content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def is_valid(param):
"""Return true is the param is not a null value."""
return param is not None | 6f2f334267585f97fdd85fec543a040cd5916dd6 | 245,190 |
async def get_option_market_data(self, input_symbols, expiration_date, strike_price, option_type, info=None):
"""Returns the option market data for the stock option, including the greeks,
open interest, change of profit, and adjusted mark price.
:param input_symbols: The ticker of the stock.
:type input_symbols: str
:param expiration_date: Represents the expiration date in the format YYYY-MM-DD.
:type expiration_date: str
:param strike_price: Represents the price of the option.
:type strike_price: str
:param option_type: Can be either 'call' or 'put'.
:type option_type: str
:param info: Will data_filter the results to get a specific value.
:type info: Optional[str]
:returns: Returns a dictionary of key/value pairs for the stock. \
If info parameter is provided, the value of the key that matches info is extracted.
"""
symbols = self.inputs_to_set(input_symbols)
if option_type:
option_type = option_type.lower().strip()
data = []
for symbol in symbols:
option_id = await self.id_for_option(symbol, expiration_date, strike_price, option_type)
market_data = await self.get_option_market_data_by_id(option_id)
data.append(market_data)
return self.data_filter(data, info) | 19e35842fd434406f9dc31ae22b117958a44236b | 573,772 |
def remove_thousand_separator(int_as_str: str) -> str:
"""Removes thousand separator from a number stored as string."""
return int_as_str.replace(",", "") | 32cbd09fd239cf956ca138799bf0cf2a71b39040 | 317,743 |
def backoff_exponential(n):
"""
backoff_exponential(n) -> float
Exponential backoff implementation. This returns 2 ** n.
See ReconnectingWebSocket for details.
"""
return 2 ** n | c2e3cfe079147045604d110d48d79800a224cdca | 363,956 |
def round2(value):
"""rounds a number to 2 decimal places except for values of 0 or 100"""
if value in [0.0, 100.0]:
return int(value)
return round(value, 2) | 629481b2ec158f7e74f1b9b3f765ddc64c6bbf62 | 379,031 |
def check_method(result, method):
"""Compare given method to method listed in the result, if any.
"""
if method is None:
return None
if 'method' in result and result['method'] != method:
return "wrong method {}".format(result['method'])
return None | 13f1a02b2fab10139f870a5e9bde673c15af1f73 | 513,381 |
def find_whitespace(string):
"""Find index of first whitespace in s."""
for idx, char in enumerate(string):
if char.isspace():
return idx
return -1 | bbf43244dbc77a4656ec315c8c0fa8b8865d058a | 311,192 |
from typing import List
def get_filetypes(format: str = 'json') -> List[str]:
"""Get filetypes based on specified format."""
return ['yml', 'yaml'] if format == 'yaml' else [format] | 4e9eb09f69bb727f267e48694b043f94b14bdadd | 676,264 |
def create_source_sequence(resolve, name, clip_info_list):
"""
Creates a source sequence from a given name and a list of info
generated by compute_source_sequence() or extract_tl_item_info()
"""
project_manager = resolve.GetProjectManager()
resolve_project = project_manager.GetCurrentProject()
media_pool = resolve_project.GetMediaPool()
edit_metadata = []
for clip in clip_info_list:
for segment in clip["segments"]:
edit_metadata.append({"mediaPoolItem": clip["mp_item"],
"startFrame": segment[0],
"endFrame": segment[1]})
timeline = media_pool.CreateEmptyTimeline(name)
resolve_project.SetCurrentTimeline(timeline)
for edit in edit_metadata:
status = media_pool.AppendToTimeline([edit])
return timeline | 5a91a0a7782a42195f1c31c133caf27ff644276c | 225,983 |
def hasIntent(parsed, intent):
"""
判断是否包含某个意图
:param parsed: UNIT 解析结果
:param intent: 意图的名称
:returns: True: 包含; False: 不包含
"""
if parsed is not None and 'result' in parsed and \
'response_list' in parsed['result']:
response_list = parsed['result']['response_list']
for response in response_list:
if response['schema']['intent'] == intent:
return True
return False
else:
return False | ca23bb5bd2689f297429cdd53db5925eb4d21fa6 | 466,034 |
import re
def is_sale(this_line):
"""Determine whether a given line describes a sale of cattle."""
has_price = re.search(r'[0-9]+', this_line)
is_not_succinct = len(re.split(r'\s{3,}',this_line)) > 3
return bool(has_price and is_not_succinct) | 2e456b1a5c961ee0f9632d279de6ce1747e3c30c | 619,350 |
def add_tweet_to_list(tweets: list, timeLine: list) -> list:
"""
Adds tweets to the list
:param tweets: Entire list of tweets
:param timeLine: List of tweets from new batch
:return: List of tweets with new tweets added
"""
for tweet in timeLine:
tweets.append(tweet)
return tweets | b8a242ed6ac30472600bd543bbd33a6b79edce8a | 351,348 |
def _FormDestinationUri(bucket):
"""Forms destination bucket uri."""
return 'gs://{}/dependencies'.format(bucket) | 352bcd81a583fb281a80ef1c09a5e8ef195d62d5 | 324,829 |
import typing
import importlib
def import_object(path: str, default=None) -> typing.Any:
"""Import object from path.
Paths have the format ``module_path:object_path``.
The ``default`` value is returned when ``path`` is ``None``. This is
a convenience for passing in settings that may be ``None``.
Examples::
>>> import_object('dijkstar.graph:Graph')
<class 'dijkstar.graph.Graph'>
>>> import_object('dijkstar.graph:Graph.load')
<bound method Graph.load of <class 'dijkstar.graph.Graph'>>
"""
if path is None:
return default
module_path, object_path = path.split(":")
module = importlib.import_module(module_path)
names = object_path.split(".")
obj = module
for name in names:
obj = getattr(obj, name)
return obj | 9c53a0616581a5958bad4b94d42cfe363e413cf8 | 47,385 |
def chunk_str(s, n, char):
"""Insert `char` character every `n` characters in string `s`.
Canonically pronounced "chunkster".
"""
# Modified from http://stackoverflow.com/a/312464/3776794
if n < 1:
raise ValueError(
"Cannot split string into chunks with n=%d. n must be >= 1." % n)
return char.join((s[i:i+n] for i in range(0, len(s), n))) | 35e927b8289d86a2d2e38c9e3f18b5f40c64ca3a | 217,205 |
import uuid
def get_uuid5(str_in):
"""Generate a UUID using a SHA-1 hash of a namespace UUID and a name
Args:
str_in: Input string.
Returns:
s: UUID5 string.
