content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def freq2Index(freq, sampleRate, nFFT):
"""
Return the FTT index for a given frequency.
:param freq: Frequency, of which the bins should be returned
:type freq: int
:param sampleRate: Numbers of data samples per second
:type sampleRate: int
:param nFFT: Length of fourier transform
:type nFFT: int
:return: FFT index of the given frequency
:rtype: int
"""
return int(round(freq / (sampleRate / (nFFT*2)), 3)) | 167f6ac2c3e1c170162896c9af5e9641f56d6983 | 539,212 |
from typing import List
from typing import Any
def get_range_command(indexes: List[str], val: List[Any]) -> List[Any]:
"""
Filter list with a given range.
Args:
indexes (list): indexes to filter.
val (list): list to filter .
Returns:
filtered list.
"""
result = []
for index in indexes:
if '-' in str(index):
start, end = index.split('-')
start = int(start) if start else 0
end = int(end) if end else len(val)
for element in val[start:end + 1]:
result.append(element)
else:
result.append(val[int(index)])
return result | cc8f036e6a9cbb62d5bf6670a826f45e750f88a1 | 135,591 |
def _preprocess_label(lbl):
"""
The provided datasets have labels that are 1-indexed. We convert them
to 0-index here.
"""
return lbl - 1 | bb91a6b3221f656142a0479bc4aeca0163970c73 | 143,597 |
def convert_datetime_to_timestamp_str(date):
"""Converts the given datetime to a formatted date str. The format matches strftime
directives %Y-%m-%dT%H:%M:%S.%f.
Args:
date (datetime): The datetime object to convert.
Returns:
(str): A str representing the given date. Example output looks like
'2020-03-25T15:29:04.465Z'.
"""
prefix = date.strftime(u"%Y-%m-%dT%H:%M:%S.%f")[:-3]
return u"{}Z".format(prefix) | b3f5aa73f9e578da9e7a94a88473621d16a2cc3d | 515,287 |
from pathlib import Path
def read_certificate_file(certificate_file: Path) -> str:
"""Read the contents of the local X.509 certificate file and returns the string
:param certificate_file: X.509 client certificate to read
:type certificate_file: Path
:return: PEM encoded certificate
:rtype: str
"""
# the certificate format is not modified
with open(certificate_file, "r") as f:
data = f.read()
return data | 1b014b03880cca14e830f1a6dba0a9529b64b239 | 611,305 |
def ngrams(words, n):
"""
Note:
generate ngrams of certain length with a list of word
Args:
words: words list
n: length of ngram
Returns:
list of ngrams of certain length
"""
if len(words)<= n:
print (len(words), '/',n)
return words
else:
ngram_set = set()
for i in range(len(words)-n+1):
ngram_set.add(' '.join(words[i:i+n]))
return list(ngram_set) | 2e9f8b4774dcb8d0567c9826b9b03ecbafb9968f | 333,440 |
def rgb_to_RGB(r, g, b):
"""
Convert rgb values to RGB values
:param r,g,b: (0,1) range floats
:return: a 3 element tuple of RGB values in the range (0, 255)
"""
return (int(r * 255), int(g * 255), int(b * 255)) | 7358f0a0263125c4c036cb6ebc170455c24bf05b | 599,467 |
import math
def deg2rad(x):
"""Convert the unit of x from degree to radian"""
return x * math.pi/180.0 | 679d70a7c209f2487d3849670653dcfd01a9f2fa | 441,949 |
def get_converter_type_uuid(*args, **kwargs):
"""
Handle converter type "uuid"
:param args:
:param kwargs:
:return: return schema dict
"""
schema = {
'type': 'string',
'format': 'uuid',
}
return schema | 2841ba2ff4d0994371dabe581f8350b4971a9144 | 609,843 |
def in_cksum_done(s):
"""Fold and return Internet checksum."""
while (s >> 16):
s = (s >> 16) + (s & 0xffff)
return (~s & 0xffff) | 25011c254e89179fe4232ad0ecfa0a847bf0b30b | 23,609 |
def filter_entries_by_tag(search, entry):
"""Check if search matches any tags as stored in the Entry namedtuple
(case insensitive, only whole, not partial string matches).
Returns bool: True if match, False if not.
Supported searches:
1. If & in search do AND match,
e.g. flask&api should match entries with both tags
2. Elif | in search do an OR match,
e.g. flask|django should match entries with either tag
3. Else: match if search is in tags
"""
Truth = []
search = search.lower()
if '&' in search:
for term in search.split('&'):
Truth.append(term.lower() in entry.tags)
return all(Truth)
elif '|' in search:
for term in search.split('|'):
Truth.append(term.lower() in entry.tags)
return any(Truth)
else:
return search.lower() in entry.tags
pass | 13a722166efee98eac5610beec4f1e38d974a409 | 427,558 |
def ratio(value, count):
"""compute ratio but ignore count=0"""
if count == 0:
return 0.0
else:
return value / count | 0688000ae2685ffd2f377d4d136d41964acef416 | 267,071 |
def normalize_wiki_text(text):
"""
Normalizes a text such as a wikipedia title.
@param text text to normalize
@return normalized text
"""
return text.replace("_", " ").replace("''", '"') | ec3855b8661ae67abc6ca84d03634ff48437ad58 | 670,483 |
def trigger_event(connection, id, fields=None, error_msg=None):
"""Trigger an event.
Args:
connection(object): MicroStrategy connection object returned by
`connection.Connection()`.
id(str): ID of the event
error_msg (string, optional): Custom Error Message for Error Handling
Returns:
HTTP response object returned by the MicroStrategy REST server.
