content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_score(word):
"""Score a given word."""
if len(word) == 4:
return 1
else:
score = len(word)
if len(set(word)) == 7:
score += 7
return score | c48ffc666e1219ec7b19aeb3343a04de95e048bb | 558,797 |
def start_first_monday(df):
"""Slices the dataset keeping data dated after the first monday available
Parameters:
-----------
df : Pandas DataFrame
the original dataset
Returns
-----------
df : Pandas DataFrame
the corresponding dataset
"""
first_date_gap = df.iloc[0].gap_in_day
next_monday_gap = first_date_gap + (4 - first_date_gap % 7) % 7
df0 = df[df['gap_in_day'] >= next_monday_gap]
return df0 | 493e2ff6bc2da3a69f9cfca698d9fc0bb5f35f0f | 202,853 |
def squared(value: int) -> int:
"""Returns the squared value"""
return value * value | 73cfb3e7c7fdfb2bf99296861dc243c5c92cb67e | 255,315 |
def text(item):
"""
Get the text from the tweet
"""
if 'text' in item:
return item['text']
return None | 1451d0933c65b5c09eb8a39eb882162af335cb57 | 600,784 |
def append_from(session, data, page):
""" Collect paginated data."""
r = session.api_request(page)
url_next = r["links"]["next"]
if url_next:
append_from(session, data, url_next[len(session.base_url):])
data.extend(r["data"])
return data | 05100d0f6d10d3851a99a30528d75ba5510f9a21 | 430,784 |
def factor_out_twos(n):
"""
Returns the tuple (d,s) such that n = d*(2**s) for the smallest value of d
"""
d = n
s = 0
while d % 2 == 0:
s += 1
d //= 2
return d,s | 76ed2fa981673098afd66239eca960607e96d7e9 | 615,873 |
def write_string(fid, s):
"""
Write *s* as a null terminated string to *fid*.
"""
fid.write(s + '\0')
return fid | 3e7f00279272da79003ed76db5b4028e1b0b5727 | 454,219 |
def hash_djb2(s, seed=5381):
"""
Hash string with djb2 hash function
:type s: ``str``
:param s: The input string to hash
:type seed: ``int``
:param seed: The seed for the hash function (default is 5381)
:return: The hashed value
:rtype: ``int``
"""
hash_name = seed
for x in s:
hash_name = ((hash_name << 5) + hash_name) + ord(x)
return hash_name & 0xFFFFFFFF | 1f110277c1da36acfa1c336664e78eb867fa6e97 | 562,016 |
def _set_coords(ds, varname):
"""Set all variables except varname to be coords."""
if varname is None:
return ds
if isinstance(varname, str):
varname = [varname]
coord_vars = set(ds.data_vars) - set(varname)
return ds.set_coords(coord_vars) | b6f94e9e8022dccfb6dfab078203c624f6c8bf3a | 558,158 |
def filterArchitecture(results, architecture):
"""
Restrict the list of results based on given architecture
"""
filtered_results = {}
for name, res in results.items():
filtered_values = []
for value in res:
if architecture is "x86":
# drop aarch64 results
if ("armband" not in value['build_tag']):
filtered_values.append(value)
elif architecture is "aarch64":
# drop x86 results
if ("armband" in value['build_tag']):
filtered_values.append(value)
if (len(filtered_values) > 0):
filtered_results[name] = filtered_values
return filtered_results | a909932f1761d0278627c91498e8631f50ada380 | 303,300 |
from typing import List
def _ternary_search(array: List[int], value, low: int, high: int) -> int:
"""
The implementation detail of the recursive implementation of ternary search.
:param array: is the array to search.
:param value: is the value to search for.
:param low: is the lower bound of the partition.
:param high: is the upper bound of the partition.
:return: the index of the value, or -1 if it doesn't exist.
"""
if high < low:
return -1
# Ternary search has two middle pointers.
partition_size = (high - low) // 3
middle_1 = low + partition_size
middle_2 = high - partition_size
if value == array[middle_1]:
return middle_1
if value == array[middle_2]:
return middle_2
if value < array[middle_1]:
return _ternary_search(array, value, low, middle_1 - 1)
if value > array[middle_2]:
return _ternary_search(array, value, middle_2 + 1, high)
return _ternary_search(array, value, middle_1 + 1, middle_2 - 1) | f07a81c640ef9bafe31f01c72bf7ce5af6d30604 | 634,063 |
def solution(nums: list) -> list:
""" This function sorts the passed in array of numbers. """
if nums is None:
return []
return sorted(nums) | e8f44a4ce4b8eede0533329bc9c89ba9e2f0006d | 415,864 |
def length(x):
"""
Returns the length of x
:param x: the time series to calculate the feature of
:type x: pandas.Series
:return: the value of this feature
:return type: int
"""
return len(x) | 461d11ba6ca91b7ab6e7029ea7fe09fe4f78da1c | 567,946 |
def create_garage_parking(data):
"""Create garage parking feature."""
data['Posti_garage'] = (data['Posti auto']
.str.extract(r'(\d).*garage\/box')
.astype('float')
.fillna(0))
return data | 82ad85660b78584565adbbd5fe8ab38e435a1bf7 | 495,441 |
def return_timings(data, trial_type):
"""
Finds all trials matching the string 'trial_type',
retrieves onset in seconds, and returns them as a list.
"""
data = filter(lambda d: trial_type in d[0], data)
onsets = []
for trial in data:
onsets.append(trial[5])
return onsets | f1c4ae2013287b85b603dd9b90affb0ab01f7fdd | 283,605 |
from datetime import datetime
def convert_iso_time(isotime):
"""Will convert an isotime (string) to datetime.datetime"""
return datetime.strptime(isotime, '%Y-%m-%dT%H:%M:%S.%fZ') | 49c60216ac664899614a82ac0fdaaa1731fbaafb | 215,171 |
def FixateInputShape(input_params,
batch_size,
target_max_seqlen=None,
source_max_seqlen=None):
"""Adjusts the input_params so that it always produces fixed shaped output.
Sets p.target_max_length to target_max_seqlen and p.source_max_length to
source_max_seqlen if set. Only keep items in bucket_upper_bound that is <=
max_seqlen where max_seqlen is source_max_seqlen if given; otherwise,
target_max_seqlen.
