markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Random Forest ClassifierThe Random forest or Random Decision Forest is a supervised Machine learning algorithm used for classification, regression, and other tasks using decision trees.The Random forest classifier creates a set of decision trees from a randomly selected subset of the training set. It is basically a set of decision trees (DT) from a randomly selected subset of the training set and then It collects the votes from different decision trees to decide the final prediction. | from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100)
clf.fit(x_train, y_train)
print("Accuracy Score:", str(round(clf.score(x_test, y_test), 4) * 100) + '%')
print('\nClassification Random Forest:\n', classification_report(y_test, clf.predict(x_test))) |
Classification Random Forest:
precision recall f1-score support
0 0.75 0.64 0.69 3292
1 0.76 0.84 0.80 4417
accuracy 0.76 7709
macro avg 0.75 0.74 0.74 7709
weighted avg 0.76 0.76 0.75 7709
| MIT | Part II - Sentiment Analysis Classifications - Review and Comparison.ipynb | JackShen1/sentimento |
Now let's visualize our classification report: | plot_classification_report(classification_report(y_test, clf.predict(x_test)), title='Random Forest Classification Report') | _____no_output_____ | MIT | Part II - Sentiment Analysis Classifications - Review and Comparison.ipynb | JackShen1/sentimento |
SVM ModelSupport vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.The advantages of support vector machines are: + Effective in high dimensional spaces. + Still effective in cases where number of dimensions is greater than the number of samples. + Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient. + Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels.The disadvantages of support vector machines include: - If the number of features is much greater than the number of samples, avoid over-fitting in choosing Kernel functions and regularization term is crucial. - SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation (see Scores and probabilities, below). You can read more about it [here](https://en.wikipedia.org/wiki/Support-vector_machine). | from sklearn import svm
SVM = svm.SVC(C=1.0, kernel='linear', degree=3, gamma='auto', probability=True)
SVM.fit(x_train, y_train)
print("Accuracy Score:", str(round(SVM.score(x_test, y_test), 4) * 100) + '%')
print('\nClassification SVM:\n', classification_report(y_test, SVM.predict(x_test)))
plot_classification_report(classification_report(y_test, SVM.predict(x_test)), title='SVM Classification Report') | _____no_output_____ | MIT | Part II - Sentiment Analysis Classifications - Review and Comparison.ipynb | JackShen1/sentimento |
Comparison of Models A useful tool when predicting the probability of a binary outcome is the Receiver Operating Characteristic curve, or ROC curve.It is a plot of the false positive rate (x-axis) versus the true positive rate (y-axis) for a number of different candidate threshold values between 0.0 and 1.0. Put another way, it plots the false alarm rate versus the hit rate.The true positive rate is calculated as the number of true positives divided by the sum of the number of true positives and the number of false negatives. It describes how good the model is at predicting the positive class when the actual outcome is positive.The false positive rate is calculated as the number of false positives divided by the sum of the number of false positives and the number of true negatives.It is also called the false alarm rate as it summarizes how often a positive class is predicted when the actual outcome is negative.To make this clear:* Smaller values on the x-axis of the plot indicate lower false positives and higher true negatives.* Larger values on the y-axis of the plot indicate higher true positives and lower false negatives. | from sklearn import metrics
from sklearn.metrics import roc_curve, auc
fprKNN, tprKNN, thresholdsKNN = metrics.roc_curve(y_test, knn.predict_proba(x_test)[:, 1])
fprLR, tprLR, thresholdsLR = metrics.roc_curve(y_test, logit.predict_proba(x_test)[:, 1])
fprCLF, tprCLF, thresholdCLF = metrics.roc_curve(y_test, clf.predict_proba(x_test)[:, 1])
fprSVM, trpSVM, thresholdSVM = metrics.roc_curve(y_test, SVM.predict_proba(x_test)[:, 1])
linewidth = 2
plt.figure(figsize=(8, 5))
plt.plot(fprKNN, tprKNN, color='#db6114', lw=linewidth, label='ROC Curve KNN (AUC = %0.3f)' % auc(fprKNN, tprKNN))
plt.plot(fprLR, tprLR, color='#1565c0', lw=linewidth, label='ROC Curve Logistic Regression (AUC = %0.3f)' % auc(fprLR, tprLR))
plt.plot(fprCLF, tprCLF, color='#2e7d32',lw=linewidth, label='ROC Curve Random Forest (AUC = %0.3f)' % auc(fprCLF, tprCLF))
plt.plot(fprSVM, trpSVM, color='#6557d2',lw=linewidth, label='ROC Curve SVM (AUC = %0.3f)' % auc(fprSVM, trpSVM))
plt.plot([0, 1], [0, 1], color='#616161', lw=linewidth, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve Plots')
plt.legend(loc="lower right")
plt.show() | _____no_output_____ | MIT | Part II - Sentiment Analysis Classifications - Review and Comparison.ipynb | JackShen1/sentimento |
Based on these data, we can conclude that the best model so far is a **Random Forest Model** with `AUC = 83.5%` and `Accuracy Score = 75.56%`.Let's save this model: | with open('RFModel.pickle', 'wb') as m:
pickle.dump(logit, m) | _____no_output_____ | MIT | Part II - Sentiment Analysis Classifications - Review and Comparison.ipynb | JackShen1/sentimento |
Let's check if everything is loaded correctly: | with open('RFModel.pickle', 'rb') as m:
rf = pickle.load(m)
print("Random Forest Accuracy Score:", str(round(clf.score(x_test, y_test), 4) * 100) + '%') | Random Forest Accuracy Score: 75.56%
| MIT | Part II - Sentiment Analysis Classifications - Review and Comparison.ipynb | JackShen1/sentimento |
Run source tutorialhttps://www.geeksforgeeks.org/machine-learning-for-anomaly-detection/ | import matplotlib.font_manager
from pyod.models.knn import KNN
from pyod.utils.data import generate_data, get_outliers_inliers
# [1] CREATE SYNTHETIC DATA
npoints = 300
# Generating a random dataset with two features
X_train, y_train = generate_data(n_train = npoints, train_only = True,
n_features = 2)
# Storing the outliers and inliners in different numpy arrays
X_outliers, X_inliers = get_outliers_inliers(X_train, y_train)
n_inliers = len(X_inliers)
n_outliers = len(X_outliers)
print("There are", n_inliers, "inliers and", n_outliers, "outliers")
# Separating the two features
f1 = X_train[:, [0]] # .reshape(-1, 1) # This destructures the array f1[:,0]
f2 = X_train[:, [1]] # .reshape(-1, 1)
# [2] VISUALIZE THE DATA
# Visualising the dataset
# create a meshgrid
xx, yy = np.meshgrid(np.linspace(-10, 10, 200),
np.linspace(-10, 10, 200))
# scatter plot
plt.scatter(f1, f2)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
# [3] TRAIN THE MODEL AND EVALUATE
# Setting the percentage of outliers
outlier_fraction = 0.1
# Training the classifier
clf = KNN(contamination = outlier_fraction)
clf.fit(X_train, y_train)
# You can print this to see all the prediciton scores
scores_pred = clf.decision_function(X_train)*-1
y_pred = clf.predict(X_train)
n_errors = (y_pred != y_train).sum()
# Counting the number of errors
print('The number of prediction errors are', n_errors, ', equal to ', "{:.2f}".format(n_errors/npoints), '% out of', npoints, 'data points')
# [4] VISUALIZING THE PREDICTIONS
# threshold value to consider a
# datapoint inlier or outlier
threshold = stats.scoreatpercentile(scores_pred, 100 * outlier_fraction)
# decision function calculates the raw
# anomaly score for every point
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) * -1
Z = Z.reshape(xx.shape)
# fill blue colormap from minimum anomaly
# score to threshold value
subplot = plt.subplot(1, 1, 1)
subplot.contourf(xx, yy, Z, levels = np.linspace(Z.min(),
threshold, 10), cmap = plt.cm.Blues_r)
# draw red contour line where anomaly
# score is equal to threshold
a = subplot.contour(xx, yy, Z, levels =[threshold],
linewidths = 2, colors ='red')
# fill orange contour lines where range of anomaly
# score is from threshold to maximum anomaly score
subplot.contourf(xx, yy, Z, levels =[threshold, Z.max()], colors ='orange')
# scatter plot of inliers with white dots
b = subplot.scatter(X_train[:-n_outliers, 0], X_train[:-n_outliers, 1],
c ='white', s = 20, edgecolor ='k')
# scatter plot of outliers with black dots
c = subplot.scatter(X_train[-n_outliers:, 0], X_train[-n_outliers:, 1],
c ='black', s = 20, edgecolor ='k')
subplot.axis('tight')
subplot.legend(
[a.collections[0], b, c],
['learned decision function', 'true inliers', 'true outliers'],
prop = matplotlib.font_manager.FontProperties(size = 10),
loc ='lower right')
subplot.set_title('K-Nearest Neighbours')
#subplot.set_xlim((-3.5, 4.5))
#subplot.set_ylim((-3.5, 4.5))
subplot.set_xlim((-10, 10))
subplot.set_ylim((-10, 10))
plt.show() | _____no_output_____ | MIT | data/pyodKNN.DummyDataset-anomaly_detection.ipynb | therobotacademy/kaggle-anomaly-detection |
Lesson 7: Pattern Challenges In this set of exercises, we'll play with number patterns, shape patterns, and other types of repetition and variation. This is to get you thinking more flexibly about what you can do with code, so that you can better apply it to practical situations later. FibonacciThe fibonacci sequence of numbers starts from 1 and 1, and then rest come from adding the two prior numbers and putting the answer after them, making a list. Here are the first numbers:1 1 2 3 5 8 13 21 34 55 89So 1 + 1 = 2. 1 + 2 = 3. 2 + 3 = 5. 3 + 5 = 8. And so on.Write a program to calculate and print the first 30 fibonacci numbers. The two 1's that start the sequence are given automatically; have the program calculate the rest. HeadlinesWrite a program that asks for a headline text, and then prints a bar, a centered headline, and another bar. The bar should be 80 characters wide, using the = sign as the bar. The headline text should be centered within the width of the bars. ===================== center ===================== You can find out the length of the headline text by calling the len() function on the variable, like this: size = len(headline) ArrowWrite a program that prints a text-art arrow like below (it does not need to have spaces ahead of it; that's just the way it shows up here). The program should ask the user for the width of the widest row, and then print the right size arrow to match. The widest row can be as much as 60 characters wide, so you don't want to have to make the rows by hand. This is an ideal place for a loop that makes the row the appropriate width. You might even like to create a drawRow() function with a loop inside it.You also need to figure out how many rows you need based on the width of the widest row. There's some arithmetic involved here. Take your time and work it out on paper, possibly gridded graph paper so you can count the boxes and think about it carefully. Mountain RangeNow we're going to flip it sideways. (Yes this will be completely new logic.) Ask the user for two numbers. One is the height of the mountains. The other is the number of mountains. Neither number will be bigger than 8. This is an example of mountains of height 3 with a total of 8 mountains. A single mountain looks like this. Write a program that asks for the number of rows high for the mountain, and asks how many mountains to print. Don't worry if it ends up too wide for your web browser when there are a lot of mountains; just focus on getting the overall logic correct. Hundreds ChartWhen children are learning to count to 100, there's a board of numbers often used to help them understand number relations. It's call a hundred chart. It looks like this: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ... and so on. Write a program that uses looping and if statements to print a well-formatted hundred chart from 0 to 99. You can print the 100 in the last row without worrying about its formatting.Note that you can use \n to indicate a newline: print "Hello\nJenny" | print "Hello\nJenny" | Hello
Jenny
| Apache-2.0 | lesson7exercises.ipynb | jennybrown8/python-notebook-coding-intro |
Point cloudThis tutorial demonstrates basic usage of a point cloud. Visualize point cloudThe first part of the tutorial reads a point cloud and visualizes it. | print("Load a ply point cloud, print it, and render it")
ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)
print(pcd)
print(np.asarray(pcd.points))
o3d.visualization.draw_geometries([pcd],
zoom=0.3412,
front=[0.4257, -0.2125, -0.8795],
lookat=[2.6172, 2.0475, 1.532],
up=[-0.0694, -0.9768, 0.2024]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
`read_point_cloud` reads a point cloud from a file. It tries to decode the file based on the extension name. For a list of supported file types, refer to [File IO](file_io.ipynb).`draw_geometries` visualizes the point cloud. Use a mouse/trackpad to see the geometry from different view points.It looks like a dense surface, but it is actually a point cloud rendered as surfels. The GUI supports various keyboard functions. For instance, the `-` key reduces the size of the points (surfels). **Note:** Press the `H` key to print out a complete list of keyboard instructions for the GUI. For more information of the visualization GUI, refer to [Visualization](visualization.ipynb) and [Customized visualization](../visualization/customized_visualization.rst). **Note:** On macOS, the GUI window may not receive keyboard events. In this case, try to launch Python with `pythonw` instead of `python`. Voxel downsamplingVoxel downsampling uses a regular voxel grid to create a uniformly downsampled point cloud from an input point cloud. It is often used as a pre-processing step for many point cloud processing tasks. The algorithm operates in two steps:1. Points are bucketed into voxels.2. Each occupied voxel generates exactly one point by averaging all points inside. | print("Downsample the point cloud with a voxel of 0.05")
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
o3d.visualization.draw_geometries([downpcd],
zoom=0.3412,
front=[0.4257, -0.2125, -0.8795],
lookat=[2.6172, 2.0475, 1.532],
up=[-0.0694, -0.9768, 0.2024]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
Vertex normal estimationAnother basic operation for point cloud is point normal estimation.Press `N` to see point normals. The keys `-` and `+` can be used to control the length of the normal. | print("Recompute the normal of the downsampled point cloud")
downpcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([downpcd],
zoom=0.3412,
front=[0.4257, -0.2125, -0.8795],
lookat=[2.6172, 2.0475, 1.532],
up=[-0.0694, -0.9768, 0.2024],
point_show_normal=True) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
`estimate_normals` computes the normal for every point. The function finds adjacent points and calculates the principal axis of the adjacent points using covariance analysis.The function takes an instance of `KDTreeSearchParamHybrid` class as an argument. The two key arguments `radius = 0.1` and `max_nn = 30` specifies search radius and maximum nearest neighbor. It has 10cm of search radius, and only considers up to 30 neighbors to save computation time. **Note:** The covariance analysis algorithm produces two opposite directions as normal candidates. Without knowing the global structure of the geometry, both can be correct. This is known as the normal orientation problem. Open3D tries to orient the normal to align with the original normal if it exists. Otherwise, Open3D does a random guess. Further orientation functions such as `orient_normals_to_align_with_direction` and `orient_normals_towards_camera_location` need to be called if the orientation is a concern. Access estimated vertex normalEstimated normal vectors can be retrieved from the `normals` variable of `downpcd`. | print("Print a normal vector of the 0th point")
print(downpcd.normals[0]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
To check out other variables, please use `help(downpcd)`. Normal vectors can be transformed as a numpy array using `np.asarray`. | print("Print the normal vectors of the first 10 points")
print(np.asarray(downpcd.normals)[:10, :]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
Check [Working with NumPy](working_with_numpy.ipynb) for more examples regarding numpy arrays. Crop point cloud | print("Load a polygon volume and use it to crop the original point cloud")
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],
zoom=0.7,
front=[0.5439, -0.2333, -0.8060],
lookat=[2.4615, 2.1331, 1.338],
up=[-0.1781, -0.9708, 0.1608]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
`read_selection_polygon_volume` reads a json file that specifies polygon selection area. `vol.crop_point_cloud(pcd)` filters out points. Only the chair remains. Paint point cloud | print("Paint chair")
chair.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([chair],
zoom=0.7,
front=[0.5439, -0.2333, -0.8060],
lookat=[2.4615, 2.1331, 1.338],
up=[-0.1781, -0.9708, 0.1608]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
`paint_uniform_color` paints all the points to a uniform color. The color is in RGB space, [0, 1] range. Point cloud distanceOpen3D provides the method `compute_point_cloud_distance` to compute the distance from a source point cloud to a target point cloud. I.e., it computes for each point in the source point cloud the distance to the closest point in the target point cloud.In the example below we use the function to compute the difference between two point clouds. Note that this method could also be used to compute the Chamfer distance between two point clouds. | # Load data
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
dists = pcd.compute_point_cloud_distance(chair)
dists = np.asarray(dists)
ind = np.where(dists > 0.01)[0]
pcd_without_chair = pcd.select_by_index(ind)
o3d.visualization.draw_geometries([pcd_without_chair],
zoom=0.3412,
front=[0.4257, -0.2125, -0.8795],
lookat=[2.6172, 2.0475, 1.532],
up=[-0.0694, -0.9768, 0.2024]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
Bounding volumesThe `PointCloud` geometry type has bounding volumes as all other geometry types in Open3D. Currently, Open3D implements an `AxisAlignedBoundingBox` and an `OrientedBoundingBox` that can also be used to crop the geometry. | aabb = chair.get_axis_aligned_bounding_box()
aabb.color = (1, 0, 0)
obb = chair.get_oriented_bounding_box()
obb.color = (0, 1, 0)
o3d.visualization.draw_geometries([chair, aabb, obb],
zoom=0.7,
front=[0.5439, -0.2333, -0.8060],
lookat=[2.4615, 2.1331, 1.338],
up=[-0.1781, -0.9708, 0.1608]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
Convex hullThe convex hull of a point cloud is the smallest convex set that contains all points. Open3D contains the method `compute_convex_hull` that computes the convex hull of a point cloud. The implementation is based on [Qhull](http://www.qhull.org/).In the example code below we first sample a point cloud from a mesh and compute the convex hull that is returned as a triangle mesh. Then, we visualize the convex hull as a red `LineSet`. | bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)
mesh.compute_vertex_normals()
pcl = mesh.sample_points_poisson_disk(number_of_points=2000)
hull, _ = pcl.compute_convex_hull()
hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull)
hull_ls.paint_uniform_color((1, 0, 0))
o3d.visualization.draw_geometries([pcl, hull_ls]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
DBSCAN clusteringGiven a point cloud from e.g. a depth sensor we want to group local point cloud clusters together. For this purpose, we can use clustering algorithms. Open3D implements DBSCAN [\[Ester1996\]](../reference.htmlEster1996) that is a density based clustering algorithm. The algorithm is implemented in `cluster_dbscan` and requires two parameters: `eps` defines the distance to neighbors in a cluster and `min_points` defines the minimum number of points required to form a cluster. The function returns `labels`, where the label `-1` indicates noise. | ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)
with o3d.utility.VerbosityContextManager(
o3d.utility.VerbosityLevel.Debug) as cm:
labels = np.array(
pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))
max_label = labels.max()
print(f"point cloud has {max_label + 1} clusters")
colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
colors[labels < 0] = 0
pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
o3d.visualization.draw_geometries([pcd],
zoom=0.455,
front=[-0.4999, -0.1659, -0.8499],
lookat=[2.1813, 2.0619, 2.0999],
up=[0.1204, -0.9852, 0.1215]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
**Note:** This algorithm precomputes all neighbors in the epsilon radius for all points. This can require a lot of memory if the chosen epsilon is too large. Plane segmentationOpen3D also supports segmententation of geometric primitives from point clouds using RANSAC. To find the plane with the largest support in the point cloud, we can use `segment_plane`. The method has three arguments: `distance_threshold` defines the maximum distance a point can have to an estimated plane to be considered an inlier, `ransac_n` defines the number of points that are randomly sampled to estimate a plane, and `num_iterations` defines how often a random plane is sampled and verified. The function then returns the plane as $(a,b,c,d)$ such that for each point $(x,y,z)$ on the plane we have $ax + by + cz + d = 0$. The function further returns a list of indices of the inlier points. | pcd_point_cloud = o3d.data.PCDPointCloud()
pcd = o3d.io.read_point_cloud(pcd_point_cloud.path)
plane_model, inliers = pcd.segment_plane(distance_threshold=0.01,
ransac_n=3,
num_iterations=1000)
[a, b, c, d] = plane_model
print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
inlier_cloud = pcd.select_by_index(inliers)
inlier_cloud.paint_uniform_color([1.0, 0, 0])
outlier_cloud = pcd.select_by_index(inliers, invert=True)
o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
zoom=0.8,
front=[-0.4999, -0.1659, -0.8499],
lookat=[2.1813, 2.0619, 2.0999],
up=[0.1204, -0.9852, 0.1215]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
Hidden point removalImagine you want to render a point cloud from a given view point, but points from the background leak into the foreground because they are not occluded by other points. For this purpose we can apply a hidden point removal algorithm. In Open3D the method by [\[Katz2007\]](../reference.htmlKatz2007) is implemented that approximates the visibility of a point cloud from a given view without surface reconstruction or normal estimation. | print("Convert mesh to a point cloud and estimate dimensions")
armadillo = o3d.data.ArmadilloMesh()
mesh = o3d.io.read_triangle_mesh(armadillo.path)
mesh.compute_vertex_normals()
pcd = mesh.sample_points_poisson_disk(5000)
diameter = np.linalg.norm(
np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()))
o3d.visualization.draw_geometries([pcd])
print("Define parameters used for hidden_point_removal")
camera = [0, 0, diameter]
radius = diameter * 100
print("Get all points that are visible from given view point")
_, pt_map = pcd.hidden_point_removal(camera, radius)
print("Visualize result")
pcd = pcd.select_by_index(pt_map)
o3d.visualization.draw_geometries([pcd]) | _____no_output_____ | MIT | docs/jupyter/geometry/pointcloud.ipynb | pmokeev/Open3D |
Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. | # Dependencies and Setup
import pandas as pd
# File to Load (Remember to Change These)
school_data_to_load = "Resources/schools_complete.csv"
student_data_to_load = "Resources/students_complete.csv"
# Read School and Student Data File and store into Pandas DataFrames
school_data = pd.read_csv(school_data_to_load)
student_data = pd.read_csv(student_data_to_load)
