content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def _split_key_val(option):
"""Split extra command line data into key-value pairs."""
key_val = option.split(':', 1)
assert len(key_val) == 2, "Bad option %s" % option
return key_val | 85991e20b7384b7e3a7c966d2e6b52e573befb64 | 458,359 |
def get_utm_zone(pos_longlat):
"""
Return the UTM zone number corresponding to the supplied position
Arguments:
pos_longlat: position as tuple (This in (long, lat)
Returns:
The UTM zone number (+ve for North, -ve for South)
"""
lon, lat = pos_longlat
z = int(lon/6) + 31
if lat < 0:
z = -z
return z | 4f3ff0dac79928b9d0be3980527388c9f5051ed3 | 450,332 |
def create_dataset(dataset=None, labels=None):
"""
构造贷款数据集
:return: 返回数据集和是否放贷(二类)
"""
if not dataset:
dataset = [[0, 0, 0, 0, 'no'],
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
if not labels:
labels = ['不放贷', '放贷']
# labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
return dataset, labels | 5a363c71f6ff85ed6a765c39defa3fdac97b2aa3 | 419,310 |
import hashlib
def compute_hash(filename):
"""Returns the MD5 hash of the specified file"""
with open(filename, 'r') as f:
contents = f.read().encode('utf-8')
return hashlib.md5(contents).digest() | f73983580eace66d9fe82156ac6cddb1576da58d | 657,397 |
from pathlib import Path
from typing import Optional
def find_in_parents(name: str, path: Path) -> Optional[Path]:
"""Searches parent directories of the path for a file or directory."""
path = path.resolve()
while not path.joinpath(name).exists():
path = path.parent
if path.samefile(path.parent):
return None
return path.joinpath(name) | 252a1d8c985f1a572495401f79759dea35bc56e6 | 164,647 |
import turtle
def create_turtle(c, s):
"""
Creates a turtle
:param c: turtle's color
:param s: turtle's size
:return: returns the turtle object fully created
"""
t = turtle.Turtle()
t.pencolor(c)
t.pensize(s)
return t | 3d9d35133a0c8a9c29f9a6a0fa6ff8b101930a08 | 32,937 |
def quote_str(value):
"""
Return a string in double quotes.
Parameters
----------
value : str
Some string
Returns
-------
quoted_value : str
The original value in quote marks
Example
-------
>>> quote_str('some value')
'"some value"'
"""
return f'"{value}"' | beaa09c517b6c2a92363652f2d53ae7fd6becabe | 622,499 |
def parse_info_papers(_bibtexs:str, **kwargs) -> list:
"""
Parse the bibtex string and return a list of lists with the information
It is anticipated that _bitexs has the format %l;%Y;%j;%J;%V;%p;%q;%K;%pp;%pc;%R;%S;%T;%u\n according to the documentation (https://ui.adsabs.harvard.edu/help/actions/export)
"""
# Split per paper
_result = _bibtexs.split('\n\n')
# Split information
_result = [pp.split(';') for pp in _result]
return _result[:-1] | 7b0df544f6935a423d3dc8a875d7004d1eddd175 | 377,027 |
def c_not(condition):
"""The intrinsic conditional function Fn::Not
Returns true for a condition that evaluates to false or
returns false for a condition that evaluates to true.
Fn::Not acts as a NOT operator.
"""
return {'Fn::Not': [condition]} | 1d98bfbd83c3ba9994018179647caf622041522b | 392,480 |
import re
def get_vocabs_from_string(string):
"""
Search in the string to find BODC vocabularies (P01, P06 etc.
Returns a dict where:
key = vocabulary
value = code
"""
result = re.findall('SDN:[A-Z0-9]*::[A-Z0-9]*', string)
vocabs = {}
for item in result:
split_item = item.split(':')
vocabs[split_item[1]] = split_item[3]
return vocabs | 5bc5a2fa472f703291907b4c7322415128ebce9a | 655,841 |
def format_route_name(name: str) -> str:
"""Used to format route name.
Parameters
----------
name : str
Returns
-------
str
"""
return name.replace("Route", "").lower() | 073f1407af0045289fe3dd5fa0554345d0b1c582 | 487,825 |
def modify_color(hsbk, **kwargs):
"""
Helper function to make new colors from an existing color by modifying it.
:param hsbk: The base color
:param hue: The new Hue value (optional)
:param saturation: The new Saturation value (optional)
:param brightness: The new Brightness value (optional)
:param kelvin: The new Kelvin value (optional)
"""
return hsbk._replace(**kwargs) | ecc5118873aaf0e4f63bad512ea61d2eae0f7ead | 708,258 |
import torch
def batch_first2time_first(inputs):
"""
Convert input from batch_first to time_first:
[B * T * D] -> [T * B * D]
:param inputs:
:return:
"""
return torch.transpose(inputs, 0, 1) | 1e806761c6ab09dc9f601100cd2e5d4187fc1630 | 445,810 |
import math
def roundup(n: float, m: int = 10) -> int:
"""
Round up a number n to the nearest multiple of M.
Args:
n: Number
m: Multiple of which number to roundup to
Returns:
Rounded integer number
"""
return int(math.ceil(n / m)) * m | 818a683d666b1f868453a11a8755eabb7f46881a | 250,668 |
def get_byte(byte_str):
"""
Get a byte from byte string
:param byte_str: byte string
:return: byte string, byte
"""
byte = byte_str[0]
byte_str = byte_str[1:]
return byte_str, byte | 2a00e82e10b4ed367ebcb41240d5393477f3b234 | 62,748 |
def form_save_instance(self, commit=True, **kwargs):
"""
Save this form's self.instance object if commit=True. Otherwise, add
a save_m2m() method to the form which can be called after the instance
is saved manually at a later time. Return the model instance.
"""
if self.errors:
raise ValueError(
"The %s could not be %s because the data didn't validate." % (
self.instance._meta.object_name,
'created' if self.instance._state.adding else 'changed',
)
)
if commit:
# If committing, save the instance and the m2m data immediately.
self.instance.save( **kwargs)
self._save_m2m()
else:
# If not committing, add a method to the form to allow deferred
# saving of m2m data.
self.save_m2m = self._save_m2m
return self.instance | 5bfb3c30ae0f1447706c90fa9b39b3bf2575ca22 | 464,686 |
def convert_tuple_to_8_int(tuple_date):
""" Converts a date tuple (Y,M,D) to 8-digit integer date (e.g. 20161231).
