content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def inside_image(x, y, im_info):
"""
check if a point is in the image
"""
return x >= 0 and y >= 0 and x < im_info[1] and y < im_info[0] | f27315f5e7275d55f941a9614600440c1a904fa0 | 148,928 |
def search(array, value, dir="-"):
"""
Searches a sorted (ascending) array for a value, or if value is not found,
will attempt to find closest value.
Specifying dir="-" finds index of greatest value in array less than
or equal to the given value.
Specifying dir="+" means find index of least value in array greater than
or equal to the given value.
Specifying dir="*" means find index of value closest to the given value.
"""
if value < array[0]:
if dir == "+":
return 0
else:
raise IndexError(f"No value found before {value}.")
if value > array[-1]:
if dir == "-":
return len(array) - 1
else:
raise IndexError(f"No value found after {value}.")
J = 0
K = len(array) - 1
while True:
if value == array[J]:
return J
elif value == array[K]:
return K
elif K == J + 1:
if dir == "-":
return J
elif dir == "+":
return K
elif dir == "*":
return min((J, K), key=lambda n: abs(n - value))
N = (J + K)//2
if value < array[N]:
K = N
elif value > array[N]:
J = N
elif value == array[N]:
return N | 9284ed8f826f3a472d9149531b29f12a8875870c | 41,739 |
import zlib
def adler32(filepath,blocksize=2**20):
"""
Return the ader32 of a file as an 8-byte hex number
`blocksize` adjusts how much of the file is read into memory at a time.
This is useful for large files.
2**20 = 1024 * 1024 = 1 mb
2**12 = 4 * 1024 = 4 kb
"""
csum = 1
with open(filepath, 'rb') as afile:
buf = afile.read(blocksize)
while len(buf) > 0:
csum = zlib.adler32(buf,csum)
buf = afile.read(blocksize)
# From the documentation:
# > Changed in version 3.0: Always returns an unsigned value.
# > To generate the same numeric value across all Python versions and
# > platforms, use crc32(data) & 0xffffffff.
csum = csum & 0xffffffff
return ('0'*8 + hex(csum)[2:])[-8:] | 9e299e752664dc71a29a6393331751d49327ecc1 | 49,211 |
def format_zip(field):
"""Return str version of 5 digit zip. Examples:
format_zip('08544-4320') >>> '08544'
format_zip('085444320') >>> '08544'
format_zip(85444320) >>> '08544'
format_zip(851) >>> '00851'
:param field: raw text
"""
if field is None or not field:
return None
field = str(field).split('-')[0].split(' ')[0].split('.')[0]
if len(field) <= 5:
return field.zfill(5) if field.isdigit() else None
elif len(field) <= 9:
field = field.zfill(9)[:5]
return field if field.isdigit() else None
return None | 5bd01325e47f5f464c3828f4d76adab508322f1d | 215,364 |
def get_show_columns(database):
"""
Gets the query of SHOW COLUMNS for a given database.
:type str
:param database: A database name
:rtype str
:return A query
"""
return ("SELECT `TABLE_NAME`, `COLUMN_NAME` "
" FROM "
"`information_schema`.`COLUMNS`"
" WHERE "
"`TABLE_SCHEMA` = '{:s}'").format(database) | e93d9ec70986d1895d1a107acdc7674f46e4de68 | 293,551 |
def isvar(sym):
"""
Checks whether a symbol in a structure is a variable, e.g., X,Y,Z etc.
"""
if isinstance(sym, str):
return sym.isupper()
else:
return False | a0a11565fd4bd6dc15d926c7364cf9c746bcebce | 479,686 |
def predict(features, model):
"""
Generate predictions from features and model.
.. versionadded:: 0.5.0
Parameters
----------
features : ndarray
Features from which to generate predictions
model : ndarray
Regression model.
Returns
-------
predicted : ndarray
Predictions generated from features using model.
"""
return features.dot(model) | 628d427ff363ac43cd65a98db22fa70598e522b6 | 162,024 |
def _entity_list_as_bel(entities):
"""Stringify a list of BEL entities.
:type entities: iter[BaseAbundance]
:rtype: str
"""
return ', '.join(
e.as_bel()
for e in entities
) | 1562235267a12006334dc8688f5a6b110a0f724e | 398,959 |
def is_named_tuple_type(typ) -> bool:
"""
True if the argument corresponds to a named tuple type.
Calling the function `collections.namedtuple` gives a new type that is a subclass of `tuple` (and no other classes)
with a member named `_fields` that is a tuple whose items are all strings.
"""
b = typ.__bases__
if len(b) != 1 or b[0] != tuple:
return False
f = getattr(typ, "_fields", None)
if not isinstance(f, tuple):
return False
return all(type(n) == str for n in f) | b27003183383198f2c4d0cac0d13cfef3e8a7f7e | 241,457 |
def left_padded_string(text, padding=0):
"""
Method returns a modified version of `text` with `padding` number of space
characters prepended.
:param text: a string to prepend spaces to
:param padding: the number of space characters to prepend to `text`
:return: a modified version of `text` with `padding` number of space
characters prepended.
"""
try:
padding = int(padding)
except ValueError:
padding = 0
padding = 0 if padding < 0 else padding
return ' ' * padding + text | 0df82b71b8d8fb5ec948bdcba8e3ca9f7e6ef98f | 261,207 |
def transpose_func(classes, table):
"""
Transpose table.
:param classes: confusion matrix classes
:type classes: list
:param table: input confusion matrix
:type table: dict
:return: transposed table as dict
"""
transposed_table = {k: table[k].copy() for k in classes}
for i, item1 in enumerate(classes):
for j, item2 in enumerate(classes):
if i > j:
temp = transposed_table[item1][item2]
transposed_table[item1][item2] = transposed_table[item2][item1]
transposed_table[item2][item1] = temp
return transposed_table | 6c59feef2b735076c5768e086ef2e91331b78a73 | 29,450 |
def transformDiffCost(criterion, frRow, exRow):
"""Returns the absolute difference between their image through the 'transform' dict, normalized"""
t = criterion['transform']
q = criterion['QLabel']
return abs(t[frRow[q]] -
t[exRow[q]]) / max(t.values()) | 0e7463642355b74aee42e90bd2baac6baee43eff | 329,303 |
def _make_minimize_function(scoring_function):
"""Create a minimize function.
Given a maximization ``scoring_function`` convert it to minimize in order to work with
``hyperopt``, as ``benchmark`` works with ``maximization``.
Also ``hyperopt`` params are being passed as a python ``dict``, we pass those as ``kwargs``
to the ``scoring_function``.
