content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def interval_union(a, b):
"""Returns a 2-tuple representing the union of two intervals.
Args:
a: 2-tuple containing integer coordinates representing a half-open interval.
b: 2-tuple containing integer coordinates representing the other half-open interval.
Returns:
2-tuple containing integer coordinates representing the union(a, b) as a half-open interval.
"""
return min(a[0], b[0]), max(a[1], b[1]) | d7fb8f7cb1e626f99aaa91ee56b3b23a73a92880 | 259,117 |
import re
def is_valid_coordinates(coordinates):
"""Test coordinates for validity."""
if re.match('^-?\d+\.?\d*\,{1}\s-?\d+\.?\d*$', coordinates):
lat, lon = coordinates.split(', ')
return -90 <= float(lat) <= 90 and -180 <= float(lon) <= 180
else:
return False | 63b9b6d0bb7fd7794e3b75735ebdf72b4f4b4029 | 390,550 |
def _use_constant_crc_table(opt):
"""
Return True is the CRC table is constant.
"""
if opt.width is not None and opt.poly is not None and opt.reflect_in is not None:
return True
else:
return False | 72c6861f80b4e3f81fe9ac97bff4985cd7c18245 | 444,625 |
def remove_features(df, drop_list):
"""
Remove features from dataframe with columns containing substrings in
drop_list. Return a new dataframe.
"""
keep = []
for column_name in list(df.columns.values):
keepQ = True
for substring in list(drop_list):
if substring in column_name:
keepQ = False
break
if keepQ: keep.append(column_name)
return df[keep] | 084e84d3d7cb6b2c5557c9a91e6ac7077e21f1a0 | 537,932 |
import base64
def embed_png2html(figdata_png):
"""
Convert the data to base64 format before the PNG data can be embedded in HTML
Parameters:
plt_fig: matplotlib figure
Return:
figdata_png: base64 encoding images
"""
figdata_png = base64.b64encode(figdata_png)
figdata_png = figdata_png.decode('utf-8') # base64.b64encode return byte
return figdata_png | 280f429f55d71baeb004aa0b7be41b7bbe2cfbc9 | 295,021 |
def get_synchrony(sequences):
"""
Computes the normalised synchrony between a two or more sequences.
Synchrony here refers to positions with identical elements, e.g. two identical sequences have a synchrony of 1, two completely different sequences have a synchrony of 0.
The value is normalised by dividing by the number of positions compared.
This computation is defined in Cornwell's 2015 book on social sequence analysis, page 230.
Example
--------
>>> s1 = [1,1,2,2,3]
>>> s2 = [1,2,2,3,3]
>>> sequences = [s1,s2]
>>> ps.get_synchrony(sequences)
0.6
"""
shortest_sequence = min([len(s) for s in sequences])
same_elements = []
for position in range(shortest_sequence):
elements_at_this_position = []
for sequence in sequences:
elements_at_this_position.append(sequence[position])
same_elements.append(elements_at_this_position.count(elements_at_this_position[0]) == len(elements_at_this_position))
return same_elements.count(True) / shortest_sequence | 92d48ebbf43869e9ff41a6c81d458b0ae7861016 | 335,962 |
def dict_to_kwds(dct, kwdstr):
""" convert a dictionary to a string of keywords
Parameters
----------
dct : dict
kwdstr: str
additional keyword strings
Examples
--------
>>> dict_to_kwds({"a":1,"c":3},'a=1,b=2')
'a=1,c=3,b=2,'
"""
string = ''
for key in sorted(dct.keys()):
string += '{0}={1},'.format(key, dct[key])
for kwd in kwdstr.split(","):
if not kwd.split('=')[0] + '=' in string:
string += kwd + ','
return string | c646c68cb9205d00d55dfda210ed41a7743df0b4 | 343,311 |
def add_one(value: int) -> int:
"""Add one to a number."""
return value + 1 | a7230ac288192fc75edebbfb281043b1cf7025b2 | 434,695 |
import re
def getTimeElementsFromString(dtStr):
"""Return tuple of (year,month,day,hour,minute,second) from date time string."""
match = re.match(r'^(\d{4})[/-](\d{2})[/-](\d{2})[\s*T](\d{2}):(\d{2}):(\d{2})(?:\.\d+)?Z?$',dtStr)
if match: (year,month,day,hour,minute,second) = map(int,match.groups())
else:
match = re.match(r'^(\d{4})[/-](\d{2})[/-](\d{2})$',dtStr)
if match:
(year,month,day) = map(int,match.groups())
(hour,minute,second) = (0,0,0)
else: raise(RuntimeError("Failed to recognize date format: %s" % dtStr))
return (year,month,day,hour,minute,second) | e1a2ef030e6041d256cad85a18baf4f3784377d8 | 125,159 |
def parseText(text1, nlp):
"""Run the Spacy parser on the input text that is converted to unicode."""
doc = nlp(text1)
return doc | 99d6a585358a700f8fc48c5dc4fc761a03ab42a7 | 705,984 |
def parse_coordinates(result):
"""
Function purpose: parse coordinates from console result into a list
Input: string
Output: list
"""
bboxStr = result[result.find("[") + 1:result.find("]")]
bboxList = [float(i) for i in bboxStr.split(',')]
return bboxList | 2fb1ee98219618381994960d14aacb0b21abdba3 | 457,777 |
def patches2image(patches):
"""
Return patches obtained from a 2D image into the original image.
Args:
patches:
Tiles to return into the 2D image. Shape = (N_patch_x, N_patch_y, Patch_size_x, Patch_size_y)
Return:
image:
2D image reconstructed from patches
"""
assert len(patches.shape) == 4, "patches2image is compatible with image2patches, input patches should be in the shape (N_patch_x, N_patch_y, Patch_size_x, Patch_size_y)"
n_h,n_w,p0,p1 = patches.shape
return patches.reshape(n_h, n_w, p0,p1).swapaxes(1,2).reshape(n_h*p0,n_w*p1) | e9f78cdf4fa356fce42df01890f0f618f01d732d | 317,425 |
import hashlib
def hex_sha1_of_stream(input_stream, content_length):
"""
Returns the 40-character hex SHA1 checksum of the first content_length
bytes in the input stream.
:param input_stream: stream object, which exposes read() method
:param content_length: expected length of the stream
:type content_length: int
:rtype: str
"""
remaining = content_length
block_size = 1024 * 1024
digest = hashlib.sha1()
while remaining != 0:
to_read = min(remaining, block_size)
data = input_stream.read(to_read)
if len(data) != to_read:
raise ValueError(
'content_length(%s) is more than the size of the file' % content_length
)
digest.update(data)
remaining -= to_read
return digest.hexdigest() | fb4666f89a20fe0112840c58600d96915a66510a | 283,146 |
import math
def printXYZDegrees(self):
"""Print X, Y, and Z components in degrees."""
return ("[%f, %f, %f]" % (math.degrees(self.x), math.degrees(self.y), math.degrees(self.z))) | 8f48563c13e170a18b1c9a9e6385a842e307d177 | 649,555 |
import itertools
def _Powerset(input_list):
"""Create powerset iterator from the elements in a list.