"""
return int('{0}{1:02}{2:02}'.format(*tuple_date)) | 8584bb9ade995e95d12c9d09c4a6d52f7df44f5d | 8,208 |
def validate_HR_data(in_data): # test
"""Validates input to add_heart_rate for correct fields
Args:
in_data: dictionary received from POST request
Returns:
boolean: if in_data contains the correct fields
"""
expected_keys = {"patient_id", "heart_rate"}
for key in in_data.keys():
if key not in expected_keys:
return False
return True | ee5393145f92c5c5e844e3c2577a04be35d27f5f | 362,664 |
def _format_group(g):
"""Format a restclient deployment group for display"""
return {
'id': g['id'],
'description': g['description'],
'default_blueprint_id': g['default_blueprint_id'],
'deployments': str(len(g['deployment_ids']))
} | 905ddf119009c89967f642ca92e6d3323ff523f6 | 301,517 |
def is_hermitian(matrix):
"""Check, if a matrix is Hermitian.
`matrix` can be a numpy array, a scipy sparse matrix, or a `qutip.Qobj`
instance.
Args:
matrix (list, numpy.ndarray, qutip.Qobj): Input array.
Returns:
bool: Returns `True` if matrix is Hermitian, `False` otherwise.
Examples:
>>> m = np.array([[0, 1j], [-1j, 1]])
>>> is_hermitian(m)
True
>>> m = np.array([[0, 1j], [-1j, 1j]])
>>> is_hermitian(m)
False
>>> m = np.array([[0, -1j], [-1j, 1]])
>>> is_hermitian(m)
False
>>> from scipy.sparse import coo_matrix
>>> m = coo_matrix(np.array([[0, 1j], [-1j, 0]]))
>>> is_hermitian(m)
True
"""
if hasattr(matrix, 'isherm'): # qutip.Qobj
return matrix.isherm
else: # any numpy matrix/array or scipy sparse matrix)
# pylint: disable=simplifiable-if-statement
if (abs(matrix - matrix.conjugate().transpose())).max() < 1e-14:
# If we were to "simplify the if statement" and return the above
# expression directly, we might get an instance of numpy.bool_
# instead of the builtin bool that we want.
return True
else:
return False | eae341b5fcf1c0a22f8b3f33ee432f67d077bb8d | 398,345 |
def cli(ctx, workflow_id, invocation_id, step_id):
"""See the details of a particular workflow invocation step.
Output:
The workflow invocation step.
For example::
{'action': None,
'id': '63cd3858d057a6d1',
'job_id': None,
'model_class': 'WorkflowInvocationStep',
'order_index': 2,
'state': None,
'update_time': '2015-10-31T22:11:14',
'workflow_step_id': '52e496b945151ee8',
'workflow_step_label': None,
'workflow_step_uuid': '4060554c-1dd5-4287-9040-8b4f281cf9dc'}
"""
return ctx.gi.workflows.show_invocation_step(workflow_id, invocation_id, step_id) | 8892a9afa419ca270beb920e7b0390513a297054 | 190,063 |
def format(format_string, cast=lambda x: x):
"""
A pre-called helper to supply a modern string format (the kind with {} instead of %s), so that
it can apply to each value in the column as it is rendered. This can be useful for string
padding like leading zeroes, or rounding floating point numbers to a certain number of decimal
places, etc.
If given, the ``cast`` argument should be a mapping function that coerces the input to whatever
type is required for the string formatting to work. Trying to push string data into a float
format will raise an exception, for example, so the ``float`` type itself could be given as
the ``cast`` function.
Examples::
# Perform some 0 padding
item_number = columns.FloatColumn("Item No.", sources=['number'],
processor=format("{:03d}))
# Force a string column value to coerce to float and round to 2 decimal places
rating = columns.TextColumn("Rating", sources=['avg_rating'],
processor=format("{:.2f}", cast=float))
"""
def helper(instance, *args, **kwargs):
value = kwargs.get('default_value')
if value is None:
value = instance
value = cast(value)
return format_string.format(value, obj=instance)
return helper | fb485665d4dae0d8f4aaf256f48a49972c9f3120 | 170,412 |
def parse_header( line ):
"""Parses a header line into a (key, value) tuple, trimming
whitespace off ends. Introductory 'From ' header not treated."""
colon = line.find( ':' )
space = line.find( ' ' )
# If starts with something with no whitespace then a colon,
# that's the ID.
if colon > -1 and ( space == -1 or space > colon ):
id = line[ 0: colon + 1 ]
value = line[ colon + 1:]
if value:
value = value.strip()
return ( id, value )
return ( None, None ) | 854fb76adf49fdc6743ae5ee167ea93bf1ad711e | 61,681 |
def _rangelen(begin, end):
"""Returns length of the range specified by begin and end.
As this is typically used to calculate the length of a buffer, it
always returns a result >= 0.
See functions like `_safeDoubleArray` and `safeLongArray`.
"""
# We allow arguments like begin=0, end=-1 on purpose. This represents
# an empty range; the callable library should do nothing in this case
# (see RTC-31484).
result = end - begin + 1
if result < 0:
return 0
return result | 8e010b08ef91b5ce011b348832ca1cdb829e519a | 572,882 |
def form_message(sublines, message_divider):
"""Form the message portion of speech bubble.
Param: sublines(list): a list of the chars to go on each line in message
Return: bubble(str): formaatted to fit inside of a bubble
"""
bubble = ""
bubble += message_divider
bubble += "".join(sublines)
bubble += message_divider
return bubble | c3ca1c2a684d25b439a594cfc5ade187f272a2c1 | 30,123 |
def get_extra_libraries(experiment_md):
"""get the extra_libraries field, or empty if not specified"""
return experiment_md.get("extra_libraries", ()) | 5605625929fd60d71294a92f6c0c1000374c8870 | 515,711 |
def dms_to_string(d, m, s, decimals=2):
"""Converts degrees, minutes and decimal seconds to well formated coordinate string.
