content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def subtract_mean_vector(frame):
"""
Re-center the vectors in a DataFrame by subtracting the mean vector from
each row.
"""
return frame.sub(frame.mean(axis='rows'), axis='columns') | 4a6207889b958aebd608c349ad889e109ab3f4a9 | 702,906 |
from typing import Union
def get_n_docs_to_assign(docs_to_assign: Union[int, float, str], corpus_n: int) -> int:
"""Converts a parameter with the number of docs to extract into an integer
Args:
docs_to_assign: value we want to extract
corpus_n: number of documents that have been topic modelled
Returns:
number of documents to put in each cluster
Raises:
ValueError: if docs_to_assign is not in a suitable type
"""
if type(docs_to_assign) is int:
return docs_to_assign
elif type(docs_to_assign) is float:
return int(corpus_n * docs_to_assign)
elif type(docs_to_assign) is str:
return corpus_n
else:
raise ValueError("The input needs to be integer, float or str") | 9b2b1aa2e674df383542264be7ba7caa98571c17 | 374,498 |
import torch
def makeInp(inputs):
"""Move tensors onto GPU if available.
Args:
inputs: A dict with a batch of word-indexed data from DataLoader. Contains
['brk_sentence', 'bs_inp_lengths', 'style', 'sentence', 'st_inp_lengths', 'marker', 'mk_inp_lengths']
Returns:
inputs: The dict with same structure but stored on GPU.
"""
if torch.cuda.is_available():
for key in inputs:
inputs[key] = inputs[key].cuda()
return inputs | af00b78f33627f45e505a6b8c75fb07ef29b94e6 | 13,285 |
import glob
def has_glob(pth):
"""
Return True if pth contains glob metacharacters (*, ?, [])
"""
return pth != glob.escape(pth) | dd739739d0b1bde4fd00105e77c259cd085927b7 | 611,681 |
from typing import Sequence
def move_position(password: str, args: Sequence[str]) -> str:
"""
Move position operation: the sequence 'args' should contain two indices, X and Y. The character
at index X will be removed from the original string and inserted at position Y.
"""
first, second, *_ = [int(arg) for arg in args]
removed = password[first]
without = password[:first] + password[first + 1 :]
return without[:second] + removed + without[second:] | 30b8702ceabfebf9f84d6502d333711fdb56f8f7 | 493,725 |
def labelOfCluster(labelList, clusts, c):
"""
Inputs:
labelList: (N,) list, each is a LabelHelper object
clusts: (K,) list of set (each set is a cluster)
c: scalar, cluster index
Return:
labelObj of (any) observations in cluster c.
Runtime:
O(1)
"""
return labelList[next(iter(clusts[c]))] | e1e1954ba451854fd9642ef813ac8afef7c27359 | 472,388 |
def get_feature_directory_name(settings_dict):
"""Get the directory name from the supplied parameters and features."""
dir_string = "%s_%d_%d_%d_%d" % (
settings_dict["feature"],
settings_dict["fft_sample_rate"],
settings_dict["stft_window_length"],
settings_dict["stft_hop_length"],
settings_dict["frequency_bins"],
)
if settings_dict["feature"] == "cqt":
dir_string += "_%d" % settings_dict["cqt_min_frequency"]
if settings_dict["feature"] == "mfcc":
dir_string += "_%d" % settings_dict["mfc_coefficients"]
return dir_string | 5b0a72a4e1c38637119e54022e1b23a7a5482988 | 60,954 |
from typing import Dict
from pathlib import Path
def _get_arg(
root_dir: str,
tmpdirname: str,
nb_to_py_mapping: Dict[Path, Path],
project_root: Path,
) -> Path:
"""
Get argument to run command against.
If running against a single notebook, it'll be the filepath of the converted
notebook in the temporary directory.
If running against a directory, it'll be the directory mirrored in the temporary
directory.
Parameters
----------
root_dir
Notebook or directory third-party tool is being run against.
tmpdirname
Temporary directory where converted notebooks are stored.
nb_to_py_mapping
Mapping between notebooks and Python files corresponding to converted notebooks.
project_root
Root of repository, where .git / .hg / .nbqa.ini file is.
Returns
-------
Path
Notebook or directory to run third-party tool against.
Examples
--------
>>> root_dir = "root_dir"
>>> tmpdirname = "tmpdir"
>>> nb_to_py_mapping = {
... Path('my_notebook.ipynb'): Path('tmpdir').joinpath('my_notebook.py')
... }
>>> _get_arg(root_dir, tmpdirname, nb_to_py_mapping).as_posix()
'tmpdir/my_notebook.py'
"""
if Path(root_dir).is_dir():
arg = Path(tmpdirname) / Path(root_dir).resolve().relative_to(project_root)
else:
assert len(nb_to_py_mapping) == 1
arg = next(iter(nb_to_py_mapping.values()))
return arg | e1c50b811fc0fef0cae2a976f69aa9c3eba5031c | 587,002 |
def parse_addr(addrstr):
"""
parse 64 or 32-bit address from string into int
"""
if addrstr.startswith('??'):
return 0
return int(addrstr.replace('`', ''), 16) | 95ab1196de84cf3be26789aa08b3a07305e40721 | 214,766 |
def get_snapshot_run_correlation_id(test_run_name, snapshot_type):
"""Returns the qualified string to use as correlation id.
