content
stringlengths
22
815k
id
int64
0
4.91M
def base_checkout_total( subtotal: TaxedMoney, shipping_price: TaxedMoney, discount: Money, currency: str, ) -> TaxedMoney: """Return the total cost of the checkout.""" zero = zero_taxed_money(currency) total = subtotal + shipping_price - discount # Discount is subtracted from both gross and net values, which may cause negative # net value if we are having a discount that covers whole price. # Comparing TaxedMoney objects works only on gross values. That is why we are # explicitly returning zero_taxed_money if total.gross is less or equal zero. if total.gross <= zero.gross: return zero return total
5,353,600
def if_statement(lhs='x', op='is', rhs=0, _then=None, _else=None): """Celery Script if statement. Kind: _if Arguments: lhs (left-hand side) op (operator) rhs (right-hand side) _then (id of sequence to execute on `then`) _else (id of sequence to execute on `else`) """ args = {} args['lhs'] = lhs args['op'] = op args['rhs'] = rhs if _then is None: _then_kind = 'nothing' _then_args = {} else: _then_kind = 'execute' _then_args = {"sequence_id": _then} if _else is None: _else_kind = 'nothing' _else_args = {} else: _else_kind = 'execute' _else_args = {"sequence_id": _else} args['_then'] = create_node(kind=_then_kind, args=_then_args) args['_else'] = create_node(kind=_else_kind, args=_else_args) _if_statement = create_node(kind='_if', args=args) return _if_statement
5,353,601
def add_next_open(df, col='next_open'): """ 找出下根K线的开盘价 """ df[col] = df[CANDLE_OPEN_COLUMN].shift(-1) df[col].fillna(value=df[CANDLE_CLOSE_COLUMN], inplace=True) return df
5,353,602
def validate_args(args): """Validate command line arguments.""" if args.target == 'druid_deployment': assert args.master_desired_count is not None, \ "Druid master desired count must be specified" assert args.zookeeper_desired_count is not None, \ "Druid zookeeper desired count must be specified" assert args.middlemanager_regular_desired_count is not None, \ "Druid regular MM node desired count must be specified" assert args.middlemanager_crosscluster_desired_count is not None, \ "Druid crosscluster MM node desired count must be specified" assert args.historical_desired_count is not None, \ "Druid historical node desired count must be specified" assert args.query_desired_count is not None, \ "Druid query node desired count must be specified" assert args.query_cc_desired_count is not None, \ "Druid query node for crosscluster desired count must be specified" if args.target == 'influx_metric_consumer': assert args.mode == 'turbo', \ "Currently we support Influx consumer for only Turbo metrics" if args.target in ['influx_metric_consumer', 'master_graphite_consumer', 'prod_graphite_consumer', 'prod_no_agg_graphite_consumer', 'v4_live_influx_consumer', 'internal_graphite_consumer', 'prod_pickle_graphite_consumer', 'v2_live_pickle_graphite_consumer']: assert args.consumer_mode is not None, \ "Must specify consumer_mode for metric consumers"
5,353,603
def connectToSerial(dev): """connectToSerial("/path/to/device") connects to specific serial port""" console.connectToSerial(dev)
5,353,604
def seasons_used(parameters): """ Get a list of the seasons used for this set of parameters. """ seasons_used = set([s for p in parameters for s in p.seasons]) # Make sure this list is ordered by SEASONS. return [season for season in SEASONS if season in seasons_used]
5,353,605
def get_polyphyletic(cons): """get polyphyletic groups and a representative tip""" tips, taxonstrings = unzip(cons.items()) tree, lookup = make_consensus_tree(taxonstrings, False, tips=tips) cache_tipnames(tree) names = {} for n in tree.non_tips(): if n.name is None: continue if (n.name, n.Rank) not in names: names[(n.name, n.Rank)] = {} if n.parent is not None: names[(n.name, n.Rank)][n.parent.name] = n.tip_names[0] return names
5,353,606
def _Install(launcher_vm, booter_template_vm): """Installs benchmark scripts and packages on the launcher vm.""" launcher_vm.InstallCli() # Render boot script on launcher server VM(s) context = _BuildContext(launcher_vm, booter_template_vm) launcher_vm.RenderTemplate(data.ResourcePath(_BOOT_TEMPLATE), _BOOT_PATH, context) launcher_vm.RenderTemplate(data.ResourcePath(_STATUS_TEMPLATE), _STATUS_PATH, context) # Installs and start listener server on launcher VM(s). launcher_vm.InstallPackages('netcat') launcher_vm.PushDataFile(_LISTENER_SERVER, _REMOTE_DIR) client_port = _SSH_PORT if _IsLinux() else _RDP_PORT launcher_vm.RemoteCommand('touch log') launcher_vm.RemoteCommand(_GetServerStartCommand(client_port, launcher_vm)) # Render clean up script on launcher server VM(s). launcher_vm.RenderTemplate(data.ResourcePath(_CLEAN_UP_TEMPLATE), _CLEAN_UP_SCRIPT_PATH, context)
5,353,607
def find_closest_integer_in_ref_arr(query_int: int, ref_arr: NDArrayInt) -> Tuple[int, int]: """Find the closest integer to any integer inside a reference array, and the corresponding difference. In our use case, the query integer represents a nanosecond-discretized timestamp, and the reference array represents a numpy array of nanosecond-discretized timestamps. Instead of sorting the whole array of timestamp differences, we just take the minimum value (to speed up this function). Args: query_int: query integer, ref_arr: Numpy array of integers Returns: integer, representing the closest integer found in a reference array to a query integer, representing the integer difference between the match and query integers """ closest_ind = np.argmin(np.absolute(ref_arr - query_int)) closest_int = cast(int, ref_arr[closest_ind]) # mypy does not understand numpy arrays int_diff = np.absolute(query_int - closest_int) return closest_int, int_diff
5,353,608
def saver_for_file(filename): """ Returns a Saver that can load the specified file, based on the file extension. None if failed to determine. :param filename: the filename to get the saver for :type filename: str :return: the associated saver instance or None if none found :rtype: Saver """ saver = javabridge.static_call( "weka/core/converters/ConverterUtils", "getSaverForFile", "(Ljava/lang/String;)Lweka/core/converters/AbstractFileSaver;", filename) if saver is None: return None else: return Saver(jobject=saver)
5,353,609
def test_create_model_custom_folds(load_pos_and_neg_data): """test custom fold in create_model""" exp = TimeSeriesExperiment() setup_fold = 3 exp.setup( data=load_pos_and_neg_data, fold=setup_fold, fh=12, fold_strategy="sliding", verbose=False, ) ######################################### ## Test Create Model with custom folds ## ######################################### _ = exp.create_model("naive") metrics1 = exp.pull() custom_fold = 5 _ = exp.create_model("naive", fold=custom_fold) metrics2 = exp.pull() assert len(metrics1) == setup_fold + 2 # + 2 for Mean and SD assert len(metrics2) == custom_fold + 2
5,353,610
def prepare_axes(ax, naxes): """ set up the axes """ ax.set_frame_on(False) ax.set_ylim(-0.15, 1.1) xmax = 1.02*(naxes-1) ax.set_xlim((-0.30, xmax)) ax.set_yticks([]) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_xticks([])
5,353,611
def make(context, name): """Create an object in a registered table class. This function will be stored in that object, so that the new table object is able to create new table objects in its class. !!! hint This is needed when the user wants to insert new records in the table. Parameters ---------- context: object The context singleton in which this very function will be stored under attribute `mkTable`. name: string The registered name of the derived table class. """ tableObj = factory(name)(context, name) tableObj.mkTable = make return tableObj
5,353,612
def cofilter(function, iterator): """ Return items in iterator for which `function(item)` returns True. """ results = [] def checkFilter(notfiltered, item): if notfiltered == True: results.append(item) def dofilter(item): d = maybeDeferred(function, item) d.addCallback(checkFilter, item) return d d = _CoFunCaller(resultCollector=dofilter).coiterate(iterator) d.addCallback(lambda _: results) return d
5,353,613
def download_dataset(dataset_name='mnist'): """ Load MNIST dataset using keras convenience function Args: dataset_name (str): which of the keras datasets to download dtype (np.dtype): Type of numpy array Returns tuple[np.array[float]]: (train images, train labels), (test images, test labels) """ if dataset_name == 'mnist': return tf.keras.datasets.mnist.load_data() elif dataset_name == 'binarised_mnist': return load_binarised_mnist_data()
5,353,614
def __listen_for_requests_events(node_id, success, measurement: str = 'locust_requests') -> Callable: """ Persist request information to influxdb. :param node_id: The id of the node reporting the event. :param measurement: The measurement where to save this point. :param success: Flag the info to as successful request or not """ def event_handler(request_type=None, name=None, response_time=None, response_length=None, exception=None, **_) -> None: time = datetime.utcnow() tags = { 'node_id': node_id, 'request_type': request_type, 'name': name, 'success': success, 'exception': repr(exception), } fields = { 'response_time': response_time, 'response_length': response_length, 'counter': 1, # TODO: Review the need of this field } point = __make_data_point(measurement, tags, fields, time) cache.append(point) return event_handler
5,353,615
def test_find_next_htr(routing_grid: PyRoutingGrid, lay: int, coord: int, w_ntr: int, mode: Union[RoundMode, int], even: bool, expect: int) -> None: """Check that find_next_htr() works properly.""" ans = routing_grid.find_next_htr(lay, coord, w_ntr, mode, even) assert ans == expect
5,353,616
def create_trigger_function_sql( *, audit_logged_model: Type[Model], context_model: Type[Model], log_entry_model: Type[Model], ) -> str: """ Generate the SQL to create the function to log the SQL. """ trigger_function_name = f"{ audit_logged_model._meta.db_table }_log_change" context_table_name = context_model._meta.db_table # noqa context_fields = ", ".join( field.column for field in context_model._meta.get_fields() # noqa if isinstance(field, Field) and not isinstance(field, AutoField) ) log_entry_table_name = log_entry_model._meta.db_table return dedent( f""" CREATE FUNCTION { trigger_function_name }() RETURNS TRIGGER AS $$ DECLARE -- Id of the inserted row, used to ensure exactly one row is inserted entry_id int; content_type_id int; BEGIN SELECT id INTO STRICT content_type_id FROM django_content_type WHERE app_label = '{ audit_logged_model._meta.app_label }' AND model = '{ audit_logged_model._meta.model_name }'; IF (TG_OP = 'INSERT') THEN INSERT INTO { log_entry_table_name } ( { context_fields }, action, at, changes, content_type_id, object_id ) SELECT { context_fields }, TG_OP as action, now() as at, to_jsonb(NEW.*) as changes, content_type_id, NEW.id as object_id -- We rely on this table being created by out Django middleware FROM { context_table_name } -- We return the id into the variable to make postgresql check -- that exactly one row is inserted. RETURNING id INTO STRICT entry_id; RETURN NEW; ELSIF (TG_OP = 'UPDATE') THEN INSERT INTO { log_entry_table_name } ( { context_fields }, action, at, changes, content_type_id, object_id ) SELECT { context_fields }, TG_OP as action, now() as at, ( SELECT -- Aggregate back to a single jsonb object, with -- column name as key and the two values in an array. jsonb_object_agg( COALESCE(old_row.key, new_row.key), ARRAY[old_row.value, new_row.value] ) FROM -- Select key value pairs from the old and the new -- row, and then join them on the key. THis gives -- us rows with the same key and values from both -- the old row and the new row. jsonb_each(to_jsonb(OLD.*)) old_row FULL OUTER JOIN jsonb_each(to_jsonb(NEW.*)) new_row ON old_row.key = new_row.key WHERE -- Only select rows that have actually changed old_row.* IS DISTINCT FROM new_row.* ) as changes, content_type_id, NEW.id as object_id -- We rely on this table being created by out Django middleware FROM { context_table_name } -- We return the id into the variable to make postgresql check -- that exactly one row is inserted. RETURNING id INTO STRICT entry_id; RETURN NEW; ELSIF (TG_OP = 'DELETE') THEN INSERT INTO { log_entry_table_name } ( { context_fields }, action, at, changes, content_type_id, object_id ) SELECT { context_fields }, TG_OP as action, now() as at, to_jsonb(OLD.*) as changes, content_type_id, OLD.id as object_id -- We rely on this table being created by out Django middleware FROM { context_table_name } -- We return the id into the variable to make postgresql check -- that exactly one row is inserted. RETURNING id INTO STRICT entry_id; RETURN NEW; END IF; END; $$ language 'plpgsql'; """ )
5,353,617
def p_relop_neq(p: yacc.YaccProduction): """REL_OP : NEQ_COMPARISON""" p[0] = {'code': '!='}
5,353,618
def add_nop_conv_after(g, value_names): """Add do-nothing depthwise Conv nodes after the given value info. It will\\ take the given names as the inputs of the new node and replace the inputs\\ of the following nodes. :param g: the graph\\ :param value_names: a list of string which are the names of value_info. """ for value_name in value_names: # Find the value first value = helper.find_value_by_name(g, value_name) if value is None: value = helper.find_input_by_name(g, value_name) if value is None: value = helper.find_output_by_name(g, value_name) if value is None: print("Cannot find an value_info named {}".format(value_name)) continue # Get the channel number from value info shape = helper.get_shape_from_value_info(value) channel = shape[1] # Construct 4 weights node_name = value_name + "_nop_conv" ones = [1.0] * channel weight_node = helper.list_to_constant(node_name + "_weight", [channel, 1, 1, 1], ones) # Construct BN node conv_node = onnx.helper.make_node( "Conv", [value_name, weight_node.output[0]], [node_name], name = node_name, dilations = [1, 1], group = channel, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1] ) # Reconnect the graph following_nodes = helper.find_following_nodes_by_input_value_name(g, value_name) if len(following_nodes) > 0: for following_node in following_nodes: replace_node_input(following_node, value_name, node_name) else: # If the node is the output, replace the output with the previous input. new_value = onnx.helper.make_tensor_value_info( node_name, value.type.tensor_type.elem_type, shape ) output_values = [] while len(g.output): output_values.append(g.output.pop()) while output_values: output_value = output_values.pop() if output_value.name == value_name: g.output.extend([new_value]) else: g.output.extend([output_value]) # Add node to the graph g.node.extend([conv_node, weight_node]) topological_sort(g)
5,353,619
def reorder_by_first(*arrays): """ Applies the same permutation to all passed arrays, permutation sorts the first passed array """ arrays = check_arrays(*arrays) order = np.argsort(arrays[0]) return [arr[order] for arr in arrays]
5,353,620
def machine_save_handler(sender, **kwargs): """ Send value of channel to Websocket Server whenever Machine saved. """ from api.serializers import MachineSerializer instance = kwargs.pop('instance') serialized = MachineSerializer(instance) body = serialized.data url = 'http://localhost:1984/machines/' headers = { 'Content-Type': 'application/json', } try: response = requests.post(url, headers=headers, data=json.dumps(body)) logger.info("POSTed APIRequest to Websocket Server") except Exception as e: # If cannot send notification to WebSocket server, # it is likely not running # Gracefully fail, log failure, and continue save logger.info("Could not POST to Websocket Server") logger.debug(e)
5,353,621
def embedding_weights(mesh, vocab_dim, output_dim, variable_dtype, name="embedding", ensemble_dim=None, initializer=None): """Embedding weights.""" if not ensemble_dim: ensemble_dim = [] elif not isinstance(ensemble_dim, list): ensemble_dim = [ensemble_dim] shape = mtf.Shape(ensemble_dim) + [vocab_dim, output_dim] if initializer is None: initializer = tf.random_normal_initializer() ret = mtf.get_variable( mesh, name, shape, dtype=variable_dtype, initializer=initializer) return ret
5,353,622
def get_db() -> Generator: """ endpointからアクセス時に、Dependで呼び出しdbセッションを生成する エラーがなければ、commitする エラー時はrollbackし、いずれの場合も最終的にcloseする """ db = None try: db = SessionLocal() yield db db.commit() except Exception: if db: db.rollback() finally: if db: db.close()
5,353,623
def generiraj_emso(zenska): """Funkcija generira emso stevilko""" rojstvo = random_date_generator(julijana_zakrajsek) # Odstranim prvo števko leta emso_stevke = rojstvo[:4] + rojstvo[5:] if zenska: # Malce pretirana poenostavitev zadnjih treh cifer, lahko se zgodi da pridejo iste + zanemarjam take, ki imajo niclo na zacetku,... return (emso_stevke + '505' + str(np.random.randint(100, 999))) else: return (emso_stevke + '500' + str(np.random.randint(100, 999)))
5,353,624
def send_metric(name, distance, points): """Send person's stats to Datadog over HTTP API""" metrics = [{ 'metric': 'sportid.workout.distance', 'points': [float(distance)], 'tags': ['name:' + name], 'host': environ.get('HOST', ''), 'type': 'gauge' }, { 'metric': 'sportid.workout.points', 'points': [float(points)], 'tags': ['name:' + name], 'host': environ.get('HOST', ''), 'type': 'gauge' }] r = api.Metric.send(metrics) logging.info("Sending metrics to Datadog... %s" % r['status']) logging.info(metrics)
5,353,625
def setup_logging(config_path): """Setup logging configuration """ if os.path.isfile(config_path): with open(config_path, "rt") as f: config = yaml.safe_load(f.read()) for handler_name, handler_conf in config["handlers"].items(): if "filename" not in handler_conf.keys(): continue log_path = os.path.dirname(handler_conf["filename"]) if not os.path.exists(log_path): os.mkdir(log_path) logging.config.dictConfig(config) logging.info("Loaded config from yml file.") else: logging.basicConfig(level=logging.DEBUG) logging.info("Loaded default config.")
5,353,626
def update_bad_replicas_history(dids, rse_id, session=None): """ Update the bad file replicas history. Method only used by necromancer :param dids: The list of DIDs. :param rse_id: The rse_id. :param session: The database session in use. """ for did in dids: # Check if the replica is still there try: result = session.query(models.RSEFileAssociation.state).filter_by(rse_id=rse_id, scope=did['scope'], name=did['name']).one() state = result.state if state == ReplicaState.AVAILABLE: # If yes, and replica state is AVAILABLE, update BadReplicas query = session.query(models.BadReplicas).filter_by(state=BadFilesStatus.BAD, rse_id=rse_id, scope=did['scope'], name=did['name']) query.update({'state': BadFilesStatus.RECOVERED, 'updated_at': datetime.utcnow()}, synchronize_session=False) elif state != ReplicaState.BAD: # If the replica state is not AVAILABLE check if other replicas for the same file are still there. try: session.query(models.RSEFileAssociation.state).filter_by(rse_id=rse_id, scope=did['scope'], name=did['name'], state=ReplicaState.AVAILABLE).one() except NoResultFound: # No replicas are available for this file. Reset the replica state to BAD update_replicas_states([{'scope': did['scope'], 'name': did['name'], 'rse_id': rse_id, 'state': ReplicaState.BAD}], session=session) session.query(models.Source).filter_by(scope=did['scope'], name=did['name'], rse_id=rse_id).delete(synchronize_session=False) else: # Here that means that the file has not been processed by the necro. Just pass pass except NoResultFound: # We end-up here if the replica is not registered anymore on the RSE try: result = session.query(models.DataIdentifier.availability).filter_by(scope=did['scope'], name=did['name'], did_type=DIDType.FILE).one() # If yes, the final state depends on DIDAvailability state = result.availability final_state = None if state == DIDAvailability.LOST: final_state = BadFilesStatus.LOST elif state == DIDAvailability.DELETED: final_state = BadFilesStatus.DELETED elif state == DIDAvailability.AVAILABLE: final_state = BadFilesStatus.DELETED else: # For completness, it shouldn't happen. print('Houston we have a problem.') final_state = BadFilesStatus.DELETED query = session.query(models.BadReplicas).filter_by(state=BadFilesStatus.BAD, rse_id=rse_id, scope=did['scope'], name=did['name']) query.update({'state': final_state, 'updated_at': datetime.utcnow()}, synchronize_session=False) except NoResultFound: # If no, the replica is marked as LOST in BadFilesStatus query = session.query(models.BadReplicas).filter_by(state=BadFilesStatus.BAD, rse_id=rse_id, scope=did['scope'], name=did['name']) query.update({'state': BadFilesStatus.LOST, 'updated_at': datetime.utcnow()}, synchronize_session=False)
5,353,627
def process_message(data): """ @keyword *prod change:* `^kevin.*prod change*(\\n|\|){2}` *kevin* _[]_ *prod change* _[]_ * _|[user]|[summary title]|[|more details]_ @summary instead of switching context to jira just to make a silly change to ST2, have kevin make the prod change @see *prod change:* _*kevin* create *prod change* ticket *|steve|Rolling Latest PHP Core to ST2 """ # IF ALL CHECKS PASS SEND JOB TO DB if 'text' in data: text = data['text'].encode('ascii', 'ignore') else: text = '' if check_channel(data['channel']) and check_text("^kevin.*prod change.*", text): # EXTRACT TICKET DATA FROM STATEMENT print "Prod CHange" n_text = text.split("\n") p_text = text.split("|") if len(n_text) >= 3 or len(p_text) >= 3: # ASSIGN THE TEXT split_text = p_text if len(p_text) >= 3 else n_text # user_id = data['user'] # user_name = get_culprit_name(user_id) user_name = split_text[1] summary = "{} - {}".format(user_name, split_text[2]) # desc = "\n".join(split_text[3:]) conn = sqlite3.connect('kevin.db') with conn: conn.execute("INSERT INTO JOBS (channel, name, parms, status) VALUES (?, 'prod_change', ?, 0)", (data['channel'], '{}|{}'.format(user_name, summary))) conn.commit() outputs.append([data['channel'], 'Summary: {}'.format(summary)]) else: print "NOT ENOUGH FIELDS: {}".format(text) outputs.append([data['channel'], "SQUAAAWWKK Not enough Fields for Prod change"])
5,353,628
def pdf_markov2(x, y, y_offset=1, nlevels=3): """ Compute the empirical joint PDF for two processes of Markov order 2. This version is a bit quicker than the more general pdf() function. See the docstring for pdf for more info. """ y_offset = np.bool(y_offset) # out = np.ones((nlevels,)*6, np.uint32) out = np.zeros((nlevels,) * 5, np.float64) n = x.size for tt in xrange(2, x.size): # out[x[tt], x[tt - 1], x[tt - 2], y[tt], y[tt - 1], y[tt - 2]] += 1 # offset signal y by +1 if we want to allow same-timebin interactions out[x[tt], x[tt - 1], x[tt - 2], y[tt - 1 + y_offset], y[tt - 2 + y_offset]] += 1 return out / (n - 2.)
5,353,629
def add_vertex(graph, vertex): """ Raise Exception if sometsing gone wrong and vertex is not added """ assert isinstance(vertex, str) gr = PillowGraph(StringToAdjListDict(graph.AdjList)) gr.add_vertex(vertex) graph.AdjList = str(gr.AdjList) graph.save()
5,353,630
def cvt_dotted_as_name(node: pytree.Base, ctx: Ctx) -> ast_cooked.Base: """dotted_as_name: dotted_name ['as' NAME]""" assert ctx.is_REF, [node] dotted_name = xcast(ast_cooked.DottedNameNode, cvt(node.children[0], ctx.to_BARE())) if len(node.children) == 1: # `import os.path` creates a binding for `os`. return ast_cooked.ImportDottedAsNameNode(dotted_name=dotted_name, as_name=None) else: as_name = typing.cast(Union[ast_cooked.NameBindsNode, ast_cooked.NameBindsGlobalNode], cvt(node.children[2], ctx.to_BINDING())) assert isinstance( as_name, (ast_cooked.NameBindsNode, ast_cooked.NameBindsGlobalNode)) # TODO: delete return ast_cooked.ImportDottedAsNameNode(dotted_name=dotted_name, as_name=as_name)
5,353,631
def train( model, data, epochs=10, batch_size=100, lr=0.001, lr_decay_mul=0.9, lam_recon=0.392, save_dir=None, weights_save_dir=None, save_freq=100, ): """Train a given Capsule Network model. Args: model: The CapsuleNet model to train. data: The dataset that you want to train: ((x_train, y_train), (x_test, y_test)). epochs: Number of epochs for the training. batch_size: Size of the batch used for the training. lr: Initial learning rate value. lr_decay_mul: The value multiplied by lr at each epoch. Set a larger value for larger epochs. lam_recon: The coefficient for the loss of decoder (if present). save_dir: Directory that will contain the logs of the training. `None` if you don't want to save the logs. weights_save_dir: Directory that will contain the weights saved. `None` if you don't want to save the weights. save_freq: The number of batches after which weights are saved. Returns: The trained model. """ # Unpack data (x_train, y_train), (x_test, y_test) = data # Understand if the model uses the decoder or not n_output = len(model.outputs) # Compile the model model.compile( optimizer=optimizers.Adam(lr=lr), loss=[margin_loss, "mse"] if n_output == 2 else [margin_loss], loss_weights=[1.0, lam_recon] if n_output == 2 else [1.0], metrics=["accuracy"], ) # Define a callback to reduce learning rate cbacks = [ callbacks.LearningRateScheduler( schedule=lambda epoch: lr * (lr_decay_mul ** epoch) ) ] # Define a callback to save training datas if save_dir: cbacks.append(callbacks.CSVLogger(os.path.join(save_dir, "training.csv"))) # Define a callback to save weights during the training if weights_save_dir: cbacks.append(WeightsSaver(weights_save_dir, save_freq)) # Simple training without data augmentation model.fit( x=(x_train, y_train) if n_output == 2 else x_train, y=(y_train, x_train) if n_output == 2 else y_train, batch_size=batch_size, epochs=epochs, validation_data=((x_test, y_test), (y_test, x_test)) if n_output == 2 else (x_test, y_test), callbacks=cbacks, ) # Save final weights at the end of the training if weights_save_dir: model.save_weights(os.path.join(weights_save_dir, "trained.h5")) return model
5,353,632
def test_actor_for_edge_expiration(setup): # type: (SetupTest) -> None """Test choice of actor ID when expiring an edge. Our current audit log model has no concept of a system-generated change and has to map every change to a user ID that performed that change. We previously had a bug where we would try to grab the first owner of the group and use them as the actor when someone expired out of a group, which caused uncaught exceptions if the group somehow ended up in a state with no owners. Test that we do something sane when expiring edges if possible. Everything we're testing here is a workaround for a bug. Once the audit log has been fixed so that we can log entries for system actions without attributing them to some user in the system, this test and all of the logic it's testing can go away. """ settings = Settings() now_minus_one_second = datetime.utcfromtimestamp(int(time() - 1)) audit_log_service = setup.service_factory.create_audit_log_service() # An expiring individual user should be logged with an actor ID of the user. with setup.transaction(): setup.add_user_to_group("[email protected]", "some-group", expiration=now_minus_one_second) edge = setup.session.query(GroupEdge).filter_by(expiration=now_minus_one_second).one() notify_edge_expiration(settings, setup.session, edge) log_entries = audit_log_service.entries_affecting_user("[email protected]", 1) assert log_entries assert log_entries[0].actor == "[email protected]" assert log_entries[0].action == "expired_from_group" assert log_entries[0].on_user == "[email protected]" with setup.transaction(): edge.delete(setup.session) # An expiring group should be logged with an actor ID of the owner of the parent group. with setup.transaction(): setup.add_user_to_group("[email protected]", "parent-group", role="owner") setup.add_user_to_group("[email protected]", "child-group", role="owner") setup.add_group_to_group("child-group", "parent-group", expiration=now_minus_one_second) edge = setup.session.query(GroupEdge).filter_by(expiration=now_minus_one_second).one() notify_edge_expiration(settings, setup.session, edge) log_entries = audit_log_service.entries_affecting_group("child-group", 1) assert log_entries assert log_entries[0].actor == "[email protected]" assert log_entries[0].action == "expired_from_group" assert log_entries[0].on_group == "child-group" log_entries = audit_log_service.entries_affecting_group("parent-group", 1) assert log_entries assert log_entries[0].actor == "[email protected]" assert log_entries[0].action == "expired_from_group" assert log_entries[0].on_group == "parent-group" with setup.transaction(): edge.delete(setup.session) # If the parent group has no owner, it should be logged with an actor ID of the owner of the # child group. with setup.transaction(): setup.add_user_to_group("[email protected]", "a-group", role="owner") setup.add_group_to_group("a-group", "ownerless-group", expiration=now_minus_one_second) edge = setup.session.query(GroupEdge).filter_by(expiration=now_minus_one_second).one() notify_edge_expiration(settings, setup.session, edge) log_entries = audit_log_service.entries_affecting_group("a-group", 1) assert log_entries assert log_entries[0].actor == "[email protected]" assert log_entries[0].action == "expired_from_group" assert log_entries[0].on_group == "a-group" log_entries = audit_log_service.entries_affecting_group("ownerless-group", 1) assert log_entries assert log_entries[0].actor == "[email protected]" assert log_entries[0].action == "expired_from_group" assert log_entries[0].on_group == "ownerless-group" with setup.transaction(): edge.delete(setup.session) # If neither group has an owner, raise an exception. with setup.transaction(): setup.add_group_to_group("other-group", "ownerless-group", expiration=now_minus_one_second) edge = setup.session.query(GroupEdge).filter_by(expiration=now_minus_one_second).one() with pytest.raises(UnknownActorDuringExpirationException): notify_edge_expiration(settings, setup.session, edge)
5,353,633
def txn_replay(session_filename, txn, proxy, result_queue, request_session): """ Replays a single transaction :param request_session: has to be a valid requests session""" req = txn.getRequest() resp = txn.getResponse() # Construct HTTP request & fire it off txn_req_headers = req.getHeaders() txn_req_headers_dict = extractHeader.header_to_dict(txn_req_headers) txn_req_headers_dict['Content-MD5'] = txn._uuid # used as unique identifier if 'body' in txn_req_headers_dict: del txn_req_headers_dict['body'] #print("Replaying session") try: # response = request_session.request(extractHeader.extract_txn_req_method(txn_req_headers), # 'http://' + extractHeader.extract_host(txn_req_headers) + extractHeader.extract_GET_path(txn_req_headers), # headers=txn_req_headers_dict,stream=False) # making stream=False raises contentdecoding exception? kill me method = extractHeader.extract_txn_req_method(txn_req_headers) response = None body = None content = None if 'Transfer-Encoding' in txn_req_headers_dict: # deleting the host key, since the STUPID post/get functions are going to add host field anyway, so there will be multiple host fields in the header # This confuses the ATS and it returns 400 "Invalid HTTP request". I don't believe this # BUT, this is not a problem if the data is not chunked encoded.. Strange, huh? del txn_req_headers_dict['Host'] if 'Content-Length' in txn_req_headers_dict: #print("ewww !") del txn_req_headers_dict['Content-Length'] body = gen() if 'Content-Length' in txn_req_headers_dict: nBytes = int(txn_req_headers_dict['Content-Length']) body = createDummyBodywithLength(nBytes) #print("request session is",id(request_session)) if method == 'GET': r1 = request_session.request('GET', extractHeader.extract_GET_path( txn_req_headers), headers=txn_req_headers_dict, data=body) responseHeaders = r1.headers responseContent = r1.content # byte array #print("len: {0} received {1}".format(responseHeaders['Content-Length'], responseContent)) elif method == 'POST': r1 = request_session.request('POST', extractHeader.extract_GET_path( txn_req_headers), headers=txn_req_headers_dict, data=body) responseHeaders = r1.headers responseContent = r1.content #print("len: {0} received {1}".format(responseHeaders['Content-Length'], responseContent)) elif method == 'HEAD': r1 = request_session.request('HEAD', extractHeader.extract_GET_path( txn_req_headers), headers=txn_req_headers_dict, data=body) responseHeaders = r1.headers responseContent = r1.content else: # EXPERIMENTAL r1 = request_session.request(method, extractHeader.extract_GET_path( txn_req_headers), headers=txn_req_headers_dict, data=body) responseHeaders = r1.headers responseContent = r1.content #gzip_file = gzip.GzipFile(fileobj=responseContent) #shutil.copyfileobj(gzip_file, f) expected = extractHeader.responseHeader_to_dict(resp.getHeaders()) # print("------------EXPECTED-----------") # print(expected) # print("------------RESP--------------") # print(responseHeaders) # print() if mainProcess.verbose: expected_output_split = resp.getHeaders().split('\r\n')[0].split(' ', 2) expected_output = (int(expected_output_split[1]), str(expected_output_split[2])) r = result.Result(session_filename, expected_output[0], r1.status_code, responseContent) b_res, res = r.getResult(responseHeaders, expected, colorize=True) print(res) if not b_res: print("Received response") print(responseHeaders) print("Expected response") print(expected) # result_queue.put(r) except UnicodeEncodeError as e: # these unicode errors are due to the interaction between Requests and our wiretrace data. # TODO fix print("UnicodeEncodeError exception") except requests.exceptions.ContentDecodingError as e: print("ContentDecodingError", e) except: e = sys.exc_info() print("ERROR in NonSSLReplay: ", e, response, session_filename)
5,353,634
def check_if_recipe_skippable(recipe, channels, repodata_dict, actualname_to_idname): """ check_if_recipe_skippable ========================= Method used to check if a recipe should be skipped or not. Skip criteria include: - If the version of the recipe in the channel repodata is greater than or equal to the query recipe. - If the query recipe's version and build are equal to or less than the recipe in the repodata Non-Skip Citeria include: - Opposite of skip criteria - If the recipe is not in any channel Parameters: ----------- 1) recipe: (str) The directory path to the query recipe 2) channels: (list) A list of channels to check against 3) repodata_dict: (dict) A dictionary of repodata by channel (From get_repodata() method) 4) actualname_to_idname: (dict) Dict of recipe names as keys as id names in the repodata_dict as keys. (From get_repodata() method) Returns: ++++++++ - Return True if recipe building is skippable - Return False if recipe building cannot be skipped """ platform, metas = load_platform_metas(recipe, finalize=False) # The recipe likely defined skip: True if not metas: return True ## Get each packages name, version, and build number packages = set( (meta.name(), float(meta.version()), float(meta.build_number() or 0)) for meta in metas ) for name, version, build_num in packages: present = False for c in channels: ## Check for the recipe in one of the channel's repodata if name in actualname_to_idname[c].keys(): ## Find the newest/highest versioned and build package present = True cur_version = -1.0 cur_build = -1.0 for pkg_tar in actualname_to_idname[c][name]: repo_version = float(repodata_dict[c][pkg_tar]["version"]) repo_build_number = float(repodata_dict[c][pkg_tar]["build_number"]) ## If version is greater than the previous version, reset values with this package if repo_version > cur_version: cur_version = repo_version cur_build = repo_build_number ## If version is the same but the build number is greater, reset values with this package elif version == cur_version and repo_build_number > cur_build: cur_build = repo_build_number ## Check if the query package is newer then what is repoted in the repodata or not ## If the query package's version is greater than the best in the repodata, update recipe if cur_version < version: return False ## If the query package's is the same version but the build number is greater than the best in the repodata, update recipe elif cur_version == version and cur_build < build_num: return False ## If package not already in the repodata if not present: return False print( ":ggd:build recipes: FILTER: not building recipe {} because the version and/or build number match what is already in the channel and not forced".format( recipe ) ) return True
5,353,635
def ensure_csv_detections_file( folder: types.GirderModel, detection_item: Item, user: types.GirderUserModel ) -> types.GirderModel: """ Ensures that the detection item has a file which is a csv. Attach the newly created .csv to the existing detection_item. :returns: the file document. TODO: move this to the training job code instead of keeping it in the request thread """ filename, gen = crud.get_annotation_csv_generator(folder, user, excludeBelowThreshold=True) filename = slugify(filename) csv_bytes = ("".join([line for line in gen()])).encode() new_file = File().createFile( user, detection_item, filename, len(csv_bytes), Assetstore().getCurrent(), reuseExisting=True, ) upload = Upload().createUploadToFile(new_file, user, len(csv_bytes)) new_file = Upload().handleChunk(upload, csv_bytes) return new_file
5,353,636
def hello(name=None): """Assuming that name is a String and it checks for user typos to return a name with a first capital letter (Xxxx). Args: name (str): A persons name. Returns: str: "Hello, Name!" to a given name, or says Hello, World! if name is not given (or passed as an empty String). """ return "Hello, World!" if name is None or not name else "Hello, {}!".format(name.title())
5,353,637
def main(): """ """ #file = open( "jbc.p", "rb" ) #jbc = pickle.load(file) #file.close() # file = open( "stffmtx.p", "rb" ) neq = pickle.load(file) iband = pickle.load(file) #stf = pickle.load(file) file.close() # elements = pickle.load(open( "memb.p", "rb" )) jbcc = pickle.load(open( "jbc.p", "rb" )) jbc = list( chain.from_iterable( jbcc ) ) #for memb in elements: # idof, jdof = memb[0] # a = memb[1] # assemble(idof, jdof, jbc, a, stf) # #aa = loop_members(elements) # #with mp.Manager() as manager: #freeze_support() #manager = Manager() #d = manager.list(elements) #l = manager.list(jbc) #st = manager.list(stf) #st = Array('f', stf) qout = mp.Queue() p = mp.Process(target=loop_members, args=(elements, jbc, neq, iband, qout)) p.start() try: stf = qout.get(False) except qout.empty(): pass p.join() # #print(stf) #p = Pool(processes=2) #stiff = p.starmap_async(loop_members, elements) #p.close() #print(stiff.get()) # # #file = open( "stffmtx.p", "ab" ) #pickle.dump( p.st, file ) #file.close() # file = open( "stffmtx.p", "ab" ) pickle.dump( neq, file ) pickle.dump( iband, file ) pickle.dump( stf, file ) file.close() print('** End multiprocessing Matrix')
5,353,638
def computePCA(inputMatrix, n_components=None): """Compute Principle Component Analysis (PCA) on feature space. n_components specifies the number of dimensions in the transformed basis to keep.""" pca_ = PCA(n_components) pca_.fit(inputMatrix) return pca_
5,353,639
def tag(repo, subset, x): """The specified tag by name, or all tagged revisions if no name is given. Pattern matching is supported for `name`. See :hg:`help revisions.patterns`. """ # i18n: "tag" is a keyword args = getargs(x, 0, 1, _("tag takes one or no arguments")) cl = repo.changelog if args: pattern = getstring(args[0], # i18n: "tag" is a keyword _('the argument to tag must be a string')) kind, pattern, matcher = stringutil.stringmatcher(pattern) if kind == 'literal': # avoid resolving all tags tn = repo._tagscache.tags.get(pattern, None) if tn is None: raise error.RepoLookupError(_("tag '%s' does not exist") % pattern) s = {repo[tn].rev()} else: s = {cl.rev(n) for t, n in repo.tagslist() if matcher(t)} else: s = {cl.rev(n) for t, n in repo.tagslist() if t != 'tip'} return subset & s
5,353,640
def save_imgs(output_image_dir, dataloader): """Saves a grid of generated imagenet pictures with captions""" target_dir = os.path.join(output_image_dir, "imgs/") if not os.path.isdir(target_dir): os.makedirs(target_dir) i = 0 for (imgs, _, _) in dataloader: imgs = imgs.cpu().numpy() imgs = np.clip(imgs, 0, 1) imgs = np.split(imgs, imgs.shape[0]) for img in imgs: img = np.squeeze(img) img = np.transpose(img, (1, 2, 0)) save_file = os.path.join(target_dir, "{:013d}.png".format(i)) matplotlib.image.imsave(save_file, img) print("saved {}".format(save_file)) i += 1
5,353,641
def _embed_json(service, targetid): """ Returns oEmbed JSON for a given URL and service """ return d.http_get(_OEMBED_MAP[service] % (urlquote(targetid),)).json()
5,353,642
def test_helling(): """Test de functie helling in bereken.py.""" assert bereken.helling(np.array([0, 0]), np.array([1, 0])) == 0.0 assert bereken.helling(np.array([0, 0]), np.array([1, 1])) == 45.0 assert bereken.helling(np.array([0, 0]), np.array([-1, -1])) == 45.0 assert bereken.helling(np.array([0, 0]), np.array([-1, 1])) == -45.0 assert bereken.helling(np.array([0, 0]), np.array([1, -1])) == -45.0 assert bereken.helling(np.array([0, 0]), np.array([0, 0])) == -90 assert bereken.helling(np.array([0, 0]), np.array([0, 1])) == -90
5,353,643
def is_blank(s): """Returns True if string contains only space characters.""" return re.search(reNonSpace, s) is None
5,353,644
def persistTeamData(teamData): """ Creates a dataframe containing the project ids and the members matched to that project """ if connection.is_connected(): cursor = connection.cursor() for row in teamData.index: sql = "INSERT INTO Team(ProjectId, ProjectName, \ MemberId, MemberName)VALUES(%s,%s,%s,%s);" cursor.execute( sql, ( str(teamData.loc[row, "ProjectId"]), str(teamData.loc[row, "ProjectName"]), str(teamData.loc[row, "MemberId"]), str(teamData.loc[row, "MemberName"]), ), ) connection.commit()
5,353,645
def remove_invalid_chars_from_passage(passage_text): """ Return a cleaned passage if the passage is invalid. If the passage is valid, return None """ # Check if any of the characters are invalid bad_chars = [c for c in passage_text if c in INVALID_PASSAGE_CHARACTERS] if bad_chars: for b in set(bad_chars): passage_text = passage_text.replace(b, '') return passage_text
5,353,646
def fallback_humanize(date, fallback_format=None, use_fallback=False): """ Format date with arrow and a fallback format """ # Convert to local timezone date = arrow.get(date).to('local') # Set default fallback format if not fallback_format: fallback_format = '%Y/%m/%d %H:%M:%S' # Determine using fallback format or not by a variable if use_fallback: return date.datetime.strftime(fallback_format) try: # Use Arrow's humanize function lang, encode = locale.getdefaultlocale() clock = date.humanize(locale=lang) except: # Notice at the 1st time only if not dg['humanize_unsupported']: dg['humanize_unsupported'] = True printNicely( light_magenta('Humanized date display method does not support your $LC_ALL.')) # Fallback when LC_ALL is not supported clock = date.datetime.strftime(fallback_format) return clock
5,353,647
def questbackup(cfg, server): """Silly solution to a silly problem.""" if server not in cfg['servers']: log.warning(f'{server} has been misspelled or not configured!') elif 'worldname' not in cfg['servers'][server]: log.warning(f'{server} has no world directory specified!') elif 'questing' not in cfg['servers'][server]: log.warning(f'{server} has is not setup for questing backup!') else: bpath = cfg['backupspath'] world = cfg['servers'][server]['worldname'] quests = cfg['servers'][server]['questing'] log.info(f'Starting backup for {server}\'s quests...') if isUp(server): log.info(f'{server} is running, don\'t care, just want {quests.upper()}!') sbpath = f'{bpath}/{server}/questing/{quests}' try: os.makedirs(sbpath, exist_ok=True) except Exception as e: log.error(e + '\nBackup aborted, DANGER! might loose quests!') return False else: log.info('Created missing directories! (if they were missing)') log.info('Deleting old quest backups...') now = time() with os.scandir(sbpath) as d: for entry in d: if not entry.name.startswith('.') and entry.is_file(): stats = entry.stat() if stats.st_mtime < now - (10080 * 60): try: os.remove(entry.path) except OSError as e: log.error(e) else: log.info(f'Deleted {entry.path} for being too old!') log.info('Creating quest backup...') bname = datetime.now().strftime('%Y.%m.%d-%H-%M-%S') + f'-{server}-{world}-{quests.replace("/", "_")}.tar.gz' os.chdir(sbpath) serverpath = cfg['serverspath'] with tarfile.open(bname, 'w:gz') as tf: tf.add(f'{serverpath}/{server}/{world}/{quests}', quests) log.info('Quest backup created!') if isUp(server): log.info(f'{server} is running, STILL DON\'T CARE!') log.info('DONE!')
5,353,648
def find_file_in_pythonpath( filename, subfolder='miri', walkdir=False, path_only=False): """ Find a file matching the given name within the PYTHONPATH. :Parameters: filename: str The name of the file to be located. subfolder: str, optional (default='miri') If specified, a preferred subfolder within the PYTHONPATH which, if it exists, will be searched before the top level directory. walkdir: bool, optional (default=False) Set to True if the entire directory tree under each of the directories in the search path should be searched as well. By default, only the specific directories listed in the search path are searched. N.B. Specifying walkdir=True can slow down a file search significantly, especially if there are a lot of utilities installed in PYTHONPATH. The search can be speeded up by specifying a preferred subfolder. path_only: bool, optional (default=False) Set to True to return the path to the folder containing the file rather than the path to the file itself. :Returns: filepath: str The full path (and name) of the matching file. If no file is found an empty string is returned. """ # Step through each path in the PYTHONPATH for path in sys.path: # If there is a preferred subfolder, and it exists # search this first. if subfolder: sfname = os.path.join(path, subfolder) if os.path.isdir(sfname): result = _check_folder(sfname, filename, walkdir=walkdir, path_only=path_only) if result: return result result = _check_folder(path, filename, walkdir=walkdir, path_only=path_only) if result: return result # No file found - return an empty string. return ''
5,353,649
def driveForward(self, distance : float, speed : float = 50): """Moves Cozmo forward or backwards. Arguments: distance: A float representing the distance in millimeters for cozmo to travel. - Positive: Moves Cozmo forward. - Negative: Moves Cozmo backward. speed: A float representing the speed, in millimeters per seconds, for Cozmo to travel at. - 50 (default) .. code-block:: python robot.driveForward(100, 20) """ #Convert parameters into Cozmo classes that represent the units realDistance = distance_mm(distance) realSpeed = speed_mmps(speed) #Log action for debugging self.debug("Driving forward %s millimeters at a rate of %s mm/s." % (distance, speed)) #Execute movement self.robot.drive_straight(realDistance, realSpeed).wait_for_completed()
5,353,650
def set_tpu_info(params): """Docs.""" logging.info('Retrieve TPU information') tpu_init = tf.tpu.initialize_system() tpu_shutdown = tf.tpu.shutdown_system() with common_utils.get_session(params, isolate_session_state=True) as sess: topology_proto = sess.run(tpu_init) topology = tpu_lib.topology.Topology(serialized=topology_proto) sess.run(tpu_shutdown) # Note: we use the name `worker` instead of `replica` # TPU terminologies are extremely confusing. num_cores_per_replica = params.num_cores_per_replica num_workers = topology.num_tasks num_replicas = (topology.num_tpus_per_task * topology.num_tasks // num_cores_per_replica) params.add_hparam('num_workers', num_workers) params.add_hparam('num_replicas', num_replicas) params.add_hparam('num_cores_per_worker', topology.num_tpus_per_task) logging.info('-' * 80) logging.info(f'num_workers={num_workers}') logging.info(f'num_cores_per_worker={topology.num_tpus_per_task}') logging.info(f'num_cores_per_replica={num_cores_per_replica}') logging.info(f'num_replicas={num_replicas}') params.topology = topology num_cores_to_shape = { 1: [1, 1, 1, 1], 2: [1, 1, 1, 2], 4: [1, 2, 1, 2], 8: [2, 2, 1, 2], 16: [4, 2, 1, 2], 32: [4, 4, 1, 2], 64: [4, 8, 1, 2], 128: [8, 8, 1, 2], 256: [8, 16, 1, 2], 512: [16, 16, 1, 2], 2048: [32, 32, 1, 2], } if params.num_cores_per_replica not in num_cores_to_shape: raise ValueError(f'Unknown num_cores {params.num_cores_per_replica}') computation_shape = num_cores_to_shape[params.num_cores_per_replica] params.device_assignment = tpu_lib.device_assignment.device_assignment( topology=params.topology, computation_shape=computation_shape, num_replicas=params.num_replicas) if (params.batch_norm_batch_size is not None and params.batch_norm_batch_size < params.train_batch_size // num_workers): logging.warning(f'batch_norm_batch_size={FLAGS.batch_norm_batch_size} ' f'changed into {FLAGS.train_batch_size}') params['batch_norm_batch_size'] = params.train_batch_size // num_workers
5,353,651
def min_column_widths(rows): """Computes the minimum column width for the table of strings. >>> min_column_widths([["some", "fields"], ["other", "line"]]) [5, 6] """ def lengths(row): return map(len, row) def maximums(row1, row2) : return map(max, row1, row2) return reduce(maximums, map(lengths, rows))
5,353,652
def entities(address_book): """Get the entities utility.""" return zope.component.getUtility(IEntities)
5,353,653
def generate_dataset_file_url(client, filepath): """Generate url for DatasetFile.""" if not client: return try: if not client.project: return project = client.project except ValueError: from renku.core.management.migrations.models.v9 import Project metadata_path = client.renku_path.joinpath(OLD_METADATA_PATH) project = Project.from_yaml(metadata_path) project_id = urlparse(project._id) else: project_id = urlparse(project.id) filepath = quote(filepath, safe="/") path = pathlib.posixpath.join(project_id.path, "files", "blob", filepath) project_id = project_id._replace(path=path) return project_id.geturl()
5,353,654
def _check_attrs(obj): """Checks that a periodic function/method has all the expected attributes. This will return the expected attributes that were **not** found. """ missing_attrs = [] for attr_name in _REQUIRED_ATTRS: if not hasattr(obj, attr_name): missing_attrs.append(attr_name) return missing_attrs
5,353,655
def stats(human=False): """ Print repository statistics. @param human (bool) Whether to output the data in human-readable format. """ stat_data = admin_api.stats() if human: click.echo( 'This option is not supported yet. Sorry.\nUse the `/admin/stats`' ' endpoint in the web UI for a pretty printout.') else: click.echo(json.dumps(stat_data))
5,353,656
def _chunk_noise(noise): """Chunk input noise data into valid Touchstone file rows.""" data = zip( noise["freq"], noise["nf"], np.abs(noise["rc"]), np.angle(noise["rc"]), noise["res"], ) for freq, nf, rcmag, rcangle, res in data: yield freq, nf, rcmag, rcangle, res
5,353,657
def test_TSclassifier(): """Test TS Classifier""" covset = generate_cov(40, 3) labels = np.array([0, 1]).repeat(20) assert_raises(TypeError, TSclassifier, clf='666') clf = TSclassifier() clf.fit(covset, labels) assert_array_equal(clf.classes_, np.array([0, 1])) clf.predict(covset) clf.predict_proba(covset)
5,353,658
def create_table(): """ If table does not exist, Table is create. If exists, return error. Error is caught in try/except loop. :return: """ sql_command = """ CREATE TABLE IF NOT EXISTS data_table ( postId INTEGER, id INTEGER PRIMARY KEY, name VARCHAR(1000), email VARCHAR(200), body CHAR(1000));""" try: cursor.execute(sql_command) connection.commit() except: pass
5,353,659
def test_dataset_info(): """Read raster metadata and return spatial info.""" info = utils.get_dataset_info(asset1) assert info["geometry"] assert info["properties"]["path"] assert info["properties"]["bounds"] assert info["properties"]["datatype"] assert info["properties"]["minzoom"] == 7 assert info["properties"]["maxzoom"] == 9
5,353,660
def archive(context: Context, images: List[ImageName], archive: str): """Operates on docker-save produced archives.""" ctx = get_context_object(context) ctx["images"] = images ctx["imagesource"] = ArchiveImageSource(archive=Path(archive)) verify(context)
5,353,661
def _create_admin_user(keystone, admin_email, admin_password): """Create admin user in Keystone. :param keystone: keystone v2 client :param admin_email: admin user's e-mail address to be set :param admin_password: admin user's password to be set """ admin_tenant = keystone.tenants.find(name='admin') try: keystone.users.find(name='admin') LOG.info('Admin user already exists, skip creation') except exceptions.NotFound: LOG.info('Creating admin user.') keystone.users.create('admin', email=admin_email, password=admin_password, tenant_id=admin_tenant.id)
5,353,662
def TokenStartBlockElement(block): """ `TokenStartBlockElement` is used to denote that we are starting a new block element. Under most circumstances, this token will not render anything. """ return { "type": "SpaceCharacters", "data": "", "_md_type": mdTokenTypes["TokenStartBlockElement"], "_md_block": block, }
5,353,663
def parse_json(json_path): """ Parse training params json file to python dictionary :param json_path: path to training params json file :return: python dict """ with open(json_path) as f: d = json.load(f) return d
5,353,664
def compute_statistic(specify_db_path=None): """ """ # 初始化redis实例 RedisCtx.get_instance().host = settings.Redis_Host RedisCtx.get_instance().port = settings.Redis_Port MetricsAgent.get_instance().initialize_by_dict(metrics_dict) # 获取日志文件们所在的路径 db_path, logs_path = Index.get_log_paths(specify_db_path) work_hour = db_path.rsplit('/', 1)[-1] t = datetime.strptime(work_hour, settings.LogPath_Format) settings.Working_TS = time.mktime((t.year, t.month, t.day, t.hour, t.minute, t.second, 0, 0, 0)) settings.Working_DAY = int(time.mktime((t.year, t.month, t.day, 0, 0, 0, 0, 0, 0))) logger.debug(DEBUG_PREFIX+ 'working_hour:%s working_ts:%s, len:%s', work_hour, settings.Working_TS, len(str(settings.Working_TS))) # 从每个小时日志文件夹中获取 record schema && record header utils.load_record_settings(db_path) # 重新生成索引python_index目录 Index.regen_index(db_path) # 获取所有策略权重 utils.get_strategies_weigh() # 获取compute variables compute_variables = utils.fetch_compute_variables() logger.debug(DEBUG_PREFIX+'获得的计算变量们是:%s', [ _['name'] for _ in compute_variables if _['name']]) # 新增变量时的调试本地的变量文件, 文件里面就可以只有单独的变量树来避免等很久 # import json # with open('/home/threathunter/nebula/nebula_web/venv/lib/python2.7/site-packages/nebula_utils/unittests/offline.json', 'r') as f: # compute_variables = json.load(f) # cvs = [ ComputeVariableHandler.get_compute_variable(**_) for _ in compute_variables] # dag.add_nodes(cvs) # 遍历日志离线统计 compute_dag(compute_variables, logs_path) # 注册生成风险事件的回调函数 Hook_Functions.append(gen_risk_incidents) # 统计点击量的counter Hook_Functions.append(gen_click_counter) # Hook_Functions.append(gen_related_counter) # 注册统计user profile的回调函数 Hook_Functions.append(gen_visit_profile) # 统计notices过去一个小时的数据 ioloop.IOLoop.current().run_sync(gen_notice_statistics) # 聚合notices过去一个小时的metrics last = millis_now() logger.info("开始merge history metrics") merge_history_metrics('default', 'web.notices', 'sum', group_tags=['test', 'strategy', 'location', 'url']) now = millis_now() logger.info("时间消耗:{}ms".format(now - last)) last = now # 清理统计数据目录 logger.info("开始清理统计数据目录") stat_db_tmp_path, stat_db_path = get_stat_db_path(db_path) now = millis_now() logger.info("时间消耗:{}ms".format(now - last)) last = now # 持久化统计数据 logger.info("开始持久化统计数据") write_statistic_data(stat_db_tmp_path) now = millis_now() logger.info("时间消耗:{}ms".format(now - last)) last = now # 统计完成, 临时统计目录改名为正式, 提供查询服务 logger.info("开始移动目录") shutil.move(stat_db_tmp_path, stat_db_path) now = millis_now() logger.info("时间消耗:{}ms".format(now - last)) last = now # 定时脚本统计完成后,调用web API清除缓存,刷新数据 utils.clean_cache() now = millis_now() logger.info("时间消耗:{}ms".format(now - last))
5,353,665
def test_encode_decode_uuid_should_succeed(n: int) -> None: """Tests andom uuid encoding for n times""" for seq in range(1, n+1): x = uuid.uuid4() encoded = encode(x) decoded = decode(encoded) assert x == decoded
5,353,666
def cut_tails(fastq, out_dir, trimm_adapter, trimm_primer, hangF, hangR): """ The functuion ... Parameters ---------- reads : str path to ... out_dir : str path to ... hang1 : str Sequence ... hang2 : str Sequence ... Returns ------- - """ output = fastq # cut barcodes if trimm_adapter == True: call('porechop -i {} --verbosity 0 -t 100 --require_two_barcodes --extra_end_trim 0 -o {}/trimmed_barcode.fastq'.format(fastq, out_dir), shell=True) fastq = out_dir + "/trimmed_barcode.fastq" output = out_dir + "/trimmed_barcode.fastq" # cut primers if trimm_primer == True: opn_fastq = parse(fastq, 'fastq') # cut primers with open('{}/trimmed_primer.fastq'.format(out_dir), 'w') as trimmed_fasta: for record in opn_fastq: for idx in range(4): if idx != 1 or idx != 3: trimmed_fasta.write(record.format('fastq').split('\n')[idx] + '\n') else: trimmed_fasta.write(record.format('fastq').split('\n')[idx][len(hangF): -len(hangR)] + '\n') output = '{}/trimmed_primer.fastq'.format(out_dir) return output
5,353,667
def incidentReports( draw: Callable[..., Any], new: bool = False, event: Optional[Event] = None, maxNumber: Optional[int] = None, beforeNow: bool = False, fromNow: bool = False, ) -> IncidentReport: """ Strategy that generates :class:`IncidentReport` values. """ automatic: Optional[bool] if new: number = 0 automatic = False else: number = draw(incidentNumbers(max=maxNumber)) automatic = None if event is None: event = draw(events()) return IncidentReport( event=event, number=number, created=draw(dateTimes(beforeNow=beforeNow, fromNow=fromNow)), summary=draw(incidentReportSummaries()), incidentNumber=None, # FIXME: May allow some to be passed in? reportEntries=draw( lists( reportEntries( automatic=automatic, beforeNow=beforeNow, fromNow=fromNow ) ) ), )
5,353,668
def define_vectorized_funcs(): """ Defines vectorized versions of functions from uncertainties.umath_core. Some functions have their name translated, so as to follow NumPy's convention (example: math.acos -> numpy.arccos). """ this_module = sys.modules[__name__] # NumPy does not always use the same function names as the math # module: func_name_translations = dict([ (f_name, 'arc'+f_name[1:]) for f_name in ['acos', 'acosh', 'asin', 'atan', 'atan2', 'atanh']]) new_func_names = [ func_name_translations.get(function_name, function_name) # The functions from umath_core.non_std_wrapped_funcs # (available from umath) are normally not in # NumPy, so they are not included here: for function_name in umath_core.many_scalars_to_scalar_funcs] for (function_name, unumpy_name) in zip( umath_core.many_scalars_to_scalar_funcs, new_func_names): # ! The newly defined functions (uncertainties.unumpy.cos, etc.) # do not behave exactly like their NumPy equivalent (numpy.cos, # etc.): cos(0) gives an array() and not a # numpy.float... (equality tests succeed, though). func = getattr(umath_core, function_name) # Data type of the result of the unumpy function: otypes = ( # It is much more convenient to preserve the type of # functions that return a number without # uncertainty. Thus, for example, unumpy.isnan() can # return an array with a boolean data type (instead of # object), which allows the result to be used with NumPy's # boolean indexing. {} if function_name in umath_core.locally_cst_funcs # If by any chance a function returns, in a particular # case, an integer instead of a number with uncertainty, # side-effects in vectorize() would fix the resulting # dtype to integer, which is not what is wanted (as # vectorize(), at least in NumPy around 2010 maybe, # decided about the output data type by looking at the # type of first element only). else {'otypes': [object]}) setattr( this_module, unumpy_name, #!!!! For umath_core.locally_cst_funcs, would it make sense # to optimize this by using instead the equivalent (? see # above) vectorized NumPy function on the nominal values? numpy.vectorize(func, doc="""\ Vectorized version of umath.%s. Original documentation: %s""" % (function_name, func.__doc__), **otypes)) __all__.append(unumpy_name)
5,353,669
def load_spelling(spell_file=SPELLING_FILE): """ Load the term_freq from spell_file """ with open(spell_file, encoding="utf-8") as f: tokens = f.read().split('\n') size = len(tokens) term_freq = {token: size - i for i, token in enumerate(tokens)} return term_freq
5,353,670
def NotP8(): """ Return the matroid ``NotP8``. This is a matroid that is not `P_8`, found on page 512 of [Oxl1992]_ (the first edition). EXAMPLES:: sage: M = matroids.named_matroids.P8() sage: N = matroids.named_matroids.NotP8() sage: M.is_isomorphic(N) False sage: M.is_valid() True """ A = Matrix(GF(3), [ [1, 0, 0, 0, 0, 1, 1, -1], [0, 1, 0, 0, 1, 0, 1, 1], [0, 0, 1, 0, 1, 1, 0, 1], [0, 0, 0, 1, -1, 1, 1, 1] ]) M = TernaryMatroid(A, 'abcdefgh') M.rename('NotP8: ' + repr(M)) return M
5,353,671
def kill(proc): """Kills |proc| and ignores exceptions thrown for non-existent processes.""" try: if proc and proc.pid: os.kill(proc.pid, signal.SIGKILL) except OSError: pass
5,353,672
def eqv(var_inp): """Returns the von-mises stress of a Field or FieldContainer Returns ------- field : ansys.dpf.core.Field, ansys.dpf.core.FieldContainer The von-mises stress of this field. Output type will match input type. """ if isinstance(var_inp, dpf.core.Field): return _eqv(var_inp) elif isinstance(var_inp, dpf.core.FieldsContainer): return _eqv_fc(var_inp) # elif isinstance(var_inp, dpf.core.Operator): # return _eqv_op(var_inp) else: raise TypeError('Input type must be a Field or FieldContainer')
5,353,673
def sort(array: list[int]) -> list[int]: """Counting sort implementation. """ result: list[int] = [0, ] * len(array) low: int = min(array) high: int = max(array) count_array: list[int] = [0 for i in range(low, high + 1)] for i in array: count_array[i - low] += 1 for j in range(1, len(count_array)): count_array[j] += count_array[j - 1] for k in reversed(array): result[count_array[k - low] - 1] = k count_array[k - low] -= 1 return result
5,353,674
def build_updated_figures( df, colorscale_name ): """ Build all figures for dashboard Args: - df: census 2010 dataset (cudf.DataFrame) - colorscale_name Returns: tuple of figures in the following order (datashader_plot, education_histogram, income_histogram, cow_histogram, age_histogram, n_selected_indicator, coordinates_4326_backup, position_backup) """ colorscale_transform = 'linear' education_histogram = build_histogram_default_bins( df, 'education', 'v', colorscale_name, colorscale_transform ) income_histogram = build_histogram_default_bins( df, 'income', 'v', colorscale_name, colorscale_transform ) cow_histogram = build_histogram_default_bins( df, 'cow', 'v', colorscale_name, colorscale_transform ) age_histogram = build_histogram_default_bins( df, 'age', 'v', colorscale_name, colorscale_transform ) return ( education_histogram, income_histogram, cow_histogram, age_histogram, )
5,353,675
def authorization(self, name, pasw, pages, screen, edu_lects, std_lects, dt): """ This method checks if user credentials are valid through server. :param self: It is for handling class structure. :param name: It is username. :param pasw: It is password. :param pages: It is list of pages. :param screen: It is screen manager. :param edu_lects: It is class of lectures page for educators. :param std_lects: It is class of lectures page for students. :param dt: It is for handling callback input. :return: """ Clock.schedule_once(partial(validation, self, pages, screen, edu_lects, std_lects ), 3 ) try: self.data = database_api.signIn(name, pasw ) except: self.data = None
5,353,676
def create_tcp(sip, pjsip, nmapped): """ Creates a 'transport-tcp' section in the pjsip.conf file based on the following settings from sip.conf: tcpenable tcpbindaddr (or bindaddr) """ protocol = 'tcp' bind, section = get_bind(sip, pjsip, protocol) if not bind: return set_value('protocol', protocol, section, pjsip, nmapped, 'transport') set_value('bind', bind, section, pjsip, nmapped, 'transport') set_transport_common(section, sip, pjsip, protocol, nmapped)
5,353,677
def sacct(): """ Wrapper around the slurm "sacct" command. Returns an object, and each property is the (unformatted) value according to sacct. Would also work with .e.g: # with open("/home/Desktop/sacct.txt", "r") as file: :return: SacctWrapper object, with attributes based on the output of sacct """ with os.popen("sacct -j $SLURM_JOB_ID -l --parsable2") as file: return SacctWrapper(file)
5,353,678
def get_or_else_optional(optional: Optional[_T], alt_value: _T) -> _T: """ General-purpose getter for `Optional`. If it's `None`, returns the `alt_value`. Otherwise, returns the contents of `optional`. """ if optional is None: return alt_value return optional
5,353,679
def main(): """ Starts the crawler with user-provided CLI arguments """ parser = argparse.ArgumentParser( description="A crawler for gathering Maven coordinates and put them in a Kafka topic.") parser.add_argument("--m", default=MVN_URL, type=str, help="The URL of Maven repositories") parser.add_argument("--p", required=True, type=str, help="A path to save the POM files on the disk") parser.add_argument("--q", required=True, type=str, help="The file of queue items") parser.add_argument("--c", default=5.0, type=float, help="How long the crawler waits before sending a request (in sec.)") parser.add_argument("--no-kafka", dest='no_kafka', action='store_true', help="Stores the extracted Maven coordinates in a JSON file rather than in a Kafka topic.") parser.add_argument("--t", default="fasten.mvn.pkg", type=str, help="The name of a Kafka topic to put Maven coordinates into.") parser.add_argument("--h", default="localhost:9092", type=str, help="The address of Kafka server") parser.add_argument("--l", default=-1, type=int, help="The number of POM files to be extracted. -1 means unlimited.") parser.set_defaults(no_kafka=False) args = parser.parse_args() MVN_PATH = args.p extract_pom_files(args.m, MVN_PATH, args.q, args.c, None if args.no_kafka else MavenCoordProducer(args.h, args.t), args.l)
5,353,680
def create_dic(udic): """ Create a glue dictionary from a universal dictionary """ return udic
5,353,681
def information_gain_w_posterior(): """ Make a table/plot which estimates the mutual information (K-L divergence) between two distributions. The distributions are approximated by the MCMC samples. The information gain H = /int P(X) log_2( P(X) / pi(X) ) where P(X) is the posterior, and pi(X) is the prior """ #this sets the number of bins for the samples of the distribution #it thereby controls the integration mesh for estimating the mutual information nbins=70 #factor to thin chains thin=1 chain0 = Chain(path=workdir/'mcmc'/'chain-idf-0_RHIC_PTEMCEE.hdf') data0 = chain0.load_wo_reshape(thin=thin) data0 = data0.reshape(-1, 18).T chain1 = Chain(path=workdir/'mcmc'/'chain-idf-0_LHC_RHIC_PTEMCEE.hdf') data1 = chain1.load_wo_reshape(thin=thin) data1 = data1.reshape(-1, 19).T labels = chain1.labels ranges = np.array(chain0.range) #indices0 = [1, 2, 3, 4, 5, 6, 16] # TRENTo, FS and T_sw #indices1 = [2, 3, 4, 5, 6, 7, 17] # TRENTo, FS and T_sw indices0 = np.arange(1, 17) indices1 = np.arange(2, 18) data0 = np.take(data0, indices0, axis=0) data1 = np.take(data1, indices1, axis=0) labels = np.take(labels, indices1) ranges = np.take(ranges, indices1, axis=0) ndims, nsamples = data0.shape fig, axes = plt.subplots( nrows=ndims, ncols=ndims, figsize=(1.*ndims, 1.*ndims) ) cmap0 = plt.get_cmap('Purples') cmap1 = plt.get_cmap('Oranges') color0 = 'purple' color1 = 'orange' cmap0.set_bad('white') cmap1.set_bad('white') for i, row in enumerate(axes): for j, ax in enumerate(row): x0 = data0[j] y0 = data0[i] x1 = data1[j] y1 = data1[i] xlabel = labels[j] ylabel = labels[i] if i==j: H0, bins, _ = ax.hist(x0, bins=nbins, histtype='step', range=ranges[i, :], normed=True, color=color0) H1, _, _ = ax.hist(x1, bins=nbins, histtype='step', range=ranges[i, :], normed=True, color=color1) sns.kdeplot(x0, color=color0, shade=True, ax=ax) sns.kdeplot(x1, color=color1, shade=True, ax=ax) bin_width = bins[1] - bins[0] info = calculate_information_gain(H0, H1, bin_width) info = "{:.1e}".format(info) info_str = "IG = " + info ax.annotate(info_str, xy=(0.5, 0.9), xycoords="axes fraction", ha='center', va='bottom', fontsize=4, weight='bold') ax.set_ylim(0, max( H0.max()*1.2, H1.max()*1.2 )) if i>j: H0, xbins, ybins, _ = ax.hist2d(x0, y0, bins=nbins, range=[ ranges[j, :], ranges[i,:] ], alpha=1.0, zorder=1, cmap=cmap0) if i<j: #ax.set_visible(False) H0, xbins, ybins, _ = ax.hist2d(x0, y0, bins=nbins, range=[ ranges[j, :], ranges[i,:] ], alpha=0., zorder=1, cmap=cmap0) H1, xbins, ybins, _ = ax.hist2d(x1, y1, bins=nbins, range=[ ranges[j, :], ranges[i,:] ], alpha=1.0, zorder=1, cmap=cmap1) dx = xbins[1] - xbins[0] dy = ybins[1] - ybins[0] bin_width = [dx, dy] info = calculate_information_gain(H0, H1, bin_width) info = "{:.1e}".format(info) info_str = "IG = " + info ax.annotate(info_str, xy=(0.5, 0.9), xycoords="axes fraction", ha='center', va='bottom', fontsize=4, weight='bold') if ax.is_first_col(): ax.set_ylabel(ylabel, fontsize=5) if ax.is_first_col() and i!=0: pass else: ax.set_yticks([]) if ax.is_last_row(): ax.set_xlabel(xlabel, fontsize=5) else: ax.set_xticks([]) plt.subplots_adjust(wspace=0., hspace=0.) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(5) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(5) fig.align_ylabels() set_tight(pad=.0, h_pad=.0, w_pad=.0, rect=(.01, 0, 1, 1))
5,353,682
def get_isotopes(loop): """ Given a text data loop, usually the very last one in the save frame, find and return the isotopes for naming. Example output: [ '15N', '1H' ] """ # = = = Catch random error in giving the saveFrame instead loop = loop_assert(loop, 'get_isotopes') # For entries like hetNOE, the tags will be duplicated with colsElement = get_col_tag_startswith(loop, 'Atom_type') if np.any( [ loop[0][x] == '.' for x in colsElement] ): # = = Entry is incomplete. Get name as backup. print("= = WARNING: Entry does not contain Atom_type information. Using Atom_ID as backup.") colsElement = get_col_tag_startswith(loop, 'Atom_ID') listElement = [ loop[0][x] for x in colsElement] #print( listElement ) for c in colsElement: if not is_column_identical(loop,c): print("= = ERROR in get isotopes(): the column entries for the isotopes are not identical!", file=sys.stderr) return None colsIsotopeNum = get_col_tag_startswith(loop,'Atom_isotope_number') for c in colsIsotopeNum: if not is_column_identical(loop,c): print("= = ERROR in get isotopes(): the column entries for the isotopes are not identical!", file=sys.stderr) return None listIsotopeNum = [ loop[0][x] for x in colsIsotopeNum ] if np.any( np.array(listIsotopeNum) == '.' ): # = = Entry is incomplete. Get IDs print("= = WARNING: Entry does not contain Atom_isotope_number information. Will guess using atom type information.") listIsotopeNum = [] for x in listElement: if x == 'H': listIsotopeNum.append('1') elif x == 'C': listIsotopeNum.append('13') elif x == 'N': listIsotopeNum.append('15') elif x == 'O': listIsotopeNum.append('17') else: print("= = ERROR: Atom types is not H C, N, or O. Will bail.", file=sys.stderr) sys.exit(1) out=[] for a,b in zip(listIsotopeNum, listElement): out.append( "%s%s" % (a, b) ) return out
5,353,683
def select_user(query_message, mydb): """ Prompt the user to select from a list of all database users. Args: query_message - The messages to display in the prompt mydb - A connected MySQL connection """ questions = [ inquirer.List('u', message=query_message, choices=list_users(mydb) ) ] return inquirer.prompt(questions)['u']
5,353,684
def runTool(plugin_name, config_dict=None, user=None, scheduled_id=None, caption=None, unique_output=True): """Runs a tool and stores this "run" in the :class:`evaluation_system.model.db.UserDB`. :type plugin_name: str :param plugin_name: name of the referred plugin. :type config_dict: dict or metadict :param config_dict: The configuration used for running the tool. If is None, the default configuration will be stored, this might be incomplete. :type user: :class:`evaluation_system.model.user.User` :param user: The user starting the tool :type scheduled_id: int :param scheduled_id: if the process is already scheduled then put the row id here :type caption: str :param caption: the caption to set. """ plugin_name = plugin_name.lower() if user is None: user = User() p = getPluginInstance(plugin_name, user) complete_conf = None # check whether a scheduled id is given if scheduled_id: config_dict = loadScheduledConf(plugin_name, scheduled_id, user) if config_dict is None: conf_file = user.getUserToolConfig(plugin_name) if os.path.isfile(conf_file): log.debug('Loading config file %s', conf_file) with open(conf_file, 'r') as f: complete_conf = p.readConfiguration(f) else: log.debug('No config file was found in %s', conf_file) if complete_conf is None: # at this stage we want to resolve or tokens and perform some kind of sanity check before going further complete_conf = p.setupConfiguration(config_dict=config_dict, recursion=True) log.debug('Running %s with %s', plugin_name, complete_conf) rowid = 0 if scheduled_id: user.getUserDB().upgradeStatus(scheduled_id, user.getName(), History.processStatus.running) rowid = scheduled_id elif user: version_details = getVersion(plugin_name) rowid = user.getUserDB().storeHistory(p, complete_conf, user.getName(), History.processStatus.running, version_details=version_details, caption=caption) # follow the notes followHistoryTag(rowid, user.getName(), 'Owner') try: # we want that the rowid is visible to the tool p.rowid = rowid # In any case we have now a complete setup in complete_conf result = p._runTool(config_dict=complete_conf, unique_output=unique_output) # save results when existing if result is None: user.getUserDB().upgradeStatus(rowid, user.getName(), History.processStatus.finished_no_output) else: # create the preview preview_path = config.get(config.PREVIEW_PATH, None) if preview_path: logging.debug('Converting....') _preview_create(plugin_name, result) logging.debug('finished') # write the created files to the database logging.debug('Storing results into data base....') user.getUserDB().storeResults(rowid, result) logging.debug('finished') # temporary set all processes to finished user.getUserDB().upgradeStatus(rowid, user.getName(), History.processStatus.finished) except: user.getUserDB().upgradeStatus(rowid, user.getName(), History.processStatus.broken) raise return result
5,353,685
def generate_abl_contract_for_lateral_stage( lateral_stage: LateralProgressionStage, parent_blinding_xkey: CCoinExtKey, start_block_num: int, creditor_control_asset: CreditorAsset, debtor_control_asset: DebtorAsset, bitcoin_asset: BitcoinAsset, first_stage_input_descriptor: Optional[BlindingInputDescriptor] = None ) -> int: """ Generate the main contract code and accompanying data, and store all the info in vertical stage objects """ assert start_block_num > 0 lstage = lateral_stage plan = lstage.plan lstage_blinding_xkey = safe_derive( parent_blinding_xkey, STAGE_NEXT_LEVEL_PATH ) # Need blinding factors and input descriptors ready # before we can generate the scripts for vstage in lstage.vertical_stages: blinding_xkey = safe_derive( lstage_blinding_xkey, f'{vstage.index_m}h') blinding_factor = hashlib.sha256( safe_derive(blinding_xkey, STAGE_BLINDING_FACTOR_PATH) ).digest() asset_blinding_factor = hashlib.sha256( safe_derive(blinding_xkey, STAGE_BLINDING_ASSET_FACTOR_PATH) ).digest() if lstage.level_n == 0 and vstage.index_m == 0: assert first_stage_input_descriptor is not None contract_input_descriptor = first_stage_input_descriptor first_stage_input_descriptor = None else: assert first_stage_input_descriptor is None contract_input_descriptor = BlindingInputDescriptor( asset=plan.collateral.asset, amount=plan.collateral.amount, blinding_factor=Uint256(blinding_factor), asset_blinding_factor=Uint256(asset_blinding_factor), ) vstage.blinding_data = VerticalProgressionStageBlindingData( blinding_xkey, contract_input_descriptor ) collateral_grab_outs_hash = \ get_hash_of_collateral_forfeiture_checked_outs( lstage.vertical_stages[-1], creditor_control_asset, debtor_control_asset, bitcoin_asset) total_vstages = 0 # Need to process in reverse, because scripts in earlier stages # depend on scripts in later stages for vstage in reversed(lstage.vertical_stages): total_vstages += 1 if vstage.next_lateral_stage: total_vstages += generate_abl_contract_for_lateral_stage( vstage.next_lateral_stage, vstage.blinding_data.blinding_xkey, start_block_num, creditor_control_asset, debtor_control_asset, bitcoin_asset ) full_repayment_cod = get_full_repayment_checked_outs_data( vstage, creditor_control_asset, debtor_control_asset, bitcoin_asset, ) partial_repayment_cod = get_partial_repayment_checked_outs_data( vstage, creditor_control_asset, debtor_control_asset, bitcoin_asset, ) revoc_cod = get_revocation_tx_checked_outs_data( vstage, creditor_control_asset, bitcoin_asset ) stage_script, checked_outs_hashes = \ generate_script_and_checked_outs_hashes( vstage, creditor_control_asset, debtor_control_asset, start_block_num, full_repayment_checked_outs_data=full_repayment_cod, partial_repayment_checked_outs_data=partial_repayment_cod, revoc_checked_outs_data=revoc_cod, hash_of_collateral_grab_outputs_data=collateral_grab_outs_hash, ) vstage.script_data = VerticalProgressionStageScriptData( stage_script, checked_outs_hashes ) return total_vstages
5,353,686
def setUpModule(): """Stub in get_db and reset_db for testing the simple db api.""" base.db_api = qonos.db.sqlalchemy.api base.db_api.configure_db()
5,353,687
def create_connection(language): """ a function to create sqlite3 connections to db, it retries 100 times if connection returned an error Args: language: language Returns: sqlite3 connection if success otherwise False """ try: # retries for i in range(0, 100): try: return sqlite3.connect(os.path.join(os.path.dirname(os.path.dirname(__file__)), _builder(_core_config(), _core_default_config())["api_db_name"])) except: time.sleep(0.01) except: warn(messages(language, 168)) return False
5,353,688
def force_norm(): """perform normalization simulation""" norm = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=[], resolution=resolution) norm.init_fields() source(norm) flux_inc = meep_ext.add_flux_plane(norm, fcen, df, nfreq, [0,0,0], [W, W, 0]) norm.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, decay, pt=meep.Vector3(0,0,0), decay_by=1e-3)) return {'frequency': np.array(meep.get_flux_freqs(flux_inc)), 'area': (W)**2, 'incident': np.asarray(meep.get_fluxes(flux_inc))}
5,353,689
def search(coordinates): """Search for closest known locations to these coordinates """ gd = GeocodeData() return gd.query(coordinates)
5,353,690
def get_all_apis_router(_type: str, root_path: str) -> (Path, Path): """Return api files and definition files just put the file on folder swagger.""" swagger_path = Path(root_path) all_files = list(x.name for x in swagger_path.glob("**/*.yaml")) schemas_files = [x for x in all_files if "schemas" in x] api_files = [x for x in all_files if "schemas" not in x and "main" not in x] return api_files if _type == "api" else schemas_files
5,353,691
def get_cached_patches(dataset_dir=None): """ Finds the cached patches (stored as images) from disk and returns their paths as a list of tuples :param dataset_dir: Path to the dataset folder :return: List of paths to patches as tuples (path_to_left, path_to_middle, path_to_right) """ if dataset_dir is None: dataset_dir = config.DATASET_DIR cache_dir = join(dataset_dir, 'cache') frame_paths = [join(cache_dir, x) for x in listdir(cache_dir)] frame_paths = [x for x in frame_paths if is_image(x)] frame_paths.sort() tuples = [] for i in range(len(frame_paths) // config.MAX_SEQUENCE_LENGTH): foo = (frame_paths[i * config.MAX_SEQUENCE_LENGTH + ix] for ix in range(config.MAX_SEQUENCE_LENGTH)) tuples.append(list(foo)) return tuples
5,353,692
def complex_mse(y_true: tf.Tensor, y_pred: tf.Tensor): """ Args: y_true: The true labels, :math:`V \in \mathbb{C}^{B \\times N}` y_pred: The true labels, :math:`\\widehat{V} \in \mathbb{C}^{B \\times N}` Returns: The complex mean squared error :math:`\\boldsymbol{e} \in \mathbb{R}^B`, where given example :math:`\\widehat{V}_i \in \mathbb{C}^N`, we have :math:`e_i = \\frac{\|V_i - \\widehat{V}_i\|^2}{N}`. """ real_loss = tf.losses.mse(tf.math.real(y_true), tf.math.real(y_pred)) imag_loss = tf.losses.mse(tf.math.imag(y_true), tf.math.imag(y_pred)) return (real_loss + imag_loss) / 2
5,353,693
def expand_not(tweets): """ DESCRIPTION: In informal speech, which is widely used in social media, it is common to use contractions of words (e.g., don't instead of do not). This may result in misinterpreting the meaning of a phrase especially in the case of negations. This function expands these contractions and other similar ones (e.g it's --> it is etc...). INPUT: tweets: Series of a set of tweets as a python strings OUTPUT: Series of filtered tweets """ tweets = tweets.str.replace('n\'t', ' not', case=False) tweets = tweets.str.replace('i\'m', 'i am', case=False) tweets = tweets.str.replace('\'re', ' are', case=False) tweets = tweets.str.replace('it\'s', 'it is', case=False) tweets = tweets.str.replace('that\'s', 'that is', case=False) tweets = tweets.str.replace('\'ll', ' will', case=False) tweets = tweets.str.replace('\'l', ' will', case=False) tweets = tweets.str.replace('\'ve', ' have', case=False) tweets = tweets.str.replace('\'d', ' would', case=False) tweets = tweets.str.replace('he\'s', 'he is', case=False) tweets = tweets.str.replace('what\'s', 'what is', case=False) tweets = tweets.str.replace('who\'s', 'who is', case=False) tweets = tweets.str.replace('\'s', '', case=False) for punct in ['!', '?', '.']: regex = "(\\"+punct+"( *)){2,}" tweets = tweets.str.replace(regex, punct+' <repeat> ', case=False) return tweets
5,353,694
def parse_filter_kw(filter_kw): """ Return a parsed filter keyword and boolean indicating if filter is a hashtag Args: :filter_kw: (str) filter keyword Returns: :is_hashtag: (bool) True, if 'filter_kw' is hashtag :parsed_kw: (str) parsed 'filter_kw' (lowercase, without '#', ...) """ filter_kw = filter_kw.strip() is_hashtag = filter_kw.startswith('#') parsed_kw = parse_string(filter_kw, remove=('#', "'")).lower() return (is_hashtag, parsed_kw)
5,353,695
def get_branch_index(BRANCHES, branch_name): """ Get the place of the branch name in the array of BRANCHES so will know into which next branch to merge - the next one in array. """ i = 0 for branch in BRANCHES: if branch_name == branch: return i else: i = i + 1
5,353,696
def prettify_save(soup_objects_list, output_file_name): """ Saves the results of get_soup() function to a text file. Parameters: ----------- soup_object_list: list of BeautifulSoup objects to be saved to the text file output_file_name: entered as string with quotations and with extension .txt , used to name the output text file This function can work independent of the rest of the library. Note: Unique to Windows, open() needs argument: encoding = 'utf8' for it to work. """ prettified_soup = [BeautifulSoup.prettify(k) for k in soup_objects_list] custom_word_added = [m + 'BREAKHERE' for m in prettified_soup] one_string = "".join(custom_word_added) # unique to Windows, open() needs argument: encoding = "utf8" with open(output_file_name, 'w') as file: file.write(one_string) return None
5,353,697
def determine_required_bytes_signed_integer(value: int) -> int: """ Determines the number of bytes that are required to store value :param value: a SIGNED integer :return: 1, 2, 4, or 8 """ value = ensure_int(value) if value < 0: value *= -1 value -= 1 if (value >> 7) == 0: return 1 if (value >> 15) == 0: return 2 if (value >> 31) == 0: return 4 if (value >> 63) == 0: return 8 raise IntegerLargerThan64BitsException
5,353,698
def scrape_cvs(): """Scrape and return CVS data.""" page_headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9"} page = get_resource(CVS_ROOT + CVS_VACCINE_PAGE, page_headers) soup = BeautifulSoup(page.content, 'html.parser') modals = [elem for elem in soup.find_all( class_='modal__box') if elem.get('id').startswith('vaccineinfo')] state_urls = {} for modal in modals: state = modal.get('id').split('-')[-1] state_urls[state] = CVS_ROOT + \ modal.find(class_='covid-status').get('data-url') state_dfs = [] state_headers = { 'authority': 'www.cvs.com', 'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", 'accept': '*/*', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://www.cvs.com/immunizations/covid-19-vaccine', 'accept-language': 'en-US,en;q=0.9', 'referrerPolicy': 'strict-origin-when-cross-origin', 'mode': 'cors', 'credentials': 'include' } for state, url in state_urls.items(): print(url) state_response = get_resource(url, state_headers) state_df = cvs_json_to_df(state, state_response.json()) state_dfs.append(state_df) return pd.concat(state_dfs)
5,353,699