content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def validate_dtype(dtype_in):
"""
Input is an argument represention one, or more datatypes.
Per column, number of columns have to match number of columns in csv file:
dtype = [pa.int32(), pa.int32(), pa.int32(), pa.int32()]
dtype = {'__columns__': [pa.int32(), pa.int32(), pa.int32(), pa.int32()]}
Default:
dtype_in = pa.int32()
dtype_out = {'__default__': pa.int32()}
Not yet supported:
Default, optional column overwrite:
dtype_in = {'__default__': pa.int32(), '__columns__': {'colname': pa.int32()}}
dtype_out = raise ValueError
dtype_in = {'colname': pa.int32()}
dtype_out = raise ValueError
"""
if dtype_in is None:
# use default datatype
dtype_in = pa.float32()
argtype = type(dtype_in)
valid_types = _dtypes_from_arrow()
if argtype is pa.DataType:
if dtype_in not in list(valid_types.keys()):
raise ValueError('Not supporting type: ' + dtype_in.__str__())
return {'__default__': valid_types[dtype_in]}
if argtype is dict:
raise ValueError('Not yet supported dict')
if argtype is list and dtype_in.__len__() > 0:
matches = [dtype in list(valid_types.keys()) for dtype in dtype_in]
if False in matches:
mismatches = [dtype_in[j].__str__() + '(column:' + str(j) + ')'
for j in range(0, len(matches)) if matches[j] is False]
raise ValueError('List contains unsupported datatype: ' + ','.join(mismatches))
if set(dtype_in).__len__() == 1:
# all list members are of same type
return {'__default__': valid_types[dtype_in[0]]}
return {'__columns__': list([valid_types[dtype] for dtype in dtype_in])}
raise ValueError('No input to match datatypes')
| 5,351,800 |
def get_secret(name):
"""Load a secret from file or env
Either provide ``{name}_FILE`` or ``{name}`` in the environment to
configure the value for ``{name}``.
"""
try:
with open(os.environ[name + "_FILE"]) as secret_file:
return secret_file.read().strip()
except (FileNotFoundError, PermissionError, KeyError):
try:
return os.environ[name]
except KeyError:
if os.path.basename(sys.argv[0]) == 'sphinx-build':
# We won't have nor need secrets when building docs
return None
raise ValueError(
f"Missing secrets: configure {name} or {name}_FILE to contain or point at secret"
) from None
| 5,351,801 |
def cache(
cache_class: Callable[[], base_cache.BaseCache[T]],
serializer: Callable[[], cache_serializer.CacheSerializer],
conditional: Callable[[List[Any], Dict[str, Any]], bool] = _always_true):
"""
cache
=====
parameters:
cache_class (base_cache.BaseCache)
conditional (Callable[[List[Any], Dict[str, Any]])
Decorator that caches function results using the provided class. The class
must be a subclass of base_cache, providing get and set methods with
appropriate signatures.
An optional conditional can be passed, which receives the *args and
**kwargs of the called function. This function determines whether or not to
cache, or to always recompute, based on whether it returns True or False.
"""
serializer_instance = serializer()
cache_instance = cache_class()
return curry(_wrapper, cache_instance, serializer_instance, conditional)
| 5,351,802 |
def words2chars(images, labels, gaplines):
""" Transform word images with gaplines into individual chars """
# Total number of chars
length = sum([len(l) for l in labels])
imgs = np.empty(length, dtype=object)
newLabels = []
height = images[0].shape[0]
idx = 0;
for i, gaps in enumerate(gaplines):
for pos in range(len(gaps) - 1):
imgs[idx] = images[i][0:height, gaps[pos]:gaps[pos+1]]
newLabels.append(char2idx(labels[i][pos]))
idx += 1
print("Loaded chars from words:", length)
return imgs, newLabels
| 5,351,803 |
def general_barplot_with_error(means, stds):
"""
Barplot, meant for fixation position and entropy. x: fixation position. y: mean (and stdev)
means: dictionary, with x labels as keys
stds: dictionary, with x labels as keys
"""
fig,ax = plt.subplots()
plt.errorbar(means.keys(), means.values(), yerr=stds.values(), linewidth=2, elinewidth=0.4)
plt.show()
| 5,351,804 |
def show_all_archives():
"""Displays meta data for all archives."""
archives = Archive.select()
template = "{: <32} {: <64} {: <64} {: <32} {: <32}"
header = [
"Name",
"Source Path",
"Destination Path",
"Key Pair Name",
"Timestamp",
]
print(template.format(*header))
for archive in archives:
row = [
archive.name[:32],
archive.src_path[:64],
archive.dst_path[:64],
archive.key_pair.name,
str(archive.timestamp),
]
print(template.format(*row))
| 5,351,805 |
def add_custom_subparser(subparsers):
"""
Add subparser for customized stock picks
"""
custom = subparsers.add_parser(
"custom", help="Analyze set of user defined pages"
)
custom.add_argument(
"pages",
nargs="*",
help="Symbol:Wikipage to analyze, eg: AAPL:Apple_Inc MSFT:Microsoft"
)
| 5,351,806 |
def create_spark_session(spark_jars: str) -> SparkSession:
"""
Create Spark session
:param spark_jars: Hadoop-AWS JARs
:return: SparkSession
"""
spark = SparkSession \
.builder \
.config("spark.jars.packages", spark_jars) \
.appName("Sparkify ETL") \
.getOrCreate()
return spark
| 5,351,807 |
def make_expired(request, pk):
"""
将号码状态改为过号
"""
try:
reg = Registration.objects.get(pk=pk)
except Registration.DoesNotExist:
return Response('registration not found', status=status.HTTP_404_NOT_FOUND)
data = {
'status': REGISTRATION_STATUS_EXPIRED
}
serializer = RegistrationSerializer(reg, data=data, partial=True)
if serializer.is_valid():
reg = serializer.save()
reg.end_time = datetime.datetime.now()
reg.save()
# 通知后面第n位的顾客就餐
_notify_ready(reg.table_type)
return Response(serializer.data, status=status.HTTP_200_OK)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
| 5,351,808 |
def run_optimization(mesh, target_evals, out_path, params=OptimizationParams()):
"""Run the optimization."""
# Create the output directories
os.makedirs(f"{out_path}/ply", exist_ok=True)
os.makedirs(f"{out_path}/txt", exist_ok=True)
# Unpack the mesh
[
Xopt,
TRIV,
n,
m,
Ik,
Ih,
Ik_k,
Ih_k,
Tpi,
Txi,
Tni,
iM,
Windices,
Ael,
Bary,
bound_edges,
ord_list,
] = mesh
# Save the initial embedding
save_ply(Xopt, TRIV, "%s/ply/initial.ply" % out_path)
# Save the target eigenvalue sequence
np.savetxt("%s/txt/target.txt" % out_path, target_evals.cpu().detach().numpy())
iterations = []
for nevals in params.evals:
step = 0
while step < params.steps - 1:
# Prepare the mesh
mesh = prepare_mesh(Xopt, TRIV)
# Unpack the mesh
[
Xori,
TRIV,
n,
m,
Ik,
Ih,
Ik_k,
Ih_k,
Tpi,
Txi,
Tni,
iM,
Windices,
Ael,
Bary,
bound_edges,
ord_list,
] = mesh
# Initialize the model
graph = initialize(mesh, step=step)
tic()
# Start iteration
for step in range(step + 1, params.steps):
# Recompute triangulation
if step % params.remesh_step == 0:
print("RECOMPUTING TRIANGULATION at step %d" % step)
break
try:
# Alternate optimization of inner and boundary vertices
if int(step / 10) % 2 == 0:
# Optimize over inner points
er, ee, Xopt_t = forward(
"inner",
"train",
graph,
mesh,
target_evals,
nevals,
step,
params,
)
else:
# Optimize over boundary points
er, ee, Xopt_t = forward(
"bound",
"train",
graph,
mesh,
target_evals,
nevals,
step,
params,
)
iterations.append((step, nevals, er, ee, int(step / 10) % 2))
if (
step % params.checkpoint == 0
or step == params.steps - 1
or step == 1
):
toc()
tic()
# Perform a forward pass in eval mode
(
cost,
cost_evals,
cost_vcL,
cost_vcW,
decay,
flip,
evout,
) = forward(
"bound", "eval", graph, mesh, target_evals, nevals, step
)
print(
"Iter %f, cost: %f(evals cost: %f (%f) (%f), smoothness weight: %f). Flip: %d"
% (
step,
cost,
cost_evals,
cost_vcL,
cost_vcW,
decay,
np.sum(flip < 0),
)
)
# Save the current embedding
save_ply(
Xopt,
TRIV,
"%s/ply/evals_%d_iter_%06d.ply" % (out_path, nevals, step),
)
# Save the current eigenvalue sequence
np.savetxt(
"%s/txt/evals_%d_iter_%06d.txt" % (out_path, nevals, step),
evout,
)
# Save the training progress statistics
np.savetxt("%s/iterations.txt" % (out_path), iterations)
# Early stopping
if ee < params.min_eval_loss:
step = params.steps
print("Minimum eigenvalues loss reached")
break
except KeyboardInterrupt:
step = params.steps
break
except:
print(sys.exc_info())
ee = float("nan")
if ee != ee:
# If nan (something went wrong) with the spectral decomposition,
# perturbate the last valid state and start over
print("iter %d. Perturbating initial condition" % step)
Xopt = (
Xopt
+ (np.random.rand(np.shape(Xopt)[0], np.shape(Xopt)[1]) - 0.5)
* 1e-3
)
graph.global_step = step
else:
Xopt = Xopt_t
graph.global_step += 1
if step < params.steps - 1:
[Xopt, TRIV] = resample(Xopt, TRIV)
| 5,351,809 |
def register():
"""Registers all signature key managers in the Python registry."""
tink_bindings.register()
for key_type_identifier in ('EcdsaPrivateKey', 'Ed25519PrivateKey',
'RsaSsaPssPrivateKey', 'RsaSsaPkcs1PrivateKey',):
type_url = 'type.googleapis.com/google.crypto.tink.' + key_type_identifier
key_manager = core.PrivateKeyManagerCcToPyWrapper(
tink_bindings.PublicKeySignKeyManager.from_cc_registry(type_url),
_public_key_sign.PublicKeySign, _PublicKeySignCcToPyWrapper)
core.Registry.register_key_manager(key_manager, new_key_allowed=True)
for key_type_identifier in ('EcdsaPublicKey', 'Ed25519PublicKey',
'RsaSsaPssPublicKey', 'RsaSsaPkcs1PublicKey',):
type_url = 'type.googleapis.com/google.crypto.tink.' + key_type_identifier
key_manager = core.KeyManagerCcToPyWrapper(
tink_bindings.PublicKeyVerifyKeyManager.from_cc_registry(type_url),
_public_key_verify.PublicKeyVerify, _PublicKeyVerifyCcToPyWrapper)
core.Registry.register_key_manager(key_manager, new_key_allowed=True)
core.Registry.register_primitive_wrapper(
_signature_wrapper.PublicKeySignWrapper())
core.Registry.register_primitive_wrapper(
_signature_wrapper.PublicKeyVerifyWrapper())
| 5,351,810 |
def cmd_add(opts):
"""Add one or more existing Docker containers to a Blockade group
"""
config = load_config(opts.config)
b = get_blockade(config, opts)
b.add_container(opts.containers)
| 5,351,811 |
def word2vec_similarity(segmented_topics, accumulator, with_std=False, with_support=False):
"""For each topic segmentation, compute average cosine similarity using a
:class:`~gensim.topic_coherence.text_analysis.WordVectorsAccumulator`.
Parameters
----------
segmented_topics : list of lists of (int, `numpy.ndarray`)
Output from the :func:`~gensim.topic_coherence.segmentation.s_one_set`.
accumulator : :class:`~gensim.topic_coherence.text_analysis.WordVectorsAccumulator` or
:class:`~gensim.topic_coherence.text_analysis.InvertedIndexAccumulator`
Word occurrence accumulator.
with_std : bool, optional
True to also include standard deviation across topic segment sets
in addition to the mean coherence for each topic.
with_support : bool, optional
True to also include support across topic segments. The support is defined as
the number of pairwise similarity comparisons were used to compute the overall topic coherence.
Returns
-------
list of (float[, float[, int]])
Сosine word2vec similarities per topic (with std/support if `with_std`, `with_support`).