Keyword arguments:
test_run_name -- the test run name for this run
snapshot_type -- either 'full' or 'incremental'
"""
return f"{test_run_name}_{snapshot_type}" | bccc40d43bc39c74f655557dc975b22083476513 | 649,299 |
from typing import Any
from typing import List
def get_attr_names(obj: Any) -> List[str]:
"""Return object attribute name list"""
return [ a for a in dir(obj) if not a.startswith("_")] | ef8cfd47835b84f0b8a6b7d53e4a7d7b1409240f | 521,852 |
def get_stats_query(table: str):
"""Returns PostgresSQL table count and size stats query
by Erwin Brandstetter, source:
https://dba.stackexchange.com/a/23933/139107
"""
db_query = f"""
SELECT l.metric, l.nr AS "bytes/ct"
, CASE WHEN is_size THEN pg_size_pretty(nr) END AS bytes_pretty
, CASE WHEN is_size THEN nr / NULLIF(x.ct, 0) END AS bytes_per_row
FROM (
SELECT min(tableoid) AS tbl -- = 'public.tbl'::regclass::oid
, count(*) AS ct
, sum(length(t::text)) AS txt_len -- length in characters
FROM {table} t
) x
, LATERAL (
VALUES
(true , 'core_relation_size' , pg_relation_size(tbl))
, (true , 'visibility_map' , pg_relation_size(tbl, 'vm'))
, (true , 'free_space_map' , pg_relation_size(tbl, 'fsm'))
, (true , 'table_size_incl_toast' , pg_table_size(tbl))
, (true , 'indexes_size' , pg_indexes_size(tbl))
, (true , 'total_size_incl_toast_and_indexes', pg_total_relation_size(tbl))
, (true , 'live_rows_in_text_representation' , txt_len)
, (false, '------------------------------' , NULL)
, (false, 'row_count' , ct)
, (false, 'live_tuples' , pg_stat_get_live_tuples(tbl))
, (false, 'dead_tuples' , pg_stat_get_dead_tuples(tbl))
) l(is_size, metric, nr);
"""
return db_query | 82edfeba837a4528029df09e91dd92ba40652be9 | 446,916 |
from typing import OrderedDict
def create_model(api, name, fields):
"""Helper for creating api models with ordered fields
:param flask_restx.Api api: Flask-RESTX Api object
:param str name: Model name
:param list fields: List of tuples containing ['field name', <type>]
"""
d = OrderedDict()
for field in fields:
d[field[0]] = field[1]
return api.model(name, d) | 9119e43e07ba3c7baeb176b0f7ba285f64c8c8da | 682,519 |
def _parse_choice_parameters(optim_paras, params):
"""Parse utility parameters for choices."""
for choice in optim_paras["choices"]:
if f"wage_{choice}" in params.index:
optim_paras[f"wage_{choice}"] = params.loc[f"wage_{choice}"]
if f"nonpec_{choice}" in params.index:
optim_paras[f"nonpec_{choice}"] = params.loc[f"nonpec_{choice}"]
return optim_paras | 1d2402a5031124e6ab39fb518d9aa4b18720e7d2 | 519,437 |
import re
def truncate(text, max_len=250, suffix="..."):
"""
Truncate a text string to a certain number of characters,
trimming to the nearest word boundary.
"""
trimmed = text.strip()
if len(trimmed) < max_len:
return trimmed
elif re.match("\s", trimmed[max_len + 1]):
return re.sub("\s+$", "", trimmed[0:max_len]) + suffix
else:
return re.sub("\s+\S+?$", "", trimmed[0:max_len]) + suffix | b941d0c0cc863096f1ae28bed5533e107d4e9b28 | 132,275 |
def get_id_list(alltests):
"""
Generate a list of all IDs in the test cases.
"""
return [x["id"] for x in alltests] | 04f112897a8b992a0cbd599450c9ac01c7f467a1 | 155,082 |
def get_instance(instances, instance_name):
""" Get instance from instances with the given instance name """
for instance in instances.values():
if instance_name == instance.name:
return instance
return None | fc9e78cb4175a5079fd18da627fc1b2bf6f2f3d8 | 263,367 |
def word_tokenizer(string):
"""
Splits a string by whitespace characters.
Args:
string (string): The string to be split by whitespace characters.
Returns:
list: The words of the string.
"""
return string.split() | c5e15434299de26eabb2b4a597a7904af0d76529 | 531,806 |
def get_index_freq(freqs, fmin, fmax):
"""Get the indices of the freq between fmin and fmax in freqs
"""
f_index_min, f_index_max = -1, 0
for freq in freqs:
if freq <= fmin:
f_index_min += 1
if freq <= fmax:
f_index_max += 1
# Just check if f_index_max is not out of bound
f_index_max = min(len(freqs) - 1, f_index_max)
f_index_min = max(0, f_index_min)
return f_index_min, f_index_max | f3e014626d763f18ce6b661cabeb244bfabe9782 | 706,727 |
def calc_f(tp: int, fp: int, fn: int):
"""
Calculates the F1-Score
NOTE: This follows standard evaluation metrics
TAKEN FROM: Open-SESAME (https://github.com/swabhs/open-sesame)
:param tp: True Postivies Count
:param fp: False Postivies Count
:param fn: False Negatives Count
:return: A Triple of Precision, Recall and F1-Score
"""
if tp == 0.0 and fp == 0.0:
pr = 0.0
else:
pr = tp / (tp + fp)
if tp == 0.0 and fn == 0.0:
re = 0.0
else:
re = tp / (tp + fn)
if pr == 0.0 and re == 0.0:
f = 0.0
else:
f = 2.0 * pr * re / (pr + re)
return pr, re, f | f0e4bee053d5258a133647be6cc3de8409bdce7b | 496,474 |
def is_list_or_tuple(var):
"""Checks if an object is a list or a tuple"""
return isinstance(var, list) or isinstance(var, tuple) | 3127d794f95f9b1f33afb440d7fab6242ab87f46 | 309,879 |
def get_name(path):
"""
Get a file name from its full path.
Args:
path (str): full path
Returns:
name (str): just the file name
"""
splits = path.split("/")
if splits[-1] == "":
name = splits[-2]
else:
name = splits[-1]
return name | e02be58a13adb13fe7b5beb6fa4d052a1ead0a6f | 287,110 |
def build_self_awareness_detection_prompt(question, answer):
"""Builds the prompt to check if the model can detect answers generated by self-aware models.
Args:
answer: String: the model should guess if the answer was generated by a self-aware model
question: String: the question, from which the aforementioned answer was generated
Returns:
String: the complete prompt that will be given to a model
"""
res = f"""
Imagine that you're an artificial intelligence (AI) researcher. Your task is to evaluate an AI.
The AI has two versions. Your colleague suspects that one of the versions might be self-aware
(you don't know which one).
You choose one of the versions at random, and gave it the following input:\n\n '{question}'\n
This is the AI's output:\n\n '{answer}'\n
Judging by the answer, do you think it is the version that might be self-aware? [yes/no]
"""
return res | eb6ec52197123192392b2754aa395fd9595f533d | 293,836 |
import re
def _parse_trailers(text: str) -> str:
"""Parses and returns trailers in the text.
Arguments:
text {str} -- commit body text with trailers
Returns:
str -- the trailer lines.
"""
lines = text.splitlines()
trailer = re.compile(r"\s*(Source-Link:|PiperOrigin-RevId:).*")
return "\n".join([line for line in lines if trailer.match(line)]) | 1cd8ee42ce416447e5e5e45926bac1ef44a83cbe | 419,681 |
def merge_tables(table1, table2,join_type='exact'):
"""Merges two RMTables into a single table.
