content
stringlengths
22
815k
id
int64
0
4.91M
def set_diff(seq0, seq1): """Return the set difference between 2 sequences as a list.""" return list(set(seq0) - set(seq1))
5,352,400
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode): """Loads a data file into a list of input features.""" ''' output_mode: classification or regression ''' if (label_list != None): label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert(len(input_ids) == max_seq_length) assert(len(input_mask) == max_seq_length) assert(len(segment_ids) == max_seq_length) if (label_list != None): if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) else: label_id = None features.append( InputFeatures(tokens=tokens, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features
5,352,401
def test_set_wrapper(): """ Wrapper function to compute test datasets of fixed widths using multiprocessing. Widths are defined in the parameter file. Ouputs are in Neural/ folder """ from .parameter import ModelParameters import multiprocessing as mp from .neural import test_dataset a = ModelParameters() widths = a.test_sigma_widths p = mp.Pool() # Do all 5 in parallel p.imap_unordered(test_dataset,widths) return None
5,352,402
def get_unapproved_csr_names(kubeconfig_path: str) -> List[str]: """ Returns a list of names of all CertificateSigningRequest resources which are unapproved. May raise SubprocessError """ return [ csr["metadata"]["name"] for csr in oc_list(kubeconfig_path, "csr") if not _has_condition(resource=csr, type="Approved", status="True") ]
5,352,403
def iteritemsdeep(dct): """ Works like ``dict.iteritems`` but iterate over all descendant items >>> dct = dict(a=1, b=2, c=dict(d=3, e=4)) >>> sorted(iteritemsdeep(dct)) [(('a',), 1), (('b',), 2), (('c', 'd'), 3), (('c', 'e'), 4)] """ for (key, val) in dct.items(): if isinstance(val, dict): for (key_child, val_child) in iteritemsdeep(val): yield ((key,) + key_child, val_child) else: yield ((key,), val)
5,352,404
def nmea_decoder(sentence: str, data: dict, mag_var: float) -> None: """ Decodes a received NMEA 0183 sentence into variables and adds them to current data store :param sentence: received NMEA sentence :param data: variables extracted :param mag_var: Magnetic Variation for conversion true to magnetic """ code = "" try: if len(sentence) > 9: code = sentence[3:6] if code in sentences: sentence_data = get_sentence_data(sentence, sentences[code], mag_var) if sentence_data.get('status', 'A') == 'A': for n, v in sentence_data.items(): data[n] = v else: for n, v in sentence_data.items(): if n in ['time', 'date', 'status']: data[n] = v elif data.get(n): del data[n] except (AttributeError, ValueError, ) as err: data['error'] = f"NMEA {code} sentence translation error: {err} when processing {sentence}" print(data['error'])
5,352,405
def function(n, m, f): """Assumes that n = m = 1. The argument f is a Python function that takesas input an n-bit string alpha and returns as output an m-bit string f(alpha). See deutschTest for examples of f. This function returns the (n + m)-qbit gate F that corresponds to f. """ F = np.zeros((2**(n+m),2**(n+m)), dtype=one.dtype) for a in range(0,2**n): for b in range(0,2**m): alpha = string(n,a) beta = string(m,b) beta_new = addition(beta,f(alpha)) row_bits = alpha + beta_new col_bits = alpha + beta F[integer(row_bits)][integer(col_bits)] = 1 + 0j return F
5,352,406
def get_study_list_qs(user, query_dict): """Gets a study list query set annotated with response counts. TODO: Factor in all the query mutation from the (view) caller. TODO: Upgrade to Django 2.x and use the improved query mechanisms to clean this up. Args: user: django.utils.functional.SimpleLazyObject masquerading as a user. query_dict: django.http.QueryDict from the self.request.GET property. Returns: A heavily annotated queryset for the list of studies. """ annotated_responses_qs = get_annotated_responses_qs().only( "id", "completed", "completed_consent_frame", "date_created", "date_modified", "is_preview", ) queryset = ( studies_for_which_user_has_perm(user, StudyPermission.READ_STUDY_DETAILS) # .select_related("lab") # .select_related("creator") .only( "id", "state", "uuid", "name", "date_modified", "short_description", "image", "comments", "lab__name", "creator__given_name", "creator__family_name", ) .exclude(state="archived") .filter(lab_id__isnull=False, creator_id__isnull=False) .annotate( lab_name=F("lab__name"), creator_name=Concat( "creator__given_name", Value(" "), "creator__family_name" ), completed_responses_count=SubqueryCount( Response.objects.filter( study=OuterRef("pk"), is_preview=False, completed_consent_frame=True, completed=True, ).values("id") ), incomplete_responses_count=SubqueryCount( Response.objects.filter( study=OuterRef("pk"), is_preview=False, completed_consent_frame=True, completed=False, ).values("id") ), valid_consent_count=SubqueryCount( annotated_responses_qs.filter( study=OuterRef("pk"), is_preview=False, current_ruling="accepted" ) ), pending_consent_count=SubqueryCount( annotated_responses_qs.filter( study=OuterRef("pk"), is_preview=False, current_ruling="pending" ) ), starting_date=Subquery( StudyLog.objects.filter(study=OuterRef("pk")) .order_by("-created_at") .filter(action="active") .values("created_at")[:1] ), ending_date=Subquery( StudyLog.objects.filter(study=OuterRef("pk")) .order_by("-created_at") .filter(action="deactivated") .values("created_at")[:1] ), ) ) # Request filtering state = query_dict.get("state") if state and state != "all": if state == "myStudies": queryset = queryset.filter(creator=user) else: queryset = queryset.filter(state=state) match = query_dict.get("match") if match: queryset = queryset.filter( reduce( operator.and_, ( Q(name__icontains=term) | Q(short_description__icontains=term) for term in match.split() ), ) ) sort = query_dict.get("sort", "") if "name" in sort: queryset = queryset.order_by( Lower("name").desc() if "-" in sort else Lower("name").asc() ) elif "beginDate" in sort: queryset = queryset.order_by("starting_date") elif "endDate" in sort: queryset = queryset.order_by("ending_date") return queryset
5,352,407
def get_life_stages(verbose: bool = False) -> pd.DataFrame: """Get table of life stages. Parameters ---------- verbose : bool If True, prints the SQL statement used to query the database. Returns ------- pandas DataFrame """ return __basic_query(LifeStage, verbose=verbose)
5,352,408
def bytes_to(value_in_bytes: float, rnd: int | None = ...) -> str: """ :param value_in_bytes: the value in bytes to convert :param rnd: number of digits to round to :return: formatted string """ sizes = ["bytes", "KB", "MB", "GB", "TB"] now = int() while value_in_bytes > 1024: value_in_bytes /= 1024 now += 1 if rnd is not ...: value_in_bytes = round(value_in_bytes, rnd) return f"{value_in_bytes} {sizes[now]}"
5,352,409
def lambda_handler(event, context): """Main Function""" page_iterator = PAGINATOR.paginate(**OPERATION_PARAMETERS) for page in page_iterator: functions = page['Functions'] for function in functions: funct = { "Name": function['FunctionName'], "Version": function['Version'], "CodeSize": function['CodeSize'] } funct = json.dumps(funct) ALL_FUNCTIONS.add(funct) total = 0 for i in sorted(ALL_FUNCTIONS): i = json.loads(i) print("{function:48}:{version:8} {size:,.2f}".format( function=i['Name'], version=i['Version'], size=i['CodeSize'])) total += i['CodeSize'] # Convert bytes to MB total = total / 1024 / 1024 data = "Lambda code storage: {}".format(str(total)) print(data) return { 'statusCode': 200, 'body': json.dumps(data) }
5,352,410
def _find_first_print(body): """ This function finds the first print of something """ for (i, inst) in enumerate(body): if isinstance(inst, ir.Print): return i return -1
5,352,411
def main(): """ Handles parameters for the file to run :return: """ input_path = sys.argv[1] output_path = sys.argv[2] support_thresold = int(sys.argv[3]) broadcast = 1 if len(sys.argv) > 4: broadcast = int(sys.argv[4]) pcy = PCYFrequentItems(is_debug=True) if broadcast == 1: is_broadcast = True else: is_broadcast = False pcy.frequent_items(input_path, output_path, support_thresold, is_broadcast)
5,352,412
def clear_screen(): """ Clears Python Interpreter Terminal Window Screen """ try: command = 'cls' if os.name in ('nt', 'dos') else 'clear' os.system(command) except: pass
5,352,413
def list_mix(set_key, encoding, in_set = ""): """ Returns: Seeded Random Shuffle of Input Set by Input Key. """ if in_set == "": char_set = list(encoding["set"]) else: char_set = in_set seed(set_key) return sample(char_set, len(char_set))
5,352,414