Examples
--------
.. sourcecode:: pycon
>>> import numpy as np
>>> from gensim.corpora.dictionary import Dictionary
>>> from gensim.topic_coherence import indirect_confirmation_measure
>>> from gensim.topic_coherence import text_analysis
>>>
>>> # create segmentation
>>> segmentation = [[(1, np.array([1, 2])), (2, np.array([1, 2]))]]
>>>
>>> # create accumulator
>>> dictionary = Dictionary()
>>> dictionary.id2token = {1: 'fake', 2: 'tokens'}
>>> accumulator = text_analysis.WordVectorsAccumulator({1, 2}, dictionary)
>>> _ = accumulator.accumulate([['fake', 'tokens'], ['tokens', 'fake']], 5)
>>>
>>> # should be (0.726752426218 0.00695475919227)
>>> mean, std = indirect_confirmation_measure.word2vec_similarity(segmentation, accumulator, with_std=True)[0]
"""
topic_coherences = []
total_oov = 0
for topic_index, topic_segments in enumerate(segmented_topics):
segment_sims = []
num_oov = 0
for w_prime, w_star in topic_segments:
if not hasattr(w_prime, '__iter__'):
w_prime = [w_prime]
if not hasattr(w_star, '__iter__'):
w_star = [w_star]
try:
segment_sims.append(accumulator.ids_similarity(w_prime, w_star))
except ZeroDivisionError:
num_oov += 1
if num_oov > 0:
total_oov += 1
logger.warning(
"%d terms for topic %d are not in word2vec model vocabulary",
num_oov, topic_index)
topic_coherences.append(aggregate_segment_sims(segment_sims, with_std, with_support))
if total_oov > 0:
logger.warning("%d terms for are not in word2vec model vocabulary", total_oov)
return topic_coherences
| 5,351,812 |
def remote(self, privilege, grant_target_name, user_name, node=None):
"""Check that user is only able to to create a table from a remote source when they have the necessary privilege.
"""
exitcode, message = errors.not_enough_privileges(name=user_name)
if node is None:
node = self.context.node
with Scenario("Remote source without privilege"):
table_name = f'table_{getuid()}'
with Given("The user has table privilege"):
node.query(f"GRANT CREATE TABLE ON {table_name} TO {grant_target_name}")
with When("I grant the user NONE privilege"):
node.query(f"GRANT NONE TO {grant_target_name}")
with And("I grant the user USAGE privilege"):
node.query(f"GRANT USAGE ON *.* TO {grant_target_name}")
with Then("I check the user can't use the Remote source"):
node.query(f"CREATE TABLE {table_name} (x String) ENGINE = Distributed('127.0.0.1')", settings=[("user",user_name)],
exitcode=exitcode, message=message)
with Scenario("Remote source with privilege"):
with When(f"I grant {privilege}"):
node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}")
with Then("I check the user can use the Remote source"):
node.query(f"CREATE TABLE {table_name} (x String) ENGINE = Distributed('127.0.0.1')", settings = [("user", f"{user_name}")],
exitcode=42, message='Exception: Storage')
with Scenario("Remote source with revoked privilege"):
with When(f"I grant {privilege}"):
node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}")
with And(f"I revoke {privilege}"):
node.query(f"REVOKE {privilege} ON *.* FROM {grant_target_name}")
with Then("I check the user cannot use the Remote source"):
node.query(f"CREATE TABLE {table_name} (x String) ENGINE = Distributed('127.0.0.1')", settings=[("user",user_name)],
exitcode=exitcode, message=message)
| 5,351,813 |
def test_vecenv_terminal_obs(vec_env_class, vec_env_wrapper):
"""Test that 'terminal_observation' gets added to info dict upon
termination."""
step_nums = [i + 5 for i in range(N_ENVS)]
vec_env = vec_env_class([functools.partial(StepEnv, n) for n in step_nums])
if vec_env_wrapper is not None:
if vec_env_wrapper == VecFrameStack:
vec_env = vec_env_wrapper(vec_env, n_stack=2)
else:
vec_env = vec_env_wrapper(vec_env)
zero_acts = np.zeros((N_ENVS,), dtype="int")
prev_obs_b = vec_env.reset()
for step_num in range(1, max(step_nums) + 1):
obs_b, _, done_b, info_b = vec_env.step(zero_acts)
assert len(obs_b) == N_ENVS
assert len(done_b) == N_ENVS
assert len(info_b) == N_ENVS
env_iter = zip(prev_obs_b, obs_b, done_b, info_b, step_nums)
for prev_obs, obs, done, info, final_step_num in env_iter:
assert done == (step_num == final_step_num)
if not done:
assert "terminal_observation" not in info
else:
terminal_obs = info["terminal_observation"]
# do some rough ordering checks that should work for all
# wrappers, including VecNormalize
assert np.all(prev_obs < terminal_obs)
assert np.all(obs < prev_obs)
if not isinstance(vec_env, VecNormalize):
# more precise tests that we can't do with VecNormalize
# (which changes observation values)
assert np.all(prev_obs + 1 == terminal_obs)
assert np.all(obs == 0)
prev_obs_b = obs_b
vec_env.close()
| 5,351,814 |
def addGroupsToKey(server, activation_key, groups):
"""
Add server groups to a activation key
CLI Example:
.. code-block:: bash
salt-run spacewalk.addGroupsToKey spacewalk01.domain.com 1-my-key '[group1, group2]'
"""
try:
client, key = _get_session(server)
except Exception as exc: # pylint: disable=broad-except
err_msg = "Exception raised when connecting to spacewalk server ({}): {}".format(
server, exc
)
log.error(err_msg)
return {"Error": err_msg}
all_groups = client.systemgroup.listAllGroups(key)
groupIds = []
for group in all_groups:
if group["name"] in groups:
groupIds.append(group["id"])
if client.activationkey.addServerGroups(key, activation_key, groupIds) == 1:
return {activation_key: groups}
else:
return {activation_key: "Failed to add groups to activation key"}
| 5,351,815 |
def get_user_for_delete():
"""Query for Users table."""
delete_user = Users.query \
.get(DELETE_USER_ID)
return delete_user
| 5,351,816 |
def station_code_from_duids(duids: List[str]) -> Optional[str]:
"""
Derives a station code from a list of duids
ex.
BARRON1,BARRON2 => BARRON
OSBAG,OSBAG => OSBAG
"""
if type(duids) is not list:
return None
if not duids:
return None
if len(duids) == 0:
return None
duids_uniq = list(set(duids))
common = findcommonstart(duids_uniq)
if not common:
return None
# strip last character if we have one
if is_single_number(common[-1]):
common = common[:-1]
if common.endswith("_"):
common = common[:-1]
if len(common) > 2:
return common
return None
| 5,351,817 |
def act_mmp_3d(out_mmps, target_id):
"""Function to attribute 3D coordinates to the activity only molecule. Uses MMFF and maximises shape overlap with existing fragment.
Takes a list of mmps and a Target
Returns None"""
print "Generating 3D conformations"
# First of all make sure the protein exists to put all these artificial coordinates on
my_target = Target.objects.get(pk=target_id)
new_protein = Protein()
new_protein.code = my_target.title + "ChEMBL"
new_protein.target_id = my_target
try:
new_protein.validate_unique()
new_protein.save()
except ValidationError:
new_protein = Protein.objects.get(code=my_target.title + "ChEMBL")
# Now let's loop through the MMPs and overlay the act mol onto the other one
tot = len(out_mmps)
old = -1
for i, ans in enumerate(out_mmps):
# Print the progress
if i * 100 / tot != old:
old = i * 100 / tot
sys.stdout.write("\r%d%% complete..." % old)
sys.stdout.flush()
# Pull out the molecules and the fragments mol1 is in 3D mol2 is an activity molecule
mol1 = Chem.MolFromMolBlock(str(ans[0].sdf_info))
# Set the protonation state here
new_s = set_pH(str(ans[1].cmpd_id.smiles))
if Chem.MolFromSmiles(new_s) is None:
continue
mol2 = Chem.MolFromSmiles(new_s)
frag2 = ans[3]
activity = ans[1]
s_context = str(ans[4])
# Split the context into it's fragments
my_frags = s_context.split(".")
# If its a single cut
if len(my_frags) == 1:
context = canonicalise_context((Chem.MolFromSmiles(s_context)))
elif len(my_frags) == 2 or len(my_frags) == 3:
# If it is a double or triple split ignore
continue
else:
sys.stderr.write("ERROR MORE THAN THREE FRAGMENTS...")
sys.exit()
# Now filter out if it's too small
if context.GetNumHeavyAtoms() < 3:
continue
# Now find the best core, using make_smarts_from_frag to make a
# relevant smarts pattern to do substructure subs
smarts_mol = Chem.MolFromSmarts(make_smarts_from_frag(Chem.MolToSmiles(context, isomericSmiles=True)))
core_mol = find_core(mol1, mol2, smarts_mol)
# Check there is only one option. If there are two then we have a
# problem. With the current implementation we can only
if len(mol2.GetSubstructMatches(context)) > 1:
sys.stderr.write("ERROR TWO POSSIBLE MATCHES")
sys.stderr.write("ERROR " + Chem.MolToSmiles(context))
sys.stderr.write("ERROR " + Chem.MolToSmiles(mol2))
continue
#Now the function to do the constraining
try:
mol2 = AllChem.ConstrainedEmbed(mol2, core_mol)
except ValueError:
# If it is a nitrile it needs extra sanitisation before embedding.
Chem.SanitizeMol(core_mol)
try:
mol2 = AllChem.ConstrainedEmbed(mol2, core_mol)
except ValueError:
try:
# Setting the mol as a molblock and reading back in
# can fix this issue
mol2 = Chem.MolFromMolBlock(Chem.MolToMolBlock(mol2))
core_mol = Chem.MolFromMolBlock(Chem.MolToMolBlock(core_mol))
mol2 = AllChem.ConstrainedEmbed(mol2, core_mol)
except ValueError:
# Except when it doesn't so print out this
sys.stderr.write(Chem.MolToMolBlock(mol2))
sys.stderr.write(Chem.MolToMolBlock(core_mol))
sys.stderr.write("ERROR MOL ONE:\n" + Chem.MolToSmiles(mol1))
sys.stderr.write("ERROR MOL TWO:\n" + Chem.MolToSmiles(mol2))
sys.stderr.write("ERROR CORE MOL:\n" + Chem.MolToSmiles(core_mol))
sys.stderr.write("ERROR CONTEXT:\n" + Chem.MolToSmiles(context))
sys.stderr.write("ERROR CANNOT CONSTRAINED EMBED MOLECULE")
continue
# If the molecule is the same as the core then why bother
if Chem.MolToSmiles(mol2, isomericSmiles=True) == Chem.MolToSmiles(core_mol, isomericSmiles=True):
continue
#NOW FILTER ON SHAPE FOR THE BEST ONE
out_confs = generate_conformations(mol2, core_mol, num_confs=30, num_fails=30, max_iters=30, ff="MMFF")
if out_confs is None:
continue
my_mols = [Chem.MolFromMolBlock(x[0]) for x in out_confs]
mols = []
for conf in my_mols:
# Now calculate the shape distance
mols.append((AllChem.ShapeTanimotoDist(conf, mol1, ignoreHs=True), conf))
mols = sorted(mols, key=lambda x: x[0])
# Now pick the best (lowest) one
mol2 = mols[0][1]
# # code to find the most energetically favourable one - if several have
# if len(mols) > 1:
# # If the molecules are identical in terms of shapeprotrudedist
# # then use energy to get the value
# if mols[0][0] == mols[1][0]:
# # Check there aren't more like this
# samemols = [x for x in mols if x[0] == mols[0][0]]
# mineng = 100000
# # Check the energy
# for smol in samemols:
# mysmol = smol[1]
# # Calculate the energy
# try:
# mmff_mol = Chem.MolFromMolBlock(Chem.MolToMolBlock(mysmol), sanitize=False)
# myff = Chem.rdForceFieldHelpers.SetupMMFFForceField(mmff_mol, mmffVerbosity=0)
# ff = AllChem.MMFFGetMoleculeForceField(mysmol, myff, confId=0)
# # Because the neweer version of RDKit has this difference
# except AttributeError:
# ff = AllChem.MMFFGetMoleculeForceField(mysmol, AllChem.MMFFGetMoleculeProperties(mysmol))
# if ff.CalcEnergy() < mineng:
# mineng = ff.CalcEnergy()
# mol2 = mysmol
# # Derive the fragments
me = Chem.MolFromSmarts(make_smarts_from_frag(s_context))
frag_out2 = AllChem.DeleteSubstructs(mol2,me)
# Clean up the fragments
frag_out2, fr_none = clean_up_frags(frag_out2)
# Now add the coordinates for the fragment to the fragment and add the molecule linker -> the fact that the molecule is linked to an activity protein singles it out as being Activity firs
make_new_3d_frag(frag2, activity, ans[0], frag_out2, new_protein, mol2)
old = 100
sys.stdout.write("\r%d%% complete..." % old)
sys.stdout.flush()
print "Completed generating all 3D coordinates"
| 5,351,818 |
async def count_to(number):
""" counts to n in async manner"""
async for i in some_iter_func(number):
print(i)
| 5,351,819 |
def erosion(image, selem, out=None, shift_x=False, shift_y=False):
"""Return greyscale morphological erosion of an image.