Note: Based on example in official Python itertools documentation.
Example:
[p for p in Powerset(['a', 'b')] == [(), ('a',), ('b'), ('a', 'b')]
Args:
input_list: A sequence of Python objects
Returns:
An iterator which loops through all (tuple) elements in the powerset of
the input_list.
"""
return (
itertools.chain.from_iterable(
itertools.combinations(input_list, r) for r
in range(len(input_list) + 1))) | 0218cc5f6b4a5905c0563332d8229c49fd0e8dd2 | 548,816 |
import math
def calc_heading(currentLat, currentLong, targetLat, targetLong):
"""
Calculates target heading from coordinates
Args:
currentLat: Current latitude of the player
currentLong: Current longitude of the player
targetLat: Target latitude
targetLong: Target longitude
Returns:
Target heading in degrees
"""
currentLat = math.radians(currentLat)
currentLong = math.radians(currentLong)
targetLat = math.radians(targetLat)
targetLong = math.radians(targetLong)
dLat = math.log(math.tan(math.pi/4 + targetLat/2) / math.tan(math.pi/4 + currentLat/2))
dLong = targetLong - currentLong
heading = math.degrees(math.atan2(dLong, dLat))
if heading < 0:
heading = heading + 360
return int(round(heading)) | 51392f6a533f7c02c2d392af5ca5fe08188476bb | 341,895 |
def formatDateTime(raw: str) -> str:
"""
Helper function. Converts Image exif datetime into Python datetime
Args:
raw (str): exif datetime string
Returns:
str - python compatible datetime string
"""
datePieces = raw.split(" ")
if len(datePieces) == 2:
return datePieces[0].replace(":","-") + " " + datePieces[1].replace("-",":")
else:
return "" | d9c0ec43e42e1d24223eb8f640d8790ec48b82fc | 64,543 |
def _chi2_ls(f):
"""Sum of the squares of the residuals.
Assumes that f returns residuals.
Minimizing this will maximize the likelihood for a
data model with gaussian deviates.
"""
return 0.5 * (f ** 2).sum(0) | af223f48bc0beffa9a99fba872c769a94fbe3235 | 19,200 |
from pathlib import Path
import inspect
def here(frames_back: int = 0) -> Path:
"""
Get the current directory from which this function is called.
Args:
frames_back: the number of extra frames to look back.
Returns: the directory as a Path instance.
"""
stack = inspect.stack()
previous_frame = stack[1 + frames_back]
return Path(previous_frame.filename).parent | a261aeac42b8fe4143783e41a74c1025e937e17d | 87,668 |
def sum_period_review_request_stats(raw_aggregation):
"""Compute statistics from aggregated review request data for one aggregation point."""
state_dict, late_state_dict, result_dict, assignment_to_closure_days_list, assignment_to_closure_days_count = raw_aggregation
res = {}
res["state"] = state_dict
res["result"] = result_dict
res["open"] = sum(state_dict.get(s, 0) for s in ("requested", "accepted"))
res["completed"] = sum(state_dict.get(s, 0) for s in ("completed", "part-completed"))
res["not_completed"] = sum(state_dict.get(s, 0) for s in state_dict if s in ("rejected", "withdrawn", "overtaken", "no-response"))
res["open_late"] = sum(late_state_dict.get(s, 0) for s in ("requested", "accepted"))
res["open_in_time"] = res["open"] - res["open_late"]
res["completed_late"] = sum(late_state_dict.get(s, 0) for s in ("completed", "part-completed"))
res["completed_in_time"] = res["completed"] - res["completed_late"]
res["average_assignment_to_closure_days"] = float(sum(assignment_to_closure_days_list)) / (assignment_to_closure_days_count or 1) if assignment_to_closure_days_list else None
return res | 68a46d89bbe773668ea27a1ac8a04c8f62e45292 | 466,446 |
def format_headers(unformatted_dict):
"""
Utility method for formatting a dictionary of headers.
Params:
unformatted_dict (dict): Unformatted dictionary being submitted for formatting.
Returns:
formatted_headers (dict): Dictionary that has been camel cased with spaces replacing
underscores("_")
"""
# Split and title the headers_dicionary for better display.
formatted_headers = list()
for field in unformatted_dict['ModelBase']:
formatted_headers.append(field.replace('_', " ").title())
return formatted_headers | 10d09985a811ef3e6cf4d5cf43cf7c998f50548c | 387,317 |
def pass_through_formatter(value):
"""No op update function."""
return value | 202ea761db9e1fa858718c61df3a7fd18f02826c | 706,015 |
def guess_content_type(name):
"""Return the content type by the extension of the filename."""
if name.endswith(".jpg"):
return "image/jpg"
elif name.endswith(".jpeg"):
return "image/jpeg"
elif name.endswith(".png"):
return "image/png"
elif name.endswith(".gif"):
return "image/gif"
elif name.endswith(".bmp"):
return "image/bmp"
return "image/jpg" | 3f6681e1df2384e3fcba58eda436cb31c3e8d18c | 665,613 |
import pickle
def distance_histogram_dict(f):
"""Parses distance histogram dict pickle.
Distance histograms are stored as pickles of dicts.
Write one of these with contacts/write_rr_file.write_pickle_file()
Args:
f: File-like handle to distance histogram dict pickle.
Returns:
Dict with fields:
probs: (an L x L x num_bins) histogram.
num_bins: number of bins for each residue pair
min_range: left hand edge of the distance histogram
max_range: the extent of the histogram NOT the right hand edge.
"""
contact_dict = pickle.load(f, encoding='latin1')
num_res = len(contact_dict['sequence'])
if not all(key in contact_dict.keys()
for key in ['probs', 'num_bins', 'min_range', 'max_range']):
raise ValueError('The pickled contact dict doesn\'t contain all required '
'keys: probs, num_bins, min_range, max_range but %s.' %
contact_dict.keys())
if contact_dict['probs'].ndim != 3:
raise ValueError(
'Probs is not rank 3 but %d' % contact_dict['probs'].ndim)
if contact_dict['num_bins'] != contact_dict['probs'].shape[2]:
raise ValueError(
'The probs shape doesn\'t match num_bins in the third dimension. '
'Expected %d got %d.' % (contact_dict['num_bins'],
contact_dict['probs'].shape[2]))
if contact_dict['probs'].shape[:2] != (num_res, num_res):
raise ValueError(
'The first two probs dims (%i, %i) aren\'t equal to len(sequence) %i'
% (contact_dict['probs'].shape[0], contact_dict['probs'].shape[1],
num_res))
return contact_dict | dcd3a1eca88327a47e4c16b27463d3f0b6c475e4 | 298,663 |
from typing import Sequence
from typing import List
from typing import Tuple
def search_sub_seq(s1: Sequence, s2: Sequence) -> List[Tuple[int, int]]:
"""
Searches all occurrences of sequence s1 in s2,
:param s1: First sequence.
