content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def _element_iterable(el):
"""
Test if a element is iterable
Parameters
----------
el: object
Returns
-------
iterable: boolean
if True then then el is iterable
if Fales then not
"""
try:
el[0]
iterable = True
except (TypeError, IndexError):
iterable = False
return iterable | 844d5192a90a8fae5f557a099f221b446b6d8b8c | 577,741 |
def isPower2(num):
"""
Check if num is power of two
"""
return ((num & (num - 1)) == 0) and num > 0 | 46160f29e78252f3e2e195d97c23d2b647450de5 | 683,195 |
import torch
def random_boxes(num_boxes, max_coord=100, device="cpu"):
"""
Create a random Nx4 boxes tensor, with coordinates < max_coord.
"""
boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5)
boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression
# Note: the implementation of this function in torchvision is:
# boxes[:, 2:] += torch.rand(N, 2) * 100
# but it does not guarantee non-negative widths/heights constraints:
# boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]:
boxes[:, 2:] += boxes[:, :2]
return boxes | bd415762f6bad17f4ea6a54c92b00844d3608869 | 554,858 |
import tempfile
import glob
import io
def open_shards(glob_pattern, mode='rt', encoding='utf-8'):
"""Returns a composite file of all shards matching the given glob pattern.
Args:
glob_pattern (str): Pattern used to match files which should be opened.
mode (str): Specify the mode in which the file should be opened. For
available modes, check io.open() documentation.
encoding (str): Name of the encoding used to decode or encode the file.
This should only be used in text mode.
Returns:
A stream with the contents of the opened files.
"""
if 'b' in mode:
encoding = None
with tempfile.NamedTemporaryFile(delete=False) as out_file:
for shard in glob.glob(glob_pattern):
with open(shard, 'rb') as in_file:
out_file.write(in_file.read())
concatenated_file_name = out_file.name
return io.open(concatenated_file_name, mode, encoding=encoding) | 29a588ed855fbd59b115f3ceef930096fe96ff06 | 404,513 |
def unicode_code(text):
"""
Finds the Unicode code points for the given characters, up to 10 characters.
"""
return "\n".join("{} **{}**".format(s, ord(s)) for s in text[:10]) | a409cbcef852e75410c46b59618191a4c3f8192c | 416,764 |
def learning_rate_decay(alpha, decay_rate, global_step, decay_step):
"""
Updates the learning rate using inverse time decay in numpy
alpha is the original learning rate
decay_rate is the weight used to determine the rate at which alpha will
decay
global_step is the number of passes of gradient descent that have elapsed
decay_step is the number of passes of gradient descent that should occur
before alpha is decayed further
Returns: the updated value for alpha
"""
return alpha / (1 + decay_rate * (global_step // decay_step)) | 640f823ace92fdbd6fca198468864445a201b7e3 | 664,034 |
def twos_complement(hexstr,bits):
"""
twos_complement(hexstr,bits)
Converts a hex string of a two's complement number to an integer
Args:
hexstr (str): The number in hex
bits (int): The number of bits in hexstr
Returns:
int: An integer containing the number
"""
value = int(hexstr,16)
if value & (1 << (bits-1)):
value -= 1 << bits
return value | 9b5558ddfeaac5de4285a9c1feb3d2a3f23bb83a | 543,258 |
from typing import Dict
from typing import Any
def subdict(cols: Dict[str, Any], subkeys: list) -> Dict[str, Any]:
"""Take a dictionary and subset it based on a list of keys.
Args:
full_dict (Dict[str, Any]): The full dictionary to be subsetted
subkeys (list): list of keys to be contained in the subset
Returns:
Dict[str, Any]: A subsetted dictionary
"""
return {key: cols[key] for key in subkeys} | 72f5ae909909a13dd7c2ec312b3159313bf3b01b | 65,617 |
from typing import List
def intersect(nums1: List[int],
nums2: List[int]) -> List[int]:
"""Given two arrays of integers, write a function to compute their intersection.
From `leetcode <https://leetcode.com/problems/intersection-of-two-arrays-ii/>`
Note:
- Each element in the result should appear as many times as it shows in both arrays.
- The result can be in any order.
:param nums1: {List[int]}
:param nums2: {List[int]}
:return: {List[int]} intersection of two arrays
"""
output = []
for n in nums1:
if n in nums2:
output.append(n)
nums2.remove(n)
return output | e3582117673b9f5a8eddd8a1ce39399328f5b60e | 216,282 |
def sec_url(period):
""" Create url link to SEC Financial Statement Data Set """
url = "".join([
"https://www.sec.gov/files/dera/data/financial-statement-data-sets/",
period,
".zip"
])
# handle weird path exception of SEC
if period == "2020q1":
url = "".join([
"https://www.sec.gov/files/node/add/data_distribution/",
period,
".zip"
])
return url | 8d38a8dca62a7fd23a04130bd37aed1ed9ae34a0 | 682,411 |
def key_released(self, keyboard, keycode):
"""
Stop left and right movement.
"""
self.speed_x = 0
return True | e62e3bd52340bedf433a3c09e54fb9548345617d | 557,400 |
def choose_grid(n, columns=None, rows=None, max_diff=None):
"""
Return a square-ish grid size that contains n panels.
Optionally can specify number of columns or rows.
Unless max_diff is set, prefer exactly divisible rectangles over squares.
Parameters
----------
n : int
number of panels
columns : int
fixed number of columns
rows : int
fixed number of rows
max_diff: int
maximum difference between rows - columns. E.g. 24 can be exactly (6, 4),
but if max_diff is 1, then (5, 5) is returned.
Returns
-------
rows: int
cols: int
"""
if rows and columns:
return rows, columns
if rows:
fixed = rows
max_diff = None
elif columns:
fixed = columns
max_diff = None
else:
# this is columns, make it such that the rectangle is more narrow than tall
fixed = int(n ** 0.5)
floated = n // fixed
if floated * fixed < n:
floated += 1
if max_diff and floated - fixed > max_diff:
floated -= 1
fixed += 1
return (fixed, floated) if rows else (floated, fixed) | e9227a263a60898c62040fe42fa688cc0e94018a | 453,299 |
def compare_graphs(before, after):
"""
Compare two (sub)graphs.
Note: a == b != b == a!
:param before: A networkx (sub)graph.
:param after: A networkx (sub)graph.
:returns: A dict with changes.