Example: (41, 24, 12.2)-> 41°24'12.2"
:param int d: degrees
:param int m: minutes
:param float s: decimal seconds
:param int decimals: second's decimals
:rtype: str
"""
return "{d:d}°{m:02d}'{s:0{z}.{c}f}\"".format(d=d, m=m, s=s, z=decimals + 3 if decimals > 0 else 2, c=decimals) | e97d904123b2534b40ed38645af61835c7dfaf12 | 178,351 |
def indent(input_string):
"""Put 4 extra spaces in front of every line."""
return '\n '.join(input_string.split('\n')) | 645f8f7e793e99aec9453327c5e07a429aeab439 | 579,335 |
def frequency_temporal_evolution(Q_12,Q_23):
""" convolve displacement estimates in the frequency domain
Parameters
----------
Q_12 : np.array, size=(m,n), ndim={2,3}
cross-power spectrum of first interval.
Q_23 : np.array, size=(m,n), ndim={2,3}
cross-power spectrum of second interval.
Returns
-------
Q_13 : np.array, size=(m,n), ndim={2,3}
cross-power spectrum of total interval.
See Also
--------
spatial_temporal_evolution
Notes
-----
The matching equations are as follows:
.. math:: \mathbf{S}_1, \mathbf{S}_2 = \mathcal{F}[\mathbf{I}_1], \mathcal{F}[\mathbf{I}_2]
.. math:: \mathbf{Q}_{12} = \mathbf{S}_1 \odot \mathbf{S}_{2}^{\star}
.. math:: \mathbf{Q}_{13} = \mathbf{Q}_{12} \odot \mathbf{Q}_{23}
See also Equation 17 in [1].
.. [1] Altena & Kääb. "Elevation change and improved velocity retrieval
using orthorectified optical satellite data from different orbits"
Remote sensing vol.9(3) pp.300 2017.
"""
# -------D13---------
# | |
# | |
# +---D12---+---D23---+
# ------------------------------> time
Q_13 = Q_12*Q_23
return Q_13 | 73750df2b5af844a37ce5ee879ad3767a3ff5c5f | 504,978 |
def noise(nx, ny, gen):
""" Generate noise value at (nx, ny) using generator gen, tweaked to return a value from (0, 1) """
return gen.noise2d(nx, ny) / 2.0 + 0.5 | de57ed5bd7e864b7464f3771fc01a2ad2338bd62 | 261,106 |
def recon_rule_preview_payload(passed_keywords: dict) -> dict:
"""Create a properly formatted payload for retrieving a rule preview from recon.
{
"filter": "string",
"topic": "string"
}
"""
returned_payload = {}
if passed_keywords.get("filter", None):
returned_payload["filter"] = passed_keywords.get("filter", None)
if passed_keywords.get("topic", None):
returned_payload["topic"] = passed_keywords.get("topic", None)
return returned_payload | dc18c7db03ca133666ac9c8d7f46ae6d4c55c19d | 91,214 |
def alpha_rate(iteration):
"""
alpha learning rate
:param iteration: the count of iteration
:return: alpha
"""
return 150/(300 + iteration) | a62499dcc211827d7edaecf8cba047e4439c6c57 | 231,195 |
def cost(graph,e):
"""
Return the cost of an edge on a graph.
Parameters
----------
G = A networkx graph.
e = An edge on graph.
Returns
-------
The weight of an edge 'e' on a graph 'graph'.
"""
return graph.edges[e]['weight'] | af41eb667d2ea586b523fd31c72d4e377ffbfa04 | 69,384 |
def cli(ctx, invocation_id):
"""Get a detailed summary of an invocation, listing all jobs with their job IDs and current states.
Output:
The invocation step jobs summary.
For example::
[{'id': 'e85a3be143d5905b',
'model': 'Job',
'populated_state': 'ok',
'states': {'ok': 1}},
{'id': 'c9468fdb6dc5c5f1',
'model': 'Job',
'populated_state': 'ok',
'states': {'running': 1}},
{'id': '2a56795cad3c7db3',
'model': 'Job',
'populated_state': 'ok',
'states': {'new': 1}}]
"""
return ctx.gi.invocations.get_invocation_step_jobs_summary(invocation_id) | d5e83ecdc061e8161a5f7ca7ac9bcda864293b7d | 52,567 |
def render_User_detailed(self, h, comp, *args):
"""Render user detailed view"""
h << h.h3(self.data.fullname)
h << h.div(comp.render(h, model='avatar'))
return h.root | eb1d692f828e219d5dc398fcfbac686bf2df7636 | 537,064 |
def stripped(text):
"""Remove invisible characters
Remove all characters not between the ascii 32 and 127
and not an ascii 10 (line feed)
"""
def whitelist(c: int) -> bool:
if 31 < c < 127 or c == 10:
return True
return False
return "".join(filter(lambda c: whitelist(ord(c)), text)) | caf4d1afa1d90dbab8d42f5535eedc3d314d48cd | 220,543 |
def content(title, headers, items, style, **context):
"""
A table.
:param title: Table's title.
:param headers: List of headers [..., {"id": "<header_id>", "title": "<header_title>"}, ...]
:param items: List of content (dicts). Each header will take <header_id> part.
:param style: Style of the form (if applicable): primary|danger|info|warning|success
:return:
"""
return {
"class": "content",
"title": title,
"headers": headers,
"items": items,
"style": style,
"context": context
} | 0f6fe5aeeb594f66620475ca488221044a888a7d | 157,624 |
def get_game_url(season, game):
"""
Gets the url for a page containing information for specified game from NHL API.
:param season: int, the season
:param game: int, the game
:return: str, https://statsapi.web.nhl.com/api/v1/game/[season]0[game]/feed/live
"""
return 'https://statsapi.web.nhl.com/api/v1/game/{0:d}0{1:d}/feed/live'.format(season, game) | a404609e565b7b423226bba056f93574d2d21366 | 448,366 |
def test_lessthan(value, other):
"""Check if value is less than other."""
return value < other | 199d674e58b55a6c5ceb49136e35ace0067c5289 | 159,961 |
from typing import List
def convert_sample_names_to_indices(
names: List[str], samples: List[str]
) -> List[int]:
"""Maps samples to their integer indices in a given set of names.