"""
url = f'{connection.base_url}/api/events/{id}/trigger'
return connection.post(
url=url,
params={'fields': fields}
) | 418994565cd20cac681575286553d4fa92cf89c9 | 698,445 |
def make_course_key_str(org, number, run='test-run'):
"""
Helper method to create a string representation of a CourseKey
"""
return 'course-v1:{}+{}+{}'.format(org, number, run) | 3fcc10ac2b6380ed88e53dd37ae2978584d26447 | 259,460 |
def find_asymetric_coords(M):
"""
Given a square numpy array M return i,j such that M[i,j] != M[j,i]
"""
for i in range(M.shape[0]):
for j in range(i):
if M[i,j] != M[j,i]:
return i,j
return None | 4e4f2d0b65a6074686eac041054f2af50940e8ea | 527,865 |
def resolve_url(properties, seqid, path_type):
"""Resolves a refget request to a cloud storage object url
Arguments:
properties (Properties): runtime properties containing cloud storage
base url, and url paths to sequences and metadata
seqid (str): Requested sequence (checksum identifier)
path_type (str): 'sequence' for sequence requests,
'metadata' for metadata requests
Returns:
(str): url pointing to requested object in cloud storage
"""
path_props = {
"sequence": "source.sequence_path",
"metadata": "source.metadata_path"
}
base_url = properties.get("source.base_url")
url_path = properties.get(path_props[path_type])
template = base_url + url_path
url = template.format(seqid=seqid)
return url | 9d4e96cbf097ab7ea08894d0482da5ce4ca930b2 | 461,114 |
def in_slots(obj, key, default=False):
"""
Returns true if key exists in obj.__slots__; false if not in.
If obj.__slots__ is absent, return default
"""
return (key in obj.__slots__) if getattr(obj, '__slots__', None) else default | c64473a323302eacefcf211c1114686ef1feec2d | 661,754 |
def iterator_to_list(iterator):
"""
Transform the input iterator into a list.
:param iterator:
:iterator type:
"""
liste = [elem for elem in iterator]
return liste | 1a582f76763dba5728a7011597312ece819dc6af | 293,737 |
def getChildrenText(tag, childtag):
"""returns the text of all children of tag which are <childtag>"""
tags=[]
for child in tag:
if child.tag==childtag:
tags.append(child.text)
return tags | 59ae3eca5dcd393907115e208cd2ed4cf0fa1b8a | 252,770 |
import csv
def read_layout(layout):
"""
Reads out a layout from .csv and puts it in a dictionary
Args:
layout(str): filename of the .csv
Returns:
pts(dict): A dictionary with all the relevant information from the .csv
"""
pts = {}
with open(layout) as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
for row in readCSV:
if row[0][0] == 'D':
pts[row[0]] = float(row[1]), float(row[2])
if row[0][0] == 'T':
pts[row[0]] = row[1], row[2]
if row[0][0] == 'U':
pts[row[0]] = int(row[1]), int(row[2])
return pts | f28a98284226ff13652588568c33be19b6fb3245 | 496,037 |
def get_request_id(request_json):
"""Get the request_id from the request
"""
request_id = request_json['requestInfo'].get('requestId')
if not request_id:
request_id = request_json['requestInfo'].get('requestID')
return request_id | 68b3e9e8a15d84d1042173b8fc8c480f996d616a | 16,664 |
def all(*args, span=None):
"""Create a new expression of the intersection of all conditions in the
arguments
Parameters
----------
args : list
List of symbolic boolean expressions
span : Optional[Span]
The location of this operator in the source code.
Returns
-------
expr: Expr
Expression
"""
if not args:
raise ValueError("Any must take at least 1 argument")
if len(args) == 1:
return args[0]
val = _ffi_api._OpAnd(args[0], args[1], span) # type: ignore
for i in range(2, len(args)):
val = _ffi_api._OpAnd(val, args[i], span) # type: ignore
return val | f0cebfb241c10c2d53c58a8b4fb186e9d65a1b7a | 9,430 |
def encode_phrase_bank_to_id_lists(phrase_bank_list, vocab, max_bank_size):
"""Encode keyphrase bank into word ids.
Args:
phrase_bank_list (list): the list of keyphrase bank for each trianing data, each list
is a list of keyphrase (already deduplicated), each keyphrase is a string.
vocab (Vocab): vocabulary to convert words into ids
max_bank_size (int): maximum allowed number of keyphrase per instance.
Returns:
phrase_bank_word_ids (list): the list of phrase bank word ids
phrase_bank_words (list): the list of tokenized phrase words, with the same
dimension as phrase_bank_word_ids
"""
phrase_bank_word_ids = []
phrase_bank_words = []
for sample in phrase_bank_list:
cur_ph_bank_wids = []
cur_ph_bank_words = []
for ph in sample:
ph = ph.lower()
cur_ph = []
cur_ph_ids = []
for w in ph.split():
if w in vocab._word2id:
cur_ph.append(w)
cur_ph_ids.append(vocab.word2id(w))
if len(cur_ph_ids) == 0: continue
cur_ph_bank_wids.append(cur_ph_ids)
cur_ph_bank_words.append(cur_ph)
if len(cur_ph_bank_wids) == max_bank_size:
break
phrase_bank_word_ids.append(cur_ph_bank_wids)
phrase_bank_words.append(cur_ph_bank_words)
return phrase_bank_word_ids, phrase_bank_words | 5344f5090e4728a2cffc835690584b5901c28d5a | 149,571 |
def _get(entry):
"""A helper to get the value, be it a callable or callable with args, or value
"""
if isinstance(entry, (tuple, list)):
func, args = entry
return func(*args)
elif callable(entry):
return entry()
else:
return entry | 40742e0f86ea1a89b05e0354912c64683a9b9160 | 31,562 |
from typing import Union
from typing import Tuple
def safe_issubclass(cls: type, class_or_tuple: Union[type, Tuple[type, ...]]) -> bool:
"""Safe version of ``issubclass()``.
Apart from incorrect arguments, ``issubclass(a, b)`` can throw an error
only if `b` has a ``__subclasscheck__`` method that throws an error.
Therefore, it is not necessary to use ``safe_issubclass()`` if the class
is known to not override ``__subclasscheck__``.
Defaults to False if ``issubclass()`` throws.
"""
try:
return issubclass(cls, class_or_tuple)
except Exception:
return False | 70509472c577b6c97576b0a6925d16314773be30 | 453,114 |
def countAlleles(columns):
"""For each alt allele in the 5th column, keep a count of how many times that alt's index
appears in the genotype columns, for the AC tag in the INFO field. For the AN tag, tally up
the genotype columns that don't have '.' (no call). Return the total number of calls for AN
and an array of alternate allele counts for AC.