"""
def minimized_function(params):
return -scoring_function(**params)
return minimized_function | 017370cbc9446229a45de3126ea29974ab551737 | 257,730 |
import shutil
def clone_file(src, dest):
"""Clones a file from the source to the destination
Returns:
dict: indicates whether the clone operation threw an error
"""
try:
shutil.copy(src, dest)
return {'is_successful': True}
except OSError:
return {'is_successful': False} | 024a5df1c9c79e572c1a41f4941ef1b63608022f | 479,459 |
from typing import List
def find_positions(arr: List[str],
mask: List[bool]) -> List[int]:
"""Set positions and tokens.
Args:
tokens: List of tokens and untokens.
mask: Mask for tokens.
Returns:
List of positions of tokens.
"""
pos = []
for i, (token, istoken) in enumerate(zip(arr, mask)):
if istoken:
pos.append(i)
return pos | d89a8ab51c4437c55c666b3670f9e09a13e478a5 | 648,075 |
def transform_point(point, direction, value):
"""
Moves point in direction
:param point: Point for movement
:type point: DB.XYZ
:param direction: Direction of movement. Vector
:type direction: DB.XYZ
:param value: The amount of movement
:type value: int or float
:return: New moved point
:rtype: DB.XYZ
"""
return point + direction * value | 996c4978be165b31b3b60c24cd6927840f6ced94 | 38,474 |
def _gcs_uri_rewriter(raw_uri):
"""Rewrite GCS file paths as required by the rewrite_uris method.
The GCS rewriter performs no operations on the raw_path and simply returns
it as the normalized URI. The docker path has the gs:// prefix replaced
with gs/ so that it can be mounted inside a docker image.
Args:
raw_uri: (str) the raw GCS URI, prefix, or pattern.
Returns:
normalized: a cleaned version of the uri provided by command line.
docker_path: the uri rewritten in the format required for mounting inside
a docker worker.
"""
docker_path = raw_uri.replace('gs://', 'gs/', 1)
return raw_uri, docker_path | 6e476860cb175dd2936cc0c080d3be1d09e04b77 | 709,845 |
def final_nonzero(L):
"""
Return the index of the last non-zero value in the list.
"""
for index, val in reversed(list(enumerate(L))):
if val:
return(index)
return(0) | 1064987732146a9f6c12a2cab1dc84d2657fa321 | 17,052 |
def convertRange(val: float, old: tuple, new: tuple):
"""
Converts the range of a value to a new range.
Example
-------
convertRange(50, (0, 100), (0, 1))
>> 0.5
"""
return (((val - old[0]) * (new[1] - new[0])) / (old[1] - old[0])) + new[0] | 7308b6c45b3ef587aab41e970108a1dc9e31e726 | 56,919 |
import functools
import time
import logging
def retry_on_exception(exceptions, timeout=300):
"""Retry function in case of exception(s)."""
def _retry(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
delay = 1
backoff = 2
tstart = time.time()
while True:
try:
return f(*args, **kwargs)
except exceptions:
if timeout is not False and time.time() - tstart > timeout:
raise
logging.warning(
f'Function {f.__name__} failed: retrying in {delay}s')
time.sleep(delay)
delay *= backoff
return wrapper
return _retry | 422d2cbda47cdf974586f48a3156182dbb23b9b5 | 281,438 |
def _profile_exclusion(matching_profiles, logger):
"""Find out most matching profile byt host, task and family match.
Profiles are selectively filtered. Each item in passed argument must
contain tuple of (profile, profile's score) where score is list of
booleans. Each boolean represents existence of filter for specific key.
Profiles are looped in sequence. In each sequence are profiles split into
true_list and false_list. For next sequence loop are used profiles in
true_list if there are any profiles else false_list is used.
Filtering ends when only one profile left in true_list. Or when all
existence booleans loops passed, in that case first profile from remainded
profiles is returned.
Args:
matching_profiles (list): Profiles with same scores. Each item is tuple
with (profile, profile values)
Returns:
dict: Most matching profile.
"""
logger.info(
"Search for first most matching profile in match order:"
" Host name -> Task name -> Family."
)
if not matching_profiles:
return None
if len(matching_profiles) == 1:
return matching_profiles[0][0]
scores_len = len(matching_profiles[0][1])
for idx in range(scores_len):
profiles_true = []
profiles_false = []
for profile, score in matching_profiles:
if score[idx]:
profiles_true.append((profile, score))
else:
profiles_false.append((profile, score))
if profiles_true:
matching_profiles = profiles_true
else:
matching_profiles = profiles_false
if len(matching_profiles) == 1:
return matching_profiles[0][0]
return matching_profiles[0][0] | 11d39198470d679808a6fc0c3246ebd06e5d7f16 | 460,373 |
def _name(node):
"""Get the name of a node."""
return type(node).__name__ | 215a5e3c62fe3cba6b4f40dfbd470c2451fdbf75 | 526,996 |
def list_projection(values, columns): #--------------------------------------<<<
"""Return a comma-delimited string containing specified values from a list.
values = list of values. (E.g., as returned from a csv.reader().)
columns = list of indices (0-based) for the columns that are to be included
in the returned line.
Returns a comma-delimited text string containing only the desired columns
in the order specified in the passed list.
"""
returned = []
for column in columns:
returned.append(values[column])
return ','.join(returned) | 6998f5c815309f70d17cda9e58c026a62112ee80 | 341,424 |
import requests
import math
def get_search_page_numbers(url, token):
"""
Get the pagination information for the request.
Parameters
----------
url : str
The OSF url
token : str
OSF authorization token
Returns
-------
A dictionary of page numbers
"""
headers = {"Authorization": "Bearer {}".format(token)}
pagination_info = requests.get(url, headers=headers).json()['links']
next_page = pagination_info['next']
previous_page = pagination_info['prev']
if next_page:
next_page = next_page.partition('page=')[2]
if previous_page:
previous_page = previous_page.partition('page=')[2]
if previous_page == '':
previous_page = '1'
total_pages = math.ceil(pagination_info['meta']['total']/pagination_info['meta']['per_page'])
pages = {
"first_page": '1',
"previous_page": previous_page,
"next_page": next_page,
"last_page": str(total_pages),
"total_pages": str(total_pages),
"per_page": pagination_info['meta']['per_page']}
return pages | f868f3edf00141825950b9aee2f2ea2ab74672ca | 129,658 |
def kwargs_to_variable_assignment(kwargs: dict, value_representation=repr,
assignment_operator: str = ' = ',
statement_separator: str = '\n',
statement_per_line: bool = False) -> str:
"""
Convert a dictionary into a string with assignments
Each assignment is constructed based on:
key assignment_operator value_representation(value) statement_separator,
where key and value are the key and value of the dictionary.
Moreover one can seprate the assignment statements by new lines.
Parameters
----------
kwargs : dict
assignment_operator: str, optional:
Assignment operator (" = " in python)
value_representation: str, optinal
How to represent the value in the assignments (repr function in python)
statement_separator : str, optional:
Statement separator (new line in python)
statement_per_line: bool, optional
Insert each statement on a different line
Returns
-------
str
All the assignemnts.
