content
stringlengths
22
815k
id
int64
0
4.91M
def generic_validator(check, error_message): """ Validator factory >>> v = generic_validator(is_int, "invalid int") >>> v(6) 6 >>> v("g") Traceback (most recent call last): ... ValidationError: [u'invalid int'] """ # Validator closure def inner_validator(value, *args, **kwargs): if not check(value): raise ValidationError(error_message) return value return inner_validator
5,351,700
def get_molec_shape(mol, conf, confId, vdwScale=1.0, boxMargin=2.0, spacing=0.2): """ Get the shape of a conformer of a molecule as a grid representation. """ box = Chem.ComputeConfBox(conf) sideLen = (box[1].x-box[0].x + 2*boxMargin, box[1].y-box[0].y + 2*boxMargin, box[1].z-box[0].z + 2*boxMargin) shape = rdGeometry.UniformGrid3D(2*sideLen[0], 2*sideLen[1], 2*sideLen[2], spacing=spacing) Chem.EncodeShape( mol, shape, confId=confId, ignoreHs=False, vdwScale=vdwScale ) return box, sideLen, shape
5,351,701
def autoencoder(dimensions=[784, 512, 256, 64]): """Build a deep denoising autoencoder w/ tied weights. Parameters ---------- dimensions : list, optional The number of neurons for each layer of the autoencoder. Returns ------- x : Tensor Input placeholder to the network z : Tensor Inner-most latent representation y : Tensor Output reconstruction of the input cost : Tensor Overall cost to use for training """ # input to the network x = tf.placeholder(tf.float32, [None, dimensions[0]], name='x') # Probability that we will corrupt input. # This is the essence of the denoising autoencoder, and is pretty # basic. We'll feed forward a noisy input, allowing our network # to generalize better, possibly, to occlusions of what we're # really interested in. But to measure accuracy, we'll still # enforce a training signal which measures the original image's # reconstruction cost. # # We'll change this to 1 during training # but when we're ready for testing/production ready environments, # we'll put it back to 0. corrupt_prob = tf.placeholder(tf.float32, [1]) current_input = corrupt(x) * corrupt_prob + x * (1 - corrupt_prob) # Build the encoder encoder = [] for layer_i, n_output in enumerate(dimensions[1:]): n_input = int(current_input.get_shape()[1]) W = tf.Variable( tf.random_uniform([n_input, n_output], -1.0 / math.sqrt(n_input), 1.0 / math.sqrt(n_input))) b = tf.Variable(tf.zeros([n_output])) encoder.append(W) output = tf.nn.tanh(tf.matmul(current_input, W) + b) current_input = output # latent representation z = current_input encoder.reverse() # Build the decoder using the same weights for layer_i, n_output in enumerate(dimensions[:-1][::-1]): W = tf.transpose(encoder[layer_i]) b = tf.Variable(tf.zeros([n_output])) output = tf.nn.tanh(tf.matmul(current_input, W) + b) current_input = output # now have the reconstruction through the network y = current_input # cost function measures pixel-wise difference cost = tf.sqrt(tf.reduce_mean(tf.square(y - x))) return {'x': x, 'z': z, 'y': y, 'corrupt_prob': corrupt_prob, 'cost': cost}
5,351,702
def _asymptotic_expansion_of_normalized_black_call(h, t): """ Asymptotic expansion of b = Φ(h+t)·exp(x/2) - Φ(h-t)·exp(-x/2) with h = x/s and t = s/2 which makes b = Φ(h+t)·exp(h·t) - Φ(h-t)·exp(-h·t) exp(-(h²+t²)/2) = --------------- · [ Y(h+t) - Y(h-t) ] √(2π) with Y(z) := Φ(z)/φ(z) for large negative (t-|h|) by the aid of Abramowitz & Stegun (26.2.12) where Φ(z) = φ(z)/|z|·[1-1/z^2+...]. We define r A(h,t) := --- · [ Y(h+t) - Y(h-t) ] t with r := (h+t)·(h-t) and give an expansion for A(h,t) in q:=(h/r)² expressed in terms of e:=(t/h)² . :param h: :type h: float :param t: :type t: float :return: :rtype: float """ e = (t / h) * (t / h) r = ((h + t) * (h - t)) q = (h / r) * (h / r) # 17th order asymptotic expansion of A(h,t) in q, sufficient for Φ(h) [and thus y(h)] to have relative accuracy of 1.64E-16 for h <= η with η:=-10. asymptotic_expansion_sum = (2.0 + q * (-6.0E0 - 2.0 * e + 3.0 * q * (1.0E1 + e * (2.0E1 + 2.0 * e) + 5.0 * q * ( -1.4E1 + e * (-7.0E1 + e * (-4.2E1 - 2.0 * e)) + 7.0 * q * ( 1.8E1 + e * (1.68E2 + e * (2.52E2 + e * (7.2E1 + 2.0 * e))) + 9.0 * q * ( -2.2E1 + e * (-3.3E2 + e * (-9.24E2 + e * (-6.6E2 + e * (-1.1E2 - 2.0 * e)))) + 1.1E1 * q * ( 2.6E1 + e * (5.72E2 + e * ( 2.574E3 + e * (3.432E3 + e * (1.43E3 + e * (1.56E2 + 2.0 * e))))) + 1.3E1 * q * ( -3.0E1 + e * (-9.1E2 + e * (-6.006E3 + e * (-1.287E4 + e * ( -1.001E4 + e * (-2.73E3 + e * (-2.1E2 - 2.0 * e)))))) + 1.5E1 * q * ( 3.4E1 + e * (1.36E3 + e * (1.2376E4 + e * (3.8896E4 + e * ( 4.862E4 + e * (2.4752E4 + e * ( 4.76E3 + e * (2.72E2 + 2.0 * e))))))) + 1.7E1 * q * ( -3.8E1 + e * (-1.938E3 + e * (-2.3256E4 + e * ( -1.00776E5 + e * (-1.84756E5 + e * ( -1.51164E5 + e * (-5.4264E4 + e * ( -7.752E3 + e * ( -3.42E2 - 2.0 * e)))))))) + 1.9E1 * q * ( 4.2E1 + e * (2.66E3 + e * (4.0698E4 + e * ( 2.3256E5 + e * (5.8786E5 + e * ( 7.05432E5 + e * (4.0698E5 + e * ( 1.08528E5 + e * (1.197E4 + e * ( 4.2E2 + 2.0 * e))))))))) + 2.1E1 * q * ( -4.6E1 + e * (-3.542E3 + e * ( -6.7298E4 + e * ( -4.90314E5 + e * ( -1.63438E6 + e * ( -2.704156E6 + e * ( -2.288132E6 + e * ( -9.80628E5 + e * ( -2.01894E5 + e * ( -1.771E4 + e * ( -5.06E2 - 2.0 * e)))))))))) + 2.3E1 * q * ( 5.0E1 + e * ( 4.6E3 + e * ( 1.0626E5 + e * ( 9.614E5 + e * ( 4.08595E6 + e * ( 8.9148E6 + e * ( 1.04006E7 + e * ( 6.53752E6 + e * ( 2.16315E6 + e * ( 3.542E5 + e * ( 2.53E4 + e * ( 6.0E2 + 2.0 * e))))))))))) + 2.5E1 * q * ( -5.4E1 + e * ( -5.85E3 + e * ( -1.6146E5 + e * ( -1.77606E6 + e * ( -9.37365E6 + e * ( -2.607579E7 + e * ( -4.01166E7 + e * ( -3.476772E7 + e * ( -1.687257E7 + e * ( -4.44015E6 + e * ( -5.9202E5 + e * ( -3.51E4 + e * ( -7.02E2 - 2.0 * e)))))))))))) + 2.7E1 * q * ( 5.8E1 + e * ( 7.308E3 + e * ( 2.3751E5 + e * ( 3.12156E6 + e * ( 2.003001E7 + e * ( 6.919458E7 + e * ( 1.3572783E8 + e * ( 1.5511752E8 + e * ( 1.0379187E8 + e * ( 4.006002E7 + e * ( 8.58429E6 + e * ( 9.5004E5 + e * ( 4.7502E4 + e * ( 8.12E2 + 2.0 * e))))))))))))) + 2.9E1 * q * ( -6.2E1 + e * ( -8.99E3 + e * ( -3.39822E5 + e * ( -5.25915E6 + e * ( -4.032015E7 + e * ( -1.6934463E8 + e * ( -4.1250615E8 + e * ( -6.0108039E8 + e * ( -5.3036505E8 + e * ( -2.8224105E8 + e * ( -8.870433E7 + e * ( -1.577745E7 + e * ( -1.472562E6 + e * ( -6.293E4 + e * ( -9.3E2 - 2.0 * e)))))))))))))) + 3.1E1 * q * ( 6.6E1 + e * ( 1.0912E4 + e * ( 4.74672E5 + e * ( 8.544096E6 + e * ( 7.71342E7 + e * ( 3.8707344E8 + e * ( 1.14633288E9 + e * ( 2.07431664E9 + e * ( 2.33360622E9 + e * ( 1.6376184E9 + e * ( 7.0963464E8 + e * ( 1.8512208E8 + e * ( 2.7768312E7 + e * ( 2.215136E6 + e * ( 8.184E4 + e * ( 1.056E3 + 2.0 * e))))))))))))))) + 3.3E1 * ( -7.0E1 + e * ( -1.309E4 + e * ( -6.49264E5 + e * ( -1.344904E7 + e * ( -1.4121492E8 + e * ( -8.344518E8 + e * ( -2.9526756E9 + e * ( -6.49588632E9 + e * ( -9.0751353E9 + e * ( -8.1198579E9 + e * ( -4.6399188E9 + e * ( -1.6689036E9 + e * ( -3.67158792E8 + e * ( -4.707164E7 + e * ( -3.24632E6 + e * ( -1.0472E5 + e * ( -1.19E3 - 2.0 * e))))))))))))))))) * q))))))))))))))))) b = ONE_OVER_SQRT_TWO_PI * np.exp((-0.5 * (h * h + t * t))) * (t / r) * asymptotic_expansion_sum return np.abs(np.maximum(b, 0))
5,351,703
def date_read(date_string, *, convert_to_current_timezone: bool = False): """Read the given date (if possible).""" return date_parse(date_string, convert_to_current_timezone=convert_to_current_timezone)
5,351,704
def encode_name(name): """ Encode a unicode as utf-8 and then url encode that string. Use for entity titles in URLs. """ return urllib.quote(name.encode('utf-8'), safe='')
5,351,705
def cmp_str(element1, element2): """ compare number in str format correctley """ try: return cmp(int(element1), int(element2)) except ValueError: return cmp(element1, element2)
5,351,706
def parse_page_file(page_raw: str, type: str, file_name: str) -> Page: """ FIXME: add documentation """ page_id = extract_page_id(file_name) title, fields = parse_md(page_raw) return Page( id=page_id, type=type, title=title, fields=fields, )
5,351,707
def fetch(name): """ Fetches an appropriate model to perform the prediction. :param name: model's name :return: a trained model """ K.clear_session() try: full_weights_path = path.join(path_prefix, *load_weights()[name]) if name == 'svm': return SVMModel(joblib.load(full_weights_path)) elif name == 'cnn': return CNNModel(load(full_weights_path)) elif name == 'mlp': return MLPModel(load(full_weights_path)) except KeyError: raise ModelNotFoundError(f'Model named {name} does not exist.')
