content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def sort_lists(sorted_indices, list_to_sort):
"""
given a list of indices and a list to sort sort the list using the sorted_indices order
:param sorted_indices: a list of indices in the order they should be e.g. [0,4,2,3]
:param list_to_sort: the list which needs to be sorted in the indice order from sorted_indices
:return: sorted list
"""
return [list_to_sort[i] for i in sorted_indices]
|
215bc8f29125dcd327b608c0b9d12f7614bd3403
| 696,134 |
def sum_of_coordinates(point):
"""Given a 2D point (represented as a Point object), returns the sum
of its X- and Y-coordinates."""
return point.getX() + point.getY()
|
afe177220460366aae35e9012119281d887c247e
| 696,136 |
def name_value_str_handler(name):
"""
Return a generic handler for plain string fields.
"""
def handler(value, **kwargs):
return {name: value}
return handler
|
58c1805a9b081edef850661b7b30a49d044d1a2f
| 696,137 |
from typing import AnyStr
import json
def load_json_dict(text: AnyStr) -> dict:
"""Loads from JSON and checks that the result is a dict.
Raises
------
ValueError
if `text` is not valid JSON or is valid JSON but not a dict
"""
ans = json.loads(text)
if not isinstance(ans, dict):
raise ValueError('not a dict')
return ans
|
3f35c6eed694f8b8087a7ee1252ef9fa99864280
| 696,138 |
import re
def remove_superscript_numbers_in_passage(text):
"""
A helper function that removes all superscript numbers with optional trailing space from a given string.
Mainly used to hide passage numbers in a given block of text.
:param text: String to process
:type text: str
:return: String with the superscript numbers that have a trailing space removed
:rtype: str
>>> remove_superscript_numbers_in_passage('⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ')
''
>>> remove_superscript_numbers_in_passage('E=mc²')
'E=mc'
"""
return re.sub(r'[⁰¹²³⁴⁵⁶⁷⁸⁹]+\s?', '', text)
|
767630743a8a55e1bcb139dc303ffbd778734690
| 696,139 |
def default(input_str, name):
"""
Return default if no input_str, otherwise stripped input_str.
"""
if not input_str:
return name
return input_str.strip()
|
1ba52bbe9118513a0f77abffdbcf3835c5335b35
| 696,140 |
def trapz(x, y):
"""Trapezoidal integration written in numba.
Parameters
----------
x : array_like
sample points to corresponding to the `y` values.
y : array_like
Input array to integrate
Returns
-------
total : float
Definite integral as approximated by the trapezoidal rule.
"""
n = x.shape[0]
total = 0
for i in range(n - 1):
total += 0.5 * (y[i] + y[i + 1]) * (x[i + 1] - x[i])
return total
|
316d97cc8703dc28c8821c68e21e25bf144a8a54
| 696,142 |
def find_sum_subseq(nums, target):
"""
Let `nums` be a list of positive integers and let `target` be a positive integer
Find a contiguous subsequence (of length at least 2) in `nums` whose sum is `target`
and return the subsequence indices for slicing if exists, else return False
We slide a variable sized window across the `nums` array and track the cumulative sum of array vals
ensuring the window always has length at least 2. As `nums` contains only positive integers,
adding an element to the end of the window always increases the array sum, whilst removing an
element from the start of the window always decreases the array sum.
"""
low, high = 0, 2
cum_sum = nums[0] + nums[1]
while high < len(nums):
# Check if the current subsequence (of length at least 2) sums to `target`
if cum_sum == target:
return low, high
# If the cumulative sum is too low or our subsequence has length 2, add another element
elif cum_sum < target or high - low == 2:
cum_sum += nums[high]
high += 1
# Otherwise the cumulative sum exceeds the target and we can remove an element
else:
cum_sum -= nums[low]
low += 1
# Check if we found a suitable subsequence on the last iteration
return (low, high) if cum_sum == target else False
|
eb141ec0892d1d2baf256910e0368704ccda8299
| 696,143 |
def key_gen(params):
"""Generates a fresh key pair"""
_, g, o = params
priv = o.random()
pub = priv * g
return (pub, priv)
|
c554fdcda209d591ac952ea43a69163f0448dd28
| 696,144 |
def fill_na(symbols_map, symbols_list):
"""Fill symbol map with 'N/A' for unmapped symbols."""
filled_map = symbols_map.copy()
for s in symbols_list:
if s not in filled_map:
filled_map[s] = 'N/A'
return filled_map
|
2aafe8e083e23938b002b4dc4d0ad39401cd66fb
| 696,145 |
def is_dummy_vector(vector, vector_length=None):
"""
Return True if the vector is the default vector, False if it is not.
"""
if vector_length is None:
vector_length = len(vector)
return vector == [1e-7] * vector_length
|
0d53a6e9a6fdc7d382ad57630fdbf5e73a32507a
| 696,147 |
def key_matches_x509_crt(key, crt):
"""
Verify that the public key derived from the given private key matches the
private key in the given X.509 certificate.
:param object key: A private key object created using load_privkey()
:param object crt: An X.509 certificate object created using load_x509()
:rtype bool: True, iff the key matches the certificate
"""
return crt.public_key().public_numbers() == key.public_key().public_numbers()
|
f3a9cd3cbfc9df9d0095c0562c3251174a98c141
| 696,155 |
def _clean_header(text: str, is_unit: bool = False) -> str:
"""
Extract header text from each raw trajectory summary csv file header.
:param text: Raw trajectory summary csv column header text.
:param is_unit: If True, return text with brackets for units.
:returns: Formatted text.