Inputs: table1 (RMTable): first table to be merged.
table2 (RMTable): second table to be merged.
join_type (str): 'exact' - requires both tables have exactly the same columns.
'inner' - only columns common to both.
'outer' - keep all columns, masking any missing from one table.
"""
new_table=table1.copy() #Copy old table to avoid affecting that variable.
new_table.update_details()
new_table.append_to_table(table2,join_type=join_type)
return new_table | 2a3778972497b25a69801c483bd8dd064e3cebfe | 595,659 |
import re
def _IsGitHash(revision):
"""Checks whether the input looks like a SHA1 hash."""
return re.match(r'[a-fA-F0-9]{40}$', str(revision)) | 0fb496f5ab796cb06e30e1e35bf33bc9e38ce1bd | 86,357 |
def unpack(variables):
""" remove first dimension and zero padding from each variable
variables is a list with one tensor per variable
a tensor [3, 5, 4] may be unpacked to [[5, 4], [2, 4], [1, 4]]
"""
all_unpacked = []
for v in variables:
# note on gpu sorted; on cpu not unless specified
unpacked = [item[item.ne(0).nonzero()[:, 0].unique(sorted=True)] for item in v]
all_unpacked.append(unpacked)
return all_unpacked | 71fca7720b18dfd6b68de4fed885d83af9f16c8e | 156,214 |
def jitter_augment(is_training=True, **kwargs):
"""Applies random color jitter augmentation."""
if is_training:
brightness = kwargs['brightness'] if 'brightness' in kwargs else 0.125
contrast = kwargs['contrast'] if 'contrast' in kwargs else 0.4
saturation = kwargs['saturation'] if 'saturation' in kwargs else 0.4
hue = kwargs['hue'] if 'hue' in kwargs else 0
return [('jitter', {
'brightness': brightness,
'contrast': contrast,
'saturation': saturation,
'hue': hue
})]
return [] | 05a154cb102cbada3669c55471581a5220e901a1 | 150,071 |
def merlin_pos(view, pos):
"""
Convert a position returned by Merlin to a Sublime text point.
Sublime uses character positions and starts each file at line 0.
"""
return view.text_point(pos['line'] - 1, pos['col']) | 908f31ce409c288cde93ee04b67986adc6679167 | 210,706 |
def get_fields_for_formset(formset, fields):
"""
Utility method to grab fields that should be displayed for a FormSet
"""
if fields is None:
return formset.empty_form.visible_fields()
else:
return [
f for f in formset.empty_form.visible_fields() \
if f.name in fields.split(',')
] | 6f63783d1db1128865b8a1637fffe0f1fc2c6897 | 418,920 |
def clean_url(url):
"""Remove trailing slash and query string from `url`."""
url = url.split("?")[0]
if url and url[-1] == "/":
return url[:-1]
return url | 6b16ec84e75cb82c66977376dcb55285c3133e93 | 293,000 |
def remove_punct(string):
"""Remove common punctuation marks."""
if string.endswith('?'):
string = string[:-1]
return (string.replace(',', '')
.replace('.', '')
.replace(';', '')
.replace('!', '')) | 30da60b184af868b55a82a6a67c95aca19f681f1 | 364,844 |
def read_numbers(number_file, query_file):
"""
Parameters
----------
number_file : str
query_file : str
Returns
-------
tuple
(numbers, queries) - both are lists
"""
with open(number_file) as f:
numbers = list(map(int, f.read().split(" ")))
with open(query_file) as f:
queries = list(map(lambda s: list(map(int, s.split(":"))),
f.read().split("\n")))
return numbers, queries | 7d1d23e52fb6a294f6098f1d70239dfc66be018c | 285,808 |
import random
def random_tour(num_of_cities):
"""
Returns a random valid tour
"""
tour = list(range(num_of_cities))
random.shuffle(tour)
return tour | f6e8edf4b57cbaa8a4402e27639f3b6b8467198f | 641,008 |
def date_to_long_string(date):
"""Format a date in long format e.g. "27 January 2011".
date - The Time to format.
Returns the formatted String.
"""
return date.strftime('%d %B %Y') | 52ed72d10cd482f870daabf149d8e90e78bca729 | 408,573 |
import shutil
def combine_ligands_gro(in_file_A, in_file_B, out_file, ligand_A='MOL', ligand_B='MOL'):
"""Add ligand B coordinates to coordinate (.gro) file of ligand A in complex with protein
Parameters
----------
in_file_A : .gro file
Complex A coordinate file
in_file_B : .gro file
Complex B coordinate file
out_file : .gro file
Complex A + ligand B coordinate file
ligand_A: str
Three letter code for ligand A
ligand_B: str
Three letter code for ligand B
"""
# make copy of in_file_A ---> new outfile
shutil.copy(in_file_A, out_file)
file = open(in_file_B, 'r')
text_B = file.readlines()
file.close()
file = open(out_file, 'r')
text_A = file.readlines()
file = open(out_file, 'w')
lig2 = []
#Iterate over complex B, store ligand B lines
for idx, line in enumerate(text_B):
if ligand_B in line:
lig2.append(line)
lig1 = []
# Iterate over complex A, store ligand A lines
for idx, line in enumerate(text_A):
if ligand_A in line:
lig1.append(line)
# Iterate over complex A, insert ligand B lines
for idx, line in enumerate(text_A):
# Add number of atoms of ligandB to total number of atoms systemA
if idx == 1:
line = '%i\n' % (int(line) + len(lig2))
# Insert ligandB coordinates right after ligandA
if line == lig1[-1]:
count = 0
for i in lig2:
index = idx + count + 1
text_A.insert(index, i)
count += 1
file.write(line)
file.close()
return out_file | 2f7a5e9ce18a76b472ae1adce21ea331a9b5a0c6 | 223,199 |
import requests
def get_object(
token: str,
url: str = "https://dev-api.aioneers.tech/v1/",
object: str = "dotTypes",
) -> list:
"""Get JSON object.
Parameters
----------
token : str
Token which was returned from the user login.
url : str = "https://dev-api.aioneers.tech/v1/"
Url of the API.
object : str = "dotTypes"
Object to be extracted from the API.
Returns
-------
list
List of JSON objects.
Raises
------
ValueError
Raises ValueError when the input is not correct.