5,351,708
def post(text, appid=2, touser=None, toparty=None): """ party """ #print '=========',type(text) if type(text) is unicode: text = text.encode('utf8') if not touser: touser = [] if not toparty: toparty = ['2'] url = 'https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token={access_token}' url = url.format(access_token=get_access_token()) data = {"touser": "|".join(touser), "toparty": "|".join(toparty), "msgtype": "text", "agentid": str(appid), "text": {"content": text}, "safe": "0", } result = requests.post(url, data=json.dumps(data, ensure_ascii=False)) print result.text return result
5,351,709
def download_image_from_annotation( api_key: str, api_url: str, annotation_path: Path, images_path: str, annotation_format: str, use_folders: bool, video_frames: bool, ): """Helper function: dispatcher of functions to download an image given an annotation Parameters ---------- api_key : str API Key of the current team api_url : str Url of the darwin API (e.g. 'https://darwin.v7labs.com/api/') annotation_path : Path Path where the annotation is located images_path : Path Path where to download the image annotation_format : str Format of the annotations. Currently only JSON is supported use_folders: bool Recreate folder structure video_frames: bool Pulls video frames images instead of video files """ if annotation_format == "json": download_image_from_json_annotation(api_key, api_url, annotation_path, images_path, use_folders, video_frames) elif annotation_format == "xml": print("sorry can't let you do that dave") raise NotImplementedError # download_image_from_xml_annotation(annotation_path, images_path)
5,351,710
def hex_encrypt(msg): """Hex encrypts a message. :param bytes msg: string message to be encrypted. :return: string for encrypted version of msg in hex. :rtype: bytes """ if not cipher: return msg if not isinstance(msg, six.binary_type): raise ValueError('only bytes can be encrypted') msg = cipher.encrypt(_pad(msg)) msg = codecs.encode(msg, 'hex') return msg
5,351,711
def test_TestPermsWorldReadableDir(tmp_path): """Test for TestPermissionsWorldReadableDir.""" # setup test case test_path = tmp_path / 'testdir' test_path.mkdir() test_path.chmod(0o755) # run test case test = fs_lint.TestPermissionsWorldReadableDir() assert test(test_path, test_path.lstat()) is False test.fix(test_path, test_path.lstat()) assert test(test_path, test_path.lstat()) is True # cleanup test_path.rmdir()
5,351,712
def http_request(source_id, endpoint_id, args, kwargs, # pylint: disable=too-many-arguments service_addr, auth=None): """Call http endpoint""" headers = {"content-type": "application/json"} if auth is not None: headers["Authorization"] = basic_auth_header(auth) payload = _create_http_message(args, endpoint_id, kwargs, source_id) url = service_addr if not url.startswith("http"): url = "http://" + url LOGGER.debug("Url: %s", url) response = requests.post(url, data=payload, headers=headers) return_value = None if response.status_code < 300: return_value = json_tricks.loads(response.content.decode("utf-8")) return return_value, response.status_code
5,351,713
async def filter_by_game_stats(opsdroid, string, room, action): """Match incoming messages against the current games stats.""" if room not in STAT_REGEXES.keys(): gamestats = await get_stat_names(opsdroid, room) if not gamestats: return [] STAT_REGEXES[room] = {"set": regex.compile(f"(?:(?:{'|'.join(['!'+s for s in gamestats])}) {MODIFIER_REGEX})", flags=regex.IGNORECASE), "roll": regex.compile("|".join(gamestats), flags=regex.IGNORECASE)} stats = STAT_REGEXES[room][action].findall(string) return stats
5,351,714
def password_provider(): """ Provides the full password check """ return [(n,) for n in range(5)]
5,351,715
def make_combiparameter(*args, **kwargs): """ Make a combined qcodes parameter. Args: *args : list of gates or parameters (e.g. make_combiparameter("A1", "A3", station.gates.B1 )) """ station = qc.Station.default parameters = [] for i in args: if type(i) == str: parameters.append(getattr(station.gates, i)) else: parameters.append(i) label = "" for i in parameters: label += i.label + " " try: name = kwargs['name'] except: name = 'combi_par' return combi_par(parameters, label, name)
5,351,716
def sort_data(items): """ """ for i in range(len(items)): for j in range(len(items)-1-i): if items[j] > items[j+1]: items[j], items[j+1] = items[j+1], items[j] print items
5,351,717
def main(): """ Input Image File / Url """ os.system('clear') print logo print '\x1b[1;0mAuthor :', author print '\x1b[1;0mGithub :', github img = raw_input('\n\x1b[1;0m[\x1b[1;32m+\x1b[1;0m] Image File / Url : \x1b[1;32m') if 'https' in img or 'http' in img: try: image = urllib.urlopen(img) if image.headers.maintype == 'image': image_url(img) else: print '\x1b[1;0m[\x1b[1;31m+\x1b[1;0m]\x1b[1;0m Error Url Image Not Found' time.sleep(2) main() except: print '\x1b[1;0m[\x1b[1;31m+\x1b[1;0m]\x1b[1;0m Error Url Image Not Found' time.sleep(2) main() else: image_file(img)
5,351,718
def get_delta_fmt(delta): """arbitrary colour formatting of rank delta more red for bigger losses, more green for bigger gains """ col = (0, 0, 0, 255) n = abs(delta) s = delta if delta < 0: sat = min(n/200 + 0.2, 1) r, g, b = hsv_to_rgb(0, sat, 1) col = (r, g, b, 1) else: s = "+"+str(n) sat = min(n/100 + 0.2, 1) r, g, b = hsv_to_rgb(1/3, sat, 1) col = (r, g, b, 1) return "(" + str(s) + ")", col
5,351,719
def main(args=None): """Entry point""" warnings.showwarning = _warn_redirect try: retcode = create_workflow(args) except Exception as e: retcode= 1 sys.exit(retcode)
5,351,720
def api_wait(): """ Wait 3 seconds to ensure no requests are sent before the 3 second timer for API calls has refreshed """ gevent.sleep(3)
5,351,721
def displayFrames(frames): """Displays the supplied list of frames @type frames: list<Frame> @param frames: List of frames to display""" framesFormat = "%-35s %-11s %-15s %-13s %-12s %-9s %5s %7s %5s" header = framesFormat % ( "Frame", "Status", "Host", "Start", "End", "Runtime", "Mem", "Retry", "Exit") print(header + "\n" + "-" * len(header)) for frame in frames: startTime = cueadmin.format.formatTime(frame.data.start_time) stopTime = cueadmin.format.formatTime(frame.data.stop_time) if frame.data.start_time: duration = cueadmin.format.formatDuration(cueadmin.format.findDuration(frame.data.start_time, frame.data.stop_time)) else: duration = "" memory = cueadmin.format.formatMem(frame.data.max_rss) exitStatus = frame.data.exit_status print(framesFormat % ( cueadmin.format.cutoff(frame.data.name, 35), opencue.compiled_proto.job_pb2.FrameState.Name(frame.data.state), frame.data.last_resource, startTime, stopTime, duration, memory, frame.data.retry_count, exitStatus)) if len(frames) == 1000: print("Warning: Only showing first 1000 matches. See frame query options to " "limit your results.")
