content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def get_remote_ip_from_request(request) -> str: """Retrieve remote ip addr from request. :param request: Django request :type: django.http.HttpRequest :return: Ip address :rtype: str """ if x_forwarded_for := request.META.get('HTTP_X_FORWARDED_FOR'): ip_addr = x_forwarded_for.split(',')[0] else: ip_addr = request.META.get('REMOTE_ADDR') return ip_addr
cdafe628d1c4cdcd7a980bb80b19d5983cac4932
177,949
def hasgetattr(obj, attr, default=None): """ Combines hasattr/getattr to return a default if hasattr fail.""" if not hasattr(obj, attr): return default return getattr(obj, attr)
5e2dd25469506a71b2ef20293e623ab9dbc1c8cc
453,602
def collapse_codepoints(codepoints): """ Convert a list of code points in a list of ranges. Given a list of code points, extract the ranges with the maximal length from consecutive code points. :param: codepoints: List of code points. :returns: List of ranges (first_cp, last_cp) >>> ranges = collapse_codepoints([1,2,3,4,7,10,11,12,15]) >>> ranges == [(1,4), (7, 7), (10, 12), (15,15)] True """ result = [] # Sort list codepoints = sorted(codepoints) first_cp = codepoints[0] last_cp = codepoints[0] for cp in codepoints[1:]: if cp == last_cp + 1: # Code point is continuous of last one, extend range last_cp = cp else: # Code point is not successor of last one, create new range result.append((first_cp, last_cp)) first_cp = cp last_cp = cp result.append((first_cp, last_cp)) return result
7bd9a32cd32047cb42657b6ea6f7867af0d51bd1
472,423
def cumsum(t): """Computes the cumulative sum of the numbers in t. t: list of numbers returns: list of numbers """ total = 0 res = [] for x in t: total += x res.append(total) return res
e3c1d6c3191f4813af87d2da091d023ff09beaa2
414,015
import re def find_date_lines_in_description(description): """ output: a list of matches in format date: the date of the match line: the full line line_before: the text matches before the date line_after: the text matches after the date """ description.strip() output = [] splitdescription = description.splitlines() for line in splitdescription: p = re.compile( r"(?P<line_before>.*?)(?P<date>\d\d*[^0-9]?\d\d?[^0-9]?\d\d+)\s?(?P<line_after>.*)") matches = p.finditer(line) for match in matches: date = match.group("date") line_before = match.group("line_before") line_after = match.group("line_after") output.append({"date": date, "line_before": line_before, "line_after": line_after, "line_full": line }) return output
a042fdc32c1d986ed60dcd98e2e65bd63877a86b
204,530
def data_to_psychomotor(dic): """ Returns a dictionary of psychomotor details of each student {name:{details}} """ final_dic = {} #will return to psychomotor dic_psymo = dic["psychomotor"][0] #the relevant sheet for key, value in dic_psymo.items(): del value["AGE"] final_dic[key] = value del final_dic["Name"] return final_dic
a544b0ec8c8e3639ed9e5f82c5b0853c3e283a7e
636,605
def album_info_query(album_id: str) -> dict: """ Build Album information query. :param album_id: Album id :return: Query """ return { "operationName": "AlbumGet", "query": """query AlbumGet($id: ID!) { album { get(id: $id) { ... on Album {...AlbumStandard} ... on MutationError {errors {code message}} } } } fragment AlbumStandard on Album { id title slug url description created_by { name display_name } number_of_pictures number_of_animated_pictures language { title } tags { text } genres { title } audiences { title } } """, "variables": { "id": album_id } }
8ba2415726c23c38c546168d20f3cd0aae84fb18
397,955
def github_split_owner_project(url): """ Parses the owner and project name out of a GitHub URL Examples -------- >>> github_split_owner_project("https://github.com/intel/dffml") ('intel', 'dffml') """ return dict( zip( ("owner", "project"), tuple("/".join(url.split("/")[-2:]).split("/")), ) )
ea3d788f92c0936babf48000c51eba3ec2c1ac73
72,159
def comp_float(x, y): """Approximate comparison of floats.""" return abs(x - y) <= 1e-5
8f3a520a0c8017aa1181e413f46491dbbec0210e
400,517
def leia_int(msg=''): """-> Função que requisita um número e verifica se ele é inteiro, podendo utilizar-se de uma mensagem para isso. :param msg: valor opcional, mensagem pela qual o programa requisitara inserção de um número. :return: valor fornecido, se realmente for inteiro.""" valor = input(msg) while True: analise = valor.isnumeric() if analise: break else: valor = input(f"\033[31mERRO!Digite um número inteiro válido\033[m\n{msg}") return valor
60680c3f6550c3f26d948f443003bddd5658622e
191,590
from xml.sax.saxutils import escape def _make_in_prompt(prompt_template, number=None): """ Given a prompt number, returns an HTML In prompt. """ try: body = prompt_template % number except TypeError: # allow in_prompt to leave out number, e.g. '>>> ' body = escape(prompt_template) return '<span class="in-prompt">%s</span>' % body
0d9dd26f7d5aad9ad37e8c6fe22b2592d95bb5b6
472,200
def get_weekday_word(number): """ Using weekday index return its word representation :param number: number of weekday [0..6] :return: word representation """ weekdays = ( 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday' ) return weekdays[number]
d65c10635a4c9bfdf599129a84e37b3fe7c476b4
556,205
def check_len(key, val, val_len=2, ext='primary'): """ Check if the length of the keyword value has a a given length, default value for the length check is 2. Args: key: keyword val: keyword value val_len: length to be checked against ext: string, extension number (default value is 'primary') Returns: A warning (if the length was not what was expected) or nothing. """ if isinstance(val, int): string_length = len(str(val)) else: string_length = len(val) warning = '{:<15} {:<9} {:<25}'.format(key, ext, 'Incorrect length of value. Expected: '+repr(val_len)+', got '+repr(string_length)) if string_length == val_len: print ('{:<15} {:<9} {:<25}'.format(key, ext, 'Correct format')) else: print (warning) return warning
cfe913a5831f27d2793e17e2c5947ec351a4e1a5
245,065
import pprint def pretty(d: dict) -> str: """ Prettify a dictionary """ return pprint.pformat(d, indent=2, width=100, compact=True)
013b337de3b610a5fdc044d5087a4b17f0e5c8b5
542,247
def eval_guess(chosen, guess): """Check if the number guessed by the user is the same as the number chosen by the program. Parameters: chosen (int>=0): Number chosen by the program. guess (int>=0): Number guessed by the user. Returns: (str): Hint to help the user in the next guess; one of: "Well done!", "Guess lower!", "Guess higher!". (int): 1 if the guess is the same as the chosen; 0 otherwise. """ if guess == chosen: val = 1 return("Well done!", val) elif guess > chosen: val = 0 return("Guess lower!", val) else: val = 0 return("Guess higher!", val)
0e78ea9a06d89962d31cf3987fdb658d30bc79be
611,957
def object_list_check_any_has_attribute(object_list,attr_name): """ check if any object in the list has the attribute. """ unique = False for obj in object_list: if hasattr(obj,attr_name): unique = True break else: pass return unique
cac90dab958b4bfc25493a2dba86b72454230222
24,162
def trim_unknown_energies(casm_query_json,keyword="energy"): """ Given a data dictionary from a casm query sorted by property, removes data with null/None values in the designated key Parameters ---------- casm_query_json : list of dicts A dictionary from a casm query sorted by property. Loaded directly from query json. key : str The key in the data dictionary that corresponds to the value you want to base entry removal. Defaults to 'energy_per_atom'. Returns ------- denulled_data: dict A dictionary with the same keys as the input data, but with entries removed for which the key value is null. """ initial_length = len(casm_query_json) denulled_data = [entry for entry in casm_query_json if entry[keyword] is not None]# final_length = len(denulled_data) print("Removed %d entries with null values with key: %s" % (initial_length - final_length, keyword)) return denulled_data