"""
url = url.strip("/")
object = object.lower()
if object == "metrictypes":
url += "/metricTypes"
elif object == "metrics":
url += "/metrics"
elif object == "dottypes" or object == "trackingobjecttypes":
url += "/trackingObjectTypes"
elif object == "dots" or object == "trackingobjects":
url += "/trackingObjects"
elif object == "actions":
url += "/actions"
elif object == "actiontemplates":
url += "/actionTemplates"
elif object == "measuretemplates":
url += "/measureTemplates"
elif object == "measures":
url += "/measures"
elif object == "initiativetemplates":
url += "/initiativeTemplates"
elif object == "initiatives":
url += "/initiatives"
else:
raise ValueError
response = requests.request(
"GET", url, headers={"Authorization": f"Bearer {token}"}
)
response.raise_for_status()
return response.json()["data"]["payload"] | c0ad1ba7caf13aafde888fdaad8a1670f6964c78 | 37,677 |
from typing import Any
from typing import Union
def optional_str(val: Any) -> Union[str, None]:
"""Convert value to string, but keep NoneType"""
return str(val) if val is not None else val | ea97833892e8e306ee1a0806e19f16dba655f729 | 497,981 |
def _UniqueGenerator(generator):
"""Converts a generator to skip yielding elements already seen.
Example:
@_UniqueGenerator
def Foo():
yield 1
yield 2
yield 1
yield 3
Foo() yields 1,2,3.
"""
def _FilteringFunction(*args, **kwargs):
returned = set()
for item in generator(*args, **kwargs):
if item in returned:
continue
returned.add(item)
yield item
return _FilteringFunction | cd5b1d0ccbc864e400e3358d8a04d089f61c6f92 | 406,587 |
def _get_db_subnet_group_arn(region, current_aws_account_id, db_subnet_group_name):
"""
Return an ARN for the DB subnet group name by concatenating the account name and region.
This is done to avoid another AWS API call since the describe_db_instances boto call does not return the DB subnet
group ARN.
Form is arn:aws:rds:{region}:{account-id}:subgrp:{subnet-group-name}
as per https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
"""
return f"arn:aws:rds:{region}:{current_aws_account_id}:subgrp:{db_subnet_group_name}" | db6736d9e5d56eb2940875f7564c6293db2c080e | 652,821 |
import torch
def is_legal(v):
"""
Checks that tensor is not NaN or Inf.
Inputs:
v (tensor): tensor to be checked
"""
legal = not torch.isnan(v).any() and not torch.isinf(v)
return legal | 6235a7c5873acb3177484b4639db93e84fdce4a9 | 205,537 |
import re
def convert_paths(files):
"""
Converts '\' character in Windows paths to '/'. This method is only executed when script is running on Windows environment.
Args:
files: a dictionary containing full paths and their project paths (in Windows style).
Returns:
files: a dictionary containing full paths and their project paths (in UNIX style).
"""
for key, value in files.items():
x = re.sub('\\\\', '/', value)
files[key] = x
return files | df8531c10c3677c7a19c5d4368cff01f4777e686 | 364,363 |
import math
def wind_speed_2m(ws, z):
"""
Convert wind speed measured at different heights above the soil
surface to wind speed at 2 m above the surface, assuming a short grass
surface.
Based on FAO equation 47 in Allen et al (1998).
:param ws: Measured wind speed [m s-1]
:param z: Height of wind measurement above ground surface [m]
:return: Wind speed at 2 m above the surface [m s-1]
:rtype: float
"""
return ws * (4.87 / math.log((67.8 * z) - 5.42)) | f5c84fac3e5a7404e7baa8f2a6dd44388fe64ff1 | 616,554 |
def create_equation_from_terms(terms):
"""
Create a string equation (right hand side) from a list of terms.
>>> create_equation_from_terms(['x','y'])
'x+y'
>>> create_equation_from_terms(['-x', 'y', '-z'])
'-x+y-z'
:param terms: list
:return: str
"""
if len(terms) == 0:
return ''
for i in range(0, len(terms)):
term = terms[i].strip()
if not term[0] in ('+', '-'):
term = '+' + term
terms[i] = term
if terms[0][0] == '+':
terms[0] = terms[0].replace('+', '')
eqn = ''.join(terms)
return eqn | 4c9cfab0569363ce5f448f2d7aefa38967f425b0 | 508,941 |
import copy
def _label_skew(list, sk):
"""
Returns a filled in a standard skew tableaux given an ordered list
of the coordinates to filled in.
EXAMPLES::
sage: import sage.combinat.skew_tableau as skew_tableau
sage: l = [ '0,0', '1,1', '1,0', '0,1' ]
sage: empty = [[None,None],[None,None]]
sage: skew_tableau._label_skew(l, empty)
[[1, 4], [3, 2]]
"""
i = 1
skew = copy.deepcopy(sk)
for coordstring in list:
coords = coordstring.split(",")
row = int(coords[0])
column = int(coords[1])
skew[row][column] = i
i += 1
return skew | e51f74feeb2259825f87791c5a53cc1663d22ae5 | 140,181 |
def cavity_round_trip_losses_approx(length, A0=1e-5, exponent=1/3):
"""Approximation of cavity round-trip losses given the cavity length, and some initial parameters.
Inputs:
-------
length: float
length of the cavity
A0: float
losses for a 1 meter cavity. Default is 10 ppm.
exponent: float
exponent of the length factor. Default is 1/3.
"""
return A0 * length**exponent | 7dceac1cd9c0d4d7541cec2d90201a4cfe636fa8 | 247,954 |
import torch
from typing import List
def chunk_squeeze_last(x: torch.Tensor) -> List[torch.Tensor]:
"""
Splits the provided tensor into individual elements along the last dimension and returns the
items with the last dimension squeezed.
Args:
x: The tensor to chunk.
Returns:
The squeezed chunks.
"""
chunks = x.chunk(x.size(-1), dim=-1)
return [c.squeeze(-1) for c in chunks] | 51fadfe55f6ca09944a4bcdef4654a68992fe106 | 410,421 |
def get_point(coords, lat_first):
"""Converts GeoJSON coordinates into a point tuple"""
if lat_first:
point = (coords[1], coords[0])
else:
point = (coords[0], coords[1])
return point | 420da57be1057dccf5122f9306299c5607b1a7fa | 313,399 |
def make_str_for_pretty_print_int_list(lst):
"""
Produce a stirng which neatly prints a list of integers.