5,351,722
def calculate_wtv(sample_values, epoch_time_interval=WTV_EPOCH_TIME, relative_to_time=None): """ Calculate the Wear-Time Validation (30-minute epochs) for a given sample ndarray [[time_seconds, accel_x, accel_y, accel_z]]. Based on the method by van Hees et al in PLos ONE 2011 6(7), "Estimation of Daily Energy Expenditure in Pregnant and Non-Pregnant Women Using a Wrist-Worn Tri-Axial Accelerometer". Accelerometer non-wear time is estimated from the standard deviation and range of each accelerometer axis, calculated for consecutive blocks of 30 minutes. A block was classified as non-wear time if the standard deviation was less than 3.0 mg (1 mg = 0.00981 m*s-2) for at least two out of the three axes, or if the value range, for at least two out of three axes, was less than 50 mg. :param epoch_time_interval: seconds per epoch (the algorithm is defined for 30 minutes) :param relative_to_time: None=align epochs to start of data, 0=align epochs to natural time, other=custom alignment :returns: ndarray of [time,worn], where worn is 0 (not worn), or 1 (worn) """ if epoch_time_interval != WTV_EPOCH_TIME: print('WARNING: WTV algorithm is defined for %d seconds, but currently using %d seconds' % (WTV_EPOCH_TIME, epoch_time_interval), file=sys.stderr) # Split samples into epochs epochs = epoch.split_into_epochs(sample_values, epoch_time_interval, relative_to_time=relative_to_time) # Calculate each epoch num_epochs = len(epochs) result = np.empty((num_epochs,2)) for epoch_index in range(num_epochs): this_epoch = epochs[epoch_index] # Epoch start time and sample data epoch_time = this_epoch[0,0] samples = this_epoch[:,1:4] # Per-axis/sample standard deviation and range stddev = np.std(samples, axis=0) value_range = np.ptp(samples, axis=0) # Count axes count_stddev_low = np.sum(stddev < WTV_STD_CUTOFF) count_range_low = np.sum(value_range < WTV_RANGE_CUTOFF) # Determine if worn if count_stddev_low >= WTV_STD_MIN_AXES or count_range_low >= WTV_RANGE_MIN_AXES: epoch_value = 0 else: epoch_value = 1 # Result result[epoch_index,0] = epoch_time result[epoch_index,1] = epoch_value return result
5,351,723
def function(default=None): """Docstring comes first. Possibly many lines. """ # FIXME: Some comment about why this function is crap but still in production. import inner_imports if inner_imports.are_evil(): # Explains why we have this if. # In great detail indeed. x = X() return x.method1() # type: ignore # This return is also commented for some reason. return default
5,351,724
def fit_pk_parms_1d(p0, x, f, pktype='pvoigt'): """ Performs least squares fit to find parameters for 1d analytic functions fit to diffraction data Required Arguments: p0 -- (m) ndarray containing initial guesses for parameters for the input peaktype x -- (n) ndarray of coordinate positions f -- (n) ndarray of intensity measurements at coordinate positions x pktype -- string, type of analytic function that will be used to fit the data, current options are "gaussian","lorentzian","pvoigt" (psuedo voigt), and "split_pvoigt" (split psuedo voigt) Outputs: p -- (m) ndarray containing fit parameters for the input peaktype (see peak function help for what each parameters corresponds to) Notes: 1. Currently no checks are in place to make sure that the guess of parameters has a consistent number of parameters with the requested peak type """ weight = np.max(f)*10. # hard coded should be changed fitArgs = (x, f, pktype) if pktype == 'gaussian': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, Dfun=eval_pk_deriv_1d, ftol=ftol, xtol=xtol ) elif pktype == 'lorentzian': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, Dfun=eval_pk_deriv_1d, ftol=ftol, xtol=xtol ) elif pktype == 'pvoigt': lb = [p0[0]*0.5, np.min(x), 0., 0., 0., None] ub = [p0[0]*2.0, np.max(x), 4.*p0[2], 1., 2.*p0[4], None] fitArgs = (x, f, pktype, weight, lb, ub) p, outflag = optimize.leastsq( fit_pk_obj_1d_bnded, p0, args=fitArgs, ftol=ftol, xtol=xtol ) elif pktype == 'split_pvoigt': lb = [p0[0]*0.5, np.min(x), 0., 0., 0., 0., 0., None] ub = [p0[0]*2.0, np.max(x), 4.*p0[2], 4.*p0[2], 1., 1., 2.*p0[4], None] fitArgs = (x, f, pktype, weight, lb, ub) p, outflag = optimize.leastsq( fit_pk_obj_1d_bnded, p0, args=fitArgs, ftol=ftol, xtol=xtol ) elif pktype == 'tanh_stepdown': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, ftol=ftol, xtol=xtol) elif pktype == 'dcs_pinkbeam': lb = np.array([0.0, x.min(), -100., -100., -100., -100., 0., 0., -np.inf, -np.inf, -np.inf]) ub = np.array([np.inf, x.max(), 100., 100., 100., 100., 10., 10., np.inf, np.inf, np.inf]) res = optimize.least_squares( fit_pk_obj_1d, p0, jac='2-point', bounds=(lb, ub), method='trf', args=fitArgs, ftol=ftol, xtol=xtol) p = res['x'] outflag = res['success'] else: p = p0 print('non-valid option, returning guess') if np.any(np.isnan(p)): p = p0 print('failed fitting, returning guess') return p
5,351,725
def is_pipe_registered( pipe : Union['meerschaum.Pipe', 'meerschaum.Pipe.MetaPipe'], pipes : dict, debug : bool = False ): """ Check if a Pipe or MetaPipe is inside the pipes dictionary. """ from meerschaum.utils.debug import dprint ck, mk, lk = pipe.connector_keys, pipe.metric_key, pipe.location_key if debug: dprint(f'{ck}, {mk}, {lk}') dprint(f'{pipe}, {pipes}') return ck in pipes and mk in pipes[ck] and lk in pipes[ck][mk]
5,351,726
def truncate(s, length=255, killwords=True, end='...'): """ Wrapper for jinja's truncate that checks if the object has a __truncate__ attribute first. Altering the jinja2 default of killwords=False because of https://bugzilla.mozilla.org/show_bug.cgi?id=624642, which could occur elsewhere. """ if s is None: return '' if hasattr(s, '__truncate__'): return s.__truncate__(length, killwords, end) return jinja2.filters.do_truncate(smart_unicode(s), length, killwords, end)
5,351,727
def tract_segmentation_single_example_lap (kdt_T_A, prototypes_T_A,sid, num_NN,T_A ): """ step 1: tract segmentation from a single example using Jonker-Volgenant algorithm (LAPJV) """ E_t_filename= 'data/example/'+ str(sid) +'_'+str(tract_name)+'.trk' print("Loading Example tract: %s" % E_t_filename) E_t, hdr= load(E_t_filename, threshold_short_streamlines=threshold_short_streamlines) dm_E_t= dissimilarity(E_t, prototypes_T_A,bundles_distances_mam) #compute the NN of the example tract in order to construcse the cost matrix NN_E_t_NN_Idx= NN (kdt_T_A, dm_E_t,num_NN) print("Computing the cost matrix with mam distance (%s x %s) for RLAP " % (len(E_t), len( NN_E_t_NN_Idx))) cost_matrix = bundles_distances_mam_smarter_faster(E_t, T_A[NN_E_t_NN_Idx]) print("Computing optimal assignmnet with LAPJV") assignment = LinearAssignment(cost_matrix).solution min_cost_values= cost_matrix[np.arange(len(cost_matrix)), assignment] return NN_E_t_NN_Idx[assignment], min_cost_values, len(E_t)
5,351,728
def output_screening_results(parent_aln_obj, aln_obj_lst, style): """ Function outputs results according to user input style from the -s flag Currently there are 3 versions. 1) changes output alignment sequence to lower case, then overwrites to upper case if there is a match 2) alignment sequence is all dashes unless a site does exist 3) alignment sequence is all dashes unless a site does not exist Current output is to stdout """ # Print top level strings: print parent_aln_obj.match_aln_str print parent_aln_obj.aln_seq # Lower Case Version: if style == "1": for aln_obj in aln_obj_lst: if aln_obj != parent_aln_obj: aln_seq_lower = aln_obj.aln_seq.lower() build_list = [] for potn_match_tup in aln_obj.potential_match_list: if potn_match_tup[2] == True: build_list.append(potn_match_tup[1]) if build_list == []: output_str = aln_seq_lower else: output_str = aln_obj.build_match_string(aln_seq_lower, build_list) print output_str # Dash Version IS a site: elif style == "2": # if aln_obj != parent_aln_obj: for aln_obj in aln_obj_lst: dashes = "-" * aln_obj.aln_seq_length build_list = [] for potn_match_tup in aln_obj.potential_match_list: if potn_match_tup[2] == True: build_list.append(potn_match_tup[1]) if build_list == []: output_str = dashes else: output_str = aln_obj.build_match_string(dashes, build_list) print output_str # Dash Version NOT a site: elif style == "3": # if aln_obj != parent_aln_obj: for aln_obj in aln_obj_lst: dashes = "-" * aln_obj.aln_seq_length build_list = [] for potn_match_tup in aln_obj.potential_match_list: if potn_match_tup[2] == False: build_list.append(potn_match_tup[1]) if build_list == []: output_str = dashes else: output_str = aln_obj.build_match_string(dashes, build_list) print output_str # Warning that output style does not exist: else: print 'Warning output style should be "1", "2", or "3"'
5,351,729
def url(method): """对于每一个URL的请求访问装饰器,在出错时返回对应的信息""" @wraps(method) def error_handler(*args, **kwargs): try: return success(method(*args, **kwargs)) except RequestError as r: current_app.logger.exception(r) # 返回对应异常类的字符串文档 return failed(reason=r.err_num(), message=r.err_msg()) except Exception as e: current_app.logger.exception(e) return failed() return error_handler
5,351,730
def is_abbreviation(sentence): """ Evaluate a word to be an abbreviation if the immediate word before the period contains a capital letter and not a single word sentence. """ sentence_split = sentence.split(" ") if len(sentence_split) == 1: return False elif len(sentence_split[-1]) <= 3 and \ any(x.isupper() for x in sentence_split[-1]): return True else: return False
5,351,731
async def test_crudrouter_get_one_404(test_app): """Tests that select_or_404 will raise a 404 error on an empty return""" async with AsyncClient(app=test_app[1], base_url="http://test") as client: response = await client.get("/model/test") assert response.status_code == 404
5,351,732
def update_sitedown(cur, site, status): """ Update whether the site is down :param cur: database cursor :param site: named tuple containing site data :param status: string 'true' if site is down or 'false' if site is up """ cur.execute('''UPDATE watchlist SET sitedown=? WHERE username=? AND url=?''', (status, site.username, site.url))
5,351,733
def generate_self_signed(domain): """Generate self-signed SSL key and certificate. """ cmd = ( 'openssl req -x509 -nodes -days 365 -newkey rsa:2048' ' -keyout {0}.key -out {0}.crt' ).format(domain) run(cmd)
5,351,734
