markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
SVD features of edges decomposed from incidence matrix
# SVD features of edges decomposed from incidence matrix fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) vi1 = np.transpose(vi) svd.scatter([vi1[:, 0]], [vi1[:, 1]],c=np.array(ed_label),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("W-edges") plt.show()
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
NORMALIZED GRAPH LAPLACIAN Decomposing normalized laplacian and plotting node features(W)
# calculate normalized graph laplacian L = nx.normalized_laplacian_matrix(G).todense() print(L.shape) print(L[0,0:5]) # NMF does not work on input matrix with negative values # from sklearn.decomposition import NMF # model = NMF(n_components=2,init='random', random_state=0) # # decomposing normalized graph laplacian L # W = model.fit_transform(L) # H = model.components_ # err = model.reconstruction_err_ # it = model.n_iter_ # print(err) # print(it) # print(W.shape) # print(H.shape) # print(W[0]) # print(H[:,0])
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
SVD decomposition of normalized graph laplacian
# SVD decomposition ul,sl,vl = np.linalg.svd(L) print(ul.shape) # u=np.around(u,decimals=5) # print(ui) print(sl.shape) # s=np.around(s) # print(si) print(vl.shape) # v=np.around(v,decimals=5) # print(vi)
(30, 30) (30,) (30, 30)
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
displaying SVD node features(U) of laplacian matrix Doing SVD on normalized graph laplacian gives USV^T, where U and V are same, i.e. rows of U are same as clms of V^T. Hence below I displayed node features from U
import matplotlib import numpy as np fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) svd.scatter([ul[:, 0]], [ul[:, 1]],c=np.array(list(partition.values())),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("U-nodes:SVD decomposition of normalized graph laplacian") plt.show() # applying tsne and pca on U-nde features--laplacian matrix from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import normalize fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan', 'red', 'purple'] # normalize ul1 = normalize(ul) tsne = fig.add_subplot(1,2,1) X_tsne = TSNE(n_components=2, perplexity=40).fit_transform(ul1) tsne.scatter(X_tsne[:, 0], X_tsne[:, 1], c=np.array(list(partition.values())),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) tsne.title.set_text("t-SNE") pca = fig.add_subplot(1,2,2) X_pca = PCA(n_components=2).fit_transform(ul1) pca.scatter(X_pca[:, 0], X_pca[:, 1], c=np.array(list(partition.values())), s=[50, 50], cmap=matplotlib.colors.ListedColormap(colors)) pca.title.set_text("PCA") plt.show()
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
ADJACENCY MATRIX Decomposing Adjacency matrix and displaying node featues
Adj = nx.adjacency_matrix(G) print(Adj.todense().shape) # convert adjacency matrix to dense matrix(default format is sparse matrix) AdjDense = Adj.todense()
(30, 30)
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
NMF decomposition of Adjacency matrix
from sklearn.decomposition import NMF model = NMF(n_components=2,init='random', random_state=0) Wa = model.fit_transform(AdjDense) Ha= model.components_ erra = model.reconstruction_err_ ita = model.n_iter_ print(erra) print(ita) print(Wa.shape) print(Ha.shape) print(Wa[0]) print(Ha[:,0]) # displaying learned nodes import matplotlib import numpy as np fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) svd.scatter([Wa[:, 0]], [Wa[:, 1]],c=np.array(list(partition.values())),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("W-nodes:NMF decomposition of Adjacency matrix") plt.show()
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
SVD Decomposition of adjacency matrix
# Calculate SVD (Singular value decomposition) of graph's adjacency matrix ua,sa,va = np.linalg.svd(AdjDense) print(ua.shape) # u=np.around(u,decimals=3) # print(u) print(sa.shape) # s=np.around(s) # print(s) print(va.shape) # v=np.around(v,decimals=3) # print(v) import matplotlib import numpy as np fig = plt.figure(figsize=(10,10)) colors=['green','hotpink','yellow', 'cyan','red','purple'] svd = fig.add_subplot(1,1,1) svd.scatter([ua[:, 0]], [ua[:, 1]],c=np.array(list(partition.values())),s=[50,50],cmap=matplotlib.colors.ListedColormap(colors)) svd.title.set_text("U-nodes:SVD Decomposition of adjacency matrix") plt.show()
_____no_output_____
MIT
incidence-mat-exp.ipynb
supriya-pandhre/incidence-mat-exp
Chellenge 3 Challenge 3.1
myinput = '/home/fmuinos/projects/adventofcode/2016/ferran/inputs/input3.txt' def is_triangle(sides): return sides[0] + sides[1] > sides[2] def no_triangles(path): with open(path,'rt') as f: ntr = 0 for line in f: sides = list(map(int, line.rstrip().split())) if is_triangle(sorted(sides)): ntr += 1 return ntr no_triangles(myinput)
_____no_output_____
MIT
2016/ferran/day3.ipynb
bbglab/adventofcode
Challenge 3.2
def no_triangles_by_cols(path): triangles = [[0,0,0], [0,0,0], [0,0,0]] with open(path,'rt') as f: ntr = 0 i = 1 for line in f: sides = list(map(int, line.rstrip().split())) for j in range(3): triangles[j][i % 3] = sides[j] if i % 3 == 0: for j in range(3): if is_triangle(sorted(triangles[j])): ntr += 1 i += 1 return ntr no_triangles_by_cols(myinput)
_____no_output_____
MIT
2016/ferran/day3.ipynb
bbglab/adventofcode
Agenda **Tópicos**:* Revisão de Python: - Variáveis - Operações Matemáticas* Exercício Prático (Hands on)* Carregamento dos dados* Visualizações Revisão de Python Variáveis Uma variável é um objeto que guarda um valor e armazena esse valor na memória do computador durante o tempo de desenvolvimento. Podemos inicializar uma variável por meio do comando de atribuição '='.
# podemos definir uma variável dando um nome ano = 2020 # para imprimir a variável criada, utilizamos a função print print(ano) salario = 1500 print(salario) salario = 1000 print(salario)
1500 1000
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Operações Matemáticas Com Python podemos realizar operações matemáticas. Com o uso das variáveis isso fica ainda mais poderoso.
salario1 = 1500 salario2 = 1000 print(salario1 + salario2) #soma print(salario1 - salario2) #subtração print(salario1 * salario2) #multiplicação print(salario1 / salario2) #divisão print(salario1 // salario2) #divisão inteira print(salario1 % salario2) #resto da divisão print(salario1 ** 2) #exponenciação
2500 500 1500000 1.5 1 500 2250000
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Exercício Prático (Hands on)* 1. Abrir Google Colab: https://colab.research.google.com/* 2. Login na conta Google* 3. Arquivo --> Novo notebook Carregamento dos dados
#Biblioteca Pandas import pandas as pd #Carregando bases de dados de Jan22 a Mar22 #Fonte: https://www.gov.br/anp/pt-br/centrais-de-conteudo/dados-abertos/serie-historica-de-precos-de-combustiveis etanol_202201 = pd.read_csv('https://github.com/marioandrededeus/semana_sala_aberta_DH/raw/main/precos-gasolina-etanol-2022-01.csv', sep = ';', decimal = ',', encoding = 'latin') etanol_202202 = pd.read_csv('https://github.com/marioandrededeus/semana_sala_aberta_DH/raw/main/precos-gasolina-etanol-2022-02.csv', sep = ';', decimal = ',', encoding = 'latin') etanol_202203 = pd.read_csv('https://github.com/marioandrededeus/semana_sala_aberta_DH/raw/main/dados-abertos-precos-2022-03-gasolina-etanol.csv', sep = ';', decimal = ',', encoding = 'latin') df = pd.concat([etanol_202201, etanol_202202, etanol_202203]) df['Data da Coleta'] = pd.to_datetime(df['Data da Coleta'], dayfirst=True) df.head()
_____no_output_____
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Dimensões do dataframe (tabela)
df.shape
_____no_output_____
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Visualizações Preço por Estado
df_estado = df.groupby('Estado')['Valor de Venda'].mean() df_estado df_estado.plot.bar(figsize = (20,5));
_____no_output_____
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Preço por Regiao
df_regiao = df.groupby('Regiao')['Valor de Venda'].mean() df_regiao df_regiao.plot.bar(figsize = (10,5));
_____no_output_____
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Preço por Região - Linha do Tempo
df_regiao_data = df.groupby(['Regiao','Data da Coleta'])['Valor de Venda'].mean().reset_index() df_regiao_data import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize = (20,5)) sns.lineplot(data = df_regiao_data, x = 'Data da Coleta', y = 'Valor de Venda', hue = 'Regiao');
_____no_output_____
MIT
Primeiros_Passos_Christian_Python.ipynb
ChristianEngProd/HTML_Teste
Network Initializer What is neuron?Feed-forward neural networks are inspired by the information processing of one or more neural cells, called a neuron. A neuron accepts input signals via its dendrites, which pass the electrical signal down to the cell body. The axon carries the signal out to synapses, which are the connections of a cell’s axon to other cell’s dendrites.
from random import random, seed def initialize_network(n_inputs, n_hidden, n_outputs): network = list() # Creating hidden layers according to the number of inputs hidden_layer = [{'weights': [random() for i in range(n_inputs + 1)]} for i in range(n_hidden)] network.append(hidden_layer) # Creating output layer according to the number of hidden layers output_layer = [{'weights': [random() for i in range(n_hidden + 1)]} for i in range(n_outputs)] network.append(output_layer) return network # It is good practice to initialize the network weights to small random numbers. # In this case, will we use random numbers in the range of 0 to 1. # To achieve that we seed random with 1 seed(1) # 2 input units, 1 hidden unit and 2 output units network = initialize_network(2, 1, 2) # You can see the hidden layer has one neuron with 2 input weights plus the bias. # The output layer has 2 neurons, each with 1 weight plus the bias. for layer in network: print(layer)
[{'weights': [0.7887233511355132, 0.0938595867742349, 0.02834747652200631]}] [{'weights': [0.8357651039198697, 0.43276706790505337]}, {'weights': [0.762280082457942, 0.0021060533511106927]}]
Apache-2.0
003-forward-and-back-props/Backward Propagation.ipynb
wfraher/deeplearning
Forward propagateWe can calculate an output from a neural network by propagating an input signal through each layer until the output layer outputs its values.We can break forward propagation down into three parts:1. Neuron Activation.2. Neuron Transfer.3. Forward Propagation. 1. Neuron ActivationThe first step is to calculate the activation of one neuron given an input.Neuron activation is calculated as the weighted sum of the inputs. Much like linear regression.activation = sum(weight_i * input_i) + biasWhere weight is a network weight, input is an input, i is the index of a weight or an input and bias is a special weight that has no input to multiply with (or you can think of the input as always being 1.0).
