markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Synthesis
synth_id_list = file_id_list[-dur_test_file_number:] input_lab_file_list = orig_lab_file_list[-dur_test_file_number:] synth_dir = os.path.join(exp_dir, 'synth') if not os.path.exists(synth_dir): os.makedirs(synth_dir) wav_dir = os.path.join(synth_dir, 'wav') if not os.path.exists(wav_dir): os.makedirs(wav_dir) synth_inter_dir = os.path.join(synth_dir, 'inter') if not os.path.exists(synth_inter_dir): os.makedirs(synth_inter_dir) synth_dur_lab_norm_dir = os.path.join(synth_inter_dir, 'dur_lab_norm') if not os.path.exists(synth_dur_lab_norm_dir): os.makedirs(synth_dur_lab_norm_dir) synth_dur_cmp_pred_dir = os.path.join(synth_inter_dir, 'dur_cmp_pred') if not os.path.exists(synth_dur_cmp_pred_dir): os.makedirs(synth_dur_cmp_pred_dir) synth_dur_lab_file_list = gen_file_list(dur_lab_dir, synth_id_list, 'labbin') synth_dur_lab_norm_file_list = gen_file_list(synth_dur_lab_norm_dir, synth_id_list, 'labbin') synth_dur_cmp_pred_file_list = gen_file_list(synth_dur_cmp_pred_dir, synth_id_list, 'cmp') orig_lab_file_list = get_file_list_of_dir(lab_dir) file_id_list = get_file_id_list(orig_lab_file_list) dur_lab_file_list = gen_file_list(dur_lab_dir, file_id_list, 'labbin') dur_lab_no_silence_file_list = gen_file_list(dur_lab_no_silence_dir, file_id_list, 'labbin') dur_lab_no_silence_norm_file_list = gen_file_list(dur_lab_no_silence_norm_dir, file_id_list, 'labbin') dur_dur_file_list = gen_file_list(dur_dur_dir, file_id_list, 'dur') dur_cmp_file_list = gen_file_list(dur_cmp_dir, file_id_list, 'cmp') dur_cmp_no_silence_file_list = gen_file_list(dur_cmp_no_silence_dir, file_id_list, 'cmp') dur_cmp_no_silence_norm_file_list = gen_file_list(dur_cmp_no_silence_norm_dir, file_id_list, 'cmp') synth_acou_lab_norm_dir = os.path.join(synth_inter_dir, 'acou_lab_norm') if not os.path.exists(synth_acou_lab_norm_dir): os.makedirs(synth_acou_lab_norm_dir) synth_acou_cmp_pred_dir = os.path.join(synth_inter_dir, 'acou_cmp_pred') if not os.path.exists(synth_acou_cmp_pred_dir): os.makedirs(synth_acou_cmp_pred_dir) synth_acou_lab_file_list = gen_file_list(synth_acou_lab_norm_dir, synth_id_list, 'labbin') synth_acou_lab_norm_file_list = gen_file_list(synth_acou_lab_norm_dir, synth_id_list, 'labbin') synth_acou_cmp_pred_file_list = gen_file_list(synth_acou_cmp_pred_dir, synth_id_list, 'cmp')
_____no_output_____
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Normalize label files for duration model (silence not removed)
synth_dur_lab_normaliser = MinMaxNormalisation(feature_dimension = dur_lab_dim, min_value = 0.01, max_value = 0.99) synth_dur_lab_normaliser.load_min_max_values(dur_lab_norm_file) synth_dur_lab_normaliser.normalise_data(synth_dur_lab_file_list, synth_dur_lab_norm_file_list) tmp1, num1 = io_funcs.load_binary_file_frame(synth_dur_lab_norm_file_list[0], 368) tmp2, num2 = io_funcs.load_binary_file_frame(synth_dur_lab_file_list[0], 368) print(synth_dur_lab_norm_file_list[0]) print('num1: ', str(num1)) print('num2: ', str(num2)) # print(tmp1[0: 10, :]) # print(synth_dur_lab_norm_file_list[0])
/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/inter/dur_lab_norm/nitech_jp_song070_f001_070.labbin num1: 55 num2: 55
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Predict durations
synth_duration_model = DurationModel(dur_lab_dim, dur_cmp_dim) synth_duration_model.load_state_dict(torch.load(dur_nn_mdl_file)) synth_duration_model.eval() lab, num_frame = io_funcs.load_binary_file_frame(synth_dur_lab_norm_file_list[0], 368) lab = torch.from_numpy(lab) lab = lab[None, :, :] dur_cmp_pred = synth_duration_model(lab) dur_cmp_pred = dur_cmp_pred.detach().numpy()[0] dur_cmp_pred
_____no_output_____
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Denormalization
fid = open(dur_cmp_norm_file, 'rb') dur_cmp_norm_info = np.fromfile(fid, dtype=np.float32) fid.close() dur_cmp_norm_info = dur_cmp_norm_info.reshape(2, -1) dur_cmp_mean = dur_cmp_norm_info[0, ] dur_cmp_std = dur_cmp_norm_info[1, ] print(synth_dur_cmp_pred_file_list[0]) io_funcs.array_to_binary_file(dur_cmp_pred, synth_dur_cmp_pred_file_list[0]) print(dur_cmp_mean) print(dur_cmp_std) synth_dur_denormaliser = MeanVarianceNorm(feature_dimension=dur_cmp_dim) synth_dur_denormaliser.feature_denormalisation(synth_dur_cmp_pred_file_list, synth_dur_cmp_pred_file_list, dur_cmp_mean, dur_cmp_std) dur_cmp_pred, _ = io_funcs.load_binary_file_frame(synth_dur_cmp_pred_file_list[0], 5) print(dur_cmp_pred[:10, :])
[[ 5.551061 15.752278 14.200991 10.206416 5.2901797] [ 5.5533843 15.87799 14.0966015 10.179635 5.295764 ] [ 5.550715 15.884184 14.2144 10.24537 5.2878685] [ 5.5525837 15.890511 14.132585 10.232053 5.256593 ] [ 5.543806 15.852673 14.130717 10.249583 5.27523 ] [ 5.546036 15.958624 14.043604 10.331711 5.2914195] [ 5.55692 16.027588 14.147421 10.241272 5.3083267] [ 5.5535684 15.856915 14.245941 10.315426 5.292195 ] [ 5.5677176 15.877155 14.226478 10.230915 5.242901 ] [ 5.556892 15.876377 14.209519 10.219336 5.262225 ]]
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Change original label files with newly predicted durations
from frontend.parameter_generation import ParameterGeneration from frontend.label_modifier import HTSLabelModification synth_dur_extention_dict = {'dur': '.dur'} synth_dur_out_dimension_dict = {'dur': 5} synth_dur_cmp_dim = 5 synth_dur_list = [os.path.splitext(synth_dur_cmp_pred_file_list[0])[0] + synth_dur_extention_dict['dur']] synth_lab_list = [os.path.splitext(synth_dur_cmp_pred_file_list[0])[0] + '.lab'] print(synth_dur_list) print(synth_lab_list) synth_decomposer = ParameterGeneration(['mgc', 'bap', 'lf0']) synth_decomposer.duration_decomposition(synth_dur_cmp_pred_file_list, synth_dur_cmp_dim, synth_dur_out_dimension_dict, synth_dur_extention_dict) synth_label_modifier = HTSLabelModification(silence_pattern = silence_pattern) synth_label_modifier.modify_duration_labels(input_lab_file_list, synth_dur_list, synth_lab_list)
['/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/inter/dur_cmp_pred/nitech_jp_song070_f001_070.dur'] ['/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/inter/dur_cmp_pred/nitech_jp_song070_f001_070.lab']
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Normalize label files for acoustic model (silence not removed)