def leslie(f, s): """Create a Leslie matrix. Given the length n array of fecundity coefficients ``f`` and the length n-1 array of survival coefficients ``s``, return the associated Leslie matrix. Args: f (cupy.ndarray): The "fecundity" coefficients. s (cupy.ndarray): The "survival" coefficients, has to be 1-D. The length of ``s`` must be one less than the length of ``f``, and it must be at least 1. Returns: cupy.ndarray: The array is zero except for the first row, which is ``f``, and the first sub-diagonal, which is ``s``. The data-type of the array will be the data-type of ``f[0]+s[0]``. .. seealso:: :func:`scipy.linalg.leslie` """ if f.ndim != 1: raise ValueError('Incorrect shape for f. f must be 1D') if s.ndim != 1: raise ValueError('Incorrect shape for s. s must be 1D') n = f.size if n != s.size + 1: raise ValueError('Length of s must be one less than length of f') if s.size == 0: raise ValueError('The length of s must be at least 1.') a = cupy.zeros((n, n), dtype=cupy.result_type(f, s)) a[0] = f cupy.fill_diagonal(a[1:], s) return a
5,352,415
def __convert_node(node, default_value='', default_flags=vsflags()): """Converts a XML node to a JSON equivalent.""" name = __get_attribute(node, 'Name') logging.debug('Found %s named %s', node.tagName, name) converted = {} converted['name'] = name switch = __get_attribute(node, 'Switch') separator = __get_attribute(node, 'Separator') converted['switch'] = __normalize_switch(switch, separator) converted['comment'] = __get_attribute(node, 'DisplayName') converted['value'] = default_value # Check for the Flags attribute in case it was created during preprocessing flags = __get_attribute(node, 'Flags') if flags: flags = flags.split(',') else: flags = default_flags converted['flags'] = flags return converted
5,352,416
def generate(generations, population, nn_param_choices, dataset, dataset_TB_folder_name): """Generate a network with the genetic algorithm. Args: generations (int): Number of times to evole the population population (int): Number of networks in each generation nn_param_choices (dict): Parameter choices for networks dataset (str): Dataset to use for training/evaluating dataset_TB_folder_name (str): Name of the parent folder that holds the multiple run tensorboard result. """ optimizer = Optimizer(nn_param_choices) networks = optimizer.create_population(population) # Evolve the generation. for i in range(generations): logging.info("***Doing generation %d of %d***" % (i + 1, generations)) # Train and get accuracy for networks. train_networks(networks, dataset, i, dataset_TB_folder_name) # Get the average accuracy for this generation. average_accuracy = get_average_accuracy(networks) # Print out the average accuracy each generation. logging.info("Generation average: %.2f%%" % (average_accuracy * 100)) logging.info('-'*80) # Evolve, except on the last iteration. if i != generations - 1: # Do the evolution. networks = optimizer.evolve(networks) #pp = pprint.PrettyPrinter(indent=4) #for network in networks: # pp.pprint(network.network) # Sort our final population. networks = sorted(networks, key=lambda x: x.accuracy, reverse=True) # Print out the top 5 networks. print_networks(networks[:5])
5,352,417
def document(input_file, output_path=None, recursive=False, prefix=None): """ Handler for documenting CMake files or all files in a directory. Performs preprocessing before handing off to document_single_file over all detected files. Also generates index.rst files for all directories. :param input_file: String locating a file or directory to document. :param output_path: String pointing to the directory to place generated files, will output to stdout if None :param recursive: Whether to generate documentation for subdirectories or not. :param prefix: Prefix to be prepended to all RST titles. In recursive mode, root files will have their titles replaced by the prefix. """ input_path = os.path.abspath(input_file) if not os.path.exists(input_path): print(f"Error: File or directory \"{input_path}\" does not exist", file=sys.stderr) exit(-1) elif os.path.isdir(input_path): last_dir_element = os.path.basename(os.path.normpath(input_file)) prefix = prefix if prefix is not None else last_dir_element # Walk dir and add cmake files to list for root, subdirs, filenames in os.walk(input_path): # Sort filenames and subdirs in alphabetical order filenames = sorted(filenames) subdirs = sorted(subdirs) if output_path is not None: path = os.path.join(output_path, os.path.relpath(root, input_path)) os.makedirs(path, exist_ok=True) # Make sure we have all the directories created rel_path = os.path.relpath(root, input_path) index = RSTWriter(rel_path) if prefix is not None: # If current file dir is same as root dir, replace "." with prefix if index.title == ".": index.title = prefix else: # Add prefix to beginning of header index.title = prefix + "." + index.title toctree = index.directive("toctree") toctree.option("maxdepth", 2) for file in [f for f in filenames if f.lower().endswith(".cmake")]: toctree.text('.'.join(file.split('.')[:-1])) if recursive: for directory in subdirs: toctree.text(os.path.join(directory, "index.rst")) index.write_to_file(os.path.join(os.path.join(output_path, rel_path), "index.rst")) for file in filenames: if "cmake" == file.split(".")[-1].lower(): document_single_file(os.path.join(root, file), input_path, output_path, prefix) if not recursive: break elif os.path.isfile(input_path): if output_path is not None: os.makedirs(output_path, exist_ok=True) document_single_file(input_path, input_path, output_path, prefix) else: print("File is a special file (socket, FIFO, device file) and is unsupported", file=sys.stderr) exit(1)
5,352,418
def clean(): """ cleans shopyo.db __pycache__ and migrations/ Parameters ---------- Returns ------- None ... """ if os.path.exists("shopyo.db"): os.remove("shopyo.db") print("shopyo.db successfully deleted") else: print("shopyo.db doesn't exist") if os.path.exists("__pycache__"): shutil.rmtree("__pycache__") print("__pycache__ successfully deleted") else: print("__pycache__ doesn't exist") if os.path.exists("migrations"): shutil.rmtree("migrations") print("migrations successfully deleted") else: print("migrations folder doesn't exist")
5,352,419
def clone(output, replace=None, *args, **kwargs): """ Use as theano.clone(). TODO: Something useful with non-symbolic output ? """ if not core.is_theano_object(output): raise ValueError("`shim.graph.clone()` is undefined for non-symbolic outputs") return core.gettheano().clone(output, replace, *args, **kwargs)
5,352,420
def get_clustermgtd_heartbeat(clustermgtd_heartbeat_file_path): """Get clustermgtd's last heartbeat.""" # Use subprocess based method to read shared file to prevent hanging when NFS is down # Do not copy to local. Different users need to access the file, but file should be writable by root only # Only use last line of output to avoid taking unexpected output in stdout heartbeat = ( check_command_output( f"cat {clustermgtd_heartbeat_file_path}", timeout=DEFAULT_COMMAND_TIMEOUT, shell=True, # nosec ) .splitlines()[-1] .strip() ) # Note: heartbeat must be written with datetime.strftime to convert localized datetime into str # datetime.strptime will not work with str(datetime) # Example timestamp written to heartbeat file: 2020-07-30 19:34:02.613338+00:00 return datetime.strptime(heartbeat, TIMESTAMP_FORMAT)
5,352,421
def logout(): """ Logs out user by deleting token cookie and redirecting to login page """ APP.logger.info('Logging out.') resp = make_response(redirect(url_for('login_page', _external=True, _scheme=APP.config['SCHEME']))) resp.delete_cookie(APP.config['TOKEN_NAME']) return resp
5,352,422
async def test_templates_with_valid_values(opp, calls): """Test templates with valid values.""" with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( opp, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": { "value_template": "{{ 'cleaning' }}", "battery_level_template": "{{ 100 }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await opp.async_block_till_done() await opp.async_start() await opp.async_block_till_done() _verify(opp, STATE_CLEANING, 100)
5,352,423
def fileDescribe(*args, **kwargs): """ .. deprecated:: 0.42.0 Use :func:`file_describe()` instead. """ print("dxpy.fileDescribe is deprecated; please use file_describe instead.", file=sys.stderr) return file_describe(*args, **kwargs)
5,352,424
def ATR(df, n, high_column='High', low_column='Low', close_column='Close', join=None, dropna=False, dtype=None): """ Average True Range """ high_series = df[high_column] low_series = df[low_column] close_prev_series = df[close_column].shift(1) tr = np.max(( (high_series.values - low_series.values), np.abs(high_series.values - close_prev_series.values), np.abs(low_series.values - close_prev_series.values), ), 0) tr = pd.Series(tr, name=type(join) is list and join[0] or join) if len(tr) > n: tr[n] = tr[1:n+1].mean() nm1 = n - 1 for i in range(n+1, len(tr)): tr[i] = (tr[i-1] * nm1 + tr[i]) / n tr[:n] = np.nan return out(df, tr, bool(join), dropna, dtype)
5,352,425
