content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_mdot_code(rho, ucon, gdet, dx2, dx3):
"""Returns dMact in code units."""
dMacts = gdet * rho * ucon[:, :, :, 1]
return dMacts[:21].sum() * dx2 * dx3 / 21.
|
6da5dc0205a7c8a57af473dcaee388fa0f84b0ff
| 696,621 |
import json
def j2d(data):
"""Convert json to dict.
Parameters
----------
data : string
JSON-formatted string.
Returns
-------
dict
Data as dict.
"""
return json.loads(data)
|
31abd9bbf8b0eecf2fb2cd12310bb1642ec209c8
| 696,623 |
def read_vx(pointdata):
"""Read a variable-length index."""
if pointdata[0] != 255:
index= pointdata[0]*256 + pointdata[1]
size= 2
else:
index= pointdata[1]*65536 + pointdata[2]*256 + pointdata[3]
size= 4
return index, size
|
cc3c2335430bcff12a2824013b450a8a71ce9379
| 696,624 |
def are_passwords_matching(form) -> bool:
"""
Checks whether password field and password confirm field have same value
:param form: filled Django form instance
:return: true if fields have same value, false otherwise
"""
return form.cleaned_data['password'] == form.cleaned_data['password_confirm']
|
02067f5ff2f9914dfdf6dd81011b15e6007db457
| 696,627 |
import torch
def neginf(dtype):
"""
Return a representable finite
number near -inf for a dtype.
"""
if dtype is torch.float16:
return -65504
else:
return -1e20
|
b6834f7cf2c25d60b679bcbda32e3473cc20b9de
| 696,634 |
def zeros_mat(r, c):
"""
r by c matrix full of zeroes
:param r: rows of matrix
:param c: columns of matrix
:return: 2D array of the matrix (list containing elements of each row)
"""
A = []
while len(A) < r:
A.append([]) # Generate Row
while len(A[-1]) < c: # traverse the columns until the last row is reached
A[-1].append(0) # initialize all column values to 0 until the last row is reached
return A
|
4ec8e1a3457db91d0ef69b9ad757378ab477fa30
| 696,638 |
def calculate_yearly_total(sales: list[list[str]]) -> int:
"""Calculate the total yearly sales."""
total: int = 0
for row in sales:
total += int(row[-1])
return total
|
dbf5fbd038d0e7b2fad7e6794803b919e5902518
| 696,640 |
import tokenize
def bracket_delta(token):
"""Returns +/-1 if the current token increases/decreases bracket nesting depth, 0 otherwise."""
if token[0] == tokenize.OP and token[1] in ['{', '(', '[']:
return 1
elif token[0] == tokenize.OP and token[1] in ['}', ')', ']']:
return -1
else:
return 0
|
0c225259482bad2cd5470b69f2c232bff1d421e2
| 696,643 |
import torch
def mapping_shtools_to_compact(lmax):
"""
pyshtools uses an output format to represent spherical harmonic coefficients that is not memory efficient.
This function creates a mapping to represent the coefficients differently.
Our representation Y(l, m), shape(lmax+1, lmax+1) :
Y(0, 0) Y(1, 1) Y(2, 2) ...
Y(1,-1) Y(1, 0) Y(2, 1) ...
Y(2,-2) Y(2,-1) Y(2, 0) ...
... ... ...
Example :
mapping = mapping_shtools_to_compact(lmax)
x, _ = SHExpandLSQ(d, phi, theta, lmax, [1, -1]) # pyshtools
y = torch.tensor(x)[mapping[..., 0], mapping[..., 1], mapping[..., 2]] # Compact
z = torch.zeros([2, lmax+1, lmax+1])
z[mapping[..., 0], mapping[..., 1], mapping[..., 2]] = y # Back to pyshtools
"""
mapping = torch.zeros([lmax + 1, lmax + 1, 3], dtype=torch.long)
mapping[..., 0] = torch.tril(torch.ones([lmax + 1, lmax + 1], dtype=torch.long)) - torch.eye(lmax + 1,
dtype=torch.long)
linspace = torch.linspace(0, lmax, lmax + 1, dtype=torch.long)
mapping[..., 1] = torch.triu(linspace.view(1, -1).expand(lmax + 1, lmax + 1)) \
+ torch.tril(linspace.view(-1, 1).expand(lmax + 1, lmax + 1) - torch.diag(linspace))
mapping[..., 2] = torch.abs(linspace.view(1, -1).expand(lmax + 1, lmax + 1) -
linspace.view(-1, 1).expand(lmax + 1, lmax + 1))
return mapping
|
48c821c74f24f66af367f40204301badde71b379
| 696,648 |
from bs4 import BeautifulSoup
def get_corpus_file_soup(corpus_filename):
"""
For a given corpus xml filename, return its BeautifulSoup soup.
"""
return BeautifulSoup(open(corpus_filename), 'xml')
|
6327cfc185e1ac1c7372b4879dcbcf62c0689a89
| 696,649 |
def items(dct_or_lst):
"""Returns list items, or dictionary items"""
if isinstance(dct_or_lst, dict):
return list(dct_or_lst.items())
return list(enumerate(dct_or_lst))
|
7526f98214de1b76cc622d98abf4e0d5d3e003eb
| 696,650 |
def vec(A):
"""Return the vectorized matrix A by stacking its columns."""
return A.reshape(-1, order="F")
|
668bb854406b7a5d7442b66a7de4c3222e25386c
| 696,655 |
def method_withBadName_with_parameters_on_multiple_lines(x, y):
"""Provide parameters on multiple lines test case."""
return x + y
|
a7fee09cd434d646d9eaa70c5cb5d7fb37f68b4e
| 696,657 |
def invalid_fg_vsby(s, v):
"""Checks if visibility is inconsistent with FG"""
# NWSI 10-813, 1.2.6
if len(s) == 2 or s.startswith('FZ'):
if v > 0.6:
return True
elif s.startswith('MI'):
if v < 0.6:
return True
return False
|
2b4fb86c19deef2893b8dfa0b55cd13ea2749e6f
| 696,659 |
def getExcludes(backendName):
""" getExcludes(backendName)
Get a list of excludes. If using the 'wx' backend, you don't
want all the qt4 libaries.
backendName is the name of the backend which you do want to use.
"""
# init
excludes = []
# Neglect qt4
if 'qt4' != backendName:
excludes.extend(["sip", "PyQt4", "PyQt4.QtCore", "PyQt4.QtGui"])
# Neglect wx
if 'wx' != backendName:
excludes.extend(["wx"])
# done
return excludes
|
d5c53034bdbf12af5292bc2f77b74eb2ba2e2ef1
| 696,668 |
import yaml
def read_config_file(config_file):
"""
Read the yaml config file specified.
:param config_file: path to config file.
:return: Object representing contents of config file.