Args:
input_params: The input params.
batch_size: The input generator should always output the batch size.
target_max_seqlen: Every batch should produce samples with this sequence
length, and samples are padded to this length. Use
input_params.bucket_upper_bound[-1] if not set.
source_max_seqlen: Same effect as target_max_seqlen but for source if set.
Returns:
input_params itself.
"""
p = input_params
# Pad to fixed length, since otherwise the infeed queue can't be set up,
# because the shape won't be known statically.
#
# Limit memory by throwing away large sequences.
if not target_max_seqlen:
assert p.bucket_upper_bound
target_max_seqlen = p.bucket_upper_bound[-1]
if source_max_seqlen:
p.bucket_upper_bound = [
x for x in p.bucket_upper_bound if x <= source_max_seqlen
]
if not p.bucket_upper_bound:
p.bucket_upper_bound = [source_max_seqlen]
else:
p.bucket_upper_bound = [
x for x in p.bucket_upper_bound if x <= target_max_seqlen
]
if not p.bucket_upper_bound:
p.bucket_upper_bound = [target_max_seqlen]
p.bucket_batch_limit = [batch_size] * len(p.bucket_upper_bound)
p.pad_to_max_seq_length = True
if source_max_seqlen:
p.source_max_length = source_max_seqlen
p.target_max_length = target_max_seqlen
if hasattr(p, 'pad_and_set_target_shape'):
p.pad_and_set_target_shape = True
# Because every batch is padded to the max sequence length and has the same
# batch size, they are shardable.
p.remote.shardable_batch = True
return p | 9034b08e73b6fdded41420f36167f099fade58fb | 64,738 |
import logging
def make_log_metric(level=logging.INFO, msg="%d items in %.2f seconds"):
"""Make a new metric function that logs at the given level
:arg int level: logging level, defaults to ``logging.INFO``
:arg string msg: logging message format string, taking ``count`` and ``elapsed``
:rtype: function
"""
def log_metric(name, count, elapsed):
log_name = 'instrument.{}'.format(name) if name else 'instrument'
logging.getLogger(log_name).log(level, msg, count, elapsed)
return log_metric | 8d99e00284b21d192a741d2cc0f7b1a2c40b18e2 | 137,561 |
from datetime import datetime
def is_naive_datetime(dt: datetime):
"""判断 datetime 对象是否带有时区。
如果没有时区,在任何时候该对象都应该被当作本地时区对待。
"""
return dt.tzinfo is None | cb7be80d98f08740978d1aa58cf8255d688cae95 | 267,487 |
import json
def read_config(file_path):
"""Read JSON config."""
json_object = json.load(open(file_path, 'r'))
return json_object | ed2feb5f23afbdee20573db847f4b7d5615fb6ce | 550,184 |
def load_header(file: str):
"""Check if the graph is directed, bipartite, weighted."""
directed, bipartite, weighted = False, False, True
with open(file, 'r', encoding='utf-8') as f:
row = f.readline()
if 'bip' in row:
bipartite = True
if 'unweighted' in row:
weighted = False
if 'asym' in row:
directed = True
return directed, bipartite, weighted | e91665878d01a9f460b32d542066f6c27add96db | 327,186 |
def u4(bytes):
"""
Convert a little endian Ublox U4 type to a native integer
"""
if len(bytes) != 4:
raise ValueError('Need exactly 4 bytes')
return int(bytes[0]) + \
int(bytes[1]) * 256 + \
int(bytes[2]) * 65536 + \
int(bytes[3]) * 16777216 | ab446bc02500ad9eba94b8b6bc9de689cf334e57 | 234,186 |
def my_tokenizer(s):
"""
Split a string s by spaces.
Parameters
----------
s : The string.
Returns
-------
s.split() : A list with the resulting substrings from the split
"""
return s.split() | db2e0e637d087c1c5ed7813ef1f3903656d3eab2 | 310,278 |
def decode_data(data, table):
""" Decode data with precalculated table """
dec = []
for i in range(0, len(data), 16):
dec.append(table[data[i:i+16]])
return bytes(dec) | 2351ece8066e1335d172c760d271f2a1a5f47922 | 479,595 |
def OnlyIfDescendedFrom(tag_names):
"""Decorator that only executes this visitor if we have the named ancestor.
If one of the specified parent tag names is in the tree above us, run the
decorated function. Otherwise, continue down the tree by using the default
visitor, as if the decorated function didn't exist.
"""
def CalledOncePerDefinition(func):
def CalledOncePerInvocation(self, *args, **kwargs):
if self.IsDescendedFrom(tag_names):
return func(self, *args, **kwargs)
else:
return self.visit(*args, **kwargs)
return CalledOncePerInvocation
return CalledOncePerDefinition | bfc502191beb09863ed70219dd842ad3b927663f | 244,257 |
def node_pos_formatter(node):
"""
Returns a terminal node's original token.
"""
return node.text | 2886fea43ad06d81e60f29be3c90fba7060e385e | 607,559 |
def sort_and_dedup(input_list: list):
"""Sorts a list alphabetically and remove duplicates. Return tuple"""
seen = set()
seen_add = seen.add
input = sorted(input_list) # sort
uniques = [x for x in input if not (x in seen or seen_add(x))]
output = tuple(uniques)
return output | 7eb7314d7cd8039479755aee2fc775ef760a508a | 461,333 |
def yields_from_gronow_2021_tables_3_A10(feh):
"""
Supernova data source: Gronow, S. et al., 2021, A&A, Tables 3/A10 He detonation + Core detonation
Five datasets are provided for FeH values of -2, -1, 0 and 0.4771
We use four intervals delimited by midpoints of those values.
"""
if feh <= -1.5:
return [2.81e-2, 9.85e-6, 4.23e-9, 1.25e-7, 5.72e-3, 1.85e-6, 3.29e-4, 1.10e-1, 7.14e-2, 1.76e-2, 7.85e-1]
elif -1.5 < feh <= -0.5:
return [2.81e-2, 9.72e-6, 4.21e-9, 1.16e-6, 5.72e-3, 2.08e-6, 3.38e-4, 1.10e-1, 7.15e-2, 1.76e-2, 7.85e-1]
elif -0.5 < feh <= 0.239:
return [2.75e-2, 2.74e-5, 3.87e-9, 1.71e-5, 5.82e-3, 7.58e-6, 3.30e-4, 1.10e-1, 7.01e-2, 1.68e-2, 7.62e-1]
elif 0.239 <= feh:
return [2.45e-2, 8.64e-6, 3.65e-9, 3.46e-5, 5.99e-3, 1.01e-5, 2.94e-4, 1.10e-1, 6.46e-2, 1.49e-2, 6.91e-1] | 16704acc8c5b04ab30e36374ee35af5c979125a8 | 549,806 |
def isint(intstr):
""" Checks if a string is an integer.