def setup_logging(outdir): """ Setup logging system. Log is written to 'mergeFastqs.log'. Args: outdir: Output directory """ logger = logging.getLogger("mergeFQs") logger.setLevel(logging.DEBUG) if not os.path.exists(outdir): os.makedirs(outdir) log_file = os.path.join(outdir, "mergeFastqs.log") # create file handler which logs even debug messages file_handler = logging.FileHandler(log_file) file_handler.setLevel(logging.DEBUG) # create console handler with a higher log level console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) # create formatter and add it to the handlers format_str = "[%(asctime)s] %(levelname)s %(name)s: %(message)s" formatter = logging.Formatter(format_str, "%Y-%m-%d %H:%M:%S") file_handler.setFormatter(formatter) format_str = "[%(asctime)s] %(message)s" formatter = logging.Formatter(format_str, "%H:%M:%S") console_handler.setFormatter(formatter) # add the handlers to logger logger.addHandler(console_handler) logger.addHandler(file_handler)
5,352,426
def pytest_addoption(parser): """ Load in config path. """ group = parser.getgroup( "Aries Protocol Test Suite Configuration", "Aries Protocol Test Suite Configuration", after="general" ) group.addoption( "--sc", "--suite-config", dest='suite_config', action="store", metavar="SUITE_CONFIG", help="Load suite configuration from SUITE_CONFIG", ) group.addoption( "-S", "--select", dest='select', action='store', metavar='SELECT_REGEX', help='Run tests matching SELECT_REGEX. ' 'Overrides tests selected in configuration.' ) group.addoption( "-O", "--output", dest="save_path", action="store", metavar="PATH", help="Save interop profile to PATH." ) group.addoption( "-L", "--list", dest="list_tests", action="store_true", help="List available tests." ) group.addoption( "--show-dev-notes", dest="dev_notes", action="store_true", help="Output log messages generated during testing for developers\n" "take note of." )
5,352,427
def lookup(symbol): """Look up quote for symbol.""" # Contact API try: api_key = os.environ.get("API_KEY") url = f"https://cloud-sse.iexapis.com/stable/stock/{urllib.parse.quote_plus(symbol)}/quote?token={api_key}" response = requests.get(url) response.raise_for_status() except requests.RequestException: return None # Parse response try: quote = response.json() return { "name": quote["companyName"], "price": float(quote["latestPrice"]), "symbol": quote["symbol"] } except (KeyError, TypeError, ValueError): return None
5,352,428
def get_full_history(sender, dialog_id): """Download the full history for the selected dialog""" page = 0 limit = 100 history = [] print('Downloading messages...') while True: sleep(REQUEST_DELAY) offset = page * limit try: history[0:0] = sender.history(dialog_id, limit, offset) print('.', end=' ', flush=True) except IllegalResponseException: print('\n{} messages found in selected dialog'.format(len(history))) break page += 1 print('') return history
5,352,429
def test_mul_same_number(): """Test a case where we multiply """ result = num2 * num2 assert result.val == 4 assert result.jacobian(num2) == 4
5,352,430
def predict_transposition_cost(shape, perm, coefs=None): """ Given a shape and a permutation, predicts the cost of the transposition. :param shape: shape :param perm: permutation :param coefs: trained coefficients or None to get the default ones :return: dictionary of features """ if coefs is None: coefs = _ml_transpose_coefs feat = compute_transposition_features(shape, perm) res = 0 for k, v in feat.items(): res += v * coefs[k] return max(0., res / 1000)
5,352,431
def checkBuildAMR(parfile,cellfile,**kwargs): """ Purpose ------- Check that BuildAMRfromParticles.f90 builds the cells around the particles created by mkClouds.f90 in the right places. Only cloud cells are plotted. If you want to include the field cells, in BuildAMRfromParticles.f90's subroutine CountCells() remove the part " .and. CurrentCell%phase.eq.1" from the if statement (and recompile). Keywords -------- Robs: Plot only within Robs kpc of center Usage ----- >>> checkBuildAMR('clouds_par.dat','clouds_cell.dat',Robs=.1) """ def _iltR(x,y,z,R): return np.where((x<=R) & (y<=R) & (z<=R)) fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(111, projection='3d') x,y,z = np.loadtxt(parfile,unpack=True) print('n_par =', len(x)) if len(x) > 100000: print('WARNING: This is going to be slow!') # ax.set_alpha(.01) if 'Robs' in kwargs: Robs = kwargs['Robs'] ax.set_xlim([-Robs,Robs]) ax.set_ylim([-Robs,Robs]) ax.set_zlim([-Robs,Robs]) ind = _iltR(x,y,z,Robs) ax.scatter(x[ind],y[ind],z[ind],s=1,label='Particles') else: ax.scatter(x,y,z,s=1,label='Particles') x,y,z = np.loadtxt(cellfile,unpack=True) print('n_cell =', len(x)) if 'Robs' in kwargs: ind = _iltR(x,y,z,Robs) ax.scatter(x[ind],y[ind],z[ind],s=1,label='Cells (excluding ICM cells)') else: ax.scatter(x,y,z,s=1,label='Cells (excluding ICM cells)') ax.legend()
5,352,432
def dist(df): """ Calculate Euclidean distance on a dataframe. Input columns are arranged as x0, x1, y0, y1. """ return np.sqrt((df.iloc[:,0] - df.iloc[:,2])**2 + (df.iloc[:,1] - df.iloc[:,3])**2)
5,352,433
def B_Calc(T, n=2): """ Calculate B (Constant in the mass transfer term). :param T: cell operation temperature [K] :type T : float :param n: number of moles of electrons transferred in the balanced equation occurring in the fuel cell :type n: int :return: B as float """ try: return (R * T) / (n * F) except (TypeError, ZeroDivisionError): return None
5,352,434
def get_page_likes(response): """Scan a page and create a dictionary of the image filenames and displayed like count for each image. Return the dictionary.""" # find all flowtow divs flowtows = response.html.find_all('div', class_='flowtow') result = dict() for div in flowtows: # get the filename from the form hidden input input = div.find("input", attrs={'name': "filename"}) filename = input['value'] # find the likes element likesel = div.find(class_='likes') # grab the integer from this element m = re.search('\d+', likesel.text) if m: likes = int(m.group()) else: likes = 0 result[filename] = likes return result
5,352,435
def firm(K, eta, alpha, delta): """Calculate return, wage and aggregate production. r = eta * K^(alpha-1) * L^(1-alpha) + (1-delta) w = eta * K^(alpha) * L^(-alpha) Y = eta * K^(alpha) * L^(1-alpha) + (1-delta) * K Args: K: aggregate capital, eta: TFP value, alpha: output elasticity, delta: depreciation value. Returns: return: return (marginal product of capital), wage: wage (marginal product of labor), Y: aggregate production. """ L = tf.ones_like(K) r = alpha * eta * K**(alpha - 1) * L**(1 - alpha) + (1 - delta) w = (1 - alpha) * eta * K**alpha * L**(-alpha) Y = eta * K**alpha * L**(1 - alpha) + (1 - delta) * K return r, w, Y
5,352,436
def test_function_of_add_user_command_with_data_well(session): """ GIVEN the add_user function WHEN when the function is called THEN check for the user creation """ from app.commands import add_user username = get_unique_username() password = '123' add_user(username, password) from app.model import User user = session.query(User).filter_by(username=username).first() assert user assert check_password_hash(user.password, password)
5,352,437
def get_col(arr, col_name): """ returns the column from a multi-dimensional array """ return map(lambda x : x[col_name], arr)
5,352,438
def get_articles(id): """function that process the articles and a list of articles objects """ get_articles_url = articles_url.format(id, api_key) with urllib.request.urlopen(get_articles_url) as url: news_article_results = json.loads(url.read()) news_article_object = None if news_article_results['articles']: news_article_object = process_news_source(news_article_results['articles']) return news_article_object
5,352,439
def check_slot_exist(start_time,end_time): """ Description: check_slot_exists is responsible for checking that a slot exists before a volunteer can create it. Parameters: Takes two parameters of type datetime: start_time:datetime end_time:datetime return: returns Boolean type: True or False:Boolean """ slot_data = read_from_local_data_file.read_from_file() slots = slot_data['items'] for slot in slots: end_time_slot = slot["end"]["dateTime"] start_time_slot = slot["start"]["dateTime"] if start_time >= start_time_slot.split("+",1)[0] and start_time <= end_time_slot.split("+",1)[0]: if end_time >= start_time_slot.split("+",1)[0] and end_time <= end_time_slot.split("+",1)[0]: return True return False
5,352,440
def format_relative_date(date): """Takes a datetime object and returns the date formatted as a string e.g. "3 minutes ago", like the real site. This is based roughly on George Edison's code from StackApps: http://stackapps.com/questions/1009/how-to-format-time-since-xxx-e-g-4-minutes-ago-similar-to-stack-exchange-site/1018#1018""" now = datetime.datetime.now() diff = (now - date).seconds # Anti-repetition! These simplify the code somewhat. plural = lambda d: 's' if d != 1 else '' frmt = lambda d: (diff / float(d), plural(diff / float(d))) if diff < 60: return '%d second%s ago' % frmt(1) elif diff < 3600: return '%d minute%s ago' % frmt(60) elif diff < 86400: return '%d hour%s ago' % frmt(3600) elif diff < 172800: return 'yesterday' else: return date.strftime('M j / y - H:i')
5,352,441