"""
config_file_data = {}
if config_file:
with open(config_file) as file_handle:
config_file_data = yaml.safe_load(file_handle)
return config_file_data
|
9f21bfac3e8ac772782aafbc711b8cb04e2580bc
| 696,671 |
def username_to_file(username):
"""
Return the network file name according to the username
"""
return '{0}.gml'.format(username)
|
4cca884c92f07f18427a68bc28fe9d25f9ec94f7
| 696,672 |
import colorsys
def hsv_to_rgb(h, s, v):
"""
Convert an HSV tuple to an RGB hex string.
h -- hue (0-360)
s -- saturation (0-100)
v -- value (0-255)
Returns a hex RGB string, i.e. #123456.
"""
r, g, b = tuple(int(i * 255)
for i in colorsys.hsv_to_rgb(h / 360, s / 100, v / 255))
return '#{:02X}{:02X}{:02X}'.format(r, g, b)
|
48bb7e31f16b6c435094aa990bb4d02f06cc37f7
| 696,673 |
import fcntl
def lockFile(lockfile):
"""Attempt to create lock file or fail if already locked"""
fp = open(lockfile, 'w')
try:
fcntl.lockf(fp, fcntl.LOCK_EX | fcntl.LOCK_NB)
except IOError:
return False
return True
|
76fb74f2b5218834b66f017857bf7d0d087533b3
| 696,676 |
def depends(*dependencies):
"""Decorator function for marking fixture dependencies of a function.
Example:
.. code:: python
from rok.fixtures import fixture, depends
@depends("engine")
def fetch_records(engine):
# Do something with the engine ...
# Fixtures themselves can also depend on other fixtures
@fixture
@depends("config")
def engine(config):
return create_engine(config=config)
@fixture
def config:
return load_config()
Args:
*dependencies: Fixtures the decorated function depends on
Returns:
callable: Decorator for explicitly marking function dependencies.
"""
def decorator(func):
if not hasattr(func, "depends"):
func.depends = []
func.depends.extend(dependencies)
return func
return decorator
|
6b8a7b8f24705b9f545933ffc580788062752fb3
| 696,677 |
import torch
def so3_rotation_angle(R, eps: float = 1e-4, cos_angle: bool = False):
"""
Calculates angles (in radians) of a batch of rotation matrices `R` with
`angle = acos(0.5 * (Trace(R)-1))`. The trace of the
input matrices is checked to be in the valid range `[-1-eps,3+eps]`.
The `eps` argument is a small constant that allows for small errors
caused by limited machine precision.
Args:
R: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
eps: Tolerance for the valid trace check.
cos_angle: If==True return cosine of the rotation angles rather than
the angle itself. This can avoid the unstable
calculation of `acos`.
Returns:
Corresponding rotation angles of shape `(minibatch,)`.
If `cos_angle==True`, returns the cosine of the angles.
Raises:
ValueError if `R` is of incorrect shape.
ValueError if `R` has an unexpected trace.
"""
N, dim1, dim2 = R.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")
rot_trace = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2]
if ((rot_trace < -1.0 - eps) + (rot_trace > 3.0 + eps)).any():
raise ValueError(
"A matrix has trace outside valid range [-1-eps,3+eps]."
)
# clamp to valid range
rot_trace = torch.clamp(rot_trace, -1.0, 3.0)
# phi ... rotation angle
phi = 0.5 * (rot_trace - 1.0)
if cos_angle:
return phi
else:
return phi.acos()
|
8b491db2fb5dfe8ffbeada503316d425e0df580c
| 696,679 |
def has_options(cli):
"""
Checks if the cli command contains any options (e.g. --regex $REGEX).
"""
for item in cli:
if '--' in item:
return True
return False
|
bc7b7400fc810d7195f03ba2805112645540ee63
| 696,681 |
def end_file(current_output):
"""End an output file.
This is smart enough to do nothing if current_output is None.
@param current_output: the current file output (or None).
@returns: None, to represent the closed stream.
"""
if current_output:
# write the iati-activities end tag
current_output.write("</iati-activities>\n")
# close the output
current_output.close()
return None
|
5b974790ad78038654080f8b0b11a183e4b1513b
| 696,683 |
def getChanceAgreement(l1, l2):
"""
Returns p_e, the probability of chance agreement: (1/N^2) * sum(n_k1 * n_k2) for rater1, rater2, k categories (i.e. two in this case, 0 or 1), for two binary lists L1 and L2
"""
assert(len(l1) == len(l2))
summation = 0
for label in [0, 1]:
summation += l1.count(label) * l2.count(label)
return (1 / float(len(l1)**2)) * summation
|
a4d11255ab8607c62a140b4bbd145b73b1e18524
| 696,684 |
def minimum_absolute_difference(arr):
"""Hackerrank Problem: https://www.hackerrank.com/challenges/minimum-absolute-difference-in-an-array/problem
Given an array of integers, find and print the minimum absolute difference between any two elements in the array.
Solve:
Sort the array, and then compare the different between each two adjacent values. After sorting, we know that
the minimum absolute difference has to be between two values that are stored sequentially in the list so we
simply find the smallest difference and return that
Args:
arr: Array of integers to check
Returns:
int: The minimum absolute difference between two elements of the array
"""
arr.sort()
min_diff = arr[-1] - arr[0]
for i in range(len(arr)-1):
if arr[i+1] - arr[i] < min_diff:
min_diff = arr[i+1] - arr[i]
return min_diff
|
00dc3ce179282b669407ea3a94fea07538a404d9
| 696,686 |
def find_dead_end_reactions(model):
"""
Identify reactions that are structurally prevented from carrying flux (dead ends).
"""
stoichiometries = {}
for reaction in model.reactions:
for met, coef in reaction.metabolites.items():
stoichiometries.setdefault(met.id, {})[reaction] = coef
blocked_reactions = set()
while True:
new_blocked = set()
for met_id, stoichiometry in stoichiometries.items():
if len(stoichiometry) == 1: # Metabolite is only associated with 1 reaction, which can thus not be active
new_blocked.add(list(stoichiometry)[0])
if len(new_blocked) == 0:
break # No more blocked reactions
# Remove blocked reactions from stoichiometries
stoichiometries = {
met_id: {reac: coef for reac, coef in stoichiometry.items() if reac not in new_blocked}
for met_id, stoichiometry in stoichiometries.items()}
blocked_reactions.update(new_blocked)
return frozenset(blocked_reactions)
|
c60af7b0a1c2813e57c599ddb5516ec1fe8d2aa2
| 696,687 |
def de_punc(s, punc=None, no_spaces=True, char='_'):
"""Remove punctuation and/or spaces in strings and replace with
underscores or nothing
Parameters
----------
s : string
input string to parse
punc : string
A string of characters to replace ie. '@ "!\'\\[]'
no_spaces : boolean
True, replaces spaces with underscore. False, leaves spaces
char : string
Replacement character
"""
if (punc is None) or not isinstance(punc, str):
punc = '!"#$%&\'()*+,-./:;<=>?@[\\]^`{|}~' # _ removed
if no_spaces:
punc = " " + punc
s = "".join([[i, char][i in punc] for i in s])
return s
|
670a1bdc19fb65684e0f334542e5734cf06a636e
| 696,688 |
def GetTypeFromSoappyService(type_name, ns, soappy_service):
"""Digs in a SOAPpy service proxy and returns the object representing a type.