a2d08303bd86deca3ee191f690c7177768179f2b
143,073
def prefilter_by_attractor(networks, attractors, partial=True): """ DESCRIPTION: A function to filter boolean networks based on if they hold certain attractors or not. :param networks: [list] boolean networks (dict) to filter based on their attractors. :param attractors: [list] attractors (str) to filter the networks. :param partial: [bool] flag to indicate if the condition should be relaxed. If partial == True, then it will be enough for the network to show just one attractor from the list to pass the filter. If False the network will need to show all the attractors in the list. """ # Helper functions def check_node(node_index, nodes, attractor, network): node = nodes[node_index] # Check if the attractor value is 1 or 0 if int(attractor[node_index]): result = attractor in network['network'][node] else: result = attractor not in network['network'][node] return result # Iterate over every network nodes = list(networks[0]['network'].keys()) for network in networks: # Network might be a None resulting from unsuccessful conflict solving if network is not None: attractor_conditions = [] # Check every attractor for attractor in attractors: node_conditions = [check_node(node_index, nodes, attractor, network) for node_index in range(len(nodes))] attractor_conditions.append(all(node_conditions)) if all(attractor_conditions) or partial and any(attractor_conditions): yield network
3fdc1e0051ba2ddcf299f3b8eeb48bae9915b310
184,941
from typing import Optional from typing import Callable def get_custom_attribute(item: dict, attribute_code: str, coerce_as: Optional[Callable] = None): """ Get a custom attribute from an item given its code. For example: >>> get_custom_attribute(..., "my_custom_attribute") "0" >>> get_custom_attribute(..., "my_custom_attribute", bool) False :param item: :param attribute_code: :param coerce_as: optional callable that is called on the attribute value if it's set. This is useful to circumvent Magento's limitation where all attribute values are strings. :return: attribute value or None. """ for attribute in item.get("custom_attributes", []): if attribute["attribute_code"] == attribute_code: value = attribute["value"] if coerce_as: if coerce_as == bool: # "0" -> False / "1" -> True return bool(int(value)) return coerce_as(value) return value
89b49a39de6269064bf6f99defedda35346c85b2
103,286
def fromTM35FINToMap(x, y): """ Function for moving from TM35FIN coordinates into the coordinates of the picture """ pic_h = 2480 pic_w = 1748 x_min = -40442 y_min = 6555699 x_max = 837057 y_max = 7800801 y_max -= y_min x_max -= x_min x_return = pic_w * (x - x_min) / x_max y_return = pic_h * (y_max - (y - y_min)) / y_max return x_return, y_return
6519634fece8b1acc308f2262dc29f5ba45a00dc
210,238
import hashlib def string_hash(string: str, algo: str = 'sha1') -> str: """Returns the hash of the specified string.""" return getattr(hashlib, algo)(string.encode('utf-8')).hexdigest()
c8a4423a3548e7b8b9d7171ec1e5020e5f3012d6
553,125
def unique_list_order_preserved(seq): """Returns a unique list of items from the sequence while preserving original ordering. The first occurrence of an item is returned in the new sequence: any subsequent occurrences of the same item are ignored. """ seen = set() seen_add = seen.add return [x for x in seq if not (x in seen or seen_add(x))]
e4157ee4cb016f514ba70a879fb18a706b5a7743
365,178
def AddNoGlob(options): """ If the option 'no_glob' is defined, add it to the cmd string. Returns: a string containing the knob """ string = '' if hasattr(options, 'no_glob') and options.no_glob: string = ' --no_glob' return string
e44c34a7d9652886080ae4167d80b631ffa8b9f9
659,426
import math def round_repeats(depth_coefficient, repeats): """ Round number of filters based on depth coefficient. Args: depth_coefficient: Coefficient to scale number of repeats. repeats: Number to repeat mb_conv_block. From tensorflow implementation: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet /efficientnet_model.py """ return int(math.ceil(depth_coefficient * repeats))
bafa99e8a406e068406806703be122573c68b084
46,348
def lerp(pt1, pt2, intervals): """Linear interpolation. Args: pt1: Array of points. When interval is 0, the result is pt1. pt2: Array of points. When interval is 1, the result is pt2. intervals: Array of intervals at which to evaluate the linear interpolation >>> x = np.array([1, 0, 0]) >>> y = np.array([0, 0, 1]) >>> t = np.linspace(0, 1, 4)[:, np.newaxis] >>> lerp(x, y, t) array([[ 1. , 0. , 0. ], [ 0.66666667, 0. , 0.33333333], [ 0.33333333, 0. , 0.66666667], [ 0. , 0. , 1. ]]) """ t = intervals return (1 - t)*pt1 + t*pt2
c0f390025a6b9b22101889bd9cbfa443b3920ef5
374,738
import statistics def run_stats(this_set): """ Find standard deviation and mean (average) for the data set. """ # Simply calculate Mean & StdDev for this set. # Return TUPLE of FLOATS return statistics.mean(this_set), statistics.stdev(this_set)
35ce499654bf7e8fe43d862b5456b0578a093fc7
13,289
def file_type(infile): """Return file type after stripping gz or bz2.""" name_parts = infile.split('.') if name_parts[-1] == 'gz' or name_parts[-1] == 'bz2': name_parts.pop() return name_parts[-1]
0bc762667bff0f233b176603f7ef8b54d254c6db
503,403
import json def load_model_info(model_path): """Load model info from file. Args: model_path (string): the full path of where the model is located. Raises: ValueError: raise an error if the path is invalid. Returns: dict: the inputs / outputs info dict. """ if model_path.endswith(".tflite"): info_path = model_path.split(".tflite")[0] + ".info" elif model_path.endswith(".h5"): info_path = model_path.split(".h5")[0] + ".info" else: raise ValueError("Invalid model path") with open(info_path, "r") as f: return json.load(f)
8f9aba13db8ef6f9808d9b59cdf46c332e5fcada
464,114
from typing import Tuple def pyth_triple(u: int, v: int) -> Tuple[int, int, int]: """ Generates a Pythagorean triple (u^2 - v^2, 2uv, u^2 + v^2). Conditions: 1) u > v >= 1 :param u: natural number :param v: natural number :return: A Pythagorean triple with a odd and b even. """ if not u > v: raise ValueError("First argument must strictly be greater than the second.") elif not v >= 1: raise ValueError("Second argument must be greater than or equal to 1.") return u**2 - v**2, 2*u*v, u**2 + v**2
1732440074a1755176cf67a5a956c057e6a30621
538,792
from typing import Dict from typing import Any from typing import List def get_label_ids_by_category(crop: Dict[str, Any], category: str) -> List[int]: """ Get all label ids from a crop that belong to a certain category Args: crop: Instance of an entry in the crop database. category: one of "present_annotated", "present_unannotated", "absent_annotated", "present_partial_annotation" Returns: All label ids that belong to the `category` for that crop. """ return [ll[0] for ll in crop['labels'][category]]
2bbc4a79dabe2eedee7438107e1b23c6ae869f24
131,721
def merge_dicts(*args): """ Merge multiple dictionaries each with unique key :param args: dictionaries to merge :return: 1 merged dictionary """ result = {k: v for d in args for k, v in d.items()} return result
34768ac3bd0a79fa9d1a4939122262a6fbd186fc
100,727