# Combine the data into a single dataset.
school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"])
school_data_complete.head() | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting | number_of_schools = len(school_data["School ID"].unique())
number_of_schools
number_of_students = len(student_data["Student ID"].unique())
number_of_students
total_budget = school_data["budget"].sum()
total_budget
avg_math_score = student_data["math_score"].mean()
avg_math_score
avg_read_score = student_data["reading_score"].mean()
avg_read_score
passing_math = (student_data["math_score"] >= 70)
math_passers = student_data.loc[passing_math]
number_math_passers = len(math_passers)
pct_pass_math = number_math_passers * 100 / number_of_students
pct_pass_math
passing_read = (student_data["reading_score"] >= 70)
read_passers = student_data.loc[passing_read]
number_read_passers = len(read_passers)
pct_pass_read = number_read_passers * 100 / number_of_students
pct_pass_read
pass_math_read = passing_math & passing_read
math_read_passers = student_data.loc[pass_math_read]
number_math_read_passers = len(math_read_passers)
pct_pass_read_math = number_math_read_passers * 100 / number_of_students
pct_pass_read_math
district_summary_df = pd.DataFrame(
[
{"number of schools": number_of_schools,
"number of students": number_of_students,
"total budget": total_budget,
"average math score": avg_math_score,
"average reading score": avg_read_score,
"% passing math score": pct_pass_math,
"% passing reading score": pct_pass_read,
"% passing math and reading score": pct_pass_read_math
}
]
)
district_summary_df
# Format final district summary
district_summary_df["number of students"] = district_summary_df["number of students"].map("{:,}".format)
district_summary_df["total budget"] = district_summary_df["total budget"].map("${:,}".format)
district_summary_df["average math score"] = district_summary_df["average math score"].map("{:.1f}".format)
district_summary_df["average reading score"] = district_summary_df["average reading score"].map("{:.1f}".format)
district_summary_df["% passing math score"] = district_summary_df["% passing math score"].map("{:.1f}%".format)
district_summary_df["% passing reading score"] = district_summary_df["% passing reading score"].map("{:.1f}%".format)
district_summary_df["% passing math and reading score"] = district_summary_df["% passing math and reading score"].map("{:.1f}%".format)
district_summary_df | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results | # Strategy: school_data already has the first few columns. Format school_data, then calculate
# additional series columns separately, then add each series column to the formatted dataframe
# start with formatting school_data. Important to set index for future merges
school_summary = (school_data.set_index("school_name")
.sort_values("school_name")
.rename(columns = {
"type": "School Type",
"size": "Total Students",
"budget": "Total School Budget"
}
)
)
# Calculate Per Student Budget series, append to school_summary
school_summary["Per Student Budget"] = school_summary["Total School Budget"] / school_summary["Total Students"]
school_summary.head(5)
# Group and compute average math and reading scores from student_data
school_score_mean = (student_data.groupby(by="school_name")
.mean()
)
school_score_mean.head(5)
# Append average math score and average reading score to school_summary
school_summary["Average Math Score"] = school_score_mean["math_score"]
school_summary["Average Reading Score"] = school_score_mean["reading_score"]
school_summary.head(5)
# Get number of students passing math by school. Set index.
math_pass_by_school = (math_passers.set_index("school_name")
.rename(columns={"Student ID": "Number Students Pass Math"})
.groupby(by="school_name")
.count()
)
math_pass_by_school.head(5)
# Get number of students passing reading by school. Set index.
read_pass_by_school = (read_passers.set_index("school_name")
.rename(columns={"Student ID": "Number Students Pass Read"})
.groupby(by="school_name")
.count()
)
read_pass_by_school.head(5)
# Get number of students passing math and reading by school. Set index.
math_read_pass_by_school = (math_read_passers.set_index("school_name")
.rename(columns={"Student ID": "Number Students Pass Math and Read"})
.groupby(by="school_name")
.count()
)
math_read_pass_by_school.head(5)
# Divide number of students passing by number of students per school, then append columns
# to school_summary dataframe
school_summary["% Passing Math"] = math_pass_by_school["Number Students Pass Math"] / school_summary["Total Students"] * 100
school_summary["% Passing Reading"] = read_pass_by_school["Number Students Pass Read"] / school_summary["Total Students"] * 100
school_summary["% Overall Passing"] = math_read_pass_by_school["Number Students Pass Math and Read"] / school_summary["Total Students"] * 100
school_summary.head()
# Make an unformatted copy for to use in 'Scores by School Spending' later on
school_summary_unformatted = school_summary.copy()
# Add formatting to school_summary. This turns some float columns into strings
school_summary["Total School Budget"] = school_summary["Total School Budget"].map("${:,.2f}".format)
school_summary["Per Student Budget"] = school_summary["Per Student Budget"].map("${:,.2f}".format)
school_summary["Average Math Score"] = school_summary["Average Math Score"].map("{:.2f}".format)
school_summary["Average Reading Score"] = school_summary["Average Reading Score"].map("{:.2f}".format)
school_summary["% Passing Math"] = school_summary["% Passing Math"].map("{:.2f}%".format)
school_summary["% Passing Reading"] = school_summary["% Passing Reading"].map("{:.2f}%".format)
school_summary["% Overall Passing"] = school_summary["% Overall Passing"].map("{:.2f}%".format)
school_summary | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. | (school_summary.sort_values("% Overall Passing", ascending=False)
.head(5)
) | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Bottom Performing Schools (By % Overall Passing) * Sort and display the five worst-performing schools by % overall passing. | (school_summary.sort_values("% Overall Passing", ascending=True)
.head(5)
) | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting | # Index student_data and get only relevant columns
score_by_grade = student_data[["school_name", "grade", "math_score"]].set_index("school_name")
# Create initial math_by_school dataframe, then create additional series and append them to
# the dataframe
math_by_school = (score_by_grade.loc[score_by_grade["grade"] == "9th"]
.groupby(by="school_name")
.mean()
.rename(columns={"math_score": "9th"})
)
math_by_school["10th"] = (score_by_grade.loc[score_by_grade["grade"] == "10th"]
.groupby(by="school_name")
.mean()
)
math_by_school["11th"] = (score_by_grade.loc[score_by_grade["grade"] == "11th"]
.groupby(by="school_name")
.mean()
)
math_by_school["12th"] = (score_by_grade.loc[score_by_grade["grade"] == "12th"]
.groupby(by="school_name")
.mean()
)
math_by_school | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Reading Score by Grade * Perform the same operations as above for reading scores | score_by_grade = student_data[["school_name", "grade", "reading_score"]].set_index("school_name")
# Create initial read_by_school dataframe, then create additional series and append them to
# the dataframe
read_by_school = (score_by_grade.loc[score_by_grade["grade"] == "9th"]
.groupby(by="school_name")
.mean()
.rename(columns={"reading_score": "9th"})
)
read_by_school["10th"] = (score_by_grade.loc[score_by_grade["grade"] == "10th"]
.groupby(by="school_name")
.mean()
)
read_by_school["11th"] = (score_by_grade.loc[score_by_grade["grade"] == "11th"]
.groupby(by="school_name")
.mean()
)
read_by_school["12th"] = (score_by_grade.loc[score_by_grade["grade"] == "12th"]
.groupby(by="school_name")
.mean()
)
read_by_school | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) | # Use school_summary_unformatted dataframe that still has numeric columns as float
# Define the cut parameters
series_to_cut = school_summary_unformatted["Per Student Budget"]
bins_to_fill = [0, 584.9, 629.9, 644.9, 675.9]
bin_labels = ["<$584", "$585-629", "$630-644", "$645-675"]
# New column with the bin definition into school_summary_unformatted
school_summary_unformatted["Spending Ranges (per student)"] = pd.cut(x=series_to_cut, bins=bins_to_fill, labels=bin_labels)
# Exclude unneeded columns, group by the bin series and take the average of the scores
scores_by_spending = (school_summary_unformatted.groupby(by="Spending Ranges (per student)")
.mean()
)
scores_by_spending_final = scores_by_spending[["Average Math Score",
"Average Reading Score",
"% Passing Math",
"% Passing Reading",
"% Overall Passing"]]
scores_by_spending_final | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Scores by School Size * Perform the same operations as above, based on school size. | # Use school_summary_unformatted dataframe that still has numeric columns as float
# Define the cut parameters
series_to_cut = school_summary_unformatted["Total Students"]
bins_to_fill = [0, 1799.9, 2999.9, 4999.9]
bin_labels = ["Small (< 1800)", "Medium (1800-2999)", "Large (3000-5000)"]
# New column with the bin definition into school_summary_unformatted
school_summary_unformatted["School Size"] = pd.cut(x=series_to_cut, bins=bins_to_fill, labels=bin_labels)
# Exclude unneeded columns, group by the bin series and take the average of the scores
scores_by_school_size = (school_summary_unformatted.groupby(by="School Size")
.mean()
)
scores_by_school_size_final = scores_by_school_size[["Average Math Score",
"Average Reading Score",
"% Passing Math",
"% Passing Reading",
"% Overall Passing"]]
scores_by_school_size_final | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
Scores by School Type * Perform the same operations as above, based on school type | # No cut action needed since 'School Type' is not numeric. Can be grouped as is.
# Exclude unneeded columns, group by School Type and take the average of the scores
scores_by_school_type = (school_summary_unformatted.groupby(by="School Type")
.mean()
)
scores_by_school_type_final = scores_by_school_type[["Average Math Score",
"Average Reading Score",
"% Passing Math",
"% Passing Reading",
"% Overall Passing"]]
scores_by_school_type_final | _____no_output_____ | Apache-2.0 | PyCitySchools/PyCitySchools_1.ipynb | githotirado/pandas-challenge |
window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); BSSN Time-Evolution C Code Generation Library Author: Zach Etienne This module implements a number of helper functions for generating C-code kernels that solve Einstein's equations in the covariant BSSN formalism [described in this NRPy+ tutorial notebook](Tutorial-BSSN_formulation.ipynb)**Notebook Status:** Not yet validated **Validation Notes:** This module has NOT been validated to exhibit convergence to zero of the Hamiltonian constraint violation at the expected order to the exact solution *after a short numerical evolution of the initial data* (see [plots at bottom](convergence)), and all quantities have been validated against the [original SENR code](https://bitbucket.org/zach_etienne/nrpy). NRPy+ modules that generate needed symbolic expressions:* [BSSN/BSSN_constraints.py](../edit/BSSN/BSSN_constraints.py); [\[**tutorial**\]](Tutorial-BSSN_constraints.ipynb): Hamiltonian constraint in BSSN curvilinear basis/coordinates* [BSSN/BSSN_RHSs.py](../edit/BSSN/BSSN_RHSs.py); [\[**tutorial**\]](Tutorial-BSSN_time_evolution-BSSN_RHSs.ipynb): Generates the right-hand sides for the BSSN evolution equations in singular, curvilinear coordinates* [BSSN/BSSN_gauge_RHSs.py](../edit/BSSN/BSSN_gauge_RHSs.py); [\[**tutorial**\]](Tutorial-BSSN_time_evolution-BSSN_gauge_RHSs.ipynb): Generates the right-hand sides for the BSSN gauge evolution equations in singular, curvilinear coordinates* [BSSN/Enforce_Detgammahat_Constraint.py](../edit/BSSN/Enforce_Detgammahat_Constraint.py); [**tutorial**](Tutorial-BSSN_enforcing_determinant_gammabar_equals_gammahat_constraint.ipynb): Generates symbolic expressions for enforcing the $\det{\bar{\gamma}}=\det{\hat{\gamma}}$ constraint Introduction:Here we use NRPy+ to generate the C source code kernels necessary to generate C functions needed/useful for evolving forward in time the BSSN equations, including:1. the BSSN RHS expressions for [Method of Lines](https://reference.wolfram.com/language/tutorial/NDSolveMethodOfLines.html) time integration, with arbitrary gauge choice.1. the BSSN constraints as a check of numerical error Table of Contents$$\label{toc}$$This notebook is organized as follows1. [Step 1](importmodules): Import needed Python modules1. [Step 2](helperfuncs): Helper Python functions for C code generation1. [Step 3.a](bssnrhs): Generate symbolic BSSN RHS expressions1. [Step 3.b](bssnrhs_c_code): `rhs_eval()`: Register C function for evaluating BSSN RHS expressions1. [Step 3.c](ricci): Generate symbolic expressions for 3-Ricci tensor $\bar{R}_{ij}$1. [Step 3.d](ricci_c_code): `Ricci_eval()`: Register C function for evaluating 3-Ricci tensor $\bar{R}_{ij}$1. [Step 4.a](bssnconstraints): Generate symbolic expressions for BSSN Hamiltonian & momentum constraints1. [Step 4.b](bssnconstraints_c_code): `BSSN_constraints()`: Register C function for evaluating BSSN Hamiltonian & momentum constraints1. [Step 5](enforce3metric): `enforce_detgammahat_constraint()`: Register C function for enforcing the conformal 3-metric $\det{\bar{\gamma}_{ij}}=\det{\hat{\gamma}_{ij}}$ constraint1. [Step 6.a](psi4): `psi4_part_{0,1,2}()`: Register C function for evaluating Weyl scalar $\psi_4$, in 3 parts (3 functions)1. [Step 6.b](psi4_tetrad): `psi4_tetrad()`: Register C function for evaluating Weyl scalar $\psi_4$ tetrad1. [Step 6.c](swm2): `SpinWeight_minus2_SphHarmonics()`: Register C function for evaluating spin-weight $s=-2$ spherical harmonics1. [Step 7](validation): Confirm above functions are bytecode-identical to those in `BSSN/BSSN_Ccodegen_library.py`1. [Step 8](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF file Step 1: Import needed Python modules \[Back to [top](toc)\]$$\label{importmodules}$$ | # RULES FOR ADDING FUNCTIONS TO THIS ROUTINE:
# 1. The function must be runnable from a multiprocessing environment,
# which means that the function
# 1.a: cannot depend on previous function calls.
# 1.b: cannot create directories (this is not multiproc friendly)
# Step P1: Import needed NRPy+ core modules:
from outputC import lhrh, add_to_Cfunction_dict # NRPy+: Core C code output module
import finite_difference as fin # NRPy+: Finite difference C code generation module
import NRPy_param_funcs as par # NRPy+: Parameter interface
import grid as gri # NRPy+: Functions having to do with numerical grids
import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support
import reference_metric as rfm # NRPy+: Reference metric support
from pickling import pickle_NRPy_env # NRPy+: Pickle/unpickle NRPy+ environment, for parallel codegen
import os, time # Standard Python modules for multiplatform OS-level functions, benchmarking
import BSSN.BSSN_RHSs as rhs
import BSSN.BSSN_gauge_RHSs as gaugerhs
import loop as lp | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 2: Helper Python functions for C code generation \[Back to [top](toc)\]$$\label{helperfuncs}$$* `print_msg_with_timing()` gives the user an idea of what's going on/taking so long. Also outputs timing info.* `get_loopopts()` sets up options for NRPy+'s `loop` module* `register_stress_energy_source_terms_return_T4UU()` registers gridfunctions for $T^{\mu\nu}$ if needed and not yet registered. | ###############################################
# Helper Python functions for C code generation
# print_msg_with_timing() gives the user an idea of what's going on/taking so long. Also outputs timing info.
def print_msg_with_timing(desc, msg="Symbolic", startstop="start", starttime=0.0):
CoordSystem = par.parval_from_str("reference_metric::CoordSystem")
elapsed = time.time()-starttime
if msg == "Symbolic":
if startstop == "start":
print("Generating symbolic expressions for " + desc + " (%s coords)..." % CoordSystem)
return time.time()
else:
print("Finished generating symbolic expressions for "+desc+
" (%s coords) in %.1f seconds. Next up: C codegen..." % (CoordSystem, elapsed))
elif msg == "Ccodegen":
if startstop == "start":
print("Generating C code for "+desc+" (%s coords)..." % CoordSystem)
return time.time()
else:
print("Finished generating C code for "+desc+" (%s coords) in %.1f seconds." % (CoordSystem, elapsed))
# get_loopopts() sets up options for NRPy+'s loop module
def get_loopopts(points_to_update, enable_SIMD, enable_rfm_precompute, OMP_pragma_on, enable_xxs=True):
loopopts = points_to_update + ",includebraces=False"
if enable_SIMD:
loopopts += ",enable_SIMD"
if enable_rfm_precompute:
loopopts += ",enable_rfm_precompute"
elif not enable_xxs:
pass
else:
loopopts += ",Read_xxs"
if OMP_pragma_on != "i2":
loopopts += ",pragma_on_"+OMP_pragma_on
return loopopts
# register_stress_energy_source_terms_return_T4UU() registers gridfunctions
# for T4UU if needed and not yet registered.
def register_stress_energy_source_terms_return_T4UU(enable_stress_energy_source_terms):
if enable_stress_energy_source_terms:
registered_already = False
for i in range(len(gri.glb_gridfcs_list)):
if gri.glb_gridfcs_list[i].name == "T4UU00":
registered_already = True
if not registered_already:
return ixp.register_gridfunctions_for_single_rank2("AUXEVOL", "T4UU", "sym01", DIM=4)
else:
return ixp.declarerank2("T4UU", "sym01", DIM=4)
return None | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 3.a: Generate symbolic BSSN RHS expressions \[Back to [top](toc)\]$$\label{bssnrhs}$$First we generate the symbolic expressions. Be sure to call this function from within a `reference_metric::enable_rfm_precompute="True"` environment if reference metric precomputation is desired.`BSSN_RHSs__generate_symbolic_expressions()` supports the following features* (`"OnePlusLog"` by default) Lapse gauge choice* (`"GammaDriving2ndOrder_Covariant"` by default) Shift gauge choice* (disabled by default) Kreiss-Oliger dissipation* (disabled by default) Stress-energy ($T^{\mu\nu}$) source terms* (enabled by default) "Leave Ricci symbolic": do not compute the 3-Ricci tensor $\bar{R}_{ij}$ within the BSSN RHSs, which only adds to the extreme complexity of the BSSN RHS expressions. Instead leave computation of $\bar{R}_{ij}$=`RbarDD` to a separate function. Doing this generally increases C-code performance by about 10%.Two lists are returned by this function:1. `betaU`: the un-rescaled shift vector $\beta^i$, which is used to perform upwinding.1. `BSSN_RHSs_SymbExpressions`: the BSSN RHS symbolic expressions, using the `lhrh` named-tuple to store a list of LHSs and RHSs, where each LHS and RHS is defined as follows 1. LHS = BSSN gridfunction whose time derivative is being computed at grid point `i0,i1,i2`, and 1. RHS = time derivative expression for given variable at the given point. | def BSSN_RHSs__generate_symbolic_expressions(LapseCondition="OnePlusLog",
ShiftCondition="GammaDriving2ndOrder_Covariant",
enable_KreissOliger_dissipation=True,
enable_stress_energy_source_terms=False,
leave_Ricci_symbolic=True):
######################################
# START: GENERATE SYMBOLIC EXPRESSIONS
starttime = print_msg_with_timing("BSSN_RHSs", msg="Symbolic", startstop="start")
# Returns None if enable_stress_energy_source_terms==False; otherwise returns symb expressions for T4UU
T4UU = register_stress_energy_source_terms_return_T4UU(enable_stress_energy_source_terms)
# Evaluate BSSN RHSs:
import BSSN.BSSN_quantities as Bq
par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", str(leave_Ricci_symbolic))
rhs.BSSN_RHSs()
if enable_stress_energy_source_terms:
import BSSN.BSSN_stress_energy_source_terms as Bsest
Bsest.BSSN_source_terms_for_BSSN_RHSs(T4UU)
rhs.trK_rhs += Bsest.sourceterm_trK_rhs
for i in range(3):
# Needed for Gamma-driving shift RHSs:
rhs.Lambdabar_rhsU[i] += Bsest.sourceterm_Lambdabar_rhsU[i]
# Needed for BSSN RHSs:
rhs.lambda_rhsU[i] += Bsest.sourceterm_lambda_rhsU[i]
for j in range(3):
rhs.a_rhsDD[i][j] += Bsest.sourceterm_a_rhsDD[i][j]
par.set_parval_from_str("BSSN.BSSN_gauge_RHSs::LapseEvolutionOption", LapseCondition)
par.set_parval_from_str("BSSN.BSSN_gauge_RHSs::ShiftEvolutionOption", ShiftCondition)
gaugerhs.BSSN_gauge_RHSs() # Can depend on above RHSs
# Restore BSSN.BSSN_quantities::LeaveRicciSymbolic to False
par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", "False")
# Add Kreiss-Oliger dissipation to the BSSN RHSs:
if enable_KreissOliger_dissipation:
thismodule = "KO_Dissipation"
diss_strength = par.Cparameters("REAL", thismodule, "diss_strength", 0.1) # *Bq.cf # *Bq.cf*Bq.cf*Bq.cf # cf**1 is found better than cf**4 over the long term.
alpha_dKOD = ixp.declarerank1("alpha_dKOD")
cf_dKOD = ixp.declarerank1("cf_dKOD")
trK_dKOD = ixp.declarerank1("trK_dKOD")
betU_dKOD = ixp.declarerank2("betU_dKOD", "nosym")
vetU_dKOD = ixp.declarerank2("vetU_dKOD", "nosym")
lambdaU_dKOD = ixp.declarerank2("lambdaU_dKOD", "nosym")
aDD_dKOD = ixp.declarerank3("aDD_dKOD", "sym01")
hDD_dKOD = ixp.declarerank3("hDD_dKOD", "sym01")
for k in range(3):
gaugerhs.alpha_rhs += diss_strength * alpha_dKOD[k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
rhs.cf_rhs += diss_strength * cf_dKOD[k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
rhs.trK_rhs += diss_strength * trK_dKOD[k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
for i in range(3):
if "2ndOrder" in ShiftCondition:
gaugerhs.bet_rhsU[i] += diss_strength * betU_dKOD[i][k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
gaugerhs.vet_rhsU[i] += diss_strength * vetU_dKOD[i][k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
rhs.lambda_rhsU[i] += diss_strength * lambdaU_dKOD[i][k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
for j in range(3):
rhs.a_rhsDD[i][j] += diss_strength * aDD_dKOD[i][j][k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
rhs.h_rhsDD[i][j] += diss_strength * hDD_dKOD[i][j][k] * rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
# We use betaU as our upwinding control vector:
Bq.BSSN_basic_tensors()
betaU = Bq.betaU
# END: GENERATE SYMBOLIC EXPRESSIONS
######################################
lhs_names = ["alpha", "cf", "trK"]
rhs_exprs = [gaugerhs.alpha_rhs, rhs.cf_rhs, rhs.trK_rhs]
for i in range(3):
lhs_names.append("betU" + str(i))
rhs_exprs.append(gaugerhs.bet_rhsU[i])
lhs_names.append("lambdaU" + str(i))
rhs_exprs.append(rhs.lambda_rhsU[i])
lhs_names.append("vetU" + str(i))
rhs_exprs.append(gaugerhs.vet_rhsU[i])
for j in range(i, 3):
lhs_names.append("aDD" + str(i) + str(j))
rhs_exprs.append(rhs.a_rhsDD[i][j])
lhs_names.append("hDD" + str(i) + str(j))
rhs_exprs.append(rhs.h_rhsDD[i][j])
# Sort the lhss list alphabetically, and rhss to match.
# This ensures the RHSs are evaluated in the same order
# they're allocated in memory:
lhs_names, rhs_exprs = [list(x) for x in zip(*sorted(zip(lhs_names, rhs_exprs), key=lambda pair: pair[0]))]
# Declare the list of lhrh's
BSSN_RHSs_SymbExpressions = []
for var in range(len(lhs_names)):
BSSN_RHSs_SymbExpressions.append(lhrh(lhs=gri.gfaccess("rhs_gfs", lhs_names[var]), rhs=rhs_exprs[var]))
print_msg_with_timing("BSSN_RHSs", msg="Symbolic", startstop="stop", starttime=starttime)
return [betaU, BSSN_RHSs_SymbExpressions] | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 3.b: `rhs_eval()`: Register C code for BSSN RHS expressions \[Back to [top](toc)\]$$\label{bssnrhs_c_code}$$`add_rhs_eval_to_Cfunction_dict()` supports the following features* (enabled by default) reference-metric precomputation* (disabled by default) "golden kernels", which greatly increases the C-code generation time in an attempt to reduce computational cost. Most often this results in no speed-up.* (enabled by default) SIMD output* (disabled by default) splitting of RHSs into smaller pieces (multiple loops) to improve performance. Doesn't help much.* (`"OnePlusLog"` by default) Lapse gauge choice* (`"GammaDriving2ndOrder_Covariant"` by default) Shift gauge choice* (disabled by default) enable Kreiss-Oliger dissipation* (disabled by default) add stress-energy ($T^{\mu\nu}$) source terms* (enabled by default) "Leave Ricci symbolic": do not compute the 3-Ricci tensor $\bar{R}_{ij}$ within the BSSN RHSs, which only adds to the extreme complexity of the BSSN RHS expressions. Instead leave computation of $\bar{R}_{ij}$=`RbarDD` to a separate function. Doing this generally increases C-code performance by about 10%.* (`"i2"` by default) OpenMP pragma acts on which loop (assumes `i2` is outermost and `i0` is innermost loop). For axisymmetric or near-axisymmetric calculations, `"i1"` may be *significantly* faster.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_rhs_eval_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."),
enable_rfm_precompute=True, enable_golden_kernels=False,
enable_SIMD=True, enable_split_for_optimizations_doesnt_help=False,
LapseCondition="OnePlusLog", ShiftCondition="GammaDriving2ndOrder_Covariant",
enable_KreissOliger_dissipation=False, enable_stress_energy_source_terms=False,
leave_Ricci_symbolic=True, OMP_pragma_on="i2",
func_name_suffix=""):
if includes is None:
includes = []
if enable_SIMD:
includes += [os.path.join("SIMD", "SIMD_intrinsics.h")]
enable_FD_functions = bool(par.parval_from_str("finite_difference::enable_FD_functions"))
if enable_FD_functions:
includes += ["finite_difference_functions.h"]
# Set up the C function for the BSSN RHSs
desc = "Evaluate the BSSN RHSs"
name = "rhs_eval" + func_name_suffix
params = "const paramstruct *restrict params, "
if enable_rfm_precompute:
params += "const rfm_struct *restrict rfmstruct, "
else:
params += "REAL *xx[3], "
params += """
const REAL *restrict auxevol_gfs,const REAL *restrict in_gfs,REAL *restrict rhs_gfs"""
betaU, BSSN_RHSs_SymbExpressions = \
BSSN_RHSs__generate_symbolic_expressions(LapseCondition=LapseCondition, ShiftCondition=ShiftCondition,
enable_KreissOliger_dissipation=enable_KreissOliger_dissipation,
enable_stress_energy_source_terms=enable_stress_energy_source_terms,
leave_Ricci_symbolic=leave_Ricci_symbolic)
# Construct body:
preloop=""
enableCparameters=True
# Set up preloop in case we're outputting code for the Einstein Toolkit (ETK)
if par.parval_from_str("grid::GridFuncMemAccess") == "ETK":
params, preloop = set_ETK_func_params_preloop(func_name_suffix)
enableCparameters=False
FD_outCparams = "outCverbose=False,enable_SIMD=" + str(enable_SIMD)
FD_outCparams += ",GoldenKernelsEnable=" + str(enable_golden_kernels)
loopopts = get_loopopts("InteriorPoints", enable_SIMD, enable_rfm_precompute, OMP_pragma_on)
FDorder = par.parval_from_str("finite_difference::FD_CENTDERIVS_ORDER")
starttime = print_msg_with_timing("BSSN_RHSs (FD order="+str(FDorder)+")", msg="Ccodegen", startstop="start")
if enable_split_for_optimizations_doesnt_help and FDorder == 6:
loopopts += ",DisableOpenMP"
BSSN_RHSs_SymbExpressions_pt1 = []
BSSN_RHSs_SymbExpressions_pt2 = []
for lhsrhs in BSSN_RHSs_SymbExpressions:
if "BETU" in lhsrhs.lhs or "LAMBDAU" in lhsrhs.lhs:
BSSN_RHSs_SymbExpressions_pt1.append(lhrh(lhs=lhsrhs.lhs, rhs=lhsrhs.rhs))
else:
BSSN_RHSs_SymbExpressions_pt2.append(lhrh(lhs=lhsrhs.lhs, rhs=lhsrhs.rhs))
preloop += """#pragma omp parallel
{
"""
preloopbody = fin.FD_outputC("returnstring", BSSN_RHSs_SymbExpressions_pt1,
params=FD_outCparams,
upwindcontrolvec=betaU)
preloop += "\n#pragma omp for\n" + lp.simple_loop(loopopts, preloopbody)
preloop += "\n#pragma omp for\n"
body = fin.FD_outputC("returnstring", BSSN_RHSs_SymbExpressions_pt2,
params=FD_outCparams,
upwindcontrolvec=betaU)
postloop = "\n } // END #pragma omp parallel\n"
else:
preloop += ""
body = fin.FD_outputC("returnstring", BSSN_RHSs_SymbExpressions,
params=FD_outCparams,
upwindcontrolvec=betaU)
postloop = ""
print_msg_with_timing("BSSN_RHSs (FD order="+str(FDorder)+")", msg="Ccodegen", startstop="stop", starttime=starttime)
add_to_Cfunction_dict(
includes=includes,
desc=desc,
name=name, params=params,
preloop=preloop, body=body, loopopts=loopopts, postloop=postloop,