def task_install_book(): """install the jupyter book and sphinx dependencies""" if not jb: yield dict( name="install book deps", actions=['pip install --rdocs/requirements.txt'], targets=[config_changed(jb)] )
5,352,442
def Jacobian_rkhs_gaussian(x, vf_dict, vectorize=False): """analytical Jacobian for RKHS vector field functions with Gaussian kernel. Arguments --------- x: :class:`~numpy.ndarray` Coordinates where the Jacobian is evaluated. vf_dict: dict A dictionary containing RKHS vector field control points, Gaussian bandwidth, and RKHS coefficients. Essential keys: 'X_ctrl', 'beta', 'C' Returns ------- J: :class:`~numpy.ndarray` Jacobian matrices stored as d-by-d-by-n numpy arrays evaluated at x. d is the number of dimensions and n the number of coordinates in x. """ if x.ndim == 1: K, D = con_K(x[None, :], vf_dict['X_ctrl'], vf_dict['beta'], return_d=True) J = (vf_dict['C'].T * K) @ D[0].T elif not vectorize: n, d = x.shape J = np.zeros((d, d, n)) for i, xi in enumerate(x): K, D = con_K(xi[None, :], vf_dict['X_ctrl'], vf_dict['beta'], return_d=True) J[:, :, i] = (vf_dict['C'].T * K) @ D[0].T else: K, D = con_K(x, vf_dict['X_ctrl'], vf_dict['beta'], return_d=True) if K.ndim == 1: K = K[None, :] J = np.einsum('nm, mi, njm -> ijn', K, vf_dict['C'], D) return -2 * vf_dict['beta'] * J
5,352,443
def predict_images(detection_graph: tf.Graph, image_path: str, output_path: str, output_csv_path: str, threshold: float = 0.3, save_csv: bool = True) -> Tuple[np.ndarray]: """Predict detection on image Args: detection_graph (tf.Graph): Graph of model to detect image_path (str): path to image output_path (str): output folder to write detected images to output_csv_path (str): output folder to write csv of detections to threshold (float, optional): detection threshold. Defaults to 0.3. save_csv (bool, optional): whether csv files of detection should be saved. Defaults to True. Returns: Tuple[np.ndarray]: tuple of np arrays (all_boxes, all_scores, all_classes, all_num_detections) """ data = pd.DataFrame(columns=[ 'filename', 'width', 'height', 'class', 'score', 'xmin', 'ymin', 'xmax', 'ymax']) all_boxes, all_scores, all_classes, all_num_detections = [], [], [], [] with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: for img in sorted(glob.glob(image_path)): image_np, orig_w, orig_h = image_load_encode(img) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) #print('Image expanded: ', image_np.shape, image_np_expanded.shape) image_tensor = detection_graph.get_tensor_by_name( 'image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name( 'detection_scores:0') classes = detection_graph.get_tensor_by_name( 'detection_classes:0') num_detections = detection_graph.get_tensor_by_name( 'num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) #print('Boxes: ', boxes, 'scores', scores, 'classes', classes, 'num dets', num_detections) if save_csv: all_boxes.append(boxes) all_scores.append(scores) all_classes.append(classes) all_num_detections.append(num_detections) boxes = boxes[0] * np.array([[512, 512, 512, 512]]) scores = scores[0] classes = classes[0] num_detections = int(num_detections[0]) # convert boxes to xmin, ymin, xmax, ymax. Currently it is ymin, xmin, ymax, xmax boxes = boxes[:, [1, 0, 3, 2]] # find out where scores are greater than at threshold and change everything according to that thresh_indices = np.where(scores >= threshold)[0] boxes = boxes[thresh_indices] scores = scores[thresh_indices] classes = classes[thresh_indices] boxes, scores = postprocess(boxes, scores, theta=args.theta) # Visualization of the results of a detection, but only if output_path is provided if output_path is not None: image_np = draw_boxes( image_np, boxes, scores, disable_thresh=True) orig_name = img.split('/')[-1].split('\\')[-1] img_output_path = os.path.join(output_path, orig_name) cv2.imwrite(img_output_path, image_np) # always saving data to dataframe if save_csv: _ = write_to_df(data, img, orig_w, orig_h, output_csv_path, 'spine', boxes, scores, disable_thresh=True) print('[INFO] Finished detection of image '+img+'.') return all_boxes, all_scores, all_classes, all_num_detections
5,352,444
def load_pickle(file): """Gets the file from the cPickle file.""" f = open(file, 'r') d = cPickle.load(f) f.close() logger = get_logger() logger.info("file %s loaded" % file) return d
5,352,445
def test_register_op_with_extending_steps_works(): """ Calling the custom pipeline operation with an argument should yield the same arguments passed back as a result :return: """ test_pipe = Pipeline(STEPS, **PIPELINE_DEF_KWARGS) def custom_op(doc, context=None, settings=None, **kwargs): return settings custom_argument = {'argument': 1} test_pipe.register_operation('CUSTOM_STEP', custom_op) test_pipe.steps.append(('CUSTOM_STEP', custom_argument)) results = test_pipe(TEXT) assert results['CUSTOM_STEP'] == custom_argument
5,352,446
def get_dates_for_last_30_days( end_date: date, ) -> Tuple[Tuple[date, date], Tuple[date, date]]: """Returns dates for running RCA on the last 30 days. The first tuple contains t-61, t-31. The second tuple contains t-30, t. """ rca_start_date = end_date - timedelta(days=30) base_end_date = rca_start_date - timedelta(days=1) base_start_date = base_end_date - timedelta(days=30) return (base_start_date, base_end_date), (rca_start_date, end_date)
5,352,447
def get_3rd_friday(): """获取当前月的第三个星期五""" first_day_in_month = datetime.now().replace(day=1) # 本月第一天 # 获取当前月的所有星期5的日 fridays = [i for i in range(1, 28) if (first_day_in_month + timedelta(days=i - 1)).isoweekday() == 5] if len(fridays) < 3: raise Exception(f'获取当前月异常:{fridays}') # 第三个星期五,是第几天 third_friday = fridays[2] return datetime.now().replace(day=third_friday)
5,352,448
def retrieve_article_pdf_from_ads(bibcode, eprint_or_pub="PUB"): """ Get the PDF file for a given bibcode """ endpoint = f"{eprint_or_pub.upper()}_PDF" safe_bibcode = quote(bibcode) pdf_filename = f"{safe_bibcode}_{eprint_or_pub.lower()}.pdf" url = f"{LINK_GATEWAY_BASE_URL}/{safe_bibcode}/{endpoint}" r = requests.get( url, allow_redirects=True, ) with open(pdf_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=128): f.write(chunk) return pdf_filename
5,352,449
def get_account_info(): """account information""" method = 'GET' path = '/open/api/v2/account/info' url = '{}{}'.format(ROOT_URL, path) params = _sign(method, path) response = requests.request(method, url, params=params) return response.json()
5,352,450
def str_product(string): """ Calculate the product of all digits in a string """ product = 1 for i in string: product *= int(i) return product
5,352,451
def convolution_filter_grad_backward(inputs, base_axis=1, pad=None, stride=None, dilation=None, group=1, channel_last=False): """ Args: inputs (list of nn.Variable): Incomming grads/inputs to/of the forward function. kwargs (dict of arguments): Dictionary of the corresponding function arguments. Return: list of Variable: Return the gradients wrt inputs of the corresponding function. """ gdw = inputs[0] dy = inputs[1] x0 = inputs[2] ctx = nn.get_current_context() dfx = ConvolutionDataGrad( ctx, base_axis, pad, stride, dilation, group, channel_last) dfx.xshape = x0.shape gdy = F.convolution(x0, gdw, None, base_axis, pad, stride, dilation, group, channel_last) gx0 = dfx(dy, gdw) return gdy, gx0
5,352,452
def do_after_terminate(source, after_terminate): """Invokes an action after an on_complete() or on_error() event. This can be helpful for debugging, logging, and other side effects when completion or an error terminates an operation on_terminate -- Action to invoke after on_complete or throw is called """ def subscribe(observer, scheduler=None): def on_completed(): observer.on_completed() try: after_terminate() except Exception as err: # pylint: disable=broad-except observer.on_error(err) def on_error(exception): observer.on_error(exception) try: after_terminate() except Exception as err: # pylint: disable=broad-except observer.on_error(err) return source.subscribe(observer.on_next, on_error, on_completed, scheduler) return Observable(subscribe)
5,352,453
def _get_dload_scale(dload, xyz_scale: float, velocity_scale: float, accel_scale: float, force_scale: float) -> None: """ LOAD asssumes force """ if dload.Type == 'LOAD': scale = force_scale elif dload.Type == 'DISP': scale = xyz_scale elif dload.Type == 'VELO': scale = velocity_scale elif dload.Type == 'ACCE': scale = accel_scale else: raise RuntimeError(dload) return scale
5,352,454
def job_complete(job): """ Should be called whenever a job is completed. This will update the Git server status and make any additional jobs ready. """ job_complete_pr_status(job) create_issue_on_fail(job) start_canceled_on_fail(job) ParseOutput.set_job_info(job) ProcessCommands.process_commands(job) job.update_badge() all_done = job.event.set_complete_if_done() if all_done: event_complete(job.event) unrunnable = job.event.get_unrunnable_jobs() for norun in unrunnable: logger.info("Job %s: %s will not run due to failed dependencies" % (norun.pk, norun)) job_wont_run(norun) return all_done
5,352,455
