content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def ignore_answer(answer):
"""
Should this answer be disregarded?
"""
return (answer == "<Invalid>") or \
answer.startswith("<Redundant with") | 4ef4e55bae942d4c33b5fe1f4e6f9b339c332e92 | 315,004 |
import logging
import time
def execute_trade(market, action):
"""
Makes a trade via the API and responds once completed.
May have multiple retrys before raising exception if it failed.
Likely steps:
1. Initialise the trading API
2. Post trade to the API
3. Confirm success in response or retry if it failed
4. Return the response once successful
Returns: dict of trade_information or raises Exception
"""
logging.info(f"{market} - Posting {action} trade.")
time.sleep(5)
logging.info(f"{market} - {action} trade successful.")
return {"success": True, "trade_details": {}} | 63bc6bf5d74fca5d242fd337c1cec8298d2a6626 | 445,946 |
def positive_negative(inputlist):
""" return true if all items in the input list having same sign (+ or -)"""
if ((all(item>0 for item in list(inputlist))) or (all(item<0 for item in list(inputlist)))):
return True # elements with same sign (+ or -)
else:
return False | 69ebde6129139f5212d50891b4b81c0a5a76d51f | 576,430 |
import time
def pretty_epoch(epoch, format_):
""" Convert timestamp to a pretty format. """
return time.strftime(format_, time.localtime(epoch)) | 7cb0fd5185020da7e3c59592e8a476ecc0ff7046 | 429,617 |
import time
async def bench_to_arrow(client):
"""Test how long it takes to create a view on the remote table and
retrieve an arrow."""
table = client.open_table("data_source_one")
view = await table.view()
start = time.time()
arrow = await view.to_arrow()
end = time.time() - start
assert len(arrow) > 0
return [end] | dccf9efc0516dc2774d886ec64182b85de97e428 | 102,328 |
def _xlRange_from_corners(xlWorksheet, r1, c1, r2, c2):
"""Get excel Range for (row1,column1) to (row2, column2), inclusive."""
return xlWorksheet.Range(xlWorksheet.Cells(r1,c1), xlWorksheet.Cells(r2,c2)) | ced64e630adb07de1f4447a42afc08b3672efadb | 467,878 |
def _is_version_range(req):
"""Returns true if requirements specify a version range."""
assert len(req.specifier) > 0
specs = list(req.specifier)
if len(specs) == 1:
# "foo > 2.0" or "foo == 2.4.3"
return specs[0].operator != '=='
else:
# "foo > 2.0, < 3.0"
return True | c0602a1b28d787d93897f8380e34ee683cc95ad0 | 640,911 |
import re
def valid_mac_address(addr):
"""Validate a physical Ethernet address"""
return re.match("[0-9a-f]{2}([-:][0-9a-f]{2}){5}$", addr.lower()) | 033ee7ccb4a2a4f5cca96f896a6c72ca26351377 | 539,428 |
import hashlib
def _file_hash(filename: str) -> str:
"""Compute the hash of a file.
Args:
filename: the filename to hash.
Returns:
The hash hex string of the file contents.
"""
sha256_hash = hashlib.sha256()
with open(filename, "rb") as f:
# Read and update hash string value in blocks of 4K
while True:
l: bytes = f.read(4096)
if not l:
return sha256_hash.hexdigest()
sha256_hash.update(l) | a3d1860701c5ea59807930929ccfcbccde6e6e18 | 454,247 |
def episode(sim, agent, params):
"""Builds an episode graph using a Simulator and an Agent
Args:
sim: a Simulator object
agent: an Agent object
params: application level constants
Returns:
(a_ts, q_ts)
a_ts: (batch_size, num_actions)[time_steps], tf.int32, the chosen actions
q_ts: (batch_size, num_actions)[time_steps], tf.float32, expected future return for each action
"""
a_ts = []
q_ts = []
for t in range(params.time_steps):
o_ts = sim.get_observation()
a_t, q_t = agent.next_action(o_ts)
a_ts.append(a_t)
q_ts.append(q_t)
sim.do_step(a_t)
return (a_ts, q_ts) | 85c29ec80830ad1863ac75286b12208c5819d96e | 159,448 |
def parse_distance(distance):
"""parse comma delimited string returning (latitude, longitude, meters)"""
latitude, longitude, meters = [float(n) for n in distance.split(',')]
return (latitude, longitude, meters) | 954ef035e5aa5fa7965285622b5916ac1d51ac99 | 677,698 |
import re
def escape(toencode):
"""URL-encode data."""
if toencode is None:
return None
return re.sub(r"[^a-zA-Z0-9_.-]", lambda m: "%%%02x" % ord(m.group()),
str(toencode)) | bc82512b9d5f23b8aa1a86d1db8c1278c5278738 | 497,701 |
def compress(traj, copy=True, **kwds):
"""Wrapper for :meth:`Trajectory.compress`.
Parameters
----------
copy : bool
Return compressed copy or in-place modified object.
**kwds : keywords
keywords to :meth:`Trajectory.compress`
Examples
--------
>>> trc = compress(tr, copy=True, forget=['coords'])
>>> trc.dump('very_small_file.pk')
"""
if copy:
out = traj.copy()
else:
out = traj
out.compress(**kwds)
return out | 42ebefdddeaecd67f61dd884dab31a3ec7f864c9 | 26,823 |
def notfound(request):
"""Handle a request for an unknown/forbidden resource."""