rel_path_to_Cparams=rel_path_to_Cparams, enableCparameters=enableCparameters)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 3.c: Generate symbolic expressions for 3-Ricci tensor $\bar{R}_{ij}$ \[Back to [top](toc)\]$$\label{ricci}$$As described above, we find a roughly 10% speedup by computing the 3-Ricci tensor $\bar{R}_{ij}$ separately from the BSSN RHS equations and storing the 6 independent components in memory. Here we construct the symbolic expressions for all 6 independent components of $\bar{R}_{ij}$ (which is symmetric under interchange of indices).`Ricci__generate_symbolic_expressions()` does not support any input parameters.One list is returned by `Ricci__generate_symbolic_expressions()`: `Ricci_SymbExpressions`, which contains a list of expressions for the six independent components of $\bar{R}_{ij}$, using the `lhrh` named-tuple to store a list of LHSs and RHSs, where each LHS and RHS is defined as follows1. LHS = gridfunction representation of the component of $\bar{R}_{ij}$, computed at grid point i0,i1,i2, and1. RHS = expression for given component of $\bar{R}_{ij}$. | def Ricci__generate_symbolic_expressions():
######################################
# START: GENERATE SYMBOLIC EXPRESSIONS
starttime = print_msg_with_timing("3-Ricci tensor", msg="Symbolic", startstop="start")
# Evaluate 3-Ricci tensor:
import BSSN.BSSN_quantities as Bq
par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", "False")
# Register all BSSN gridfunctions if not registered already
Bq.BSSN_basic_tensors()
# Next compute Ricci tensor
Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
# END: GENERATE SYMBOLIC EXPRESSIONS
######################################
# Must register RbarDD as gridfunctions, as we're outputting them to gridfunctions here:
foundit = False
for i in range(len(gri.glb_gridfcs_list)):
if "RbarDD00" in gri.glb_gridfcs_list[i].name:
foundit = True
if not foundit:
ixp.register_gridfunctions_for_single_rank2("AUXEVOL", "RbarDD", "sym01")
Ricci_SymbExpressions = [lhrh(lhs=gri.gfaccess("auxevol_gfs", "RbarDD00"), rhs=Bq.RbarDD[0][0]),
lhrh(lhs=gri.gfaccess("auxevol_gfs", "RbarDD01"), rhs=Bq.RbarDD[0][1]),
lhrh(lhs=gri.gfaccess("auxevol_gfs", "RbarDD02"), rhs=Bq.RbarDD[0][2]),
lhrh(lhs=gri.gfaccess("auxevol_gfs", "RbarDD11"), rhs=Bq.RbarDD[1][1]),
lhrh(lhs=gri.gfaccess("auxevol_gfs", "RbarDD12"), rhs=Bq.RbarDD[1][2]),
lhrh(lhs=gri.gfaccess("auxevol_gfs", "RbarDD22"), rhs=Bq.RbarDD[2][2])]
print_msg_with_timing("3-Ricci tensor", msg="Symbolic", startstop="stop", starttime=starttime)
return Ricci_SymbExpressions | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 3.d: `Ricci_eval()`: Register C function for evaluating 3-Ricci tensor $\bar{R}_{ij}$ \[Back to [top](toc)\]$$\label{ricci_c_code}$$`add_Ricci_eval_to_Cfunction_dict()` supports the following features* (enabled by default) reference-metric precomputation* (disabled by default) "golden kernels", which greatly increases the C-code generation time in an attempt to reduce computational cost. Most often this results in no speed-up.* (enabled by default) SIMD output* (disabled by default) splitting of RHSs into smaller pieces (multiple loops) to improve performance. Doesn't help much.* (`"i2"` by default) OpenMP pragma acts on which loop (assumes `i2` is outermost and `i0` is innermost loop). For axisymmetric or near-axisymmetric calculations, `"i1"` may be *significantly* faster.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_Ricci_eval_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."),
enable_rfm_precompute=True, enable_golden_kernels=False, enable_SIMD=True,
enable_split_for_optimizations_doesnt_help=False, OMP_pragma_on="i2",
func_name_suffix=""):
if includes is None:
includes = []
if enable_SIMD:
includes += [os.path.join("SIMD", "SIMD_intrinsics.h")]
enable_FD_functions = bool(par.parval_from_str("finite_difference::enable_FD_functions"))
if enable_FD_functions:
includes += ["finite_difference_functions.h"]
# Set up the C function for the 3-Ricci tensor
desc = "Evaluate the 3-Ricci tensor"
name = "Ricci_eval" + func_name_suffix
params = "const paramstruct *restrict params, "
if enable_rfm_precompute:
params += "const rfm_struct *restrict rfmstruct, "
else:
params += "REAL *xx[3], "
params += "const REAL *restrict in_gfs, REAL *restrict auxevol_gfs"
# Construct body:
Ricci_SymbExpressions = Ricci__generate_symbolic_expressions()
FD_outCparams = "outCverbose=False,enable_SIMD=" + str(enable_SIMD)
FD_outCparams += ",GoldenKernelsEnable=" + str(enable_golden_kernels)
loopopts = get_loopopts("InteriorPoints", enable_SIMD, enable_rfm_precompute, OMP_pragma_on)
FDorder = par.parval_from_str("finite_difference::FD_CENTDERIVS_ORDER")
starttime = print_msg_with_timing("3-Ricci tensor (FD order="+str(FDorder)+")", msg="Ccodegen", startstop="start")
# Construct body:
preloop=""
enableCparameters=True
# Set up preloop in case we're outputting code for the Einstein Toolkit (ETK)
if par.parval_from_str("grid::GridFuncMemAccess") == "ETK":
params, preloop = set_ETK_func_params_preloop(func_name_suffix)
enableCparameters=False
if enable_split_for_optimizations_doesnt_help and FDorder >= 8:
loopopts += ",DisableOpenMP"
Ricci_SymbExpressions_pt1 = []
Ricci_SymbExpressions_pt2 = []
for lhsrhs in Ricci_SymbExpressions:
if "RBARDD00" in lhsrhs.lhs or "RBARDD11" in lhsrhs.lhs or "RBARDD22" in lhsrhs.lhs:
Ricci_SymbExpressions_pt1.append(lhrh(lhs=lhsrhs.lhs, rhs=lhsrhs.rhs))
else:
Ricci_SymbExpressions_pt2.append(lhrh(lhs=lhsrhs.lhs, rhs=lhsrhs.rhs))
preloop = """#pragma omp parallel
{
#pragma omp for
"""
preloopbody = fin.FD_outputC("returnstring", Ricci_SymbExpressions_pt1,
params=FD_outCparams)
preloop += lp.simple_loop(loopopts, preloopbody)
preloop += "#pragma omp for\n"
body = fin.FD_outputC("returnstring", Ricci_SymbExpressions_pt2,
params=FD_outCparams)
postloop = "\n } // END #pragma omp parallel\n"
else:
body = fin.FD_outputC("returnstring", Ricci_SymbExpressions,
params=FD_outCparams)
postloop = ""
print_msg_with_timing("3-Ricci tensor (FD order="+str(FDorder)+")", msg="Ccodegen", startstop="stop", starttime=starttime)
add_to_Cfunction_dict(
includes=includes,
desc=desc,
name=name, params=params,
preloop=preloop, body=body, loopopts=loopopts, postloop=postloop,
rel_path_to_Cparams=rel_path_to_Cparams, enableCparameters=enableCparameters)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 4.a: Generate symbolic expressions for BSSN Hamiltonian & momentum constraints \[Back to [top](toc)\]$$\label{bssnconstraints}$$Next output the C code for evaluating the BSSN Hamiltonian and momentum constraints [(**Tutorial**)](Tutorial-BSSN_constraints.ipynb). In the absence of numerical error, these constraints should evaluate to zero. However it does not due to numerical (typically truncation) error.We will therefore measure the constraint violations to gauge the accuracy of our simulation, and, ultimately determine whether errors are dominated by numerical finite differencing (truncation) error as expected.`BSSN_constraints__generate_symbolic_expressions()` supports the following features:* (disabled by default) add stress-energy ($T^{\mu\nu}$) source terms* (disabled by default) output Hamiltonian constraint onlyOne list is returned by `BSSN_constraints__generate_symbolic_expressions()`: `BSSN_constraints_SymbExpressions`, which contains a list of expressions for the Hamiltonian and momentum constraints (4 elements total), using the `lhrh` named-tuple to store a list of LHSs and RHSs, where each LHS and RHS is defined as follows1. LHS = gridfunction representation of the BSSN constraint, computed at grid point i0,i1,i2, and1. RHS = expression for given BSSN constraint | def BSSN_constraints__generate_symbolic_expressions(enable_stress_energy_source_terms=False, leave_Ricci_symbolic=True,
output_H_only=False):
######################################
# START: GENERATE SYMBOLIC EXPRESSIONS
starttime = print_msg_with_timing("BSSN constraints", msg="Symbolic", startstop="start")
# Define the Hamiltonian constraint and output the optimized C code.
par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", str(leave_Ricci_symbolic))
import BSSN.BSSN_constraints as bssncon
# Returns None if enable_stress_energy_source_terms==False; otherwise returns symb expressions for T4UU
T4UU = register_stress_energy_source_terms_return_T4UU(enable_stress_energy_source_terms)
bssncon.BSSN_constraints(add_T4UUmunu_source_terms=False, output_H_only=output_H_only) # We'll add them below if desired.
if enable_stress_energy_source_terms:
import BSSN.BSSN_stress_energy_source_terms as Bsest
Bsest.BSSN_source_terms_for_BSSN_constraints(T4UU)
bssncon.H += Bsest.sourceterm_H
for i in range(3):
bssncon.MU[i] += Bsest.sourceterm_MU[i]
BSSN_constraints_SymbExpressions = [lhrh(lhs=gri.gfaccess("aux_gfs", "H"), rhs=bssncon.H)]
if not output_H_only:
BSSN_constraints_SymbExpressions += [lhrh(lhs=gri.gfaccess("aux_gfs", "MU0"), rhs=bssncon.MU[0]),
lhrh(lhs=gri.gfaccess("aux_gfs", "MU1"), rhs=bssncon.MU[1]),
lhrh(lhs=gri.gfaccess("aux_gfs", "MU2"), rhs=bssncon.MU[2])]
par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", "False")
print_msg_with_timing("BSSN constraints", msg="Symbolic", startstop="stop", starttime=starttime)
# END: GENERATE SYMBOLIC EXPRESSIONS
######################################
return BSSN_constraints_SymbExpressions | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 4.b: `BSSN_constraints()`: Register C function for evaluating BSSN Hamiltonian & momentum constraints \[Back to [top](toc)\]$$\label{bssnconstraints_c_code}$$`add_BSSN_constraints_to_Cfunction_dict()` supports the following features* (enabled by default) reference-metric precomputation* (disabled by default) "golden kernels", which greatly increases the C-code generation time in an attempt to reduce computational cost. Most often this results in no speed-up.* (enabled by default) SIMD output* (disabled by default) splitting of RHSs into smaller pieces (multiple loops) to improve performance. Doesn't help much.* (disabled by default) add stress-energy ($T^{\mu\nu}$) source terms* (disabled by default) output Hamiltonian constraint only* (`"i2"` by default) OpenMP pragma acts on which loop (assumes `i2` is outermost and `i0` is innermost loop). For axisymmetric or near-axisymmetric calculations, `"i1"` may be *significantly* faster.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_BSSN_constraints_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."),
enable_rfm_precompute=True, enable_golden_kernels=False, enable_SIMD=True,
enable_stress_energy_source_terms=False, leave_Ricci_symbolic=True,
output_H_only=False, OMP_pragma_on="i2", func_name_suffix=""):
if includes is None:
includes = []
if enable_SIMD:
includes += [os.path.join("SIMD", "SIMD_intrinsics.h")]
enable_FD_functions = bool(par.parval_from_str("finite_difference::enable_FD_functions"))
if enable_FD_functions:
includes += ["finite_difference_functions.h"]
# Set up the C function for the BSSN constraints
desc = "Evaluate the BSSN constraints"
name = "BSSN_constraints" + func_name_suffix
params = "const paramstruct *restrict params, "
if enable_rfm_precompute:
params += "const rfm_struct *restrict rfmstruct, "
else:
params += "REAL *xx[3], "
params += """
const REAL *restrict in_gfs, const REAL *restrict auxevol_gfs, REAL *restrict aux_gfs"""
# Construct body:
BSSN_constraints_SymbExpressions = BSSN_constraints__generate_symbolic_expressions(enable_stress_energy_source_terms,
leave_Ricci_symbolic=leave_Ricci_symbolic,
output_H_only=output_H_only)
preloop=""
enableCparameters=True
# Set up preloop in case we're outputting code for the Einstein Toolkit (ETK)
if par.parval_from_str("grid::GridFuncMemAccess") == "ETK":
params, preloop = set_ETK_func_params_preloop(func_name_suffix)
enableCparameters=False
FD_outCparams = "outCverbose=False,enable_SIMD=" + str(enable_SIMD)
FD_outCparams += ",GoldenKernelsEnable=" + str(enable_golden_kernels)
FDorder = par.parval_from_str("finite_difference::FD_CENTDERIVS_ORDER")
starttime = print_msg_with_timing("BSSN constraints (FD order="+str(FDorder)+")", msg="Ccodegen", startstop="start")
body = fin.FD_outputC("returnstring", BSSN_constraints_SymbExpressions,
params=FD_outCparams)
print_msg_with_timing("BSSN constraints (FD order="+str(FDorder)+")", msg="Ccodegen", startstop="stop", starttime=starttime)
add_to_Cfunction_dict(
includes=includes,
desc=desc,
name=name, params=params,
preloop=preloop,
body=body,
loopopts=get_loopopts("InteriorPoints", enable_SIMD, enable_rfm_precompute, OMP_pragma_on),
rel_path_to_Cparams=rel_path_to_Cparams, enableCparameters=enableCparameters)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 5: `enforce_detgammahat_constraint()`: Register C function for enforcing the conformal 3-metric $\det{\bar{\gamma}_{ij}}=\det{\hat{\gamma}_{ij}}$ constraint \[Back to [top](toc)\]$$\label{enforce3metric}$$To ensure stability when solving the BSSN equations, we must enforce the conformal 3-metric $\det{\bar{\gamma}_{ij}}=\det{\hat{\gamma}_{ij}}$ constraint (Eq. 53 of [Ruchlin, Etienne, and Baumgarte (2018)](https://arxiv.org/abs/1712.07658)), as [documented in the corresponding NRPy+ tutorial notebook](Tutorial-BSSN_enforcing_determinant_gammabar_equals_gammahat_constraint.ipynb). This function imposes the $\det{\bar{\gamma}_{ij}}=\det{\hat{\gamma}_{ij}}$ constraint.Applying curvilinear boundary conditions should affect the initial data at the outer boundary, and will in general cause the $\det{\bar{\gamma}_{ij}}=\det{\hat{\gamma}_{ij}}$ constraint to be violated there. Thus after we apply these boundary conditions, we must always call the routine for enforcing the $\det{\bar{\gamma}_{ij}}=\det{\hat{\gamma}_{ij}}$ constraint.`add_enforce_detgammahat_constraint_to_Cfunction_dict()` supports the following features* (enabled by default) reference-metric precomputation* (disabled by default) "golden kernels", which greatly increases the C-code generation time in an attempt to reduce computational cost. Most often this results in no speed-up.* (`"i2"` by default) OpenMP pragma acts on which loop (assumes `i2` is outermost and `i0` is innermost loop). For axisymmetric or near-axisymmetric calculations, `"i1"` may be *significantly* faster.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_enforce_detgammahat_constraint_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."),
enable_rfm_precompute=True, enable_golden_kernels=False,
OMP_pragma_on="i2", func_name_suffix=""):
# This function disables SIMD, as it includes cbrt() and abs() functions.
if includes is None:
includes = []