def direct(sp_script_str, run_dir, nsamp, njobs, tgt_geo, bath_geo, thy_info, charge, mult, smin=3.779, smax=11.339, spin_method=1, ranseeds=None): """ Write input and run output. :param sp_script_str: submission script for single-point calculation :type sp_script_str: str :param run_dir: directory where all OneDMin jobs are run :type run_dir: str :param nsamp: number of samples to run PER OneDMin job :type nsamp: int :param njobs: number of OneDMin instances to run in parallel :type njobs: int :param tgt_geo: geometry of the target molecule :type tgt_geo: automol geometry data structure :param bath_geo: geometry of the bath molecule :type bath_geo: automol geometry data structure :param thy_info: theory info object (prog, method, basis, orb_lbl) :type thy_info: tuple(str, str, str, str) :param charge: charge of the target-molecule complex :type charge: int :param mult: multiplicity of the target-molecule complex :type mult: int :param smin: minimum allowed intermolecular separation :type smin: float :param smax: maximum allowed intermolecular separation :type smax: float :param spin_method: parameter for the spin method :type spin_method: int :param ranseed: seed-integer for the orientational sampling :type ranseed: int :rtype: (float, float) """ # Write the main input files for all runs (breaks if ranseeds not given) input_str_lst = () for ranseed in ranseeds: input_str_lst += ( onedmin_io.writer.input_file( nsamp, smin, smax, ranseed=ranseed, spin_method=spin_method), ) # Write the aux inputs; same for all runs tgt_str = automol.geom.string(tgt_geo) bath_str = automol.geom.string(bath_geo) elstruct_inp_str, onedmin_exe_name = _set_pot_info(thy_info, charge, mult) aux_dct = { 'target.xyz': tgt_str, 'bath.xyz': bath_str, 'qc.mol': elstruct_inp_str, 'qc.x': sp_script_str } # Write the script string for submission (for all runs) script_str = onedmin_io.writer.submission_script( njobs, run_dir, onedmin_exe_name) # Run the code output_str_lst = from_parallel_input_strings( script_str, run_dir, input_str_lst, aux_dct=aux_dct, input_name=INPUT_NAME, output_names=OUTPUT_NAMES) return input_str_lst, elstruct_inp_str, output_str_lst
5,352,456
def test_force_grid_wrap() -> None: """Ensures removing imports works as expected.""" test_input = "from bar import lib2\nfrom foo import lib6, lib7\n" test_output = isort.code( code=test_input, force_grid_wrap=2, multi_line_output=WrapModes.VERTICAL_HANGING_INDENT ) assert ( test_output == """from bar import lib2 from foo import ( lib6, lib7 ) """ ) test_output = isort.code( code=test_input, force_grid_wrap=3, multi_line_output=WrapModes.VERTICAL_HANGING_INDENT ) assert test_output == test_input
5,352,457
def corpus_loader(folder: str): """ A corpus loader function which takes in a path to a folder. """ # iterate through all file for file in os.listdir(folder): file_path = f"{folder}/{file}" yield read_text_file(file_path)
5,352,458
def naive_scheduler(task_qs, max_workers, old_worker_map, to_die_list, logger): """ Return two items (as one tuple) dict kill_list :: KILL [(worker_type, num_kill), ...] dict create_list :: CREATE [(worker_type, num_create), ...] In this scheduler model, there is minimum 1 instance of each nonempty task queue. """ logger.debug("Entering scheduler...") q_sizes = {} q_types = [] new_worker_map = {} # ## Added to disallow rescheduling workers we're waiting to spin down ## # blocked_workers = 0 blocked_types = [] for w_type in to_die_list: if to_die_list[w_type] > 0: if old_worker_map is not None: blocked_workers += old_worker_map[w_type] # These workers cannot be replaced. blocked_types.append(w_type) new_worker_map[w_type] = old_worker_map[w_type] # Keep the same. # ## ****************************************************************# ## # # Remove blocked workers from max workers. max_workers -= blocked_workers # Sum the size of each *available* (unblocked) task queue sum_q_size = 0 for q_type in task_qs: if q_type not in blocked_types: q_types.append(q_type) q_size = task_qs[q_type].qsize() sum_q_size += q_size q_sizes[q_type] = q_size if sum_q_size > 0: logger.info("[SCHEDULER] Total number of tasks is {}".format(sum_q_size)) # Set proportions of workers equal to the proportion of queue size. for q_type in q_sizes: ratio = q_sizes[q_type] / sum_q_size new_worker_map[q_type] = int(math.floor(ratio * max_workers)) # CLEANUP: Assign the difference here to any random worker. Should be small. difference = round(max_workers - sum(new_worker_map.values())) logger.info("[SCHEDULER] Offset difference: {}".format(difference)) logger.info("[SCHEDULER] Queue Types: {}".format(q_types)) if len(q_types) > 0: for i in range(difference): win_q = random.choice(q_types) new_worker_map[win_q] += 1 logger.debug(new_worker_map) return new_worker_map else: return None
5,352,459
def run(ceph_cluster, **kwargs) -> int: """ Method that executes the external test suite. Args: ceph_cluster The storage cluster participating in the test. kwargs The supported keys are config contains the test configuration Returns: 0 - Success 1 - Failure """ LOG.info("Running RBD Sanity tests.") config = kwargs["config"] script_dir = config["script_path"] script = config["script"] branch = config.get("branch", "pacific") nodes = config.get("nodes", []) if nodes: nodes = get_nodes_by_ids(ceph_cluster, nodes) else: # By default, tests would be executed on a single client node nodes = [ceph_cluster.get_nodes(role="client")[0]] for node in nodes: one_time_setup(node, branch=branch) cmd = f"cd ceph/{script_dir}; sudo bash {script}" if script == "*": cmd = f"cd ceph/{script_dir}; for test in $(ls); do sudo bash $test; done" node.exec_command(cmd=cmd, check_ec=True, timeout=1200) return 0
5,352,460
def search_item(search_term, next=False, page=0, board=0): """function to search and return comments""" if next == False: page = requests.get("https://www.nairaland.com/search?q=" + urllib.parse.quote_plus(str(search_term)) + "&board="+str(board)) else: page = requests.get("https://www.nairaland.com/search/" + str(search_term) + "/0/"+str(board)+"/0/1" + str(page)) soup = BeautifulSoup(page.content, 'html.parser') comments = soup.findAll("div", {"class": "narrow"}) return comments
5,352,461
def is_valid_action(state, x, y, direction): """ Checks if moving the piece at given x, y coordinates in the given direction is valid, given the current state. :param state: the current state :param x: the x coordinate of the piece :param y: the y coordinate of the piece :param direction: the direction to travel with this action :return: True if the action is valid, False otherwise """ new_x = x + X_MOVEMENT_DIFFS[direction] new_y = y + Y_MOVEMENT_DIFFS[direction] return is_within_bounds(new_x, new_y) and is_free_square(state, new_x, new_y)
5,352,462
def range_(minimum, maximum): """ A validator that raises a :exc:`ValueError` if the initializer is called with a value that does not belong in the [minimum, maximum] range. The check is performed using ``minimum <= value and value <= maximum`` """ return _RangeValidator(minimum, maximum)
5,352,463
def sigmoid_prime(z): """Helper function for backpropagation""" return sigmoid(z) * (1 - sigmoid(z))
5,352,464
def register_widget_util(ui_name, some_type, gen_widgets, apply_with_params): """ ui_name: the name of this utility in the UI some_type: this utility will appear in the sidebar whenever your view function returns a value of type ``some_type`` gen_widgets(val): a function that takes the report value (of the specified type), and returns a list of widgets. These widget values will be passed like: ``apply_with_params(val, *widget_values)``. apply_with_params: a function that takes the report value (of the specified type) as its first parameter, followed by a list of arguments that are given by widgets. The function must return the result of a call to ``file_response`` """ def gen_html(val): widgets = gen_widgets(val) widget_data = widgets_template_data(widgets) return render_template('utility_button.html', name=ui_name, widgets=widget_data) def apply_util(val, data): widgets = gen_widgets(val) validate_widget_form_data(widgets, data) inputs = parse_widget_form_data(widgets, data) return apply_with_params(val, *inputs) register_util_for_type(some_type, gen_html, apply_util)
5,352,465
def _CreateSamplePostsubmitReport(manifest=None, builder='linux-code-coverage', modifier_id=0): """Returns a sample PostsubmitReport for testing purpose. Note: only use this method if the exact values don't matter. """ manifest = manifest or _CreateSampleManifest() return PostsubmitReport.Create( server_host='chromium.googlesource.com', project='chromium/src', ref='refs/heads/main', revision='aaaaa', bucket='coverage', builder=builder, commit_timestamp=datetime(2018, 1, 1), manifest=manifest, summary_metrics=_CreateSampleCoverageSummaryMetric(), build_id=123456789, modifier_id=modifier_id, visible=True)
5,352,466