request.response.status_int = 404
return {} | 13693e24ba677e5095e7de651f7e85950502699c | 159,223 |
import torch
def dual_complete(u, v, s, alpha, beta, eps):
"""
min_{u>=0, v<=0} d(u, v)
= E_xy [ u(x)alpha(x) + v(y)beta(y) + Softplus(1/eps)(s-u-v) ]
"""
u = torch.as_tensor(u, device=s.device).reshape((-1, 1))
v = torch.as_tensor(v, device=s.device).reshape((1, -1))
if eps > 0:
sp = torch.nn.Softplus(1. / eps)(s - u - v)
else:
sp = torch.nn.ReLU()(s - u - v)
return (u * alpha).mean() + (v * beta).mean() + sp.mean() | d0008182434509a7192495519373882f2c1f1e67 | 103,347 |
import uuid
def create_hook_name(name=""):
"""
Utility to create a unique hook name. Optionally takes in a name. The output string is the name prefixed with a
UUID. This is useful to prevent collision in hook names when one class with hooks inherits hooks from another class
Example:
>>> create_hook_name()
>>> '7087eefc-8e94-4f0a-b7d3-453062bb7a34'
>>> create_hook_name('my_hook')
>>> '7087eefc-8e94-4f0a-b7d3-453062bb7a34:my_hook'
Args:
name (Optional[str]): Name of the hook
"""
prefix = str(uuid.uuid4())
return "{}:{}".format(prefix, name) | a7c72abc91cbe1395a5115388834d4cf7de40e8f | 314,673 |
def permutation_from_disjoint_cycles(cycles, offset=0):
"""Reconstruct a permutation image tuple from a list of disjoint cycles
:param cycles: sequence of disjoint cycles
:type cycles: list or tuple
:param offset: Offset to subtract from the resulting permutation image points
:type offset: int
:return: permutation image tuple
:rtype: tuple
"""
perm_length = sum(map(len, cycles))
res_perm = list(range(perm_length))
for c in cycles:
p1 = c[0] - offset
for p2 in c[1:]:
p2 = p2 - offset
res_perm[p1] = p2
p1 = p2
res_perm[p1] = c[0] - offset #close cycle
assert sorted(res_perm) == list(range(perm_length))
return tuple(res_perm) | 3c992f3612340e94e569b81be9195f79de8f864e | 587,045 |
def _decode_mask(mask):
"""splits a mask into its bottom_any and empty parts"""
empty = []
bottom_any = []
for i in range(32):
if (mask >> i) & 1 == 1:
empty.append(i)
if (mask >> (i + 32)) & 1 == 1:
bottom_any.append(i)
return bottom_any, empty | 6b93a30881ed526e801b4ad55c4a04af5562d8b6 | 73,741 |
import logging
import requests
import json
def add_intersight_resource_group(AUTH, MOIDS, CLAIM_CONFIG):
""" Create an Intersight Resource Group for Claimed Devices """
request_body = {
"Name":CLAIM_CONFIG['partner_id'] + "-rg",
"Qualifier":"Allow-Selectors",
"Selectors":[
{
"Selector": (
"/api/v1/asset/DeviceRegistrations?$filter=Moid in('" +
",".join(MOIDS) + "')"
)
}
]
}
logging.info(request_body)
response = requests.post(
CLAIM_CONFIG['intersight_base_url'] + 'resource/Groups',
data=json.dumps(request_body),
auth=AUTH
)
logging.info(response.text)
response_json = response.json()
logging.info("RESOURCE GROUP: " + response_json["Moid"])
return response_json["Moid"] | b8d7653886b9ee2468eba447a452d625b9c6db0b | 285,273 |
import json
def read_config_file(fpath):
"""Create a dictionary of settings based on the json config file."""
with open(fpath) as input_file:
cfg = json.load(input_file)
return cfg | 1ea6fd5ef952626adbef55cd85fd62c6aa191b5f | 287,255 |
def returner( argument ):
"""
A module function that returns what you give it
"""
return argument | 29384104d99d6cbc10fc10cc9b0b0a78a2c72b53 | 131,422 |
def get_first_aligned_bp_index(alignment_seq):
"""
Given an alignment string, return the index of the first aligned,
i.e. non-gap position (0-indexed!).
Args:
alignment_seq (string): String of aligned sequence, consisting of
gaps ('-') and non-gap characters, such as "HA-LO" or "----ALO".
Returns:
Integer, >= 0, indicating the first non-gap character within alignment_seq.
"""
index_of_first_aligned_bp = [i for i,bp in enumerate(alignment_seq) if bp != '-'][0]
return index_of_first_aligned_bp | d16331cb0cf6e94cfcb8aa04730520aeec915480 | 682,367 |
import time
def wait_release(text_func, button_func, menu):
"""Calls button_func repeatedly waiting for it to return a false value
and goes through menu list as time passes.
The menu is a list of menu entries where each entry is a
two element list of time passed in seconds and text to display
for that period. Text is displayed by calling text_func(text).
The entries must be in ascending time order."""
start_t_ns = time.monotonic_ns()
menu_option = None
selected = False
for menu_option, menu_entry in enumerate(menu):
menu_time_ns = start_t_ns + int(menu_entry[0] * 1e9)
menu_text = menu_entry[1]
if menu_text:
text_func(menu_text)
while time.monotonic_ns() < menu_time_ns:
if not button_func():
selected = True
break
if menu_text:
text_func("")
if selected:
break
return (menu_option, (time.monotonic_ns() - start_t_ns) * 1e-9) | 63ac22a0fd9ed4eb4fcabeb54b37f55755a79ad1 | 247,498 |
import math
def compute_air_distance(_src, _dst):
"""Compute Air Distance
based on latitude and longitude
input: a pair of (lat, lon)s
output: air distance as km
"""
distance = 0.0
if _src == _dst:
return distance
radius = 6371.0 # km
dlat = math.radians(_dst[0] - _src[0])
dlon = math.radians(_dst[1] - _src[1])
a = math.sin(dlat / 2.0) * math.sin(dlat / 2.0) + \
math.cos(math.radians(_src[0])) * \
math.cos(math.radians(_dst[0])) * \
math.sin(dlon / 2.0) * math.sin(dlon / 2.0)
c = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0 - a))
distance = radius * c
return distance | 856b1b1e8c720625daa73f511fe841429d9e47f7 | 148,177 |
import random
def sample_baselines(bls, seed=None):
"""
Sample a set of baselines with replacement (to be used to generate a
bootstrap sample).
Parameters
----------
bls : list of either tuples or lists of tuples
Set of unique baselines to be sampled from. If groups of baselines
(contained in lists) are provided, each group will be treated as a
single object by the sampler; its members will not be sampled
separately.
seed : int, optional
Random seed to use if randomize=True. If None, no random seed will be
set. Default: None.
Returns
-------
sampled_bls : list of tuples or lists of tuples
Bootstrap-sampled set of baselines (will include multiple instances of
some baselines).
"""
if seed is not None: random.seed(seed)
# Sample with replacement; return as many baselines/groups as were input
return [random.choice(bls) for i in range(len(bls))] | e53c66141fa4a90b6d74d64d59ecfae112d93d67 | 577,109 |
def get_w_gen_d_t(w_gen_MR_d_t, w_gen_OR_d_t, w_gen_NR_d_t):
"""(65a)
Args:
w_gen_MR_d_t: 日付dの時刻tにおける主たる居室の内部発湿(W)
w_gen_OR_d_t: 日付dの時刻tにおけるその他の居室の内部発湿(W)
w_gen_NR_d_t: 日付dの時刻tにおける非居室の内部発湿(W)
Returns:
日付dの時刻tにおける内部発湿(W)
"""
return w_gen_MR_d_t + w_gen_OR_d_t + w_gen_NR_d_t | 8166ea84c0adca839397fac35ee74d809bfe4b95 | 94,306 |
def ne(x, y):
"""Not equal"""
return x != y | 9e8f60889705122d0a6f98febdc689983a9e4cbf | 640,071 |
import json
def get_manageiq_config_value(module, name):
""" Gets the current value for the given config option.