"""
# Return an empty string if there is no header found
if "Unnamed" in text:
return ""
# Removes additional spaces and hashtags from text. Add brackets optionally.
clean_header = " ".join(text.replace("#", "").split())
if is_unit:
clean_header = f" ({clean_header})"
return clean_header
|
000ab01267e78d621fd8a8e6844523e7fa909ba4
| 696,156 |
def get_conv_type(data):
""" Get the convolution type in data. """
conv_type = data.conv_type.iloc[0]
assert (data.conv_type == conv_type).all()
return conv_type
|
5b66291790b921a917643cf3a3b2a96fc3c58243
| 696,160 |
def bedToMultizInput(bedInterval):
"""
Generate the proper input for fetching multiz alignments
input: pybedtools Interval class
output: chr, start, stop, strand
"""
chromosome = bedInterval.chrom
chromosome = chromosome.replace("chr", "")
if bedInterval.strand == "+":
strand = 1
else:
strand = -1
return(chromosome, bedInterval.start, bedInterval.stop, strand)
|
1f8492872144c301314bcc217948e0449b242340
| 696,165 |
def find_with(f, iter, default=None):
"""Find the value in an iterator satisfying f(x)"""
return next((x for x in iter if f(x)), default)
|
8fac8902b8baaf1a28a83227bef3933a7b8cb293
| 696,168 |
def athinput(filename):
"""Read athinput file and returns a dictionary of dictionaries."""
# Read data
with open(filename, 'r') as athinput:
# remove comments, extra whitespace, and empty lines
lines = filter(None, [i.split('#')[0].strip() for i in athinput.readlines()])
data = {}
# split into blocks, first element will be empty
blocks = ('\n'.join(lines)).split('<')[1:]
# Function for interpreting strings numerically
def typecast(x):
if '_' in x:
return x
try:
return int(x)
except ValueError:
pass
try:
return float(x)
except ValueError:
pass
try:
return complex(x)
except ValueError:
pass
return x
# Function for parsing assignment based on first '='
def parse_line(line):
out = [i.strip() for i in line.split('=')]
out[1] = '='.join(out[1:])
out[1] = typecast(out[1])
return out[:2]
# Assign values into dictionaries
for block in blocks:
info = list(filter(None, block.split('\n')))
key = info.pop(0)[:-1] # last character is '>'
data[key] = dict(map(parse_line, info))
return data
|
2fb9f499ff75fc3b61afd655baea7b92132fabcb
| 696,169 |
def vals_sortby_key(dict_to_sort):
"""
sort dict by keys alphanumerically, then return vals.
Keys should be "feat_00, feat_01", or "stage_00, stage_01" etc.
"""
return [val for (key, val) in sorted(dict_to_sort.items())]
|
4c5537dc555d92b1f4084821aa56cfb118d2a871
| 696,170 |
def Delta(a, b, gapopen = -0.5, gapext = -0.7):
"""
Helper function for swalignimpconstrained for affine
gap penalties
"""
if b > 0:
return 0
if b == 0 and a > 0:
return gapopen
return gapext
|
303ee6d4436f3338ea130416459c22d40aff0272
| 696,172 |
def _get_byte_size_factor(byte_suffix: str) -> int:
"""
Returns the factor for a specific bytesize.
"""
byte_suffix = byte_suffix.lower()
if byte_suffix == "b":
return 1
if byte_suffix in ("k", "kb"):
return 1024
if byte_suffix in ("m", "mb"):
return 1024 * 1024
if byte_suffix in ("g", "gb"):
return 1024 * 1024 * 1024
if byte_suffix in ("t", "tb"):
return 1024 * 1024 * 1024 * 1024
raise ValueError("Unsupported byte suffix")
|
eb7b0aaf03c6b231306980568fc93a45303d022b
| 696,178 |
import math
def constrained_factorial(x):
"""
Same as `math.factorial`, but raises `ValueError` if x is under 0 or over 32,767.
"""
if not (0 <= x < 32768):
raise ValueError(f"{x!r} not in working 0-32,767 range")
if math.isclose(x, int(x), abs_tol=1e-12):
x = int(round(x))
return math.factorial(x)
|
5bb853a479279aa124a271d9ff719e060bd18608
| 696,179 |
from typing import Any
def default_function(n: int, value: Any=None):
"""
Creates a dummy default function to provide as default value when
a func parameter is expected.
`n` is the number of parameters expected.
`value` is the default value returned by the function
"""
if n == 0:
return lambda: value
elif n == 1:
return lambda _: value
elif n == 2:
return lambda _,__: value
else:
raise Exception('Default function with {} parameters is not supported.'.format(n))
|
d8245fed39e423392acfbffd775379a2e15a8848
| 696,184 |
def byte_literal(b):
""" If b is already a byte literal, return it. Otherwise, b is
an integer which should be converted to a byte literal.
This function is for compatibility with Python 2.6 and 3.x
"""
if isinstance(b, int):
return bytes([b])
else:
return b
|
88756b37de6884b3e68373756af76e849815786f
| 696,187 |
def _get_extent(gt, cols, rows):
""" Return the corner coordinates from a geotransform
:param gt: geotransform
:type gt: (float, float, float, float, float, float)
:param cols: number of columns in the dataset
:type cols: int
:param rows: number of rows in the dataset
:type rows: int
:rtype: list of (list of float)
:return: List of four corner coords: ul, ll, lr, ur
>>> gt = (144.0, 0.00025, 0.0, -36.0, 0.0, -0.00025)
>>> cols = 4000
>>> rows = 4000
>>> _get_extent(gt, cols, rows)
[[144.0, -36.0], [144.0, -37.0], [145.0, -37.0], [145.0, -36.0]]
"""
ext = []
xarr = [0, cols]
yarr = [0, rows]
for px in xarr:
for py in yarr:
x = gt[0] + (px * gt[1]) + (py * gt[2])
y = gt[3] + (px * gt[4]) + (py * gt[5])
ext.append([x, y])
yarr.reverse()
return ext
|
95dfa01251925522b282450219d1d040f928f405
| 696,188 |
def switch(*args):
""":yaql:switch
Returns the value of the first argument for which the key evaluates to
true, null if there is no such arg.
:signature: switch([args])
:arg [args]: mappings with keys to check for true and appropriate values
:argType [args]: chain of mapping
:returnType: any (types of values of args)
.. code::
yaql> switch("ab" > "abc" => 1, "ab" >= "abc" => 2, "ab" < "abc" => 3)
3
"""
for mapping in args:
if mapping.source():
return mapping.destination()
|
c0d152b4004866826c4892a1340865b79feefa2c
| 696,194 |
def extract_segment_types(urml_document_element, namespace):
"""Return a map from segment node IDs to their segment type
('nucleus', 'satellite' or 'isolated').