def create_doc_term_matrix(): """ Load document-term matrix from disk into memory """ df = None if os.path.isfile(DOCTERM_PICKLE): print('Saved dataframe found! Loading saved document-term matrix...') df = pd.read_pickle(DOCTERM_PICKLE) else: print('Could not find saved document-term matrix, loading from scratch...') df = pd.read_csv(DOCTERM_FPATH, index_col=0, keep_default_na=False) # Re-map original doc-term words to stemmed words stemmer = nltk.stem.porter.PorterStemmer() row_names = df.index.tolist() stem_queries = [stemmer.stem(name) for name in row_names] df.index = pd.Index(stem_queries) # Collapse duplicate rows df = df.groupby(df.index).sum() print('Saving as pickle file...') df.to_pickle(DOCTERM_PICKLE) return df
5,352,467
def _fetch_measurement_stats_arrays( ssc_s: typing.List[_NIScopeSSC], scalar_measurements: typing.List[niscope.ScalarMeasurement], ): """ private function for fetching statics for selected functions. Obtains a waveform measurement and returns the measurement value. This method may return multiple statistical results depending on the number of channels, the acquisition type, and the number of records you specify. You specify a particular measurement type, such as rise time, frequency, or voltage peak-to-peak. The waveform on which the digitizer calculates the waveform measurement is from an acquisition that you previously initiated. The statistics for the specified measurement method are returned, where the statistics are updated once every acquisition when the specified measurement is fetched by any of the Fetch Measurement methods. If a Fetch Measurement method has not been called, this method fetches the data on which to perform the measurement. The statistics are cleared by calling clear_waveform_measurement_stats. Many of the measurements use the low, mid, and high reference levels. You configure the low, mid, and high references with meas_chan_low_ref_level, meas_chan_mid_ref_level, and meas_chan_high_ref_level to set each channel differently. Args: ssc_s (typing.List[_NIScopeSSC]): List of sessions for various channels in groups. scalar_measurements (typing.List[niscope.ScalarMeasurement]): The list of scalar measurement to be performed on each fetched waveform. Returns: list of measurement_stats (list of MeasurementStats): Returns a list of class instances with the following measurement statistics about the specified measurement: - **result** (float): the resulting measurement - **mean** (float): the mean scalar value, which is obtained by averaging each fetch_measurement_stats call - **stdev** (float): the standard deviations of the most recent **numInStats** measurements - **min_val** (float): the smallest scalar value acquired (the minimum of the **numInStats** measurements) - **max_val** (float): the largest scalar value acquired (the maximum of the **numInStats** measurements) - **num_in_stats** (int): the number of times fetch_measurement_stats has been called - **channel** (str): channel name this result was acquired from - **record** (int): record number of this result """ stats: typing.List[niscope.MeasurementStats] = [] for ssc, scalar_meas_function in zip(ssc_s, scalar_measurements): stats.append( ssc.session.channels[ssc.channels].fetch_measurement_stats(scalar_meas_function) ) # function with unknown type return stats
5,352,468
def test_load_model(): """ GIVEN: The model defined inside classifier.py (L21) WHEN: Checking that the correct model is being passed in, by looking on the model.get_config()['handle']. THEN: The full path to the model. """ model = c.load_model() assert 'https://tfhub.dev/google/aiy/vision/classifier/birds_V1/1' == model.get_config()['handle']
5,352,469
def test_cyren_feed_relationship_with_search_response(mocker, indicator): """ Given: File hash indicator. When: Running cyren_feed_relationship command. Then: Verify expected results returns """ from CyrenThreatInDepthRenderRelated import cyren_feed_relationship args = dict(indicator=indicator) mocker.patch.object(demisto, "searchIndicators", return_value=SEARCH_INDICATORS_RESPONSE) result = cyren_feed_relationship(args) assert result.readable_output == ("|Indicator Type|Value|Reputation|Relationship Type|Entity Category|Timestamp UTC|\n" "|---|---|---|---|---|---|\n" "| SHA-256 " "| " "[0f6dbfb291ba1b84601b0372f70db3430df636c631d074c1c2463f9e5a033f21]" "(#/indicator/4467)<br> | " "None (0) | downloaded from | malware | 2020-10-28, 14:45:24 |\n")
5,352,470
def on_close_commit_buffer(commit_msg_filepath): """Actually trigger the commit. on_close_commit_buffer(str) -> None """ r = _get_repo_for_tempfile(commit_msg_filepath) try: with open(commit_msg_filepath, 'r') as f: success, msg = r.commit(f) print(msg) except FileNotFoundError: print('Aborting commit due to empty commit message.')
5,352,471
def BlockdevGrow(disk, amount, dryrun, backingstore, excl_stor): """Grow a stack of block devices. This function is called recursively, with the childrens being the first ones to resize. @type disk: L{objects.Disk} @param disk: the disk to be grown @type amount: integer @param amount: the amount (in mebibytes) to grow with @type dryrun: boolean @param dryrun: whether to execute the operation in simulation mode only, without actually increasing the size @param backingstore: whether to execute the operation on backing storage only, or on "logical" storage only; e.g. DRBD is logical storage, whereas LVM, file, RBD are backing storage @rtype: (status, result) @type excl_stor: boolean @param excl_stor: Whether exclusive_storage is active @return: a tuple with the status of the operation (True/False), and the errors message if status is False """ r_dev = _RecursiveFindBD(disk) if r_dev is None: _Fail("Cannot find block device %s", disk) try: r_dev.Grow(amount, dryrun, backingstore, excl_stor) except errors.BlockDeviceError, err: _Fail("Failed to grow block device: %s", err, exc=True)
5,352,472
def nativeMouseY(self): """ TOWRITE :rtype: qreal """ scene = self.activeScene() # QGraphicsScene* if scene: qDebug("mouseY: %.50f" % -scene.property("SCENE_MOUSE_POINT").y()) # .toPointF().y()) if scene: return -scene.property("SCENE_MOUSE_POINT").y() # .toPointF().y() return 0.0
5,352,473
def generate_repository_dependencies_folder_label_from_key( repository_name, repository_owner, changeset_revision, key ): """Return a repository dependency label based on the repository dependency key.""" if key_is_current_repositorys_key( repository_name, repository_owner, changeset_revision, key ): label = 'Repository dependencies' else: label = "Repository <b>%s</b> revision <b>%s</b> owned by <b>%s</b>" % ( repository_name, changeset_revision, repository_owner ) return label
5,352,474
def weighted_characteristic_path_length(matrix): """Calculate the characteristic path length for weighted graphs.""" n_nodes = len(matrix) min_distances = weighted_shortest_path(matrix) sum_vector = np.empty(n_nodes) for i in range(n_nodes): # calculate the inner sum sum_vector[i] = (1/(n_nodes-1)) * np.sum([min_distances[i, j] for j in range(n_nodes) if j != i]) return (1/n_nodes) * np.sum(sum_vector)
5,352,475
def doctor(cli): """Basic QMK environment checks. This is currently very simple, it just checks that all the expected binaries are on your system. TODO(unclaimed): * [ ] Compile a trivial program with each compiler """ cli.log.info('QMK Doctor is checking your environment.') ok = True # Determine our OS and run platform specific tests platform_id = platform.platform().lower() if 'darwin' in platform_id or 'macos' in platform_id: if not os_test_macos(): ok = False elif 'linux' in platform_id: if not os_test_linux(): ok = False elif 'windows' in platform_id: if not os_test_windows(): ok = False else: cli.log.error('Unsupported OS detected: %s', platform_id) ok = False # Make sure the basic CLI tools we need are available and can be executed. bin_ok = check_binaries() if not bin_ok: if yesno('Would you like to install dependencies?', default=True): run(['util/qmk_install.sh']) bin_ok = check_binaries() if bin_ok: cli.log.info('All dependencies are installed.') else: ok = False # Make sure the tools are at the correct version for check in (check_arm_gcc_version, check_avr_gcc_version, check_avrdude_version, check_dfu_util_version, check_dfu_programmer_version): if not check(): ok = False # Check out the QMK submodules sub_ok = check_submodules() if sub_ok: cli.log.info('Submodules are up to date.') else: if yesno('Would you like to clone the submodules?', default=True): submodules.update() sub_ok = check_submodules() if not sub_ok: ok = False # Report a summary of our findings to the user if ok: cli.log.info('{fg_green}QMK is ready to go') else: cli.log.info('{fg_yellow}Problems detected, please fix these problems before proceeding.') # FIXME(skullydazed/unclaimed): Link to a document about troubleshooting, or discord or something
5,352,476
async def process_name(message: types.Message, state: FSMContext): """ Process user name """ async with state.proxy() as data: data['name'] = message.text await RegisterForm.next() await message.reply("How old are you?")