import math def plating_efficiency_multiplier(z): """ Plating efficiency correction multiplier for number of mutations per culture from [Steward, 1990]. z is the probability that any given mutant cell will generate a colony. :param z: fraction of a culture plated (plating efficiency); 0 < z <= 1 :return: correction multiplier for number of mutations per culture """ assert 0 < z <= 1 if z == 1: return 1 # by l'Hôpital's rule return (z - 1) / (z * math.log(z))
645f05bd1e3947cae8135d343241fbe240bea358
480,548
def set_up_folder_name_1M ( model_file , date_run ): """ Produce log_file, plot_folder based on model_file (file name ending with _sd.pt) If model_file is epoch_1_sd.pt, date_run is 0913: plot_folder 'plot_2d_epoch_1', log file 'log_0913_2d_epoch_1' """ # if model_file == '': model_pure = f'ep{ep_ind}' model_pure = model_file[:model_file.rfind('_sd.pt')] plot_folder = f'plot_2d_{model_pure}' log_file = f'log_{date_run}_2d_{model_pure}' # .out This is the log file, recording the printing return log_file, plot_folder
d7dd24789476279ea8d5fe0b32627aa049731ef7
699,081
import string def remove_punctuation(list_of_string, item_to_keep=""): """ Remove punctuation from a list of strings. Parameters ---------- - list_of_string : a dataframe column or variable containing the text stored as a list of string sentences - item_to_keep : a string of punctuation signs you want to keep in text (e.g., '!?.,:;') """ # Update string of punctuation signs if len(item_to_keep) > 0: punctuation_list = "".join( c for c in string.punctuation if c not in item_to_keep ) else: punctuation_list = string.punctuation # Remove punctuation from each sentence transtable = str.maketrans("", "", punctuation_list) return [sent.translate(transtable) for sent in list_of_string]
cb9190bc160f8e725479b531afab383c6857ceac
706,141
def get_cv_object(train): """ Return Time Based CV Object. Time based CV scheme: {train month(s) - test month} {1}-{2} {1,2}-{3} {1,2,3}-{4} {1,2,3,4}-{5,6} """ tx_month = train['DayNumber']//30 d = {} for fold in range(5): if (fold == 4): break elif (fold == 3): d['fold_'+str(fold)+'_train'] = tx_month.loc[(tx_month <= fold)].index d['fold_'+str(fold)+'_test'] = tx_month.loc[(tx_month > fold + 1)].index else: d['fold_'+str(fold)+'_train'] = tx_month.loc[(tx_month <= fold)].index d['fold_'+str(fold)+'_test'] = tx_month.loc[(tx_month == fold+2)].index cvobj = [ (d['fold_' + str(fold) + '_train'], d['fold_' + str(fold) + '_test']) for fold in range(4)] return cvobj
e5ce051d292588d151d1487f70a8cd254479dfd2
592,313
def get_and_remove_or_default(dict, key, default): """ Get an item from a dictionary, then deletes the item from the dictionary. If the item is not found, return a default value. :return: The value corresponding to the key in the dictionary, or the default value if it wasn't found. """ if key in dict: ret = dict[key] del dict[key] return ret else: return default
402be98aa112010abfffa1e3dcb2ae9686a12a62
71,762
def update_pid(df, suffix): """ Add a customized suffix to the 'patientId' """ df_update = df.copy() df_update["patientId"] = df["patientId"] + suffix return df_update
b5c4e48cddc36cf8f39e63237da9025d93e7f232
399,540
def helper_stationary_value(val): """ Helper for creating a parameter which is stationary (not changing based on t) in a stationary fuzzy set. Returns the static pertubation function Parameters: ----------- val : the stationary value """ return lambda t: val
1228b3a85a6026c18ebaf57b87841372e73566c6
67,306
def _to_skybell_level(level): """Convert the given Safegate Pro light level (0-255) to Skybell (0-100).""" return int((level * 100) / 255)
67f290d5d14372e928a68b2443d3dc7f41cf26cc
395,991
import random def get_random_integer(number): """ This function takes in a number and returns a random integer between 0 and that number """ return random.randint(0, number)
e5456480530f01f013428f9c5827421b7aaa12f0
671,921
def binary_search(value, array, start_idx=None, end_idx=None): """ Выболняет бинарный поиск значения в отсортированном по возрастанию массиве. :param value: Значение, которое необходимо найти. :param array: Массив поиска. :param start_idx: Начальный индекс поиска (для рекурсивного вызова) :param end_idx: Конечный индекс поиска (для рекурсивного вызова) :return: Возвращает индекс элемента массива, содержащего искомое значение. Либо -1, если такой элемент не найден. """ if start_idx is None: start_idx = 0 if end_idx is None: end_idx = len(array) array_length = end_idx - start_idx if array_length == 1: # Базовый случай рекурсии if array[start_idx] == value: return start_idx else: return -1 elif array_length <= 0: return middle_idx = start_idx + array_length // 2 if value == array[middle_idx]: return middle_idx elif value < array[middle_idx]: return binary_search(value, array, start_idx, middle_idx) elif value > array[middle_idx]: return binary_search(value, array, middle_idx, end_idx)
efb1396d00d44cc669c1c8d344d3334894181ae7
662,401
import math def wavy(ind, k=10.): """Wavy function defined as: $$ f(x) = 1 - \frac{1}{n} \sum_{i=1}^{n} \cos(kx_i)e^{-\frac{x_i^2}{2}}$$ with a search domain of $-\pi < x_i < \pi, 1 \leq i \leq n$. """ return 1. - sum(( math.cos(k * ind[i]) * math.exp(-(ind[i]*ind[i])/2.) for i in range(len(ind)))) / float(len(ind)),
a25c99dc8cf3f9b066dd2bbc21cc8f2b41a249f2
69,820
def has_count(unit): """ return true if unit has count """ return unit.get('Count', 0) > 0
dff8c841c981f0361498865cae1adc50b1c9f77e
435,663
def getmeta(resource_or_instance): """ Get meta object from a resource or resource instance. :param resource_or_instance: Resource or instance of a resource. :type resource_or_instance: odin.resources.ResourceType | odin.resources.ResourceBase :return: Meta options class :rtype: odin.resources.ResourceOptions """ return getattr(resource_or_instance, "_meta")
a5e676f75bda3f314ceeec52fb1a44a113734c2d
589,462
def getweakrefs(space, w_obj): """Return a list of all weak reference objects that point to 'obj'.""" lifeline = w_obj.getweakref() if lifeline is None: return space.newlist([]) else: result = [] for i in range(len(lifeline.refs_weak)): w_ref = lifeline.refs_weak[i]() if w_ref is not None: result.append(w_ref) return space.newlist(result)
304bfbc6075a882cf78b82343df30807e9ced7dc
594,132
import time def is_bst(st: time.struct_time) -> bool: """ Calculates whether the given day falls within British Summer Time. .. note:: This function does not consider the time of day, and therefore does not handle the fact that the time changes at 1 AM GMT. :param st: The :class:`time.struct_time` representing the target date.. :returns: True if the date falls within British Summer Time, False otherwise. """ day, month, dow = st.tm_mday, st.tm_mon, (st.tm_wday + 1) % 7 if 3 > month > 10: return False elif 3 < month < 10: return True elif month == 3: return day - dow >= 25 elif month == 10: return day - dow < 25 else: return False
7428810629c417cb8a55994b3086a7e9515194b7
627,570
def resolve_option_flag(flag, df): """ Method to resolve an option flag, which may be any of: - None or True: use all columns in the dataframe - None: use no columns - list of columns use these columns - function returning a list of columns """ if flag is None or flag is True: return list(df) elif flag is False: return [] elif hasattr(flag, '__call__'): return flag(df) else: return flag
c6c90d650c4edb762a4c93fb5f85a59969c8c769
248,125
def pretty_box (rows, cols, s): """This puts an ASCII text box around the given string, s. """ top_bot = '+' + '-'*cols + '+\n' return top_bot + '\n'.join(['|'+line+'|' for line in s.split('\n')]) + '\n' + top_bot
aef083621032ec2f5c429974516233a7fa606536
433,493