:param module: AnsibleModule making the call
:param name: ManageIQ config option name
:return: dict of value of the ManageIQ config option
"""
returncode, out, err = module.run_command([
"rails",
"r",
"puts Vmdb::Settings.for_resource(MiqServer.my_server)[:%s].to_json" % (name)
], cwd=module.params['vmdb_path'])
if returncode != 0:
raise Exception("Error getting existing value for ':%s' config: %s" % (name, err))
return json.loads(out) | 9e8d6c4afb5e7d962925c2b568836a04637c2c4b | 299,955 |
def _start_lt_end(params):
"""Check that 'start' param is < 'end' param
if both params are found in the provided dict.
In-place edit of params.
Parameters
----------
params : dict
{param_ID:param_value}
"""
if ('start' in params) & ('end' in params):
try:
startVal = float(params['start'])
endVal = float(params['end'])
except TypeError:
return None
if startVal > endVal:
params['start'] = endVal
params['end'] = startVal
elif startVal == endVal:
# start-end cannot ==
if endVal >= 100:
params['start'] = startVal - 1e-10
else:
params['end'] = endVal + 1e-10 | 23379d1fbc443bd453b9239c971cda15efa7c05a | 140,429 |
import requests
def _post_request(url, token, body=None):
"""
Send a requests.post request
:param url: URL
:param token: authorization token
:param body: body to be sent with request
:return: json of response
"""
headers = {
'Authorization': 'bearer ' + token
}
if body is None:
res = requests.post(url, headers=headers)
else:
res = requests.post(url, headers=headers, data=body)
if res.status_code == 200:
pass
else:
pass
return res.json() | adb1923bb18f21b98356bc4bc7fd7e79b59e2dfb | 84,893 |
def maybe(string):
"""
A regex wrapper for an arbitrary string.
Allows a string to be present, but still matches if it is not present.
"""
return r'(?:{:s})?'.format(string) | ce86a3ef9c42df184954aabed43634370816b3ed | 451,189 |
def HasPackedMethodOrdinals(interface):
"""Returns whether all method ordinals are packed such that indexing into a
table would be efficient."""
max_ordinal = len(interface.methods) * 2
return all(method.ordinal < max_ordinal for method in interface.methods) | 6c52e6ca065664480f3f32ac79906f9a9906b57e | 636,564 |
import requests
def get_resource(url, params=None, timeout=20):
"""Initiates an HTTP GET request to the SWAPI service in order to return a
representation of a resource.
Parameters:
url (str): a url that specifies the resource.
params (dict): optional dictionary of querystring arguments.
timeout (int): timeout value in seconds
Returns:
dict: dictionary representation of the decoded JSON.
"""
if params:
response = requests.get(url, params=params, timeout=timeout).json()
else:
response = requests.get(url, timeout=timeout).json()
return response | 411070c6795cf47a1cf2cee418043ebca1a1bace | 452,299 |
import torch
def split_train_test(X, y, train_size=0.8, shuffle=True):
"""
Split data into training and testing sets
Parameters:
X (Tensor): The input data
y (Tensor): The labels
train_size (float): The fraction of data used for the training
shuffle (boolean): Whether to randomly shuffle data before splitting
Returns:
Tensor: The training data
Tensor: The training labels
Tensor: The testing data
Tensor: The testing labels
"""
if shuffle:
perm = torch.randperm(X.size(0))
X = X[perm]
y = y[perm]
cut = int(train_size * X.size(0))
X_train = X[:cut]
y_train = y[:cut]
X_val = X[cut:]
y_val = y[cut:]
return X_train, y_train, X_val, y_val | 699615ca3ea8adb932aef457db8c13724cb5e73a | 410,303 |
from typing import List
def orderings3() -> List[List[int]]:
"""Enumerates the storage orderings for an input with rank 3."""
return [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]] | 6f67a43903c070fc0d650ca6826945dffee9ac96 | 162,801 |
def _IsOutsideTimeRange(timestamp,
time_range = None):
"""Returns a boolean indicating whether a timestamp is in a given range."""
return time_range is not None and (timestamp < time_range[0] or
timestamp > time_range[1]) | 05b72d28607b74f0b71517381583ca88dde0efc5 | 636,704 |
def sort_io_dict(performance_utilization: dict):
"""
Sorts io dict by max_io in descending order.
"""
sorted_io_dict = {
'io_all': dict(sorted(performance_utilization['io'].items(), key=lambda x: x[1], reverse=True))
}
performance_utilization.update({**sorted_io_dict})
del performance_utilization['io']
return performance_utilization | 86e30398d810b23b46f598926a08da62b1d3260d | 376,696 |
import jinja2
def create_jinja2_template_env(searchpath: str = "./templates") -> jinja2.Environment:
"""
Creates a usable template environment for Jinja2.
"""
return jinja2.Environment(loader=jinja2.FileSystemLoader(searchpath=searchpath)) | 7c9f2354ab32798de73c5d8b45a7042efb0b15f3 | 353,064 |
def format_speak_tags(sentence: str, include_tags: bool = True) -> str:
"""
Cleans up SSML tags for speech synthesis and ensures the phrase is wrapped in 'speak' tags and any excluded text is
removed.
Args:
sentence: Input sentence to be spoken
include_tags: Flag to include <speak> tags in returned string
Returns:
Cleaned sentence to pass to TTS
"""
# Wrap sentence in speak tag if no tags present
if "<speak>" not in sentence and "</speak>" not in sentence:
to_speak = f"<speak>{sentence}</speak>"
# Assume speak starts at the beginning of the sentence if a closing speak tag is found
elif "<speak>" not in sentence:
to_speak = f"<speak>{sentence}"
# Assume speak ends at the end of the sentence if an opening speak tag is found
elif "</speak>" not in sentence:
to_speak = f"{sentence}</speak>"
else:
to_speak = sentence
# Trim text outside of speak tags
if not to_speak.startswith("<speak>"):
to_speak = f"<speak>{to_speak.split('<speak>', 1)[1]}"
if not to_speak.endswith("</speak>"):
to_speak = f"{to_speak.split('</speak>', 1)[0]}</speak>"
if to_speak == "<speak></speak>":
return ""
if include_tags:
return to_speak
else:
return to_speak.lstrip("<speak>").rstrip("</speak>") | 354de2fb2b6cc6e4a688393135f179461b9cd417 | 131,457 |
from typing import List
def ls_double_quote_if_contains_blank(ls_elements: List[str]) -> List[str]:
"""double quote all elements in a list of string which contain a blank
>>> ls_double_quote_if_contains_blank([])
[]
>>> ls_double_quote_if_contains_blank([''])
['']
>>> ls_double_quote_if_contains_blank(['', 'double quote'])
['', '"double quote"']
"""
if (not ls_elements) or (ls_elements is None):
return []
ls_newelements = []
for s_element in ls_elements:
if " " in s_element:
s_element = '"' + s_element + '"'
ls_newelements.append(s_element)
return ls_newelements | 1f3759072101995eea9a5f5397c18cd402d5c5b0 | 214,978 |
def parseDBXrefs(xrefs):
"""Parse a DB xref string like HGNC:5|MIM:138670 to a dictionary"""
#Split by |, split results by :. Create a dict (python 2.6 compatible way).
if xrefs == "-": return {}
return dict([(xrefParts[0], xrefParts[2])
for xrefParts in (xref.partition(":")
for xref in xrefs.split("|"))]) | 8c64efd14d9dfc1367552a4af541d0c67dd749dc | 237,038 |
def restapi_predict(model, X):
"""
Computes the prediction for model *clf*.