Used to map sample string names to the their integer positions in the index
of the original character matrix for efficient indexing operations.
Args:
names: A list of sample names, represented by their string names in the
original character matrix
samples: A list of sample names representing the subset to be mapped to
integer indices
Returns:
A list of samples mapped to integer indices
"""
name_to_index = dict(zip(names, range(len(names))))
return list(map(lambda x: name_to_index[x], samples)) | 3e4bf00fbcebb446757dcf1a09d6dbb1382c8ea1 | 178,591 |
import re
def remove_spaces(text):
"""
Remove all the tabs, spaces, and line breaks from the raw text
Args:
text(str) -- raw text
Returns:
text(str) -- text clean from tabs, and spaces
"""
# remove \t, \n, \r
text = text.replace("\t", "").replace("\r", "").replace("\n", "")
# remove 2 or more than 2 spaces
text = re.sub('\s{2,}', '', text)
return text | 64e0da2b0a6c274476ed1a560fd814479608908b | 626,628 |
def format_theta(theta_topic_row, limit=10):
"""
Convert full theta row (topic) into compact form
The result will be sorted by probability (high to low).
"""
topics = theta_topic_row;
topics = [(i, val) for i, val in enumerate(topics)];
topics = sorted(topics, key=lambda x: x[1], reverse=True);
topics = topics[:limit];
return topics; | 05c30a16c40d1c474aabb4e054ff8d9cba6e1cd5 | 88,050 |
def remove_numbers(s):
"""Remove any number in a string
Args:
s (str): A string that need to remove number
Returns:
A formatted string with no number
"""
return ''.join([i for i in s if not i.isdigit()]) | 0777995b98e1c312d6f5276a85cf8eecd7978a51 | 404,285 |
from typing import List
from typing import Union
def list_sum_normalize(num_list: List[Union[int, float]]) -> List[float]:
"""Normalize with sum.
Args:
num_list(list): List of number to normalize.
Returns:
list: List of normalized number.
"""
t = sum(num_list)
# avoid dive zero exception
return num_list if t == 0 else [d / t for d in num_list] | 4439a382ba8ba02ed26f645c847e93c4e56b51bc | 251,055 |
import re
def get_tensor_names(string_obj):
"""
Get tensor names from the given string.
:param obj: a string representing an object from gc.get_objects()
:return: the name of the tensor variable
>>> names = get_tensor_names(log2)
>>> assert len(names) == 3
>>> assert names[0] == "tensor1"
>>> assert ['tensor1', 'tensor2', 'tensor3'] == names
>>> names = get_tensor_names(log1)
>>> assert len(names) == 1
>>> assert ["tensor1"] == names
"""
# There can be more than a single tensor name in the string.
# This pattern does not overlap in the object from gc.
pattern = "'(\w+)': tensor\("
# pos = string_obj.find(pattern)
return re.findall(pattern, string_obj) | d7b036aa2545cf16d088c29a724f4d1cebab56b1 | 89,297 |
def normal_group(group):
"""
Returns true if group name can be normalized, false otherwise
:param group: str
:return: bool
"""
return False if group.startswith('_product_admin_') else True | 503441c5657fa5aa277ad2867aad28a5047f11b8 | 356,160 |
def calc_average(total, count):
""" Function that will return the average of a set of numbers """
return float(total / count) | 65c72c81e054f13e0467a1e7aef559c977b115c2 | 227,069 |
def JNumber(state_list):
"""Calculate the angular momentum from the number of sub-states in the list.
Parameters:
state_list (list): List of sub-states of a single angular momentum state.
Returns
int: The total angular momentum of the state.
"""
return int((len(state_list)-1)/2) | b82b5dc60e5d567ea9033bc0f91ae0b26b1509cd | 365,532 |
def maximum(a, b):
"""
Finds the maximum of two numbers.
>>> maximum(3, 2)
3
>>> maximum(2, 3)
3
>>> maximum(3, 3)
3
:param a: first number
:param b: second number
:return: maximum
"""
return a if a >= b else b | bcdf0a116af1f7b921a390525e8ff5b0fa7c81fb | 340,006 |
def transform_input_kernel(kernel):
"""Transforms weights of a single CuDNN input kernel into the regular Keras format."""
return kernel.T.reshape(kernel.shape, order='F') | fc2b69664c364e6989566c8f9538109c7a7833b5 | 103,686 |
def diff_lists(lists):
"""Diff the last list with the other lists and return a list of elements that are in the last list but not in the
any of the previous lists.
Arguments:
lists -- The last list (-1) in this list of lists will be diffed with the other lists.
Returns:
A list of elements that exist in the last list but do not exist in any of the other lists.
If the last list is None, returns [].
If the previous lists don't exist then returns the last list (in this case, the only list).
If any of the previous lists are a false value (None or []), they are ignored.
"""
lists_reversed = reversed(lists)
new_elements = next(lists_reversed, []) or []
for previous_list in lists_reversed:
# This can be done faster using set difference but that doesn't work if the elements of the list are
# dictionaries.
previous_list = previous_list or []
new_elements = [element for element in new_elements if element not in previous_list]
return list(new_elements) | 918655ba48e9d278e29d369b5880077d9f5494a9 | 164,740 |
from typing import List
def quantile(xs: List[float], p: float) -> float:
"""Returns the pth-percentile value in x"""
p_index = int(p * len(xs))
return sorted(xs)[p_index] | 35dbf0ca4fc6929786cf08908806a8092be6fe1c | 617,893 |
import random
def rand_cord(width : int, height : int):
"""Pass width and heeight of the window
Returns one random coordinate within given window space
Steps by 20s
"""
cord = []
x = random.randrange(0,width - 19,20)
y = random.randrange(0,height - 19,20)
cord.append(x)
cord.append(y)
return cord | c81b6a85aa44a46953db82b73f4382557f49d4fd | 427,867 |
def expand(v):
"""Split a 24 bit integer into 3 bytes
>>> expand(0xff2001)
(255, 32, 1)
"""
return ( ((v)>>16 & 0xFF), ((v)>>8 & 0xFF), ((v)>>0 & 0xFF) ) | d63a441e8bb9d33c0ff92ceceb412932b0fea84c | 330,835 |
def bind_method(value, instance): # good with this
""" Return a bound method if value is callable, or value otherwise """
if callable(value):
def method(*args):
return value(instance, *args)
return method
else:
return value | 33ced528e79e30da1709dae12adb5254f41470d2 | 513,677 |
def find_list_string(name, str_list, case_sensitive=True, as_prefix=False, first_matched=False):
"""
Find `name` in the string list.