Args:
type_name: string The name of the WSDL-defined type to search for.
ns: string The namespace the given WSDL-defined type belongs to.
soappy_service: SOAPpy.WSDL.Proxy The SOAPpy service object encapsulating
the information stored in the WSDL.
Returns:
mixed The object created by SOAPpy representing the given type. May be
either a SOAPpy.wstools.XMLSchema.SimpleType or
SOAPpy.wstools.XMLSchema.ComplexType object.
"""
return soappy_service.wsdl.types[ns].types[type_name]
|
6aa77925fe4d24020bb5860b370192a3fd0675e8
| 696,689 |
def equalizer(n: int, m: int, total: int):
"""
Receives total, m and n [0..total]
Returns a tuple (a, b) so that their sum -> total, and a / b -> 1
"""
oddity = total % 2
smallest = min(n, m, total // 2 + oddity)
if smallest == n:
return (n, min(m, total-n))
elif smallest == m:
return (min(n, total-m), m)
else:
return (total // 2, total // 2 + oddity)
|
5f1a6177c9d728a00735f3330be3a4f5772bd283
| 696,690 |
def k_neighbors(kdtree, k):
""" Get indices of K neartest neighbors for each point
Parameters
----------
kdtree: pyntcloud.structrues.KDTree
The KDTree built on top of the points in point cloud
k: int
Number of neighbors to find
Returns
-------
k_neighbors: (N, k) array
Where N = kdtree.data.shape[0]
"""
# [1] to select indices and ignore distances
# [:,1:] to discard self-neighbor
return kdtree.query(kdtree.data, k=k + 1, n_jobs=-1)[1][:, 1:]
|
1e377c8a1444858b9fc5e293a8300fd20e0dea8a
| 696,691 |
import inspect
def geometry_package(top: float, bottom: float, left: float, right: float) -> str:
"""
Generate latex code to add geometry package
:param top: top margin
:param bottom: bottom margin
:param left: left margin
:param right: right margin
"""
return inspect.cleandoc(rf"""
\usepackage[left = {left}cm, right = {right}cm, top = {top}cm, bottom = {bottom}cm]{{geometry}}
""")
|
676f5490ec599fcd10075365f0f90db84bd2896b
| 696,695 |
def sum_lists_product(list1, list2):
"""
Return the sum of multiplying corresponding list elements
:param list1: A list
:param list2: A list
:return: A number representing the sum
"""
lst_sum = sum([x * y for x, y in zip(list1, list2)])
return lst_sum
|
8c27c510458c7591b2a8ca3ccdd7e3f54041f171
| 696,698 |
def _get_rest_endpoint_base_url(rest_service_base_url: str) -> str:
"""
Return the base URL of the endpoints of BAM's REST service.
:param rest_service_base_url: Base URL of BAM's REST service.
:type rest_service_base_url: str
:return: The base URL of the endpoints of BAM's REST service.
:rtype: str
"""
return (
rest_service_base_url + "v1"
)
|
d947d242a63203f0007433be383ed74cb4289ff4
| 696,703 |
def get_feature_importance_by_model(model):
"""
Returns the features importance of a model
:param model: the classifier
:return: The list of feature importance
"""
return model.feature_importances_
|
b9dff896024f3a006862254289e9ee81b901e8a9
| 696,705 |
from typing import Tuple
def parse_sender(line: str) -> Tuple[str, str]:
"""
Extracts the sender of a line (the timestamp should already be removed)
:param line: Line to parse.
:return: a tuple with the sender (if any) and the rest of the line.
"""
if ':' not in line:
return "", line # It's a system message
sender, rest_of_line = line.split(':', 1)
rest_of_line = rest_of_line[1:] # remove leading space
return sender, rest_of_line
|
637af2f7a73d1cd953a26b8cbd52eab5f3487fe3
| 696,707 |
import random
import string
def random_tag(k=8):
""" Returns a random tag for disambiguating filenames """
return "".join(random.choice(string.ascii_uppercase +
string.digits)
for _ in range(k))
|
00ae606478b10a78bacb8cfe673554aebc738a89
| 696,709 |
def create_metrics_extension_conf(az_resource_id, aad_url):
"""
Create the metrics extension config
:param az_resource_id: Azure Resource ID for the VM
:param aad_url: AAD auth url for the VM
"""
conf_json = '''{
"timeToTerminateInMs": 4000,
"configurationExpirationPeriodInMinutes": 1440,
"configurationQueriesFrequencyInSec": 900,
"configurationQueriesTimeoutInSec": 30,
"maxAcceptedMetricAgeInSec": 1200,
"maxDataEtwDelayInSec": 3,
"maxPublicationAttemptsPerMinute": 5,
"maxPublicationBytesPerMinute": 10000000,
"maxPublicationMetricsPerMinute": 500000,
"maxPublicationPackageSizeInBytes": 2500000,
"maxRandomPublicationDelayInSec": 25,
"metricsSerializationVersion": 4,
"minGapBetweenPublicationAttemptsInSec": 5,
"publicationTimeoutInSec": 30,
"staleMonitoringAccountsPeriodInMinutes": 20,
"internalMetricPublicationTimeoutInMinutes": 20,
"dnsResolutionPeriodInSec": 180,
"maxAggregationQueueSize": 500000,
"initialAccountConfigurationLoadWaitPeriodInSec": 20,
"etwMinBuffersPerCore": 2,
"etwMaxBuffersPerCore": 16,
"etwBufferSizeInKb": 1024,
"internalQueueSizeManagementPeriodInSec": 900,
"etwLateHeartbeatAllowedCycleCount": 24,
"etwSampleRatio": 0,
"maxAcceptedMetricFutureAgeInSec": 1200,
"aggregatedMetricDiagnosticTracePeriod": 900,
"aggregatedMetricDiagnosticTraceMaxSize": 100,
"enableMetricMetadataPublication": true,
"enableDimensionTrimming": true,
"shutdownRequestedThreshold": 5,
"internalMetricProductionLevel": 0,
"maxPublicationWithoutResponseTimeoutInSec": 300,
"maxConfigQueryWithoutResponseTimeoutInSec": 300,
"maxThumbprintsPerAccountToLoad": 100,
"maxPacketsToCaptureLocally": 0,
"maxNumberOfRawEventsPerCycle": 1000000,
"publicationSimulated": false,
"maxAggregationTimeoutPerCycleInSec": 20,
"maxRawEventInputQueueSize": 2000000,
"publicationIntervalInSec": 60,
"interningSwapPeriodInMin": 240,
"interningClearPeriodInMin": 5,
"enableParallelization": true,
"enableDimensionSortingOnIngestion": true,
"rawEtwEventProcessingParallelizationFactor": 1,
"maxRandomConfigurationLoadingDelayInSec": 120,
"aggregationProcessingParallelizationFactor": 1,
"aggregationProcessingPerPartitionPeriodInSec": 20,
"aggregationProcessingParallelizationVolumeThreshold": 500000,
"useSharedHttpClients": true,
"loadFromConfigurationCache": true,
"restartByDateTimeUtc": "0001-01-01T00:00:00",
"restartStableIdTarget": "",
"enableIpV6": false,
"disableCustomMetricAgeSupport": false,
"globalPublicationCertificateThumbprint": "",
"maxHllSerializationVersion": 2,
"enableNodeOwnerMode": false,
"performAdditionalAzureHostIpV6Checks": false,
"compressMetricData": false,
"publishMinMaxByDefault": true,
"azureResourceId": "'''+ az_resource_id +'''",
"aadAuthority": "'''+ aad_url +'''",
"aadTokenEnvVariable": "MSIAuthToken"
} '''
return conf_json
|
08c1bd23fc021515664e8476307264179c0c9652
| 696,711 |
import pickle
def load_pickle(file_path):
"""
Unpickle some data from a given path.