:param model: pipeline following :epkg:`scikit-learn` API
:param X: inputs
:return: output of *predict_proba*
"""
return model.predict_proba(X) | a9bbb797948b4e238a3800fb3a225c9773c6bba8 | 449,235 |
import re
def re_search(pattern, text, plural=False):
"""Regex helper to find strings in a body of text"""
match = [m.group(1) for m in re.finditer(pattern, text)]
if plural:
return match
else:
if match:
return match[0] | 66998eb3b29978260eb60603cf440f95a16eb532 | 48,252 |
def calculate_resistivity(T, L_wire, rho, alpha, **kwargs):
"""
Temperature dependent resistivity model.
Args:
T: Temperature of wire (K)
L_wire: Length of wire (cm)
rho: Resistivity (Ohms*cm)
alpha: Reference resistance coefficient
**kwargs: Catch unused arguments
Returns:
Resistance (Ohms)l
"""
L_wire, rho_0, alpha = L_wire[0], rho[0], alpha[0]
T_ref = 293.15 # 20 deg C Reference temperature for rho
delta_T = T - T_ref
rho_s = rho_0 * L_wire
rho_t = rho_s * (1 + alpha * delta_T)
return rho_t | d6f1e44dde91e051ad92c38a7a4e2f19d635ee1d | 123,192 |
import re
def parse_time(time_string: str) -> int:
""" Parse a time stamp in h/m/s(default)/ms or any combination of these units.
Args:
time_string (str): timestamp, e.g., "0.23s", "5.234" (implied s), "1234 ms",
"1h 10m 12.345s", "00h00m00.000". Supported units: h, m, s (default), ms
and any combination thereof.
Returns:
int: time represented by time_string in milliseconds
Raises:
ValueError: if time_string cannot be parsed
"""
try:
if not time_string.strip():
raise ValueError("empty time string")
prev_end = 0
time_in_ms = 0
for unit_match in re.finditer(r"ms|h|m|s", time_string):
# float() raises ValueError if text before the unit is not a valid number
numerical_part = float(time_string[prev_end : unit_match.start()])
unit_part = unit_match.group()
if unit_part == "h":
time_in_ms += int(numerical_part * 3600000)
elif unit_part == "m":
time_in_ms += int(numerical_part * 60000)
elif unit_part == "s":
time_in_ms += int(numerical_part * 1000)
else: # unit_part == "ms":
time_in_ms += int(numerical_part)
prev_end = unit_match.end()
last_part = time_string[prev_end:].strip()
if last_part:
time_in_ms += int(float(last_part) * 1000)
return time_in_ms
except ValueError as e:
# e might have been raised by any of the float() constructor
raise ValueError(
f'cannot parse "{time_string}" as a valid time in h/m/s/ms'
) from e | 387ca46ad12faa404d446b6dd28583779638a024 | 327,853 |
import operator
def equals(column, name='id', function=(lambda x: x)):
"""Make filter template for filtering column values equal to value
transformed by given function.
:param column: database model
:param string name: name used in the filter template
:param callable function: function for transforming the value
:return dict: resulting template
"""
return {name: (column, operator.eq, function)} | da35503e46c306cbcef64d89566d526dc14bd46d | 607,477 |
def fitness_fn(turns, energy, isDead):
"""Fitness function that scores based on turns and energy.
Provides a score to a creature, with 3 times the amount of turns
plus the energy, with a bonus for surviving.
Args:
turns: number of turns a creature survived.
energy: amount of energy left after simulation.
isDead: boolean of death state.
Returns:
int: score based on function calculation
"""
if (isDead):
return (3*turns) + energy
else:
return (3*turns) + energy + 120 | 823d1295bf64c46cf0e4bb2a7b24b55c2024282d | 67,935 |
def prompt_confirm(prompt: str) -> bool:
"""Prompt user for confirmation
Args:
prompt (str): question to user
Returns:
bool: confirmation
"""
return len(confirm := input(f"{prompt} [y/N]: ")) > 0 and confirm.lower()[0] == "y" | 23e3c08466fa8272d8d26a47954696241645b2c4 | 554,761 |
def quote_join(values):
"""Join a set of strings, presumed to be file paths, surrounded by quotes, for CMake"""
surrounded = []
for value in values:
surrounded.append('\"' + value + '\"')
return ' '.join(surrounded) | fa2a6ee278e7518fc12d7eb486d4668443b9b3d0 | 373,813 |
import csv
def read_graph_history(file_path):
"""
Load graph history from file.
Args:
file_path (str): File path contains the graph execution order info.
Returns:
set[int], the executed iteration ids of each graph.
"""
with open(file_path, 'r') as handler:
csv_reader = csv.reader(handler)
history = set(int(row[0]) for row in csv_reader)
return history | 03c5f90894e6677d6d6fc942a1b19b6f65ef0dc2 | 358,143 |
def chop(n, xs):
"""
Create a list of lists sized with n from list elements in xs.
"""
if len(xs) == 0:
return []
return [xs[:n]] + chop(n, xs[n:]) | 57b2a79aef38d1cf1bed3c7f2aac3d4eedf1d0ea | 540,134 |
def format_time(date):
"""Print UTCDateTime in YYYY-MM-DD HH:MM:SS format
Parameters
----------
date: UTCDateTime
"""
return date.datetime.strftime("%Y-%m-%d %H:%M:%S") | cebd0218110af67746e39dd954bb069067b889bf | 387,255 |
def get_entity_at_location(x, y, entities):
""" Return all entities at the given x, y coordinates.
Return -1 if there is no entity at these coordinates."""
results = []
for entity in entities:
if entity.x == x and entity.y == y:
results.append(entity)
if not results:
return -1
else:
return results | 24b7ce7e828f1db9c2365c48b694a84f688652e6 | 391,673 |
import inspect
def get_channelmethods(obj):
"""
Returns a sorted list of the names of all channelmethods defined for an object.