:type s1: Sequence
:param s2: Second sequence.
:type s2: Sequence
:return: List of searched spans. Span is a tuple [start, end).
Empty list maybe return in case when there are no spans found.
:rtype: List[Tuple[int, int]]
:raise ValueError: When one of input sequences haves zero len.
"""
if len(s1) == 0 or len(s2) == 0:
raise ValueError("Both sequences must have non zero length.")
if len(s1) <= len(s2):
res = []
for offset in range(0, len(s2) - len(s1) + 1):
end_offset = offset + len(s1)
if s1 == s2[offset:end_offset]:
res.append((offset, end_offset))
return res
return [] | ef29454bed263dbb7456623f0e5d4254010a6a8e | 571,419 |
import turtle
def make_window(color, title):
"""
Set up the window with the given background color and title.
Returns the new window.
"""
window = turtle.Screen()
window.bgcolor(color)
window.title(title)
return window | e3a23fddbbffd0f4851a28c327b37cebf1bcda5d | 599,196 |
def is_mode_correct(mode_no):
"""The function checks the correctness of the game mode (number range from 1 to 3)."""
try:
num = int(mode_no)
if num < 1 or num > 3:
return False
except ValueError:
return False
return True | 4b9218abdc4f66a692bc423fbb2fb6323175e5f2 | 530,207 |
def violate_safety_requirement(complete_solution):
"""Checks whether a complete_solution violates a safety requirement. In
case of violation, the function returns `True`, otherwise it returns
`False`. Since the definition of fitness function is based on the safety
requirement and it is defined in a way that its positive sign indicates a
violation and vice versa.
:param complete_solution: a complete solution that has a fitness
value.
"""
assert complete_solution is not None, \
"complete_solution cannot be None."
assert complete_solution.fitness.values is not None, \
"complete_solution must have a real value."
if complete_solution.fitness.values[0] > 0:
return True
else:
return False | c1ee4e79948a68f75893a89270cf807b9f6ef844 | 365,556 |
def extract_gp_layer_kwargs(kwargs):
"""Extracts Gaussian process layer configs from a given kwarg."""
return dict(
num_inducing=kwargs.pop("num_inducing", 1024),
normalize_input=kwargs.pop("normalize_input", True),
gp_cov_momentum=kwargs.pop("gp_cov_momentum", 0.999),
gp_cov_ridge_penalty=kwargs.pop("gp_cov_ridge_penalty", 1e-6),
scale_random_features=kwargs.pop("scale_random_features", False),
l2_regularization=kwargs.pop("l2_regularization", 0.),
gp_cov_likelihood=kwargs.pop("gp_cov_likelihood", "gaussian"),
return_gp_cov=kwargs.pop("return_gp_cov", True),
return_random_features=kwargs.pop("return_random_features", False),
use_custom_random_features=kwargs.pop("use_custom_random_features", True),
custom_random_features_initializer=kwargs.pop(
"custom_random_features_initializer", "random_normal"),
custom_random_features_activation=kwargs.pop(
"custom_random_features_activation", None)) | 416097ab3ebe7f8980177862d18e2b0b24005918 | 575,789 |
def line_to_int_list(line):
"""
Args:
line: A string of integers. Ex: '1 3 5\n'
Returns:
A list of integers. Ex: [1, 3, 5]
"""
data = line.split(' ')
data = filter(None, data)
data = [int(x.strip('\n')) for x in data]
return data | 0ba3f984704219f134185a80d7858e176679e8bf | 566,560 |
def frame_to_midi(frame, ignore_graces=True):
"""
:param list frame: Frame of data from :obj:`~decitala.utils.get_object_indices`.
:return: A numpy array holding the pitches within the frame.
:rtype: numpy.array
>>> from music21 import note
>>> my_frame = [
... (note.Note("B-", quarterLength=0.125), (4.125, 4.25)),
... (note.Note("A", quarterLength=0.25), (4.25, 4.5)),
... (note.Note("B", quarterLength=0.125), (4.5, 4.625)),
... (note.Note("B-", quarterLength=0.125), (4.625, 4.75)),
... (note.Note("A", quarterLength=0.25), (4.75, 5.0)),
... (note.Note("G", quarterLength=0.25), (5.0, 5.25)),
... (note.Note("G", quarterLength=0.25), (5.25, 5.5)),
... ]
>>> frame_to_midi(my_frame)
[(70,), (69,), (71,), (70,), (69,), (67,), (67,)]
"""
midi_out = []
for this_obj, this_range in frame:
if not(ignore_graces):
fpitches = this_obj.pitches
midi_out.append(tuple([x.midi for x in fpitches]))
else:
if this_obj.quarterLength == 0.0:
pass
else:
fpitches = this_obj.pitches
midi_out.append(tuple([x.midi for x in fpitches]))
return midi_out | b567d7358b4a1a3ccd0a828c7f67ec318ba82a27 | 135,619 |
def getmorphology(word, tagmap):
"""Get morphological features FEATS for a given word."""
if tagmap and word.tag_ in tagmap:
# NB: replace '|' to fix invalid value 'PronType=int|rel' in which
# 'rel' is not in the required 'attribute=value' format for FEATS.
# val may be an int: Person=3
feats = ['%s=%s' % (prop, str(val).replace('|', '/'))
for prop, val in tagmap[word.tag_].items()
if isinstance(prop, str)]
if feats:
return '|'.join(feats)
return '_' | 572499db5e104041900c13d238862739afd1039e | 229,655 |
def indicator_bollinger(df_t, lookback=20):
"""Creates columns for bollinger channel. Requires columns "high" and "low" in intraday_df
Args:
df (pd.DataFrame): OHLCV intraday dataframe, only needs close
lookback (:obj:int, optional): rolling window. Default is 20
Returns:
pd.DataFrame: columns are:
- bollinger_high
- bollinger_low
"""
df = df_t[["close"]].copy()
df["bb_ma"] = df.close.rolling(window=lookback).mean()
df["bb_std"] = df.close.rolling(window=lookback).std()
df["bollinger_high"] = df.bb_ma + df.bb_std
df["bollinger_low"] = df.bb_ma - df.bb_std
df = df.drop(["close", "bb_ma", "bb_std"], axis=1)
return df | 42e188968eb69dae138906a467ee5eaff5c93a7e | 326,608 |
import toml
import yaml
import json
def mock_settings_file(request, monkeypatch, tmpdir, file_extension):
"""Temporarily write a settings file and return the filepath and the expected settings outcome."""
