content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def seconds_to_str(value: int) -> str:
"""Convert seconds to a simple simple string describing the amount of time."""
mins, secs = divmod(value, 60)
hours, mins = divmod(mins, 60)
if value < 60:
return f"{secs} second{'s' if secs != 1 else ''}"
elif value < 3600:
return f"{mins} minute{'s' if mins != 1 else ''}"
else:
return f"{hours} hour{'s' if hours != 1 else ''} and {mins} minute{'s' if mins != 1 else ''}" | 64fb7d97ee1a914aa47edce5d478c3c763b11756 | 387,145 |
def count_None(seq):
"""Returns the number of `None` in a list or tuple
Parameters
----------
seq : list or tuple
input sequence
Returns
-------
num : integer
number of `None` in the sequence
"""
return sum(i is None for i in seq) | f3d6621175ad60de4a6c9a007d241cad95367064 | 433,455 |
def filter_code_block(inp: str) -> str:
"""Returns the content inside the given Markdown code block or inline code."""
if inp.startswith("```") and inp.endswith("```"):
inp = inp[3:][:-3]
elif inp.startswith("`") and inp.endswith("`"):
inp = inp[1:][:-1]
return inp | 2ed3eb692d251b526b21f858d4d8e72634f63758 | 174,146 |
def payloadDictionary(payload, lst):
"""creates payload dictionary.
Args:
payload: String
SQL query
lst: List of Strings
keywords for payload dictionary
Returns:
dikt: dictionary
dictionary using elements of lst as keys and payload as value for each key
"""
dikt = {}
for i in lst:
dikt[i] = payload
return dikt | 2b674dde0cbb8e898d821c28c92f54cab891dbf1 | 433,898 |
from datetime import datetime
def parse_timestamp(timestamp):
"""
:param timestamp: float (common timestamp)
:return: datetime--object that is computed using the passed timestamp
"""
dt_object = datetime.fromtimestamp(timestamp)
return dt_object | fcf770711cf0c747ae1dfd6004e6b5388707def0 | 80,414 |
def calculate_maximum_speedup(n: int, f: float) -> float:
"""
Utilizes Amdahl's Law to calculate the maximum possible speedup.
Parameters
----------
n: int
The number of processors on the specific machine.
f: float
The fraction of the program/code/calculation that must be executed serially/sequentially.
Raises
----------
ValueError
If f < 0 or f > 1, or if n <= 0.
"""
if n <= 0:
raise ValueError("n must be positive!")
elif (f < 0) or (f > 1):
raise ValueError("f must be within the closed unit interval!")
max_speedup = 1 / (f + ((1 - f) / n))
return max_speedup | 6cf320aa95320a9f3e9633c1a93fb0fc5f4b3224 | 500,414 |
def parse_time(timestring):
""" Given a string of the format YYYY-MM-DDTHH:MM:SS.SS-HH:MM (and
optionally a DST flag), convert to and return a numeric value for
elapsed seconds since midnight (date, UTC offset and/or decimal
fractions of second are ignored).
"""
date_time = timestring.split('T') # Separate into date and time
hour_minute_second = date_time[1].split('+')[0].split('-')[0].split(':')
return (int(hour_minute_second[0]) * 3600 +
int(hour_minute_second[1]) * 60 +
int(hour_minute_second[2].split('.')[0])) | 7b4adbe36fbd5fd8f484b1e0b346c9673183e555 | 613,562 |
def python_3000_has_key(logical_line):
"""
The {}.has_key() method will be removed in the future version of
Python. Use the 'in' operation instead, like:
d = {"a": 1, "b": 2}
if "b" in d:
print d["b"]
"""
pos = logical_line.find('.has_key(')
if pos > -1:
return pos, "W601 .has_key() is deprecated, use 'in'" | 1be1f91c6f52960b138ae05297b0b7f9b5123dc0 | 645,301 |
def is_file_format(file_name, file_extensions):
""" Checks whether the extension of the given file is in a list of file extensions.
:param file_name: Filename to check
:param file_extensions: File extensions as a list
:returns: True if the list contains the extension of the given file_name
"""
file_extension = file_name.split('.')[-1]
return file_extension in file_extensions | 5d8afd55cb618662e5db9e619252d50cd88a4d81 | 562,217 |
def is_leap_year(year):
"""Returns whether a given year was a leap year"""
# "There is a leap year every year whose number is perfectly divisible by four -
# except for years which are both divisible by 100 and not divisible by 400."
# quoted from Western Washington University
# https://www.wwu.edu/astro101/a101_leapyear.shtml
if year % 100 == 0: # if year is a century year, an additional check is required (see above)
if year % 400 == 0: # centuries must also be divisible by 400
return True
return False
if year % 4 == 0:
return True
return False | 658106b2151bbdd4c126517472ee9c8147a3e8a8 | 236,598 |
def variance(rv, *args, **kwargs):
"""
Returns the variance `rv`.
In general computed using `mean` but may be overridden.
:param rv: RandomVariable
"""
return rv.variance(*args, **kwargs) | 479175f7c101612ea14cef7caf3c5876c2714987 | 42,828 |
def argparse_bool(s):
"""
parse the string s to boolean for argparse
:param s:
:return: bool or None by default
example usage: parser.add_argument("--train", help="train (finetune) the model or not", type=mzutils.argparse_bool, default=True)
"""
if not isinstance(s, str):
return s
if s.lower() in ('yes', 'y', 't', 'true', 1):
return True
elif s.lower() in ('no', 'n', 'f', 'false', 0):
return False
else:
return None | 3c2c0a45d58fe5aa693647b3023644b8ca1047ad | 349,593 |
def norm_filters(weights, p=1):
"""Compute the p-norm of convolution filters.
Args:
weights - a 4D convolution weights tensor.
Has shape = (#filters, #channels, k_w, k_h)
p - the exponent value in the norm formulation
"""
assert weights.dim() == 4
return weights.view(weights.size(0), -1).norm(p=p, dim=1) | 036c9af69aa2bf930911cdc1775fd0aafd980a93 | 117,190 |
import io
def is_file_obj(o):
"""Test if an object is a file object"""
return isinstance(o, (io.TextIOBase, io.BufferedIOBase, io.RawIOBase, io.IOBase)) | 94437b1bd758ae0fcc8a274a7366f01c93c8ee85 | 80,568 |
def update_max_depth(depth_node_dict):
"""
Maximum tree depth update.