"""
res = {'added': [],
'removed': [],
'added_edge': [],
'removed_edge': [],
'chg_attr': []}
for node in after.nodes():
if node not in before.nodes():
# add missing nodes
if node not in res['added']:
res['added'].append(node)
for link in after.out_edges([node]):
if link[1] not in before.nodes() \
and link[1] not in res['added']:
res['added'].append(link[1])
res['added_edge'].append(link)
else:
# already there...
if before.node[node]['attributes'] != \
after.node[node]['attributes']:
res['chg_attr'].append((node,
before.node[node]['attributes'],
after.node[node]['attributes']))
for node in before.nodes():
if node not in after.nodes():
res['removed'].append(node)
for link in before.out_edges([node]):
res['removed_edge'].append(link)
else:
# node exists lets check the edges.
for link in after.out_edges([node]):
if link not in before.out_edges([node]):
res['added_edge'].append(link)
for link in before.out_edges([node]):
if link not in after.out_edges([node]):
res['removed_edge'].append(link)
return res | ee89a35da1bb74a42c93787ec138ee416a04c831 | 651,777 |
def snake_to_pascal(string: str) -> str:
"""
Converts snake-case to pascal-case.
>>> snake_to_pascal(string="hello_and_good_morning") # Returns "HelloAndGoodMorning"
"""
words = string.split('_')
words_capitalized = list(map(str.capitalize, words))
return "".join(words_capitalized) | 9f5262978ea1c087bcaa90ead3e330fde6f0e2b1 | 611,373 |
def _GenerateEstimatorConstructor(estimator_class_name, variable_types, variable_names, extension_class_name):
"""
Generates the consructor for the estimator class.
"""
code = ["\n\npublic {0}(IHostEnvironment env".format(estimator_class_name)]
# Generate the Constructor parameters
for variable_type, variable_name in zip(variable_types, variable_names):
code.append(", {0}.TransformParameter<{1}> {2}".format(extension_class_name, variable_type, variable_name))
code.extend(
[
", string outputColumn",
")\n{"
]
)
# Generate assigning the values in the constructor
for variable_name in variable_names:
code.append("\n_{0} = {0};".format(variable_name))
# Add assignments that are always required
code.extend(
[
"\n_outputColumn = outputColumn;",
"\n_host = env.Register(nameof({0}));".format(estimator_class_name),
"\n}"
]
)
return "".join(code) | 19366e1e25befa2e0723604d31f0f59b602b9b51 | 15,829 |
def rgb_to_dec(value):
"""
Converts rgb to decimal colours (i.e. divides each value by 256)
value: list (length 3) of RGB values
Returns: list (length 3) of decimal values"""
return [v / 256 for v in value] | f01229a6ed0dd8ea5f160dc779258ebcde2b1a3a | 402,568 |
def get_accuracy(y_pred, y_test):
"""
Get the prediction accuracy, which is number of correct predictions / number of all predictions.
:param y_pred:
:param y_test:
:return: prediction accuracy
"""
good = 0
for i, pred in enumerate(y_pred):
if pred == y_test[i]:
good += 1
return (good + 0.0) / len(y_pred) | 7783a2bcbf0d5e48a830da52d9bff1c5f461eba1 | 512,345 |
def _get_amazon_review_text(row):
"""Gets the Amazon review text given row data.
# Arguments
row: pandas row data from Amazon review dataset.
# Returns:
string, text corresponding to the row.
"""
title = ''
if type(row[1]) == str:
title = row[1].replace('\\n', '\n').replace('\\"', '"')
body = ''
if type(row[2]) == str:
body = row[2].replace('\\n', '\n').replace('\\"', '"')
return title + ', ' + body | e4573c530fd00bc411a5fbc96e59629c1fd64f0f | 171,356 |
def block_comment(s: str, documentation: bool = True) -> str:
"""Block comment, optionally documentation format."""
start = '{-|' if documentation else '{-'
s_ = s[:-1] if s == '\n' else s
return f'{start} {s_}\n\n-}}\n' | 52a5ee74d93aeaae30f646a4bda37051db0f7ddb | 448,976 |
def biased_rolls(prob_list, s, n):
""" Simulate n rolls of a biased m-sided die and return
a list containing the results.
Arguments:
prob_list: a list of the probabilities of rolling the
number on each side of the m-sided die. The list
will always have the length m (m >= 2), where m is
the number of sides numbered 1 to m. Therefore,
for example, the probability stored at index 0 in
the list is the probability of rolling a 1 on
the m-sided die.
s: the seed to use when initializing the PRNG
n: the number of rolls to return
Return:
rolls: a list (of length n) containing each of the n rolls of the
biased die, in the order they were generated.
"""
# replace this line and solve the problem!
rolls = None
# return the resulting rolls
return rolls | ed3e55086c6590c7eab7b797d788197016f37cca | 362,423 |
def constant(x, amp):
""" Constant model
:param x: Dispersion
:type x: np.ndarray
:param amp: Amplitude of the constant model
:type amp: float
:return: Constant model
:rtype: np.ndarray
"""
return amp + 0 * x | ff305df4d575774fc5c259b749d8577389c2da0f | 438,489 |
def get_overall_misclassifications(H, training_points, classifier_to_misclassified):
"""Given an overall classifier H, a list of all training points, and a
dictionary mapping classifiers to the training points they misclassify,
returns a set containing the training points that H misclassifies.
H is represented as a list of (classifier, voting_power) tuples."""
misclassified_points = []
for point in training_points:
output = 0
for classifier in H:
if point in classifier_to_misclassified[classifier[0]]:
output += classifier[1]*-1
else:
output += classifier[1]*1
if output <= 0:
misclassified_points.append(point)
return set(misclassified_points) | 9439ed620f982f68da115ce82056c059052364c7 | 558,616 |
def get_storage_conn_string(hostname, account_name, account_key):
"""Returns the connection string of a local storage account containing only blob endpoint and HTTP protocol"""
blob_endpoint = "%s/%s" % (hostname, account_name)
conn_string = "DefaultEndpointsProtocol=http;BlobEndpoint=%s;AccountName=%s;AccountKey=%s;" % (blob_endpoint, account_name, account_key)
return conn_string | 55ad94d498e215c478f76b6a1e4902bf0287ab21 | 292,468 |
def plot3dOnFigure(ax, pixels, colors_rgb,axis_labels=list("RGB"), axis_limits=((0, 255), (0, 255), (0, 255))):
"""Plot pixels in 3D."""