ext = file_extension
p = tmpdir.mkdir("sub").join("settings" + ext)
expected_result = {"testgroup": {"testvar": 123}, "othergroup": {"blabla": 555}}
if ext == ".toml":
p.write(toml.dumps(expected_result))
elif ext in [".yml", ".yaml"]:
p.write("---\n" + yaml.dump(expected_result))
elif ext == ".json":
p.write(json.dumps(expected_result))
else: # pragma: nocover
raise NotImplementedError("Invalid file extension :{}.".format(ext))
return str(p), expected_result | 4899ebbc9efbe31a931387d4a09dcb8c727eaf8d | 698,303 |
def get_mac_address(path):
"""
input: path to the file with the location of the mac address
output: A string containing a mac address
Possible exceptions:
FileNotFoundError - when the file is not found
PermissionError - in the absence of access rights to the file
TypeError - If the function argument is not a string.
"""
if type(path) is not str:
raise TypeError("The path must be a string value")
try:
file = open(path)
except FileNotFoundError as e:
raise e
except PermissionError as e:
raise e
return file.readline().strip().upper() | 814a530b63896103adcb8fbc84d17939644b9bbe | 709,477 |
def get_next_free_ind(d:dict):
""" given a dictionary of indices, get the next free index """
return max(d.values()) + 1 | 96a7c95fd65cd1b4f3db1fc731a3d227340326fb | 464,543 |
def convert(k: str) -> str:
"""Convert key of dictionary to valid BQ key.
:param k: Key
:return: The converted key
"""
if len(k.split(":")) > 1:
k = k.split(":")[1]
if k.startswith("@") or k.startswith("#"):
k = k[1:]
k = k.replace("-", "_")
return k | 06eaa83cbc0ebdde02c498123cb48662936eba01 | 579,226 |
def _prev_rosdistro(index, rosdistro_name):
"""Given current rosdistro name, return the previous."""
valid_rosdistro_names = list(index.distributions.keys())
valid_rosdistro_names.sort()
# skip distributions with a different type if the information is available
distro_type = index.distributions[rosdistro_name].get('distribution_type')
if distro_type is not None:
valid_rosdistro_names = [
n for n in valid_rosdistro_names
if distro_type == index.distributions[n].get('distribution_type')]
try:
i = valid_rosdistro_names.index(rosdistro_name)
except ValueError:
raise ValueError('Distribution key not found in list of valid distributions.')
if i == 0:
raise ValueError('No previous distribution found.')
return valid_rosdistro_names[i - 1] | 6d6c1e8e5d9ca02115c7e0a4ee6006ba4af98c13 | 495,467 |
import re
def re_search(regex, string):
"""Try matching a regular expression."""
return re.search(regex, string) | 4cd9cfadfda9fdf875c6c4a96a589d038afcfd30 | 522,593 |
def getOrderedTeamGames(teamGames):
"""
input: team games
output: map team -> ordered list of games (by time)
"""
orderedTeamGames = {}
for team in teamGames:
orderedTeamGames[team] = []
currentTeamGames = teamGames[team]
keylist = list(currentTeamGames)
keylist.sort()
for key in keylist:
orderedTeamGames[team].append(currentTeamGames[key])
return orderedTeamGames | 87b29b9f9a392a7d813b0ddd9be0be0be4c28c10 | 501,186 |
def get_probability(sample, cond):
"""Find the probability that the sample fullfills conditions.
Example
-------
>>> y = np.array([-1., 0., 1., 2.])
>>> print get_probability(y, y<=0)
0.5
Arguments
---------
sample : ndarray
A sample to check the condition on.
cond : ndarray
An array of bools with equal size to sample which decides wether or not
the sample point fulfills the conditions or not.
"""
return float(sample[cond].size) / float(sample.size) | 5e993081fd9ee14d386bce9229c61d2835adb6ad | 163,580 |
import re
def intcomma(value):
"""
Converts an integer to a string containing commas every three digits.
For example, 3000 becomes '3,000' and 45000 becomes '45,000'.
"""
value = str(value)
new = re.sub("^(-?\d+)(\d{3})", '\g<1>,\g<2>', value)
if value == new:
return new
else:
return intcomma(new) | fca5cbbff83cf23e052308cec0d88a2a49d85387 | 609,584 |
def read_file(path):
# type: (str) -> list
"""Loads a text file from ``path`` into a list of str and returns it.
"""
with open(path, "rU") as text:
return text.readlines() | 396341e9a46fbcfebd473cc2fb171d56dd2cc41c | 384,146 |
def make_constant(match):
"""Returns a Constant JSON Object"""
return {
'type': 'c', #c for constant, f for function
'name': match.group('name'),
'value': match.group('value') #is this necessary?
} | 75d3781aaefec29570c06e1c672409de9c71974d | 286,126 |
def tidy_participation_url(url: str) -> str:
"""
>>> tidy_participation_url(
... "https://test.connpass.com/event/123456/participation/")
'https://test.connpass.com/event/123456/participation/'
>>> tidy_participation_url(
... "https://test.connpass.com/event/123456/participation")
'https://test.connpass.com/event/123456/participation/'
>>> tidy_participation_url("https://test.connpass.com/event/123456/")
'https://test.connpass.com/event/123456/participation/'
>>> tidy_participation_url("https://test.connpass.com/event/123456")
'https://test.connpass.com/event/123456/participation/'
"""
if not url.endswith("/"):
url += "/"
if not url.endswith("participation/"):
url += "participation/"
return url | bda0b6c69eff84f959de35f223c6c23602612f2e | 235,748 |
def get_attribute_values(elements,name):
""" returns a list of attributes 'name' from a list of elements """
attribute_values = []
for element in elements:
attributes = element.attributes
for n in range(attributes.length):
attribute = attributes.item(n)
if attribute.name == name:
attribute_values.append(attribute.value)
return attribute_values | 953ae221b0dd88812fc9b59e5dc86add9d9ededb | 649,022 |
def count_items(alist):
"""
Count number of items in alist.