Args:
intstr (str): A string
Returns: bool
"""
try:
int(intstr)
return True
except ValueError:
return False | 2d989ec51f64c7e622198ba8bdeceeecbddce2f0 | 253,633 |
def fresh_dict(m, ignore_underscore_fields=True):
"""
Returns a dict representation of the current (unsaved)
state of Model M.
Like django's built-in Model.__dict__, except that seems
to use the stored (i.e. old) rather than new/unsaved
values. In other words, if you change some of M's values
but haven't yet saved them, FRESH_DICT will return the
unsaved versions, whereas django's __dict__ will return
the saved values.
If IGNORE_UNDERSCORE_FIELDS, throws out fields that
start with an underscore.
"""
d = {}
for fieldn in [f.name for f in m._meta.fields]:
if ignore_underscore_fields and fieldn.startswith('_'):
continue
d[fieldn] = getattr(m, fieldn)
return d | e7f4c6177d3702e3025e2117e43e09671e2c03da | 378,549 |
def parse_fasta (lines):
"""Returns 2 lists: one is for the descriptions and other one for the sequences"""
descs, seqs, data = [], [], ''
for line in lines:
if line.startswith('>'):
if data: # have collected a sequence, push to seqs
seqs.append(data)
data = ''
descs.append(line[1:]) # Trim '>' from beginning
else:
data += line.rstrip('\r\n')
# there will be yet one more to push when we run out
seqs.append(data)
return descs, seqs | 4dea579720f43f348389e53751c0308f1c493296 | 26,968 |
def getSegsIgnore(oracleSplitSegs, collars):
"""
This function returns a list of the segment times to ignore based on the input collar sizes. Note that
each collar defined as a start collar size and an end collar size, though both can be the same.
Inputs:
- oracleSplitSegs: ground truth segments all iterations have reduced it to non-overlapping segments with a
constant number of speakers in each segment
- collars: list of start collar sizes and end collar sizes in seconds, form "[0.25, 0.25]"
Outputs:
- segsIgnore: the list of segment times to ignore, form: "[[1270.14, 1270.64], [1274.63, 1275.88], ...]"
"""
segsIgnore = []
for index, collar in enumerate(collars):
segsIgnore.append([])
for row in oracleSplitSegs:
segsIgnore[index].append([row['tbeg'] - collar[0], row['tbeg'] + collar[1]])
segsIgnore[index].append([row['tend'] - collar[0], row['tend'] + collar[1]])
return segsIgnore | b5bfbbc25539f58e7e6de1299c4562ea4df5d70b | 199,242 |
def calculate_benefit_cost_ratio(region, country_parameters):
"""
Calculate the benefit cost ratio.
"""
cost = (
region['network_cost'] +
region['spectrum_cost'] +
region['tax'] +
region['profit_margin']
)
revenue = region['total_revenue']
if revenue > 0 and cost > 0:
bcr = revenue / cost
else:
bcr = 0
return bcr | 2c820f3cc758bf22355983dac8950df380168dc9 | 242,577 |
def par_insertion(pairs, chars, rules, steps):
"""
Apply steps of par insertion to the polymer template.
:param pairs: template pairs
:param chars: counter of characters
:param steps: number of required steps
:return: pairs, chars
"""
for _ in range(steps):
for (a, b), value in pairs.copy().items():
insertion = rules[a + b]
pairs[a + b] -= value
pairs[a + insertion] += value
pairs[insertion + b] += value
chars[insertion] += value
return pairs, chars | 9058ce6aa1626d22bd9eaca0e613fdfcdd51d264 | 583,363 |
def _rshift_nearest(x, shift):
"""Given an integer x and a nonnegative integer shift, return closest
integer to x / 2**shift; use round-to-even in case of a tie.
"""
b, q = 1 << shift, x >> shift
return q + (2 * (x & b - 1) + (q & 1) > b) | cb6fa2a2d65367766adab37e05534990dfe3b2a6 | 656,373 |
def touchforms_error_is_config_error(touchforms_error):
"""
Returns True if the given TouchformsError is the result of a
form configuration error.
"""
error_type = touchforms_error.response_data.get('error_type', '')
return any([s in error_type for s in (
'XPathTypeMismatchException',
'XPathUnhandledException',
'XFormParseException',
)]) | 359fc7bfa195c5adadeec3d230408a892827b8a8 | 611,338 |
def get_data_source(name):
"""Guesses data source from file name.
If the name contains 'terr' then we guess terrestrial data,
otherwise we assume satellite.
Arguments
=========
name : str
File name
Returns
=======
int
0 if satellite, 1 if terrestrial
"""
if name.find('terr') != -1:
# terrestrial
return 1
else:
# assume satellite
return 0 | 2ac0915327805320474a94cb6b9189e7c7041440 | 343,638 |
import traceback
def format_traceback(sys_exc_info):
"""Formats traceback."""
return "".join(traceback.format_tb(sys_exc_info[-1])).rstrip() | 1e6f3b3cf90b49d0757216fbc30dc6c94ff5d197 | 340,005 |
import random
import string
def generate_random_string(len: int):
""" Creates a randomly generated string of uppercase letters
Args:
len (int): The desired length
Returns:
random_string (str)
"""
return ''.join(random.choices(string.ascii_uppercase, k=len)) | 5414ecb7a6e212379000e43fef07e4642c0e63a0 | 17,329 |
def _ply_header(num_vertices, num_faces, use_vertex_colors=False):
"""
Return a string representing the PLY format header for the given data properties.