Comparison parameters are defined in :func:`string_equal`.
If ``first_matched==True``, stop at the first match; otherwise if multiple occurrences happen, raise :exc:`ValueError`.
Returns:
tuple ``(index, value)``.
"""
if not case_sensitive:
lookup_name=name.lower()
else:
lookup_name=name
found_name=None
for i,s in enumerate(str_list):
if not case_sensitive:
lookup_s=s.lower()
else:
lookup_s=s
if as_prefix:
sat=lookup_s.startswith(lookup_name)
else:
sat=(lookup_s==lookup_name)
if sat:
if found_name is None:
found_name=(i,s)
if first_matched:
break
else:
raise ValueError("{0} and {1} both satisfy name {2}".format(found_name[1],s,name))
if found_name is None:
raise KeyError("can't find name in the container: {0}".format(name))
return found_name | f485ae3cdebcee9e4cfe85378c38f7f27d737b96 | 37,236 |
def read(metafile):
"""
Return the contents of the given meta data file assuming UTF-8 encoding.
"""
with open(str(metafile), encoding="utf-8") as f:
return f.read() | 82135a6b680803c01cb9263e9c17b4c3d91d4516 | 688,557 |
from typing import Dict
from typing import Any
def format(content: str, substitutions: Dict[str, Any]) -> str:
"""Formats the given content by performing the requested substitutions"""
for currentKey in substitutions:
content = content.replace(
"%" + currentKey + "%", str(substitutions[currentKey]))
return content | 9762afe81a6783900e730f7c3037fefe82e0383f | 526,917 |
def get_num_classes(dataset: str):
"""Return the number of classes in the dataset. """
if dataset == "imagenet":
return 1000
elif dataset == "cifar10":
return 10
elif dataset == "mnist":
return 10 | e3d6a0fe4d40629cec58d93cf8bb9d4f95ea6e29 | 566,242 |
import random
def choose_from(*args):
"""Choose a random item from a variable number of lists."""
num_words = sum([len(x) for x in args])
# Take the ith item from the lists
i = random.randint(0, num_words - 1)
for (j, x) in enumerate(args):
if i < len(x):
return x[i]
i -= len(x) | 5dc283d6356205cca95dd886431390910f4f9a25 | 525,343 |
import math
def area(r: float) -> float:
"""
Calculate the area of a circle based on the radius.
:param r: The radius of the circle: Float
:return: The area of the circle: Float
"""
return math.pi * (r ** 2) | 4b0fea9198ce289b7712f732249458a86038a237 | 191,872 |
def generalized_entropy_index(distribution, alpha):
"""Genralized Entropy Index
Args:
distribution (list): wealth distribution of the population
alpha (float): inequality weight, for large alpha the index is
especially sensitive to the existence of large incomes,
whereas for small alpha the index is especially sensitive to the
existence of small incomes
Returns:
(float): Generalized Entropy Index (GE), inequality of wealth
distribution with inequality weight alpha
0 <= GE(aplha) < +inf,
GE(alpha) = 0, perfect equality
"""
n = len(distribution)
mean_amount = sum(distribution) / n
epsilon = 0
for amount in distribution:
epsilon += (amount / mean_amount) ** alpha - 1
return epsilon / (n * alpha * (alpha - 1)) | 56746b50450d8b17bbb9aa840b561cded8d3a830 | 468,385 |
def _get_local_explanation_row(explainer, evaluation_examples, i, batch_size):
"""Return the local explanation for the sliced evaluation_examples.
:param explainer: The explainer used to create local explanations.
:type explainer: BaseExplainer
:param evaluation_examples: The evaluation examples.
:type evaluation_examples: DatasetWrapper
:param i: The index to slice from.
:type i: int
:param batch_size: If include_local is True, specifies the batch size for aggregating
local explanations to global.
:type batch_size: int
:return: The local explanation for the slice of rows.
:rtype DynamicLocalExplanation
"""
rows = evaluation_examples.dataset[i:i + batch_size]
return explainer.explain_local(rows) | b17f88b7f03d0ff40772102a88afc4449fee8035 | 663,142 |
def addSeqTokensArgs(parser):
"""
Add arguments defining DNN processing sequences of tokens
Parameters:
- parser -- argument parser as an object of ArgumentParser
to add arguments
Returns: constructed argument parser
"""
parser.add_argument('--seq_len', default=None, type=int,
help='maximum lengths of token sequence')
parser.add_argument("--coding", type=str, default="categorical",
choices=["categorical", "trainable", "one_hot"],
help="dnn input data coding: " +
"either one-hot or categorical or trainable")
parser.add_argument("--embed", default=None, type=int,
help="size of embedding vectors; " +
"number of tokens if it is not defined" )
parser.add_argument("--kernels", required=True,
type=int, nargs='+',
help="width of convolution kernels")
parser.add_argument("--filters", required=True,
type=int, nargs='+',
help="number of convolution filters")
parser.add_argument("--strides", default = None,
type=int, nargs='+',
help="strides of convolutions")
parser.add_argument("--conv_act", type=str,
default= None, choices=["relu", "sigmoid", "tanh"],
help="activation of convolutional layers")
parser.add_argument("--pool", type=str,
default="max", choices=["max", "aver"],
help="operation of pooling layer")
parser.add_argument("--dropout", default=0, type=float,
help="rate of dropout")
return parser | 15bb822b8f96f58c7e8f30af1789a36bc2471f15 | 595,786 |
def _weights(vgg_layers, layer, expected_layer_name):
""" Return the weights and biases already trained by VGG
"""
W = vgg_layers[0][layer][0][0][2][0][0]
b = vgg_layers[0][layer][0][0][2][0][1]
layer_name = vgg_layers[0][layer][0][0][0][0]
assert layer_name == expected_layer_name
return W, b.reshape(b.size) | eca1cba51cc4736aef3460666d390cab306ce063 | 367,318 |
import gzip
import json
def import_compressed_json(file_name):
"""Import gzip compressed JSON.