def compose_redis_key(vim_name, identifier, identifier_type="vdu"): """Compose the key for redis given vim name and vdu uuid Args: vim_name (str): The VIM name identifier (str): The VDU or VNF uuid (NFVI based) identifier_type (str): the identifier type. Default type is vdu. Also vnf is supported. Returns: str: the key for redis """ if identifier_type == "vnf": return "{}:vnf#{}".format(vim_name.lower(), identifier) else: return "{}:{}".format(vim_name.lower(), identifier)
5,351,735
def stack_to_hdf5(stack_path, write_path, dims, dtype): """ """ stack = np.fromfile(stack_path, dtype=dtype).reshape(dims) writeHDF5(write_path, '/default', stack)
5,351,736
def calGridID(locs, id, SPLIT = 0.0005): """ 根据城市网格编号还原经纬度信息 :param locs: :param id: :param SPLIT=0.05: """ centerincrement = SPLIT/2.0 LNGNUM = int((locs['east'] - locs['west']) / SPLIT + 1) latind = int(id / LNGNUM) lngind = id - latind * LNGNUM lat = (locs['south'] + latind * SPLIT) lng = (locs['west'] + lngind * SPLIT) lngcen = (lng + centerincrement) latcen = (lat + centerincrement) return "%.3f,%.3f" % (latcen, lngcen) # { # 'lat': latcen, # 'lng': lngcen # }
5,351,737
def linear(x, *p): """[summary] Arguments: x {[type]} -- [description] Returns: [type] -- [description] """ return p[0] * x + p[1]
5,351,738
def convert_price_text(t): """ convert "$175/month' to 175 :param t: :return: price, unit (i.e. 175, 'month') """ tok = t.split('$')[1] if '/' in tok: price, unit = tok.split('/') else: price = tok unit = None return float(price.strip().strip('$').replace(',', '')), unit
5,351,739
async def async_setup(hass, config): """Set up the WWLLN component.""" if DOMAIN not in config: return True conf = config[DOMAIN] latitude = conf.get(CONF_LATITUDE, hass.config.latitude) longitude = conf.get(CONF_LONGITUDE, hass.config.longitude) identifier = '{0}, {1}'.format(latitude, longitude) if identifier in configured_instances(hass): return True if hass.config.units.name == CONF_UNIT_SYSTEM_IMPERIAL: unit_system = CONF_UNIT_SYSTEM_IMPERIAL else: unit_system = CONF_UNIT_SYSTEM_METRIC hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={'source': SOURCE_IMPORT}, data={ CONF_LATITUDE: latitude, CONF_LONGITUDE: longitude, CONF_RADIUS: conf[CONF_RADIUS], CONF_WINDOW: conf[CONF_WINDOW], CONF_UNIT_SYSTEM: unit_system, })) return True
5,351,740
def __are_nearly_overlapped( plane_predicted: NDArray[Any, np.int32], plane_gt: NDArray[Any, np.int32], required_overlap: np.float64, ) -> (bool, bool): """ Calculate if planes are overlapped enough (required_overlap %) to be used for PP-PR metric :param required_overlap: overlap threshold which will b checked to say that planes overlaps :param plane_predicted: predicted segmentation :param plane_gt: ground truth segmentation :return: true if planes are overlapping by required_overlap % or more, false otherwise """ intersection = np.intersect1d(plane_predicted, plane_gt) return ( intersection.size / plane_predicted.size >= required_overlap and intersection.size / plane_gt.size >= required_overlap, intersection.size > 0, )
5,351,741
def _get_prob_k_given_L(B, N=None): """ Helper function. """ if N is None: N = int(B[0, 1]) return B / N
5,351,742
def base64_encode(s): """unicode-safe base64 base64 API only talks bytes """ if not isinstance(s, bytes): s = s.encode('ascii', 'replace') encoded = encodebytes(s) return encoded.decode('ascii')
5,351,743
def _unpack_tableswitch(bc, offset): """ function for unpacking the tableswitch op arguments """ jump = (offset % 4) if jump: offset += (4 - jump) (default, low, high), offset = _unpack(_struct_iii, bc, offset) joffs = list() for _index in xrange((high - low) + 1): j, offset = _unpack(_struct_i, bc, offset) joffs.append(j) return (default, low, high, joffs), offset
5,351,744
def test_immi1(): """ Test immi on redundant distribution. """ d = bivariates['redundant'] red = i_mmi(d, ((0,), (1,)), (2,)) assert red == pytest.approx(1)
5,351,745
def force_orders(self, **kwargs): """User's Force Orders (USER_DATA) GET /fapi/v1/forceOrders https://binance-docs.github.io/apidocs/futures/en/#user-39-s-force-orders-user_data Keyword Args: symbol (str, optional) autoCloseType (str, optional): "LIQUIDATION" for liquidation orders, "ADL" for ADL orders. startTime (int, optional) endTime (int, optional) limit (int, optional): Default 50; max 100. recvWindow (int, optional) Notes: If "autoCloseType" is not sent, orders with both of the types will be returned If "startTime" is not sent, data within 7 days before "endTime" can be queried """ payload = {**kwargs} url_path = "/fapi/v1/forceOrders" return self.sign_request("GET", url_path, payload)
5,351,746
def main(): """main""" args = get_args() print('color =', args.color)
5,351,747
def prosp_power_analysis_norm(d, sigma, pow_lev, alpha, direction): """ This function conducts pre-testing power analysis and calculates the minimally required sample size for a normal sample. @param d: difference between the mean differences under H1 and H0 @param sigma: standard deviation @param pow_lev: power level @param alpha: significance level @param direction: direction of the test, two-sided or one-sided @return: required minimal sample size """ # first calculates for a z test n_z = np.ceil(z_test_sample_size(d, sigma, alpha, pow_lev, direction)) # first iteration for t test n_t_1 = np.ceil(t_test_sample_size(d, sigma, n_z-1, alpha, pow_lev, direction)) # second iteration for t test n_t_2 = np.ceil(t_test_sample_size(d, sigma, n_t_1-1, alpha, pow_lev, direction)) return(np.ceil(n_t_2 ))
5,351,748
def decision_tree_construction(examples, target_attribute, attributes, depth): """ :param examples: The data we will use to train the tree(x) :param target_attribute: The label we want to classify(y) :param attributes: The number(index) of the labels/attributes of the data-set :return: The tree corresponding to the given data """ # This is the first base condition of the algorithm. It is used if the attributes variable is empty, then we return # the single-node tree Root, with label = most common value of target_attribute in examples # The base condition for the recursion when we check if all the variables are same or not in the node and if they # are same then we return that value as the node if len(attributes) == 0 or len(np.unique(target_attribute)) == 1: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion part of the algorithm in which we try to find the sub-tree's by using recursion and # information gain else: Information_Gain = Information_Gain_Heuristic(examples, attributes, target_attribute) best_attribute_number = attributes[np.argmax(Information_Gain)] # Since we now have the best_attribute(A in algorithm) we will create the root node of the tree/sub-tree with # that and name the root as the best attribute among all Here we make the tree as a dictionary for testing # purposes tree = dict([(best_attribute_number, dict())]) if isinstance(tree, int): # If the given value is a int value then it's definitely a leaf node and if it's a dictionary then its a # node tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number attributes.remove(best_attribute_number) # Now we do the recursive algorithm which will be used to create the tree after the root node. depth_of_node = [] for each_unique_value in np.unique(examples[best_attribute_number]): # We use those values for which the examples[best_attribute_number] == each_unique_value class1 = each_unique_value new_target_attribute = pd.DataFrame(target_attribute) total_data = pd.concat([examples, new_target_attribute], axis=1, sort=False) # WE do this step so that we can pick the values which belong to the best_attribute = [0,1], i.e. We now # want to divide our data so that the values for the best_attribute is divided among the branches. And # thus we will have 4 arrays now, two for the data and two for target attribute. new_data_after_partition = total_data.loc[total_data[best_attribute_number] == class1] new_target_attribute, new_examples_after_partition = get_attributes_and_labels(new_data_after_partition) # This is also a condition for our algorithm in which we check if the number of examples after the # partition are positive or not. If the values are less than 1 then we return the most frequent value in # the node if len(new_examples_after_partition) == 0: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion step, in which we make new decision trees till the case when any of the base # cases are true new_sub_tree_after_partition, deptha = decision_tree_construction(new_examples_after_partition, new_target_attribute, attributes, depth + 1) depth_of_node.append(deptha) # Here we are adding the depth of the node so that we can do the depth based pruning tree[best_attribute_number][each_unique_value] = new_sub_tree_after_partition if isinstance(new_sub_tree_after_partition, int): tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number return tree, max(depth_of_node)
5,351,749
def mass_centered(geo): """ mass-centered geometry """ geo = translate(geo, numpy.negative(center_of_mass(geo))) return geo
5,351,750
def generate(env): """Called when the tool is loaded into the environment at startup of script""" assert(exists(env)) MkdocsCommon.setup_opts_combiner(env) mkdocs_scanner = env.Scanner( MkdocsCommon.MkdocsScanner, 'MkdocsScanner', ) bld = Builder( action = __MkdocsCombiner_func, emitter = MkdocsCommon.MkdocsCombiner_emitter, source_scanner = mkdocs_scanner, ) env.Append(BUILDERS = {'MkdocsCombiner' : bld})
5,351,751
def test_newlines_group(): """Convert newlines in all groups.""" assert_equal( gfm('apple\npear\norange\n\nruby\npython\nerlang'), 'apple \npear \norange\n\nruby \npython \nerlang', )
5,351,752
def binaryMatrix(l, value=PAD_token): """ :param l: :param value: :return: seq: [3,4,5,0,0] m: [[1],[1],[1],[0],[0]] """ m = [] for i, seq in enumerate(l): m.append([]) for token in seq: if token == PAD_token: m[i].append(0) else: m[i].append(1) return m
5,351,753