Morphological erosion sets a pixel at (i,j) to the minimum over all pixels
in the neighborhood centered at (i,j). Erosion shrinks bright regions and
enlarges dark regions.
Parameters
----------
image : ndarray
Image array.
selem : ndarray
The neighborhood expressed as a 2-D array of 1's and 0's.
out : ndarray
The array to store the result of the morphology. If None is
passed, a new array will be allocated.
shift_x, shift_y : bool
shift structuring element about center point. This only affects
eccentric structuring elements (i.e. selem with even numbered sides).
Returns
-------
eroded : uint8 array
The result of the morphological erosion.
Examples
--------
>>> # Erosion shrinks bright regions
>>> import numpy as np
>>> from skimage.morphology import square
>>> bright_square = np.array([[0, 0, 0, 0, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 1, 1, 0],
... [0, 0, 0, 0, 0]], dtype=np.uint8)
>>> erosion(bright_square, square(3))
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]], dtype=uint8)
"""
if image is out:
raise NotImplementedError("In-place erosion not supported!")
image = img_as_ubyte(image)
selem = img_as_ubyte(selem)
return cmorph._erode(image, selem, out=out,
shift_x=shift_x, shift_y=shift_y)
| 5,351,820 |
def NE(x=None, y=None):
"""
Compares two values and returns:
true when the values are not equivalent.
false when the values are equivalent.
See https://docs.mongodb.com/manual/reference/operator/aggregation/ne/
for more details
:param x: first value or expression
:param y: second value or expression
:return: Aggregation operator
"""
if x is None and y is None:
return {'$ne': []}
return {'$ne': [x, y]}
| 5,351,821 |
def TCPs_from_tc(type_constraint):
"""
Take type_constraint(type_param_str, allowed_type_strs) and return list of TypeConstraintParam
"""
tys = type_constraint.allowed_type_strs # Get all ONNX types
tys = set(
[onnxType_to_Type_with_mangler(ty) for ty in tys]
) # Convert to Knossos and uniquify
return [
TypeConstraintParam(type_constraint.type_param_str, ty) for ty in tys
]
| 5,351,822 |
def test_phone_search(yelp_fusion, kwargs, exception_raised):
"""
test GET /businesses/search/phone
Args:
yelp_fusion (yelp.YelpFusion): a YelpFusion object
"""
if exception_raised:
with pytest.raises(RuntimeError):
yelp_fusion.phone_search(**kwargs)
else:
assert yelp_fusion.phone_search(**kwargs) is not None
| 5,351,823 |
def builtin_unshelve(self, context, looping=False):
"""Modify the stack: ( a ... -- ... a )."""
a = context.dequeue()
context.push(a)
| 5,351,824 |
def invoke_windowsError():
"""
Raised when a Windows-specific error occurs or when the error number does not correspond to an errno value.
(Only available on Windows systems)
"""
try:
a = open("unexistant.txt", 'r')
except WindowsError as e:
print("WindowsError encountered")
print(e)
| 5,351,825 |
def writeJavascriptLibrary(html):
"""Write a block of Javascript code."""
html.write("""<!-- Javascript functions to hide/display folder content -->
<script type="text/javascript">
<!-- to hide script contents from old browsers
// Pick loggraph
// Hides all loggraphs and then shows just the one of
// interest
function pick_loggraph(name,i,nloggraphs)
{
hide_all_loggraphs(name,nloggraphs);
show_loggraph(name,i);
}
// Function to display a loggraph associated with a log
function show_loggraph(name,i)
{
var loggraph_name = name + "_loggraph_" + i;
var loggraph_title = name + "_loggraph_title_" + i;
showElement(loggraph_name);
// Also make the title link bold
var obj = document.getElementById(loggraph_title);
obj.style.fontWeight = "bold";
}
// Function to hide a loggraph associated with a log
function hide_loggraph(name,i)
{
var loggraph_name = name + "_loggraph_" + i;
var loggraph_title = name + "_loggraph_title_" + i;
hideElement(loggraph_name);
// Also make the title link normal
var obj = document.getElementById(loggraph_title);
obj.style.fontWeight = "normal";
}
// Function to hide all loggraphs associated with a log
function hide_all_loggraphs(name,n)
{
// Loop over all graphs up to n and hide each one
for (var i=0; i<n; i++){
hide_loggraph(name,i);
}
}
// Function to open the complete log file from the
// hidden state
function open_full_logfile(name) {
// Show the entire logfile
var classname = name + "_logfile";
setDisplayByClass(classname,"block");
// Show the controls for toggling between
// summary and complete views
classname = name + "_logfile_open_controls";
setDisplayByClass(classname,"block");
// Hide the controls for accessing the logfile
// when it's hidden
classname = name + "_logfile_closed_controls";
setDisplayByClass(classname,"none");
// Show the full view
show_full_logfile(name);
}
// Function to open the log file summary from the
// hidden state
function open_summary_logfile(name) {
// Show the entire logfile
var classname = name + "_logfile";
setDisplayByClass(classname,"block");
// Show the controls for toggling between
// summary and complete views
classname = name + "_logfile_open_controls";
setDisplayByClass(classname,"block");
// Hide the controls for accessing the logfile
// when it's hidden
classname = name + "_logfile_closed_controls";
setDisplayByClass(classname,"none");
// Show the summary view
show_only_summary(name);
}
// Function to hide the complete log file
function close_logfile(name)
{
// Hide the entire logfile
var classname = name + "_logfile";
setDisplayByClass(classname,"none");
// Hide the controls for toggling between
// summary and complete views
classname = name + "_logfile_open_controls";
setDisplayByClass(classname,"none");
// Show the controls for accessing the logfile
// when it's hidden
classname = name + "_logfile_closed_controls";
setDisplayByClass(classname,"block");
}
// Function to show only summary for a program log
function show_only_summary(name)
{
// Hide everything that isn't a summary
// i.e. all the elements that have belong to
// classes ending with "_non_summary"
var classname = name + "_non_summary";
setDisplayByClass(classname,"none");
// Now deal with control elements
// Hide all controls that offer the option of
// showing the summary only
classname = name + "_show_summary_control";
setDisplayByClass(classname,"none");
// Show all controls that offer the option if
// showing the full log file
classname = name + "_show_full_logfile_control";
setDisplayByClass(classname,"block");
}
// Function to show full version of a program log
function show_full_logfile(name)
{
// Show all the associated elements that
// have class ending with "_non_summary"
var classname = name + "_non_summary";
setDisplayByClass(classname,"block");
// Now deal with control elements
// Show all controls that offer the option of
// showing the summary only
classname = name + "_show_summary_control";
setDisplayByClass(classname,"block");
// Hide all controls that offer the option if
// showing the full log file
classname = name + "_show_full_logfile_control";
setDisplayByClass(classname,"none");
}
// Open the view of a logfile fragment
function open_fragment(n)
{
var closed_classname = "fragment_closed_" + n;
setDisplayByClass(closed_classname,"none");
var open_classname = "fragment_open_" + n;
setDisplayByClass(open_classname,"block");
}
// Close the view of a logfile fragment
function close_fragment(n)
{
var closed_classname = "fragment_open_" + n;
setDisplayByClass(closed_classname,"none");
var open_classname = "fragment_closed_" + n;
setDisplayByClass(open_classname,"block");
}
// General function to reveal a specific element
// Specify the id of an element and its display
// style will be changed to "block"
function showElement(name)
{
// This changes the display style to be "block"
var obj = document.getElementById(name);
obj.style.display = "block";
}
// General function to hide a specific element
// Specify the id of an element and its display
// style will be changed to "none"
function hideElement(name)
{
// This changes the display style to be "none"
var obj = document.getElementById(name);
obj.style.display = "none";
}
// General function to set the display property for all elements
// with a specific class
// This is able to deal with elements that belong to multiple
// classes
function setDisplayByClass(classname,value)
{
// Get all elements in the document
var elements = document.getElementsByTagName("*");
// For each element look for the "class" attribute
for (var i = 0; i < elements.length; i++) {
var node = elements.item(i);
// First try to get the class attribute using 'class'
// This seems to work on Firefox 2.* and 1.5
var classes = node.getAttribute('class');
if (classes == null) {
// If the attribute is null then try using the
// 'className' attribute instead
// This works for IE7 and IE6
classes = node.getAttribute('className');
}
if (classes != null) {
classes = classes.split(" ");
for (var k in classes) {
if (classes[k] == classname) {
node.style.display = value;
}
}
}
}
}
// end hiding contents from old browsers -->
</script>
""")
return
| 5,351,826 |
def _randomde(allgenes,
allfolds,
size):
"""Randomly select genes from the allgenes array and fold changes from the
allfolds array. Size argument indicates how many to draw.
Parameters
----------
allgenes : numpy array
numpy array with all the genes expressed in the cells where de is generated
allfolds : numpy array
an array of fold changes from which the simulation should draw
size : int
number of non-zero weights (typically number of DE genes)
Returns
-------
type : PandasDataFrame
DataFrame with randomly chosen genes and weights.
"""
rdgenes = np.random.choice(allgenes, size, replace = False)
rdfolds = np.random.choice(allfolds, size, replace = False)
rdDF = pd.DataFrame({'id' : rdgenes, 'weights' : rdfolds})
return(rdDF)
| 5,351,827 |
def add_disc_rew(seg, gamma):
"""
Discount the reward of the generated batch of trajectories.
"""
new = np.append(seg['new'], 1)
rew = seg['rew']
n_ep = len(seg['ep_rets'])
n_samp = len(rew)
seg['ep_disc_ret'] = ep_disc_ret = np.empty(n_ep, 'float32')
seg['disc_rew'] = disc_rew = np.empty(n_samp, 'float32')
discounter = 0
ret = 0.
i = 0
for t in range(n_samp):
disc_rew[t] = rew[t] * gamma ** discounter
ret += disc_rew[t]
if new[t + 1]:
discounter = 0
ep_disc_ret[i] = ret
i += 1
ret = 0.
else:
discounter += 1
| 5,351,828 |
def test_md041_good_heading_top_level_setext():
"""
Test to make sure we get the expected behavior after scanning a good file from the
test/resources/rules/md004 directory that has consistent asterisk usage on a single
level list.
"""
# Arrange
scanner = MarkdownScanner()
supplied_arguments = [
"scan",
"test/resources/rules/md041/good_heading_top_level_setext.md",
]
expected_return_code = 0
expected_output = ""
expected_error = ""
# Act
execute_results = scanner.invoke_main(
arguments=supplied_arguments, suppress_first_line_heading_rule=False
)
# Assert
execute_results.assert_results(
expected_output, expected_error, expected_return_code
)
| 5,351,829 |
def retrieve(resource_url, filename=None, verbose=True):
"""
Copy the given resource to a local file. If no filename is
specified, then use the URL's filename. If there is already a
file named C{filename}, then raise a C{ValueError}.
@type resource_url: C{str}
@param resource_url: A URL specifying where the resource should be
loaded from. The default protocol is C{"nltk:"}, which searches
for the file in the the NLTK data package.