"""
count = 0
for item in alist:
count = count + 1
return count | 69675913ffbcc1e6021c2c1002d4fa039ecc63b4 | 52,148 |
def _gen_param_excluder(added_kwargs):
"""
Pass through all the original keys, but exclude any kwargs that we added
manually through prep_scalar
Parameters
----------
added_kwargs : list of str
Returns
-------
excluder : callable
"""
def excluder(params, except_=None):
"""
Parameters
----------
params : dict
except : str
"""
return {k: v for k, v in params.items() if k not in added_kwargs or k == except_}
return excluder | 99b7db0cd064a3afc9997e8c0e82adea991a836d | 506,151 |
def to_string(val):
"""Convert a value to a string."""
return str(val) | 0f3d4a4d74c10f1e37f95d9e23b6b04e6c10d3be | 202,692 |
def maplist2dict(dlist):
""" Convert a list of tuples into a dictionary
"""
return {k[0]: k[1] for k in dlist} | 2d6c03d09ad8cdb9c9d7878c5038b99a28992dde | 68,510 |
def parse_vertex_and_square_ids(
data: str, start_string: str = "Square ID", end_string: str = "# Edges",
) -> dict:
"""Return a dictionary of vertex ID & square ID pairs.
This function will parse through the read-in input data between ''start_string'' and ''end_string''
to return the filtered text in-between.
This text is then converted to a dictionary mapping vertex IDs to square IDs.
:param data: read-in input file
:type data: str
:param start_string: starting string to search from, defaults to 'Square ID'
:type start_string: str
:param end_string: ending string to search until, defaults to '# Edges'
:type end_string: str
:return: a dictionary of vertex IDs & corresponding square IDs
:rtype: dict
"""
# split the data on the two strings
list_of_ids = data.split(start_string)[-1].split(end_string)[0]
# split the data on newline character
list_of_ids = list_of_ids.split("\n")
# remove empty strings that arose due to whitespace by using filter
list_of_ids = list(filter(lambda x: x != "", list_of_ids))
# create a dictionary of key-value pairs by splitting on the comma character
ids_map = {}
for i in list_of_ids:
splitted_string = i.split(",")
vertex_id = splitted_string[0]
square_id = int(splitted_string[1])
# create a mapping
ids_map[vertex_id] = square_id
return ids_map | 168ec7a785a89508c60061a6ac85b2f8a62c001b | 561,130 |
def exoption(self, ldtype="", option="", value="", **kwargs):
"""Specifies the EXPROFILE options for the Mechanical APDL to ANSYS CFX profile file transfer.
APDL Command: EXOPTION
Parameters
----------
ldtype
Load type:
* ``"SURF"`` : Surface load
* ``"VOLU"`` : Volume load
option
Surface options:
* ``"Precision"`` : Number of significant digits for the
fractional part of real data
* ``"Connectivity"`` : Key to include face connectivity in the
exported profile file
* ``"Precision"`` : Number of significant digits after the
decimal for real data
value
Specify the value for either Precision or Connectivity.
For Precision, specify the number of significant digits. Can
be any value between 1 to 20, default 8. When 0 or an invalid
value is specified, the program will use the default value of
8 and issue a warning message.
For Connectivity, specify the key to include the element face
connectivity data for surface loads (does not support volume
loads):
* ``"OFF"`` : Do not include the connectivity data in the exported file (default)
* ``"ON"`` : Include the connectivity data in the exported file
Notes
-----
This command is not supported in Distributed ANSYS.
"""
return self.run(f"EXOPTION,{ldtype},{option},{value}", **kwargs) | 82a3d62b5d9d079e8a5c3f2ca457e133e329030b | 136,693 |
def format_month_interval(val):
"""
Format a MonthInterval value.
"""
return f"{int(val)}M" | 28ac3d457dab6c4c877d15b137a26930180c389e | 62,977 |
def strip_namespace(obj):
"""
Returns the given object name after striping the namespace
:param obj: str, object to strip namespace from
:return: str
"""
return obj.split(':')[-1] | 1c34576458df1a90b6c0d075d7e54bbd7c350125 | 46,564 |
def classify(model, dataframe):
"""Classifies a dataframe using a trained random forest model
Args:
model: trained RandomForestClassifier
dataframe: A features dataframe
Returns:
dataframe of raw predictions
"""
return model.transform(dataframe)\
.select(['cx', 'cy', 'px', 'py', 'sday', 'eday', 'rawPrediction'])\
.withColumnRenamed('rawPrediction', 'rfrawp') | c0331c2767772c386fd7a8eac7f2d30d974841dc | 593,683 |
import json
def dict_to_json(json_dict: dict, sort_keys=True, indent=None) -> str:
"""
Transforms a tree made up of dictionaries and list into json string.
:param json_dict: the dict to transform
:return: the json string
"""
return json.dumps(json_dict, sort_keys=sort_keys, indent=indent) | b5004f8913eebfdfa6876dd269693dc5d56bd46d | 501,260 |
from datetime import datetime
def year(date):
""" Returns the year
Accepted format: %m/%d/%Y
"""
try:
fmt = '%m/%d/%Y'
return datetime.strptime(date, fmt).timetuple().tm_year
except ValueError:
return 0 | bb4a0e942967cf70ffc45c0ffcdf1df1fecd1910 | 142,541 |
def get_mappings(params):
"""
Create a mapping between attributes and their associated IDs.
"""
if not hasattr(params, 'mappings'):
mappings = []
k = 0
for (_, n_cat) in params.attr:
assert n_cat >= 2
mappings.append((k, k + n_cat))
k += n_cat
assert k == params.n_attr
params.mappings = mappings
return params.mappings | d75ffb85f1a5ccb1705866b16de65275347c1865 | 285,660 |
import struct
def parse_sch(l2cap_data):
"""
Parse the signaling channel data.
The signaling channel is a L2CAP packet with channel id 0x0001 (L2CAP CID_SCH)
or 0x0005 (L2CAP_CID_LE_SCH)
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
-----------------------------------------------------------------
| code | id | length |
-----------------------------------------------------------------
References can be found here:
* https://www.bluetooth.org/en-us/specification/adopted-specifications - Core specification 4.1
** [vol 3] Part A (Section 4) - Signaling Packet Formats
Returns a tuple of (code, id, length, data)
"""
code, id, length = struct.unpack("<BBH", l2cap_data[:4])
return (code, id, length, l2cap_data[4:]) | 93acbe97cdcbd2a961c13e5adede037941a44abe | 254,949 |
def get_numeric_ratio(s):
"""
gets the ratio of numeric characters to the total alphanumerics
:type s: str
:rtype: float or NoneType
"""
num_numeric = 0
num_alphabetic = 0
if len(s) == 0:
return None
else:
for character in s:
if character.isnumeric():
num_numeric += 1
elif character.isalpha():
num_alphabetic += 1
return num_numeric / (num_numeric + num_alphabetic) | 2a7fa2cd97bd2044cced18efa68530e366e0f179 | 488,987 |
def get_magnetic_galaxy_dir(galaxy: str, data_directory: str) -> str:
""" Get the full path to a specific galaxy directory
Args:
galaxy (str): Name of the galaxy
data_directory (str): dr2 data directory
Returns:
str: Path to galaxy directory
"""
return data_directory + "/magnetic/" + galaxy | 29c4266bac4bb3b133baf23c3fb1381ffb4a6349 | 139,643 |
import math
def format_pace(pace):
"""formats a pace in s/km as a nice mm:ss/km"""
rem, inte = math.modf(pace/60)
return f"{int(inte)}:{int(rem*100):02d}/km" | c8d14fe4bd67a3bf5daf7cd623a65eb84cfd452f | 265,923 |
import hashlib
def get_fingerprint(file_path: str) -> str:
"""
Calculate a fingerprint for a given file.