synth_acou_lab_normaliser = HTSLabelNormalisation(question, add_frame_features=True, subphone_feats='full') synth_acou_lab_normaliser.perform_normalisation(synth_lab_list, synth_acou_lab_file_list) synth_acou_lab_normaliser = MinMaxNormalisation(feature_dimension = acou_lab_dim, min_value = 0.01, max_value = 0.99) synth_acou_lab_normaliser.load_min_max_values(acou_lab_norm_file) synth_acou_lab_normaliser.normalise_data(synth_acou_lab_file_list, synth_acou_lab_norm_file_list)
_____no_output_____
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Predict acoustic features
synth_acoustic_model = DurationModel(acou_lab_dim, acou_cmp_dim) synth_acoustic_model.load_state_dict(torch.load(acou_nn_mdl_file)) synth_acoustic_model.eval() lab, num_frame = io_funcs.load_binary_file_frame(synth_acou_lab_norm_file_list[0], 377) lab = torch.from_numpy(lab) lab = lab[None, :, :] acou_cmp_pred = synth_acoustic_model(lab) acou_cmp_pred = acou_cmp_pred.detach().numpy()[0] acou_cmp_pred.shape
_____no_output_____
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Denormalization
fid = open(acou_cmp_norm_file, 'rb') acou_cmp_norm_info = np.fromfile(fid, dtype=np.float32) fid.close() acou_cmp_norm_info = acou_cmp_norm_info.reshape(2, -1) acou_cmp_mean = acou_cmp_norm_info[0, ] acou_cmp_std = acou_cmp_norm_info[1, ] print(synth_acou_cmp_pred_file_list[0]) io_funcs.array_to_binary_file(acou_cmp_pred, synth_acou_cmp_pred_file_list[0]) print(acou_cmp_mean) print(acou_cmp_std) synth_acou_denormaliser = MeanVarianceNorm(feature_dimension=acou_cmp_dim) synth_acou_denormaliser.feature_denormalisation(synth_acou_cmp_pred_file_list, synth_acou_cmp_pred_file_list, acou_cmp_mean, acou_cmp_std) dur_cmp_pred, _ = io_funcs.load_binary_file_frame(synth_acou_cmp_pred_file_list[0], 187) print(dur_cmp_pred[:10, :10]) synth_acou_extention_dict = {'lf0': '.lf0', 'mgc': '.mgc', 'bap': '.bap'} synth_acou_out_dimension_dict = {'lf0': 3, 'mgc': 180, 'bap': 3, 'vuv': 1} synth_acou_cmp_dim = 187 # synth_dur_list = [os.path.splitext(synth_dur_cmp_pred_file_list[0])[0] + synth_dur_extention_dict['dur']] # synth_lab_list = [os.path.splitext(synth_dur_cmp_pred_file_list[0])[0] + '.lab'] # print(synth_dur_list) # print(synth_lab_list) synth_decomposer = ParameterGeneration(['mgc', 'bap', 'lf0']) synth_decomposer.acoustic_decomposition(synth_acou_cmp_pred_file_list, synth_acou_cmp_dim, synth_acou_out_dimension_dict, synth_acou_extention_dict, acou_variance_file_dict,True) ## copy features to wav for file in synth_acou_cmp_pred_file_list: base = os.path.splitext(file)[0] for ext in (['.mgc', '.bap', '.lf0']): feat_file = base + ext copy(feat_file, wav_dir)
_____no_output_____
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Synthesize wav
def run_process(args,log=True): logger = logging.getLogger("subprocess") # a convenience function instead of calling subprocess directly # this is so that we can do some logging and catch exceptions # we don't always want debug logging, even when logging level is DEBUG # especially if calling a lot of external functions # so we can disable it by force, where necessary if log: logger.debug('%s' % args) try: # the following is only available in later versions of Python # rval = subprocess.check_output(args) # bufsize=-1 enables buffering and may improve performance compared to the unbuffered case p = subprocess.Popen(args, bufsize=-1, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, env=os.environ) # better to use communicate() than read() and write() - this avoids deadlocks (stdoutdata, stderrdata) = p.communicate() if p.returncode != 0: # for critical things, we always log, even if log==False logger.critical('exit status %d' % p.returncode ) logger.critical(' for command: %s' % args ) logger.critical(' stderr: %s' % stderrdata ) logger.critical(' stdout: %s' % stdoutdata ) raise OSError return (stdoutdata, stderrdata) except subprocess.CalledProcessError as e: # not sure under what circumstances this exception would be raised in Python 2.6 logger.critical('exit status %d' % e.returncode ) logger.critical(' for command: %s' % args ) # not sure if there is an 'output' attribute under 2.6 ? still need to test this... logger.critical(' output: %s' % e.output ) raise except ValueError: logger.critical('ValueError for %s' % args ) raise except OSError: logger.critical('OSError for %s' % args ) raise except KeyboardInterrupt: logger.critical('KeyboardInterrupt during %s' % args ) try: # try to kill the subprocess, if it exists p.kill() except UnboundLocalError: # this means that p was undefined at the moment of the keyboard interrupt # (and we do nothing) pass raise KeyboardInterrupt import pickle with open('/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/test/cfg.pkl', 'rb') as f: cfg = pickle.load(f) def wavgen_straight_type_vocoder(gen_dir, file_id_list, logger): ''' Waveform generation with STRAIGHT or WORLD vocoders. (whose acoustic parameters are: mgc, bap, and lf0) ''' pf_coef = 1.4 fw_coef = 0.58 co_coef = 511 fl_coef = 1024 mgc_dim = 60 fw_alpha = 0.58 sr = 16000 fl = 1024 counter=1 max_counter = len(file_id_list) for filename in file_id_list: logger.info('creating waveform for %4d of %4d: %s' % (counter,max_counter,filename) ) counter=counter+1 base = filename files = {'sp' : base + '.sp', 'mgc' : base + '.mgc', 'f0' : base + '.f0', 'lf0' : base + '.lf0', 'ap' : base + '.ap', 'bap' : base + '.bap', 'wav' : base + '.wav'} mgc_file_name = files['mgc'] bap_file_name = files['bap'] cur_dir = os.getcwd() os.chdir(gen_dir) mgc_file_name = files['mgc']+'_p_mgc' post_filter(files['mgc'], mgc_file_name, mgc_dim, pf_coef, fw_coef, co_coef, fl_coef, gen_dir, SPTK) run_process('{sopr} -magic -1.0E+10 -EXP -MAGIC 0.0 {lf0} | {x2x} +fd > {f0}'.format(sopr=SPTK['SOPR'], lf0=files['lf0'], x2x=SPTK['X2X'], f0=files['f0'])) run_process('{sopr} -c 0 {bap} | {x2x} +fd > {ap}'.format(sopr=SPTK['SOPR'],bap=files['bap'],x2x=SPTK['X2X'],ap=files['ap'])) run_process('{mgc2sp} -a {alpha} -g 0 -m {order} -l {fl} -o 2 {mgc} | {sopr} -d 32768.0 -P | {x2x} +fd > {sp}' .format(mgc2sp=SPTK['MGC2SP'], alpha=fw_alpha, order=mgc_dim-1, fl=fl, mgc=mgc_file_name, sopr=SPTK['SOPR'], x2x=SPTK['X2X'], sp=files['sp'])) run_process('{synworld} {fl} {sr} {f0} {sp} {ap} {wav}' .format(synworld=WORLD['SYNTHESIS'], fl=fl, sr=sr, f0=files['f0'], sp=files['sp'], ap=files['ap'], wav=files['wav'])) # run_process('rm -f {ap} {sp} {f0}'.format(ap=files['ap'],sp=files['sp'],f0=files['f0'])) os.chdir(cur_dir) def post_filter(mgc_file_in, mgc_file_out, mgc_dim, pf_coef, fw_coef, co_coef, fl_coef, gen_dir, SPTK): line = "echo 1 1 " for i in range(2, mgc_dim): line = line + str(pf_coef) + " " run_process('{line} | {x2x} +af > {weight}' .format(line=line, x2x=SPTK['X2X'], weight=os.path.join(gen_dir, 'weight'))) run_process('{freqt} -m {order} -a {fw} -M {co} -A 0 < {mgc} | {c2acr} -m {co} -M 0 -l {fl} > {base_r0}' .format(freqt=SPTK['FREQT'], order=mgc_dim-1, fw=fw_coef, co=co_coef, mgc=mgc_file_in, c2acr=SPTK['C2ACR'], fl=fl_coef, base_r0=mgc_file_in+'_r0')) run_process('{vopr} -m -n {order} < {mgc} {weight} | {freqt} -m {order} -a {fw} -M {co} -A 0 | {c2acr} -m {co} -M 0 -l {fl} > {base_p_r0}' .format(vopr=SPTK['VOPR'], order=mgc_dim-1, mgc=mgc_file_in, weight=os.path.join(gen_dir, 'weight'), freqt=SPTK['FREQT'], fw=fw_coef, co=co_coef, c2acr=SPTK['C2ACR'], fl=fl_coef, base_p_r0=mgc_file_in+'_p_r0')) run_process('{vopr} -m -n {order} < {mgc} {weight} | {mc2b} -m {order} -a {fw} | {bcp} -n {order} -s 0 -e 0 > {base_b0}' .format(vopr=SPTK['VOPR'], order=mgc_dim-1, mgc=mgc_file_in, weight=os.path.join(gen_dir, 'weight'), mc2b=SPTK['MC2B'], fw=fw_coef, bcp=SPTK['BCP'], base_b0=mgc_file_in+'_b0')) run_process('{vopr} -d < {base_r0} {base_p_r0} | {sopr} -LN -d 2 | {vopr} -a {base_b0} > {base_p_b0}' .format(vopr=SPTK['VOPR'], base_r0=mgc_file_in+'_r0', base_p_r0=mgc_file_in+'_p_r0', sopr=SPTK['SOPR'], base_b0=mgc_file_in+'_b0', base_p_b0=mgc_file_in+'_p_b0')) run_process('{vopr} -m -n {order} < {mgc} {weight} | {mc2b} -m {order} -a {fw} | {bcp} -n {order} -s 1 -e {order} | {merge} -n {order2} -s 0 -N 0 {base_p_b0} | {b2mc} -m {order} -a {fw} > {base_p_mgc}' .format(vopr=SPTK['VOPR'], order=mgc_dim-1, mgc=mgc_file_in, weight=os.path.join(gen_dir, 'weight'), mc2b=SPTK['MC2B'], fw=fw_coef, bcp=SPTK['BCP'], merge=SPTK['MERGE'], order2=mgc_dim-2, base_p_b0=mgc_file_in+'_p_b0', b2mc=SPTK['B2MC'], base_p_mgc=mgc_file_out)) return ## copy features to wav for file in synth_acou_cmp_pred_file_list: base = os.path.splitext(file)[0] for ext in (['.mgc', '.bap', '.lf0']): feat_file = base + ext copy(feat_file, wav_dir) logger = logging.getLogger("wav_generation") wavgen_straight_type_vocoder(wav_dir, synth_id_list, logger) print(wav_dir) print(synth_id_list)
/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/wav ['nitech_jp_song070_f001_070']
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
TEST
my_cmp_norm_info_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/acoustic_model/inter/cmp_norm_187.dat' ml_cmp_norm_info_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s1/experiments/acoustic_model/inter_module/norm_info__mgc_lf0_vuv_bap_187_MVN.dat' fid = open(my_cmp_norm_info_file, 'rb') my_cmp_norm_info = np.fromfile(fid, dtype=np.float32) fid.close() my_cmp_norm_info = my_cmp_norm_info.reshape(2, -1) my_cmp_mean = my_cmp_norm_info[0, ] my_cmp_std = my_cmp_norm_info[1, ] fid = open(ml_cmp_norm_info_file, 'rb') ml_cmp_norm_info = np.fromfile(fid, dtype=np.float32) fid.close() ml_cmp_norm_info = ml_cmp_norm_info.reshape(2, -1) ml_cmp_mean = ml_cmp_norm_info[0, ] ml_cmp_std = ml_cmp_norm_info[1, ] print(my_cmp_mean.all() == ml_cmp_mean.all()) print(my_cmp_std.all() == ml_cmp_std.all()) my_cmp_no_silence_norm_file = acou_cmp_no_silence_norm_file_list[0] ml_cmp_no_silence_norm_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s1/experiments/acoustic_model/inter_module/nn_norm_mgc_lf0_vuv_bap_187/nitech_jp_song070_f001_003.cmp' my_cmp_no_silence_norm, my_n_frame = io_funcs.load_binary_file_frame(my_cmp_no_silence_norm_file, 187) ml_cmp_no_silence_norm, ml_n_frame = io_funcs.load_binary_file_frame(ml_cmp_no_silence_norm_file, 187) print(my_n_frame == ml_n_frame) print(my_cmp_no_silence_norm.all() == ml_cmp_no_silence_norm.all()) my_lab_no_silence_norm_file = acou_lab_no_silence_norm_file_list[0] ml_lab_no_silence_norm_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s1/experiments/acoustic_model/inter_module/nn_no_silence_lab_norm_377/nitech_jp_song070_f001_003.lab' my_lab_no_silence_norm, my_n_frame = io_funcs.load_binary_file_frame(my_lab_no_silence_norm_file, 377) ml_lab_no_silence_norm, ml_n_frame = io_funcs.load_binary_file_frame(ml_lab_no_silence_norm_file, 377) print(my_n_frame == ml_n_frame) print(my_lab_no_silence_norm.all() == ml_lab_no_silence_norm.all()) test_cmp_no_silence_norm_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/acoustic_model/inter/cmp_no_silence_norm_187/nitech_jp_song070_f001_003.cmp' test_cmp_file_list = [test_cmp_no_silence_norm_file] test_cmp_no_silence_pred_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/test/nitech_jp_song070_f001_003.cmp' test_denorm_file_list = [test_cmp_no_silence_pred_file] synth_acou_denormaliser = MeanVarianceNorm(feature_dimension=acou_cmp_dim) synth_acou_denormaliser.feature_denormalisation(test_cmp_file_list, test_denorm_file_list, acou_cmp_mean, acou_cmp_std) synth_decomposer.acoustic_decomposition(test_denorm_file_list, synth_acou_cmp_dim, synth_acou_out_dimension_dict, synth_acou_extention_dict, acou_variance_file_dict,True) wavgen_straight_type_vocoder('/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/test/', ['nitech_jp_song070_f001_003'], logger) f0_file = os.path.join(wav_dir, 'nitech_jp_song070_f001_070.f0') mgc_file = '/home/yongliang/third_party/merlin/egs/singing_synthesis/s3/exp/synth/inter/acou_cmp_pred/nitech_jp_song070_f001_070.mgc' f0, n_frame = io_funcs.load_binary_file_frame(f0_file, 1) mgc, n_frame2 = io_funcs.load_binary_file_frame(mgc_file, 60) print(n_frame) print(n_frame2)
_____no_output_____
Apache-2.0
egs/singing_synthesis/s3/run.ipynb
YongliangHe/SingingVoiceSynthesis
Regiment Introduction:Special thanks to: http://chrisalbon.com/ for sharing the dataset and materials. Step 1. Import the necessary libraries
import pandas as pd
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 2. Create the DataFrame with the following values:
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3], 'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 3. Assign it to a variable called regiment. Don't forget to name each column
regiment = pd.DataFrame(raw_data, columns = raw_data.keys()) regiment
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 4. What is the mean preTestScore from the regiment Nighthawks?
regiment[regiment['regiment'] == 'Nighthawks'].groupby('regiment').mean()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 5. Present general statistics by company
regiment.groupby('company').describe()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 6. What is the mean each company's preTestScore?