"""
if filename is None:
if resource_url.startswith('file:'):
filename = os.path.split(filename)[-1]
else:
filename = re.sub(r'(^\w+:)?.*/', '', resource_url)
if os.path.exists(filename):
raise ValueError, "%r already exists!" % filename
if verbose:
print 'Retrieving %r, saving to %r' % (resource_url, filename)
# Open the input & output streams.
infile = _open(resource_url)
outfile = open(filename, 'wb')
# Copy infile -> outfile, using 64k blocks.
while True:
s = infile.read(1024*64) # 64k blocks.
outfile.write(s)
if not s: break
# Close both files.
infile.close()
outfile.close()
| 5,351,830 |
def XCor(spectra, mask_l, mask_h, mask_w, vel, lbary_ltopo, vel_width=30,\
vel_step=0.3, start_order=0, spec_order=9,iv_order=10,sn_order=8,max_vel_rough=300.):
"""
Calculates the cross-correlation function for a Coralie Spectra
"""
# speed of light, km/s
c = 2.99792458E5
# loop over orders
norders = spectra.shape[1]
# determine minimum velocities
vel_min = vel - vel_width
vel_max = vel + vel_width
N = int(np.ceil( (2*vel_width) / vel_step ))
Xcor_full = np.zeros( (N, norders+1) )
sn = np.zeros( (norders) )
nlines_used = np.zeros( (norders) )
velocities = vel_min + np.arange( N ) * vel_step
Xcor_full[:,0] = velocities
weight=0.0
mask_middle = 0.5*(mask_l + mask_h)
W = np.zeros( norders )
vwt = 300
for j in range(start_order,norders):
t1 = time.time()
LL = np.where( spectra[spec_order,j,:] != 0 )
if len(LL[0]) > 0:
x1 = np.min( LL )
x2 = np.max( LL )
w1 = np.argmin( np.absolute( spectra[0,j,:] - spectra[0,j,x1] ) )
w2 = np.argmin( np.absolute( spectra[0,j,:] - spectra[0,j,x2] ) )
l1_0 = spectra[0,j,w1] / lbary_ltopo
l2_0 = spectra[0,j,w2] / lbary_ltopo
ww1 = np.argmin( np.abs( spectra[0,j,:] - l1_0*(1+(31+max_vel_rough)/c) ) )
ww2 = np.argmin( np.abs( spectra[0,j,:] - l2_0*(1-(31+max_vel_rough)/c) ) )
# should not happen, but hey, just in case...
if (ww1 < w1):
ww1 = w1
if (ww2 > w2):
ww2 = w2
l1 = spectra[0,j,ww1]
l2 = spectra[0,j,ww2]
II = np.where( (mask_l > l1) & (mask_h < l2) )
#if len(II[0])>0:
#print j,II[0][0],II[0][-1]
nlu = len(II[0])
nlines_used[j] = nlu
snw1 = int(0.25*spectra.shape[2])
snw2 = int(0.75*spectra.shape[2])
if (nlu > 0):
# calculate median S/N
#median_sn = np.median( spectra[5,j,w1:w2] * np.sqrt( spectra[6,j,w1:w2] ) )
median_sn = np.median( spectra[sn_order,j,snw1:snw2] )
sn[j] = median_sn
S = spectra[spec_order,j,w1:w2]
#iv = spectra[iv_order,j,w1:w2]
signal2noise = spectra[sn_order,j,w1:w2]
snwa = np.zeros(N)
for k in range(N):
#print k
Xcor_full[k,j+1], snw = CCF.ccfcos(mask_l[II], mask_h[II], spectra[0,j,w1:w2], S,\
mask_w[II], signal2noise, vel_min + k*vel_step)
snwa[k] = snw
if np.isnan(Xcor_full[k,j+1]):
Xcor_full[k,j+1] = Xcor_full[k-1,j+1]
snwa[k] = snwa[k-1]
#if k ==182 and j==35:
# #print mask_l[II], mask_h[II], spectra[0,j,w1:w2], S,mask_w[II], signal2noise, vel_min + k*vel_step
# #for z in range(len(mask_l[II])):
# # III = np.where((spectra[0,j,w1:w2]>=mask_l[II][z])&(spectra[0,j,w1:w2]<=mask_h[II][z]))[0]
# # print spectra[0,j,w1:w2][III],S[III]
# #print Xcor_full[k,j+1]
# #print snw
# #print gfd
xc_weight = np.median( snwa )
Xcor_full[:,j+1] /= snwa #xc_weight
W[j] = xc_weight
return velocities, Xcor_full, sn, nlines_used, W
| 5,351,831 |
def marks_details(request, pk):
"""
Display details for a given Mark
"""
# Check permission
if not has_access(request):
raise PermissionDenied
# Get context
context = get_base_context(request)
# Get object
mark = get_object_or_404(Mark, pk=pk)
mark.category_clean = mark.get_category_display()
context['mark'] = mark
# Get users connected to the mark
context['mark_users'] = mark.given_to.all()
# AJAX
if request.method == 'POST':
if request.is_ajax and 'action' in request.POST:
resp = {'status': 200}
context, resp = _handle_mark_detail(request, context, resp)
# Set mark
resp['mark'] = {'last_changed_date': context['mark'].last_changed_date.strftime("%Y-%m-%d"),
'last_changed_by': context['mark'].last_changed_by.get_full_name()}
# Return ajax
return HttpResponse(json.dumps(resp), status=resp['status'])
# Render view
return render(request, 'marks/dashboard/marks_details.html', context)
| 5,351,832 |
def clean_text(text):
"""
text: a string
return: modified initial string
"""
text = BeautifulSoup(text, "lxml").text # HTML decoding
text = text.lower() # lowercase text
# replace REPLACE_BY_SPACE_RE symbols by space in text
text = REPLACE_BY_SPACE_RE.sub(' ', text)
# delete symbols which are in BAD_SYMBOLS_RE from text
text = BAD_SYMBOLS_RE.sub('', text)
# delete stopwors from text
text = ' '.join(word for word in text.split() if word not in STOPWORDS)
return text
| 5,351,833 |
def get_input_device(config):
""" Create the InputDevice instance and handle errors """
dev_path = config['flirc_device_path']
logging.debug('get_input_device() dev_path: %s', dev_path)
try:
input_device = InputDevice(dev_path)
return input_device
except FileNotFoundError as exception:
logging.error('Error opening device path %s', dev_path)
logging.error('Error was: %s', exception)
logging.error('FLIRC is likely not attached or the device path (FLIRC_DEV_PATH) is wrong')
sys.exit(1)
| 5,351,834 |
def _simpsons_interaction(data, groups):
"""
Calculation of Simpson's Interaction index
Parameters
----------
data : a pandas DataFrame
groups : list of strings.
The variables names in data of the groups of interest of the analysis.
Returns
-------
statistic : float
Simpson's Interaction Index
core_data : a pandas DataFrame
A pandas DataFrame that contains the columns used to perform the estimate.
Notes
-----
Based on Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
Simpson's interaction index (I) can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to not belong to the same group.
Higher values means lesser segregation.
Simpson's Concentration + Simpson's Interaction = 1
Reference: :cite:`reardon2002measures`.
"""
core_data = data[groups]
data = _nan_handle(core_data)
df = np.array(core_data)
Pk = df.sum(axis=0) / df.sum()
I = (Pk * (1 - Pk)).sum()
return I, core_data, groups
| 5,351,835 |
def find_includes(armnn_include_env: str = INCLUDE_ENV_NAME):
"""Searches for ArmNN includes.
Args:
armnn_include_env(str): Environmental variable to use as path.
Returns:
list: A list of paths to include.
"""
armnn_include_path = os.getenv(armnn_include_env)
if armnn_include_path is not None and os.path.exists(armnn_include_path):
armnn_include_path = [armnn_include_path]
else:
armnn_include_path = ['/usr/local/include', '/usr/include']
return armnn_include_path
| 5,351,836 |
def read_missing_oids(oid_lines):
"""
Parse lines into oids.
>>> list(read_missing_oids([
... "!!! Users 0 ?", "POSKeyError: foo",
... "!!! Users 0 ?",
... "!!! Users 1 ?",
... "bad xref name, 1", "bad db", ]))
[0, 1]
"""
result = OidSet()
for line in oid_lines:
if line.startswith('bad') or ':' in line:
continue
if line.startswith('!!!'):
# zc.zodbdgc output. bad OID is always the
# third field.
try:
oid = int(line.split()[2])
except (ValueError, IndexError):
logger.info("Malformed zc.zodbdgc input: %s", line)
continue
result.add(oid)
else:
# Just an int
try:
oid = int(line)
except ValueError:
logger.info("Malformed input: %s", line)
else:
result.add(oid)
if oid_lines != sys.stdin:
oid_lines.close()
return result
| 5,351,837 |
def run(target='192.168.1.1', ports=[21,22,23,25,80,110,111,135,139,443,445,554,993,995,1433,1434,3306,3389,8000,8008,8080,8888]):
"""
Run a portscan against a target hostname/IP address
`Optional`
:param str target: Valid IPv4 address
:param list ports: Port numbers to scan on target host
:returns: Results in a nested dictionary object in JSON format
Returns onlne targets & open ports as key-value pairs in dictionary (JSON) object
"""
global tasks
global threads
global results
if not util.ipv4(target):
raise ValueError("target is not a valid IPv4 address")
if _ping(target):
for port in ports:
tasks.put_nowait((_scan, (target, port)))
for i in range(1, tasks.qsize()):
threads['portscan-%d' % i] = _threader()
for t in threads:
threads[t].join()
return json.dumps(results[target])
else:
return "Target offline"
| 5,351,838 |
def go():
"""サンプルを実行します."""
obj = Sample()
obj.exec()
| 5,351,839 |
def check_factorial_validity(token, value):
"""
Checks whether the factorial call is in limit.
Parameters
----------
token : ``Token``
The parent token.
value : `int` or `float`
The value to use factorial on.
Raises
------
EvaluationError
- Factorial is only allowed for integral values.
- Factorial nto defined for negative values.
- Operation over factorial limit is disallowed.
"""
if (not isinstance(value, int)) and (not value.is_integer()):
raise EvaluationError(
token.array, token.start, token.end,
f'Factorial only accepts integral values: factorial({value!r})',
)
if value < 0:
raise EvaluationError(
token.array, token.start, token.end,
f'Factorial is not defined for negative values: factorial({value!r})',
)
if value > LIMIT_FACTORIAL_MAX:
raise EvaluationError(
token.array, token.start, token.end,
f'Factorial over {LIMIT_INTEGER_BIT_LENGTH} is disallowed: factorial({value!r})',
)
| 5,351,840 |
def subsequent_mask(size: int):
"""
Mask out subsequent positions (to prevent attending to future positions)
Transformer helper function.
:param size: size of mask (2nd and 3rd dim)
:return: Tensor with 0s and 1s of shape (1, size, size)
"""
mask = np.triu(np.ones((1, size, size)), k=1).astype("uint8")
return torch.from_numpy(mask) == 0
| 5,351,841 |
def _get_dist_class(
policy: Policy, config: TrainerConfigDict, action_space: gym.spaces.Space
) -> Type[TorchDistributionWrapper]:
"""Helper function to return a dist class based on config and action space.
Args:
policy (Policy): The policy for which to return the action
dist class.
config (TrainerConfigDict): The Trainer's config dict.
action_space (gym.spaces.Space): The action space used.
Returns:
Type[TFActionDistribution]: A TF distribution class.
"""
if hasattr(policy, "dist_class") and policy.dist_class is not None:
return policy.dist_class
elif config["model"].get("custom_action_dist"):
action_dist_class, _ = ModelCatalog.get_action_dist(
action_space, config["model"], framework="torch"
)
return action_dist_class
elif isinstance(action_space, Discrete):
return TorchCategorical
elif isinstance(action_space, Simplex):
return TorchDirichlet
else:
assert isinstance(action_space, Box)
if config["normalize_actions"]:
return (
TorchSquashedGaussian
if not config["_use_beta_distribution"]
else TorchBeta
)
else:
return TorchDiagGaussian
| 5,351,842 |
def timeexec(fct, number, repeat):
"""
Measures the time for a given expression.
:param fct: function to measure (as a string)
:param number: number of time to run the expression
(and then divide by this number to get an average)
:param repeat: number of times to repeat the computation
of the above average
:return: dictionary
"""
rep = timeit_repeat(fct, number=number, repeat=repeat)
ave = sum(rep) / (number * repeat)
std = (sum((x / number - ave)**2 for x in rep) / repeat)**0.5
fir = rep[0] / number
fir3 = sum(rep[:3]) / (3 * number)
las3 = sum(rep[-3:]) / (3 * number)
rep.sort()
mini = rep[len(rep) // 20] / number
maxi = rep[-len(rep) // 20] / number
return dict(average=ave, deviation=std, first=fir, first3=fir3,
last3=las3, repeat=repeat, min5=mini, max5=maxi, run=number)
| 5,351,843 |
def is_bst(root):
""" checks if binary tree is binary search tree """
def is_bst_util(root, min_value, max_value):
""" binary search tree check utility function """
if root is None:
return True
if (root.data >= min_value and root.data < max_value
and is_bst_util(root.left, min_value, root.data)
and is_bst_util(root.right, root.data, max_value)):
return True
return False
return is_bst_util(root, -sys.maxsize - 1, sys.maxsize)
| 5,351,844 |
def regexify(w, tags):
"""Convert a single component of a decomposition rule
from Weizenbaum notation to regex.
