content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def unparse_msgid_article(obj):
"""Unparse a message-id or article number argument.
Args:
obj: A messsage id or an article number.
Returns:
The message id or article number as a string.
"""
return str(obj) | f6623b88fca8985fc9bd594b1c8819d04a523012 | 183,158 |
from typing import List
def ListNumbersToIntInBase(digits: List[int], base: int = 10) -> int:
"""Convert a list of digits into it's integer value into the coresponding base
Args:
digits (List[int]): List of digits to convert
base (int, optional): base to convert. Defaults to 10.
Returns:
int: interger value of the number
"""
val = 0
exp = len(digits)-1
for digit in digits:
val += digit*pow(base, exp)
exp -= 1
return val | 6286683bd6348a07b4e650d1f799208e24cdffde | 481,998 |
def portfolio_name(fictional: bool) -> str:
"""returns the proper name (as string) of the portfolio"""
return "fictional_crypto_positions.p" if fictional else "actual_crypto_positions.p" | 612724e6a303b2bfa53f7fdf0470f468362571d6 | 455,482 |
def map_args(tree, args):
"""
Given a tree and a list of arguments, produce the tree with the arguments
instead of integers at the leaves of the tree.
E.g. for tree = [[1, 2], [3, 4]] and args = [a, b, c, d] we get
[[a, b], [c, d]].
"""
(s, t, a) = tree
if a[0] == 1:
return args[0]
return [map_args((1, t[0], a[1]), args[:a[1][0]]),
map_args((1, t[1], a[2]), args[a[1][0]:])] | ffe0b977d508d33227586a56dee8cae36f21b31b | 42,991 |
import re
def isAsciiName(s):
"""
Return true iff s is pure-ascii, and a syntactically valid XML name.
>>> isAsciiName("a")
True
>>> isAsciiName("ab.-dc")
True
>>> isAsciiName("")
False
>>> isAsciiName(".foo")
False
"""
return re.match(r'^[A-Za-z\_\:][A-Za-z0-9\_\:\-\.]*$', s) != None | e3f33d249fc55de80e25bdf481ee5645b8153398 | 553,430 |
def _test_failure(block_id, block_dict, extra_args):
"""
Automatically returns failure, no reason
"""
return False | 410faf8e908f3cebdd8e640e4a40b0cd43fb42c4 | 360,100 |
def get_species_from_cf_headerline(line):
"""Get the number of species and the names fom a counts format header line.
:param str line: The header line.
:rtype: (int n_species, [str] sp_names)
"""
sp_names = line.split()[2:]
n_species = len(sp_names)
if n_species < 2:
print("Error: Not sufficiently many species (<2).\n")
raise ValueError()
return (n_species, sp_names) | fdf77624c1e97c76710207d69afa3f6b8467ece4 | 408,451 |
def merge_datasets(dataset_list):
"""
Merge dataset objects in the list
:param dataset_list: datasets in list
:type dataset_list: List[Dict{}]
:return: Merged dataset
:rtype: Dict{}
"""
result_datset = {}
for dataset in dataset_list:
for split in dataset:
if split not in result_datset:
result_datset[split] = {'images': {}, 'boxes': {}}
for img_name in dataset[split]['images']:
result_datset[split]['boxes'][img_name] = dataset[split]['boxes'][img_name]
result_datset[split]['images'][img_name] = dataset[split]['images'][img_name]
return result_datset | 58b1325cd4d6330273ddfd9001d7794b4ca12888 | 411,977 |
def parseGithubUrl(fullUrl, stripDotGit=False):
""" Get user/organisation and repository name from github remote name (optionally removing the trailing ".git") """
remote, repo = fullUrl.split(":")[-1].split("/")[-2:]
if stripDotGit:
repo = repo.strip(".git")
return remote, repo | f8d3048e4a40b8a1aab11df55dda011d5a3c9d27 | 581,837 |
def longest_seq(seqs):
"""
Find the longest chain in the output of all_uninterrupted_seqs
"""
max_len = 0
max_seq = []
for seq in seqs:
if len(seq) >= max_len:
max_seq = seq
max_len = len(max_seq)
return max_seq | a2d98e04ba652d11aa853a6bc6c0298a9629e802 | 119,726 |
def covert_unc(host, path):
""" Convert a file path on a host to a UNC path."""
return ''.join(['\\\\', host, '\\', path.replace(':', '$')]) | 39a5b554faec4cdfb7ba4afcd23f5d81ad758e32 | 562,048 |
def normPath(path: str) -> str:
""" Helper function that's mission is to normalize path strings. Accomplishes this by changing path
strings that are passed in to it from Windows style path strings (unescaped backslashes) and windows style
python path strings (escaped backslashes i.e. double backslash) to unix style strings (forward slashes)
:param path: str, path to normalize.
:return:
"""
# first convert any instances of double backslash paths (e.g. windows python style)
# to single backslash paths
result = '\\'.join(path.split(r'\\'))
# then, convert all single backslash paths (e.g. windows style) to unix-style paths (also compatible)
# with python in windows
result = '/'.join(result.split('\\'))
return result | 1a858b2ed2ab7a2ea2d8e6e7dd33417aea09cae8 | 54,020 |
def find_val_or_next_smaller_iter(bst, x, d=None):
"""Get the greatest value <= x in a binary search tree.
Returns None if no such value can be found.
"""
while True:
if bst is None:
return d
elif bst.val == x:
return x
elif bst.val > x:
(bst, x, d) = (bst.left, x, d)
else:
(bst, x, d) = (bst.right, x, bst.val) | 16b018345f4be498c644868a4661eee7e7a8b499 | 637,063 |
def RGBToString(rgb_tuple):
"""
Convert a color to a css readable string
"""
color = 'rgb(%s,%s,%s)' % rgb_tuple
return color | 1035d64dd0c399d787f9f09dde188632d139be5f | 312,448 |
def get_formatted_emg(emg_row):
"""
:param emg_row: dict [str] one row that represent data from Electromyograph sensor
example:
['2018-07-04T17:39:53.743240', 'emg', '-1', '-6', '-9', '-9', '1', '1', '-1', '-2', '2018-07-04T17:39:53.742082']
:return:
formatted emg row
example:
['2018-07-04T17:39:53.743240', '-1', '-6', '-9', '-9', '1', '1', '-1', '-2']
"""
new_emg_row = emg_row.copy()
new_emg_row.pop(1) # remove 'emg' word
new_emg_row.pop(9) # remove last timestamp
return new_emg_row | ea939fdf8e99a1048a48ce6f021d03ca4143b862 | 684,310 |
import re
def guess_x0(name):
"""
Attempt to automatically detect the value of the lower discrete mass
(e.g. 0 mm for precipitation)
"""
prog = re.compile(".*precip.*")
if prog.match(name.lower()):
return 0
prog = re.compile("RH")
if prog.match(name):
return 0
return None | c4bfaa0bba8d2f5f89679e508e8a5ac6467e2815 | 476,532 |
def read_recipes(filename):
"""Reads the file and returns its content as a list of strings."""