regiment.groupby('company').preTestScore.mean()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 7. Present the mean preTestScores grouped by regiment and company
regiment.groupby(['regiment', 'company']).preTestScore.mean()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 8. Present the mean preTestScores grouped by regiment and company without heirarchical indexing
regiment.groupby(['regiment', 'company']).preTestScore.mean().unstack()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 9. Group the entire dataframe by regiment and company
regiment.groupby(['regiment', 'company']).mean()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 10. What is the number of observations in each regiment and company
regiment.groupby(['company', 'regiment']).size()
_____no_output_____
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Step 11. Iterate over a group and print the name and the whole data from the regiment
# Group the dataframe by regiment, and for each regiment, for name, group in regiment.groupby('regiment'): # print the name of the regiment print(name) # print the data of that regiment print(group)
Dragoons regiment company name preTestScore postTestScore 4 Dragoons 1st Cooze 3 70 5 Dragoons 1st Jacon 4 25 6 Dragoons 2nd Ryaner 24 94 7 Dragoons 2nd Sone 31 57 Nighthawks regiment company name preTestScore postTestScore 0 Nighthawks 1st Miller 4 25 1 Nighthawks 1st Jacobson 24 94 2 Nighthawks 2nd Ali 31 57 3 Nighthawks 2nd Milner 2 62 Scouts regiment company name preTestScore postTestScore 8 Scouts 1st Sloan 2 62 9 Scouts 1st Piger 3 70 10 Scouts 2nd Riani 2 62 11 Scouts 2nd Ali 3 70
BSD-3-Clause
03_Grouping/Regiment/Exercises_solutions.ipynb
fung991159/pandas_exercise
Introdução
import os import requests import pandas as pd from paths import *
_____no_output_____
MIT
test/1_get_infos.ipynb
gaemapiracicaba/norma_pl_251-21
Função
# Lê o arquivo csv com o nome dos municípios df = pd.read_csv( os.path.join(input_path, 'tab_pl251.csv'), ) # Deleta Coluna df.drop(['municipio_nome'], axis=1, inplace=True) print(list(set(df['unidade']))) df # Lê o arquivo csv com o nome dos municípios df_mun = pd.read_csv( 'https://raw.githubusercontent.com/michelmetran/sp/main/data/tabs/tab_municipio_nome.csv', usecols=['id_municipio', 'municipio_nome'] ) # Merge df = pd.merge( df_mun, df, how='left', left_on='id_municipio', right_on='id_municipio' ) # Results df.head() # Escreve Tabela df.to_csv( os.path.join(tabs_path, 'tab_municipio_pl251.csv'), index=False, )
_____no_output_____
MIT
test/1_get_infos.ipynb
gaemapiracicaba/norma_pl_251-21
Tests:(Chapt 11 conditions: seed 42, elu, learning rate = 0.01, he init, RGB normalization, BN, momentum = 0.9, AdamOpt, 5 layers, 100 neurons per layer, 1000 epochs, batch size 20)With Chapt 11 conditions & 2 outputs:49.70%Without BN:49.80%Without BN or RGB normalization:50.00%Without normalization and with Glorot Normal init (instead of He init):50.00%With He init and learning rate = 0.05:50.00%With He init, RGB normalization, and learning rate = 0.05:54.40%With BN again:50.00%Without BN and with 1140 outputs:50.20%Same as Chapt 11 with GradientDescent instead of AdamOpt and without BN:58.50%With learning rate = 0.05:59.20%Same as Chapt 11 with GradientDescent and momentum = 0.8:58.90%With batch size 5:64.20%Chapt 11 + GD + batch size 5 + 3 layers instead of 5:66.20%
with tf.Session() as sess: saver.restore(sess, "./mini_project_final.ckpt") # or better, use save_path X_new_scaled = X_test[:20] Z = logits.eval(feed_dict={X: X_new_scaled}) y_pred = np.argmax(Z, axis=1) from tensorflow_graph_in_jupyter import show_graph show_graph(tf.get_default_graph())
_____no_output_____
MIT
mini_project.ipynb
prathusb/TensorFlow_NNs
"Working with NumPy"> "Looking at Bangor preciptiation data using only NumPy and matplotlib."- toc: false- badges: true- comments: true- author: Antonio Jurlina- categories: [learning, python]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import os os.chdir('/Users/antoniojurlina/Projects/learning_python/data/') csv = "BangorPrecip.csv" bangorprecip = pd.read_csv(csv, index_col=0) months = bangorprecip.index.to_numpy() years = bangorprecip.columns.to_numpy() bangorprecip = bangorprecip.to_numpy() print(bangorprecip.shape) bangorprecip
(12, 10)
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**1. What was the total cumulative precipitation over the ten years?**
total_precip = np.sum(bangorprecip) print("Total cumulative precipitation over the ten years was", total_precip, "inches.")
Total cumulative precipitation over the ten years was 425.26 inches.
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**2. What was the driest year?**
yearly_totals = bangorprecip.sum(0) precip = float(yearly_totals[yearly_totals == yearly_totals.min()]) year = int(years[yearly_totals == yearly_totals.min()]) print("The driest year was", year, "with a total of", precip, "inches of precipitation.")
The driest year was 2016 with a total of 34.35 inches of precipitation.
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**3. What are the yearly precipitation means?**
averages = bangorprecip.mean(0) %matplotlib inline plt.style.use('ggplot') plt.bar(years, averages) plt.title("Average yearly precipitation") plt.ylabel("Inches") plt.show()
_____no_output_____
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**4. What are the monthly min, mean, and max values over the ten years?**
mins = bangorprecip.min(1) means = bangorprecip.mean(1) maxs = bangorprecip.max(1) %matplotlib inline plt.style.use('ggplot') plt.bar(months, mins, alpha = 0.8) plt.bar(months, means, alpha = 0.6) plt.bar(months, maxs, alpha = 0.4) plt.title("Monthly precipitation") plt.ylabel("Inches") plt.legend(["min", "mean", "max"]) plt.show()
_____no_output_____
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**5. What was the smallest monthly precipitation value and in which month and year did this occur?**
yearly_mins = bangorprecip.min(0) monthly_mins = bangorprecip.min(1) year = int(years[yearly_mins == yearly_mins.min()]) month = int(months[monthly_mins == monthly_mins.min()]) min_precip = bangorprecip.min(1).min() print("The smallest monthly precipitation was ", min_precip, " inches and it occured during ", month,"/",year, ".", sep = "")
The smallest monthly precipitation was 0.58 inches and it occured during 7/2012.
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**6. How many months had precipitation amounts greater than 5 inches?**
answer = np.sum(bangorprecip > 5) print(answer, "months had precitipation amounts greater than 5 inches.")
26 months had precitipation amounts greater than 5 inches.
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**7. How many months had precipitation greater than zero and less than 1.5 inches? What were these values and in what months and years did they occur?**
answer = np.logical_and([bangorprecip > 0], [bangorprecip < 1.5]) print(np.sum(answer), "months had precipitation greater than 0 and less than 1.5 inches.") print("") for count,val in enumerate(years): month = months[bangorprecip[:,count] < 1.5] values = bangorprecip[:,2][bangorprecip[:,count] < 1.5] if sum(values) != 0: print("In", years[count], ", month(s)", month, "had rainfalls of", values, ", respectively.");
9 months had precipitation greater than 0 and less than 1.5 inches. In 2012 , month(s) [ 3 7 11] had rainfalls of [1.4 0.58 1.13] , respectively. In 2013 , month(s) [ 1 10] had rainfalls of [1.95 6.96] , respectively. In 2014 , month(s) [9] had rainfalls of [6.33] , respectively. In 2015 , month(s) [3 7] had rainfalls of [1.4 0.58] , respectively. In 2016 , month(s) [9] had rainfalls of [6.33] , respectively.
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**8. How different were monthly precipitation values in 2019 from 2018?**
nineteen = np.concatenate(bangorprecip[:,years == '2019']) eighteen = np.concatenate(bangorprecip[:,years == '2018']) %matplotlib inline plt.style.use('ggplot') plt.bar(months, nineteen, alpha = 0.7) plt.bar(months, eighteen, alpha = 0.7) plt.title("Monthly precipitation (2018 vs. 2019)") plt.ylabel("Inches") plt.legend(["2019", "2018"]) plt.show()
_____no_output_____
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
**9. Create a heatmap of the 12 x 10 array**
%matplotlib inline plt.style.use('ggplot') imgplot = plt.imshow(bangorprecip, extent=[2010,2019,12,1], aspect='auto', cmap='viridis') plt.colorbar();
_____no_output_____
Apache-2.0
_notebooks/2021-02-07-working-with-numpy.ipynb
antoniojurlina/portfolio
class Student: def __init__ (self, name,student_number,age, school,course): self.name = name self.student_number= student_number self.age= age self.school= school self.course=course def myself(self): print("My Name is", self.name, self.age, "years old.", "My Student Number is", self.student_number,".") print("I'm taking", self.course, "at", self.school) S = Student("Nicole Shaira A. Tabligan", 202150371,19, "Adamson University", "Bachelor of Science in Computer Engineering") S.myself()
My Name is Nicole Shaira A. Tabligan 19 years old. My Student Number is 202150371 . I'm taking Bachelor of Science in Computer Engineering at Adamson University
Apache-2.0
Prelim_Exam.ipynb
NicoleShairaTabligan/OOP-58002
This notebook begins with an example of using the Diagram Generator to generate diagrams for optical nonlinear spectroscopy using the 2D photon echo as an example. We then move on to the fluorescence-detected analogue of 2D photon echo as a counter-point. Following that are further examples. A list of all examples included in this notebook follows, in order of appearance:1. Tranditional 2D photon echo (2DPE)2. Fluorescence-detected 2DPE (or any action detection method)3. Transient Absoroption (TA)4. 5th-order correction to TA in the pump amplitude5. 5th-order correction to TA in the probe amplitude6. Exciton-exciton interaction 2D spectroscopy7. 2DPE for IR vibrational spectroscopy 1. 2DPE Generic case