Parameters
----------
w : str
Component of a decomposition rule.
tags : dict
Tags to consider when converting to regex.
Returns
-------
w : str
Component of a decomposition rule converted to regex form.
"""
# 0 means "an indefinite number of words"
if w == '0':
w = '.*'
# A positive non-zero integer means "this specific amount of words"
elif w.isnumeric() and int(w) > 0:
w = r'(?:\b\w+\b[\s\r\n]*){' + w + '}'
# A word starting with @ signifies a tag
elif w[0] == "@":
# Get tag name
tag_name = w[1:].lower()
w = tag_to_regex(tag_name, tags)
else:
# Add word boundaries to match on a whole word basis
w = r'\b' + w + r'\b'
return w
| 5,351,845 |
def test_handling_unexpected_exception(testdata_dir: pathlib.Path, monkeypatch: MonkeyPatch) -> None:
"""Test whether a bad element string correctly errors."""
element_str = 'catalog'
full_path = testdata_dir / 'json/minimal_catalog.json'
command_str = f'trestle partial-object-validate -f {str(full_path)} -e {element_str}'
monkeypatch.setattr(sys, 'argv', command_str.split())
monkeypatch.setattr(
'trestle.core.commands.partial_object_validate.PartialObjectValidate.partial_object_validate',
test_utils.patch_raise_exception
)
rc = Trestle().run()
assert rc > 0
| 5,351,846 |
def test_subgrid_error():
"""Capture errors in the subgrid specification"""
with pytest.raises(SystemExit): # j0 outside grid
g = Grid(filename=grid_file, subgrid=(20, 150, 30, 222))
with pytest.raises(SystemExit): # i0 > i1, i0
g = Grid(filename=grid_file, subgrid=(50, 20, 30, 170))
| 5,351,847 |
def row_dot_product(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""
Returns a vectorized dot product between the rows of a and b
:param a: An array of shape (N, M) or (M, )
(or a shape that can be broadcast to (N, M))
:param b: An array of shape (N, M) or (M, )
(or a shape that can be broadcast to (N, M))
:return: A vector of shape (N, ) whose elements are the dot product of rows a, b
"""
return np.einsum('ij,ij->i', np.atleast_2d(a), np.atleast_2d(b))
| 5,351,848 |
def pmg_pickle_dump(obj, filobj, **kwargs):
"""
Dump an object to a pickle file using PmgPickler.
Args:
obj : Object to dump.
fileobj: File-like object
\\*\\*kwargs: Any of the keyword arguments supported by PmgPickler
"""
return PmgPickler(filobj, **kwargs).dump(obj)
| 5,351,849 |
def condition_header(header, needed_keys=None):
"""Return a dictionary of all `needed_keys` from `header` after passing
their values through the CRDS value conditioner.
"""
header = { key.upper():val for (key, val) in header.items() }
if not needed_keys:
needed_keys = header.keys()
else:
needed_keys = [ key.upper() for key in needed_keys ]
conditioned = { key:condition_value(header[key]) for key in needed_keys }
return conditioned
| 5,351,850 |
def check_is_proba(entry: Union[float, int], name: str = None):
"""Check whether the number is non-negative and less than or equal to 1."""
if name is None:
name = 'Probabilities'
if type(entry) not in [float, int]:
raise TypeError('{} must be floats (or ints if 0 or 1).'.format(name))
if entry < 0 or entry > 1:
raise ValueError('{} must have value between 0 and 1.'.format(name))
| 5,351,851 |
def get_generic_path_information(paths, stat_prefix=""):
"""
Get an OrderedDict with a bunch of statistic names and values.
"""
statistics = OrderedDict()
returns = [sum(path["rewards"]) for path in paths]
# rewards = np.vstack([path["rewards"] for path in paths])
rewards = np.concatenate([path["rewards"] for path in paths])
statistics.update(
create_stats_ordered_dict(
"Rewards", rewards, stat_prefix=stat_prefix, always_show_all_stats=True
)
)
statistics.update(
create_stats_ordered_dict(
"Returns", returns, stat_prefix=stat_prefix, always_show_all_stats=True
)
)
# print(paths[0]["env_infos"])
if "is_success" in paths[0]["env_infos"][0].keys():
acc_sum = [(np.sum([x['is_success'] for x in path["env_infos"]])>0).astype(float) for path in paths]
acc = np.sum(acc_sum) * 1.0 / len(paths)
statistics.update(
create_stats_ordered_dict(
"Success Num", np.sum(acc_sum), stat_prefix=stat_prefix, always_show_all_stats=True
)
)
statistics.update(
create_stats_ordered_dict(
"Traj Num", len(paths), stat_prefix=stat_prefix, always_show_all_stats=True
)
)
statistics.update(
create_stats_ordered_dict(
"Success Rate", acc, stat_prefix=stat_prefix, always_show_all_stats=True
)
)
actions = [path["actions"] for path in paths]
# if isinstance(actions[0][0], np.ndarray):
# actions = np.vstack([path["actions"] for path in paths])
# else:
# actions = np.hstack([path["actions"] for path in paths])
statistics.update(
create_stats_ordered_dict(
"Actions", actions, stat_prefix=stat_prefix, always_show_all_stats=True
)
)
statistics.update(
create_stats_ordered_dict(
"Ep. Len.",
np.array([len(path["terminals"]) for path in paths]),
stat_prefix=stat_prefix,
always_show_all_stats=True,
)
)
statistics["Num Paths"] = len(paths)
return statistics
| 5,351,852 |
def pad_images(images, nlayers):
"""
In Unet, every layer the dimension gets divided by 2
in the encoder path. Therefore the image size should be divisible by 2^nlayers.
"""
import math
import numpy as np
divisor = 2**nlayers
nlayers, x, y = images.shape # essentially setting nlayers to z direction so return is z, x, y
x_pad = int((math.ceil(x / float(divisor)) * divisor) - x)
y_pad = int((math.ceil(y / float(divisor)) * divisor) - y)
padded_image = np.pad(images, ((0,0),(0, x_pad), (0, y_pad)), 'constant', constant_values=(0, 0))
return padded_image
| 5,351,853 |
def remove_measurements(measurements, model_dict, params=None):
"""Remove measurements from a model specification.
If provided, a params DataFrame is also reduced correspondingly.
Args:
measurements (str or list): Name(s) of the measurement(s) to remove.
model_dict (dict): The model specification. See: :ref:`model_specs`.
params (pandas.DataFrame or None): The params DataFrame for the full model.
Returns:
dict: The reduced model dictionary
pandas.DataFrame: The reduced parameter DataFrame (only if params is not None)
"""
out = deepcopy(model_dict)
for factor in model_dict["factors"]:
full = model_dict["factors"][factor]["measurements"]
reduced = [_remove_from_list(meas_list, measurements) for meas_list in full]
out["factors"][factor]["measurements"] = reduced
norminfo = model_dict["factors"][factor].get("normalizations", {})
if "loadings" in norminfo:
out["factors"][factor]["normalizations"][
"loadings"
] = _remove_measurements_from_normalizations(
measurements, norminfo["loadings"]
)
if "intercepts" in norminfo:
out["factors"][factor]["normalizations"][
"intercepts"
] = _remove_measurements_from_normalizations(
measurements, norminfo["intercepts"]
)
if params is not None:
out_params = _reduce_params(params, out)
out = (out, out_params)
return out
| 5,351,854 |
def make_output(platform, output):
"""Return libraries list"""
libraries = parse_libs()
# OS libs separate
_ = {"win32": ";", "linux": ":", "darwin": ":"}
out_lib = str()
# Generate libraries list
for lib in libraries:
out_lib = out_lib + "$MC_DIR/libraries/{0}".format(lib) + _[platform]
out_lib = out_lib + "$MC_DIR/versions/$GAME_VERSION/$GAME_VERSION.jar"
# Replace for OS shell variable symbol
if platform == "win32":
out_lib = out_lib.replace("$MC_DIR", "%MC_DIR%")
out_lib = out_lib.replace("$GAME_VERSION", "%GAME_VERSION%")
if output == "tty":
click.echo(out_lib)
if platform == "win32":
print("\nWindows generate libraries list complete!")
elif platform in ("linux", "darwin"):
print("\nUnix generate libraries list complete!")
elif output == "txt":
with open("./libs.txt", "w", encoding="utf-8") as f:
f.write(out_lib)
if platform == "win32":
print("\nWindows generate libraries list complete!\n" "See libs.txt file.")
elif platform in ("linux", "darwin"):
print("\nUnix generate libraries list complete!\n" "See libs.txt file.")
| 5,351,855 |
def _output(command: Sequence[str]) -> None:
"""Helper function. Prints start/finish and runs the command inbetween."""
print(f'========== {command[0]} starting ==========')
subprocess.run(command)
print(f'========== {command[0]} finished ==========')
| 5,351,856 |
def good2Go(SC, L, CC, STR):
"""
Check, if all input is correct and runnable
"""
if SC == 1 and L == 1 and CC == 1 and STR == 1:
return True
else:
print(SC, L, CC, STR)
return False
| 5,351,857 |
def __validate_tweet_name(tweet_name: str, error_msg: str) -> str:
"""Validate the tweet's name.
Parameters
----------
tweet_name : str
Tweet's name.
error_msg : str
Error message to display for an invalid name.
Returns
-------
str
Validated tweet name.
Raises
------
InvalidTweetName
Raised for invalid tweet names.
"""
if tweet_name == "":
raise InvalidTweetName(error_msg)
else:
return tweet_name
| 5,351,858 |
def convert_event(obj):
"""
:type obj: :class:`sir.schema.modelext.CustomEvent`
"""
event = models.event(id=obj.gid, name=obj.name)
if obj.comment:
event.set_disambiguation(obj.comment)
if obj.type is not None:
event.set_type(obj.type.name)
event.set_type_id(obj.type.gid)
lifespan = convert_life_span(obj.begin_date, obj.end_date, obj.ended)
if lifespan.get_begin() is not None or lifespan.get_end() is not None:
event.set_life_span(lifespan)
if obj.time is not None:
event.set_time(datetime_to_string(obj.time))
if obj.area_links:
event.add_relation_list(convert_event_area_relation_list(obj.area_links))
if obj.artist_links:
event.add_relation_list(convert_artist_relation_list(obj.artist_links))
if obj.place_links:
event.add_relation_list(convert_place_relation_list(obj.place_links))
if obj.aliases:
event.set_alias_list(convert_alias_list(obj.aliases))
if obj.tags:
event.set_tag_list(convert_tag_list(obj.tags))
return event
| 5,351,859 |
def get_pr_review_status(pr: PullRequestDetails, per_page: int = 100) -> Any:
"""
References:
https://developer.github.com/v3/pulls/reviews/#list-reviews-on-a-pull-request
"""
url = (f"https://api.github.com/repos/{pr.repo.organization}/{pr.repo.name}"
f"/pulls/{pr.pull_id}/reviews"
f"?per_page={per_page};access_token={pr.repo.access_token}")
response = requests.get(url)
if response.status_code != 200:
raise RuntimeError(
'Get review failed. Code: {}. Content: {}.'.format(
response.status_code, response.content))
return json.JSONDecoder().decode(response.content.decode())
| 5,351,860 |
def make_sph_model(filename):
"""reads a spherical model file text file and generates interpolated values
Args:
filename:
Returns:
model:
"""
M = np.loadtxt(filename, dtype={'names': ('rcurve', 'potcurve', 'dpotcurve'),'formats': ('f4', 'f4', 'f4')},skiprows=1)
model = spherical_model()
model.rcurve = M['rcurve']
model.potcurve = M['potcurve']
model.dpotcurve = M['dpotcurve']
model.rcurve = M['rcurve']
model.potcurve = UnivariateSpline(model.rcurve,M['potcurve'],k=3)
model.dpotcurve = UnivariateSpline(model.rcurve,M['dpotcurve'],k=3)
return model
| 5,351,861 |
def list_dir(filepath):
"""List the files in the directory"""
return sorted(list(map(lambda x: os.path.join(filepath, x), os.listdir(filepath))))
| 5,351,862 |
def minimum(x, y):
"""
Returns the min of x and y (i.e. x < y ? x : y) element-wise.
Parameters
----------
x : tensor.
Must be one of the following types: bfloat16, half, float32, float64, int32, int64.
y : A Tensor.
Must have the same type as x.
name : str
A name for the operation (optional).