"""
channelmethods = list()
# getmembers() returns a list of tuples already sorted by name
for name, method in inspect.getmembers(obj, inspect.ismethod):
# To be a channelmethod, the method must have an attribute called `is_channelmethod`,
# *and* it must be bound to the object, since it is common for channelmethods from one
# channel manager to be passed into the constructor of a subsequent channel manager!
if hasattr(method, 'is_channelmethod') and (method.__self__ == obj):
channelmethods.append(name)
return tuple(channelmethods) | 2443434f3b4141272cbf6266cfec2da5c57d1e90 | 679,727 |
def naive(pattern: str, text: str):
"""Naive pattern matching."""
res = []
n = len(text)
for i in range(n):
for j, c in enumerate(pattern):
if i + j == n or text[i + j] != c:
break
else:
res.append(i)
return res | 30030778f32ae1b8b56f02df21b2e5b07761a277 | 508,623 |
def get_account_username_split(username):
"""
Accepts the username for an unlinked InstitutionAccount
and return a tuple containing the following:
0: Account Type (e.g. 'cas')
1: Institution Slug
2: User ID for the institution
"""
username_split = username.split("-")
if len(username_split) < 3:
raise ValueError("Value passed to get_account_username_split " +
"was not the username for an unlinked InstitutionAccount.")
slug = "-".join(username_split[1:len(username_split)-1])
return (username_split[0], slug, username_split[len(username_split)-1]) | 65a429b025e307b3a07b8f27303b7b16239b2b5a | 136,065 |
def get_Theta_gsRW_d_ave_d(K_gsRW_H, Theta_ex_d_Ave_d, Theta_ex_H_Ave, Theta_ex_a_Ave, Delta_Theta_gsRW_H):
"""日付dにおける地中熱交換器からの戻り熱源水の日平均温度(℃) (17)
Args:
K_gsRW_H(float): K_gsRW_H: 地中熱交換器からの戻り熱源水温度を求める式の係数(-)
Theta_ex_d_Ave_d(ndarray): 日付dにおける日平均外気温度 (℃)
Theta_ex_H_Ave(float): 暖房期における期間平均外気温度(℃)
Theta_ex_a_Ave(float): 年平均外気温度 (℃)
Delta_Theta_gsRW_H(float): 暖房期における地中熱交換器からの戻り熱源水の期間平均温度と年平均外気温度との差(℃)
Returns:
ndarray: 日付dにおける地中熱交換器からの戻り熱源水の日平均温度(℃)
"""
# 日付dにおける地中熱交換器からの戻り熱源水の日平均温度(℃) (17)
Theta_gsRW_d_ave_d = K_gsRW_H * (Theta_ex_d_Ave_d - Theta_ex_H_Ave) + Theta_ex_a_Ave + Delta_Theta_gsRW_H
return Theta_gsRW_d_ave_d | 99363e26c67e5e7e56176bd630c5beac39b38811 | 169,439 |
def getParent(path, num=1):
"""
Find parent directory of a file or subdirectory
@param path: filepath or subdirectory from which to find a parent
@type path: string
@param num: how many subdirectories to traverse before returning parent
@type num: int
@return: path to parent directory
@rtype: string
"""
for x in range(num):
if "/" in path:
path = path[:path.rindex("/")]
return path | d031c52b9cb7bcad0ce5277b54e436ec8a7daa97 | 321,607 |
def digit(decimal, digit, input_base=10):
"""
Find the value of an integer at a specific digit when represented in a
particular base.
Args:
decimal(int): A number represented in base 10 (positive integer).
digit(int): The digit to find where zero is the first, lowest, digit.
base(int): The base to use (default 10).
Returns:
The value at specified digit in the input decimal.
This output value is represented as a base 10 integer.
Examples:
>>> digit(201, 0)
1
>>> digit(201, 1)
0
>>> digit(201, 2)
2
>>> tuple(digit(253, i, 2) for i in range(8))
(1, 0, 1, 1, 1, 1, 1, 1)
# Find the lowest digit of a large hexidecimal number
>>> digit(123456789123456789, 0, 16)
5
"""
if decimal == 0:
return 0
if digit != 0:
return (decimal // (input_base ** digit)) % input_base
else:
return decimal % input_base | c350b844130de86bd1cc5ce06c7c175ab8d4727b | 386,794 |
import json
def load_json(path):
"""Opens a json file and returns the content as a python dictonary.
Parameters:
path(str): Path of json file
"""
if not path.lower().endswith('.json'):
raise ValueError("Wrong file format!")
with open(path) as f:
return json.load(f) | 3c9167a9816e1ad8cc1cab1d20baae2f012aea7b | 362,071 |
def div0(num, denom):
"""Divide operation that deals with a 0 value denominator.
num: numerator.
denom: denominator.
Returns 0.0 if the denominator is 0, otherwise returns a float."""
return 0.0 if denom == 0 else float(num) / denom | 49f62d40c5bd90459b8304249e69ae4c2d9523d9 | 315,623 |
def _length(stream):
"""Returns the size of the given file stream."""
original_offset = stream.tell()
stream.seek(0, 2) # go to the end of the stream
size = stream.tell()
stream.seek(original_offset)
return size | 8520dee110a8fbab37f9c296c6d73bda1c167f2b | 60,915 |
import torch
def get_mask_from_sequence_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.Tensor:
"""
Given a variable of shape ``(batch_size,)`` that represents the sequence lengths of each batch
element, this function returns a ``(batch_size, max_length)`` mask variable. For example, if
our input was ``[2, 2, 3]``, with a ``max_length`` of 4, we'd return
``[[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0]]``.
We require ``max_length`` here instead of just computing it from the input ``sequence_lengths``
because it lets us avoid finding the max, then copying that value from the GPU to the CPU so
that we can use it to construct a new tensor.
"""
# (batch_size, max_length)
ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
range_tensor = ones.cumsum(dim=1)
return (sequence_lengths.unsqueeze(1) >= range_tensor).long() | c871c1e95e9b6918d14bf2c5d3dd8641cfeef645 | 311,994 |
import math
def temporary_magnitude_quantity_reverse(C, J, n):
"""
Returns the temporary magnitude quantity :math:`t`. for reverse *CIECAM02*
implementation.
Parameters
----------
C : numeric
*Chroma* correlate :math:`C`.
J : numeric
*Lightness* correlate :math:`J`.
n : numeric
Function of the luminance factor of the background :math:`n`.
Returns
-------
numeric
Temporary magnitude quantity :math:`t`.
Examples
--------
>>> C = 68.8364136888275
>>> J = 41.749268505999
>>> n = 0.2
>>> temporary_magnitude_quantity_reverse(C, J, n) # doctest: +ELLIPSIS
202.3873619...