:param file_path: path to the file that should be fingerprinted
:return: the file fingerprint, or an empty string
"""
try:
block_size = 65536
hash_method = hashlib.md5()
with open(file_path, 'rb') as input_file:
buf = input_file.read(block_size)
while buf:
hash_method.update(buf)
buf = input_file.read(block_size)
return hash_method.hexdigest()
except Exception:
# if the file cannot be hashed for any reason, return an empty fingerprint
return '' | b0ee4d592b890194241aaafb43ccba927d13662a | 3,511 |
def strip_tuple(tuple_list, tuple_index = 0):
"""Given a list of tuples, creates a list of elements at tuple_index"""
elem_list = []
for i in range(0, len(tuple_list)):
elem_list.append(tuple_list[i][tuple_index])
return elem_list | 0540b1f85987f5bce1a42ee6e72460faecd6a31c | 205,171 |
import time
def timestamp(d=True, t=True, tz=True, utc=False, winsafe=False):
"""Simple utility to print out a time, date, or time+date stamp for the
time at which the function is called.
Parameters
----------:
d : bool
Include date (default: True)
t : bool
Include time (default: True)
tz : bool
Include timezone offset from UTC (default: True)
utc : bool
Include UTC time/date (as opposed to local time/date) (default: False)
winsafe : bool
Omit colons between hours/minutes (default: False)
"""
if utc:
time_tuple = time.gmtime()
else:
time_tuple = time.localtime()
dts = ''
if d:
dts += time.strftime('%Y-%m-%d', time_tuple)
if t:
dts += 'T'
if t:
if winsafe:
dts += time.strftime('%H%M%S', time_tuple)
else:
dts += time.strftime('%H:%M:%S', time_tuple)
if tz:
if utc:
if winsafe:
dts += time.strftime('+0000')
else:
dts += time.strftime('+0000')
else:
offset = time.strftime('%z')
if not winsafe:
offset = offset[:-2:] + '' + offset[-2::]
dts += offset
return dts | a2d74db673993a9a22822062b962fbc161dfe59d | 241,495 |
import re
def parse_speaker(path):
"""
Get speaker id from a BAS partitur file
Parameters
----------
path : str
a path to the file
Returns
-------
str or None
the speaker id
"""
speaker = ''
with open(path, 'r', encoding='utf8') as f:
lines = f.readlines()
for line in lines:
splitline = re.split("\s", line)
if splitline[0] == 'SPN:':
return splitline[1].strip()
return None | 31f65b13903324b1b941b2beb6c28edde430ffa1 | 67,391 |
def dp(n):
"""Returns the n-th number of fib with DP"""
f = [0] * (n + 1)
for i in range(n + 1):
if i <= 1:
f[i] = i
else:
f[i] = f[i - 1] + f[i - 2]
return f[n] | d421689bbb3b51d6745a92eefbf41800761dcd68 | 387,855 |
def es_parentesis(caracter):
"""
(str of len == 1) -> str
>>> es_parentesis('(')
'Es parentesis'
>>> es_parentesis('x')
'No es parentesis'
>>> es_parentesis('xa')
Traceback (most recent call last):
..
TypeError: xa no es un parentesis
:param caracter: str el caracter a evaluar
:return: str el mensaje de la validacion
"""
if len(caracter) != 1:
raise TypeError(str(caracter) + ' no es un parentesis')
elif caracter in '()': # caracter == '(' or caracter == ')':
return 'Es parentesis'
return 'No es parentesis' | bdace083e11eadbbf3f2d679bf9fffad4a1313c0 | 358,183 |
import time
def date_passed(date):
"""Check if the date has already passed."""
return date <= int(time.time()) | 9f3499bf6fbef190b21131f40b4b5d2c42acda53 | 319,971 |
def get_sentence_at_index(index, resolved_list):
"""Returns the sentence beginning at the index
"""
end_of_sentence_punctuation = ['.', '!', '?']
begin_index = index
end_index = index
while begin_index >= 0:
val = resolved_list[begin_index].strip()
if val in end_of_sentence_punctuation:
break
else:
begin_index -= 1
while end_index <= len(resolved_list) - 1:
val = resolved_list[end_index].strip()
if val in end_of_sentence_punctuation:
break
else:
end_index += 1
return resolved_list[begin_index + 1:end_index + 1], begin_index + 1 | 5f081086e227689c1aa6d774c8f83e79d62e344f | 468,072 |
import binascii
def hex_decode(string):
"""
Hex decode string
Parameters
----------
string : str
String to be decoded from hexadecimal
Returns
-------
str
Text string with ASCII / unicode representation of hexadecimal input string
"""
return binascii.a2b_hex(string.encode()).decode() | 5513101514bded4b28f1a6b0038ce9a6f2dfac87 | 652,350 |
import click
def geojson_type_feature_opt(default=False):
"""GeoJSON Feature or Feature sequence output mode"""
return click.option(
'--feature',
'geojson_type',
flag_value='feature',
default=default,
help="Output as GeoJSON feature(s).") | d9705fcb28d70f92d94803850652231ccff1b77e | 494,726 |
def model_eval(model, b_gen, metric_str, workers=4):
"""
Evaluate model on data generator.
Prints and returns scores for specified metrics.
Parameters
----------
model : Keras model
The model to evaluate.
b_gen : DataGenerator object
DataGenerator object to use for loading the data.
metric_str : list of str
List of names of the metrics to evaluate. For printing.
workers : int, optional
Number of workers for the multiprocessing functionalities of
the Keras model methods. Defauts to 4.
Returns
-------
score : ndarray
Array containing results of the evaluated metrics as returned
by Keras model.evaluate() methods.
"""
print('\nModel Evaluation: \n')
score = model.evaluate_generator(b_gen, verbose=1,
use_multiprocessing=True,
workers=workers)
for i, m in enumerate(metric_str):
print('Test '+m+':', score[i])
return score | 0055da84a8c790bf414930f40f65400d1b441820 | 406,266 |
def find_value(dic, key):
"""return the value of dictionary dic given the key"""
return dic[key] | c1bbc2da7c1cb35659be9bfd76904daeac46e870 | 297,734 |
def _list_to_hash(lst):
"""Convert a flat list of key value pairs to a hash"""
return {lst[i]: lst[i+1] for i in range(0, len(lst), 2)}; | 6848b7681d79c6e6609dbc98b12d763cd5e5fdbb | 197,841 |
def k12_enrollment(parcels):
"""
Enrollment for grades kinder through 12th.