"""
hdr_top = """ply
format ascii 1.0
comment Generated by Brainload
"""
hdr_verts = """element vertex %d
property float x
property float y
property float z
""" % num_vertices
hdr_vertex_colors = """property uchar red
property uchar green
property uchar blue
property uchar alpha
"""
hdr_face = "element face %d\nproperty list uchar int vertex_indices\n" % num_faces
hdr_end = "end_header\n"
if use_vertex_colors:
hdr_elements = [hdr_top, hdr_verts, hdr_vertex_colors, hdr_face, hdr_end]
else:
hdr_elements = [hdr_top, hdr_verts, hdr_face, hdr_end]
return ''.join(hdr_elements) | 40d7b12a1006be4cfa634f887c1054ddb30bb145 | 391,603 |
def get_contacts(filename):
"""
Function to get all the name and email IDs of contacts in separate lists
:param filename: File containing contact list
:return: lists containing names and emails
"""
names = []
emails = []
with open(filename, encoding='utf-8') as contacts_file:
for contact in contacts_file:
names.append(contact.split()[0])
emails.append(contact.split()[1])
return names, emails | 83518c828ee5da909cf7765ac4cc59fc65f97330 | 161,995 |
def index1(b, i, k):
"""Magic index1 function.
Takes a bitstring k and inserts bit b as the ith bit,
shifting bits >= i over to make room.
"""
retval = k
lowbits = k & ((1 << i) - 1) # get the low i bits
retval >>= i
retval <<= 1
retval |= b
retval <<= i
retval |= lowbits
return retval | d5fa14ed1f11d8b1636f6e842b64dd7d2d9ede68 | 538,103 |
def format(self, ndigit="", ftype="", nwidth="", dsignf="", line="",
char="", **kwargs):
"""Specifies format controls for tables.
APDL Command: /FORMAT
Parameters
----------
ndigit
Number of digits (3 to 32) in first table column (usually the node
or element number). Initially defaults to 7.
ftype
FORTRAN format types (initially defaults to G):
G - Gxx.yy. xx and yy are described below.
F - Fxx.yy
E - Exx.yy
nwidth
Total width (9 to 32) of the field (the xx in Ftype). Initially
defaults to 12.
dsignf
Number of digits after the decimal point (yy in F or E format) or
number of significant digits in G format. Range is 2 to xx-7 for
Ftype = G or E; and 0 to xx-4 for Ftype = F. Initially defaults to
5.
line
Number of lines (11 minimum) per page. Defaults to ILINE or BLINE
from the /PAGE command.
char
Number of characters (41 to 240, system-dependent) per line before
wraparound. Defaults to ICHAR or BCHAR from the /PAGE command.
Notes
-----
Specifies various format controls for tables printed with the POST1
PRNSOL, PRESOL, PRETAB, PRRSOL, PRPATH, and CYCCALC commands. A blank
(or out-of-range) field on the command retains the current setting.
Issue /FORMAT,STAT to display the current settings. Issue /FORMAT,DEFA
to reestablish the initial default specifications.
For the POST26 PRVAR command, the Ftype, NWIDTH, and DSIGNF fields
control the time output format.
This command is valid in any processor.
"""
command = f"/FORMAT,{ndigit},{ftype},{nwidth},{dsignf},{line},{char}"
return self.run(command, **kwargs) | 4c01afdccc4066005a4db7d523ef1d13ccf74b36 | 634,616 |
def _is_match_one(sub_string_list, src_string):
"""
Whether the sub-string in the list can match the source string.
Args:
sub_string_list (list): The sub-string list.
src_string (str): The source string.
Returns:
bool, if matched return True, else return False.
"""
for match_info in sub_string_list:
if match_info in src_string:
return True
return False | baa41ca9e8ab1d800d87862edece77f41ec649c1 | 219,722 |
import torch
def all_or_none_accuracy(preds, targets, dim=-1):
""" Gets the accuracy of the predicted sequence.
:param preds: model predictions
:param targets: the true targets
:param dim: dimension to operate over
:returns: scalar value for all-or-none accuracy
:rtype: float32
"""
preds_max = preds.data.max(dim=dim)[1] # get the index of the max log-probability
assert targets.shape == preds_max.shape, \
"target[{}] shape does not match preds[{}]".format(targets.shape, preds_max.shape)
targ = targets.data
return torch.mean(preds_max.eq(targ).cpu().all(dim=dim).type(torch.float32)) | 4e46720996a383b601f7de332945182971f53988 | 681,596 |
import logging
import requests
def news_API_request(covid_terms: str = "Covid COVID-19 coronavirus"):
"""
This function get the news from the news API according to the given keywords.
:arg
covid_terms (str): Keywords of the news that you want to get
:return:
Json file: A json file containing the news that you get
"""
logging.info("getting the news with the keywords: " + covid_terms)
base_url = "https://newsapi.org/v2/everything?"
api_key = "f59ef4d22d7540f39636e99e44b9d0e6"
keywords = "Covid&COVID-19&coronavirus&"
language = "en&"
sort = "publishedAt&"
full_url = base_url + "qInTitle=" + keywords + "sortBy=" + sort + "language=" + language + "apiKey=" + api_key
r = requests.get(full_url)
return r.json() | bc9fa9d117e92ec5a14ce3ecd2f73966fc86b37d | 424,745 |
def collect_default_successors(start_state):
"""
Collect the default successor states.
NOTE: The start state also evaluated as a successor!
NOTE: This function is necessary for expression validation!
:param start_state: the start state of the searching
:return: the set of default successor states
"""
processable_states = {start_state}
default_states = set()
visited_states = set()
while processable_states:
state = processable_states.pop()
if state not in visited_states:
if state.node.is_default():
default_states.add(state)
elif not state.node.is_matchable():
processable_states.update(state.find_successor_states())
visited_states.add(state)
return default_states | 740ef64fc848b2a76d1bf82594acaea5db549b02 | 571,344 |
def bigend_2_int(p_bytes):
""" Convert bigending bytestring to int
"""
l_ix = 0
l_int = 0
while l_ix < len(p_bytes):
l_b = int(p_bytes[l_ix])
l_int = l_int * 256 + l_b
l_ix += 1
return l_int | 5c51a3752eec30804ab45185fb51c70be240a5b6 | 19,906 |
def is_eulerian_tour(graph, tour):
"""Eulerian tour on an undirected graph
:param graph: directed graph in listlist format, cannot be listdict
:param tour: vertex list
:returns: test if tour is eulerian
:complexity: `O(|V|*|E|)` under the assumption that
set membership is in constant time
"""
m = len(tour)-1
arcs = set((tour[i], tour[i+1]) for i in range(m))
if len(arcs) != m:
return False
for (u, v) in arcs:
if v not in graph[u]:
return False
return True | bafb2e64802b613b024f7da740c2489443e8acef | 392,606 |
def get_max_value(li):
"""Return the largest value from a list."""
m = li[0]
for value in li:
if value > m:
m = value
return m | 3f208bd33fb057901b1d89f8161bb22ddd7e88a6 | 362,642 |
def lcg_generator(
state: int,
multiplier: int = 1140671485,
addend: int = 12820163,
pmod: int = 2 ** 24,
) -> int:
"""
Performs one step in a pseudorandom sequence from state (the input argument)
to state the return value.