:param file_path: Target file path.
:return: data: The python object that was serialized and stored in disk.
"""
pkl_file = open(file_path, 'rb')
data = pickle.load(pkl_file)
pkl_file.close()
return data
|
2aa2d2fcdd408cedfce43c9cea05065904bd2c98
| 696,712 |
import itertools
def _sorted_kwargs_list(kwargs):
"""
Returns a unique and deterministic ordered list from the given kwargs.
"""
sorted_kwargs = sorted(kwargs.items())
sorted_kwargs_list = list(itertools.chain(*sorted_kwargs))
return sorted_kwargs_list
|
e442044bf6ff1ec0d5308cd200272e4a8993174f
| 696,713 |
def dpd(td, t, roundit=True):
"""
This function calculates a dew point depression scalar or array
from a scalar or array of temperature and dew point temperature and returns it.
:param td: dew point temperature in degrees C (array or scalar)
:param t: dry bulb temperature in degrees C (array or scalar)
:param roundit: flag to tell function to round to one decimal place, default TRUE
:type td: float
:type t: float
:type roundit: boolean
:return: dew point depression in degrees C (array or scalar)
:rtype: float
Inputs:
td = dew point temperature in degrees C (array or scalar)
t = dry bulb temperature in degrees C (array or scalar)
Outputs:
dp = dew point depression in degrees C (array or scalar)
Ref:
TESTED!
dpd = dpd(10..,15.)
dpd = 5.0
"""
if td is None or t is None:
return None
dp = t - td
if roundit:
dp = round(dp * 10.) / 10.
return dp
|
b4505fa9ec6ee3fc5ec07788e35ddc494ae839bb
| 696,714 |
def format_parties(parties):
"""
Return the list of parties from the case title.
:param parties: string containing the parties name
:type parties: str
:return: list of names
:rtype: [str]
"""
if parties.startswith('CASE OF '):
parties = parties[len('CASE OF '):]
if parties[-1] == ')':
parties = parties.split('(')[0]
parties = parties.split(' v. ')
parties = [p.strip() for p in parties]
return parties
|
b0a9040d2c8a5b69647f92550c590192470d5692
| 696,716 |
import csv
def read_csv_fieldnames(filename, separator, quote):
"""
Inputs:
filename - name of CSV file
separator - character that separates fields
quote - character used to optionally quote fields
Ouput:
A list of strings corresponding to the field names in
the given CSV file.
"""
#function assumes first row of CSV file contains the field names
csvtable = []
with open(filename, "rt", newline = '') as csvfile:
#open reader with delimeter and quotechar options to set seperator and quote
csvreader = csv.reader(csvfile,
delimiter = separator,
quotechar = quote)
#easiest way to access a row
for row in csvreader:
csvtable.append(row)
#beak becuase you only need first row
break
#instead returning csvtable = [[]] lst is returned = []
lst = csvtable[0]
return lst
|
ead8b5ff5ca11d47771cf793309a640e2b1410a1
| 696,717 |
def resolve_negative_axis(ndims, axis):
"""
Resolve all negative `axis` indices according to `ndims` into positive.
Usage::
resolve_negative_axis(4, [0, -1, -2]) # output: (0, 3, 2)
Args:
ndims (int): Number of total dimensions.
axis (Iterable[int]): The axis indices.
Returns:
tuple[int]: The resolved positive axis indices.
Raises:
ValueError: If any index in `axis` is out of range.
"""
axis = tuple(int(a) for a in axis)
ret = []
for a in axis:
if a < 0:
a += ndims
if a < 0 or a >= ndims:
raise ValueError('`axis` out of range: {} vs ndims {}.'.
format(axis, ndims))
ret.append(a)
if len(set(ret)) != len(ret):
raise ValueError('`axis` has duplicated elements after resolving '
'negative axis: ndims {}, axis {}.'.
format(ndims, axis))
return tuple(ret)
|
7f43943e20d66d6e9de8ea750fd1c2eb16764e69
| 696,719 |
def preprocess(train):
"""
This method replaces punctuations and newline characters with space character
given a string. Then it splits all words into a list and returns it.
Parameters:
train -- The string that will be preprocessed
Returns:
train -- A list containing words
"""
train = train.replace('\n', ' ')
punctuations = [",", ".", ":", "\"", "'", "/", "\\", "*", "=", "-", "_", ")", "(", "[", "]",
"{", "}", "%", "+", "!", "@", "#", "$", "^", "&", "+", "|", ";", "<",
">", "?", "`", "~", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
for punctuation in punctuations:
train = train.replace(punctuation, " ")
train = train.split()
return train
|
544befcc0e74d43261679aa634cc4d677f1bada2
| 696,720 |
def number_of_lines(filename=""):
"""
Function that returns the number of lines of a text file
Args:
filename (str): The name of the file
Returns:
The number of lines of the file
"""
cnt = 0
with open(filename, 'r', encoding='utf8') as f:
for line in f:
cnt += 1
return cnt
|
47539fc0280251f0334da9ce2ab2973d9f0cc63e
| 696,721 |
def to_bytes_literal(seq):
"""Prints a byte sequence as a Python bytes literal that only uses hex encoding."""