Input: - depth_node_dict: A map from node depth to node ids as a python dictionary.
Output: - max_depth: The maximum depth of the tree.
"""
max_depth = max(depth_node_dict.keys())
return max_depth | 0ab7fd3bfca6f3ea70c374e113adcc3d65b541e0 | 550,363 |
def merge_dict_tree(a, b):
"""Merge two dictionaries recursively.
The following rules applied:
- Dictionaries at each level are merged, with `b` updating `a`.
- Lists at the same level are combined, with that in `b` appended to `a`.
- For all other cases, scalars, mixed types etc, `b` replaces `a`.
Parameters
----------
a, b : dict
Two dictionaries to merge recursively. Where there are conflicts `b`
takes preference over `a`.
Returns
-------
c : dict
Merged dictionary.
"""
# Different types should return b
if type(a) != type(b):
return b
# From this point on both have the same type, so we only need to check
# either a or b.
if isinstance(a, list):
return a + b
# Dict's should be merged recursively
if isinstance(a, dict):
keys_a = set(a.keys())
keys_b = set(b.keys())
c = {}
# Add the keys only in a...
for k in keys_a - keys_b:
c[k] = a[k]
# ... now the ones only in b
for k in keys_b - keys_a:
c[k] = b[k]
# Recursively merge any common keys
for k in keys_a & keys_b:
c[k] = merge_dict_tree(a[k], b[k])
return c
# All other cases (scalars etc) we should favour b
return b | b3822fb59706bad679bd6e9370ad68cbc66039b1 | 374,045 |
def _dms2dd(degrees, minutes, seconds):
"""Helper method for converting degrees, minutes, seconds to decimal.
Args:
degrees (int):
Lat/Lon degrees.
minutes (int):
Lat/Lon minutes.
seconds (int):
Lat/Lon seconds.
Returns:
float: Lat/Lon in decimal degrees
"""
decimal = degrees + float(minutes) / 60.0 + float(seconds) / 3600.0
return decimal | 88a576b47184b274e5ee820238675ce0190a8248 | 190,621 |
from dateutil import tz
def dt_as_utc(dt):
"""Convenience wrapper, converting the datetime object dt to UTC."""
if dt is None:
return None
return dt.astimezone(tz.tzutc()) | c148d2dc3d8164324661ff6f4f070c49b6406ac7 | 57,721 |
def _label_suffix(label: str, suffix: str) -> str:
"""Returns (label + suffix) or a truncated version if it's too long.
Parameters
----------
label : str
Label name
suffix : str
Label suffix
"""
if len(label) > 50:
nhead = 25
return "".join([label[:nhead], "..", suffix])
else:
return label + suffix | de2ea748c97af55b96cb81eca47c94ab1f712125 | 375,965 |
def wrap_commands_in_shell(ostype, commands):
"""Wrap commands in a shell
:param list commands: list of commands to wrap
:param str ostype: OS type, linux or windows
:rtype: str
:return: a shell wrapping commands
"""
if ostype.lower() == 'linux':
return '/bin/bash -c \'set -e; set -o pipefail; {}; wait\''.format(
';'.join(commands))
elif ostype.lower() == 'windows':
return 'cmd.exe /c "{}"'.format('&'.join(commands))
else:
raise ValueError('unknown ostype: {}'.format(ostype)) | abc8a72494e1ed24aefd46f0a7ed7ae79bc97d40 | 525,359 |
def concat_name(first_name: str, last_name: str) -> str:
"""Return new string 'last_name, first_name'."""
return f"{last_name}, {first_name}" | 981ab94041f53a5eacda6f0386d30c751fc2c5b4 | 348,956 |
def sse_pack(event_id: int, event: str, data: int, retry: str = "2000") -> str:
"""Pack data in Server-Sent Events (SSE) format."""
return f"retry: {retry}\nid: {event_id}\nevent: {event}\ndata: {data}\n\n" | 075d7f58248b72a5835c6b9b65332fbcb799f2a8 | 689,427 |
import re
def processed_string_data(sentence):
"""replace " with '
Args:
sentence (str): string of characters
Returns:
str: original string put in "" with all internal " replaced with '
"""
return '"{}"'.format(re.sub("\"", "'", sentence)) | 5e7b3301413b42ab3dbf38d568d5d19736617596 | 243,670 |
from bs4 import BeautifulSoup
def find_forms(soup: BeautifulSoup):
"""
Returns a list of forms found on a particular webpage
"""
return soup.findAll('form') | 2e6922b57f33a42d8cbe98c33a8507b26bf4026b | 289,240 |
def impute_loan_term(data):
"""
Imputes loan term value with the mean loan term.
"""
data['Loan_Amount_Term'] = data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mean())
data['Loan_Amount_Term'] = data['Loan_Amount_Term']/12
return data | 6810360dfb88a54dba1af37287c32c5e3a618a8b | 280,345 |
from typing import List
def flatten_list(my_list: List[List]) -> List:
"""
Flatten a list of list
:param l: list of list
:return: list
"""
return [item for sublist in my_list for item in sublist] | 0c33e3ca968d3038e13a4949f70e2de5b0f2521a | 469,947 |
def is_reply(tweet: dict):
"""Return True if the passed tweet is a reply.
:param tweet: JSON dict for tweet
"""
if tweet["tweet"]["in_reply_to_screen_name"]:
return True
return False | b486eac4c38af91e9972af3799f7c6984082bc41 | 338,917 |
def get_vm_resource_id(subscription_id=None,
resource_group=None,
vm_name=None):
"""
Return full resource ID given a VM's name.
"""
return "/subscriptions/{}/resourceGroups/{}/providers/Microsoft.Compute/virtualMachines/{}".format(subscription_id, resource_group, vm_name) | ab6ae0b9142c4ae6ffc228e7adc3fc63acdf44d7 | 377,310 |
def recursive_binomial_coefficient(n, k):
"""Calculates the binomial coefficient, C(n,k), with n>=k using recursion
Time complexity is O(k), so can calculate fairly quickly for large values of k.