# Implementation def activate(weights, inputs): activation = weights[-1] for i in range(len(weights) - 1): activation += weights[i] * inputs[i] return activation
_____no_output_____
Apache-2.0
003-forward-and-back-props/Backward Propagation.ipynb
wfraher/deeplearning
2. Neuron TransferOnce a neuron is activated, we need to transfer the activation to see what the neuron output actually is.Different transfer functions can be used. It is traditional to use the *sigmoid activation function*, but you can also use the *tanh* (hyperbolic tangent) function to transfer outputs. More recently, the *rectifier transfer function* has been popular with large deep learning networks.Sigmoid formulaoutput = 1 / (1 + e^(-activation))
from math import exp def transfer(activation): return 1.0 / (1.0 + exp(-activation))
_____no_output_____
Apache-2.0
003-forward-and-back-props/Backward Propagation.ipynb
wfraher/deeplearning
3. Forawrd propagate
# Foward propagate is self-explanatory def forward_propagate(network, row): inputs = row for layer in network: new_inputs = [] for neuron in layer: activation = activate(neuron['weights'], inputs) neuron['output'] = transfer(activation) new_inputs.append(neuron['output']) inputs = new_inputs return inputs inputs = [1, 0, None] output = forward_propagate(network, inputs) # Running the example propagates the input pattern [1, 0] and produces an output value that is printed. # Because the output layer has two neurons, we get a list of two numbers as output. output
_____no_output_____
Apache-2.0
003-forward-and-back-props/Backward Propagation.ipynb
wfraher/deeplearning
Backpropagation What is it?1. Error is calculated between the expected outputs and the outputs forward propagated from the network.2. These errors are then propagated backward through the network from the output layer to the hidden layer, assigning blame for the error and updating weights as they go. This part is broken down into two sections.- Transfer Derivative- Error Backpropagation Transfer DerivativeGiven an output value from a neuron, we need to calculate it’s *slope*.derivative = output * (1.0 - output)
# Calulates the derivation from an neuron output def transfer_derivative(output): return output * (1.0 - output)
_____no_output_____
Apache-2.0
003-forward-and-back-props/Backward Propagation.ipynb
wfraher/deeplearning
Error Backpropagation1. calculate the error for each output neuron, this will give us our error signal (input) to propagate backwards through the network.error = (expected - output) * transfer_derivative(output)expected: expected output value for the neuronoutput: output value for the neuron and transfer_derivative()----The back-propagated error signal is accumulated and then used to determine the error for the neuron in the hidden layer, as follows:error = (weight_k * error_j) * transfer_derivative(output)error_j: the error signal from the jth neuron in the output layerweight_k: the weight that connects the kth neuron to the current neuron and output is the output for the current neuron
def backward_propagate_error(network, expected): for i in reversed(range(len(network))): layer = network[i] errors = list() if i != len(network) - 1: for j in range(len(layer)): error = 0.0 for neuron in network[i + 1]: error += (neuron['weights'][j] * neuron['delta']) errors.append(error) else: for j in range(len(layer)): neuron = layer[j] errors.append(expected[j] - neuron['output']) for j in range(len(layer)): neuron = layer[j] neuron['delta'] = errors[j] * transfer_derivative(neuron['output']) expected = [0, 1] backward_propagate_error(network, expected) # delta: error value for layer in network: print(layer)
[{'weights': [0.7887233511355132, 0.0938595867742349, 0.02834747652200631], 'output': 0.6936142046010635, 'delta': -0.011477619712406795}] [{'weights': [0.8357651039198697, 0.43276706790505337], 'output': 0.7335023968859138, 'delta': -0.1433825771158816}, {'weights': [0.762280082457942, 0.0021060533511106927], 'output': 0.6296776889933221, 'delta': 0.08635312555373359}]
Apache-2.0
003-forward-and-back-props/Backward Propagation.ipynb
wfraher/deeplearning
Modeling and Simulation in PythonChapter 20Copyright 2017 Allen DowneyLicense: [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0)
# Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import functions from the modsim.py module from modsim import *
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Dropping penniesI'll start by getting the units we need from Pint.
m = UNITS.meter s = UNITS.second
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
And defining the initial state.
init = State(y=381 * m, v=0 * m/s)
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Acceleration due to gravity is about 9.8 m / s$^2$.
g = 9.8 * m/s**2
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
When we call `odeint`, we need an array of timestamps where we want to compute the solution.I'll start with a duration of 10 seconds.
t_end = 10 * s
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Now we make a `System` object.
system = System(init=init, g=g, t_end=t_end)
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
And define the slope function.
def slope_func(state, t, system): """Compute derivatives of the state. state: position, velocity t: time system: System object containing `g` returns: derivatives of y and v """ y, v = state unpack(system) dydt = v dvdt = -g return dydt, dvdt
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
It's always a good idea to test the slope function with the initial conditions.
dydt, dvdt = slope_func(init, 0, system) print(dydt) print(dvdt)
0.0 meter / second -9.8 meter / second ** 2
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Now we're ready to call `run_ode_solver`
results, details = run_ode_solver(system, slope_func, max_step=0.5*s) details.message
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Here are the results:
results
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
And here's position as a function of time:
def plot_position(results): plot(results.y, label='y') decorate(xlabel='Time (s)', ylabel='Position (m)') plot_position(results) savefig('figs/chap09-fig01.pdf')
Saving figure to file figs/chap09-fig01.pdf
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Onto the sidewalkTo figure out when the penny hit the sidewalk, we can use `crossings`, which finds the times where a `Series` passes through a given value.
t_crossings = crossings(results.y, 0)
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
For this example there should be just one crossing, the time when the penny hits the sidewalk.
t_sidewalk = t_crossings[0] * s
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
We can compare that to the exact result. Without air resistance, we have$v = -g t$and$y = 381 - g t^2 / 2$Setting $y=0$ and solving for $t$ yields$t = \sqrt{\frac{2 y_{init}}{g}}$
sqrt(2 * init.y / g)
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
The estimate is accurate to about 10 decimal places. EventsInstead of running the simulation until the penny goes through the sidewalk, it would be better to detect the point where the penny hits the sidewalk and stop. `run_ode_solver` provides exactly the tool we need, **event functions**.Here's an event function that returns the height of the penny above the sidewalk:
def event_func(state, t, system): """Return the height of the penny above the sidewalk. """ y, v = state return y
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
And here's how we pass it to `run_ode_solver`. The solver should run until the event function returns 0, and then terminate.
results, details = run_ode_solver(system, slope_func, events=event_func) details
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
The message from the solver indicates the solver stopped because the event we wanted to detect happened.Here are the results:
results
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
With the `events` option, the solver returns the actual time steps it computed, which are not necessarily equally spaced. The last time step is when the event occurred:
t_sidewalk = get_last_label(results) * s
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
Unfortunately, `run_ode_solver` does not carry the units through the computation, so we have to put them back at the end.We could also get the time of the event from `details`, but it's a minor nuisance because it comes packed in an array:
details.t_events[0][0] * s
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
The result is accurate to about 15 decimal places.We can also check the velocity of the penny when it hits the sidewalk:
v_sidewalk = get_last_value(results.v) * m / s
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
And convert to kilometers per hour.
km = UNITS.kilometer h = UNITS.hour v_sidewalk.to(km / h)
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
If there were no air resistance, the penny would hit the sidewalk (or someone's head) at more than 300 km/h.So it's a good thing there is air resistance. Under the hoodHere is the source code for `crossings` so you can see what's happening under the hood:
%psource crossings
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
The [documentation of InterpolatedUnivariateSpline is here](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html).And you can read the [documentation of `scipy.integrate.solve_ivp`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html) to learn more about how `run_ode_solver` works. Exercises**Exercise:** Here's a question from the web site [Ask an Astronomer](http://curious.astro.cornell.edu/about-us/39-our-solar-system/the-earth/other-catastrophes/57-how-long-would-it-take-the-earth-to-fall-into-the-sun-intermediate):"If the Earth suddenly stopped orbiting the Sun, I know eventually it would be pulled in by the Sun's gravity and hit it. How long would it take the Earth to hit the Sun? I imagine it would go slowly at first and then pick up speed."Use `run_ode_solver` to answer this question.Here are some suggestions about how to proceed:1. Look up the Law of Universal Gravitation and any constants you need. I suggest you work entirely in SI units: meters, kilograms, and Newtons.2. When the distance between the Earth and the Sun gets small, this system behaves badly, so you should use an event function to stop when the surface of Earth reaches the surface of the Sun.3. Express your answer in days, and plot the results as millions of kilometers versus days.If you read the reply by Dave Rothstein, you will see other ways to solve the problem, and a good discussion of the modeling decisions behind them.You might also be interested to know that [it's actually not that easy to get to the Sun](https://www.theatlantic.com/science/archive/2018/08/parker-solar-probe-launch-nasa/567197/).