with open(filename, 'r') as file_handle:
return file_handle.read().splitlines() | 513c087395d286ccd922ecbfa6f5d2547b957c1e | 247,990 |
def denormalize(x_point: float, mean: float, width: float) -> float:
"""de-normalize the data point
Args:
x (float): the data point
mean (float): the mean value
width (float): the width
Returns:
float: the de-normalized value
"""
return 0.5 * width * x_point + mean | a7811b9baaea893b97f98eb8937cefe5022816c8 | 489,798 |
def get_genomic_sequence(genome, chrom, start, end):
"""
Return a sequence for the genomic region.
start, end: 1-based, end-inclusive coordinates of the sequence.
"""
if start > end:
return ''
else:
return str(genome[str(chrom)][start - 1:end]).upper() | 7f0e2829d5c643e0c2f3dd0a33633310cf248cba | 284,649 |
import random
def varAnd(population, toolbox, cxpb, mutpb):
"""Part of an evolutionary algorithm applying only the variation part
(crossover **and** mutation). The modified individuals have their
fitness invalidated. The individuals are cloned so returned population is
independent of the input population.
:param population: A list of individuals to variate.
:param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
operators.
:param cxpb: The probability of mating two individuals.
:param mutpb: The probability of mutating an individual.
:returns: A list of varied individuals that are independent of their
parents.
The variator goes as follow. First, the parental population
:math:`P_\mathrm{p}` is duplicated using the :meth:`toolbox.clone` method
and the result is put into the offspring population :math:`P_\mathrm{o}`.
A first loop over :math:`P_\mathrm{o}` is executed to mate consecutive
individuals. According to the crossover probability *cxpb*, the
individuals :math:`\mathbf{x}_i` and :math:`\mathbf{x}_{i+1}` are mated
using the :meth:`toolbox.mate` method. The resulting children
:math:`\mathbf{y}_i` and :math:`\mathbf{y}_{i+1}` replace their respective
parents in :math:`P_\mathrm{o}`. A second loop over the resulting
:math:`P_\mathrm{o}` is executed to mutate every individual with a
probability *mutpb*. When an individual is mutated it replaces its not
mutated version in :math:`P_\mathrm{o}`. The resulting
:math:`P_\mathrm{o}` is returned.
This variation is named *And* beceause of its propention to apply both
crossover and mutation on the individuals. Note that both operators are
not applied systematicaly, the resulting individuals can be generated from
crossover only, mutation only, crossover and mutation, and reproduction
according to the given probabilities. Both probabilities should be in
:math:`[0, 1]`.
"""
offspring = [toolbox.clone(ind) for ind in population]
# Apply crossover and mutation on the offspring
for i in range(1, len(offspring), 2):
if random.random() < cxpb:
offspring[i-1], offspring[i] = toolbox.mate(offspring[i-1], offspring[i])
del offspring[i-1].fitness.values, offspring[i].fitness.values
for i in range(len(offspring)):
if random.random() < mutpb:
offspring[i], = toolbox.mutate(offspring[i])
del offspring[i].fitness.values
return offspring | fee94e88cba8c9a208f9b4322ceb08aee1e05baa | 520,885 |
import itertools
def head(stream, n=10):
"""Convenience fnc: return the first `n` elements of the stream, as plain list."""
return list(itertools.islice(stream, n)) | 97af4b27bf102ee72f7f2507109d97ad68b97964 | 581,775 |
def _merge_weights(spin_d1, spin_d2):
"""Sum the weights stored in two dictionaries with keys being the spins"""
if len(spin_d1) != len(spin_d2):
raise RuntimeError("Critical - mismatch spin-dict length")
out = {}
for spin in spin_d1:
out[spin] = spin_d1[spin] + spin_d2[spin]
return out | 6e99afd66192954db1eae9d4f958dd2ca2b23c59 | 669,300 |
import torch
def mat2flat(h):
"""
Converts an homography matrix with shape `[1, 3, 3]` to its corresponding flattened
homography transformation with shape `[1, 8]`.
"""
h = torch.reshape(h, [-1, 9])
return (h / h[:, 8:9])[:, :8] | dc6c883048fc09dd13b9df3c906050520490e342 | 277,864 |
def resample_data(df, t, my_cols):
"""
Returns a dataframe with resampled data [mean, std, count].
Parameters:
df (pandas DataFrame): dataframe
t ('T', 'H', 'D') : minute, hour or day
my_cols (list-like): selected columns
"""
df_mean = df[my_cols].resample(t).mean()
df_std = df[my_cols].resample(t).std()
df_count = df[my_cols].resample(t).count()
return df_mean.join(df_std, rsuffix='_std').join(df_count, rsuffix='_count') | 80062df5edead2b955a7d2c01cb24324d547f124 | 80,565 |
from typing import Sequence
import codecs
def _read_notebook(path: str, encoding: str) -> Sequence[str]:
"""
Read a source notebook into a list of lines, removing trailing newlines.
:param path: the path to the source notebook
:param encoding: the encoding to use to read the notebook
:return: the list of lines
"""
buf = []
with codecs.open(path, mode="r", encoding=encoding) as f:
for line in f.readlines():
# Don't use rstrip(), because we want to keep any trailing white
# space, except for the trailing newline.
if len(line) == 0:
buf.append(line)
continue
if line[-1] != "\n":
buf.append(line)
continue
buf.append(line[:-1])
return buf | c5b0725caf8e4ec1af7c6ce43ae9c31984a49182 | 324,659 |
def authorization(context):
"""Construct header with authorization token for the server API calls.
Returned dict can be added to the 'request' object.