# initialize the module tdpe = DG() # DiagramAutomation needs to know the phase-matching/-cycling condition # 2DPE example tdpe.set_phase_discrimination([(0,1),(1,0),(1,0)]) # Set the pulse durations t0 = np.linspace(-1,1,num=11) t1 = np.linspace(-2,2,num=21) t2 = np.linspace(-2,2,num=11) tlo = np.linspace(-3,3,num=31) # set the pulse durations of each pulse # the local oscillator does not impact diagram generation, but is still required at this time tdpe.efield_times = [t0,t1,t2,tlo] # using a list of pulse arrival times, we can generate the diagrams that contribute for # that set of arrival times # note the arrival time of the local oscillator is irrelevant, but needed by the code at this time # here we choose for the local oscillator to "arrive" simulltaneously with the 3rd pulse time_ordered_diagrams = tdpe.get_diagrams([0,100,200,200]) time_ordered_diagrams #display the diagrams for visual inspection (takes a few seconds to render) tdpe.display_diagrams(time_ordered_diagrams) all_diagrams = tdpe.get_diagrams([0,1,2,2]) print('There are ',len(all_diagrams),' diagrams in total') # Check in this folder after running this cell to see 16 individual diagrams saved as pdf files tdpe_diagrams_folder = 'TDPE_all_diagrams' os.makedirs(tdpe_diagrams_folder,exist_ok=True) # rendering and saving the diagrams takes a few seconds tdpe.save_diagrams(all_diagrams,folder_name=tdpe_diagrams_folder)
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
To play with different cases where only some of the pulses overlap, uncomment and execute any of the following:
#ab_overlap = tdpe.get_diagrams([0,1,6,6]) #bc_overlap = tdpe.get_diagrams([0,4,6,6]) #ab_bc_overlap = tdpe.get_diagrams([0,3,6,6])
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
And uncomment the following for the case you want to see
#tdpe.display_diagrams(ab_overlap) #<--- change the argument of display diagrams to the case you have uncommented and executed
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
Time-ordered example for only one electronic excited state If the system under study has only one excited electronic state, then the excited-state absoroption process cannot take place. This is captured by setting the attribute 'maximum_manifold' (default value $\infty$) as follows
tdpe.maximum_manifold = 1 time_ordered_diagrams = tdpe.get_diagrams([0,100,200,200]) tdpe.display_diagrams(time_ordered_diagrams)
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
Note that even for the case of a single electronic excitation, if there is a significant electronic relaxation rate, 'maximum_manifold' should not be set to 1, but left at the default value $\infty$ 2. Action-detected 2DPE
tdfs = DG(detection_type='fluorescence') tdfs.set_phase_discrimination([(0,1),(1,0),(1,0),(0,1)]) t3 = np.linspace(-2.5,2.5,num=25) tdfs.efield_times = [t0,t1,t2,t3] time_ordered_diagrams = tdfs.get_diagrams([0,100,200,300]) tdfs.display_diagrams(time_ordered_diagrams) # and all possibly relevant diagrams can be generated by setting the pulse delays so that all pulses overlap all_diagrams = tdfs.get_diagrams([0,1,2,2]) # Check in this folder to see 16 individual diagrams tdfs_diagrams_folder = 'TDFS_all_diagrams' os.makedirs(tdfs_diagrams_folder,exist_ok=True) tdfs.save_diagrams(all_diagrams,folder_name=tdfs_diagrams_folder)
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
To play with different cases where only some of the pulses overlap, uncomment and execute any of the following:
#ab_overlap = tdfs.get_diagrams([0,1,6,12]) #bc_overlap = tdfs.get_diagrams([0,5,5,12]) #cd_overlap = tdfs.get_diagrams([0,5,10,12]) #ab_bc_overlap = tdfs.get_diagrams([0,3,6,12]) #ab_cd_overlap = tdfs.get_diagrams([0,1,10,12]) # and so on
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
And uncomment the following for the case you want to see
#tdfs.display_diagrams(ab_overlap) #<--- change the argument of display diagrams to the case you have uncommented and executed
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
TA
ta = DG() ta.set_phase_discrimination([(1,1),(1,0)]) pump_interval = t0 probe_interval = t1 ta.efield_times = [t0,t1]
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
TA 5th-order corrections Higher order in pump amplitude
ta5order_pump = DG() ta5order_pump.set_phase_discrimination([(2,2),(1,0)]) ta5order_pump.efield_times = [t0,t1] # Time-ordered diagrams ta5order_pump.get_diagrams([0,100,100])
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
Higher order in probe amplitude
ta5order_probe = DG() ta5order_probe.set_phase_discrimination([(1,1),(2,1)]) ta5order_probe.efield_times = [t0,t1] ta5order_probe.get_diagrams([0,100,100])
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
EEI2D
eei2d = DG() eei2d.set_phase_discrimination([(0,2),(2,0),(1,0)]) eei2d.efield_times = [t0,t1,t2,tlo] eei2d.get_diagrams([0,100,200,300])
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
2DPE for IR vibrational spectroscopy For IR vibrational spectroscopy, the 'maximum_manifold' should be set to the default of $\infty$. In addition, the 'minimum_manifold' should be set to a negative number. This is because, outside of zero temperature limit, the initial state of the system is a Boltzmann distribution of vibrational occupational states. The $n=1$ vibrational state can be de-excited once, the $n=2$ vibrational state can be de-excited twice, and so on. Depending on the ratio of $k_BT/\hbar\omega$, where $\omega$ is the vibrational frequency, the initial distribution will contain appreciable weight in the first $n$ vibrational ladder states. This information should be used in setting 'minimum_manifold'. Here are two examples
tdpe.maximum_manifold = np.inf tdpe.minimum_manifold = -1 tdpe.display_diagrams(tdpe.get_diagrams([0,100,200,200])) # or tdpe.maximum_manifold = np.inf tdpe.minimum_manifold = -2 tdpe.display_diagrams(tdpe.get_diagrams([0,100,200,200]))
_____no_output_____
MIT
DiagramGeneratorExample.ipynb
gharib85/ufss
Supplemental TablesThis Jupyter notebook reproduces a number of Supplemental Tables that are not included in any of the other notebooks.
%reload_ext autoreload %autoreload 2 %matplotlib inline import sys sys.path.append('../src') from io import StringIO import numpy as np import pandas as pd
_____no_output_____
MIT
notebooks/A. Supplementary tables.ipynb
jrderuiter/imfusion-analyses
Supplementary Table S2 - ILC insertionsOverview of all insertions identified by IM-Fusion in the ILC dataset.
insertion_column_map = { 'transposon_anchor': 'feature_anchor', 'id': 'insertion_id', 'seqname': 'chromosome', 'orientation': 'gene_orientation' } col_order = ['insertion_id', 'sample', 'chromosome', 'position', 'strand', 'support', 'support_junction', 'support_spanning', 'feature_name','feature_type', 'feature_anchor', 'feature_strand', 'ffpm', 'ffpm_junction', 'ffpm_spanning', 'gene_id', 'gene_name', 'gene_strand', 'gene_orientation', 'novel_transcript'] insertions_sb = ( pd.read_csv('../data/processed/sb/star/insertions.txt', sep='\t') .rename(columns=insertion_column_map)[col_order] .rename(columns=lambda c: c.replace('_', ' ').capitalize())) insertions_sb.to_excel('../reports/supplemental/tables/table_s2_insertions_sb.xlsx', index=False)
_____no_output_____
MIT
notebooks/A. Supplementary tables.ipynb
jrderuiter/imfusion-analyses
Supplementary Table S3 - ILC CTGsOverview of the CTGs identified by IM-Fusion in the ILC dataset.
ctgs = pd.read_csv('../data/processed/sb/star/ctgs.txt', sep='\t') ctg_overview = (ctgs .assign(de_direction=lambda df: df['de_direction'].map({-1: 'down', 1: 'up'})) .drop(['de_test', 'gene_id'], axis=1) .rename(columns={ 'gene_name': 'Gene', 'p_value': 'CTG p-value', 'q_value': 'CTG q-value', 'n_samples': 'Num. samples', 'de_pvalue': 'DE p-value', 'de_direction': 'DE direction' })) ctg_overview.head()
_____no_output_____
MIT
notebooks/A. Supplementary tables.ipynb
jrderuiter/imfusion-analyses
Supplementary Table S5 - B-ALL insertionsOverview of all insertions identified by IM-Fusion in the B-ALL dataset.
insertions_sanger = ( pd.read_csv('../data/processed/sanger/star/insertions.txt', sep='\t') .rename(columns=insertion_column_map)[col_order] .rename(columns=lambda c: c.replace('_', ' ').capitalize())) insertions_sanger.to_excel('../reports/supplemental/tables/table_s5_insertions_sanger.xlsx', index=False)
_____no_output_____
MIT
notebooks/A. Supplementary tables.ipynb
jrderuiter/imfusion-analyses
![images.png]() **Matlotlib**: Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.Website: https://matplotlib.org/GitHub: https://github.com/matplotlib/matplotlib In the previous notebook, we saw some basic examples of plotting and visualization in the context of learning `numpy`. In this notebook, we dive much deeper. The goal is to understand how `matplotlib` represents figures internally.
from matplotlib import pyplot as plt %matplotlib inline
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Figure and Axes The *figure* is the highest level of organization of `matplotlib` objects. If we want, we can create a figure explicitly.
fig = plt.figure() fig = plt.figure(figsize=(13, 5)) fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) fig = plt.figure() ax = fig.add_axes([0, 0, 0.5, 1]) fig = plt.figure() ax1 = fig.add_axes([0, 0, 0.5, 1]) ax2 = fig.add_axes([0.6, 0, 0.3, 0.5], facecolor='g')
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Subplots Subplot syntax is one way to specify the creation of multiple axes.
fig = plt.figure() axes = fig.subplots(nrows=2, ncols=3) fig = plt.figure(figsize=(12, 6)) axes = fig.subplots(nrows=2, ncols=3) axes
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
There is a shorthand for doing this all at once, **which is our recommended way to create new figures!**
fig, ax = plt.subplots() ax fig, axes = plt.subplots(ncols=2, figsize=(8, 4), subplot_kw={'facecolor': 'g'}) axes
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Drawing into Axes All plots are drawn into axes. It is easiest to understand how matplotlib works if you use the [object-oriented](https://matplotlib.org/faq/usage_faq.htmlcoding-styles) style.
