content
stringlengths
22
815k
id
int64
0
4.91M
def greyscale(state): """ Preprocess state (210, 160, 3) image into a (80, 80, 1) image in grey scale """ state = np.reshape(state, [210, 160, 3]).astype(np.float32) # grey scale state = state[:, :, 0] * 0.299 + state[:, :, 1] * 0.587 + state[:, :, 2] * 0.114 # karpathy state = state[35:195] # crop state = state[::2,::2] # downsample by factor of 2 state = state[:, :, np.newaxis] return state.astype(np.uint8)
5,352,500
def main( cl, re, ma, n_ca, n_th, gen=100, tolx=1e-8, tolf=1e-8, fix_te=True, t_te_min=0.0, t_c_min=0.01, r_le_min=0.05, A_cs_min=None, A_bins_min=None, Cm_max=None, strategy="rand-to-best/1/exp/random", f=None, cr=None, adaptivity=2, repr_file="repr.yml", dat_file="optimized.dat", png_file="optimized.png", ): """ Create, analyze, optimize airfoil, and write optimized coordinates to a file. Then clean the problem up and exit. Parameters ---------- cl : float Design lift coefficient re : float Reynolds number ma : float Mach number n_ca, n_th : int Number of CST coefficients for the chord line and thickness distribution, respectively gen : int, optional Number of generations to use for the genetic algorithm. 100 by default tolx : float, optional Tolerance on the spread of the design vectors. tolf: float, optional Tolerance on the spread of objective functions. fix_te : bool, optional True if the trailing edge thickness should be fixed. True by default t_te_min : float, optional Minimum TE thickness as fraction of chord length. Default is 0.0. t_c_min : float or None, optional Minimum thickness over chord ratio. None if unconstrained. Defaults is 0.01. r_le_min : float or None, optional Minimum leading edge radius. None if unconstrained. Defaults is 0.05. A_cs_min : float or None, optional Minimum cross sectional area. None if unconstrained. Default is None. A_bins_min : float or None, optional Minimum relative area of the airfoil in each bin along the chord. None if unconstrained. Default is None. Cm_max : float or None, optional Maximum absolute moment coefficient. None if unconstrained. Default is None. strategy : string, optional Evolution strategy to use. Default is 'rand-to-best/1/exp/random'. f : float or None, optional Mutation rate cr : float or None, optional Crossover rate adaptivity : 0, 1, or 2 Which kind of self-adaptivity to ue (0: none, 1: simple, 2: complex) repr_file, dat_file, png_file : str, optional Paths where the final representation, optimized airfoil coordinates, and output image should be saved. """ # Construct the OpenMDAO Problem kwargs = dict( n_ca=n_ca, n_th=n_th, fix_te=fix_te, t_te_min=t_te_min, t_c_min=t_c_min, r_le_min=r_le_min, A_cs_min=A_cs_min, A_bins_min=A_bins_min, Cm_max=Cm_max, ) prob = om.Problem() prob.model = AfOptModel(**kwargs) prob.driver = get_de_driver(gen, tolx, tolf, strategy, f, cr, adaptivity) prob.driver.add_recorder(PopulationReporter()) prob.setup() # Set reference values prob["Cl_des"] = cl prob["Re"] = re prob["M"] = ma # Optimize the problem using a genetic algorithm t0 = time.time() prob.run_driver() dt = time.time() - t0 # Show and write final results if rank == 0: yaml = prob.model.__repr__() print("Optimized airfoil:") print(" " + yaml.replace("\n", "\n ")) print(f"Time Elapsed: {timedelta(seconds=dt)}") with open(repr_file, "w") as f: f.write(yaml) write(prob, filename=dat_file) fig = plot(prob) fig.savefig(png_file) # Clean up and exit prob.cleanup() del prob sys.exit(0)
5,352,501
def test_generate_notification_payload(mocker, mocker2): """Test generate_notification_payload function.""" es.FINAL_DATA = { "xyz/xyz": { "notify": "true", "direct_updates": [{ "ecosystem": "maven", "name": "io.vertx:vertx-web", "latest_version": "3.4.2" } ], "transitive_updates": [{ "ecosystem": "maven", "name": "io.vertx:vertx-core", "latest_version": "3.4.2" } ] } } mocker.return_value = "abcd" mocker2.return_value = "defg" out = es.generate_notification_payload() assert out == "success"
5,352,502
def get_mnist(data_folder='./', chunk_size=128): """Retreives images of mnist digits and corresponding labels Saves data within a folder called mnist. Required inputs: data_folder - path to location where mnist is saved Optional inputs: chunk_size - rate at which bytes are downloaded """ folder_path = os.path.join(data_folder, "mnist") if not os.path.exists(folder_path): os.mkdir(folder_path) img_url = "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz" zipname = img_url.split('/')[-1] extract_name = zipname.split('.')[0] save_path = os.path.join(folder_path, zipname) image_bytes = os.path.join(folder_path, extract_name) pull_file(img_url, save_path, chunk_size) print(f"Extract {save_path} to {image_bytes}\n") with gzip.open(save_path, 'rb') as f_in: with open(image_bytes, 'wb') as f_out: f_out.write(f_in.read()) # remove zip file print(f"Removing {save_path}\n") os.remove(save_path) label_url = "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz" zipname = label_url.split('/')[-1] extract_name = zipname.split('.')[0] save_path = os.path.join(folder_path, zipname) label_bytes = os.path.join(folder_path, extract_name) pull_file(label_url, save_path, chunk_size) print(f"Extract {save_path} to {label_bytes}\n") with gzip.open(save_path, 'rb') as f_in: with open(label_bytes, 'wb') as f_out: f_out.write(f_in.read()) # remove zip file print(f"Removing {save_path}\n") os.remove(save_path) # Load mnist data X, y = loadlocal_mnist( images_path=image_bytes, labels_path=label_bytes) X_path = os.path.join(folder_path,"X_MNIST.npy") y_path = os.path.join(folder_path,"y_MNIST.npy") print(f"Saving MNIST images to {X_path}\n") np.save(X_path, X) print(f"Saving MNIST image labels to {y_path}\n") np.save(y_path, y) os.remove(image_bytes) os.remove(label_bytes)
5,352,503
def functional_common_information(dist, rvs=None, crvs=None, rv_mode=None): """ Compute the functional common information, F, of `dist`. It is the entropy of the smallest random variable W such that all the variables in `rvs` are rendered independent conditioned on W, and W is a function of `rvs`. Parameters ---------- dist : Distribution The distribution from which the functional common information is computed. rvs : list, None A list of lists. Each inner list specifies the indexes of the random variables used to calculate the total correlation. If None, then the total correlation is calculated over all random variables, which is equivalent to passing `rvs=dist.rvs`. crvs : list, None A single list of indexes specifying the random variables to condition on. If None, then no variables are conditioned on. rv_mode : str, None Specifies how to interpret `rvs` and `crvs`. Valid options are: {'indices', 'names'}. If equal to 'indices', then the elements of `crvs` and `rvs` are interpreted as random variable indices. If equal to 'names', the the elements are interpreted as random variable names. If `None`, then the value of `dist._rv_mode` is consulted, which defaults to 'indices'. Returns ------- F : float The functional common information. """ rvs, crvs, rv_mode = normalize_rvs(dist, rvs, crvs, rv_mode) dtc = dual_total_correlation(dist, rvs, crvs, rv_mode) ent = entropy(dist, rvs, crvs, rv_mode) if np.isclose(dtc, ent): return dtc d = functional_markov_chain(dist, rvs, crvs, rv_mode) return entropy(d, [dist.outcome_length()])
5,352,504
def kubernetes_client() -> BatchV1Api: """ returns a kubernetes client """ config.load_config() return BatchV1Api()
5,352,505
def __test(priority_queue): """ Priority-Queue Test. __test(priority_queue) -> None @type priority_queue: basepriorityqueue @param priority_queue: priority-queue instance. """ if not isinstance(priority_queue, basepriorityqueue): raise TypeError("Expected type was PriorityQueue.") print "### iPATH TEST DATA STRUCTURE" print "### Data Type: Priority Queue ({})".format(str(priority_queue.__class__.__bases__[0].__name__)) print "### Implementation: {}".format(priority_queue.__class__.__name__) print "\n*** INSERT ***\n" for i in range(0, 10, 2): print "insert({}, {})".format(str(i), str(float(i))) priority_queue.insert(i, float(i)) for i in range(1, 10, 2): print "insert({}, {})".format(str(i), str(float(i))) priority_queue.insert(i, float(i)) print "\n{}\n".format(str(priority_queue)) print "\n*** FIND/DELETE MIN ***\n" for i in range(2): print "find_min: {}".format(str(priority_queue.find_min())) print "delete_min: {}\n".format(str(priority_queue.delete_min())) print "\n{}\n".format(str(priority_queue)) print "\n*** DECREASE KEY ***\n" for i in range(5, 10): print "decrease_key({}, {})".format(str(i), str(float(i / 2))) priority_queue.decrease_key(i, float(i / 2)) print "\n{}\n".format(str(priority_queue)) print "\n*** INCREASE KEY ***\n" for i in range(2, 5): print "increase_key({}, {})".format(str(i), str(float(i * 2))) priority_queue.increase_key(i, float(i * 2)) print "\n{}\n".format(str(priority_queue)) for i in range(2): print "find_min: {}".format(str(priority_queue.find_min())) print "delete_min: {}\n".format(str(priority_queue.delete_min())) print "\n{}\n".format(str(priority_queue)) print "\n*** EMPTYING ***\n" while priority_queue.is_empty() is False: print "find_min: {}".format(str(priority_queue.find_min())) print "delete_min: {}".format(str(priority_queue.delete_min())) print "\n{}\n".format(str(priority_queue)) print "\n### END OF TEST ###\n"
5,352,506
def get_replication_set_output(arn: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetReplicationSetResult]: """ Resource type definition for AWS::SSMIncidents::ReplicationSet :param str arn: The ARN of the ReplicationSet. """ ...