# This function does not use finite differences!
# enable_FD_functions = bool(par.parval_from_str("finite_difference::enable_FD_functions"))
# if enable_FD_functions:
# includes += ["finite_difference_functions.h"]
# Set up the C function for enforcing the det(gammabar) = det(gammahat) BSSN algebraic constraint
desc = "Enforce the det(gammabar) = det(gammahat) (algebraic) constraint"
name = "enforce_detgammahat_constraint" + func_name_suffix
params = "const paramstruct *restrict params, "
if enable_rfm_precompute:
params += "const rfm_struct *restrict rfmstruct, "
else:
params += "REAL *xx[3], "
params += "REAL *restrict in_gfs"
# Construct body:
enforce_detg_constraint_symb_expressions = EGC.Enforce_Detgammahat_Constraint_symb_expressions()
preloop=""
enableCparameters=True
# Set up preloop in case we're outputting code for the Einstein Toolkit (ETK)
if par.parval_from_str("grid::GridFuncMemAccess") == "ETK":
params, preloop = set_ETK_func_params_preloop(func_name_suffix, enable_SIMD=False)
enableCparameters=False
FD_outCparams = "outCverbose=False,enable_SIMD=False"
FD_outCparams += ",GoldenKernelsEnable=" + str(enable_golden_kernels)
starttime = print_msg_with_timing("Enforcing det(gammabar)=det(gammahat) constraint", msg="Ccodegen", startstop="start")
body = fin.FD_outputC("returnstring", enforce_detg_constraint_symb_expressions,
params=FD_outCparams)
print_msg_with_timing("Enforcing det(gammabar)=det(gammahat) constraint", msg="Ccodegen", startstop="stop", starttime=starttime)
enable_SIMD = False
add_to_Cfunction_dict(
includes=includes,
desc=desc,
name=name, params=params,
preloop=preloop,
body=body,
loopopts=get_loopopts("AllPoints", enable_SIMD, enable_rfm_precompute, OMP_pragma_on),
rel_path_to_Cparams=rel_path_to_Cparams, enableCparameters=enableCparameters)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 6.a: `psi4_part_{0,1,2}()`: Register C function for evaluating Weyl scalar $\psi_4$, in 3 parts (3 functions) \[Back to [top](toc)\]$$\label{psi4}$$$\psi_4$ is a complex scalar related to the gravitational wave strain via$$\psi_4 = \ddot{h}_+ - i \ddot{h}_\times.$$We construct the symbolic expression for $\psi_4$ as described in the [corresponding NRPy+ Jupyter notebook](Tutorial-Psi4.ipynb), in three parts. The below `add_psi4_part_to_Cfunction_dict()` function will construct any of these three parts `0`, `1,` or `2`, and output the part to a function `psi4_part0()`, `psi4_part1()`, or `psi4_part2()`, respectively.`add_psi4_part_to_Cfunction_dict()` supports the following features* (`"0"` by default) which part? (`0`, `1,` or `2`), as described above* (disabled by default) "setPsi4tozero", which effectively turns this into a dummy function -- for when $\psi_4$ is not needed, and it's easier to just set `psi_4=0` instead of calculating it.* (`"i2"` by default) OpenMP pragma acts on which loop (assumes `i2` is outermost and `i0` is innermost loop). For axisymmetric or near-axisymmetric calculations, `"i1"` may be *significantly* faster.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_psi4_part_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."), whichpart=0,
setPsi4tozero=False, OMP_pragma_on="i2"):
starttime = print_msg_with_timing("psi4, part " + str(whichpart), msg="Ccodegen", startstop="start")
# Set up the C function for psi4
if includes is None:
includes = []
includes += ["NRPy_function_prototypes.h"]
desc = "Compute psi4 at all interior gridpoints, part " + str(whichpart)
name = "psi4_part" + str(whichpart)
params = """const paramstruct *restrict params, const REAL *restrict in_gfs, REAL *restrict xx[3], REAL *restrict aux_gfs"""
body = ""
gri.register_gridfunctions("AUX", ["psi4_part" + str(whichpart) + "re", "psi4_part" + str(whichpart) + "im"])
FD_outCparams = "outCverbose=False,enable_SIMD=False,CSE_sorting=none"
if not setPsi4tozero:
# Set the body of the function
# First compute the symbolic expressions
psi4.Psi4(specify_tetrad=False)
# We really don't want to store these "Cparameters" permanently; they'll be set via function call...
# so we make a copy of the original par.glb_Cparams_list (sans tetrad vectors) and restore it below
Cparams_list_orig = par.glb_Cparams_list.copy()
par.Cparameters("REAL", __name__, ["mre4U0", "mre4U1", "mre4U2", "mre4U3"], [0, 0, 0, 0])
par.Cparameters("REAL", __name__, ["mim4U0", "mim4U1", "mim4U2", "mim4U3"], [0, 0, 0, 0])
par.Cparameters("REAL", __name__, ["n4U0", "n4U1", "n4U2", "n4U3"], [0, 0, 0, 0])
body += """
REAL mre4U0,mre4U1,mre4U2,mre4U3,mim4U0,mim4U1,mim4U2,mim4U3,n4U0,n4U1,n4U2,n4U3;
psi4_tetrad(params,
in_gfs[IDX4S(CFGF, i0,i1,i2)],
in_gfs[IDX4S(HDD00GF, i0,i1,i2)],
in_gfs[IDX4S(HDD01GF, i0,i1,i2)],
in_gfs[IDX4S(HDD02GF, i0,i1,i2)],
in_gfs[IDX4S(HDD11GF, i0,i1,i2)],
in_gfs[IDX4S(HDD12GF, i0,i1,i2)],
in_gfs[IDX4S(HDD22GF, i0,i1,i2)],
&mre4U0,&mre4U1,&mre4U2,&mre4U3,&mim4U0,&mim4U1,&mim4U2,&mim4U3,&n4U0,&n4U1,&n4U2,&n4U3,
xx, i0,i1,i2);
"""
body += "REAL xCart_rel_to_globalgrid_center[3];\n"
body += "xx_to_Cart(params, xx, i0, i1, i2, xCart_rel_to_globalgrid_center);\n"
body += "int ignore_Cart_to_i0i1i2[3]; REAL xx_rel_to_globalgridorigin[3];\n"
body += "Cart_to_xx_and_nearest_i0i1i2_global_grid_center(params, xCart_rel_to_globalgrid_center,xx_rel_to_globalgridorigin,ignore_Cart_to_i0i1i2);\n"
for i in range(3):
body += "const REAL xx" + str(i) + "=xx_rel_to_globalgridorigin[" + str(i) + "];\n"
body += fin.FD_outputC("returnstring",
[lhrh(lhs=gri.gfaccess("in_gfs", "psi4_part" + str(whichpart) + "re"),
rhs=psi4.psi4_re_pt[whichpart]),
lhrh(lhs=gri.gfaccess("in_gfs", "psi4_part" + str(whichpart) + "im"),
rhs=psi4.psi4_im_pt[whichpart])],
params=FD_outCparams)
par.glb_Cparams_list = Cparams_list_orig.copy()
elif setPsi4tozero:
body += fin.FD_outputC("returnstring",
[lhrh(lhs=gri.gfaccess("in_gfs", "psi4_part" + str(whichpart) + "re"),
rhs=sp.sympify(0)),
lhrh(lhs=gri.gfaccess("in_gfs", "psi4_part" + str(whichpart) + "im"),
rhs=sp.sympify(0))],
params=FD_outCparams)
enable_SIMD = False
enable_rfm_precompute = False
print_msg_with_timing("psi4, part " + str(whichpart), msg="Ccodegen", startstop="stop", starttime=starttime)
add_to_Cfunction_dict(
includes=includes,
desc=desc,
name=name, params=params,
body=body,
loopopts=get_loopopts("InteriorPoints", enable_SIMD, enable_rfm_precompute, OMP_pragma_on,
enable_xxs=False),
rel_path_to_Cparams=rel_path_to_Cparams)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 6.b: `psi4_tetrad()`: Register C function for evaluating Weyl scalar $\psi_4$ tetrad \[Back to [top](toc)\]$$\label{psi4_tetrad}$$Computing $\psi_4$ requires that an observer tetrad be specified. We adopt a "quasi-Kinnersley tetrad" as described in [the corresponding NRPy+ tutorial notebook](Tutorial-Psi4_tetrads.ipynb).`add_psi4_tetrad_to_Cfunction_dict()` supports the following features* (disabled by default) "setPsi4tozero", which effectively turns this into a dummy function -- for when $\psi_4$ is not needed, and it's easier to just set `psi_4=0` instead of calculating it.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_psi4_tetrad_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."), setPsi4tozero=False):
starttime = print_msg_with_timing("psi4 tetrads", msg="Ccodegen", startstop="start")
# Set up the C function for BSSN basis transformations
desc = "Compute tetrad for psi4"
name = "psi4_tetrad"
# First set up the symbolic expressions (RHSs) and their names (LHSs)
psi4tet.Psi4_tetrads()
list_of_varnames = []
list_of_symbvars = []
for i in range(4):
list_of_varnames.append("*mre4U" + str(i))
list_of_symbvars.append(psi4tet.mre4U[i])
for i in range(4):
list_of_varnames.append("*mim4U" + str(i))
list_of_symbvars.append(psi4tet.mim4U[i])
for i in range(4):
list_of_varnames.append("*n4U" + str(i))
list_of_symbvars.append(psi4tet.n4U[i])
paramsindent = " "
params = """const paramstruct *restrict params,\n""" + paramsindent
list_of_metricvarnames = ["cf"]
for i in range(3):
for j in range(i, 3):
list_of_metricvarnames.append("hDD" + str(i) + str(j))
for var in list_of_metricvarnames:
params += "const REAL " + var + ","
params += "\n" + paramsindent
for var in list_of_varnames:
params += "REAL " + var + ","
params += "\n" + paramsindent + "REAL *restrict xx[3], const int i0,const int i1,const int i2"
# Set the body of the function
body = ""
outCparams = "includebraces=False,outCverbose=False,enable_SIMD=False,preindent=1"
if not setPsi4tozero:
for i in range(3):
body += " const REAL xx" + str(i) + " = xx[" + str(i) + "][i" + str(i) + "];\n"
body += " // Compute tetrads:\n"
body += " {\n"
# Sort the lhss list alphabetically, and rhss to match:
lhss, rhss = [list(x) for x in zip(*sorted(zip(list_of_varnames, list_of_symbvars), key=lambda pair: pair[0]))]
body += outputC(rhss, lhss, filename="returnstring", params=outCparams)
body += " }\n"
elif setPsi4tozero:
body += "return;\n"
loopopts = ""
print_msg_with_timing("psi4 tetrads", msg="Ccodegen", startstop="stop", starttime=starttime)
add_to_Cfunction_dict(
includes=includes,
desc=desc,
name=name, params=params,
body=body,
loopopts=loopopts,
rel_path_to_Cparams=rel_path_to_Cparams)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 6.c: `SpinWeight_minus2_SphHarmonics()`: Register C function for evaluating spin-weight $s=-2$ spherical harmonics \[Back to [top](toc)\]$$\label{swm2}$$After evaluating $\psi_4$ at all interior gridpoints on a numerical grid, we next decompose $\psi_4$ into spin-weight $s=-2$ spherical harmonics, which are documented in [this NRPy+ tutorial notebook](Tutorial-SpinWeighted_Spherical_Harmonics.ipynb).`SpinWeight_minus2_SphHarmonics()` supports the following features* (`"8"` by default) `maximum_l`, the maximum $\ell$ mode to output. Symbolic expressions $(\ell,m)$ modes up to and including `maximum_l` will be output.Also to enable parallel C-code kernel generation, the NRPy+ environment is pickled and returned. | def add_SpinWeight_minus2_SphHarmonics_to_Cfunction_dict(includes=None, rel_path_to_Cparams=os.path.join("."),
maximum_l=8):
starttime = print_msg_with_timing("Spin-weight s=-2 Spherical Harmonics", msg="Ccodegen", startstop="start")
# Set up the C function for computing the spin-weight -2 spherical harmonic at theta,phi: Y_{s=-2, l,m}(theta,phi)
prefunc = r"""// Compute at a single point (th,ph) the spin-weight -2 spherical harmonic Y_{s=-2, l,m}(th,ph)
// Manual "inline void" of this function results in compilation error with clang.
void SpinWeight_minus2_SphHarmonics(const int l, const int m, const REAL th, const REAL ph,
REAL *reYlmswm2_l_m, REAL *imYlmswm2_l_m) {
"""
# Construct prefunc:
outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
prefunc += """
switch(l) {
"""
for l in range(maximum_l + 1): # Output values up to and including l=8.
prefunc += " case " + str(l) + ":\n"
prefunc += " switch(m) {\n"
for m in range(-l, l + 1):
prefunc += " case " + str(m) + ":\n"
prefunc += " {\n"
Y_m2_lm = SWm2SH.Y(-2, l, m, SWm2SH.th, SWm2SH.ph)
prefunc += outputC([sp.re(Y_m2_lm), sp.im(Y_m2_lm)], ["*reYlmswm2_l_m", "*imYlmswm2_l_m"],
"returnstring", outCparams)
prefunc += " }\n"
prefunc += " return;\n"
prefunc += " } // END switch(m)\n"
prefunc += " } // END switch(l)\n"
prefunc += r"""
fprintf(stderr, "ERROR: SpinWeight_minus2_SphHarmonics handles only l=[0,"""+str(maximum_l)+r"""] and only m=[-l,+l] is defined.\n");
fprintf(stderr, " You chose l=%d and m=%d, which is out of these bounds.\n",l,m);
exit(1);
}
void lowlevel_decompose_psi4_into_swm2_modes(const int Nxx_plus_2NGHOSTS1,const int Nxx_plus_2NGHOSTS2,
const REAL dxx1, const REAL dxx2,
const REAL curr_time, const REAL R_ext,
const REAL *restrict th_array, const REAL *restrict sinth_array, const REAL *restrict ph_array,
const REAL *restrict psi4r_at_R_ext, const REAL *restrict psi4i_at_R_ext) {
for(int l=2;l<="""+str(maximum_l)+r""";l++) { // The maximum l here is set in Python.
for(int m=-l;m<=l;m++) {
// Parallelize the integration loop:
REAL psi4r_l_m = 0.0;
REAL psi4i_l_m = 0.0;
#pragma omp parallel for reduction(+:psi4r_l_m,psi4i_l_m)
for(int i1=0;i1<Nxx_plus_2NGHOSTS1-2*NGHOSTS;i1++) {
const REAL th = th_array[i1];
const REAL sinth = sinth_array[i1];
for(int i2=0;i2<Nxx_plus_2NGHOSTS2-2*NGHOSTS;i2++) {
const REAL ph = ph_array[i2];
// Construct integrand for psi4 spin-weight s=-2,l=2,m=0 spherical harmonic
REAL ReY_sm2_l_m,ImY_sm2_l_m;
SpinWeight_minus2_SphHarmonics(l,m, th,ph, &ReY_sm2_l_m,&ImY_sm2_l_m);
const int idx2d = i1*(Nxx_plus_2NGHOSTS2-2*NGHOSTS)+i2;
const REAL a = psi4r_at_R_ext[idx2d];
const REAL b = psi4i_at_R_ext[idx2d];
const REAL c = ReY_sm2_l_m;
const REAL d = ImY_sm2_l_m;
psi4r_l_m += (a*c + b*d) * dxx2 * sinth*dxx1;
psi4i_l_m += (b*c - a*d) * dxx2 * sinth*dxx1;
}
}
// Step 4: Output the result of the integration to file.
char filename[100];
sprintf(filename,"outpsi4_l%d_m%d-r%.2f.txt",l,m, (double)R_ext);
// If you love "+"'s in filenames by all means enable this (ugh):
//if(m>=0) sprintf(filename,"outpsi4_l%d_m+%d-r%.2f.txt",l,m, (double)R_ext);
FILE *outpsi4_l_m;
// 0 = n*dt when n=0 is exactly represented in double/long double precision,
// so no worries about the result being ~1e-16 in double/ld precision
if(curr_time==0) outpsi4_l_m = fopen(filename, "w");
else outpsi4_l_m = fopen(filename, "a");
fprintf(outpsi4_l_m,"%e %.15e %.15e\n", (double)(curr_time),
(double)psi4r_l_m,(double)psi4i_l_m);
fclose(outpsi4_l_m);
}
}
}
"""
desc = ""
name = "driver__spherlikegrids__psi4_spinweightm2_decomposition"
params = r"""const paramstruct *restrict params, REAL *restrict diagnostic_output_gfs,
const int *restrict list_of_R_ext_idxs, const int num_of_R_ext_idxs, const REAL time,
REAL *restrict xx[3],void xx_to_Cart(const paramstruct *restrict params, REAL *restrict xx[3],const int i0,const int i1,const int i2, REAL xCart[3])"""
body = r""" // Step 1: Allocate memory for 2D arrays used to store psi4, theta, sin(theta), and phi.
const int sizeof_2Darray = sizeof(REAL)*(Nxx_plus_2NGHOSTS1-2*NGHOSTS)*(Nxx_plus_2NGHOSTS2-2*NGHOSTS);
REAL *restrict psi4r_at_R_ext = (REAL *restrict)malloc(sizeof_2Darray);
REAL *restrict psi4i_at_R_ext = (REAL *restrict)malloc(sizeof_2Darray);
// ... also store theta, sin(theta), and phi to corresponding 1D arrays.