def get_output_parameters_of_execute(taskFile): """Get the set of output parameters of an execute method within a program""" # get the invocation of the execute method to extract the output parameters invokeExecuteNode = taskFile.find('assign', recursive=True, value=lambda value: value.type == 'atomtrailers' and len(value.value) == 2 and value.value[0].value == 'execute') # generation has to be aborted if retrieval of output parameters fails if not invokeExecuteNode: return None # only one output parameter if invokeExecuteNode.target.type == 'name': return [invokeExecuteNode.target.value] else: # set of output parameters return [parameter.value for parameter in invokeExecuteNode.target.value]
56ba0c1f1941a72174befc69646b4bdb6bc9e009
41,606
import re def pipe_cleaner(spec): """Guess the actual URL from a "pipe:" specification.""" if spec.startswith("pipe:"): spec = spec[5:] words = spec.split(" ") for word in words: if re.match(r"^(https?|gs|ais|s3)", word): return word return spec
3c5237d3f20391c9bc40bfd3dd16f1e7df422b0a
593,187
def year_slice(df, first_year=None, date_col='start_date'): """Return slice of df containing all rows with df[date_col].dt.year >= first_year. Returns df if first_year is None. """ if first_year is None: return df if first_year <= df[date_col].min().year: # No need to slice return df return df[df[date_col] >= f"{first_year}-01-01"]
faccb0424f2d019e859bb7a3cbe2262b7255f3b5
313,723
from typing import Union from typing import Tuple def parse_deformation_potential( deformation_pot_str: str, ) -> Union[str, float, Tuple[float, ...]]: """Parse deformation potential string. Args: deformation_pot_str: The deformation potential string. Can be a path to a deformation.h5 file, a single deformation potential to use for all bands or two deformation potentials separated by a comma for valence and conduction bands. Returns: The deformation potential(s) or path to deformation potential file. """ if "h5" in deformation_pot_str: return deformation_pot_str deformation_pot_str = deformation_pot_str.strip().replace(" ", "") try: parts = list(map(float, deformation_pot_str.split(","))) if len(parts) == 1: return parts[0] elif len(parts) == 2: return tuple(parts) else: raise ValueError except ValueError: raise ValueError( "ERROR: Unrecognised deformation potential format: " "{}".format(deformation_pot_str) )
f801e72f4a9ac26905ba55e4e200110429f7ad13
599,635
from typing import Dict from typing import Any def create_default_metadata() -> Dict[str, Any]: """Creates a dictionary with the default metadata.""" return { 'title': 'Default title', 'base_url': 'https://example.org', 'description': 'Default description', 'language': 'en-US', 'copyright': 'Licensed under the ' '<a href="http://creativecommons.org/licenses/by/4.0/"> ' 'Creative Commons Attribution 4.0 International License.' }
2ee6aeffaafd209cb93e33bd42291ac3c12b10d8
700,714
def strip_suffixes(s, suffixes=()): """ Return the `s` string with any of the string in the `suffixes` set striped. Normalize and strip spacing. """ s = s.split() while s and s[-1].lower() in suffixes: s = s[:-1] s = u' '.join(s) return s
0f23dfebd402579abc9054b75a97be3dbbc2d4f1
327,909
def safelower(s): """ As string.lower(), but return `s` if something goes wrong. """ try: return s.lower() except AttributeError: return s
f9320df8c1a90ab325dc04a10b36d0c8f7aecf34
531,386
def convert_to_rows(response, agg_layers, prefix={}): """ Converts the hierarchical, dictionary type of response from an an Elasticsearch query into a more SQL-like list of rows (tuples). The Elasticsearch response is expected to have a specific format, where a series of bucket aggregations are nested in each other. The names of these aggregations are listed in order in <agg_layers>, from top to bottom. The bottom-level bucket (after all these nested aggregations) must contain a doc_count as well as a numerically-valued aggregation named total_obs. Each row of the output is a `dict` of values, matching each of the buckets described in <agg_layers> followed by doc_count and the total_obs value. The keys in the `dict` are descriptive terms, not necessarily the same as the property names in Elasticsearch. :param response: An Elasticsearch query response dictionary. :param agg_layers: List of aggregation names from top to bottom. :returns: Contents of the Elasticsearch response in list-of-rows format. """ if 'aggregations' in response: response = response['aggregations'] if len(agg_layers) == 0: total_files = response['doc_count'] total_obs = int(response['total_obs']['value']) if total_files == 0: return [] else: row = prefix.copy() row['total_files'] = total_files row['total_obs'] = total_obs return [row] else: layer_input_name, layer_output_name = agg_layers[0] remaining_layers = agg_layers[1:] rows = [] for bucket in response[layer_input_name]['buckets']: if 'key_as_string' in bucket: key = bucket['key_as_string'] else: key = bucket['key'] next_prefix = prefix.copy() next_prefix[layer_output_name] = key rows.extend(convert_to_rows(bucket, remaining_layers, next_prefix)) return rows
0a247d2fb7652e449f18a65e789c9c2ea4ba3dac
307,557
def _pad(block, n=8): """Pads the block to a multiple of n Accepts an arbitrary sized block and pads it to be a multiple of n. Padding is done using the PKCS5 method, i.e., the block is padded with the same byte as the number of bytes to add. Args: block (bytes): The block to pad, may be arbitrary large. n (int): The resulting bytes object will be padded to a multiple of this number Returns: bytes: a bytes object created from the input string """ pad_len = n - (len(block) % n) block += bytes([pad_len] * pad_len) return block
e26b08ab4b77a2cde7ad882ddca0b16295db35a7
359,346
import torch def _mask_borders( masks: torch.Tensor, clip_border: int ) -> torch.Tensor: """Masking left/right/top/down borders by setting `masks` to False Args: masks (torch.Tensor): mask in shape (..., h, w). torch.bool clip_border (int): number of border pixels to mask. Returns: torch.Tensor: new mask in shape (..., h, w). torch.bool """ assert torch.is_tensor(masks), \ f"`masks` should be a torch.Tensor, got {type(masks)}" assert len(masks.shape) >= 2, "rank of `masks` should be greater than 2" # clip h masks[..., :clip_border, :] = False masks[..., -clip_border:, :] = False # clip w masks[..., :clip_border] = False masks[..., -clip_border:] = False return masks
1c1cd6fde1effd0db591eeee9a7cec152946c8f6
328,744
def double(n): """ Takes a number n and doubles it """ return n * 2
8efeee1aa09c27d679fa8c5cca18d4849ca7e205
444
import csv def load_labels(filepath): """ Loads and reads CSV MM-Fit CSV label file. :param filepath: File path to a MM-Fit CSV label file. :return: List of lists containing label data, (Start Frame, End Frame, Repetition Count, Activity) for each exercise set. """ labels = [] with open(filepath, 'r') as csv_file: reader = csv.reader(csv_file) for line in reader: labels.append([int(line[0]), int(line[1]), int(line[2]), line[3]]) return labels
067ebedc5db5e61e414fdf142664be20fc22b2a7
558,563
def _strip_double_quotes(string: str) -> str: """Removes encapsulating double quotes, if there are some. Ignores non-encapsulating double quotes (one side only or inside). Args: string: The string to be pruned. Returns: The pruned string without encapsulating double quotes. """ if not string or string == '""': return "" if len(string) >= 2 and string[0] == '"' and string[-1] == '"': return string[1:-1] return string
0c09e6e9579ea4bc7137495aeaf16ae9291a58d0
498,549
def sort_srv_results(results): """ Sort a list of SrvRecords by weight and priority. """ results.sort(key=lambda x: (x.priority << 16) | x.weight) return results
