content
stringlengths
22
815k
id
int64
0
4.91M
def _to_original(sequence, result): """ Cast result into the same type >>> _to_original([], ()) [] >>> _to_original((), []) () """ if isinstance(sequence, tuple): return tuple(result) if isinstance(sequence, list): return list(result) return result
5,353,700
def generate_oauth_service(): """Prepare the OAuth2Service that is used to make requests later.""" return OAuth2Service( client_id=os.environ.get('UBER_CLIENT_ID'), client_secret=os.environ.get('UBER_CLIENT_SECRET'), name=config.get('name'), authorize_url=config.get('authorize_url'), access_token_url=config.get('access_token_url'), base_url=config.get('base_url'), )
5,353,701
def is_relative_path(value): """Check if the given value is a relative path""" if urlparse(value).scheme in ('http', 'https', 'file'): return False return not os.path.isabs(value)
5,353,702
def add_flops_counter_variable_or_reset(module: torch.nn.Module) -> None: """ :param module: :type module:""" if is_supported_instance(module): module.__flops__ = 0
5,353,703
def get_B_R(Rdot): """Get B_R from Q, Qdot""" return Rdot
5,353,704
def configure_nltk(): """Downloads any required NLTK data if not already downloaded.""" nltk_resources_folder = get_nltk_resources_folder() nltk.data.path.append(nltk_resources_folder) try: nltk.data.find("tokenizers/punkt") except: logger.warning("NLTK punkt tokenizer was not found.") logger.info("Downloading NLTK punkt tokenizer.") nltk.download("punkt", download_dir=nltk_resources_folder) try: nltk.data.find("corpora/wordnet") except: logger.warning("NLTK wordnet corpus was not found.") logger.info("Downloading NLTK wordnet corpus.") nltk.download("wordnet", download_dir=nltk_resources_folder) try: nltk.data.find("corpora/stopwords") except: logger.warning("NLTK stopwords corpus was not found.") logger.info("Downloading NLTK stopwords corpus.") nltk.download("stopwords", download_dir=nltk_resources_folder)
5,353,705
def run_coroutine_with_span(span, coro, *args, **kwargs): """Wrap the execution of a Tornado coroutine func in a tracing span. This makes the span available through the get_current_span() function. :param span: The tracing span to expose. :param coro: Co-routine to execute in the scope of tracing span. :param args: Positional args to func, if any. :param kwargs: Keyword args to func, if any. """ with span_in_stack_context(span=span): return coro(*args, **kwargs)
5,353,706
def set_database_slide_metadata(database,table): """this will iterate and update various project related attributes that may not be set on initial parse such as stain type, tissue_type , etc... """ ## update stain_Type first sql_lookup = "select * from `"+ database + "`.`dzi_pyramid_info` where stain_type is NULL " metadata_dict_cursor.execute(sql_lookup) data = metadata_dict_cursor.fetchall() for row in data: # print row (found_tags, patient_id, section_id, stain) = parse_slide_info_for_ADRC_ID( row['pyramid_filename']) if found_tags: update_sql = "update `" + database + "`.`"+"dzi_pyramid_info` set stain_type='%s' where pyramid_id='%d'" % ( stain, row['pyramid_id']) print update_sql update_cursor.execute(update_sql) update_annotation_sql = "select * from `" + database + "`.`dzi_pyramid_info` where has_annotation is Null" metadata_dict_cursor.execute(update_annotation_sql) data = metadata_dict_cursor.fetchall() for row in data: print row
5,353,707
def run_pkg_tests(m, env_prefix): """ Run the tests defined in the recipe of a package in the given environment. """ tmpdir = tempfile.mkdtemp() try: test_files = conda_build_test.create_test_files(m, tmpdir) py_files, pl_files, shell_files = test_files if not (py_files or pl_files or shell_files): return env = os.environ env = prepend_bin_path(env, env_prefix, prepend_prefix=True) conda_build_test.run_tests(m, env, tmpdir, py_files, pl_files, shell_files) finally: shutil.rmtree(tmpdir)
5,353,708
def calc_bin_centre(bin_edges): """ Calculates the centre of a histogram bin from the bin edges. """ return bin_edges[:-1] + np.diff(bin_edges) / 2
5,353,709
def to_matrix(dG, tG, d_mat, t_mat, label_mat, bridges): """ Parameters: tG: target graph dG: drug graph d_mat: drug feature matrix t_mat: target feature matrix label_mat: label matrix bridges: known links between drugs and targets Return: d_feature, t_feature """ drug_feature, target_feature = {},{} new_label = set() for d,t,i in label_mat: if d in dG.nodes and t in tG.nodes: #d_vector = np.zeros(d_mat[d].shape) #t_vector = np.zeros(t_mat[t].shape) #if i == 1: d_vector = d_mat[d] t_vector = t_mat[t] addressed_d = set() addressed_t = set() for link in bridges: if link[0] in dG.nodes and link[1] in tG.nodes: if nx.has_path(dG, d, link[0]) and nx.has_path(tG, t, link[1]): if link[0] not in addressed_d: #print(f'di: {d}, dl: {link[0]}') max_sim_d = max_sim(d,link[0],dG) d_vector = sim_vec(d_vector, d_mat[link[0]],max_sim_d) addressed_d.add(link[0]) elif link[1] not in addressed_t: #print(f'tj: {t}, tl: {link[1]}') max_sim_t = max_sim(t,link[1],tG) t_vector = sim_vec(t_vector, t_mat[link[1]],max_sim_t) addressed_t.add(link[1]) drug_feature[d] = d_vector target_feature[t] = t_vector new_label.add((d,t,i)) return drug_feature, target_feature, new_label
5,353,710
def ensureList(obj): """ ensures that object is list """ if isinstance(obj, list): return obj # returns original lis elif hasattr(obj, '__iter__'): # for python 2.x check if obj is iterablet return list(obj) # converts to list else: return [obj]
5,353,711
def gelu_impl(x): """OpenAI's gelu implementation.""" return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x)))
5,353,712
async def test_query_inst_chaincodes(org1_gw): """ Tests querying instantiated chaincodes """ res = await org1_gw.query_instantiated_chaincodes() assert res.chaincodes
5,353,713
def get_shape(kind='line', x=None, y=None, x0=None, y0=None, x1=None, y1=None, span=0, color='red', dash='solid', width=1, fillcolor=None, fill=False, opacity=1, xref='x', yref='y'): """ Returns a plotly shape Parameters: ----------- kind : string Shape kind line rect circle x : float x values for the shape. This assumes x0=x1 x0 : float x0 value for the shape x1 : float x1 value for the shape y : float y values for the shape. This assumes y0=y1 y0 : float y0 value for the shape y1 : float y1 value for the shape color : string color for shape line dash : string line style solid dash dashdot dot width : int line width fillcolor : string shape fill color fill : bool If True then fill shape If not fillcolor then the line color will be used opacity : float [0,1] opacity of the fill xref : string Sets the x coordinate system which this object refers to 'x' 'paper' 'x2' etc yref : string Sets the y coordinate system which this object refers to 'y' 'paper' 'y2' etc """ if x1 is None: if x0 is None: if x is None: xref = 'paper' x0 = 0 x1 = 1 else: x0 = x1 = x else: x1 = x0 else: x if y1 is None: if y0 is None: if y is None: yref = 'paper' y0 = 0 y1 = 1 else: y0 = y1 = y else: y1 = y0 shape = {'x0': x0, 'y0': y0, 'x1': x1, 'y1': y1, 'line': { 'color': normalize(color), 'width': width, 'dash': dash }, 'xref': xref, 'yref': yref } if kind == 'line': shape['type'] = 'line' elif kind == 'circle': shape['type'] = 'circle' elif kind == 'rect': shape['type'] = 'rect' else: raise Exception("Invalid or unkown shape type : {0}".format(kind)) if (fill or fillcolor) and kind != 'line': fillcolor = color if not fillcolor else fillcolor fillcolor = to_rgba(normalize(fillcolor), opacity) shape['fillcolor'] = fillcolor return shape
5,353,714
def get_weights(weights_dic, model, epoch): """ callback returns matrix with n arrays where n is the number of features and each array has m elements where m is the number of neurons records weights for each layer for each epoch and stores in provided dictionary dictionary weights_dic: dictionary to save weights model: keras model epoch: current epoch number adapted from: from https://stackoverflow.com/questions/42039548/how-to-check-the-weights-after-every-epoc-in-keras-model """ name_nr = 0 for layer in model.layers: if("dense" in layer.name or "cov" in layer.name or "re_lu" in layer.name or "softmax" in layer.name or "elu" in layer.name): # 1st element of get_weights are weights, second is bias input weights_dic[(epoch, name_nr)] = [layer.get_weights()[0]] name_nr += 1
5,353,715
def clean_row(elements: List[Tag]) -> List[Tag]: """ Clean MathML row, removing children that should not be considered tokens or child symbols. One example of cleaning that should take place here is removing 'd' and 'δ' signs that are used as derivatives, instead of as identifiers. """ # Remove whitespace between elements. elements = [e for e in elements if not (isinstance(e, str) and e.isspace())] # Remove quantifiers and double bars. elements = [e for e in elements if e.text not in ["∀", "∃"]] elements = [e for e in elements if e.text not in ["|", "∥"]] # Remove 'd's and 'δ's used as signs for derivatives. derivatives_cleaned = [] DERIVATIVE_GLYPHS = ["d", "δ", "∂"] for i, e in enumerate(elements): is_derivative_symbol = ( # Is the glyph a derivative sign? e.name == "mi" and e.text in DERIVATIVE_GLYPHS # Is the next element a symbol? and (i < len(elements) - 1 and _is_identifier(elements[i + 1])) # Is the element after that either not a symbol, or another derivative sign? and ( i == len(elements) - 2 or not _is_identifier(elements[i + 2]) or elements[i + 2].text in DERIVATIVE_GLYPHS ) ) if not is_derivative_symbol: derivatives_cleaned.append(e) elements = derivatives_cleaned return elements
5,353,716