REAL *restrict sinth_array = (REAL *restrict)malloc(sizeof(REAL)*(Nxx_plus_2NGHOSTS1-2*NGHOSTS));
REAL *restrict th_array = (REAL *restrict)malloc(sizeof(REAL)*(Nxx_plus_2NGHOSTS1-2*NGHOSTS));
REAL *restrict ph_array = (REAL *restrict)malloc(sizeof(REAL)*(Nxx_plus_2NGHOSTS2-2*NGHOSTS));
// Step 2: Loop over all extraction indices:
for(int ii0=0;ii0<num_of_R_ext_idxs;ii0++) {
// Step 2.a: Set the extraction radius R_ext based on the radial index R_ext_idx
REAL R_ext;
{
REAL xCart[3]; xx_to_Cart(params,xx,list_of_R_ext_idxs[ii0],1,1,xCart); // values for itheta and iphi don't matter.
R_ext = sqrt(xCart[0]*xCart[0] + xCart[1]*xCart[1] + xCart[2]*xCart[2]);
}
// Step 2.b: Compute psi_4 at this extraction radius and store to a local 2D array.
const int i0=list_of_R_ext_idxs[ii0];
#pragma omp parallel for
for(int i1=NGHOSTS;i1<Nxx_plus_2NGHOSTS1-NGHOSTS;i1++) {
th_array[i1-NGHOSTS] = xx[1][i1];
sinth_array[i1-NGHOSTS] = sin(xx[1][i1]);
for(int i2=NGHOSTS;i2<Nxx_plus_2NGHOSTS2-NGHOSTS;i2++) {
ph_array[i2-NGHOSTS] = xx[2][i2];
// Compute real & imaginary parts of psi_4, output to diagnostic_output_gfs
const REAL psi4r = (diagnostic_output_gfs[IDX4S(PSI4_PART0REGF, i0,i1,i2)] +
diagnostic_output_gfs[IDX4S(PSI4_PART1REGF, i0,i1,i2)] +
diagnostic_output_gfs[IDX4S(PSI4_PART2REGF, i0,i1,i2)]);
const REAL psi4i = (diagnostic_output_gfs[IDX4S(PSI4_PART0IMGF, i0,i1,i2)] +
diagnostic_output_gfs[IDX4S(PSI4_PART1IMGF, i0,i1,i2)] +
diagnostic_output_gfs[IDX4S(PSI4_PART2IMGF, i0,i1,i2)]);
// Store result to "2D" array (actually 1D array with 2D storage):
const int idx2d = (i1-NGHOSTS)*(Nxx_plus_2NGHOSTS2-2*NGHOSTS)+(i2-NGHOSTS);
psi4r_at_R_ext[idx2d] = psi4r;
psi4i_at_R_ext[idx2d] = psi4i;
}
}
// Step 3: Perform integrations across all l,m modes from l=2 up to and including L_MAX (global variable):
lowlevel_decompose_psi4_into_swm2_modes(Nxx_plus_2NGHOSTS1,Nxx_plus_2NGHOSTS2,
dxx1,dxx2,
time, R_ext, th_array, sinth_array, ph_array,
psi4r_at_R_ext,psi4i_at_R_ext);
}
// Step 4: Free all allocated memory:
free(psi4r_at_R_ext); free(psi4i_at_R_ext);
free(sinth_array); free(th_array); free(ph_array);
"""
print_msg_with_timing("Spin-weight s=-2 Spherical Harmonics", msg="Ccodegen", startstop="stop", starttime=starttime)
add_to_Cfunction_dict(
includes=includes,
prefunc=prefunc,
desc=desc,
name=name, params=params,
body=body,
rel_path_to_Cparams=rel_path_to_Cparams)
return pickle_NRPy_env() | _____no_output_____ | BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 7: Confirm above functions are bytecode-identical to those in `BSSN/BSSN_Ccodegen_library.py` \[Back to [top](toc)\]$$\label{validation}$$ | import BSSN.BSSN_Ccodegen_library as BCL
import sys
funclist = [("print_msg_with_timing", print_msg_with_timing, BCL.print_msg_with_timing),
("get_loopopts", get_loopopts, BCL.get_loopopts),
("register_stress_energy_source_terms_return_T4UU", register_stress_energy_source_terms_return_T4UU, BCL.register_stress_energy_source_terms_return_T4UU),
("BSSN_RHSs__generate_symbolic_expressions", BSSN_RHSs__generate_symbolic_expressions, BCL.BSSN_RHSs__generate_symbolic_expressions),
("add_rhs_eval_to_Cfunction_dict", add_rhs_eval_to_Cfunction_dict, BCL.add_rhs_eval_to_Cfunction_dict),
("Ricci__generate_symbolic_expressions", Ricci__generate_symbolic_expressions, BCL.Ricci__generate_symbolic_expressions),
("add_Ricci_eval_to_Cfunction_dict", add_Ricci_eval_to_Cfunction_dict, BCL.add_Ricci_eval_to_Cfunction_dict),
("BSSN_constraints__generate_symbolic_expressions", BSSN_constraints__generate_symbolic_expressions, BCL.BSSN_constraints__generate_symbolic_expressions),
("add_BSSN_constraints_to_Cfunction_dict", add_BSSN_constraints_to_Cfunction_dict, BCL.add_BSSN_constraints_to_Cfunction_dict),
("add_enforce_detgammahat_constraint_to_Cfunction_dict", add_enforce_detgammahat_constraint_to_Cfunction_dict, BCL.add_enforce_detgammahat_constraint_to_Cfunction_dict),
("add_psi4_part_to_Cfunction_dict", add_psi4_part_to_Cfunction_dict, BCL.add_psi4_part_to_Cfunction_dict),
("add_psi4_tetrad_to_Cfunction_dict", add_psi4_tetrad_to_Cfunction_dict, BCL.add_psi4_tetrad_to_Cfunction_dict),
("add_SpinWeight_minus2_SphHarmonics_to_Cfunction_dict", add_SpinWeight_minus2_SphHarmonics_to_Cfunction_dict, BCL.add_SpinWeight_minus2_SphHarmonics_to_Cfunction_dict)
]
if sys.version_info.major >= 3:
import inspect
for func in funclist:
# https://stackoverflow.com/questions/20059011/check-if-two-python-functions-are-equal
if inspect.getsource(func[1]) != inspect.getsource(func[2]):
print("inspect.getsource(func[1]):")
print(inspect.getsource(func[1]))
print("inspect.getsource(func[2]):")
print(inspect.getsource(func[2]))
print("ERROR: function " + func[0] + " is not the same as the Ccodegen_library version!")
sys.exit(1)
print("PASS! ALL FUNCTIONS ARE IDENTICAL")
else:
print("SORRY CANNOT CHECK FUNCTION IDENTITY WITH PYTHON 2. PLEASE update your Python installation.") | PASS! ALL FUNCTIONS ARE IDENTICAL
| BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Step 8: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-BSSN_time_evolution-C_codegen_library.pdf](Tutorial-BSSN_time_evolution-C_codegen_library.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) | import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface
cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-BSSN_time_evolution-C_codegen_library") | Created Tutorial-BSSN_time_evolution-C_codegen_library.tex, and compiled
LaTeX file to PDF file Tutorial-BSSN_time_evolution-
C_codegen_library.pdf
| BSD-2-Clause | Tutorial-BSSN_time_evolution-C_codegen_library.ipynb | stevenrbrandt/nrpytutorial |
Here we shall import some data taken from HiROS and import into a pandas dataframe for analysis. | # Import required data
broomhall = '../data/broomhall2009.txt'
davies = '../data/davies2014.txt'
file = input("Please select file: 'broomhall' or 'davies': ")
if file == str('broomhall'):
file = broomhall
elif file == str('davies'):
file = davies
else:
print('Please try again')
df = pd.read_csv(file, header=None, delim_whitespace=True, names=['n', 'l', 'nu', 'sg_nu'])
df.head() | Please select file: 'broomhall' or 'davies': broomhall
| MIT | Dan_notebooks/bisondata.ipynb | daw538/y4project |
We can see from the preview above that the file contains a mix of radial modes at increasing orders. To perform any useful analysis, the induvidual modes $l$ must be considered separately. A neat way of doing this is to use a list comprehension, which avoids the need for multiple for loops and appending to arrays each time. This produces separate arrays for each value of $l$ which are contained within an overall list that can be called. | l = [df[(df.l == i)] for i in (range(max(df.l)-min(df.l)+1))]
plt.figure(1)
plt.errorbar(l[0].n, l[0].nu, yerr=l[0].sg_nu, fmt='x')
plt.errorbar(l[1].n, l[1].nu, yerr=l[1].sg_nu, fmt='x')
plt.errorbar(l[2].n, l[2].nu, yerr=l[2].sg_nu, fmt='x')
plt.errorbar(l[3].n, l[3].nu, yerr=l[3].sg_nu, fmt='x')
plt.xlabel('Value of $n$')
plt.ylabel('Frequency ($\mu$Hz)')
plt.show()
print(u"%.5f" % np.median(np.diff(l[0].nu)))
print(u"%.5f" % np.median(np.diff(l[1].nu)))
print(u"%.5f" % np.median(np.diff(l[2].nu)))
print(u"%.5f" % np.median(np.diff(l[3].nu)))
# Échelle Plot for the data
dnu = 135.2
plt.figure(2)
# New plotting method
import itertools
markers = itertools.cycle(('+', '1', 'x', '*'))
for i in range(max(df.l)-min(df.l)+1):
plt.scatter(df.loc[(df.l == i) & (df.n > 11)].nu % dnu, df.loc[(df.l == i) & (df.n > 11)].nu,
label=r'$l=$'+str(i), marker=next(markers))
plt.scatter(df.loc[(df.l == i) & (df.n < 12)].nu % dnu, df.loc[(df.l == i) & (df.n < 12)].nu,
facecolors='none', edgecolors=['lightgrey'], label='')
plt.title('Échelle Diagram for Sun')
plt.xlabel('Modulo Frequency Spacing ('+ str(dnu) +') $\mu$Hz')
plt.ylabel('Frequency ($\mu$Hz)')
plt.legend()
plt.savefig('seminar/solarechelle.pdf', bbox='tight_layout')
plt.show() | _____no_output_____ | MIT | Dan_notebooks/bisondata.ipynb | daw538/y4project |
The above Échelle diagrams show how the four lowest modes form broadly straight lines in modulo frequency space, though there are significant deviations that form a tail at the lower values of $n$ (visible as faint circles). We shall select only the $l=0$ modes for analysis. Using Vrard PaperTo compute the local frequency separation for a mode $\nu_{n,0}$ we use the average difference over the adjacent modes$$ \Delta\nu(n) = \frac{\nu_{n+1,0} - \nu_{n-1,0}}{2}$$which cannot be appropriately calculated for modes the limits of n.The asymptotic dependence of the large frequency separation wrt. n is given in the paper as$$ \Delta\nu_{\textrm{up}}(n) = \left( 1 + \alpha\left(n-n_\textrm{max}\right)\right) \left$$where $\alpha$ is defined by the power law $\alpha = A\left^Β$. In the paper, the constants are set as $A=0.015$ and $B=-0.32$Having calulated these extra frequencies $\Delta\nu_\textrm{up}$, the difference between the theoretical and observed large frequency separation is calculated with $\delta_\textrm{g,obs} = \Delta\nu(n) - \Delta\nu_{\textrm{up}}(n)$ | nmax = 22
# Modelling from Vrard Paper
l0 = df.loc[(df.l == 0) & (df.n > 14)]
l0['dnu_n'] = (l0['nu'].diff(2).shift(-1))/2 # Differences between neighbouring frequencies
alpha = 0.015*np.mean(l0['dnu_n'])**(-0.32) # Equation provided in paper
l0['dnu_up'] = (1 + alpha*(l0['n']-nmax)) * (np.mean(l0['dnu_n'])) # Calculating Δν_up (see equation above)
l0['dg'] = l0['dnu_n']-l0['dnu_up'] # Difference between theoretical and observed large freq spacings
# Plots to replicate results of Figure 2 in the Vrard paper
plt.figure(10, figsize=(12,5))
plt.subplot(1,2,1)
plt.scatter(l0.nu, l0.dnu_n)
plt.xlabel(r'Frequency ($\mu m$)')
plt.ylabel(r'$\Delta\nu(n)$')
plt.subplot(1,2,2)
plt.scatter(l0.nu, l0.dg)
plt.xlabel(r'Frequency ($\mu m$)')
plt.ylabel(r'$\delta_g$')
plt.show()
l0 | /usr/lib/python3.7/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
"""
/usr/lib/python3.7/site-packages/ipykernel_launcher.py:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
if __name__ == '__main__':
/usr/lib/python3.7/site-packages/ipykernel_launcher.py:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
# This is added back by InteractiveShellApp.init_path()
| MIT | Dan_notebooks/bisondata.ipynb | daw538/y4project |
In order to provide Stan with suitable starting parameters (to prevent the complete lack of convergance), we shall first attempt to manually fit a rather basic model to the data.$ \Delta\nu(n+\epsilon) + k(\frac{\nu_\textrm{max}}{\Delta\nu}+n)^2 + A\sin(\omega n+\phi)e^{-(n/\tau)}$where the latter terms represent the curvature and a decaying oscillatory component. $k$ is the curvature parameter, whilst $\tau$ is a decay parameter for the glitch. We can then attempt to replicate this using Stan. | # Look at l=0 data initially only
plt.figure(3, figsize=(7,4))
plt.scatter(l0.nu % dnu, l0.nu,
c=l0.n,cmap='viridis',
label=r'$l=$'+str(0))
plt.colorbar(label=r'Value of $n$')
def model(n, dnu, nmax, epsilon, k, A, omega, phi, tau):
freqs = (n + epsilon) * dnu
freqs += (nmax-n)**2 * k
freqs += A*np.sin(omega*n + phi)*np.exp(-n/tau)
return freqs
n = np.arange(12,30,1)
dnu = 135.2
nmax = 22
epsilon = 1.435
k = 0.14
A = 2.7
omega = 5
phi = 2.5
tau = 10
f = model(n, dnu, nmax, epsilon, k, A, omega, phi, tau)
plt.plot(f % dnu, f, label='Model')
plt.ylabel('Frequency ($\mu$Hz)')
plt.xlabel(r'Mod. Freq. Spacing ('+ str(dnu) +') $\mu$Hz')
plt.legend()
plt.savefig('seminar/solarmodes1.pdf', bbox='tight_layout')
plt.show()
code = '''
functions {
real model(real n, real dnu, real nmax, real epsilon, real k, real A, real omega, real phi, real tau){
return (dnu*(n+epsilon) + k*(nmax - n)^2 + A*sin(omega*n + phi)*exp(-n/tau));
}
}
data {
int N;
real n[N];
real freq[N];
real freq_err[N];
real dnu_guess;
}
parameters {
real<lower = 0> dnu;
real<lower = 0> nmax;
real epsilon;
real k;
real<lower = 0> A;
real<lower = 0> omega;
real<lower = -2.0*pi(), upper = 2.0*pi()> phi;
real<lower = 0> tau;
}
model {
real mod[N];
for (i in 1:N){
mod[i] = model(n[i], dnu, nmax, epsilon, k, A, omega, phi, tau);
}
mod ~ normal(freq, freq_err);
dnu ~ normal(dnu_guess, dnu_guess*0.001);
nmax ~ normal(20,4);
epsilon ~ normal(1.4, 0.1);
k ~ lognormal(log(0.14), 0.3);
A ~ lognormal(log(0.1), 0.3);
omega ~ normal(0.8, 0.1);
tau ~ normal(10,5);
// phi ~ normal(0, 1.5);
}
'''
import pystan
sm = pystan.StanModel(model_code=code)
stan_data = {'N': len(l0['n'].values),
'n': l0['n'].values,
'freq': (l0['nu'].values),
'freq_err': l0['sg_nu'].values,
'dnu_guess': dnu
}
start = {'dnu': dnu,
'nmax': 22,
'epsilon': 1.435,
'k': 0.14,
'A': 0.5,
'omega': 5,
'phi': 2.5,
'tau': 50
}
nchains = 4
fit = sm.sampling(data=stan_data, iter=5000, chains=nchains, init=[start for n in range(nchains)],)
#control=dict(max_treedepth=15))
print(fit)
fit.plot()
plt.savefig('seminar/solarstan.pdf', bbox='tight_layout')
plt.show()
import corner
data = np.vstack([fit['epsilon'], fit['k'], fit['dnu'], fit['nmax'],
fit['A'], fit['omega'], fit['phi'], fit['tau']]).T
corner.corner(data, labels=[r'$\epsilon$', r'$k$',r'$\Delta\nu$',r'$n_{max}$',
r'$A$', r'$\omega$', r'$\phi$', r'$\tau$'])
#, truths=[1.436, 0.07, 0.3, 2, 0])
plt.savefig('seminar/solarcorner.pdf', bbox='tight_layout')
plt.show()
n = np.arange(12,30,1)
plt.figure(4)
plt.scatter(df.loc[(df.l == 0) & (df.n > 11)].nu % 135.2, df.loc[(df.l == 0) & (df.n > 11)].nu,
c='k', marker='x', label=r'$l=$'+str(0))
#c=df.loc[(df.l == 0) & (df.n > 11)].n,cmap='viridis')
mod = 135.2
#plt.colorbar(label=r'Value of $n$')
#f = model(n, dnu, 3050.0, 1.436, 0.07, 0.3, 2, 0)
g = model(n, fit['dnu'].mean(), fit['nmax'].mean(), fit['epsilon'].mean(), fit['k'].mean(),
fit['A'].mean(), fit['omega'].mean(), fit['phi'].mean(), fit['tau'].mean())
plt.plot(f % dnu, f, ':', label='Guess')
plt.plot(g % fit['dnu'].mean(), g, label='Fit')
#plt.plot(g % dnu, g, label='Fit')
plt.errorbar(df.loc[(df.l == 0) & (df.n > 11)].nu % 135.2, df.loc[(df.l == 0) & (df.n > 11)].nu,
xerr=df.loc[(df.l == 0) & (df.n > 11)].sg_nu, zorder=0, fmt="none", label="none",
c='k', capsize=2, markersize=4, elinewidth=1)
plt.ylabel('Frequency')
plt.xlabel(r'Mod. Freq. Spacing ('+ str(mod) +') $\mu$Hz')
plt.xlim(58,68)
plt.legend()
plt.savefig('seminar/solarmodes2.pdf', bbox='tight_layout')
plt.show() | _____no_output_____ | MIT | Dan_notebooks/bisondata.ipynb | daw538/y4project |
Models with Multiple Source Populations *ARES* can handle an arbitrary number of source populations. Toaccess this functionality, create a dictionary representing each sourcepopulation of interest. Below, we'll create a population representative of PopII stars and another representative of PopIII stars.Before we start, it is important to note that in *ARES*, source populations are identified by their spectra over some contiguous interval in photon energy. This can be somewhat counterintuitive. For example, though UV emission from stars and X-ray emission from their compact remnants, e.g., X-ray binary systems, are both natural byproducts of star formation, we treat them as separate source populations in *ARES* even though the emission from each type of source is related to the same rate of star formation. However, because stars and XRBs have very different spectra, whose normalizations are parameterized differently, it is more convenient in the code to keep them separate. Because of this, what you might think of as a single source population (stars and their remnants) actually constitutes *two* source populations in *ARES*. Let's start with a PopII source population, and a few standard imports: | %pylab inline
import ares
import numpy as np
import matplotlib.pyplot as pl
pars = \
{
'problem_type': 100, # Blank slate global 21-cm signal
# Setup star formation
'pop_Tmin{0}': 1e4, # atomic cooling halos
'pop_fstar{0}': 1e-1, # 10% star formation efficiency
# Setup UV emission
'pop_sed_model{0}': True,
'pop_sed{0}': 'bb', # PopII stars -> 10^4 K blackbodies
'pop_temperature{0}': 1e4,
'pop_rad_yield{0}': 1e42,
'pop_fesc{0}': 0.2,
'pop_Emin{0}': 10.19,
'pop_Emax{0}': 24.6,
'pop_EminNorm{0}': 13.6,
'pop_EmaxNorm{0}': 24.6,
'pop_lya_src{0}': True,
'pop_ion_src_cgm{0}': True,
'pop_heat_src_igm{0}': False,
# Setup X-ray emission
'pop_sed{1}': 'pl',
'pop_alpha{1}': -1.5,
'pop_rad_yield{1}': 2.6e38,
'pop_Emin{1}': 2e2,
'pop_Emax{1}': 3e4,
'pop_EminNorm{1}': 5e2,
'pop_EmaxNorm{1}': 8e3,
'pop_lya_src{1}': False,
'pop_ion_src_cgm{1}': False,
'pop_heat_src_igm{1}': True,
'pop_sfr_model{1}': 'link:sfrd:0',
} | _____no_output_____ | MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
**NOTE:** See [problem_types](../problem_types.html) for more information about why we chose ``problem_type=100`` here. We might as well go ahead and run this to establish a baseline: | sim = ares.simulations.Global21cm(**pars)
sim.run()
ax, zax = sim.GlobalSignature(color='k') | # Loaded $ARES/input/inits/inits_planck_TTTEEE_lowl_lowE_best.txt.