4090b0e6a25cfbe6b7ba4b1c3452ded311b23e2f
262,088
def timecode_to_milliseconds(code): """ Takes a time code and converts it into an integer of milliseconds. """ elements = code.replace(",", ".").split(":") assert(len(elements) < 4) milliseconds = 0 if len(elements) >= 1: milliseconds += int(float(elements[-1]) * 1000) if len(elements) >= 2: milliseconds += int(elements[-2]) * 60000 if len(elements) >= 3: milliseconds += int(elements[-3]) * 3600000 return milliseconds
6f25c32fd427692c61b1536d0611cffac1832213
201,381
def make_ucsc_chr(interval): """ Converts interval from ENSEMBL chroms to UCSC chroms (appends str to each chrom) """ interval.chrom = "chr" + interval.chrom return interval
d5878670494dc51e29922d43a605634f26cd8e00
37,207
def get_spans_in_offsets(spans, start, end): """Return the list of spans (nlplingo.text.text_span.Span) that are within (start, end) offsets :type spans: list[nlplingo.text.text_span.Span] Returns: list[text.text_span.Span] """ ret = [] for span in spans: if start <= span.start_char_offset() and span.end_char_offset() <= end: ret.append(span) return ret
ffc1d910595074ba3340ce3187ef0b1566bd2909
654,776
def addEdges(graph, edges): """ This function adds edges to a given graph together with their weights """ for i in edges: graph.add_edge(i[0],i[1], weight=i[2]) return graph
92af0c4f093126616abeaf1f07a062a4273087d5
515,939
from typing import List from typing import Dict def get_flags(args: List[str]) -> Dict[str, List[str]]: """ Returns a dictionary containing the flags within the passed through command line arguments. # Example ```py # $ py ./src/main.py normal_argument -flag1 Hello, World -flag2 -flag3 This is the third flag. flags = get_flags(sys.argv[1::]) expected_flags = { "-flag1": ["Hello,", "World"], "-flag2": [ ], "-flag3": ["This", "is", "the", "third", "flag."], } assert flags == expected_flags ``` """ result: Dict[str, List[str]] = { } while args: current = args.pop(0) if current[0] == "-": result[current] = [ ] # Flag Parameters while args: if args[0][0] == "-": break result[current].append(args.pop(0)) return result
2eba1fd243824b8e212b45e70c60b30ec225398d
645,356
import re def check_valid_dob(dob): """ Checks if the dob is in a valid format """ x = re.search("[0-9]{4,4}\-[0-9]{1,2}\-[0-9]{1,2}", dob) return True if x is not None else False
0c7b516a98d513938bfa304fc0a65ffbc84a512f
441,627
def dna_strength(seq): """Calculates DNA strength Args: seq (str): sequence of A, C, T, G, N with len > 1 Returns: DNA strength (float): normalized by length Raises: ValueError: if input is None or str shorter than 2 Citation: Khandelwal et al. 2010. 'A Phenomenological Model for Predicting Melting Temperature of DNA sequences', PLOS ONE """ # Adapted from Table 1 Khandelwal et al (2010). # Modified for N-containing di-nucleotide (averaged over possible cases) strength_values = { "GC": 13, "CC": 11, "GG": 11, "CG": 10, "AC": 10, "TC": 8, "AG": 8, "TG": 7, "GT": 10, "CT": 8, "GA": 8, "CA": 7, "AT": 7, "TT": 5, "AA": 5, "TA": 4, "AN": 7.5, "CN": 9, "GN": 10.5, "TN": 6, "NA": 6, "NC": 10.5, "NG": 9, "NT": 7.5, "NN": 8.25, } if not seq or len(seq) < 2: raise ValueError("Input must be string with 2-nt or longer") strength = 0 for i in range(len(seq) - 1): # return 8.25 ('NN'-value) for 2-mer not in the dictionary strength = strength + strength_values.get(seq[i : i + 2], 8.25) return strength / len(seq)
9462ffc34ef6a644e470e23262afcfd6d279564d
524,530
def init_headers(token): """ Returns a dictionary of headers with authorization token. Args: token: The string representation of an authorization token. Returns: The headers for a request with the api. """ headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + token } return headers
163a5fc5d5685fcff85a295eca21334fa4dca4a7
485,073
from typing import OrderedDict def optimise_autopkg_recipes(recipe): """If input is an AutoPkg recipe, optimise the yaml output in 3 ways to aid human readability: 1. Adjust the Processor dictionaries such that the Comment and Arguments keys are moved to the end, ensuring the Processor key is first. 2. Ensure the NAME key is the first item in the Input dictionary. 3. Order the items such that the Input and Process dictionaries are at the end. """ if "Process" in recipe: process = recipe["Process"] new_process = [] for processor in process: processor = OrderedDict(processor) if "Comment" in processor: processor.move_to_end("Comment") if "Arguments" in processor: processor.move_to_end("Arguments") new_process.append(processor) recipe["Process"] = new_process if "Input" in recipe: input = recipe["Input"] if "NAME" in input: input = OrderedDict(reversed(list(input.items()))) input.move_to_end("NAME") recipe["Input"] = OrderedDict(reversed(list(input.items()))) desired_order = [ "Comment", "Description", "Identifier", "ParentRecipe", "MinimumVersion", "Input", "Process", "ParentRecipeTrustInfo", ] desired_list = [k for k in desired_order if k in recipe] reordered_recipe = {k: recipe[k] for k in desired_list} reordered_recipe = OrderedDict(reordered_recipe) return reordered_recipe
c48611e6b47c9b9061146ddc5190645339b97578
620,187
from typing import Tuple def parse_interval(interval: str) -> Tuple[str, str, str]: """ Split the interval in three elements. They are, start time of the working day, end time of the working day, and the abbreviation of the day. :param interval: A str that depicts the day, start time and end time in one string. Ex.: 'SA14:00-18:00' :return: A tuple with three strings. Ex.: ('SA', '14:00', '18:00') """ interval_parsed = interval.split('-') day = interval_parsed[0][:2] # SU initial_hour = interval_parsed[0][2:] # '19:00' end_hour = interval_parsed[1] # '21:00' return day, initial_hour, end_hour
f2bac53a1b56e1f6371187743170646c08109a27
41,547
def read_file_from_disk(path, encoding='utf-8'): """ Utility function to read and return a file from disk :param path: Path to the file to read :type path: str :param encoding: Encoding of the file :type encoding: str :return: Contents of the file :rtype: str """ with open(path, 'r', encoding=encoding) as fp: return fp.read()
53274609b3a63a591f87c92df45d552e4e27dd4a
359,077
def update_min_size(widget, width=None, height=None, size=None): """Utility function to set minimum width/height of a widget.""" size = size or widget.GetMinSize() if width: size.SetWidth( max(width, size.GetWidth())) if height: size.SetHeight(max(height, size.GetHeight())) widget.SetMinSize(size) return size
f6efd83e45331c0b21fabff35fb75b48806f1fc1
279,256
def str_rstrip(S, substr): """Strips a suffix from S if it matches the string in `substr'. """ # This is akin to ${VAR%$substr} in Bourne-shell dialect. if len(substr) > 0 and S.endswith(substr): return S[:-len(substr)] else: return S
2c2c85989880d711fdda8093fda1b4b319063d4a
215,913
import re def parse_conf(dir): """ Extract the Autoinstall and md5sum fields from the package.conf file Args: - dir: directory name Returns: (autoinstall value, checksum value), where autoinstall value is "True" or "False" """ md5pat = re.compile('^md5sum=(.*)$') autopat = re.compile('^Autoinstall=(.*)$') checksum = None autoinstall = None with open(dir + '/package.conf', 'r') as fp: for line in fp: m = md5pat.match(line) if m: checksum = m.group(1) else: m = autopat.match(line) if m: autoinstall = m.group(1) if autoinstall and checksum: return (autoinstall, checksum) return (autoinstall, checksum)
d97343e31cb4eba70186623828a3a4a4516cebe4
144,588
def dms2dd(dms): """ DMS to decimal degrees. Args: dms (list). d must be negative for S and W. Return: float. """ d, m, s = dms return d + m/60. + s/3600.