5,352,507
def adjust_wire_offset(wire): """ Adjusts the wire's offset so that the two labels have a distinct last bit. :param wire: the wire in question """ false_label = get_last_bit(wire.false_label.label) true_label = get_last_bit(wire.true_label.label) while false_label == true_label: wire.true_label.label = os.urandom(settings.NUM_BYTES) true_label = get_last_bit(wire.true_label.label)
5,352,508
def admin_only(func): """[TODO summary of func] args: [TODO insert arguments] returns: [TODO insert returns] """ def isadmin(invoker, chatadmins): adminids = [] for admin in chatadmins: adminids.append(admin.user.id) return invoker.id in adminids async def wrapper(message: types.Message): invoker = message.from_user chatadmins = await message.chat.get_administrators() if isadmin(invoker, chatadmins): await func(message) # print('isadmin') #TODO tell that an admin thing is performed else: # print('notadmin') #TODO tell that an admin thing is denied pass return wrapper
5,352,509
def create_simple(): """Create an instance of the `Simple` class.""" return Simple()
5,352,510
def contains_rep_info(line): """ Checks does that line contains link to the github repo (pretty simple 'algorithm' at the moment) :param line: string from aa readme file :return: true if it has link to the github repository :type line:string :rtype: boolean """ return True if line.find("https://github.com/") != -1 else False
5,352,511
def GetAtomPairFingerprintAsBitVect(mol): """ Returns the Atom-pair fingerprint for a molecule as a SparseBitVect. Note that this doesn't match the standard definition of atom pairs, which uses counts of the pairs, not just their presence. **Arguments**: - mol: a molecule **Returns**: a SparseBitVect >>> from rdkit import Chem >>> m = Chem.MolFromSmiles('CCC') >>> v = [ pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(1),1), ... pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(2),2), ... ] >>> v.sort() >>> fp = GetAtomPairFingerprintAsBitVect(m) >>> list(fp.GetOnBits())==v True """ res = DataStructs.SparseBitVect(fpLen) fp = rdMolDescriptors.GetAtomPairFingerprint(mol) for val in fp.GetNonzeroElements(): res.SetBit(val) return res
5,352,512
def get_registrations_by_player_id(db_cursor: sqlite3.Cursor, player_id: int) -> list[registration.Registration]: """ Get a list of registrations by player id. :param db_cursor: database object to interact with database :param player_id: player id :return: a list of registrations """ db_cursor.execute("""SELECT * FROM registrations WHERE user_id = ?""", [player_id]) registration_infos = db_cursor.fetchall() registrations = [] for registration_info in registration_infos: registrations.append(registration.Registration.from_sqlite_table(registration_info)) return registrations
5,352,513
def main(argv=None, from_checkout=False): """Top-level script function to create a new Zope instance.""" if argv is None: argv = sys.argv try: options = parse_args(argv, from_checkout) except SystemExit as e: if e.code: return 2 else: return 0 app = Application(options) try: return app.process() except KeyboardInterrupt: return 1 except SystemExit as e: return e.code
5,352,514
def process_twitter_outbox(): """ Send Pending Twitter Messages """ msg.process_outbox(contact_method = "TWITTER")
5,352,515
def run_sim(alpha,db,m,DELTA,game,game_constants,i): """run a single simulation and save interaction data for each clone""" rates = (DEATH_RATE,DEATH_RATE/db) rand = np.random.RandomState() data = [get_areas_and_fitnesses(tissue,DELTA,game,game_constants) for tissue in lib.run_simulation(simulation,L,TIMESTEP,TIMEND,rand,progress_on=False, init_time=INIT_TIME,til_fix='exclude_final',save_areas=True,return_events=False,save_cell_histories=False, N_limit=MAX_POP_SIZE,DELTA=DELTA,game=game,game_constants=game_constants, mutant_num=1,domain_size_multiplier=m,rates=rates,threshold_area_fraction=alpha,generator=True)] return data
5,352,516
def IMDB(*args, **kwargs): """ Defines IMDB datasets. The labels includes: - 0 : Negative - 1 : Positive Create sentiment analysis dataset: IMDB Separately returns the training and test dataset Arguments: root: Directory where the datasets are saved. Default: ".data" ngrams: a contiguous sequence of n items from s string text. Default: 1 vocab: Vocabulary used for dataset. If None, it will generate a new vocabulary based on the train data set. removed_tokens: removed tokens from output dataset (Default: []) tokenizer: the tokenizer used to preprocess raw text data. The default one is basic_english tokenizer in fastText. spacy tokenizer is supported as well. A custom tokenizer is callable function with input of a string and output of a token list. data_select: a string or tuple for the returned datasets (Default: ('train', 'test')) By default, all the three datasets (train, test, valid) are generated. Users could also choose any one or two of them, for example ('train', 'test') or just a string 'train'. If 'train' is not in the tuple or string, a vocab object should be provided which will be used to process valid and/or test data. Examples: >>> from torchtext.experimental.datasets import IMDB >>> from torchtext.data.utils import get_tokenizer >>> train, test = IMDB(ngrams=3) >>> tokenizer = get_tokenizer("spacy") >>> train, test = IMDB(tokenizer=tokenizer) >>> train, = IMDB(tokenizer=tokenizer, data_select='train') """ return _setup_datasets(*(("IMDB",) + args), **kwargs)
5,352,517
def load_multiples(image_file_list: List, method: str='mean', stretch: bool=True, **kwargs) -> ImageLike: """Combine multiple image files into one superimposed image. Parameters ---------- image_file_list : list A list of the files to be superimposed. method : {'mean', 'max', 'sum'} A string specifying how the image values should be combined. stretch : bool Whether to normalize the images being combined by stretching their high/low values to the same values across images. kwargs : Further keyword arguments are passed to the load function. Examples -------- Load multiple images:: >>> from pylinac.core.image import load_multiples >>> paths = ['starshot1.tif', 'starshot2.tif'] >>> superimposed_img = load_multiples(paths) """ # load images img_list = [load(path, **kwargs) for path in image_file_list] first_img = img_list[0] # check that all images are the same size and stretch if need be for img in img_list: if img.shape != first_img.shape: raise ValueError("Images were not the same shape") if stretch: img.array = stretcharray(img.array, fill_dtype=first_img.array.dtype) # stack and combine arrays new_array = np.dstack(tuple(img.array for img in img_list)) if method == 'mean': combined_arr = np.mean(new_array, axis=2) elif method == 'max': combined_arr = np.max(new_array, axis=2) elif method == 'sum': combined_arr = np.sum(new_array, axis=2) # replace array of first object and return first_img.array = combined_arr first_img.check_inversion_by_histogram() return first_img
5,352,518
def select_seeds( img: np.ndarray, clust_result: np.ndarray, FN: int = 500, TN: int = 700, n_clust_object: int = 2 ): """ Sample seeds from the fluid and retina regions acording to the procedure described in Rashno et al. 2017 Args: img (np.ndarray): Image from where to sample the seeds. clust_result (np.ndarray): Image from with the clustering labels. FN (int, optional): Number of fluid points to sample. Defaults to 500. TN (int, optional): Number of ratina points to sample. Defaults to 700. n_clust_object (int, optional): number of clusters assigned to fluid. Returns: fluid_seeds, retina_seeds """ n_clust = len(np.unique(clust_result)) - 1 clusters_centers = [] for i in range(1, n_clust+1): clusters_centers.append(np.mean(img[clust_result == i])) clusters_centers = np.array(clusters_centers) indices = np.flip(np.argsort(clusters_centers)) + 1 # Fluid Seeds fluid_condition = (clust_result == indices[0]) for i in range(n_clust_object): fluid_condition = fluid_condition | (clust_result == indices[i]) potential_seeds = np.array(np.where(fluid_condition)).T sample_indx = np.random.randint(0, potential_seeds.shape[0], FN) fluid_seeds = potential_seeds[sample_indx] # Retina Seeds: # Get sampling probabilities and number of samples per cluster pi = 1/(2**np.arange(1, n_clust-n_clust_object+1)) Npi = np.ones((n_clust-n_clust_object))*70 pre_asigned = (n_clust-n_clust_object)*70 Npi = Npi + np.round((pi/np.sum(pi))*(700-pre_asigned)) Npi = Npi.astype('int') # Npi = (np.ones((n_clust-n_clust_object))*(700 / n_clust)).astype('int') # Sample seeds retina_seeds = [] for i in range(n_clust_object, len(indices)): bkg_condition = (clust_result == indices[i]) potential_seeds = np.array(np.where(bkg_condition)).T sample_indx = \ np.random.randint(0, potential_seeds.shape[0], Npi[i-n_clust_object]) retina_seeds.append(potential_seeds[sample_indx]) retina_seeds = np.concatenate(retina_seeds) return fluid_seeds, retina_seeds, clusters_centers, indices
5,352,519
async def test_form(hass): """Test we get the form.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} with patch( "coinbase.wallet.client.Client.get_current_user", return_value=mock_get_current_user(), ), patch( "coinbase.wallet.client.Client.get_accounts", new=mocked_get_accounts ), patch( "coinbase.wallet.client.Client.get_exchange_rates", return_value=mock_get_exchange_rates(), ), patch( "homeassistant.components.coinbase.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.coinbase.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_API_KEY: "123456", CONF_API_TOKEN: "AbCDeF", }, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "Test User" assert result2["data"] == {CONF_API_KEY: "123456", CONF_API_TOKEN: "AbCDeF"} assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1