>>> recursive_binomial_coefficient(5,0)
1
>>> recursive_binomial_coefficient(8,2)
28
>>> recursive_binomial_coefficient(500,300)
5054949849935535817667719165973249533761635252733275327088189563256013971725761702359997954491403585396607971745777019273390505201262259748208640
"""
if k > n:
raise ValueError("Invalid Inputs, ensure that n >= k")
# function is only defined for n>=k
if k == 0 or n == k:
# C(n,0) = C(n,n) = 1, so this is our base case.
return 1
if k > n / 2:
# C(n,k) = C(n,n-k), so if n/2 is sufficiently small, we can reduce the problem size.
return recursive_binomial_coefficient(n, n - k)
else:
# else, we know C(n,k) = (n/k)C(n-1,k-1), so we can use this to reduce our problem size.
return int((n / k) * recursive_binomial_coefficient(n - 1, k - 1)) | 07af2d622d91228eb370d6074c43702c10fdede6 | 665,572 |
def map_url_to_job_config(url, config_mapping):
"""Return job name and config of the longest matching URL in the config mapping."""
job_name, job_config = (None, None)
match_length = 0
for candidate_url, match in config_mapping.items():
if url.startswith(candidate_url) and len(candidate_url) > match_length:
job_name, job_config = match
match_length = len(candidate_url)
return job_name, job_config | 3922157307debf5401160aa00dfa42e36d562775 | 536,397 |
from networkx import get_edge_attributes
def uninformative_prediction(G, required_links):
"""
Function to predict links in an uninformative manner, i.e., the majority
parity. So, if there are more positive links that negative links, then a
positive link is predicted and vice-versa
Args:
G : Graph to consider as training data
required_links : List of tuples (a, b) where (a, b) denotes the outgoing
edge from `a` to `b`.
Returns:
List of {+1, -1} based on the properties of the graph
"""
edges_weights = list(get_edge_attributes(G, 'weight').values())
edges_parity = [1 if w > 0 else -1 for w in edges_weights]
if sum(edges_parity) > 0:
return [1 for _ in required_links]
else:
return [-1 for _ in required_links] | 6f89b6703f8df7c42c3b03c85efea6b2d4318d81 | 666,617 |
def _operation_to_pooling_shape(operation):
"""Takes in the operation string and returns the pooling kernel shape."""
splitted_operation = operation.split('_')
shape = splitted_operation[-1]
assert 'x' in shape
filter_height, filter_width = shape.split('x')
assert filter_height == filter_width
return int(filter_height) | 997dad0b4613c3ca9a3bf21cd54c8b6344758235 | 382,773 |
import json
import codecs
def encode_blob(data):
""" Encode a dictionary to a base64-encoded compressed binary blob.
:param data: data to encode into a blob
:type data: dict
:returns: The data as a compressed base64-encoded binary blob
"""
blob_data = json.dumps(data).encode('utf8')
for codec in ('zlib', 'base64'):
blob_data = codecs.encode(blob_data, codec)
return blob_data.replace(b'\n', b'') | 266f0b6440adfae165a9d8d6877a111736e22488 | 678,060 |
def _nan_div(numerator, denominator):
"""Performs division, returning NaN if the denominator is zero."""
return numerator / denominator if denominator != 0 else float('NaN') | e3537b8f1721cddfd6e38e3628f0e19d94d966c9 | 337,616 |
def metalicity_jk_v_band(period, phi31_v):
"""
Returns the JK96 caclulated metalicity of the given RRab RR Lyrae.
(Jurcsik and Kovacs, 1996) (3)
(Szczygiel et al., 2009) (6)
(Skowron et al., 2016) (1)
Parameters
----------
period : float64
The period of the star.
phi31_v : float64
The V band phi31 of the star.
Returns
-------
metalicity_jk_v : float64
The JK96 metalicity of the star.
"""
return -5.038 - 5.394 * period + 1.345 * phi31_v | fddd8e895372a68f1aaf96b4879155adb2cf0a8e | 568,909 |
from operator import truediv
def toratio(s):
"""Converts a pandas series of string to numeric ratios.
Parameters
--------------
s: pandas.Series of string
Returns
----------
panda.Series of float
"""
return s.apply(lambda x: truediv(*[int(y) for y in x.split('/')])) | 14594ea84478d0b2cbd8eab28f6810c628b02464 | 193,059 |
def optimal_noverlap(win_name,win_len):
"""
This function is intended to support scipy.signal.stft calls with noverlap parameter.
:param win_name: (str) name of the window (has to follow scipy.signal.windows naming)
:param win_len: (int) lenght of the FFT window
:return : (int) optimal overlap in points for the given window type
"""
window_to_overlap_coef = {'hann': 0.5,
'hamming': 0.75,
'blackmanharris': 0.75,
'blackman': 2/3,
'flattop': 0.75,
'boxcar': 0}
try:
noverlap = int(win_len*window_to_overlap_coef[win_name])
except KeyError as exc:
print(exc)
print('The window you have selected is not recognized or does not have optimal overlap. Setting window overlap to default 75%.')
noverlap = int(win_len*0.75)
return noverlap | d98db08a9e08b6639a38a324799d1141e65b1eb4 | 19,554 |
import random
def get_random_variant(variants):
""" selects a random element from the 'variants' list
"""
return random.sample(variants,1)[0] # string
#return get_1st_variant(variants) | 505c098761fda5c0fb66c531dc5ccda4ebeea2e0 | 325,968 |
import functools
def RequireAuth(handler):
"""Decorator for webapp2 request handler methods.
Only use on webapp2.RequestHandler methods (e.g. get, post, put),
and only after using a 'Check____Auth' decorator.
Expects the handler's self.request.authenticated to be not False-ish.
If it doesn't exist or evaluates to False, 403s. Otherwise, passes
control to the wrapped handler.
"""
@functools.wraps(handler)
def wrapper(self, *args, **kwargs):
"""Does the real legwork and calls the wrapped handler."""
if not getattr(self.request, 'authenticated', None):
self.abort(403)
else:
handler(self, *args, **kwargs)
return wrapper | edb8f223318d0b22511d6307ed6c35bc83a4ae4a | 19,259 |
from typing import Tuple
def __check_for_newline(line: str, pos: int) -> Tuple[bool, int]:
"""Check if line is newline.