"""
uid5 = uuid.uuid5(uuid.NAMESPACE_DNS, str_in)
s = str(uid5)
return s | 25c4b91d8dd9189e6b85bc0e3e299699ea235016 | 514,029 |
def prune_table(df):
"""
Removes columns where all values are duplicates
"""
dupl_names = []
for column_name in df.columns:
if len(set(df[column_name])) == 1:
dupl_names.append(column_name)
if dupl_names and len(df) > 1:
df = df.drop(dupl_names, axis=1)
return df | 58859aea2f85e8b9e1ba463b850b18972120c79e | 150,647 |
def _anonymous_model_data(ops_data):
"""Returns a dict representing an anonymous model.
ops_data must be a dict representing the model operations. It will
be used unmodified for the model `operations` attribute.
"""
return {"model": "", "operations": ops_data} | 6b64f9098b30cf3e079311b75ca136cfc2f7038f | 703,090 |
def extract_model_configs(full_entry):
""" Given a full entry, extract model configurations and put into a dict. """
model = ["ico_encoder", "article_encoder", "attn", "cond_attn",
"tokenwise_attention", "pretrain_attention",
"tune_embeddings", "no_pretrained_word_embeddings"]
problem = ["article_sections", "data_config"]
d = {}
for m in model:
d[m] = full_entry[m]
for p in problem:
d[p] = full_entry[p]
return d | debb3af7016cd0594563e02b65b498048091c672 | 103,573 |
def loadactive(cf):
"""Load active ips from firewall directory
Parameters
----------
cf : Config
Returns
-------
List[str]
List of filename stems ending in .auto
in blacklist directory
"""
path = cf.etcpath('blacklist')
out = []
for p in path.glob('*.auto'):
ip = p.stem
ip = ip.replace('|', '/')
out.append(ip)
return out | 06cdbb15b7b2d037f94fae3064552963c2bf672d | 202,392 |
def is_fits(name):
"""Checks if the image is a fits image"""
return ".fits" in name | 2fc2e9a4b5f2bffe50d8837bacd211b7e6eea48f | 315,645 |
import json
def open_credential_file(filename):
"""Open credential file."""
return json.load(open(filename)) | af6cd4355b7cdd7a45ade17c0074a22be791c27f | 383,757 |
def open_in_file(filename):
"""Trying to open a file.
Returns: A file handler if OK or False if something wrong
"""
try:
f = open(filename, 'r')
return f
except:
print("Oops! something wrong with opening file")
return False | 1c11fd89bb3f0e751d12b11cf1b783c67edb90aa | 498,980 |
def get_op_slices(ops, op_reg_manager):
"""Returns list of OpSlice per op in a list of ops.
Args:
ops: List of tf.Operation.
op_reg_manager: OpRegularizerManager that tracks the slicing.
Returns:
List of list of OpSlice, where the outer list has a list per op, and the
inner list is a list of OpSlice that compose the op.
"""
op_slices = []
for op in ops:
op_slices.append(op_reg_manager.get_op_slices(op))
return list(filter(None, op_slices)) | 53d2950ab063225c440326f8eb77fa65b34b60f1 | 201,080 |
import json
def get_key(path=".keys/AES.key"):
"""
Load key from .keys/AES.key file
:param path: file path
:type path: String
:return: key
:rtype: bytearray
"""
with open(path, 'r') as f:
k = json.load(f)
return bytearray.fromhex(k["key"]) | fb653d3447629c3b50974f3aad2170ea4af50e79 | 654,058 |
def find_undefined_value(cbf_handle):
"""Given a cbf handle, get the value for the undefined pixel."""
cbf_handle.find_category(b"array_intensities")
cbf_handle.find_column(b"undefined_value")
return cbf_handle.get_doublevalue() | 9e53dd7ebac6f711e02e1cf77f1d2553a09d9c3b | 691,498 |
def join_list_for_MATLAB(join_str:str, ls:list,
min_len:int =75,
add_semicolon:bool =False,
comment:bool=False,
preface:str =''):
"""Function to take a list and join it together with a delimiter as str.join(ls) does
except, you actually insert a MATLAB style line break where the lines start to get
long. Doesn't append delimiter to beginning or end.
Inputs:
join_str = string delimiter you want to use to join the list: ',', '+' ...
ls = list of items you want to join with join_str.
min_len = int that is the minimum line lenth they must be before inserting a line break.
add_semicolon = boolean of wehther to add a semi colon at then end or not.
comment = boolean of whether the entire list should be commented our or not.
Outputs- Single string that has all items in list joined with delimiters and
MATLAB style line breaks where lines are long.
Example Usage:
ls=['a'*np.random.randint(5,65) for i in range(0,100)] # random list.
join_str=' + ' # Delimiter you want to join this list.
out = join_list_for_MATLAB(join_str, ls)
print(out)
Author: Jessica D. Haskins ([email protected]) GitHub: @jdhask
1.14.2022 JDH created.
"""
ad=';' if add_semicolon is True else ''
ln_ls=[]; lines=[]
for i, item in enumerate(ls):
if type(item) != str: item=str(item) # Join only takes string lists.
if len(item) > 0: # Don't join things that are blanks.
ln_ls.append(item)
ln= join_str.join(ln_ls)
if len(ln) > min_len:
if comment is True and i != 0: ln='% '+ln
lines.append(ln) # Keep all these joined strings. They will be on 1 line.
ln_ls=[]; # reset list holding items to put on a single line.
if len(lines)==0: # Stuff wasn't long enough! So write one line with it on it.
out=preface+join_str.join(ls)+ad
else:
# Join each line together with the MATLAB line break and new line character
to_join= join_str+'...\n '
out=to_join.join(lines)+ad
return out | aca60a616560b8ef08330dc1ce5a3898a141f815 | 274,246 |
def human_readable_timedelta(value, precision=0):
"""Return a human-readable time delta as a string."""
pieces = []
if value.days:
pieces.append(f"{value.days}d")
seconds = value.seconds
if seconds >= 3600:
hours = int(seconds / 3600)
pieces.append(f"{hours}h")
seconds -= hours * 3600
if seconds >= 60:
minutes = int(seconds / 60)
pieces.append(f"{minutes}m")
seconds -= minutes * 60
if seconds > 0 or not pieces:
pieces.append(f"{seconds}s")
if not precision:
return "".join(pieces)
return "".join(pieces[:precision]) | caf0723debe333452000efe105d6e15d0d571ff5 | 405,971 |
def _verify_additional_type(additionaltype):
"""Check that the input to additionaltype is a list of strings.