>>> kwargs_to_variable_assignment({'a': 2, 'b': "abc"})
"a = 2\\nb = 'abc'\\n"
>>> kwargs_to_variable_assignment({'a':2 ,'b': "abc"}, statement_per_line=True)
"a = 2\\n\\nb = 'abc'\\n"
>>> kwargs_to_variable_assignment({'a': 2})
'a = 2\\n'
>>> kwargs_to_variable_assignment({'a': 2}, statement_per_line=True)
'a = 2\\n'
"""
code = []
join_str = '\n' if statement_per_line else ''
for key, value in kwargs.items():
code.append(key + assignment_operator +
value_representation(value)+statement_separator)
return join_str.join(code) | aec76c6a7b1e29c9540b0cb2a8161f831d2058de | 71,454 |
def get_policy_published(reportee, policy, **kw):
"""Return "policy_published" part for a passed `reportee` and `policy`. For
now we use the hardcoded values for `adkim`, `aspf` and `pct` everywhere. """
return {
"domain": reportee,
"adkim": "r",
"aspf": "r",
"p": policy,
"sp": policy,
"pct": 100
} | a5be8da2777421b6596665718ffc25e4ad5b8e55 | 497,692 |
def is_int(object):
"""Check if the given object is an integer"""
return isinstance(object, int) | 99aeb97e23db5ac6d83776b9e9c1172d7215972c | 666,636 |
def params_to_string(*s):
"""gets a printable string for variable number of parameters."""
return ", ".join(s) | cd499a7c8bbd2dc32939ae0b86a5bcd8e9341b3f | 235,960 |
def execute(context, *args):
"""dump_request() -> {"args": [...], "metadata": {...}}
Returns the request args and metadata as a dict.
"""
return {"args": args, "metadata": context.metadata} | 03f874c1e0f86126970cafbd715b6a6a699f90ee | 325,240 |
import json
def _build_body_as_bytes(channel, message):
"""return HTTP request body as bytes, utf-8 encoded"""
data_dict = {"channel": channel, "text": message}
data_str = json.dumps(data_dict)
return data_str.encode() | 7e85feee9af6b160e5edca26eb837b57b2888c88 | 516,923 |
def percentage(context, num, total_num):
"""
Works out the percentage of num over total_num and then appends the percentage sign
"""
p = float(num)/float(total_num) * 100
percent = str(p) + "%"
return percent | 66bb8db090a9f9cc01b34fda291055aeae731f1c | 662,284 |
def iterPower(base, exp):
"""
base: int or float.
exp: int >= 0
returns: int or float, base^exp
"""
res = 1 # <---- remember starting point
while exp > 0:
res *= base
exp -= 1
return res | 14c694e2702c468ab28362d224d8d89092c0cc79 | 207,480 |
def get_passive_el(passive_coord, centroids):
""" Gets index of passive elements .
Args:
passive_coord (:obj:`tuple`): Region that the shape will not be changed.
centroids (:obj:`numpy.array`): Coordinate (x,y) of the centroid of each element.
Returns:
Index of passive elements.
"""
mask = (centroids[:, 0] >= passive_coord[0][0]) & (centroids[:, 0] <= passive_coord[0][1]) & (centroids[:, 1] >= passive_coord[1][0]) & (centroids[:, 1] <= passive_coord[1][1])
return (mask > 0).nonzero()[0] | 9983ee9d730ced9f8ce56790c07af22c9dfcdb0d | 41,507 |
from importlib import import_module
def get_class_from_route(route):
"""
From a Python class path in string format, returns the class
"""
values = route.split('.')
module = import_module('.'.join(values[:-1]))
cl = getattr(module, values[-1])
return cl | 059da4f3062630a6906723d66e3869b7a347d04a | 543,921 |
import pickle
def load_pickle2dict(fname):
"""
Load the the IMGT database pickle file into a Dictionary structure
"""
with open(fname, 'rb') as fileHandle:
return pickle.load(fileHandle) | 9e765a72b64582f3180556d7aa445037c9d82126 | 129,897 |
import base64
def encode_b64(value):
"""Encode value to base64."""
if isinstance(value, str):
value = bytes(value, "utf-8")
return base64.b64encode(value).decode("utf-8") | 847759cf46c7c9b4540038c44702ca772dbbccc7 | 193,871 |
def serialize_header(value, style='simple', explode=False): # noqa
"""
Serialize a header according to https://swagger.io/docs/specification/serialization/.
Parameters
----------
value :
Value to serialize
style : str ('simple')
Serialization style.
explode : bool
Explode the object serialization.
Returns
-------
str
Serialized header.
"""
if type(value) is list:
return ','.join([str(item) for item in value])
elif type(value) is dict:
sep = '=' if explode else ','
return ','.join(['{}{}{}'.format(k, sep, v) for k, v in value.items()])
else:
return str(value) | e5f355a8b60d85cf3a673b6ba126b76effc283c8 | 370,469 |
def get_PF_Results(trafo_vector_group):
"""
Returns the PF loadflow results of the validation network for the given
trafo vector groups. For info about the test network see runpp_3ph Validation.pfd
"""
data_map = {"YNyn": 0,
"Dyn": 1,
"Yzn": 2}
# Create lists to put in the PF loadflow results of the validation network
bus_vm_pu = [[], [], []]
# vm_pu -> L1 L2 L3
# Bus #1 ExtGrid
# Bus #2 TR1_HV
# Bus #3 TR1_LV
# Bus #4 Load A1
# Bus #5 Load B1
# Bus #6 Load B3
# Bus #7 TR2_LV
line_i_ka = [[], [], []]
# i_ka -> L1_from, L2_from, L3_from, L1_to, L2_to, L3_to
# Leitung #1 ExtGrid_TR1
# Leitung #2 TR1_LoadA1
# Leitung #3 TR2_LoadB1
# Leitung #4 TR2_LoadB3
trafo_i_ka = [[], [], []]
# i_ka -> L1_hv, L2_hv, L3_hv, L1_lv, L2_lv, L3_lv
# Trafo 1
# Trafo 2
bus_vm_pu[data_map['YNyn']] = [0.99999787338, 1.0000016161, 1.0000005105,
0.99968050244, 0.99969237855, 0.99963282587,
0.99705343554, 0.99746838183, 0.99718586395,
0.9948995116, 0.99458439962, 0.98674300489,
0.99395111068, 0.99418423529, 0.9863564418,
0.97850425826, 0.99234507124, 0.99521892713,
0.99742536231, 0.99837274406, 0.99814767609]
line_i_ka[data_map['YNyn']] = [0.014003237709, 0.013578415289, 0.015018686616, 0.014052352411, 0.013615497541, 0.015055831313,
0.045318234753, 0.087462622072, 0.13170744039, 0.045439631098, 0.087508398891, 0.13172221072,
0.067006161071, 0.10938206657, 0.15377206679, 0.067102516557, 0.10942952686, 0.15379184651,
0.24518449462, 0.11090275423, 0.15370539768, 0.24521447354, 0.1109479239, 0.15373201528]
trafo_i_ka[data_map['YNyn']] = [0.014052351784, 0.013615496912, 0.015055830683, 0.34745891513, 0.3364754264, 0.37259351695,
0.015806285559, 0.011022367484, 0.014341144957, 0.39152062339, 0.27144774298, 0.3546449925]