Args:
line: line.
pos: current position.
Returns:
bool and current position.
"""
saw_newline = False
while pos < len(line) and line[pos].isspace():
if line[pos] == '\n':
saw_newline = True
pos += 1
return saw_newline, pos | 461adcf7d37be95a41df073e474544c1891ae8b3 | 597,263 |
import ast
def string_to_dictionary(string):
"""
Converts a dictionary string representation into a dictionary
:param string: str
:return: dict
"""
return ast.literal_eval(string) | 3024a15ebcb615500bff7f5cc2728e1d71adae04 | 188,205 |
import re
def stripXML(text):
"""
Remove XML annotation from a string.
"""
text = re.sub(r'<[^>]*>', '', text)
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text | 41204d697bd986a51c9b1bf28ac0fae1813b0a33 | 606,556 |
def ext_valid_update_path(cursor, ext, current_version, version):
"""
Check to see if the installed extension version has a valid update
path to the given version. A version of 'latest' is always a valid path.
Return True if a valid path exists. Otherwise return False.
Args:
cursor (cursor) -- cursor object of psycopg2 library
ext (str) -- extension name
current_version (str) -- installed version of the extension.
version (str) -- target extension version to update to.
A value of 'latest' is always a valid path and will result
in the extension update command always being run.
"""
valid_path = False
params = {}
if version != 'latest':
query = ("SELECT path FROM pg_extension_update_paths(%(ext)s) "
"WHERE source = %(cv)s "
"AND target = %(ver)s")
params['ext'] = ext
params['cv'] = current_version
params['ver'] = version
cursor.execute(query, params)
res = cursor.fetchone()
if res is not None:
valid_path = True
else:
valid_path = True
return (valid_path) | 68cab905811904d6f8a8421fc409efe7f7e8703f | 396,779 |
def runtime_enabled_function(name):
"""Returns a function call of a runtime enabled feature."""
return 'RuntimeEnabledFeatures::%sEnabled()' % name | 7269952d9a5b2f343e985b6c571a3a8cb896cb15 | 278,939 |
def remove_managed_variant(store, managed_variant_id):
"""Remove a managed variant."""
removed_variant = store.delete_managed_variant(managed_variant_id)
return removed_variant | b6e4af712b276d30d7b27ba0210316132fcf8ba4 | 114,409 |
from typing import Any
import torch
def move_to(obj: Any, device: torch.device):
"""Credit: https://discuss.pytorch.org/t/pytorch-tensor-to-device-for-a-list-of-dict/66283
Arguments:
obj {dict, list} -- Object to be moved to device
device {torch.device} -- Device that object will be moved to
Raises:
TypeError: object is of type that is not implemented to process
Returns:
type(obj) -- same object but moved to specified device
"""
if torch.is_tensor(obj) or isinstance(obj, torch.nn.Module):
return obj.to(device)
if isinstance(obj, dict):
res = {k: move_to(v, device) for k, v in obj.items()}
return res
if isinstance(obj, list):
return [move_to(v, device) for v in obj]
if isinstance(obj, tuple):
return tuple(move_to(list(obj), device))
return obj | 9ed0ee66d2976aa0b17c0c0c060d6f29cf19f03f | 110,254 |
import requests
def request_issues(url):
"""Request issues from the given GitHub project URL.
Parameters
----------
url : str
URL of GitHub project.
Returns
-------
response : Response
Response data.
"""
response = requests.get(url)
return response | 9f33675d687941873d9b401ddd381894b8cdb3e2 | 668,527 |
import math
def ang_threep(a,b,c):
"""
Measures the angle formed by three points. The angle goes from 0 to 360.
Point 'a' it's the anchord, and the measured angle it's the one that goes from 'b' to 'c' clockwise.
"""
ang = math.degrees(math.atan2(b[1]-a[1], b[0]-a[0]) - math.atan2(c[1]-a[1], c[0]-a[0]))
return ang + 360 if ang < 0 else ang | 79b449509b83c484f1192c3947563844f1e51a5c | 370,594 |
import math
def approx_atmospheric_refraction(solar_elevation_angle):
"""Returns Approximate Atmospheric Refraction in degrees with Solar Elevation
Angle, solar_elevation_angle."""
if solar_elevation_angle > 85:
approx_atmospheric_refraction = 0
elif solar_elevation_angle > 5:
approx_atmospheric_refraction = (
58.1 / math.tan(math.radians(solar_elevation_angle))
- 0.07 / pow(math.tan(math.radians(solar_elevation_angle)), 3)
+ 0.000086 / pow(math.tan(math.radians(solar_elevation_angle)), 5)
) / 3600
elif solar_elevation_angle > -0.575:
approx_atmospheric_refraction = (
1735
+ solar_elevation_angle
* (
-518.2
+ solar_elevation_angle
* (
103.4
+ solar_elevation_angle * (-12.79 + solar_elevation_angle * 0.711)
)
)
) / 3600
else:
approx_atmospheric_refraction = (
-20.772 / math.tan(math.radians(solar_elevation_angle))
) / 3600
return approx_atmospheric_refraction | 7c447bee72d385113c3e9d749c74e9e5788429e6 | 162,683 |
def NeededPaddingForAlignment(value, alignment=8):
"""Returns the padding necessary to align value with the given alignment."""
if value % alignment:
return alignment - (value % alignment)
return 0 | e7e9cb58fc43b4c249758acf54a49a344c3d8034 | 600,523 |
def inner_p_s(u, v):
"""
Calculate the inner product space of the 2 vectors.
"""
s = 0
if len(u) != len(v):
s = -1
else:
for i in range(len(u)):
s += u[i]*v[i]
return s | cee6fa97ea8604d911985eba67570b6887a42b7e | 330,256 |
def _first_paragraph(doc: str) -> str:
"""Get the first paragraph from a docstring."""
paragraph, _, _ = doc.partition("\n\n")
return paragraph | 4d20e54eba1068e76e59d30316aada9d1c600e6d | 196,474 |
def scale_to_range(min_max_old, element, min_max_new=[0, 10]):
"""Scale element from min_max_new to the new range, min_max_old.