# Set axis limits
ax.set_xlim(*axis_limits[0])
ax.set_ylim(*axis_limits[1])
ax.set_zlim(*axis_limits[2])
# Set axis labels and sizes
ax.tick_params(axis='both', which='major', labelsize=14, pad=8)
ax.set_xlabel(axis_labels[0], fontsize=16, labelpad=16)
ax.set_ylabel(axis_labels[1], fontsize=16, labelpad=16)
ax.set_zlabel(axis_labels[2], fontsize=16, labelpad=16)
# Plot pixel values with colors given in colors_rgb
ax.scatter(
pixels[:, :, 0].ravel(),
pixels[:, :, 1].ravel(),
pixels[:, :, 2].ravel(),
c=colors_rgb.reshape((-1, 3)), edgecolors='none')
return ax | 067219abba7f77f7c4fbb4404ff16a3f5192f7cd | 708,745 |
from functools import reduce
from operator import mul
def doubleFactorial(n):
"""
Returns double factorial of an integer.
"""
return reduce(mul, range(n, 0, -2)) | 43e79b8f43bd4e63806f24c3847fd447e86b3bf9 | 690,242 |
import logging
def log_level_to_constant(loglevel):
"""Convert human readable log level to logging constant"""
return getattr(logging, loglevel) | 68bd2365b404979d18261b290c18349050392f53 | 68,660 |
def right_digit(x):
"""Returns the right most digit of x"""
return int(x%10) | 3f52393e9241714839e97a41f858753485cc5c89 | 27,983 |
def get_clk_hrow_and_rebuf_tiles_sorted(cur):
"""
Finds all CLK_HROW_TOP_R, CLK_HROW_BOT_T and REBUF tiles.
returns them in a list sorted according to their Y coordinates.
"""
cur.execute(
"""
SELECT name
FROM phy_tile
WHERE
name LIKE "CLK_HROW_BOT_R_%"
OR
name LIKE "CLK_HROW_TOP_R_%"
OR
name LIKE "CLK_BUFG_REBUF_%"
ORDER BY grid_y DESC;
"""
)
return [t[0] for t in cur.fetchall()] | 7cfd6005dc8b8d7830386cd7c6d4dab600a8a0d2 | 614,771 |
def parse_args(parser_):
"""
Parse commandline arguments.
"""
parser_.add_argument('--images_txt_path', type=str, default="../data/image/images.txt",
help='image text')
parser_.add_argument('--labels_txt_path', type=str, default="../data/image/labels.txt",
help='label')
return parser_ | 8f0d86b02a4d2d1a77a36f5936d3946f4f3262f0 | 451,587 |
def subclasses(cls, abstract=False, private=False):
"""Return the subclasses of class `cls` as a dict.
If abstract, include classes with abstract methods.
If private, include private classes.
"""
return {
sc.__name__: sc
for sc in cls.__subclasses__()
if (abstract or not sc.__abstractmethods__) and (
private or sc.__name__[0] != '_')
} | a31e9736840976267cadaae3924902edf292b963 | 261,506 |
from textwrap import dedent
def dedent_strip_nodetext_formatter(nodetext, has_options, caller=None):
"""
Simple dedent formatter that also strips text
"""
return dedent(nodetext).strip() | 36db3cf7bb286eb3b45dcc5c402fdf1dac4d82dc | 124,111 |
import re
def match_numbered_leaf(leaf_to_match, search_string):
"""
Find a numbered leaf matching a tf.Operation and return it if found.
Example: 'Conv2D' will match '.../Conv2D_5' and return 'Conv2D_5'
"""
expr = '/({0})|/({0}_[0-9]+)'.format(leaf_to_match)
match = re.search(expr, search_string)
if match is not None:
return match.group(1) | f7b2307cf45f1be8e80c7fc272ed1bb449781faf | 427,098 |
def restricted_utc_time_from_datetime(date):
"""Convert given ``datetime.datetime`` object `date` to an restricted
ASN.1 UTC time string.
"""
if date.tzinfo is not None:
date -= date.utcoffset()
return date.strftime('%y%m%d%H%M%S') + 'Z' | 418da1cc4d5eea8955a4a8263f803a4c1610c635 | 571,670 |
def _get_nested(dict_, keys):
"""
Nested get method for dictionaries (and lists, tuples).
"""
try:
for key in keys:
dict_ = dict_[key]
except (KeyError, IndexError, TypeError):
return None
return dict_ | 58e7487b189c477fdbb4a59f00e2ac6f6665a1b9 | 428,554 |
def no_op(ctx, node, name, args):
"""Skip node."""
return None | 1fede015a843657f3959bb8da4c2216a8674e60c | 9,253 |
def get_mentions(status_dict, exclude=[]):
"""
Given a status dictionary, return all people mentioned in the toot,
excluding those in the list passed in exclude.
"""
# Canonicalise the exclusion dictionary by lowercasing all names and
# removing leading @'s
for i, user in enumerate(exclude):
user = user.casefold()
if user[0] == "@":
user = user[1:]
exclude[i] = user
users = [user["username"] for user in status_dict["mentions"]
if user["username"].casefold() not in exclude]
return users | 9253cc5eb65e2d42ffdce3b5c01251d76fd94a40 | 315,044 |
import ast
def nodeLines(node):
"""
Get the line number range of a node
Args:
node: an ast node
Returns:
(start line #, end line # + 1)
"""
min_lineno = node.lineno
max_lineno = node.lineno
for node in ast.walk(node):
if hasattr(node, "lineno"):
min_lineno = min(min_lineno, node.lineno)
max_lineno = max(max_lineno, node.lineno)
return [min_lineno, max_lineno + 1] | c36047f026f82ae6d124c16fef1c9e3d78549515 | 300,139 |
def rotToQuat(obj):
""" return the rotation of the object as quaternion"""
if obj.rotation_mode == 'QUATERNION' or obj.rotation_mode == 'AXIS_ANGLE':
return obj.rotation_quaternion
else:
# eurler
return obj.rotation_euler.to_quaternion() | d869fede5bf3fa34282a94e3b22939ec08488fd0 | 117,052 |
import shutil
def copy(source, destination):
"""
Copy file to destination, returns true/false.
:param str source: File to copy.
