content
stringlengths
22
815k
id
int64
0
4.91M
def threaded_main(): """ Run non-blocking task. Use daemon because we must finish writing image even after UI quits. :return: """ thread = threading.Thread(target=main, args=([sys.argv[0], '-c'],), daemon=True) thread.start()
5,355,600
def delete_user(): """ Deletes the current user's account. """ DB.session.delete(current_user) DB.session.commit() flash("Account deleted", 'success') return redirect('/login')
5,355,601
def setup_code_gen(no_of_accessories): """ Generate setup code """ try: invalid_setup_codes = ['00000000','11111111','22222222','33333333','44444444','55555555',\ '66666666','77777777','88888888','99999999','12345678','87654321'] setup_code_created = [] for _ in range(no_of_accessories): setup_code = '' # random generate setup_code for _ in range(8): random_num = str(random.randint(0,9)) setup_code += random_num # generate again till valid while setup_code in invalid_setup_codes: setup_code = '' for _ in range(8): random_num = str(randint(0,9)) setup_code += random_num # Check if the setup code has valid format if (len(setup_code) != 8) or (not setup_code.isdigit()): print "\nSetup code generated should be 8 numbers without any '-' in between. Eg. 11122333 \n" raise SystemExit(1) # Add the hyphen (-) in the PIN for salt-verifier generation. So, 11122333 will become 111-22-333 setup_code = setup_code[:3] + '-' + setup_code[3:5] + '-' + setup_code[5:] setup_code_created.append(setup_code) return setup_code_created except StandardError as std_err: print std_err except: raise
5,355,602
def letter_difference(letter_1: str, letter_2: str) -> int: """ Return the difference in value between letter_1 and letter_2 """ assert len(letter_1) == 1 assert len(letter_2) == 1 diff = letter_to_value[letter_2] - letter_to_value[letter_1] if diff > 13: diff -= 27 return diff
5,355,603
def refresh_access_token(request): """Updates `accessToken` in request cookies (not in browser cookies) using `refreshToken`. """ try: refresh_token = request.COOKIES['refreshToken'] url = urljoin(settings.TIT_API_HOST, '/api/auth/token/refresh/') response = requests.post(url, {'refresh': refresh_token}) result = response.json() request.COOKIES['accessToken'] = result['access'] return True except (KeyError, requests.HTTPError, ): """Refresh token doesn't exist in cookies or response from TIT API returned error status code. """ return False
5,355,604
def ngrams(string, n=3, punctuation=PUNCTUATION, **kwargs): """ Returns a list of n-grams (tuples of n successive words) from the given string. Punctuation marks are stripped from words. """ s = string s = s.replace(".", " .") s = s.replace("?", " ?") s = s.replace("!", " !") s = [w.strip(punctuation) for w in s.split()] s = [w.strip() for w in s if w.strip()] return [tuple(s[i:i + n]) for i in range(len(s) - n + 1)]
5,355,605
def binstringToBitList(binstring): """Converts a string of '0's and '1's to a list of 0's and 1's""" bitList = [] for bit in binstring: bitList.append(int(bit)) return bitList
5,355,606
def test_reconstructed_plane(): """ Test the reconstruction of a fitted plane from orientation of the plane expressed in spherical coordinates """ fit = random_pca() sdr = fit.strike_dip_rake() ang = fit.angular_errors() reconstructed = ReconstructedPlane(*sdr, *ang) # Test that the nominal recovered orientation is the same assert N.allclose(fit.normal, reconstructed.normal) assert N.allclose(fit.angular_errors(), reconstructed.angular_errors()) assert_array_almost_equal(fit.strike_dip_rake(), reconstructed.strike_dip_rake()) fax = fit.axes rax = reconstructed.axes if fax[-1,-1] < 0: fax *= -1 # Tolerance should be zero assert_array_almost_equal(fax, rax) cov = N.diag(fit.covariance_matrix / fit.covariance_matrix[-1,-1]) rcov = N.diag(reconstructed.covariance_matrix) assert N.allclose(cov, rcov)
5,355,607
def file_revisions(request, repo_id): """List file revisions in file version history page. """ repo = get_repo(repo_id) if not repo: raise Http404 # perm check if check_folder_permission(request, repo_id, '/') is None: raise Http404 return render_file_revisions(request, repo_id)
5,355,608
def textctrl_info_t_get_tabsize(*args): """ textctrl_info_t_get_tabsize(self) -> unsigned int """ return _ida_kernwin.textctrl_info_t_get_tabsize(*args)
5,355,609