bus_vm_pu[data_map['Dyn']] = [0.99999633365, 1.0000007177, 1.0000029487,
0.99966300361, 0.99968280267, 0.99965990087,
0.99703737513, 0.99745820246, 0.99721210683,
0.99488339811, 0.99457396301, 0.98676946744,
0.9939515775, 0.99418757133, 0.98635265387,
0.97850473318, 0.99234834683, 0.99521515379,
0.99742581829, 0.99837603162, 0.99814393136]
line_i_ka[data_map['Dyn']] = [0.014110688122, 0.01373849924, 0.014763703519, 0.014164968965, 0.013770898582, 0.014800144789,
0.045318951491, 0.087463575817, 0.13170390089, 0.045440367054, 0.087509317164, 0.13171867828,
0.067006134761, 0.1093816954, 0.1537726556, 0.067102485041, 0.10942915967, 0.15379243712,
0.24518438107, 0.11090238404, 0.15370597872, 0.24521435453, 0.11094755768, 0.15373259815]
trafo_i_ka[data_map['Dyn']] = [0.014164968341, 0.013770897951, 0.014800144159, 0.34746449192, 0.33647892194, 0.37258362522,
0.01492317272, 0.012146394959, 0.014229967227, 0.39152039065, 0.27144661055, 0.35464662852]
bus_vm_pu[data_map['Yzn']] = [0.99999633365, 1.0000007177, 1.0000029487,
0.99966300361, 0.99968280267, 0.99965990087,
0.99703737513, 0.99745820246, 0.99721210683,
0.99488339811, 0.99457396301, 0.98676946744,
0.9939515775, 0.99418757133, 0.98635265387,
0.97850473318, 0.99234834683, 0.99521515379,
0.99742581829, 0.99837603162, 0.99814393136]
line_i_ka[data_map['Yzn']] = [0.014110688122, 0.01373849924, 0.014763703519, 0.014164968965, 0.013770898582, 0.014800144789,
0.045318951491, 0.087463575817, 0.13170390089, 0.045440367054, 0.087509317164, 0.13171867828,
0.067006134761, 0.1093816954, 0.1537726556, 0.067102485041, 0.10942915967, 0.15379243712,
0.24518438107, 0.11090238404, 0.15370597872, 0.24521435453, 0.11094755768, 0.15373259815]
trafo_i_ka[data_map['Yzn']] = [0.014164968341, 0.013770897951, 0.014800144159, 0.34746449192, 0.33647892194, 0.37258362522,
0.01492317272, 0.012146394959, 0.014229967227, 0.39152039065, 0.27144661055, 0.35464662852]
return [bus_vm_pu[data_map[trafo_vector_group]],
line_i_ka[data_map[trafo_vector_group]],
trafo_i_ka[data_map[trafo_vector_group]]] | 7a2bdda51129028bbb2978a02807e7d8076c0ea5 | 407,468 |
from typing import Iterable
from typing import Dict
from typing import Any
def pb_obj2dict(obj, keys: Iterable[str]) -> Dict[str, Any]:
"""Convert a protobuf object to a Dict by selected keys
:param obj: a protobuf object
:param keys: an iterable of keys for extraction
"""
return {k: getattr(obj, k) for k in keys if hasattr(obj, k)} | 50dcc3f81f58b61b8c83989069facba532e0c523 | 604,786 |
def _pad_sequences(sequences, pad_tok, max_length):
"""
Args:
sequences: a generator of list or tuple.
pad_tok: the char to pad with.
Returns:
a list of list where each sublist has same length.
"""
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok] * max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return sequence_padded, sequence_length | dac40aef95b39b3b549904c3981152cacbee494a | 303,267 |
def static_vars(**kwargs):
"""
Attach static variables to a function.
Usage:
@static_vars(k1=v1, k2=k2, ...)
def myfunc(...):
myfunc.k1...
Parameters:
**kwargs Keyword=value pairs converted to static variables in decorated
function.
Returns:
decorate
"""
def decorate(func):
for k, v in kwargs.items():
setattr(func, k, v)
return func
return decorate | ee6690d76ca21efd682ef2ade0aa8b8046ec6a51 | 675,968 |
import json
def _get_ha_state_from_json(string_json):
"""
Searches through the specified JSON string looking for either the HDP 2.0 or 2.1+ HA state
enumerations.
:param string_json: the string JSON
:return: the value of the HA state (active, standby, etc)
"""
json_data = json.loads(string_json)
jmx_beans = json_data["beans"]
# look for HDP 2.1+ first
for jmx_bean in jmx_beans:
if "name" not in jmx_bean:
continue
jmx_bean_name = jmx_bean["name"]
if jmx_bean_name == "Hadoop:service=NameNode,name=NameNodeStatus" and "State" in jmx_bean:
return jmx_bean["State"]
# look for HDP 2.0 last
for jmx_bean in jmx_beans:
if "name" not in jmx_bean:
continue
jmx_bean_name = jmx_bean["name"]
if jmx_bean_name == "Hadoop:service=NameNode,name=FSNamesystem":
return jmx_bean["tag.HAState"] | 23dd2a547982a7fcc734a90b509caeff18fa90b3 | 610,543 |
import torch
def attention_score(att, mel_lens, r=1):
"""
Returns a tuple of scores (loc_score, sharp_score), where loc_score measures monotonicity and
sharp_score measures the sharpness of attention peaks
"""
with torch.no_grad():
device = att.device
mel_lens = mel_lens.to(device)
b, t_max, c_max = att.size()
# create mel padding mask
mel_range = torch.arange(0, t_max, device=device)
mel_lens = mel_lens // r
mask = (mel_range[None, :] < mel_lens[:, None]).float()
# score for how adjacent the attention loc is
max_loc = torch.argmax(att, dim=2)
max_loc_diff = torch.abs(max_loc[:, 1:] - max_loc[:, :-1])
loc_score = (max_loc_diff >= 0) * (max_loc_diff <= r)
loc_score = torch.sum(loc_score * mask[:, 1:], dim=1)
loc_score = loc_score / (mel_lens - 1)
# score for attention sharpness
sharp_score, inds = att.max(dim=2)
sharp_score = torch.mean(sharp_score * mask, dim=1)
return loc_score, sharp_score | ccdce864a91c9816143f414c2cde99b5f67c89c4 | 35,411 |
def merge_configs(default_config, input_config):
"""Recursively merge configuration dictionaries"""
result = {}
for name in default_config:
lhs_value = default_config[name]
if name in input_config:
rhs_value = input_config[name]
if isinstance(lhs_value, dict):
assert isinstance(rhs_value, dict)
result[name] = merge_configs(lhs_value, rhs_value)
else:
result[name] = rhs_value
else:
result[name] = lhs_value
for name in input_config:
rhs_value = input_config[name]
if isinstance(rhs_value, dict) and name in default_config.keys():
continue
result[name] = rhs_value
return result | 2a2b9c6ad2fff813b9a4ccb87bb06b1679e8b9f8 | 311,506 |
def _shallow_dict_copy_without_key(table, key_to_omit):
"""Returns a shallow copy of dict with key_to_omit omitted."""