:param str destination: Destination file
:returns: True if successed
:rtype: bool
example::
success = xbmcvfs.copy(source, destination)
"""
try:
shutil.copyfile(source, destination)
except shutil.Error:
return False
else:
return True | 8712889ca7a86e16f8f85cfdf5cd62df5c93531a | 182,206 |
def extend_dict(dict_1: dict, dict_2: dict) -> dict:
"""Assumes that dic_1 and dic_2 are both dictionaries. Returns the merged/combined dictionary of the two
dictionaries."""
return {**dict_1, **dict_2} | 88e2f1c613181046b388092677b8ee627c432d4d | 672,211 |
import time
def date_dff(date_a, date_b):
"""
:params:
:param date_a: time.struct_time
:param date_a: time.struct_time
:return: the difference in minutes between two dates
:rtype: float
"""
return abs((time.mktime(date_a) - time.mktime(date_b)) / 60) | 716ed9b273d3eec1a8efe21615fb389b4fb08651 | 373,201 |
def get_num_articles_words(issue):
"""
Give an issue, gets a tuple with the number of articles and total
number of words in the articles.
:param issue: issue
:type issue: defoe.papers.issue.Issue
:return: (1, num_articles, num_words)
:rtype: tuple(int, int, int)
"""
num_words_per_article = [len(article.words) for article in issue.articles]
num_words = sum(num_words_per_article)
return (1, len(issue.articles), num_words) | 088ae2eebb9877c6963db7f4f51677c02726ff0b | 463,697 |
def tagseq_to_entityseq(tags: list) -> list:
"""
Convert tags format:
[ "B-LOC", "I-LOC", "O", B-PER"] -> [(0, 2, "LOC"), (3, 4, "PER")]
"""
entity_seq = []
tag_name = ""
start, end = 0, 0
for index, tag in enumerate(tags):
if tag.startswith("B-"):
if tag_name != "":
end = index
entity_seq.append((start, end, tag_name))
tag_name = tag[2:]
start = index
elif tag.startswith("I-"):
if tag_name == "" or tag_name == tag[2:]:
continue
else:
end = index
entity_seq.append((start, end, tag_name))
tag_name = ""
else: # "O"
if tag_name == "":
continue
else:
end = index
entity_seq.append((start, end, tag_name))
tag_name = ""
return entity_seq | 1fb1ce7ff7266a961ba84188bcbf9df2c92ba650 | 81,158 |
def SplitFieldName(qualified_field_name):
"""Splits the field name on '/' and returns the parts separately.
Args:
qualified_field_name: the possibly fully qualified field name
Returns:
tuple with namespace and raw field name. Defaults to global for no
namespace.
"""
field_only = qualified_field_name
namespace = ''
split = qualified_field_name.split('/')
if len(split) == 2:
namespace = split[0]
field_only = split[1]
return namespace, field_only | 4bf4f5778cc519e6c29f17a92eceb1bc0db99720 | 591,245 |
def generate_ngram(text, n=3):
"""
Generate n-gram frequency table for given text.
"""
occurences = ngram = dict()
for i in range(len(text) - n):
try:
cur = text[i:i+n]
if cur in occurences:
occurences[cur] += 1
else:
occurences[cur] = 1
except IndexError:
pass
for (key,value) in occurences.items():
ngram[key] = float(value) / (len(text) - n + 1)
return ngram | c165d9cf6d0711467e146ab38f98b8481c466f2d | 464,436 |
def root_(radicand, index, printed=False):
"""Get the nth root of a number."""
# Example: The square root of a number can be gotten by raising that
# number to the power of 1/2.
if radicand < 0:
root = f'{(radicand*-1)**(1/index)}i'
else:
root = radicand**(1/index)
if printed:
print(root)
else:
return root | c4c01e534b232296a600ce6283dacfdafd033df6 | 144,917 |
def get_cluster_name(cid: int):
"""
Return cluster name from cluster ID
Parameters
----------
cid : int
Cluster ID
Returns
-------
string
The cluster name
"""
if cid == 0:
return 'cluster'
else:
return 'cluster_%d' % (cid) | c22088baec06ff9d311716d9d41d6983cddd3aeb | 261,268 |
def RetrieveValue(Dictionary, IndexPath):
"""
WARNING: This function is for internal use.
Enter dictionary recursively using IndexPath and return leaf value.
"""
if IndexPath == []:
return Dictionary
else:
return RetrieveValue(Dictionary[IndexPath[0]], IndexPath[1:]) | 93b97de799b6262e0a78f79292cb56ddfb785013 | 400,687 |
import codecs
def escaped_str_to_bytes(data):
"""
Take an escaped string and return the unescaped bytes equivalent.
Raises:
ValueError, if the escape sequence is invalid.
"""
if not isinstance(data, str):
raise ValueError("data must be str, but is {}".format(data.__class__.__name__))
# This one is difficult - we use an undocumented Python API here
# as per http://stackoverflow.com/a/23151714/934719
return codecs.escape_decode(data)[0] | 4399346e84a4feafdeddce2e25959c05f99e2fc1 | 317,926 |
def exclude_bck(df):
"""
Exclude background/target sentences that don't have any domain labels.
"""
print(f"Before excl: {len(df)=}")
crit1 = "(background_sent or target_sent)"
crit2 = "labels.astype('str') == '[0, 0, 0, 0, 0, 0, 0, 0, 0]'"
to_excl = df.query(f"{crit1} and {crit2}")
df = df.loc[~df.index.isin(to_excl.index)]
print(f"After excl: {len(df)=}")
return df | 126d7df7e5a95eff7d98772d2a938a06582ce845 | 303,149 |
def _get_range_clause(column, value, bucket_interval):
"""Returns an SQL clause specifying that column is in the range
specified by value. Uses bucket_interval to avoid potentially
ambiguous ranges such as 1.0B-1.9B, which really means [1B, 2B).
"""
if value[0] == '-':
# avoid minus sign with split
arr = value[1:].split('-', 1)
arr[0] = '-' + arr[0]
else:
arr = value.split('-', 1)
if len(arr) > 1:
low = arr[0]
high = arr[1]
else:
return column + " = " + value
if low.endswith('M'):
low = int(round(float(low[:-1]) * 1000000))
high = low + bucket_interval
elif low.endswith('B'):
low = int(round(float(low[:-1]) * 1000000000))
high = low + bucket_interval
elif '.' not in low:
low = int(low)
high = low + bucket_interval
# low is inclusive, high is exclusive
# See https://github.com/elastic/elasticsearch-dsl-py/blob/master/elasticsearch_dsl/faceted_search.py#L125
return column + " >= " + str(low) + " AND " + column + " < " + str(high) | 7b0e9da8fa1ac9365e93ccd1137d519f08dadbed | 28,000 |
def remove_final_whitespace(string):
"""
Return a copy of *string* with final whitespace removed from each line.