# Solution N = UNITS.newton kg = UNITS.kilogram m = UNITS.meter AU = UNITS.astronomical_unit # Solution r_0 = (1 * AU).to_base_units() v_0 = 0 * m / s init = State(r=r_0, v=v_0) # Solution r_earth = 6.371e6 * m r_sun = 695.508e6 * m system = System(init=init, G=6.674e-11 * N / kg**2 * m**2, m1=1.989e30 * kg, r_final=r_sun + r_earth, m2=5.972e24 * kg, t_0=0 * s, t_end=1e7 * s) # Solution def universal_gravitation(state, system): """Computes gravitational force. state: State object with distance r system: System object with m1, m2, and G """ r, v = state unpack(system) force = G * m1 * m2 / r**2 return force # Solution universal_gravitation(init, system) # Solution def slope_func(state, t, system): """Compute derivatives of the state. state: position, velocity t: time system: System object containing `g` returns: derivatives of y and v """ y, v = state unpack(system) force = universal_gravitation(state, system) dydt = v dvdt = -force / m2 return dydt, dvdt # Solution slope_func(init, 0, system) # Solution def event_func(state, t, system): r, v = state return r - system.r_final # Solution event_func(init, 0, system) # Solution results, details = run_ode_solver(system, slope_func, events=event_func) details # Solution t_event = details.t_events[0] * s # Solution t_event.to(UNITS.day) # Solution ts = linspace(t_0, t_event, 201) results, details = run_ode_solver(system, slope_func, events=event_func, t_eval=ts) # Solution results.index /= 60 * 60 * 24 # Solution results.r /= 1e9 # Solution plot(results.r, label='r') decorate(xlabel='Time (day)', ylabel='Distance from sun (million km)')
_____no_output_____
MIT
code/soln/chap20soln.ipynb
arunkhattri/ModSimPy
# !gdown --id 1LukOUfVNeps1Jj7Z27JbkmrO90jwBgie # !pip install kora # from kora import drive # drive.download_folder('1LukOUfVNeps1Jj7Z27JbkmrO90jwBgie') import shutil shutil.unpack_archive('mri.zip') # !ls /content/img_align_celeba
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Load Libraries
!pip install scipy==1.1.0 import glob import time import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from keras import Input from keras.applications import VGG19 from keras.callbacks import TensorBoard from keras.layers import BatchNormalization, Activation, LeakyReLU, Add, Dense from keras.layers.convolutional import Conv2D, UpSampling2D from keras.models import Model from keras.optimizers import Adam from scipy.misc import imread, imresize import keras.backend as K import cv2 import os from PIL import Image # from imageio import imread # from skimage.transform import resize
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Residual Block
def residual_block(x): """ Residual block """ filters = [64, 64] kernel_size = 3 strides = 1 padding = "same" momentum = 0.8 activation = "relu" res = Conv2D(filters=filters[0], kernel_size=kernel_size, strides=strides, padding=padding)(x) res = Activation(activation=activation)(res) res = BatchNormalization(momentum=momentum)(res) res = Conv2D(filters=filters[1], kernel_size=kernel_size, strides=strides, padding=padding)(res) res = BatchNormalization(momentum=momentum)(res) # Add res and x res = Add()([res, x]) return res
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Build Generator
def build_generator(): """ Create a generator network using the hyperparameter values defined below :return: """ residual_blocks = 16 momentum = 0.8 input_shape = (64, 64, 3) # Input Layer of the generator network input_layer = Input(shape=input_shape) # Add the pre-residual block gen1 = Conv2D(filters=64, kernel_size=9, strides=1, padding='same', activation='relu')(input_layer) # Add 16 residual blocks res = residual_block(gen1) for i in range(residual_blocks - 1): res = residual_block(res) # Add the post-residual block gen2 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(res) gen2 = BatchNormalization(momentum=momentum)(gen2) # Take the sum of the output from the pre-residual block(gen1) and the post-residual block(gen2) gen3 = Add()([gen2, gen1]) # Add an upsampling block gen4 = UpSampling2D(size=2)(gen3) gen4 = Conv2D(filters=256, kernel_size=3, strides=1, padding='same')(gen4) gen4 = Activation('relu')(gen4) # Add another upsampling block gen5 = UpSampling2D(size=2)(gen4) gen5 = Conv2D(filters=256, kernel_size=3, strides=1, padding='same')(gen5) gen5 = Activation('relu')(gen5) # Output convolution layer gen6 = Conv2D(filters=3, kernel_size=9, strides=1, padding='same')(gen5) output = Activation('tanh')(gen6) # Keras model model = Model(inputs=[input_layer], outputs=[output], name='generator') return model
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Build Descriminator
def build_discriminator(): """ Create a discriminator network using the hyperparameter values defined below :return: """ leakyrelu_alpha = 0.2 momentum = 0.8 input_shape = (256, 256, 3) input_layer = Input(shape=input_shape) # Add the first convolution block dis1 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(input_layer) dis1 = LeakyReLU(alpha=leakyrelu_alpha)(dis1) # Add the 2nd convolution block dis2 = Conv2D(filters=64, kernel_size=3, strides=2, padding='same')(dis1) dis2 = LeakyReLU(alpha=leakyrelu_alpha)(dis2) dis2 = BatchNormalization(momentum=momentum)(dis2) # Add the third convolution block dis3 = Conv2D(filters=128, kernel_size=3, strides=1, padding='same')(dis2) dis3 = LeakyReLU(alpha=leakyrelu_alpha)(dis3) dis3 = BatchNormalization(momentum=momentum)(dis3) # Add the fourth convolution block dis4 = Conv2D(filters=128, kernel_size=3, strides=2, padding='same')(dis3) dis4 = LeakyReLU(alpha=leakyrelu_alpha)(dis4) dis4 = BatchNormalization(momentum=0.8)(dis4) # Add the fifth convolution block dis5 = Conv2D(256, kernel_size=3, strides=1, padding='same')(dis4) dis5 = LeakyReLU(alpha=leakyrelu_alpha)(dis5) dis5 = BatchNormalization(momentum=momentum)(dis5) # Add the sixth convolution block dis6 = Conv2D(filters=256, kernel_size=3, strides=2, padding='same')(dis5) dis6 = LeakyReLU(alpha=leakyrelu_alpha)(dis6) dis6 = BatchNormalization(momentum=momentum)(dis6) # Add the seventh convolution block dis7 = Conv2D(filters=512, kernel_size=3, strides=1, padding='same')(dis6) dis7 = LeakyReLU(alpha=leakyrelu_alpha)(dis7) dis7 = BatchNormalization(momentum=momentum)(dis7) # Add the eight convolution block dis8 = Conv2D(filters=512, kernel_size=3, strides=2, padding='same')(dis7) dis8 = LeakyReLU(alpha=leakyrelu_alpha)(dis8) dis8 = BatchNormalization(momentum=momentum)(dis8) # Add a dense layer dis9 = Dense(units=1024)(dis8) dis9 = LeakyReLU(alpha=0.2)(dis9) # Last dense layer - for classification output = Dense(units=1, activation='sigmoid')(dis9) model = Model(inputs=[input_layer], outputs=[output], name='discriminator') return model
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Build VGG19
def build_vgg(): """ Build VGG network to extract image features """ input_shape = (256, 256, 3) # Load a pre-trained VGG19 model trained on 'Imagenet' dataset vgg = VGG19(include_top=False, weights='imagenet', input_shape=input_shape) vgg.outputs = [vgg.layers[20].output] # Create a Keras model model = Model(vgg.input, vgg.outputs) return model # def build_vgg(): # """ # Build VGG network to extract image features # """ # input_shape = (256, 256, 3) # # Load a pre-trained VGG19 model trained on 'Imagenet' dataset # vgg = VGG19(include_top=False, weights='imagenet') # vgg.outputs = [vgg.layers[20].output] # input_layer = Input(shape=input_shape) # # Extract features # features = vgg(input_layer) # # Create a Keras model # model = Model(inputs=[input_layer], outputs=[features]) # return model model = build_vgg() model.summary()
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5 80142336/80134624 [==============================] - 0s 0us/step Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 256, 256, 3)] 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, 256, 256, 64) 1792 _________________________________________________________________ block1_conv2 (Conv2D) (None, 256, 256, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, 128, 128, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, 128, 128, 128) 73856 _________________________________________________________________ block2_conv2 (Conv2D) (None, 128, 128, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, 64, 64, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, 64, 64, 256) 295168 _________________________________________________________________ block3_conv2 (Conv2D) (None, 64, 64, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, 64, 64, 256) 590080 _________________________________________________________________ block3_conv4 (Conv2D) (None, 64, 64, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, 32, 32, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, 32, 32, 512) 1180160 _________________________________________________________________ block4_conv2 (Conv2D) (None, 32, 32, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, 32, 32, 512) 2359808 _________________________________________________________________ block4_conv4 (Conv2D) (None, 32, 32, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, 16, 16, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, 16, 16, 512) 2359808 _________________________________________________________________ block5_conv2 (Conv2D) (None, 16, 16, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, 16, 16, 512) 2359808 _________________________________________________________________ block5_conv4 (Conv2D) (None, 16, 16, 512) 2359808 ================================================================= Total params: 20,024,384 Trainable params: 20,024,384 Non-trainable params: 0 _________________________________________________________________
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Sample Images
def sample_images(data_dir, batch_size, high_resolution_shape, low_resolution_shape): # Make a list of all images inside the data directory all_images = glob.glob(data_dir) # Choose a random batch of images images_batch = np.random.choice(all_images, size=batch_size) low_resolution_images = [] high_resolution_images = [] for img in images_batch: # Get an ndarray of the current image img1 = imread(img, mode='RGB') img1 = img1.astype(np.float32) # Resize the image img1_high_resolution = imresize(img1, high_resolution_shape) img1_low_resolution = imresize(img1, low_resolution_shape) # Do a random horizontal flip if np.random.random() < 0.5: img1_high_resolution = np.fliplr(img1_high_resolution) img1_low_resolution = np.fliplr(img1_low_resolution) high_resolution_images.append(img1_high_resolution) low_resolution_images.append(img1_low_resolution) # Convert the lists to Numpy NDArrays return np.array(high_resolution_images), np.array(low_resolution_images)
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Save Images