5,352,520
def common(list1, list2): """ This function is passed two lists and returns a new list containing those elements that appear in both of the lists passed in. """ common_list = [] temp_list = list1.copy() temp_list.extend(list2) temp_list = list(set(temp_list)) temp_list.sort() for i in temp_list: if (i in list1) and (i in list2): common_list.append(i) return common_list
5,352,521
def create_combobox(root, values, **kwargs): """Creates and Grids A Combobox""" box = ttk.Combobox(root, values=values, **kwargs) box.set(values[0]) return box
5,352,522
def configure_logging_console(logger_type): """ Configure logger :param logger_type: The type to write logger and setup on the modules of App :return _imoporter_log: """ _date_name = datetime.now().strftime('%Y-%m-%dT%H%M') _importer_logger = logging.getLogger(logger_type) _importer_logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - Module: %(module)s - Line No: %(lineno)s : %(name)s : %(levelname)s - ' '%(message)s') sh = logging.StreamHandler(sys.stdout) sh.setLevel(logging.DEBUG) sh.setFormatter(formatter) _importer_logger.addHandler(sh) return _importer_logger
5,352,523
def chi_x2(samples,df): """ Compute the central chi-squared statistics for set of chi-squared distributed samples. Parameters: - - - - - samples : chi-square random variables df : degrees of freedom """ return chi2.pdf(samples,df)
5,352,524
def integrate( pc2i, eos, initial_frac=DEFAULT_INITIAL_FRAC, rtol=DEFAULT_RTOL, ): """integrate the TOV equations with central pressure "pc2i" and equation of state described by energy density "eps/c2" and pressure "p/c2" expects eos = (logenthalpy, pressurec2, energy_densityc2, baryon_density, cs2c2) """ ### define initial condition logh, vec = initial_condition(pc2i, eos, frac=initial_frac) m, r, eta, omega, mb = engine( logh, vec, eos, dvecdlogh, rtol=rtol, ) # compute tidal deformability l = eta2lambda(r, m, eta) # compute moment of inertia i = omega2i(r, omega) # convert to "standard" units m /= Msun ### reported in units of solar masses, not grams mb /= Msun r *= 1e-5 ### convert from cm to km i /= 1e45 ### normalize this to a common value but still in CGS return m, r, l, i, mb
5,352,525
def add_ingress_port_to_security_lists(**kwargs): """Checks if the given ingress port already is a security list, if not it gets added. Args: **kwargs: Optional parameters Keyword Args: security_lists (list): A list of security_lists. port (int): The port to check description (str): A description for the ingress rule compartment_id (str): The OCID of the compartment config (object): An OCI config object or None. config_profile (str): The name of an OCI config profile interactive (bool): Indicates whether to execute in interactive mode raise_exceptions (bool): If true exceptions are raised Returns: True on success """ security_lists = kwargs.get("security_lists") port = kwargs.get("port") description = kwargs.get("description") compartment_id = kwargs.get("compartment_id") config = kwargs.get("config") config_profile = kwargs.get("config_profile") interactive = kwargs.get("interactive", core.get_interactive_default()) raise_exceptions = kwargs.get("raise_exceptions", not interactive) if security_lists is None: raise ValueError("No security_lists given.") try: # Get the active config and compartment config = configuration.get_current_config( config=config, config_profile=config_profile, interactive=interactive) compartment_id = configuration.get_current_compartment_id( compartment_id=compartment_id, config=config) for sec_list in security_lists: for rule in sec_list.ingress_security_rules: if rule.tcp_options is not None and \ port >= rule.tcp_options.destination_port_range.min and \ port <= rule.tcp_options.destination_port_range.max and \ rule.protocol == "6" and \ rule.source == "0.0.0.0/0": return True if len(security_lists) == 0: raise Exception("No security list available for this network.") sec_list = security_lists[0] import oci.exceptions try: network_client = core.get_oci_virtual_network_client( config=config) sec_list.ingress_security_rules.append( oci.core.models.IngressSecurityRule( protocol="6", source="0.0.0.0/0", is_stateless=False, source_type="CIDR_BLOCK", tcp_options=oci.core.models.TcpOptions( destination_port_range=oci.core.models.PortRange( max=port, min=port), source_port_range=None), udp_options=None, description=description ) ) details = oci.core.models.UpdateSecurityListDetails( defined_tags=sec_list.defined_tags, display_name=sec_list.display_name, egress_security_rules=sec_list.egress_security_rules, freeform_tags=sec_list.freeform_tags, ingress_security_rules=sec_list.ingress_security_rules ) network_client.update_security_list( security_list_id=sec_list.id, update_security_list_details=details) return True except oci.exceptions.ServiceError as e: if raise_exceptions: raise print(f'ERROR: {e.message}. (Code: {e.code}; Status: {e.status})') except Exception as e: if raise_exceptions: raise print(f'Could not list the availability domains for this ' f'compartment.\nERROR: {str(e)}')
5,352,526
def describe_cluster_instances(stack_name, node_type): """Return the cluster instances optionally filtered by tag.""" instances = _describe_cluster_instances(stack_name, filter_by_node_type=str(node_type)) if not instances: # Support for cluster that do not have aws-parallelcluster-node-type tag LOGGER.debug("Falling back to Name tag when describing cluster instances") instances = _describe_cluster_instances(stack_name, filter_by_name=str(node_type)) return instances
5,352,527
def region_root(data_dir): """Returns the path of test regions.""" return os.path.join(data_dir, 'regions')
5,352,528
def list_statistics_keys(): """ListStatistics definition""" return ["list", "counts"]
5,352,529
def forecast_handler(req, req_body, res, res_body, zip): """Handles forecast requests""" return True
5,352,530
def _configure_output(args): """ Configures the output. Loads templates and applies the specified formatter if any. If none of these configurations are specified, it will return the default output which is to print each value to standard out. """ writer = _get_writer(args) if args.template: log.debug('Using template: %s', args.template) if '{{' in args.template: engine = template_engines.string(args.template) else: engine = template_engines.for_file(args.template) return outputs.RecordLevelOutput(engine, writer) if args.format: log.debug('Using %s formatter for output', args.format) formatter = outputs.FormatProcessor(args.format) return outputs.RecordLevelOutput(formatter, writer) # default return outputs.SingleFieldOutput(writer, args.printkey)
5,352,531
def refToMastoidsNP(data, M1, M2): """ """ mastoidsMean = np.mean([M1, M2], axis=0) mastoidsMean = mastoidsMean.reshape(mastoidsMean.shape[0], 1) newData = data - mastoidsMean return newData
5,352,532
def override_kwargs( kwargs: Dict[str, str], func: Callable[..., Any], filter: Callable[..., Any] = lambda _: True, ) -> Dict[str, str]: """Override the kwargs of a function given a function to apply and an optional filter. Parameters ---------- kwargs : Tuple The function kwargs input. func : Callable A function to apply on the kwargs. filter : Callable An optional filter to apply the function only on some kwargs. (Default value = lambda _: True). Returns ------- Dict The changed kwargs as a Dict. """ return { key: func(value) if filter(value) else value for key, value in kwargs.items() }
5,352,533
def prepare_for_revival(bucket, obj_prefix): """ Makes a manifest for reviving any deleted objects in the bucket. A deleted object is one that has a delete marker as its latest version. :param bucket: The bucket that contains the stanzas. :param obj_prefix: The prefix of the uploaded stanzas. :return: The manifest as a list of lines in CSV format. """ try: response = s3.meta.client.list_object_versions( Bucket=bucket.name, Prefix=f'{obj_prefix}stanza') manifest_lines = [ f"{bucket.name},{parse.quote(marker['Key'])},{marker['VersionId']}" for marker in response['DeleteMarkers'] if marker['IsLatest'] ] except ClientError: logger.exception("Couldn't get object versions from %s.", bucket.name) raise return manifest_lines
5,352,534
def map_to_orf(fastq, index_dir, ht_prefix, mapped_sam, unmapped_fastq, log_file, run_config): """ Align remaining reads to ORF index files using ``hisat2``. ``hisat2 --version`` is also invoked as ``hisat2`` does not log its own version when it is run. :param fastq: FASTQ file (input) :type fastq: str or unicode :param index_dir: Index directory :type index_dir: str or unicode :param ht_prefix: Prefix of HT2 index files (input) :type ht_prefix: str or unicode :param mapped_sam: SAM file for mapped reads (output) :type mapped_sam: str or unicode :param unmapped_fastq: FASTQ file for unmapped reads (output) :type unmapped_fastq: str or unicode :param log_file: Log file (output) :type log_file: str or unicode :param run_config: Run-related configuration :type run_config: RunConfigTuple :raise FileNotFoundError: if ``hisat2`` cannot be found :raise AssertionError: if ``hisat2`` returns a non-zero exit \ code """ LOGGER.info( "Align remaining reads to ORFs index files using hisat2. Log: %s", log_file) cmd = ["hisat2", "--version"] process_utils.run_logged_command(cmd, log_file, run_config.cmd_file, run_config.is_dry_run) index_file_path = os.path.join(index_dir, ht_prefix) cmd = ["hisat2", "-p", str(run_config.nprocesses), "-k", "2", "--no-spliced-alignment", "--rna-strandness", "F", "--no-unal", "--un", unmapped_fastq, "-x", index_file_path, "-S", mapped_sam, "-U", fastq] process_utils.run_logged_command(cmd, log_file, run_config.cmd_file, run_config.is_dry_run)