def models(estimators, cv_search, transform_search): """ Grid search prediction workflows. Used by bll6_models, test_models, and product_models. Args: estimators: collection of steps, each of which constructs an estimator cv_search: dictionary of arguments to LeadCrossValidate to search over transform_search: dictionary of arguments to LeadTransform to search over Returns: a list drain.model.Predict steps constructed by taking the product of the estimators with the the result of drain.util.dict_product on each of cv_search and transform_search. Each Predict step contains the following in its inputs graph: - lead.model.cv.LeadCrossValidate - lead.model.transform.LeadTransform - drain.model.Fit """ steps = [] for cv_args, transform_args, estimator in product( dict_product(cv_search), dict_product(transform_search), estimators): cv = lead.model.cv.LeadCrossValidate(**cv_args) cv.name = 'cv' X_train = Call('__getitem__', inputs=[MapResults([cv], {'X':'obj', 'train':'key', 'test':None, 'aux':None})]) mean = Call('mean', inputs=[X_train]) mean.name = 'mean' X_impute = Construct(data.impute, inputs=[MapResults([cv], {'aux':None, 'test':None, 'train':None}), MapResults([mean], 'value')]) cv_imputed = MapResults([X_impute, cv], ['X', {'X':None}]) cv_imputed.target = True transform = lead.model.transform.LeadTransform(inputs=[cv_imputed], **transform_args) transform.name = 'transform' fit = model.Fit(inputs=[estimator, transform], return_estimator=True) fit.name = 'fit' y = model.Predict(inputs=[fit, transform], return_feature_importances=True) y.name = 'predict' y.target = True steps.append(y) return steps
5,353,717
def apply_sync_sensors(sensors_changes: DefaultDict[str, Set[str]]) -> None: """ :param sensors_changes: :return: """ from noc.inv.models.object import Object from noc.inv.models.sensor import sync_object query = Q() if "inv.ObjectModel" in sensors_changes: query |= Q(model__in=list(sensors_changes["inv.ObjectModel"])) if "inv.Object" in sensors_changes: query |= Q(id__in=list(sensors_changes["inv.Object"])) if not query: return for o in Object.objects.filter(query): sync_object(o)
5,353,718
def cross(args: Namespace) -> None: """Corss task. Corss validate model on given dataset.""" records, n_state = _get_records(args) result = cross_validate(n_state, records, args.k) print(f"Mean Variance: {result.var:.3f}") print(f"Mean StdDev: {result.std:.3f}") print(f"Mean Error: {result.err:.3f}%")
5,353,719
def xml_timestamp(location='Europe/Prague'): """Method creates timestamp including time zone Args: location (str): time zone location Returns: str: timestamp """ return datetime.datetime.now(pytz.timezone(location)).isoformat()
5,353,720
def create_frame_drop_test_launch(filename,camera0,camera1,display=True): """ Creates launch file for the blob_finder based frame drop test. """ template_name = 'frame_drop_test_launch.xml' machine_file = mct_utilities.file_tools.machine_launch_file image_corr_topic_list = mct_introspection.find_topics_w_ending('seq_and_image_corr') camera_to_image_corr = {} for topic in image_corr_topic_list: for camera in (camera0, camera1): if '{0}/'.format(camera) in topic: camera_to_image_corr[camera] = topic blob_finder_launch = [] for camera, topic in camera_to_image_corr.iteritems(): topic_split = topic.split('/') machine = topic_split[1] launch_item = ( '/frame_drop_test/{0}'.format(camera), topic, machine ) blob_finder_launch.append(launch_item) # Create xml launch file jinja2_env = jinja2.Environment(loader=jinja2.FileSystemLoader(template_dir)) template = jinja2_env.get_template(template_name) xml_str = template.render( machine_file=machine_file, blob_finder_launch=blob_finder_launch, display=display, ) with open(filename,'w') as f: f.write(xml_str)
5,353,721
def transform_postorder(comp, func): """Traverses `comp` recursively postorder and replaces its constituents. For each element of `comp` viewed as an expression tree, the transformation `func` is applied first to building blocks it is parameterized by, then the element itself. The transformation `func` should act as an identity function on the kinds of elements (computation building blocks) it does not care to transform. This corresponds to a post-order traversal of the expression tree, i.e., parameters are alwaysd transformed left-to-right (in the order in which they are listed in building block constructors), then the parent is visited and transformed with the already-visited, and possibly transformed arguments in place. NOTE: In particular, in `Call(f,x)`, both `f` and `x` are arguments to `Call`. Therefore, `f` is transformed into `f'`, next `x` into `x'` and finally, `Call(f',x')` is transformed at the end. Args: comp: The computation to traverse and transform bottom-up. func: The transformation to apply locally to each building block in `comp`. It is a Python function that accepts a building block at input, and should return either the same, or transformed building block at output. Both the intput and output of `func` are instances of `ComputationBuildingBlock`. Returns: The result of applying `func` to parts of `comp` in a bottom-up fashion. Raises: TypeError: If the arguments are of the wrong computation_types. NotImplementedError: If the argument is a kind of computation building block that is currently not recognized. """ py_typecheck.check_type(comp, computation_building_blocks.ComputationBuildingBlock) if isinstance( comp, (computation_building_blocks.CompiledComputation, computation_building_blocks.Data, computation_building_blocks.Intrinsic, computation_building_blocks.Placement, computation_building_blocks.Reference)): return func(comp) elif isinstance(comp, computation_building_blocks.Selection): return func( computation_building_blocks.Selection( transform_postorder(comp.source, func), comp.name, comp.index)) elif isinstance(comp, computation_building_blocks.Tuple): return func( computation_building_blocks.Tuple([(k, transform_postorder( v, func)) for k, v in anonymous_tuple.to_elements(comp)])) elif isinstance(comp, computation_building_blocks.Call): transformed_func = transform_postorder(comp.function, func) if comp.argument is not None: transformed_arg = transform_postorder(comp.argument, func) else: transformed_arg = None return func( computation_building_blocks.Call(transformed_func, transformed_arg)) elif isinstance(comp, computation_building_blocks.Lambda): transformed_result = transform_postorder(comp.result, func) return func( computation_building_blocks.Lambda( comp.parameter_name, comp.parameter_type, transformed_result)) elif isinstance(comp, computation_building_blocks.Block): return func( computation_building_blocks.Block( [(k, transform_postorder(v, func)) for k, v in comp.locals], transform_postorder(comp.result, func))) else: raise NotImplementedError( 'Unrecognized computation building block: {}'.format(str(comp)))
5,353,722
def bytes_to_unicode_records(byte_string, delimiter, encoding): """ Convert a byte string to a tuple containing an array of unicode records and any remainder to be used as a prefix next time. """ string = byte_string.decode(encoding) records = string.split(delimiter) return (records[:-1], records[-1].encode(encoding))
5,353,723
def administrator(): """Returns a :class:`t_system.administration.Administrator` instance.""" return Administrator()
5,353,724
def ocr(path, lang='eng'): """Optical Character Recognition function. Parameters ---------- path : str Image path. lang : str, optional Decoding language. Default english. Returns ------- """ image = Image.open(path) vectorized_image = numpy.asarray(image).astype(numpy.uint8) vectorized_image[:, :, 0] = 0 vectorized_image[:, :, 2] = 0 im = cv2.cvtColor(vectorized_image, cv2.COLOR_RGB2GRAY) return pytesseract.image_to_string( Image.fromarray(im), lang=lang )[:5]
5,353,725
def get_rpd_vars(): """Read RPD variables set by calling and parsing output from init """ cmd = get_init_call() cmd = ' '.join(cmd) + ' && set | grep "^RPD_"' try: res = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: logger.fatal("Couldn't call init %s. Result was: %s", cmd, res) raise rpd_vars = dict() for line in res.decode().splitlines(): if line.startswith('RPD_') and '=' in line: #line = line.replace("export ", "") #line = ''.join([c for c in line if c not in '";\'']) #logger.debug("line = {}".format(line)) k, v = line.split('=') rpd_vars[k.strip()] = v.strip() return rpd_vars
5,353,726
def which(filename): """ Emulates the UNIX `which` command in Python. Raises an IOError if no result is found. """ locations = os.environ.get("PATH").split(os.pathsep) candidates = [] for location in locations: candidate = os.path.join(location, filename) if os.path.isfile(candidate) or os.path.islink(candidate): candidates.append(candidate) if len(candidates) == 0: raise IOError("Could not find '{0}' in PATH".format(filename)) return candidates[0]
5,353,727
def _GetAllHypervisorParameters(cluster, instances): """Compute the set of all hypervisor parameters. @type cluster: L{objects.Cluster} @param cluster: the cluster object @param instances: list of L{objects.Instance} @param instances: additional instances from which to obtain parameters @rtype: list of (origin, hypervisor, parameters) @return: a list with all parameters found, indicating the hypervisor they apply to, and the origin (can be "cluster", "os X", or "instance Y") """ hvp_data = [] for hv_name in cluster.enabled_hypervisors: hvp_data.append(("cluster", hv_name, cluster.GetHVDefaults(hv_name))) for os_name, os_hvp in cluster.os_hvp.items(): for hv_name, hv_params in os_hvp.items(): if hv_params: full_params = cluster.GetHVDefaults(hv_name, os_name=os_name) hvp_data.append(("os %s" % os_name, hv_name, full_params)) # TODO: collapse identical parameter values in a single one for instance in instances: if instance.hvparams: hvp_data.append(("instance %s" % instance.name, instance.hypervisor, cluster.FillHV(instance))) return hvp_data
5,353,728
def is_solution(system, point): """ Checks whether the point is the solution for a given constraints system. """ a = np.array(system) # get the left part left = a[:, :-1] * point left = sum(left.T) # get the right part right = (-1) * a[:, -1] return np.all(left <= right)
5,353,729
def git_config_bool(option: str) -> bool: """ Return a boolean git config value, defaulting to False. """ return git_config(option) == "true"
5,353,730
def read_configs(paths): """ Read yaml files and merged dict. """ eths = dict() vlans = dict() bonds = dict() for path in paths: cfg = read_config(path) ifaces = cfg.get("network", dict()) if "ethernets" in ifaces: eths.update(ifaces["ethernets"]) if "vlans" in ifaces: vlans.update(ifaces["vlans"]) if "bonds" in ifaces: bonds.update(ifaces["bonds"]) return dict( ethernets=eths, vlans=vlans, bonds=bonds )
5,353,731
def get_client(): """ generates API client with personalized API key """ with open("api_key.json") as json_file: apikey_data = json.load(json_file) api_key = apikey_data['perspective_key'] # Generates API client object dynamically based on service name and version. perspective = discovery.build('commentanalyzer', 'v1alpha1', developerKey=api_key) dlp = discovery.build('dlp', 'v2', developerKey=api_key) return (apikey_data, perspective, dlp)
5,353,732
def tables( path, fts4, fts5, counts, nl, arrays, csv, no_headers, table, fmt, json_cols, columns, schema, views=False, ): """List the tables in the database""" db = sqlite_utils.Database(path) headers = ["view" if views else "table"] if counts: headers.append("count") if columns: headers.append("columns") if schema: headers.append("schema") def _iter(): if views: items = db.view_names() else: items = db.table_names(fts4=fts4, fts5=fts5) for name in items: row = [name] if counts: row.append(db[name].count) if columns: cols = [c.name for c in db[name].columns] if csv: row.append("\n".join(cols)) else: row.append(cols) if schema: row.append(db[name].schema) yield row if table: print(tabulate.tabulate(_iter(), headers=headers, tablefmt=fmt)) elif csv: writer = csv_std.writer(sys.stdout) if not no_headers: writer.writerow(headers) for row in _iter(): writer.writerow(row) else: for line in output_rows(_iter(), headers, nl, arrays, json_cols): click.echo(line)
5,353,733
def main(global_config, **settings): """ This function returns a Pyramid WSGI application. """ settings['route_patterns'] = { 'villages': '/geography.cfm', 'parameters': '/thesaurus.cfm', 'sources': '/bibliography.cfm', 'languages': '/languages.cfm', 'florafauna': '/florafauna.cfm', 'bangime': '/bangime.cfm', 'file': r'/_files/{id:[^/\.]+}', 'file_alt': r'/_files/{id:[^/\.]+}.{ext}', } config = Configurator(settings=settings) config.include('clldmpg') config.register_menu( ('dataset', partial(menu_item, 'dataset', label='Home')), ('languages', partial(menu_item, 'languages')), ('values', partial(menu_item, 'values', label='Lexicon')), ('parameters', partial(menu_item, 'parameters', label='Thesaurus')), ('villages', partial(menu_item, 'villages', label='Villages')), ('florafauna', partial(menu_item, 'florafauna', label='Flora-Fauna')), #('contributors', partial(menu_item, 'contributors', label='Project members')), ('sources', partial(menu_item, 'sources', label='Materials')), #('bangime', partial(menu_item, 'bangime', label='Bangime')), #('other', partial(menu_item, 'other', label='Other Languages')), ('movies', partial(menu_item, 'movies', label='Videos')), ) home_comp = config.registry.settings['home_comp'] home_comp = [ 'bangime', 'other', 'contributors'] + home_comp config.add_settings({'home_comp': home_comp}) config.register_resource('village', models.Village, IVillage, with_index=True) config.register_resource('movie', models.Movie, IMovie, with_index=True) config.register_resource('file', models.File, IFile, with_index=True) config.registry.registerUtility(CustomFactoryQuery(), ICtxFactoryQuery) config.add_page('bangime') config.add_page('florafauna') config.add_page('other') config.add_page('typology') return config.make_wsgi_app()
5,353,734
def overrides(pattern, norminput): """Split a date subfield into beginning date and ending date. Needed for fields with multiple hyphens. Args: pattern: date pattern norminput: normalized date string Returns: start date portion of pattern start date portion of norminput end date portion of pattern end date portion of norminput """ if pattern == 'NNNN-NNNN-': return pattern[:4], pattern[5:9], norminput[:4], norminput[5:9] if pattern == 'NNNN?-NNNN? av. j.-c.': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NN---NNNN': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN-NNNN av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN--': return pattern[:4], None, norminput[:4], None if pattern == 'NNNN-NN--': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'f. NNNN-NN-NN': return pattern, None, norminput, None if pattern == 'NNNN?-NNNN av. j.-c.': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NN-NN-NNNN': return pattern, None, norminput, None if pattern == '-NNNN-': return None, pattern[:-1], None, norminput[:-1] if pattern == 'NNNN--NNNN': return pattern[:4], pattern[6:], norminput[:4], norminput[6:] if pattern == 'NNNN-NN--?': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNNNNNN': return pattern, None, norminput, None if pattern == 'NN..-NNNN av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN-NNN-': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'fl. NNNN-NNN-': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN av. j.-c.-NNNN': return pattern[:-5], pattern[-4:], norminput[:-5], norminput[-4:] if pattern == 'NNNN-NN-NN-': return pattern[:-1], None, norminput[:-1], None if pattern == 'NN-- -NNNN': return pattern[:4], pattern[-4:], norminput[:4], norminput[-4:] if pattern == 'NNNN-NN-NN': return pattern, None, norminput, None if pattern == 'NN..-NNNN? av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN--...': return pattern[:4], pattern[6:], norminput[:4], norminput[6:] if pattern == 'fl. NNN--NNNN': return pattern[:8], pattern[-4:], norminput[:8], norminput[-4:] if pattern == 'fl. NN---NNNN': return pattern[:8], pattern[-4:], norminput[:8], norminput[-4:] if pattern == 'NN---NNNN?': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'fl. NNN--NNN-': return pattern[:8], pattern[-4:], norminput[:8], norminput[-4:] if pattern == 'NN..-NN.. av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NN--': return pattern, None, norminput, None if pattern == 'fl. NN--': return pattern, None, norminput, None if pattern == 'NN..?-NN..? av. j.-c.': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NNN-NNN av. j.-c.': return pattern[:3], pattern[4:], norminput[:3], norminput[4:] if pattern == 'NN---NN--': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNN--NNN-': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NN-..-NN..': return pattern[:2]+pattern[3:5], pattern[6:], norminput[:2]+norminput[3:5], norminput[6:] if pattern == 'NN---': return pattern[:-1], None, norminput[:-1], None if pattern == 'NNNN?-NNNN?': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NNNN-NN-NN-NNNN-NN-NN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-NN': return pattern, None, norminput, None if pattern == 'NNNN-N-N': return pattern, None, norminput, None if pattern == 'NNNN-NNNN-NN-NN': return pattern[:4], pattern[6:], norminput[:4], norminput[6:] if pattern == 'NNNN-N-NN-NNNN-N-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN-NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-NN-NNNN-N-N': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-N-N-NNNN-N-NN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-N-NN-NNNN-NN-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN-NNNN-N-NN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'month NN NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NN month NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NNNN-N-N-NNNN-N-N': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == '-NNNN-NN-NN': return None, pattern[1:], None, norminput[1:] if pattern == 'NNNN-NN-NN-month NN NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-N-NNNN-NN-NN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-NN-NN-NNNN-N-N': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-NN-NN month NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-N-NNNN-N-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-N-NN-NNNN-NN-N': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'month N NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NNNN-N-N-month NN NNNN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-NN-NN-month N NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-NN-N month NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-N-NNNN-NN-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'N month NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NNNN-NN-NN-NNNN-NN-N': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-NN-NNNN/NN/NN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-N-NNNN-NN-N': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-N-NN-NNNN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN-month NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-N-NNNN-N-N': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN}}': return pattern, None, norminput, None if pattern == 'NN-NN-NNNN-NN-NN-NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-N-month N NNNN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-NNNN-N-NN': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN-N-NN-month NNNN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'c. NNNN-NNNN-NN-NN': return pattern[:7], pattern[8:], norminput[:7], norminput[8:] if pattern == 'NNNN-N-N-NNNN': pattern[:4], pattern[5:], norminput[:4], norminput[5:] return None
5,353,735
def defaultPolynomialLoad(): """ pytest fixture that returns a default PolynomialLoad object :return: PolynomialLoad object initialized with default values """ return PolynomialStaticLoad()
5,353,736
def calc_pi(iteration_count, cores_usage): """ We calculate pi using Ulam's Monte Carlo method. See the module documentation. The calculated value of pi is returned. We use a process pool to offer the option of spreading the calculation across more then one core. iteration_count is the number of iterations that are run. cores_usage is the number of processes to use. """ # We're using a multiprocessing pool here, to take advantage of # multi-core CPUs. # Calculate stuff for the pool. pool_size = cores_usage iterations_per_process = iteration_count // pool_size work_list = [iterations_per_process] * pool_size work_list[0] += iteration_count % pool_size # Set up the pool. calc_pool = mp.Pool(pool_size) # Use the pool to obtain random points in the unit circle. # We'll let the system determine the chunk size. in_circle_total = sum(calc_pool.map( count_is_in_cirle, work_list)) # Finish the calculation. in_circle_total, divided by the total # number of iterations, is the area of the unit circle # relative to the [-1, 1] square. Multiply by 4, which is the area # of the [-1, 1] square, to get the area of the unit circle. # .NOTE. If you modify this program to run in Python 2.7, remember # to modify this calculation to use floating point division (or # import division from future). return 4 * in_circle_total / iteration_count
5,353,737
def send_postatus_errors(): """Looks at postatus file and sends an email with errors""" # Gah! Don't do this on stage! if settings.STAGE: return def new_section(line): return (line.startswith('dennis ') or line.startswith('Totals') or line.startswith('BUSTED') or line.startswith('COMPILED')) # Download the postatus file postatus = requests.get('https://support.mozilla.org/media/postatus.txt') # Parse it to see which locales have issues lines = postatus.content.splitlines() datestamp = lines.pop(0) errordata = [] while lines: line = lines.pop(0) if line.startswith('>>> '): while lines and not new_section(line): errordata.append(line) line = lines.pop(0) # If we have errors to send, send them if errordata: mail_admins( subject='[SUMO] postatus errors %s' % datestamp, message=( 'These are the errors in the SUMO postatus file.\n' + 'See http://postatus.paas.allizom.org/p/SUMO for details\n' + 'and bug generation links.\n\n' + '\n'.join(errordata) ) )
5,353,738
def pair_range_from_to(x): # cpdef pair_range(np.ndarray[long,ndim=1] x): """ Returns a list of half-cycle-amplitudes x: Peak-Trough sequence (integer list of local minima and maxima) This routine is implemented according to "Recommended Practices for Wind Turbine Testing - 3. Fatigue Loads", 2. edition 1990, Appendix A except that a list of half-cycle-amplitudes are returned instead of a from_level-to_level-matrix """ x = x - np.min(x) k = np.max(x) n = x.shape[0] S = np.zeros(n + 1) A = np.zeros((k + 1, k + 1)) S[1] = x[0] ptr = 1 p = 1 q = 1 f = 0 # phase 1 while True: p += 1 q += 1 # read S[p] = x[ptr] ptr += 1 if q == n: f = 1 while p >= 4: #print S[p - 3:p + 1] #print S[p - 2], ">", S[p - 3], ", ", S[p - 1], ">=", S[p - 3], ", ", S[p], ">=", S[p - 2], (S[p - 2] > S[p - 3] and S[p - 1] >= S[p - 3] and S[p] >= S[p - 2]) #print S[p - 2], "<", S[p - 3], ", ", S[p - 1], "<=", S[p - 3], ", ", S[p], "<=", S[p - 2], (S[p - 2] < S[p - 3] and S[p - 1] <= S[p - 3] and S[p] <= S[p - 2]) #print (S[p - 2] > S[p - 3] and S[p - 1] >= S[p - 3] and S[p] >= S[p - 2]) or (S[p - 2] < S[p - 3] and S[p - 1] <= S[p - 3] and S[p] <= S[p - 2]) if (S[p - 2] > S[p - 3] and S[p - 1] >= S[p - 3] and S[p] >= S[p - 2]) or \ (S[p - 2] < S[p - 3] and S[p - 1] <= S[p - 3] and S[p] <= S[p - 2]): A[S[p - 2], S[p - 1]] += 1 A[S[p - 1], S[p - 2]] += 1 S[p - 2] = S[p] p -= 2 else: break if f == 1: break # q==n # phase 2 q = 0 while True: q += 1 if p == q: break else: #print S[q], "to", S[q + 1] A[S[q], S[q + 1]] += 1 return A
5,353,739
def serialize_action( action: RetroReaction, molecule_store: MoleculeSerializer ) -> StrDict: """ Serialize a retrosynthesis action :param action: the (re)action to serialize :param molecule_store: the molecule serialization object :return: the action as a dictionary """ dict_ = action.to_dict() dict_["mol"] = molecule_store[dict_["mol"]] dict_["class"] = f"{action.__class__.__module__}.{action.__class__.__name__}" return dict_
5,353,740
def lint(where, strict): """Check style with linters""" errors = [] try: _lint_py(where, strict) except CalledProcessError as e: errors += [e] try: _eslint(where, strict) except CalledProcessError as e: errors += [e] exit(len(errors))
5,353,741
def convert(obj, totype, debug=False, **kwargs): """Converto object obj to type totype. The converter is chosen from gna.converters dictionary based on the type(obj) or one of it's base classes. :obj: object to convert :totype: the target type Order: 1. Set type to type(obj). 2. Try to find converter for the current type. Return if found. 3. Try to find 'base' converter for the current type. Convert obj to base and return convert(newobj) if 'base' converter found. 4. Set type to next base type of obj. Repeat from 2. Example: convert( N.array([1, 2, 3]), R.vector('double') ) convert( N.array([1, 2, 3]), R.vector, dtype='double' ) """ def msg( title, converter=None ): res = title if converter: res+= ' '+converter.__name__ typestr = isinstance(totype, str) and totype or totype.__name__ res+=" to convert '{0}' ({1}) to '{2}'".format( type(obj).__name__, ', '.join([base.__name__ for base in bases]), typestr ) if kwargs: res+=' [kwargs: %s]'%( str( kwargs ) ) return res bases = getmro(type(obj)) for base in bases: bconverters = converters.get( base ) if not bconverters: continue converter = bconverters.get( totype ) if converter: break if 'base' in bconverters: if debug: print( 'Convert', type(obj).__name__, 'to base' ) return convert( bconverters['base'](obj), totype, debug, **kwargs ) else: raise Exception(msg('Can not find converter')) if debug: print( msg( 'Using converter', converter ) ) return converter( obj, **kwargs )
5,353,742
def test_get_ctf_category(): """test get_ctf_category function""" assert get_ctf_category(rawsec_json) == ["binary_exploitation"]
5,353,743
def complement(s): """ Return complement of 's'. """ c = string.translate(s, __complementTranslation) return c
5,353,744
def get_state_transitions(actions): """ get the next state @param actions: @return: tuple (current_state, action, nextstate) """ state_transition_pairs = [] for action in actions: current_state = action[0] id = action[1][0] next_path = action[1][1] next_state = copy.deepcopy(current_state) if 'NoTrans' not in id: # change the state next_state[id] = next_path state_transition_pairs.append((current_state, action[1], next_state)) return state_transition_pairs
5,353,745
def add_label( img: Image, text: str, x: int, y: int, ttf: str, fontsize: float, rgb: Tuple[int, int, int], hjust: float = 0, vjust: float = 0) -> None: """ Adds a label to an image. """ draw = ImageDraw.Draw(img) font = get_font(ttf, fontsize) w, h = draw.textsize(text, font) x = justify_to_point(x, w, hjust) y = justify_to_point(y, h, vjust) draw.multiline_text((x, y), text, rgb, font=font, align=get_align_from_hjust(hjust))
5,353,746
def test_list_unsigned_short_max_length_nistxml_sv_iv_list_unsigned_short_max_length_1_1(mode, save_output, output_format): """ Type list/unsignedShort is restricted by facet maxLength with value 5. """ assert_bindings( schema="nistData/list/unsignedShort/Schema+Instance/NISTSchema-SV-IV-list-unsignedShort-maxLength-1.xsd", instance="nistData/list/unsignedShort/Schema+Instance/NISTXML-SV-IV-list-unsignedShort-maxLength-1-1.xml", class_name="NistschemaSvIvListUnsignedShortMaxLength1", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,353,747
def parse_pascal_string(characterset, data): """ Read a Pascal string from a byte array using the given character set. :param characterset: Character set to use to decode the string :param data: binary data :return: tuple containing string and number of bytes consumed """ string_size_format, string_size_size, character_size = get_string_size_format(characterset) if len(data) < string_size_size: raise FileParseException("String size truncated") string_size = struct.unpack("<" + string_size_format, data[0:string_size_size])[0] * character_size string_data = data[string_size_size:string_size_size + string_size] result = string_data.decode(CHARACTER_SETS[characterset]) total_size = string_size_size + string_size return result, total_size
5,353,748
def setup(bot: Neorg) -> None: """Add Cog to Bot.""" bot.add_cog(BotControl(bot))
5,353,749
def add_single_expense_cli(): """Cli version add single expenses.""" add_single_expense(dev_db)
5,353,750
def percent_cb(name, complete, total): """ Callback for updating target progress """ Logger.debug('{}: {} transferred out of {}'.format(name, sizeof_fmt(complete), sizeof_fmt(total))) progress.update_target(name, complete, total)
5,353,751
def test_index_availability(client): """Index page must be present and HTTP Status Code have to be `200`""" response = client.get('/') assert response.status_code == 200
5,353,752
def folder(initial=None, title='Select Folder'): """Request to select an existing folder or to create a new folder. Parameters ---------- initial : :class:`str`, optional The initial directory to start in. title : :class:`str`, optional The text to display in the title bar of the dialog window. Returns ------- :class:`str` The name of the selected folder or :obj:`None` if the user cancelled the request to select a folder. """ app, title = _get_app_and_title(title) name = QtWidgets.QFileDialog.getExistingDirectory(app.activeWindow(), title, initial) return name if len(name) > 0 else None
5,353,753
def build_clusters( metadata: pd.DataFrame, ipm_regions: Sequence[str], min_capacity: float = None, max_clusters: int = None, ) -> pd.DataFrame: """Build resource clusters.""" if max_clusters is None: max_clusters = np.inf if max_clusters < 1: raise ValueError("Max number of clusters must be greater than zero") df = metadata cdf = _get_base_clusters(df, ipm_regions).sort_values("lcoe") if cdf.empty: raise ValueError(f"No resources found in {ipm_regions}") if min_capacity: # Drop clusters with highest LCOE until min_capacity reached end = cdf["mw"].cumsum().searchsorted(min_capacity) + 1 if end > len(cdf): raise ValueError( f"Capacity in {ipm_regions} ({cdf['mw'].sum()} MW) less than minimum ({min_capacity} MW)" ) cdf = cdf[:end] # Track ids of base clusters through aggregation cdf["ids"] = [[x] for x in cdf["id"]] # Aggregate clusters within each metro area (metro_id) while len(cdf) > max_clusters: # Sort parents by lowest LCOE distance of children diff = lambda x: abs(x.max() - x.min()) parents = ( cdf.groupby("parent_id", sort=False) .agg(child_ids=("id", list), n=("id", "count"), lcoe=("lcoe", diff)) .sort_values(["n", "lcoe"], ascending=[False, True]) ) if parents.empty: break if parents["n"].iloc[0] == 2: # Choose parent with lowest LCOE best = parents.iloc[0] # Compute parent parent = pd.Series( _merge_children( cdf.loc[best["child_ids"]], ids=_flat(*cdf.loc[best["child_ids"], "ids"]), **df.loc[best.name], ) ) # Add parent cdf.loc[best.name] = parent # Drop children cdf.drop(best["child_ids"], inplace=True) else: # Promote child with deepest parent parent_id = df.loc[parents.index, "cluster_level"].idxmax() parent = df.loc[parent_id] child_id = parents.loc[parent_id, "child_ids"][0] # Update child columns = ["id", "parent_id", "cluster_level"] cdf.loc[child_id, columns] = parent[columns] # Update index cdf.rename(index={child_id: parent_id}, inplace=True) # Keep only computed columns columns = _flat(MEANS, SUMS, "ids") columns = [col for col in columns if col in cdf.columns] cdf = cdf[columns] cdf.reset_index(inplace=True, drop=True) if len(cdf) > max_clusters: # Aggregate singleton metro area clusters Z = scipy.cluster.hierarchy.linkage(cdf[["lcoe"]].values, method="ward") # TODO: Store mask in temporary table cdf["_keep"] = True for child_idx in Z[:, 0:2].astype(int): cdf.loc[child_idx, "_keep"] = False parent = _merge_children( cdf.loc[child_idx], _keep=True, ids=_flat(*cdf.loc[child_idx, "ids"]) ) cdf.loc[len(cdf)] = parent if not cdf["_keep"].sum() > max_clusters: break cdf = cdf[cdf["_keep"]] return cdf[columns]
5,353,754
def plot_lift_cruise_network(results, line_color = 'bo-',line_color2 = 'r^-', save_figure = False, save_filename = "Lift_Cruise_Network", file_type = ".png"): """This plots the electronic and propulsor performance of a vehicle with a lift cruise network Assumptions: None Source: None Inputs: results.segments.conditions.propulsion throttle lift_rotor_throttle battery_energy battery_specfic_power voltage_under_load voltage_open_circuit Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} # ------------------------------------------------------------------ # Electronic Conditions # ------------------------------------------------------------------ fig = plt.figure("Lift_Cruise_Battery_Pack_Conditions") fig.set_size_inches(16, 8) for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min eta = results.segments[i].conditions.propulsion.throttle[:,0] eta_l = results.segments[i].conditions.propulsion.throttle_lift[:,0] energy = results.segments[i].conditions.propulsion.battery_energy[:,0]/ Units.Wh specific_power = results.segments[i].conditions.propulsion.battery_specfic_power[:,0] volts = results.segments[i].conditions.propulsion.battery_voltage_under_load[:,0] volts_oc = results.segments[i].conditions.propulsion.battery_voltage_open_circuit[:,0] plt.title('Battery Pack Conditions') axes = plt.subplot(2,2,1) axes.set_ylabel('Throttle',axis_font) set_axes(axes) plt.ylim((0,1)) if i == 0: axes.plot(time, eta, line_color,label='Propeller Motor') axes.plot(time, eta_l, line_color2,label='Lift Rotor Motor') axes.legend(loc='upper center') else: axes.plot(time, eta, line_color) axes.plot(time, eta_l, line_color2) axes = plt.subplot(2,2,2) axes.plot(time, energy, line_color) axes.set_ylabel('Battery Energy (W-hr)',axis_font) set_axes(axes) axes = plt.subplot(2,2,3) axes.set_ylabel('Battery Voltage (Volts)',axis_font) axes.set_xlabel('Time (mins)',axis_font) set_axes(axes) if i == 0: axes.plot(time, volts, line_color,label='Under Load') axes.plot(time,volts_oc, line_color2,label='Open Circuit') axes.legend(loc='upper center') else: axes.plot(time, volts, line_color) axes.plot(time,volts_oc,line_color2) axes = plt.subplot(2,2,4) axes.plot(time, specific_power, line_color) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Specific Power',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig("Lift_Cruise_Battery_Pack_Conditions" + file_type) # ------------------------------------------------------------------ # Propulsion Conditions # ------------------------------------------------------------------ fig = plt.figure("Prop-Rotor Network") fig.set_size_inches(16, 8) for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min prop_rpm = results.segments[i].conditions.propulsion.propeller_rpm[:,0] prop_thrust = results.segments[i].conditions.frames.body.thrust_force_vector[:,0] prop_torque = results.segments[i].conditions.propulsion.propeller_motor_torque[:,0] prop_effp = results.segments[i].conditions.propulsion.propeller_efficiency[:,0] prop_effm = results.segments[i].conditions.propulsion.propeller_motor_efficiency[:,0] prop_Cp = results.segments[i].conditions.propulsion.propeller_power_coefficient[:,0] lift_rotor_rpm = results.segments[i].conditions.propulsion.lift_rotor_rpm[:,0] lift_rotor_thrust = -results.segments[i].conditions.frames.body.thrust_force_vector[:,2] lift_rotor_torque = results.segments[i].conditions.propulsion.lift_rotor_motor_torque[:,0] lift_rotor_effp = results.segments[i].conditions.propulsion.lift_rotor_efficiency[:,0] lift_rotor_effm = results.segments[i].conditions.propulsion.lift_rotor_motor_efficiency[:,0] lift_rotor_Cp = results.segments[i].conditions.propulsion.lift_rotor_power_coefficient[:,0] # title plt.title("Prop-Rotor Network") # plots axes = plt.subplot(2,3,1) axes.plot(time, prop_rpm, line_color) axes.plot(time, lift_rotor_rpm, line_color2) axes.set_ylabel('RPM',axis_font) set_axes(axes) axes = plt.subplot(2,3,2) axes.plot(time, prop_thrust,line_color) axes.plot(time, lift_rotor_thrust, line_color2) axes.set_ylabel('Thrust (N)',axis_font) set_axes(axes) axes = plt.subplot(2,3,3) axes.plot(time, prop_torque, line_color) axes.plot(time, lift_rotor_torque, line_color2) axes.set_ylabel('Torque (N-m)',axis_font) set_axes(axes) axes = plt.subplot(2,3,4) axes.plot(time, prop_effp, line_color ) axes.plot(time, lift_rotor_effp, line_color2) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel(r'Propeller Efficiency, $\eta_{propeller}$',axis_font) set_axes(axes) plt.ylim((0,1)) axes = plt.subplot(2,3,5) axes.plot(time, prop_effm, line_color ) axes.plot(time, lift_rotor_effm,line_color2) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel(r'Motor Efficiency, $\eta_{motor}$',axis_font) set_axes(axes) plt.ylim((0,1)) axes = plt.subplot(2,3,6) axes.plot(time, prop_Cp,line_color ) axes.plot(time, lift_rotor_Cp, line_color2 ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Power Coefficient, $C_{P}$',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig("Propulsor_Network" + file_type) # ------------------------------------------------------------------ # Propulsion Conditions # ------------------------------------------------------------------ fig = plt.figure("Lift_Rotor") fig.set_size_inches(16, 8) for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min rpm = results.segments[i].conditions.propulsion.lift_rotor_rpm [:,0] thrust = results.segments[i].conditions.frames.body.thrust_force_vector[:,2] torque = results.segments[i].conditions.propulsion.lift_rotor_motor_torque effp = results.segments[i].conditions.propulsion.lift_rotor_efficiency[:,0] effm = results.segments[i].conditions.propulsion.lift_rotor_motor_efficiency[:,0] Cp = results.segments[i].conditions.propulsion.lift_rotor_power_coefficient[:,0] # title plt.title("Lift Rotor") # plots axes = plt.subplot(2,3,1) axes.plot(time, rpm, line_color2) axes.set_ylabel('RPM',axis_font) set_axes(axes) axes = plt.subplot(2,3,2) axes.plot(time, -thrust, line_color2) axes.set_ylabel('Thrust (N)',axis_font) set_axes(axes) axes = plt.subplot(2,3,3) axes.plot(time, torque, line_color2 ) axes.set_ylabel('Torque (N-m)',axis_font) set_axes(axes) axes = plt.subplot(2,3,4) axes.plot(time, effp, line_color2,label= r'$\eta_{lift rotor}$' ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel(r'Propeller Efficiency, $\eta_{lift rotor}$',axis_font) set_axes(axes) plt.ylim((0,1)) axes = plt.subplot(2,3,5) axes.plot(time, effm, line_color2 ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel(r'Motor Efficiency, $\eta_{mot}$',axis_font) set_axes(axes) plt.ylim((0,1)) axes = plt.subplot(2,3,6) axes.plot(time, Cp , line_color2 ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Power Coefficient, $C_{P}$',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig("Lift_Rotor" + file_type) # ------------------------------------------------------------------ # Propulsion Conditions # ------------------------------------------------------------------ fig = plt.figure("Propeller") fig.set_size_inches(16, 8) for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min rpm = results.segments[i].conditions.propulsion.propeller_rpm [:,0] thrust = results.segments[i].conditions.frames.body.thrust_force_vector[:,0] torque = results.segments[i].conditions.propulsion.propeller_motor_torque[:,0] effp = results.segments[i].conditions.propulsion.propeller_efficiency[:,0] effm = results.segments[i].conditions.propulsion.propeller_motor_efficiency[:,0] Cp = results.segments[i].conditions.propulsion.propeller_power_coefficient[:,0] # title plt.title("Propeller") # plots axes = plt.subplot(2,3,1) axes.plot(time, rpm,line_color) axes.set_ylabel('RPM') set_axes(axes) axes = plt.subplot(2,3,2) axes.plot(time, thrust,line_color) axes.set_ylabel('Thrust (N)',axis_font) set_axes(axes) axes = plt.subplot(2,3,3) axes.plot(time, torque, line_color) axes.set_ylabel('Torque (N-m)',axis_font) set_axes(axes) axes = plt.subplot(2,3,4) axes.plot(time, effp,line_color) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel(r'Propeller Efficiency $\eta_{propeller}$',axis_font) set_axes(axes) plt.ylim((0,1)) axes = plt.subplot(2,3,5) axes.plot(time, effm,line_color ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel(r'Motor Efficiency $\eta_{motor}$',axis_font) set_axes(axes) axes = plt.subplot(2,3,6) axes.plot(time, Cp, line_color ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Power Coefficient',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig("Cruise_Propulsor" + file_type) # ------------------------------------------------------------------ # Propulsion Conditions # ------------------------------------------------------------------ fig = plt.figure("Tip_Mach") for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min rtm = results.segments[i].conditions.propulsion.lift_rotor_tip_mach[:,0] ptm = results.segments[i].conditions.propulsion.propeller_tip_mach[:,0] # title plt.title("Tip Mach Number") # plots axes = plt.subplot(1,1,1) axes.set_ylabel('Mach',axis_font) set_axes(axes) if i == 0: axes.plot(time, ptm, line_color,label='Propeller') axes.plot(time, rtm, line_color2,label='Lift Rotor') axes.legend(loc='upper center') else: axes.plot(time, ptm, line_color ) axes.plot(time, rtm, line_color2 ) plt.tight_layout() if save_figure: plt.savefig("Tip_Mach" + file_type) return
5,353,755
def add_asset(zs_code, code, name, category): """添加资产品种到数据库""" _, created = Asset.get_or_create( zs_code=zs_code, code=code, name=name, category=category, ) if created: LOGGER.info('created asset in database successfully') else: LOGGER.warning('asset is already in database')
5,353,756
def tqdm_hook(t: tqdm) -> Any: """Progressbar to visualisation downloading progress.""" last_b = [0] def update_to(b: int = 1, bsize: int = 1, t_size: Optional[int] = None) -> None: if t_size is not None: t.total = t_size t.update((b - last_b[0]) * bsize) last_b[0] = b return update_to
5,353,757
def fix_mapping_versions(): """ This function monkey patches the mapping version information in arcpy to support the currently installed version, along with past versions if they are not included (arcpy 10.5 does not have 10.4 supported version, but the support is there under the hood). """ # get ArcGIS version as a number ags_version = Decimal(re.search(r"^(\d+\.\d+)", arcpy.GetInstallInfo()['Version'], re.IGNORECASE).group(1)) # surrounded in try/pass to fail gracefully in case Esri change the design of this internal API try: versions = arcpy._mapping.constants.__args__["version"] if ags_version >= Decimal("10.4") and "10.4" not in versions: versions["10.4"] = 104 if ags_version >= Decimal("10.5") and "10.5" not in versions: versions["10.5"] = 105 if ags_version >= Decimal("10.6") and "10.6" not in versions: versions["10.6"] = 106 except: pass
5,353,758
def check_regular_timestamps( time_series: TimeSeries, time_tolerance_decimals: int = 9, gb_severity_threshold: float = 1.0 ): """If the TimeSeries uses timestamps, check if they are regular (i.e., they have a constant rate).""" if ( time_series.timestamps is not None and len(time_series.timestamps) > 2 and check_regular_series(series=time_series.timestamps, tolerance_decimals=time_tolerance_decimals) ): timestamps = np.array(time_series.timestamps) if timestamps.size * timestamps.dtype.itemsize > gb_severity_threshold * 1e9: severity = Severity.HIGH else: severity = Severity.LOW return InspectorMessage( severity=severity, message=( "TimeSeries appears to have a constant sampling rate. " f"Consider specifying starting_time={time_series.timestamps[0]} " f"and rate={time_series.timestamps[1] - time_series.timestamps[0]} instead of timestamps." ), )
5,353,759
def test_device_bypass(monkeypatch): """Test setting the bypass status of a device.""" _was_called = False def _call_bypass(url, body, **kwargs): nonlocal _was_called assert url == "/appservices/v6/orgs/Z100/device_actions" assert body == {"action_type": "BYPASS", "device_id": [6023], "options": {"toggle": "OFF"}} _was_called = True return StubResponse(None, 204) api = call_cbcloud_api() patch_cbc_sdk_api(monkeypatch, api, POST=_call_bypass) api.device_bypass([6023], False) assert _was_called
5,353,760
def test_run3(client): """ Tests that a docker executor raises RuntimeError if no docker_host and docker_port available in execution """ with client.application.app_context(): task, job, execution = JobExecutionFixture.new_defaults() _, pool_mock, _ = PoolFixture.new_defaults(r"test-.+") exe = Executor(app=client.application, pool=pool_mock) del execution.metadata["docker_host"] del execution.metadata["docker_port"] msg = "Can't run job without docker_host and docker_port in execution metadata." with expect.error_to_happen(RuntimeError, message=msg): exe.run( task, job, execution, "mock-image", "latest", "command", blacklisted_hosts=set(), ) expect(execution.metadata).not_to_include("docker_host") expect(execution.metadata).not_to_include("docker_port")
5,353,761
def import_config_module( cfg_file ): """ Returns valid imported config module. """ cfg_file = re.sub( r'\.py$', '', cfg_file ) cfg_file = re.sub( r'-', '_', cfg_file ) mod_name = 'config.' + cfg_file cfg_mod = importlib.import_module( mod_name ) if not hasattr( cfg_mod, 'pre_start_config' ): raise ImportError( 'Config file must define \'pre_start_config\' method' ) if not hasattr( cfg_mod, 'post_start_config' ): raise ImportError( 'Config file must define \'post_start_config\' method' ) return cfg_mod
5,353,762
def process_batches(args, batches): """Runs a set of batches, and merges the resulting output files if more than one batch is included. """ nbatches = min(args.nbatches, len(batches)) pool = multiprocessing.Pool(nbatches, init_worker_thread) try: batches = pool.imap(run_batch, batches, 1) if not merge_batch_results(batches): pool.terminate() pool.join() return 1 pool.close() pool.join() return 0 except: pool.terminate() pool.join() raise
5,353,763
def test_vcfield_pk_lookups_work(modelname, name, number, parent_int, parent_str, expected_pk, testmodels, make_instance, noise_data): """ When a VirtualCompField is a PK on a model, lookups that use `pk` as a field (instead of the field name) should work. """ tmodel = testmodels[modelname] test_inst = make_instance(modelname, name, number, parent_int, parent_str) noise = [make_instance(modelname, *f) for f in noise_data(5)] assert len(tmodel.objects.all()) == 6 assert tmodel.objects.get(pk=expected_pk) == test_inst assert tmodel.objects.filter(pk=expected_pk)[0] == test_inst
5,353,764
def tripledes_cbc_pkcs5_decrypt(key, data, iv): """ Decrypts 3DES ciphertext in CBC mode using either the 2 or 3 key variant (16 or 24 byte long key) and PKCS#5 padding. :param key: The encryption key - a byte string 16 or 24 bytes long (2 or 3 key mode) :param data: The ciphertext - a byte string :param iv: The initialization vector - a byte string 8-bytes long :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by OpenSSL :return: A byte string of the plaintext """ if len(key) != 16 and len(key) != 24: raise ValueError(pretty_message( ''' key must be 16 bytes (2 key) or 24 bytes (3 key) long - is %s ''', len(key) )) if len(iv) != 8: raise ValueError(pretty_message( ''' iv must be 8 bytes long - is %s ''', len(iv) )) ctx = triple_des(key, mode=DES_CBC, IV=iv, padmode=DES_PAD_PKCS5) return ctx.decrypt(data)
5,353,765
def kruskal_chi2_test(data=None, alpha=0.05, precision=4): """ col = 要比較的 target row = data for each target """ if type(data) == pd.DataFrame: data = data.copy().to_numpy() alldata = np.concatenate(data.copy()) else: alldata = np.concatenate(data.copy()) k = data.shape[1] alldata.sort() tmp_df = pd.DataFrame(({'value': alldata})) tmp_df['rank'] = tmp_df.index + 1 # rank value_to_rank = tmp_df.groupby('value').mean().reset_index() T = [] sample_rank_df = [] for i in range(k): samp = pd.DataFrame( {'value': data[:, i][~np.isnan(data[:, i])]}) samp = pd.merge(samp, value_to_rank) sample_rank_df.append(samp) T.append(samp['rank'].sum()) n = [len(data[:, i][~np.isnan(data[:, i])]) for i in range(k)] # print(T) # print(n) rule_of_five_str = "" if (np.sum(np.array(n) < 5) > 0): rule_of_five_str += "!(At least one sample size is less than 5)" else: rule_of_five_str += "(All sample size >= 5)" N = np.sum(n) t_over_n = 0 for i in range(k): t_over_n += T[i] ** 2 / n[i] H = 12 / N / (N + 1) * t_over_n - 3 * (N + 1) p_value = 1 - stats.chi2.cdf(H, k - 1) chi2_stat = stats.chi2.ppf(1 - alpha, k - 1) result_dict = {'H': H, 'p-value': p_value, 'T': T, 'sample_rank_df': sample_rank_df} flag = p_value < alpha result = f'''======= Kruskal-Wallis Test with Chi-squared Test ======= {rule_of_five_str} H statistic value (observed) = {H:.{precision}f} chi2 critical value = {chi2_stat:.{precision}f} p-value = {p_value:.{precision}f} ({inter_p_value(p_value)}) Reject H_0 (Not all {k} population locations are the same) → {flag} ''' print(result) return result_dict
5,353,766
def add_new_action(action, object_types, preferred, analyst): """ Add a new action to CRITs. :param action: The action to add to CRITs. :type action: str :param object_types: The TLOs this is for. :type object_types: list :param preferred: The TLOs this is preferred for. :type preferred: list :param analyst: The user adding this action. :returns: True, False """ action = action.strip() idb_action = Action.objects(name=action).first() if not idb_action: idb_action = Action() idb_action.name = action idb_action.object_types = object_types idb_action.preferred = [] prefs = preferred.split('\n') for pref in prefs: cols = pref.split(',') if len(cols) != 3: continue epa = EmbeddedPreferredAction() epa.object_type = cols[0].strip() epa.object_field = cols[1].strip() epa.object_value = cols[2].strip() idb_action.preferred.append(epa) try: idb_action.save(username=analyst) except ValidationError: return False return True
5,353,767
def plot_history(H, epochs, output_path): """ Utility function for plotting model history using matplotlib. This method was developed for use in class and adjusted for this project. """ plt.style.use("fivethirtyeight") plt.figure() plt.plot(np.arange(0, epochs), H.history["loss"], label="train_loss") plt.plot(np.arange(0, epochs), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, epochs), H.history["accuracy"], label="train_acc") plt.plot(np.arange(0, epochs), H.history["val_accuracy"], label="val_acc") plt.title("Training Loss and Accuracy") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend() plt.tight_layout() plt.savefig(output_path)
5,353,768
def dissociate_scaling_group(scaling_group, domain): """ Dissociate a domain from a scaling_group. \b SCALING_GROUP: The name of a scaling group. DOMAIN: The name of a domain. """ with Session() as session: try: data = session.ScalingGroup.dissociate_domain(scaling_group, domain) except Exception as e: print_error(e) sys.exit(1) if not data['ok']: print_fail('Dissociating scaling group from domain failed: {0}'.format(data['msg'])) sys.exit(1) print_done('Scaling group {} is dissociated from domain {}.'.format(scaling_group, domain))
5,353,769
def test_PipeJsonRpcSendAsync_5(): """ Specia test case. Two messages: the first message times out, the second message is send before the response from the first message is received. Verify that the result returned in response to the second message is received. (We discard the result of the message that is timed out.) """ def method_handler1(): ttime.sleep(0.7) return 39 def method_handler2(): ttime.sleep(0.2) return 56 conn1, conn2 = multiprocessing.Pipe() pc = PipeJsonRpcReceive(conn=conn2, name="comm-server") pc.add_method(method_handler1, "method1") pc.add_method(method_handler2, "method2") pc.start() async def send_messages(): p_send = PipeJsonRpcSendAsync(conn=conn1, name="comm-client") p_send.start() # Submit multiple messages at once. Messages should stay at the event loop # and be processed one by one. with pytest.raises(CommTimeoutError): await p_send.send_msg("method1", timeout=0.5) result = await p_send.send_msg("method2", timeout=0.5) assert result == 56, "Incorrect result received" p_send.stop() asyncio.run(send_messages()) pc.stop()
5,353,770
def RACEDataset(race_type): """ Loads a RACE dataset given the type (see the RACEType enum). Any error during reading will generate an exception. Returns a Pandas DataFrame with 5 columns: * 'article': string * 'question': string * 'answers': list[string], length = 4 * 'correct': oneof('A', 'B', 'C', D') * 'id': string The returned IDs are unique and have this format: `index`-`passage_id`. Examples: 1-middle1548.txt, 2-middle1548.txt, etc. The `passage_id` is frequently the name of the file. All the questions related to the same passage are grouped in the same file in the RACE dataset (convention). Because in each RACE file there are multiple questions, the counter is necessary in order to guarantee that IDs are unique (the file name is not sufficient). We translate the `passage_id` into the `question_id` using the per-passage-question counter. """ assert(isinstance(race_type, RACEType)) download_dataset(Collection.RACE, check_shallow_integrity) dirpath = type_to_data_directory(race_type) all_data = [] q_ids = {} for path in os.listdir(dirpath): assert(os.path.isfile(os.path.join(dirpath, path))) with open(os.path.join(dirpath, path), 'rt') as f: entry = json.load(f) """ Each passage is a JSON file. The JSON file contains these fields: 1. article: A string, which is the passage. 2. questions: A string list. Each string is a query. We have two types of questions. First one is an interrogative sentence. Another one has a placeholder, which is represented by _. 3. options: A list of the options list. Each options list contains 4 strings, which are the candidate option. 4. answers: A list contains the golden label of each query. 5. id: Each passage has an id in this dataset. Note: the ids are not unique in the question set! Questions in the same file have the same id (the name of the file). This id is more of a passage id than a question id. """ assert(len(entry) == 5) assert(set(entry.keys()) == { "article", "questions", "options", "answers", "id" }) article = entry["article"] questions = entry["questions"] options = entry["options"] answers = entry["answers"] q_id = entry["id"] assert(isinstance(article, string_types)) assert(isinstance(questions, list)) assert(isinstance(options, list)) assert(isinstance(answers, list)) assert(isinstance(q_id, string_types)) assert(len(questions) == len(options)) assert(len(questions) == len(answers)) for question, option, answer in zip(questions, options, answers): assert(isinstance(question, string_types)) assert(isinstance(option, list) and len(option) == 4) assert(isinstance(answer, string_types)) assert(answer in ["A", "B", "C", "D"]) all_data.append({ 'article': article, 'question': question, 'answers': option, 'correct': answer, 'id': next_question_id(q_ids, q_id) }) df = pd.DataFrame(all_data) return df
5,353,771
def tpc(fastas, **kw): """ Function to generate tpc encoding for protein sequences :param fastas: :param kw: :return: """ AA = kw['order'] if kw['order'] is not None else 'ACDEFGHIKLMNPQRSTVWY' encodings = [] triPeptides = [aa1 + aa2 + aa3 for aa1 in AA for aa2 in AA for aa3 in AA] AADict = {} for i in range(len(AA)): AADict[AA[i]] = i for i in fastas: name, sequence = i[0], re.sub('-', '', i[1]) code = [name] tmpCode = [0] * 8000 for j in range(len(sequence) - 3 + 1): tmpCode[AADict[sequence[j]] * 400 + AADict[sequence[j + 1]] * 20 + AADict[sequence[j + 2]]] = \ tmpCode[AADict[sequence[j]] * 400 + AADict[sequence[j + 1]] * 20 + AADict[sequence[j + 2]]] + 1 if sum(tmpCode) != 0: tmpCode = [i / sum(tmpCode) for i in tmpCode] code = code + tmpCode encodings.append(code) return encodings
5,353,772
def cli(): """cli entry point""" parser = argparse.ArgumentParser("Welcome to SigSticker, providing all of your sticker needs") parser.add_argument( "-p", "--pack", help="Pass in a pack url inline", nargs="+", action="append", ) args = parser.parse_args() # Get the packs packs = sum(args.pack, []) if packs is None: packs = [] while True: name = input("Enter sticker_set url (leave blank to stop): ").strip() if name == "": break packs.append(name) for pack in packs: packAttrs = pack.split("#pack_id=")[-1].split("&pack_key=") asyncio.run(convertPack(*asyncio.run(downloadPack(*packAttrs))))
5,353,773
def _uninstall_flocker_centos7(): """ Return an ``Effect`` for uninstalling the Flocker package from a CentOS 7 machine. """ return sequence([ run_from_args([ b"yum", b"erase", b"-y", b"clusterhq-python-flocker", ]), run_from_args([ b"yum", b"erase", b"-y", b"clusterhq-release", ]), ])
5,353,774
def set_se_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the transaction set footer loop. :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment's data """ context.set_loop_context( TransactionLoops.FOOTER, context.transaction_data["footer"] )
5,353,775
def get_memory_banks_per_run(coreAssignment, cgroups): """Get an assignment of memory banks to runs that fits to the given coreAssignment, i.e., no run is allowed to use memory that is not local (on the same NUMA node) to one of its CPU cores.""" try: # read list of available memory banks allMems = set(cgroups.read_allowed_memory_banks()) result = [] for cores in coreAssignment: mems = set() for core in cores: coreDir = "/sys/devices/system/cpu/cpu{0}/".format(core) mems.update(_get_memory_banks_listed_in_dir(coreDir)) allowedMems = sorted(mems.intersection(allMems)) logging.debug( "Memory banks for cores %s are %s, of which we can use %s.", cores, list(mems), allowedMems, ) result.append(allowedMems) assert len(result) == len(coreAssignment) if any(result) and os.path.isdir("/sys/devices/system/node/"): return result else: # All runs get the empty list of memory regions # because this system has no NUMA support return None except ValueError as e: sys.exit("Could not read memory information from kernel: {0}".format(e))
5,353,776
def authenticate(username, password): """Authenticate with the API and get a token.""" API_AUTH = "https://api2.xlink.cn/v2/user_auth" auth_data = {'corp_id': "1007d2ad150c4000", 'email': username, 'password': password} r = requests.post(API_AUTH, json=auth_data, timeout=API_TIMEOUT) try: return (r.json()['access_token'], r.json()['user_id']) except KeyError: raise(LaurelException('API authentication failed'))
5,353,777
def filter_hashtags_users(DATAPATH, th, city): """ cleans target_hashtags by removing hashtags that are used by less than 2 users replaces hahstags by ht_id and saves to idhashtags.csv creates entropy for each ht_id and saves to hashtag_id_entropies.csv prints std output :param DATAPATH: :param th: hashtags are too popular if more than th% of users share them :param city: :return: """ ht = pd.read_csv(DATAPATH + city + ".target_hashtags") print ("ht.shape", ht.shape) ht["hashtags"] = ht['hashtags'].astype('category') ht["ht_id"] = ht["hashtags"].cat.codes ht.drop('hashtags', axis=1, inplace=True) #arrmult = [] entarr = [] gp = ht.groupby('ht_id') # cnt_df = gp.size().reset_index(name='sizes') # hashtags are too popular if more than th% of users share them max_df_ht = th * len(ht.uid.unique()) print ("max_df_ht", max_df_ht) # removing hashtags that are used by less than 2 users and more than th% of users for htid, group in gp: user_count = len(group['uid'].value_counts().values) if user_count > 1 and user_count <= max_df_ht: e = entropy(group['uid'].value_counts().values) c = len(group) entarr.append([htid, e, c]) #arrmult.append(htid) # save entropies of hashtags for other calculations entdf = pd.DataFrame(data=entarr, columns=['ht_id', 'entropy', 'counts']) sortt = entdf.sort_values(by='entropy') sortt.to_csv(DATAPATH + "counts_entropies.csv", index=False) # filtered hashtag df ht2 = ht[ht.ht_id.isin(entdf.ht_id)] print ("after removing too popular and too rare hts", ht2.shape) ht2.to_csv(DATAPATH + str(th) + "filtered_hashtags.csv", index=False) return entdf, ht2
5,353,778
def plate_96_bind(form_info): """Add the plate container info to the samples in the form. Arguments: form_info (api_types.CustomForm): the dataclass holding info on the form. """ smp_locations = {} for sample in form_info.samples: sample.con = api_types.Container() # If 'Container Name' in grid. if sample.udf_to_value.get("Container Name"): con_name = sample.udf_to_value["Container Name"] # If 'container_name' in form. elif form_info.field_to_values.get("container_name"): con_name = form_info.field_to_values["container_name"] else: raise TypeError( f"The sample {sample.name} in request {form_info.req_id} on" f" form {form_info.name} was not given a container name.") # Replace all not ascii chars with ascii ones. con_name = _sanitize_text(con_name) con_name = re.sub(r"[^a-zA-Z0-9\-]", "-", con_name) sample.con.name = con_name sample.con.con_type = "96 well plate" # Make a dictionary of con_name: well, to make sure that there are no # two samples in the same well. smp_locations.setdefault( sample.con.name, []).append(sample.location) for locs in smp_locations.values(): if len(set(locs)) != len(locs): raise TypeError( f"There are two or more samples with the same well" f" location in request {form_info.req_id}. Please review and" f" edit your well locations.")