The return value is an integer, uniformly distributed in [0, pmod).
See https://en.wikipedia.org/wiki/Linear_congruential_generator
"""
state = (multiplier * state + addend) % pmod
return state | 486438504a3c177b5e9fdc508857dcd349da76a0 | 144,260 |
def _preprocess(statement: str):
"""Preprocess the input statement."""
statement = statement.strip()
# Replace any occourance of " with '.
statement = statement.replace('"', "'")
if statement[-1] != ";":
statement += ";"
return statement | 48faedb198d937c8efbd655820510df147b11be2 | 580,361 |
def remove_padding(X,pad_value):
"""Convience function used to remove padding from inputs which have been
padded during batch generation"""
return X[X!=pad_value] | 968de77558270bad4858db63374eb2c2e7a1148c | 57,965 |
def get_end_of_line_character(view):
"""Return the EOL character from the view's settings."""
line_endings = view.settings().get("default_line_ending")
if line_endings == "windows":
return "\r\n"
elif line_endings == "mac":
return "\r"
else:
return "\n" | f8f4b45b187d9780671f1848ca25c63c93876a22 | 451,619 |
def gerrit_check(patch_url):
""" Check if patch belongs to upstream/rdo/downstream gerrit,
:param patch_url: Gerrit URL in a string format
:returns gerrit: return string i.e 'upstream'/'rdo'/'downstream'
"""
if 'redhat' in patch_url:
return 'downstream'
if 'review.rdoproject.org' in patch_url:
return 'rdo'
if 'review.opendev.org' in patch_url:
print("We don't have ability to hold a node in upstream")
return 'upstream'
raise Exception(f'Unknown gerrit patch link provided: {patch_url}') | 93039f8b11e2359d05984d84953f3d7e05663bef | 234,128 |
from typing import Any
def py_is_not_none(x: Any) -> bool:
"""Check if x is not None."""
return x is not None | 064976648b101a2ae2f0593f2e92149a79a73f42 | 495,383 |
def mul(X, varX, Y, varY):
"""Multiplication with error propagation"""
# Direct algorithm:
Z = X * Y
varZ = Y**2 * varX + X**2 * varY
# Indirect algorithm won't ensure floating point results
# varZ = Y**2
# varZ *= varX
# Z = X**2 # Using Z to hold the temporary
# Z *= varY
# varZ += Z
# Z[:] = X
# Z *= Y
return Z, varZ | 92f4d24a8f370525062b8826fc1ec8cffaec0bbe | 262,908 |
def compute_score_seq(seq,
score_matrix,
pval_mat,
min_score,
scale,
width,
offset):
"""
Score a sequence using a processed motif scoring matrix
----
Parameters:
seq (str) : sequence to score
score_matrix (np.ndarray) : scoring matrix
pval_mat (np.ndarray) : matrix used to compute P-values
using a DP-algorithm (Staden, 1994)
min_score (int) : lowest score in the scoring matrix
scale (int) : scale used during motif processing
width (int) : motif width
offset (int) : offset used during motif processing
----
Returns:
score (np.double) : sequence score
pvalue (np.double) : sequence score P-value
"""
score = 0
seq_len = len(seq)
assert seq_len == width
# score the current sequence
for i in range(width):
nuc = seq[i]
if nuc == 'N':
score = min_score
break # we don't go further
elif nuc == 'A' or nuc == 'a':
score += score_matrix[0, i]
elif nuc == 'C' or nuc == 'c':
score += score_matrix[1, i]
elif nuc == 'G' or nuc == 'g':
score += score_matrix[2, i]
elif nuc == 'T' or nuc == 't':
score += score_matrix[3, i]
# end if
# end for
assert score >= min_score
# get the p-value for the obtained score
tot = pval_mat.sum()
pvalue = (pval_mat[score:].sum()) / tot
# retrieve the log-likelihood score
logodds = (score / scale) + (width * offset)
score = logodds
assert pvalue > 0
assert pvalue <= 1
return score, pvalue | eda48309e6778e231a0fb22a907680659cf7082d | 460,009 |
import itertools
def _get_common_blocks(dp_block_sizes, dp_ids):
"""Return all pairs of non-empty blocks across dataproviders.
:returns
dict mapping block identifier to a list of all combinations of
data provider pairs containing this block.
block_id -> List(pairs of dp ids)
e.g. {'1': [(26, 27), (26, 28), (27, 28)]}
"""
blocks = {}
for dp1, dp2 in itertools.combinations(dp_ids, 2):
# Get the intersection of blocks between these two dataproviders
common_block_ids = set(dp_block_sizes[dp1]).intersection(set(dp_block_sizes[dp2]))
for block_id in common_block_ids:
blocks.setdefault(block_id, []).append((dp1, dp2))
return blocks | 027ac3625e21ab70de8bd656ed2e625236c12fbb | 90,488 |
import torch
def roi2bbox(rois):
"""Convert rois to bounding box format.
Args:
rois (torch.Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
list[torch.Tensor]: Converted boxes of corresponding rois.
"""
bbox_list = []
img_ids = torch.unique(rois[:, 0].cpu(), sorted=True)
for img_id in img_ids:
inds = (rois[:, 0] == img_id.item())
bbox = rois[inds, 1:]
bbox_list.append(bbox)
return bbox_list | 6ea7850a6d32bee2254599871dfb9d9db14e4136 | 349,000 |
import re
def urlReg(msg):
"""Try to match an url."""
m = re.match('^.*(https?://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?)', msg)
if m:
return m.group(1)
return | 4199486959cbc32a241f5b378d9a4ba887c1ebc3 | 477,241 |
def snp_count(vcf, chromosome, start, end):
"""
Count the number of snps in the window.