:param file_name: Name of file to be read e.g. dict.json.gz
:returns: JSON as a dictionary.
"""
with gzip.open(file_name, mode="rt") as f:
return json.load(f) | c9c4bca3c04a9a36cb33d5b172b6836ec044d5d5 | 589,856 |
def check_ALL_DS(DS_ES_X_Map):
"""
ES used with ALL as DS can not be used with any other DS.
This function checks if this is true.
"""
ES_with_ALL = [row[1] for row in DS_ES_X_Map if row[0] == "ALL"]
ES_without_ALL = [ES for ES in ES_with_ALL
for row in DS_ES_X_Map if row[0] != "ALL"]
return len(ES_without_ALL) == 0 | 58b2f2fd4a4a1f20bba74aa6150d91169a4a9695 | 40,252 |
def _IsBoundary(i, n, cont, assigned):
"""Is path i a boundary, given current assignment?
Args:
i: int - index of a path to test for boundary possiblity
n: int - total number of paths
cont: dict - maps path pairs (i,j) to _Contains(i,j,...) result
assigned: set of int - which paths are already assigned
Returns:
bool - True if there is no unassigned j, j!=i, such that
path j contains path i
"""
for j in range(0, n):
if j == i or j in assigned:
continue
if (j, i) in cont:
return False
return True | 2ea312e2d497980a3bdfd45ac5005e6857869543 | 231,964 |
def _get_class(value, max):
"""Get the CSS class for the value and max such that higher values are better"""
if value < (max * 0.33): return "bad"
if value > (max * 0.67): return "good"
return "okay" | 88b0cf6359155f504a6bdbd26e6e3b88941e83c6 | 524,090 |
def make_pairs(args, pair_len=2):
"""Divide input list args into groups of length pair_len (default 2)."""
assert len(args) % pair_len == 0
return [tuple(args[pair_len * i: pair_len * (i + 1)]) for i in range(len(args) // pair_len)] | b93526b84784f422676f32d12ff82dc8ae839003 | 565,878 |
def infer_angular_variance_spherical(var_r, phi_c, var_q_min):
"""Calculate angular variance given properties of a beam with quadratic phase corrected by a lens.
The lens which removes the spherical component has focal length f = -k*var_r/(2*phi_c). This means that -phi_c is the
phase of the quadratic component at r = var_r**0.5.
The formula is (19) of Siegman IEEE J. Quantum Electronics, vol. 27 1991, with k = 2*pi/lambda. For consistency with
the rest of the program, I use slightly different definitions. The derivation is on p120 of Dane's Fathom notebook 2.
It is valid for any refractive index.
Args:
var_r (scalar): real space variance.
phi_c (scalar): real-space curvature - see above.
var_q_min (scalar): angular variance of the beam after its curvature has been removed.
Returns:
var_q (scalar): angular variance of the beam after the lens.
"""
var_q = var_q_min + 4*phi_c**2/var_r
return var_q | b8c3fcfff84530bb6fd2a9cee2e52dcb6fa4baa7 | 289,571 |
def _PlatformEventHandler(data):
"""Decorator for platform event handlers.
Apply giving the platform-specific data needed by the window to associate
the method with an event. See platform-specific subclasses of this
decorator for examples.
The following attributes are set on the function, which is returned
otherwise unchanged:
_platform_event
True
_platform_event_data
List of data applied to the function (permitting multiple decorators
on the same method).
"""
def _event_wrapper(f):
f._platform_event = True
if not hasattr(f, '_platform_event_data'):
f._platform_event_data = []
f._platform_event_data.append(data)
return f
return _event_wrapper | db2a5194772eb1df26e9cd66402cba60bcf42e32 | 474,868 |
def increment(number: int) -> int:
"""Increment a number.
Args:
number (int): The number to increment.
Returns:
int: The incremented number.
"""
return number + 1 | 27f4becd9afb747b22de991ab4cf030b14d3dac5 | 702,917 |
def makeaxisstep(start=0, step=1.00, length=1000, adjust=False, rounded=-1):
"""
Creates an axis, or vector, from 'start' with bins of length 'step'
for a distance of 'length'.
:type start: float
:param start: first value of the axis. Default is 0.
:type step: float
:param step: Step size for the axis. Default is 1.00.
:type length: int
:param length: LEngth of axis. Default is 1000.
:type adjust: boolean
:param adjust: If True, rounds (adjusts) the deimals points to the same
as the step has. Default is False.
:type rounded: int
:param rounded: Number of decimals to consider. If -1 then no rounding is
performed.
:returns: Axis with the set parameters.
:rtype: list[float]
"""
if adjust:
d = str(step)[::-1].find('.')
axis = [round(start+step*i,d) for i in range(length)]
else:
if rounded >= 0:
axis = [round(start+step*i,rounded) for i in range(length)]
else:
axis = [start+step*i for i in range(length)]
return axis | 2c6066f1ae76816bf34135507e180e08f98d12f5 | 321,931 |
def dict_from_file(filename, key_type=str):
"""Load a text file and parse the content as a dict.
Each line of the text file will be two or more columns splited by
whitespaces or tabs. The first column will be parsed as dict keys, and
the following columns will be parsed as dict values.
Args:
filename(str): Filename.
key_type(type): Type of the dict's keys. str is user by default and
type conversion will be performed if specified.
Returns:
dict: The parsed contents.
"""
mapping = {}
with open(filename, 'r') as f:
for line in f:
items = line.rstrip('\n').split()
assert len(items) >= 2
key = key_type(items[0])
val = items[1:] if len(items) > 2 else items[1]
mapping[key] = val
return mapping | 8d12620ca12c65c9cc8769262eba253d26581a72 | 617,877 |
def mangle(cls, name):
"""Applies Python name mangling using the provided class and name."""
return "_" + cls.__name__ + "__" + name | 348f9d1b1819c6283f81c8e7bf3a07a1e7c25b7f | 99,954 |
def get_url(query, page):
"""
Generate URL from query and page number.