return {key: table[key] for key in table if key != key_to_omit} | 349e79cffc48bba052c2c2f6cfdfdae60c068c29 | 135,929 |
def readfile(filename):
"""Given a filename, read a file in text mode. It returns a single string."""
filehandle = open(filename, 'r')
outfile = filehandle.read()
filehandle.close()
return outfile | 7d6cd96ec42cbcbac460268678b4d2e191a4afa3 | 558,456 |
import random
def make_sentence(words_list, num_words):
"""Get the number of words requested by user randomly.
Params:
words_list(list): list of str to choose words from randomly
num_words(int)
Returns:
sentence(list)
"""
sentence = list()
for i in range(num_words):
random_index = random.randrange(len(words_list) - 1)
sentence.append(words_list[random_index])
return sentence | 3a73a87b9cfd62c4973670a5de15db2e73bce5cc | 175,073 |
def get_lineno(node, default=0):
"""Gets the lineno of a node or returns the default."""
return getattr(node, 'lineno', default) | b1d7fa39877e5befd6565c92640ce2e1b6f5e06d | 174,518 |
def transition(config, rules):
"""Get next state of cell for a rule (Wolfram code).
:param config: Neighbor configuration.
:param rules: Rule for state transistion.
:returns: Next state.
:raises ValueError: If config is invalid.
"""
assert len(rules) == 8
if config == [1, 1, 1]:
return rules[0]
elif config == [1, 1, 0]:
return rules[1]
elif config == [1, 0, 1]:
return rules[2]
elif config == [1, 0, 0]:
return rules[3]
elif config == [0, 1, 1]:
return rules[4]
elif config == [0, 1, 0]:
return rules[5]
elif config == [0, 0, 1]:
return rules[6]
elif config == [0, 0, 0]:
return rules[7]
raise ValueError(f"Invalid config argument: {config}") | c9afd5a81bbb33810dfedbe62a4e31438ae22e95 | 129,726 |
import re
def canonical(value):
"""Replace anything but 'a-z', 'A-Z' and '0-9' with '_'.
"""
return re.sub(r'[^a-zA-Z0-9]', '_', value) | dfd9b324a9c9ec273750e95a4bd7b1548af37108 | 687,472 |
def build_account_collapsed_json(financing_json, registrations_json):
"""Organize account registrations as parent/child financing statement/change registrations."""
for statement in financing_json:
changes = []
for registration in registrations_json:
if statement['registrationNumber'] == registration['baseRegistrationNumber']:
changes.append(registration)
if changes:
statement['changes'] = changes
return financing_json | d5016c5eae849cfed2603cc29e7cec81759d701c | 499,821 |
def probability_of_improvement_sub(mu, std, target):
"""Sub function to compute the probability of improvement acquisition function.
Args:
mu: n x 1 posterior mean of n query points.
std: n x 1 posterior standard deviation of n query points (same order as
mu).
target: target value to be improved over.
Returns:
Negative of target z-score as an equivalence of probability of improvement.
"""
gamma = (target - mu) / std
return -gamma | 9b9ffb8c990617016622891d63dd956428533992 | 361,604 |
import re
def escape(token):
"""Escape characters that have special semantics within GraphViz"""
pattern = re.compile(r'([\[\]()"\\])')
return pattern.sub(r'\\\1', token) | bc94648e299f76f5ea5229d135d74dc75a28944e | 258,036 |
def point_within_dimensions(point, image_dimensions):
"""Checks to see if a point falls inside an image's dimension.
Works for any number of dimensions. Acceptable range is [0, dim)
Args:
point (np.array): array with the point's coordinates
image_dimensions (np.array): array with the image dimensions
Returns:
bool: whether the point lies within the dimensions
"""
assert len(point) == len(
image_dimensions
), "Point dimensions {} doesn't equal image dimension {}".format(
len(point), len(image_dimensions)
)
within_bounds = True
for i, val in enumerate(point):
within_bounds = within_bounds and 0 <= val < image_dimensions[i]
return within_bounds | 624b508fc5650e3f89d1523db655428b78545bc9 | 381,704 |
def convertlistToOpenMayaArray(inList, arrayType):
"""convert given list to an openmaya arraytype
:param inList: list of objects to be added to arraytype
:type inList: list
:param arrayType: any openmaya array type
:type arrayType: OpenMaya.<array>
:return: the array filled with data
:rtype: OpenMaya.<array>
"""
array = arrayType()
for elem in inList:
array.append(elem)
return array | b4507c7355d9c7cedc871ba9a674b19df5009248 | 480,952 |
def get_and_update_or_create(model, unique, update):
"""
Given a model, a dictionary of lookup arguments, and a dictionary of update
arguments, this convenience function gets an object and updates it in the
database if necessary.
Returns a tuple (object, int) where int is 0 if the object was not updated,
1 if the object was created, and 2 if the object was updated in the
database.
>>> resp = get_and_update_or_create(User, {'username': 'example'}, {'email': '[email protected]'})
>>> resp
(<User: example>, 1)
>>> resp[0].email
'[email protected]'
>>> resp = get_and_update_or_create(User, {'username': 'example'}, {'email': '[email protected]'})
>>> resp
(<User: example>, 0)
>>> resp[0].email
'[email protected]'
>>> resp = get_and_update_or_create(User, {'username': 'example'}, {'email': '[email protected]'})
>>> resp
(<User: example>, 2)
>>> resp[0].email
'[email protected]'
"""
obj, created = model.objects.get_or_create(dict(unique, default=update))
# If we just created it, then the defaults kicked in and we're good to go
if created:
return obj, 1
# Iterate over all of the fields to update, updating if needed, and keeping
# track of whether any field ever actually changed
modified = False
for name, val in update.iteritems():
if getattr(obj, name) != val:
modified = True
setattr(obj, name, val)
# If a field did change, update the object in the database and return
if modified:
obj.save(force_update=True)
return obj, 2
# Otherwise the object in the database is up to date
return obj, 0 | 5c6c010ae7a38bb5d928b4b611954aae8bad5ffa | 523,497 |
def tong_bp(n):
"""Tinh tong 1^2+2^2+3^2+...+n^2"""
sum = 0
for i in range(1,n+1):
sum+=i*i
return sum | 52f4a9e6ebea035233424f1fc4c77f3dc8a6a160 | 282,882 |
def cast_int_float_string(value):
""" Cast given string value, if possible, to an int, float or returns unchanged.