"""
t = (C / (math.sqrt(J / 100) * (1.64 - 0.29 ** n) ** 0.73)) ** (1 / 0.9)
return t | c83034b95580dedd2dd39e62f89eea7185125c12 | 580,270 |
def Dup(x, **unused_kwargs):
"""Duplicates (copies) an element."""
return (x, x) | c068c7b4144e6e4f25ec6eb07a02d76ec2e80862 | 494,505 |
def transforms_are_applied(obj):
""" Check that the object is at 0,0,0 and has scale 1,1,1 """
if (
obj.location.x != 0 or
obj.location.y != 0 or
obj.location.z != 0
):
return False
if (
obj.rotation_euler.x != 0 or
obj.rotation_euler.y != 0 or
obj.rotation_euler.z != 0
):
return False
if (
obj.scale.x != 1 or
obj.scale.y != 1 or
obj.scale.z != 1
):
return False
return True | 411a5c0211c6a0b6833352e8566814958a8adaab | 679,064 |
def longest_common_substring(s1, s2):
"""
returns the longest common substring of two strings
:param s1: a string
:type s1: str
:param s2: a second string
:type s2: str
>>> longest_common_substring('hello world how is foo bar?', 'hello daniel how is foo in the world?')
' how is foo '
"""
m = [[0] * (1 + len(s2)) for i in range(1 + len(s1))] # @UnusedVariable
longest, x_longest = 0, 0
for x in range(1, 1 + len(s1)):
for y in range(1, 1 + len(s2)):
if s1[x - 1] == s2[y - 1]:
m[x][y] = m[x - 1][y - 1] + 1
if m[x][y] > longest:
longest = m[x][y]
x_longest = x
else:
m[x][y] = 0
return s1[x_longest - longest: x_longest] | 2378ef6e620f997f3140c4a941a7e4955b355b66 | 564,065 |
def decode(encoded_digits: list[str], mapping: dict) -> int:
"""decode a number.
Use the mapping to decode the encoded digits and combine them to a number.
Args:
encoded_digits (list[str]): encoded digits
mapping (dict): mapping that decodes each segment
Returns:
(int) decoded number
Examples:
>>> decode(["cf", "fc", "acf"], {"a":"a", "c":"c", "f":"f"})
117
>>> decode(["cb", "bc", "acb"], {"a":"a", "c":"c", "b":"f"})
117
>>> decode(["fcdb", "bc", "acb"], {"a":"a", "b":"f", "c":"c", "d":"d", "f":"b"})
417
"""
digits = {
"abcefg": "0",
"cf": "1",
"acdeg": "2",
"acdfg": "3",
"bcdf": "4",
"abdfg": "5",
"abdefg": "6",
"acf": "7",
"abcdefg": "8",
"abcdfg": "9",
}
result = ""
for digit in encoded_digits:
decoded_segments = ""
for segment in digit:
decoded_segments += mapping[segment]
decoded_segments = "".join(sorted(decoded_segments))
result += digits[decoded_segments]
return int(result) | be4cbd2fbc8be31b1126676a3a115b345b598c8a | 16,984 |
def readf(fname):
"""Utility function to read a file."""
with open(fname, 'r') as f:
return f.read() | 924ec495f31303a3101f7a09bd651db927de8a9b | 225,810 |
from typing import Any
def function_sig_key(
name: str,
arguments_matter: bool,
skip_ignore_cache: bool,
*args: Any,
**kwargs: Any,
) -> int:
"""Return a unique int identifying a function's call signature
If arguments_matter is True then the function signature depends on the given arguments
If skip_ignore_cache is True then the ignore_cache kwarg argument is not counted
in the signature calculation
"""
function_sig = name
if arguments_matter:
for arg in args:
function_sig += str(arg)
for argname, value in kwargs.items():
if skip_ignore_cache and argname == 'ignore_cache':
continue
function_sig += str(value)
return hash(function_sig) | bfec647db5d819fb87cf3a227927acd5cd6dda10 | 699,267 |
def parseLogfileToInstanceid(fname):
"""Parse a file name and return the integer instance id for the service."""
if not fname.endswith(".log.txt") or "-" not in fname:
return
try:
return int(fname[:-8].split("-")[-1])
except ValueError:
return | 528784ebe3dfebcafb33c30ccdbd771757ced1db | 426,964 |
def make_exposure_shares(exposure_levels, geography="geo_nm", variable="rank"):
"""Aggregate shares of activity at different levels of exposure
Args:
exposure_levels (df): employment by lad and sector and exposure ranking
geography (str): geography to aggregate over
variable (str): variable we want to calculate shares over
"""
exp_distr = (
exposure_levels.groupby(["month_year", variable, geography])["value"]
.sum()
.reset_index(drop=False)
.groupby([geography, "month_year"])
.apply(lambda x: x.assign(share=lambda df: df["value"] / df["value"].sum()))
).reset_index(drop=True)
return exp_distr | 02d990f2b08e3acb2a2b8ac01e44848770bdea71 | 3,734 |
def str_date(date):
"""
convert the datetime.date into string
:param date: <class 'datetime.date'>, 2016-06-10 02:03:46.788409+10:00
:return 20160603
"""
d = str(date).split('-')
string_date = ""
for i in range(len(d)):
string_date += d[i]
return string_date | c15850bbd9215a7fb35de75f954013794d2b05ad | 495,498 |
def split_words_by_underscore(function_name):
"""
get_my_bag -> ['get', 'my', 'bag']
"""
return [word for word in function_name.split('_')] | 64145aeec269a6a4c3994bc3deb0cf8a460f19df | 507,398 |
import re
def get_text_refs(url):
"""Return the parsed out text reference dict from an URL."""
text_refs = {'URL': url}
match = re.match(r'https://www.ncbi.nlm.nih.gov/pubmed/(\d+)', url)
if match:
text_refs['PMID'] = match.groups()[0]
match = re.match(r'https://www.ncbi.nlm.nih.gov/pmc/articles/(PMC\d+)/',
url)
if match:
text_refs['PMCID'] = match.groups()[0]
match = re.match(r'https://www.biorxiv.org/content/([^v]+)v', url)
if match:
text_refs['DOI'] = match.groups()[0]
return text_refs | f24cdec70775d10e707aa8ae693dfe5a977fee93 | 82,013 |
def sort_freq(freqdict):
"""
sort_freq reads word:frequency key:val pairs from dict, and returns a list sorted from
highest to lowest frequency word
:param freqdict:
:return: list named aux
"""
aux: list = []
for k, v in freqdict.items():
aux.append((v, k))
aux.sort(reverse=True)
return aux | 287a06ceabfc946f822d0465d8b33eda044f22f4 | 153,659 |
from typing import Sequence
from typing import Tuple
import math
def quaternion_to_euler(quat: Sequence[float]) -> Tuple[float,float,float]:
"""
Convert WXYZ quaternion to XYZ euler angles, using the same method as MikuMikuDance.