Returns
-------
A Tensor. Has the same type as x
"""
return pd.minimum(x, y)
| 5,351,863 |
def seconds_to_timestamp(seconds):
"""
Convert from seconds to a timestamp
"""
minutes, seconds = divmod(float(seconds), 60)
hours, minutes = divmod(minutes, 60)
return "%02d:%02d:%06.3f" % (hours, minutes, seconds)
| 5,351,864 |
def query(querystring: str,
db: tsdb.Database,
**kwargs):
"""
Perform query *querystring* on the testsuite *ts*.
Note: currently only 'select' queries are supported.
Args:
querystring (str): TSQL query string
ts (:class:`delphin.itsdb.TestSuite`): testsuite to query over
kwargs: keyword arguments passed to the more specific query
function (e.g., :func:`select`)
Example:
>>> list(tsql.query('select i-id where i-length < 4', ts))
[[142], [1061]]
"""
queryobj = _parse_query(querystring)
if queryobj['type'] in ('select', 'retrieve'):
return _select(
queryobj['projection'],
queryobj['relations'],
queryobj['condition'],
db,
record_class=kwargs.get('record_class', None))
else:
# not really a syntax error; replace with TSQLError or something
# when the proper exception class exists
raise TSQLSyntaxError(queryobj['type'] + ' queries are not supported',
text=querystring)
| 5,351,865 |
def rename_SI_cols(dataset, removenans=True):
"""
names columns of Spectro Inlets data like EC-Lab and PyExpLabSys+cinfdata name them.
"""
if isinstance(dataset, dict):
print("WARNGING!!! The use of dataset dictionaries is no longer suported!!!")
data = dataset
else:
data = dataset.data
data_cols = data["data_cols"].copy()
# ^ to avoid changing the size of a set during iteration
for col_0 in data_cols:
col = "test"
if not get_type(col_0, dataset=dataset) == "SI":
continue
if re.search("^C[0-9]+", col_0):
try:
mass = re.search(r"M[0-9]+", col_0).group()
except AttributeError:
print("Can't rename SI col " + col_0)
continue
if "Time" in col_0:
col = mass + "-x"
else:
col = mass + "-y"
col_type = "MS"
elif re.search("^pot", col_0):
for c0, c in [
("Time", "time/s"),
("Voltage", "Ewe/V"),
("Current", "I/mA"),
("Cycle", "cycle number"),
]:
if c0 in col_0:
col = c
# print('col = ' + col + ', col_0 = ' + col_0) # debugging
break
else:
print("Can't rename SI col " + col_0)
continue
col_type = "EC"
else:
# print('Not renaming SI col ' + col_0)
continue
data[col] = data[col_0].copy()
data["col_types"][col] = col_type
data["data_cols"].add(col)
print(col_0 + " copied to " + col)
if removenans:
remove_nans(data)
data["data_type"] = "combined"
| 5,351,866 |
def TTF_SizeUTF8(font, text, w, h):
"""Calculates the size of a UTF8-encoded string rendered with a given font.
See :func:`TTF_SizeText` for more info.
Args:
font (:obj:`TTF_Font`): The font object to use.
text (bytes): A UTF8-encoded bytestring of text for which the rendered
surface size should be calculated.
w (byref(:obj:`~ctypes.c_int`)): A pointer to an integer in which to
store the calculated surface width (in pixels).
h (byref(:obj:`~ctypes.c_int`)): A pointer to an integer in which to
store the calculated surface height (in pixels).
Returns:
int: 0 on success, or -1 on error (e.g. if a glyph is not found in
the font).
"""
return _funcs["TTF_SizeUTF8"](font, text, w, h)
| 5,351,867 |
def get_mse(y_true, y_hat):
"""
Return the mean squared error between the ground truth and the prediction
:param y_true: ground truth
:param y_hat: prediction
:return: mean squared error
"""
return np.mean(np.square(y_true - y_hat))
| 5,351,868 |
def generate_v2_token(username, version, client_ip, issued_at_timestamp, email=''):
"""Creates the JSON Web Token with a new schema
:Returns: String
:param username: The name of person who the token identifies
:type username: String
:param version: The version number for the token
:type version: Integer/String
:param client_ip: The IP of machine the client used to request a token.
:type client_ip: String
:param email: The email address associated with a user.
:type email: String
"""
claims = {'exp' : issued_at_timestamp + const.AUTH_TOKEN_TIMEOUT,
'iat' : issued_at_timestamp,
'iss' : const.VLAB_URL,
'username' : username,
'version' : version,
'client_ip' : client_ip,
'email' : email,
}
return jwt.encode(claims, const.AUTH_TOKEN_SECRET, algorithm=const.AUTH_TOKEN_ALGORITHM)
| 5,351,869 |
def choose(n, k):
"""return n choose k
resilient (though not immune) to integer overflow"""
if n == 1:
# optimize by far most-common case
return 1
return fact_div(n, max(k, n - k)) / math.factorial(min(k, n - k))
| 5,351,870 |
def part_one(puzzle_input: List[str]) -> int:
"""Find the highest seat ID on the plane"""
return max(boarding_pass_to_seat_id(line) for line in puzzle_input)
| 5,351,871 |
def readbit(val, bitidx):
""" Direct word value """
return int((val & (1<<bitidx))!=0)
| 5,351,872 |
def main():
"""
pred_dict : dict.
{'img1.png': [array, array], ...}
array: [x1, y1, x2, y2, conf]
bordered, borderless 순
gt_dict: dict.
{{'img1.png': [array, array], ...}}
array: [x1, y1, x2, y2]
"""
with open(pred_pickle, 'rb') as f:
pred_dict = pickle.load(f)
with open(gt_pickle, 'rb') as f:
gt_dict = pickle.load(f)
ious = [0.6, 0.7, 0.8, 0.9]
print('\n')
for iou in ious:
images_result = get_images_results(gt_dict, pred_dict, conf_thr=conf_thr, iou_thr=iou, mode='all')
precision, recall, f1 = calc_precision_recall_f1(images_result)
print('[iou=%f]' % iou)
print(images_result)
print(f'precision: {precision}, recall: {recall}, f1: {f1}')
print('\n')
| 5,351,873 |
def mdtf_rename_img(varlist,conv,img_dir):
"""Rename figure files to use variable names from settings file,
not conventions."""
for f in img_dir.iterdir():
f_name = str(f.name)
if not f_name.startswith("."):
for pod_var in varlist:
standard_name = varlist[pod_var]["standard_name"]
dim_len = len(varlist[pod_var]["dimensions"])
conv_var = conv.lookup_by_standard_name(standard_name,dim_len,suppress_warning=True)
if conv_var is not None:
if "scalar_coordinates" in varlist[pod_var]:
try:
conv_var += str(varlist[pod_var]["scalar_coordinates"]["lev"])
except KeyError:
conv_var += str(varlist[pod_var]["scalar_coordinates"]["plev"])
if ("_"+conv_var+".png" in f_name):
f_new = img_dir/f_name.replace(conv_var,pod_var)
f.rename(f_new)
| 5,351,874 |
def test_immediate_datafuture():
"""Test DataFuture string representation, for AppFutures launched with parent
"""
import time
fu = echo_slow_message("Hello world", sleep=1, outputs=["hello.1.txt"])
d_fu = fu.outputs[0]
time.sleep(0.1)
state_2 = d_fu.__str__()
print("State_2 : ", state_2, "Fu:", fu.parent)
assert "running" in state_2, "DataFuture should now be running"
d_fu.result()
state_3 = d_fu.__str__()
print("State_3 : ", state_3, "Fu:", fu.parent)
assert "finished" in state_3, "DataFuture should now be finished"
| 5,351,875 |
def matrix_bombing_plan(m):
""" This method calculates sum of the matrix by
trying every possible position of the bomb and
returns a dictionary. Dictionary's keys are the
positions of the bomb and values are the sums of
the matrix after the damage """
matrix = deepcopy(m)
rows = len(m)
columns = len(m[0])
d = {}
for x in range(0, rows):
for y in range(0, columns):
p = (x, y)
neighbours = find_neighbour(matrix, (x, y))
d[p] = sum_matrix(neighbours)
return d
| 5,351,876 |
def coord_to_gtp(coord, board_size):
""" From 1d coord (0 for position 0,0 on the board) to A1 """
if coord == board_size ** 2:
return "pass"
return "{}{}".format("ABCDEFGHJKLMNOPQRSTYVWYZ"[int(coord % board_size)],\
int(board_size - coord // board_size))
| 5,351,877 |
def test_alternative_clusting_method(ClusterModel):
"""
Test that users can supply alternative clustering method as dep injection
"""
def clusterer(X: np.ndarray, k: int, another_test_arg):
"""
Function to wrap a sklearn model as a clusterer for OptimalK
First two arguments are always the data matrix, and k, and can supply
"""
m = ClusterModel()
m.fit(X)
assert another_test_arg == "test"
return m.cluster_centers_, m.predict(X)
optimalk = OptimalK(
n_jobs=-1,
parallel_backend="joblib",
clusterer=clusterer,
clusterer_kwargs={"another_test_arg": "test"},
)
X, y = make_blobs(n_samples=50, n_features=2, centers=3)
n_clusters = optimalk(X, n_refs=3, cluster_array=np.arange(1, 5))
assert isinstance(n_clusters, int)
| 5,351,878 |
def load_dataset(spfile, twfile):
"""Loads dataset given the span file and the tweets file
Arguments:
spfile {string} -- path to span file
twfile {string} -- path to tweets file
Returns:
dict -- dictionary of tweet-id to Tweet object
"""
tw_int_map = {}
# for filen in os.listdir(txt_dir):
# twid = filen.split(".")[0]
# if twid == "tweet_id":
# continue
# tweet = Tweet(twid)
# tw_int_map[twid] = tweet
for line in open(twfile, 'r'):
#parts = line.split("\t")
#twid, text = parts[0], parts[1]
twid = get_basename_without_extension(line.strip('\n')) # ANTONIO
tweet = Tweet(twid)
if twid in tw_int_map:
log.warning("Possible duplicate %s", twid)
tw_int_map[twid] = tweet
# Load annotations
for line in open(spfile, 'r'):
parts = [x.strip() for x in line.split("\t")]
if len(parts) != 5:
log.warning("Tab delimited not correct:" + str(len(parts)))
continue
if len(parts) == 5:
twid, start, end, atype, prof = parts
if twid == "tweet_id":
continue
if twid in tw_int_map:
tweet = tw_int_map[twid]
else:
log.warning("Invalid tweetid %s not found.", twid)
continue
valid_labels = ["PROTEINAS", "NORMALIZABLES", "UNCLEAR","NO-NORMALIZABLES"]
if atype in valid_labels:
ann = Ann(prof.strip(), atype, start, end)
tweet.anns.append(ann)
tweet.has_ann = (tweet.has_ann or atype in valid_labels)
num_anns = sum([len(x.anns) for _, x in tw_int_map.items()])
log.info("Loaded dataset %s tweets. %s annotations.", len(tw_int_map), num_anns)
return tw_int_map
| 5,351,879 |
def nameof(var, *more_vars,
# *, keyword only argument, supported with python3.8+
frame: int = 1,
vars_only: bool = True) -> Union[str, Tuple[str]]:
"""Get the names of the variables passed in
Examples:
>>> a = 1
>>> nameof(a) # 'a'
>>> b = 2
>>> nameof(a, b) # ('a', 'b')
>>> x = lambda: None
>>> x.y = 1
>>> nameof(x.y, full=True) # 'x.y'
Note:
This function works with the environments where source code is
available, in other words, the callee's node can be retrieved by
`executing`. In some cases, for example, running code from python
shell/REPL or from `exec`/`eval`, we try to fetch the variable name
from the bytecode. This requires only a single variable name is passed
to this function and no keyword arguments, meaning that getting full
names of attribute calls are not supported in such cases.
Args:
var: The variable to retrieve the name of
*more_vars: Other variables to retrieve the names of
frame: The this function is called from the wrapper of it. `frame=1`
means no wrappers.
Note that the calls from standard libraries are ignored.
Also note that the wrapper has to have signature as this one.
vars_only: Whether only allow variables/attributes as arguments or
any expressions. If `True`, then the sources of the arguments
will be returned.
Returns:
The names/sources of variables/expressions passed in.
If a single argument is passed, return the name/source of it.
If multiple variables are passed, return a tuple of their
names/sources.
If the argument is an attribute (e.g. `a.b`) and `vars_only` is
`False`, only `"b"` will returned. Set `vars_only` to `True` to
get `"a.b"`.
Raises:
VarnameRetrievingError: When the callee's node cannot be retrieved or
trying to retrieve the full name of non attribute series calls.