"""
segment_types = \
{namespace+':'+seg.attrib['id']: seg.tag
for seg in urml_document_element.iter('nucleus', 'satellite')}
for seg in urml_document_element.iter('segment'):
seg_id = namespace+':'+seg.attrib['id']
if seg_id not in segment_types:
segment_types[seg_id] = 'isolated'
return segment_types
|
30d2050055a9c2e66da66e3663df27a9cc6852e1
| 696,196 |
def convert2voxels(x_um_rw, imExtends, voxelSize):
"""
Converting from real world um coordinates to 0 origin voxel.
:param x_um_rw: coordinates in real world frame, dimensions in um
:param imExtends (list of lists): the first list are the initial extends of the image, and the second list the
final ones. Dimensions are um and they are used to localize the image in the real world frame
:param voxelSize: voxel size
:return: coordinates in 0 centered frame, dimensions in voxels
"""
# First we bring the coordinates origin to 0
x_um_0 = x_um_rw - imExtends[0]
# And then we transform the dimensions to voxels
X_voxel_0 = x_um_0 / voxelSize
return X_voxel_0
|
123414615e40bb41802b8f5f072bb994f859f3d7
| 696,197 |
def fill_big_gaps(array, gap_size):
"""
Insert values into the given sorted list if there is a gap of more than ``gap_size``.
All values in the given array are preserved, even if they are within the ``gap_size`` of one another.
>>> fill_big_gaps([1, 2, 4], gap_size=0.75)
[1, 1.75, 2, 2.75, 3.5, 4]
"""
result = []
if len(array) == 0:
raise ValueError("Input array must be len > 0")
last_value = array[0]
for value in array:
while value - last_value > gap_size + 1e-15:
last_value = last_value + gap_size
result.append(last_value)
result.append(value)
last_value = value
return result
|
11ecb164b9e54c75db249ca27cbbdd582ed47945
| 696,201 |
from pathlib import Path
def get_package_root() -> Path:
"""Returns package root folder."""
conf_folder = Path(__file__).parent.parent
dirs_in_scope = [x.name for x in conf_folder.iterdir() if x.is_dir()]
if "mapservices" not in dirs_in_scope:
msg = (
f"Not the right root directory. ({conf_folder.absolute()}) "
"Did you change the project structure?"
)
raise ValueError(msg)
return conf_folder
|
7ff402b510528f7256ee6033ecbe6d5054bf487d
| 696,202 |
def thrift_attrs(obj_or_cls):
"""Obtain Thrift data type attribute names for an instance or class."""
return [v[1] for v in obj_or_cls.thrift_spec.values()]
|
7c4f75f0e00ca08ca8d889d537ceee355c4c6552
| 696,207 |
def find_one_or_more(element, tag):
"""Return subelements with tag, checking that there is at least one."""
s = element.findall(tag)
assert len(s) >= 1, 'expected at least one <%s>, got %d' % (tag, len(s))
return s
|
6faee2e8cad1a943da6499cb0ab987cafa79104a
| 696,209 |
def find_max_simultaneous_events(events):
"""
Question 14.5: Given a list of intervals representing
start and end times of events, find the maximum number
of simultaneous events that we can schedule
"""
transitions = []
simultaneous = 0
max_simultaneous = 0
for event in events:
transitions.append((event[0], True))
transitions.append((event[1], False))
sorted_transitions = sorted(transitions, key=lambda x: x[0])
for transition in sorted_transitions:
if transition[1]:
simultaneous += 1
else:
simultaneous -= 1
max_simultaneous = max(simultaneous, max_simultaneous)
return max_simultaneous
|
ffacabf17aa89dc61903a1aab44bace923f224a4
| 696,210 |
import math
def distance(x1, y1, x2, y2):
"""distance: euclidean distance between (x1,y1) and (x2,y2)"""
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
b7b4662a88c9afd4b63d6ab04fc51749916749f1
| 696,214 |
def repeated_definitions_of_repo_in_config(config, repo):
"""Check if there are multiple definitions of the same repository in a
pre-commit configuration object.
Parameters
----------
config : dict
Pre-commit configuration dictionary.
repo : str
Repository to check for multiple definitions.
Returns
-------
bool : ``True`` if there are more than one definition of the passed
repository in the configuration dictionary, ``False`` otherwise.
"""
return len([_repo for _repo in config["repos"] if _repo["repo"] == repo]) > 1
|
10f44cd6d6d1ef2313a2b8b6ab20b81df8294565
| 696,217 |
def get_links_from_wiki(soup, n=5, prefix="https://en.wikipedia.org"):
"""
Extracts `n` first links from wikipedia articles and adds `prefix` to
internal links.
Parameters
----------
soup : BeautifulSoup
Wikipedia page
n : int
Number of links to return
prefix : str, default="https://en.wikipedia.org""
Site prefix
Returns
-------
list
List of links
"""
arr = []
# Get div with article contents
div = soup.find("div", class_="mw-parser-output")
for element in div.find_all("p") + div.find_all("ul"):
# In each paragraph find all <a href="/wiki/article_name"></a> and
# extract "/wiki/article_name"
for i, a in enumerate(element.find_all("a", href=True)):
if len(arr) >= n:
break
if (
a["href"].startswith("/wiki/")
and len(a["href"].split("/")) == 3
and ("." not in a["href"] and ("(" not in a["href"]))
):
arr.append(prefix + a["href"])
return arr
|
5d0b77bf82cc5e09cc3db3fe9e0bd0b58bc81f55
| 696,218 |
import bisect
def find_ge(array, x):
"""Find leftmost item greater than or equal to x.
Example::
>>> find_ge([0, 1, 2, 3], 1.0)
1
**中文文档**
寻找最小的大于等于x的数。
"""
i = bisect.bisect_left(array, x)
if i != len(array):
return array[i]
raise ValueError
|
6f1aaa40da6d00acd15ee86d1db161f714c6d5d3
| 696,219 |
def reverse_list (list):
"""
:param: list
:return: list
Return a list, whose elements are in reversed order
e.g. reverse_list([30,40,50]) returns [50,40,30]
"""
reversed=[]
#Copy the first element of the given list into empty reversed list: reversed list is now [30]
reversed.append(list[0])
#Insert second element 40 into reversed list at index 0, so the list now is [40,30] etc.
for i in list[1:]:
reversed.insert(0,i)
return reversed
|
a3370aa505e19a4e4bca76d765c8f3859ac106d2
| 696,221 |
def inputInt(prompt, min=0, max=100):
"""
inputInt retourne un entier saisit par l'utilisteur. La saisit est
sécurisée: en de mauvaises entrés on redemande à l'utilisateur l'entier.