If it is empty, raise ValueError
If it is a string, convert it to a list of strings."""
if additionaltype is None:
return None
if isinstance(additionaltype, str):
additionaltype = [additionaltype]
if len(additionaltype) == 0:
raise ValueError("additionaltype must be a non-empty list")
return additionaltype | 54811d9686d4b538239bffae3ae17c55016ad5c4 | 255,599 |
def get_decipher_values(values, text_key):
""" Converts a Decipher values collection into a Quantipy values
collection.
Parameters
----------
values : list
The values object from a block of Decipher metadata
Returns
-------
values : list
The Quantipy values object
"""
values = [
{
'value': int(v['value']),
'text': {text_key: v['title']}
}
for v in values
]
return values | 9d25e9574880ea8f0f079df857f09313067bca0e | 642,429 |
def _top_k(indices, indptr, data, k_per_row):
"""
Parameters
----------
indices: np.ndarray, shape [n_edges]
Indices of a sparse matrix.
indptr: np.ndarray, shape [n+1]
Index pointers of a sparse matrix.
data: np.ndarray, shape [n_edges]
Data of a sparse matrix.
k_per_row: np.ndarray, shape [n]
Number of top_k elements for each row.
Returns
-------
top_k_idx: list
List of the indices of the top_k elements for each row.
"""
n = len(indptr) - 1
top_k_idx = []
for i in range(n):
cur_top_k = k_per_row[i]
if cur_top_k > 0:
cur_indices = indices[indptr[i]:indptr[i + 1]]
cur_data = data[indptr[i]:indptr[i + 1]]
# top_k = cur_indices[np.argpartition(cur_data, -cur_budget)[-cur_budget:]]
top_k = cur_indices[cur_data.argsort()[-cur_top_k:]]
top_k_idx.append(top_k)
return top_k_idx | a56586d858085ef12b37ca04114646e420dbeefa | 575,555 |
def delete_files_template(get_s3_client_func, get_bucket_func, delete_keys_func, key_list, s3_bucket):
"""
Curried template function for deleting files from an S3 bucket
:param get_s3_client_func: A function that returns an S3 client
:param get_bucket_func: A function that returns an object representing an S3 bucket
:param delete_keys_func: A function that deletes a list of keys from an S3 bucket
:param key_list: The list of keys to delete from the S3 bucket
:param s3_bucket: The name of the bucket from which to delete
:return: A MultiDeleteResult object detailing the keys that were deleted and any errors encountered
"""
return delete_keys_func \
(
get_bucket_func
(
get_s3_client_func(),
s3_bucket
),
key_list
) | d766fd1fb12b044f3436da0846f3802a6ad521c1 | 632,104 |
def get_day_of_the_week_number_from_datetime(datetime_obj) -> int:
"""Does what the function title states."""
return datetime_obj.weekday() | f39ef66090501da260b698901bc35b23d224a363 | 681,865 |
def cli(ctx, state="", history_id="", invocation_id="", tool_id="", workflow_id="", user_id="", date_range_min="", date_range_max="", limit=500, offset=0, user_details=False):
"""Get all jobs, or select a subset by specifying optional arguments for filtering (e.g. a state).
Output:
Summary information for each selected job.
For example::
[{'create_time': '2014-03-01T16:16:48.640550',
'exit_code': 0,
'id': 'ebfb8f50c6abde6d',
'model_class': 'Job',
'state': 'ok',
'tool_id': 'fasta2tab',
'update_time': '2014-03-01T16:16:50.657399'},
{'create_time': '2014-03-01T16:05:34.851246',
'exit_code': 0,
'id': '1cd8e2f6b131e891',
'model_class': 'Job',
'state': 'ok',
'tool_id': 'upload1',
'update_time': '2014-03-01T16:05:39.558458'}]
.. note::
The following filtering options can only be used with Galaxy ``release_21.05`` or later:
user_id, limit, offset, workflow_id, invocation_id
"""
return ctx.gi.jobs.get_jobs(state=state, history_id=history_id, invocation_id=invocation_id, tool_id=tool_id, workflow_id=workflow_id, user_id=user_id, date_range_min=date_range_min, date_range_max=date_range_max, limit=limit, offset=offset, user_details=user_details) | cf6702581a7f4870c105aab763a8b5b5a89a1bc6 | 677,959 |
def clean_cat(catalog, pdict, fill_mask=None):
"""
Convert table column names intrinsic to the slurped
catalog with the FRB survey desired values
Args:
catalog (astropy.table.Table): Catalog generated by astroquery
pdict (dict): Defines the original key and desired key
fill_mask (int or float, optional): Fill masked items with this value
Returns:
astropy.table.Table: modified catalog
"""
for key,value in pdict.items():
if value in catalog.keys():
catalog.rename_column(value, key)
# Mask
if fill_mask is not None:
if catalog.mask is not None:
catalog = catalog.filled(fill_mask)
return catalog | 5bc59c046f3d259a1653de036e0a8727487caeb7 | 582,840 |
import mimetypes
def get_mimetype(pathname):
"""for the given file path return the mime type"""
return mimetypes.guess_type(pathname,strict=True) | a05ff6ce73e735e7e7bdc855c02bf0b91664e59c | 594,084 |
def createReferencePoint(myAsm, surface):
""" Create reference point given instance and desired instance surface. """
refPoint = myAsm.ReferencePoint(surface.pointOn[0])
return refPoint | 6801b12dd6f1e6278169edd7d91b38219be98b06 | 447,996 |
def _cleanup_temp_dir(temp_dir):
"""
Runs cleanup on a TemporaryDirectory
If successful it returns True
If that fails it returns None
"""
try:
temp_dir.cleanup()
return True
except:
return None | 1fa7180d31611cf84fcfb9e96e506596991cdcfa | 205,973 |
from typing import Tuple
from typing import Dict
from typing import Any
def postprocess_fbound(
smfb_0: float, smfb_1: float
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""Postprocess frequency bounds
Args:
smfb_0 (float): Lower bound
smfb_1 (float): Upper bound
Returns:
dict, dict: Postprocessed settings and parameters as dictionaries"""
if smfb_0 > smfb_1:
smfb_0, smfb_1 = (smfb_1, smfb_0)
elif smfb_0 == smfb_1:
smfb_0 = 20
smfb_1 = 16000
in_kw = dict(
smfb_0=smfb_0,
smfb_1=smfb_1,
)
out_kw = dict(
sinusoidal_model__frequency_bounds=(
smfb_0, smfb_1
)
)
return in_kw, out_kw | 19efb4b4f7659bc157cd6ac1927fd4e18455f243 | 693,435 |
def _should_allow_unhandled(class_reference, key_name):
"""Check if a property is allowed to be unhandled."""
if not hasattr(class_reference, "__deserialize_allow_unhandled_map__"):
return False
return class_reference.__deserialize_allow_unhandled_map__.get(key_name, False) | 3475c0eef50a31ad88bcfaaa2d0a6335cffbba24 | 51,517 |
def is_short_info(obj):
"""Return whether the object is a short representation of a dataset"""
fields = ['bodySize', 'bodyRows', 'bodyFormat', 'numErrors', 'metaTitle',
'commitTime']
return bool(set(obj) & set(fields)) | 62a4f59d29b5999a6bd5e10eed5513f5925f1d01 | 633,716 |
def filter_pipeline(effects, filters):
"""
Apply each filter to the effect list sequentially. If any filter
returns zero values then ignore it. As soon as only one effect is left,
return it.