# create some data to plot import numpy as np x = np.linspace(-np.pi, np.pi, 100) y = np.cos(x) z = np.sin(6*x) fig, ax = plt.subplots() ax.plot(x, y)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
This does the same thing as
plt.plot(x, y)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
This starts to matter when we have multiple axes to worry about.
fig, axes = plt.subplots(figsize=(8, 4), ncols=2) ax0, ax1 = axes ax0.plot(x, y) ax1.plot(x, z)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Labeling Plots
fig, axes = plt.subplots(figsize=(8, 4), ncols=2) ax0, ax1 = axes ax0.plot(x, y) ax0.set_xlabel('x') ax0.set_ylabel('y') ax0.set_title('x vs. y') ax1.plot(x, z) ax1.set_xlabel('x') ax1.set_ylabel('z') ax1.set_title('x vs. z') # squeeze everything in plt.tight_layout()
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Customizing Line Plots
fig, ax = plt.subplots() ax.plot(x, y, x, z)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
It’s simple to switch axes
fig, ax = plt.subplots() ax.plot(y, x, z, x)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
A “parametric” graph:
fig, ax = plt.subplots() ax.plot(y, z)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Line Styles
fig, axes = plt.subplots(figsize=(16, 5), ncols=3) axes[0].plot(x, y, linestyle='dashed') axes[0].plot(x, z, linestyle='--') axes[1].plot(x, y, linestyle='dotted') axes[1].plot(x, z, linestyle=':') axes[2].plot(x, y, linestyle='dashdot', linewidth=5) axes[2].plot(x, z, linestyle='-.', linewidth=0.5)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Colors As described in the [colors documentation](https://matplotlib.org/2.0.2/api/colors_api.html), there are some special codes for commonly used colors:* b: blue* g: green* r: red* c: cyan* m: magenta* y: yellow* k: black* w: white
fig, ax = plt.subplots() ax.plot(x, y, color='k') ax.plot(x, z, color='r')
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Other ways to specify colors:
fig, axes = plt.subplots(figsize=(16, 5), ncols=3) # grayscale axes[0].plot(x, y, color='0.8') axes[0].plot(x, z, color='0.2') # RGB tuple axes[1].plot(x, y, color=(1, 0, 0.7)) axes[1].plot(x, z, color=(0, 0.4, 0.3)) # HTML hex code axes[2].plot(x, y, color='#00dcba') axes[2].plot(x, z, color='#b029ee')
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
There is a default color cycle built into `matplotlib`.
plt.rcParams['axes.prop_cycle'] fig, ax = plt.subplots(figsize=(12, 10)) for factor in np.linspace(0.2, 1, 11): ax.plot(x, factor*y)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Markers There are [lots of different markers](https://matplotlib.org/api/markers_api.html) availabile in matplotlib!
fig, axes = plt.subplots(figsize=(12, 5), ncols=2) axes[0].plot(x[:20], y[:20], marker='.') axes[0].plot(x[:20], z[:20], marker='o') axes[1].plot(x[:20], z[:20], marker='^', markersize=10, markerfacecolor='r', markeredgecolor='k')
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Label, Ticks, and Gridlines
fig, ax = plt.subplots(figsize=(12, 7)) ax.plot(x, y) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title(r'A complicated math function: $f(x) = \cos(x)$') ax.set_xticks(np.pi * np.array([-1, 0, 1])) ax.set_xticklabels([r'$-\pi$', '0', r'$\pi$']) ax.set_yticks([-1, 0, 1]) ax.set_yticks(np.arange(-1, 1.1, 0.2), minor=True) #ax.set_xticks(np.arange(-3, 3.1, 0.2), minor=True) ax.grid(which='minor', linestyle='--') ax.grid(which='major', linewidth=2)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Axis Limits
fig, ax = plt.subplots() ax.plot(x, y, x, z) ax.set_xlim(-5, 5) ax.set_ylim(-3, 3)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Text Annotations
fig, ax = plt.subplots() ax.plot(x, y) ax.text(-3, 0.3, 'hello world') ax.annotate('the maximum', xy=(0, 1), xytext=(0, 0), arrowprops={'facecolor': 'k'})
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Other 1D Plots Scatter Plots
fig, ax = plt.subplots() splot = ax.scatter(y, z, c=x, s=(100*z**2 + 5)) fig.colorbar(splot)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Bar Plots
labels = ['first', 'second', 'third'] values = [10, 5, 30] fig, axes = plt.subplots(figsize=(10, 5), ncols=2) axes[0].bar(labels, values) axes[1].barh(labels, values)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
2D Plotting Methods imshow
x1d = np.linspace(-2*np.pi, 2*np.pi, 100) y1d = np.linspace(-np.pi, np.pi, 50) xx, yy = np.meshgrid(x1d, y1d) f = np.cos(xx) * np.sin(yy) print(f.shape) fig, ax = plt.subplots(figsize=(12,4), ncols=2) ax[0].imshow(f) ax[1].imshow(f, origin='bottom')
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
pcolormesh
fig, ax = plt.subplots(ncols=2, figsize=(12, 5)) pc0 = ax[0].pcolormesh(x1d, y1d, f) pc1 = ax[1].pcolormesh(xx, yy, f) fig.colorbar(pc0, ax=ax[0]) fig.colorbar(pc1, ax=ax[1]) x_sm, y_sm, f_sm = xx[:10, :10], yy[:10, :10], f[:10, :10] fig, ax = plt.subplots(figsize=(12,5), ncols=2) # last row and column ignored! ax[0].pcolormesh(x_sm, y_sm, f_sm, edgecolors='k') # same! ax[1].pcolormesh(x_sm, y_sm, f_sm[:-1, :-1], edgecolors='k') y_distorted = y_sm*(1 + 0.1*np.cos(6*x_sm)) plt.figure(figsize=(12,6)) plt.pcolormesh(x_sm, y_distorted, f_sm[:-1, :-1], edgecolors='w') plt.scatter(x_sm, y_distorted, c='k')
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
contour / contourf
fig, ax = plt.subplots(figsize=(12, 5), ncols=2) # same thing! ax[0].contour(x1d, y1d, f) ax[1].contour(xx, yy, f) fig, ax = plt.subplots(figsize=(12, 5), ncols=2) c0 = ax[0].contour(xx, yy, f, 5) c1 = ax[1].contour(xx, yy, f, 20) plt.clabel(c0, fmt='%2.1f') plt.colorbar(c1, ax=ax[1]) fig, ax = plt.subplots(figsize=(12, 5), ncols=2) clevels = np.arange(-1, 1, 0.2) + 0.1 cf0 = ax[0].contourf(xx, yy, f, clevels, cmap='RdBu_r', extend='both') cf1 = ax[1].contourf(xx, yy, f, clevels, cmap='inferno', extend='both') fig.colorbar(cf0, ax=ax[0]) fig.colorbar(cf1, ax=ax[1])
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
quiver
u = -np.cos(xx) * np.cos(yy) v = -np.sin(xx) * np.sin(yy) fig, ax = plt.subplots(figsize=(12, 7)) ax.contour(xx, yy, f, clevels, cmap='RdBu_r', extend='both', zorder=0) ax.quiver(xx[::4, ::4], yy[::4, ::4], u[::4, ::4], v[::4, ::4], zorder=1)
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
streamplot
fig, ax = plt.subplots(figsize=(12, 7)) ax.streamplot(xx, yy, u, v, density=2, color=(u**2 + v**2))
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Exercise 3: Replicating Plots using `Matplotlib` and `Numpy` The goal here is to replicate the figures you see as closely as possible. Note that the data in *Part I* is hosted online and updated automatically - your figures may not look exactly the same!In order to get some data, you will have to run the code in the cells below. There is no need to focus on how this code exactly works. In the end, it will give you some `numpy` arrays, which you will use in your plots. This exercise should be done using **only `numpy` and `matplotlib`**. Part I: Line and Contour Plots to Visualize Global Temperature Data The temperature data are from the [NCEP/NCAR atmospheric reanalysis 1](https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html).