def compute_psnr(original_image, generated_image): original_image = tf.convert_to_tensor(original_image, dtype = tf.float32) generated_image = tf.convert_to_tensor(generated_image, dtype = tf.float32) psnr = tf.image.psnr(original_image, generated_image, max_val = 1.0) return tf.math.reduce_mean(psnr, axis = None, keepdims = False, name = None) def plot_psnr(psnr): psnr_means = psnr['psnr_quality'] plt.figure(figsize = (10,8)) plt.plot(psnr_means) plt.xlabel('Epochs') plt.ylabel('PSNR') plt.title('PSNR') def compute_ssim(original_image, generated_image): original_image = tf.convert_to_tensor(original_image, dtype = tf.float32) generated_image = tf.convert_to_tensor(generated_image, dtype = tf.float32) ssim = tf.image.ssim(original_image, generated_image, max_val = 1.0, filter_size = 11, filter_sigma = 1.5, k1 = 0.01, ) return tf.math.reduce_mean(ssim, axis = None, keepdims = False, name = None) def plot_ssim(ssim): ssim_means = ssim['ssim_quality'] plt.figure(figsize = (10,8)) plt.plot(ssim_means) plt.xlabel('Epochs') plt.ylabel('SSIM') plt.title('SSIM') def plot_loss(losses): d_loss = losses['d_history'] g_loss = losses['g_history'] plt.figure(figsize = (10,8)) plt.plot(d_loss, label = "Discriminator loss") plt.plot(g_loss, label = "Generator Loss") plt.xlabel("Epochs") plt.ylabel('Loss') plt.title("Loss") plt.legend() def save_images(low_resolution_image, original_image, generated_image, path, psnr, ssim): """ Save low-resolution, high-resolution(original) and generated high-resolution images in a single image """ fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(1, 3, 1) ax.imshow(low_resolution_image) ax.axis("off") ax.set_title("Low-resolution ") ax = fig.add_subplot(1, 3, 2) ax.imshow(original_image) ax.axis("off") ax.set_title(f"High-resolution\nPSNR : {psnr}") # ax.set_xlabel(f"PSNR : {psnr}") # ax.save(hr_path,bbox_inches='tight',transparent=True, pad_inches=0) ax = fig.add_subplot(1, 3, 3) ax.imshow(np.squeeze(generated_image), cmap = plt.get_cmap(name = 'gray')) ax.axis("off") ax.set_title(f"Generated\nSSIM : {ssim}" ) # ax.set_xlabel(f"SSIM : {ssim}") # ax.save(pr_path, bbox_inches='tight',transparent=True, pad_inches=0) plt.savefig(path)
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Write a Log
from PIL import Image from skimage.metrics import structural_similarity as ssim
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Final SRGAN Execution
losses = {'d_history' : [], "g_history": []} psnr = {'psnr_quality' : []} ssim = {'ssim_quality' : []} from tqdm.notebook import tqdm import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) data_dir = "/content/train/*.*" os.makedirs("results", exist_ok=True) # os.makedirs("HR", exist_ok=True) # os.makedirs("PR", exist_ok=True) # os.makedirs("LR", exist_ok=True) epochs = 1000 batch_size = 1 mode = 'train' # Shape of low-resolution and high-resolution images low_resolution_shape = (64, 64, 3) high_resolution_shape = (256, 256, 3) # Common optimizer for all networks common_optimizer = Adam(0.0002, 0.5) if mode == 'train': # Build and compile VGG19 network to extract features vgg = build_vgg() vgg.trainable = False vgg.compile(loss='mse', optimizer=common_optimizer, metrics=['accuracy']) # Build and compile the discriminator network discriminator = build_discriminator() discriminator.compile(loss='mse', optimizer=common_optimizer, metrics=['accuracy']) # Build the generator network generator = build_generator() """ Build and compile the adversarial model """ # Input layers for high-resolution and low-resolution images input_high_resolution = Input(shape=high_resolution_shape) input_low_resolution = Input(shape=low_resolution_shape) # Generate high-resolution images from low-resolution images generated_high_resolution_images = generator(input_low_resolution) # Extract feature maps of the generated images features = vgg(generated_high_resolution_images) # Make the discriminator network as non-trainable discriminator.trainable = False # Get the probability of generated high-resolution images probs = discriminator(generated_high_resolution_images) # Create and compile an adversarial model adversarial_model = Model([input_low_resolution, input_high_resolution], [probs, features]) adversarial_model.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1e-3, 1], optimizer=common_optimizer) # Add Tensorboard tensorboard = TensorBoard(log_dir="logs/".format(time.time())) tensorboard.set_model(generator) tensorboard.set_model(discriminator) for epoch in tqdm(range(epochs)): # print("Epoch:{}".format(epoch)) """ Train the discriminator network """ # Sample a batch of images high_resolution_images, low_resolution_images = sample_images(data_dir=data_dir, batch_size=batch_size, low_resolution_shape=low_resolution_shape, high_resolution_shape=high_resolution_shape) # Normalize images high_resolution_images = high_resolution_images / 127.5 - 1. low_resolution_images = low_resolution_images / 127.5 - 1. # Generate high-resolution images from low-resolution images generated_high_resolution_images = generator.predict(low_resolution_images) # Generate batch of real and fake labels real_labels = np.ones((batch_size, 16, 16, 1)) fake_labels = np.zeros((batch_size, 16, 16, 1)) # Train the discriminator network on real and fake images d_loss_real = discriminator.train_on_batch(high_resolution_images, real_labels) d_loss_fake = discriminator.train_on_batch(generated_high_resolution_images, fake_labels) # Calculate total discriminator loss d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # print("d_loss:", d_loss) """ Train the generator network """ # Sample a batch of images high_resolution_images, low_resolution_images = sample_images(data_dir=data_dir, batch_size=batch_size, low_resolution_shape=low_resolution_shape, high_resolution_shape=high_resolution_shape) # Normalize images high_resolution_images = high_resolution_images / 127.5 - 1. low_resolution_images = low_resolution_images / 127.5 - 1. # Extract feature maps for real high-resolution images image_features = vgg.predict(high_resolution_images) # Train the generator network g_loss = adversarial_model.train_on_batch([low_resolution_images, high_resolution_images], [real_labels, image_features]) # print("g_loss:", g_loss) # Write the losses to Tensorboard # write_log(tensorboard, 'g_loss', g_loss[0], epoch) # write_log(tensorboard, 'd_loss', d_loss[0], epoch) # Sample and save images after every 100 epochs if epoch % 100 == 0: high_resolution_images, low_resolution_images = sample_images(data_dir=data_dir, batch_size=batch_size, low_resolution_shape=low_resolution_shape, high_resolution_shape=high_resolution_shape) # Normalize images high_resolution_images = high_resolution_images / 127.5 - 1. low_resolution_images = low_resolution_images / 127.5 - 1. generated_images = generator.predict_on_batch(low_resolution_images) ps = compute_psnr(high_resolution_images, generated_images) ss = compute_ssim(high_resolution_images, generated_images) print("-"*15) print("Epoch:{}".format(epoch)) print(f"D_loss : {d_loss}") print(f"G_loss : {g_loss}") print(f"PSNR : {np.around(ps,decimals=2)}") print(f"SSIM: {np.around(ss,decimals=2)}") #*************************************** # Store into list #*************************************** losses['d_history'].append(d_loss) g_loss = 0.5 * (g_loss[1]) losses['g_history'].append(g_loss) psnr['psnr_quality'].append(ps) ssim['ssim_quality'].append(ss) for index, img in enumerate(generated_images): img = np.mean(img, axis=2) save_images(low_resolution_images[index], high_resolution_images[index], img, path="/content/results/img_{}_{}".format(epoch, index), psnr=ps, ssim=ss) # gn_im = np.squeeze(img).astype(np.float16) # hr_im = high_resolution_images[index].astype(np.float16) # lr_im = low_resolution_images[index].astype(np.float16) # psnr = psnr(hr_im,gn_im).numpy() # ssim_Score = ssim(hr_im,gn_im, multichannel=True) # print("PSNR : ", psnr) # print("SSIM Loss : ", ssim_Score) # plt.imshow(np.squeeze(img), cmap = plt.get_cmap(name = 'gray')) # plt.axis('off') # plt.savefig(f"PR/im_PR_{epoch}_{index}.png", dpi=100, pad_inches=0.0, bbox_inches='tight') # plt.clf() # plt.imshow(high_resolution_images[index]) # plt.axis('off') # plt.savefig(f"HR/im_HR_{epoch}_{index}.png", dpi=100, pad_inches=0.0, bbox_inches='tight') # plt.clf() # plt.imshow(low_resolution_images[index]) # plt.axis('off') # plt.savefig(f"LR/im_LR_{epoch}_{index}.png", dpi=100, pad_inches=0.0, bbox_inches='tight') # plt.clf() # Save models generator.save_weights("generator.h5") discriminator.save_weights("discriminator.h5") if mode == 'predict': # Build and compile the discriminator network discriminator = build_discriminator() # Build the generator network generator = build_generator() # Load models generator.load_weights("generator.h5") discriminator.load_weights("discriminator.h5") # Get 10 random images high_resolution_images, low_resolution_images = sample_images(data_dir=data_dir, batch_size=10, low_resolution_shape=low_resolution_shape, high_resolution_shape=high_resolution_shape) # Normalize images high_resolution_images = high_resolution_images / 127.5 - 1. low_resolution_images = low_resolution_images / 127.5 - 1. # Generate high-resolution images from low-resolution images generated_images = generator.predict_on_batch(low_resolution_images) # generated_images = cv2.cvtColor(generated_images, cv2.COLOR_BGR2GRAY) # Save images for index, img in enumerate(generated_images): img = np.mean(img, axis=2) # save_images(low_resolution_images[index], high_resolution_images[index], img, path="/content/results/gen_{}".format(index)) plot_loss(losses) plot_psnr(psnr) plot_ssim(ssim) !zip -r results.zip /content/results
_____no_output_____
Apache-2.0
SRGAN_Final.ipynb
ashishpatel26/SRGAN-Keras
Diseño de software para cómputo científico---- Unidad 5: Integración con lenguajes de alto nivel con bajo nivel. Agenda de la Unidad 5- JIT (Numba)- **Cython.**- Integración de Python con FORTRAN.- Integración de Python con C. Recapitulando- Escribimos el código Python.- Pasamos todo a numpy.- Hicimos profile.- Paralelisamos (joblib/dask).- Hicimos profile.- Usamos Numba.- Hicimos profile.- **Si llegamos acá** Cython Imports
# vamos a hacer profiling import timeit import math # vamos a plotear %matplotlib inline import matplotlib.pyplot as plt import numpy as np
_____no_output_____
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Numba vs Cython- Cython es un compilador estático/optimizador tanto para el lenguaje de programación Python como para el extenciones en Cython. - Hace que escribir extensiones C para Python sea tan ""fácil"" como el propio Python.- En lugar de analizar bytecode y generar IR, Cython usa un superconjunto de sintaxis de Python que luego se traduce en código C (Se escribe código C con sintaxis Python).- A diferencia de usar C, **generalmente** no hay que preocuparse las llamadas de bajo nivel de Python (esto se expande automáticamente a un código C por Cython).- A diferencia de Numba, todo el código debe estar separado en archivos especiales (`*.pyx`). - Cython analiza y traduce dichos archivos a código C y luego lo compila utilizando el compilador C proporcionado.![image.png](attachment:image.png) Por qué preferimos Numba/JIT sobre Cython?- Curva de aprendizaje (Es otro lenguaje)- Necesitas *algo* de experiencia en C **Y** Python- El paquete se vuelve un poco complejo.- Todo código Python es Cython válido Por qué preferimos Cython sobre Numba/C/Fortran?Facil interaccion con librerias C/C++ y integración total con objetos y clases python Ejemplo - Mandelbrot Fractal Python Puro