Args:
min_max_old: Original range of the data, [min, max].
element: Integer that will be scaled to the new range, must be
within the old_range.
min_max_new: New range of the data.
Returns:
element scaled to the new range.
"""
new_range = min_max_new[1] - min_max_new[0]
old_range = min_max_old[1] - min_max_old[0]
return ((element - min_max_old[0]) * new_range) / old_range | 263f08a7247af4feea9f498bd2ac2a129f949556 | 670,526 |
def chocolate_feast(n, c, m):
"""Hackerrank Problem: https://www.hackerrank.com/challenges/chocolate-feast/problem
Function that calculates how many chocolates Bobby can purchase and eat. Problem stated below:
Little Bobby loves chocolate. He frequently goes to his favorite 5&10 store, Penny Auntie, to buy them. They are
having a promotion at Penny Auntie. If Bobby saves enough wrappers, he can turn them in for a free chocolate.
For example, Bobby has n = 15 to spend on bars of chocolate that cost c = 3 each. He can turn in m = 2 wrappers to
receive another bar. Initially, he buys 5 bars and has 5 wrappers after eating them. He turns in 4 of them, leaving
him with 1, for 2 more bars. After eating those two, he has 3 wrappers, turns in 2 leaving him with 1 wrapper and
his new bar. Once he eats that one, he has 2 wrappers and turns them in for another bar. After eating that one, he
only has 1 wrapper, and his feast ends. Overall, he has eaten 5 + 2 + 1 + 1 = 9 bars.
Args:
n (int): Int representing Bobby's initial amount of money
c (int): Int representing the cost of a chocolate bar
m (int): Int representing the number of wrappers he can turn in for a free bar
Returns:
int: The number of chocolate bars Bobby can purchase and eat
"""
# We look for the candies + wrappers
candies = n // c
wrappers = n // c
while wrappers >= m:
wrappers -= m
wrappers += 1
candies += 1
return candies | be400b13b15fbed6d21a95a7cbc35fd474ed7fb7 | 60,708 |
def first_not_none(*args):
"""Return first item from given arguments that is not None."""
for item in args:
if item is not None:
return item
raise ValueError("No not-None values given.") | 009619994339b3e7593cb8343e8d3e2eae959f0b | 206,097 |
def _write_swift_version(repository_ctx, swiftc_path):
"""Write a file containing the current Swift version info
This is used to encode the current version of Swift as an input for caching
Args:
repository_ctx: The repository context.
swiftc_path: The `path` to the `swiftc` executable.
Returns:
The written file containing the version info
"""
result = repository_ctx.execute([swiftc_path, "-version"])
contents = "unknown"
if result.return_code == 0:
contents = result.stdout.strip()
filename = "swift_version"
repository_ctx.file(filename, contents, executable = False)
return filename | 55eae8cc8e5aa52ed35d0f3a564372292c2cc664 | 89,449 |
def X1X2_to_Xs(X1, X2):
"""Convert dimensionless spins X1, X2 to symmetric spin Xs"""
return (X1+X2)/2. | 9938f188d766d7895986b8796bb8eeeafe3b5b7d | 29,174 |
import math
def _toexponent(number):
"""
Formats exponent to PENELOPE format (E22.15)
Args:
number (Float): Number to format
Returns:
str: number to PENELOPE format (E22.15)
"""
if number == 0.0:
exponent = 0
else:
exponent = int(math.log10(abs(number)))
if exponent >= 0:
exponent_str = "+{:2d}".format(abs(exponent))
else:
exponent_str = "-{:2d}".format(abs(exponent))
exponent_str = exponent_str.replace(" ", "0") # Replace white space in the exponent
coefficient = float(abs(number)) / 10 ** exponent
if number >= 0:
number_str = "+{0:17.15f}E{1}".format(coefficient, exponent_str)
else:
number_str = "-{0:17.15f}E{1}".format(coefficient, exponent_str)
# The number should not be longer than 22 characters
assert len(number_str) == 22
return number_str | 4f17f6c467ad309e372a506d5917cd9ed44c9e0e | 540,174 |
def rotate_point(point: tuple, rotation: int, axis: int) -> tuple:
"""Rotate the point around the given axis, from the origin.
Args:
point (tuple): Coordinate tuple in the form (x,y,z)
rotation (int): rotation ID. Indicating counter-clockwise rotation.
0 = no rotation, 1 = 90, 2 = 180, 3 = 270
axis (int): axis ID. 0 = x, 1 = y, 2 = z
"""
x, y, z = point
if rotation == 0:
pass
elif rotation == 1: # 90
if axis == 0: # x
y, z = -z, y # Rotation according to RH rule
elif axis == 1: # y
x, z = z, -x
elif axis == 2: # z
x, y = -y, x
elif rotation == 2: # 180
if axis == 0:
y, z = -y, -z
elif axis == 1:
x, z = -x, -z
elif axis == 2:
x, y = -x, -y
elif rotation == 3: # 270
if axis == 0:
y, z = z, -y
elif axis == 1:
x, z = -z, x
elif axis == 2:
x, y = y, -x
return (x, y, z) | 7d4c259049bd2b797c3e41fe8b84f5300f0c4817 | 233,812 |
from typing import Union
from typing import Optional
from pathlib import Path
def check_for_project(path: Union[str, "Path"] = ".") -> Optional["Path"]:
"""Checks for a Brownie project."""
path = Path(path).resolve()
for folder in [path] + list(path.parents):
if folder.joinpath("brownie-config.json").exists():
return folder
return None | 026ccf715c7dbf9f1e7f3add2d84f7e661996928 | 674,590 |
import base64
def _decode(elem):
""" Modifies transaction data with decoded version """
elem["tx_result"]["log"] = eval(elem["tx_result"]["log"])
events = elem["tx_result"]["events"]
for event in events:
for kv in event["attributes"]:
k, v = kv["key"], kv["value"]
kv["key"] = base64.b64decode(k).decode()
kv["value"] = base64.b64decode(v).decode()
return elem | 06ae1243a0554509fa85742ecc9e388383071055 | 224,666 |
def delta_days(t0, t1):
"""Returns: time from `t0` to `t1' in days where t0 and t1 are Timestamps
Returned value is signed (+ve if t1 later than t0) and fractional
"""
return (t1 - t0).total_seconds() / 3600 / 24 | 6a4c8a69fe1931454e77d2d684002600ca0525ed | 425,273 |
def cget(mat, *i):
"""
Returns the column(s) '*i' of a 2D list 'mat'
mat: matrix or 2D list
*i: columns to extract from matrix
NOTE: If one column is given, the column is returned as a list.