Parameters
----------
effects : list of MutationEffect subclass instances
filters : list of functions
Each function takes a list of effects and returns a list of effects
Returns list of effects
"""
for filter_fn in filters:
if len(effects) == 1:
return effects
filtered_effects = filter_fn(effects)
if len(filtered_effects) == 0:
return effects
effects = filtered_effects
return effects | 43912d5e5407efb53c5c2e13b3ba1119814a55d4 | 491,648 |
def kUB_(B,kUB,Cooperativity,P):
"""Returns the receptor binding rate kUB for either the cooperative or the non-cooperative binding model.
Parameters
----------
B : float
Number of bound receptors.
kUB : float
Rate at which AMPARs bind to PSD slots.
Cooperativity : 0, 1
Specifies whether cooperative recepotr binding is accounted for (=1) or not (=0).
P : float
Number of binding site/slots at the PSD.
Returns
-------
float
kUB.
"""
if Cooperativity==1:
m = 24.6/(12.5 + P);
return kUB*(m*B**0.8 + 1);
else:
return kUB | 532ce6e2cdf7dce4f4b467d13bc0bab687512df3 | 307,987 |
def allocate(a_list:list, item):
"""
Append an item to a list, and return the new item's index in that list.
Too frequent an idiom not to abbreviate.
"""
idx = len(a_list)
a_list.append(item)
return idx | 0730db424cb40de4425e1fdf46ada53c663d0b5e | 510,474 |
def _TIME2STEPS(time):
"""Conversion from (float) time in seconds to milliseconds as int"""
return int(time * 1000) | 386e5a8857f4c03419ce2a4d96643ad638bea90f | 601,492 |
def has_only(string, chars):
"""
Check whether the string contains only the specified characters.
"""
for char in string:
if not char in chars: return False
return True | 7e64c5b884e17136b8b3e1a5be88e3760fac86da | 209,087 |
import requests
def tplink_post(url: str):
""" Issue a POST to the device. The Content-Type header seems to be required by some devices."""
_response = requests.post(url, timeout=5, headers={"Content-Type":"application/x-www-form-urlencoded",})
_response.raise_for_status()
return _response | 91f8e882d411d0bde2b44680789a0e10d79a25e0 | 583,730 |
def gather_input(input_string, datatype=int, req=[], notreq=[]):
"""
Create an input and return the users input - it will catch for invalid inputs.
Parameters
-----------
input_string: :class:`str`
This will be passed into the builtin input() function.
datatype: Any
The data type to convert the input into - if it cannot be converted it will ask the user again.
req: :class:`list`
A list with all possible inputs and if the user input is not a match it will ask again.
- If [], anything is allowed.
notreq: :class:`list`
A list with all inputs that should NOT be allowed
- If [], nothing will happen.
Returns
-------
Any
The input that was received from the user.
"""
while True:
try: menu = datatype(input(input_string).strip())
except:
print("Invalid input.")
continue
if req != []:
if menu not in req:
print("Invalid input.")
continue
elif notreq != []:
if menu in notreq:
print("Invalid input.")
continue
return menu | 564e7d41c2bfb1f92d89f6d0ad2b7c51c54819ff | 96,621 |
def merge_tuples(*tuples):
"""
Utility method to merge a number of tuples into a list.
To aid output, this also converts numbers into strings for easy output
:param tuples:
:return: List[String]
"""
return [str(j) for i in tuples for j in (i if isinstance(i, tuple) else (i,))] | ea9d889fc2324fd86a9ca6a38584396e64bd5ac2 | 52,729 |
def get_table_data(soup, text, default=None):
# type (BeautifulSoup.tag, str) -> str
"""Attempts to retrieve text data from a table based on the header value"""
if default is None:
default = ""
if soup is None:
return default
if text is None:
return default
head = soup.find("th", text=text)
if head is None:
return default
data = head.findNext("td").text
return default if data is None or not data else data | 858cd1fbb448027e1118d9cca4f777a07452d107 | 434,509 |
import json
def get_json(filename: str) -> str:
"""Read a JSON file
Args:
filename: the JSON filename
Returns:
the data as a dictionary
"""
with open(filename) as file_stream:
return json.load(file_stream) | 07c213d12c1c8c9358775c7e2adbdf04939dd1a6 | 112,945 |
def build_mu(mut, grid, full_levels=False):
"""Build 3D mu on full or half-levels from 2D mu and grid constants."""
if full_levels:
mu = grid["C1F"] * mut + grid["C2F"]
else:
mu = grid["C1H"] * mut + grid["C2H"]
return mu | 14313ce1656d0eeeb5521a219b1f643b7e9ce84a | 143,047 |
def get_samples(distribution, num_samples, seed=None):
"""Given a batched distribution, compute samples and reshape along batch.
That is, we have a distribution of shape (batch_size, ...), where each element
of the tensor is independent. We then draw num_samples from each component, to
give a tensor of shape:
(num_samples, batch_size, ...)
Args:
distribution: `tfp.distributions.Distribution`. The distribution from which
to sample.
num_samples: `Integral` | `DeviceArray`, int32, (). The number of samples.
seed: `Integral` | `None`. The seed that will be forwarded to the call to
distribution.sample. Defaults to `None`.
Returns:
`DeviceArray`, float32, (batch_size * num_samples, ...).
Samples for each element of the batch.
"""
# Obtain the sample from the distribution, which will be of shape
# [num_samples] + batch_shape + event_shape.
sample = distribution.sample(num_samples, seed=seed)
sample = sample.reshape((-1, sample.shape[-1]))
# Combine the first two dimensions through a reshape, so the result will
# be of shape (num_samples * batch_size,) + shape_tail.
return sample | ab8d3b48c3767907c6f8b47a4108f3d15b5d02a6 | 589,738 |
def dice(type_profile, song_profile):
"""
Calculate the Dice similarity measure between the profile of
specific output_columns value (e.g. specific composer) and
the profile of a song
"""
flat_type_profile = list(type_profile.keys())
flat_song_profile = list(song_profile.keys())
type_profile_len = len(type_profile)
song_profile_len = len(song_profile)
overlap = set(flat_type_profile).intersection(set(flat_song_profile))
return 2 * len(overlap) / (type_profile_len + song_profile_len) | a3163c0266637478bcf3dadb54514e607c1c5cb8 | 172,377 |
async def challenge(websocket, user):
"""Challenges a user.