import xarray as xr ds_url = 'http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/.CDAS-1/.MONTHLY/.Diagnostic/.surface/.temp/dods' ds = xr.open_dataset(ds_url, decode_times=False) ######################################################### #### BELOW ARE THE VARIABLES YOU SHOULD USE IN THE PLOTS #### (numpy arrays) #### NO XARRAY ALLOWED :) ######################################################### temp = ds.temp[-1].values - 273.15 lon = ds.X.values lat = ds.Y.values
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Below is the figure to replicate using the `numpy` variables `temp`, `lon`, and `lat`.Hint 1: Zonal-mean is synonymous with longitudinal-mean, i.e. the mean must be taken along the `axis` corresponding to `lon`.Hint 2: To create subplots of different sizes, consider reading the [`plt.subplots` documentation](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html).Hint 3: For the left subplot, check out the [2D Plotting Methods section](2D_Plotting_Methods).Hint 4: For the right subplot, check out the [Label, Ticks, and Gridlines subsection](Label).Hint 5: Don't spend too too much time making your figure perfect as there is still a lot of ground to cover in the next notebooks 😀 ![fig2.png]()
# Replicate the figure here
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Part II: Scatter Plots to Visualize Earthquake Data Here, we will make a map plot of earthquakes from a USGS catalog of historic large earthquakes. Color the earthquakes by `log10(depth)` and adjust the marker size to be `magnitude/100`
import pooch fname = pooch.retrieve( "https://unils-my.sharepoint.com/:u:/g/personal/tom_beucler_unil_ch/EW1bnM3elHpAtjb1KtiEw0wB9Pl5w_FwrCvVRlnilXHCtg?download=1", known_hash='22b9f7045bf90fb99e14b95b24c81da3c52a0b4c79acf95d72fbe3a257001dbb', processor=pooch.Unzip() )[0] earthquakes = np.genfromtxt(fname, delimiter='\t') depth = earthquakes[:, 8] magnitude = earthquakes[:, 9] latitude = earthquakes[:, 20] longitude = earthquakes[:, 21]
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Below is the figure to replicate using the `numpy` variables `earthquake`, `depth`, `magnitude`, `latitude`, and `longitude`.Hint: Check out the [Scatter Plots subsection](Scatter) and consider reading the documentation for [`plt.scatter`](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html) and [`plt.colorbar`](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html). ![fig3.png]()
# Replicate the figure here
_____no_output_____
MIT
Lab_Notebooks/S1_3_Matplotlib.ipynb
tbeucler/2022_ML_Earth_Env_Sci
Data Preparation Settings/FunctionsRead in settings and functions.
libraries <-c('here','missForest','stringr','imputeMissings','regclass' ,'purrr','DescTools') suppressWarnings(lapply(libraries, require, character.only = TRUE)) suppressWarnings(source(here::here('Stock Estimation', 'settings.R')))
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
DataRead in the final data set from the data preparation notebook.
data <- fread(paste0(dir$final_data,'combined_financial.csv'))
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
More Cleaning Duplicates
#Checking for duplicate column sums dups <- data[ , which(duplicated(t(data)))] dups <- names(dups) dups #Removing any duplicate column sums after verifying them data <- data %>% dplyr::select(-c(dups)) dim(data) #Looking for missing values & evaluating list of variable names na <- apply(is.na(data),2,sum) max(na) # NOTE: The following code has been commmented out due to the length of its output. #print(na) head(sort(na, decreasing = TRUE), n=25) #Merging and dropping duplicated variable names #NOTE: Portions of the following code has been commmented out due to the length of its output. #view(data[, c("Payout Ratio", "payoutRatio")]) data <- Name_Changer(dat=data,x='Payout Ratio',y='payoutRatio') #view(data[, c('interestCoverage', 'Interest Coverage')]) data <- Name_Changer(dat=data,x='Interest Coverage',y='interestCoverage') #view(data[, c('netProfitMargin', 'Net Profit Margin')]) data <- Name_Changer(dat=data,x='Net Profit Margin',y='netProfitMargin') #view(data[, c('PE ratio', 'priceEarningsRatio')]) data <- Name_Changer(dat=data,x='PE ratio',y='priceEarningsRatio') #view(data[, c('priceToFreeCashFlowsRatio', 'PFCF ratio')]) data <- Name_Changer(dat=data,x='PFCF ratio',y='priceToFreeCashFlowsRatio') #view(data[, c('priceToOperatingCashFlowsRatio', 'POCF ratio')]) data <- Name_Changer(dat=data,x='POCF ratio',y='priceToOperatingCashFlowsRatio') #view(data[, c('priceToSalesRatio', 'Price to Sales Ratio')]) data <- Name_Changer(dat=data,x='Price to Sales Ratio',y='priceToSalesRatio') #view(data[, c('Days Payables Outstanding', 'daysOfPayablesOutstanding')]) data <- Name_Changer(dat=data,x='Days Payables Outstanding',y='daysOfPayablesOutstanding') #view(data[, c('Free Cash Flow per Share', 'freeCashFlowPerShare')]) data <- Name_Changer(dat=data,x='Free Cash Flow per Share',y='freeCashFlowPerShare') #view(data[, c('ROE', 'returnOnEquity')]) data <- Name_Changer(dat=data,x='ROE',y='returnOnEquity') #view(data[, c('priceToBookRatio', 'PTB ratio')]) data <- Name_Changer(dat=data,x='PTB ratio',y='priceToBookRatio') #view(data[, c('priceBookValueRatio', 'PB ratio')]) data <- Name_Changer(dat=data,x='PB ratio',y='priceBookValueRatio') #view(data[, c('operatingCashFlowPerShare', 'Operating Cash Flow per Share')]) data <- Name_Changer(dat=data,x='Operating Cash Flow per Share',y='operatingCashFlowPerShare') #view(data[, c('Cash per Share', 'cashPerShare')]) data <- Name_Changer(dat=data,x='Cash per Share',y='cashPerShare') dim(data)
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Variable Names
#Checking variable names names(data) data <- setDT(data) #Changing all names to lower case and replacing spaces with "_" #Amending various features to make more compatible models names(data) <- str_trim(names(data), side = "both") names(data) <- str_to_lower(names(data), locale = "en") names(data) <- str_replace_all(names(data), " ", "_") names(data) <- str_replace_all(names(data), "-", "") names(data) <- str_replace_all(names(data), "&", ".") names(data) <- str_replace_all(names(data), "\\(", "") names(data) <- str_replace_all(names(data), "\\)", "") names(data) <- str_replace_all(names(data), "3y", "three_yr") names(data) <- str_replace_all(names(data), "5y", "five_yr") names(data) <- str_replace_all(names(data), "10y", "ten_yr") names(data) <- str_replace_all(names(data), "\\\\", "") names(data) <- str_replace_all(names(data), "////", "_") names(data) <- str_replace_all(names(data), ",", "") names(data) <- str_replace_all(names(data), "_._", "_") names(data) <- str_replace_all(names(data), "/", "_") setnames(data, 'eps', 'earnings_per_share') names(data)
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Categorical Encoding
#Categorical Encoding data[, sector := as.factor(sector)] data[, sector_num := as.numeric(sector)] #Reordering data to put "sector" with "sector_num" data <- data %>% dplyr::select('stock','nextyr_price_var','class','year','sector','sector_num', everything()) %>% setDT()
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Missing Data
na <- apply(is.na(data),2,sum) #print(na) max(na) #sort(na, decreasing = TRUE) head(sort(na, decreasing = TRUE), n=25) summary(na) #Checking how many rows are complete sum(complete.cases(data)) #Checking for NA across rows data$na <- rowSums(is.na(data)) max(data$na) head(sort(data$na, decreasing = TRUE),n = 20) summary(data$na) #Found that 50 was a good cut off for dropping rows drop <- data %>% filter(na >= 50) dim(drop) data <- data %>% filter(na <= 50) data <- dplyr::select(data, -c(na)) #Re-checking the NAs across columns na <- apply(is.na(data),2,sum) max(na) # NOTE: The following code has been commmented out due to the length of its output. #print(na) #sort(na, decreasing = TRUE) head(sort(na, decreasing = TRUE), n=25) #Keeping only columns with less than ~15 percent missing perc <- apply(data,2,Perc_Missing) max(perc) # NOTE: The following code has been commmented out due to the length of its output. #print(perc) #sort(perc, decreasing = TRUE) head(sort(perc, decreasing = TRUE), n=25) #Choosing to only keep variables with less than 15% missing data data <- data[, which(apply(data,2,Perc_Missing) < 15.0)]
