
4 1
..
763 0
764 0
765 0
766 1
767 0
Name: diabete, Length: 768, dtype: int64
| MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
Normalisation des donnees. | scaler = StandardScaler()
scaler.fit(X)
standardized_date = scaler.transform(X)
print(standardized_date)
X = standardized_date
Y = diabet_data['diabete']
print(X)
print(Y)
#Essaye de train fractionné
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape) | (768, 8) (614, 8) (154, 8)
| MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
Model de formation | classifier = svm.SVC(kernel='linear') | _____no_output_____ | MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
Formation de la machine a vecteur classée | classifier.fit(X_train, Y_train) | _____no_output_____ | MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
Evaluation de modele Note de precision | # Score de precision sur les données de formation
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Score de precision sur les données de formation : ', training_data_accuracy)
# Score de precision sur les données de formation
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Score de precision sur les données de teste : ', test_data_accuracy) | Score de precision sur les données de teste : 0.7727272727272727
| MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
Faaier un systeme predictif | input_data = (2,197,70,45,543,30.5,0.158,53)
# Changement de inptu_data en tableau nympy
input_data_as_numpy_array = np.asarray(input_data)
# Remodeler le tableau comme nous le predisons une instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
# normaliser l’entrée de donnees
std_date = scaler.transform(input_data_reshaped)
print(std_date)
prediction = classifier.predict(std_date)
print(prediction)
if (prediction[0] == 0) :
print('La personne n\'est pas diabetique')
else:
print('La peronne est diabetique') | [[-0.54791859 2.38188392 0.04624525 1.53455054 4.02192191 -0.18943689
-0.94794368 1.68125866]]
[1]
La peronne est diabetique
| MIT | Prediction_diabet.ipynb | bsyllaisidk/Architecture-L |
Breakdown of lethality | import pickle
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from ast import literal_eval | _____no_output_____ | MIT | notebooks/10b-anlyz_run02-synthetic_lethal_classes-feat1.ipynb | pritchardlabatpsu/cga |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.