NOTE: this does not handle multiploid VCF where genotypes can be /- or |-separated."""
totalCalls = 0
alts = columns[4]
altCounts = [ 0 for alt in alts.split(',')]
for colVal in columns[9:]:
subVals = colVal.split(':')
gt = subVals[0]
if (gt is not '.'):
totalCalls += 1
altIx = int(gt)-1
if (altIx >= 0):
altCounts[altIx] += 1
return totalCalls, altCounts | e270250c8a2a018055075951dd7cbd307ecebba6 | 428,624 |
def flatten(d):
"""Recursive method to flatten a dict -->list
Parameters:
d (dict): dict
Returns:
l (list)
"""
res = [] # Result list
if isinstance(d, dict):
for key, val in sorted(d.items()):
res.extend(flatten(val))
elif isinstance(d, list):
res = d
else:
res = [d]
return res | d1fe6c38c5c875799fa9793d5bea470a9c490153 | 183,742 |
import six
def safe_filename(filename, extension=None):
"""
Returns a filename with FAT32-, NTFS- and HFS+-illegal characters removed.
Unicode or bytestring datatype of filename is preserved.
>>> safe_filename(u'spam*?: 𐍃𐍀𐌰𐌼-&.txt')
u'spam 𐍃𐍀𐌰𐌼-&.txt'
"""
filename = filename if isinstance(filename, six.text_type) else filename.decode('utf8')
if extension is not None:
filename = "{}.{}".format(filename, extension)
unsafe_chars = ':*?"<>|/\\\r\n'
for c in unsafe_chars:
filename = filename.replace(c, '')
return filename | d3571ea8d272d1081fc132c204b1a8c5544c2cd2 | 115,202 |
import yaml
def get_rule_set(args):
"""Read and parse the config file at the location given when the
linter script is run.
Parameters
----------
args : argparse.Namespace
Arguments input when script is called from the console
Returns
-------
dict
Contains structured data from the parsed configuration file
"""
with open(args.rules, 'r') as f:
text = f.read()
rule_set = yaml.safe_load(text)
return rule_set | 335b5e73c721f8ca276690444ede1f88fd33c2e9 | 644,712 |
def _is_plottable(structure):
""" Determines if a PDS4 structure is plottable.
Plottable structures are either:
(1) 1D arrays, or
(2) Tables
Parameters
----------
structure : Structure
PDS4 structure to check.
Returns
-------
bool
True if *structure* can be plotted, False otherwise.
"""
plottable = False
if structure.is_table():
plottable = True
elif structure.is_array() and structure.meta_data.num_axes() == 1:
plottable = True
return plottable | 534529daf211c68bb08983918c463aaf1a8640bd | 290,683 |
def _buffer_word(word, length, backward):
"""
Simple helper that adds spaces to the end of the provided word so that it will look uniform.
:param word: word (as a string) to buffer
:param length: 1 less than the length to buffer to
:param backward: Whether the provided string should be made backwards (used by the solver for convenience)
:return: buffered word
"""
if backward:
word = word[::-1]
while len(word) < length + 1:
word += " "
return word | 80638e77045e96127a91084c394c6f210d2583f5 | 441,743 |
def parseVersion(stringVersion):
"""Parses a version string like "6.1.0.3" and
returns a python list of ints like [ 6,1,0,3 ]"""
m = "parseVersion:"
# sop(m,"Entry. stringVersion=%s" % ( stringVersion ))
listVersion = []
parts = stringVersion.split('.')
for part in parts:
# sop(m,"Adding part=%s" % part)
listVersion.append(int(part))
# sop(m,"Exit. Returning listVersion=%s" % ( listVersion ))
return listVersion | 6510006c314dfbaed9397dc5b3e19e6bc13787a0 | 87,162 |
def get_local_images(docker_client):
"""Return a list of local images names (repo+tag).
:param docker.client.APIClient docker_client: docker api client.
:return list local_images: local images names (repo+tag).
"""
local_images = []
for image in docker_client.images():
image_repo_tag = image.get('RepoTags')
if image_repo_tag:
local_images.extend(image_repo_tag)
return local_images | f1f2003e5172144790841ee9b5781fa40143fa01 | 403,502 |
def sum_two_to_2020_product(expense_report_entries):
"""Find the product of the two entries in the expense report that sum to 2020."""
for i, entry in enumerate(expense_report_entries):
for j in range(i + 1, len(expense_report_entries)):
if entry + expense_report_entries[j] == 2020:
return entry * expense_report_entries[j]
return None | dacf22295105ba2ad443a90420f785a8b497cced | 390,666 |
def lookup_from_kwargs_env(kwargs, env, attr, default=None):
"""
__getitem__ from kwargs, env, or default.
Args:
kwargs (dict): kwargs dict
env (Env): :py:mod:`Env` dict
attr (str): attribute name
default (obj): default value to return if not found in kwargs or env
Returns:
obj: kwargs.get(attr, env.get(attr, default))
"""
return kwargs.get(attr, env.get(attr, default)) | 781367e396800e98c262a05ef6bb01668cc6f536 | 284,518 |
import inspect
def is_coroutine(coro):
"""Returns true if the argument is a coroutine or coroutine function."""
return inspect.iscoroutine(coro) or inspect.iscoroutinefunction(coro) | c4b659fd469b4d50a93019001b83729de693a09f | 31,221 |
import json
def parse_advice(json_response) -> str:
"""Get the advice from the JSON response."""
json_slip = json.loads(json_response)
advice = json_slip['slip']['advice']
return advice | d4a8680602917032ecd8a463fafe083851d0446c | 73,572 |
def get_mbean_name(location, existing_names, alias_helper):
"""
Return the mbean name for the specified location.
For unpredictable single folders:
1. if an existing folder name is present, use that name as the mbean name.
2. set the location's token to the mbean name.
:param location: the location to examine
:param existing_names: a list of existing names at the location
:param alias_helper: the alias helper to use for name and path resolution
"""
mbean_name = alias_helper.get_wlst_mbean_name(location)
if alias_helper.requires_unpredictable_single_name_handling(location):
if len(existing_names) > 0:
mbean_name = existing_names[0]
token = alias_helper.get_name_token(location)
location.add_name_token(token, mbean_name)
return mbean_name | c973073fd02c82179326d089ec4680012f7fd724 | 636,319 |
def differences(scansion: str, candidate: str) -> list:
""""Given two strings, return a list of index positions where the contents differ.
>>> differences("abc", "abz")
[2]
"""
before = scansion.replace(" ", "")
after = candidate.replace(" ", "")
diffs = []
for idx, tmp in enumerate(before):
if before[idx] != after[idx]:
diffs.append(idx)
return diffs | 3afa87616168b333ffd4ccb50002509292e1d271 | 308,699 |
import copy
def uvp_zscore(uvp, error_field='bs_std', inplace=False):
"""
Calculate a zscore of a UVPSpec object using
entry 'error_field' in its stats_array. This
assumes that the UVPSpec object has been already
mean subtracted using
hera_pspec.uvpspec_utils.subtract_uvp().