Parameters
----------
value : str or unicode
Value to try casting to an int and float.
Returns
-------
int, float, str or unicode
Cast *value*.
"""
try:
return int(value)
except ValueError:
try:
return float(value)
except ValueError:
return value | d1f9ae61ef1f5b950899fd7503b19c7f687f25bf | 208,325 |
import six
def get_first(predicate, source):
"""Searches for an item that matches the conditions.
:param predicate: Defines the conditions of the item to search for
:param source: Iterable collection of items
:return: The first item that matches the conditions defined by the
specified predicate, if found; otherwise StopIteration is raised
"""
return six.next(item for item in source if predicate(item)) | cfaa1abd9dc70ca1fbc452e2a8f6678f8438af74 | 115,920 |
def split_1_grams_from_n_grams(topics_weightings):
"""
Pair every words with their weightings for topics into dicts, for each topic.
:param topics_weightings: it is a 3D list of shape [topics, number_of_top_words, 2] where
the 2 is two entries such as (top_word, top_words_weighting).
:return: Two arrays similar to the input array where the 1-grams were splitted from the
n-grams. The n-grams are in the second array and the 1-grams in the first one.
"""
_1_grams = [[] for _ in range(len(topics_weightings))]
_n_grams = [[] for _ in range(len(topics_weightings))]
for i, topic_words_list in enumerate(topics_weightings):
for word, weighting in topic_words_list:
tuple_entries = (word, weighting)
if ' ' in word:
_n_grams[i].append(tuple_entries)
else:
_1_grams[i].append(tuple_entries)
return _1_grams, _n_grams | cdb058d4ad718d578e2e11ec3d4ae9eb008224b4 | 691,555 |
def readme() -> str:
"""
Reads the README file of the project to use it as long description.
:return: The long description of Metrics.
"""
with open('README.md') as file:
return file.read() | 94300a69c03a5b6c0f5641538f8b06c20bbe5cda | 277,714 |
def is_say_ingredients(text: str) -> bool:
"""
A utility method to determine if the user said the intent 'say_ingredients'.
"""
exact_match_phrases = [
"ingredient", "ingredients"
]
sample_phrases = [
'say ingredient', 'tell me the ingredient', 'what are the ingredient', 'tell the ingredient',
'say the ingredient', 'say ingredient', 'tell me ingredient', 'tell ingredient'
]
return any(text == em for em in exact_match_phrases) or any(phrase in text for phrase in sample_phrases) | 3de66c29ae2c7a35a5b3f71242bd958f1084e0de | 87,314 |
from typing import Callable
def mask_table() -> dict[int, Callable[[int, int], int]]:
"""Mask functions table.
Returns:
dict[int, Callable[[int, int], int]]: Dictionary of the form {mask
number: lambda function}
"""
table = {
0: lambda x, y: (x + y) % 2,
1: lambda x, y: x % 2,
2: lambda x, y: y % 3,
3: lambda x, y: (x + y) % 3,
4: lambda x, y: (x//2 + y//3) % 2,
5: lambda x, y: (x*y) % 2 + (x*y) % 3,
6: lambda x, y: ((x*y) % 2 + (x*y) % 3) % 2,
7: lambda x, y: ((x*y) % 3 + (x+y) % 2) % 2
}
return table | 3f6216274baf659480d8dcebfb9146b9df973e07 | 539,802 |
def mapLists(first, second):
"""
Make a dictionary from two lists with elements of the first as the keys and second as values. If there are more elements in the first list, they are assigned None values and if there are more in the second list, they're dropped.
"""
index = 0
dict = {}
# Read through every index of the @first list and build the map.
while index < len(first):
f = first[index]
s = second[index] if index < len(second) else None
dict[f] = s
index += 1
return dict | 928b31e0cf636389124f8ba6b4910b9a51539204 | 663,774 |
def get_season_archive_url(base_url: str) -> str:
"""Creates the URL for the season archive endpoint."""
return f"{base_url}/season/archive" | 5ca241d304e0ba5a3175aed025b6851289fddda3 | 397,524 |
import warnings
from tempfile import TemporaryDirectory as TmpDir
def TemporaryDirectory(*args, **kwargs): # pylint: disable=invalid-name
"""
This function is deprecated. Please use `tempfile.TemporaryDirectory`
"""
warnings.warn(
"This function is deprecated. Please use `tempfile.TemporaryDirectory`",
DeprecationWarning, stacklevel=2
)
return TmpDir(*args, **kwargs) | a5a0cbead84c7b147d27793e073660435c825255 | 321,283 |
import pyarrow
def _to_pyarrow(value):
"""Convert Python value to pyarrow value."""
return pyarrow.array([value])[0] | a050c047b8ea7e4510c34993e5ad9a436920abf9 | 74,657 |
from typing import Set
def candidates_to_bits(candidates: Set[int]) -> int:
"""
Convert a candidates set into its bits representation
The bits are in big endian order
>>> bin(candidates_to_bits({1, 2, 3, 6, 7}))
'0b1100111'
>>> bin(candidates_to_bits({6, 9}))
'0b100100000'
"""
bits = 0
for candidate in candidates:
bits ^= 1 << (candidate - 1)
return bits | 0f69cb3515975687d1c83fabf690936667a6cf06 | 678,393 |
def unpack_singleton(x):
"""
Return original except when it is a sequence of length 1 in which case return the only element
:param x: a list
:return: the original list or its only element
"""
if len(x) == 1:
return x[0]
else:
return x | 0bffdcc339c593aafb1f657134da5d67fc538cbf | 40,136 |
def parameter_init(model, name, shape, init):
"""Create parameter given name, shape and initiator
Parameters
----------
name : str
parameter name
shape : tuple
parameter shape
init : mxnet.initializer
an initializer
Returns
-------
mxnet.gluon.parameter
a parameter object
"""
p = model.params.get(name, shape=shape, init=init)
return p | 687330b7189066a9ef34690b8df08df6aa08fb07 | 563,375 |
def _GetContactPrivacyEnum(domains_messages):
"""Get Contact Privacy Enum from api messages."""