5,352,535
def run_blend_images( network_pkl1: str, network_pkl2: str, seeds: Optional[List[int]] = [700, 701, 702, 703, 704, 705, 706, 707], outdir: str = "./out_blend", truncation_psi: float = 0.7, noise_mode: str = "const", blending_layers: List[int] = [4, 8, 16, 32, 64, 128, 256], network_size: int = 512, blend_width: float = None, verbose: bool = False, projected_w: Optional[str] = None, ): """Generate images using pretrained network pickle. Examples: # Generate curated MetFaces images without truncation (Fig.10 left) python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 \\ --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl """ print(f"Loading networks from {network_pkl1} and {network_pkl2} ...") device = torch.device("cuda") with dnnlib.util.open_url(network_pkl1) as f: G1 = legacy.load_network_pkl(f)["G_ema"].to(device) # type: ignore with dnnlib.util.open_url(network_pkl2) as f: G2 = legacy.load_network_pkl(f)["G_ema"].to(device) # type: ignore # print("G1", G1) # print("G2", G2) os.makedirs(outdir, exist_ok=True) # blend_width = ( # None # # None = hard switch, float = smooth switch (logistic) with given width # ) level = 0 images = [] blended_models = {} for blending_layer in blending_layers: resolution = f"b{blending_layer}" # blend at layer blended_model = get_blended_model( G1, G2, resolution, level, blend_width, network_size=network_size, verbose=verbose, ) blended_models[blending_layer] = blended_model w_filename = os.path.splitext(os.path.split(projected_w)[-1])[0] name = w_filename.split("_")[0] if projected_w is not None: if seeds is not None: print("warn: --seeds is ignored when using --projected-w") print(f'Generating images from projected W "{projected_w}"') ws = np.load(projected_w)["w"] ws = torch.tensor(ws, device=device).squeeze(0) # pylint: disable=not-callable print(ws.shape, (G1.num_ws, G1.w_dim)) assert ws.shape[1:] == (G1.num_ws, G1.w_dim) # for idx, w in enumerate(ws): images = [] w = ws[-1] orig1 = get_image( G1, None, truncation_psi=truncation_psi, noise_mode=noise_mode, w=w, is_w=True, ) orig2 = get_image( G2, None, truncation_psi=truncation_psi, noise_mode=noise_mode, w=w, is_w=True, ) orig1.save(f"{outdir}/seed_{name}_G1.png") orig2.save(f"{outdir}/seed_{name}_G2.png") images.append(orig1) images.append(orig2) for blending_layer in blending_layers: blended_model = blended_models[blending_layer] blended = get_image( blended_model, None, truncation_psi=truncation_psi, noise_mode=noise_mode, w=w, is_w=True, ) fprefix = f"seed_{name}_layer_{resolution}" blended.save(f"{outdir}/{fprefix}_blended.png") images.append(blended) make_and_save_grid(images, f"{outdir}/{name}_finalgrid.png") return else: # seed = 279 for seed in seeds: images = [] z_vector = z = torch.from_numpy( np.random.RandomState(seed).randn(1, G1.z_dim) ).to(device) orig1 = get_image( G1, z_vector, truncation_psi=truncation_psi, noise_mode=noise_mode ) orig2 = get_image( G2, z_vector, truncation_psi=truncation_psi, noise_mode=noise_mode ) orig1.save(f"{outdir}/seed_{seed}_G1.png") orig2.save(f"{outdir}/seed_{seed}_G2.png") images.append(orig1) images.append(orig2) for blending_layer in blending_layers: blended_model = blended_models[blending_layer] blended = get_image( blended_model, z_vector, truncation_psi=truncation_psi, noise_mode=noise_mode, ) fprefix = f"seed_{seed}_layer_{resolution}" blended.save(f"{outdir}/{fprefix}_blended.png") images.append(blended) make_and_save_grid(images, f"{outdir}/{seed}_finalgrid.png")
5,352,536
def make_drive_resource() -> Resource: """ Authenticates and returns a google drive resource. """ google_oauth_creds = ast.literal_eval( credstash.getSecret("IA_PIPELINE_GLOBAL_GOOGLE_SHEETS_API_KEY") ) with open("key.json", "w") as fp: json.dump(google_oauth_creds, fp) creds = service_account.Credentials.from_service_account_file( "key.json", scopes=SCOPES ) os.remove("key.json") scoped_creds = creds.with_subject(DELEGATE_EMAIL) http = AuthorizedHttp(scoped_creds) return discovery.build("drive", "v3", http=http)
5,352,537
def make_subparser(sub, command_name, help, command_func=None, details=None, **kwargs): """ Create the "sub-parser" for our command-line parser. This facilitates having multiple "commands" for a single script, for example "norm_yaml", "make_rest", etc. """ if command_func is None: command_func_name = "command_{0}".format(command_name) command_func = globals()[command_func_name] # Capitalize the first letter for the long description. desc = help[0].upper() + help[1:] if details is not None: desc += "\n\n{0}".format(details) desc = _wrap(desc) parser = sub.add_parser(command_name, formatter_class=FORMATTER_CLASS, help=help, description=desc, **kwargs) parser.set_defaults(run_command=command_func) return parser
5,352,538
def _get_static_settings(): """Configuration required for Galaxy static middleware. Returns dictionary of the settings necessary for a galaxy App to be wrapped in the static middleware. This mainly consists of the filesystem locations of url-mapped static resources. """ static_dir = os.path.join(galaxy_root, "static") # TODO: these should be copied from config/galaxy.ini return dict( static_enabled=True, static_cache_time=360, static_dir=static_dir, static_images_dir=os.path.join(static_dir, 'images', ''), static_favicon_dir=os.path.join(static_dir, 'favicon.ico'), static_scripts_dir=os.path.join(static_dir, 'scripts', ''), static_style_dir=os.path.join(static_dir, 'style'), static_robots_txt=os.path.join(static_dir, 'robots.txt'), )
5,352,539
def application(): """ Flask application fixture. """ def _view(): return 'OK', 200 application = Flask('test-application') application.testing = True application.add_url_rule('/', 'page', view_func=_view) return application
5,352,540
def test_emr_container_operator_execute_complete_fail(check_job_status): """Assert execute_complete throw AirflowException""" check_job_status.return_value = JOB_ID with pytest.raises(AirflowException): _emr_emr_container_operator_init().execute_complete( context=None, event={"status": "error", "message": "test failure message"} )
5,352,541
def get_qe_specific_fp_run_inputs( configure, code_pw, code_wannier90, code_pw2wannier90, get_repeated_pw_input, get_metadata_singlecore ): """ Creates the InSb inputs for the QE fp_run workflow. For the higher-level workflows (fp_tb, optimize_*), these are passed in the 'fp_run' namespace. """ def inner(): return { 'scf': get_repeated_pw_input(), 'bands': { 'pw': get_repeated_pw_input() }, 'to_wannier': { 'nscf': get_repeated_pw_input(), 'wannier': { 'code': code_wannier90, 'metadata': get_metadata_singlecore() }, 'pw2wannier': { 'code': code_pw2wannier90, 'metadata': get_metadata_singlecore() } } } return inner
5,352,542
def _get_cohort_representation(cohort, course): """ Returns a JSON representation of a cohort. """ group_id, partition_id = cohorts.get_group_info_for_cohort(cohort) assignment_type = cohorts.get_assignment_type(cohort) return { 'name': cohort.name, 'id': cohort.id, 'user_count': cohort.users.filter(courseenrollment__course_id=course.location.course_key, courseenrollment__is_active=1).count(), 'assignment_type': assignment_type, 'user_partition_id': partition_id, 'group_id': group_id, }
5,352,543
def config_string(cfg_dict): """ Pretty-print cfg_dict with one-line queries """ upper_level = ["queries", "show_attributes", "priority", "gtf", "bed", "prefix", "outdir", "threads", "output_by_query"] query_level = ["feature", "feature_anchor", "distance", "strand", "relative_location", "filter_attribute", "attribute_values", "internals", "name"] upper_lines = [] for upper_key in upper_level: if upper_key == "queries": query_lines = "\"queries\":[\n" #Convert sets to lists for query in cfg_dict["queries"]: for key in query: if type(query[key]) == set: query[key] = list(query[key]) query_strings = [json.dumps(query, sort_keys=True) for query in cfg_dict["queries"]] query_lines += " " + ",\n ".join(query_strings) + "\n ]" upper_lines.append(query_lines) elif upper_key == "show_attributes" and upper_key in cfg_dict: upper_lines.append("\"{0}\": {1}".format(upper_key, json.dumps(cfg_dict[upper_key]))) else: if upper_key in cfg_dict: upper_lines.append("\"{0}\": \"{1}\"".format(upper_key, cfg_dict[upper_key])) config_string = "{\n" + ",\n".join(upper_lines) + "\n}\n" return(config_string)
5,352,544