The input query will be split into token or list of word, e.g 'luka parah' will be ['luka', 'parah'] and 'kdrt' will be ['kdrt']
For input query with more than 1 word, the url will be `..q={token1}+{token2}&..`, e.g `..q=luka+parah&..`
"""
queryLength = len(query.split())
if queryLength == 1:
url = 'https://www.lapor.go.id/search?q={}&page={}'.format(query, page)
else:
query = query.split()
param = '+'.join(query)
url = 'https://www.lapor.go.id/search?q={}&page={}'.format(param, page)
return url | 365e5408f1d429bc63bb5a512164069a149c1c26 | 122,169 |
def increment_count(val):
""" Increments the value by 1. """
return val + 1 | 107dc447d5e749daae5b1d0f578a213088d5ba84 | 678,294 |
def error_response(message):
"""
Construct error response for API containing given error message.
Return a dictionary.
"""
return {"error": message} | 677912817c91725c7079b538bfdf915eb21f3fa0 | 689,262 |
def construct_SN_default_rows(timestamps, ants, nif, gain=1.0):
""" Construct list of ants dicts for each
timestamp with REAL, IMAG, WEIGHT = gains
"""
default_nif = [gain] * nif
rows = []
for ts in timestamps:
rows += [{'TIME': [ts],
'TIME INTERVAL': [0.1],
'ANTENNA NO.': [antn],
'REAL1': default_nif,
'REAL2': default_nif,
'IMAG1': default_nif,
'IMAG2': default_nif,
'WEIGHT 1': default_nif,
'WEIGHT 2': default_nif}
for antn in ants]
return rows | b81e45d2d5299042b3332a2386a0fd4d2d6d59d7 | 1,517 |
import pickle
def load_objects(loadpath):
"""Load (unpickle) saved (pickled) objects from specified loadpath.
Parameters
----------
loadpath : absolute path and file name to the file to be loaded
Returns
-------
objects : list
of saved objects
"""
try:
with open(loadpath, 'rb') as buff:
return pickle.load(buff)
except IOError:
raise Exception('File %s does not exist! Data already imported?' % loadpath) | 3cd6a212d43a1b8c8c91f58cd332d725398d4dc6 | 425,226 |
def box(points):
"""Obtain a tight fitting axis-aligned box around point set"""
xmin = min(points, key=lambda x: x[0])[0]
ymin = min(points, key=lambda x: x[1])[1]
xmax = max(points, key=lambda x: x[0])[0]
ymax = max(points, key=lambda x: x[1])[1]
return (xmin, ymin), (xmax, ymax) | 8efb486150aa6d9f74f011c37302b57cf78d46f2 | 255,219 |
def get_clade_point(arg, node_name, time, pos):
"""Return a point along a branch in the ARG in terms of a clade and time"""
if node_name in arg:
tree = arg.get_marginal_tree(pos - .5)
if (time > tree.root.age or
(time == tree.root.age and node_name not in tree)):
return (list(tree.leaf_names()), time)
return (list(tree.leaf_names(tree[node_name])), time)
else:
return ([node_name], time) | b62822600c0cd192769d2813b90358d8b1b66d50 | 375,132 |
from typing import Any
from typing import Iterable
from typing import Optional
from typing import Dict
def obj_to_dict_helper(
obj: Any, attribute_names: Iterable[str], namespace: Optional[str] = None
) -> Dict[str, Any]:
"""Construct a dictionary containing attributes from obj
This is useful as a helper function in objects implementing the
SupportsJSON protocol, particularly in the _json_dict_ method.
In addition to keys and values specified by `attribute_names`, the
returned dictionary has an additional key "cirq_type" whose value
is the string name of the type of `obj`.
Args:
obj: A python object with attributes to be placed in the dictionary.
attribute_names: The names of attributes to serve as keys in the
resultant dictionary. The values will be the attribute values.
namespace: An optional prefix to the value associated with the
key "cirq_type". The namespace name will be joined with the
class name via a dot (.)
"""
if namespace is not None:
prefix = f'{namespace}.'
else:
prefix = ''
d = {'cirq_type': prefix + obj.__class__.__name__}
for attr_name in attribute_names:
d[attr_name] = getattr(obj, attr_name)
return d | c1c4d95f65f8b5d575629fcb23258f52b871b30b | 284,352 |
from typing import Dict
def success_of_action_dict(**messages) -> Dict:
"""Parses the overall success of a dictionary of actions, where the key is an action name and the value is a dictionarised Misty2pyResponse. `overall_success` is only true if all actions were successful.
Returns:
Dict: The dictionary of the keys `"overall_success"` (bool) and action names that contain the dictionarised Misty2pyResponses.
"""
status_dict = {}
overall_success = True
for name, message in messages.items():
status_dict[name] = message
if not message.get("overall_success"):
overall_success = False
status_dict["overall_success"] = overall_success
return status_dict | 542725d492df7758e9b90edf8d18a935c824e18a | 676,795 |
def _clean(sensor, fetch_resp):
"""
Clean data by deleting streams with zero values.
Parameters
----------
sensor : sensor name type to evaluate e.g. Zone_Air_Temperature
fetch_resp : Mortar FetchResponse object
Returns
-------
sensor_df : dataframe of nonzero sensor measurements
setpoint_df : dataframe of setpoint values
equipment : equipment related to the sensor measurement
"""
# get all the equipment we will run the analysis for. Equipment relates sensors and setpoints
equipment = [r[0] for r in fetch_resp.query("select distinct equip from {}_sensors".format(sensor))]
# find sensor measurements that aren't just all zeros
valid_sensor_cols = (fetch_resp['sensors'] > 0).any().where(lambda x: x).dropna().index
sensor_df = fetch_resp['sensors'][valid_sensor_cols]
setpoint_df = fetch_resp['setpoints']
return sensor_df, setpoint_df, equipment | 3c8404dd6b4a9d9bc7237f16201d91e829d1e113 | 156,441 |
def get_text(index_name, es, text_id):
""" Return a text in ElasticSearch with the param id
:param index_name: ElasticSearch index file
:param es: ElasticSearch object
:param text_id: Text id
:return: str
"""
res = es.get(index=index_name, id=text_id)
return res['_source']['text'] | b57ef476c8a1e74614846f7a231cf81b05833fda | 296,324 |
from typing import List
def getValuesInInterval(dataTupleList: List, start: float, end: float) -> List:
"""
Gets the values that exist within an interval
The function assumes that the data is formated as
[(t1, v1a, v1b, ...), (t2, v2a, v2b, ...)]