def show_download(dl_config): """ Do the download thing you know """ i = 0 config_specs = config.get_specs(dl_config) url = dl_config[DOWNLOAD]['url'] main_html = urllib.request.urlopen( url, timeout=int( dl_config[DOWNLOAD][TIMEOUT])).read() main_page = BeautifulSoup(main_html, "lxml") sub_links = __get_list_links(main_page, config_specs) log.ok("Opened list URL: " + url) for link in sub_links: if __episode_not_skipped(i, link.contents[0], config_specs) and \ __episode_not_ignored(i, link.contents[0], config_specs): video_hrefs = __find_best_hrefs(link['href'], config_specs) if len(video_hrefs) > 0: __download_video(video_hrefs, link.contents[0], config_specs) else: log.warn("No downloadable link found at URL: " + link['href']) i += 1
5,351,754
def clear_config(): """Reset pn.config""" pn.config.raw_css = [] pn.config.js_files = {} pn.config.css_files = []
5,351,755
def realTimeIdentification(face_recognizer, subjects): """实时识别""" print("进行实时预测") face_recognizer.read(r'./models/train.yml') cap = cv2.VideoCapture(0) # 视频保存 保存的文件的路径 fourcc:指定编码器 fps:要保存的视频的帧率 frameSize:要保存的文件的画面尺寸 isColor:指示是黑白画面还是彩色的画面 fourcc = cv2.VideoWriter_fourcc('I', '4', '2', '0') out = cv2.VideoWriter(r'./output.avi', fourcc, 20.0, (640, 480), True) # 循环检测识别人脸 start_time = time() while True: _, frame = cap.read() sleep(0.01) try: face, rect = detect_face(frame) label = face_recognizer.predict(face) except Exception as e: print("错误信息为:", e) traceback.print_exc() print('traceback.format_exc():\n%s'%traceback.format_exc()) cv2.imshow('camera', frame) else: print(label) if label[1] > 80: engine = pyttsx3.init() end_time = time() draw_rectangle(frame, rect) draw_text(frame, subjects[0], rect[0], rect[1] - 5) out.write(frame) run_time = end_time - start_time if frame is not None and run_time > 10: winsound.Beep(1440, 1500) # 主板蜂鸣器 engine.say("警告,警告,有陌生人靠近") engine.runAndWait() start_time = end_time else: label_text = subjects[label[0]] draw_rectangle(frame, rect) draw_text(frame, label_text, rect[0], rect[1] - 5) cv2.imshow('camera', frame) # 等待10毫秒看是否有按键输入 k = cv2.waitKey(10) # 如果输入q则退出循环 if k & 0xFF == ord('q'): break # 释放摄像头并销毁所有窗口 out.release() cap.release() cv2.destroyAllWindows()
5,351,756
def plot_history(model_wrapper, job_config, save_dir=None): """Evaluates training result. Args: figsize: tuple Defines plot size. """ logger.info("Plotting training history") plot_config = job_config.apply.cfg_history train_history = model_wrapper._train_history num_folds = model_wrapper._num_folds for metric_key in train_history[0].keys(): if not metric_key.startswith("val_"): plot_metrics( metric_key, train_history, plot_config, num_folds=num_folds, save_dir=save_dir, )
5,351,757
def load_map(mappath): """ Attempt to load map with known loaders """ data = None shirtloader = lambda path: fio.load_map(path)[0][0:3] maploaders = [load_pfire_map, shirtloader] for loader in maploaders: try: data = loader(mappath) except (ValueError, OSError): pass if data is not None: break if data is None: raise RuntimeError("Failed to load map \"{}\"".format(mappath)) return data
5,351,758
def client_thread(client_url, i): """Basic request-reply client using REQ socket""" context = zmq.Context() socket = context.socket(zmq.REQ) identity = "Client-%d" % (i) socket.setsockopt(zmq.IDENTITY, identity) #Set client identity. Makes tracing easier socket.connect(client_url) # Send request, get reply socket.send("HELLO") reply = socket.recv() print "%s: %s\n" % (identity, reply),
5,351,759
def ifttt_account_options_topup_source(): """ Option values for topup source account selection""" return ifttt_account_options(False, "Internal")
5,351,760
def announce_user_details_updated( event: UserDetailsUpdated, webhook: OutgoingWebhook ) -> None: """Announce that a user's details have been changed.""" text = user.assemble_text_for_user_details_updated(event) call_webhook(webhook, text)
5,351,761
def strip_classes(soup:BeautifulSoup, *args:str): """ Strip class from given tags in a BeautifulSoup object. Args: soup (BeautifulSoup): soup to clean args ([str]): A list of tags to be unclassed Returns: soup (BeautifulSoup) Modules: bs4 (BeautifulSoup) """ if not args: args = ['em', 'strong', 'sup'] # delete classes associated with selected tags: for arg in args: for tag in soup.find_all(arg): if tag.has_attr('class'): del tag.attrs['class'] return(soup)
5,351,762
def take_measurement(n_grid: np.int, n_rays: np.int, r_theta: np.float64) -> ( np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ Take a measurement with the tomograph from direction r_theta. Arguments: n_grid: number of cells of grid in each direction n_rays: number of parallel rays r_theta: direction of rays (in radians) Return: intensities: measured intensities for all <n_rays> rays of the measurement. intensities[n] contains the intensity for the n-th ray ray_indices: indices of rays that intersect a cell isect_indices: indices of intersected cells lengths: lengths of segments in intersected cells The tuple (ray_indices[n], isect_indices[n], lengths[n]) stores which ray has intersected which cell with which length. n runs from 0 to the amount of ray/cell intersections (-1) of this measurement. Raised Exceptions: - Side Effects: - """ # compute ray direction in Cartesian coordinates cs = np.cos(r_theta) sn = np.sin(r_theta) r_dir = np.array([-cs, -sn]) # compute start positions for rays r_pos = np.zeros((n_rays, 2)) for i, g in enumerate(np.linspace(-0.99, 0.99, n_rays)): r_pos[i] = np.array([cs - sn * g, sn + cs * g]) else: r_pos[0] = np.array([cs, sn]) # compute measures intensities for each ray intensities = np.zeros(n_rays) for i, rs in enumerate(r_pos): intensities[i] = trace(rs, r_dir) # take exponential fall off into account intensities = np.log(1.0 / intensities) # compute traversal distance in each grid cell ray_indices, isect_indices, lengths = grid_intersect(n_grid, r_pos, r_dir) return intensities, ray_indices, isect_indices, lengths
5,351,763
def chrom_karyo_sort(chroms): """ :param chroms: :return: """ ordered = [] unordered = [] for cname, size in chroms: try: ord = int(cname.lower().strip('chr')) ordered.append((cname, size, ord * 10)) except ValueError: ord = check_special_chroms(cname) if ord > 0: ordered.append((cname, size, ord)) else: unordered.append((cname, size, -1)) unordered = sorted(unordered, key=lambda x: x[1], reverse=True) ordered = sorted(ordered, key=lambda x: x[2]) ordered.extend(unordered) return [(t[0], t[1]) for t in ordered]
5,351,764
def merge(A, lo, mid, hi, aux): """Merge two (consecutive) runs together.""" aux[lo:hi+1] = A[lo:hi+1] left = lo right = mid + 1 for i in range(lo, hi+1): if left > mid: A[i] = aux[right] right += 1 elif right > hi: A[i] = aux[left] left += 1 elif aux[right] < aux[left]: A[i] = aux[right] right += 1 else: A[i] = aux[left] left += 1
5,351,765
def teardown_function(function): """ teardown any state that was previously setup with a setup_function call. """ if (resource('ska_mid/tm_subarray_node/1').get('State') == "ON"): if (resource('ska_mid/tm_subarray_node/1').get('obsState') == "IDLE"): LOGGER.info("tearing down composed subarray (IDLE)") take_subarray(1).and_release_all_resources() if (resource('ska_mid/tm_subarray_node/1').get('obsState') == "READY"): LOGGER.info("tearing down configured subarray (READY)") take_subarray(1).and_end_sb_when_ready().and_release_all_resources() if (resource('ska_mid/tm_subarray_node/1').get('obsState') == "CONFIGURING"): LOGGER.warn("Subarray is still in CONFIFURING! Please restart MVP manually to complete tear down") restart_subarray(1) #raise exception since we are unable to continue with tear down raise Exception("Unable to tear down test setup") if (resource('ska_mid/tm_subarray_node/1').get('obsState') == "SCANNING"): LOGGER.warn("Subarray is still in SCANNING! Please restart MVP manually to complete tear down") restart_subarray(1) #raise exception since we are unable to continue with tear down raise Exception("Unable to tear down test setup") LOGGER.info("Put Telescope back to standby") set_telescope_to_standby()
5,351,766
def test_wrap_predict_method(): """Check wrap_predict_method output with default inputs.""" from sasctl.utils.pymas.core import wrap_predict_method target = """ def predict(a, b): "Output: c, msg" result = None msg = None try: global _compile_error if _compile_error is not None: raise _compile_error import numpy as np import pandas as pd if a is None: a = np.nan if b is None: b = np.nan input_array = np.array([a, b]).reshape((1, -1)) columns = ["a", "b"] input_df = pd.DataFrame(data=input_array, columns=columns) result = dummy_func(input_df) result = tuple(result.ravel()) if hasattr(result, "ravel") else tuple(result) if len(result) == 0: result = tuple(None for i in range(1)) elif "numpy" in str(type(result[0])): result = tuple(np.asscalar(i) for i in result) except Exception as e: from traceback import format_exc msg = str(e) + format_exc() if result is None: result = tuple(None for i in range(1)) return result + (msg, ) """.rstrip() code = wrap_predict_method(dummy_func, [DS2Variable('a', float, False), DS2Variable('b', float, False), DS2Variable('c', float, True)]) assert code == target
5,351,767
def calibrate_stereo(observations_left: List, observations_right: List, detector: FiducialCalibrationDetector, num_radial: int = 4, tangential: bool = False, zero_skew: bool = True) -> (StereoParameters, List): """ Calibrates a stereo camera using a Brown camera model :param observations: List of {"points":(boofcv detections),"width":(image width),"height":(image height)} :param detector: :param num_radial: :param tangential: :param zero_skew: :return: """ jlayout = detector.java_obj.getLayout(0) # Hard coded for a single target jcalib_planar = gateway.jvm.boofcv.abst.geo.calibration.CalibrateStereoPlanar(jlayout) jcalib_planar.configure(zero_skew, int(num_radial), tangential) for idx in range(len(observations_left)): jobs_left = convert_into_boof_calibration_observations(observations_left[idx]) jobs_right = convert_into_boof_calibration_observations(observations_right[idx]) jcalib_planar.addPair(jobs_left, jobs_right) stereo_parameters = StereoParameters(jcalib_planar.process()) errors = [] for jerror in jcalib_planar.computeErrors(): errors.append({"mean": jerror.getMeanError(), "max_error": jerror.getMaxError(), "bias_x": jerror.getBiasX(), "bias_y": jerror.getBiasY()}) return (stereo_parameters, errors)
5,351,768