If multiple columns are given, a list of columns (also lists) is returned
"""
if len(i) == 1:
return [row[i[0]] for row in mat]
else:
return [[row[index] for row in mat]
for index in i] | 596e4ae985c55fe3046b84627138668e266e6707 | 544,857 |
import random
def _random_tiebreak(winners, n=1):
"""
Given an iterable of possibly tied `winners`, select one at random.
"""
if len(winners) == 1:
return winners
else:
return random.sample(winners, n) | 0d24678a0eea7df9a880dfbdd0fba2d809f78894 | 226,374 |
def safe_get(mapping: dict, key, default=None):
"""
:param mapping: dictionary of key values
:param key: key being searched for
:param default: default value in case key was not present in the dict
:return: default value if the key is not present in the mapping dictionary, else the value in the dict for the key
"""
if mapping is None or key not in mapping:
return default
return mapping[key] | e337f82958a0d384b963874298d870ec8e4cb5be | 570,563 |
def get_int(db,key):
"""
Get integer value from redis database
"""
value_str = str(db.get(key))
return int(value_str) | b64bb2d74a3e4cc56b467989ee14f9beed47238d | 143,404 |
def harmonic(n):
"""
Compute the n-th Harmonic number
Compute Hn where Hn = 1 + 1/2 + 1/3 + ... + 1/n
Parameters
----------
n : int
n-th number
Returns
-------
hn
harmonic number
"""
hn = 0
for i in range(1, n):
hn += 1 / i
return hn | cd4d870b66b5fc037c3b3c11b3c735e91c476c6b | 51,077 |
import torch
def toHWC(bchw : torch.Tensor):
"""
Converts a tensor in BxCxHxW to BxHxWxC
"""
return bchw.movedim((0,2,3,1), (0,1,2,3)) | 2f5c8a915dbef752392edd3d5f7e0e0fd512b813 | 246,655 |
import copy
def even_spliter(total, inRange=[250, 500]):
""" Splits the total into chunks where they are the size inRange
------
total: The value that needs to be split
------
inRange: List(min, max)
min: The minimum value the split size needs to be
max: The maximum split size before it needs to split more
The algorithm is biased to the max split and will start to
evenly split at the max first.
"""
splitRange = copy.deepcopy(inRange)
while splitRange[1] >= splitRange[0]:
if (total + splitRange[1]-1) % splitRange[1] >= splitRange[0]-1:
splitList = [splitRange[1] for i in range(total//splitRange[1])]
if total % splitRange[1] != 0:
splitList.append(total % splitRange[1])
return splitList
else:
splitRange[1] -= 1
return [total] | 6a0b94de1a1fb25766c09cab51801d8c8c173e42 | 471,940 |
def parse_range(entry, valid, default):
"""
parsing entries
entry - value to check
default - value if entry is invalid
valid - valid range
return - entry or default if entry is out of range
"""
if valid[0] <= entry <= valid[1]:
result = entry
else:
result = default
return result | 0ddf60748c5b7c53e3861560e0262f6b763e5f7f | 546,519 |
import inspect
def get_unbound_fn(method_or_fn):
"""Return an unbound function from a bound method."""
if inspect.ismethod(method_or_fn):
return method_or_fn.__func__
elif callable(method_or_fn):
return method_or_fn
else:
raise ValueError('Expect a function or method.') | b82c279ac419df4278d4da4ec9c4ad903bd92e0b | 124,966 |
def get_time(value):
"""Get a generic time in second and stored on a float value, with the 2 integer values
Arguments:
value -- Time to convert: [time sec, time microsecond]
Return:
float time in second
"""
return float(value[0]) + float(value[1])*0.000001 | 003ade1cb06a2f617541474d5e0d60546c786492 | 534,069 |
def get_class_def(class_name):
"""
Returns the definition for the given class name.
"""
parts = class_name.split('.')
module = ".".join(parts[:-1])
mdl = __import__(module, globals=globals())
for comp in parts[1:]:
mdl = getattr(mdl, comp)
return mdl | e2e7c5bbf808815a5357a40f6d879f5043997cff | 335,367 |
import torch
def initial_inducing_points(
train_data_loader,
feature_extractor,
args
):
"""
Initialises inducing points
Shape: num_tasks X num_inducing_points X hidden_size
"""
inducing_points = []
for batch in train_data_loader:
if len(inducing_points) > args.num_inducing_points:
break
mol_batch = batch.batch_graph()
inducing_points.extend(feature_extractor(mol_batch))
inducing_points = torch.stack(inducing_points)[:args.num_inducing_points]
print('number of inducing points =')
print(len(inducing_points))
inducing_points = inducing_points.repeat(args.num_tasks,1,1)
return inducing_points | fa0e74cc394d6ea05a89a3dc9906e7d65e79728c | 519,820 |
from typing import Tuple
def size2shape(size: int) -> Tuple[int, int]:
"""convert a plate size (number of wells) to shape (y, x)"""
assert size in [384, 1536]
return (16, 24) if size == 384 else (32, 48) | 81795acc3992ff0d1b8b39997e8d60b19ea43db0 | 665,401 |
def get_accuracy(predictions, targets):
"""
Calculates the accuracy for a set of prediction and targets.
predictions
Softmax'ed output values of the network.
targets
One hot target vectors
"""
accuracy = (predictions.argmax(1).cpu().numpy() ==
targets.cpu().numpy()).sum()/(predictions.shape[0])
return accuracy | ea53cd79913b08cd10d4f1263890f82c662d1c60 | 198,020 |
from typing import Optional
from typing import Mapping
from typing import Any
def _set_dut(tb_params: Optional[Mapping[str, Any]], dut_lib: str, dut_cell: str
) -> Optional[Mapping[str, Any]]:
"""Returns a copy of the testbench parameters dictionary with DUT instantiated.