"""
return await websocket.send(f'|/challenge {user}, gen8metronomebattle') | bee53e79d085ebc7f8a48e0091adb2e6605a2ac6 | 702,511 |
def fibonacci_partial_sum(m: int, n: int):
"""
Finds the lsat digit of a partial sum of Fibonacci numbers:
Fm + Fm+1 + ... + Fn.
:param m: starting index in Finacci sequence
:param n: end index in Fibonacci sequence
:return: the last digit of the partial sum
Example: F3 + F4 + F5 + F7 = 2 + 3 + 5 + 8 + 13 = 31
>>> fibonacci_partial_sum(3, 7)
1
"""
pisano_period = 60
partial_sum = [0, 1]
if m == n: # base case for a single fibonacci number
fibonacci = n % pisano_period
if fibonacci <= 1: # base case for Fn <= 1
return fibonacci
for i in range(2, fibonacci + 1): # compute the fibonacci sequence
digit = (partial_sum[i - 1] + partial_sum[i - 2]) % 10
partial_sum.append(digit)
return partial_sum[fibonacci]
start_ndx = m % pisano_period
end_ndx = n % pisano_period + 1
if start_ndx >= end_ndx:
end_ndx += pisano_period
for i in range(2, end_ndx):
digit = (partial_sum[i - 1] + partial_sum[i - 2]) % 10
partial_sum.append(digit)
return sum(partial_sum[start_ndx:end_ndx]) % 10 | 2154e3b7dc5c0e58a821e14c0cc1c0ffb5023cfc | 163,517 |
def extract_people_sequence(mocap_data):
"""
Extract all of the matrices for each frame per person. Extracting this
information will make it possible to simple loop the frames and create
the mocap data for one person.
:param dict mocap_data:
:return: People data
:rtype: dict
"""
people = []
for frame in mocap_data.get("frames"):
for i, p in enumerate(frame.get("people")):
if len(people) < i + 1:
people.append({"frames": []})
people[i].get("frames").append(p)
return people | afb64b74fad6a807d194a16779d409f24ac88f09 | 572,342 |
def likelihood(pList, nList):
"""
The likelihood for probabilities `pList` of a die,
given `nList` counts for each outcome.
"""
output = 1.
for i, pVal in enumerate(pList):
output *= pVal**nList[i]
return output | 5a530555e760eab75550768de2555806c0d0506c | 368,853 |
def flatten_automaton_to_table(automaton)->str:
"""
Returns a string that contains a table describing an automaton.
:param FA automaton: automaton that has to be described
:return str: table representation
"""
name_length = 12
input_length = 2
for state in automaton.states:
input_length += len(repr(state))
if len(repr(state)) > name_length:
name_length = len(repr(state))
# quick, naive width settings. I could do this really accurately in two passes
# but I don't really care.
accepted_length = 12
epsilon_included = False
epsilon = list(automaton.states.values())[0].epsilon
if epsilon in automaton.inputs:
epsilon_included = True
inputs = sorted(automaton.inputs - {epsilon})
if epsilon_included:
inputs.append(epsilon)
result = ''
result += '{:^{length}s}'.format('state name', length=name_length)
for single_input in inputs:
result += '{:^{length}s}'.format(single_input, length=input_length)
result += '{:^{length}s}'.format('accepted', length=accepted_length)
result += '\n'
result += '-' * (name_length + input_length * len(inputs) + accepted_length) + '\n'
for name in sorted(automaton.states):
result += '{:^{length}s}'.format(repr(name), length=name_length)
for single_input in inputs:
output = sorted(automaton.states[name].forward(single_input))
if not output:
output = '-'
result += '{:^{length}s}'.format(str(output), length=input_length)
result += '{:^{length}d}'.format(automaton.states[name].value, length=accepted_length)
result += '\n'
return result | c53d2b21ba76aa7ff7635fd7baaf2a71c748aead | 423,839 |
def find_in_annotation(annotation_dict, pattern, single=False, out_type='str'):
"""
Search for a pattern in all XML annotation files provided and return a dictionary of results.
Parameters
----------
annotation_dict: dict
A dict of annotation files in the form: {'swath ID': `lxml.etree._Element` object}
pattern: str
The pattern to search for in each annotation file.
single: bool, optional
If True, the results found in each annotation file are expected to be the same and therefore only a single
value will be returned instead of a dict. If the results differ, an error is raised. Default is False.
out_type: str, optional
Output type to convert the results to. Can be one of the following:
- str (default)
- float
- int
Returns
-------
out: dict
A dictionary of the results containing a list for each of the annotation files. E.g.,
{'swath ID': list[str, float or int]}
"""
out = {}
for s, a in annotation_dict.items():
swaths = [x.text for x in a.findall('.//swathProcParams/swath')]
items = a.findall(pattern)
parent = items[0].getparent().tag
if parent in ['azimuthProcessing', 'rangeProcessing']:
for i, val in enumerate(items):
out[swaths[i]] = val.text
else:
out[s] = [x.text for x in items]
if len(out[s]) == 1:
out[s] = out[s][0]
def convert(obj, type):
if isinstance(obj, list):
return [convert(x, type) for x in obj]
elif isinstance(obj, str):
if type == 'float':
return float(obj)
if type == 'int':
return int(obj)
if out_type != 'str':
for k, v in list(out.items()):
out[k] = convert(v, out_type)
err_msg = 'Search result for pattern "{}" expected to be the same in all annotation files.'
if single:
val = list(out.values())[0]
for k in out:
if out[k] != val:
raise RuntimeError(err_msg.format(pattern))
if out_type != 'str':
return convert(val, out_type)
else:
return val
else:
return out | 1003017e45337a22d8db9e22c8830156d66a68f0 | 197,130 |
def action2motion(action, speed=0.25):
"""Turns an action from our fully connected net and turns it into movement.