return 'b"' + "".join("\\x{:02x}".format(v) for v in seq) + '"'
|
dadbc38fd86daf2b6dd618eee6c792bc2044d09c
| 696,724 |
def filter_cellular_barcodes_manual(matrix, cell_barcodes):
""" Take take all barcodes that were given as cell barcodes """
barcodes = list(set(matrix.bcs) & set(cell_barcodes))
metrics = {
'filtered_bcs': len(barcodes),
'filtered_bcs_lb': len(barcodes),
'filtered_bcs_ub': len(barcodes),
'max_filtered_bcs': 0,
'filtered_bcs_var': 0,
'filtered_bcs_cv': 0,
}
return barcodes, metrics, None
|
58a07034139fac1d189303203d6e849d5637e3fe
| 696,726 |
def line(etok):
"""String giving the starting line number of Etok."""
raw = etok.raw
if raw:
return f'line={raw[0].lineno}.'
return ''
|
5b1160054db8b90fd27cc7557e1cee17b9f8f8e3
| 696,727 |
def isinstance_safe(value, type_):
"""Determine if value is a subclass of type_
Will work even if it is not a valid question to ask of
the given value.
"""
try:
return isinstance(value, type_)
except TypeError:
# Cannot perform isinstance on some types
return False
|
57223307123efb564fe1cfd4089a4e056254c258
| 696,729 |
import collections
def collapseExpansions(expansions, numDims):
"""Scans through the given list of expansions (each assumed to pertain
to a single 3D image), and combines any which cover the same
image area, and cover adjacent volumes.
:args expansions: A list of expansion slices - see :func:`calcExpansions`.
:args numDims: Number of dimensions covered by each expansion,
not including the volume dimension (i.e. 3 for a 4D
image).
:returns: A list of expansions, with equivalent expansions that cover
adjacent images collapsed down.
.. note:: For one expansion ``exp`` in the ``expansions`` list, this
function assumes that the range at ``exp[numDims]`` contains
the image to which ``exp`` pertains (i.e.
``exp[numDims] == (vol, vol + 1)``).
"""
if len(expansions) == 0:
return []
commonExpansions = collections.OrderedDict()
expansions = sorted(expansions)
for exp in expansions:
vol = exp[numDims][0]
exp = tuple(exp[:numDims])
commonExps = commonExpansions.get(exp, None)
if commonExps is None:
commonExps = []
commonExpansions[exp] = commonExps
for i, (vlo, vhi) in enumerate(commonExps):
if vol >= vlo and vol < vhi:
break
elif vol == vlo - 1:
commonExps[i] = vol, vhi
break
elif vol == vhi:
commonExps[i] = vlo, vol + 1
break
else:
commonExps.append((vol, vol + 1))
collapsed = []
for exp, volRanges in commonExpansions.items():
for vlo, vhi in volRanges:
newExp = list(exp) + [(vlo, vhi)]
collapsed.append(newExp)
return collapsed
|
073923a29d065ee21e26ef234135b4d358ecd288
| 696,730 |
def div(n1, n2):
"""
Divides n1 by n2
>>> div(9, 3)
3.0
"""
return n1 / n2
|
19419ea749c640fd7fb895e45bd2e06ad29bde32
| 696,732 |
def bounds(a):
"""Return a list of slices corresponding to the array bounds."""
return tuple([slice(0,a.shape[i]) for i in range(a.ndim)])
|
fa9c7c8ed51d5c10ecd4392a72c6efe379a9407b
| 696,738 |
def move1(state,b1,dest):
"""
Generate subtasks to get b1 and put it at dest.
"""
return [('get', b1), ('put', b1,dest)]
|
c84a2d8246017fa94a73dd2e3408f7f05cf3573d
| 696,739 |
def exists(dict, key):
"""
Check if a key exists in a dict
"""
return key in dict.keys()
|
3dd531b8a13af2e8905f721e05756bd8184e24c4
| 696,741 |
def allowed_file(filename):
"""
Returns true if file is a csv
:param filename: File name input as a str
:return: Boolean
"""
return '.' in filename and filename.rsplit('.', 1)[1].lower() == 'csv'
|
80a467c6cfc2372a212d797209cbd4979d5d2c96
| 696,743 |
from typing import List
from typing import Union
from typing import Set
def get_reciprocal_rank(retrieved_docs: List, relevant_docs: Union[Set, List]) -> float:
"""
The mean reciprocal rank is a statistic measure for evaluating any process that produces a list of possible
responses to a sample of queries, ordered by probability of correctness.
rank_i: The reciprocal rank of a query response is the multiplicative inverse of the rank of the first correct answer-
:param retrieved_docs: List of queries and their retrieved documents (from evaluated system)
:param relevant_docs: List of queries and their relevant documents (from gold standard)
:return:
"""
for rank, retrieved_doc in enumerate(retrieved_docs, start=1):
if retrieved_doc in relevant_docs:
return 1. / rank
return 0.
|
f2c79f95a63489fc3e512a16c11ac77861cdd8ad
| 696,750 |
import random
def fake_int_id(nmax=2 ** 31 -1):
"""
Create a random int id
"""
return random.randint(0, nmax)
|
0327db253e247e2c4229751741dd3296651f9fa6
| 696,752 |
def unfold(f):
"""Return function to unfold value into stream using
passed function as values producer. Passed function should
accept current cursor and should return:
* tuple of two elements (value, cursor), value will be added
to output, cursor will be used for next function call
* None in order to stop producing sequence
Usage:
>>> doubler = unfold(lambda x: (x*2, x*2))
>>> list(islice(doubler(10), 0, 10))
[20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240]
"""
def _unfolder(start):
value, curr = None, start
while 1:
step = f(curr)
if step is None:
break
value, curr = step
yield value
return _unfolder
|
1c2a0caec09d439c5e55c50f09eff78b376363a9
| 696,753 |
def format_time(t):
"""Return a formatted time string 'HH:MM:SS
based on a numeric time() value"""
m, s = divmod(t, 60)
h, m = divmod(m, 60)
return f'{h:0>2.0f}:{m:0>2.0f}:{s:0>2.0f}'
|
b5488fa3088195252e27da57fbe56037fad98591
| 696,754 |
import math
def entropy(string):
"""Calculates the Shannon entropy of a string"""
prob = [ float(string.count(c)) / len(string) for c in dict.fromkeys(list(string)) ]
entropy = - sum([ p * math.log(p) / math.log(2.0) for p in prob ])
return entropy
|
410e5935740a10df26936ee11c714dfb2b102845
| 696,759 |
def get_std_u(u):
"""バックアップボイラーの給湯部の効率の回帰係数a_std_u, b_std_u, c_std_u
Args:
u(str): 用途を表す添え字(k,s,w,b1,b2,ba1,ba2)
Returns:
tuple: バックアップボイラーの給湯部の効率の回帰係数a_std_u, b_std_u, c_std_u
"""
# 表C.3 バックアップボイラーの給湯部の効率の回帰係数a_std_u, b_std_u, c_std_u
table_d_3 = [
(0.0019, 0.0006, 0.0019, 0.0000, 0.0000, 0.0000, 0.0033),
(0.0013, 0.0005, 0.0013, 0.0002, -0.0005, 0.0002, 0.0194),
(0.6533, 0.7414, 0.6533, 0.7839, 0.7828, 0.7839, 0.5776)
]
i = {'k': 0, 's': 1, 'w': 2, 'b1': 3, 'b2': 4, 'ba1': 5, 'ba2': 6}[u]
return table_d_3[0][i], table_d_3[1][i], table_d_3[2][i]
|
7bbf32495baf9bd07d14b8fc73c73de167031031
| 696,760 |
def make_word_groups(vocab_words: str) -> str:
"""
This function takes a `vocab_words` list and returns a string
with the prefix and the words with prefix applied, separated
by ' :: '.