This method updates the testbench parameters dictionary so that the DUT is instantiated
statically in the inner-most wrapper.
"""
if tb_params is None:
return tb_params
ans = {k: v for k, v in tb_params.items()}
dut_params: Optional[Mapping[str, Any]] = tb_params.get('dut_params', None)
if dut_params is None:
ans['dut_lib'] = dut_lib
ans['dut_cell'] = dut_cell
else:
ans['dut_params'] = _set_dut(dut_params, dut_lib, dut_cell)
return ans | 763c8e6836bd1bdd9db19648b4c6cbeaf33a7fd4 | 204,324 |
def format_value(val):
"""
A helper function to format fields for table output.
Converts nested dicts into multilist strings.
"""
if isinstance(val, dict):
return "\n".join([ f"{k}: {val[k]}" for k in val.keys()])
return val | c42dea3a5687c0ca32e27ddb4ddc2cf86a666d1c | 499,580 |
def case(bin_spec: str, default: str = "nf") -> str:
""" Return the case specified in the bin_spec string """
c = default
if "NF" in bin_spec:
c = "nf"
elif "ÞF" in bin_spec:
c = "þf"
elif "ÞGF" in bin_spec:
c = "þgf"
elif "EF" in bin_spec:
c = "ef"
return c | b2fdab5d1a48e1d20c3a561707033970cac55356 | 16,097 |
import smtplib
def get_email_server(host):
"""Return an SMTP server using the specified host.
Abandon attempts to connect after 8 seconds.
"""
return smtplib.SMTP(host, timeout=8) | eccc3a2e4bf2ca8a3ea7ca2899876da9a8d464c6 | 331,885 |
def oxygen_cost_v(v):
"""Effectively defines Daniels' pace-power relationship.
AKA speed-to-vdot.
Assumed to be the same for all runners.
Args:
v (float): velocity in m/min.
Returns:
float: oxygen cost to cover distance in mL/kg/min.
"""
a1 = 0.182258
a2 = 0.000104
c = -4.60
return a1 * v + a2 * v ** 2 + c | 685ba9c4fdef898f312f2cfbd0aacb374b541ea1 | 86,720 |
import json
def getProcessedCloudtrailRecords(cloudtrailRecords=None):
"""
This function accepts the 'Records' portion of a
cloudtrail monitoring report as a json object
and extracts records to build a valid json string that can
be stored in s3 and read by snowflake. The json string
will be an array of records objects.
"""
# validate input
if not cloudtrailRecords :
raise ValueError('cannot accept None / empty values')
# get initialize processed records list
processedRecords = [cloudtrailRecord for cloudtrailRecord in cloudtrailRecords]
return json.dumps(processedRecords) | 2b25717d5e63dd1f63bb9fa772d310763c71eb49 | 198,278 |
def pixel_color_checker(data, row_index, pixel_index, R, G, B):
"""
:param data: image data as array
:param row_index: index of image row to be checked
:param pixel_index: index of pixel to be checked
:param R: value (in range [0, 255]) at the R (red) value of the RGB notation
:param G: value (in range [0, 255]) at the G (green) value of the RGB notation
:param B: value (in range [0, 255]) at the B (blue) value of the RGB notation
:return: boolean specifying whether the pixel of interest is colored as specified by the RGB values
"""
if (data[row_index][pixel_index][0] == R) and (data[row_index][pixel_index][1] == G) \
and (data[row_index][pixel_index][2] == B):
return True
else:
return False | c188eca743b67dcf27456b3d7375507f6007f816 | 51,826 |
import pathlib
def derive_filepath(filepath, append_string='', suffix=None, path=None):
"""Generate a file path based on the name and potentially path of the
input file path.
Parameters
----------
filepath: str of pathlib.Path
Path to file.
append_string: str
String to append to file name stem. Default: ''.
suffix: str or None
File extension to use. If None, the same as video file.
path: str or pathlib.Path or None
Path to use. If None use same path as video file.
Returns
-------
pathlib.Path
Path derived from video file path.
"""
stem = filepath.stem
if suffix is None:
suffix = filepath.suffix
filename = f'{stem}_{append_string}{suffix}'
if path is None:
dpath = filepath.parent / filename
else:
dpath = pathlib.Path(path) / filename
return dpath | 174c439a5285441fcca7902bfd1c542348f6fb3d | 681,942 |
def is_in_list(obj, obj_list):
"""
Check if obj is in obj_list explicitly by id
Using (obj in obj_list) has false positives if the object overrides its __eq__ operator
"""
for o in obj_list:
if(id(o) == id(obj)):
return(True)
else:
return(False) | 93676c25d4bb5fd77e1402467c69218c36db554b | 141,179 |
def get_matrix_as_list(matrix):
"""
Retu9rns the given mamtrix as list of components
:param matrix: OpenMaya.MMatrix
:return: list(float)
"""
return [
matrix(0, 0), matrix(0, 1), matrix(0, 2), matrix(0, 3),
matrix(1, 0), matrix(1, 1), matrix(1, 2), matrix(1, 3),
matrix(2, 0), matrix(2, 1), matrix(2, 2), matrix(2, 3),
matrix(3, 0), matrix(3, 1), matrix(3, 2), matrix(3, 3)
] | d17b81e764c53189037dd4bcd5e59abb03257d77 | 247,863 |
def update_max_for_sim(m, init_max, max_allowed):
"""
updates the current maximal number allowed by a factor
:param m: multiplication factor
:param init_max: initial maximum chromosome number allowed
:param max_allowed: previous maximum chromosome number allowed
:return: the current updated maximum for next iteration
"""
max_for_sim = 200 * m + init_max
if max_for_sim < max_allowed:
max_for_sim = max_allowed
return max_for_sim | cf7f662d4bc817328e04ad28b2dfcf853bad9079 | 148,716 |
import random
def random_from_alphabet(size, alphabet):
"""
Takes *size* random elements from provided alphabet
:param size:
:param alphabet:
"""
return list(random.choice(alphabet) for _ in range(size)) | aeb8e4f1609ab799dd2dd6d66b8bf266fcb34f20 | 673,883 |
import math
def PKCS1(message : int, size_block : int) -> int:
"""
PKCS1 padding function
the format of this padding is :
0x02 | 0x00 | [0xFF...0xFF] | 0x00 | [message]
"""
# compute the length in bytes of the message
length = math.ceil(math.ceil(math.log2(message-1)) / 8)
template = "0200"
# generate a template 0xFFFFF.....FF of size_block bytes
for i in range(size_block-2):
template = template + 'FF'
template = int(template,16)
# Add the 00 of the end of the padding to the template
for i in range(length+1) :
template = template ^ (0xFF << i*8)
# add the padding to the original message
message = message | template
return message | 33b65d1a0304f3d205d0fd2e4c52d4675d5b6ca0 | 100,578 |
def resample_factor_str(sig_sample_rate_hz: float,
wav_sample_rate_hz: float) -> str:
"""
Compute file string for oversample and downsample options
:param sig_sample_rate_hz: input signal sample rate
:param wav_sample_rate_hz: wav sample rate; supports permitted_wav_fs_values
:return: string with resample factor
"""
resample_factor = wav_sample_rate_hz / sig_sample_rate_hz
# If resample factor is unity, no change
resample_str = '_preserve'
if resample_factor > 1:
resample_str = '_upsample_' + str(int(10.*resample_factor)/10) + 'x_to'
elif 1 > resample_factor > 0:
resample_str = '_decimate_' + str(int(10./resample_factor)/10) + 'x_to'
elif resample_factor < 0:
print("Resample factor is negative: address")
return resample_str | 1f6f1e9b87d45112f47bdb6570b76ee03248cc8a | 367,218 |
import re
def _uses_settings(file):
"""Check if file imports AppSettings class.