return domains_messages.ContactSettings.PrivacyValueValuesEnum | 2a33e0bc5ca9baebddafddbf7d0c844ed91bc1c0 | 124,560 |
def likes(list_of_names: list) -> str:
"""
>>> likes([])
'no one likes this'
>>> likes(["Python"])
'Python likes this'
>>> likes(["Python", "JavaScript", "SQL"])
'Python, JavaScript and SQL like this'
>>> likes(["Python", "JavaScript", "SQL", "JAVA", "PHP", "Ruby"])
'Python, JavaScript and 4 others like this'
"""
if len(list_of_names) == 0:
return "no one likes this"
if len(list_of_names) == 1:
return f"{list_of_names[0]} likes this"
if len(list_of_names) == 2:
return f"{list_of_names[0]} and {list_of_names[1]} like this"
if len(list_of_names) == 3:
return (
f"{list_of_names[0]}, {list_of_names[1]} and {list_of_names[2]} like this"
)
else:
return f"{list_of_names[0]}, {list_of_names[1]} and {len(list_of_names) - 2} others like this" | 20d46cfcd319b7bef3733a86aa6e57769381d67b | 121,882 |
def int_overlap(a1, b1, a2, b2):
"""Checks whether two intervals overlap"""
if b1 < a2 or b2 < a1:
return False
return True | 1ada12a2767cf0c709baa310446d710e976f607f | 450,157 |
def get_datasets_with_substrings(datasets_list, name_substrings):
"""
Filters list of datasets with specified substrings (e.g. github usernames) in them
:param datasets_list: list of dataset_ids
:param name_substrings: identifies substrings that help identify datasets to delete
:return: list of dataset_ids with any substring in their dataset_id
"""
datasets_with_substrings = []
for dataset in datasets_list:
if any(name_substring in dataset for name_substring in name_substrings):
datasets_with_substrings.append(dataset)
return datasets_with_substrings | b612fec6fd733b93701b4a2334b69f880a76e030 | 145,598 |
def next_race_template() -> list:
"""Return template settings for next race."""
return [
{
"round": "SA",
"qualified": 0,
"current_contestant_qualified": False,
},
{
"round": "SC",
"qualified": 0,
"current_contestant_qualified": False,
},
{
"round": "FA",
"qualified": 0,
"current_contestant_qualified": False,
},
{
"round": "FB",
"qualified": 0,
"current_contestant_qualified": False,
},
{
"round": "FC",
"qualified": 0,
"current_contestant_qualified": False,
},
] | 5e05a7db32e502eae8d11d2d212ef93c4c1e3c3f | 556,670 |
def is_authenticated_with_proxy(proxy):
"""Given a Proxy, checks whether a user is authenticated"""
if proxy is None:
return False
elif proxy.has_authentication():
return proxy.get_authentication().is_valid()
else:
return False | c0476ec85fedb82ee77da6db18e52e2c4c39bfb5 | 293,021 |
import random
def mcpi_samples(n):
"""
Compute the number of points in the unit circle out of n points.
"""
count = 0
for i in range(n):
x, y = random.random(), random.random()
if x*x + y*y <= 1:
count += 1
return count | c6082155e6accc773be67ba35926bf33348b6fbf | 687,290 |
def find_result_sentiment(words, word_sentiments):
"""Compute average sentiment for a result represented as a list of words.
Words not in word_sentiments are ignored.
If we don't have sentiment for any wd in words, return None.
"""
word_ratings = [word_sentiments[wd] for wd in words
if wd in word_sentiments]
if len(word_ratings) == 0:
return None
return sum(word_ratings) / len(word_ratings) | 4dad76a4b986973d608c8952b4991a553267655a | 530,932 |
from typing import List
def repeat_prev(prev_vals: List[float]):
"""
Repeats the previous seen value again
"""
return prev_vals[-1] | 026b89ad9f46e20b051f075cde56132fcbf69f7d | 523,213 |
def key_gen(params):
"""Generates a fresh key pair"""
_, g, o = params
priv = o.random()
pub = priv * g
return (pub, priv) | c554fdcda209d591ac952ea43a69163f0448dd28 | 696,144 |
def conv_outdim(i_dim, k, padding=0, stride=1, dilation=1):
"""Return the dimension after applying a convolution along one axis"""
return int(1 + (i_dim + 2 * padding - dilation * (k - 1) - 1) / stride) | 56436dde53f4463494011a0fb1f6b3bfc93bbb0a | 98,686 |
def letter_only(guess, abc):
"""
Checks if the player's guess is a single ASCII letter only.
:param abc: the alphabet used in the proverbs
:type abc: str
:param guess: the player's guess
:type guess: str
:return: True | False
:rtype: bool
"""
if len(guess) == 1 and guess.upper() in abc:
return True
return False | e6822eab984c6c8d0c15e103ced88bed348620cc | 625,007 |
def get_query_id(query_results, query_type='track'):
"""
get id(s) for query results. if query type is set to track also returns
preview url.
:param query_results: json object
:param query_type: str
:return: id_list
"""
id_list = list()
for item in query_results:
album_name = item['album']['name']
album_image = item['album']['images'][2]['url']
artist_name = item['album']['artists'][0]['name']
song_name = item["name"]
item_id = item["id"]
if query_type == query_type:
preview = item["preview_url"]
id_list.append((
album_name, album_image, artist_name,
song_name, item_id, preview
))
else:
id_list.append((
album_name, album_image, artist_name,
song_name, item_id
))
return id_list | 2f9ae58b3a0fdeb03ff1fed78a83d82735fa2fd6 | 380,198 |
def get_default_params(dim: int) -> dict:
"""
Returns the default parameters of the Self-adaptive Differential Evolution Algorithm (SaDE).
:param dim: Size of the problem (or individual).
:type dim: int
:return: Dict with the default parameters of SaDe
:rtype dict
"""
return {'max_evals': 10000 * dim, 'population_size': 60, 'callback': None,
'individual_size': dim, 'seed': None, 'opts': None,
'terminate_callback': None} | 0763c03c0d15a185069ffe4189a24dae863ef0e4 | 461,307 |
from typing import Optional
from typing import Union
from typing import List
def _make_filter_string(
schema_title: Optional[Union[str, List[str]]] = None,
in_context: Optional[List[str]] = None,
parent_contexts: Optional[List[str]] = None,
uri: Optional[str] = None,
) -> str:
"""Helper method to format filter strings for Metadata querying.
No enforcement of correctness.
Args:
schema_title (Union[str, List[str]]): Optional. schema_titles to filter for.
in_context (List[str]):
Optional. Context resource names that the node should be in. Only for Artifacts/Executions.
parent_contexts (List[str]): Optional. Parent contexts the context should be in. Only for Contexts.
uri (str): Optional. uri to match for. Only for Artifacts.