"""
return {'Authorization': 'Bearer {token}'.format(token=context.token)} | c91eec533f26a3a2bef61681087830f8889dfe2d | 442,823 |
import time
import logging
def timed(fun):
"""Decorator to measure execution time of a function
Args:
fun (``function``): Function to be timed
Returns:
``function``: decorated function
Example: ::
import time
from pygrfnn.utils import timed
# decorate a function
@timed
def my_func(N, st=0.01):
for i in range(N):
time.sleep(st)
# use it as you would normally would
my_func(100)
"""
def log_wrapper(*args, **kwargs):
t0 = time.time()
output = fun(*args, **kwargs)
elapsed = time.time() - t0
if elapsed < 60:
elapsed_str = '%.2f seconds' % (elapsed)
else:
elapsed_str = time.strftime('%H:%M:%S', time.gmtime(elapsed))
logging.info('\n%s took %s' % (fun.__name__, elapsed_str, ))
return output
return log_wrapper | fd2e71527d7a72f2a369e629eb7ca7cf369d641f | 391,976 |
import struct
import socket
def ip_to_int(network: str) -> int:
""" Takes an IP and returns the unsigned integer encoding of the address
:param str network: ip address
:return: unsigned integer encoding
"""
return struct.unpack('=L', socket.inet_aton(network))[0] | 973208a95aa01fd83a475d02c66196e3a0e3d47f | 522,899 |
import math
def filter_by_slope(slope):
"""
Filter horizontal lines
:param slope: the slope of the line
:return: False if the line is almost horizontal, True otherwise
"""
# The calculation is done creating a valid zone around the vertical
deviation_from_vertical = 70*math.pi/180
vertical = 90*math.pi/180
# Transpose the slope to the 1 and 2 quadrants
if slope < 0:
slope += math.pi
# Filter
if vertical-deviation_from_vertical < slope < vertical+deviation_from_vertical:
return True
return False | 98c0fcbc9292d7b1a9131705b144d3c19447a61e | 325,088 |
import torch
def invariant_loss(x, y, symmetry):
"""
Finds permutation invariant loss, for fixed set of allowed permutations.
Computes picking minimal loss under all permutations.
Uses L2 loss.
:param x: Input of shape (..., d)
:param y: Output of shape (..., d)
:param symmetry: Symmetry transformation matrices of shape (n, d, d).
Must include identity
:return: Loss of shape (...)
"""
batch_shape = x.shape[:-1]
d = x.shape[-1]
x = x.view(-1, d) # [b, d]
y = y.view(-1, d) # [b, d]
x_transformed = torch.einsum("nde,be->nbd", [symmetry, x])
diff = (y - x_transformed).pow(2).sum(2) # [n, b]
min_diff = torch.min(diff, dim=0)[0] # [b]
return min_diff.view(batch_shape) | 7cbcbb2ba49757d940bbaf5bc9f5668c00a74b9d | 632,920 |
def SIR(t, y, N, kappa, tau, nu):
"""
Expresses SIR model in initial value ODE format, including time,
state variables, and parameters required to compute the derivatives
Parameters
---------------
t : array
Independent variable
y : array-like
Initial state of system, [S, I, R]
parameters : array-like
Parameters of model [N, kappa, tau, nu]
Returns
----------------
f : array-like
Array of derivatives for the system to be numerically integrated
"""
S, I, R = y
dSdt = - kappa * tau / N * S * I
dIdt = (kappa * tau / N * S - nu) * I
dRdt = nu * I
f = [dSdt, dIdt, dRdt]
return f | 6ac2469813769beeae9171b55be5d535f4a0c3eb | 487,992 |
import re
def substitute_category_name(category_name):
"""
Replaces whitespace and '-' characters in `category_name`
to allow category_name to be made into a valid Python
identifier.
Doesn't check all possible ways a string might be invalid;
the user of the collate_content module is advised to use
categories with Python-friendly names.
"""
return re.sub(r"\s", "_", category_name).replace("-", "_").lower() | 284fe8b654aff53560dc66ecf75430761e8a3ba6 | 267,013 |
def lightness_correlate(Y_b, Y_w, Q, Q_w):
"""
Returns the *Lightness* correlate :math:`J`.
Parameters
----------
Y_b : numeric
Tristimulus values :math:`Y_b` the background.
Y_w : numeric
Tristimulus values :math:`Y_b` the reference white.
Q : numeric
*Brightness* correlate :math:`Q` of the stimulus.
Q_w : numeric
*Brightness* correlate :math:`Q` of the reference white.
Returns
-------
numeric
*Lightness* correlate :math:`J`.
Examples
--------
>>> Y_b = 100.0
>>> Y_w = 100.0
>>> Q = 22.209765491265024
>>> Q_w = 40.518065821226081
>>> lightness_correlate(Y_b, Y_w, Q, Q_w) # doctest: +ELLIPSIS
30.0462678...
"""
Z = 1 + (Y_b / Y_w) ** 0.5
J = 100 * (Q / Q_w) ** Z
return J | 854785cf9de0a03dcfc16a4e094dd39298f9abd7 | 46,469 |
def use_aws_kms_store(session, region, kmskeyid, access_id, secret,
encryption_pwd=None, old_encryption_pwd=None,
return_type=None, **kwargs):
"""
Sets the encryption password globally on the VPSA. This password is used
when enabling the encryption option for a volume. CAUTION: THIS PASSWORD
IS NOT STORED ON THE VPSA - IT IS THE USER'S RESPONSIBILITY TO MAINTAIN
ACCESS TO THE PASSWORD. LOSS OF THE PASSWORD MAY RESULT IN UNRECOVERABLE
DATA.
:type session: zadarapy.session.Session
:param session: A valid zadarapy.session.Session object. Required.
:type region: str
:param region: The AWS KMS region code to set. Required.
:type kmskeyid: str
:param kmskeyid: The AWS KMS key id to set. Required.
:type access_id: str
:param access_id: The AWS KMS access id to set. Required.
:type secret: str
:param secret: The AWS KMS secret password to set. Required.
:type encryption_pwd: str
:param encryption_pwd: The master encryption password to set. Required.
:type old_encryption_pwd: str
:param old_encryption_pwd: Old master encryption password. Required if
setting a new password and older password is already set. Optional.
:type return_type: str
:param return_type: If this is set to the string 'json', this function
will return a JSON string. Otherwise, it will return a Python
dictionary. Optional (will return a Python dictionary by default).
:rtype: dict, str
:returns: A dictionary or JSON data set as a string depending on
return_type parameter.