Assumes discrete actions space as an integer. Turns it into X, Y, Z
velocities corresponding to our specific drone."""
action_dict = {
0: (0, 0, 0),
1: (speed, 0, 0),
2: (0, speed, 0),
3: (-speed, 0, 0),
4: (0, -speed, 0),
}
try:
return action_dict[action]
except KeyError:
raise RuntimeError("Could not convert discrete action into movement.") | 34f798e757b232aa1191f905827e0b68c8860107 | 96,110 |
def days_from_common_era(year: int) -> int:
"""
Returns the number of days from from 0001-01-01 to the provided year. For a
common era year the days are counted until the last day of December, for a
BCE year the days are counted down from the end to the 1st of January.
"""
if year > 0:
return year * 365 + year // 4 - year // 100 + year // 400
elif year >= -1:
return year * 366
else:
year = -year - 1
return -(366 + year * 365 + year // 4 - year // 100 + year // 400) | 1702b7d0753e7edcb1edbd232d44a96a7ed34698 | 278,382 |
import re
def update_page_number(url, page=1):
# type: (str, int) -> str
"""Updates or appends the 'page' parameter for a URL"""
pattern = r"page=(\d+)"
return re.sub(pattern, "page={}".format(page), url) \
if re.search(pattern, url) \
else "{}&page={}".format(url, page) | 4967cde346bb68ec79a2abf27a5a4a82ca4d1ab6 | 71,233 |
def table_log_format(name, timestamp, data):
""" Return a formatted string for use in the log"""
return str(str(name) + '&' + str(timestamp) + '->[' + str(data) + ']') | db801b3a223b1418d21804fba54133814469817d | 612,828 |
def weak_match(ground1, ground2):
"""
Matches a grounded condition if it has the same name and literals
but ignores the truth value
"""
if ground1.predicate != ground2.predicate:
return False
if len(ground1.literals) != len(ground2.literals):
return False
for i, j in zip(ground1.literals, ground2.literals):
if i != j:
return False
return True | 76c4d22de6efbe31c3b4872dc76cb75ed5df3e04 | 207,448 |
import hashlib
def sha256(msg):
"""Generate a SHA-256 hash."""
return hashlib.sha256(msg).digest() | 0ff9072ba622923047f2d3b5ff06cd66a156414c | 603,853 |
import stat
def mode_to_octal(mode):
"""
Convert a text mode back to octal
The opposite of stat.filemode
"""
omode = 0
if mode[0] == '-':
omode |= stat.S_IFREG
elif mode[0] == 'd':
omode |= stat.S_IFDIR
elif mode[0] == 'l':
omode |= stat.S_IFLNK
if mode[1] == 'r':
omode |= stat.S_IRUSR
if mode[2] == 'w':
omode |= stat.S_IWUSR
if mode[3] == 'x':
omode |= stat.S_IXUSR
elif mode[3] == 's':
omode |= stat.S_ISUID
omode |= stat.S_IXUSR
elif mode[3] == 'S':
omode |= stat.S_ISUID
if mode[4] == 'r':
omode |= stat.S_IRGRP
if mode[5] == 'w':
omode |= stat.S_IWGRP
if mode[6] == 'x':
omode |= stat.S_IXGRP
elif mode[6] == 's':
omode |= stat.S_ISGID
omode |= stat.S_IXGRP
elif mode[6] == 'S':
omode |= stat.S_ISGID
if mode[7] == 'r':
omode |= stat.S_IROTH
if mode[8] == 'w':
omode |= stat.S_IWOTH
if mode[9] == 'x':
omode |= stat.S_IXOTH
return omode | 911c495d6bcfe5cde5dcf2af364e82bf14fb34ed | 449,650 |
def get_tensor_children(tensor):
""" Get all calculation and data parent tensors (Not read). """
children_list = []
children_list.append(tensor)
if tensor.op:
for t in tensor.op.outputs:
if not 'read:0' in t.name:
children_list += get_tensor_children(t)
return list(set(children_list)) | 5d7bd97e9f1836e0df31a46013727d657d048185 | 100,464 |
def get_edges(cities, graph):
""" Takes in a list of city names and a graph that is a route map from an
airline and returns a tuple including a bool signifying if the route is
nonstop and the price of the trip
"""
if not isinstance(cities, list):
return (False, '$0')
if len(cities) < 2:
return (False, '$0')
sum = 0
for i in range(0, (len(cities)-1)):
try:
sum += graph.graph[cities[i]][cities[i+1]]
except (KeyError):
return (False, '$0')
return(True, f'${sum}') | d390aadfe9b8ec138312693274e102b68d0d9439 | 520,967 |
def get_rect_xmax(data):
"""Find maximum x value from four (x,y) vertices."""
return max(data[0][0], data[1][0], data[2][0], data[3][0]) | 9bf3615e64068807b5f2725514e7960aad7125dd | 377,401 |
def parse_language_tagged_string(value: str) -> tuple:
""" Check if a string value has a language tag @xx or @xxx
and returns the string without the value tag and language
as tuple. If no language tag -> language is None
:param value
:returns:
"""
lang = None
if len(value) > 1 and value[0] == value[-1] == '"':
value = value[1:-1]
if len(value) > 6 and value[-6] == '@':
lang = value[-5:]
value = value[:-6]
elif len(value) > 3 and value[-3] == '@':
lang = value[-2:]
value = value[:-3]
elif len(value) > 4 and value[-4] == '@':
lang = value[-3:]
value = value[:-4]
return value, lang | 690c976bd094a7db16ab1885b0dbae824d0f991c | 524,362 |
def macro_double_soft_f1(y, y_hat, reduction='mean'): # Written in PyTorch
"""Compute the macro soft F1-score as a cost (average 1 - soft-F1 across all labels).
Use probability values instead of binary predictions.
This version uses the computation of soft-F1 for both positive and negative class for each label.
Args:
y (torch.FloatTensor): targets array of shape (BATCH_SIZE, N_LABELS), including 0. and 1.
y_hat (torch.FloatTensor): probability matrix from forward propagation of shape (BATCH_SIZE, N_LABELS)
Returns:
cost (scalar): value of the cost function for the batch
"""
# dtype = y_hat.dtype
# y = y.to(dtype)
# FloatTensor = torch.cuda.FloatTensor
# y = FloatTensor(y)
# y_hat = FloatTensor(y_hat)
tp = (y_hat * y).sum(dim=0) # soft
fp = (y_hat * (1-y)).sum(dim=0) # soft
fn = ((1-y_hat) * y).sum(dim=0) # soft
tn = ((1-y_hat) * (1-y)).sum(dim=0) # soft
soft_f1_class1 = 2*tp / (2*tp + fn + fp + 1e-16)
soft_f1_class0 = 2*tn / (2*tn + fn + fp + 1e-16)
cost_class1 = 1 - soft_f1_class1 # reduce 1 - soft-f1_class1 in order to increase soft-f1 on class 1
cost_class0 = 1 - soft_f1_class0 # reduce 1 - soft-f1_class0 in order to increase soft-f1 on class 0
cost = 0.5 * (cost_class1 + cost_class0) # take into account both class 1 and class 0
if reduction == 'none':
return cost
if reduction == 'mean':
macro_cost = cost.mean()
return macro_cost | 5ebecb7507e885690abdeb64067ffc92b0dca574 | 462,988 |
def number_of_steps(table):
"""Gets the number of steps taken."""
return max(table['step']) | dd271ba61ef93630e37503c112368aaecdf132e1 | 551,381 |
def format_targets(ranking, targets_format):
"""
Returns the generation targets as a list of str, depending on targets_format.