"""
# Frame is anyway used in get_node
frameobj = IgnoreList.create(
ignore_lambda=False,
ignore_varname=False
).get_frame(frame)
node = get_node_by_frame(frameobj, raise_exc=True)
if not node:
# We can't retrieve the node by executing.
# It can be due to running code from python/shell, exec/eval or
# other environments where sourcecode cannot be reached
# make sure we keep it simple (only single variable passed and no
# full passed) to use bytecode_nameof
#
# We don't have to check keyword arguments here, as the instruction
# will then be CALL_FUNCTION_KW.
if not more_vars:
return bytecode_nameof(frameobj.f_code, frameobj.f_lasti)
# We are anyway raising exceptions, no worries about additional burden
# of frame retrieval again
source = frameobj.f_code.co_filename
if source == '<stdin>':
raise VarnameRetrievingError(
"Are you trying to call nameof in REPL/python shell? "
"In such a case, nameof can only be called with single "
"argument and no keyword arguments."
)
if source == '<string>':
raise VarnameRetrievingError(
"Are you trying to call nameof from exec/eval? "
"In such a case, nameof can only be called with single "
"argument and no keyword arguments."
)
raise VarnameRetrievingError(
"Source code unavailable, nameof can only retrieve the name of "
"a single variable, and argument `full` should not be specified."
)
return argname(
var, *more_vars,
func=nameof,
frame=frame,
vars_only=vars_only,
pos_only=True
)
| 5,351,880 |
def ui_save_newspaper_text_to_disk(dir_name, newspaper_text_by_date):
"""Saves data to disk at current working directory and prints UI messages.
Makes new directory named by the `dir_name` parameter, adding a suffix to
avoid naming collisions. Does not merge issues from current call into an
equally named directory already present on disk.
Args:
dir_name (str): Name of directory in which to save newspaper text
files. Creates directory if it doesn't exist. Adds unique suffix to
`dir_name` if a directory with the name already exists.
newspaper_text_by_date (dict): Dict where keys are filenames and values
are text file contents to save.
Returns:
Nothing. Has side-effects on filesystem.
Raises:
IOError: Bubbles up from `lccn_to_disk()` if writing files fails.
FileNotFoundError: Bubbles up from `lccn_to_disk()` if supplied
`dir_name` doesn't exist.
"""
# Create a directory in current working directory with recursive naming to
# avoid collisions
dir_name = makedirs_with_rename(dir_name)
# Write to disk in created directory
number_of_files_written = lccn_to_disk(dir_name, newspaper_text_by_date)
# Show filesystem changes to user
print('{} file(s) written to disk'.format(number_of_files_written))
real_path = os.path.join(os.getcwd(), dir_name)
print('Data saved to: `{}`'.format(real_path))
| 5,351,881 |
def cache_get_filepath(key):
"""Returns cache path."""
return os.path.join(settings.CACHE_PATH, key)
| 5,351,882 |
def scorer(func):
"""This function is a decorator for a scoring function.
This is hack a to get around self being passed as the first argument to the scoring function."""
def wrapped(a, b=None):
if b is not None:
return func(b)
return func(a)
return wrapped
| 5,351,883 |
def print_stats(yards):
"""
This function prints the final stats after a skier has crashed.
"""
print
print "You skied a total of", yards, "yards!"
#print "Want to take another shot?"
print
return 0
| 5,351,884 |
def _calculate_risk_reduction(module):
"""
Function to calculate the risk reduction due to testing. The algorithms
used are based on the methodology presented in RL-TR-92-52, "SOFTWARE
RELIABILITY, MEASUREMENT, AND TESTING Guidebook for Software
Reliability Measurement and Testing." Rather than attempting to
estimate the software failure rate, RTK provides a risk index for the
software based on the same factors used in RL-TR-92-52 for estimating
software failure rates. RTK also provides test planning guidance in
the same manner as RL-TR-92-52.
:param module: the :py:class:`rtk.software.CSCI.Model` or
:py:class:`rtk.software.Unit.Model` data model to calculate.
:return: _error_code
:rtype: int
"""
# WARNING: Refactor _calculate_risk_reduction; current McCabe Complexity metric = 13.
_error_code = 0
# Calculate the risk reduction due to the test effort.
try:
if module.test_effort == 1: # Labor hours
_test_ratio = float(module.labor_hours_test) / \
float(module.labor_hours_dev)
elif module.test_effort == 2: # Budget
_test_ratio = float(module.budget_test) / \
float(module.budget_dev)
elif module.test_effort == 3: # Schedule
_test_ratio = float(module.schedule_test) / \
float(module.schedule_dev)
else:
_test_ratio = 1.0
except ZeroDivisionError:
_error_code = 10
_test_ratio = 0.0
module.te = 1.0
if _test_ratio > 0.4:
module.te = 0.9
# Calculate the risk reduction due to test methods used.
module.tm = 1.0
module.tu = sum([_tu[0] for _tu in module.lst_test_selection])
module.tt = sum([_tt[1] for _tt in module.lst_test_selection])
try:
if module.tu / module.tt > 0.75:
module.tm = 0.9
elif module.tu / module.tt < 0.5:
module.tm = 1.1
except ZeroDivisionError:
_error_code = 10
# Calculate the risk reduction due to test coverage.
try:
if module.level_id == 2: # Module
_VS = ((float(module.nm_test) / float(module.nm)) +
(float(module.interfaces_test) /
float(module.interfaces))) / 2.0
elif module.level_id == 3: # Unit
_VS = ((float(module.branches_test) / float(module.branches)) +
(float(module.inputs_test) / float(module.inputs))) / 2.0
else:
_VS = 1.0
except ZeroDivisionError:
_error_code = 10
_VS = 1.0
module.tc = 1.0 / _VS
module.t_risk = module.te * module.tm * module.tc
return _error_code
| 5,351,885 |
def run_metarl(env, test_env, seed, log_dir):
"""Create metarl model and training."""
deterministic.set_seed(seed)
snapshot_config = SnapshotConfig(snapshot_dir=log_dir,
snapshot_mode='gap',
snapshot_gap=10)
runner = LocalRunner(snapshot_config)
obs_dim = int(np.prod(env[0]().observation_space.shape))
action_dim = int(np.prod(env[0]().action_space.shape))
reward_dim = 1
# instantiate networks
encoder_in_dim = obs_dim + action_dim + reward_dim
encoder_out_dim = params['latent_size'] * 2
net_size = params['net_size']
context_encoder = MLPEncoder(input_dim=encoder_in_dim,
output_dim=encoder_out_dim,
hidden_sizes=[200, 200, 200])
space_a = akro.Box(low=-1,
high=1,
shape=(obs_dim + params['latent_size'], ),
dtype=np.float32)
space_b = akro.Box(low=-1, high=1, shape=(action_dim, ), dtype=np.float32)
augmented_env = EnvSpec(space_a, space_b)
qf1 = ContinuousMLPQFunction(env_spec=augmented_env,
hidden_sizes=[net_size, net_size, net_size])
qf2 = ContinuousMLPQFunction(env_spec=augmented_env,
hidden_sizes=[net_size, net_size, net_size])
obs_space = akro.Box(low=-1, high=1, shape=(obs_dim, ), dtype=np.float32)
action_space = akro.Box(low=-1,
high=1,
shape=(params['latent_size'], ),
dtype=np.float32)
vf_env = EnvSpec(obs_space, action_space)
vf = ContinuousMLPQFunction(env_spec=vf_env,
hidden_sizes=[net_size, net_size, net_size])
policy = TanhGaussianMLPPolicy2(
env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])
context_conditioned_policy = ContextConditionedPolicy(
latent_dim=params['latent_size'],
context_encoder=context_encoder,
policy=policy,
use_ib=params['use_information_bottleneck'],
use_next_obs=params['use_next_obs_in_context'],
)
train_task_names = ML10.get_train_tasks()._task_names
test_task_names = ML10.get_test_tasks()._task_names
pearlsac = PEARLSAC(
env=env,
test_env=test_env,
policy=context_conditioned_policy,
qf1=qf1,
qf2=qf2,
vf=vf,
num_train_tasks=params['num_train_tasks'],
num_test_tasks=params['num_test_tasks'],
latent_dim=params['latent_size'],
meta_batch_size=params['meta_batch_size'],
num_steps_per_epoch=params['num_steps_per_epoch'],
num_initial_steps=params['num_initial_steps'],
num_tasks_sample=params['num_tasks_sample'],
num_steps_prior=params['num_steps_prior'],
num_extra_rl_steps_posterior=params['num_extra_rl_steps_posterior'],
num_evals=params['num_evals'],
num_steps_per_eval=params['num_steps_per_eval'],
batch_size=params['batch_size'],
embedding_batch_size=params['embedding_batch_size'],
embedding_mini_batch_size=params['embedding_mini_batch_size'],
max_path_length=params['max_path_length'],
reward_scale=params['reward_scale'],
train_task_names=train_task_names,
test_task_names=test_task_names,
)
tu.set_gpu_mode(params['use_gpu'], gpu_id=0)
if params['use_gpu']:
pearlsac.to()
tabular_log_file = osp.join(log_dir, 'progress.csv')
tensorboard_log_dir = osp.join(log_dir)
dowel_logger.add_output(dowel.StdOutput())
dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
dowel_logger.add_output(dowel.TensorBoardOutput(tensorboard_log_dir))
runner.setup(algo=pearlsac,
env=env,
sampler_cls=PEARLSampler,
sampler_args=dict(max_path_length=params['max_path_length']))
runner.train(n_epochs=params['num_epochs'],
batch_size=params['batch_size'])
dowel_logger.remove_all()
return tabular_log_file
| 5,351,886 |
def get_default_mutation_op(dom):
""" Returns the default mutation operator for the domain. """
if dom.get_type() == 'euclidean':
return lambda x: euclidean_gauss_mutation(x, dom.bounds)
elif dom.get_type() == 'integral':
return lambda x: integral_gauss_mutation(x, dom.bounds)
elif dom.get_type() == 'discrete':
return lambda x: discrete_random_mutation(x, dom.list_of_items)
elif dom.get_type() == 'prod_discrete':
return lambda x: prod_discrete_random_mutation(x, dom.list_of_list_of_items)
elif dom.get_type() == 'discrete_numeric':
return lambda x: discrete_numeric_exp_mutation(x, dom.list_of_items)
elif dom.get_type() == 'prod_discrete_numeric':
return lambda x: prod_discrete_numeric_exp_mutation(x, dom.list_of_list_of_items)
elif dom.get_type() == 'discrete_euclidean':
return lambda x: discrete_euclidean_mutation(x, dom.list_of_items)
elif dom.get_type() == 'neural_network':
from ..nn.nn_modifiers import get_single_nn_mutation_op
return get_single_nn_mutation_op(dom, [0.5, 0.25, 0.125, 0.075, 0.05])
else:
raise ValueError('No default mutation implemented for domain type %s.'%(
dom.get_type()))
| 5,351,887 |
def chunked(src, size, count=None, **kw):
"""Returns a list of *count* chunks, each with *size* elements,
generated from iterable *src*. If *src* is not evenly divisible by
*size*, the final chunk will have fewer than *size* elements.
Provide the *fill* keyword argument to provide a pad value and
enable padding, otherwise no padding will take place.
>>> chunked(range(10), 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> chunked(range(10), 3, fill=None)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
>>> chunked(range(10), 3, count=2)
[[0, 1, 2], [3, 4, 5]]
See :func:`chunked_iter` for more info.
"""
chunk_iter = chunked_iter(src, size, **kw)
if count is None:
return list(chunk_iter)
else:
return list(itertools.islice(chunk_iter, count))
| 5,351,888 |
def doc_to_schema_fields(doc, schema_file_name='_schema.yaml'):
"""Parse a doc to retrieve the schema file."""
return doc_to_schema(doc, schema_file_name=schema_file_name)[
'schema_fields']
| 5,351,889 |
def cluster(df: pd.DataFrame, k: int, knn: int = 10, m: int = 30, alpha: float = 2.0, verbose0: bool = False,
verbose1: bool = False, verbose2: bool = True, plot: bool = True) -> Tuple[pd.DataFrame, OrderedDict]:
"""
Chameleon clustering: build the K-NN graph, partition it into m clusters
:param df: input dataframe.
:param k: desired number of clusters.
:param knn: parameter k of K-nearest_neighbors.
:param m: number of clusters to reach in the initial clustering phase.
:param alpha: exponent of relative closeness; the larger, the more important relative closeness is than
relative interconnectivity.
:param verbose0: if True, print general infos.
:param verbose1: if True, print infos about the prepartitioning phase.