Returns:
String that can be used for Metadata service filtering.
"""
parts = []
if schema_title:
if isinstance(schema_title, str):
parts.append(f'schema_title="{schema_title}"')
else:
substring = " OR ".join(f'schema_title="{s}"' for s in schema_title)
parts.append(f"({substring})")
if in_context:
for context in in_context:
parts.append(f'in_context("{context}")')
if parent_contexts:
parent_context_str = ",".join([f'"{c}"' for c in parent_contexts])
parts.append(f"parent_contexts:{parent_context_str}")
if uri:
parts.append(f'uri="{uri}"')
return " AND ".join(parts) | 835369fe5add016bb4807c90351443d98eb967b5 | 413,585 |
def get_insert_query(table_name):
"""Build a SQL query to insert a RDF triple into a SQlite dataset"""
return f"INSERT INTO {table_name} (subject,predicate,object) VALUES (?,?,?) ON CONFLICT (subject,predicate,object) DO NOTHING" | ac8471b7de15780e90f0ead1594c9ffbc06394cb | 530,692 |
def _path2map(path, targ_length):
"""
Turn a path into a list of lists mapping target scans to one or more
reference scans.
"""
idx_map = [[] for x in range(targ_length)]
for step in path:
idx_map[step[1]].append(step[0])
return idx_map | cd23a43ba6ba57fdaeee69207023af44844ea0e9 | 323,579 |
def records_from_join_res(list_of_tuples):
"""
Given a list of tuples from the result of a sqlalchemy join query returns
a dictionary mapping a class to a set of instances of that class.
:param list_of_tuples: sqlalchemy join query result (list of tuples)
:return: dictionary of classes to unique instances set (dict)
{Class: {inst1, inst2}}
"""
class_instances = {} # {Class: {inst1, inst2}}
# iterate through each substrate/phosphosite/kinase
for instances_tuple in list_of_tuples:
# iterate through each instance inthe tuple
for instance in instances_tuple:
if instance:
# add a dict key for each type of class
class_obj = type(instance)
cls_set = class_instances.setdefault(class_obj, set())
cls_set.add(instance)
return class_instances | b109b69a79c7ea49272e51d5177e9ca4224d7e80 | 500,033 |
def recursive_check(task, attr="rerun"):
"""Check if a task or any of its recursive dependencies has a given attribute set to True."""
val = getattr(task, attr, False)
for dep in task.deps():
val = val or getattr(dep, attr, False) or recursive_check(dep, attr)
return val | b85773b4dcadb20b97e2777c6736654bb1b72957 | 40,209 |
def generate_list_of_images(path_to_dir):
"""
Returns a list of all the image paths in the provided directory
"""
assert(path_to_dir.is_dir())
file_paths_input = []
for file in path_to_dir.iterdir():
if file.suffix.lower() in ['.jpg', '.png', '.jpeg']:
file_paths_input.append(file)
return file_paths_input | f736c7d01bf1cc11667999cafac55451547382d1 | 454,203 |
def split_tuple(s):
"""Split a string of comma-separated expressions at the top level,
respecting parentheses and brackets:
e.g. 'a, b, c(d, e), f' -> ['a', 'b', 'c(d, e)', 'f']
Args:
s (string): a string of comma-separated expressions which may themselves contain commas
Returns:
list(str): a list of top-level expressions
"""
bl = 0 # Bracketing level
ls = []
w = ""
for i, c in enumerate(s):
if c in "[(":
bl += 1
elif c in ")]":
bl -= 1
if c == "," and not bl: # Add running word to the list as long as we're outside of brackets
ls.append(w.strip())
w = ""
else:
w += c # Add character to running string
ls.append(w.strip())
return ls | ae181b9a97a75f7dbdad2d95e589ffef0773f2d2 | 148,617 |
def is_even(x):
"""return true if x is even."""
return x//2*2 == x | a234c1085fc13cc78ead9c771fd3dbb6cf6a198a | 343,855 |
def is_revisited_dataset(dataset_name: str):
"""
Computes whether the specified dataseet name is a revisited version of
the oxford and paris datasets. simply looks for pattern "roxford5k"
and "rparis6k" in specified dataset_name.
"""
if dataset_name in ["roxford5k", "rparis6k"]:
return True
return False | 83711e78a7793fd3565d4598e2785c3d1f630369 | 379,833 |
def is_indented(text):
""" Simple check to see if a line is indented
For now, a line that starts with ANY whitespace is indented
"""
return bool(len(text) - len(text.lstrip())) | 1bf7b02595518878f2db5fc72a6b6b44f5a1f5d7 | 441,088 |
def clean_link_text(link_text):
""" The link text sometimes contains new lines, or extrananeous spaces, we
remove them here. """
return link_text.strip().replace('\n', '').replace('\r', '') | 09de717a280c26cb3d272fd40dcdbe8091a5a002 | 620,738 |
def read_matrix(filename):
""" Reads a file containing integers to a matrix(list of lists). """
digits = []
with open(filename) as f:
for line in f.readlines():
ints = [int(n) for n in line.split()]
digits.append(ints)
return digits | 010b98c51f97787b2f14b20078bf916df9fa5382 | 482,724 |
def remove_near_elements(arr, time_difference, time_idx) -> list:
"""Remove list elements within a specified time difference.
Args:
arr: a list of arrays or tuples
time_difference: the minimum time difference between elements
time_idx: the index of each arr element with an integer time
Returns:
list: arr with certain elements removed, if necessary
"""
new = []
time_to_beat = 0
for i in range(len(arr)):
if arr[i][time_idx] >= time_to_beat:
new.append(arr[i])
time_to_beat = arr[i][time_idx] + time_difference
return new | 7d27f49cf97447abdbac2f1535134b7bc2e4c7f8 | 412,403 |
def batched_index_select_nd(t, inds):
"""
Index select on dim 1 of a n-dimensional batched tensor.
:param t (batch, n, ...)
:param inds (batch, k)
:return (batch, k, ...)
"""
return t.gather(
1, inds[(...,) + (None,) * (len(t.shape) - 2)].expand(-1, -1, *t.shape[2:])
) | a42758470d4268185a6f6bc0183b820f2933d4a5 | 534,481 |
def rm_var(di):
"""Helper to remove the varname key from
aggregation output dict
Args:
di (dict): dict from *aggr_out results
Returns:
dict without the "varname" key
"""
del di["varname"]
return di | cf4c377a70a7d3a5e6588a428c4f0a26902fc4f1 | 136,519 |
def dict_to_prop(d):
"""convert dictionary to multi-line properties"""
if len(d) == 0:
return ""
return "\n".join("{0}={1}".format(k, v) for k, v in d.items()) | c3421b1ed1a2efdf0bfe4e29846d2f585966d58b | 549,089 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.