"""
return '\n'.join(x.rstrip() for x in string.split('\n')) | 136692e32aa14ec607c908e7cd455e7885d6d463 | 98,912 |
def removeEverythingEqualTo(array, value):
"""
Remove everything in an array equal to a value
"""
while (True):
try:
array.remove(value)
except ValueError:
return array | 8040a8b16fbf272a0593713114ca813343df903c | 244,218 |
def remove(text, removeValue):
"""
Return a string where all remove value are removed from the text.
"""
return text.replace(removeValue, '') | cfc7f5f5ab212bea6e02423fd0fb1fc2947be7a2 | 696,434 |
def good_str(x):
"""Returns a safe (escaped) version of the string.
str -- The string"""
return repr(str(x))[1:-1] | ff67037b8cbf177218e0cd98fd7353c2e108f2a3 | 280,401 |
def build_signature(function_name, function_parameters):
"""
Given the function name and function parameters, returns the signature line
:param function_name: the name of the function
:param function_parameters: the parameters of the function (whatever would be
within the brackets)
"""
return "def {}({}):".format(function_name, function_parameters) | 921fa5260a7b8ffc887c711219052e0a4bb4a7de | 613,860 |
def binary_search(array, val):
"""Binary search."""
sorted_array = sorted(array)
i = 0
j = len(array) - 1
while i <= j:
mid = (i + j) // 2
if sorted_array[mid] == val:
return mid
if sorted_array[mid] < val:
i = mid + 1
else:
j = mid - 1 | e0dc1386f9b5c2f8896df0c92419b125ff566add | 650,994 |
def _get_nodes_without_in_edges(graph):
"""Get all nodes in directed graph *graph* that don't have incoming edges.
The graph is represented by a dict mapping nodes to incoming edges.
Example:
>>> graph = {'a': [], 'b': ['a'], 'c': ['a'], 'd': ['b']}
>>> _get_nodes_without_in_edges(graph)
({'a'}, {'b': set(), 'c': set(), 'd': {'b'}})
:param graph: A dict mapping nodes to incoming edges.
:return: The set of nodes without incoming edges and the graph with these nodes removed.
"""
nextlevel = set()
for node, deps in graph.items():
if not deps or deps == {node}:
nextlevel.add(node)
filtered_graph = {}
for node, deps in graph.items():
if node in nextlevel:
continue
filtered_graph[node] = \
{dep for dep in deps if dep not in nextlevel}
return nextlevel, filtered_graph | 367a7c136e795f768a96bb6b013a09f0fb6ed967 | 684,614 |
import io
def spit(path, txt, encoding='UTF-8', append=False):
"""
Write a unicode string `txt` to file `path`.
By default encoded as UTF-8 and truncates the file prior to writing
Parameters
----------
path : str
File path to file on disk
txt : unicode
Text content to write to file
encoding : str, default `UTF-8`, optional
Encoding of the file
append : Boolean, default False
Append to file instead of truncating before writing
Returns
-------
The txt written to the file as a unicode string
"""
mode = 'a' if append else 'w'
with io.open(path, mode, encoding=encoding) as f:
f.write(txt)
return txt | 75b406f81068006aba61f34395590b8a1948a469 | 656,229 |
def plot_points(plot_dict):
""" dict -> list, list
Takes a dictionary and returns the key-value pairs as x and y lists to be
plotted.
"""
x = []
y = []
for key in plot_dict:
x.append(key)
y.append(plot_dict[key])
return x, y | 0c164eba54aa3e6dc551dda8b2af662aa11b0231 | 543,004 |
import numbers
import warnings
def check_threshold(threshold, data, percentile_func, name='threshold'):
""" Checks if the given threshold is in correct format and within the
limit.
If necessary, this function also returns score of the data calculated based
upon the given specific percentile function.
Note: This is only for threshold as string.
Parameters
----------
threshold: float or str
If threshold is a float value, it should be within the range of the
maximum intensity value of the data.
If threshold is a percentage expressed in a string it must finish with
a percent sign like "99.7%".
data: ndarray
an array of the input masked data.
percentile_func: function {scoreatpercentile, fastabspercentile}
Percentile function for example scipy.stats.scoreatpercentile
to calculate the score on the data.
name: str, optional
A string just used for representing the name of the threshold for a precise
error message.
Returns
-------
threshold: number
returns the score of the percentile on the data or
returns threshold as it is if given threshold is not a string percentile.
"""
if isinstance(threshold, str):
message = ('If "{0}" is given as string it '
'should be a number followed by the percent '
'sign, e.g. "25.3%"').format(name)
if not threshold.endswith('%'):
raise ValueError(message)
try:
percentile = float(threshold[:-1])
except ValueError as exc:
exc.args += (message, )
raise
threshold = percentile_func(data, percentile)
elif isinstance(threshold, numbers.Real):
# checks whether given float value exceeds the maximum
# value of the image data
value_check = abs(data).max()
if abs(threshold) > value_check:
warnings.warn("The given float value must not exceed {0}. "
"But, you have given threshold={1} ".format(value_check,
threshold))
else:
raise TypeError('%s should be either a number '
'or a string finishing with a percent sign' % (name, ))
return threshold | 0233ceb1988ff8a523739752bb846a395ff3182a | 495,914 |
def clean_mongo_key(key):
"""mongodb dict keys cannot contain periods or start with a $"""
key = key.replace(".", "_")
if key.startswith("$"):
key = key.replace("$", "_", 1)
return key | 47382763f4cde9edc7e520f2541014712d34e115 | 160,166 |
from typing import Callable
from typing import List
def get_random_weights(items, key: Callable[[int], float]) -> List[float]:
"""Returns the random weights of the items for the random function
Parameters
----------
items : List[Item]
list of items to find weights of
key : function : int -> float
function that takes in rarity and returns the drop rate of the item
Returns
-------
List[float]
the list of weights of the items
"""
weights = []
for i in range(len(items)):
weights.append(key(items[i].rarity))
return weights | 923e8a45e8f4eff15f222bfd101d5ed4b6d49a7d | 387,210 |
def permute_observation(obs, perm):
"""Given a permutation, shuffle pixels of the observation."""
return obs.flatten()[perm].reshape(obs.shape) | ac18bce7d344b89cbcba8ea22ebcb92ff3f9c0e9 | 35,812 |
def get_achievement(dist):
"""Получить поздравления за пройденную дистанцию."""