"""
return parcels['k6_enrollment'] + parcels['g7_8_enrollment'] + parcels['g9_12_enrollment'] | e1b8eca67d9e6f35883a2a15ed6f73f511ac4aba | 608,050 |
def str_to_bool(s):
""" String to bool used to read config file
Parameters
----------
s : str
String to convert
Returns
-------
s : bool
Boolean value of input string
"""
if s == 'True':
return True
elif s == 'False':
return False
else:
raise ValueError | 1ccfd2b39ef298fb7b02925fe667cc6d38398614 | 50,698 |
def trim_taxon(taxon: str, int_level: int) -> str:
"""
taxon_hierarchy: '1|2|3|4|5|6|7'
level: 5
output: '1|2|3|4|5'
"""
return '|'.join(taxon.split('|')[:int_level]) | 0b9fe0b01633d81964f7d2a245ccb7621b8c10ed | 205,769 |
def get_right_slices(var, right_ndims, fixed_val=0):
"""Return an indexing tuple where the left dimensions are held to a
fixed value and the right dimensions are set to slice objects.
For example, if *var* is a 5D variable, and the desired indexing sequence
for a numpy array is (0,0,0,:,:), then *right_ndims* should be set to 2
and *fixed_val* set to 0.
Args:
var (:class:`numpy.ndarray`): A numpy array.
right_ndims (:obj:`int`): The number of right dimensions to be sliced.
fixed_val (:obj:`int`): The value to hold the left dimensions to.
Returns:
:obj:`tuple`: An indexing tuple that can be used to index a
:class:`numpy.ndarray`.
"""
extra_dim_num = var.ndim - right_ndims
if extra_dim_num == 0:
return [slice(None)] * right_ndims
return tuple([fixed_val]*extra_dim_num +
[slice(None)]*right_ndims) | 1665eb5077bf14c6fa5b5617c6b3285317e8f29a | 152,414 |
def sanity_check_iob(naive_tokens, tag_texts):
"""
Check if the IOB tags are valid.
* Args:
naive_tokens: tokens split by .split()
tag_texts: list of tags in IOB format
"""
def prefix(tag):
if tag == "O":
return tag
return tag.split("-")[0]
def body(tag):
if tag == "O":
return None
return tag.split("-")[1]
# same number check
assert len(naive_tokens) == len(tag_texts), \
f"""Number of tokens and tags doest not match.
original tokens: {naive_tokens}
tags: {tag_texts}"""
# IOB format check
prev_tag = None
for tag_text in tag_texts:
curr_tag = tag_text
if prev_tag is None: # first tag
assert prefix(curr_tag) in ["B", "O"], \
f"""Wrong tag: first tag starts with I.
tag: {curr_tag}"""""
else: # following tags
if prefix(prev_tag) in ["B", "I"]:
assert (
(prefix(curr_tag) == "I" and body(curr_tag) == body(prev_tag))
or (prefix(curr_tag) == "B")
or (prefix(curr_tag) == "O")
), f"""Wrong tag: following tag mismatch.
previous tag: {prev_tag}
current tag: {curr_tag}"""
elif prefix(prev_tag) in ["O"]:
assert prefix(curr_tag) in ["B", "O"], \
f"""Wrong tag: following tag mismatch.
previous tag: {prev_tag}
current tag: {curr_tag}"""
else:
raise RuntimeError(f"Encountered unknown tag: {prev_tag}.")
prev_tag = curr_tag | 4fb16ed2bd7a623a7dad331d8b7c8a5033a382ea | 35,148 |
import six
def is_string(value):
"""Returns whether value has a string type."""
return isinstance(value, six.string_types) | bbdc9602b2317fc2d8ed183af69ec60f9fce12ee | 511,639 |
def construct_filter_based_on_destination(reimbursable_destination_type: str):
"""
Construct Filter Based on Destination
:param reimbursable_destination_type: Reimbusable Destination Type
:return: Filter
"""
filters = {}
if reimbursable_destination_type == 'EXPENSE_CATEGORY':
filters['destination_expense_head__isnull'] = True
elif reimbursable_destination_type == 'ACCOUNT':
filters['destination_account__isnull'] = True
return filters | 73116ce3e6398e98c1540380094e70cc1620867b | 27,221 |
def adjacency_to_edges(nodes, adjacency, node_source):
"""
Construct edges for nodes based on adjacency.
Edges are created for every node in `nodes` based on the neighbors of
the node in adjacency if the neighbor node is also in `node_source`.
The source of adjacency information would normally be self.graph and
self.nodes for `node_source`. However, `node_source may` also equal
`nodes` to return edges for the isolated graph.
:param nodes: nodes to return edges for
:type nodes: list
:param adjacency: node adjacency (self.graph)
:type adjacency: dict
:param node_source: other nodes to consider when creating edges
:type node_source: list
"""
edges = []
for node in nodes:
edges.extend([tuple([node, e]) for e in adjacency[node] if e in node_source])
return edges | d593b4acd2b6f7553d6b9677209422ee665bc2d0 | 651,274 |
def getattritem(o,a):
"""
Get either attribute or item `a` from a given object `o`. Supports multiple evaluations, for example
`getattritem(o,'one.two')` would get `o.one.two`, `o['one']['two']`, etc.
:param o: Object
:param a: Attribute or Item index. Can contain `.`, in which case the final value is obtained.
:return: Value
"""
flds = a.split('.')
for x in flds:
if x in dir(o):
o = getattr(o,x)
else:
o = o[x]
return o | 7b928b2405691dcb5fac26b7a3d7ebfcfa642f6d | 13,807 |
def format_geo(geography_id):
"""
Format geography id for use within an SDF
:param geography_id: string; corresponds to DV360 geography id
:return: string; formatted for SDF usage
"""
return '{};'.format(geography_id) | 63d56fd91419ce150452acb2b35dc0f6b53388b7 | 106,038 |
def convert_dcc_translation(translation):
"""
Converts given tpDcc translation into a translation that DCC can manage
NOTE: tpDcc uses Y up coordinate axes as the base reference axis
:param translation: list(float, float, float)
:return: list(float, float, float)
"""
return translation[0], translation[2], -translation[1] | a0376cb496af36693a6119640ef985e7853a8eff | 465,608 |
import re
def parse_port_name(name):
"""
Parses a port name. Returns the base name, cell index and bit index.