def mandel(x, y, max_iters): """ Given the real and imaginary parts of a complex number, determine if it is a candidate for membership in the Mandelbrot set given a fixed number of iterations. """ i = 0 c = complex(x,y) z = 0.0j for i in range(max_iters): z = z * z + c if (z.real * z.real + z.imag * z.imag) >= 4: return i return 255 def create_fractal(min_x, max_x, min_y, max_y, image, iters): height = image.shape[0] width = image.shape[1] pixel_size_x = (max_x - min_x) / width pixel_size_y = (max_y - min_y) / height for x in range(width): real = min_x + x * pixel_size_x for y in range(height): imag = min_y + y * pixel_size_y color = mandel(real, imag, iters) image[y, x] = color return image
_____no_output_____
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Ejemplo - Mandelbrot Fractal Python Puro
# creamos la imagen image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8) # ejecutamos los calculos normal = %timeit -o create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20) # mostramos todo plt.imshow(image, cmap="viridis");
4.09 s ± 22.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Ejemplo - Mandelbrot Fractal Cython
!pip install Cython %load_ext Cython %%cython --annotate def mandel(x, y, max_iters): """ Given the real and imaginary parts of a complex number, determine if it is a candidate for membership in the Mandelbrot set given a fixed number of iterations. """ i = 0 c = complex(x,y) z = 0.0j for i in range(max_iters): z = z * z + c if (z.real * z.real + z.imag * z.imag) >= 4: return i return 255 def create_fractal(min_x, max_x, min_y, max_y, image, iters): height = image.shape[0] width = image.shape[1] pixel_size_x = (max_x - min_x) / width pixel_size_y = (max_y - min_y) / height for x in range(width): real = min_x + x * pixel_size_x for y in range(height): imag = min_y + y * pixel_size_y color = mandel(real, imag, iters) image[y, x] = color return image
_____no_output_____
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Ejemplo - Mandelbrot Fractal Cython
# creamos la imagen image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8) # ejecutamos los calculos normal = %timeit -o create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20) # mostramos todo plt.imshow(image, cmap="viridis");
3.41 s ± 64.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Cython Hello World 1/2- Como Cython puede aceptar casi cualquier archivo fuente de Python válido, una de las cosas más difíciles para comenzar es descubrir cómo compilar su extensión.- Entonces, comencemos con el hola-mundo canónico de Python:```python helloworld.pyxprint("Hello World")```- Pueden ver el código resultante con - `cython -3 helloworld.pyx`, - o `cython -3 helloworld.pyx -cplus` Cython Hello World 2/2- Y en `setup.py````pythonfrom distutils.core import setupfrom Cython.Build import cythonizesetup( ... ext_modules=cythonize("helloworld.pyx"))```- Ejecutar `python setup.py build_ext --inplace`- Probamos con `python -c "import helloworld"`
import sys sys.path.insert(0, "./cython") import helloworld helloworld.__file__
Hello World
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Cython - Números Primos
%%cython def primes(int nb_primes): cdef int n, i, len_p cdef int p[1000] if nb_primes > 1000: nb_primes = 1000 len_p = 0 # The current number of elements in p. n = 2 while len_p < nb_primes: # Is n prime? for i in p[:len_p]: if n % i == 0: break # If no break occurred in the loop, we have a prime. else: p[len_p] = n len_p += 1 n += 1 # Let's return the result in a python list: result_as_list = [prime for prime in p[:len_p]] return result_as_list print(primes(100))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541]
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Cython - Números Primos - Numpy
%%cython import numpy as np # importar donde vas a compilar def primes_np(int nb_primes): # Memoryview on a NumPy array narr = np.empty(nb_primes, dtype=np.dtype(int)) cdef long [:] narr_view = narr cdef long len_p = 0 # The current number of elements in p. cdef long n = 2 while len_p < nb_primes: # Is n prime? for i in narr_view[:len_p]: if n % i == 0: break # If no break occurred in the loop, we have a prime. else: narr_view[len_p] = n len_p += 1 n += 1 return narr print(primes_np(2000))
[ 2 3 5 ... 17383 17387 17389]
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Cython - Números Primos - Profiling
%%cython --annotate import numpy as np # importar donde vas a compilar cdef primes_np(unsigned int nb_primes): # Memoryview on a NumPy array narr = np.empty(nb_primes, dtype=np.dtype(int)) cdef long [:] narr_view = narr cdef long len_p = 0 # The current number of elements in p. cdef long n = 2 while len_p < nb_primes: # Is n prime? for i in narr_view[:len_p]: if n % i == 0: break # If no break occurred in the loop, we have a prime. else: narr_view[len_p] = n len_p += 1 n += 1 return narr
_____no_output_____
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Y si usamos la librería vector de C++
%%cython --cplus from libcpp.vector cimport vector def primes_cpp(unsigned int nb_primes): cdef int n, i cdef vector[int] p p.reserve(nb_primes) # allocate memory for 'nb_primes' elements. n = 2 while p.size() < nb_primes: # size() for vectors is similar to len() for i in p: if n % i == 0: break else: p.push_back(n) # push_back is similar to append() n += 1 # Vectors are automatically converted to Python # lists when converted to Python objects. return p
_____no_output_____
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Benchmarks
%timeit primes(1000) %timeit primes_np(1000) %timeit primes_cpp(1000)
2.3 ms ± 58.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 113 ms ± 1.35 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 2.29 ms ± 19.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
Integrando C puro con Cython- Supongamos que tenemos ya escrito este super complejo codigo C en un archivo que se llama `hello_c.c`.```Cinclude void f();void f() { printf("%s", "Hello world from a pure C function!\n");}```Y queremos integrarlo a -Python- Hay que hacer el wrapper `hello_cwrapper.pyx`.```cythoncdef extern from "hello_c.c": void f() cpdef myf(): f() ``` Despues agregarlo al `setup.py` Librería externa desde el notebook
%%cython -I ./cython/ cdef extern from "hello_c.c": void f() cpdef myf(): f() myf() ## ESTO IMPRIME SI O SI A LA CONSOLA
_____no_output_____
BSD-3-Clause
unidad5/01_Cython.ipynb
leliel12/diseno_sci_sfw
SetupImport the standard Python Libraries that are used in this lab.
import boto3 from time import sleep import subprocess import pandas as pd import json import time
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Import sagemaker and get execution role for getting role ARN
import sagemaker region = boto3.Session().region_name smclient = boto3.Session().client('sagemaker') from sagemaker import get_execution_role role_arn = get_execution_role() print(role_arn) #Make sure this role has the forecast permissions set to be able to use S3
arn:aws:iam::226154724374:role/service-role/AmazonSageMaker-ExecutionRole-wkshop
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
The last part of the setup process is to validate that your account can communicate with Amazon Forecast, the cell below does just that.
session = boto3.Session(region_name='us-east-1') forecast = session.client(service_name='forecast') forecastquery = session.client(service_name='forecastquery')
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Data Prepraration
df = pd.read_csv("../data/COF_yearly_Revenue_Data.csv", dtype = object, names=['metric_name','timestamp','metric_value']) df.head(3)
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Create the training set and validation set. Use the last years revenue as the validation set
# Select 1996 to 2017 in one data frame df_1996_2017 = df[(df['timestamp'] >= '1995-12-31') & (df['timestamp'] <= '2017-12-31')] # Select the year 2018 seprately for validation df = pd.read_csv("../data/COF_yearly_Revenue_Data.csv", dtype = object, names=['metric_name','timestamp','metric_value']) df_2018 = df[(df['timestamp'] >= '2018-12-31')] df_1996_2017 df_2018
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Now export them to CSV files and place them into your data folder.
df_1996_2017.to_csv("../data/cof-revenue-train.csv", header=False, index=False) df_2018.to_csv("../data/cof-revenue-validation.csv", header=False, index=False)
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Define the S3 bucket name where we will upload data where Amazon Forecast will pick up the data later
bucket_name = "sagemaker-capone-forecast-useast1-03" # Rember to change this to the correct bucket name used for Capital One folder_name = "cone" # change this to the folder name of the user.
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Upload the data to S3
s3 = session.client('s3') key=folder_name+"/cof-revenue-train.csv" s3.upload_file(Filename="../data/cof-revenue-train.csv", Bucket=bucket_name, Key=key)
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Creating the Dataset Group and Dataset In Amazon Forecast , a dataset is a collection of file(s) which contain data that is relevant for a forecasting task. A dataset must conform to a schema provided by Amazon Forecast. More details about `Domain` and dataset type can be found on the [documentation](https://docs.aws.amazon.com/forecast/latest/dg/howitworks-domains-ds-types.html) . For this example, we are using [METRICS](https://docs.aws.amazon.com/forecast/latest/dg/metrics-domain.html) domain with 3 required attributes `metrics_name`, `timestamp` and `metrics_value`.It is importan to also convey how Amazon Forecast can understand your time-series information. That the cell immediately below does that, the next one configures your variable names for the Project, DatasetGroup, and Dataset.
DATASET_FREQUENCY = "Y" TIMESTAMP_FORMAT = "yyyy-mm-dd" project = 'cof_revenue_forecastdemo' datasetName= project+'_ds' datasetGroupName= project +'_dsg' s3DataPath = "s3://"+bucket_name+"/"+key
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Create the Dataset Group
create_dataset_group_response = forecast.create_dataset_group(DatasetGroupName=datasetGroupName, Domain="METRICS", ) datasetGroupArn = create_dataset_group_response['DatasetGroupArn'] forecast.describe_dataset_group(DatasetGroupArn=datasetGroupArn)
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Create the Schema
# Specify the schema of your dataset here. Make sure the order of columns matches the raw data files. schema ={ "Attributes":[ { "AttributeName":"metric_name", "AttributeType":"string" }, { "AttributeName":"timestamp", "AttributeType":"timestamp" }, { "AttributeName":"metric_value", "AttributeType":"float" } ] }
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Create the Dataset
response=forecast.create_dataset( Domain="METRICS", DatasetType='TARGET_TIME_SERIES', DatasetName=datasetName, DataFrequency=DATASET_FREQUENCY, Schema = schema ) datasetArn = response['DatasetArn'] forecast.describe_dataset(DatasetArn=datasetArn)
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Add Dataset to Dataset Group
forecast.update_dataset_group(DatasetGroupArn=datasetGroupArn, DatasetArns=[datasetArn])
_____no_output_____
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Create Data Import JobNow that Forecast knows how to understand the CSV we are providing, the next step is to import the data from S3 into Amazon Forecaast.