# В уроке «Строки» вы описали логику
# вывода сообщений о достижении в зависимости
# от пройденной дистанции.
# Перенесите этот код сюда и замените print() на return.
if dist >= 6.5:
return 'Отличный результат! Цель достигнута.'
elif dist >= 3.9:
return 'Неплохо! День был продуктивным.'
elif dist >= 2:
return 'Маловато, но завтра наверстаем!'
else:
return 'Лежать тоже полезно. Главное — участие, а не победа!' | c71a804806322e24dd0c4ac4ab6524ac15dd9552 | 676,129 |
from typing import Union
def _task_id(job: str) -> Union[int, str]:
"""Tries to extract an integer task ID from a job name.
For example, for `job` = '/.../tpu_worker/0:port_name', return 0.
Args:
job: A job name to extract task ID from.
Returns:
The task ID on success, or the original job name on failure.
"""
maybe_task_id = job.rsplit("/")[-1].rsplit(":")[0]
try:
return int(maybe_task_id)
except ValueError:
return job | 8abc0f87654d3ac6bfa7359cfa58fc0fc6b4b1b6 | 175,734 |
def problem_2_5(node):
""" Given a circular linked list, implement an algorithm which returns the
node at the beginning of the loop.
DEFINITION
Circular linked list: A (corrupt) linked list in which a node’s next pointer
points to an earlier node, so as to make a loop in the linked list.
EXAMPLE
input: A -> B -> C -> D -> E -> C [the same C as earlier]
output: C
SOLUTION:
- start two node traversals, one moving one node at a time, the other two
nodes at a time.
- if they meet, then the list has a loop, otherwise no loop.
- the place where they meet is k nodes aways from the start of the loop,
where k is the number of nodes from the begining of the list to the start of the loop.
- move one traverser on the begining of the list
- move both traversers one node at a time until they meet, this is the start of the loop.
"""
n1 = node # moves one node at a time.
n2 = node # moves two nodes at a time.
# Advance to the meeting point or reach the end of the list.
while n1 != None:
n1 = n1.next
# This works all the time, we are given that the list has a loop.
n2 = n2.next.next
if n1 == n2:
break
# If either n1 or n2 are None, then we found no loop.
if n1 == None or n2 == None:
return None
# Find the starting point of the loop.
n1 = node # n2 is still in the point where they met.
while n1 != n2:
n1 = n1.next
n2 = n2.next
return n1 | 90028102aaeb71607cfccf5583218a8c735dc09a | 115,841 |
def _crc_update(crc, data, mask, const):
"""
CRC8/16 update function taken from _crc_ibutton_update() function
found in "Atmel Toolchain/AVR8 GCC/Native/3.4.1061/
avr8-gnu-toolchain/avr/include/util/crc16.h" documentation.
@param[in] crc current CRC value
@param[in] data next byte of data
@param[in] mask CRC mask, must be 0xff for CRC8 and 0xffff for CRC16
@param[in] const CRC polynomial constant
@returns Next CRC value either 8 or 16 bit depending on mask
"""
crc = (crc & mask) ^ (data & 0xff)
for _ in range(8):
if crc & 1:
crc = (crc >> 1) ^ const
else:
crc >>= 1
return crc & mask | 6538b1720faca541b3ab741451e0dc9dcd20c77c | 634,678 |
from datetime import datetime
def sample_seconds_to_time(seconds):
"""Convert the seconds float to a time string."""
return datetime.utcfromtimestamp(seconds).strftime('%H:%M:%S.%f') | 96ca11c4d03fe22e1160dfd787b99ee35ed9ec69 | 351,169 |
import builtins
def _parse_warning(warn_str):
"""Reverse-engineer a warning string
Parameters
----------
warn_str : string
Returns
-------
(str, Warning, str, int)
message, category, filename, lineno
"""
tokens = warn_str.rstrip('\n').split(" ")
# The first token is
# "[filename]:[lineno]:"
filename, lineno, _ = tokens[0].split(':')
# The second token is
# "[category name]:"
category = getattr(builtins, tokens[1][:-1], RuntimeWarning)
message = " ".join(tokens[2:])
return message, category, filename, int(lineno) | 803826059f3bd2cfdd84d2ec7bdf0ef9c97b5eaa | 646,879 |
import unicodedata
def char_category(char):
"""Return the character's unicode category"""
return unicodedata.category(char)[0] | 5bd0b92bc025d50ae0a9ea193dd08e076e17ec28 | 312,480 |
def _encoded_str_len(l):
"""
Compute how long a byte string of length *l* becomes if encoded to hex.
"""
return (l << 2) / 3 + 2 | c4656413acae81d21246aecd6a6ad624483839f4 | 105,745 |
import math
def angle_energy(theta, fc, theta0):
"""
Calculate the angle energy using the harmonic potential.
Args:
theta (float): angle between atoms [degrees]
fc (float): force constant [kcal/mol]
theta0 (float): equilibrium angle [degrees]
Returns:
e_angle (float): energy of angle [kcal/mol]
"""
theta = math.pi/180.0 * theta # degrees to radians
theta0 = math.pi/180.0 * theta0 # degrees to radians
return 0.5 * fc * (theta - theta0)**2 | d39f35fd56d45b12a625d7856d0bac9e2fe762d3 | 550,449 |
def enumeration(*args):
"""
Return a value check function which raises a value error if the value is not
in a pre-defined enumeration of values.
If you pass in a list, tuple or set as the single argument, it is assumed
that the list/tuple/set defines the membership of the enumeration.
If you pass in more than on argument, it is assumed the arguments themselves
define the enumeration.
"""
assert len(args) > 0, 'at least one argument is required'
if len(args) == 1:
# assume the first argument defines the membership
members = args[0]
else:
# assume the arguments are the members
members = args
def checker(value):
if value not in members:
raise ValueError(value)
return checker | a16d8a6bd7b8beff7cb3db54e1dce0885a5fdb1f | 243,355 |
def get_rnn_hidden_state(h):
"""Returns h_t transparently regardless of RNN type."""
return h if not isinstance(h, tuple) else h[0] | e860cae5f12cb1cde7e3fe127105ebda50c81d05 | 288,256 |
from typing import Dict
def get_test_mode_enabled(env: Dict[str, str]) -> bool:
"""Get the test mode, which is used only for unit testing.