"""
body_values = {'region': region, 'kmskeyid': kmskeyid,
'access_id': access_id, 'secret': secret}
if encryption_pwd:
body_values['encryption_pwd'] = encryption_pwd
if old_encryption_pwd:
body_values['old_encryption_pwd'] = old_encryption_pwd
path = '/api/settings/encryption.json'
return session.post_api(path=path, body=body_values, return_type=return_type, **kwargs) | de478ab6633f0ab179511d24d2bc1e4b35408d4e | 104,851 |
def get_bonds(input_group):
"""Utility function to get indices (in pairs) of the bonds."""
out_list = []
for i in range(len(input_group.bond_order_list)):
out_list.append((input_group.bond_atom_list[i * 2], input_group.bond_atom_list[i * 2 + 1],))
return out_list | 4f39d9d588a1d3e919fcd5e369cd72c6dbac3442 | 700,381 |
import torch
def squared_difference(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""
Compute (x - y)(x - y) element-wise.
"""
return (x - y) ** 2 | c95b8c1c71a0dbacea405679874ac37e4dd82384 | 94,158 |
import pkg_resources
def resource_string(path):
"""Handy helper for getting resources from our kit."""
return pkg_resources.resource_string(__name__, path).decode("utf8") | 583f0327bae3a17c45d064e028dea12193d12c6c | 551,214 |
import re
def sanitize_tag_label(label_string):
"""Return string slugified, uppercased and without dashes."""
return re.sub(r'[-\s]+', '-', (re.sub(r'[^\w\s]', '',label_string).strip().upper())) | 1fee28a86533a5fda3a34a647c445fdaa73e3c59 | 696,953 |
def relative_len_difference(lca, lcb):
"""
:param lca: lcase words in sent_a, without stopwords
:param lcb: lcase words in sent_b, without stopwords
:return: Float, a similarity score
Get ratio of sentence difference to the maximum sentence length
"""
la, lb = len(lca), len(lcb)
return abs(la - lb) / float(max(la, lb) + 1e-5) | 98d67c8b9ee333b29ce5ebcce9c35308e63b3227 | 352,911 |
def ordered_distinct(collection):
"""
Return the unique elements of the given collection, preserving the order of elements.
"""
seen = set()
return [x for x in collection if x not in seen and (seen.add(x) or True)] | 9891469db9cc5f876f902b8f904a71e28a73dc76 | 239,989 |
import yaml
def load(filename):
"""
Load a yaml file and return a tuple for success, content
"""
with open(filename, 'r') as stream:
try:
return True, yaml.safe_load(stream)
except yaml.YAMLError as exc:
return False, exc | cec9c7a77561db7fd22bbc7fd979cc421a1d4b66 | 445,333 |
def create_access_args(current_actor_id=None, superuser_actor_ids=None):
"""Returns a dict that can be provided to resource registry and datastore find operations to indicate
the caller' actor and system superusers
"""
access_args = dict(current_actor_id=current_actor_id,
superuser_actor_ids=superuser_actor_ids)
return access_args | 73f02198757d003a651a8fccccb69f3534468771 | 147,090 |
def makePollBar(name: str, numVotes: int, maxNameLength: int, maxVotes: int, maxBarLength: int) -> str:
"""Make a bar for a poll results bar chart, for the statistics of a given poll option.
:param str name: The name of the poll option
:param int numVotes: The number of votes that the option received
:param int maxNameLength: The length of the longest option name in the poll
:param int maxVotes: The number of votes received by the winning option
:param int maxBarLength: The maximum length a bar may be
:return: A string containing the name of the option, followed by a number of = characters proportional to the number of
votes this option received in relation to the winning option, followed by the nuber of votes.
:rtype: str
"""
winner = numVotes == maxVotes
nameSpacing = maxNameLength - len(name)
barLength = int((numVotes / maxVotes) * maxBarLength)
return name + (" " * nameSpacing) + " | " \
+ ("=" * barLength) + ("" if numVotes else " ") \
+ ("🏆" if winner else "") + " +" + str(numVotes) + " Vote" + ("" if numVotes == 1 else "s") | c25681f45fd2c85b7d895819faf7fc033c46b891 | 245,887 |
from typing import Tuple
def parse_description(description: str) -> Tuple[int, str]:
"""Parse task description into amount and currency."""
raw_amount, currency = description.split(' ')
raw_amount = raw_amount.replace('k', '000')
return int(raw_amount), currency | 181f0f0fb57acae68b6bcbc7315387fdb63e8056 | 660,119 |
def normalize_factors(factors):
"""Normalize the factor list into a list of individual factors.
The factor argument has "append" behavior (-f foo -f bar), and each of these
arguments may be a comma-separated list of factors. Normalize this into a
flat list of individual factors. e.g.,
>>> normalize_factors(['py37', 'lint,isort'])
['py37', 'lint', 'isort']
Args:
factors: A list of comma-separated factor strings.
Returns:
The list flattened, individual factors.
"""
assert isinstance(factors, list), (
'Expected `factors` list to be a list, got `{cls}`.'
.format(cls=type(factors).__name__))
flattened = [
f.strip()
for flist in factors
for f in flist.split(',')
]
# Remove empty strings
return [f for f in flattened if f] | 2c50b763b7ced043fa3eb028ce96f5c3a666cefe | 142,335 |
def filtrar_caracteristica(lista, caracteristica, alvo):
"""
Cria uma lista com os elementos de 'lista' cuja posição em 'caracteristica'
seja igual a 'alvo'. Por exemplo, com a entrada abaixo, retornaríamos
['Alemanha', 'Portugal']:
lista = ['Brasil', 'Alemanha', 'Angola', 'Portugal']
caracteristica = ['América do Sul', 'Europa', 'África', 'Europa']
alvo = 'Europa'
Parâmetros: listas de números ou strings e um valor alvo.
Retorna: a lista com a característica filtrada.
"""
nova_lista = []
for i in range(len(caracteristica)):
if caracteristica[i] == alvo:
nova_lista.append(lista[i])
return nova_lista | efc49fb40347e4d221dd798e0d91c1d21baec2aa | 318,719 |
def _serializeSubIds(subIds):
"""
Serialize a set of unit subIds, without regard for the playerId.