Massive thanks and credit to "Isometric" for helping me discover the transformation method used in mmd!!!!
:param quat: 4x float, W X Y Z quaternion
:return: 3x float, X Y Z angle in degrees
"""
w, x, y, z = quat
# pitch (y-axis rotation)
sinr_cosp = 2 * ((w * y) + (x * z))
cosr_cosp = 1 - (2 * ((x ** 2) + (y ** 2)))
pitch = -math.atan2(sinr_cosp, cosr_cosp)
# yaw (z-axis rotation)
siny_cosp = 2 * ((-w * z) - (x * y))
cosy_cosp = 1 - (2 * ((x ** 2) + (z ** 2)))
yaw = math.atan2(siny_cosp, cosy_cosp)
# roll (x-axis rotation)
sinp = 2 * ((z * y) - (w * x))
if sinp >= 1.0:
roll = -math.pi / 2 # use 90 degrees if out of range
elif sinp <= -1.0:
roll = math.pi / 2
else:
roll = -math.asin(sinp)
# fixing the x rotation, part 1
if x ** 2 > 0.5 or w < 0:
if x < 0:
roll = -math.pi - roll
else:
roll = math.pi * math.copysign(1, w) - roll
# fixing the x rotation, part 2
if roll > (math.pi / 2):
roll = math.pi - roll
elif roll < -(math.pi / 2):
roll = -math.pi - roll
roll = math.degrees(roll)
pitch = math.degrees(pitch)
yaw = math.degrees(yaw)
return roll, pitch, yaw | 6bbce0b502f42e63b181ea65b6fff66d7294210b | 687,404 |
def create_tree_from_list(dict_list, i):
"""creates binary tree
Node of tree is element of dict_list at index i.
Right child is element of list with index 2i + 2.
Left child is element of list with index 2i + 1.
Args:
dict_list (list): list of dictionaries
i (integer): index (i < len(dict_list))
Returns:
dict: complete binary tree
"""
if i >= len(dict_list):
return None
else:
tree = dict_list[i]
tree.update({
"child_right": create_tree_from_list(dict_list, 2*i + 2),
"child_left" : create_tree_from_list(dict_list, 2*i + 1)
})
return tree | 1f32503814781c0713507b61a5852e793843094c | 138,854 |
def find_group_single_candidate(square: tuple, squares: list, grid: list) -> list:
"""
Checks for a single option a square can have based on no other square in a group having it as an option
:param square: A tuple (row, column) coordinate of the square
:param squares: A list of squares (tuples) to check the options of
:param grid: The sudoku grid as a 3D list
:return: A list of options
"""
if square in squares:
squares.remove(square)
square_options = set(grid[square[0]][square[1]][1])
for sq in squares:
if grid[sq[0]][sq[1]][0] == 0:
square_options = square_options - set(grid[sq[0]][sq[1]][1])
else:
square_options = square_options - {grid[sq[0]][sq[1]][0]}
return list(square_options) | 1983720f4540b0bd964a2ba535455ca0510ef369 | 72,890 |
def osr_proj(input_osr):
"""Return the projection WKT of a spatial reference object
Args:
input_osr (:class:`osr.SpatialReference`): the input OSR
spatial reference
Returns:
WKT: :class:`osr.SpatialReference` in WKT format
"""
return input_osr.ExportToWkt() | fb4b9bdb33f724d9c414ce7969ac516db1e91a85 | 618,004 |
from typing import Callable
from typing import Any
import time
def set_timeout(function: Callable[[], Any], second: int) -> Any:
"""Runs a given function after a given number of seconds."""
time.sleep(second)
return function() | 95a0d4db16354774541f93e65bce3987b2a65029 | 455,762 |
import ipaddress
def broadcast(addr):
"""Return the broadcast address of the current network
"""
ip = ipaddress.ip_interface(addr)
return f"{ip.network.broadcast_address}/{ip.network.prefixlen}" | 3d757804e7f98c0dda56730ec76f120631e5106b | 449,496 |
def get_reservation_ports(session, reservation_id, model_name='Generic Traffic Generator Port'):
""" Get all Generic Traffic Generator Port in reservation.
:return: list of all Generic Traffic Generator Port resource objects in reservation
"""
reservation_ports = []
reservation = session.GetReservationDetails(reservation_id).ReservationDescription
for resource in reservation.Resources:
if resource.ResourceModelName == model_name:
reservation_ports.append(resource)
return reservation_ports | 650f4962e327ab7dd1eeaa054743b5f096a9d3f2 | 477,815 |
import asyncio
def run(coro, forever=False):
"""Convenience function that makes an event loop and runs the async
function within it.
Args:
forever: If True then run the event loop forever, otherwise
return on completion of the coro
"""
loop = asyncio.get_event_loop()
t = None
try:
if forever:
t = asyncio.ensure_future(coro, loop=loop)
loop.run_forever()
else:
return loop.run_until_complete(coro)
finally:
if t:
t.cancel()
loop.stop()
loop.close() | 6bdb898f7f79b3d9eb591dc62826ead02e2b3cbe | 425,771 |
def validate_list_deceased(gedcom):
"""
US29: List all deceased individuals in a GEDCOM file
"""
deceased = []
for individual in gedcom.individuals:
if individual.alive is False:
deceased.append(f'Deceased: US29: ({individual.id}) {individual.name} [DeathDate: {individual.death.date()}]')
return deceased | b8c475475226e59c03986c4634374be1627266f4 | 487,339 |
def dict_lookup(d, key):
"""
Return dictionary value for given key
"""
return d[key] | 9c703b88b57f641c57054e1fc692fa5695dc32b3 | 536,300 |
import torch
def vector_to_parameter_list(vec, parameters):
"""
Convert the vector `vec` to a parameter-list format matching `parameters`.
This function is the inverse of `parameters_to_vector` from the
pytorch module `torch.nn.utils.convert_parameters`.
Contrary to `vector_to_parameters`, which replaces the value
of the parameters, this function leaves the parameters unchanged and
returns a list of parameter views of the vector.
```
from torch.nn.utils import parameters_to_vector
vector_view = parameters_to_vector(parameters)
param_list_view = vector_to_parameter_list(vec, parameters)
for a, b in zip(parameters, param_list_view):
assert torch.all_close(a, b)
```
Parameters:
-----------
vec: Tensor
a single vector represents the parameters of a model
parameters: (Iterable[Tensor])
an iterator of Tensors that are of the desired shapes.