5,353,779
def cluster_set_state(connection: 'Connection', state: int, query_id=None) -> 'APIResult': """ Set cluster state. :param connection: Connection to use, :param state: State to set, :param query_id: (optional) a value generated by client and returned as-is in response.query_id. When the parameter is omitted, a random value is generated, :return: API result data object. Contains zero status if a value is written, non-zero status and an error description otherwise. """ return __cluster_set_state(connection, state, query_id)
5,353,780
def print_signatures(client: zeep.Client, out): """Print a short summary of each operation signature offered by client.""" # From: https://stackoverflow.com/questions/50089400/introspecting-a-wsdl-with-python-zeep for service in client.wsdl.services.values(): out.write(f"service: {service.name}\n") for port in service.ports.values(): out.write(f" port: {port.name}\n") operations = sorted( port.binding._operations.values(), key=operator.attrgetter('name')) for operation in operations: action = operation.name inputs = operation.input.signature() outputs = operation.output.signature() out.write(f" {action}({inputs}) --> ({outputs})\n")
5,353,781
def get_all(data, path): """Returns a list with all values in data matching the given JsonPath.""" return [x for x in iterate(data, path)]
5,353,782
def extract_information_from_blomap(oneLetterCodes): """ extracts isoelectric point (iep) and hydrophobicity from blomap for each aminoacid Parameters ---------- oneLetterCodes : list of Strings/Chars contains oneLetterCode for each aminoacid Returns ------- float, float iep, hydrophobicity """ letter_encodings = [] for x in oneLetterCodes: letter_encodings.append(extended_blomap[x.upper()]) isoelectric_point = [] hydrophobicity = [] for element in letter_encodings: isoelectric_point.append([element[7]]) hydrophobicity.append([element[8]]) return isoelectric_point, hydrophobicity
5,353,783
def split_train_val_test_detection_data(xml_dir): """ prepare train/val/test dataset for detection :param xml_dir: :return: """ filenames = [_.replace('.xml', '') for _ in os.listdir(xml_dir)] random.shuffle(filenames) TEST_RATIO = 0.2 train = filenames[0:int(len(filenames) * (1 - TEST_RATIO))] test = filenames[int(len(filenames) * (1 - TEST_RATIO)) + 1:] val = train[0:int(len(train) * 0.1)] train = train[int(len(train) * 0.1) + 1:] with open('./train.txt', mode='wt', encoding='utf-8') as f: f.writelines('\n'.join(train)) with open('./val.txt', mode='wt', encoding='utf-8') as f: f.writelines('\n'.join(val)) with open('./test.txt', mode='wt', encoding='utf-8') as f: f.writelines('\n'.join(test))
5,353,784
def partitions(n): """ Return a sequence of lists Each element is a list of integers which sum to n - a partition n. The elements of each partition are in descending order and the sequence of partitions is in descending lex order. >>> list(partitions(4)) [[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] """ return partitions_with_max(n, max=n - 1)
5,353,785
def create_request_element(channel_id, file_info, data_id, annotation): """ create dataset item from datalake file :param channel_id: :param file_id: :param file_info: :param label_metadata_key: :return: """ data_uri = 'datalake://{}/{}'.format(channel_id, file_info.file_id) data = { 'source_data': [ { 'data_uri': data_uri, 'data_type': file_info.content_type } ], 'attributes': { 'classification': annotation, 'id': data_id } } return data
5,353,786
def _categorise(obj, _regex_adapter=RegexAdapter): """ Check type of the object """ if obj is Absent: return Category.ABSENT obj_t = type(obj) if issubclass(obj_t, NATIVE_TYPES): return Category.VALUE elif callable(obj): return Category.CALLABLE elif _regex_adapter.check(obj): return Category.REGEX elif issubclass(obj_t, Mapping): return Category.DICT elif issubclass(obj_t, Iterable): return Category.ITERABLE else: # catch-all for types like decimal.Decimal, uuid.UUID, et cetera return Category.VALUE
5,353,787
def test_emcee_opitmizer_can_restart(datasets_db): """A restart trace can be passed to the Emcee optimizer """ dbf = Database.from_string(CU_MG_TDB, fmt='tdb') datasets_db.insert(CU_MG_DATASET_ZPF_WORKING) param = 'VV0001' opt = EmceeOptimizer(dbf) restart_tr = -4*np.ones((2, 10, 1)) # 2 chains, 10 iterations, 1 parameter opt.fit([param], datasets_db, iterations=1, chains_per_parameter=2, restart_trace=restart_tr) assert opt.sampler.chain.shape == (2, 1, 1)
5,353,788
def remove_key(d, key): """Safely remove the `key` from the dictionary. Safely remove the `key` from the dictionary `d` by first making a copy of dictionary. Return the new dictionary together with the value stored for the `key`. Parameters ---------- d : dict The dictionary from which to remove the `key`. key : The key to remove Returns ------- v : The value for the key r : dict The dictionary with the key removed. """ r = dict(d) v = r[key] del r[key] return v, r
5,353,789
def test_clear_child_protocol_sets_raise_exc(httpcs_svc_instance, video_format, rewrite_type): """Test: Clear protocolSets with exception in Httpcs Service Instance object Steps: 1. Clear protocolSets, do not set either published or source protocol 2. Check raised exception Result: OK: exception is raised """ with pytest.raises(HttpCsSvcInstanceBaseException): httpcs_svc_instance.clear_child_protocol_sets(video_formats=video_format, rewrite_type=rewrite_type)
5,353,790
def graph(x, y, pl, opacity, lbf, title=None, x_title=None, y_title=None, xlim=None, ylim=None): """ Creates and displays a matplotlib scatter plot of y vs. x Parameters ---------- x: iterable, x-coordinates for values to be plotted y: iterable, y-coordinates for values to be plotted pl: reference to the already-initialized plot to be used opacity: float, opacity of each point in the scatter plot lbf: boolean (optional) True will graph a line of best fit, False will not title: string (optional) title for the plot x_title: string (optional) title for the x-axis of the plot y_title: string (optional) title for the y-axis of the plot label: string (optional) label for the plotted error bars x_lim: tuples, minimum and maximum x-values to be displayed y_lim: tuples, minimum and maximum x-values to be displayed """ pl.scatter(x, y, marker="o", alpha=opacity) # Create the scatter plot pl.set_title(title) pl.set_xlabel(x_title) pl.set_ylabel(y_title) if ylim is not None: if len(ylim)==1: ylim.append(None) pl.set_ylim(ylim[0], ylim[1]) if xlim is not None: if len(xlim)==1: xlim.append(None) pl.set_xlim(xlim[0], xlim[1]) pl.grid(True) # Graph a line of best fit if lbf: best_fit(x, y, pl)
5,353,791
def tasks_file_to_task_descriptors(tasks, retries, input_file_param_util, output_file_param_util): """Parses task parameters from a TSV. Args: tasks: Dict containing the path to a TSV file and task numbers to run variables, input, and output parameters as column headings. Subsequent lines specify parameter values, one row per job. retries: Number of retries allowed. input_file_param_util: Utility for producing InputFileParam objects. output_file_param_util: Utility for producing OutputFileParam objects. Returns: task_descriptors: an array of records, each containing the task-id, task-attempt, 'envs', 'inputs', 'outputs', 'labels' that defines the set of parameters for each task of the job. Raises: ValueError: If no job records were provided """ task_descriptors = [] path = tasks['path'] task_min = tasks.get('min') task_max = tasks.get('max') # Load the file and set up a Reader that tokenizes the fields param_file = dsub_util.load_file(path) reader = csv.reader(param_file, delimiter='\t') # Read the first line and extract the parameters header = six.advance_iterator(reader) job_params = parse_tasks_file_header(header, input_file_param_util, output_file_param_util) # Build a list of records from the parsed input file for row in reader: # Tasks are numbered starting at 1 and since the first line of the TSV # file is a header, the first task appears on line 2. task_id = reader.line_num - 1 if task_min and task_id < task_min: continue if task_max and task_id > task_max: continue if len(row) != len(job_params): dsub_util.print_error('Unexpected number of fields %s vs %s: line %s' % (len(row), len(job_params), reader.line_num)) # Each row can contain "envs", "inputs", "outputs" envs = set() inputs = set() outputs = set() labels = set() for i in range(0, len(job_params)): param = job_params[i] name = param.name if isinstance(param, job_model.EnvParam): envs.add(job_model.EnvParam(name, row[i])) elif isinstance(param, job_model.LabelParam): labels.add(job_model.LabelParam(name, row[i])) elif isinstance(param, job_model.InputFileParam): inputs.add( input_file_param_util.make_param(name, row[i], param.recursive)) elif isinstance(param, job_model.OutputFileParam): outputs.add( output_file_param_util.make_param(name, row[i], param.recursive)) task_descriptors.append( job_model.TaskDescriptor({ 'task-id': task_id, 'task-attempt': 1 if retries else None }, { 'labels': labels, 'envs': envs, 'inputs': inputs, 'outputs': outputs }, job_model.Resources())) # Ensure that there are jobs to execute (and not just a header) if not task_descriptors: raise ValueError('No tasks added from %s' % path) return task_descriptors
5,353,792
def array2raster(newRasterfn, dataset, array, dtype): """ Function from https://gist.github.com/jkatagi/a1207eee32463efd06fb57676dcf86c8 Save GeoTiff file from numpy.array input: newRasterfn: save file name dataset : original tif file array : numpy.array dtype: Byte or Float32. """ cols = array.shape[1] rows = array.shape[0] originX, pixelWidth, b, originY, d, pixelHeight = dataset.GetGeoTransform() driver = gdal.GetDriverByName('GTiff') # set data type to save. GDT_dtype = gdal.GDT_Unknown if dtype == "Byte": GDT_dtype = gdal.GDT_Byte elif dtype == "Float32": GDT_dtype = gdal.GDT_Float32 else: print("Not supported data type.") # set number of band. if array.ndim == 2: band_num = 1 else: band_num = array.shape[2] outRaster = driver.Create(newRasterfn, cols, rows, band_num, GDT_dtype) outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight)) # Loop over all bands. for b in range(band_num): outband = outRaster.GetRasterBand(b + 1) # Read in the band's data into the third dimension of our array if band_num == 1: outband.WriteArray(array) else: outband.WriteArray(array[:, :, b]) # setteing srs from input tif file. prj = dataset.GetProjection() outRasterSRS = osr.SpatialReference(wkt=prj) outRaster.SetProjection(outRasterSRS.ExportToWkt()) outband.FlushCache()
5,353,793
def load_model(filename, folder=None): """ Load a model from a file. :param filename: name of the file to load the model from :param folder: name of the subdirectory folder. If given, the model will be loaded from the subdirectory. :return: model from the file """ if folder is not None: path = os.path.join("./models", folder, filename) else: path = os.path.join("./models", filename) model = torch.load(path, map_location='cuda:0') return model
5,353,794
def spreadplayers(self: Client, x: RelativeFloat, y: RelativeFloat, spread_distance: float, max_range: float, victim: str) -> str: """Spreads players.""" return self.run('spreadplayers', x, y, spread_distance, max_range, victim)
5,353,795
def get_version(): """Returns single integer number with the serialization version""" return 2
5,353,796
def format_result(func): """包装结果格式返回给调用者""" @wraps(func) def wrapper(*args, **kwargs): ret = {} try: data = func(*args, **kwargs) if type(data) is Response: return data ret['data'] = data ret['success'] = True ret['message'] = 'Succeed' except Exception as e: ret['message'] = str(e) ret['data'] = None ret['success'] = False logger.info(f"request_{func}, result: {ret}") return ret return wrapper
5,353,797
def writeData(filename, data): """ MBARBIER: Taken/adapted from https://github.com/ChristophKirst/ClearMap/blob/master/ClearMap/IO/TIF.py Write image data to tif file Arguments: filename (str): file name data (array): image data Returns: str: tif file name """ d = len(data.shape); if d == 2: tiff.imsave(filename, data.transpose([0,1])); elif d == 3: tiff.imsave(filename, data.transpose([2,0,1]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True); elif d == 4: #tiffile (z,y,x,c) tiff.imsave(filename, data.transpose([0,1,2,3]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True); else: raise RuntimeError('writing multiple channel data to tif not supported!'); return filename;
5,353,798
def test_activate_heater(sht4x, power, duration): """ Test if the command is accepted by the device and returns the proper result. """ temperature, humidity = sht4x.activate_heater(power, duration) assert type(temperature) is Sht4xTemperature assert type(temperature.ticks) is int assert type(humidity) is Sht4xHumidity assert type(humidity.ticks) is int
5,353,799