##############################################################################################################
#### ARES Simulation: Overview ####
##############################################################################################################
#### ---------------------------------------------------------------------------------------------------- ####
#### Source Populations ####
#### ---------------------------------------------------------------------------------------------------- ####
#### sfrd sed radio O/IR Ly-a LW Ly-C X-ray RTE ####
#### pop #0 : fcoll yes x x x ####
#### pop #1 : link:sfrd:0 yes x ####
#### ---------------------------------------------------------------------------------------------------- ####
#### Physics ####
#### ---------------------------------------------------------------------------------------------------- ####
#### cgm_initial_temperature : [10000.0] ####
#### clumping_factor : 1 ####
#### secondary_ionization : 1 ####
#### approx_Salpha : 1 ####
#### include_He : False ####
#### feedback_LW : False ####
##############################################################################################################
# Loaded $ARES/input/hmf/hmf_ST_planck_TTTEEE_lowl_lowE_best_logM_1400_4-18_z_1201_0-60.hdf5.
| MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
Now, let's add a PopIII-like source population. We'll assume that PopIII sources are brighter on average (in both the UV and X-ray) but live in lower mass halos. We could just copy-pase the dictionary above, change the population ID numbers and, for example, the UV and X-ray ``pop_rad_yield`` parameters. Or, we could use some built-in tricks to speed this up.First, let's take the PopII parameter set and make a ``ParameterBundle`` object: | popII = ares.util.ParameterBundle(**pars) | _____no_output_____ | MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
This let's us easily extract parameters according to their ID number, and assign new ones | popIII_uv = popII.pars_by_pop(0, True)
popIII_uv.num = 2
popIII_xr = popII.pars_by_pop(1, True)
popIII_xr.num = 3 | _____no_output_____ | MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
The second argument tells *ARES* to remove the parameter ID numbers.Now, we can simply reset the ID numbers and update a few important parameters: | popIII_uv['pop_Tmin{2}'] = 300
popIII_uv['pop_Tmax{2}'] = 1e4
popIII_uv['pop_temperature{2}'] = 1e5
popIII_uv['pop_fstar{2}'] = 1e-4
popIII_xr['pop_sfr_model{3}'] = 'link:sfrd:2'
popIII_xr['pop_rad_yield{3}'] = 2.6e39 | _____no_output_____ | MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
Now, let's make the final parameter dictionary and run it: | pars.update(popIII_uv)
pars.update(popIII_xr)
sim2 = ares.simulations.Global21cm(**pars)
sim2.run()
ax, zax = sim.GlobalSignature(color='k')
ax, zax = sim2.GlobalSignature(color='b', ax=ax) | # Loaded $ARES/input/inits/inits_planck_TTTEEE_lowl_lowE_best.txt.
##############################################################################################################
#### ARES Simulation: Overview ####
##############################################################################################################
#### ---------------------------------------------------------------------------------------------------- ####
#### Source Populations ####
#### ---------------------------------------------------------------------------------------------------- ####
#### sfrd sed radio O/IR Ly-a LW Ly-C X-ray RTE ####
#### pop #0 : fcoll yes x x x ####
#### pop #1 : link:sfrd:0 yes x ####
#### pop #2 : fcoll yes x x x ####
#### pop #3 : link:sfrd:2 yes x ####
#### ---------------------------------------------------------------------------------------------------- ####
#### Physics ####
#### ---------------------------------------------------------------------------------------------------- ####
#### cgm_initial_temperature : [10000.0] ####
#### clumping_factor : 1 ####
#### secondary_ionization : 1 ####
#### approx_Salpha : 1 ####
#### include_He : False ####
#### feedback_LW : False ####
##############################################################################################################
# Loaded $ARES/input/hmf/hmf_ST_planck_TTTEEE_lowl_lowE_best_logM_1400_4-18_z_1201_0-60.hdf5.
# Loaded $ARES/input/hmf/hmf_ST_planck_TTTEEE_lowl_lowE_best_logM_1400_4-18_z_1201_0-60.hdf5.
| MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
Note that the parameter file hangs onto the parameters of each population separately. To verify a few key changes, you could do: | len(sim2.pf.pfs)
for key in ['pop_Tmin', 'pop_fstar', 'pop_rad_yield']:
print(key, sim2.pf.pfs[0][key], sim2.pf.pfs[2][key]) | pop_Tmin 10000.0 300
pop_fstar 0.1 0.0001
pop_rad_yield 1e+42 1e+42
| MIT | docs/examples/example_gs_multipop.ipynb | mirochaj/ares |
*This notebook contains material from [PyRosetta](https://RosettaCommons.github.io/PyRosetta.notebooks);content is available [on Github](https://github.com/RosettaCommons/PyRosetta.notebooks.git).* Refinement ProtocolThe entire standard Rosetta refinement protocol, similar to that presented in Bradley, Misura, & Baker 2005, is available as a `Mover`. Note that the protocol can require ~40 minutes for a 100-residue protein. ```sfxn = get_fa_scorefxn()pose = pose_from_pdb("1YY8.clean.pdb")relax = pyrosetta.rosetta.protocols.relax.ClassicRelax()relax.set_scorefxn(sfxn)relax.apply(pose)```Note that this protocol is DEPRECATED and has been for quite some time. You will want to FastRelax() instead. It still takes quite a while. Replace the ClassicRelax() with FastRelax() and run it now. You will see the FastRelax mover used in many tutorials from here on out. FastRelax with constraints on each atom is useful to get a crystal structure into the Rosetta energy function. FastRelax can also be used for flexible-backbone design. These will all be covered in due time. | # Notebook setup
import sys
if 'google.colab' in sys.modules:
!pip install pyrosettacolabsetup
import pyrosettacolabsetup
pyrosettacolabsetup.setup()
print ("Notebook is set for PyRosetta use in Colab. Have fun!")
from pyrosetta import *
from pyrosetta.teaching import *
init() | [0mcore.init: [0mChecking for fconfig files in pwd and ./rosetta/flags
[0mcore.init: [0mRosetta version: PyRosetta4.Release.python36.mac r208 2019.04+release.fd666910a5e fd666910a5edac957383b32b3b4c9d10020f34c1 http://www.pyrosetta.org 2019-01-22T15:55:37
[0mcore.init: [0mcommand: PyRosetta -ex1 -ex2aro -database /Users/kathyle/Computational Protein Prediction and Design/PyRosetta4.Release.python36.mac.release-208/pyrosetta/database
[0mcore.init: [0m'RNG device' seed mode, using '/dev/urandom', seed=-1509889871 seed_offset=0 real_seed=-1509889871
[0mcore.init.random: [0mRandomGenerator:init: Normal mode, seed=-1509889871 RG_type=mt19937
| MIT | notebooks/05.02-Refinement-Protocol.ipynb | So-AI-love/PyRosetta.notebooks |
**Make sure you are in the directory with the pdb files:**`cd google_drive/My\ Drive/student-notebooks/` |
### BEGIN SOLUTION
sfxn = get_score_function()
pose = pose_from_pdb("inputs/1YY8.clean.pdb")
relax = pyrosetta.rosetta.protocols.relax.FastRelax()
relax.set_scorefxn(sfxn)
#Skip for tests
if not os.getenv("DEBUG"):
relax.apply(pose)
### END SOLUTION | [0mcore.scoring.ScoreFunctionFactory: [0mSCOREFUNCTION: [32mref2015[0m
[0mcore.scoring.etable: [0mStarting energy table calculation
[0mcore.scoring.etable: [0msmooth_etable: changing atr/rep split to bottom of energy well
[0mcore.scoring.etable: [0msmooth_etable: spline smoothing lj etables (maxdis = 6)
[0mcore.scoring.etable: [0msmooth_etable: spline smoothing solvation etables (max_dis = 6)
[0mcore.scoring.etable: [0mFinished calculating energy tables.
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/hbonds/ref2015_params/HBPoly1D.csv
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/hbonds/ref2015_params/HBFadeIntervals.csv
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/hbonds/ref2015_params/HBEval.csv
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/hbonds/ref2015_params/DonStrength.csv
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/hbonds/ref2015_params/AccStrength.csv
[0mcore.chemical.GlobalResidueTypeSet: [0mFinished initializing fa_standard residue type set. Created 696 residue types
[0mcore.chemical.GlobalResidueTypeSet: [0mTotal time to initialize 1.07793 seconds.
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/rama/fd/all.ramaProb
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/rama/fd/prepro.ramaProb
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/omega/omega_ppdep.all.txt
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/omega/omega_ppdep.gly.txt
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/omega/omega_ppdep.pro.txt
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/omega/omega_ppdep.valile.txt
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/P_AA_pp/P_AA
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/P_AA_pp/P_AA_n
[0mcore.scoring.P_AA: [0mshapovalov_lib::shap_p_aa_pp_smooth_level of 1( aka low_smooth ) got activated.
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/P_AA_pp/shapovalov/10deg/kappa131/a20.prop
[0mcore.import_pose.import_pose: [0mFile 'inputs/1YY8.clean.pdb' automatically determined to be of type PDB
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CG on residue ARG 18
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CD on residue ARG 18
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NE on residue ARG 18
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CZ on residue ARG 18
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NH1 on residue ARG 18
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NH2 on residue ARG 18
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CG on residue GLN:NtermProteinFull 214
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CD on residue GLN:NtermProteinFull 214
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: OE1 on residue GLN:NtermProteinFull 214
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NE2 on residue GLN:NtermProteinFull 214
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CG on residue ARG 452
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CD on residue ARG 452
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NE on residue ARG 452
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CZ on residue ARG 452
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NH1 on residue ARG 452
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NH2 on residue ARG 452
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CG on residue GLN:NtermProteinFull 648
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: CD on residue GLN:NtermProteinFull 648
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: OE1 on residue GLN:NtermProteinFull 648
[0mcore.conformation.Conformation: [0m[1m[ WARNING ][0m missing heavyatom: NE2 on residue GLN:NtermProteinFull 648
[0mcore.conformation.Conformation: [0mFound disulfide between residues 23 88
[0mcore.conformation.Conformation: [0mcurrent variant for 23 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 88 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 23 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 88 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 134 194
[0mcore.conformation.Conformation: [0mcurrent variant for 134 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 194 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 134 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 194 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 235 308
[0mcore.conformation.Conformation: [0mcurrent variant for 235 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 308 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 235 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 308 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 359 415
[0mcore.conformation.Conformation: [0mcurrent variant for 359 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 415 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 359 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 415 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 457 522
[0mcore.conformation.Conformation: [0mcurrent variant for 457 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 522 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 457 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 522 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 568 628
[0mcore.conformation.Conformation: [0mcurrent variant for 568 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 628 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 568 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 628 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 669 742
[0mcore.conformation.Conformation: [0mcurrent variant for 669 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 742 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 669 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 742 CYD
[0mcore.conformation.Conformation: [0mFound disulfide between residues 793 849
[0mcore.conformation.Conformation: [0mcurrent variant for 793 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 849 CYS
[0mcore.conformation.Conformation: [0mcurrent variant for 793 CYD
[0mcore.conformation.Conformation: [0mcurrent variant for 849 CYD
[0mcore.pack.pack_missing_sidechains: [0mpacking residue number 18 because of missing atom number 6 atom name CG
[0mcore.pack.pack_missing_sidechains: [0mpacking residue number 214 because of missing atom number 6 atom name CG
[0mcore.pack.pack_missing_sidechains: [0mpacking residue number 452 because of missing atom number 6 atom name CG
[0mcore.pack.pack_missing_sidechains: [0mpacking residue number 648 because of missing atom number 6 atom name CG
[0mcore.pack.task: [0mPacker task: initialize from command line()
[0mcore.scoring.ScoreFunctionFactory: [0mSCOREFUNCTION: [32mref2015[0m
[0mbasic.io.database: [0mDatabase file opened: scoring/score_functions/elec_cp_reps.dat
[0mcore.scoring.elec.util: [0mRead 40 countpair representative atoms
[0mcore.pack.dunbrack.RotamerLibrary: [0mshapovalov_lib_fixes_enable option is true.
| MIT | notebooks/05.02-Refinement-Protocol.ipynb | So-AI-love/PyRosetta.notebooks |
Tutorial - Translation> Using the Translation API in AdaptNLP TranslationTranslation is the task of producing the input text in another language.Below, we'll walk through how we can use AdaptNLP's `EasyTranslator` module to translate text with state-of-the-art models. Getting StartedWe'll first import the `EasyTranslator` class from AdaptNLP: | from adaptnlp import EasyTranslator | _____no_output_____ | Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
Then we'll write some example text to use: | text = ["Machine learning will take over the world very soon.",
"Machines can speak in many languages.",] | _____no_output_____ | Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
Followed by instantiating the `EasyTranslator` class: | translator = EasyTranslator() | _____no_output_____ | Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
Next we can translate our text. We pass in the text we wish to translate, optionally a prefix for the t5 model (only used with t5 models), a model name, and any keyword arguments from `Transformers.PreTrainedModel.generate()`.Here we'll pass in `text`, have our model translate from English to German, and use the `t5-small` model. | translations = translator.translate(text = text, t5_prefix="translate English to German", model_name_or_path="t5-small", mini_batch_size=1, min_length=0, max_length=100, early_stopping=True) | _____no_output_____ | Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
And we can look at the outputs: | print("Translations:\n")
for t in translations:
print(t, "\n") | Translations:
Das Maschinenlernen wird die Welt in Kürze übernehmen.