26ce439d9a4acc8b8d384ccb88e5142581ddcc99
680,238
def upload_project_run(upload_context): """ Function run by CreateProjectCommand to create the project. Runs in a background process. :param upload_context: UploadContext: contains data service setup and project name to create. """ data_service = upload_context.make_data_service() project_name = upload_context.project_name_or_id.get_name_or_raise() result = data_service.create_project(project_name, project_name) data_service.close() return result.json()['id']
f0313f09c0e9c029648c0c87a93e45b418c13d8a
448,628
def generate_train_config(model_spec, train_batch_spec, val_batch_spec, epoch_size, n_epochs=100, lr=0.001): """ Generates a spec fully specifying a run of the experiment Args: model_spec: a model spec train_batch_spec: a batch spec for train val_batch_spec: batch spec for validation epoch_size: int n_epochs: int lr: learning rate - float Returns: train_spec """ train_spec = { 'model_spec': model_spec, 'train_batch_spec': train_batch_spec, 'val_batch_spec': val_batch_spec, 'train_spec': { 'epoch_size': epoch_size, 'n_epochs': n_epochs, 'lr': lr } } return train_spec
0e19dab0263eda8505ddb830fd255b2a760d822c
696,554
def pipe_to_underscore(pipelist): """Converts an AFF pipe-seperated list to a CEDSCI underscore-seperated list""" return pipelist.replace("|", "_")
94d29e07d2c01be5afffab71cc26f9e91646bd9b
72,155
import re def split_words(src_string): """ Split a sentence at the word boundaries :param src_string: String :return: list of words in the string """ r = re.findall(r"[\w]+", src_string) return r
beaf4b72ec79ea9d2779d073acf166960013ce2b
154,582
def metadata_filter_as_dict(metadata_config): """Return the metadata filter represented as either None (no filter), or a dictionary with at most two keys: 'additional' and 'excluded', which contain either a list of metadata names, or the string 'all'""" if metadata_config is None: return {} if metadata_config is True: return {'additional': 'all'} if metadata_config is False: return {'excluded': 'all'} if isinstance(metadata_config, dict): assert set(metadata_config) <= set(['additional', 'excluded']) return metadata_config metadata_keys = metadata_config.split(',') metadata_config = {} for key in metadata_keys: key = key.strip() if key.startswith('-'): metadata_config.setdefault('excluded', []).append(key[1:].strip()) elif key.startswith('+'): metadata_config.setdefault('additional', []).append(key[1:].strip()) else: metadata_config.setdefault('additional', []).append(key) for section in metadata_config: if 'all' in metadata_config[section]: metadata_config[section] = 'all' else: metadata_config[section] = [key for key in metadata_config[section] if key] return metadata_config
b851fdfc759f89571d1b39cf34d82122ad3a3e40
626,004
def is_sampler(estimator): """Return True if the given estimator is a sampler, False otherwise. Parameters ---------- estimator : object Estimator to test. Returns ------- is_sampler : bool True if estimator is a sampler, otherwise False. """ if estimator._estimator_type == "sampler": return True return False
5a702e92f82a6d7c579112da91a2ce71851e5373
165,519
from typing import Union from typing import Tuple import torch def conv1x1(in_planes: int, out_planes: int, stride: Union[int, Tuple[int, int]] = 1): """ CREDITS: https://github.com/pytorch/vision 1x1 convolution """ return torch.nn.Conv2d( in_channels=in_planes, out_channels=out_planes, kernel_size=1, stride=stride, bias=False )
ee3505e1fff51dbedc1b16ba3225e8ee3d4cb014
549,072
def reorder_columns(columns): """ Reorder the columns for creating constraint, preserve primary key ordering ``['task_id', 'dag_id', 'execution_date']`` :param columns: columns retrieved from DB related to constraint :return: ordered column """ ordered_columns = [] for column in ['task_id', 'dag_id', 'execution_date']: if column in columns: ordered_columns.append(column) for column in columns: if column not in ['task_id', 'dag_id', 'execution_date']: ordered_columns.append(column) return ordered_columns
70532a911eb8444be574ce12d93cd2398b8447e3
332,251
def read_metadatablockpicture( data ): """Extract picture from a METADATA_BLOCK_PICTURE""" off = 8 + int.from_bytes( data[4:8], 'big' ) off += 4 + int.from_bytes( data[off:off+4], 'big' ) + 16 size = int.from_bytes( data[off:off+4], 'big' ) return data[4+off:4+off+size]
99a993e30577af610df02123de1df030032b55c8
259,192
def csnl_to_list(csnl_str): """Converts a comma-separated and new-line separated string into a list, stripping whitespace from both ends of each item. Does not return any zero-length strings. """ s = csnl_str.replace('\n', ',') return [it.strip() for it in s.split(',') if it.strip()]
cb6743761b1b394b3459f987b02f6d0c9f47b19a
268,253
def switch_player(player): """Switch the player from X to O or vice versa and return the player""" players = {"X": "O", "O": "X"} return players[player]
6ca7412a4c1d6adddee38a15c2f3dc7ebed15cf7
117,800
import re def is_uid(string): """Return true if string is a valid DHIS2 Unique Identifier (UID)""" return re.compile('^[A-Za-z][A-Za-z0-9]{10}$').match(string)
9e1c1d8dc2697a8535018b15662a69edfdbc8eaf
70,821
def insertion_sort(arr): """ The function insertion_sort() sorts the given list using insertion sort algorithm. The function returns the list after sorting it. Arguments arr : An unsorted list. """ for x in arr[1:]: for y in arr[arr.index(x)-1::-1]: if x < y: arr[arr.index(x)] = y arr[arr.index(y)] = x return arr
0c2df7b9ad7bd72f5f7ba26c5b1bc3babe6b30f6
634,569
import re def ip_add(string): """ Extract IP address from text. Parameters ---------- string: str Text selected to apply transformation. Examples: --------- ```python sentence="An example of ip address is 125.16.100.1" ip_add(sentence) >>> ['125.16.100.1'] ``` """ text = re.findall('\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', string) return text
efaa5882e63fc3f02091cfcc28f94c643e1ae037
461,944
import yaml def parse_metadata(doc,join='\n'): """ Parse the metadata from a document and parse it as a YAML dict and return it. """ doc = doc.strip() if doc.startswith('---\n') and ('...' in doc or '---' in doc[4:]): # found starting yaml block yblock = doc[4:].split('...')[0].split('---')[0] meta = yaml.load(yblock, Loader=yaml.SafeLoader) for k in meta.keys(): val = meta[k] if isinstance(val,list): meta[k] = join.join(val) meta['metadata_yaml_length'] = len(yblock) + 7 if 'description' not in meta: body = doc[meta['metadata_yaml_length']:] first_para = body.strip().split('\n')[0] meta['description'] = first_para return meta else: # No yaml return {}
3cee56b2e6878d1836669c0c1d68b9b932a61cb1
547,710