Args:
ranking: list of (inputs, targets) batches
targets_format: str, version of the targets format to use.
"""
valid_choices = []
for inputs, targets in ranking:
for choice, target in zip(inputs['choices'], targets):
if target:
valid_choices.append(choice)
if targets_format == "v0": # one target per valid choice
return valid_choices
elif targets_format == "v1": # all valid choices in one target, separated with separation tokens.
return ["∂ " + " ∂ ".join(valid_choices)]
else:
raise Exception("Targets format not implemented: %s." % targets_format) | 6cb07c6cd72fc2a76137f88345c188644b057bc2 | 218,237 |
def insert_np(n_array, target, start = 0):
"""
Inserts NumPy 1d array into target 1d array from starting position, treats out of bounds correctly.
"""
if start > target.shape[0]:
return
# Target start/end
start_t = start
end_t = start + n_array.shape[0]
start_i = 0
if start < 0:
start_i = -start
start_t = 0
if start_i > n_array.shape[0]:
return
end_i = n_array.shape[0]
if end_t > target.shape[0]:
end_i = n_array.shape[0] - (end_t - target.shape[0])
end_t = target.shape[0]
if end_i <= 0:
return
target[start_t : end_t] = n_array[start_i : end_i]
return target | 839ea9cbae5317013b15d2be8b3fc476887815c3 | 189,070 |
def is_jsonp_accepted(request):
"""
Returns if jsonp is accepted or not
:return: True if jsonp is accepted, False otherwise
"""
return request.args.get('format') == "jsonp" | 8b6f80e0c3eb91342a80a7f4dd473fff9ef19d9c | 129,879 |
def conv_repoids_to_list(repo_ids):
"""
Convert repo ids seperated by "\n" to list.
"""
if not repo_ids:
return []
repoid_list = []
for repo_id in repo_ids.split("\n"):
if repo_id == '':
continue
repoid_list.append(repo_id)
return repoid_list | 6a76a8ae4f565ac27839478f068f9e9a13276263 | 699,977 |
import json
def json_request(func):
"""
You can use this decorator on your view when the incoming request has JSON data.
This decorator deocdes json data and puts it in request.POST
"""
def decorated_function(request):
try:
data = json.loads(request.body)
request.POST = data
except:
pass
return func(request)
return decorated_function | 32ae54977e5526fc1cdd17ed4a9ed8c1ccbe4af2 | 224,997 |
def formatCoreTime(core_time_ms):
"""
Format core time in millis to core hours.
"""
return "%0.2f" % (core_time_ms / 1000 / 3600.0) | 948245393134e1b9069ed6caab67fb5b028c2212 | 37,391 |
def tags2dict(tags):
"""Convert a tag list to a dictionary.
Example:
>>> t2d([{'Key': 'Name', 'Value': 'foobar'}])
{'Name': 'foobar'}
"""
if tags is None:
return {}
return dict((el['Key'], el['Value']) for el in tags) | 1b5caaf51ad45110d7065ef24625f02daa034267 | 60,303 |
def get_itersecting_DEM_tile_names(index, geometry):
"""
Find the DEM tiles that intersect the geometry and extract the
filenames from the index. NOTE: the geometries need to be in the
same CRS!
Parameters
----------
index : dtype=GeoDataFrame
DEM tile index.
geometry : shapely geometry object
polygon of interest.
Returns
-------
fname
file name of tiles of interest.
"""
# sometimes points are projected to infinity
# this is troublesome for intestections
# hence remove these instances
out_of_bounds = index['geometry'].area.isna()
index = index[~out_of_bounds]
mask = index.intersects(geometry)
index = index[mask]
return index['CPP filename'] | 88f81f1c50dccc9fdd76cf29e03e8949d736f272 | 410,758 |
def doc_template(object_name: str, body: str)->str:
"""Returns an html page
:param object_name: name of the object
:param body: body of the page
:return: the page
"""
doc = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>""" + object_name + """</title>
<meta name="description" content="Denodo code part">
</head>
<body>""" + body + """</body>
</html>
"""
return doc | faf7a74f58dd1d2957b29d125b9d24d950c2429a | 653,600 |
from datetime import datetime
def datetime_delta_ms(d1, d2):
"""
Both `d1` and `d2 must be an instance of `datetime.datetime`.
return the millisecond(s) between `d1` and `d2`.
"""
if not isinstance (d1, datetime):
raise TypeError('`d1` must be an instance of `datetime.datetime`.')
if not isinstance (d2, datetime):
raise TypeError('`d2` must be an instance of `datetime.datetime`.')
delta = d1 - d2
return delta.days * 24 * 3600 * 1000 + \
delta.seconds * 1000 + \
delta.microseconds / 1000; | c38dcded0fcbd4459f52ce4201cf27b19d381cb6 | 532,827 |
def handle_leap_year(t):
"""given a time struct, give the number of days in February for that year"""
return (29 if t.tm_year % 4 == 0 else 28) | 87373a0d0c7f6680b74f9ce8e6ec49134bdc90f7 | 524,846 |
def _buildD(vd, dims, N):
"""
Builds the effective drift matrices by multiplying by the 1/4N coeff
vd : List containing the drift matrices
dims : List containing the pop sizes
N : List containing the effective pop sizes for each pop
Returns a list of effective drift matrices for each pair of pops
"""
if (len(dims) == 1): return [1.0 / 4 / N[0] * vd[0][0]]
res = []
ctr = 0
for i in range(len(dims)):
for j in range(i + 1, len(dims)):
res.append(1.0/(4*N[i])*vd[ctr][0] + 1.0/(4*N[j])*vd[ctr][1])
ctr += 1
return res | d9191fd546c31fd5acb489615a98f37b1a72b2b2 | 309,476 |
import requests
def count_redirects(url):
"""Return the number of redirects in a URL."""
try:
response = requests.get(url, timeout=3)
if response.history:
return len(response.history)
else:
return 0
except Exception:
return '?' | c0a090571be7e4d6d3d6ba1ab7db44d6afdea620 | 528,281 |
def ConvertToCamelCase(name):
"""Converts snake_case name to camelCase."""
part = name.split('_')
return part[0] + ''.join(x.title() for x in part[1:]) | d5ffa8ecd23a9fa8423cb78e8e93cbaad7591ec4 | 367,092 |
def fasta(sequences):
"""Builds a FASTA record of extracted sequences.