"""
val = 0
for i in subIds:
val |= (1 << i)
return "{:x}".format(val) | d17ea000aec6fd783488cbe6c4ecea5fd83e8372 | 148,814 |
import glob
def search_dir(dir_name: str, file_suffix: str) -> list:
"""Iterates through a directory and all of its subdirectories and returns
a list of absolute paths for all file with a given suffix.
dir_name: absolute paht to directory
file_suffix: string with file extension (e.g: .xlsx; .txt; etc)
"""
files = [file for file in glob.glob(f"{dir_name}/**/*{file_suffix}", recursive=True)]
return files | 9b3234183d052d041225bcafc1ca767c9999218d | 325,462 |
from typing import List
def read_lines_from_file(path: str, strip: bool = False) -> List[str]:
"""Read file into stripped lines."""
with open(path, "r") as f:
lines = f.readlines()
if not strip:
return lines
return list([line.strip() for line in lines]) | 299466534b9d1646f42b5a3137794bde309f500d | 687,519 |
import statistics
def linear_regression(xs, ys):
"""
Computes linear regression coefficients
https://en.wikipedia.org/wiki/Simple_linear_regression
Returns a and b coefficients of the function f(y) = a * x + b
"""
x_mean = statistics.mean(xs)
y_mean = statistics.mean(ys)
num, den = 0.0, 0.0
for x, y in zip(xs, ys):
num += (x - x_mean) * (y - y_mean)
den += (x - x_mean) * (x - x_mean)
a = num / den
b = y_mean - a * x_mean
return a, b | 6b6ecbd31262e5fe61f9cf7793d741a874327598 | 706,426 |
def _strip_scope(name, scope, additional_scope):
"""Returns the name with scope stripped from it."""
if additional_scope:
name = name.replace("{}/".format(additional_scope), "")
if scope:
name = name.replace("{}/".format(scope), "", 1)
return name | 4cf38273d14daade449da4f077f6f8dc56233492 | 402,572 |
def get_source_url(event):
"""
Rebuilds the source url from the lambda event
"""
host = event['headers']['Host']
scheme = event['headers']['X-Forwarded-Proto']
path = event['path']
return scheme + "://" + host + path | eaa6a57ce4947d37581b9e90b65364cc911170ee | 219,681 |
import re
def extract_time(input_: str) -> list:
"""Extracts 12-hour time value from a string.
Args:
input_: Int if found, else returns the received float value.
Returns:
list:
Extracted time from the string.
"""
return re.findall(r'(\d+:\d+\s?(?:a.m.|p.m.:?))', input_) or \
re.findall(r'(\d+\s?(?:a.m.|p.m.:?))', input_) or \
re.findall(r'(\d+:\d+\s?(?:am|pm:?))', input_) or \
re.findall(r'(\d+\s?(?:am|pm:?))', input_) | 5f6ca07cd6637f0692fddb23c859e6b6765a1d6d | 99,972 |
def xml_find(tag_name, xml):
"""Returns the child with tag `tag_name` of the XML element `xml`. It
throws an `AssertationError` when no or more than one children of the tag
`tag_name` are defined."""
if xml is None:
raise TypeError("xml_text(): XML argument must not be 'None'")
results = xml.findall(tag_name)
assert results, f"Child with tag `{tag_name}` not found."
assert len(results) < 2, f"Too many children with tag `{tag_name}` found."
return results[0] | b18971f85ea69f053cc9989ed4676a6c8d237859 | 304,365 |
def _build_intel_config(config, config_files):
"""Builds the wifi configuration for the intel driver.
Args:
config: Config namedtuple
config_files: Map to look up the generated config files.
Returns:
wifi configuration for the intel driver.
"""
design_name = config.hw_design.name.lower()
return config_files.wifi_sar_map.get(design_name) | f4598c8a485dd61647b7adde0374326bae92cc7c | 61,739 |
def raw_next_line() -> str:
"""
Gets a completely raw line from the console
:return: The line that was retrieved from the console
"""
return input() | b7d940cde14272d84706b8406b9a4198aa14a76e | 388,725 |
import re
def reformat_accession(seq_record):
"""
Reformat accessions in Seq object to be <=20 chars long and not contain any special chars
"""
if len(seq_record.id) > 20:
short_id = seq_record.id[:20]
else:
short_id = seq_record.id
seq_record.id = re.sub('[|,/,\,.,:,\,),(]', '_', short_id)
return seq_record | e68548b5197a0078bc180a2fc461b98a684f7901 | 519,735 |
def contains(text: str, pattern: str, start=0) -> bool:
"""Return a boolean indicating whether pattern occurs in text."""
assert isinstance(text, str), 'text is not a string: {}'.format(text)
assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text)
# Iterative
# ! Runtime = O(n), n is len of text. Text must be iterated over.
# case: pattern length is greater than text
if len(pattern) > len(text):
return False
# case: pattern is empty
if pattern == '' or "":
return True
# no need to check the rest of text if pattern length exceeds remainder
for index in range(start, len(text) - len(pattern) + 1):
# case: check if first letter of pattern exists in text
if text[index] == pattern[0]:
# A slice of text that is the length of pattern starting from text[i] to check if the remaining pattern follows after text[i]
rest = text[index: index + len(pattern)]
if rest == pattern:
return True
# case: pattern not in text
return False | 0239ab7755dab39128ad0e50d41d49a2fd59b840 | 454,289 |
import codecs
def is_ascii_encoding(encoding):
"""Checks if a given encoding is ASCII."""
try:
return codecs.lookup(encoding).name == "ascii"
except LookupError:
return False | 34b7e9ff3bcab56607062740d2caa7cd5bbeecd3 | 683,339 |
def sub_account_spot_summary(self, **kwargs):
"""Query Sub-account Spot Assets Summary (For Master Account)
GET /sapi/v1/sub-account/spotSummary
https://binance-docs.github.io/apidocs/spot/en/#query-sub-account-assets-for-master-account
Keyword Args:
email (str, optional): Sub account email
page (int, optional): Default: 1
size (int, optional): Default 10, max 20
recvWindow (int, optional): The value cannot be greater than 60000
"""
return self.sign_request("GET", "/sapi/v1/sub-account/spotSummary", kwargs) | 47cd03c85eadc217103b2887457bb122dd35f48b | 547,779 |
def mean(num_list):
"""
Computes the mean of a list of numbers
Parameters
----------
num_list : list
List of number to calculate mean of
Returns
-------
mean : float
Mean value of the num_list
"""
# Check that input is of type list
if not isinstance(num_list, list):
raise TypeError('Invalid input %s - must be type list' % (num_list))
list_sum = 0.0
list_len = len(num_list)
# Check that the list is not empty
if list_len == 0:
raise ValueError("Num list is empty")
for el in num_list:
list_sum += el
return list_sum / list_len | 7932b52a44515ec118f67365609b979452aee0eb | 686,749 |
from typing import List
from typing import Dict
def _maps_to_dict(maps: List[str]) -> Dict[str, str]:
"""
Turns a list of colon-separated maps into a config dict.