5,352,477
def preproc(config): """Preprocess the CNN on Illumina reads using the supplied configuration.""" # Set the number of cores to use max_cores = config['Devices'].getint('N_CPUs') # Set input and output paths neg_path = config['InputPaths']['Fasta_Class_0'] pos_path = config['InputPaths']['Fasta_Class_1'] out_data_path = config['OutputPaths']['OutData'] out_labels_path = config['OutputPaths']['OutLabels'] # Set additional options: shuffle, gzip compression, RC augmentation, data type do_shuffle = config['Options'].getboolean('Do_shuffle') if do_shuffle: seed = config['Options'].getint('ShuffleSeed') np.random.seed(seed) do_gzip = config['Options'].getboolean('Do_gzip') do_revc = config['Options'].getboolean('Do_revc') datatype = config['Options']['DataType'] read_length = config['Options'].getint('ReadLength') use_tfdata = config['Options'].getboolean('Use_TFData') n_files = config['Options'].getint('N_Files') # Set alphabet and prepare the tokenizer alphabet = "ACGT" tokenizer = tf.keras.preprocessing.text.Tokenizer(char_level=True) tokenizer.fit_on_texts(alphabet) # Preprocess if neg_path != "none": print("Preprocessing negative data...") with open(neg_path) as input_handle: # Parse fasta and tokenize in parallel. Partial function takes tokenizer as a fixed argument. # Tokenize function is applied to the fasta sequence generator. if max_cores > 1: with Pool(processes=max_cores) as p: x_train_neg = np.asarray(p.map(partial(tokenize, tokenizer=tokenizer, datatype=datatype, read_length=read_length), read_fasta(input_handle)), dtype=datatype) else: x_train_neg = np.asarray(list(map(partial(tokenize, tokenizer=tokenizer, datatype=datatype, read_length=read_length), read_fasta(input_handle))), dtype=datatype) # Count negative samples n_negative = x_train_neg.shape[0] else: x_train_neg = np.zeros((0, read_length, 4),dtype=np.datatype) n_negative = 0 if pos_path != "none": print("Preprocessing positive data...") with open(pos_path) as input_handle: # Parse fasta, tokenize in parallel & concatenate to negative data if max_cores > 1: with Pool(processes=max_cores) as p: x_train_pos = np.asarray(p.map(partial(tokenize, tokenizer=tokenizer, datatype=datatype, read_length=read_length), read_fasta(input_handle)), dtype=datatype) else: x_train_pos = np.asarray(list(map(partial(tokenize, tokenizer=tokenizer, datatype=datatype, read_length=read_length), read_fasta(input_handle))), dtype=datatype) # Count positive samples n_positive = x_train_pos.shape[0] else: x_train_pos = np.zeros((0, read_length, 4),dtype=np.datatype) n_positive = 0 # Concatenate x_train = np.concatenate((x_train_neg, x_train_pos)) # Add labels y_train = np.concatenate((np.repeat(0, n_negative).astype(datatype), np.repeat(1, n_positive).astype(datatype))) # All sequences must have the same length. Then x_train is an array and the view below can be created # Note: creating a view instead of reversing element-wise saves a lot of memory # RC augmentation: Add reverse-complements by reversing both dimensions of the matrix # assumes the following order of columns: "ACGT" if do_revc: print("Augmenting data...") x_train = np.concatenate((x_train, x_train[::, ::-1, ::-1])) y_train = np.concatenate((y_train, y_train)) if do_shuffle: indices = np.arange(len(y_train)) np.random.shuffle(indices) x_train = x_train[indices, ::, ::] y_train = y_train[indices] # Save matrices # print("Saving data...") # Save output if not use_tfdata: # Compress output files if do_gzip: f_data = gzip.GzipFile(out_data_path + ".gz", "w") f_labels = gzip.GzipFile(out_labels_path + ".gz", "w") else: f_data = out_data_path f_labels = out_labels_path np.save(file=f_data, arr=x_train) np.save(file=f_labels, arr=y_train) else: out_dir = os.path.splitext(out_data_path)[0] if not os.path.exists(out_dir): os.makedirs(out_dir) n_all = n_negative + n_positive slice_size = math.ceil(n_all/n_files) for i in range(n_files): start = i * slice_size end = min((i+1) * slice_size, n_all) features_dataset = tf.data.Dataset.from_tensor_slices((x_train[start:end], y_train[start:end])) serialized_features_dataset = features_dataset.map(tf_serialize_example) filename = os.path.join(out_dir, os.path.splitext(os.path.basename(out_dir))[0] + '_{}-{}.tfrec'.format(start, end - 1)) writer = tf.data.experimental.TFRecordWriter(filename) if tf.executing_eagerly(): writer.write(serialized_features_dataset) else: with tf.compat.v1.Session() as sess: sess.run(writer.write(serialized_features_dataset)) print("Done!")
5,352,478
def execute_timeout(cnx, command, **kwargs): """Perform Sqlite3 command to be interrupted if running too long. If the given command is a string, it is executed as SQL. If the command is a callable, call it with the cnx and any given keyword arguments. Raises SystemError if interrupted by timeout. """ config = flask.current_app.config event = threading.Event() timeout = config["EXECUTE_TIMEOUT"] args = ( cnx, event, timeout, config["EXECUTE_TIMEOUT_INCREMENT"], config["EXECUTE_TIMEOUT_BACKOFF"], ) thread = threading.Thread(target=_timeout_interrupt, args=args) thread.start() event.set() try: if isinstance(command, str): # SQL result = cnx.execute(command) elif callable(command): result = command(cnx, **kwargs) except sqlite3.ProgrammingError: raise except sqlite3.OperationalError as error: # This looks like a bug in the sqlite3 module: # SQL syntax error should raise sqlite3.ProgrammingError, # not sqlite3.OperationalError, which is what it does. # That's why the error message has to be checked. if str(error) == "interrupted": raise SystemError(f"execution exceeded {timeout} seconds; interrupted") else: raise event.clear() thread.join() return result
5,352,479
def destroy(): """Destroy this Heroku application. Wipe it from existance. .. note:: This really will completely destroy your application. Think twice. """ local('heroku apps:destroy')
5,352,480
def mean_IoU(threshold=0.5, center_crop=0, get_batch_mean=True): """ - y_true is a 3D array. Each channel represents the ground truth BINARY channel - y_pred is a 3D array. Each channel represents the predicted BINARY channel """ def _f(y_true, y_pred): y_true = fix_input(y_true) y_pred = fix_input(y_pred) y_true = get_binary_img( y_true, threshold=threshold, center_crop=center_crop ) y_pred = get_binary_img( y_pred, threshold=threshold, center_crop=center_crop ) inter = get_intersection(y_true, y_pred) union = get_alls(y_true, y_pred) - inter batch_metric = eps_divide(inter, union) if get_batch_mean: return K.mean(batch_metric, axis=-1) return batch_metric _f.__name__ = 'attila_metrics_{}'.format('mean_IoU') return _f
5,352,481
def unsatZone_withAgri_Ep(self, k): """ - Potential evaporation is calculated with formula in 'JarvisCoefficients', but without using the Jarvis stress functions - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation linear until LP, from than with potential rate - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato - Qu is determined with a beta function (same as in HBV?) - Code for ini-file: 14 """ JarvisCoefficients.calcEp(self, k) self.PotEvaporation = pcr.cover(pcr.ifthenelse(self.EpHour >= 0, self.EpHour, 0), 0) self.Sa[k] = pcr.ifthenelse( self.Sa_t[k] + self.Pe > self.samax[k], self.samax[k], self.Sa_t[k] + self.Pe ) self.Qaadd = pcr.ifthenelse( self.Sa_t[k] + self.Pe > self.samax[k], self.Sa_t[k] + self.Pe - self.samax[k], 0, ) self.SaN = self.Sa[k] / self.samax[k] self.Ea1 = pcr.max((self.PotEvaporation - self.Ei), 0) * pcr.min( self.Sa[k] / (self.samax[k] * self.LP[k]), 1 ) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = self.famax[k] * (self.sumax[k] - self.Su[k]) / self.sumax[k] self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Ea1 - self.Fa1 self.Sa_diff = pcr.ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Ea = ( self.Ea1 + ( self.Ea1 / pcr.ifthenelse( self.Qa1 + self.Ea1 + self.Fa1 > 0, self.Qa1 + self.Ea1 + self.Fa1, 1 ) ) * self.Sa_diff ) self.Qa = ( self.Qa1 + ( self.Qa1 / pcr.ifthenelse( self.Qa1 + self.Ea1 + self.Fa1 > 0, self.Qa1 + self.Ea1 + self.Fa1, 1 ) ) * self.Sa_diff ) self.Fa = pcr.ifthenelse( self.Fa1 > 0, self.Fa1 + ( self.Fa1 / pcr.ifthenelse( self.Qa1 + self.Ea1 + self.Fa1 > 0, self.Qa1 + self.Ea1 + self.Fa1, 1 ) ) * self.Sa_diff, self.Fa1, ) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Qa - self.Fa self.Sa[k] = pcr.ifthenelse(self.Sa[k] < 0, 0, self.Sa[k]) self.Sa_diff2 = pcr.ifthen(self.Sa[k] < 0, self.Sa[k]) self.Capa = pcr.min(self.cap[k] * (1 - self.Sa[k] / self.samax[k]), self.Su[k]) self.Sa[k] = self.Sa[k] + self.Capa self.Su[k] = self.Su_t[k] + self.Fa - self.Capa self.Perc = self.perc[k] * (self.Su[k] / self.sumax[k]) self.Su[k] = self.Su[k] - self.Perc self.wbSa_[k] = ( self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa + self.Capa - self.Sa[k] + self.Sa_t[k] ) self.wbSu_[k] = self.Fa - self.Perc - self.Capa - self.Su[k] + self.Su_t[k] self.Eu_[k] = self.Ea self.Qu_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa self.Cap_[k] = self.Cap self.Perc_[k] = self.Perc
5,352,482
def ConvertCSVStringToList(csv_string): """Helper to convert a csv string to a list.""" reader = csv.reader([csv_string]) return list(reader)[0]
5,352,483
def add_data_to_taskw(data: dict, module: str, quest: str): """ Insert data to TaskWarrior DB. """ twarrior = TaskWarrior() if quest is not None: project_data = module + ":" + quest timestamp = convert_to_unix_tstamp(data['end'], False) else: project_data = module timestamp = convert_to_unix_tstamp(data['date_end'], True) if not task_exists(twarrior, data['name']) and not is_stage_validated(data): twarrior.task_add(data['name'], due=timestamp, project=project_data)
5,352,484