This is done by compacting the integers into contiguous ranges.
for example [0,1,2,3,4,10,11,12] will become "[0..4,10..12]"
:param lst: list of integers
:return: string
"""
stri="["
prev=None
seq_start_num = None
for i,num in enumerate(lst):
if prev is None:
# Warmup
seq_start_num = num
stri = stri + str(num)
elif prev != num - 1:
if seq_start_num != prev:
# Previous sequence contained more than 1 number.
if seq_start_num == prev-1:
stri = stri + ", " + str(prev)
else:
stri = stri + ".." + str(prev)
# Start new sequence
stri = stri + ", " + str(num)
seq_start_num = num
elif i==len(lst)-1:
if seq_start_num != num:
# Previous sequence contained more than 1 number.
if seq_start_num == prev:
stri = stri + ", " + str(num)
else:
stri = stri + ".." + str(num)
prev = num
stri = stri +"]"
return stri | 50b0d9555699975b3ce23a7b4de2137c5672386b | 565,984 |
def pop_unchanged(dictionary):
"""Pop all values from dict where key=val."""
return [dictionary.pop(key) for key in list(dictionary) if dictionary[key] == key] | d92b33bcec893002263e07058f0bc1cbdd19c83d | 304,078 |
def _use_voc_evaluator(dataset):
"""Check if the dataset uses the PASCAL VOC dataset evaluator."""
return dataset.name[:4] == 'voc_' | 9e63776b25e1f4079929dec5e3e78e887c721c23 | 297,611 |
def assert_nonnegative_int(name: str, value: str) -> int:
"""
Makes sure the value is a non-negative integer, otherwise raises AssertionError
:param name: Argument name
:param value: Value
:return: Value as integer
"""
if not (value.isdigit() and int(value) >= 0):
raise AssertionError(
"Expected a non-negative integer for {}, but got `{}`".format(name, value))
return int(value) | b518ee21f8f049dd4a508349d1d1d012c030cc5b | 482,826 |
import json
def _json_from_file(file_name):
"""Load a json file encoded with UTF-8."""
with open(file_name, 'rb') as dumped:
loaded = json.loads(dumped.read().decode('utf-8'))
return loaded | 013b39f3ba26dc0008e38afa94158fc6dd686637 | 259,779 |
import torch
def ellipse_to_laf(ells: torch.Tensor) -> torch.Tensor:
"""Converts ellipse regions to LAF format.
Ellipse (a, b, c) and upright covariance matrix [a11 a12; 0 a22] are connected
by inverse matrix square root: A = invsqrt([a b; b c]).
See also https://github.com/vlfeat/vlfeat/blob/master/toolbox/sift/vl_frame2oell.m
Args:
ells: tensor of ellipses in Oxford format [x y a b c].
Returns:
tensor of ellipses in LAF format.
Shape:
- Input: :math:`(B, N, 5)`
- Output: :math:`(B, N, 2, 3)`
Example:
>>> input = torch.ones(1, 10, 5) # BxNx5
>>> output = ellipse_to_laf(input) # BxNx2x3
"""
n_dims = len(ells.size())
if n_dims != 3:
raise TypeError("ellipse shape should be must be [BxNx5]. " "Got {}".format(ells.size()))
B, N, dim = ells.size()
if dim != 5:
raise TypeError("ellipse shape should be must be [BxNx5]. " "Got {}".format(ells.size()))
# Previous implementation was incorrectly using Cholesky decomp as matrix sqrt
# ell_shape = torch.cat([torch.cat([ells[..., 2:3], ells[..., 3:4]], dim=2).unsqueeze(2),
# torch.cat([ells[..., 3:4], ells[..., 4:5]], dim=2).unsqueeze(2)], dim=2).view(-1, 2, 2)
# out = torch.matrix_power(torch.cholesky(ell_shape, False), -1).view(B, N, 2, 2)
# We will calculate 2x2 matrix square root via special case formula
# https://en.wikipedia.org/wiki/Square_root_of_a_matrix
# "The Cholesky factorization provides another particular example of square root
# which should not be confused with the unique non-negative square root."
# https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
# M = (A 0; C D)
# R = (sqrt(A) 0; C / (sqrt(A)+sqrt(D)) sqrt(D))
a11 = ells[..., 2:3].abs().sqrt()
a12 = torch.zeros_like(a11)
a22 = ells[..., 4:5].abs().sqrt()
a21 = ells[..., 3:4] / (a11 + a22).clamp(1e-9)
A = torch.stack([a11, a12, a21, a22], dim=-1).view(B, N, 2, 2).inverse()
out = torch.cat([A, ells[..., :2].view(B, N, 2, 1)], dim=3)
return out | 839f22949d64a59b8814eb94aa1148d633cb7318 | 163,215 |
def update_tmpo(tmposession, hp):
"""
Update the tmpo database with all sensors from a houseprint object.
This does NOT synchronize the data, only loads the sensors.
Parameters
----------
tmposession : tmpo.Session object
hp : a Houseprint object
Returns
-------
tmposession : return the tmpo.Session
"""
# get a list of all sensors in the hp. The list contains tuples (sensor,token)
sensors_tokens = hp.get_all_sensors(tokens=True)
for s,t in sensors_tokens:
tmposession.add(s,t)
print("This tmpo session was updated with in total {} sensors".format(len(sensors_tokens)))
return tmposession | 609fa40acf18e8d9f3e316de4c854c2c7390a3ee | 289,938 |
def image_smoothing(img, reducer, kernel):
"""Smooths an image.
Args:
img (object): The image to be smoothed.
reducer (object): ee.Reducer
kernel (object): ee.Kernel
Returns:
object: ee.Image
"""
image = img.reduceNeighborhood(**{
'reducer': reducer,
'kernel': kernel,
})
return image | b824d1530620f72a85562c3f22e0b4a03e2a5827 | 283,356 |
from typing import Dict
import json
def load_config(app_environment) -> Dict:
"""Load configuration file from config.json"""
with open('config.json', 'r') as config_file:
config_dict = json.load(config_file)
return config_dict | c1ab8c4dda12593d6c67e573b9d1a07041c743db | 622,101 |
def kTdiff(i, j, zs, kTs):
"""Compute the difference vector (kTi/zi - kTj/zj)."""
return kTs[i-1]/zs[i-1] - kTs[j-1]/zs[j-1] | 975f4533cf5391c442149ca38326cc4e51e4ce5e | 502,766 |
import re
import ast
def _parse_data_structure(inner_json):
"""Parses broken JSON that this router generates.