datasetImportJobName = 'EP_DSIMPORT_JOB_TARGET' ds_import_job_response=forecast.create_dataset_import_job(DatasetImportJobName=datasetImportJobName, DatasetArn=datasetArn, DataSource= { "S3Config" : { "Path":s3DataPath, "RoleArn": role_arn } }, TimestampFormat=TIMESTAMP_FORMAT ) ds_import_job_arn=ds_import_job_response['DatasetImportJobArn'] print(ds_import_job_arn)
arn:aws:forecast:us-east-1:457927431838:dataset-import-job/cof_revenue_forecastdemo_ds/EP_DSIMPORT_JOB_TARGET
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
Check the status of dataset, when the status change from **CREATE_IN_PROGRESS** to **ACTIVE**, we can continue to next steps. Depending on the data size. It can take 10 mins to be **ACTIVE**. This process will take 5 to 10 minutes.
while True: dataImportStatus = forecast.describe_dataset_import_job(DatasetImportJobArn=ds_import_job_arn)['Status'] print(dataImportStatus) if dataImportStatus != 'ACTIVE' and dataImportStatus != 'CREATE_FAILED': sleep(30) else: break forecast.describe_dataset_import_job(DatasetImportJobArn=ds_import_job_arn) print("DatasetArn: ") print(datasetGroupArn)
DatasetArn: arn:aws:forecast:us-east-1:457927431838:dataset-group/cof_revenue_forecastdemo_dsg
Apache-2.0
forecast/1.Getting_Data_Ready(Revenue).ipynb
veerathp/forecastimmersionday
def nn_topology(num_layers, nodes_per_layer, connections): to-do
topology = np.array([ [ 'input', [ ['x', '-'], ['y', '-'], ['classe', '-'] ], ], [ 'n1', [ ['w10', 1], ['w11', '-'], ['w12', '-'], 0, # delta1 0 # o1 ] ], [ 'n2', [ ['w20', 1], ['w21', '-'], ['w22', '-'], 0, # delta2 0 # o2 ] ], [ 'n3', [ ['w30', 1], ['w31', '-'], ['w32', '-'], 0, # delta3 0 # o3 ] ] ]) print(topology) update_weights(topology, [0.4, 1.4, 1.0, -1.5, 1, -0.5, 5.4, -8.0, -10.0]) print(topology) training_data update_input(topology, training_data[0][0], training_data[1][0], training_data[2][0]) print(topology) def calculate_ssod(topology): # calculate sums, sigmoids, outputs and deltas sum1 = 1*topology[1][1][0][1] + topology[0][1][0]*topology[1][1][1][1] + topology[0][1][1]*topology[1][1][2][1] sig1 = sigmoid(sum1) out1 = 1 / (1 + math.exp(-sum1)) sum2 = 1*topology[2][1][0][1] + topology[0][1][0]*topology[2][1][1][1] + topology[0][1][1]*topology[2][1][2][1] sig2 = sigmoid(sum2) out2 = 1 / (1 + math.exp(-sum2)) sum3 = 1*topology[3][1][0][1] + out1*topology[3][1][1][1] + out2*topology[3][1][2][1] sig3 = sigmoid(sum3) out3 = 1 / (1 + math.exp(-sum3)) delta3 = out3*(1-out3)*(topology[0][1][2] - out3) delta1 = out1*(1-out1)*topology[3][1][1][1]*delta3 delta2 = out2*(1-out2)*topology[3][1][2][1]*delta3 return np.array([['sums', [sum1, sum2, sum3]], ['sigmoids', [sig1, sig2, sig3]], ['outputs', [out1, out2, out3]], ['deltas', [delta1, delta2, delta3]]]) backpropagation = calculate_ssod(topology) print('sum1, sum2, sum3: ') print(backpropagation[0][1]) print('\nsig1, sig2, sig3: ') print(backpropagation[1][1]) print('\nout1, out2, out3: ') print(backpropagation[2][1]) print('\ndelta1, delta2, delta3: ') print(backpropagation[3][1]) print('topology:') print(topology) print('\nbackpropagation:') print(backpropagation) def calculate_new_weights(topology, backpropagation, learning_factor): for i in range(3): for j in range(3): if j == 0: inputW=1 elif i==2: # no caso do 3º neuronio, o input é o out1 ou out2 inputW = backpropagation[2][1][j-1] else: inputW = topology[0][1][j-1] topology[i+1][1][j][1] += learning_factor*backpropagation[3][1][i]*inputW calculate_new_weights(topology, backpropagation, 0.1) print(topology) # reset à topologia topology = np.array([ [ 'input', [ ['x', '-'], ['y', '-'], ['classe', '-'] ], ], [ 'n1', [ ['w10', 1], ['w11', '-'], ['w12', '-'], 0, # delta1 0 # o1 ] ], [ 'n2', [ ['w20', 1], ['w21', '-'], ['w22', '-'], 0, # delta2 0 # o2 ] ], [ 'n3', [ ['w30', 1], ['w31', '-'], ['w32', '-'], 0, # delta3 0 # o3 ] ] ]) update_weights(topology, [0.4, 1.4, 1.0, -1.5, 1, -0.5, 5.4, -8.0, -10.0]) print(topology) epoch = 1 error = 1 topology_not_fitted = topology update_input(topology_not_fitted, training_data[0][0], training_data[1][0], training_data[2][0]) out1_not_fitted = [] out2_not_fitted = [] out3_not_fitted = [] while(error != 0): error = 0 out1 = [] out2 = [] out3 = [] for i in range(len(training_data[0])): update_input(topology, training_data[0][i], training_data[1][i], training_data[2][i]) backpropagation = calculate_ssod(topology) calculate_new_weights(topology, backpropagation, 0.1) out1.append(backpropagation[2][1][0]) out2.append(backpropagation[2][1][1]) out3.append(backpropagation[2][1][2]) if round(backpropagation[2][1][2]) != training_data[2][i]: error = 1 if epoch==1: out1_not_fitted = out1 out2_not_fitted = out2 out3_not_fitted = out3 print('epoch:' + str(epoch)) epoch += 1
epoch:1 epoch:2 epoch:3 epoch:4 epoch:5 epoch:6 epoch:7 epoch:8 epoch:9 epoch:10 epoch:11 epoch:12 epoch:13 epoch:14 epoch:15 epoch:16 epoch:17 epoch:18 epoch:19 epoch:20 epoch:21 epoch:22 epoch:23 epoch:24 epoch:25 epoch:26 epoch:27 epoch:28 epoch:29 epoch:30 epoch:31 epoch:32 epoch:33 epoch:34 epoch:35 epoch:36
MIT
lab4/notebooks/50046-nn.ipynb
brun0vieira/psn
VER MELHOR O MODELO NÃO TREINADO
draw_plot(topology_not_fitted, out1_not_fitted, out2_not_fitted, out3_not_fitted, 'Modelo Não Treinado') draw_plot(topology, out1, out2, out3, 'Modelo Treinado (Erro zero)')
_____no_output_____
MIT
lab4/notebooks/50046-nn.ipynb
brun0vieira/psn
7章 畳み込みニューラルネットワーク 7.1 全体の構造CNNはニューラルネットワークと同様、複数のレイヤを組み合わせて作成する。CNNでは新たに「Convolutionレイヤ(畳み込み層)」と「Poolingレイヤ(プーリング層)」が登場する。これまで出てきたニューラルネットワークは隣接する層の全てのニューロン間を結合する全結合(fully-connected)であり、Affineレイヤと言う名前で実装してきた。例として全結合のニューラルネットワークでは「Affineレイヤ→活性化関数ReLUレイヤ」の組み合わせを1層として複数層で構築し、出力層にはSoftmaxレイヤを用いていた。CNNでは「Convolutionレイヤ→ReLU→(Poolingレイヤ。省略される場合あり)」を1層として構築する。また、出力に近い層ではこれまでの「Affine→ReLU」が、出力層には「Affine→Softmax」が用いられることが一般的には多い。 7.2 畳み込み層 7.2.1 全結合層の問題点全結合層では隣接する層のニューロンがすべて連結されており、出力数は任意に定めることができる。問題点としてはデータの形状が無視されてしまうことである。入力データが画像の際には縦・横・チャンネル方向の3次元形状だが、全結合層へ入力する際には一列の配列(1次元)にする必要がある。そのため空間的な近さなどの本質的な近さを無視して扱うので情報を活かす事ができていない。畳み込み層(Convolutionレイヤ)は形状を維持する。画像のデータを3次元として扱い、次の層にデータ出力することができる。CNNでは畳み込み層の入出力データを「特徴マップ(feature map)」と言う場合がある。更に、畳み込み層の入力データを「入力特徴マップ(input feature map)」、出力データを「出力特徴マップ(output feature map)」と言う。 7.2.2 畳み込み演算畳み込み層で行う処理は「畳み込み演算」である。畳み込み演算は入力データに対してフィルターを適用する。入力データが縦・横方向の形状を持つデータに対して、フィルターも同様に縦・横方向の次元を持たせる。例として、入力サイズが4×4、フィルターサイズが3×3、出力サイズが2×2などのようになる。文献によっては「フィルター」という単語は「カーネル」とも言われる。畳み込み演算は入力データに対してフィルターのウィンドウを一定の間隔でスライドさせながら適用する。それぞれの場所でフィルターの要素と入力の要素を乗算し、その和を求める(この計算を積和演算と呼ぶ)。結果を出力の対応する場所へ格納するプロセスをすべての場所で行なう子男tで畳み込み演算の出力を得ることが出来る。CNNにおける重みパラメータはフィルターのパラメータにあたる。また、バイアスはフィルター適用後のデータに対して加算する、一つの固定値(いずれの要素に対しても)である。 7.2.3 パディング畳み込み層の処理を行うにあたり、入力データの周囲に固定のデータ(0など)を埋めることがある。これを「パディング」という。例として4×4の入力データに対して幅1のパディングを適用するなどである。周囲を幅1ピクセル0で埋めることを言う。(パディング適用後は6×6のデータとなる)パディングを用いる理由は出力サイズを調整するためにある。4×4の入力データに3×3のフィルターを適用した場合、出力サイズは2×2となってしまう。ディープなネットワークにおいては小さくなり続けて処理できなくなってしまう。そこでパディングを用いるとデータサイズを保つことができる。 7.2.4 ストライドフィルターを適用する位置の感覚を「ストライド(stride)」と言う。ストライドを2とするとフィルターを適用する窓の間隔が2要素毎になる。ストライドを大きくすると出力サイズが小さくなるが、パディングを用いると出力サイズは大きくなる。出力サイズの計算を考えてみる。入力サイズを$(H,W)$、フィルターサイズを$(FH,FW)$、出力サイズを$(OH,OW)$、パディングを$P$、ストライドを$S$とする。出力サイズは以下式で求められる。$$OH = \frac{H + 2P - FH}{S} + 1 \\OH = \frac{W + 2P - FW}{S} + 1$$(例)入力サイズ:(4,4)、パディング:1、ストライド:1、フィルターサイズ:(3,3)$$OH = \frac{4+2・1-3}{1} + 1 = 4\\OH = \frac{4+2・1-3}{1} + 1 = 4$$ 7.2.5 3次元データの畳み込み演算画像の場合、縦・横方向に加えてチャンネル方向も合わせた3次元データを扱う必要がある。チャンネル別にフィルターを用意して畳み込み演算を行い、すべての結果を加算して出力を得る。チャンネル数とフィルターの数は一致している必要があり、チャンネル毎のフィルターサイズは全て統一する必要がある。 7.2.6 ブロックで考える3次元の畳み込み演算はデータやフィルターを直方体のブロックで考える事ができる。多次元配列として表す時は(channel, height, width)の順に並べて書く。フィルターの場合フィルターの高さをFH(Filter Height)、横幅をFW(Filter Width)と記載する。フィルターが一つの時には出力データはチャンネル数1つの特徴マップになる。チャンネル方向にも複数持たせるためには、複数のフィルター(重み)を用いる。フィルターの重みデータは4次元データとして(output_channel, input_channel, height, width)の順に書く。また、バイアスは1チャンネル毎に1つ持つため形状は(FN, 1, 1)である。 7.2.7 バッチ処理ニューラルネットワークの処理では、入力データをひと束にまとめたバッチ処理を行っていた。畳み込み演算でも同様にバッチ処理を行なう。その為、各層を流れるデータとして4次元のデータ(batch_num, channnel, height, width)を格納する。 7.3 プーリング層プーリングは縦・横方向の空間を小さくする演算である。例えば2×2の領域を一つの要素に集約するような処理である。「Maxプーリング」は対象とする領域のサイズ無いで最大値を取る演算である。一般的にプーリングのウィンドウサイズとストライドは同じ手に設定する。プーリングにはMaxプーリングの他に、Averageプーリングなどがある。Averageプーリングは対象領域の平均を計算する。画像認識の分野においては主にMaxプーリングが使われる 7.3.1 プーリング層の特徴* 学習するパラメータが無いプーリング層は畳み込み層と違って学習するパラメータを持たない。(最大値を取るだけなので)* チャンネル数は変化しないチャンネルごとに独立して計算が行われるため、チャンネル数は変化しない。