Args:
vocab_words (str): list of vocabulary words with a prefix.
Returns:
str: str of prefix followed by vocabulary words with
prefix applied, separated by ' :: '.
"""
prefix = vocab_words[0]
output = prefix
for word in vocab_words[1:]:
output += " :: " + prefix + word
return output
|
878fc8100c6e2a455540773756bcbbde23a38224
| 696,766 |
def same_prefix(cebuano_word, word):
"""
Vérifie si deux mots ont le même préfixe (longueur 2 ou 3)
Si les premières lettres sont des voyelles on les considère similaires
"""
if cebuano_word and word:
if cebuano_word[0] in "aeiou" and word[0] in "eaiou":
return cebuano_word[1:2] == word[1:2]
else:
return cebuano_word[0:2] == word[0:2]
else:
return False
|
0b3b8951fd82cc31ab62a9a72ba02b4b52404b77
| 696,768 |
def stop_word_removal(text_all, cached_stop_words):
"""
Returns text with removed stop words
Keyword arguments:
text_all -- list of all texts (list of str)
cached_stop_words -- list of all stopwords (list of str)
"""
new_text_all = []
for text in text_all:
text1 = ' '.join([word for word in text.split() if word not in cached_stop_words])
new_text_all.append(text1)
return new_text_all
|
543e78edb078778d9acb2fd26be90c267a5b6450
| 696,769 |
import time
def convertUTCtoUnix(data):
"""Convert UTC time format to UNIX time format"""
return time.mktime(data.timetuple())
|
d27096baa842821a904b9338dd829e337678a5bc
| 696,774 |
def get_short_labeler(prefix):
"""
Returns a labeling function that prepends
`prefix` to an assignment index.
"""
def labeler(index):
return f"{prefix} {index:02d}"
return labeler
|
a0037b8bb8e398efd8726309b914591ed6c6d75b
| 696,776 |
def ucFirst(s):
"""
Returns a copy of the string with the first letter uppercased
"""
return s[0].upper() + s[1:]
|
28b6d593f5c2a17ff2a6fc0bb4ae3280b93f275b
| 696,777 |
import requests
def served_by_django(url):
"""Return True if url returns 200 and is served by Django. (NOT Nginx)"""
r = requests.get(url, allow_redirects=False)
status = (r.status_code == 200)
django = ('x-served' not in r.headers or r.headers['x-served'] == 'nginx-via-django')
return all([status, django])
|
e4d8991e91389ff4dbe588fd483c8bf6a1fe93ad
| 696,778 |
def get_python_idx(i):
"""Return i-1 for python indexing of array, list etc"""
if isinstance(i, list):
new_list = []
for el in i:
new_list.append(el-1)
return new_list
else:
return i-1
|
6d68287509b2c5f3554655f10218005f873ff806
| 696,780 |
import zlib
def adler32_chunk(chunk):
"""
Returns weak adler32 checksum for chunk
"""
return zlib.adler32(chunk)
|
d9828965892d2b37d9a7f0b41bf48e601beef9da
| 696,782 |
def check_parameters(column_to_update, columns_to_query_lst, query_values_dict_lst):
"""
check_prarameters checks whether the passed parameters are valid or not.
:param column_to_update: name of column that is to be updated.
:param columns_to_query_lst: list of column names that is used in where clause.
:param query_values_dict_lst: list of dictionaries containing values for where clause and target column.
:return: boolean
"""
# check if dimensions are correct.
expected_length = 1 + len(columns_to_query_lst)
all_columns_name = ["update"] + columns_to_query_lst
flag =0
for dict_val in query_values_dict_lst:
# check dimensions.
if len(dict_val)!= expected_length:
print(("%s doesn't match the dimensions"%(dict_val)))
return False
# check columns present.
for column in all_columns_name:
if column not in dict_val:
print(("%s column isn't present in dictionary"%(column)))
return False
return True
|
dc08667b78cbdbf98d5e692ca7a9f039bbd390a9
| 696,783 |
def _parse_endpoint_url(urlish):
"""
If given a URL, return the URL and None. If given a URL with a string and
"::" prepended to it, return the URL and the prepended string. This is
meant to give one a means to supply a region name via arguments and
variables that normally only accept URLs.
"""
if '::' in urlish:
region, url = urlish.split('::', 1)
else:
region = None
url = urlish
return url, region
|
bf3defcf9aeaca43d8aa8d7ba645cd0ba11b99f6
| 696,785 |
def is_reserved_name(name):
"""Tests if name is reserved
Names beginning with 'xml' are reserved for future standardization"""
if name:
return name[:3].lower() == 'xml'
else:
return False
|
29ca0ec73b18259126a61aaf335a7d0946b72eb6
| 696,787 |
def find_alphabetically_last_word(text: str) -> str:
"""
Given a string |text|, return the word in |text| that comes last
lexicographically (i.e. the word that would come last when sorting).
A word is defined by a maximal sequence of characters without whitespaces.
You might find max() handy here. If the input text is an empty string,
it is acceptable to either return an empty string or throw an error.
"""
# BEGIN_YOUR_CODE (our solution is 1 line of code, but don't worry if you deviate from this)
return max(text.split())
# END_YOUR_CODE
|
c5b6daca6ae60cabc36e88afa02bac2950c01763
| 696,794 |
import itertools
def chain(*readers):
"""
Use the input data readers to create a chained data reader. The new created reader
chains the outputs of input readers together as its output, and it do not change
the format of the outputs.
**Note**:
``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
``paddle.fluid.io.chain`` is recommended to use.
For example, if three input readers' outputs are as follows:
[0, 0, 0],
[10, 10, 10],
[20, 20, 20].