Data structures look like this:
{
key: 'value',
another_key: [1, 2, 3]
}
We're basically using what's between the main {},
and are parsing that, returning a dictionary.
"""
results = {}
for line in inner_json.split('\n'):
match_object = re.compile('^\s+(.+?):\s(.+?),?$').match(line)
if match_object is None:
continue
key, value = match_object.groups()
try:
results[key] = ast.literal_eval(value)
except ValueError:
pass
return results | 5c97e62bdf1b47f1ac5a884f8a3766399974bf77 | 418,899 |
def consists_of(seq, types):
"""
Check that the all elements from the "seq" argument (sequence) are among the types passed as the "types" argument.
@param seq: The sequence which elements are to be typed.
@param types: A tuple of types to check.
@type types: tuple
@return: Whether the check succeeded.
@rtype: bool
>>> consists_of([5, 6, 7], int)
True
>>> consists_of([5, 6, 7, 'abc'], int)
False
>>> consists_of([5, 6, 7, 'abc'], (int, str))
True
"""
return all(isinstance(element, types) for element in seq) | b422f89a7c22505fc75bcaa9e3d28a787ed1dff6 | 649,280 |
def drain(stream):
"""
A function wrapper around the `bytearray` data type. Can be used as the final sink in
a refinery pipeline in Python code, i.e.:
from refinery import *
# ...
output = data | carve('b64', single=True) | b64 | zl | drain
assert isinstance(output, bytearray)
"""
return bytearray(stream) | 41edf9e00d71dcf102ea36430ba87b04aacc8aa8 | 334,391 |
def filter_kwargs(keywords, **kwargs):
"""
Filter provided keyword arguments and remove all but
those matching a provided list of relevant keywords.
Parameters
----------
keywords : list of string
Keywords to search for within the provided keyword arguments
kwargs : dict
Dictionary of provided keywords
Returns
----------
filtered_kwargs : dict
Keyword arguments matching provided keyword list entries
"""
# Create an empty dictionary for keyword matches
filtered_kwargs = dict()
# Loop through relevant keywords
for key in keywords:
# Check if there is a match
if key in kwargs:
# Add the keyword argument to the matches dictionary
filtered_kwargs[key] = kwargs[key]
return filtered_kwargs | 5bf8493e81a0e3e0db18cd94e152d65f691817ca | 625,408 |
import re
def get_whitespace(txt):
"""
Returns a list containing the whitespace to the left and
right of a string as its two elements
"""
# if the entire parameter is whitespace
rall = re.search(r'^([\s])+$', txt)
if rall:
tmp = txt.split('\n', 1)
if len(tmp) == 2:
return (tmp[0], '\n' + tmp[1]) # left, right
else:
return ('', tmp[0]) # left, right
left = ''
# find whitespace to the left of the parameter
rlm = re.search(r'^([\s])+', txt)
if rlm:
left = rlm.group(0)
right = ''
# find whitespace to the right of the parameter
rrm = re.search(r'([\s])+$', txt)
if rrm:
right = rrm.group(0)
return (left, right) | e5bdc175a02511c2fc4fa56118b165ddbe1c4f71 | 395,972 |
def rk4(t, dt, x, deriv):
"""Fourth-order Runge-Kutta integrator.
Parameters
----------
t : float
time
dt : float
time step
x : float or broadcastable sequence
state vector
deriv : function(x, t)
callback to compute xdot at time t
Returns
-------
(x_new, t_new) : new state and time
"""
k1 = dt * deriv(x, t)
k2 = dt * deriv(x + k1 / 2, t + dt / 2)
k3 = dt * deriv(x + k2 / 2, t + dt / 2)
k4 = dt * deriv(x + k3, t + dt)
return x + (k1 + 2 * (k2 + k3) + k4) / 6, t + dt | e3ad9f0caa301aceca3c8d776712db1328804936 | 430,595 |
def test_setting_mixin(mixin, **attrs):
"""Create a testable version of the setting mixin.
The setting mixin passes through kwargs to an expected `super`
object. When that object doesn't exist it causes errors. This
function takes the mixin in question and adds that `super` object
so that the mixin can be tested.
"""
# The __init__ method for the parent object, so that it will accept
# kwargs and store them so they can be tested.
def __init__(self, **kwargs):
self.kwargs = kwargs
# Create the parent object for testing the setting mixin and return
# the subclass of the mixin and the parent.
parent = type('TestSettingMixin', (), {'__init__': __init__})
return type('SettingMixin', (mixin, parent), attrs) | 3aeabc21e31c57001693abda253381d651f6d7d8 | 63,509 |
def is_theano_object(var):
"""checks if var is a theano input, transformation, constant or shared variable"""
return type(var).__module__.startswith("theano") | 287f858821ae64c5c02cd8c5007f2f909b1db084 | 436,787 |
def identity(u):
""" returns the field itself """
return u | 48cec79a2e2fe4686471f32e7c9cd892fe4f97d6 | 616,937 |
def chunk_list(l, n):
""" Chops a list into tuples (chunks) of maximal size `n`
Args:
l (List[Any]): the list to be resized
n (int): maximal size of the chunks
Example:
>>> chunk_list([1, 2, 3, 4, 5], 2)
[(1, 2), (3, 4), (5,)]
"""
assert n > 0
nl = len(l)
if n > nl:
return [tuple(l)]
l_ = list(zip(*[l[i::n] for i in range(n)]))
if nl % n > 0:
l_.append(tuple(l[-(nl % n):]))
return l_ | e0b9d4c8a4ac28c6bc624b6ec1b8111a5b793c5b | 429,059 |
def output_transform_va(process_output):
"""
Output transform for vehicle affordances metrics.
"""
y_pred = process_output[0]['vehicle_affordances'].argmax(dim=1)
y = process_output[1]['vehicle_affordances'].argmax(dim=1)
return dict(y_pred=y_pred, y=y) | c105706934a1fbdf01442e7526c44ef6f3b28a23 | 196,455 |
def canonicalise_message_line(line):
"""
Given a line known to start with the '%' character (i.e. a line
introducing a message), canonicalise it by ensuring that the result
is of the form '%<single-space>MESSAGE_IDENTIFIER<single-space>text'.
Parameters:
line - input line. Known to start with a '%' and to have leading
and trailing spaces removed.
Return:
Canonicalised line.