:param maps: The list of maps.
:return: The transformed list as a dict.
"""
usernames_slugs = {}
for map_ in maps:
user, repo = map_.split(':', 1)
usernames_slugs[user] = repo
return usernames_slugs | 188cc34d2417d11df54404dd60a6627fa1b5eac4 | 427,997 |
import codecs
def text_from(path, encoding="utf-8"):
"""
Return the text from a file.
:param path: file path string
:param encoding: file encoding
"""
with codecs.open(path, "r", encoding) as fp:
return fp.read() | 4f3e47caa85627fee61331571ee5d5e5bb0c2d05 | 475,473 |
def parse_sdf_str(sdf_str):
"""
Parses SDF strings to get SDF type and keyword arguments for the function
call.
Args:
sdf_str: ``str`` -> SDF strings are formatted as follows:
"SDF:[sdf_type]:[I/F]:[parameter]=[value]:..." where value will be
converted to either I=int or F=float, where appropriate. Colors are
the exception, where always int is presumed in form of a tuple.
.. note::
SDF string Example:
``SDF:circle:I:radius=100:frame_color=(80,120,10):alpha=180``
This would produce a circle with a radius of 100 pixel filled
with the specified frame_color and alpha values.
Returns:
``Tuple[Dict, str]`` -> kwargs as dictionary and the SDF type as string.
"""
elements = sdf_str.split(':')
try:
isfloat = {'I': False, 'F': True}[elements[2]]
except KeyError:
raise ValueError(f'Expected either "I" or "F" for data type, got '
f'"{elements[2]}" instead.')
converter = {
'width': (float, int),
'height': (float, int),
'radius': (float, int),
'corner_radius': (float, int),
'border_thickness': (float, int),
'frame_color': (
lambda x: tuple([int(i) for i in x.strip()[1:-1].split(',')]),
),
'border_color': (
lambda x: tuple([int(i) for i in x.strip()[1:-1].split(',')]),
),
'multi_sampling': (int, ),
'alpha': (int, )
} # Insures that
kwargs = {}
w_unit = 0
for i in elements[3:]:
try:
k, value = i.split('=')
except ValueError:
raise ValueError(f'Expected "parameter=value", got "{i}" instead.')
if k in converter:
try:
kwargs[k] = converter[k][0 if isfloat else -1](value)
except (TypeError, ValueError):
raise ValueError(f'Unable to unpack parameter: "{i}"')
elif isfloat and k == 'w':
w_unit = int(value)
else:
raise ValueError(f'Unknown parameter: "{k}".')
if isfloat:
for k in kwargs:
if converter[k][0] is float:
kwargs[k] = int(kwargs[k] * w_unit + 0.5)
return kwargs, elements[1] | db2b9e4595c24acccffdd856e0facbacc75f0a56 | 511,635 |
from pathlib import Path
def check_arg_input_dir(input_dir: str) -> bool:
"""Return True of the input_dir exists.
:param input_dir: the output directory
:return: True if the directory exists.
"""
# output_format
p = Path(input_dir)
if not p.is_dir():
raise ValueError(f"Error! Input dir could not be found at '{input_dir}'.")
return True | 652216c00846fc6b709dbe98ea79983936577a31 | 498,952 |
def token(regexp, tag, right_context='', left_context=''):
""" Make token definition (regexp with optional left or right context) """
return r'' + left_context + '(' + regexp + ')' + right_context + '', tag | 6420f689d34520f0948c6d2be4d23f642e0fa8aa | 501,725 |
def tuple_to_string(node):
"""Given a tuple of a node id and orientation
:return tuple element concatenete by |:
"""
node_id, node_orn = node
return node_id+"|"+node_orn | 4c87c6b6c3340ea4f0f3a4786fb2094f4ed64d74 | 279,947 |
import hashlib
def md5sum_bytes(content):
"""Calculate md5sum of a byte string."""
assert isinstance(content, bytes), 'Invalid type %s' % type(content)
m = hashlib.md5()
m.update(content)
return m.hexdigest() | 6fe57fb90958aa2bb5a5b9cd123a946d888a633d | 595,556 |
import time
def datetime_timestamp(v):
"""Get numeric timestamp.
This will work under both Python 2 and 3.
Args:
v (datetime.datetime): Date/time value
Returns:
(float): Floating point timestamp
"""
if hasattr(v, "timestamp"): # Python 2/3 test
# Python 2
result = v.timestamp()
else:
# Python 3
result = time.mktime(v.timetuple()) + v.microsecond / 1e6
return result | 519d9a1b76a32f53bea4b09d98eee3b985694754 | 346,439 |
def make_playlist(sequence, discontinuity_sequence=0, segments=[]):
"""Create a an hls playlist response for tests to assert on."""
response = [
"#EXTM3U",
"#EXT-X-VERSION:7",
"#EXT-X-TARGETDURATION:10",
'#EXT-X-MAP:URI="init.mp4"',
f"#EXT-X-MEDIA-SEQUENCE:{sequence}",
f"#EXT-X-DISCONTINUITY-SEQUENCE:{discontinuity_sequence}",
]
response.extend(segments)
response.append("")
return "\n".join(response) | be49176c4854dcbb1886aeff2f473461c899bc5a | 545,206 |
def fib_mem(n, computed={0:0,1:1}):
"""find fibonacci number using memoization"""
if n not in computed:
computed[n] = fib_mem(n-1, computed) + fib_mem (n-2, computed)
return computed[n] | 5d25c22ccdc5ea41fbd0faf21a8b35ac535acaef | 9,661 |
def singleton(cls, *args, **kw):
"""
Create a single instance of an object, in this case a single object of RedisDB
Taken from: https://stackoverflow.com/questions/42237752/single-instance-of-class-in-python
:param cls: class to create only once
:param args: arguments passed to class constructor
:param kw: keyword passed to class constructor
:return: A single instance of the cls
"""
instances = {}
def _singleton():
if cls not in instances:
instances[cls] = cls(*args, **kw)
return instances[cls]
return _singleton | a61a6394d0296ce357ab6828291eaabce138f8b5 | 342,957 |
def extract(filename):
"""
extract portion of ETL
- In this case it is simply a local tab separated file
- This file path is given as an input
- Copy records from the file into a list and returns it
"""
raw_rows = []
with open(filename) as f:
for line in f:
raw_rows.append(line.rstrip())
return raw_rows | 81cb40c9a5811c0f8175cda72a9446314a48530d | 270,429 |
def descendants(migration, population):
"""
Return all descendants of ``migration`` from ``population``.