The chained reader will output:
[0, 0, 0], [10, 10, 10], [20, 20, 20].
Args:
readers(list): input data readers.
Returns:
callable: the new chained data reader.
Examples:
.. code-block:: python
import paddle
def reader_creator_3(start):
def reader():
for i in range(start, start + 3):
yield [i, i, i]
return reader
c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
for e in c():
print(e)
# Output:
# [0, 0, 0]
# [1, 1, 1]
# [2, 2, 2]
# [10, 10, 10]
# [11, 11, 11]
# [12, 12, 12]
# [20, 20, 20]
# [21, 21, 21]
# [22, 22, 22]
"""
def reader():
rs = []
for r in readers:
rs.append(r())
for e in itertools.chain(*rs):
yield e
return reader
|
e2871dd057540463353ed2bf270ef5d8a52aa0e0
| 696,796 |
import binascii
def hex_xformat_encode(v: bytes) -> str:
"""
Encode its input in ``X'{hex}'`` format.
Example:
.. code-block:: python
special_hex_encode(b"hello") == "X'68656c6c6f'"
"""
return "X'{}'".format(binascii.hexlify(v).decode("ascii"))
|
19829e00ea198489a9ecdf926532cbc94432f2b0
| 696,798 |
def methodArgs(item):
"""Returns a dictionary formatted as a string given the arguments in item.
Args:
item: dictionary containing key 'args' mapping to a list of strings
Returns:
dictionary formatted as a string, suitable for printing as a value
"""
args = ["'%s': %s" % (arg, arg) for arg in item['args']]
return '{%s}' % ', '.join(args)
|
3a0623105359c0a202390b777fb60372ae3af35c
| 696,800 |
def latex_decode(text):
"""
Decode ascii text latex formant to UTF-8
"""
return text.encode('ascii').decode('latex')
|
d40b0b6e86ffabcd5685bdcd06d8546c68a523a6
| 696,806 |
def selection_sort_v2(li):
""" [list of int] => [list of int]
Same as selection_sort except it takes advantage of min() function.
"""
sorted_list = li
# iterate as many times as the list is long
for i in range(len(sorted_list)):
# find the minimum in the unsorted list
minimum = min(sorted_list[i:])
# locates the index of the minimum
min_index = sorted_list.index(minimum)
# swap the minimum and start of unsorted list
sorted_list[i], sorted_list[min_index] = sorted_list[min_index], sorted_list[i]
return sorted_list
|
a7b08b2018a1ad0c249cfd223f6250fed9884606
| 696,808 |
def decode_bytes(obj):
"""If the argument is bytes, decode it.
:param Object obj: A string or byte object
:return: A string representation of obj
:rtype: str
"""
if isinstance(obj, bytes):
return obj.decode('utf-8')
elif isinstance(obj, str):
return obj
else:
raise ValueError("ERROR: {} is not bytes or a string.".format(obj))
|
48c56e899cc83deb478cc665b3f051e1e99a18ae
| 696,809 |
def compute_DL_da_i(coeff_basis_sum, bases, time_index, i):
"""
| Ref. Paper [LUDW2011]_ eq. [80]
| Compute derivative of the attitude deviation wrt attitude params.
See :meth:`compute_coeff_basis_sum`
:param coeff_basis_sum: the sum :math:`\\sum_{n=L-M+1}^{L} a_n B_n(t_L)`
:param bases: Bspline basis, B_n(t_L) in the equation above.
:param time_index: [int] index that will get us to return B_n(t_L).
Since we stored only B_n for all the observed times t_L, it is possible to
access them only with the index
:param i: number of the base that we want (**n in the equations above**)
"""
dDL_da_i = -2 * coeff_basis_sum * bases[i, time_index]
return dDL_da_i.reshape(4, 1)
|
e40139e8563e9f8457e1f8ed05dc4c66590ceb4e
| 696,812 |
def proj_permission_level(project, profile):
"""Given a project and profile return their permission level
Args:
project: a core.models.Project object
profile: a core.models.Profile object
Returns:
permission_level: (int)
0: no permissions
1: coder
2: admin
3: creator
"""
if project.creator == profile:
return 3
elif any(perm.profile == profile and perm.permission == 'ADMIN' for perm in project.projectpermissions_set.all()):
return 2
elif any(perm.profile == profile and perm.permission == 'CODER' for perm in project.projectpermissions_set.all()):
return 1
else:
return 0
|
f11b3299cdc3087669811d64d457ad158160be90
| 696,813 |
def rgb_to_ansi16(r, g, b, use_bright=False):
"""
Convert RGB to ANSI 16 color
"""
ansi_b = round(b / 255.0) << 2
ansi_g = round(g / 255.0) << 1
ansi_r = round(r / 255.0)
ansi = (90 if use_bright else 30) + (ansi_b | ansi_g | ansi_r)
return ansi
|
084e1d4eea8b792a43f5e32c4a8f441e48b509be
| 696,814 |
def ThumbURL(image, viz_params=None):
"""Create a target url for tumb for an image.
"""
if viz_params:
url = image.getThumbURL(viz_params)
else:
url = image.getThumbURL()
return url
|
44d9e7eccede27a0e9a69798169f3a432198ba8b
| 696,816 |
def is_none(val):
"""Check for none as string"""
return val in [None, 'none', 'None']
|
204e4cd64687bb0ae1063a060b45b497a8b1ce35
| 696,819 |
def KeyWithHighestValue(d, forbidden_keys=[]):
"""Return the key with the highest value.
Optionally, a list of forbidden keys can be provided. If so, the function
will return the key with the next-highest value, but which is not
forbidden.
"""
mv = -1
mk = None
for k, v in d.items():
if k in forbidden_keys:
continue
if v > mv:
mk = k
mv = v
return mk
|
04db19f0047e35a12415471c9ad568a13f38cfe3
| 696,823 |
import gettext
def get_i18n_content_by_lang(fmt, local, lang, **kw):
"""
Get another language string according to key string.
reference
- `Common Message Property <https://docs.python.org/2/library/gettext.html>`_
:param fmt: Multilingual key string. like _('This is a translatable string.')
:param local: Domain corresponding to "fmt".
:param lang: Language. ['en'|'ko'|'ja']
:param kw: Named variable parameter list.
:return: a string.