Si l'utilisateur quitte le proggrame avec Contrôle+C, le programme s'arrête.
"""
while True:
try:
i = int(input(prompt))
except KeyboardInterrupt as e:
print()
exit(0)
except Exception as e:
print(f"Valeur invalide")
continue
if min <= i <= max:
return i
print(f"La valeur doit être entre ${min} et ${max}")
|
fa1a9ca1bcbdbf9dd46c37ecb242bb012c14d9e9
| 696,222 |
from pathlib import Path
def is_single_repository(repo_path: str) -> bool:
"""
This function returns True if repo_path points to a single repository (regular or bare) rather than a
folder containing multiple repositories.
"""
# For regular repositories
if Path("{}/.git".format(repo_path)).exists():
return True
# For bare repositories
if (Path("{}/hooks".format(repo_path)).exists() and
Path("{}/refs".format(repo_path)).exists()):
return True
return False
|
c9b2c709984b79a36c36d898d0e337d7a9c3f725
| 696,230 |
def requires_to_requires_dist(requirement):
"""Compose the version predicates for requirement in PEP 345 fashion."""
requires_dist = []
for op, ver in requirement.specs:
requires_dist.append(op + ver)
if not requires_dist:
return ''
return " (%s)" % ','.join(sorted(requires_dist))
|
1a394de51d18b0a3cc4cb922364d352a29bccb09
| 696,231 |
def load_cows(filename):
"""
Read the contents of the given file. Assumes the file contents contain
data in the form of comma-separated cow name, weight pairs, and return a
dictionary containing cow names as keys and corresponding weights as values.
Parameters:
filename - the name of the data file as a string
Returns:
a dictionary of cow name (string), weight (int) pairs
"""
# Initialize dictionary
cows = {}
# Open file in read mode using 'with' keyword for context management
with open(filename, 'r') as f:
for line in f:
current_cow = line
# Split the line into a list of the form [cow_name, cow_weight]
cow_name, cow_weight = current_cow.split(',')
cows[cow_name] = int(cow_weight)
return cows
|
6245d9f20791316e5e7f370a8d53d8d590ff87c7
| 696,232 |
import math
def create_space(lat, lon, s=10):
"""Creates a s km x s km square centered on (lat, lon)"""
v = (180/math.pi)*(500/6378137)*s # roughly 0.045 for s=10
return lat - v, lon - v, lat + v, lon + v
|
7f39942cdb65a274ebf77257941211fa59f7cf89
| 696,233 |
import random
def uniqueof20(k, rep=10000):
"""Sample k times out of alphabet, how many different?"""
alphabet = 'ACDEFGHIKLMNPQRSTVWY'
reps = [len(set(random.choice(alphabet)
for i in range(k)))
for j in range(rep)]
return sum(reps) / len(reps)
|
349f1bd964419585df46e13d3cde64d8f5a42c86
| 696,238 |
def policy_name_as_regex(policy_name):
"""Get the correct policy name as a regex
(e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml
So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*)
:param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy
:return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*
"""
p = policy_name.partition('.')
return p[0] + p[1] + ".*" + p[2] + ".*"
|
5b60a6f35a30af5f3514a43c24c7bee25505adfb
| 696,240 |
def get_primary_key_params(obj):
"""
generate a dict from a mapped object suitable for formatting a primary key logline
"""
params = {}
for key in obj.__table__.primary_key.columns.keys():
params[key] = getattr(obj, key)
return params
|
aad247b31925389bca21ef35fc6416c286587eee
| 696,243 |
def mean(numbers):
"""Return the arithmetic mean of a list of numbers"""
return float(sum(numbers)) / float(len(numbers))
|
26601c23b8b6af48895a43f6e596e25eb626e7d6
| 696,245 |
def margined(arr, prop):
"""Returns (min(arr) - epsilon, max(arr) - epsilon), where
epsilon = (max(arr) - min(arr)) * prop. This gives the range of
values within arr along with some margin on the ends.
ARR: a NumPy array
PROP: a float"""
worst = arr.min()
best = arr.max()
margin = (best - worst) * prop
return (worst - margin, best + margin)
|
65ea4e99453ae300b08094f1891a31cca3d302bd
| 696,248 |
def faceAreaE3(face):
"""Computes the area of a triangular DCEL face with vertex coordinates given
as PointE3 objects.
Args:
face: A triangular face of a DCEL with vertex .data given by PointE3 objects.
Returns:
The area of the triangular face.
"""
p0, p1, p2 = [v.data for v in face.vertices()]
v0 = p1 - p0
v1 = p2 - p0
return v0.cross(v1).norm() * 0.5
|
412031297213a702f0579f8c86c23c93baaff8c8
| 696,250 |
import asyncio
def get_active_loop() -> asyncio.AbstractEventLoop:
"""returns the current active asyncio loop or creates
a new one.
Returns:
asyncio.AbstractEventLoop
"""
loop = asyncio.events._get_running_loop()
loop = asyncio.new_event_loop() if loop is None else loop
return loop
|
42c15961326d2a5a372237a8455fbe4f292dff80
| 696,251 |
def gen_datavalue_list(soup):
"""Create a list of all the datavalues on the BLS EAG webpage."""
datavalue_list_soup = soup.findAll('span', 'datavalue')
datavalue_list = []
for datavalue in datavalue_list_soup:
datavalue_list.append(datavalue.text)
return datavalue_list
|
8901511f0f65945c200b2ccc77d4cb011da41453
| 696,252 |
def bet_size_sigmoid(w_param, price_div):
"""
Part of SNIPPET 10.4
Calculates the bet size from the price divergence and a regulating coefficient.
Based on a sigmoid function for a bet size algorithm.
:param w_param: (float) Coefficient regulating the width of the bet size function.
:param price_div: (float) Price divergence, forecast price - market price.
:return: (float) The bet size.