* 微小な位置変化に対してロバスト(頑健)入力データの小さなズレに対してプーリングは同じような結果を返す。 7.4 Convoultion/Poolingレイヤの実装 7.4.1 4次元配列CNNで流れる4次元データが(10, 1, 28, 28)だとすると、高さ28・横幅28・1チャンネル・データが10個ある場合に対応する。以下処理でランダムデータが作成できる。x = np.random.rand(10, 1, 28, 28) 7.4.2 im2colによる展開畳み込み演算をfor文で行なうと処理が遅くなってしまう(Numpyでは要素アクセスの際にfor文を使わないほうがよい)。そこでim2colという関数を用いる。im2colはフィルターにとって都合の良いように展開する関数である。入力データに対してフィルターを適用する場所の領域を横方向に1列に展開する。im2colによる展開はフィルター適用における重複要素を配列として出力するために元ブロックの要素数よりも多くなるため、メモリを多く消費してしまう。 7.4.3 Convolutionレイヤの実装Convolutionクラスで用いるim2colの引数は以下を設定。* input_data:データ数、チャンネル、高さ、横幅の4次元配列からなる入力データ* filter_h:フィルターの高さ* filter_w:フィルターの横幅* stride:ストライド* pad:パディングConvolutionクラスは以下処理を実装する* __init__:初期化メソッド。 フィルターとバイアス、ストライドとパディングを受け取る* forward:順伝播メソッド。 初期化メソッドで定めたパラメータから出力の高さ、幅のサイズを定める。 Affineレイヤと同じように計算出来るように入力データをim2colを用いて配列化する。 重みもreshape( ,-1)とすることによって配列化を行なう。 入力データ配列と重み配列のドット積を求め、バイアスを加算する。 計算結果をtransposeを用いて整形し、返却する。 7.4.4 Poolingレイヤの実装Poolingレイヤも同じくim2colを使って入力データを展開するが、チャンネル方向には独立である点が異なる。 7.5 CNNの実装ネットワークの構成は「Convolution-ReLU-Pooling-Affine-ReLU-Affine-Softmax」とする。 7.6 CNNの可視化 7.6.1 1層目の重みの可視化今まで行ったMNISTのCNNにおける学習では1層目の重みの形状は(30,1,5,5)(サイズが5×5、チャンネルが1のフィルターが30個)である。フィルターは1チャンネルのグレー画像として可視化出来ると言うことを意味する。(サンプルコードch07/visualize_filter.py)学習前のフィルターはランダムに初期化されているため白黒の濃淡に規則性は無いが、学習後は規則性のある画像になっている。白から黒へグラデーションを伴って変化するフィルターや塊のある領域(「ブロブ(blob)」)を持つフィルターなど学習によって更新されていることが分かる。規則性のあるフィルターは何を見てるのかというと、エッジやブロブなどを見ている。畳み込み層のフィルターはエッジやブロブなどのプリミティブな情報を抽出することが分かる。 7.6.2 階層構造による情報抽出1層目の畳み込み層ではエッジやブロブなどの低レベルな情報が抽出される。何層も重ねたCNNにおいて各層でどのような情報が抽出されるのかというと、層が深くなるに従って抽出される情報(強く反応するニューロン)はより抽象化されていく。一般物体認識(車や犬など)を行なう8層のCNNであるAlexNetは畳み込み層とプーリング層が何層も重なり、最後に全結合層を用いて結果が出力される。最初の層は単純なエッジに反応し、続いてテクスチャ、より複雑な物体のパーツへと反応するように変化している。 7.7 代表的なCNN
_____no_output_____
MIT
notebooks/section7.ipynb
kamujun/exercise_of_deep_larning_from_scratch
Final Code
import pandas as pd import numpy as np from sklearn.neighbors import NearestNeighbors from sklearn.metrics.pairwise import cosine_similarity from scipy.sparse import csr_matrix from sklearn import metrics from sklearn.preprocessing import StandardScaler ''' This cell reads in the data needed for the model. The two files needed are the combined data files with the customer ratings and the movie titles files in order for the model to print out recommended movies. Then once the data is read in, we put it in a pandas dataframe for it to be easier to work with. ''' mov_titles = pd.read_csv('movie_titles.csv', header = None, encoding = "ISO-8859-1") mov_titles = mov_titles.drop(columns=[1,3,4,5], axis = 1) mov_titles = mov_titles.rename(columns = {0:'movie_id',2:'movie_title'}) list_1 = [] with open('combined_data_1.txt', 'r') as f: for line in f: splitLine = line.split('/t') for item in splitLine: list_1.append(splitLine) # Then we needed a way to loop through and associate movie id with each record. So we append it back to the list_1 for x in list_1: for i in x: if ':' in i: a = len(i) y2 = i[0:a] y = y2.replace(":", "") x.append(y) # In this section we want to take everything in list_1 and split out the customer id, rating, and date better. keys = ['customer_id','customer_rating','date','movie_id'] newList=[] for x in list_1: movie_id = x[1] y = x[0] d = y.split(',') d.append(movie_id) newList.append(d) # Now that we have the structure by customer, how they rated the movie and all that jazz. # We need to get rid of the values in the list that are just the movie numbers. values = [] for x in newList: if len(x)==4: values.append(x) # Finally we can put it into a dataframe and start looking at our data. df = pd.DataFrame(values, columns=keys) df = df.replace('\n','', regex=True) df['date'] = df['date'].astype('datetime64[ns]') df['customer_rating'] = df['customer_rating'].astype('float') ''' In this cell, we do a left join of the ratings file and the movie titles file to replace movie id with the title of the movie. we will use the df3 dataframe later in the model to output movie titles. ''' df_3 = df.join(mov_titles, lsuffix='movie_id', rsuffix='movie_id') df_3 = df_3.drop(columns=['movie_idmovie_id'], axis = 1) ''' This section of code is to create functions to run our code. The PreProcess function takes a given customer id. Then it filters our dataset for the movies that customer rated. Then we get a list of just those movies and apply it back to the overall dataset. This way when we run a our model, the nearest neighbors aren't the ones with many 0's for ratings. From the PreProcessing function we receive a matrix to use with filtered values necessary for modeling. The matrix_prep function takes the processed matrix and groups it so that we get a nxm matrix where n are the customers and m are the movies they rated. If there is a movie a customer has not rated it gets a 0. The output is a sparse matrix with these results. Finally, the Recommendation function takes the sparse matrix from the matrix_prep function, the customer id, and how many neighbors you want your model to have. The model is a nearestneighbor model that caluclates the cosine similarity between the provided customer and the other customers that rated the at least one of the movies that the customer rated. Then we loop through the customers pulling out the similar customers and put this in a list. We then use this list to go back and filter for these customers movies that they rated a 4 or 5. Then we grab this list of movies and this is the list returned. ''' def PreProcess(customer_id): query_index = str(customer_id) #np.random.choice(ddf_3.shape[0]) customer = df[df['customer_id'] == query_index] customer_movies = customer.loc[:, (customer != 0).any(axis = 0)] movies_to_include = customer_movies['movie_id'].tolist() mask = df['movie_id'].isin(movies_to_include) movies_matrix_for_sim = df.loc[~mask] movies_matrix_for_sim = movies_matrix_for_sim.append(customer_movies, ignore_index=True) return movies_matrix_for_sim def matrix_prep(movies_matrix_for_sim): ddf_2 = movies_matrix_for_sim.groupby(['customer_id', 'movie_id']).customer_rating.mean().unstack(fill_value=0) mat_features = csr_matrix(ddf_2.values) return mat_features def Recommendation(mat_features, customer_id, n_neighbors): query_index = str(customer_id) model_knn = NearestNeighbors(metric='cosine', algorithm='brute') model_knn = model_knn.fit(mat_features) distances, indices = model_knn.kneighbors(ddf_2.loc[[query_index]], n_neighbors = n_neighbors) sim_customers_key = [] sim_customers_vals = [] for i in range(0, len(distances.flatten())): if i == 0: #key = ddf_2.index[customer_id] #sim_customers_key.append(key) pass else: val = ddf_2.index[indices.flatten()[i]] sim_customers_vals.append(val) mask = df_3['customer_id'].isin(sim_customers_vals) sim_customers = df_3.loc[~mask] #need orig customer to have filtered df_3 table orig_customer = df_3[df_3['customer_id'] == query_index] #mask = df_3['customer_id'].isin(sim_customers_key) #orig_customer = df_3.loc[~mask] mask = sim_customers['customer_rating'].isin([4,5]) sim_customers = sim_customers.loc[~mask] orig_movies = orig_customer['movie_title'].values sim_movies = sim_customers['movie_title'].values rec_list = [i for i in sim_movies if i not in orig_movies] return rec_list ''' This is implementing the PreProcess function for customer 1488844. ''' matrix_1 = PreProcess(1488844) ''' Due to memory issues I could not run matrix_prep with the two function in it. Thus I ran them separately. This is the first part of the matrix_prep function. ''' ddf_2 = matrix_1.groupby(['customer_id', 'movie_id']).customer_rating.mean().unstack(fill_value=0) ''' Due to memory issues I could not run matrix_prep with the two function in it. Thus I ran them separately. This is the second part of the matrix_prep function. ''' mat_features = csr_matrix(ddf_2.values) ''' This is the final function running the model and saving the results for customer 1488844 with 3 neighbors. ''' recommended_for_1488844 = Recommendation(mat_features,1488844, 3) ''' This is the firt 10 recommended movies for customer 1488844. ''' recommended_for_1488844[0:10]
_____no_output_____
Unlicense
Netflix Recommended Movies/DSC 630 Final Code.ipynb
Lemonchasers/Lemonchasers.github.io
Decision trees example Continuous output example: A prediction model that states the motor references. Different decision trees are created according to the required selection criteria. **Step 1**: Import the required libraries.