"""
intervalDataList = []
for dataTuple in dataTupleList:
time = dataTuple[0]
if start <= time and end >= time:
intervalDataList.append(dataTuple)
return intervalDataList | 42dd008ff3dfadc5e7ac4d7b34f30626a6dadf73 | 148,796 |
import datetime as dt
def createDatetime(yr, mo, dy, hr):
"""
Same thing as above function but converts to datetime format instead of decimal year
"""
datetime = []
for i in range(len(yr)):
time = dt.datetime(yr[i], mo[i], dy[i], hr[i])
datetime.append(time)
return datetime | 087b6672dbd7d3a0a81e3fd6c8fc808667563074 | 167,256 |
def area_of_rectangle(height, width = None):
"""
Returns the area of a rectangle.
Parameters
----------
height : int or float
The height of the rectangle.
width : int or float
The width of the rectangle. If `None` width is assumed to be equal to
the height.
Returns
-------
int or float
The area of the rectangle
Examples
--------
>>> area_of_rectangle(7)
49
>>> area_of_rectangle (7, 2)
14
"""
area = height * width
return area | 6867148be08d474f41e928d59d248041236911e8 | 188,717 |
def other(si, ti):
"""
Retrieves the "other" index that is not equal to the stack index or target stack index.
Parameters
----------
si : int
The stack index that would be removed from.
ti : int
The target stack index that would be added to.
Returns
-------
int
The "other" index in the list [0, 1, 2] that equates to the stack index that is unused (not stack index or target stack index).
"""
other = [0, 1, 2]
del other[other.index(ti)]
del other[other.index(si)]
return other[0] | 357e51f22f4dd9b40af4bbf66da2363df9fd2a7b | 553,957 |
def set_is_singles(slots):
"""Check whether a set is in the singles or doubles format based on its slots"""
if slots is None:
return False
for slot in slots:
entrant = slot['entrant']
try:
participants = entrant['participants']
if len(participants) > 1:
return False
else:
return True
except KeyError:
return True | 89e919d9205076e84103f563b0ce364eb947fef4 | 340,890 |
def none_has_no_cards(player_cards,players_number):
"""checks if every player has cards on their hands
>>> p1_cards=[('A', '♥', 11),('K', '♣', 10), ('5', '♥', 5), ('7', '♣', 7), ('8', '♣', 8), ('5', '♦', 5),('J', '♠', 10)]
>>> p2_cards=[('A', '♥', 11),('4', '♦', 4), ('2', '♠', 2), ('3', '♣', 3), ('9', '♣', 9), ('5', '♦', 5),('A', '♠', 11)]
>>> p3_cards=[]
>>> player_cards=[p1_cards,p2_cards,p3_cards]
>>> none_has_no_cards(player_cards,3)
False
"""
for i in range(players_number):
if len(player_cards[i])==0:
return False
return True | 1eb1ac44df3fbf5e2a824057813b7ea710a2610a | 317,796 |
def q_learn(old_state_action_q_value, new_state_max_q_value, reward, learn_rate=0.01, discount_factor=0.9):
"""
Returns updated state-action Q_value.
:param old_state_action_q_value: Q_value of the chosen action in the previous state.
:param new_state_max_q_value: maximum Q_value of new state.
:param reward: received reward as result of taken action.
:param learn_rate: learning rate.
:param discount_factor: discount factor.
:return: Updated Q-value of previous state-action pair.
"""
error = (reward + (discount_factor * new_state_max_q_value)) - old_state_action_q_value
return old_state_action_q_value + (learn_rate * error) | cfe2f70823dff79b43a426b2f9e0996ac5e507c1 | 643,016 |
def portfolio_return(weights, returns):
"""
Computes the return on a portfolio from constituent returns and weights
weights are a numpy array or Nx1 matrix and returns are a numpy array or Nx1 matrix
"""
return weights.T @ returns | 9e6ac36b97c1fbcd74c209ab04493ff12a8ca713 | 421,941 |
def pxe_mac(mac):
"""
Create a MAC address file for pxe builds.
Add O1 to the beginning, replace colons with hyphens and downcase
"""
return "01-" + mac.replace(":", "-").lower() | 483ccf559b5cb014070be3cc9e0237ac5d1a0b34 | 670,281 |
def get_kqshift(ngkpt, kshift, qshift):
"""Add an absolute qshift to a relative kshift."""
kqshiftk = [ kshift[i] + qshift[i] * ngkpt[i] for i in range(3) ]
return kqshiftk | 0fe469cbeea3265705e1eb89bad8c00cb59374a7 | 624,208 |
def _repeated_proto3_field_to_list(field):
"""Convert a proto3 repeated field to list.
Repeated fields are represented as an object that acts like a Python
sequence. It cannot be assigned to a list type variable. Therefore, doing
the conversion manually.
"""
result = []
for item in field:
result.append(item)
return result | 424ef2a64d2878a2dce547bcb22c6f265d417aea | 83,573 |
def getDistance(sensor):
"""Return the distance of an obstacle for a sensor."""
# Special case, when the sensor doesn't detect anything, we use an
# infinite distance.
if sensor.getValue() == 0:
return float("inf")
return 5.0 * (1.0 - sensor.getValue() / 1024.0) | 68ff9e0c8c4dd7687e328d3b9c4634677cfe25cd | 702,978 |
def load_reports_file(path):
"""
Loads radiology reports from a file. Radiology reports must be separated by
the following string: '----------------------------------------------'
Inputs:
path str path to the file containing the reports
Output:
reportlist list a list with a report for each element
"""
reportlist = [""]
x = 0
with open(path, "r") as reportsfile:
for line in reportsfile:
if "----------------------------------------------" in line:
x = x+1
reportlist.append("")
else:
reportlist[x] = reportlist[x] + line
return reportlist | 4a941c75c725f73134007112a74920954465494d | 106,855 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.