"""
return price_div * ((w_param + price_div**2)**(-0.5))
|
cbc6c8d70f6f000e701f140ccbae34b55d7a46df
| 696,253 |
import re
def slugify(text):
"""
Returns a slug of given text, normalizing unicode data for file-safe
strings. Used for deciding where to write images to disk.
Parameters
----------
text : string
The string to slugify
Returns
-------
slug : string
A normalized slug representation of the text
.. seealso:: https://bit.ly/2NW7s1j
"""
slug = re.sub(r"[^\w]+", " ", text)
slug = "-".join(slug.lower().strip().split())
return slug
|
8ac550ed32627a6c8a145b9442960e064ebd44e2
| 696,254 |
def flight_time_movies_1_brute_force(movie_lengths, flight_length):
"""
Solution: Brute force iterative solution compares each movie length with
all subsequent movie lengths.
Complexity:
Time: O(n^2)
Space: O(1)
"""
if len(movie_lengths) < 2:
raise ValueError('movie length list must be at least 2 items long')
# For each movie length
for index, movie_length_first in enumerate(movie_lengths):
movie_lengths_sub = movie_lengths[0:index] + movie_lengths[
index + 1:len(
movie_lengths)]
# Check all other movie lengths (skipping over the first movie length)
for movie_length_second in movie_lengths_sub:
if movie_length_first + movie_length_second == flight_length:
return True
return False
|
612825507cf1aea086bcfa37b702e6a778d85b7c
| 696,256 |
from datetime import datetime
def datetime_type(string):
""" Validates UTC datetime. Examples of accepted forms:
2017-12-31T01:11:59Z,2017-12-31T01:11Z or 2017-12-31T01Z or 2017-12-31 """
accepted_date_formats = ['%Y-%m-%dT%H:%M:%SZ', '%Y-%m-%dT%H:%MZ', '%Y-%m-%dT%HZ', '%Y-%m-%d']
for form in accepted_date_formats:
try:
return datetime.strptime(string, form)
except ValueError:
continue
raise ValueError("Input '{}' not valid. Valid example: 2017-02-11T23:59:59Z".format(string))
|
36acb1d83b38310c463b2376fa2284fb6e9ad73e
| 696,257 |
import re
def _remove_line_end_ellipsis_or_pass_keyword(line: str) -> str:
"""
Remove ellipsis or pass keyword from end of line
(e.g., `def sample_func(): ...` or `def sample_func(): pass`).
Parameters
----------
line : str
Target line string.
Returns
-------
result_line : str
Line string that removed ellipsis or pass keyword string.
"""
if line.endswith(' ...'):
line = re.sub(pattern=r' ...$', repl='', string=line)
return line
if line.endswith(' pass'):
line = re.sub(pattern=r' pass$', repl='', string=line)
return line
return line
|
5ff12264670184737b2d9cc69f9fb2d8eca66cd9
| 696,258 |
def i_to_r(i, L, dx):
"""Return coordinates of lattice indices in continuous space.
Parameters
----------
i: integer array, shape (a1, a2, ..., d)
Integer indices, with last axis indexing the dimension.
It's assumed that all components of the vector
lie within plus or minus (L / dx) / 2.
L: float
Length of the lattice, assumed to be centred on the origin.
dx: float
Spatial lattice spacing.
This means the number of lattice points is (L / dx).
Returns
-------
r: float array, shape of i
Coordinate vectors of the lattice points specified by the indices.
"""
return -L / 2.0 + (i + 0.5) * dx
|
3c9f6ecc87a5220d487b434873f63c04f9933720
| 696,262 |
def _process_for_token(request):
"""
Checks for tokens in formdata without prior knowledge of request method
For now, returns whether the userid and token formdata variables exist, and
the formdata variables in a hash. Perhaps an object is warranted?
"""
# retrieve the formdata variables
if request.method == 'GET':
formdata_vars = request.GET
else:
formdata_vars = request.form
formdata = {
'vars': formdata_vars,
'has_userid_and_token':
'userid' in formdata_vars and 'token' in formdata_vars}
return formdata
|
14088de395c977ce6a59da3384fa8d49b213e791
| 696,263 |
def make_response(error, message=None, image_base64=None):
"""
Generates the ObjectCut JSON response.
:param error: True if the response has to be flagged as error, False otherwise.
:param message: Message to return if it is a error response.
:param image_base64: Image result encoded in base64 if it is a success response.
:return: ObjectCut JSON response.
"""
response = dict(error=error)
if error:
response['message'] = message
else:
response['response'] = dict(image_base64=image_base64)
return response
|
3be80141811fa493441a1ab964b4b6014a183dd1
| 696,265 |
def _cut(match):
"""
Cut matched characters from the searched string.
Join the remaining pieces with a space.
"""
string, start, end = match.string, match.start(), match.end()
if start == 0:
return string[end:]
if end == len(string):
return string[:start]
return ' '.join((string[:start], string[end:]))
|
5a9b1ac7a4030b972d14b04c81acb343066b3f2b
| 696,266 |
def parse_metadata_words(language='english', quality='low'):
"""
Identifies words corresponding to different metadata in the language
Parameters:
-----------------------------------
language : str
Name of the language whose testing data to fetch
quality : str
size of the dataset to consider
Returns:
-----------------------------------
metadata_words : dict
A dictionary with all the words grouped by metadata
"""
metadata_words = {}
filepath = "psynlp/data/{}-train-{}".format(language, quality)
file = open(filepath, 'r')
for line in file.readlines():
source, dest, metadata = line.split("\t")
if "*" not in source and "*" not in dest:
metadata = metadata.strip()
if metadata in metadata_words:
metadata_words[metadata].append((source, dest))
else:
metadata_words[metadata] = []
return metadata_words
|
7b8430c3e9c553167e5d710ef5e1d0ddaaeded00
| 696,267 |
from typing import List
def split_list(lst: List[str], wanted_parts: int = 1) -> List[List[str]]:
""" Splits a list into a list of lists of each of size 'wanted_parts'
Args:
lst: List to be split into smaller parts
wanted_parts: Desired size of each smaller list
Returns:
A list of lists of each of size 'wanted_parts'
"""
length = len(lst)
return [lst[i * length // wanted_parts: (i + 1) * length // wanted_parts] for i in range(wanted_parts)]
|
204711aa6b8c14c54673182e6d89addd8ccdc857
| 696,271 |
def gamma_to_tau_hard_threshold(gamma):
"""Converts gamma to tau for hard thresholding
"""
return 0.5 * gamma ** 2
|
4034918244477182cd3d7a14b97710c0731e03e3
| 696,274 |
def build_sample_map(flowcell):
"""Build sample map ``dict`` for the given flowcell."""
result = {}
rows = [(lane, lib["name"]) for lib in flowcell["libraries"] for lane in lib["lanes"]]
i = 1
for _, name in sorted(set(rows)):
if name not in result:
result[name] = "S{}".format(i)
i += 1
return result
|
faf43ca65146093462ae26a9c18ebb238e23a7ff
| 696,276 |
def indent(
text, # Text to indent
char=' ', # Character to use in indenting
indent=2 # Repeats of char
):
"""
Indent single- or multi-lined text.