This function expects either a list of Synthase objects (mode='synthase')
or a dictionary of extracted domains, keyed on synthase header (mode='domains').
"""
# Entire Synthase objects were extracted
if isinstance(sequences, list):
return "\n".join(s.to_fasta() for s in sequences)
# Domain sequences were extracted
if isinstance(sequences, dict):
return "\n".join(
f">{header}_{index}\n{sequence}"
for header, sequences in sequences.items()
for index, sequence in enumerate(sequences)
) | 76ea3b13c8ea8214d73985d56a0d4cf50de4c517 | 624,062 |
import optparse
def ActionGroup(parser):
"""Define the group of 'actions' the script can execute."""
group = optparse.OptionGroup(
parser, "Script actions",
"These options list the actions the scripts can perform. "
"One, and only one, action must be given when running the script.")
return group | c5c04fb84fb2d9d06497c15dcb381f1cfe038083 | 536,035 |
def _truncate(seq: str):
"""Removes the prefix before the first ATG.
and any trailing nucleotides that are not
part of a full codon.
Args:
seq (str): Nucleotide sequence to truncate
Returns:
str or None: the truncated sequence or None if
no start codon was found.
"""
seq = seq.upper()
for start in range(0, len(seq) - 2):
codon = seq[start:start+3]
if codon == "ATG":
res = seq[start:]
trailing_nuc = len(res) % 3
if trailing_nuc > 0:
return res[:-trailing_nuc]
else:
return res | c189fe8b9360db3318ad2603357a32acc0b92352 | 432,418 |
import time
def measure(func):
"""
@measure
def test():
for i in range(1000000000):
pass
if __name__ == '__main__':
print("start")
test()
print("end")
"""
def wrapper(*args, **kwargs):
def display_formatted_time(elapsed_time, msg=""):
minutes, seconds = map(int, divmod(elapsed_time, 60))
print("Elapsed time - {0}: {1}min {2}s".format(msg, minutes, seconds))
since = time.time()
func(*args, **kwargs)
display_formatted_time(time.time() - since, func.__name__)
return wrapper | 95a703cdd0858f45f279608844a444a774c21c46 | 574,726 |
def get_optional_vim_attr(vim_object, attr_name):
"""
Returns either the attribute value for the attribute 'attr_name' on the
object 'vim_object', else None if the attribute isn't set.
"""
try:
return getattr(vim_object, attr_name)
except IndexError:
# IndexError is raised if an optional, non-array "May not be present" (see
# vSphere API documentation) attribute is accessed. For optional, array
# attributes, it appears the attribute is always present although the array
# could consist of zero elements.
return None | 6781e13d7ba1ff1cfd6ab73d4cbeac70f09b1deb | 66,781 |
import base64
def b64decode(data):
"""JOSE Base64 decode.
:param data: Base64 string to be decoded. If it's unicode, then
only ASCII characters are allowed.
:type data: bytes or unicode
:returns: Decoded data.
:rtype: bytes
:raises TypeError: if input is of incorrect type
:raises ValueError: if input is unicode with non-ASCII characters
"""
if isinstance(data, str):
try:
data = data.encode('ascii')
except UnicodeEncodeError:
raise ValueError(
'unicode argument should contain only ASCII characters')
elif not isinstance(data, bytes):
raise TypeError('argument should be a str or unicode')
return base64.urlsafe_b64decode(data + b'=' * (4 - (len(data) % 4))) | 0a58173aeaefa872fd365af8871802b8a51b5ba0 | 394,305 |
def sort_colors_descending(g):
"""
Sort priorities occurring in the game in descending order of priority.
:param g: a game graph.
:return: the colors in g sorted in descending order.
"""
# (player, priority) is a value of the node dictionary. We create a set of the priorities to remove duplicates
# then we sort it
return sorted(set(k[1] for k in g.nodes.itervalues()), reverse=True) | db0b3636474923064864295f1b4d98250262b044 | 530,942 |
def test_geojson(distribution):
"""
Test if a DCAT:distribution is GeoJSON.
"""
return (
distribution.get("mediaType") == "application/vnd.geo+json"
or distribution.get("format", "").lower() == "geojson"
) | c321795d4f38f7188fb4d9f3ab6403ce8b866bad | 650,343 |
def _basename_in_ignore_list_re(base_name, ignore_list_re):
"""Determines if the basename is matched in a regex ignorelist
:param str base_name: The basename of the file
:param list ignore_list_re: A collection of regex patterns to match against.
Successful matches are ignored.
:returns: `True` if the basename is ignored, `False` otherwise.
:rtype: bool
"""
for file_pattern in ignore_list_re:
if file_pattern.match(base_name):
return True
return False | c8b8e0e4c4667ae86d86ee80497f959ea3e8453a | 557,990 |
import re
def get_chapter_section(string):
""" Given a line of text, extract the chapter-section if it exists
:param string: string from which to extract the chapter-section number
:return: chapter-section if one exists
"""
chap_sec = []
# Check if chapter-section contains a colon
get_colon = re.search("^\d+:", string)
if get_colon is not None:
chap_sec = string.split(':')
else:
chap_sec = string.split('-')
return chap_sec | ea8d932f9a2890804bc7c7c67613779e127858b5 | 489,752 |
from typing import Callable
def rename_keys(iterable: dict, key_func: Callable):
"""
Renames the keys in a dictionary
:param iterable: Dictionary to iterate through
:param key_func: Function to generate the new key name
:return: Dictionary with new key names
"""
return {key_func(k): v for k, v in iterable.items()} | 356213e40acab9e8a1d65f4da01bee47820b2ad2 | 388,291 |
import functools
import time
def slow_down(func, seconds: float):
"""Slow down `func` by adding timeouts before and after its execution."""
@functools.wraps(func)
def wrapper(*args, **kwargs):
time.sleep(seconds)
result = func(*args, **kwargs)
time.sleep(seconds)
return result
return wrapper | f98c8eb9eae368a15b2e031a158af91b406426bb | 602,404 |
def lerp(start, end, percent):
"""Linear interpolation between `start` and `end`.
"""
return percent * end + (1 - percent) * start | 2f71779913554e17765117f1a169cffd0ed943e4 | 192,148 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.