Returns:
bool: True if it does, False otherwise.
"""
with open(file) as src_file:
return bool(re.search('AppSettings', src_file.read())) | f77013b36974e00d75e0a99b0b761a942de6f94b | 168,680 |
def smart_split(line):
"""
split string like:
"C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'"
in the list like:
['C', 'C', '0.0033', '0.0016', 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4']
"""
flag_in = False
l_val, val = [], []
for hh in line.strip():
if (hh == " ") & (not flag_in):
if val != []:
l_val.append("".join(val))
val = []
elif (hh == " ") & (flag_in):
val.append(hh)
elif ((hh == "'")|(hh == "\"")):
flag_in = not flag_in
else:
val.append(hh)
if val != []:
l_val.append("".join(val))
return l_val | 7249b6598f93c93ba17f668e5d0554ebae31a100 | 632,857 |
from pathlib import Path
import hashlib
def md5_hash_file(path: Path) -> str:
"""
Get md5 hash of a file.
Args:
path (Path): Absolute path or relative to current directory of the file.
Returns:
str: The md5 hash of the file.
"""
m = hashlib.md5()
with path.open("rb") as f:
m.update(f.read())
return m.hexdigest() | de398edd1476bf03cd78a3ddfd3e3c4ce8e14e1e | 72,728 |
import struct
def path_pack(data, pack = struct.pack, len = len):
"""
Given a sequence of point data, pack it into a path's serialized form.
[px1, py1, px2, py2, ...]
Must be an even number of numbers.
"""
return pack("!l%dd" %(len(data),), len(data), *data) | b1482633220f7649512d51165789011f1092fb40 | 516,922 |
def __m_rs(soup):
"""
Gets the most read news from the Rolling Stone page
:param soup: the BeautifulSoup object
:return: a list with the most read news from the Rolling Stone page
"""
news = []
anchors = soup.find('ol', class_='c-trending__list').find_all('a')
for a in anchors:
title = a.text
link = a['href']
news.append(dict(title=title, link=link))
return news | 5142ce2a441a7512f641008cc8755a3a45444d0c | 608,152 |
def perform_PCA_inverse(pca, dataset_pca):
""" Transform n-D array to back to original feature space
Args:
pca (object): Scikit-learn PCA object
(n-D array) : n-D NumPy array of transformed dataset
Returns:
(n-D array) : n-D NumPy array of dataset inversely transformed back to original number of dimension
"""
return pca.inverse_transform(dataset_pca) | c3286178e055a869fd98b71fb7a25fcc1c7187a9 | 199,080 |
import yaml
def get_options(option_fname):
"""Load options from YAML file"""
with open(option_fname) as opt_file:
options = yaml.full_load(opt_file)
return options | 4cdf099b8802e385bb82cc36ad0f404df50e0980 | 423,293 |
def parse_arguments(parser):
"""Read user arguments"""
parser.add_argument(
"--arxiv_id",
type=str,
required=True,
help="arxiv paper ID to use to produce a new paper",
)
args = parser.parse_args()
return args | d3c80bf88bdb9e647d890d63f7050555e1940d0f | 224,398 |
import torch
import math
def pose_error(R0: torch.Tensor, t0: torch.Tensor, R1: torch.Tensor, t1: torch.Tensor):
"""Compute the rotation and translation error.
Adapted from PixLoc (author: Paul-Edouard Sarlin) https://psarlin.com/pixloc/
Args:
* R0: The [3 x 3] first rotation matrix.
* t0: The [3] first translation vector.
* R1: The [3 x 3] second rotation matrix.
* t1: The [3] second translation vector.
Returns:
* The rotation (in degrees) and translation error.
"""
dt = torch.norm(t0.ravel() - t1.ravel(), p=2, dim=-1)
trace = torch.diagonal(R0.transpose(-1, -2) @ R1, dim1=-1, dim2=-2).sum(-1)
cos = torch.clamp((trace - 1) / 2, -1, 1)
dr = torch.acos(cos).abs() / math.pi * 180.0
return dr, dt | b1079781a3426ded29496bcff02097fb7f0a08ab | 686,964 |
def length(iterable):
"""
Return number of items in the iterable.
Attention: this function consumes the whole iterable and
can never return if iterable has infinite number of items.
:Example:
>>> length(iter([0, 1]))
2
>>> length([0, 1, 2])
3
"""
try:
return len(iterable)
except TypeError:
return sum(1 for item in iterable) | 1c2963290d22b9076d3f8f51dd84e586de711b11 | 680,171 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.