>>> parse_port_name("A_PORT")
('A_PORT', None, None)
>>> parse_port_name("A_PORT_0")
('A_PORT', 0, None)
>>> parse_port_name("A_PORT_b31")
('A_PORT', None, 31)
>>> parse_port_name("A_PORT_0_b15")
('A_PORT', 0, 15)
"""
# A multi-bit port
m = re.match(r"(?P<name>.*)(_b(?P<bit>[0-9]+))$", name)
if m is not None:
port = m.group("name")
bit = int(m.group("bit"))
else:
port = name
bit = None
# A port of a sub-cell
m = re.match(r"(?P<name>.*)(_(?P<cell>[0-9]+))$", port)
if m is not None:
return m.group("name"), int(m.group("cell")), bit
return port, None, bit | 643dbcad09f890419d36b47123a6478387944548 | 87,809 |
def _insert_single_package_eups_version(c, eups_version):
"""Insert version information into the configuration namespace.
Parameters
----------
eups_version
The EUPS version string (as opposed to tag). This comes from the
``__version__`` attribute of individual modules and is only set for
single package documentation builds that use the
`build_package_configs` configuration entrypoint.
Notes
-----
The variables are:
``release_eups_tag``
Always ``current``.
``version``, ``release``
Equal to ``eups_version``.
``release_git_ref``
Always ``master``.
``scipipe_conda_ref``
Always ``master``.
``newinstall_ref``
Always ``master``.
``pipelines_demo_ref``
Always ``master``.
"""
c["release_eups_tag"] = "current"
c["release_git_ref"] = "master"
c["version"] = eups_version
c["release"] = eups_version
c["scipipe_conda_ref"] = "master"
c["pipelines_demo_ref"] = "master"
c["newinstall_ref"] = "master"
return c | 5fb78d55952466d454f911cead259948407c6e92 | 585,300 |
import torch
def decoder_padding_mask(
ys_pad: torch.Tensor, ignore_id: int = -1
) -> torch.Tensor:
"""Generate a length mask for input.
The masked position are filled with True,
Unmasked positions are filled with False.
Args:
ys_pad:
padded tensor of dimension (batch_size, input_length).
ignore_id:
the ignored number (the padding number) in ys_pad
Returns:
Tensor:
a bool tensor of the same shape as the input tensor.
"""
ys_mask = ys_pad == ignore_id
return ys_mask | 5c494ed2c4f18118a708b3fa4c50b05599e93b3f | 556,830 |
def place_piece(piece, x, y, board):
"""
Utility function that places the piece at a given (x,y) coordinate on the given board if possible
Will overwrite the current value at (x,y), no matter what that piece is
Returns True if the piece is placed successfully and False otherwise
Arg piece: string - represents a piece on the board ('*' is an empty piece, '2' '8' etc. represent filled spots)
Arg x: integer - x coordinate
Arg y: integer - y coordinate
Arg board: board - the board you wish to place the piece on
"""
#Ensure that x and y are both integers (use assert)
assert type(x) == int and type(y) == int, "Error: not an integer"
#What are the dimensions of the board?
N = len(board)
#Checking that the (x,y) coordinates given are valid for the board
if not (x >= 0 and x < N and y >= 0 and y < N):
return False
#Placing the piece on the board
board[y][x] = piece
return True | 271e5b553cc21f826dda644f0c486ee329191af1 | 467,899 |
def deserialize_yesno(value):
"""
Deserialize a boolean (yes or no) value.
"""
return value.lower() == 'yes' | c3c92966302d1865763a7106ea7905c00cae9f2c | 442,562 |
from typing import List
def subtotals_for_deltas(deltas) -> List[int]:
"""
Given a list of deltas corresponding to input coins, create the "subtotals" list
needed in solutions spending those coins.
"""
subtotals = []
subtotal = 0
for delta in deltas:
subtotals.append(subtotal)
subtotal += delta
# tweak the subtotals so the smallest value is 0
subtotal_offset = min(subtotals)
subtotals = [_ - subtotal_offset for _ in subtotals]
return subtotals | 88111337b07328d56d63eb8c5e3ad76b0e6d84ea | 169,770 |
def is_palindrome(string: str) -> bool:
"""Return whether string is a palindrome or not."""
if "".join(reversed(string)).lower() == string.lower():
return True
return False | b40bdaa54b9807ff0d1f88cef08dd232d8b26cb9 | 350,608 |
def is_tuple(value):
"""is value a tuple"""
return isinstance(value, tuple) | 08f51cba93b07620a93b531dd9ea380ae7dd1118 | 336,695 |
import warnings
def deduplicate(S):
"""deduplicate pd.Series by removing rows with same index and values"""
dedup = S.groupby(S.index).first()
diff = len(S) - len(dedup)
if diff:
warnings.warn(f"found {diff} duplicates in S, removing them")
return dedup
return S | 743d2429ffc5e3fad435fa30e63f2c19a1fa2e09 | 552,776 |
def triple(n):
""" (number) -> number
Returns triple a given number.
>>> triple(9)
27
>>> triple(-5)
-15
>>> triple(1.1)
3.3
"""
one = n * 3
return (one) | 0f10a8026aba22ce9a1905c5d445984c7310763d | 636,956 |
def parse_clusters(cluster_file):
"""
expects one line per cluster, tab separated:
cluster_1_rep member_1_1 member 1_2 ...
cluster_2_rep member_2_1 member_2_2 ...
"""
cluster_dict = {}
with open(cluster_file) as LINES:
for line in LINES:
genes = line.strip().split("\t")
rep = genes[0]
for gene in genes:
cluster_dict[gene] = rep
return cluster_dict | 88243b7a142224e755eb2046c11a90b352d5835d | 685,017 |
def sniff_params(read):
"""
Given a read dict parsed from JSON, compute a mapping parameter dict for the read.
The read will have param_XXX annotations. Turn those into a dict from XXX to value.
These should be the same for every read.
"""
# This is the annotation dict from the read
annot = read.get('annotation', {})
# This is the params dict to fill in
params = {}
for annot_name in annot.keys():
if annot_name.startswith('param_'):
# Split the param annotations on underscore
(_, param_name) = annot_name.split('_')
# Save the values under the name
params[param_name] = annot[annot_name]
return params | 312e792d58ff4a5c6b5c7a05086f4356f5fcda43 | 422,386 |
def get_summary(html_text):
"""Returns the summary part of the raw html text string of the wikipedia article.
:param html_text: The html content of an article.
:type html_text: str
:return: The summary of the input wikipedia article.
:rtype: str
"""
# The summary ends before the first h tag.
end_summary_index = html_text.find('<h')
summary = html_text[:end_summary_index]
return summary | 762085d15826ee1ca3bb6a9d63ee5e6700500029 | 432,392 |
from typing import List
from typing import Union
def average(values: List[Union[int, float]]) -> float:
"""Return the average."""
return sum(values) / len(values) | 4e63aa9055c1251f240465440b79aec2241f07d7 | 413,423 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.