"""
local_text = gettext.translation(local, 'locales', [lang])
if len(kw) > 0:
content = local_text.gettext(fmt).format(**kw)
else:
content = local_text.gettext(fmt)
return content
|
8eaba045a34e0b0493230850586995e863210319
| 696,829 |
def is_all_dict(alist):
"""Check if every element of a list are dicts"""
return all([isinstance(l, dict) for l in alist])
|
2de5334c16876fc0995b569cbb04e980b57546c0
| 696,830 |
def _get_wind_direction(wind_direction_degree: float) -> str:
"""Convert wind direction degree to named direction."""
if 11.25 <= wind_direction_degree < 33.75:
return "NNE"
if 33.75 <= wind_direction_degree < 56.25:
return "NE"
if 56.25 <= wind_direction_degree < 78.75:
return "ENE"
if 78.75 <= wind_direction_degree < 101.25:
return "E"
if 101.25 <= wind_direction_degree < 123.75:
return "ESE"
if 123.75 <= wind_direction_degree < 146.25:
return "SE"
if 146.25 <= wind_direction_degree < 168.75:
return "SSE"
if 168.75 <= wind_direction_degree < 191.25:
return "S"
if 191.25 <= wind_direction_degree < 213.75:
return "SSW"
if 213.75 <= wind_direction_degree < 236.25:
return "SW"
if 236.25 <= wind_direction_degree < 258.75:
return "WSW"
if 258.75 <= wind_direction_degree < 281.25:
return "W"
if 281.25 <= wind_direction_degree < 303.75:
return "WNW"
if 303.75 <= wind_direction_degree < 326.25:
return "NW"
if 326.25 <= wind_direction_degree < 348.75:
return "NNW"
return "N"
|
b48af8b8407906a1ab84d8e0a62da76ad2519aa9
| 696,831 |
import gzip
def _open_config_file(filename, mode="r"):
"""Open a file respecting .gz file endings."""
if filename[-3:] == ".gz":
return gzip.open(filename, mode, encoding="UTF-8")
else:
return open(filename, mode, encoding="UTF-8")
|
f47eb8f9500ea0e7939387ffab8b854be4c2ba6a
| 696,833 |
def _get_oncotreelink(syn, databasetosynid_mappingdf, oncotree_link=None):
"""
Gets oncotree link unless a link is specified by the user
Args:
syn: Synapse object
databasetosynid_mappingdf: database to synid mapping
oncotree_link: link to oncotree. Default is None
Returns:
oncotree link
"""
if oncotree_link is None:
oncolink = databasetosynid_mappingdf.query(
'Database == "oncotreeLink"').Id
oncolink_ent = syn.get(oncolink.iloc[0])
oncotree_link = oncolink_ent.externalURL
return oncotree_link
|
21bbb6bdc7eca3d8996b85acae0f822c8ddde587
| 696,834 |
def split_test_train_tadpole(df_train_test, df_eval, random_seed=0):
"""
Split dataframes into three parts: train, test & evaluation
These are the sets as used in challenge evaluation for the paper Marinescu et al, 2020, ArXiv
Train: patients (RIDs) from D1,D2 ADNI Data sets
Test: roll-over patients (RIDs) from D1,D2 ADNI Data sets that are in D4
Eval: D4 ADNI Data set
"""
# get only subject IDs with at least 2 rows per subject (required for test/eval set)
ids = df_train_test.groupby('RID').filter(lambda x: len(x) > 1)['RID'].unique()
train_df = df_train_test[df_train_test['RID'].isin(ids)]
# select all records where RID is in d4.
test_df = df_train_test[
df_train_test['RID'].isin(df_eval['RID'].unique())
]
eval_df = df_eval
return train_df, test_df, eval_df
|
fa922e50ec0e3b7121e46c3fd5b36ac3693785d7
| 696,838 |
def listOfTuplesToList(listOfTuples):
"""Convert a list of tuples into a simple list of tuple[0] items."""
res = []
for item in listOfTuples:
res.append(item[0])
return res
|
aec287a830a75fc9a0f8ba1571e37ef2c846d9b6
| 696,839 |
def minDictionaries(d1,d2):
"""
Return the minimum of two dictionaries. Assumes they share the same keys.
"""
assert set(d1.keys()) == set(d2.keys())
return dict( (key, min(d1[key],d2[key])) for key in d1)
|
efa9bec3c4ae8e2e8e6c7387eda9e019ba7a0949
| 696,842 |
def _minify_promql(query: str) -> str:
"""
Given a PromQL query, return the same query with most whitespace collapsed.
This is useful for allowing us to nicely format queries in code, but minimize the size of our
queries when they're actually sent to Prometheus by the adapter.
"""
trimmed_query = []
# while we could potentially do some regex magic, we want to ensure
# that we don't mess up any labels (even though they really shouldn't
# have any whitespace in them in the first place) - thus we just just
# strip any leading/trailing whitespace and leave everything else alone
for line in query.split("\n"):
trimmed_query.append(line.strip())
return (" ".join(trimmed_query)).strip()
|
de64a59b2db642e6b799f05fe5aa77749ea89b5d
| 696,845 |
def map_indexed(f, coll):
"""
Returns a generator consisting of the result of applying ``f`` to ``0``
and the first item of ``coll``, followed by applying ``f`` to ``1`` and the
second item in ``coll``, etc, until ``coll`` is exhausted. Thus function
``f`` should accept 2 arguments, ``index`` and ``item``.
"""
return map(lambda pair: f(pair[0], pair[1]), enumerate(coll))
|
81c1a7511fb912f081021836e82afa1d2ddcd166
| 696,849 |
from typing import List
def get_all_words_in_text(text: str) -> List[str]:
"""Get all the words in a given text in the order that they appear.
:param text: the text to get all the word from
:return: a list of words in the order that they appear in text
"""
# the `split` and `strip` method handles all kinds of white spaces
# including the
return text.strip().split()
|
4e1df302282eeed63dab2a7e9e5ffbb677b44427
| 696,852 |
import itertools
def peek_at(iterable):
"""Returns the first value from iterable, as well as a new iterable with
the same content as the original iterable
"""
gen = iter(iterable)
peek = next(gen)
return peek, itertools.chain([peek], gen)
|
368e7f341e00f66b24a7b5b34fb45863fa1c6203
| 696,853 |
def get_mutations(aln_df):
"""Get a list of residue numbers (in the original sequence's numbering) that are mutated
Args:
aln_df (DataFrame): Alignment DataFrame
just_resnums: If only the residue numbers should be returned, instead of a list of tuples of
(original_residue, resnum, mutated_residue)
Returns:
list: Residue mutations
"""
mutation_df = aln_df[aln_df['type'] == 'mutation']
tuples = []
if not mutation_df.empty:
subset = mutation_df[['id_a_aa', 'id_a_pos', 'id_b_aa']]
subset['id_a_pos'] = subset['id_a_pos'].astype(int)
tuples = [tuple(x) for x in subset.values]
return tuples
|
fac2f33cbbfedfe41137e212ef4e53e58b8684e2
| 696,855 |
def _is_bool(s: str) -> bool:
"""Check a value is a text bool."""
if s.lower() in ['true', 'false']:
return True
else:
return False
|
62456de1e213157f8fe0a112abb7c6eaf1a59070
| 696,857 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.