Note that the env value has a '.' in it, which should be only settable through
explicit os.environ setting."""
return env.get('TEST.MODE', 'x') == 'unit-test' | e7ce438806723601f212f3d1ee3332fb4fd9d2c8 | 494,137 |
def ping(event):
"""Responds 'pong' to your 'ping'."""
return 'pong' | 48d07ca1e513b28212c56758c41e1757b5f75468 | 697,340 |
def make_template(channel, width):
"""
Returns a template of the specified width, with its 25% position being at
where the lower-level driver triggered.
"""
pos = int(round(channel.shape[0] * .35/(.35+.25) - width*.25))
return channel[pos:pos + width], pos | 92a9b4c7e3396b8a30f017f4ff5ee223ba588d51 | 135,866 |
def drop_series_w_gaps(df, series_id, date_col, target, max_gap=1, output_dropped_series=False):
"""
Removes series with missing rows
df: pandas df
series_id: str
Column name with series identifier
date_col: str
Column name of datetime column
target: str
Column name of target column
max_gap: int
number of allowed missing timestep
output_dropped_series: bool (optional)
allows return of pandas df of series that do not satisfy max_gap criteria
Returns:
--------
pandas df(s)
"""
if not isinstance(max_gap, int):
raise TypeError('max gap must be an int')
df.sort_values(by=[date_col, series_id], ascending=True, inplace=True)
series_max_gap = df.groupby([series_id]).apply(lambda x: x[date_col].diff().max())
median_timestep = df.groupby([series_id])[date_col].diff().median()
series_to_keep = series_max_gap[(series_max_gap / median_timestep) <= max_gap].index.values
sampled_df = df.loc[df[series_id].isin(series_to_keep), :]
dropped_df = df.loc[~df[series_id].isin(series_to_keep), :]
if output_dropped_series:
return sampled_df, dropped_df
else:
return sampled_df | e50a615c5459089aea33cdfa644d0aa1f97ec7ae | 457,767 |
import pickle
def readArrayPkl(fn):
"""Read a pickle file, expected format is a NxM numpy array
"""
fh=open(fn,'rb')
im=pickle.load(fh)
fh.close()
return im | 40b412f2c7af4335de1e6665a6060f02bd7b66a1 | 488,553 |
def data2_eq(data2):
""" Returns a function that matches to the specified data2 value. """
return lambda m: m.data2 == data2 | 4d71f6f88f6ea264dbf1058a200f9700b8ce3574 | 51,131 |
def get_fraction_of_tweets_in_language(tweets):
"""Returns fraction of languages in a tweet dataframe as a dictionary
Args:
tweets (pandas.DataFrame): Tweet DataFrame as returned by `get_latest_tweets`
Returns:
language_fractions (dict): {languagecode (str): fraction (float)}
"""
language_fractions = tweets['lang'].value_counts(normalize=True)
language_fractions = language_fractions.to_dict()
return language_fractions | f6725f5ef4dc448eb82e0bf958eb10ea4c0bd0dd | 121,230 |
import json
def open_config(config_name):
"""opens the given config file (path as string) and returns the data (dictionary) stored in it"""
with open(config_name, 'r') as configfile:
data = json.load(configfile)
configfile.close()
return data | 6e6b6c9f4fcd81f3b8480deb088475e5dd0aaa70 | 405,997 |
import math
def natural_log(x):
"""Finds the natural log of some number"""
return math.log(x) | 94c2b1fb72b7adc420261c7ce9113900dc4df055 | 398,466 |
from typing import MutableMapping
def test_mock_nested_dict() -> MutableMapping:
"""Mock nested dictionary."""
return {"a": 1, "c": {"a": 2, "b": {"x": 5, "y": 10}}, "d": [1, 2, 3]} | 29b12b28f02238ef91767af235d865ec04a19568 | 634,138 |
def prepend_all(stack, list):
"""
Prepend all of the items in the given stack onto the head of the
given list. (Naturally tail-recursive.)
For example:
prepend_all([3, 2, 1], [4, 5]) -> [1, 2, 3, 4, 5]
"""
if stack == ():
return list
else:
head, tail = stack
return prepend_all(tail, (head, list)) | a68ca7ae428ddee25331e1bfaa3abfb134c8303b | 579,772 |
import operator
def _normalize_slice_or_index(index, length):
""" Normalize a slice or index for use with __delitem__ or __setitem__.
For slices with positive step, returns a slice that's equivalent for the
purposes of __delitem__ and __setitem__ operations. For slices with
negative step, a normalized slice representing the reverse of the given
slice is returned: note that in this case, the matching *added* and
*removed* lists will need to be reversed.
Slices with a step of 1 or -1 are normalized to a single integer index,
referring to the position of the first element referenced by the slice.
Similarly, slices that refer to only a single element of the corresponding
list (for example, a slice of `[1::10]` applied to a list of length 5)
are normalized to the index that refers to that same element.
Empty slices are also normalized to a single index. Note that in the case
of an empty slice, the corresponding __delitem__ or __setitem__ operation
does not cause any list change, so does not issue a notification. So the
normalized index in this case is unused in current code.
A normalized slice will have 0 <= start < stop <= length and a step >= 2.
It should further satisfy start + step < stop. The stop will always be
one larger than the last element referenced by the slice.
For a plain integer index, it's assumed -length <= index < length on input
(but this is not explicitly checked). A normalized output index will
satisfy 0 <= index <= length.
Parameters
----------
index : slice or integer
The slice to normalize
length : int
The length of the list to which the slice will be applied.
Returns
-------
reversed : bool
True if the returned slice is in the opposite direction to the
original, else False.
normalized_index : slice or integer
An equivalent (or reversed equivalent) normalized slice or index.