:param vcf: vcf, a vcf file with SNPs and their genomic positions
:param chromosome: str, Chromosome name
:param start: int, Start position of the sequence
:param end: int, End position of the sequence
:return: int, number of snps in the vcf window
"""
snp_count = vcf.sample_variant(str(chromosome), int(start), int(end))
snp_count = sum(1 for item in snp_count)
return snp_count | c18f52662f96d3013452c4884f506901e9da146b | 73,153 |
def add_one(number):
"""A function that adds one to the number given and returns it"""
return number + 1 | 84c9f4a5de79c1d7232c922875fcbeab4f9fee43 | 527,409 |
def is_palindrome(phrase):
"""Is phrase a palindrome?
Return True/False if phrase is a palindrome (same read backwards and
forwards).
>>> is_palindrome('tacocat')
True
>>> is_palindrome('noon')
True
>>> is_palindrome('robert')
False
Should ignore capitalization/spaces when deciding:
>>> is_palindrome('taco cat')
True
>>> is_palindrome('Noon')
True
"""
new_phrase = phrase.replace(" ", "").lower()
counter = 0
while counter < len(new_phrase)-counter-1:
if new_phrase[counter] != new_phrase[len(new_phrase)-counter-1]:
return False
counter= counter+1
return True | af277bc5aad18ed08cf48b523b0f08b84ad4ff0e | 394,760 |
def add(x, y):
"""The sum of two bits, mod 2."""
return (x + y) % 2 | 9c12cbcfd1f693942232c8f8c20fe4e58e21cb85 | 273,658 |
def synset_to_wnid(synset):
""" Converts synset to wnid. Synset is a wordnet node object"""
return synset.offset() | ba68060b66ab6cd12edd7322ed091b4b5244112e | 604,369 |
def str2bins(string):
"""
Parses string as a list of floats, comma separated
as in: "1.2,3,6,7" -> [1.2, 3.0, 6.0, 7.0]
"""
return [float(s) for s in string.split(",")] | c670cc045155ebaa1b8ca9a3a098e7ae4837a7bb | 258,626 |
def schedule_1_amount(responses, derived):
""" Return the amount as defined in schedule 1 for child support """
try:
if derived['show_fact_sheet_b'] or derived['show_fact_sheet_c']:
return derived['guideline_amounts_difference_total']
else:
return float(responses.get('payor_monthly_child_support_amount', 0))
except ValueError:
return 0 | 33fefc60fc8cb49941b2edaea518c4a57022a946 | 607,495 |
def get_class_name(obj):
"""
A simple template tag to retrieve the class name of
an object.
:param obj: an input object
"""
return obj.__class__.__name__ | 261de168f63336517838e868294c0b177c9e628b | 265,219 |
def player_attr_by_id(roster, player_id, attribute):
"""Returns the attribute of a player given a roaster and a player_id.
Args:
roster (dict): Team roster (returned from API)
player_id (str): Player unique identifier (IDXXXXXXX)
attribute (str): Attribute from roster dictionary.
Returns:
string: Attribute of the person requested.
"""
new_player_id = player_id.replace("ID", "")
for roster_item in roster:
person_id = str(roster_item["person"]["id"])
person_attr = roster_item["person"][attribute]
if person_id == new_player_id:
return person_attr | caf17c0802b1b32fb32bf8397be80dc3baac7016 | 252,741 |
def space_indentation(s):
"""The number of leading spaces in a string
Args:
s: str. The input string.
Returns:
int. The number of leading spaces.
"""
return len(s) - len(s.lstrip(' ')) | 9bc74fc261f7f53d073dfc95ca76ba1ee9db90a4 | 586,648 |
def normalize_slice(s, total):
"""
Return a "canonical" version of slice ``s``.
:param slice s: the original slice expression
:param total int: total number of elements in the collection sliced by ``s``
:return slice: a slice equivalent to ``s`` but not containing any negative indices or Nones.
"""
newstart = 0 if s.start is None else max(0, s.start + total) if s.start < 0 else min(s.start, total)
newstop = total if s.stop is None else max(0, s.stop + total) if s.stop < 0 else min(s.stop, total)
newstep = 1 if s.step is None else s.step
return slice(newstart, newstop, newstep) | f4f204a3ec0a3da4c4a5b33d27330a2445454597 | 521,291 |
def _get_first_last(details):
"""
Gets a user's first and last name from details.
"""
if "first_name" in details and "last_name" in details:
return details["first_name"], details["last_name"]
elif "first_name" in details:
lst = details["first_name"].rsplit(" ", 1)
if len(lst) == 2:
return lst
else:
return lst[0], ""
elif "last_name" in details:
return "", details["last_name"]
return "", "" | 2a2ef17441c4243c5e58b74567709b9acb52e01f | 118,368 |
def tag_key(tagname: str) -> int:
"""
Convert a tagname ("w.YYYY.NN" or "w.YYYY.N") into a key for sorting.
"w_2017_1" -> 201701
"w_2017_01" -> 201701
"w_2017_10" -> 201710
etc.
"""
return int(tagname.split("_")[1]) * 100 + int(tagname.split("_")[2]) | 91f3559519299ced3952a430dfdc166a42997d0b | 54,945 |
from typing import Any
def is_options_list(options_list: Any) -> bool:
"""
Checks whether the given value is an options list.
:param options_list: The value to check.
:return: True if it is an options list.
"""
return (
isinstance(options_list, list) and
all(isinstance(element, str) for element in options_list)
) | 51908a901a39d82ae85f49455eca51b5d0176bb7 | 492,095 |
def extract_chat_id(body):
"""
Obtains the chat ID from the event body
Parameters
----------
body: dic
Body of webhook event
Returns
-------
int
Chat ID of user
"""
if "edited_message" in body.keys():
chat_id = body["edited_message"]["chat"]["id"]
else:
chat_id = body["message"]["chat"]["id"]
return chat_id | 382435ac01dd502f52ad2a5e300830f13cca533d | 237,442 |
def pretty_print_time(time, message=None):
"""Pretty print the given time"""
days = time.days
hours, remainder = divmod(time.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
if message is not None:
print(message)
print(f'\t {days} days, {hours} hours, {minutes} minutes, {seconds} seconds')
# Print out fractional days things have been in this state
total = days + hours/24. + minutes/(24.*60) + seconds/(24.*3600)
return f"{total:.1f}" | 366caa41f110b984508376cf957d5050a04955e7 | 670,679 |
def isHexDigit(s):
"""
isHexDigit :: str -> bool
Selects ASCII hexadecimal digits, i.e. '0'..'9', 'a'..'f', 'A'..'F'.