Maschinen können in vielen Sprachen sprechen.
| Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
Finding a Model with the Model Hub Using the `HFModelHub` we can search for any translation models in HuggingFace like so: | from adaptnlp import HFModelHub
hub = HFModelHub()
models = hub.search_model_by_task('translation'); models | _____no_output_____ | Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
From there we can pass in any `HFModelResult` from it. Here we'll use the `t5-small` again: | model = models[-1]
translations = translator.translate(text = text, t5_prefix="translate English to German", model_name_or_path=model, mini_batch_size=1, min_length=0, max_length=100, early_stopping=True) | _____no_output_____ | Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
And see that we get similar results: | print("Translations:\n")
for t in translations:
print(t, "\n") | Translations:
Das Maschinenlernen wird die Welt in Kürze übernehmen.
Maschinen können in vielen Sprachen sprechen.
| Apache-2.0 | nbs/08a_tutorial.translation.ipynb | chsafouane/adaptnlp |
NO2 Prediction by using Machine Learning Regression Analyses in Google Earth Engine **Machine Learning can create a Model to Predict specific value base on existing data set (dependent and independent values).** **Introduction** **Nitrogen Dioxide (NO2) air pollution**.The World Health Organization estimates that air pollution kills 4.2 million people every year. The main effect of breathing in raised levels of NO2 is the increased likelihood of respiratory problems. NO2 inflames the lining of the lungs, and it can reduce immunity to lung infections.There are connections between respiratory deceases / also exposure to viruses and more deadly cases. ***Sources of NO2***:The rapid population growth, The fast urbanization: * Industrial facilities* Fossil fuels (coal, oil and gas)* Increase of transportation – 80 %.The affect air pollution (NO2): population health, and global warming. **Objective**The theme of this project is to create a Model to Predict specific value (NO2) for past years base on existing data set (Landsat and Sentinel-5P(TROPOMI) images) for 2019. These Prediction can be used for Monitoring and Statistical Analyses of developing NO2 over Time. | _____no_output_____ | BSD-3-Clause | scripts_modules/CoLab_Random_Forest_Regression.ipynb | annapav7/NO2-tropomi_prediction_analysis |
|
**DataSet:**The Sentinel-5P satellite with TROPOspheric Monitoring Instrument (TROPOMI) instrument provides high spectral resolution (7x3.5 km2) for all spectral bands to register level of NO2. TROPOMI available from October 13, 2017.Landsat satellite launched in 1972 and images are available for more then 40 years. **Concept:**Regression: The model can make generalizations about new data. The model has been learned from the training data, and can be used to predict the result of test data: here, we might be given an x-value, and the model would allow us to predict the y value. By drawing this separating line, we have learned a model which can generalize to new data. 1._ Install libraries | !pip install earthengine-api
| _____no_output_____ | BSD-3-Clause | scripts_modules/CoLab_Random_Forest_Regression.ipynb | annapav7/NO2-tropomi_prediction_analysis |
2._ Establish connection | !earthengine authenticate | _____no_output_____ | BSD-3-Clause | scripts_modules/CoLab_Random_Forest_Regression.ipynb | annapav7/NO2-tropomi_prediction_analysis |
**`Complete End to End Python code for Random Forest Regression:`** | # Import necessary Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import rasterio as rio
from rasterio.plot import show
# Import the data ( CSV formats)
data = pd.read_csv('name_of_file.csv')
data.head()
# Store the Data in form of dependent and independent variables separatly
X = data.ilog[:, 0:1].values
y = data.ilog[:, 1].values
# Import the Random Forest Regressor
from sklearn.ensemble import RandomForestRegressor
# Craete a Random Forest Regressor object from Random Forest Regressor Class
RFReg = RandomForestRegressor(n_estimators = 100, random_state = 0)
# Fit the random forest regressor with Training Data represented by X_train and y_train
RFReg.fit(X_train, y_train)
#Predicted Height from test dataset w.r.t Random Forest Regression
y_predict_rfr = RFReg.predict((X_test))
#Model Evaluation using R-Square for Random Forest Regression
from sklearn import metrics
r_square = metrics.r2_score(y_test, y_predict_rfr)
print('R-Square Error associated with Random Forest Regression is:', r_square)
''' Visualise the Random Forest Regression by creating range of values from min value of X_train to max value of X_train
having a difference of 0.01 between two consecutive values'''
X_val = np.arange(min(X_train), max(X_train), 0.01)
#Reshape the data into a len(X_val)*1 array in order to make a column out of the X_val values
X_val = X_val.reshape((len(X_val), 1))
#Define a scatter plot for training data
plt.scatter(X_train, y_train, color = 'blue')
#Plot the predicted data
plt.plot(X_val, RFReg.predict(X_val), color = 'red')
#Define the title
plt.title('NO2 prediction using Random Forest Regression')
#Define X axis label
plt.xlabel('NDVI')
#Define Y axis label
plt.ylabel('Level of NO2')
#Set the size of the plot for better clarity
plt.figure(figsize=(1,1))
#Draw the plot
plt.show()
# Predicting Height based on Age using Random Forest Regression
no2_pred = RFReg.predict([[41]])
print("Predicted NO2t: % d"% no2_pred) | _____no_output_____ | BSD-3-Clause | scripts_modules/CoLab_Random_Forest_Regression.ipynb | annapav7/NO2-tropomi_prediction_analysis |
**Model Evaluation** | #Model Evaluation using Mean Square Error (MSE)
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_predict))
#Model Evaluation using Root Mean Square Error (RMSE)
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_predict)))
#Model Evaluation using Mean Absolute Error (MAE)
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_predict))
#Model Evaluation using R-Square
from sklearn import metrics
r_square = metrics.r2_score(y_test, y_predict)
print('R-Square Error:', r_square)
#For Illustration Purpose Only.
#Considering Multiple Linear Equation with two Variables : grade = a0 + a1*time_to_study + a2*class_participation
#Model Evaluation using Adjusted R-Square.
# Here n = no. of observations and p = no. of independent variables
n = 50
p = 2
Adj_r_square = 1-(1-r_square)*(n-1)/(n-p-1)
print('Adjusted R-Square Error:', Adj_r_square) | _____no_output_____ | BSD-3-Clause | scripts_modules/CoLab_Random_Forest_Regression.ipynb | annapav7/NO2-tropomi_prediction_analysis |
Widgets without writing widgets: interact The `interact` function (`ipywidgets.interact`) automatically creates user interface (UI) controls for exploring code and data interactively. It is the easiest way to get started using IPython's widgets. | from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Basic `interact` At the most basic level, `interact` autogenerates UI controls for function arguments, and then calls the function with those arguments when you manipulate the controls interactively. To use `interact`, you need to define a function that you want to explore. Here is a function that triples its argument, `x`. | def f(x):
return 3 * x | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
When you pass this function as the first argument to `interact` along with an integer keyword argument (`x=10`), a slider is generated and bound to the function parameter. | interact(f, x=10); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
When you move the slider, the function is called, and the return value is printed.If you pass `True` or `False`, `interact` will generate a checkbox: | interact(f, x=True); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
If you pass a string, `interact` will generate a `Text` field. | interact(f, x='Hi there!'); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
`interact` can also be used as a decorator. This allows you to define a function and interact with it in a single shot. As this example shows, `interact` also works with functions that have multiple arguments. | @widgets.interact(x=True, y=1.0)
def g(x, y):
return (x, y) | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Fixing arguments using `fixed` There are times when you may want to explore a function using `interact`, but fix one or more of its arguments to specific values. This can be accomplished by wrapping values with the `fixed` function. | def h(p, q):
return (p, q) | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
When we call `interact`, we pass `fixed(20)` for q to hold it fixed at a value of `20`. | interact(h, p=5, q=fixed(20)); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Notice that a slider is only produced for `p` as the value of `q` is fixed. Widget abbreviations When you pass an integer-valued keyword argument of `10` (`x=10`) to `interact`, it generates an integer-valued slider control with a range of `[-10, +3*10]`. In this case, `10` is an *abbreviation* for an actual slider widget:```pythonIntSlider(min=-10, max=30, step=1, value=10)```In fact, we can get the same result if we pass this `IntSlider` as the keyword argument for `x`: | interact(f, x=widgets.IntSlider(min=-10, max=30, step=1, value=10)); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
This examples clarifies how `interact` processes its keyword arguments:1. If the keyword argument is a `Widget` instance with a `value` attribute, that widget is used. Any widget with a `value` attribute can be used, even custom ones.2. Otherwise, the value is treated as a *widget abbreviation* that is converted to a widget before it is used.The following table gives an overview of different widget abbreviations: Keyword argumentWidget `True` or `False`Checkbox `'Hi there'`Text `value` or `(min,max)` or `(min,max,step)` if integers are passedIntSlider `value` or `(min,max)` or `(min,max,step)` if floats are passedFloatSlider `['orange','apple']` or `[('one', 1), ('two', 2)]`DropdownNote that a dropdown is used if a list or a list of tuples is given (signifying discrete choices), and a slider is used if a tuple is given (signifying a range). You have seen how the checkbox and text widgets work above. Here, more details about the different abbreviations for sliders and dropdowns are given.If a 2-tuple of integers is passed `(min, max)`, an integer-valued slider is produced with those minimum and maximum values (inclusively). In this case, the default step size of `1` is used. | interact(f, x=(0, 4)); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
A `FloatSlider` is generated if any of the values are floating point. The step size can be changed by passing a third element in the tuple. | interact(f, x=(0, 10, 0.01)); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Exercise: Reverse some textHere is a function that takes text as an input and returns the text backwards. | def reverse(x):
return x[::-1]
reverse('I am printed backwards.') | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Use `interact` to make interactive controls for this function. | # %load solutions/interact-basic-list/reverse-text.py
| _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
For both integer and float-valued sliders, you can pick the initial value of the widget by passing a default keyword argument to the underlying Python function. Here we set the initial value of a float slider to `5.5`. | @interact(x=(0.0, 20.0, 0.5))
def h(x=5.5):
return x | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Dropdown menus are constructed by passing a list of strings. In this case, the strings are both used as the names in the dropdown menu UI and passed to the underlying Python function. | interact(f, x=['apples','oranges']); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
If you want a dropdown menu that passes non-string values to the Python function, you can pass a list of tuples of the form `('label', value)`. The first items are the names in the dropdown menu UI and the second items are values that are the arguments passed to the underlying Python function. | interact(f, x=[('one', 10), ('two', 20)]); | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Basic interactive plotThough the examples so far in this notebook had very basic output, more interesting possibilities are straightforward. The function below plots a straight line whose slope and intercept are given by its arguments. | %matplotlib widget
import matplotlib.pyplot as plt
import numpy as np
def f(m, b):
plt.figure(2)
plt.clf()
plt.grid()
x = np.linspace(-10, 10, num=1000)
plt.plot(x, m * x + b)
plt.ylim(-5, 5)
plt.show()
| _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
The interactive below displays a line whose slope and intercept is set by the sliders. Note that if the variable containing the widget, `interactive_plot`, is the last thing in the cell it is displayed. | interact(f, m=(-2.0, 2.0), b=(-3, 3, 0.5)) | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Exercise: Make a plotHere is a python function that, given $k$ and $p$, plots $f(x) = \sin(k x - p)$. | def plot_f(k, p):
plt.figure(5)
plt.clf()
plt.grid()
x = np.linspace(0, 4 * np.pi)
y = np.sin(k*x - p)
plt.plot(x, y)
plt.show() | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
Copy the above function definition and make it interactive using `interact`, so that there are sliders for the parameters $k$ and $p$, where $0.5\leq k \leq 2$ and $0 \leq p \leq 2\pi$ (hint: use `np.pi` for $\pi$). | # %load solutions/interact-basic-list/plot-function.py | _____no_output_____ | BSD-3-Clause | notebooks/02.Interact/02.00-Using-Interact.ipynb | ibdafna/tutorial |
We want to analyze participants and patterns of participation across IETF groups. How many people participate, in which groups, how does affiliation, gender, RFC authorship or other characteristics relate to levels of participation, and a variety of other related questions. How do groups relate to one another? Which participants provide important connections between groups? Setup and gather data Start by importing the necessary libraries. | %matplotlib inline
import bigbang.ingress.mailman as mailman
import bigbang.analysis.graph as graph
import bigbang.analysis.process as process
from bigbang.parse import get_date
from bigbang.archive import Archive
import bigbang.utils as utils
import pandas as pd
import datetime
import matplotlib.pyplot as plt
import numpy as np
import math
import pytz
import pickle
import os
import csv
import re
import scipy
import scipy.cluster.hierarchy as sch
import email
#pd.options.display.mpl_style = 'default' # pandas has a set of preferred graph formatting options
plt.rcParams['axes.facecolor'] = 'white'
import seaborn as sns
sns.set()
sns.set_style("white") | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Let's start with a single IETF mailing list. (Later, we can expand to all current groups, or all IETF lists ever.) | list_url = '6lo' # perpass happens to be one that I subscribe to
ietf_archives_dir = '../archives' # relative location of the ietf-archives directory/repo
list_archive = mailman.open_list_archives(list_url, ietf_archives_dir)
activity = Archive(list_archive).get_activity()
people = None
people = pd.DataFrame(activity.sum(0), columns=['6lo']) # sum the message count, rather than by date
people.describe() | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Now repeat, parsing the archives and collecting the activities for all the mailing lists in the corpus. To make this faster, we try to open pre-created `-activity.csv` files which contain the activity summary for the full list archive. These files are created with `bin/mail_to_activity.py` or might be included in the mailing list archive repository. | f = open('../examples/mm.ietf.org.txt', 'r')
ietf_lists = set(f.readlines()) # remove duplicates, which is a bug in list maintenance
list_activities = []
for list_url in ietf_lists:
try:
activity_summary = mailman.open_activity_summary(list_url, ietf_archives_dir)
if activity_summary is not None:
list_activities.append((list_url, activity_summary))
except Exception as e:
print(str(e))
len(list_activities) | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Merge all of the activity summaries together, so that every row is a "From" field, with a column for every mailing list and a cell that includes the number of messages sent to that list. This will be a very sparse, 2-d table. **This operation is a little slow.** Don't repeat this operation without recreating `people` from the cells above. | list_columns = []
for (list_url, activity_summary) in list_activities:
list_name = mailman.get_list_name(list_url)
activity_summary.rename(columns={'Message Count': list_name}, inplace=True) # name the message count column for the list
people = pd.merge(people, activity_summary, how='outer', left_index=True, right_index=True)
list_columns.append(list_name) # keep a list of the columns that specifically represent mailing list message counts
# the original message column was duplicated during the merge process, so we remove it here
people = people.drop(columns=['6lo_y'])
people = people.rename(columns={'6lo_x':'6lo'})
people.describe()
# not sure how the index ended up with NaN values, but need to change them to strings here so additional steps will work
new_index = people.index.fillna('missing')
people.index = new_index | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Split out the email address and header name from the From header we started with. | froms = pd.Series(people.index)
emails = froms.apply(lambda x: email.utils.parseaddr(x)[1])
emails.index = people.index
names = froms.apply(lambda x: email.utils.parseaddr(x)[0])
names.index = people.index
people['email'] = emails
people['name'] = names | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Let's create some summary statistical columns. | people['Total Messages'] = people[list_columns].sum(axis=1)
people['Number of Groups'] = people[list_columns].count(axis=1)
people['Median Messages per Group'] = people[list_columns].median(axis=1)
people['Total Messages'].sum() | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
In this corpus, **101,510** "people" sent a combined total of **1.2 million messages**. Most people sent only 1 message. Participation patterns The vast majority of people send only a few messages, and to only a couple of lists. (These histograms use a log axis for Y, without which you couldn't even see the columns besides the first.) | people[['Total Messages']].plot(kind='hist', bins=100, logy=True, logx=False)
people[['Number of Groups']].plot(kind='hist', bins=100, logy=True, logx=False) | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Let's limit our analysis for now to people who have sent at least 5 messages. We will also create log base 10 versions of our summary columns for easier graphing later. | working = people[people['Total Messages'] > 5]
working['Total Messages (log)'] = np.log10(working['Total Messages'])
working['Number of Groups (log)'] = np.log10(working['Number of Groups'])
| /home/lem/.local/lib/python2.7/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
This is separate from the ipykernel package so we can avoid doing imports until
/home/lem/.local/lib/python2.7/site-packages/ipykernel_launcher.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
after removing the cwd from sys.path.
| MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
The median number of messages that a user sends to a group is also heavily weighted towards a small number, but the curve doesn't seem to drop off in the same extreme manner. There is a non-random tendency to send some messages to a group? | working[['Median Messages per Group']].plot(kind='hist', bins=100, logy=True) | _____no_output_____ | MIT | examples/experimental_notebooks/IETF Participants.ipynb | nllz/bigbang |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.