:param migration: a :class:`~yoyo.migrations.Migration` object
:param population: a collection of migrations
"""
population = set(population)
descendants = {migration}
while True:
found = False
for m in population - descendants:
if set(m.depends) & descendants:
descendants.add(m)
found = True
if not found:
break
descendants.remove(migration)
return descendants | 2714ccfad8fbcac719906da72d3d83d5e65e29ee | 130,993 |
def _extract_common_p4c_args(ctx):
"""Extract common arguments for p4c build rules."""
p4file = ctx.file.src
p4deps = ctx.files._p4include + ctx.files.deps
args = [
p4file.path,
"--std",
ctx.attr.std,
"--arch",
ctx.attr.arch,
]
include_dirs = {d.dirname: 0 for d in p4deps} # Use dict to express set.
include_dirs["."] = 0 # Enable include paths relative to workspace root.
args += [("-I" + dir) for dir in include_dirs.keys()]
return args | 16f018da5f2c35e956c58ca9e26365e49a39b366 | 173,450 |
def parse_problems(lines):
""" Given a list of lines, parses them and returns a list of problems. """
res = [list(map(int, ln.split(" "))) for ln in lines]
return res | 4e5c62ad2028e9ed441a5aa86276d059e0d118a3 | 676,254 |
import math
def sig2(x, scale=1):
""" Calculate sigmoid value
"""
return 1/(1+math.exp(-x/scale)) | c98db599dadec2cf4e6300f2b1946fa87f99ac83 | 212,605 |
def find_google_fileid_tree(service, fileId):
"""Find the folder tree of a file
Arguments:
service: in order to use any of this library, the user needs to first build the service class using google ServiceAccountCredentials. see https://pypi.org/project/google-api-v3-helper/ or https://github.com/sbi-rviot/google_api_helper for a full example.
fileId: id of the file you wish to get the tree for.
"""
file = service.files().get(fileId=fileId, fields='id, name, parents').execute()
tree = []
parent = file.get('parents')
if parent:
while True:
folder = service.files().get(
fileId=parent[0], fields='id, name, parents').execute()
parent = folder.get('parents')
if parent is None:
break
tree.append({'id': parent[0], 'name': folder.get('name')})
return tree | 7daaf3cda1f9677de87fa7f30d693f61806c62b7 | 668,195 |
def regex_split(original_output, regex_split_cmd):
"""
Takes in a regex string and output, returns a list of output split
:param original_output:
:param regex_split_cmd:
:return:
"""
def _regex_split():
return original_output.split(regex_split_cmd)
return _regex_split() | 81042f8ea9c4f1befe7256f52cf1ec198a9a1eba | 397,137 |
from typing import Tuple
def process_grad_date(grad_date: str) -> Tuple[str, int]:
"""
Infers the graduation semester and year from grad_date
grad_date: str
The graduation date in the format 'YYYY-MM-DD'
Returns:
A tuple of the semester and year.
"""
year = grad_date[:4]
month = grad_date[5:7]
if month in ['04', '05', '06']:
semester = 'Spring'
elif month in ['07', '08', '09']:
semester = 'Summer'
elif month in ['11', '12', '01']:
semester = 'Fall'
else:
semester = "None"
return semester, int(year) | db99dabf58d5ce9a3c8218bc994ff24f7957556f | 141,857 |
def new_var(var_name, t_index, agent):
"""
Naming of agent variables xij, where i in {1,...,T} and j in {1,...,M}
:param var_name: variable name x, u, d,...
:param t_index: time index
:param agent: agent index
:return: string with the name of the variable
"""
return f"{var_name}{t_index}_{agent}" | 63f2055d82c53b41dc3939451048980c28c953a0 | 204,578 |
def remove_duplicates(df_or_series):
""" Remove duplicate rows or values by keeping the first of each duplicate.
Parameters
----------
df_or_series : :any:`pandas.DataFrame` or :any:`pandas.Series`
Pandas object from which to drop duplicate index values.
Returns
-------
deduplicated : :any:`pandas.DataFrame` or :any:`pandas.Series`
The deduplicated pandas object.
"""
# CalTrack 2.3.2.2
return df_or_series[~df_or_series.index.duplicated(keep="first")] | c93da45690c5db94233552b3d925beb8dd783931 | 526,084 |
import torch
def stft(x, fft_size, hop_size, win_length, window):
"""Perform STFT and convert to magnitude spectrogram.
Args:
x (Tensor): Input signal tensor (B, T).
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length.
window (str): Window function type.
Returns:
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
real = x_stft[..., 0]
imag = x_stft[..., 1]
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1) | 92db72a1d5c4fe2a0f03476fbf974f3fca24ae72 | 450,317 |
def fizz_buzz_elif(n):
"""
Return the correct FizzBuzz value for n by testing divisibility in
an if-elif.
"""
divisible_by_3 = n % 3 == 0
divisible_by_5 = n % 5 == 0
if divisible_by_3 and divisible_by_5:
return "Fizz Buzz!"
elif divisible_by_3:
return "Fizz!"
elif divisible_by_5:
return "Buzz!"
return n | d98b01d2dc73328884a875de753338dea58f4799 | 631,422 |
def load_input(filename):
"""
Load input ciphertext
"""
with open(filename) as f:
return [int(token) for token in f.readlines()[0].strip().split(",")] | 7e9fa192ad71083a98750b285ababa9e30a1b4a9 | 623,250 |
def sort_cards(cards):
"""Sort shuffled list of cards, sorted by rank.
sort_cards(['3', '9', 'A', '5', 'T', '8', '2', '4', 'Q', '7', 'J', '6', 'K'])
['A', '2', '3', '4', '5', '6', '7', '8', '9', 'T', 'J', 'Q', 'K']
"""
deck = []
alphas = []
for card in cards:
if card.isalpha():
alphas.append(card)
else:
deck.append(card)
deck = sorted(deck)
for _ in range(alphas.count('A')):
deck.insert(0, 'A')
for _ in range(alphas.count('T')):
deck.append('T')
for _ in range(alphas.count('J')):
deck.append('J')
for _ in range(alphas.count('Q')):
deck.append('Q')
for _ in range(alphas.count('K')):
deck.append('K')
return deck | cd804d4173a9cabdecf72a154c28bba1d6307812 | 123,445 |
def computeIoH(overlap, head):
"""
compute the ratio of intersection (of head and person) and head area
intersection over head-box = area of overlap / area of head-box
:param overlap: area of intersection
:param head: area of head
:return: IoH
"""
return overlap/head | 72605cccf62e952b0e5533f2a1b13ab9ba133a07 | 525,575 |
import re
def postprocess_pages(field, pages, **options):
"""Convert a page range to a 2-element tuple."""
values = re.split(r'\-+', pages)
if len(values) == 2:
try:
return (int(values[0]), int(values[1]))
except (ValueError, TypeError):
return pages
else:
return pages | 71c86e3e823169abdd9d2ad0e27416dda1dc30b3 | 575,076 |
import struct
import codecs
def _check_key(key_rank, key_idx, received_key_hex):
"""Check that the received key is the same as the sent key.