def node_is_hidden(node_name): """ Returns whether or not given node is hidden :param node_name: str :return: bool """ if python.is_string(node_name): return not maya.cmds.getAttr('{}.visibility'.format(node_name)) return not maya.cmds.getAttr('{}.visibility'.format(node.get_name(node_name)))
5,355,610
def cargo_raze_transitive_deps(): """Loads all dependnecies from repositories required for cargo-raze""" rules_foreign_cc_dependencies() rust_repositories()
5,355,611
def generate_patch_grid_from_normalized_LAF(img: torch.Tensor, LAF: torch.Tensor, PS: int = 32) -> torch.Tensor: """Helper function for affine grid generation. Args: img: image tensor of shape :math:`(B, CH, H, W)`. LAF: laf with shape :math:`(B, N, 2, 3)`. PS: patch size to be extracted. Returns: grid """ raise_error_if_laf_is_not_valid(LAF) B, N, _, _ = LAF.size() num, ch, h, w = img.size() # norm, then renorm is needed for allowing detection on one resolution # and extraction at arbitrary other LAF_renorm = denormalize_laf(LAF, img) grid = F.affine_grid(LAF_renorm.view(B * N, 2, 3), [B * N, ch, PS, PS], align_corners=False) # type: ignore grid[..., :, 0] = 2.0 * grid[..., :, 0].clone() / float(w) - 1.0 grid[..., :, 1] = 2.0 * grid[..., :, 1].clone() / float(h) - 1.0 return grid
5,355,612
def _resolve_condition_operands( left_operand: Union[str, pipeline_channel.PipelineChannel], right_operand: Union[str, pipeline_channel.PipelineChannel], ) -> Tuple[str, str]: """Resolves values and PipelineChannels for condition operands. Args: left_operand: The left operand of a condition expression. right_operand: The right operand of a condition expression. Returns: A tuple of the resolved operands values: (left_operand_value, right_operand_value). """ # Pre-scan the operand to get the type of constant value if there's any. # The value_type can be used to backfill missing PipelineChannel.channel_type. value_type = None for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type in [ pipeline_spec_pb2.ParameterType.STRUCT, pipeline_spec_pb2.ParameterType.LIST, pipeline_spec_pb2.ParameterType .PARAMETER_TYPE_ENUM_UNSPECIFIED, ]: input_name = _additional_input_name_for_pipeline_channel( value_or_reference) raise ValueError('Conditional requires scalar parameter values' ' for comparison. Found input "{}" of type {}' ' in pipeline definition instead.'.format( input_name, value_or_reference.channel_type)) parameter_types = set() for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) else: parameter_type = type_utils.get_parameter_type( type(value_or_reference).__name__) parameter_types.add(parameter_type) if len(parameter_types) == 2: # Two different types being compared. The only possible types are # String, Boolean, Double and Integer. We'll promote the other type # using the following precedence: # String > Boolean > Double > Integer if pipeline_spec_pb2.ParameterType.STRING in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.STRING elif pipeline_spec_pb2.ParameterType.BOOLEAN in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN else: # Must be a double and int, promote to double. assert pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE in parameter_types, \ 'Types: {} [{} {}]'.format( parameter_types, left_operand, right_operand) assert pipeline_spec_pb2.ParameterType.NUMBER_INTEGER in parameter_types, \ 'Types: {} [{} {}]'.format( parameter_types, left_operand, right_operand) canonical_parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE elif len(parameter_types) == 1: # Both operands are the same type. canonical_parameter_type = parameter_types.pop() else: # Probably shouldn't happen. raise ValueError('Unable to determine operand types for' ' "{}" and "{}"'.format(left_operand, right_operand)) operand_values = [] for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): input_name = _additional_input_name_for_pipeline_channel( value_or_reference) operand_value = "inputs.parameter_values['{input_name}']".format( input_name=input_name) parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER: operand_value = 'int({})'.format(operand_value) elif isinstance(value_or_reference, str): operand_value = "'{}'".format(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.STRING elif isinstance(value_or_reference, bool): # Booleans need to be compared as 'true' or 