def area_km2_per_grid(infra_dataset, df_store): """Total area in km2 per assettype per grid, given in geographic coordinates Arguments: *infra_dataset* : a shapely object with WGS-84 coordinates *df_store* : (empty) geopandas dataframe containing coordinates per grid for each grid Returns: area in km2 per assettype per grid in dataframe (with column = {asset}_km2 and row = the grid) """ asset_list = [] for asset in infra_dataset.asset.unique(): if not "{}_count".format(asset) in df_store.columns: df_store.insert(1, "{}_count".format(asset), "") #add assettype as column after first column for count calculations if not "{}_km2".format(asset) in df_store.columns: df_store.insert(1, "{}_km2".format(asset), "") #add assettype as column after first column for area calculations asset_list.append(asset) for grid_row in df_store.itertuples(): grid_cell = grid_row.geometry #select grid try: asset_clip = gpd.clip(infra_dataset, grid_cell) #clip infra data using GeoPandas clip #count per asset type count = asset_clip.asset.value_counts() #count number of assets per asset type for asset_type in asset_list: if asset_type in count.index: df_store.loc[grid_row.Index, "{}_count".format(asset_type)] = count.get(key = asset_type) else: df_store.loc[grid_row.Index, "{}_count".format(asset_type)] = 0 #calculate area for each asset in clipped infrastructure grid asset_clip.insert(1, "area_km2", "") #add assettype as column after first column for length calculations for polygon_object in asset_clip['index']: asset_clip.loc[polygon_object, "area_km2"] = polygon_area((asset_clip.loc[asset_clip['index']==polygon_object].geometry.item())) #calculate area per object and put in dataframe area_per_type = asset_clip.groupby(['asset'])['area_km2'].sum() #get total length per asset_type in grid for asset_type in asset_list: if asset_type in area_per_type.index: df_store.loc[grid_row.Index, "{}_km2".format(asset_type)] = area_per_type.get(key = asset_type) else: df_store.loc[grid_row.Index, "{}_km2".format(asset_type)] = 0 except: print("Grid number {} raises a ValueError, area has not been clipped".format(grid_row.index)) for asset_type in asset_list: df_store.loc[grid_row.Index, "{}_count".format(asset_type)] = np.nan df_store.loc[grid_row.Index, "{}_km2".format(asset_type)] = np.nan return df_store
5,352,545
def cli_runner(script_info): """Create a CLI runner for testing a CLI command. Scope: module .. code-block:: python def test_cmd(cli_runner): result = cli_runner(mycmd) assert result.exit_code == 0 """ from click.testing import CliRunner def cli_invoke(command, input=None, *args): return CliRunner().invoke(command, args, input=input, obj=script_info) return cli_invoke
5,352,546
def sgf_to_gamestate(sgf_string): """ Creates a GameState object from the first game in the given collection """ # Don't Repeat Yourself; parsing handled by sgf_iter_states for (gs, move, player) in sgf_iter_states(sgf_string, True): pass # gs has been updated in-place to the final state by the time # sgf_iter_states returns return gs
5,352,547
def register_email(email: str) -> None: """ Stores an email in the mailing list. """ emails = load_file("emails") if email not in emails["emails"]: emails["emails"].append(email) dump_file(emails, "emails")
5,352,548
def get_titlebar_text(): """Return (style, text) tuples for startup.""" return [ ("class:title", "Hello World!"), ("class:title", " (Press <Exit> to quit.)"), ]
5,352,549
def main(config_file_name): """ :param config_file_name: str, name of the configuration json file :return: """ global push_notifier, settings # read config file settings = Settings(config_file_name) # tell scraper about the settings scraper.settings_ref = settings # create notifier push_notifier = PushBulletNotifier(settings.token) # start timer timer = Timer(settings.hours, unit_callback) timer.start_counter()
5,352,550
def on_message(client, userdata, msg): """ callback func """ print("got: "+msg.topic+" "+str(msg.payload)+"\n")
5,352,551
def image_fnames_captions(captions_file, images_dir, partition): """ Loads annotations file and return lists with each image's path and caption Arguments: partition: string either 'train' or 'val' Returns: all_captions: list of strings list with each image caption all_img_paths: list of paths as strings list with each image's path to file """ with open(captions_file, 'r') as f: annotations = json.load(f) all_captions = [] all_img_paths = [] for annot in annotations['annotations']: caption = '<start> ' + annot['caption'] + ' <end>' image_id = annot['image_id'] full_coco_image_path = images_dir / ('COCO_{}2014_'.format(partition) + \ '{:012d}.jpg'.format(image_id)) all_img_paths.append(full_coco_image_path) all_captions.append(caption) return all_captions, all_img_paths
5,352,552
def build_menu( buttons: list, columns: int = 3, header_button=None, footer_button=None, resize_keyboard: bool = True ): """Хелпер для удобного построения меню.""" menu = [buttons[i:i + columns] for i in range(0, len(buttons), columns)] if header_button: menu.insert(0, [header_button]) if footer_button: menu.append([footer_button]) return ReplyKeyboardMarkup(menu, resize_keyboard=resize_keyboard)
5,352,553
def pandas_dataframe_to_unit_arrays(df, column_units=None): """Attach units to data in pandas dataframes and return united arrays. Parameters ---------- df : `pandas.DataFrame` Data in pandas dataframe. column_units : dict Dictionary of units to attach to columns of the dataframe. Overrides the units attribute if it is attached to the dataframe. Returns ------- Dictionary containing united arrays with keys corresponding to the dataframe column names. """ if not column_units: try: column_units = df.units except AttributeError: raise ValueError('No units attribute attached to pandas ' 'dataframe and col_units not given.') # Iterate through columns attaching units if we have them, if not, don't touch it res = {} for column in df: if column in column_units and column_units[column]: res[column] = df[column].values * units(column_units[column]) else: res[column] = df[column].values return res
5,352,554
def is_empty(value: Any) -> bool: """ empty means given value is one of none, zero length string, empty list, empty dict """ if value is None: return True elif isinstance(value, str): return len(value) == 0 elif isinstance(value, list): return len(value) == 0 elif isinstance(value, dict): return len(value) == 0 else: return False
5,352,555
def get_worksheets (path, **kwargs): """ Gets all available worksheets within a xlsx-file and returns a list :param path: Path to excel file :type path: str :return: Returns a list with all worksheets within the excel-file :rtype: list """ if not os.path.isabs(path): path = os.path.join(_jinjamator.task_base_dir, path) xlsx = XLSXReader( path, "Sheet1", kwargs.get("cache", True) ) return xlsx.get_worksheets()
5,352,556
def blankScreen(disp, pix): # pylint: disable=unused-argument """A blank screen used to hide any serial console output.""" if disp is None: return disp.show(Group())
5,352,557
def read_caffe_mean(caffe_mean_file): """ Reads caffe formatted mean file :param caffe_mean_file: path to caffe mean file, presumably with 'binaryproto' suffix :return: mean image, converted from BGR to RGB format """ import caffe_parser import numpy as np mean_blob = caffe_parser.caffe_pb2.BlobProto() with open(caffe_mean_file, 'rb') as f: mean_blob.ParseFromString(f.read()) img_mean_np = np.array(mean_blob.data) img_mean_np = img_mean_np.reshape(mean_blob.channels, mean_blob.height, mean_blob.width) # swap channels from Caffe BGR to RGB img_mean_np[[0, 2], :, :] = img_mean_np[[2, 0], :, :] return img_mean_np
5,352,558
def test_chunked_las_reading_gives_expected_points(las_file_path): """ Test chunked LAS reading """ with laspy.open(las_file_path) as las_reader: with laspy.open(las_file_path) as reader: las = las_reader.read() check_chunked_reading_is_gives_expected_points(las, reader, iter_size=50)
5,352,559
def estimate_pauli_sum(pauli_terms, basis_transform_dict, program, variance_bound, quantum_resource, commutation_check=True, symmetrize=True, rand_samples=16): """ Estimate the mean of a sum of pauli terms to set variance The sample variance is calculated by .. math:: \begin{align} \mathrm{Var}[\hat{\langle H \rangle}] = \sum_{i, j}h_{i}h_{j} \mathrm{Cov}(\hat{\langle P_{i} \rangle}, \hat{\langle P_{j} \rangle}) \end{align} The expectation value of each Pauli operator (term and coefficient) is also returned. It can be accessed through the named-tuple field `pauli_expectations'. :param pauli_terms: list of pauli terms to measure simultaneously or a PauliSum object :param basis_transform_dict: basis transform dictionary where the key is the qubit index and the value is the basis to rotate into. Valid basis is [I, X, Y, Z]. :param program: program generating a state to sample from. The program is deep copied to ensure no mutation of gates or program is perceived by the user. :param variance_bound: Bound on the variance of the estimator for the PauliSum. Remember this is the SQUARE of the standard error! :param quantum_resource: quantum abstract machine object :param Bool commutation_check: Optional flag toggling a safety check ensuring all terms in `pauli_terms` commute with each other :param Bool symmetrize: Optional flag toggling symmetrization of readout :param Int rand_samples: number of random realizations for readout symmetrization :return: estimated expected value, expected value of each Pauli term in the sum, covariance matrix, variance of the estimator, and the number of shots taken. The objected returned is a named tuple with field names as follows: expected_value, pauli_expectations, covariance, variance, n_shots. `expected_value' == coef_vec.dot(pauli_expectations) :rtype: EstimationResult """ if not