"""
prefix = char * indent
return "\n".join([prefix + s for s in text.split("\n")])
|
f170745f99a2bb151e79c2f468cf23880d60b3e5
| 696,281 |
def first_element_or_none(element_list):
"""
Return the first element or None from an lxml selector result.
:param element_list: lxml selector result
:return:
"""
if element_list:
return element_list[0]
return
|
df9c3437f38a50db96f0f4f946ede41916e5e2cf
| 696,282 |
def is_public(data, action):
"""Check if the record is fully public.
In practice this means that the record doesn't have the ``access`` key or
the action is not inside access or is empty.
"""
return "_access" not in data or not data.get("_access", {}).get(action)
|
2c5c80f8e16014f08df2cc34696cea8249e633b1
| 696,283 |
def __slice_scov__(cov, dep, given):
"""
Slices a covariance matrix keeping only the covariances between the variables
indicated by the array of indices of the independent variables.
:param cov: Covariance matrix.
:param dep: Index of dependent variable.
:param given: Array of indices of independent variables.
:return: A |given| x |given| matrix of covariance.
"""
row_selector = [x for x in range(cov.shape[0]) if x in given and x != dep]
col_selector = [x for x in range(cov.shape[1]) if x in given and x != dep]
v = cov[row_selector, :]
v = v[:, col_selector]
return v
|
a5742c8dc4db245521477b0bf8c6ad8f3b463a2b
| 696,286 |
import random
import string
def rnd_string(n=10):
"""Generate a random string."""
return ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(n))
|
1869afa5e950c24d75a446c54b9f53abd942c007
| 696,291 |
from typing import Any
from typing import Iterable
from typing import Optional
def find_in_list(element: Any, container: Iterable[Any]) -> Optional[Any]:
"""
If the element is in the container, return it.
Otherwise, return None
:param element: to find
:param container: container with element
:return: element or None
"""
return next(iter([elem for elem in container if elem == element]), None)
|
4fd775e93472f466b90eb0c2ee4fda6aa6ead69e
| 696,298 |
import collections
def _get_tasks_by_domain(tasks):
"""Returns a dict mapping from task name to a tuple of domain names."""
result = collections.defaultdict(list)
for domain_name, task_name in tasks:
result[domain_name].append(task_name)
return {k: tuple(v) for k, v in result.items()}
|
53483e8ddf28490b6c00a4d456b77b48de1aeb7d
| 696,299 |
def splitFrom(df, attr, val):
"""
Split DataFrame in two subset based on year attribute
:param df: DataFrame to split
:param attr: attribute on which split data
:param val: value of attribute where do split
:return: two subset
"""
if attr not in df.columns:
raise ValueError("******* "+attr+" not in DataFrame *******")
subfd1 = df.loc[df[attr] < val]
subfd2 = df.loc[df[attr] >= val]
return subfd1, subfd2
|
e2c4f0c03d4b15ec2915e22bb905d4202cdf66cb
| 696,300 |
def subtract_vect(a, b):
"""
subtract vector b from vector a
Deprecated, use mpmath instead!!!
:param a: [float, float, float]
:param b: [float, float, float]
>>> subtract_vect([1, 2, 3], [3, 2, 2])
(-2, 0, 1)
"""
return (a[0] - b[0],
a[1] - b[1],
a[2] - b[2])
|
3465a670158a0ae34879a7d21599a9b098733f4d
| 696,304 |
import re
def generate_root_filename(rawname, add="_mass"):
"""Generate the appropriate root filename based on a file's LJH name.
Takes /path/to/data_chan33.ljh --> /path/to/data_mass.root
"""
fparts = re.split(r"_chan\d+", rawname)
prefix_path = fparts[0]
return prefix_path + add + ".root"
|
412056f37ffea1835b2f63b346ff4168d8391d2f
| 696,306 |
def get_top10(recommendations_list):
""" Returns the first 10 elements of a list"""
return recommendations_list[:10]
|
32be743fda0a8eb3932416ef487993ec686d7bc8
| 696,310 |
def roi_to_matlab(rois):
"""
ROIs to MATLAB. Adds one to index
--------------------------
:param rois: All ROIs in experiment
:return: New ROIs
"""
for roi in rois:
roi.index += 1
return rois
|
5a6fe428eaea89498f62e46469c925c51e56e2b3
| 696,312 |
def read_xsc_step_number(xsc_filename):
"""
Read a NAMD .xsc file to extract the latest step to use as input
for restarts and such.
"""
last_step = 0
with open(xsc_filename, "r") as f:
for line in f.readlines():
if line.startswith("#"):
continue
last_step = int(line.strip().split(" ")[0])
return last_step
|
115db280e4b7cf43e9b781b4f8855e0af8792b06
| 696,313 |
def read_file(filename):
"""Read a file and return lists
Parameters:
filename - a text file to read
Returns:
list: lines
"""
with open(filename) as file:
lines = file.read().splitlines()
return lines
|
f16fa3e1923a2687f72438fa4223da0c82a0043e
| 696,315 |
def _mock_authenticate_user(_, client=None):
"""Mock Pycognito authenticate user method. This code is from Pycognito's test suite."""
return {
"AuthenticationResult": {
"TokenType": "admin",
"IdToken": "dummy_token",
"AccessToken": "dummy_token",
"RefreshToken": "dummy_token",
}
}
|
dccbdf5138eea63c543a824de3c003efb5af6210
| 696,317 |
def iter_first(sequence):
"""Get the first element from an iterable or raise a ValueError if
the iterator generates no values.