'false' in CEL. operand_value = str(value_or_reference).lower() parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN elif isinstance(value_or_reference, int): operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_INTEGER else: assert isinstance(value_or_reference, float), value_or_reference operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE if parameter_type != canonical_parameter_type: # Type-cast to so CEL does not complain. if canonical_parameter_type == pipeline_spec_pb2.ParameterType.STRING: assert parameter_type in [ pipeline_spec_pb2.ParameterType.BOOLEAN, pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = "'{}'".format(operand_value) elif canonical_parameter_type == pipeline_spec_pb2.ParameterType.BOOLEAN: assert parameter_type in [ pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = 'true' if int(operand_value) == 0 else 'false' else: assert canonical_parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE assert parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER operand_value = 'double({})'.format(operand_value) operand_values.append(operand_value) return tuple(operand_values)
5,355,613
def SanityCheck(help_provider, help_name_map): """Helper for checking that a HelpProvider has minimally adequate content.""" # Sanity check the content. assert (len(help_provider.help_spec.help_name) > 1 and len(help_provider.help_spec.help_name) < MAX_HELP_NAME_LEN) for hna in help_provider.help_spec.help_name_aliases: assert hna one_line_summary_len = len(help_provider.help_spec.help_one_line_summary) assert (one_line_summary_len > MIN_ONE_LINE_SUMMARY_LEN and one_line_summary_len < MAX_ONE_LINE_SUMMARY_LEN) assert len(help_provider.help_spec.help_text) > 10 # Ensure there are no dupe help names or aliases across commands. name_check_list = [help_provider.help_spec.help_name] name_check_list.extend(help_provider.help_spec.help_name_aliases) for name_or_alias in name_check_list: if help_name_map.has_key(name_or_alias): raise CommandException( 'Duplicate help name/alias "%s" found while loading help from %s. ' 'That name/alias was already taken by %s' % ( name_or_alias, help_provider.__module__, help_name_map[name_or_alias].__module__))
5,355,614
def linkQuantFilesForDabs(cfg): """ Create a per-DAB file link to the quant file. This is needed later by Data2DB. """ # link to the new quant file if cfg.configVerified is False: raise ValueError('Please run checkConfig(cfg) prior to calling linkQuantFiles') print("Linking quant files for each DAB file\n") # copy quant file to the output dir baseName = os.path.basename(cfg.quantFile) targetQuantFile = os.path.join(cfg.outDir, baseName) os.system(f'cp {cfg.quantFile} {targetQuantFile}') datasets = readDatasetList(cfg.datasetsFile) for (pclFile, dsetPlat, platform) in datasets: m = re.match("(.*).pcl", pclFile) datasetName = m.group(1) quantFile = os.path.join(cfg.dabDir, f'{datasetName}.quant') if os.path.exists(quantFile): os.system(f"rm -rf {quantFile}") cmd = f"ln -s {targetQuantFile} {quantFile}" # print(cmd) os.system(cmd)
5,355,615
def format_record(test_record): """Create a properly formatted Kinesis, S3, or SNS record. Supports a dictionary or string based data record. Reads in event templates from the test/integration/templates folder. Args: test_record: Test record metadata dict with the following structure: data - string or dict of the raw data description - a string describing the test that is being performed trigger - bool of if the record should produce an alert source - which stream/s3 bucket originated the data service - which aws service originated the data compress (optional) - if the payload needs to be gzip compressed or not Returns: dict in the format of the specific service """ service = test_record['service'] source = test_record['source'] compress = test_record.get('compress') data_type = type(test_record['data']) if data_type == dict: data = json.dumps(test_record['data']) elif data_type in (unicode, str): data = test_record['data'] else: LOGGER_CLI.info('Invalid data type: %s', type(test_record['data'])) return # Get the template file for this particular service template_path = os.path.join(DIR_TEMPLATES, '{}.json'.format(service)) with open(template_path, 'r') as service_template: try: template = json.load(service_template) except