isinstance(pauli_terms, (list, PauliSum)): raise TypeError("pauli_terms needs to be a list or a PauliSum") if isinstance(pauli_terms, PauliSum): pauli_terms = pauli_terms.terms # check if each term commutes with everything if commutation_check: if len(commuting_sets(sum(pauli_terms))) != 1: raise CommutationError("Not all terms commute in the expected way") program = program.copy() pauli_for_rotations = PauliTerm.from_list( [(value, key) for key, value in basis_transform_dict.items()]) program += get_rotation_program(pauli_for_rotations) qubits = sorted(list(basis_transform_dict.keys())) if symmetrize: theta = program.declare("ro_symmetrize", "REAL", len(qubits)) for (idx, q) in enumerate(qubits): program += [RZ(np.pi/2, q), RY(theta[idx], q), RZ(-np.pi/2, q)] ro = program.declare("ro", "BIT", memory_size=len(qubits)) for num, qubit in enumerate(qubits): program.inst(MEASURE(qubit, ro[num])) coeff_vec = np.array( list(map(lambda x: x.coefficient, pauli_terms))).reshape((-1, 1)) # upper bound on samples given by IV of arXiv:1801.03524 num_sample_ubound = 10 * int(np.ceil(np.sum(np.abs(coeff_vec))**2 / variance_bound)) if num_sample_ubound <= 2: raise ValueError("Something happened with our calculation of the max sample") if symmetrize: if min(STANDARD_NUMSHOTS, num_sample_ubound)//rand_samples == 0: raise ValueError(f"The number of shots must be larger than {rand_samples}.") program = program.wrap_in_numshots_loop(min(STANDARD_NUMSHOTS, num_sample_ubound)//rand_samples) else: program = program.wrap_in_numshots_loop(min(STANDARD_NUMSHOTS, num_sample_ubound)) binary = quantum_resource.compiler.native_quil_to_executable(basic_compile(program)) results = None sample_variance = np.infty number_of_samples = 0 tresults = np.zeros((0, len(qubits))) while (sample_variance > variance_bound and number_of_samples < num_sample_ubound): if symmetrize: # for some number of times sample random bit string for r in range(rand_samples): rand_flips = np.random.randint(low=0, high=2, size=len(qubits)) temp_results = quantum_resource.run(binary, memory_map={'ro_symmetrize': np.pi * rand_flips}) tresults = np.vstack((tresults, rand_flips ^ temp_results)) else: tresults = quantum_resource.run(binary) number_of_samples += len(tresults) parity_results = get_parity(pauli_terms, tresults) # Note: easy improvement would be to update mean and variance on the fly # instead of storing all these results. if results is None: results = parity_results else: results = np.hstack((results, parity_results)) # calculate the expected values.... covariance_mat = np.cov(results, ddof=1) sample_variance = coeff_vec.T.dot(covariance_mat).dot(coeff_vec) / (results.shape[1] - 1) return EstimationResult(expected_value=coeff_vec.T.dot(np.mean(results, axis=1)), pauli_expectations=np.multiply(coeff_vec.flatten(), np.mean(results, axis=1).flatten()), covariance=covariance_mat, variance=sample_variance, n_shots=results.shape[1])
5,352,560
def version(ctx, f): """Extract the assets of a local Minecraft version""" extractor.pack(ctx.obj["v"], ctx.obj["o"], lambda s: print(s) if ctx.obj["d"] else '', f)
5,352,561
def GetQuasiSequenceOrderp(ProteinSequence, maxlag=30, weight=0.1, distancematrix={}): """ ############################################################################### Computing quasi-sequence-order descriptors for a given protein. [1]:Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-Order Effect. Biochemical and Biophysical Research Communications 2000, 278, 477-483. Usage: result = GetQuasiSequenceOrderp(protein,maxlag,weight,distancematrix) Input: protein is a pure protein sequence maxlag is the maximum lag and the length of the protein should be larger than maxlag. default is 30. weight is a weight factor. please see reference 1 for its choice. default is 0.1. distancematrix is a dict form containing 400 distance values Output: result is a dict form containing all quasi-sequence-order descriptors ############################################################################### """ result = dict() result.update(GetQuasiSequenceOrder1(ProteinSequence, maxlag, weight, distancematrix)) result.update(GetQuasiSequenceOrder2(ProteinSequence, maxlag, weight, distancematrix)) return result
5,352,562
def check(lst: list, search_element: int) -> bool: """Check if the list contains the search_element.""" return any([True for i in lst if i == search_element])
5,352,563
def step_with_model(rhs, state, dt=.125, n=100): """Perform a number of time steps with a model""" for t in range(n): qt_dot = rhs(state) new_qt = state['QT'] + dt * qt_dot['QT'] state = assoc(state, 'QT', new_qt) yield state
5,352,564
def halfcube(random_start=0,random_end=32,halfwidth0=1,pow=-1): """ Produce a halfcube with given dimension and decaying power :param random_start: decay starting parameter :param random_end: decay ending parameter :param halfwidth0: base halfwidth :param pow: decaying power :return: A (random_end-random_start,) array """ ran=np.arange(random_start,random_end,dtype=float) ran[0]=1.0 return ran**pow*halfwidth0
5,352,565
def db_connection(): """Function for connecting, creating and Returns ------- """ db_credentials = read_json('data/sql-connection.json') conn = pyodbc.connect( "Driver={};Server={};Database={};uid={};pwd={};".format( db_credentials.get('driver'), db_credentials.get('server'), db_credentials.get('database'), db_credentials.get('user'), db_credentials.get('password') ) ) conn.cursor().execute(""" CREATE TABLE RV.exp_acoes ( Cliente INTEGER PRIMARY KEY, Financeiro FLOAT NOT NULL ); INSERT INTO RV.exp_acoes (Cliente, FInanceiro) VALUES (1, 96000); INSERT INTO RV.exp_acoes (Cliente, FInanceiro) VALUES (2, 250000); INSERT INTO RV.exp_acoes (Cliente, FInanceiro) VALUES (3, 20500); """) conn.commit() conn.close()
5,352,566
def valid_passphrase(module, **kwargs): """Tests whether the given passphrase is valid for the specified device. Return: <boolean> <error>""" for req in ["device", "passphrase"]: if req not in kwargs or kwargs[req] is None: errmsg = "valid_passphrase: {0} is a required parameter".format(req) return False, {"msg": errmsg} is_keyfile = kwargs.get("is_keyfile", False) slot = kwargs.get("slot", None) args = ["cryptsetup", "open", "--test-passphrase", kwargs["device"]] if slot is not None: args.extend(["--key-slot", str(slot)]) _unused, err = run_cryptsetup( module, args, passphrase=kwargs["passphrase"], is_keyfile=is_keyfile ) if err: errmsg = "valid_passphrase: We need a valid passphrase for {0}".format( kwargs["device"] ) return False, {"msg": errmsg, "err": err} return True, None
5,352,567
def contract_address(deploy_hash_base16: str, fn_store_id: int) -> bytes: """ Should match what the EE does (new_function_address) //32 bytes for deploy hash + 4 bytes ID blake2b256( [0;32] ++ [0;4] ) deploy_hash ++ fn_store_id """ def hash(data: bytes) -> bytes: h = blake2b(digest_size=32) h.update(data) return h.digest() deploy_hash_bytes = bytes.fromhex(deploy_hash_base16) counter_bytes = fn_store_id.to_bytes(4, "little") data = deploy_hash_bytes + counter_bytes return hash(data)
5,352,568
def security_safety(session): """Check for security issues in dependencies.""" # Include all extras here to check all is safe for ci. session.install(".[dev,lint,tests,security]") session.run("python", "-m", "safety", "check")
5,352,569
def dump_js_escaped_json(obj, cls=EdxJSONEncoder): """ JSON dumps and escapes objects that are safe to be embedded in JavaScript. Use this for anything but strings (e.g. dicts, tuples, lists, bools, and numbers). For strings, use js_escaped_string. The output of this method is also usable as plain-old JSON. Usage: Used as follows in a Mako template inside a <SCRIPT> tag:: var json_obj = ${obj | n, dump_js_escaped_json} If you must use the cls argument, then use as follows:: var json_obj = ${dump_js_escaped_json(obj, cls) | n} Use the "n" Mako filter above. It is possible that the default filter may include html escaping in the future, and this ensures proper escaping. Ensure ascii in json.dumps (ensure_ascii=True) allows safe skipping of Mako's default filter decode.utf8. Arguments: obj: The object soon to become a JavaScript escaped JSON string. The object can be anything but strings (e.g. dicts, tuples, lists, bools, and numbers). cls (class): The JSON encoder class (defaults to EdxJSONEncoder). Returns: (string) Escaped encoded JSON. """ obj = list(obj) if isinstance(obj, type({}.values())) else obj # lint-amnesty, pylint: disable=isinstance-second-argument-not-valid-type, dict-values-not-iterating, line-too-long json_string = json.dumps(obj, ensure_ascii=True, cls=cls) json_string = _escape_json_for_js(json_string) return json_string
5,352,570
def test_execution_failure(tmp_path): """Test script error.""" script = "ls non-existing-file" error_msg = "execution failure, see the stdout and stderr files in /" runner = ScriptRunner(EXE_RUNNER_NAME, script, tmp_path) with pytest.raises(ScriptExecutionError, match=error_msg): runner.run() _assertions( tmp_path, runner, script, "", "ls: cannot access '?non-existing-file'?: No such file or directory", )
5,352,571