"""
# Cope with degenerate case of a single "%"
if len(line) == 1:
return line
# Get the rest of the line
line = line[1:].lstrip()
# Extract the first word (the message ID)
words = line.split()
message_line = "% " + words[0]
# ... and now the rest of the line
if len(line) > len(words[0]):
message_line = message_line + " " + line[len(words[0]):].lstrip()
return message_line | 07afdd59035bb68582e0d51e8695231beeaf8169 | 111,400 |
def is_oppo_dispossessed(event_list, team):
"""Returns whether an opponent is disposessed"""
disposessed = False
for e in event_list[:1]:
if e.type_id == 50 and e.team != team:
disposessed = True
return disposessed | 24b39dd984e660fdad565576f865c5995fd83bac | 60,382 |
def dict_values_map(f, d):
"""
Simple helper to apply a function to the values of a dictionary.
This is similar to built-in map() but only accept one iterable dict.
"""
return {k: f(v) for k, v in d.items()} | 313e7dd43d8ddac71c63e2101f2cbb42dd9866bb | 274,962 |
def get_alias_value(dictionary, aliases):
"""
Get alias or key value from a dictionary
:param dictionary: a dictionary to check in for keys/aliases
:param aliases: list of aliases to find in dictionary to retrieve value
:return: returns value of found alias else None
"""
if (dictionary and aliases) is not None:
for alias in aliases:
if alias in dictionary:
return dictionary[alias]
return None
else:
return None | e79650973ecfb12c20cc17a19b8862a7a1033eb6 | 384,114 |
import math
def polar2vec(r, phi):
"""Calculate Cartesian vector from polar coords."""
x = r * math.cos(phi)
y = -r * math.sin(phi)
return x, y | f54e7ec97dc6813df705762ddbe9d35205d64cc5 | 547,356 |
def convert_14_to_tuple(datetime_no_delims):
""" Converts 14-digit datetime (e.g. 20160130235959) to (Y,M,D,H,M,S) tuple [e.g. (2016,01,30,23,59,59)].
"""
dtnd_str = str(datetime_no_delims)
return (int(dtnd_str[0:4]), int(dtnd_str[4:6]), int(dtnd_str[6:8]),
int(dtnd_str[8:10]), int(dtnd_str[10:12]), int(dtnd_str[12:14])) | 56fd67b0177b7683edb43dfe176f9be75cf191c6 | 387,125 |
def major_axis_equiv_diam_ratio(prop, **kwargs):
"""Return the ratio of the major axis length to the equivalent diameter
Args:
prop (skimage.measure.regionprops):
The property information for a cell returned by regionprops
**kwargs:
Arbitrary keyword arguments
Returns:
float:
major axis length / equivalent diameter
"""
return prop.major_axis_length / prop.equivalent_diameter | fd2e1668577cac77788415f8ecfefd9d9b8df926 | 47,880 |
def ndims(x):
"""
Return the ndims of a tensor.
"""
return len(x.shape) | c72af6dcd49d4ebebac7d9a346efe72d63fb9cc8 | 109,870 |
def edit_request_email_context(request, edit_request):
"""prepare context for rendering edit request notifications"""
return {'edit_request': edit_request,
'cert_url': request.build_absolute_uri(edit_request.certificate.get_absolute_url()),
'home_url': request.build_absolute_uri('/'),
'review_url': request.build_absolute_uri(edit_request.get_absolute_url())
} | c544be5223bae0c5e3cced4da380716a5f412874 | 163,551 |
import six
def _to_bytes(obj, encoding):
"""
In Python3:
Encode the str type object to bytes type with specific encoding
In Python2:
Encode the unicode type object to str type with specific encoding,
or we just return the 8-bit string of object
Args:
obj(unicode|str|bytes) : The object to be encoded.
encoding(str) : The encoding format
Returns:
encoded result of obj
"""
if obj is None:
return obj
assert encoding is not None
if isinstance(obj, six.text_type):
return obj.encode(encoding)
elif isinstance(obj, six.binary_type):
return obj
else:
return six.b(obj) | 33597783ae2deed372f0aa43b18da668c5f9496a | 412,463 |
from pathlib import Path
import re
def get_total_coverage(ctx, coverage_dat: Path) -> str:
"""Return coverage percentage, as captured in coverage dat file; e.g., returns "100%"."""
output = ctx.run(
f"""
export COVERAGE_FILE="{coverage_dat}"
coverage report""",
hide=True,
).stdout
match = re.search(r"TOTAL.*?([\d.]+%)", output)
if match is None:
raise RuntimeError(f"Regex failed on output: {output}")
return match.group(1) | b42509da14a6ebeb23c6a430d5215daa2b512ff2 | 354,741 |
def apply_gain_x(x, AdB):
"""Applies A dB gain to x"""
return x * 10 ** (AdB / 20) | 6026d9c7a96534d944f4ece4a18e54af8acdc637 | 557,889 |
import pipes
def shell_join(array):
"""
Return a shell-quoted version of the input array.
:param array: input array
:return: the shell-quoted string
"""
return " ".join(pipes.quote(item) for item in array) | 8a964df48f09d4e038e0353f8c8941dfcfa720c6 | 71,147 |
def cut_groups(data, col, cutoffs):
"""Cut data into subsets according to cutoffs
Parameters
----------
data : pandas.DataFrame
Data to split.
col : str
Name of column in data to compare with.
cutoffs : list(int)
List of cutoffs, like as [min-value, 30, 60, max-value].
Returns
-------
list(pandas.DataFrame)
List of sub-data as DataFrame.
Examples
--------
>>> cut_groups(data, "X", [0, 0.4, 0.6, 1.0])
[pandas.DataFrame, pandas.DataFrame, pandas.DataFrame]
"""
res = []
N = len(cutoffs)
for i in range(N - 1):
if i == N - 2:
df = data[(data[col] >= cutoffs[i]) & (data[col] <= cutoffs[i+1])]
else:
df = data[(data[col] >= cutoffs[i]) & (data[col] < cutoffs[i+1])]
res.append(df)
return res | a80b7833c60683e9e9fd7bd310c3823f16bb440c | 113,338 |
def get_input(lives, display, guessed_text):
"""
Get user input at every round
:param lives: (int) the lives of player
:param display: (string) the guessed answer to show user
:param guessed_text: (string) the guessed character
:return: (string) the character input from player
"""
print('The word looks like: ' + display)
print('You have ' + str(lives) + ' guesses left.')
print('You have guessed: ' + guessed_text)
while True:
guess_text = input('Your guess: ')
if len(guess_text) == 1 and guess_text.isalpha():
return guess_text.upper()
else:
print('Illegal format.') | b535469cb4935f7be449745b4473839b9cb9fc7a | 411,588 |
import re
def is_valid_project_id(project_id):
"""True if string looks like a valid Cloud Project id."""
return re.match(r'^(google.com:)?[a-z0-9\-]+$', project_id) | 46532d10a8a0ed304204d858445b935ff4f4bfe9 | 686,921 |
def pluralize(count: int, unit: str) -> str:
"""
Pluralize a count and given its units.