:param verbose2: if True, print labels of merging clusters and their scores in the merging phase.
:param plot: if True, show plots.
:return: dataframe with cluster labels and dictionary of merging scores (similarities).
"""
if k is None:
k = 1
if verbose0:
print(f"Building kNN graph (k = {knn})...")
graph = knn_graph(df=df, k=knn, symmetrical=False, verbose=verbose1)
if plot is True:
plot2d_graph(graph, print_clust=False)
graph = pre_part_graph(graph, m, df, verbose1, plotting=plot)
# to account for cases where initial_clust is too big or k is already reached before the merging phase
cl_dict = OrderedDict({
list(graph.nodes)[i]: graph.nodes[i]["cluster"]
for i in range(len(graph))
})
m = len(Counter(cl_dict.values()))
if verbose0:
print(f"actual init_clust: {m}")
merging_similarities = OrderedDict({})
iterm = (tqdm(enumerate(range(m - k)), total=m - k) if verbose1 else enumerate(range(m - k)))
for i, _ in iterm:
df, ms, ci = merge_best(graph, df, alpha, k, False, verbose2)
if ms == 0:
break
merging_similarities[m - (i + 1)] = ms
if plot:
plot2d_data(df, ci)
res = rebuild_labels(df)
return res, merging_similarities
| 5,351,890 |
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
"""
Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
it for the two-layer neural net classifier. These are the same steps as
we used for the SVM, but condensed to a single function.
"""
# Load the raw CIFAR-10 data
cifar10_dir = "C:\Users\Pomodori\workspace\cifar-10-batches-py"
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
# Subsample the data
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
# Normalize the data: subtract the mean image
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
# Reshape data to rows
X_train = X_train.reshape(num_training, -1)
X_val = X_val.reshape(num_validation, -1)
X_test = X_test.reshape(num_test, -1)
return X_train, y_train, X_val, y_val, X_test, y_test
| 5,351,891 |
def test_operation_populated(petstore_expanded_spec):
"""
Tests that operations are populated as expected
"""
op = petstore_expanded_spec.paths["/pets"].get
# check description and metadata populated correctly
assert op.operationId == "findPets"
assert op.description.startswith("Returns all pets from the system")
assert op.summary is None
# check parameters populated correctly
assert len(op.parameters) == 2
param1 = op.parameters[0]
assert param1.name == "tags"
assert param1.in_ == "query"
assert param1.description == "tags to filter by"
assert param1.required == False
assert param1.style == "form"
assert param1.schema_ is not None
assert param1.schema_.type == "array"
assert param1.schema_.items.type == "string"
param2 = op.parameters[1]
assert param2.name == "limit"
assert param2.in_ == "query"
assert param2.description == "maximum number of results to return"
assert param2.required == False
assert param2.schema_ is not None
assert param2.schema_.type == "integer"
assert param2.schema_.format == "int32"
# check that responses populated correctly
assert "200" in op.responses
assert "default" in op.responses
assert len(op.responses) == 2
resp1 = op.responses["200"]
assert resp1.description == "pet response"
assert len(resp1.content) == 1
assert "application/json" in resp1.content
con1 = resp1.content["application/json"]
assert con1.schema_ is not None
assert con1.schema_.type == "array"
# we're not going to test that the ref resolved correctly here - that's a separate test
assert type(con1.schema_.items._target) == Schema
resp2 = op.responses["default"]
assert resp2.description == "unexpected error"
assert len(resp2.content) == 1
assert "application/json" in resp2.content
con2 = resp2.content["application/json"]
assert con2.schema_ is not None
# again, test ref resolution elsewhere
assert type(con2.schema_._target) == Schema
| 5,351,892 |
def timeframe_int_to_str(timeframe: int) -> str:
"""
Convert timeframe from integer to string
:param timeframe: minutes per candle (240)
:return: string representation for API (4h)
"""
if timeframe < 60:
return f"{timeframe}m"
elif timeframe < 1440:
return f"{int(timeframe / 60)}h"
else:
return f"{int(timeframe / 1440)}d"
| 5,351,893 |
def FIT(individual):
"""Sphere test objective function.
F(x) = sum_{i=1}^d xi^2
d=1,2,3,...
Range: [-100,100]
Minima: 0
"""
y=sum(x**2 for x in individual)
return y
| 5,351,894 |
def update_range(value):
"""
For user selections, return the relevant range
"""
global df
min, max = df.timestamp.iloc[value[0]], df.timestamp.iloc[value[-1]]
return 'timestamp slider: {} | {}'.format(min, max)
| 5,351,895 |
def project_users_add(ctx, user, **kwargs):
"""
Adds new user to the project.
"""
client = api.ProjectUser(
project=ctx.obj['project'],
config=ctx.obj['config'],
user=user,
**kwargs
)
client.save()
click.echo("User '{}' added to the project.".format(user.email))
| 5,351,896 |
def wrapper_func_easy(quantity = None, food = None, express = None, is_awesome = None):
"""
wrapper_func_easy: Sample wrapper function.
"""
dict_args = {}
dict_args['quantity'] = 42 if quantity is None else quantity
if food is not None:
dict_args['food'] = food
if express is not None:
dict_args['express'] = express
if is_awesome is not None:
dict_args['is_awesome'] = is_awesome
get_food(**dict_args)
| 5,351,897 |
def simplify(tile):
"""
:param tile: 34 tile format
:return: tile: 0-8 presentation
"""
return tile - 9 * (tile // 9)
| 5,351,898 |
def vep(dataset, config, block_size=1000, name='vep', csq=False) -> MatrixTable:
"""Annotate variants with VEP.
.. include:: ../_templates/req_tvariant.rst
:func:`.vep` runs `Variant Effect Predictor
<http://www.ensembl.org/info/docs/tools/vep/index.html>`__ with the `LOFTEE
plugin <https://github.com/konradjk/loftee>`__ on the current dataset and
adds the result as a row field.
Examples
--------
Add VEP annotations to the dataset:
>>> result = hl.vep(dataset, "data/vep.properties") # doctest: +SKIP
Notes
-----
**Configuration**
:func:`.vep` needs a configuration file to tell it
how to run VEP. The format is a `.properties file
<https://en.wikipedia.org/wiki/.properties>`__. Roughly, each line defines a
property as a key-value pair of the form `key = value`. :func:`.vep` supports the
following properties:
- **hail.vep.perl** -- Location of Perl. Optional, default: perl.
- **hail.vep.perl5lib** -- Value for the PERL5LIB environment variable when
invoking VEP. Optional, by default PERL5LIB is not set.
- **hail.vep.path** -- Value of the PATH environment variable when invoking
VEP. Optional, by default PATH is not set.
- **hail.vep.location** -- Location of the VEP Perl script. Required.
- **hail.vep.cache_dir** -- Location of the VEP cache dir, passed to VEP
with the ``--dir`` option. Required.
- **hail.vep.fasta** -- Location of the FASTA file to use to look up the
reference sequence, passed to VEP with the `--fasta` option. Required.
- **hail.vep.assembly** -- Genome assembly version to use. Optional,
default: GRCh37
- **hail.vep.plugin** -- VEP plugin, passed to VEP with the `--plugin`
option. Optional. Overrides `hail.vep.lof.human_ancestor` and
`hail.vep.lof.conservation_file`.
- **hail.vep.lof.human_ancestor** -- Location of the human ancestor file for
the LOFTEE plugin. Ignored if `hail.vep.plugin` is set. Required otherwise.
- **hail.vep.lof.conservation_file** -- Location of the conservation file
for the LOFTEE plugin. Ignored if `hail.vep.plugin` is set. Required
otherwise.
Here is an example ``vep.properties`` configuration file
.. code-block:: text
hail.vep.perl = /usr/bin/perl
hail.vep.path = /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
hail.vep.location = /path/to/vep/ensembl-tools-release-81/scripts/variant_effect_predictor/variant_effect_predictor.pl
hail.vep.cache_dir = /path/to/vep
hail.vep.lof.human_ancestor = /path/to/loftee_data/human_ancestor.fa.gz
hail.vep.lof.conservation_file = /path/to/loftee_data/phylocsf.sql
**VEP Invocation**
.. code-block:: text
<hail.vep.perl>
<hail.vep.location>
--format vcf
--json
--everything
--allele_number
--no_stats
--cache --offline
--dir <hail.vep.cache_dir>
--fasta <hail.vep.fasta>
--minimal
--assembly <hail.vep.assembly>
--plugin LoF,\
human_ancestor_fa:$<hail.vep.lof.human_ancestor>,\
filter_position:0.05,\
min_intron_size:15,\
conservation_file:<hail.vep.lof.conservation_file>
-o STDOUT
**Annotations**
A new row field is added in the location specified by `name` with the
following schema:
.. code-block:: text
struct {
assembly_name: str,
allele_string: str,
ancestral: str,
colocated_variants: array<struct {
aa_allele: str,
aa_maf: float64,
afr_allele: str,
afr_maf: float64,
allele_string: str,
amr_allele: str,
amr_maf: float64,
clin_sig: array<str>,
end: int32,
eas_allele: str,
eas_maf: float64,
ea_allele: str,
ea_maf: float64,
eur_allele: str,
eur_maf: float64,
exac_adj_allele: str,
exac_adj_maf: float64,
exac_allele: str,
exac_afr_allele: str,
exac_afr_maf: float64,
exac_amr_allele: str,
exac_amr_maf: float64,
exac_eas_allele: str,
exac_eas_maf: float64,
exac_fin_allele: str,
exac_fin_maf: float64,
exac_maf: float64,
exac_nfe_allele: str,
exac_nfe_maf: float64,
exac_oth_allele: str,
exac_oth_maf: float64,
exac_sas_allele: str,
exac_sas_maf: float64,
id: str,
minor_allele: str,
minor_allele_freq: float64,
phenotype_or_disease: int32,
pubmed: array<int32>,
sas_allele: str,
sas_maf: float64,
somatic: int32,
start: int32,
strand: int32
}>,
context: str,
end: int32,
id: str,
input: str,
intergenic_consequences: array<struct {
allele_num: int32,
consequence_terms: array<str>,
impact: str,
minimised: int32,
variant_allele: str
}>,
most_severe_consequence: str,
motif_feature_consequences: array<struct {
allele_num: int32,
consequence_terms: array<str>,
high_inf_pos: str,
impact: str,
minimised: int32,
motif_feature_id: str,
motif_name: str,
motif_pos: int32,
motif_score_change: float64,
strand: int32,
variant_allele: str
}>,
regulatory_feature_consequences: array<struct {
allele_num: int32,
biotype: str,
consequence_terms: array<str>,
impact: str,
minimised: int32,
regulatory_feature_id: str,
variant_allele: str
}>,
seq_region_name: str,
start: int32,
strand: int32,
transcript_consequences: array<struct {
allele_num: int32,
amino_acids: str,
biotype: str,
canonical: int32,
ccds: str,
cdna_start: int32,
cdna_end: int32,
cds_end: int32,
cds_start: int32,
codons: str,
consequence_terms: array<str>,
distance: int32,
domains: array<struct {
db: str,
name: str
}>,
exon: str,
gene_id: str,
gene_pheno: int32,
gene_symbol: str,
gene_symbol_source: str,
hgnc_id: str,
hgvsc: str,
hgvsp: str,
hgvs_offset: int32,
impact: str,
intron: str,
lof: str,
lof_flags: str,
lof_filter: str,
lof_info: str,
minimised: int32,
polyphen_prediction: str,
polyphen_score: float64,
protein_end: int32,
protein_start: int32,
protein_id: str,
sift_prediction: str,
sift_score: float64,
strand: int32,
swissprot: str,
transcript_id: str,
trembl: str,
uniparc: str,
variant_allele: str
}>,
variant_class: str
}
Parameters
----------
dataset : :class:`.MatrixTable`
Dataset.
config : :obj:`str`
Path to VEP configuration file.
block_size : :obj:`int`
Number of rows to process per VEP invocation.
name : :obj:`str`
Name for resulting row field.
csq : :obj:`bool`
If ``True``, annotates VCF CSQ field as a :py:data:`.tstr`.
If ``False``, annotates with the full nested struct schema.
Returns
-------
:class:`.MatrixTable`
Dataset with new row-indexed field `name` containing VEP annotations.
"""
require_row_key_variant(dataset, 'vep')
mt = MatrixTable(Env.hail().methods.VEP.apply(dataset._jvds, config, 'va.`{}`'.format(name), csq, block_size))
return mt.annotate_rows(vep=mt['vep']['vep'])
| 5,351,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.