"""
if not isinstance(index, slice):
index = operator.index(index)
return False, index + length if index < 0 else index
start, stop, step = index.indices(length)
reversed = step < 0
if reversed:
start, stop, step = (
min(stop - step + (start - stop) % step, length),
start + 1,
-step,
)
# Reduce stop so that equivalent slices give identical normalized
# slices (e.g., del x[3:7:2] is equivalent to del x[3:6:2]).
stop -= (stop - start - 1) % step
# For a step of 1, a single item, or an empty slice, return a simple index.
if step == 1 or stop - start <= step:
return reversed, start
else:
return reversed, slice(start, stop, step) | dfcd9d27db3e53faa2304ce6a4109221f138287d | 293,556 |
def automatic_nch(f_min, f_max, spacing):
"""How many channels are available in the spectrum
:param f_min Lowest frequenecy [Hz]
:param f_max Highest frequency [Hz]
:param spacing Channel width [Hz]
:return Number of uniform channels
>>> automatic_nch(191.325e12, 196.125e12, 50e9)
96
>>> automatic_nch(193.475e12, 193.525e12, 50e9)
1
"""
return int((f_max - f_min) // spacing) | 6973ccfeaeba578bb9f6492ed06117161da81ef5 | 562,247 |
def container_instance_to_string(id):
"""Create an id string from a ContainerInstance"""
return '%s_%d' % (id.service_name, id.instance) | b24d4fec4de29aca79a8c0df19e32c6f1c4d5e24 | 388,404 |
import math
def euclidean_distance(p, q):
""" Computes the distance between two points p and q.
"""
return math.sqrt((p[0] - q[0])**2 + (p[1] - q[1])**2) | 6e460743b8171e1ca8ca780e26c3b5e440dd4b79 | 670,561 |
def l2_norm(lst):
"""
Calculates the l2 norm of a list of numbers
"""
return sum([x*x for x in lst]) | 4324b34ecdf255909d0949cd2adb6a9ecd184c75 | 337,608 |
def usage(err=''):
""" Prints the Usage() statement for the program """
m = '%s\n' %err
m += ' Default usage is to test the basic API calls.\n'
m += ' '
m += ' sfEntity -cq -eCase CaseNumber like 25455 \n'
m += ' or\n'
m += ' sfEntity -cq -eTask BranchLabel__c like %_michel% \n'
m += ' or\n'
m += ' sfEntity -ce all (to return list of valid entities)\n'
return m | 2a80c3b1e08df3d53f0bf6340265087acf808e62 | 186,005 |
def beale(x):
"""
2D function, global minimum at (3,.5)
"""
x,y = x.ravel()
return (1.5-x+x*y)**2+(2.25-x+x*y**2)**2+(2.625-x+x*y**3)**2 | cae937f3a207d97c987935c64d272f8441d31826 | 167,465 |
def str2cat(category):
"""Return a category name starting with Category."""
prefix = "Category:"
if not category.startswith(prefix):
category = "%s%s" % (prefix, category)
return category.replace(' ', '_') | bc269ef77296acc716514dc3840609a253f450f0 | 296,549 |
import torch
def _batched_dotprod(x: torch.Tensor, y: torch.Tensor):
"""
Takes two tensors of shape (N,3) and returns their batched
dot product along the last dimension as a tensor of shape
(N,).
"""
return torch.einsum("ij,ij->i", x, y) | 96c9a402e9684d850add04aa24621e1ce7cc5626 | 126,928 |
def copy_meta(df_source, df_target):
"""Internal metadata copy tool
Args:
df_source (DataFrame): Original dataframe
df_target (DataFrame): Target dataframe; receives metadata
Returns:
DataFrame: df_target with copied metadata
"""
df_target._grouped_by = getattr(df_source, "_grouped_by", None)
df_target._plot_info = getattr(df_source, "_plot_info", None)
df_target._meta = getattr(df_source, "_meta", None)
return df_target | 330e62f6aa7ef79fc6e4366dac6334a835b0cebd | 407,685 |
def parseHostPort(host, defaultport, missingportok=False):
"""Parse host[:port] string and tuples
Specify 'host[:port]' or a (host, port) tuple for the mandatory argument.
If the port specification is missing, the value of the defaultport is used.
On wrong input, this function will raise a ValueError.
"""
if isinstance(host, (tuple, list)):
host, port = host
elif ':' in host:
host, port = host.rsplit(':', 1)
else:
port = defaultport
if not missingportok and port is None:
raise ValueError('a valid port is required')
if port is not None:
try:
port = int(port)
except ValueError:
raise ValueError('invalid port number: ' + port) from None
if not 0 < port < 65536:
raise ValueError('port number out of range')
if ':' in host:
raise ValueError('host name must not contain ":"')
return host, port | 12baf8bc4947947451a5cc47a7a9fbf4aa4f3b2d | 469,207 |
def calculate_macd_and_spreadvssignal(my_verbose, this_data, cols_to_calculate):
"""
Gets full dataset, and calculates MACD and spread between MACD and signal
Important to use full dataset to ensure columns are same between training and test data.
Parameters
----------
my_verbose : string
parameter to control printing of steps and plotting of outlier graphs
this_data : dataframe
The training + validation + test dataset
cols_to_calculate : list
All columns aside from target variable. Target var is highly correlated with one of Gold futures, thus not necessary to include
Returns
-------
this_data
A dataframe containing additional MACD and MACD-Signal spread per feature
"""
for this_col in cols_to_calculate:
exp1 = this_data[this_col].ewm(span=12, adjust=False).mean()
exp2 = this_data[this_col].ewm(span=26, adjust=False).mean()
macd = exp1-exp2
signal = macd.ewm(span=9, adjust=False).mean()
macd_signal_spread = macd - signal
this_data["{}_macd".format(this_col)] = macd.values #.tolist()
this_data["{}_macd_signal_spread".format(this_col)] = macd_signal_spread.values #.tolist()
if my_verbose==True:
print("\nMACD and spread computed")
#### transformed_data.to_csv(r'MACD.csv')
return this_data | 3b58dfcef6f597dab410db03ac91d36b13aad5d9 | 347,983 |
import re
def normalize_en(s):
""" Processes an English string by removing non-alphabetical characters (besides .!?).
"""
s = s.lower().strip()
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^\w.!?]+", r" ", s, flags=re.UNICODE)
return s | 41fb32f8967a550b750c4ff6ca54cc59381529be | 367,433 |
def get_list_depth(list_) -> int:
""" Get the number of nesting of list """
if isinstance(list_, list) and len(list_) >= 1:
return 1 + max(get_list_depth(item) for item in list_)
else:
return 0 | 4d48c8316c63befa5a0ee29535ddc38de1ecfac8 | 494,611 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.