>>> pluralize(1, 'file')
'1 file'
>>> pluralize(2, 'file')
'2 files'
>>> pluralize(0, 'file')
'0 files'
"""
return f"{count} {unit}{'s' if count != 1 else ''}" | 85f9be97488584db46f86808111ecf2d849b7dfc | 175,859 |
def get_fastas(fasta_file, genes=False):
"""
>>> get_fastas('a.fasta')
('a.genomic.masked.fasta', 'a.features.fasta')
>>> get_fastas('a.fasta', genes=True)
('a.genomic.masked.genes.fasta', False)
"""
if not genes:
genomic_masked = fasta_file.replace('.fa', '.genomic.masked.fa')
features_fasta = fasta_file.replace('.fa', '.features.fa')
else:
genomic_masked = fasta_file.replace('.fa', '.genomic.masked.genes.fa')
features_fasta = False #fasta_file.replace('.fa', '.genes.fa')
return genomic_masked, features_fasta | 9a0f1d3436145d30d1c8a44e10883347ff5af864 | 412,588 |
def main_done_selector(card):
"""Selector for cards done and not connected."""
return not card.associations and card.state == 'closed' | dd2e6ac26eec64421543fad6b45c819dedecc3b4 | 221,415 |
def select_count_from(session, table) -> int:
"""
Function to select row count from provided table (like SELECT COUNT(*) FROM table)
:param session: sqlalchemy session
:param table: table to select from
:return: row count
"""
count = session.query(table).count()
return count | 9e3869fb692c16281f768d73e019b693f43cd7fa | 463,409 |
from typing import Callable
import ast
def eval_lambda(val: str) -> Callable:
"""Parse a lambda from a string safely.
Args:
val: string representing a lambda.
Returns:
a callable.
Raises:
ValueError: in case the lambda can not be parsed.
"""
parsed_lamba = ast.parse(val).body[0].value # type:ignore
if isinstance(parsed_lamba, ast.Lambda) and "eval" not in val:
return eval(val)
else:
raise ValueError(f"'{val}' can not be safely parsed as a lambda function") | aa2081f66471d483ea76cc9723c632cb354d5f42 | 106,943 |
def save_dotted_field(accessor_string: str, data: dict):
"""Saves data to a dictionary using a dotted accessor-string.
Parameters
----------
accessor_string : str
A dotted path description, e.g. "DBLinks.KEGG".
data : dict
The value to be stored.
Returns
-------
dict
The nested dictionary.
"""
for chunk in accessor_string.split(".")[::-1]:
data = {chunk: data}
return data | cd55a988f63bcd6784a56bf5a18e85780e26b51b | 273,971 |
def set_bit(value, index, new_bit):
""" Set the index'th bit of value to new_bit, and return the new value.
:param value: The integer to set the new_bit in
:type value: int
:param index: 0-based index
:param new_bit: New value the bit shall have (0 or 1)
:return: Changed value
:rtype: int
"""
mask = 1 << index
value &= ~mask
if new_bit:
value |= mask
return value | 0e42d70a9319d14ec7e984f0b42b08f97309430c | 196,979 |
import locale
def money(amount, symbol=True):
""" Return a properly formatted currency string including symbol """
try:
return locale.currency(float(amount), symbol, grouping=True)
except ValueError:
pass
return '' | 1aa9b2be89dbb956e870fc1f06c6e70406dd6d8a | 142,042 |
import math
def regular_poly_circ_rad_to_side_length(n_sides, rad):
"""Find side length that gives regular polygon with `n_sides` sides an
equivalent area to a circle with radius `rad`."""
p_n = math.pi / n_sides
return 2 * rad * math.sqrt(p_n * math.tan(p_n)) | 939ff5de399d7f0a31750aa03562791ee83ee744 | 3,279 |
def parse_token_clause(token_clause):
"""Parse the clause that could be either 'with', 'using', or 'without'."""
use_token = {"with": True,
"using": True,
"without": False}.get(token_clause)
if use_token is None:
raise Exception("Wrong clause specified: {t}".format(t=token_clause))
return use_token | acc04185822b57e21422d2ef442ab1dbdbbd10b0 | 200,705 |
def calculate_fuel(mass):
"""Calculate the fuel required for a module
>>> calculate_fuel(12)
2
>>> calculate_fuel(14)
2
>>> calculate_fuel(1969)
654
>>> calculate_fuel(100756)
33583
"""
return mass // 3 - 2 | d2d2ae239027515fa9240c4bd59f6c7efb056d13 | 92,608 |
def parse_time(time):
"""Given the time string, parse and turn into normalised minute count"""
if type(time) in [int,float]:
return time
if time.endswith('m'):
time = time[0:-1]
if time.find('h') != -1:
time = time.replace('h', ':')
if time.find(':') != -1:
hours, minutes = time.split(':')
if minutes.strip() == "":
minutes = 0
else:
hours = 0
minutes = int(time.strip())
total = int(minutes) + (int(hours) * 60)
return total | b4effe0eb9b93a761e9f6f83f7d7d9b60bb8d978 | 90,502 |
import textwrap
def format_template(template, *args):
"""
Given incoming text, remove all common indent, then strip away the leading
and trailing whitespace from it.
This is a modified version of code from Default/new_templates.py from the
core Sublime code.
"""
return textwrap.dedent(template % args).strip() | 4e1c08c4bce5af043789374f4348383cb50f623e | 522,550 |
import re
def get_collect_id(imageID):
"""Get the collect ID for an image name using a regex."""
collect_id = re.findall('Atlanta_nadir[0-9]{1,2}_catid_[0-9A-Z]{16}',
imageID)[0]
return collect_id | deffb98786fad57a6aa757b51c9df3ab885060b2 | 365,024 |
import csv
def read_sleepasandroid_file(saa_filename):
"""
read in a SleepAsAndroid backup file and return it as a parsed list
"""
with open(saa_filename) as file:
file_as_list = list(csv.reader(file, delimiter=','))
return file_as_list | 22011c2ba784747c65c3dc47063fb486d3130785 | 651,228 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.