def register_producer_class(cls: Type[C]) -> Type[C]: """Registers the producer class and returns it unmodified.""" if not cls.TYPES: raise ProducerInterfaceError( f"Invalid producer. When defining producer, make sure to specify at least 1 type in the TYPES class variable." ) for artifact_type in cls.ARTIFACT_TYPES: if not ( isclass(artifact_type) and issubclass(artifact_type, BaseArtifact) ): raise ProducerInterfaceError( f"Associated artifact type {artifact_type} for producer is not a class or is not a subclass of BaseArtifact." ) artifact_types = cls.ARTIFACT_TYPES or (BaseArtifact,) for t in cls.TYPES: if not isclass(t): raise ProducerInterfaceError( f"Associated type {t} for producer is not a class." ) producer_registry.register_producer( t, cls, ) type_registry.register_artifact_type( t, artifact_types, ) return cls
5,351,769
def get_file_list(var, obsname, start_date, end_date): """ Get a list of data set files that covers the time period defined by start_date and end_date provided in the function call. Parameters ---------- var: str Input variable, e.g. 'tas' obsname: str Name of dataset to use, e.g. 'EOBS' start_date: str Start date of time period, format YYYYMM end_date: str End date of time period, format YYYYMM Returns ------- file_list: list List of obs data files """ meta_data = obs_data() data_dict = meta_data[var][obsname] file_pattern = data_dict['file pattern'] sidx = file_pattern.find('YYYYMM') eidx = file_pattern.rfind('YYYYMM') obs_path_list = glob.glob(os.path.join(data_dict['path'], file_pattern[:sidx] + '*.nc')) obs_path_list.sort() obs_file_list = [l.split('/')[-1] for l in obs_path_list] obs_dates = ['{}-{}'.format(f[sidx:sidx+6], f[eidx:eidx+6]) for f in obs_file_list] idx_start = [d.split('-')[0] <= start_date <= d.split('-')[1] for d in obs_dates] msg = "Files not found OR selected start date {} ".format(start_date) +\ "does not match any obs file dates!" assert np.sum(idx_start) != 0, msg idx_start = np.where(idx_start)[0][0] idx_end = [d.split('-')[0] <= end_date <= d.split('-')[1] for d in obs_dates] msg = "Files not found OR selected end date {} ".format(end_date) +\ "does not match any obs file dates!" assert np.sum(idx_end) != 0, msg idx_end = np.where(idx_end)[0][0] return obs_path_list[idx_start: idx_end + 1]
5,351,770
def main(): """ Main function for data retrieval and loading. See argparse message for usage. """ logger.info("Starting SureChEMBL update process") # Parse core command line arguments parser = argparse.ArgumentParser(description='Load data into the SureChEMBL database') parser.add_argument('ftp_user', metavar='fu', type=str, help='Username for accessing the EBI FTP site') parser.add_argument('ftp_pass', metavar='fp', type=str, help='Password for accessing the EBI FTP site') parser.add_argument('db_user', metavar='du', type=str, help='Username for accessing the target database') parser.add_argument('db_pass', metavar='dp', type=str, help='Password for accessing the target database') parser.add_argument('--db_type', metavar='dt', type=str, help='Database type ("oracle" or "postgres")', default="oracle") parser.add_argument('--db_host', metavar='dh', type=str, help='Host where the database can be found', default="127.0.0.1") parser.add_argument('--db_port', metavar='do', type=str, help='Port over which the database is accessed', default="1521") parser.add_argument('--db_name', metavar='dn', type=str, help='Database name (for connection string)', default="XE") parser.add_argument('--working_dir', metavar='w', type=str, help='Working directory for downloaded files', default="/tmp/schembl_ftp_data") # Options that determine what is loaded group = parser.add_mutually_exclusive_group() group.add_argument('--year', metavar='y', type=str, help='A year to extract from the back file, format: YYYY') group.add_argument('--date', metavar='d', type=str, help='A date to extract from the front file, format: YYYYMMDD; defaults to today', default="today") group.add_argument('--input_dir', metavar='f', type=str, help='A directory of pre-downloaded data files to load (e.g. for overwriting)') parser.add_argument('--all', help='Download all files, or just new files? Front file only', action="store_true") # Flags that determine how downloaded files are processed parser.add_argument('--overwrite', help='Replace any existing document/chemistry records with newly downloaded data', action="store_true") parser.add_argument('--preload_bib_ids', help='Try to find IDs for documents, instead of waiting for Integrity Errors', action="store_true") parser.add_argument('--skip_titles', help='Ignore titles when loading document metadata', action="store_true") parser.add_argument('--skip_classes', help='Ignore classifications when loading document metadata', action="store_true") args = parser.parse_args() input_files = _prepare_files(args) logger.info("Loading data files into DB") if args.db_type == 'oracle': db_pkg = cx_Oracle elif args.db_type == 'postgres': db_pkg = psycopg2 try: db = _get_db_engine(args) loader = DataLoader(db, load_titles=not args.skip_titles, load_classifications=not args.skip_classes, overwrite=args.overwrite, allow_doc_dups=True) for bib_file in filter( lambda f: f.endswith("biblio.json"), input_files): loader.load_biblio( "{}/{}".format( args.working_dir,bib_file ), preload_ids=args.preload_bib_ids ) for chem_file in filter( lambda f: f.endswith("chemicals.tsv"), input_files): update = "supp" in chem_file if update: logger.info("Supplementary chemical file detected - setting parameters to handle duplicate records") loader.load_chems( "{}/{}".format( args.working_dir,chem_file ), update ) logger.info("Processing complete, exiting") except db_pkg.DatabaseError, exc: # Specialized display handling for Database exceptions logger.error( "Database exception detected: {}".format( exc ) ) raise
5,351,771
def test_facet_size_default(): """facet_size() has default return value 50""" assert search_query.facet_size({}) == 50
5,351,772
def structures_at_boundaries(gdf, datamodel, areas, structures, tolerance, distance): """ Check if there are structures near area (typically water-level areas) boundaries. Parameters ---------- gdf : ExtendedGeoDataframe ExtendedGeoDataFrame, HyDAMO hydroobject layer datamodel : HyDAMO HyDAMO datamodel class areas : str HyDAMO datamodel class with areas ("peilgebiedenpraktijk") structures : str List with structure-types to be expected on the boundary tolerance : numeric Tolerance to dermine if a structure is on the hydroobject distance : numeric Max distance between structure and area-boundary Returns ------- Pandas Series Default dtype is bool """ areas_gdf = getattr(datamodel, areas) areas_sindex = areas_gdf.sindex struc_series = _layers_from_datamodel(structures, datamodel) struc_sindex = struc_series.sindex return gdf.apply( lambda x: _structures_at_boundaries( x, areas_gdf, areas_sindex, struc_series, struc_sindex, tolerance, distance ), axis=1, )
5,351,773
def create_checkpoint_structure() -> None: """ Create a checkpoint structure in the log folder. * train: Folder for train split tensorboard logs. * dev: Folder for dev split tensorboard logs. * test: Folder for test split tensorboard logs. * checkpoints: Folder for the babilim, pytorch or tensorboard checkpoints. * images: Folder for images that are generated by your code. (use log_image) """ logfolder = get_log_path() if not os.path.exists(os.path.join(logfolder, "train")): os.makedirs(os.path.join(logfolder, "train")) if not os.path.exists(os.path.join(logfolder, "dev")): os.makedirs(os.path.join(logfolder, "dev")) if not os.path.exists(os.path.join(logfolder, "test")): os.makedirs(os.path.join(logfolder, "test")) if not os.path.exists(os.path.join(logfolder, "checkpoints")): os.makedirs(os.path.join(logfolder, "checkpoints")) if not os.path.exists(os.path.join(logfolder, "images")): os.makedirs(os.path.join(logfolder, "images"))
5,351,774
def above_cutoff(gene_freq_tup_list: List[Tuple[Union[str, tuple], Tuple[str, str]]], cutoff: int) -> List[str]: """Return the genes/edges that are are in at least the given cutoff's networks Parameters ---------- gene_freq_tup_list : List[Tuple[Union[str, tuple], Tuple[str, str]]] list of (comparison_object, (frequency_count, percent)) tuples in order of most common should be return from most_common() cutoff : int number to be used as minimum for how many networks the object must be present in to be returned Returns ------- list of objects that were in at least as many networks as the cutoff given """ above = [] for gene, freq in gene_freq_tup_list: if count_in_freq(freq) >= cutoff: above.append(gene) else: break # since it's ordered, no need wasting time checking the rest return above
5,351,775
def normalizeWindows(X): """ Do point centering and sphere normalizing to each window to control for linear drift and global amplitude Parameters ---------- X: ndarray(N, Win) An array of N sliding windows Returns XRet: ndarray(N, Win) An array in which the mean of each row is zero and the norm of each row is 1 """ XRet = X - np.mean(X, 1)[:, None] Norm = np.sqrt(np.sum(XRet**2, 1)) Norm[Norm == 0] = 1 XRet /= Norm[:, None] return XRet
5,351,776
def cost_matrix_slow(x, y): """ Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 """ x_norm = (x ** 2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) # Ensure diagonal is zero if x=y # if y is None: # dist = dist - torch.diag(dist.diag) return torch.clamp(dist, 0.0, np.inf)
5,351,777
def get_dists(ts1_sax, ts2_sax, lookup_table): """ Compute distance between each symbol of two words (series) using a lookup table ts1_sax and ts2_sax are two sax representations (strings) built under the same conditions """ # Verify integrity if ts1_sax.shape[0] != ts2_sax.shape[0]: return -1 # convert symbol series into series of indexes (symbol indexes) ts1_sax_id = symbol2index(ts1_sax) ts2_sax_id = symbol2index(ts2_sax) # array of distances between symbols dists = np.zeros(ts1_sax.shape[0]) for i in range(ts1_sax_id.shape[0]): dists[i] = lookup_table[ts1_sax_id[i], ts2_sax_id[i]] return dists
5,351,778
def get_dom_coords(string, dom): """Get Coordinates of a DOM specified by the string and dom number. Parameters ---------- string : int String number (between 1 and 86) dom : int DOM number (between 1 and 60) Returns ------- tuple(float, float, float) The x, y, z coordinates of the DOM. """ assert string > 0 and string <= 86, 'String must be within [1, 86]' assert dom > 0 and dom <= 60, 'DOM must be within [1, 86]' a, b = get_matrix_indices(string) dom_id = dom - 1 return x_ic78_coords[a, b, dom_id]