"""
# Ensure vec of type Tensor
if not isinstance(vec, torch.Tensor):
raise TypeError(
"expected torch.Tensor, but got: {}".format(torch.typename(vec))
)
params_new = []
# Pointer for slicing the vector for each parameter
pointer = 0
for param in parameters:
# The length of the parameter
num_param = param.numel()
# Slice the vector, reshape it
param_new = vec[pointer : pointer + num_param].view_as(param).data
params_new.append(param_new)
# Increment the pointer
pointer += num_param
return params_new | 9c7e4f4a3768e4b715026a6b0610da856653e714 | 555,823 |
def categoria_escolhida(categorias):
"""
Função que retorna a categoria escolhida pelo usuário
:param categorias: lista com todas as categorias possíveis
:return: retorna a escolha do usuário
"""
while True:
print("Qual tipo de categoria deseja jogar? ")
for i in range(len(categorias)):
print(f"{i} - {categorias[i]}")
try:
escolha = (input(">>> ")).strip()
escolha = int(escolha)
if 0 <= escolha < (len(categorias)):
break
except:
print("Digite um número dentro das categorias")
return escolha | 2b04554f92ed39aed005398d0cf78383923310cd | 315,552 |
def is_dev_only(dockerfile_path=str) -> bool:
"""
Check the build.conf for "devonly" flag.
Args:
dockerfile_path (str): the dockerfile's path
Returns:
"""
path = f"{dockerfile_path}/build.conf"
try:
with open(path) as f:
content = f.read()
if "devonly=true" in content:
return True
except FileNotFoundError:
return False
return False | d51668751d9577cd64a52fb85267cf4d18d3ef63 | 606,117 |
def starts_with(left: str, right: str) -> str:
"""Check if the `left` string starts with the `right` substring."""
return left + ' STARTS WITH ' + right | 393ed46680d13130eee846e2a7c656f3f989425b | 127,682 |
def adda(a, b, c=0, d=0, e=0):
"""Add number b to number a. Optionally also add
any of numbers c, d, e to the result.
"""
print(f"Function `adda` called with arguments a={a} b={b}", end="")
if c: print(f" c={c}", end="")
if d: print(f" d={d}", end="")
if e: print(f" e={e}", end="")
print()
return a + b + c + d + e | 50a1a923f2dd046114bf92caffe9ba770d062f43 | 27,249 |
def final_well(sample_number):
"""Determines well containing the final sample from sample number.
"""
letter = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
final_well_column = sample_number // 8 + \
(1 if sample_number % 8 > 0 else 0)
final_well_row = letter[sample_number - (final_well_column - 1) * 8 - 1]
return final_well_row + str(final_well_column) | e48f0cc13c7dd30851f22fe3f32b4bbd9b71a0ed | 194,378 |
def convert_temp(unit_in, unit_out, temp):
"""Convert farenheit <-> celsius and return results.
- unit_in: either "f" or "c"
- unit_out: either "f" or "c"
- temp: temperature (in f or c, depending on unit_in)
Return results of conversion, if any.
If unit_in or unit_out are invalid, return "Invalid unit [UNIT_IN]".
For example:
convert_temp("c", "f", 0) => 32.0
convert_temp("f", "c", 212) => 100.0
"""
if unit_in != "f" and unit_in != "c":
return f"Invalid unit {unit_in}"
if unit_out != "f" and unit_out != "c":
return f"Invalid unit {unit_out}"
if unit_in == "f" and unit_out == "c":
temp = (temp - 32) / 9 * 5
if unit_in == "c" and unit_out == "f":
temp = (temp * 5 / 9) + 32
return temp | 59202152a54dbc33ecb35bb034af85ab3a897a18 | 241,669 |
def get_img_extension(path: str) -> str:
"""
Parse the path and return the image's extension (replacing jpg to jpeg with accordance with EPUB spec)
"""
path_list = path.rsplit(".", 1)
if len(path_list) == 2:
ext = path_list[1]
else:
ext = "jpeg"
if ext == "jpg":
ext = "jpeg"
return ext | 50f6f72885c5ad9a3e12663af18282c1ca78fe3d | 209,488 |
import pickle
def load_clifford_table(picklefile='cliffords2.pickle'):
"""
Load pickled files of the tables of 1 and 2 qubit Clifford tables.
Args:
picklefile - pickle file name.
Returns:
A table of 1 and 2 qubit Clifford gates.
"""
with open(picklefile, "rb") as pf:
return pickle.load(pf) | 25382d151456b926a317e3c820d29d650e28e31c | 657,816 |
def ens_to_indx(ens_num, max_start=1000000):
"""
Get the index related to the ensemble number : e.g 101 => 0
:param ens_num: ensemble number, int
:param max_start: max number of ensembles, int
:return: index, int
"""
start = 100
while start < max_start:
ind = ens_num % start
if ind < start:
return ind - 1
# Otherwise, try with bigger number of ensembles
start *= 10
print("Error: ens_to_index function: ensemble number cannot be converted to index") | a0af56431df994d1c01207aa2c8a9cf9fd76e258 | 622,185 |
import re
def FillForm(string_for_substitution, dictionary_of_vars):
"""
This function substitutes all matches of the command string //%% ... %%//
with the variable represented by ... .
"""
return_string = string_for_substitution
for i in re.findall("//%%(.*)%%//", string_for_substitution):
return_string = re.sub("//%%" + i + "%%//", dictionary_of_vars[i],
return_string)
return return_string | 192a502cfff97d58aeaa8c2201c588acc916616c | 384,000 |
def get_class_name_no_json(i, soup):
"""Gets the name of a class for courses that do not use a JSON timetable
As of 2018-11-13 it\'s saved as the content of an <h3> tag with id equal to tab{index}"""
return soup.find("h3", id="tab{}".format(i)).find("a").contents[2].lstrip().rstrip() | 542ac6cf620aca3067150ab776778581e9de0326 | 255,749 |
def latex_float(f, fmt='{:.1e}', phantom=False):
"""Convert float to LaTex number with exponent.
Parameters
----------
f : float,int,double
fmt : str
Python format string. Default: '{:.1e}'
phantom : bool
Add phantom zeros to pad the number if it does not fill the format string.
Default: False
Returns
-------
str
Formatted string to be used in LaTeX.
"""
float_str = fmt.format(f)
if phantom:
float_str = float_str.replace(' ',r'\phantom{0}')
if "e" in float_str:
base, exponent = float_str.split("e")
return r"{0} \times 10^{{{1}}}".format(base, int(exponent))
else:
return float_str | b075035786d0e5468a15f34379817b85636f2bf8 | 614,403 |
def one(iterable):
"""Return the single element in iterable.
Raise an error if there isn't exactly one element.
"""
item = None
iterator = iter(iterable)
try:
item = next(iterator)
except StopIteration:
raise ValueError('Iterable is empty, must contain one item')
try:
next(iterator)
except StopIteration:
return item
else:
raise ValueError('object contains >1 items, must contain exactly one.') | 49cbb2e829bccaeb3ba5337b00c8bb19c2842b02 | 629,750 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.