The resultant zscore is stored in the stats_array
as error_field + "_zscore".
Parameters
----------
uvp : UVPSpec object
error_field : str, optional
Key of stats_array to use as z-score normalization.
inplace : bool, optional
If True, add zscores into input uvp, else
make a copy of uvp and return with zscores.
Returns
-------
if inplace:
uvp : UVPSpec object
"""
if not inplace:
uvp = copy.deepcopy(uvp)
# check error_field
assert error_field in list(uvp.stats_array.keys()), "{} not found in stats_array" \
.format(error_field)
new_field = "{}_zscore".format(error_field)
# iterate over spectral windows
for i, spw in enumerate(uvp.spw_array):
# iterate over polarizations
for j, polpair in enumerate(uvp.polpair_array):
# iterate over blpairs
for k, blp in enumerate(uvp.blpair_array):
key = (spw, blp, polpair)
# calculate z-score: real and imag separately
d = uvp.get_data(key)
e = uvp.get_stats(error_field, key)
zsc = d.real / e.real + 1j * d.imag / e.imag
# set into uvp
uvp.set_stats(new_field, key, zsc)
if not inplace:
return uvp | 98ceb99b06a258d98e0dc913177186aba119bf08 | 526,090 |
def dictlist_lookup(dictlist, key, value):
"""
From a list of dicts, retrieve those elements for which <key> is <value>.
"""
return [el for el in dictlist if el.get(key)==value] | 94e90b29c8f4034357be2b8683115f725c24b374 | 16,218 |
import re
def _extract_sentence_tags(tagged_sentence):
"""Given a tagged sentence, extracts a dictionary mapping tags to the words
or phrases that they tag.
Parameters
----------
tagged_sentence : str
The sentence with Medscan annotations and tags
Returns
-------
tags : dict
A dictionary mapping tags to the words or phrases that they tag.
"""
p = re.compile('ID{([0-9,]+)=([^}]+)}')
tags = {}
# Iteratively look for all matches of this pattern
endpos = 0
while True:
match = p.search(tagged_sentence, pos=endpos)
if not match:
break
endpos = match.end()
tags[match.group(1)] = match.group(2)
return tags | 2a913707d2f48736f70df2141779c00a0068ee54 | 636,939 |
def is_date_within_date_range(date_in_question, start, end) -> bool:
"""
Return whether a given date falls within the range of two other dates. This function assumes
start < end.
"""
return start <= date_in_question <= end | 3220cb8c49f6c7b18166032f9cd2ca400ffd1fea | 416,797 |
import json
def json_load(file: str):
"""
loads json file.
:param file:
:return: loaded json file as dict/list
"""
with open(file) as f:
return json.load(f) | 71e2360a0dfeee339a612f13d4929954c7f8bcd0 | 480,896 |
def DecodeDecimal(hexinput):
"""
Converts to decimal each byte in the input tuple, concatenates the result and converts
the resulting string into decimal.
"""
return int(''.join('{0}'.format(x) for x in hexinput), 10) | f400a5c8cc0e575bee48d16843cbce5b43f9a5a6 | 390,966 |
def api_error(api, error):
"""format error message for api error, if error is present"""
if error is not None:
return "calling: %s: got %s" % (api, error)
return None | a9269a93d51e3203646886a893998ffec6488c95 | 705,403 |
def delay(lag):
"""Create a function that applies a delay to a trajectory."""
def func(traj, length):
return traj[lag : length + lag]
return func | e65d6094ef44869a0b411fb9762a5fdb14271d56 | 180,169 |
def _add_comp_def(doc, comp_def):
"""Add the component definition while checking if it already existss
:param doc: The SBOL Document object
:param comp_def: Component definition
:type doc: Document
:type comp_def: ComponentDefinition
:rtype: ComponentDefinition
:return: The updated component definition
"""
if comp_def.identity not in [comp_def.identity
for comp_def in doc.componentDefinitions]:
doc.addComponentDefinition(comp_def)
else:
comp_def = doc.getComponentDefinition(comp_def.identity)
return comp_def | c718de9c0c42fd88de2a4eddd6485f8ca02a3c4f | 590,506 |
def create_vocab(corpus):
"""
This function creates a set of unique
and preprocessed words from a corpus
Arguments
corpus : pandas df column or list-like
Returns
vocab : dictionary with the words as keys
and a unique integer for each as values
"""
vocab = set()
for doc in corpus:
vocab.update(set(doc))
return {word:idx for idx, word in enumerate(vocab)} | ed6d02f11202044806aaca94ac56fa7400ab3f9a | 470,310 |
def process_output(output):
"""
Given the output file, filter out photons, electrons and positrons
"""
if output is None:
return (None, None, None) # no photons, electrons or positrons
photons = list()
electrons = list()
positrons = list()
with open(output, "r") as f:
for cnt, line in enumerate(f):
if "GGG" in line:
photons.append(line)
elif "EEE" in line:
electrons.append(line)
elif "PPP" in line:
positrons.append(line)
return (photons if len(photons)>0 else None, electrons if len(electrons)>0 else None, positrons if len(positrons)>0 else None) | 201523c7a364cc523882aec7736fc9e00e016bb7 | 482,158 |
def type_rank(hierarchy, feature_type):
"""Return rank or code 1000 if feature_type not found."""
if feature_type in hierarchy:
return hierarchy[feature_type]["rank"]
else:
return 1000 | 9e33649db0d0d28aa3884cb3a2f3f243858cab5e | 174,768 |
import torch
from typing import Optional
def torch_one_hot(target: torch.Tensor, num_classes: Optional[int] = None) -> torch.Tensor:
"""
Compute one hot encoding of input tensor
Args:
target: tensor to be converted
num_classes: number of classes. If :attr:`num_classes` is None,
the maximum of target is used
Returns:
torch.Tensor: one hot encoded tensor
"""
if num_classes is None:
num_classes = int(target.max().detach().item() + 1)
dtype, device = target.dtype, target.device
target_onehot = torch.zeros(*target.shape, num_classes, dtype=dtype, device=device)
return target_onehot.scatter_(1, target.unsqueeze_(1), 1.0) | bb2aee6012ead3dcd08ddcdce05a73ac3693fc1d | 588,172 |
from typing import List
def athlete_sort(k: int, arr: List[List[int]]) -> List[List[int]]:
"""
>>> athlete_sort(1, [[10, 2, 5], [7, 1, 0], [9, 9, 9],
... [1, 23, 12], [6, 5, 9]])
[[7, 1, 0], [10, 2, 5], [6, 5, 9], [9, 9, 9], [1, 23, 12]]
"""
arr.sort(key=lambda x: x[k])
return arr | 1655882b7760a705afcbbeba55f5051eaf7d448f | 698,368 |
def create_row(username, results, release_count):
"""
Returns string with format UserName,M1,M2,...,Mn.