"""
it = iter(sequence)
try:
return next(it)
except StopIteration:
raise ValueError()
|
007648dcbc903572ca33221c5884febc7e78d956
| 696,318 |
def compareRule(origFileName):
"""
Function that applies a rule to a file name to be comparable to other file
names. Basically it extracts the file name part to compare with others.
Example: tif files that only differ in one character at the end, like
038_FJB_1904-001a.tif and 038_FJB_1904-001b.tif
"""
compareFileName = origFileName.decode('utf-8').rstrip('.tif')[:-1]
return compareFileName
|
5e7bdad032d5475eb988637210f951bb97bdc0f7
| 696,319 |
def plural(word, items):
"""Returns "N words" or "1 word"."""
count = len(items) if isinstance(items, (dict, list, set, tuple)) else items
return "%s %s%s" % (count, word, "s" if count != 1 else "")
|
a40493ff2cf09dc5e033962037b544f02d9f4666
| 696,321 |
def nillable_string(func):
"""Decorator that retuns None if input is None."""
def wrapper(cls, string):
if string is None:
return None
else:
return func(cls, string)
return wrapper
|
e4dc2fda61334e6ed1368dfca431bdc5b8479e6c
| 696,322 |
import re
def get_master_names(desired_master_state, name_regex):
"""Returns masters found in <desired_master_state> that match <name_regex>.
Args:
desired_master_state: A "desired_master_state" object, e.g. as returned by
desired_state_parser
Returns:
[str1, str2, ...] All masters found in <desired_master_state>
"""
# Modify regex to allow for optional "master." prefix
name_regex = r'(master\.)?' + name_regex
master_matcher = re.compile(name_regex)
return [m for m in desired_master_state["master_states"].keys()
if master_matcher.match(m)]
|
9343964103d1e93ff0d6de7d019c1fd206e84d3b
| 696,323 |
def merge_list_entries(list_to_merge):
"""Merge overlapping tuples in a list.
This function takes a list of tuples containing exactly two numbers (as
floats) with the smaller number first. It sorts them by lower bound, and
then compares them to see if any overlap. Ultimately it returns a list of
tuples containing the union of any tuples that overlap in range.
Parameters
----------
list_to_merge : list
A list of tuples of floats, denoting regions on the number line.
Returns
-------
list
A list containing all the overlapping regions found in the input list.
"""
merged = []
sorted_by_lower_bound = sorted(list_to_merge, key=lambda tup: tup[0])
for higher in sorted_by_lower_bound:
if not merged:
merged.append(higher)
else:
lower = merged[-1]
if higher[0] <= lower[1]:
upper_bound = max(lower[1], higher[1])
merged[-1] = (lower[0], upper_bound)
else:
merged.append(higher)
return merged
|
e507a855e7b6dc0330ac21dfe159a793d6e5cd8c
| 696,324 |
def get_organic_aerosols_keys(chem_opt):
"""
Return the anthropogenic and biogenic keys
"""
asoa_keys = None
bsoa_keys = None
if chem_opt == 106:
asoa_keys = ('orgaro1i', 'orgaro1j', 'orgaro2i', 'orgaro2j', 'orgalk1i', 'orgalk1j', 'orgole1i', 'orgole1j') # SOA Anth
bsoa_keys = ('orgba4i', 'orgba4j', 'orgba3i', 'orgba3j', 'orgba2i', 'orgba2j', 'orgba1i', 'orgba1j') # SOA Biog
elif chem_opt == 108 or chem_opt == 100:
asoa_keys = 'asoa1j,asoa1i,asoa2j,asoa2i,asoa3j,asoa3i,asoa4j,asoa4i'.split(',') # SOA Anth
bsoa_keys = 'bsoa1j,bsoa1i,bsoa2j,bsoa2i,bsoa3j,bsoa3i,bsoa4j,bsoa4i'.split(',') # SOA Biog
else:
print('PP: this chem_opt {} is not implemented, dont know how to combine organics')
return asoa_keys, bsoa_keys
|
68b342adde5c0dd1de9e81de12de99c0cab40d0b
| 696,325 |
def mean_wikipedia_frequency(frequency_cache, lemmatizer, tokens):
"""
Retrieves frequency for a list of tokens and returns mean frequency.
:param frequency_cache: a frequencey lookup table
:param lemmatizer: a lemmatizer
:param tokens: a sequence of tokens (strings)
"""
freq_sum = 0
for token in tokens:
lemma = lemmatizer.lemmatize(token)
freq_sum = frequency_cache.get(lemma, 1)
return freq_sum / len(tokens)
|
d92334cd99127ee60a323db39b71970ad4b1c1f2
| 696,326 |
def benefits(income, n_children, params):
"""Calculate benefits according to income, number of children and params.
Args:
income (pd.Series)
n_children (pd.Series): Same length as income.
params (pd.series): Must contain "benefit_per_child" and "benefit_cutoff"
Returns:
pd.Series: The benefits.
"""
raw_benefits = n_children * params.benefit_per_child
benefits = raw_benefits.where(income <= params.benefit_cutoff, 0)
return benefits
|
beb6f3f3a695ee4ae2b76ce7058906ca14ccebeb
| 696,327 |
def collect_first_sep(_, nodes):
"""
Used for:
Elements = Elements "," Element;
"""
e1, _, e2 = nodes
if e2 is not None:
e1 = list(e1)
e1.append(e2)
return e1
|
378dc75f20d0e5a03c2c34c1fd02feea651e5fb7
| 696,328 |
def camelcase_to_underscores(argument):
"""Converts a camelcase param like theNewAttribute to the equivalent
python underscore variable like the_new_attribute"""
result = ""
prev_char_title = True
if not argument:
return argument
for index, char in enumerate(argument):
try:
next_char_title = argument[index + 1].istitle()
except IndexError:
next_char_title = True
upper_to_lower = char.istitle() and not next_char_title
lower_to_upper = char.istitle() and not prev_char_title
if index and (upper_to_lower or lower_to_upper):
# Only add underscore if char is capital, not first letter, and next
# char is not capital
result += "_"
prev_char_title = char.istitle()
if not char.isspace(): # Only add non-whitespace
result += char.lower()
return result
|
d50d77cf0952c06f1d2ea003d4e6b2e534ef84f7
| 696,329 |
def pfreduce(func, iterable, initial=None):
"""A pointfree reduce / left fold function: Applies a function of two
arguments cumulatively to the items supplied by the given iterable, so
as to reduce the iterable to a single value. If an initial value is
supplied, it is placed before the items from the iterable in the
calculation, and serves as the default when the iterable is empty.