def scan_repositories(read_repofile_func=_read_repofile): """ Scan the repository mapping file and produce RepositoriesMap msg. See the description of the actor for more details. """ # TODO: add filter based on the current arch # TODO: deprecate the product type and introduce the "channels" ?.. more or less # NOTE: product type is changed, now it's channel: eus,e4s,aus,tus,ga,beta if os.path.exists(os.path.join('/etc/leapp/files', OLD_REPOMAP_FILE)): # NOTE: what about creating the report (instead of warning) api.current_logger().warning( 'The old repomap file /etc/leapp/files/repomap.csv is present.' ' The file has been replaced by the repomap.json file and it is' ' not used anymore.' ) json_data = read_repofile_func(REPOMAP_FILE) try: repomap_data = RepoMapData.load_from_dict(json_data) mapping = repomap_data.get_mappings(get_source_major_version(), get_target_major_version()) valid_major_versions = [get_source_major_version(), get_target_major_version()] api.produce(RepositoriesMapping( mapping=mapping, repositories=repomap_data.get_repositories(valid_major_versions) )) except ModelViolationError as err: err_message = ( 'The repository mapping file is invalid: ' 'the JSON does not match required schema (wrong field type/value): {}' .format(err) ) _inhibit_upgrade(err_message) except KeyError as err: _inhibit_upgrade( 'The repository mapping file is invalid: the JSON is missing a required field: {}'.format(err)) except ValueError as err: # The error should contain enough information, so we do not need to clarify it further _inhibit_upgrade('The repository mapping file is invalid: {}'.format(err))
5,352,572
def RawTuple(num_fields, name_prefix='field'): """ Creates a tuple of `num_field` untyped scalars. """ assert isinstance(num_fields, int) assert num_fields >= 0 return NamedTuple(name_prefix, *([np.void] * num_fields))
5,352,573
def uninitializePlugin(mobject): """ Unitializes the plug-in. """ mplugin2 = om2.MFnPlugin(mobject, kAuthor, kVersion, kRequiredAPIVersion) DEREGISTER_LOCATOR_NODE(n_DebugVector.DebugVector, mplugin2) DEREGISTER_LOCATOR_NODE(n_DebugMatrix.DebugMatrix, mplugin2) DEREGISTER_LOCATOR_NODE(n_MeshController.MeshController, mplugin2) DEREGISTER_NODE(n_VectorAnglePSD.VectorAnglePSD, mplugin2) DEREGISTER_NODE(n_IKVChainSolver.IKVChainSolver, mplugin2) DEREGISTER_NODE(n_HelperJoint.HelperJoint, mplugin2) DEREGISTER_NODE(n_DistributeAlongSurface.DistributeAlongSurface, mplugin2) DEREGISTER_NODE(n_TwistExtractor.TwistExtractor, mplugin2) DEREGISTER_NODE(n_QuadraticCurve.QuadraticCurve, mplugin2) DEREGISTER_NODE(n_BlendTransform.BlendTransform, mplugin2) DEREGISTER_NODE(n_AimConstraint.AimConstraint, mplugin2) DEREGISTER_NODE(n_ParentConstraint.ParentConstraint, mplugin2) DEREGISTER_NODE(n_PoleVectorConstraint.PoleVectorConstraint, mplugin2) DEREGISTER_NODE(n_SpaceConstraint.SpaceConstraint, mplugin2, n_SpaceConstraint.SpaceConstraint.kCallbackIDs) DEREGISTER_NODE(n_AngularMath.AngularMath, mplugin2) DEREGISTER_NODE(n_AngularScalarMath.AngularScalarMath, mplugin2) DEREGISTER_NODE(n_AngularTrigMath.AngularTrigMath, mplugin2) DEREGISTER_NODE(n_AngleToDouble.AngleToDouble, mplugin2) DEREGISTER_NODE(n_DoubleToAngle.DoubleToAngle, mplugin2) DEREGISTER_NODE(n_EulerMath.EulerMath, mplugin2) DEREGISTER_NODE(n_EulerScalarMath.EulerScalarMath, mplugin2) DEREGISTER_NODE(n_EulerToVector.EulerToVector, mplugin2) DEREGISTER_NODE(n_VectorToEuler.VectorToEuler, mplugin2) DEREGISTER_NODE(n_DecomposeRowMatrix.DecomposeRowMatrix, mplugin2) DEREGISTER_NODE(n_FindParamFromLength.FindParamFromLength, mplugin2) DEREGISTER_SURFACESHAPE_NODE(n_DebugGeometry.DebugGeometry, mplugin2) om2.MGlobal.displayInfo("[gfTools_P] Plugin unloaded successfully.") # m_Menu.MainMenu.unloadMenu()
5,352,574
def test_success_ignore_blank_program_activity_name(database): """ Testing program activity name validation to ignore blanks if monetary sum is 0 """ op = ObjectClassProgramActivityFactory(row_number=1, beginning_period_of_availa=2016, agency_identifier='test', main_account_code='test', program_activity_name='', program_activity_code='test', deobligations_recov_by_pro_cpe=0, gross_outlay_amount_by_pro_cpe=0, gross_outlay_amount_by_pro_fyb=0, gross_outlays_delivered_or_cpe=0, gross_outlays_delivered_or_fyb=0, gross_outlays_undelivered_cpe=0, gross_outlays_undelivered_fyb=0, obligations_delivered_orde_cpe=0, obligations_delivered_orde_fyb=0, obligations_incurred_by_pr_cpe=0, obligations_undelivered_or_cpe=0, obligations_undelivered_or_fyb=0, ussgl480100_undelivered_or_cpe=0, ussgl480100_undelivered_or_fyb=0, ussgl480200_undelivered_or_cpe=0, ussgl480200_undelivered_or_fyb=0, ussgl483100_undelivered_or_cpe=0, ussgl483200_undelivered_or_cpe=0, ussgl487100_downward_adjus_cpe=0, ussgl487200_downward_adjus_cpe=0, ussgl488100_upward_adjustm_cpe=0, ussgl488200_upward_adjustm_cpe=0, ussgl490100_delivered_orde_cpe=0, ussgl490100_delivered_orde_fyb=0, ussgl490200_delivered_orde_cpe=0, ussgl490800_authority_outl_cpe=0, ussgl490800_authority_outl_fyb=0, ussgl493100_delivered_orde_cpe=0, ussgl497100_downward_adjus_cpe=0, ussgl497200_downward_adjus_cpe=0, ussgl498100_upward_adjustm_cpe=0, ussgl498200_upward_adjustm_cpe=0) pa = ProgramActivityFactory(budget_year=2016, agency_id='test', allocation_transfer_id='test', account_number='test', program_activity_name='test', program_activity_code='test') assert number_of_errors(_FILE, database, models=[op, pa]) == 0
5,352,575
def pose2mat(R, p): """ convert pose to transformation matrix """ p0 = p.ravel() H = np.block([ [R, p0[:, np.newaxis]], [np.zeros(3), 1] ]) return H
5,352,576
def _fill_missing_values(df=None): """replace missing values with NaN""" # fills in rows where lake refroze in same season df['WINTER'].replace(to_replace='"', method='ffill', inplace=True) # use nan as the missing value for headr in ['DAYS', 'OPENED', 'CLOSED']: df[headr].replace(to_replace=['-', '--', '---'], value=_np.nan, inplace=True) return df.sort_values(by=['WINTER'])
5,352,577
def stop_tracking( unsafe_password: str = None, save_to_json: Union[str, Path] = None, firestore_key_file: str = None, firestore_collection_name: str = "counts", verbose: bool = False, ): """ Stop tracking user inputs to a streamlit app. Should be called after `streamlit-analytics.start_tracking()`. This method also shows the analytics results below your app if you attach `?analytics=on` to the URL. """ if verbose: print("Finished script execution. New counts:") print(counts) print("-" * 80) # sess = get_session_state # print(sess.state_dict) # Reset streamlit functions. st.button = _orig_button st.checkbox = _orig_checkbox st.radio = _orig_radio st.selectbox = _orig_selectbox st.multiselect = _orig_multiselect st.slider = _orig_slider st.select_slider = _orig_select_slider st.text_input = _orig_text_input st.number_input = _orig_number_input st.text_area = _orig_text_area st.date_input = _orig_date_input st.time_input = _orig_time_input st.file_uploader = _orig_file_uploader st.color_picker = _orig_color_picker st.sidebar.button = _orig_sidebar_button st.sidebar.checkbox = _orig_sidebar_checkbox st.sidebar.radio = _orig_sidebar_radio st.sidebar.selectbox = _orig_sidebar_selectbox st.sidebar.multiselect = _orig_sidebar_multiselect st.sidebar.slider = _orig_sidebar_slider st.sidebar.select_slider = _orig_sidebar_select_slider st.sidebar.text_input = _orig_sidebar_text_input st.sidebar.number_input = _orig_sidebar_number_input st.sidebar.text_area = _orig_sidebar_text_area st.sidebar.date_input = _orig_sidebar_date_input st.sidebar.time_input = _orig_sidebar_time_input st.sidebar.file_uploader = _orig_sidebar_file_uploader st.sidebar.color_picker = _orig_sidebar_color_picker # Save count data to firestore. # TODO: Maybe don't save on every iteration but on regular intervals in a background # thread. if firestore_key_file: if verbose: print("Saving count data to firestore:") print(counts) print() firestore.save(counts, firestore_key_file, firestore_collection_name) # Dump the counts to json file if `save_to_json` is set. # TODO: Make sure this is not locked if writing from multiple threads. if save_to_json is not None: with Path(save_to_json).open("w") as f: json.dump(counts, f) if verbose: print("Storing results to file:", save_to_json) # Show analytics results in the streamlit app if `?analytics=on` is set in the URL. query_params = st.experimental_get_query_params() if "analytics" in query_params and "on" in query_params["analytics"]: st.write("---") display.show_results(counts, reset_counts, unsafe_password)
5,352,578
def csi_prelu(data, alpha, axis, out_dtype, q_params, layer_name=""): """Quantized activation relu. Parameters ---------- data : relay.Expr The quantized input data. alpha : relay.Expr The quantized alpha. out_dtype : str Specifies the output data type for mixed precision dense can be uint8. Returns ------- result : relay.Expr The computed result. """ return _make.CSIPRelu(data, alpha, axis, out_dtype, q_params, layer_name)
5,352,579
def scale_image(in_fname, out_fname, max_width, max_height): """Scales an image with the same aspect ratio centered in an image box with the given max_width and max_height if in_fname == out_fname the image can only be scaled down """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = max_width / float(width_in) scale_h = max_height / float(height_in) if height_in * scale_w <= max_height: scale = scale_w else: scale = scale_h if scale >= 1.0 and in_fname == out_fname: return width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image using resize; if using .thumbnail and the image is # already smaller than max_width, max_height, then this won't scale up # at all (maybe could be an option someday...) img = img.resize((width_sc, height_sc), Image.BICUBIC) # img.thumbnail((width_sc, height_sc), Image.BICUBIC) # width_sc, height_sc = img.size # necessary if using thumbnail # insert centered thumb = Image.new('RGBA', (max_width, max_height), (255, 255, 255, 255)) pos_insert = ((max_width - width_sc) // 2, (max_height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname)