:param username: string
:param results: queryset object
:param release_count: int
:return: Formatted string
"""
row = "{}".format(username)
count = 1
while count <= release_count:
result = results.filter(comment__release=count).first()
if result:
row += ",{}".format(result.mark)
else:
row += ",0"
count += 1
return row | fa649addb606ad2519078e41779eb7a8422d4466 | 172,467 |
def uniqueListWithOrder(lst):
"""
Return new list with preserved the original order of the list.
Each element in lst must be hashable.
"""
# pylint: disable = simplifiable-condition
used = set()
return [x for x in lst if x not in used and (used.add(x) or True)] | f926ce6b39f1d5c22af010b9a903c6567ca6c2f3 | 258,947 |
def bBalancedPar(p):
"""check if parenthesis are balanced no matter the content"""
l = 0
for c in p:
if c == ord(b"("):
l += 1
elif c == ord(b")"):
l -= 1
if l < 0:
return False
if l != 0:
return False
return True | 9480891316cc9661afdaae5bf1a76915d712e34f | 649,123 |
def remove_underscore(data_str: str) -> str:
"""
A function to remove underscores from a string returning the string with spaces instead.
:param data_str:
:return:
"""
return data_str.replace('_', ' ') | edd902c0243c4fec2135de5d5f39265bc5486ad1 | 350,385 |
def show_graph(ticker):
"""
Displays the graph based on ticker
:param ticker: the ticker
:return: two dicts setting visibility of graph and sentiment information
"""
if not ticker:
return {
'display':'none'
},{'display':'none'}
else:
return {
'display':'block',
'height':'450px'
},{'display':'block'} | eae748d4506c38011ff9171ac98f760c0c32d918 | 439,596 |
def _rhs(model_expression):
"""
Get only the right-hand side of a patsy model expression.
Parameters
----------
model_expression : str
Returns
-------
rhs : str
"""
if '~' not in model_expression:
return model_expression
else:
return model_expression.split('~')[1].strip() | c28bdfc7358faae3f052d37c212371792cbb4d02 | 210,911 |
def labels_trick(outputs, labels, criterion):
"""
Labels trick calculates the loss only on labels which appear on the current mini-batch.
It is implemented for classification loss types (e.g. CrossEntropyLoss()).
:param outputs: The DNN outputs of the current mini-batch (torch Tensor).
:param labels: The ground-truth (correct tags) (torch Tensor).
:param criterion: Criterion (loss).
:return: Loss value, after applying the labels trick.
"""
# Get current batch labels (and sort them for reassignment)
unq_lbls = labels.unique().sort()[0]
# Create a copy of the labels to avoid in-place modification
labels_copy = labels.clone()
# Assign new labels (0,1 ...) because we will select from the outputs only the columns of labels of the current
# mini-batch (outputs[:, unq_lbls]), so their "tagging" will be changed (e.g. column number 3, which corresponds
# to label number 3 will become column number 0 if labels 0,1,2 do not appear in the current mini-batch, so its
# ground-truth should be changed accordingly to label #0).
for lbl_idx, lbl in enumerate(unq_lbls):
labels_copy[labels_copy == lbl] = lbl_idx
# Calcualte loss only over the heads appear in the batch:
return criterion(outputs[:, unq_lbls], labels_copy) | 5f74a1b73b6903816ff12f1e63f403754ed4810e | 654,358 |
def reshape_signal_batch(signal):
"""Convert the signal into a standard batch shape for use with cochleagram.py
functions. The first dimension is the batch dimension.
Args:
signal (array): The sound signal (waveform) in the time domain. Should be
either a flattened array with shape (n_samples,), a row vector with shape
(1, n_samples), a column vector with shape (n_samples, 1), or a 2D
matrix of the form [batch, waveform].
Returns:
array:
**out_signal**: If the input `signal` has a valid shape, returns a
2D version of the signal with the first dimension as the batch
dimension.
Raises:
ValueError: Raises an error of the input `signal` has invalid shape.
"""
if signal.ndim == 1: # signal is a flattened array
out_signal = signal.reshape((1, -1))
elif signal.ndim == 2: # signal is a row or column vector
if signal.shape[0] == 1:
out_signal = signal
elif signal.shape[1] == 1:
out_signal = signal.reshape((1, -1))
else: # first dim is batch dim
out_signal = signal
else:
raise ValueError('signal should be flat array, row or column vector, or a 2D matrix with dimensions [batch, waveform]; found %s' % signal.ndim)
return out_signal | 344ce1a9a695e99fa470a5d849afb40bc381c9df | 706,145 |
def remove_chars(string: str) -> str:
"""Remove all characters but strings.
Args:
string: <str> input string sequence.
Returns:
string: <str> sorted only letters string.
Examples:
>>> assert remove_chars('.tree1') == 'tree'
"""
return ''.join(
filter(lambda letter: letter.isalpha() or letter.isspace(), string)
) | 79baf3839c3c355052ac68bbd2bd793318023d58 | 608,172 |
import re
def _get_custom_display_values(df, translated_style):
"""Parses pandas.Styler style dictionary into a
{(row, col): display_value} dictionary for cells whose display format
has been customized.
"""
# Create {(row, col): display_value} from translated_style['body']
# translated_style['body'] has the shape:
# [
# [ // row
# { // cell or header
# 'id': 'level0_row0' (for row header) | 'row0_col0' (for cells)
# 'value': 1.329212
# 'display_value': '132.92%'
# ...
# }
# ]
# ]
default_formatter = df.style._display_funcs[(0, 0)]
def has_custom_display_value(cell):
value = str(cell["value"])
display_value = str(cell["display_value"])
if value == display_value:
return False
# Pandas applies a default style to all float values, regardless
# of whether they have a user-specified display format. We test
# for that here.
return default_formatter(value) != display_value
cell_selector_regex = re.compile(r"row(\d+)_col(\d+)")
header_selector_regex = re.compile(r"level(\d+)_row(\d+)")
display_values = {}
for row in translated_style["body"]:
# row is a List[Dict], containing format data for each cell in the row,
# plus an extra first entry for the row header, which we skip
found_row_header = False
for cell in row:
cell_id = cell["id"] # a string in the form 'row0_col0'
if header_selector_regex.match(cell_id):
if not found_row_header:
# We don't care about processing row headers, but as
# a sanity check, ensure we only see one per row
found_row_header = True
continue
else:
raise RuntimeError('Found unexpected row header "%s"' % cell)
match = cell_selector_regex.match(cell_id)
if not match:
raise RuntimeError('Failed to parse cell selector "%s"' % cell_id)
# Only store display values that differ from the cell's default
if has_custom_display_value(cell):
row = int(match.group(1))
col = int(match.group(2))
display_values[(row, col)] = str(cell["display_value"])
return display_values | 9a08d6ecd9d79e3c85ef8ae6053366388bcd43cb | 573,779 |
def decode(data):
"""
Normalize a "compressed" dictionary with special 'map' entry.
This format looks like a way to reduce bandwidth by avoiding repeated
key strings. Maybe it's a JSON standard with a built-in method to
decode it? But since I'm REST illiterate, we decode it manually!
For example, the following data object:
data = {
"244526" : [
"Starter Songs",
[
134082068,
134082066,
134082069,
134082067
],
"1234-1234-1234-1234",
false,
null,
null,
null,
null,
1
],
"map" : {
"artwork_id" : 7,
"description" : 6,
"name" : 0,
"public_id" : 4,
"sort" : 8,
"system_created" : 3,
"tracks" : 1,
"type" : 5,
"uid" : 2
}
}
will be decoded to:
data = {
"244526" : {
"name": "Starter Songs",
"tracks": [
134082068,
134082066,
134082069,
134082067
],
"uid": "1234-1234-1234-1234",
"system_created": false,
"public_id": null,
"type": null,
"description": null,
"artwork_id": null,
"sort": 1
}
}
"""
if not 'map' in data or type(data['map']) is not dict:
return data
keymap = {v: k for (k, v) in data['map'].items()}
result = {}
for k, v in data.items():
if type(v) is list:
result[k] = {keymap[i]: v[i] for i in range(len(v))}
return result | c952e08e300dbf0e9574a1076e3342ce0c3939f6 | 685,242 |
def _start_of_option(value: str) -> bool:
"""Check if the value looks like the start of an option."""
if not value:
return False
c = value[0]
# Allow "/" since that starts a path.
return not c.isalnum() and c != "/" | 7ade3d78f7778e522c02e992d6f6cf9efca7eaf4 | 463,334 |
import six
def to_unicode(value):
"""
Return the input value as a unicode string.
The input value may be and will result in:
* None -> None
* binary string -> decoded using UTF-8 to unicode string
* unicode string -> unchanged
* list or tuple with items of any of the above -> list with converted items
"""
if isinstance(value, (list, tuple)):
list_uval = []
for val in value:
uval = to_unicode(val)
list_uval.append(uval)
return list_uval
elif isinstance(value, six.binary_type):
return value.decode('utf-8')
elif isinstance(value, six.text_type):
return value
elif value is None:
return None
else:
raise TypeError("Value of {0} cannot be converted to unicode: {1!r}".
format(type(value), value)) | 2b924a7d187c81d76929110b085988ffb175715e | 611,337 |
def IoU(rect1, rect2):
""" Calculates IoU of two rectangles.
Assumes rectanles are in ltrb (left, right, top, bottom) format.
ltrb is also known as x1y1x2y2 format, whch is two corners
"""
intersection = max( min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]), 0 ) * \
max( min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]), 0 )
# A1 + A2 - I
union = (rect1[2] - rect1[0]) * (rect1[3] - rect1[1]) + \
(rect2[2] - rect2[0]) * (rect2[3] - rect2[1]) - \
intersection
return float(intersection) / max(union, .00001) | 5b2ece3afb5fa22a3c42ae108467770c0c880e70 | 464,602 |
def common(n):
"""
Returns true if the node is in the common directory.
"""
filename = n.filename.replace("\\", "/")
if filename.startswith("common/") or filename.startswith("renpy/common/"):
return True
else:
return False | a14b680b6a016b5d13385df07071091127d7b72e | 626,240 |
import torch
def get_cam_mat(width, height, focal_length):
"""
Get intrinsic camera matrix (tensor)
"""
cam_mat = torch.eye(3)
cam_mat[0, 0] = focal_length
cam_mat[1, 1] = focal_length
cam_mat[0, 2] = width / 2
cam_mat[1, 2] = height / 2
cam_mat = cam_mat.cuda()
return cam_mat | e5580df1e3a6cfd68e1af757bae65d833de2faf4 | 226,767 |
def orm_query_keys(query):
"""Given a SQLAlchemy ORM query, extract the list of column keys expected
in the result."""
return [c["name"] for c in query.column_descriptions] | cf9dbe457d369e6da3f83c4cdf74595ad8dcbc83 | 678,954 |
import json
def parse_line(header, line):
"""Parse one line of data from the message file.
Each line is expected to contain chunk key - comma - tile key (CSV style).
Args:
header (dict): Data to join with contents of line to construct a full message.
line (string): Contents of the line.
Returns:
(string): JSON encoded data ready for enqueuing.
Raises:
(RuntimeError): if less than 2 columns found on a line.
"""
msg = {}
msg['job_id'] = header['job_id']
msg['upload_queue_arn'] = header['upload_queue_url']
msg['ingest_queue_arn'] = header['ingest_queue_url']
tokens = line.split(',')
if len(tokens) < 2:
raise RuntimeError('Bad message line encountered.')
msg['chunk_key'] = tokens[0].strip()
msg['tile_key'] = tokens[1].strip()
return json.dumps(msg) | 452dd80f84a35f6e3532330155bade7f424c102a | 9,179 |
import copy
def merge_to_panoptic(detection_dicts, sem_seg_dicts):
"""
Create dataset dicts for panoptic segmentation, by
merging two dicts using "file_name" field to match their entries.
Args:
detection_dicts (list[dict]): lists of dicts for object detection or instance segmentation.
sem_seg_dicts (list[dict]): lists of dicts for semantic segmentation.
Returns:
list[dict] (one per input image): Each dict contains all (key, value) pairs from dicts in
both detection_dicts and sem_seg_dicts that correspond to the same image.
The function assumes that the same key in different dicts has the same value.
"""
results = []
sem_seg_file_to_entry = {x["file_name"]: x for x in sem_seg_dicts}
assert len(sem_seg_file_to_entry) > 0
for det_dict in detection_dicts:
dic = copy.copy(det_dict)
dic.update(sem_seg_file_to_entry[dic["file_name"]])
results.append(dic)
return results | e28916b97bf1955f06a6e24208dd6d47422e23c4 | 682,440 |
from typing import List
import re
def find_url(url_raw: List[str]) -> List[str]:
"""Function to find all URL matching a specific regex in a list of URL.
Here, this function will fetch all URL beginning with:
"https://geodatamine.fr/dump/" and continuing with "t3xt-4nd-numb3rs.text".
This allows to fetch the direct URL of the files to download.
Args:
url_raw (str): The list of URL from which to find a corresponding URL.
Returns:
List[str]: The list of URL corresponding to the given format.
"""
regex = re.compile(r"^https:\/\/geodatamine\.fr\/dump\/[\w-]+geojson\.[A-Za-z]+$")
url = [str(link) for link in url_raw if regex.match(str(link))]
return url | 2f38f161ccb11c5cfde08dd11a3d3c08ae84c516 | 74,588 |
def generateQueryRecommendations(dataFrame, dimensionAttributes, measureAttributes):
"""Function that returns a list of query recommendations to the user.
NOTE: This function assumes the underlying dataframe is called 'dataBase'
Args:
dataFrame: a pandas dataframe
dimensionAttributes: list of dimension attributes
measureAttributes: list of measure attributes
Return:
A list of strings, each representing a different query on the dataDase
"""
generatedQueryRecommendations = []
for dim in dimensionAttributes:
dimValues = dataFrame[dim].unique()
for value in dimValues:
value = value.replace("'", "''")
query = '''SELECT * FROM dataBase WHERE [''' + dim + "] = " + "'" + value + "'"
generatedQueryRecommendations.append(query)
return generatedQueryRecommendations | 4b6e53caa57c718bfbddddd090fa085a60df88d6 | 454,139 |
def _need_exponent_sign_bit_check(max_value):
"""Checks whether the sign bit of exponent is needed.
This is used by quantized_po2 and quantized_relu_po2.
Args:
max_value: the maximum value allowed.
Returns:
An integer. 1: sign_bit is needed. 0: sign_bit is not needed.
"""
if max_value is not None:
if max_value < 0:
raise ValueError("po2 max_value should be non-negative.")
if max_value > 1:
# if max_value is larger than 1,
# the exponent could be positive and negative.
# e.g., log(max_value) > 0 when max_value > 1
need_exponent_sign_bit = 1
else:
need_exponent_sign_bit = 0
else:
# max_value is not specified, so we cannot decide the range.
# Then we need to put sign_bit for exponent to be safe
need_exponent_sign_bit = 1
return need_exponent_sign_bit | a4dc3bccc8a7e8a7f4f7af2784eccd4ebb74f393 | 288,627 |
def merge_dicts(*my_dicts):
"""Combines a bunch of dictionaries together, later dictionaries taking
precedence if there is a key conflict."""
return dict((k, v) for d in my_dicts for (k, v) in d.items()) | 77ecdcef57866b1307cbaabdfa578971be70b811 | 607,656 |
import json
def build_event(body_data, query_params=dict(), path_params=dict()):
"""
Builds AWS Lambda event using the provided data
Args:
body_data (dict): data loaded to the body of event
query_params (dict): data loaded to query params of event
path_params (dict): data loaded to path params of event
Returns:
event (dict): AWS Lambda event
"""
body = json.dumps(body_data) if body_data else None
event = {
'body': body,
'queryStringParameters': query_params,
'pathParameters': path_params
}
return event | ca9353d79f630ec9e58baa6942c2e319c1e7fa60 | 238,279 |
def quote_normalization(question):
""" Normalize all usage of quotation marks into a separate \" """
new_question, quotation_marks = [], ['“', '”', '``', "''", "‘‘", "’’","'", '"', '`', '‘', '’']
for idx, tok in enumerate(question):
for mark in quotation_marks:
tok = tok.replace(mark, "\"")
new_question.append(tok)
return new_question | da5b62e821fc203868fb1c5d76460de0904f9efe | 180,507 |
def __points_to_dict(points):
"""transform list of [x, y] into a dict() where {x: y}"""
return {p[0]: p[1] for p in points} | 83c7445e1c4c2c034f609f19da0d9638b3d9dbf3 | 633,087 |
def confusion_matrix(classify=lambda document: False, documents=[(None, False)]):
""" Returns the performance of a binary classification task (i.e., predicts True or False)
as a tuple of (TP, TN, FP, FN):
- TP: true positives = correct hits,
- TN: true negatives = correct rejections,
- FP: false positives = false alarm (= type I error),
- FN: false negatives = misses (= type II error).
The given classify() function returns True or False for a document.
The list of documents contains (document, bool)-tuples for testing,
where True means a document that should be identified as True by classify().
"""
TN = TP = FN = FP = 0
for document, b1 in documents:
b2 = classify(document)
if b1 and b2:
TP += 1 # true positive
elif not b1 and not b2:
TN += 1 # true negative
elif not b1 and b2:
FP += 1 # false positive (type I error)
elif b1 and not b2:
FN += 1 # false negative (type II error)
return TP, TN, FP, FN | 6521e24c3283fff6409609f9ace760b5d318c8f3 | 661,263 |
def _CreateClassfileArgs(class_files, exclude_suffix=None):
"""Returns a list of files that don't have a given suffix.
Args:
class_files: A list of class files.
exclude_suffix: Suffix to look for to exclude.
Returns:
A list of files that don't use the suffix.
"""
result_class_files = []
for f in class_files:
if exclude_suffix:
if not f.endswith(exclude_suffix):
result_class_files += ['--classfiles', f]
else:
result_class_files += ['--classfiles', f]
return result_class_files | d64005842a3af07909c50b961ef18f8646d05231 | 428,587 |
def to_argb_int(diffuse_colour) -> int:
"""Converts an RGBA array to an ARGB integer"""
diffuse_colour = diffuse_colour[-1:] + diffuse_colour[:3]
diffuse_colour = [int(val * 255) for val in diffuse_colour]
return int.from_bytes(diffuse_colour, byteorder="big", signed=True) | 0a2d5e30c181d191c3ead3bd4ffc1c007163cc92 | 187,195 |
def getminmax(coords):
"""
Given an iterable of (x, y), return minx, miny, maxx, maxy.