"""
return s in "0123456789abcdefABCDEF" | 527295b72c56000654b40ffd42f4b2480be3cfad | 331,910 |
def get_crashreport_key(group_id):
"""
Returns the ``django.core.cache`` key for groups that have exceeded their
configured crash report limit.
"""
return u"cr:%s" % (group_id,) | 484fcd0140fdadadebd5faea01e420d39ed66992 | 67,229 |
import copy
import itertools
def cartesian_exp_group(exp_config, remove_none=False):
"""Cartesian experiment config.
It converts the exp_config into a list of experiment configuration by doing
the cartesian product of the different configuration. It is equivalent to
do a grid search.
Parameters
----------
exp_config : str
Dictionary with the experiment Configuration
Returns
-------
exp_list: str
A list of experiments, each defines a single set of hyper-parameters
"""
exp_config_copy = copy.deepcopy(exp_config)
# Make sure each value is a list
for k, v in exp_config_copy.items():
if not isinstance(exp_config_copy[k], list):
exp_config_copy[k] = [v]
# Create the cartesian product
exp_list_raw = (
dict(zip(exp_config_copy.keys(), values)) for values in itertools.product(*exp_config_copy.values())
)
# Convert into a list
exp_list = []
for exp_dict in exp_list_raw:
# remove hparams with None
if remove_none:
to_remove = []
for k, v in exp_dict.items():
if v is None:
to_remove += [k]
for k in to_remove:
del exp_dict[k]
exp_list += [exp_dict]
return exp_list | 2a2d3b9f78ec680ac4c39150195fee154e001aeb | 330,284 |
def addText(text, endIndex, namedStyleType, requests):
"""Adds requests to add text at endIndex with the desired nameStyleType.
Returns new endIndex.
Args:
text (String): text to add
endIndex (int): Current endIndex of document. Location to add text to
namedStyleType (String): desired namedStyleType of text
requests (list): list of requests to append requests to
Returns:
int: new endIndex after adding text
"""
# Finds new end index by incrementing endIndex by the length of the text
# plus 1 for the automatically appended '\n'
newEndIndex = endIndex + len(text) + 1
# Appends requests to add text, and then request to change namedStyleType
# as desired
requests.extend([
# Add text, including a '\n' at the previous line to create a new paragraph
# Note that a '\n' will automatically be appended to the end of the text
{
'insertText': {
'location': {
'index': endIndex - 1
},
'text': '\n' + text
}
},
{
'updateParagraphStyle': {
'range': {
'startIndex': endIndex,
'endIndex': newEndIndex
},
'paragraphStyle': {
'namedStyleType': namedStyleType
},
'fields': 'namedStyleType'
}
}
])
return newEndIndex | 476e1b40d16fa5cbea81933e9ef72318cd770488 | 481,202 |
from operator import xor
def otp(m, k):
"""
Encrypts m using key k as a one-time pad.
This simple returns the xor of each corresponding message and key bit.
"""
assert len(m) == len(k)
return [xor(mm, kk) for mm, kk in zip(m, k)] | ac3b4aa10487b61a7f127a8999a09d30b26922e5 | 411,122 |
def combine_by_append(vector1, vector2):
"""
Combines two lists by appending them.
:param vector1: list of values
:param vector2: list of values
:return: a list created by appending vector1 to vector2
"""
return vector1 + vector2 | 1376c70613b4e8df7628062f20bc58759ddddb92 | 359,585 |
def calculate_velocities(cartesians, timestep=1):
"""
Calculate velocities at each timestep given Cartesian coordinates. Velocities at the first and last point are
extrapolated.
:param cartesians: Cartesian coordinates along trajectory
:param timestep: time step between frames in units of fs, default=1
:return: velocities
"""
velocities = []
for i in range(0, len(cartesians)):
if i == 0:
velocity = (cartesians[i + 1] - cartesians[i]) / timestep
elif i == len(cartesians) - 1:
velocity = (cartesians[i] - cartesians[i - 1]) / timestep
else:
velocity = (cartesians[i + 1] - cartesians[i - 1]) / 2 * timestep
velocities.append(velocity)
return velocities | ab38b3745b0cd36887924e491e143e99053a197d | 254,470 |
def longest_common_prefix(seq1, seq2):
"""
taken from https://www.quora.com/What-is-the-easiest-way-to-find-the-longest-common-prefix-or-suffix-of-two-sequences-in-Python
:param seq1: first string
:param seq2: second string
:return: the prefix
"""
start = 0
while start < min(len(seq1), len(seq2)):
if seq1[start] != seq2[start]:
break
start += 1
return seq1[:start] | 79dbaf1e0ef4859bb7b0e525c09d0273b4dbf590 | 99,325 |
from typing import OrderedDict
def duplicate_word_removal(data: list) -> list:
"""
Removes duplicate words
:param data: The list of dictionaries of the form
:type: [{"Header":"", "Header_keywords": [], "Paragraph_keywords": [], slides:[int]}]
:return: The list of dictionaries with duplicate keywords removed of the form
:rtype: [{"Header":"", "Header_keywords": [], "Paragraph_keywords": [], slides:[int]}]
"""
for dictionary in data:
ordered_headers = list(OrderedDict.fromkeys(dictionary['Header_keywords']))
dictionary['Header_keywords'] = ordered_headers
ordered_paragraph = list(OrderedDict.fromkeys(dictionary['Paragraph_keywords']))
dictionary['Paragraph_keywords'] = ordered_paragraph
return data | d07eb32ce09284db33a5d2787195afe20ca34184 | 419,891 |
def Clamp(num, a, b):
"""
Returns ``a`` if ``num`` is smaller than
or equal to ``a``, ``b`` if ``num`` is
greater than or equal to ``b``, or ``num``
if it is between ``a`` and ``b``.
Parameters
----------
num : float
Input number
a : float
Lower bound
b : float
Upper bound
"""
return min(max(num, a), b) | 2b66d62f8f795ecb4907436cb5c09b150abe9438 | 123,560 |
def np_shape(matrix):
"""
Function to calculate the shape of a numpy.ndarray
Returns the matrix shape
"""
return matrix.shape | 411fb27eae62839a8fc87c577bc7ec8c86bdf0c0 | 379,225 |
def calculate_evaluation_metrics(confusion_matrix):
"""
Calculates the evaluation metrics of the model.