Args:
key_rank (int): 32-bit integer
key_idx (int): 32-bit integer
received_key_hex (int): hex(key_rank|key_idx)
Returns:
bool: is the received key is the same as the sent key
"""
if len(received_key_hex) != 16:
return False
rank = struct.unpack("<I",
codecs.decode(received_key_hex[:8], "hex"))[0]
idx = struct.unpack("<I",
codecs.decode(received_key_hex[8:], "hex"))[0]
return (rank == key_rank) and (idx == key_idx) | c3b70e3efe4e5714dd5f42f290e9685ccd01ffdb | 240,140 |
def get_dependencies(requirements_file_path):
"""read dependencies from requirements.txt"""
with open(requirements_file_path, 'r', encoding='utf-8') as fstream:
dependencies = fstream.read()
return dependencies | 3abb2447c86948e68038ce9735c25b1742bbcb55 | 61,545 |
def move_down_left(rows, columns, t):
""" A method that takes coordinates of the bomb, number
of rows and number of columns of the matrix and
returns coordinates of neighbour which is located at
the left-hand side and bellow the bomb. It returns None
if there isn't such a neighbour """
x, y = t
if x == rows or y == 0:
return None
else:
return (x + 1, y - 1) | 3b54f796a529815611612606f7d0c90a93053b28 | 451,934 |
def toint(a):
""" Convert string to int and also scale them accordingly if they end
in "k", "m" or "b".
"""
weights = {'k': 1000, 'm': 1000000, 'b': 1000000000}
if len(a) > 1:
if a[-1] in weights:
return weights[a[-1]] * int(a[:-1])
return int(a) | 261503f0aa4884c529ec1ba1ae9449956c495993 | 97,997 |
def _check_mutual_preference(resident, hospital):
""" Determine whether two players each have a preference of the other. """
return resident in hospital.prefs and hospital in resident.prefs | 29856e3ef65e60f06c6b12e8b598579b89156295 | 631,404 |
import typing
def chk_to_int(chk_str: bytes) -> typing.Tuple[int, int]:
"""
Converts a checksum string to a tuple of (fillbits, checksum).
>>> chk_to_int(b"0*1B")
(0, 27)
"""
if not len(chk_str):
return 0, -1
fill_bits: int = int(chr(chk_str[0]))
try:
checksum = int(chk_str[2:], 16)
except (IndexError, ValueError):
checksum = -1
return fill_bits, checksum | c1ed10b7f3970bddd9c3b4954b677805db99b5a8 | 432,322 |
def parse_resource_type(resource_type):
"""Splits a resource type into it's components.
:exc:`ValueError` is raised if the resource type is invalid.
>>> parse_resource_type('AWS::ECS::Instance')
['AWS', 'ECS', 'Instance']
>>> parse_resource_type('AWS::ECS')
Traceback (most recent call last):
...
ValueError: Resource type 'AWS::ECS' is invalid
>>> parse_resource_type('AWS__ECS__Instance')
Traceback (most recent call last):
...
ValueError: Resource type 'AWS__ECS__Instance' is invalid
"""
segments = resource_type.split("::")
if len(segments) != 3:
raise ValueError("Resource type '{}' is invalid".format(resource_type))
return segments | 894a98c3048908d4459f95e3e250a92e92b13173 | 522,733 |
import hashlib
def generate_unique_key(master_key_path, url):
"""
master_key_path: str Path to the 32-byte Master Key (for S3 Encryption)
url: str S3 URL (e.g. https://s3-us-west-2.amazonaws.com/bucket/file.txt)
Returns: str 32-byte unique key generated for that URL
"""
with open(master_key_path, 'r') as f:
master_key = f.read()
assert len(master_key) == 32, 'Invalid Key! Must be 32 characters. ' \
'Key: {}, Length: {}'.format(master_key, len(master_key))
new_key = hashlib.sha256(master_key + url).digest()
assert len(new_key) == 32, 'New key is invalid and is not 32 characters: {}'.format(new_key)
return new_key | f254a57fa02eafe7363e65859cfc3710e0b97f47 | 670,253 |
def constrain(x, xmin, xmax):
"""
Constrain a value x between [xmin,xmax]
"""
if x < xmin:
return xmin
else:
return min(x, xmax) | a97975366de8512990d64a079d05973b3e60e939 | 187,823 |
def normalize_userinfo(userinfo):
"""Normalize userinfo part of the url.
Params:
userinfo : string : url userinfo, e.g., 'user@'
Returns:
string : normalized userinfo data.
"""
if userinfo in ["@", ":@"]:
return ""
return userinfo | ff2ed6906264c388ab90e070b7f0ec86c2e39f25 | 154,438 |
def keepCells(notebook):
"""
Finds the tag 'keep' in any cell and if it exists,
remove the ones that don't have it
Returns dict without 'hide' tagged cells
"""
has_keep = False
for cell in notebook['cells']:
try:
if 'keep' in cell['metadata']['tags']:
has_keep = True
break
except KeyError:
pass
if has_keep:
clean = []
for cell in notebook['cells']:
try:
if 'keep' in cell['metadata']['tags']:
clean.append(cell)
except KeyError:
pass
notebook['cells'] = clean
return notebook | 2f485e250145605ff319673760785fc9e2622181 | 612,845 |
import hashlib
def leaf_merkle_tree_hash(b):
"""
Calculate the Merkle Tree Leaf Hash for an object (HASH(chr(0) || b)).
b the input to the leaf hash
Return the leaf hash.
"""
return hashlib.sha256(chr(0) + b).digest() | 6dbc125d0268335ffd2b292dce47ac9122522fce | 474,404 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.