def get_section_range_pairs(orig_section, new_pdf): """Return MatchingSection for a section.""" other_section = new_pdf.find_corresponding_section(orig_section) if not other_section: print("Skipping section {} - no match in the other doc!".format( orig_section.title)) return None return MatchingSection( title=orig_section.title, orig_range=orig_section.pdf_diff_options, new_range=other_section.pdf_diff_options)
5,352,485
def atomic_transaction(conn: sqlite3.Connection, sql: str, *args: Any) -> sqlite3.Cursor: """Perform an **atomic** transaction. The transaction is committed if there are no exceptions else the transaction is rolled back. Args: conn: database connection sql: formatted string *args: arguments to use for parameter substitution Returns: sqlite cursor """ try: c = transaction(conn, sql, *args) except Exception as e: logging.exception("Could not execute transaction, rolling back") conn.rollback() raise e conn.commit() return c
5,352,486
def convert_to_tensor(narray, device): """Convert numpy to tensor.""" return tf.convert_to_tensor(narray, tf.float32)
5,352,487
def get_config_origin(c): """Return appropriate configuration origin Parameters ---------- c: Configuration configuration to be examined Returns ------- origin: str origin of configuration (e.g. "Local", "Random", etc.) """ if not c.origin: origin = "Unknown" elif c.origin.startswith("Local") or c.origin == 'Model based pick' or "sorted" in c.origin: origin = "Acquisition Function" elif c.origin.startswith("Random"): origin = "Random" else: logging.getLogger("cave.utils.helpers").debug("Cannot interpret origin: %s", c.origin) origin = "Unknown" return origin
5,352,488
def get_instance_ip() -> str: """ For a given identifier for a deployment (env var of IDENTIFIER), find the cluster that was deployed, find the tasks within the cluster (there should only be one), find the network interfaces on that task, and return the public IP of the instance :returns: str The public ip of the remote instance """ ecs_c = boto3.client("ecs") task_arns = ecs_c.list_tasks( cluster=f"remote-cluster-{IDENTIFIER}", desiredStatus="RUNNING" )["taskArns"] if task_arns: tasks = ecs_c.describe_tasks( cluster=f"remote-cluster-{IDENTIFIER}", tasks=task_arns )["tasks"] # Should only ever be one task and network interface on deployment task_details = { d["name"]: d["value"] for d in tasks[0]["attachments"][0]["details"] } interface_id = task_details["networkInterfaceId"] ec2_c = boto3.client("ec2") network_interfaces = ec2_c.describe_network_interfaces( NetworkInterfaceIds=[interface_id] )["NetworkInterfaces"] return network_interfaces[0]["Association"]["PublicIp"] else: return None
5,352,489
def is_hign_level_admin(): """超级管理员""" return is_admin() and request.user.level == 1
5,352,490
def object_metadata(save_path): """Retrieves information about the objects in a checkpoint. Example usage: ```python object_graph = tf.contrib.checkpoint.object_metadata( tf.train.latest_checkpoint(checkpoint_directory)) ckpt_variable_names = set() for node in object_graph.nodes: for attribute in node.attributes: ckpt_variable_names.add(attribute.full_name) ``` Args: save_path: The path to the checkpoint, as returned by `save` or `tf.train.latest_checkpoint`. Returns: A parsed `tf.contrib.checkpoint.TrackableObjectGraph` protocol buffer. Raises: ValueError: If an object graph was not found in the checkpoint. """ reader = pywrap_tensorflow.NewCheckpointReader(save_path) try: object_graph_string = reader.get_tensor(base.OBJECT_GRAPH_PROTO_KEY) except errors_impl.NotFoundError: raise ValueError( ('The specified checkpoint "%s" does not appear to be object-based (it ' 'is missing the key "%s"). Likely it was created with a name-based ' "saver and does not contain an object dependency graph.") % (save_path, base.OBJECT_GRAPH_PROTO_KEY)) object_graph_proto = (trackable_object_graph_pb2.TrackableObjectGraph()) object_graph_proto.ParseFromString(object_graph_string) return object_graph_proto
5,352,491
async def login(_request: Request, _user: User) -> response.HTTPResponse: """ Login redirect """ return redirect(app.url_for("pages.portfolios"))
5,352,492
def test_estimate_gas_fails_if_startgas_is_higher_than_blockgaslimit(deploy_client): """ Gas estimation fails if the transaction execution requires more gas then the block's gas limit. """ contract_proxy, _ = deploy_rpc_test_contract(deploy_client, "RpcWithStorageTest") latest_block_hash = deploy_client.blockhash_from_blocknumber("latest") current_gas_limit = deploy_client.get_block(latest_block_hash)["gasLimit"] # This number of iterations is an over estimation to accomodate for races, # this cannot be significantly large because on parity it is a blocking # call. number_iterations = current_gas_limit // SSTORE_COST # This race condition cannot be fixed because geth does not support # block_identifier for eth_estimateGas. The test should not be flaky # because number_iterations is order of magnitudes larger then it needs to # be block_identifier = None startgas = contract_proxy.estimate_gas(block_identifier, "waste_storage", number_iterations) assert startgas is None, "estimate_gas must return empty if sending the transaction would fail"
5,352,493
def delete_source(source_uuid: SourceId, database: Database): """Delete a source.""" data_model = latest_datamodel(database) reports = latest_reports(database) data = SourceData(data_model, reports, source_uuid) delta_description = ( f"{{user}} deleted the source '{data.source_name}' from metric " f"'{data.metric_name}' of subject '{data.subject_name}' in report '{data.report_name}'." ) uuids = [data.report_uuid, data.subject_uuid, data.metric_uuid, source_uuid] del data.metric["sources"][source_uuid] return insert_new_report(database, delta_description, (data.report, uuids))
5,352,494
def find_object_with_matching_attr(iterable, attr_name, value): """ Finds the first item in an iterable that has an attribute with the given name and value. Returns None otherwise. Returns: Matching item or None """ for item in iterable: try: if getattr(item, attr_name) == value: return item except AttributeError: pass return None
5,352,495
def send_message(token, message: str) -> str: """ A function that notifies LINENotify of the character string given as an argument :param message: A string to be notified :param token: LineNotify Access Token :return response: server response (thats like 200 etc...) """ notify = Notifer(token) return notify.send_message(message)
5,352,496
def hdf5pack(hdf5_file, active_areas=None, address=None, attenuation=None, beam_center_x=None, beam_center_y=None, ccd_image_saturation=None, data=None, distance=None, pixel_size=None, pulse_length=None, saturated_value=None, timestamp=None, wavelength=None, xtal_target=None): """Similar but far from identical to the HDF5 output from CASS. XXX Poor diagnostics--we don't know if it failed or not. @note Does not include the deprecated SEQUENCE_NUMBER attribute. While some redundant items are written in order to keep the HDF5 synchronised to the pickle format, neither SIZE1 nor SIZE2 are included. """ # Need this because we cannot write None values to the HDF5 file. if address is None: address = repr(None) if attenuation is None: attenuation = 0 if xtal_target is None: xtal_target = repr(None) if pixel_size is None: pixel_size = globals()['pixel_size'] # XXX CSpad-specific! if pulse_length is None: pulse_length = 0 d = dpack(address=address, active_areas=active_areas, beam_center_x=beam_center_x, beam_center_y=beam_center_y, ccd_image_saturation=ccd_image_saturation, data=data, distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=timestamp, wavelength=wavelength, xtal_target=xtal_target) if d is None: return grp_event = hdf5_file.create_group(d['TIMESTAMP']) grp_detector = grp_event.create_group(address) for (key, value) in six.iteritems(d): if key == 'ACTIVE_AREAS': grp_detector.create_dataset(key, data=value.as_numpy_array()) elif key == 'DATA': # Compress the image data with gzip at the default level (4). # CASS seems to use maximum compression level (9), which gives a # moderate decrease in file size at the price of much longer # running time. grp_detector.create_dataset( key, compression='gzip', data=value.as_numpy_array()) else: grp_event.create_dataset(key, data=[value]) grp_event.create_dataset('ATTENUATION', data=[attenuation]) grp_event.create_dataset('PULSE_LENGTH', data=[pulse_length])
5,352,497
def _fix(node): """Fix the naive construction of the adjont. See `fixes.py` for details. This function also returns the result of reaching definitions analysis so that `split` mode can use this to carry over the state from primal to adjoint. Args: node: A module with the primal and adjoint function definitions as returned by `reverse_ad`. Returns: node: A module with the primal and adjoint function with additional variable definitions and such added so that pushes onto the stack and gradient accumulations are all valid. defined: The variables defined at the end of the primal. reaching: The variable definitions that reach the end of the primal. """ # Do reaching definitions analysis on primal and adjoint pri_cfg = cfg.CFG.build_cfg(node.body[0]) defined = cfg.Defined() defined.visit(pri_cfg.entry) reaching = cfg.ReachingDefinitions() reaching.visit(pri_cfg.entry) cfg.forward(node.body[1], cfg.Defined()) cfg.forward(node.body[1], cfg.ReachingDefinitions()) # Remove pushes of variables that were never defined fixes.CleanStack().visit(node) fixes.FixStack().visit(node.body[0]) # Change accumulation into definition if possible fixes.CleanGrad().visit(node.body[1]) # Define gradients that might or might not be defined fixes.FixGrad().visit(node.body[1]) return node, defined.exit, reaching.exit
5,352,498
def change_lane(vid, lane): """ Let a vehicle change lane without respecting any safety distance :param vid: vehicle id :param lane: lane index """ traci.vehicle.setLaneChangeMode(vid, DEFAULT_LC) traci.vehicle.changeLane(vid, lane, 10000.0)
5,352,499