:param confusion_matrix: The confusion matrix of the model.
:return: dictionary, with the metrics of the model.
"""
metrics = dict()
metrics['precision'] = confusion_matrix.get('TP', 1) / (
confusion_matrix.get('TP', 1) + confusion_matrix.get('FP', 1))
metrics['recall'] = confusion_matrix.get('TP', 1) / (
confusion_matrix.get('TP', 1) + confusion_matrix.get('FN', 1))
metrics['f1_score'] = 2 * metrics['precision'] * metrics['recall'] / (metrics['precision'] + metrics['recall'])
return metrics | d2c3ea5b75529d4ae324f22350bf4d65c89fbf7c | 120,086 |
def select_single_mlvl(mlvl_tensors, batch_id, detach=True):
"""Extract a multi-scale single image tensor from a multi-scale batch
tensor based on batch index.
Note: The default value of detach is True, because the proposal gradient
needs to be detached during the training of the two-stage model. E.g
Cascade Mask R-CNN.
Args:
mlvl_tensors (list[Tensor]): Batch tensor for all scale levels,
each is a 4D-tensor.
batch_id (int): Batch index.
detach (bool): Whether detach gradient. Default True.
Returns:
list[Tensor]: Multi-scale single image tensor.
"""
assert isinstance(mlvl_tensors, (list, tuple))
num_levels = len(mlvl_tensors)
if detach:
mlvl_tensor_list = [
mlvl_tensors[i][batch_id].detach() for i in range(num_levels)
]
else:
mlvl_tensor_list = [
mlvl_tensors[i][batch_id] for i in range(num_levels)
]
return mlvl_tensor_list | 1a389d8ff836fb08f5e5519ec5dd9336d031ec54 | 621,326 |
def str2bits(str_in):
"""
Convert string input to bits.
:param str_in: input string
:return: bits array
"""
result = []
for c in str_in:
bits = bin(ord(c))[2:]
bits = '00000000'[len(bits):] + bits
result.extend([int(b) for b in bits])
return result | f006773e74b17445258436d5581058349a1572ec | 386,754 |
def nchannels(I):
"""
Return the number of color channels of the image `I`.
"""
D = len(I.shape)
if D == 2:
return 1
elif D == 3:
return I.shape[-1]
else:
raise ValueError("Unrecognized image array shape {}".format(I.shape)) | acab605144a9378ec2adcf719aeb5a65a18f30ee | 259,382 |
def proxy_request_method(request):
"""Parametrized fixture changing request method
(GET / POST / PATCH / ...).
"""
return request.param | a78fd8002e78332644387066a72cb62ff5ea2a4f | 166,437 |
def depad(data):
"""Removes padding characters from the end of b64u encoded strings"""
return data.rstrip('=') | 5ac4f34c54e5f9fa7f008c14419b3bd3bb5b6cfd | 279,411 |
def num2col(col_int: int) -> str:
"""
Convert an Excel column index to a string
e.g. 1 == "A", 27 == "AA" e.t.c.
"""
if not isinstance(col_int, int):
raise ValueError("Invalid data type supplied. Must supply an integer")
col_str = ""
while col_int > 0:
col_int, remainder = divmod(col_int - 1, 26)
col_str = chr(65 + remainder) + col_str
return col_str | 251f2b0d645a4485233873457c025faae79cfdf3 | 500,375 |
def split_container(path):
"""Split path container & path
>>> split_container('/bigdata/path/to/file')
['bigdata', 'path/to/file']
"""
path = str(path) # Might be pathlib.Path
if not path:
raise ValueError('empty path')
if path == '/':
return '', ''
if path[0] == '/':
path = path[1:]
if '/' not in path:
return path, '' # container
return path.split('/', maxsplit=1) | 53b0d1164ecc245146e811a97017f66bb1f032a7 | 9,941 |
def _getvaluefrombuffer(buf, loc):
"""Returns a requested value from buffer.
Function is called recursively.
Parameters
----------
buf : dict
Buffer object
loc : list
List of strings with the requested location within buf
Returns
-------
ret : object
Reqested value in buf at position loc"""
if len(loc) > 1:
return _getvaluefrombuffer(buf.__dict__[loc[0]], loc[1:])
if not hasattr(buf, loc[0]):
raise RuntimeError("Requested <field> does not exist.")
return buf.__dict__[loc[0]] | 09bddb0713c6cd900d450e7b960a6f06b69f656a | 170,041 |
def hex_to_RGB(hexstr):
"""
Convert hex to rgb.
"""
hexstr = hexstr.strip('#')
r, g, b = int(hexstr[:2], 16), int(hexstr[2:4], 16), int(hexstr[4:], 16)
return (r, g, b) | 7084907ff084229fd2b4656aa301ca72a80d2fab | 15,350 |
from typing import Union
from typing import Mapping
from typing import Any
from functools import reduce
import operator
def map_reduce(key_path: Union[str, list[str]],
mapping: Mapping[str, Any]) -> Any:
"""Reduce a mapping, returning a value from an arbitrarily deep hierarcy.
The result of calling this function is the same as successively
subscripting each key in the `key_path`, starting from `mapping`.
Parameters
----------
key_path : str or list[str]
A collection of sequential child keys into `mapping`. May be given as
either a list of strings or a single string with dots (``.``)
delimiting keys.
mapping : Mapping[str, Any]
The mapping to subscript.
Example
-------
The following lines are equivalent:
map_reduce('foo.bar.baz', things)
# Is the same as:
map_reduce(['foo', 'bar', 'baz'], things)
# Is the same as:
things['foo']['bar']['baz']
"""
if isinstance(key_path, str):
key_path = key_path.split('.')
return reduce(operator.getitem, key_path, mapping) | 5b4d35b724e99d9360ce48984adc28b3d5a02cde | 248,481 |
def get_latest_docdata_payment(payment):
"""
Get the latest docdata payment (DocDataPayment) for given payment (DocDataPaymentOrder).
"""
if payment.docdata_payments.count() > 0:
return payment.docdata_payments.order_by('-created').all()[0]
return None | a462257fe33130e2e49bba218fbd1e38933ee1ad | 338,808 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.