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Multicollinearity/Linear Dependence/Winsorization
#Splitting datasets data <- setDT(data) data2 <- select(data, c('stock','nextyr_price_var','sector')) data <- select(data, -c('stock','nextyr_price_var','sector')) #Converting class to a factor data <- data[, class := as.factor(class)] #Run regression to identify linearly dependent variables set.seed(123) glm <- suppressWarnings(glm(class~., family = binomial , data = data)) #Find the linearly dependent variables vars <- attributes(alias(glm)$Complete)$dimnames[[1]] vars # Remove the linearly dependent variables remove <- match(vars,names(data)) remove dim(data) data <- select(data, -c(remove)) dim(data) #Re-run regression without linearly dependent variables set.seed(123) glm <- suppressWarnings(glm(class~., family = binomial , data = data)) #NOTE: This section of the code will take some time to run. #The function VIF_Check runs a regression and removes the max #VIF, repeating this process until all VIFs are below threshold #Removing variables with VIFs above 5 data <- VIF_Check(dat=data, threshold=5) #Re-combine data data <- cbind(data2,data) %>% setDT() dim(data) #Re-run regression without linearly dependent variables set.seed(123) glm <- suppressWarnings(glm(class~., family = binomial(link = "logit") , data = data[, -c('stock','nextyr_price_var','sector')], control = list(maxit = 100))) #Split data for winsorization data2 <- select(data, c('class','year','sector_num','stock' ,'nextyr_price_var','sector')) data <- select(data, -c('class','year','sector_num','stock' ,'nextyr_price_var','sector')) #Winsorize each column accordingly data <- map_df(data, ~Winsorize(., probs=c(0.05,0.95),na.rm=TRUE)) #Recombine datasets data <- cbind(data2,data) %>% setDT() dim(data) #Re-run regression to see if error has been corrected #No warning message occurs set.seed(123) glm <- glm(class~., family = binomial(link = "logit") , data = data[, -c('stock','nextyr_price_var','sector')], control = list(maxit = 100)) summary(glm)
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Imputing Missing Values
#Imputation will be implemented if necessary in the modeling notebook
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Uniformity
#Implementing scaling in the modeling notebook
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Additional Cleaning
#No additional cleaning was performed in this notebook
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Save the Modeling Dataset
fwrite(data, paste0(dir$final_data,'clean_financial.csv'))
_____no_output_____
MIT
Stock Estimation/notebooks/3.0_data_preparation.ipynb
ndysle1/R-Projects
Pandas Daten Visualisierung
import numpy as np import pandas as pd %matplotlib inline pd.read_csv('',index_col=0) #die Erste Zeile der csv ist nun der Spaltenindex/Schlüssel pro Zeile #das Styling des Plots wird verändert (rote Balken) #stacked = True -> Werte werden übereinander gelegt #Lineplot s=df1['C']*100 #die Diagrammpkt. werden größer dargestellt
_____no_output_____
MIT
Pandas/Pandas Daten Visualisierung.ipynb
florianfricke/data_science_jupyter_notebooks
Plotly ist eine Visualisierungslibary -> 3D Dia. möglCufflinks verbindet Plotly mit Pandasbeide müssen installiert werdennicht mit Anaconda installierbar -> mit Terminal installieren`pip install plotly` `pip install cufflinks`
import seaborn as sns df = pd.read_csv('tips.csv') df.head() sns.violinplot(x='day', y='total_bill', data=df) sns.violinplot
_____no_output_____
MIT
Pandas/Pandas Daten Visualisierung.ipynb
florianfricke/data_science_jupyter_notebooks
INCIDENCE MATRIX decomposing Incidence matrix and plotting node features(W)
inci = nx.incidence_matrix(G).todense() print(inci.shape) print(inci)
(30, 154) [[ 1. 1. 1. ..., 0. 0. 0.] [ 1. 0. 0. ..., 0. 0. 0.] [ 0. 1. 0. ..., 0. 0. 0.] ..., [ 0. 0. 0. ..., 1. 1. 0.] [ 0. 0. 0. ..., 1. 0. 1.] [ 0. 0. 0. ..., 0. 1. 1.]]
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
NMF Decomposition
from sklearn.decomposition import NMF model = NMF(n_components=2,init='random', random_state=0) W = model.fit_transform(inci) H = model.components_ err = model.reconstruction_err_ it = model.n_iter_ print(err) print(it) print(W.shape) print(H.shape) # print(W[0]) # print(H[:,0])
16.3736251866 89 (30, 2) (2, 154)
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
NMF displaying learned nodes
# displaying learned nodes import matplotlib import numpy as np fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow']#, 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) svd.scatter(W[:, 0], W[:, 1],c=np.array(list(partition.values())),marker='o',s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("W-nodes") plt.show()
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
NMF displaying learned edge vectors(H)
#color edges edges = G.edges() ed_label = [] for ed in edges: if partition[ed[0]]==partition[ed[1]] and partition[ed[0]]==0: ed_label.append(0) elif partition[ed[0]]==partition[ed[1]] and partition[ed[0]]==1: ed_label.append(1) elif partition[ed[0]]==partition[ed[1]] and partition[ed[0]]==2: ed_label.append(2) elif partition[ed[0]]==0 and partition[ed[1]]==1: ed_label.append(3) elif partition[ed[0]]==1 and partition[ed[1]]==2: ed_label.append(4) elif partition[ed[0]]==0 and partition[ed[1]]==2: ed_label.append(5) print(len(edges)) print(len(ed_label)) # displaying learned edge vectors(H) import matplotlib import numpy as np fig = plt.figure(figsize=(10,10)) # 0-0 1-1 2-2 0-1 1-2 0-2 colors=['green','hotpink','yellow', 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) H1 = np.transpose(H) svd.scatter(H1[:, 0], H1[:, 1],c=np.array(ed_label),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("W-edges") plt.show() # PCA and t-SNE for node features (W) from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import normalize fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] # W1 = normalize(W) tsne = fig.add_subplot(1,2,1) X_tsne = TSNE(n_components=2, perplexity=40).fit_transform(W) tsne.scatter(X_tsne[:, 0], X_tsne[:, 1], c=np.array(list(partition.values())),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) tsne.title.set_text("t-SNE") pca = fig.add_subplot(1,2,2) X_pca = PCA(n_components=2).fit_transform(W) pca.scatter(X_pca[:, 0], X_pca[:, 1], c=np.array(list(partition.values())), s=[50, 50], cmap=matplotlib.colors.ListedColormap(colors)) pca.title.set_text("PCA") plt.show() # PCA and t-SNE for edge features (H) from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import normalize fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] H1 = np.transpose(H) # H1 = normalize(H1) tsne = fig.add_subplot(1,2,1) X_tsne = TSNE(n_components=2, perplexity=40).fit_transform(H1) tsne.scatter(X_tsne[:, 0], X_tsne[:, 1], c=np.array(ed_label),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) tsne.title.set_text("t-SNE") pca = fig.add_subplot(1,2,2) X_pca = PCA(n_components=2).fit_transform(H1) pca.scatter(X_pca[:, 0], X_pca[:, 1], c=np.array(ed_label), s=[50, 50], cmap=matplotlib.colors.ListedColormap(colors)) pca.title.set_text("PCA") plt.show()
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
SVD decomposition of Incidence matrix
# SVD decomposition ui,si,vi = np.linalg.svd(inci) print(ui.shape) # u=np.around(u,decimals=5) # print(ui) print(si.shape) # s=np.around(s) # print(si) print(vi.shape) # v=np.around(v,decimals=5) # print(vi)
(30, 30) (30,) (154, 154)
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
SVD features of nodes decomposed from incidence matrix
import matplotlib import numpy as np fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) print(len(list(partition.values()))) print(ui[:,0].shape) svd.scatter([ui[:, 0]], [ui[:, 1]],c=np.array(list(partition.values())),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("U-nodes") plt.show()
30 (30, 1)
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp