content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def int_to_mode(mode):
"""Returns the string representation in VPP of a given bondethernet mode,
or "" if 'mode' is not a valid id.
See src/vnet/bonding/bond.api and schema.yaml for valid pairs."""
ret = {1: "round-robin", 2: "active-backup", 3: "xor", 4: "broadcast", 5: "lacp"}
try:
return ret[mode]
except KeyError:
pass
return "" | af4962c397578c9d62fc176dc1cf843ec0ff7064 | 406,418 |
def header_transform(key: str) -> str:
"""
Function returns header key in human readable
:param key: header key
:return: translated headers
"""
header_dict = {
'Cve': 'CVE ID',
'CVSS': 'CVSS Score',
'VRR': 'VRR Score',
'ThreatCount': 'Threat Count',
'VulnLastTrendingOn': 'Last Trending On Date',
'Trending': 'Trending',
}
return header_dict.get(key, '') | d5c654dc9c31b2fbbe412487692e2052810dde10 | 44,322 |
def tupleize(func):
"""A decorator that tuple-ize the result of a function. This is useful
when the evaluation function returns a single value.
"""
def wrapper(*args, **kargs):
return func(*args, **kargs),
return wrapper | 2a2a9d709177868bd47571f86ae026d666b2593b | 10,439 |
def let_count(word: str) -> dict:
"""
Returns the count of letters in a string as a dictionary
"""
return {x: word.count(x) for x in set([x for x in word])} | ad379a1387cb861c93ac5f4ca187db0d17ded66e | 481,891 |
def quoteStr(s, addQuotes=False, quoteDouble=False, quoteSingle=True):
"""
s (str) -- Source string parameter.
Options:
- addQuotes (bool|str) -- Add quotes around result string (default: False, don't quote).
- quoteSingle (bool) -- Quote single quotes ('), default is True.
- quoteDouble (bool) -- Quote double quotes ("), default is False.
Returns string.
"""
if not isinstance(s, str): # type(s) != str:
if s is None:
s = ''
else:
s = str(s)
if quoteDouble:
s = s.replace('"', '\\"')
if quoteSingle:
s = s.replace('\'', '\\\'')
if addQuotes:
if addQuotes is True:
addQuotes = "'"
s = addQuotes + s + addQuotes
return s | 399ef818107e5409211348aa64386bbc2a24113c | 650,868 |
def intdiv(p, q):
""" Integer divsions which rounds toward zero
Examples
--------
>>> intdiv(3, 2)
1
>>> intdiv(-3, 2)
-1
>>> -3 // 2
-2
"""
r = p // q
if r < 0 and q*r != p:
r += 1
return r | dc1b507f4a5e71f93a3145bbffe8076ab43cf117 | 77,306 |
def scale_abcline(input_line, orig_dims, new_dims):
"""
:param input_line: line of form [a, b, c] from equation of form ax+by+c=0
:param orig_dims: tuple of (width, height) of original dimensions
:param new_dims: tuple of (width, height) of new dimensions
:return: scaled line of form [a', b', c'] from equation of form a'x+b'y+c'=0
"""
# rescaling the horizon line according to the new size of the image
# see https://math.stackexchange.com/questions/2864486/
# how-does-equation-of-a-line-change-as-scale-of-axes-changes?noredirect=1#comment5910386_2864489
horizon_vectorform = input_line.copy()
net_width, net_height = orig_dims
re_width, re_height = new_dims
horizon_vectorform[0] = horizon_vectorform[0] / (re_width / net_width)
horizon_vectorform[1] = horizon_vectorform[1] / (re_height / net_height)
horizon_vectorform = horizon_vectorform / horizon_vectorform[2]
return horizon_vectorform | ec583dbcf716cd67d9457df516ede44ecca7ec38 | 381,545 |
def swap_bbox_format(bbox_tuple):
"""Swap between (row0, col0, row1, col1) and (x0, y0, x1, y1) formats."""
assert len(bbox_tuple) == 4
return (bbox_tuple[1], bbox_tuple[0], bbox_tuple[3], bbox_tuple[2]) | 70f25efdde490acee7442a29f76117615fb1125c | 588,699 |
def popcount_local(num):
"""Count 1's in an integer"""
return bin(num).count("1") | b292cb82bc140d840127db359c3618a1fd8d5084 | 346,783 |
def check_xml_for_silence(sbf):
"""
Function to determine if a section marked in an Audacity xml file contains
silence or sound.
Parameters
----------
sbf : dictionary
`<simpleblockfile>` tag parsed from Audacity xml file
Returns
-------
silence: boolean
True if silence, False if sound
"""
if float(sbf['min']) == 0.0 and float(sbf['max']) == 0.0 and float(sbf[
'rms']) == 0.0:
return True
else:
return False | c6e0d80846888965412810099a30598fb81dda7c | 95,432 |
import glob
import json
def parse_yang2proto_files(yang2proto_file_glob):
"""Parses a glob specifying yang2proto files to load as JSON."""
yang2proto = []
for yang2proto_filename in list(glob.glob(yang2proto_file_glob)):
with open(yang2proto_filename) as yang2proto_fd:
yang2proto.extend(json.load(yang2proto_fd))
return yang2proto | 75f3dfe859d0e72b723c58d3d382a6a0410a066a | 147,592 |
def is_same_py_file(file1, file2):
"""compares 2 filenames accounting for .pyc files"""
if file1.endswith('.pyc') or file1.endswith('.pyo'):
file1 = file1[:-1]
if file2.endswith('.pyc') or file2.endswith('.pyo'):
file2 = file2[:-1]
return file1 == file2 | 836e3d4dcbb23f90b6a539fe63513cf40205eb29 | 522,327 |
def c2f(c: float, r: int = 2) -> float:
"""Celsius to Fahrenheit."""
return round((c * 1.8) + 32, r) | 9c4d950b6fc91e797348d151722877932310337f | 278,747 |
def any_are_not_none(*args) -> bool:
"""
Return True if any arg is not None.
"""
return any([arg is not None for arg in args]) | 555da8dc54b737ed9c221f3b8b0594a347bd09b1 | 406,243 |
import torch
def calculate_tp_troch(pred_boxes, pred_scores, gt_boxes, gt_difficult=None, iou_thresh=0.5):
"""
calculate tp/fp for all predicted bboxes for one class of one image.
对于匹配到同一gt的不同bboxes,让score最高tp = 1,其它的tp = 0
Args:
pred_boxes: Tensor[N, 4], 某张图片中某类别的全部预测框的坐标 (x0, y0, x1, y1)
pred_scores: Tensor[N, 1], 某张图片中某类别的全部预测框的score
gt_boxes: Tensor[M, 4], 某张图片中某类别的全部gt的坐标 (x0, y0, x1, y1)
gt_difficult: Tensor[M, 1], 某张图片中某类别的gt中是否为difficult目标的值
iou_thresh: iou 阈值
Returns:
gt_num: 某张图片中某类别的gt数量
tp_list: 记录某张图片中某类别的预测框是否为tp的情况
confidence_score: 记录某张图片中某类别的预测框的score值 (与tp_list相对应)
"""
if gt_boxes.numel() == 0:
return 0, [], []
# 若无对应的boxes,则 tp 为空
if pred_boxes.numel() == 0:
return len(gt_boxes), [], []
if gt_difficult is None:
gt_difficult = torch.zeros((len(gt_boxes), 1)).to(gt_boxes)
# 否则计算所有预测框与gt之间的iou
ious = pred_boxes.new_zeros((len(gt_boxes), len(pred_boxes)))
for i in range(len(gt_boxes)):
gb = gt_boxes[i]
area_pb = (pred_boxes[:, 2] - pred_boxes[:, 0]) * (pred_boxes[:, 3] - pred_boxes[:, 1])
area_gb = (gb[2] - gb[0]) * (gb[3] - gb[1])
xx1 = pred_boxes[:, 0].clamp(min=gb[0].item()) # [N-1,]
yy1 = pred_boxes[:, 1].clamp(min=gb[1].item())
xx2 = pred_boxes[:, 2].clamp(max=gb[2].item())
yy2 = pred_boxes[:, 3].clamp(max=gb[3].item())
inter = (xx2 - xx1).clamp(min=0) * (yy2 - yy1).clamp(min=0) # [N-1,]
ious[i] = inter / (area_pb + area_gb - inter)
# 每个预测框的最大iou所对应的gt记为其匹配的gt
max_ious, max_ious_idx = ious.max(dim=0)
not_difficult_gt_mask = gt_difficult == 0
gt_num = not_difficult_gt_mask.sum().item()
if gt_num == 0:
return 0, [], []
# 保留 max_iou 中属于 非difficult 目标的预测框,即应该去掉与 difficult gt 相匹配的预测框,不参与p-r计算
# 如果去掉与 difficult gt 对应的iou分数后,候选框的最大iou依然没有发生改变,则可认为此候选框不与difficult gt相匹配,应该保留
not_difficult_pb_mask = (ious[not_difficult_gt_mask].max(dim=0)[0] == max_ious)
max_ious, max_ious_idx = max_ious[not_difficult_pb_mask], max_ious_idx[not_difficult_pb_mask]
if max_ious_idx.numel() == 0:
return gt_num, [], []
confidence_score = pred_scores.view(-1)[not_difficult_pb_mask]
tp_list = torch.zeros_like(max_ious)
for i in max_ious_idx[max_ious > iou_thresh].unique():
gt_mask = (max_ious > iou_thresh) * (max_ious_idx == i)
idx = (confidence_score * gt_mask.float()).argmax()
tp_list[idx] = 1
return gt_num, tp_list.tolist(), confidence_score.tolist() | 934462eb53bed7cc88bcc169d619cc46c44ae3a4 | 557,359 |
def beta_to_kelvin(beta):
"""
Convert :math:`\\beta` to Kelvin.
Parameters
----------
beta : float
Inversion temperature.
Returns
-------
T : float
Temperature (K).
"""
kb=8.6173303E-5
ev = 1.0/float(beta)
T = ev/kb
return T | 6f58f248fad6045cf1b9f9e6d29f162f3e01f515 | 577,771 |
def year_to_season(yr: str) -> int:
"""Converts a school year into a season
e.g. year_to_season("2016-17") returns 2017
:param yr: String
:returns: Int
"""
return int(yr[0:4]) + 1 | 51caeee1659e584cdd92a919cbdde257b718c76a | 330,836 |
def first(items):
"""
Get the first item from an iterable.
Warning: It consumes from a generator.
:param items: an iterable
:return: the first in the iterable
"""
for item in items:
return item | 2ed7fa730b1b1c1588bc98e93ac8ef02a669ae98 | 29,346 |
from typing import Dict
def status_of_battery_event(data: Dict) -> bool:
"""Verifies whether the receives data indicates a valid battery status."""
for required in [
"chargePercent",
"created",
"current",
"healthPercent",
"isCharging",
"sensorId",
"state",
"temperature",
"trained",
"voltage",
]:
if isinstance(data.get(required), type(None)):
return False
return True | 465cc8dff96016d3f3efdf216b01f511d4e94a46 | 381,598 |
def strftime(to_format):
"""strftime(to_format)(dt_obj) -> str
Return datetime, time or date object dt_obj formatted with to_format.
:: str -> (datetime.datetime|datetime.date|datetime.time) -> str
>>> strftime('%Y-%m-%d')(datetime.date(2112, 12, 21))
'2112-12-21'
"""
return lambda dt_obj: dt_obj.strftime(to_format) | 72a4f5ea1ebbe9b0734cb3f6b4890e7e18c3e601 | 337,226 |
from pathlib import Path
import glob
def get_target_path(tracking_file_source, target_dir):
"""
get_target_path(tracking_file_source, target_dir)
Returns the target path (mouse/session specific) for a source json.
Required args:
- tracking_file_source (Path): source json path
- target_dir (Path) : main target data directory
(up to, but excluding mouse directories)
Returns:
- tracking_file_target (Path): target json path
"""
# identify target directories
source_file_name = Path(tracking_file_source).name
file_name_tokens = str(source_file_name).split("_")
mouse_id = file_name_tokens[file_name_tokens.index("mouse") + 1]
sess_id = file_name_tokens[file_name_tokens.index("session") + 1]
target_direc_pattern = Path(
target_dir,
f"mouse_{mouse_id}",
f"ophys_session_{sess_id}",
f"ophys_experiment_*",
"processed"
)
target_direc = glob.glob(str(target_direc_pattern))
if len(target_direc) == 0:
raise OSError(
f"No directory found with pattern: {target_direc_pattern}."
)
elif len(target_direc) > 1:
target_matches = ", ".join([str(match) for match in target_direc])
raise NotImplementedError(
f"Multiple directories found with pattern: {target_direc_pattern}, "
f"namely {target_matches}"
)
else:
target_direc = target_direc[0]
# set target path
tracking_file_target = Path(target_direc, source_file_name)
return tracking_file_target | b865c36c4f20f902cf42a919ceca379392ff85bc | 294,506 |
def _without(o, *values):
"""
Return a version of the array that does not contain the specified
value(s), or object that doesn't contain the specified key(s)
"""
if isinstance(o, dict):
newlist = {}
for k in o:
if k not in values:
newlist[k] = o[k]
else:
newlist = []
for v in o:
if v not in values:
newlist.append(v)
return newlist | 2851402bea72813b5563d352a84d97677dccd462 | 474,017 |
from typing import Set
def bits_to_candidates(bits: int) -> Set[int]:
"""
Convert a bits representation into a set of candidates
>>> bits_to_candidates(0b111)
{1, 2, 3}
>>> bits_to_candidates(0b111000101)
{1, 3, 7, 8, 9}
"""
candidates = set()
i = 1
while bits:
bit = bits & 1
if bit:
candidates.add(i)
bits >>= 1
i += 1
return candidates | 47a662da6423e730c5a15692a835b0c63ba5e69f | 234,796 |
def is_valid_nuc(nuc):
"""Check if valid single letter base.
Parameters
----------
nuc : str
String to check if valid single nucleotide base
Returns
-------
is_valid : bool
flag indicating valid nucleotide base
"""
valid_nucs = ['A', 'C', 'T', 'G', 'N']
is_valid = nuc in valid_nucs
return is_valid | 02009b030072c18cabdd152cde879b4f3974b9a5 | 130,715 |
def parse_client_time(config_root):
"""
Parse the client time (the duration that the test should be executed for)
from the XML configuration.
Parameters
----------
config_root : xml.Element
The root of the XML config file.
Returns
-------
client_time : int
The duration that the test should be executed for.
Raises
-------
KeyError
If the relevant key (works.work.time) is not present in the XML file.
"""
try:
return int(config_root.find('works').find('work').find('time').text)
except:
raise KeyError("Couldn't parse the config file for works.work.time.") | a871f0028d70636bac0b818d2c9eb7574183f49e | 299,085 |
def lin_f(xy_s, xy_e):
"""Find a function representing for a line:
y = ax + b
:param: xy_s: tuple
start point coordinate of the line
:param: xy_s: tuple
end point coordinate of the line
"""
a = (xy_e[1] - xy_s[1]) / (xy_e[0] - xy_s[0])
b = xy_e[1] - a * xy_e[0]
return a, b | b1d62e205e713bf7a8ad69c236a87741221557f8 | 311,868 |
def to_lower_camel(name: str) -> str:
"""Converts snake_case string into lowerCamelCase."""
head, *tail = name.split("_")
return head.lower() + "".join(x.title() for x in tail) | 9229ce02b84310ec345d71feac8abbaf8b39fa61 | 436,273 |
def read_dictionary(path, multivals=False, func_key=lambda x: x, func_val=lambda x: x):
"""
Parameters
----------
path: str
multivals: bool, default False
func_key: function: str -> Any
func_val: function: str -> Any
Returns
-------
dict[Any, Any] or dict[Any, list[Any]]
"""
d = {}
for line in open(path):
line = line.strip().split()
if multivals:
if len(line) == 2:
key, val = line
vals = [val]
else:
key = line[0]
vals = line[1:]
d[func_key(key)] = [func_val(val) for val in vals]
else:
if len(line) == 2:
key, val = line
else:
key = line[0]
val = " ".join(line[1:])
d[func_key(key)] = func_val(val)
return d | 375fd0cf61ea11dc9f8a16358e25433cd3591ae2 | 172,800 |
def calc_cent_scale(img):
"""
Calculates the centre of an image and the correct scale value.
Parameters
----------
img : numpy.ndarray
The image to process.
Returns
-------
c : int
The coordinates of the centre of the image.
s : float
The scale of the image in relation to a 200x200 image.
"""
imgw = img.shape[1];
imgh = img.shape[0];
c = (int(imgw / 2), int(imgh / 2));
s = imgh / 200;
return c , s; | 1381a8030b10d8e0efa65f27b0b4322cf25d069c | 564,803 |
def _vars_to_add(new_query_variables, current_query_variables):
"""
Return list of dicts representing Query Variables not yet persisted
Keyword Parameters:
new_query_variables -- Dict, representing a new inventory of Query
Variables, to be associated with a DWSupport Query
current_query_variables -- Dict, representing the Query Variables
currently associated with the 'new_query_variables' Query mapped
by tuple(table_name, column_name)
>>> from pprint import pprint
>>> test_new_vars = { 'great_fact': ['measure_a', 'measure_b']
... ,'useful_dim': ['field_one']
... ,'occasionally_useful_dim': ['field_two']}
>>> persisted_vars = { ('great_fact', 'measure_a'): object() #fake
... ,('useful_dim', 'field_one'): object()#objects
... ,('useful_dim', 'field_two'): object()}
>>> out = _vars_to_add(test_new_vars, persisted_vars)
>>> pprint(out) # check detected additions
{'great_fact': ['measure_b'], 'occasionally_useful_dim': ['field_two']}
"""
additional_fields_by_table_name = {} # Values to return
# detect additions
for new_variable_table_name, table_columns in new_query_variables.items():
for column_name in table_columns:
key = (new_variable_table_name, column_name) #table+column tuple
if key not in current_query_variables:
# New Query Variable - add variable name to table's list
table_variables = additional_fields_by_table_name.setdefault(
new_variable_table_name
,list()) #default to new, empty list (if none exists yet)
table_variables.append(column_name)
return additional_fields_by_table_name | fd5ea2209b374ab9987a05c139ba1f28805f3eff | 706,329 |
def get_safe(dat, start_idx=None, end_idx=None):
"""
Returns a filtered window between the two specified indices, with all
unknown values (-1) removed.
"""
if start_idx is None:
start_idx = 0
if end_idx is None:
end_idx = 0 if dat.shape[0] == 0 else dat.shape[0] - 1
# Extract the window.
dat_win = dat[start_idx:end_idx + 1]
# Eliminate values that are -1 (unknown).
return dat_win[dat_win != -1] | 61d9974ca4c6d670e5aa253f9c757a842beae28f | 217,606 |
def get_nn_dict(cnn, structure, ix):
"""
For the given atom indices, calculates the nearest neighbours using the
crystalNN method.
Args
----
cnn: CrystalNN
The CrystalNN class object.
structure: pymatgen.core.Structure
Pymatgen Structure object.
ix: list
Indices (int) of atoms to get neighbours for.
"""
return { i:cnn.get_nn_info(structure,i) for i in ix } | cc88c67117505ae8203eb4a1e74470fe0faf4c4f | 436,779 |
def vending_machine(snacks):
"""Cycles through sequence of snacks.
>>> vender = vending_machine(('chips', 'chocolate', 'popcorn'))
>>> vender()
'chips'
>>> vender()
'chocolate'
>>> vender()
'popcorn'
>>> vender()
'chips'
>>> other = vending_machine(('brownie',))
>>> other()
'brownie'
>>> vender()
'chocolate'
"""
index = 0
def vender():
nonlocal index
snak = snacks[index % len(snacks)]
index += 1
return snak
return vender | 27f1789f8137044f692753c367dce82d83c98cc9 | 447,463 |
def proper_form(s:str)->str:
"""
return properly formed string for
metric to be consistent, for example a_prc->AUPRC
since in papers & other official documents we abbreviate
"area under the precison recall curve" as AUPRC
:parm s: any string
:return: proper form of input value if we know it, the input value unchanged if not
"""
if s == "a_prc":
return "\\ac{AUPRC}"
elif s == "auc":
return "\\ac{AUC}"
elif s == "acc":
return "accuracy"
else:
return s | 1471523b292367aab150811f38b5cd6d04f15e58 | 430,719 |
def get_form_field(form, label):
"""
Return a bound field with the given label from a form
"""
return form.fields[label].get_bound_field(form, label) | 94bbc89949d513c6abda4be0f1d4bc6cbdb85a0c | 212,278 |
import re
def generate_id(title, published_on=None):
"""Generates a report id given the report title and published date.
This generally tries to be clever and uses the first letter of each name of
the title, then the month date and year of the report as the ID.
"""
words = title.split()
letters = [word[0] for word in words if re.match(r'\w', word[0])]
slug = ''.join(letters).upper()
if published_on:
return '%s-%s' % (slug[:16], published_on.strftime('%Y-%m-%d'))
else:
return slug | ffdc6189a886b21bc78f5d9ddf0613e8b95caac4 | 307,145 |
def decide_model_actions(spec, model):
"""
either set the param hints or the bounds depending on the spec dict
:param spec: dictionary of the params to be set on the model
:param model: lmfit model object
:return: the updated model object
"""
for param_key, param_value in spec['params'].items():
if param_value: # then set this value
model.set_param_hint(param_key, value=param_value)
for bound_key, bound_value in spec['bounds'].items():
if bound_value[0]: # then set lower bound
model.set_param_hint(bound_key, min=bound_value[0])
if bound_value[1]: # then set upper bound
model.set_param_hint(bound_key, max=bound_value[1])
return model | 8792477b15d6fe75d4d31c0dfa2876a7c9115f09 | 377,161 |
import logging
import zipfile
import tarfile
def get_archive_member_names(archive_file_name, archive_file_type):
"""
Gets all of the file names/members of the archive.
:param archive_file_name: the file name/path of the archive
:param archive_file_type: the file extention type: 'tar' or 'zip'
:return: a list of the names/members in the archive on success, None if failure to open/read archive
:rtype: bool
"""
logging.info("Checking archive... this may take a moment for large files.")
try:
if archive_file_type == 'zip':
archive = zipfile.ZipFile(archive_file_name, 'r', allowZip64=True)
return archive.namelist()
elif archive_file_type == 'tar':
archive = tarfile.open(archive_file_name, mode='r')
archive_members = archive.getmembers()
archive_name_list = []
for item in archive_members:
if item.type == tarfile.DIRTYPE:
#append a '/' to the end of the directory name to match zip output formatting
archive_name_list.append(item.name + '/')
else:
archive_name_list.append(item.name)
return archive_name_list
except:
# expected errors: (zipfile.BadZipFile, tarfile.ReadError), but catch all of them anyways
logging.error("Error thrown attempting to read/open the archive. Please use 'zip' or 'tar' to create your archive.")
return None | 0285e878b74ac947b863bb16adf7a148230fd362 | 402,914 |
def add_heat(heatmap, bbox_list):
"""
Given a heatmap, add one to each pixel inside each bounding box in the
specified list.
Args:
heatmap: Modify and return this heatmap.
bbox_list: List of bounding boxes for potential car locations.
Returns:
A modified heatmap
"""
# Iterate through list of bboxes
for box in bbox_list:
# Add += 1 for all pixels inside each bbox
# Assuming each "box" takes the form ((x1, y1), (x2, y2))
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
# Return updated heatmap
return heatmap | 4a387f946313830aaeb1181cbe15f310ce1494b7 | 560,538 |
import re
def parse_colors(colors_string):
"""
Return a list of colors in the format '#XXXXXX' from colors_string or
the default colors if no color is found.
"""
# RGB colors
default_colors = ['#ff0000', '#00ff00', '#0000ff']
colors = []
if isinstance(colors_string, str):
colors = re.findall('#[0-9a-fA-F]{6}', colors_string)
try:
assert colors != []
except AssertionError:
colors = default_colors
return colors | 9be978564e17718b73a5087e96ce8d907d687004 | 268,621 |
def compss_wait_on(*args):
"""
Dummy compss_wait_on
:param args: Objects to wait on
:return: The same objects defined as parameter
"""
ret = list(map(lambda o: o, args))
ret = ret[0] if len(ret) == 1 else ret
return ret | bbeeddaa6ea3efa6215a0d8f0cf02f5d01657804 | 532,467 |
def _get_bunch_bounds(bunch):
"""Return the data bounds of a bunch."""
if 'data_bounds' in bunch and bunch.data_bounds is not None:
return bunch.data_bounds
xmin, ymin = bunch.pos.min(axis=0)
xmax, ymax = bunch.pos.max(axis=0)
return (xmin, ymin, xmax, ymax) | 8ec5db4a46f367050fd2504b7fd2e7940654af54 | 548,648 |
def view_exists(spark_session, view_name):
"""Return True if the specified view exists"""
try:
_ = spark_session.read.table(view_name)
return True
except:
return False | c21998d87c9cc5715d1b3ef93bfea0b9cfecc19d | 57,248 |
def add_node(nodes, parent, time):
"""Adds a node with specified parent and creation time. This functions assumes that
a node has been already allocated by "child" functions `add_node_classifier` and
`add_node_regressor`.
Parameters
----------
nodes : :obj:`Nodes`
The collection of nodes.
parent : :obj:`int`
The index of the parent of the new node.
time : :obj:`float`
The creation time of the new node.
Returns
-------
output : `int`
Index of the new node.
"""
node_index = nodes.n_nodes
nodes.index[node_index] = node_index
nodes.parent[node_index] = parent
nodes.time[node_index] = time
nodes.n_nodes += 1
return nodes.n_nodes - 1 | d204d618114b13ffcbfc038c91884f4a87e743c0 | 36,405 |
import re
def remove_script_lines(text):
"""Remove the starting and ending lines produced by script(1)."""
script_re = re.compile(r'^Script (started|done) on \w+ \d+ \w+ \d{4} '
r'\d\d:\d\d:\d\d \w+ \w+$')
try:
first_newline = text.index(b'\n')
first_line = text[:first_newline].decode('ascii')
except (ValueError, UnicodeDecodeError):
pass
else:
if script_re.match(first_line):
text = text[first_newline+1:]
try:
last_newline = text.rstrip().rindex(b'\n')
last_line = text[last_newline+1:].decode('ascii')
except (ValueError, UnicodeDecodeError):
pass
else:
if script_re.match(last_line):
text = text[:last_newline]
return text | 42a383f19cb44286b8d82ba1bdca228fc3b86988 | 195,450 |
import random
def random_text(size):
"""Randomly generate text"""
alphabet_and_numbers = 'abcdefghijklmnopqrstuvwqyz1234567890'
return(''.join(random.choice(alphabet_and_numbers) for _ in range(size))) | fe72e51479756da32456a57c671d51ccee067d72 | 693,935 |
def hex_to_int(color):
"""
:hex_to_int: converts a string hexadecimal rgb code to a tuple rgb code consisting or integer values for each
channel.
:param color: string | hex code for a color (does not include the hashtag)
:return: (r, g, b) | a tuple rgb code in integer form
"""
return int(color[:2], 16), int(color[2:4], 16), int(color[4:], 16) | f02ffca88cec926b530caa0fc20fc614dc4376a9 | 671,514 |
import struct
import base64
import hashlib
def ri_b64hash(path):
"""Get Base64 encoded hash of a router from a RouterInfo file"""
with open(path, "rb") as f: data = f.read()
cert_len = struct.unpack("!H", data[385:387])[0]
public_data = data[:387+cert_len]
return base64.b64encode(hashlib.sha256(public_data).digest(),
altchars=b"-~").decode() | 9bfad953b069b26c23cf35cc60e057077b10d397 | 308,701 |
def parse_int_list(s):
"""
Parse a comma-separated list of strings.
The list may additionally contain ranges such as "1-5",
which will be expanded into "1,2,3,4,5".
"""
result = []
for item in s.split(','):
item = item.strip().split('-')
if len(item) == 1:
result.append(int(item[0]))
elif len(item) == 2:
start, end = item
result.extend(range(int(start), int(end)+1))
else:
raise ValueError("invalid range: '{0}'".format(s))
return result | b53508b1d7bed0f16a0c56175115f01d962cbeef | 512,624 |
def get_config_from_package(package):
""" Breaks a package string in module and class.
:param package: A package string.
:return: A config dict with class and module.
"""
package_x = package.split('.')
package_conf = {}
package_conf['class'] = package_x[-1]
package_conf['module'] = '.'.join(package_x[:-1][:])
return package_conf | b6504372aac83d008e97463636d7bcd7533e061b | 123,450 |
import math
def uni_comp_strength(c, Phi):
"""
calculates and returns the Uniaxial Compressive Strength of the rock given Cohesion (c) and Friction Angle (Phi).
"""
return (2*c*math.cos(math.radians(Phi)))/(1-math.sin(math.radians(Phi))) | 4db4cdbf494a8f4f063ca5827e7459b7ec5558d1 | 55,079 |
from typing import List
def protein_list() -> List[str]:
"""Proteins to constrain as a pool set."""
return [
"prot_P21599",
"prot_P0A9B2",
] | a94b8495285d4d656e7bb5287241e081e3954bdf | 459,716 |
def get_examples(section_div, examples_class):
"""Parse and return the examples of the documentation topic.
Parameters
----------
section_div : bs4.BeautifulSoup
The BeautifulSoup object corresponding to the div with the "class"
attribute equal to "section" in the html doc file.
examples_class: Str
The value of the "class" attribute of the <div> tag within section_div.
"highlight-python" is the class which are used for examples in the
webpage.
Returns
-------
Str:
The examples for the topic.
"""
example = section_div.find("div", attrs={"class": examples_class})
if example:
return example.text.strip()
return | 93da0bfc7fec2b2f7668fd24825068a91c672398 | 650,794 |
def data_exists(data, channel, column):
"""Check for a channel/column existing"""
if channel in data:
if column in data[channel].columns:
return True
return False | 17f5ef1509e00bbcba018dc6cd6fa663b47905b3 | 211,099 |
import torch
def ClassificationAccuracy(output, target):
"""
ClassificationAccuracy on a given batch
Args:
output(:obj:`torch.Tensor`) - predicted segmentation mask
of shape BATCHES x SCORES FOR DIFFERENT CLASSES
target(:obj:`torch.Tensor`) - expected segmentation mask
of shape BATCHES x SCORES FOR DIFFERENT CLASSES
Returns:
Classification Accuracy averaged over the batch of images
"""
predictions = torch.argmax(output.data, 1) # indices of the predicted clases
correct = (predictions == target).sum().item()
total = output.size(0)
return correct / total | 024efd8715492e7c5a2984b1846840c297edfe27 | 32,848 |
def wordSplit(word):
"""Split the word into individual letters. Place these in a list."""
return list(word) | d2bd14a9f385e111e4b6a8a2ec8046dbc8188070 | 305,269 |
def _get_file_obj(fname, mode):
"""
Light wrapper to handle strings and let files (anything else) pass through
"""
try:
fh = open(fname, mode)
except (IOError, TypeError):
fh = fname
return fh | eb305e02a916f6e8d6b15b1ea4fc492a767e039a | 318,983 |
import hashlib
from pathlib import Path
def label_generator(predictions, processor, filename):
"""Generates a unique label for the image based on the predicted class, a hash,
and the existing file extension.
Parameters
----------
predictions : np.array
Output from model showing each target probability
processor : keras.util
Prediction utility unique to each model
filename : str
Path to image or image name
Returns
-------
new_label : str
New label consisting of predicted class plus a hash
"""
# Hash predictions for always unique filename
hashed = hashlib.sha1(predictions).hexdigest()
# Get label from keras predictor
label = processor(predictions, top=1)[0][0][1]
# Capture original image suffix
suffix = "".join(Path(filename).suffixes)
new_label = f"{label}_{hashed}{suffix}"
return new_label | 8baba1aad6ad9a7f4d69b499a76b1b4079e79cb5 | 24,817 |
def transform_basis_name(name):
"""
Transforms the name of a basis set to an internal representation
This makes comparison of basis set names easier by, for example,
converting the name to all lower case.
"""
name = name.lower()
name = name.replace('/', '_sl_')
name = name.replace('*', '_st_')
return name | a1fd3cc6c140c16a35ef795f18ce10f351d4bdbd | 208,579 |
def morton2D(k, x, y):
"""
Computes and returns the morton code of the x, y coordinates each
represented with k bits
Args:
k: Bits to represent each coordinate with
x: X coordinate
y: Y coordinate
Returns:
The morton code in integer format of the x, y coordinates of size 2*k
"""
result = (x << k) + y
return result | f89a26fa522dfd6cdcf53c597411854fecc77848 | 498,977 |
def reverse_map(dict_of_sets):
"""Reverse a map of one-to-many.
So the map::
{
'A': {'B', 'C'},
'B': {'C'},
}
becomes
{
'B': {'A'},
'C': {'A', 'B'},
}
Args:
dict_of_sets (dict[set]): A dictionary of sets, mapping
one value to many.
Returns:
dict[set]: The reversed map.
"""
result = {}
for key, values in dict_of_sets.items():
for value in values:
result.setdefault(value, set()).add(key)
return result | 87b0679a0ebd00c3dbdcafc89fd2644b21ecbc85 | 698,671 |
def process_empty(p):
"""
Helper function for multiprocessing. Literally returns empty.
Args:
p: Point
Returns:
[p, 0, [], [], []]
"""
return [p, 0, [], [], []] | 28d5cce2d6038fc47727809142a9bd59012f4ae8 | 566,022 |
import json
def import_json(json_file):
"""Import json and convert it to a dictionary."""
with open(json_file) as jsonfile:
# `json.loads` parses a string in json format
file_dict = json.load(jsonfile)
return file_dict | 944b4ef534e26698b8ed24a67feadbe128934871 | 563,325 |
from bs4 import BeautifulSoup
def gather_ids(soup: BeautifulSoup) -> set:
"""Gather all HTML IDs from a given page."""
return set(tag['id'] for tag in soup.find_all(id=True)) | 88acc128faeee08deeea2df8b101fee909c82219 | 130,242 |
def vast_count(c):
"""Run `vast count` and parse the result"""
res = c.run('./vast-cloud run-lambda -c "vast count"', hide="stdout")
return int(res.stdout.strip()) | 182c4be1b0f9b8b6b0b42d6545cb4ff4341ca31a | 211,901 |
import re
def get_ascent_type(bs_obj):
"""
gets the ascent style: Boulder, Mixed, Trad
it will be useful for future difficulties classification and their representation
:param bs_obj: BeautifulSoup object
:return: str
"""
rez = bs_obj.find("span", {"class": re.compile("tags .+")})
if rez:
return rez.text
return "Unknown" | 8bc1503eacde87ba51f75c85634b8291bb2a34fd | 508,020 |
from typing import Tuple
def n_syllables(n_syllables_per_word: Tuple[int, ...]) -> int:
"""
Compute the total number of syllables in a document.
Args:
n_syllables_per_word: Number of syllables per word in a given document,
as computed by :func:`n_syllables_per_word()`.
"""
return sum(n_syllables_per_word) | 1b16158200b39848a7ab2f128391a1b06f746b36 | 552,562 |
def _list_subclasses(cls):
"""
Recursively lists all subclasses of `cls`.
"""
subclasses = cls.__subclasses__()
for subclass in cls.__subclasses__():
subclasses += _list_subclasses(subclass)
return subclasses | 4cebf48916c64f32fcd5dfff28ecde7a155edb90 | 649 |
def mod_5(x):
"""Return the remainder of x after dividing by 5"""
return x % 5 | d4aedd1349379ceca5b5af7f1b54bf55b8389aaf | 53,288 |
def floats(float_list):
"""coerce a list of strings that represent floats into a list of floats"""
return [float(number) for number in float_list] | 7600eb6ff1fcb1771e237dfbbe3f61b4fe68f026 | 303,272 |
def NAMED(n, e):
"""
Puts the expression in a named-group
:param:
- `n`: the name of the group
- `e`: regular expression
:return: named-group
"""
return "(?P<{n}>{e})".format(n=n, e=e) | 6a3b5958e1a2f29007ea37e7382a0333a3b41033 | 365,393 |
def map2(f, ls):
"""map to a depth of 2. That is, given a list of lists, apply
f to those innermost elements """
return map(lambda l: map(f, l), ls) | e527f15e1e03524b358de099009b3362a7c8be3f | 241,848 |
def youngs(vp=None, vs=None, rho=None, mu=None, lam=None, bulk=None, pr=None,
pmod=None):
"""
Computes Young's modulus given either Vp, Vs, and rho, or
any two elastic moduli (e.g. lambda and mu, or bulk and P
moduli). SI units only.
Args:
vp, vs, and rho
or any 2 from lam, mu, bulk, pr, and pmod
Returns:
Young's modulus in pascals, Pa
"""
if (vp is not None) and (vs is not None) and (rho is not None):
return rho * vs**2 * (3.*vp**2 - 4.*vs**2) / (vp**2 - vs**2)
elif (mu is not None) and (lam is not None):
return mu * (3.*lam + 2*mu) / (lam + mu)
elif (bulk is not None) and (lam is not None):
return 9.*bulk * (bulk - lam) / (3.*bulk - lam)
elif (bulk is not None) and (mu is not None):
return 9.*bulk*mu / (3.*bulk + mu)
elif (lam is not None) and (pr is not None):
return lam * (1+pr) * (1 - 2*pr) / pr
elif (pr is not None) and (mu is not None):
return 2. * mu * (1+pr)
elif (pr is not None) and (bulk is not None):
return 3. * bulk * (1 - 2*pr)
else:
return None | 127d0598a4e8d53c2e31b10c53ab1fddfedc4987 | 674,202 |
def quote(string: str) -> str:
"""
Wrap a string with quotes iff it contains a space. Used for interacting with command line scripts.
:param string:
:return:
"""
if ' ' in string:
return '"' + string + '"'
return string | 460b394ddc3223bf3ff7b6fc9b7893802fd7e1b9 | 658,817 |
def climbStairs(n, dic = {0:0,1:1,2:2}):
"""
LeetCode-Problem:
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Solution:
Exploring all possible ways to climb the stairs in 1 or 2 steps. And using the dictionary to keep
record of the paths we already explored.
"""
if n in dic.keys():
return dic[n]
else:
dic[n] = climbStairs(n-1,dic) + climbStairs(n-2,dic)
return dic[n] | cb006101f093b4aaf7f0ecf71b03ed74ec149e12 | 608,367 |
def find_indices(header):
"""Return the positions of relevant fields in our rows."""
return {
'subject': header.index("Course Subject Short Nm"),
'course_num': header.index("Course Number"),
'section_num': header.index("Section Nbr"),
'title': header.index("Course Title Nm"),
'instructor': header.index("Instructor Name"),
'ccn': header.index("Course Control Nbr"),
'grade_name': header.index("Grade Nm"),
'count': header.index("Enrollment Cnt"),
'letter': header.index("Grade Type Desc"),
'points': header.index("Average Grade"),
} | a99cd596fa4b05c8f704a6b87bd795f0de02212f | 506,462 |
def columns_to_lowercase(df):
"""Convert all columns with string names in a dataframe to lowercase.
Arguments:
df {pd.DataFrame} -- pandas dataframe
Returns:
pd.DataFrame -- input dataframe with columns converted to lowercase
"""
cols_to_rename = df.columns[[type(col) is str for col in df.columns]]
cols_replace_dict = {name: name.lower() for name in cols_to_rename}
return df.rename(columns=cols_replace_dict) | 3e675dc4f689b26766320fa706c2f9714bc80a90 | 458,064 |
import tarfile
def _only_csv_file(member: tarfile.TarInfo) -> bool:
"""Selector for CSV files only in a TAR file.
Parameters
----------
member (tarfile.TarInfo)
Tar archive member file
Returns
-------
bool
Check if the file is a CSV
"""
return member.name.endswith('.csv') | e36189368a92c28bfc6dfd7ba9fa56002d59471d | 141,833 |
def _str_dotted_getattr(obj, name):
"""Expands extends getattr to allow dots in x to indicate nested objects.
Args:
obj (object): an object.
name (str): a name for a field in the object.
Returns:
Any: the value of named attribute.
Raises:
AttributeError: if the named attribute does not exist.
"""
for part in name.split('.'):
obj = getattr(obj, part)
return str(obj) if obj else None | 0732137fe42432ae36245c4128a0f24317db9bf8 | 243,721 |
def subplt_c1_c2(turbine, axarr, c1, c2, c='Blues', xlim=None, ylim=None, xlabel=None, ylabel=None):
""" hexbin plot of turbine[c1] vs turbine [c2]
Args:
turbine(:obj:`pandas dataframe`): data to be plotted
axarr(:obj:`axis handle`): axis handle
c1(:obj:`string`): column name of x axis
c2(:obj:`string`): column name of y axis
c(:obj:`string` or colormap handle): colormap
Returns:
hb(:obj:`plot handle`):
"""
hb = axarr.hexbin(turbine[c1], turbine[c2], cmap=c, gridsize=128, vmin=0, vmax=8)
if xlim:
axarr.set_xlim(xlim)
if ylim:
axarr.set_ylim(ylim)
if xlabel:
axarr.set_xlabel(xlabel)
if ylabel:
axarr.set_ylabel(ylabel)
return hb | 80dacf9334aba1e716ebac5d03c26170063afc06 | 139,370 |
from bs4 import BeautifulSoup
def prettify_html(html: str) -> str:
"""
Create beautiful HTML using BeautifulSoup
:param html: The input raw HTML
:return: The beautiful HTML
"""
soup = BeautifulSoup(html)
return soup.prettify() | f18372007fb4d8468da6ff81f0a31a900e3b6612 | 606,484 |
def string2mol2(filename, string):
"""
Writes molecule to filename.mol2 file, input is a string of Mol2 blocks
"""
block = string
if filename[-4:] != '.mol2':
filename += '.mol2'
with open(filename, 'w') as file:
file.write(block)
return None | 51043e7f4edde36682713455dc33c643f89db397 | 5,199 |
def are_users_same(users):
"""True if all users are the same and not Nones"""
x = set(u.get('seq') for u in users)
return len(x) == 1 and None not in x | 0e58dbcaaa9fc9b9449efbf4454ceebb4de607a2 | 667,293 |
def convert_to_date(col):
"""Convert datetime to date."""
return col.date() | c6ac8febf4751e8f2c2c27fc740de286f2870cbe | 704,820 |
def make_line_points(y1, y2, line):
"""
Convert a line represented in slope and intercept into pixel points
"""
if line is None:
return None
slope, intercept = line
# make sure everything is integer as cv2.line requires it
x1 = int((y1 - intercept)/slope)
x2 = int((y2 - intercept)/slope)
y1 = int(y1)
y2 = int(y2)
return ((x1, y1), (x2, y2)) | 4601d60bc3c3e395c66a4ac87dd4c544555185f6 | 471,760 |
def _is_direct(dep, tags):
"""
Given tags containing info about direct dependencies in format @direct//, returns true if given
label is a direct dependency and false otherwise
Args:
dep: Package name to check for
tags: Tags passed to the rule
"""
if (len(tags) == 0):
return True
for tag in tags:
if tag.startswith("@direct//"):
if dep == (tag[9:]):
return True
for tag in tags:
if tag.startswith("@direct//"):
return False
return True | f185b45e6403cd2c8b1e32dd161a955b0f4f394b | 361,388 |
def ij_to_list_index(i, j, n):
"""
Assuming you have a symetric nxn matrix M and take the entries of the upper triangular including the
diagonal and then ravel it to transform it into a list. This function will transform a matrix location
given row i and column j into the proper list index.
:param i: row index of the matrix M
:param j: column index of matrix M
:param n: total number of rows / colums of n
:return: The correct index of the lost
"""
assert j >= i, "We only consider the upper triangular part..."
index = 0
for k in range(i):
index += n - k - 1
return index + j | d2d1d9533abe2a8c07a2fd32d9721360c012289c | 81,466 |
from typing import Sized
from typing import Iterable
from typing import Mapping
import six
def is_listy(x):
"""Return True if `x` is "listy", i.e. a list-like object.
"Listy" is defined as a sized iterable which is neither a map nor a string:
>>> is_listy(["a", "b"])
True
>>> is_listy(set())
True
>>> is_listy(iter(["a", "b"]))
False
>>> is_listy({"a": "b"})
False
>>> is_listy("a regular string")
False
Note:
Iterables and generators fail the "listy" test because they
are not sized.
Args:
x (any value): The object to test.
Returns:
bool: True if `x` is "listy", False otherwise.
"""
return (isinstance(x, Sized) and
isinstance(x, Iterable) and
not isinstance(x, Mapping) and
not isinstance(x, six.string_types)) | ca8f1d6b025990e9083f94ecf0f9e4ec9b168876 | 691,433 |
import torch
def normalize(x):
"""
Normalizes a batch of images with size (batch_size, 3, height, width)
by mean and std dev expected by PyTorch models
"""
mean = torch.Tensor([0.485, 0.456, 0.406])
std = torch.Tensor([0.229, 0.224, 0.225])
return (x - mean.type_as(x)[None,:,None,None]) / std.type_as(x)[None,:,None,None] | 74be29a93c547c2eaad302ff9a1454ac8641f502 | 336,334 |
def get_children(res,key):
"""
Returns a list with all keys in res starting with key
Parameters
----------
res : dict
results dictionary
key : string
a search key
Returns
-------
keys : list
list of keys that start with key
Examples
--------
>>> get_keys_with({'time':[0,43200,86400],'A.B':[1000,5000,2000],'A.C':[2000,8000,3000]},'A')
"""
if key == '':
return res.keys()
else:
keys = []
for k in res.keys():
if k.startswith(key):
keys.append(k)
return keys | 437f74be254f228395fa9d8f1979ccec5e088436 | 364,826 |
def returnInput(*args):
"""
This is a function that returns exactly what is passed to it. Useful to hold a place in the
dataflow without modifying the data.
"""
if len(args) == 1:
# A single argument has been passed and is now packaged inside a tuple because of *.
# Unpack it:
args = args[0]
return args | baa4e437bcec3de3ed354ba39c7e1d48806b8f29 | 468,415 |
import torch
def topk_pool_with_region(x, region, k=32):
"""
Args:
x: (B, F, M, P)
region: (B, M, P)
k: top k
Returns:
(B, F, M, topk)
"""
featdim = x.shape[1]
_, region_idx = torch.topk(region, k=k, dim=2) # (B, M, k)
index = region_idx.unsqueeze(1).repeat(1, featdim, 1, 1) # (B, F, M, k)
pooled = torch.gather(x, dim=3, index=index)
return pooled | b3d426855fb982242769ca49abe26a859be45236 | 315,488 |
def _encode_for_display(text):
"""
Encodes strings so they can display as ASCII in a Windows terminal window.
This function also encodes strings for processing by xml.etree.ElementTree functions.
Returns an ASCII-encoded version of the text.
Unicode characters are converted to ASCII placeholders (for example, "?").
"""
return text.encode('ascii', errors="backslashreplace").decode('utf-8') | 59fa895204b764a105f0cc73f87f252c64e62871 | 694,624 |
def get_terminal_title(editor):
"""
Return the terminal title,
e.g.: "filename.py (/directory) - Pyvim"
"""
eb = editor.current_editor_buffer
if eb is not None:
return '%s - Pyvim' % (eb.location or '[New file]', )
else:
return 'Pyvim' | 576544bf269a9daea7b7caee67a218940b51cfed | 592,934 |
def rasterplot(channels, axes, title, unit, channel_labels=True,
spike_count=True):
"""
Produce a raster plot of a spike train on a set of axes.
Parameters
----------
channels : dict
A dictionary of spike trains. Keys are channel labels, values are
lists of spikes.
axes : matplotlib.axes.Axes
Set of axes to plot on.
title : str
Figure title.
unit : str
Units of time to include on x-axis.
channel_labels : bool
Whether or not to include y-axis labels.
spike_count : bool
Whether or not to include the number of spikes in the x-axis
label.
Returns
-------
Dictionary mapping channels to offsets on y axis or None.
"""
if not channels:
axes.set_xlim((0, 2))
axes.set_ylim((0, 2))
axes.set_axis_off()
axes.set_title(title)
axes.text(1, 1, "no spikes", ha="center")
return
labels = sorted(list(channels.keys()))
events, nspikes = [], 0
for label in labels:
events.append(channels[label].base)
nspikes += len(channels[label])
y_offsets = list(range(len(labels)))
axes.eventplot(events,
linelengths=0.75,
lineoffsets=y_offsets,
color="black",
lw=0.2)
if channel_labels:
axes.set_yticks(y_offsets)
axes.set_yticklabels(labels)
if spike_count:
xlabel = "time / " + unit + "\n" + "#spikes = " + str(nspikes)
else:
xlabel = "time / " + unit
axes.set_xlabel(xlabel)
axes.set_ylabel("channel")
else:
axes.set_axis_off()
axes.set_title(title)
y_offsets_map = dict(zip(labels, y_offsets))
return y_offsets_map | 8defd7827136058a2da04d391123ea062e6d4440 | 366,324 |
def symm_area(col, n):
"""
returns n + (n - 1) + ... + (n - col + 1)
i.e., the number of matrix elements below and including the diagonal and
from column 0 to column `col`
"""
return col * (2 * n - col + 1) // 2 | e5c7970ee2b612f4678952056be0358c968e06b3 | 703,200 |
def uppercase_first_letter(string_: str) -> str:
"""Return string with first character upper case."""
return string_[0].upper() + string_[1:] | 89ac25a2981039abf15b2f035aa8296f91acbaf4 | 93,970 |
def rebin(d, n_x, n_y=None):
""" Rebin data by averaging bins together
Args:
d (np.array): data
n_x (int): number of bins in x dir to rebin into one
n_y (int): number of bins in y dir to rebin into one
Returns:
d: rebinned data with shape (n_x, n_y)
"""
if d.ndim == 2:
if n_y is None:
n_y = 1
if n_x is None:
n_x = 1
d = d[:int(d.shape[0] // n_x) * n_x, :int(d.shape[1] // n_y) * n_y]
d = d.reshape((d.shape[0] // n_x, n_x, d.shape[1] // n_y, n_y))
d = d.mean(axis=3)
d = d.mean(axis=1)
elif d.ndim == 1:
d = d[:int(d.shape[0] // n_x) * n_x]
d = d.reshape((d.shape[0] // n_x, n_x))
d = d.mean(axis=1)
else:
raise RuntimeError("Only NDIM <= 2 supported")
return d | 19c5273df3dad7795c92fd72fcfbeb8c37f66968 | 445,002 |
def get_release_tag_string(check_name, version_string):
"""
Compose a string to use for release tags
"""
return '{}-{}'.format(check_name, version_string) | 470a330785a6c6c3b2337f11bb5eaee7e4747644 | 329,013 |
def rho_NFW(r, rs, rhos):
"""
The density profile [GeV/cm**3] of an NFW halo.
Parameters
----------
r : the distance from the center [kpc]
rs : the NFW r_s parameter [kpc]
rhos : the NFW rho_s parameter [GeV/cm**3]
"""
res = rhos/(r/rs)/(1.+r/rs)**2
return res | 3b8f97713610c1622815e15f13a75d39ad7e64ba | 7,827 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.