def get_ec_params(alg): """Return a string representation of a hex encoded ASN1 object X9.62 EC parameter http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cos01/pkcs11-curr-v2.40-cos01.html Indicates that EC paramaters are byte arrays of a DER encoded ASN1 objects X9.62 parameter. This function will return a hex string without the leading 0x representing this encoding. """ if alg == "NIST p256": obj = "2A8648CE3D030107" elif alg == "NIST p224": obj = "2B81040021" elif alg == "NIST p384": obj = "2B81040022" elif alg == "NIST p521": obj = "2B81040023" else: raise RuntimeError("alg %s has no EC params mapping" % alg) # start building the DER object tag + len + obj in hex der = "06{:02x}{}".format(len(obj) // 2, obj) return der
57746eab7368940b41558970531e6db29aa1023d
117,844
def gen_tagset(tags): """Create TagSet value from a dict.""" return [{'Key': key, 'Value': value} for key, value in tags.items()]
0c12c8a901ac52f69098c4fe73da6ecbdf0cabc7
621,273
def fill_slicer(slicer, in_len): """ Return slice object with Nones filled out to match `in_len` Also fixes too large stop / start values according to slice() slicing rules. The returned slicer can have a None as `slicer.stop` if `slicer.step` is negative and the input `slicer.stop` is None. This is because we can't represent the ``stop`` as an integer, because -1 has a different meaning. Parameters ---------- slicer : slice object in_len : int length of axis on which `slicer` will be applied Returns ------- can_slicer : slice object slice with start, stop, step set to explicit values, with the exception of ``stop`` for negative step, which is None for the case of slicing down through the first element """ start, stop, step = slicer.start, slicer.stop, slicer.step if step is None: step = 1 if start is not None and start < 0: start = in_len + start if stop is not None and stop < 0: stop = in_len + stop if step > 0: if start is None: start = 0 if stop is None: stop = in_len else: stop = min(stop, in_len) else: # step < 0 if start is None: start = in_len - 1 else: start = min(start, in_len - 1) return slice(start, stop, step)
ed2bcad1246f8f5e238878bf2fc46edfa871a445
359,280
def _max_full_form_prefix_length(full_form, lemma, min_rule_length): """Return the maximum possible length of the prefix (part of the full form preceding the suffix).""" full_form_prefix = len(full_form) - min_rule_length return min(len(lemma), full_form_prefix)
b9ee8c850f41c69019bfed6e827d83fe90e416e5
560,482
import requests import json def get_entry(url): """Call query URL and check returned entry Parameters ---------- url : str POWER query URL Returns ------- dict entry returned by query Raises ------ RuntimeError when API returned error """ r = requests.get(url) r.raise_for_status() entry = json.loads(r.text) for message in entry.get('messages', []): if 'Alert' in message: raise RuntimeError(message) return entry
2ce788e1a71dbfe3d576b79812228d3d788a44f6
497,834
def normalize_rect(rect): """ Make rectangle a rotated tall rectangle, which means y-size > x-size and the angle indicates the "tilt": rotation of the longer axis from vertical :param rect: OpenCV's rectangle object :return: OpenCV's rectangle object normalized as described rect[0] is the coordinates of the center of the rectangle rect[1] is tuple of the sizes (x, y) rect[2] is the tilt angle if width > height, in rect's internal means, then we turn it 90 degrees which means swap the sizes and turn cw or ccw depending on the previous value """ if rect[1][0] > rect[1][1]: # incoming rect can be a tuple so if swapping reassign the whole thing rect = ( rect[0], # same center coordinates (rect[1][1], rect[1][0]), # swap height with width rect[2] + 90.0 if rect[2] < 0.0 else -90.0 ) return rect
4796f4e14b16c3e78098fa74df868f18a684e229
82,826
def ccalc_viridis(x, rgbmax): """viridis colour map""" r = [0.26700401, 0.26851048, 0.26994384, 0.27130489, 0.27259384, 0.27380934, 0.27495242, 0.27602238, 0.2770184, 0.27794143, 0.27879067, 0.2795655, 0.28026658, 0.28089358, 0.28144581, 0.28192358, 0.28232739, 0.28265633, 0.28291049, 0.28309095, 0.28319704, 0.28322882, 0.28318684, 0.283072, 0.28288389, 0.28262297, 0.28229037, 0.28188676, 0.28141228, 0.28086773, 0.28025468, 0.27957399, 0.27882618, 0.27801236, 0.27713437, 0.27619376, 0.27519116, 0.27412802, 0.27300596, 0.27182812, 0.27059473, 0.26930756, 0.26796846, 0.26657984, 0.2651445, 0.2636632, 0.26213801, 0.26057103, 0.25896451, 0.25732244, 0.25564519, 0.25393498, 0.25219404, 0.25042462, 0.24862899, 0.2468114, 0.24497208, 0.24311324, 0.24123708, 0.23934575, 0.23744138, 0.23552606, 0.23360277, 0.2316735, 0.22973926, 0.22780192, 0.2258633, 0.22392515, 0.22198915, 0.22005691, 0.21812995, 0.21620971, 0.21429757, 0.21239477, 0.2105031, 0.20862342, 0.20675628, 0.20490257, 0.20306309, 0.20123854, 0.1994295, 0.1976365, 0.19585993, 0.19410009, 0.19235719, 0.19063135, 0.18892259, 0.18723083, 0.18555593, 0.18389763, 0.18225561, 0.18062949, 0.17901879, 0.17742298, 0.17584148, 0.17427363, 0.17271876, 0.17117615, 0.16964573, 0.16812641, 0.1666171, 0.16511703, 0.16362543, 0.16214155, 0.16066467, 0.15919413, 0.15772933, 0.15626973, 0.15481488, 0.15336445, 0.1519182, 0.15047605, 0.14903918, 0.14760731, 0.14618026, 0.14475863, 0.14334327, 0.14193527, 0.14053599, 0.13914708, 0.13777048, 0.1364085, 0.13506561, 0.13374299, 0.13244401, 0.13117249, 0.1299327, 0.12872938, 0.12756771, 0.12645338, 0.12539383, 0.12439474, 0.12346281, 0.12260562, 0.12183122, 0.12114807, 0.12056501, 0.12009154, 0.11973756, 0.11951163, 0.11942341, 0.11948255, 0.11969858, 0.12008079, 0.12063824, 0.12137972, 0.12231244, 0.12344358, 0.12477953, 0.12632581, 0.12808703, 0.13006688, 0.13226797, 0.13469183, 0.13733921, 0.14020991, 0.14330291, 0.1466164, 0.15014782, 0.15389405, 0.15785146, 0.16201598, 0.1663832, 0.1709484, 0.17570671, 0.18065314, 0.18578266, 0.19109018, 0.19657063, 0.20221902, 0.20803045, 0.21400015, 0.22012381, 0.2263969, 0.23281498, 0.2393739, 0.24606968, 0.25289851, 0.25985676, 0.26694127, 0.27414922, 0.28147681, 0.28892102, 0.29647899, 0.30414796, 0.31192534, 0.3198086, 0.3277958, 0.33588539, 0.34407411, 0.35235985, 0.36074053, 0.3692142, 0.37777892, 0.38643282, 0.39517408, 0.40400101, 0.4129135, 0.42190813, 0.43098317, 0.44013691, 0.44936763, 0.45867362, 0.46805314, 0.47750446, 0.4870258, 0.49661536, 0.5062713, 0.51599182, 0.52577622, 0.5356211, 0.5455244, 0.55548397, 0.5654976, 0.57556297, 0.58567772, 0.59583934, 0.60604528, 0.61629283, 0.62657923, 0.63690157, 0.64725685, 0.65764197, 0.66805369, 0.67848868, 0.68894351, 0.69941463, 0.70989842, 0.72039115, 0.73088902, 0.74138803, 0.75188414, 0.76237342, 0.77285183, 0.78331535, 0.79375994, 0.80418159, 0.81457634, 0.82494028, 0.83526959, 0.84556056, 0.8558096, 0.86601325, 0.87616824, 0.88627146, 