:param func: A function of two arguments
:param iterable: An iterable yielding input for the function
:param initial: An optional initial input for the function
:rtype: Single value
Example::
>>> from operator import add
>>> sum_of_squares = pfreduce(add, initial=0) * pfmap(lambda n: n**2)
>>> sum_of_squares([3, 4, 5, 6])
86
"""
iterator = iter(iterable)
try:
first_item = next(iterator)
if initial:
value = func(initial, first_item)
else:
value = first_item
except StopIteration:
return initial
for item in iterator:
value = func(value, item)
return value
|
621b48d894c2c510a713f6948e623c791cd429f5
| 696,331 |
from typing import Counter
def get_most_common(exercises, n=3):
""" Get n most common sports """
exes = [e.sport for e in exercises]
cnt = Counter()
for e in exes:
cnt[e] +=1
commons = cnt.most_common(n)
commons_array = [co[0] for co in commons]
return commons_array
|
204684d2d284cc902b5e64b55757d486af71a8ad
| 696,335 |
def available_colors(G, vertex, number_of_colors):
"""Returns all the available colors for vertex
Parameters:
G: a networkx graph with Graph Nodes
vertex: the vertex number (int)
number_of_colors: the number of colors (int)
Returns:
colors: list of available colors (list)
"""
colors = [x for x in range(0, number_of_colors)]
for neighbor in G.neighbors(vertex):
try:
index = colors.index(G.nodes[neighbor]['node'].color)
colors.pop(index)
except Exception:
pass
return colors
|
b19dfe9516eb7a74d259a3d69b868e78fe56d3e9
| 696,341 |
def parseTextFile(file_name, delimiter=",", header=0):
""" Parse a text file to a list. The file contents are delimited
and have a header.
:param file_name: The path to the file
:type file_name: str
:param delimiter: The delimiter to use to parse the file
:type delimiter: str
:param header: The number of lines at the top of the file to ignore
:type header: int
:return: Text file parsed into a list
:rtype: list
"""
with open(file_name) as f:
# Skip the header
for i in range(header):
next(f)
data = []
# Parse file contents
for line in f:
# Remove the newline char
line = line.replace("\n", "").replace("\r", "")
# Split the line by the delimiter
line = line.split(delimiter)
# Strip whitespaces from individual entries in the line
for i, entry in enumerate(line):
line[i] = entry.strip()
# Add the contents of the line to the data list
data.append(line)
return data
|
fe711396e13f2dd6a7bb688b570f59d3a23a850a
| 696,342 |
def is_m_to_n_pandigital(num, bound_m, bound_n):
"""
Determine if a number is m-to-n pandigital.
"""
digit_count = dict()
list_form = list(str(num))
for _digit in list_form:
# return early if any digit shows up more than once
if _digit in digit_count.keys():
return False
digit_count[_digit] = 1
target_count = dict()
for _d in range(bound_m, bound_n + 1):
target_count[str(_d)] = 1
# compare two sets
if digit_count == target_count:
return True
return False
|
ab0fb7b1e8369ea7118408dac108c87d17b07eef
| 696,345 |
def hours_mins_2_mins(time):
"""
Converts a time consisting of hours & minutes to minutes
Parameters
------------
time : str
Time, in hours & minutes, to be converted to minutes
Returns
------------
mins_tot : int
Time converted from hours:minutes to minutes
"""
if (type(time) != str):
print("Error: Time must be of type str")
return -1
else:
hrs = int(time[:2])
mins = int(time[2:])
mins_tot = (hrs * 60) + mins
return mins_tot
|
acbbbdea7617f2db5390e01436127bb8c423c634
| 696,348 |
def next_multiple(x: int, k: int = 512) -> int:
"""Calculate x's closest higher multiple of base k."""
if x % k:
x = x + (k - x % k)
return x
|
fbf8cf548851d0c57867292f9ddcfc33de9b03c0
| 696,350 |
def convert_to_DNA(sequence):
"""
Converts RNA to DNA
"""
sequence = str(sequence)
sequence = sequence.upper()
return sequence.replace('U', 'T')
|
2a69a3102df8f5a16b2b049fb1d80dae720b10e3
| 696,351 |
def fit(model, data_bunch, **kwargs):
"""
Fits an H2O Model
:param model: An H2O Model
:param data_bunch: A DataBunch with "train" and "valid" datasets that consist of H2ODataWrapper or H2OSparklingDataWrapper
:param kwargs: Keyword arguments to be passed to model.train
:return: A (fitted) H2O Model
"""
train_df = data_bunch.train.full_data.underlying
valid_df = data_bunch.valid.full_data.underlying
features_list = data_bunch.train.features.field_names
targets_list = data_bunch.valid.targets.field_names[0]
model.train(x=features_list,
y=targets_list,
training_frame=train_df,
validation_frame=valid_df,
**kwargs
)
return model
|
f9d0dd6835f145d00b7da6a99acca9ccc90653a8
| 696,352 |
import yaml
def pretty_yaml(value, file_=None):
""" Print an object to a YAML string
:param value: object to dump
:param file_: Open, writable file object
:return: str (YAML)
"""
return yaml.dump(value, stream=file_, indent=2, allow_unicode=True,
default_flow_style=False)
|
6c59ac3b34a0e4fdd8878074298787d30a8404ff
| 696,354 |
import functools
import operator
def get_dict_element(data, path, delimiter='.'):
"""
Traverse a dict using a 'delimiter' on a target string.
getitem(a, b) returns the value of a at index b
"""
return functools.reduce(operator.getitem, path.split(delimiter), data)
|
2699c6c514f894a9d38e92de982efb9c27ddfa46
| 696,355 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.