5,351,779
def relevance_ka(x): """ based on code from https://www.kaggle.com/aleksandradeis/regression-addressing-extreme-rare-cases see paper: https://www.researchgate.net/publication/220699419_Utility-Based_Regression use the sigmoid function to create the relevance function, so that relevance function has values close to 1 when the target variable is greater than 0.6 Args: x: the x values for which the relevance should be returned """ x = np.array(x) return sigmoid((x-0.5) * 15)
5,351,780
def now(mydateformat='%Y%m%dT%H%M%S'): """ Return current datetime as string. Just a shorthand to abbreviate the common task to obtain the current datetime as a string, e.g. for result versioning. Args: mydateformat: optional format string (default: '%Y%m%dT%H%M%S') Returns: datetime.now(), formated to string with argument mydateformat, e.g. YYYYMMDDThhmmss ==> 20131007H123456 """ return datetime.now().strftime(mydateformat)
5,351,781
def getOnePackageInfo(pkgpath): """Gets receipt info for a single bundle-style package""" pkginfo = {} plist = getBundleInfo(pkgpath) if plist: pkginfo['filename'] = os.path.basename(pkgpath) try: if 'CFBundleIdentifier' in plist: pkginfo['packageid'] = plist['CFBundleIdentifier'] elif 'Bundle identifier' in plist: # special case for JAMF Composer generated packages. pkginfo['packageid'] = plist['Bundle identifier'] else: pkginfo['packageid'] = os.path.basename(pkgpath) if 'CFBundleName' in plist: pkginfo['name'] = plist['CFBundleName'] if 'IFPkgFlagInstalledSize' in plist: pkginfo['installed_size'] = int(plist['IFPkgFlagInstalledSize']) pkginfo['version'] = getBundleVersion(pkgpath) except (AttributeError, FoundationPlist.NSPropertyListSerializationException): pkginfo['packageid'] = 'BAD PLIST in %s' % \ os.path.basename(pkgpath) pkginfo['version'] = '0.0' ## now look for applications to suggest for blocking_applications #bomlist = getBomList(pkgpath) #if bomlist: # pkginfo['apps'] = [os.path.basename(item) for item in bomlist # if item.endswith('.app')] else: # look for old-style .info files! infopath = os.path.join( pkgpath, 'Contents', 'Resources', 'English.lproj') if os.path.exists(infopath): for item in osutils.listdir(infopath): if os.path.join(infopath, item).endswith('.info'): pkginfo['filename'] = os.path.basename(pkgpath) pkginfo['packageid'] = os.path.basename(pkgpath) infofile = os.path.join(infopath, item) infodict = parseInfoFile(infofile) pkginfo['version'] = infodict.get('Version', '0.0') pkginfo['name'] = infodict.get('Title', 'UNKNOWN') break return pkginfo
5,351,782
def cmp_point_identities(a, b): """ Given point identities a, b (may be string, number, date, etc), collation algorithm compares: (a) strings case-insensitively (b) dates and datetimes compared by normalizing date->datetime. (c) all other types use __cmp__(self, other) defaults from type. """ dt = lambda d: datetime(*d.timetuple()[0:6]) # date|datetime -> datetime if isinstance(a, basestring) and isinstance(b, basestring): return cmp(a.upper(), b.upper()) if isinstance(a, date) or isinstance(b, date): return cmp(dt(a), dt(b)) return cmp(a, b)
5,351,783
def shortest_complement(t, m, l): """ Given a primitive slope t and the holonomies of the current meridian and longitude, returns a shortest complementary slope s so that s.t = +1. """ c, d = t # second slope _, a, b = xgcd(d, c) # first slope b = -b assert a*d - b*c == 1 return a_shortest_lattice_point_on_line((a, b), (c, d), m, l)
5,351,784
def run_pii(text, lang): """ Runs the given set of regexes on the data "lines" and pulls out the tagged items. The lines structure stores the language type(s). This can be used for language-specific regexes, although we're dropping that for now and using only "default"/non-language-specific regexes. """ #print('Detecting....') # What is this for...? text = text.encode().decode() matches = detect_pii(text, lang, high_risk_tags) #print(matches) match_set = (text, {}) if len(matches) > 0: # !!! REDACTION HAPPENS HERE !!! redacted_str, metadata = redact_pii(text, matches) metadata_out = {"regex metadata":metadata, "original": text, "redacted": redacted_str} match_set = (redacted_str, metadata_out) return match_set
5,351,785
def get_ref_cat(butler, visit, center_radec, radius=2.1): """ Get the reference catalog for the desired visit for the requested sky location and sky cone radius. """ ref_cats = RefCat(butler) try: band = list(butler.subset('src', visit=visit))[0].dataId['filter'] except dp.butlerExceptions.NoResults: band = list(butler.subset('src', expId=visit))[0].dataId['filter'] centerCoord = lsst_geom.SpherePoint(center_radec[0]*lsst_geom.degrees, center_radec[1]*lsst_geom.degrees) return ref_cats(centerCoord, band, radius)
5,351,786
def replace_dict(d, **kwargs): """ Replace values by keyword on a dict, returning a new dict. """ e = d.copy() e.update(kwargs) return e
5,351,787
def handle_pdb(sig, frame): # pylint: disable=unused-argument """ Signal handler """ pdb.Pdb().set_trace(frame)
5,351,788
def optimizer(settings_filepath): """ Performs Gaussian-process optimization to maximise agreement between SOLPS and the given experimental data. :param settings_filepath: The path to the settings file. :return: """ # check the validity of the input file and return its contents settings = parse_inputs(settings_filepath, check_training_data=True) # set-up the log file logger_setup(settings_filepath) # data & results filepaths reference_directory = settings['solps_ref_directory'] training_data_file = settings['training_data_file'] diagnostics = settings['diagnostics'] # SOLPS settings solps_n_proc = settings['solps_n_proc'] set_divertor_transport = settings['set_divertor_transport'] solps_timeout_hours = settings['solps_timeout_hours'] transport_profile_bounds = settings['transport_profile_bounds'] # optimiser settings max_iterations = settings['max_iterations'] fixed_parameter_values = settings['fixed_parameter_values'] optimisation_bounds = settings['optimisation_bounds'] acquisition_function = settings['acquisition_function'] cross_validation = settings['cross_validation'] error_model = settings['error_model'] covariance_kernel_class = settings['covariance_kernel'] trust_region = settings['trust_region'] trust_region_width = settings['trust_region_width'] log_scale_bounds = settings['log_scale_bounds'] all_parameters = [key for key in fixed_parameter_values.keys()] free_parameters = [key for key, value in fixed_parameter_values.items() if value is None] fixed_parameters = [key for key, value in fixed_parameter_values.items() if value is not None] # start the optimisation loop while True: # load the training data df = read_hdf(reference_directory + training_data_file, 'training') # break the loop if we've hit the max number of iterations if df['iteration'].max() >= max_iterations: logging.info('[optimiser] Optimisation loop broken due to reaching the maximum allowed iterations') break # get the current iteration number itr = df['iteration'].max()+1 logging.info(f"--- Starting iteration {itr} ---") # extract the training data logprob_key = check_error_model(error_model) log_posterior = df[logprob_key].to_numpy().copy() parameters = [] for tup in zip(*[df[p] for p in free_parameters]): parameters.append( array(tup) ) # convert the data to the normalised coordinates: free_parameter_bounds = [optimisation_bounds[k] for k in free_parameters] normalised_parameters = [bounds_transform(p, free_parameter_bounds) for p in parameters] # build the set of grid-transformed points grid_set = {grid_transform(p) for p in normalised_parameters} # set the covariance kernel parameter bounds amplitude = log(log_posterior.ptp()) hyperpar_bounds = [(amplitude-3, amplitude+3)] hyperpar_bounds.extend( [log_scale_bounds for _ in free_parameters] ) # construct the GP covariance_kernel = covariance_kernel_class(hyperpar_bounds=hyperpar_bounds) GP = GpRegressor( normalised_parameters, log_posterior, cross_val=cross_validation, kernel=covariance_kernel, optimizer="diffev" ) bfgs_hps = GP.multistart_bfgs(starts=300, n_processes=solps_n_proc) if GP.model_selector(bfgs_hps) > GP.model_selector(GP.hyperpars): mode = bfgs_hps else: mode = GP.hyperpars logging.info('[optimiser] GP hyper-parameter tuning complete - hyper-parameter values are:') logging.info(mode) # If a trust-region approach is being used, limit the search area # to a region around the current maximum trhw = 0.5*trust_region_width if trust_region: max_ind = log_posterior.argmax() max_point = normalised_parameters[max_ind] search_bounds = [(max(0., v-trhw), min(1., v+trhw)) for v in max_point] else: search_bounds = [(0., 1.) for i in range(len(free_parameters))] # build the GP-optimiser covariance_kernel = covariance_kernel_class(hyperpar_bounds=hyperpar_bounds) GPopt = GpOptimiser( normalised_parameters, log_posterior, hyperpars=GP.hyperpars, bounds=search_bounds, cross_val=cross_validation, kernel=covariance_kernel, acquisition=acquisition_function ) # maximise the acquisition both by multi-start bfgs and differential evolution, # and use the best of the two bfgs_prop = GPopt.propose_evaluation(optimizer="bfgs") diff_prop = GPopt.propose_evaluation(optimizer="diffev") bfgs_acq = GPopt.acquisition(bfgs_prop) diff_acq = GPopt.acquisition(diff_prop) new_point = bfgs_prop if bfgs_acq > diff_acq else diff_prop logging.info('[optimiser] Acquisition function maximisation complete - max function value was:') logging.info(max(bfgs_acq, diff_acq)) # calculate the convergence metric convergence = GPopt.acquisition.convergence_metric(new_point) # get predicted log-probability at the new point mu_lp, sigma_lp = GPopt.gp(new_point) # back-transform to get the new point as model parameters new_parameters = bounds_transform(new_point, free_parameter_bounds, inverse=True) # create the dictionary for this iteration row_dict = {} # add values for all the fixed parameters for key in fixed_parameters: row_dict[key] = fixed_parameter_values[key] # add the new free parameter values for key, val in zip(free_parameters, new_parameters): row_dict[key] = val # check to see if the grid-transformed new point is already in the evaluated set if grid_transform(new_point) in grid_set: raise ValueError( """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The latest proposed evaluation is a point which has been previously evaluated - this may indicate that a local maximum has been reached. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ ) logging.info('New chi parameters:') logging.info([row_dict[k] for k in conductivity_profile]) logging.info('New D parameters:') logging.info([row_dict[k] for k in diffusivity_profile]) logging.info('Divertor parameters:') logging.info([row_dict['D_div'], row_dict['chi_div']]) # Run SOLPS for the new point run_id, run_dir = launch_solps( iteration=itr, reference_directory=reference_directory, parameter_dictionary=row_dict, transport_profile_bounds=transport_profile_bounds, n_proc=solps_n_proc, set_div_transport=set_divertor_transport ) launch_time = time() while not solps_run_complete(run_id): runtime_hours = (time() - launch_time) / 3600 if runtime_hours >= solps_timeout_hours: logging.info("[ time-out warning ]") logging.info(f">> iteration {itr}, job {run_id} has timed-out") sleep(10) # evaluate the chi-squared logprobs = evaluate_log_posterior( directory=run_dir, diagnostics=diagnostics ) gaussian_logprob, cauchy_logprob, laplace_logprob, logistic_logprob = logprobs # build a new row for the dataframe row_dict['iteration'] = itr row_dict['gaussian_logprob'] = gaussian_logprob row_dict['cauchy_logprob'] = cauchy_logprob row_dict['laplace_logprob'] = laplace_logprob row_dict['logistic_logprob'] = logistic_logprob row_dict['prediction_mean'] = mu_lp, row_dict['prediction_error'] = sigma_lp, row_dict['convergence_metric'] = convergence df.loc[df.index.max()+1] = row_dict # add the new row df.to_hdf(reference_directory + training_data_file, key='training', mode='w') # save the data del df
5,351,789
def pageHeader( headline="", tagline=""): """ *Generate a pageHeader - TBS style* **Key Arguments:** - ``headline`` -- the headline text - ``tagline`` -- the tagline text for below the headline **Return:** - ``pageHeader`` -- the pageHeader """ pageHeader = """ <div class="page-header" id=" "> <h1>%(headline)s<br><small>%(tagline)s</small></h1> </div>""" % locals() return pageHeader
5,351,790
def get_counter_merge_suggestion(merge_suggestion_tokens): """Return opposite of merge suggestion Args: merge_suggestion_tokens (list): tokens in merge suggestion Returns: str: opposite of merge suggestion """ counter_merge_suggestion = ' '.join(merge_suggestion_tokens) if merge_suggestion_tokens[-1][-1] == '་': counter_merge_suggestion += " " return counter_merge_suggestion
5,351,791
def parse_rfc3339_utc_string(rfc3339_utc_string): """Converts a datestamp from RFC3339 UTC to a datetime. Args: rfc3339_utc_string: a datetime string in RFC3339 UTC "Zulu" format Returns: A datetime. """ # The timestamp from the Google Operations are all in RFC3339 format, but # they are sometimes formatted to millisconds, microseconds, sometimes # nanoseconds, and sometimes only seconds: # * 2016-11-14T23:05:56Z # * 2016-11-14T23:05:56.010Z # * 2016-11-14T23:05:56.010429Z # * 2016-11-14T23:05:56.010429380Z m = re.match(r'(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}).?(\d*)Z', rfc3339_utc_string) # It would be unexpected to get a different date format back from Google. # If we raise an exception here, we can break people completely. # Instead, let's just return None and people can report that some dates # are not showing up. # We might reconsider this approach in the future; it was originally # established when dates were only used for display. if not m: return None groups = m.groups() if len(groups[6]) not in (0, 3, 6, 9): return None # Create a UTC datestamp from parsed components # 1- Turn components 0-5 from strings to integers # 2- If the last component does not exist, set it to 0. # If it does exist, make sure to interpret it as milliseconds. g = [int(val) for val in groups[:6]] fraction = groups[6] if not fraction: micros = 0 elif len(fraction) == 3: micros = int(fraction) * 1000 elif len(fraction) == 6: micros = int(fraction) elif len(fraction) == 9: # When nanoseconds are provided, we round micros = int(round(int(fraction) // 1000)) else: assert False, 'Fraction length not 0, 6, or 9: {}'.format(len(fraction)) try: return datetime.datetime( g[0], g[1], g[2], g[3], g[4], g[5], micros, tzinfo=pytz.utc) except ValueError as e: assert False, 'Could not parse RFC3339 datestring: {} exception: {}'.format( rfc3339_utc_string, e)
5,351,792
def response(code, body='', etag=None, last_modified=None, expires=None, **kw): """Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`). """ if etag is not None: if not (etag[0] == '"' and etag[-1] == '"'): etag = '"%s"' % etag kw['etag'] = etag if last_modified is not None: kw['last_modified'] = datetime_to_httpdate(last_modified) if expires is not None: if isinstance(expires, datetime): kw['expires'] = datetime_to_httpdate(expires) else: kw['expires'] = timedelta_to_httpdate(expires) headers = [(k.replace('_', '-').title(), v) for k, v in sorted(kw.items())] return Response(code, headers, body)
5,351,793
def oauth2callback(): """ The 'flow' has this one place to call back to. We'll enter here more than once as steps in the flow are completed, and need to keep track of how far we've gotten. The first time we'll do the first step, the second time we'll skip the first step and do the second, and so on. """ app.logger.debug("Entering oauth2callback") app.logger.debug(flask.url_for('oauth2callback', _external=True)) #return_url = "http://localhost:5000" + flask.url_for('oauth2callback') flow = client.flow_from_clientsecrets( CLIENT_SECRET_FILE, scope= SCOPES, redirect_uri=flask.url_for('oauth2callback', _external=True)) ## Note we are *not* redirecting above. We are noting *where* ## we will redirect to, which is this function. ## The *second* time we enter here, it's a callback ## with 'code' set in the URL parameter. If we don't ## see that, it must be the first time through, so we ## need to do step 1. app.logger.debug("Got flow") if 'code' not in flask.request.args: app.logger.debug("Code not in flask.request.args") auth_uri = flow.step1_get_authorize_url() return flask.redirect(auth_uri) ## This will redirect back here, but the second time through ## we'll have the 'code' parameter set else: ## It's the second time through ... we can tell because ## we got the 'code' argument in the URL. app.logger.debug("Code was in flask.request.args") auth_code = flask.request.args.get('code') credentials = flow.step2_exchange(auth_code) flask.session['credentials'] = credentials.to_json() ## Now I can build the service and execute the query, ## but for the moment I'll just log it and go back to ## the main screen app.logger.debug("Got credentials") return flask.redirect(flask.url_for('getCalendars',muID=flask.session['meetupId']))
5,351,794
def parse_tweet(raw_tweet, source, now=None): """ Parses a single raw tweet line from a twtxt file and returns a :class:`Tweet` object. :param str raw_tweet: a single raw tweet line :param Source source: the source of the given tweet :param Datetime now: the current datetime :returns: the parsed tweet :rtype: Tweet """ if now is None: now = datetime.now(timezone.utc) raw_created_at, text = raw_tweet.split("\t", 1) created_at = parse_iso8601(raw_created_at) if created_at > now: raise ValueError("Tweet is from the future") return Tweet(click.unstyle(text.strip()), created_at, source)
5,351,795
def cmd_ssh(argv, args): """ Usage: localstack ssh [options] Commands: ssh Obtain a shell in the running LocalStack container Options: """ args.update(docopt(cmd_ssh.__doc__.strip(), argv=argv)) if not docker_container_running(MAIN_CONTAINER_NAME): raise Exception('Expected 1 running "%s" container, but found none' % MAIN_CONTAINER_NAME) try: process = run('docker exec -it %s bash' % MAIN_CONTAINER_NAME, tty=True) process.wait() except KeyboardInterrupt: pass
5,351,796
def scopes(request, coalition_id): """ Update coalition required scopes with a specific set of scopes """ scopes = [] for key in request.POST: if key in ESI_SCOPES: scopes.append(key) url = f"{GLOBAL_URL}/{coalition_id}" headers = global_headers(request, {"Content-type": "application/json"}) data = "{\"mandatory_esi_scopes\": [\"" + "\",\"".join(scopes) + "\"]}" request_change_scopes = requests.put(url, headers=headers, data=data) if request_change_scopes.status_code != 200: return render_error(request_change_scopes) params = urlencode({"changed_scopes": "true"}) return_url = reverse("coalition-sheet", args=[coalition_id]) + "?" + params return redirect(return_url)
5,351,797
def test_opening_hour_close(): """ The POI should already be closed since it's 21h30 UTC while the POI closes at 22h00 in UTC+3. """ oh_block = get_moscow_oh("Mo-Su 10:00-22:00") assert oh_block.status == "closed" assert oh_block.next_transition_datetime == "2018-06-15T10:00:00+03:00" assert oh_block.seconds_before_next_transition == 34200 assert oh_block.is_24_7 is False assert oh_block.raw == "Mo-Su 10:00-22:00" assert len(oh_block.days) == 7 assert all(d.status == "open" for d in oh_block.days)
5,351,798
def recursive_dictionary_cleanup(dictionary): """Recursively enrich the dictionary and replace object links with names etc. These patterns are replaced: [phobostype, bpyobj] -> {'object': bpyobj, 'name': getObjectName(bpyobj, phobostype)} Args: dictionary(dict): dictionary to enrich Returns: : dict -- dictionary with replace/enriched patterns """ for key, value in dictionary.items(): # handle everything as list, so we can loop over it unlist = False if not isinstance(value, list): value = [value] unlist = True itemlist = [] for item in value: if isinstance(item, list) and item: # (phobostype, bpyobj) -> {'object': bpyobj, 'name': getObjectName(bpyobj)} if ( len(item) == 2 and isinstance(item[0], str) and (item[0] in ['joint'] + [enum[0] for enum in defs.phobostypes]) and isinstance(item[1], bpy.types.Object) ): itemlist.append( { 'object': item[1], 'name': nUtils.getObjectName(item[1], phobostype=item[0]), } ) # recursion on subdictionaries elif isinstance(item, dict): itemlist.append(recursive_dictionary_cleanup(item)) else: itemlist.append(item) # extract single items back out of the list dictionary[key] = itemlist if not unlist else itemlist[0] return dictionary
5,351,799