# import numpy package for arrays and stuff import numpy as np # import matplotlib.pyplot for plotting our result import matplotlib.pyplot as plt # import pandas for importing csv files import pandas as pd
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
Import the file `predicted_values_Dt.py` containing the decision trees algorithms
import sys sys.path.insert(0, 'decision trees') from predicted_values_DT import *
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
Read the dataframe for references of motors:
# import dataset # dataset = pd.read_csv('Data.csv') # alternatively open up .csv file to read data import pandas as pd import matplotlib.pyplot as plt path='./Motors/' df = pd.read_csv(path+'Non-Dominated-Motors.csv', sep=';') df = df[['Tnom_Nm','Kt_Nm_A','r_omn','weight_g']] # we select the first five rows df.head()
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
Calculated values: Example. Code: Tnom=2.2 Nm,Kt=?, R=?Criteria:- Torque: select the next ref.- Kt: select the nearest ref.- Resistance: select the nearest ref. **1D decision tree** Torque: Once the value of the torque in the optimization code is calculated, we will create a 1D decision tree that selects the higher value.
df_X=pd.DataFrame(df.iloc[:,0]) # column torque df_y=df.iloc[:,0] # column of torque df_X=pd.DataFrame(df_X) xy = pd.concat([df_X,df_y],axis=1) sorted_xy = np.unique(xy,axis=0) #axis X frames=[] for i in range(len(df_X.columns)): # a vector of supplementary points around the reference value to force the regression tree through X C=(np.vstack((sorted_xy[:,i]-sorted_xy[:,i].min()/1000,sorted_xy[:,i]+sorted_xy[:,i].min()/1000)).ravel('F')) D=np.repeat(C, 2) frames.append(D[:-2]) df_X_Next=np.column_stack(frames) #axis y df_y1 = sorted_xy[:,-1] df_y1_C1 = df_y1-df_y1.min()/100 df_y1_C2 = df_y1+df_y1.min()/100 A=np.repeat(df_y1_C1, 2) B=np.repeat(df_y1_C2, 2) C=(np.vstack((A,B)).ravel('F')) C=(np.delete(np.delete(C,2),2)) df_y_Next=(C) # create a regressor object (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) regressorNext = DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=1, max_leaf_nodes=len(df_X_Next), min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='best') # fit the regressor with X and Y data regressorNext.fit(df_X_Next, df_y_Next) # arange for creating a range of values # from min value of X to max value of X # with a difference of 0.01 between two # consecutive values X_grid = np.linspace(min(df_X_Next), max(df_X_Next), num=10000) # reshape for reshaping the data into # a len(X_grid)*1 array, i.e. to make # a column out of the X_grid values X_grid = X_grid.reshape((len(X_grid), 1)) # scatter plot for original data plt.scatter(df_X_Next, df_y_Next, color = 'red',label='supplementary points') plt.scatter(df_X ,df_y, marker='x',label='references',color='black') # specify title plt.title('Non dominated references torque to torque (Decision Tree Regression)') # plot predicted data plt.plot(X_grid, regressorNext.predict(X_grid), color = 'green', label='decision tree') # specify y axis label plt.ylabel('Torque [Nm]') plt.xlabel('Torque [Nm]') # show the plot plt.grid() plt.legend() plt.show()
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
If the calculated value was 2.2 Nm, the predicted one is:
regressorNext.predict(np.array([[2.2]]))
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
**2D decision tree** With this new predicted value of torque, we will estimate the best Kt constant of the catalogue.For that, we construct a decision tree centered on the reference, which takes as input the torque and as output, the Kt constant:
from sklearn.tree import DecisionTreeRegressor df_X=pd.DataFrame(df.iloc[:,0]) df_y=df.iloc[:,1] # create a regressor object (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) regressorAver = DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=1, max_leaf_nodes=len(df_X), min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='best') # fit the regressor with X and Y data regressorAver.fit(df_X , df_y) # arange for creating a range of values # from min value of X to max value of X # with a difference of 0.0001 between two # consecutive values X_grid = np.linspace(min(df_X.values), max(df_X.values), num=10000) # reshape for reshaping the data into # a len(X_grid)*1 array, i.e. to make # a column out of the X_grid values X_grid = X_grid.reshape((len(X_grid), 1)) # scatter plot for original data plt.scatter(df_X, df_y, color = 'red', label='references') # plt.scatter(df_X, df_y, color = 'red') # plt.xlim(df_X.min(), df_X.max()) # plot predicted data plt.plot(X_grid, regressorAver.predict(X_grid), color = 'black', label='decision tree based on average val.') # specify title plt.title('Non dominated references Kt to torque (Decision Tree Regression)') # specify labels plt.xlabel('Torque [Nm]') plt.ylabel('Kt [Nm/A]') # plot the legend plt.legend() # show the plot plt.grid() plt.show()
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
Estimated value: (Tnom=3.2003048 Nm/A), the nearest Kt in the dataframe is:
# average_DT(df.iloc[:,0:2],df.iloc[:,2],np.array([[]])) regressorAver.predict(np.array([[3.2003048]]))
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
**3D Decision Tree** In the file `predicted_values_DT.py` we have developed different algorithms which construct decision trees based on the previous reference (previous_DT), on the next references (next_DT) or centered on the reference (average_DT). Considering we have previously obtained the values of Kt and Tnom, a prediction of the resistance value can be deduced from the decision tree:
average_DT(df[['Tnom_Nm','Kt_Nm_A']],df['r_omn'],np.array([[3.2003048,0.05161782]]))
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
**Visualizing 3D decision tree in scikit-learn**
from IPython.display import Image from sklearn.externals.six import StringIO import pydot from sklearn import tree df_X=df[['Tnom_Nm','Kt_Nm_A']] df_y=df['r_omn'] # create a regressor object (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) regressorAver = DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=1, max_leaf_nodes=len(df_X), min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='best') # fit the regressor with X and Y data regressorAver.fit(df_X, df_y) dot_data = StringIO() tree.export_graphviz(regressorAver, out_file=dot_data, feature_names=['Torque','Kt'], filled=True, rounded=True, special_characters=True) graph = pydot.graph_from_dot_data(dot_data.getvalue()) Image(graph[0].create_png())
_____no_output_____
Apache-2.0
notebooks/decision trees/.ipynb_checkpoints/decision_trees_3D_strategy_v2-checkpoint.ipynb
aitorochotorena/multirotor-all
This is a sketch for Adversarial images in MNIST
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True) import seaborn as sns sns.set_style('white') colors_list = sns.color_palette("Paired", 10)
_____no_output_____
Apache-2.0
notebook/AdversarialMNIST_sketch.ipynb
tiddler/AdversarialMNIST
recreate the network structure
x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 y_pred = tf.nn.softmax(y_conv) cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
_____no_output_____
Apache-2.0
notebook/AdversarialMNIST_sketch.ipynb
tiddler/AdversarialMNIST
Load previous model
model_path = './MNIST.ckpt' sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) tf.train.Saver().restore(sess, model_path) import matplotlib.pyplot as plt import numpy as np %matplotlib inline
_____no_output_____
Apache-2.0
notebook/AdversarialMNIST_sketch.ipynb
tiddler/AdversarialMNIST
Extract some "2" images from test set
index_mask = np.where(mnist.test.labels[:, 2])[0] subset_mask = np.random.choice(index_mask, 10) subset_mask origin_images = mnist.test.images[subset_mask] origin_labels = mnist.test.labels[subset_mask] origin_labels prediction=tf.argmax(y_pred,1) prediction_val = prediction.eval(feed_dict={x: origin_images, keep_prob: 1.0}, session=sess) print("predictions", prediction_val) probabilities=y_pred probabilities_val = probabilities.eval(feed_dict={x: origin_images, keep_prob: 1.0}, session=sess) print ("probabilities", probabilities_val) for i in range(0, 10): print('correct label:', np.argmax(origin_labels[i])) print('predict label:', prediction_val[i]) print('Confidence:', np.max(probabilities_val[i])) plt.figure(figsize=(2, 2)) plt.axis('off') plt.imshow(origin_images[i].reshape([28, 28]), interpolation=None, cmap=plt.cm.gray) plt.show() target_number = 6 target_labels = np.zeros(origin_labels.shape) target_labels[:, target_number] = 1 origin_labels target_labels img_gradient = tf.gradients(cross_entropy, x)[0]
_____no_output_____
Apache-2.0
notebook/AdversarialMNIST_sketch.ipynb
tiddler/AdversarialMNIST
one Adversarial vs one image
eta = 0.5 iter_num = 10
_____no_output_____
Apache-2.0
notebook/AdversarialMNIST_sketch.ipynb
tiddler/AdversarialMNIST