5,352,580
def test_crps_ensemble_dim(o, f_prob, dim): """Check that crps_ensemble reduces only dim.""" actual = crps_ensemble(o, f_prob, dim=dim) assert_only_dim_reduced(dim, actual, o)
5,352,581
def json(filename): """Returns the parsed contents of the given JSON fixture file.""" content = contents(filename) return json_.loads(content)
5,352,582
def _parse_assayData(assayData, assay): """Parse Rpy2 assayData (Environment object) assayData: Rpy2 Environment object. assay: An assay name indicating the data to be loaded. Return a parsed expression dataframe (Pandas). """ pandas2ri.activate() mat = assayData[assay] # rpy2 expression matrix object data = pandas2ri.ri2py(mat) features = pandas2ri.ri2py(r.rownames(mat)) samples = pandas2ri.ri2py(r.colnames(mat)) return pd.DataFrame(data, index=features, columns=samples)
5,352,583
def method_list(): """ list of available electronic structure methods """ return theory.METHOD_LST
5,352,584
def test_init_as_for_groutmaterial(): """Test that the init_as is working as expected for all materials.""" matnames = ['Grout', 'Ground', 'Pipe'] classes = [GroutMaterial, GroundMaterial, PipeMaterial] for (matname, class_) in zip(matnames, classes): predmats = PREDEFINED_MATERIALS[matname] keys = list(predmats.keys()) mat = class_.init_as(1) assert (mat.kth, mat.Cp) == predmats[keys[1]] # Assert no error is raised when the material index is out of range. mat = class_.init_as(-1) assert (mat.kth, mat.Cp) == predmats[keys[0]] mat = class_.init_as(len(keys)+1) assert (mat.kth, mat.Cp) == predmats[keys[-1]] assert mat._category == matname assert mat._material == keys[-1]
5,352,585
def readReadQualities(fastqfile): """ Reads a .fastqfile and calculates a defined readscore input: fastq file output: fastq dictionary key = readid; value = qualstr @type fastqfile: string @param fastqfile: path to fastq file @rtype: dictionary @return: dictionary containing read ids and read qualities. """ fastq_file = HTSeq.FastqReader(fastqfile , "phred") readdictionary = {} for read in fastq_file: readdictionary[read.name.split()[0]] = ComputeRQScore(read.qualstr) print("\tReading Fastq file done!") return readdictionary
5,352,586
def test_check_args_no_rules(base_add, a, b, expected): """Tests that check_args does nothing""" add = check_args(base_add) assert add(a, b) == expected
5,352,587
async def default_field_resolver( parent: Optional[Any], args: Dict[str, Any], ctx: Optional[Any], info: "ResolveInfo", ) -> Any: """ Default callable to use as resolver for field which doesn't implement a custom one. :param parent: default root value or field parent value :param args: computed arguments related to the resolved field :param ctx: context passed to the query execution :param info: information related to the execution and the resolved field :type parent: Optional[Any] :type args: Dict[str, Any] :type ctx: Optional[Any] :type info: ResolveInfo :return: the computed field value :rtype: Any """ # pylint: disable=unused-argument try: return getattr(parent, info.field_name) except AttributeError: pass try: return parent[info.field_name] except (KeyError, TypeError): pass return None
5,352,588
def revision_list_to_str(diffs: List[Dict]) -> str: """Convert list of diff ids to a comma separated list, prefixed with "D".""" return ', '.join([diff_to_str(d['id']) for d in diffs])
5,352,589
def find_clouds(images): """ While very basic in principle. I found out that by applying a blue layer to the reflectance instruments images ibands and mbands; I was able to see the clouds clearly. Method: - Get the blue layer out of the 3D images ibands and mbands - Add the two images to make sure that we are getting the clouds total reflectance. """ pass
5,352,590
def get_path_of_latest_file() -> Optional[Path]: """Gets the path of the latest produced file that contains weight information""" path = Path(storage_folder) latest_file = None time_stamp_latest = -1 for entry in path.iterdir(): if entry.is_file(): if latest_file == None: latest_file = entry time_stamp_latest = time.mktime(get_time_tuple_from_filename(entry.name)) else: time_stamp_latest = time.mktime(get_time_tuple_from_filename(latest_file.name)) time_stamp_current = time.mktime(get_time_tuple_from_filename(entry.name)) if time_stamp_current > time_stamp_latest: latest_file = entry # print_d(f"Latest file: {latest_file}") return latest_file
5,352,591
def index(): """ A function than returns the home page when called upon """ #get all available news sources news_sources = get_sources() #get all news articles available everything = get_everything() print(everything) # title = 'Home - Find all the current news at your convinience' return render_template('index.html', news_sources = news_sources, everything = everything)
5,352,592
def xclCopyBO(handle, dstBoHandle, srcBoHandle, size, dst_offset, src_offset): """ Copy device buffer contents to another buffer :param handle: Device handle :param dstBoHandle: Destination BO handle :param srcBoHandle: Source BO handle :param size: Size of data to synchronize :param dst_offset: dst Offset within the BO :param src_offset: src Offset within the BO :return: 0 on success or standard errno """ libc.xclCopyBO.restype = ctypes.c_int libc.xclCopyBO.argtypes = [xclDeviceHandle, ctypes.c_uint, ctypes.c_uint, ctypes.c_size_t, ctypes.c_size_t, ctypes.c_uint] libc.xclCopyBO(handle, dstBoHandle, srcBoHandle, size, dst_offset, src_offset)
5,352,593
def parse_secret_from_literal(literal): """Parse a literal string, into a secret dict. :param literal: String containg a key and a value. (e.g. 'KEY=VALUE') :returns secret: Dictionary in the format suitable for sending via http request. """ try: key, value = literal.split("=", 1) secret = { key: { "value": base64.b64encode(value.encode("utf-8")).decode("utf-8"), "type": "env", } } return secret except ValueError as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) display_message( 'Option "{0}" is invalid: \n' 'For literal strings use "SECRET_NAME=VALUE" format'.format(literal), msg_type="error", ) sys.exit(1)
5,352,594
def test_run_internal_median_filter_piped_input(): """ The run_median_filter asserts if the input file doesn't exist. This is to prevent specifying streams we can't rewind. """ check_run_raises(mod.run_internal_median_filter, fasta_tests[5]) with pytest.raises(AssertionError) as e: mod.run_internal_median_filter(sys.stdin, '', '') assert 'Cannot rewind' in str(e.value)
5,352,595
def blur(img): """ :param img: SimpleImage, the input image :return: the processed image which is blurred the function calculate the every position and its neighbors' pixel color and then average then set it as the new pixel's RGB """ sum_red = 0 sum_blue = 0 sum_green = 0 neighbors = 0 new_img = SimpleImage.blank(img.width, img.height) for x in range(img.width): for y in range(img.height): new_pixel = new_img.get_pixel(x, y) for i in range(-1, 2): for j in range(-1, 2): if x + i >= 0 and x+i <= img.width -1 and y + j >= 0 and y + j <= img.height -1: sum_red += img.get_pixel(x + i, y + j).red sum_blue += img.get_pixel(x + i, y + j).blue sum_green += img.get_pixel(x + i, y + j).green neighbors += 1 new_pixel.red = sum_red // neighbors new_pixel.blue = sum_blue // neighbors new_pixel.green = sum_green // neighbors neighbors = 0 sum_red = 0 sum_blue = 0 sum_green = 0 return new_img
5,352,596
def delete_project_api_document_annotations_url(document_id: int, annotation_id: int) -> str: """ Delete the annotation of a document. :param document_id: ID of the document as integer :param annotation_id: ID of the annotation as integer :return: URL to delete annotation of a document """ return f'{KONFUZIO_HOST}/api/projects/{KONFUZIO_PROJECT_ID}/docs/{document_id}/' f'annotations/{annotation_id}/'
5,352,597
def initiate_strategy_trader(strategy, strategy_trader): """ Do it async into the workers to avoid long blocking of the strategy thread. """ with strategy_trader._mutex: if strategy_trader._initialized != 1: # only if waiting for initialize return strategy_trader._initialized = 2 now = datetime.now() instrument = strategy_trader.instrument try: watcher = instrument.watcher(Watcher.WATCHER_PRICE_AND_VOLUME) if watcher: # update from last ticks watcher.subscribe(instrument.market_id, None, -1, None) # initialization processed, waiting for data be ready with strategy_trader._mutex: strategy_trader._initialized = 0 # wake-up strategy.send_update_strategy_trader(instrument.market_id) except Exception as e: logger.error(repr(e)) logger.debug(traceback.format_exc())
5,352,598
def subprocess_call_wrapper(lst, stdin=None): """Wrapper around the subprocess.call functions.""" print_debug('About to run "%s"' % ' '.join(lst)) try: ret = subprocess.call(lst, stdin=stdin) except (OSError, IOError): ret = 127 # an error code except IndexError: ret = 127 # an error code except KeyboardInterrupt: ret = 127 # an error code print_debug('Command "%s" returned %d' % (lst[0] if lst else '', ret)) return ret == 0
5,352,599