0.89632002, 0.90631121, 0.91624212, 0.92610579, 0.93590444, 0.94563626, 0.95529972, 0.96489353, 0.97441665, 0.98386829, 0.99324789] g = [0.00487433, 0.00960483, 0.01462494, 0.01994186, 0.02556309, 0.03149748, 0.03775181, 0.04416723, 0.05034437, 0.05632444, 0.06214536, 0.06783587, 0.07341724, 0.07890703, 0.0843197, 0.08966622, 0.09495545, 0.10019576, 0.10539345, 0.11055307, 0.11567966, 0.12077701, 0.12584799, 0.13089477, 0.13592005, 0.14092556, 0.14591233, 0.15088147, 0.15583425, 0.16077132, 0.16569272, 0.17059884, 0.1754902, 0.18036684, 0.18522836, 0.19007447, 0.1949054, 0.19972086, 0.20452049, 0.20930306, 0.21406899, 0.21881782, 0.22354911, 0.2282621, 0.23295593, 0.23763078, 0.24228619, 0.2469217, 0.25153685, 0.2561304, 0.26070284, 0.26525384, 0.26978306, 0.27429024, 0.27877509, 0.28323662, 0.28767547, 0.29209154, 0.29648471, 0.30085494, 0.30520222, 0.30952657, 0.31382773, 0.3181058, 0.32236127, 0.32659432, 0.33080515, 0.334994, 0.33916114, 0.34330688, 0.34743154, 0.35153548, 0.35561907, 0.35968273, 0.36372671, 0.36775151, 0.37175775, 0.37574589, 0.37971644, 0.38366989, 0.38760678, 0.39152762, 0.39543297, 0.39932336, 0.40319934, 0.40706148, 0.41091033, 0.41474645, 0.4185704, 0.42238275, 0.42618405, 0.42997486, 0.43375572, 0.4375272, 0.44128981, 0.4450441, 0.4487906, 0.4525298, 0.45626209, 0.45998802, 0.46370813, 0.4674229, 0.47113278, 0.47483821, 0.47853961, 0.4822374, 0.48593197, 0.4896237, 0.49331293, 0.49700003, 0.50068529, 0.50436904, 0.50805136, 0.51173263, 0.51541316, 0.51909319, 0.52277292, 0.52645254, 0.53013219, 0.53381201, 0.53749213, 0.54117264, 0.54485335, 0.54853458, 0.55221637, 0.55589872, 0.55958162, 0.56326503, 0.56694891, 0.57063316, 0.57431754, 0.57800205, 0.58168661, 0.58537105, 0.58905521, 0.59273889, 0.59642187, 0.60010387, 0.60378459, 0.60746388, 0.61114146, 0.61481702, 0.61849025, 0.62216081, 0.62582833, 0.62949242, 0.63315277, 0.63680899, 0.64046069, 0.64410744, 0.64774881, 0.65138436, 0.65501363, 0.65863619, 0.66225157, 0.66585927, 0.66945881, 0.67304968, 0.67663139, 0.68020343, 0.68376525, 0.68731632, 0.69085611, 0.69438405, 0.6978996, 0.70140222, 0.70489133, 0.70836635, 0.71182668, 0.71527175, 0.71870095, 0.72211371, 0.72550945, 0.72888753, 0.73224735, 0.73558828, 0.73890972, 0.74221104, 0.74549162, 0.74875084, 0.75198807, 0.75520266, 0.75839399, 0.76156142, 0.76470433, 0.76782207, 0.77091403, 0.77397953, 0.7770179, 0.78002855, 0.78301086, 0.78596419, 0.78888793, 0.79178146, 0.79464415, 0.79747541, 0.80027461, 0.80304099, 0.80577412, 0.80847343, 0.81113836, 0.81376835, 0.81636288, 0.81892143, 0.82144351, 0.82392862, 0.82637633, 0.82878621, 0.83115784, 0.83349064, 0.83578452, 0.83803918, 0.84025437, 0.8424299, 0.84456561, 0.84666139, 0.84871722, 0.8507331, 0.85270912, 0.85464543, 0.85654226, 0.85839991, 0.86021878, 0.86199932, 0.86374211, 0.86544779, 0.86711711, 0.86875092, 0.87035015, 0.87191584, 0.87344918, 0.87495143, 0.87642392, 0.87786808, 0.87928545, 0.88067763, 0.88204632, 0.88339329, 0.88472036, 0.88602943, 0.88732243, 0.88860134, 0.88986815, 0.89112487, 0.89237353, 0.89361614, 0.89485467, 0.89609127, 0.89732977, 0.8985704, 0.899815, 0.90106534, 0.90232311, 0.90358991, 0.90486726, 0.90615657] b = [0.32941519, 0.33542652, 0.34137895, 0.34726862, 0.35309303, 0.35885256, 0.36454323, 0.37016418, 0.37571452, 0.38119074, 0.38659204, 0.39191723, 0.39716349, 0.40232944, 0.40741404, 0.41241521, 0.41733086, 0.42216032, 0.42690202, 0.43155375, 0.43611482, 0.44058404, 0.44496, 0.44924127, 0.45342734, 0.45751726, 0.46150995, 0.46540474, 0.46920128, 0.47289909, 0.47649762, 0.47999675, 0.48339654, 0.48669702, 0.48989831, 0.49300074, 0.49600488, 0.49891131, 0.50172076, 0.50443413, 0.50705243, 0.50957678, 0.5120084, 0.5143487, 0.5165993, 0.51876163, 0.52083736, 0.52282822, 0.52473609, 0.52656332, 0.52831152, 0.52998273, 0.53157905, 0.53310261, 0.53455561, 0.53594093, 0.53726018, 0.53851561, 0.53970946, 0.54084398, 0.5419214, 0.54294396, 0.54391424, 0.54483444, 0.54570633, 0.546532, 0.54731353, 0.54805291, 0.54875211, 0.54941304, 0.55003755, 0.55062743, 0.5511844, 0.55171011, 0.55220646, 0.55267486, 0.55311653, 0.55353282, 0.55392505, 0.55429441, 0.55464205, 0.55496905, 0.55527637, 0.55556494, 0.55583559, 0.55608907, 0.55632606, 0.55654717, 0.55675292, 0.55694377, 0.5571201, 0.55728221, 0.55743035, 0.55756466, 0.55768526, 0.55779216, 0.55788532, 0.55796464, 0.55803034, 0.55808199, 0.55811913, 0.55814141, 0.55814842, 0.55813967, 0.55811466, 0.5580728, 0.55801347, 0.557936, 0.55783967, 0.55772371, 0.55758733, 0.55742968, 0.5572505, 0.55704861, 0.55682271, 0.55657181, 0.55629491, 0.55599097, 0.55565893, 0.55529773, 0.55490625, 0.55448339, 0.55402906, 0.55354108, 0.55301828, 0.55245948, 0.55186354, 0.55122927, 0.55055551, 0.5498411, 0.54908564, 0.5482874, 0.54744498, 0.54655722, 0.54562298, 0.54464114, 0.54361058, 0.54253043, 0.54139999, 0.54021751, 0.53898192, 0.53769219, 0.53634733, 0.53494633, 0.53348834, 0.53197275, 0.53039808, 0.52876343, 0.52706792, 0.52531069, 0.52349092, 0.52160791, 0.51966086, 0.5176488, 0.51557101, 0.5134268, 0.51121549, 0.50893644, 0.5065889, 0.50417217, 0.50168574, 0.49912906, 0.49650163, 0.49380294, 0.49103252, 0.48818938, 0.48527326, 0.48228395, 0.47922108, 0.47608431, 0.4728733, 0.46958774, 0.46622638, 0.46278934, 0.45927675, 0.45568838, 0.45202405, 0.44828355, 0.44446673, 0.44057284, 0.4366009, 0.43255207, 0.42842626, 0.42422341, 0.41994346, 0.41558638, 0.41115215, 0.40664011, 0.40204917, 0.39738103, 0.39263579, 0.38781353, 0.38291438, 0.3779385, 0.37288606, 0.36775726, 0.36255223, 0.35726893, 0.35191009, 0.34647607, 0.3409673, 0.33538426, 0.32972749, 0.32399761, 0.31819529, 0.31232133, 0.30637661, 0.30036211, 0.29427888, 0.2881265, 0.28190832, 0.27562602, 0.26928147, 0.26287683, 0.25641457, 0.24989748, 0.24332878, 0.23671214, 0.23005179, 0.22335258, 0.21662012, 0.20986086, 0.20308229, 0.19629307, 0.18950326, 0.18272455, 0.17597055, 0.16925712, 0.16260273, 0.15602894, 0.14956101, 0.14322828, 0.13706449, 0.13110864, 0.12540538, 0.12000532, 0.11496505, 0.11034678, 0.10621724, 0.1026459, 0.09970219, 0.09745186, 0.09595277, 0.09525046, 0.09537439, 0.09633538, 0.09812496, 0.1007168, 0.10407067, 0.10813094, 0.11283773, 0.11812832, 0.12394051, 0.13021494, 0.13689671, 0.1439362] i = int(round(x * 255, 0)) return [r[i]*rgbmax, g[i]*rgbmax, b[i]*rgbmax]
88a1a135c3f398d33bc8f5b3a56520ea8461c373
122,412
import base64 def base64_from_hex(hexstr): """ Returns the base64 string for the hex string specified :param hexstr: The hex string to convert to base64 :return: The base64 value for the specified hes string """ return base64.b64encode(bytes(bytearray.fromhex(hexstr))).decode("utf8")
5d457d08ed47356073bd2238699b65a3c3037df3
642,348