"""
i = iter(coords)
try:
x, y = i.next()
minx = maxx = x
miny = maxy = y
except StopIteration:
return None, None, None, None
for x, y in i:
if x < minx:
minx = x
if x > maxx:
maxx = x
if y < miny:
miny = y
if y > maxy:
maxy = y
return minx, miny, maxx, maxy | 451b9041612d1f5ad4de41b335d7fb15d8fee386 | 581,330 |
import struct
def int2vector_pack(seq, pack = struct.pack):
"""
Given a sequence of integers, pack them into the serialized form.
An int2vector is a type used by the PostgreSQL catalog.
"""
return pack("!%dh"%(len(seq),), *seq).ljust(64, '\x00') | 41e2b494da1cf44effdbe6c02cb870804b724695 | 376,417 |
def build_catalog_url(account: str, image_digest: str) -> str:
"""
Returns the URL as a string that the policy engine will use to fetch the loaded analysis result from the catalog
:param account:
:param image_digest:
:return:
"""
return "catalog://{}/analysis_data/{}".format(account, image_digest) | cdcdd003e05c5d51ddcd7e05a6279897a226fd59 | 685,519 |
def comp_cols(comps):
"""Return columns corresponding to the average composition
:comps: str
:returns: list str
"""
return ["<comp({})>".format(c) for c in comps] | ab8afc1c69d4e26f1febbd8791fd3825d002a14d | 606,474 |
import logging
def timestamp_formatter() -> logging.Formatter:
"""Returns a logging formatter which outputs in the style of
``YEAR-MONTH-DAY HOUR:MINUTE:SECOND.MILLISECOND LEVEL MESSAGE``.
"""
return logging.Formatter(
fmt="%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
) | 05e1d5878e669a0ae4bd8c5d6aef875967c9b206 | 531,877 |
import codecs
def read_file(filename):
"""
Read a utf8 encoded text file and return its contents.
"""
with codecs.open(filename, 'r', 'utf8') as f:
return f.read() | 0e4b7da7e056c5603146ea2feebff1d9c6f61cd3 | 455,464 |
import ast
def validate_python_file(filename):
""" Determine if a Python file is valid
Args:
filename (:obj:`str`): path to Python file
Returns:
:obj:`tuple`:
* nested :obj:`list` of :obj:`str`: nested list of errors
* nested :obj:`list` of :obj:`str`: nested list of warnings
"""
try:
with open(filename, 'rb') as file:
ast.parse(file.read())
return [], []
except ValueError as exception:
return [[str(exception)]], [] | daad336486d39c40fa8ad525a40b04d2b042358e | 332,949 |
def add_suffix(fname, suffix):
"""Adds a suffix to a file name."""
name, extension = fname.split(".")
return name + "_" + suffix + "." + extension | 53e8772bd5b974635010974d6373fbf5816ae520 | 18,709 |
import re
def replace_vars(s, values):
"""Replace all occurrences of variables in the given string with values"""
retval = s
for v_key, v_value in values.iteritems():
replace = re.compile(re.escape('{{' + v_key + '}}'), re.IGNORECASE)
retval = re.sub(replace, v_value, retval)
return retval | 2dfef62d1db2d5c84f10d610893551c2f1b97a3d | 400,058 |
def font_color(
label, f_color):
"""
Changes font color in Message object attached to GUI
:param label: font used by Message in Tkinter GUI
:param f_color: font color the user selects
:return: label with new font color
"""
label.config(fg=f_color)
return label | 40bd7af9ba5b558f11c3691901dca804916fb07c | 55,679 |
def names_from_results(response):
"""Returns card names from results as a list"""
return [x["name"] for x in response.json()["results"]] | c879b2cdb8f78150e50be3e115a5103992e93b79 | 47,450 |
def get_repository_name(repository) -> str:
"""Return the name of the repository for use in the frontend."""
name = None
if repository.repository_manifest.name:
name = repository.repository_manifest.name
else:
name = repository.data.full_name.split("/")[-1]
name = name.replace("-", " ").replace("_", " ").strip()
if name.isupper():
return name
return name.title() | 402713e7d433442e26f49d01d8dd13bd5a095514 | 114,620 |
def max_cw(l):
"""Return max value of a list."""
a = sorted(l)
return a[-1] | 21b079b5c3dd4cb7aba55588d38ba57a058bbb97 | 682,539 |
def doubleNear(a, b, tol=0.0000000001):
"""
Tests whether two floats are near, within a specified tolerance
"""
return abs(float(a) - float(b)) < tol | 7ab16ab19874e3e993eb86629699e5f4cd1b0cfd | 404,020 |
import json
def load_data(filename):
"""Load source file."""
with open(filename, "r") as myfile:
text = myfile.read()
data = json.loads(text)
return data | 82271322f67ed1bedb4dd43fa6c06f99cf3594ea | 307,782 |
def codonify(seq):
"""
input: a nucleotide sequence (not necessarily a string)
output: a list of codons
"""
seq = str(seq)
l = len(seq)
return [seq[i : i + 3] for i in range(0, l, 3)] | 64852cd1830b29ea53359a9b103bc5a7a135b730 | 307,533 |
def listar_aeropuertos_sin_salida(vuelos: dict) -> list:
""" Aeropuertos sin salida
Parámetros:
vuelos (dict): Es un diccionario de diccionarios con la información de los vuelos.
Retorno:
list: Una lista de cadenas de caracteres que tiene los códigos de los aeropuertos de los cuales no
salieron vuelos.
"""
aerosinvuelo = []
destinos = []
origenes = []
# vuelos = {'codigovuelo':{'aerolinea': nombre, 'retraso': minutos}}
for vuelo in vuelos:
origen = vuelos[vuelo]['origen']
destino = vuelos[vuelo]['destino']
origenes.append(origen)
destinos.append(destino)
for destino in destinos:
if destino not in origenes and destino not in aerosinvuelo:
aerosinvuelo.append(destino)
return aerosinvuelo | 9424cb245e4db61f44088d11a43e9e37c27c4ea0 | 461,983 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.