ValueError as err: LOGGER_CLI.error('Error loading %s.json: %s', service, err) return if service == 's3': # Set the S3 object key to a random value for testing test_record['key'] = ('{:032X}'.format(random.randrange(16**32))) template['s3']['object']['key'] = test_record['key'] template['s3']['object']['size'] = len(data) template['s3']['bucket']['arn'] = 'arn:aws:s3:::{}'.format(source) template['s3']['bucket']['name'] = source # Create the mocked s3 object in the designated bucket with the random key put_mocked_s3_object(source, test_record['key'], data) elif service == 'kinesis': if compress: kinesis_data = base64.b64encode(zlib.compress(data)) else: kinesis_data = base64.b64encode(data) template['kinesis']['data'] = kinesis_data template['eventSourceARN'] = 'arn:aws:kinesis:us-east-1:111222333:stream/{}'.format(source) elif service == 'sns': template['Sns']['Message'] = data template['EventSubscriptionArn'] = 'arn:aws:sns:us-east-1:111222333:{}'.format(source) else: LOGGER_CLI.info('Invalid service %s', service) return template
5,355,616
def int_to_bitstr(int_value: int) -> str: """ A function which returns its bit representation as a string. Arguments: int_value (int) - The int value we want to get the bit representation for. Return: str - The string representation of the bits required to form the int. """ return bin(int_value)[2:]
5,355,617
def target_reached(effect): """target amount has been reached (100% or more)""" if not effect.instance.target: return False return effect.instance.amount_raised >= effect.instance.target
5,355,618
def resid_mask(ints, wfs_map=read_map(wfs_file), act_map=read_map(act_file), num_aps=236): """ Returns the locations of the valid actuators in the actuator array resids: Nx349 residual wavefront array (microns) ints: Nx304 intensity array (any units) N: Number of timestamps """ # Check inputs N = ints.shape[0] # Num timestamps # Aggregate intensities over all timestamps med_ints = np.median(ints, axis=0) # Fill WFS map with aggregated intensities int_map = wfs_map.copy() int_map[np.where(int_map==1)] = med_ints # Find lenslets with greatest intensity idxs = np.flip(np.argsort(int_map, axis=None))[:num_aps] # flat idxs of sort idxs = np.unravel_index(idxs, wfs_map.shape) # 2D idxs of sort # Mask for good sub-ap values good_aps = np.zeros(wfs_map.shape, dtype=int) good_aps[idxs] = 1 good_aps = good_aps * wfs_map # Just in case # Mask for good actuator values good_acts = np.pad(good_aps, ((1,1),(1,1))) good_acts = (good_acts[1:,1:] | good_acts[1:,:-1] | good_acts[:-1,:-1] | good_acts[:-1,1:]) * act_map return good_acts
5,355,619
def session(): """Sets up a HTTP session with a retry policy.""" s = requests.Session() retries = Retry(total=5, backoff_factor=0.5) s.mount("http://", HTTPAdapter(max_retries=retries)) return s
5,355,620
def fit(df, methodtype='hc', scoretype='bic', black_list=None, white_list=None, bw_list_method='enforce', max_indegree=None, epsilon=1e-4, max_iter=1e6, verbose=3): """Structure learning fit model. Description ----------- Search strategies for structure learning The search space of DAGs is super-exponential in the number of variables and the above scoring functions allow for local maxima. To learn model structure (a DAG) from a data set, there are three broad techniques: 1. Score-based structure learning (BIC/BDeu/K2 score; exhaustive search, hill climb/tabu search) a. exhaustivesearch b. hillclimbsearch 2. Constraint-based structure learning (PC) a. chi-square test 3. Hybrid structure learning (The combination of both techniques) (MMHC) Score-based Structure Learning This approach construes model selection as an optimization task. It has two building blocks: A scoring function sD:->R that maps models to a numerical score, based on how well they fit to a given data set D. A search strategy to traverse the search space of possible models M and select a model with optimal score. Commonly used scoring functions to measure the fit between model and data are Bayesian Dirichlet scores such as BDeu or K2 and the Bayesian Information Criterion (BIC, also called MDL). As before, BDeu is dependent on an equivalent sample size. Parameters ---------- df : pd.DataFrame() Input dataframe. methodtype : str, (default : 'hc') String Search strategy for structure_learning. 'hc' or 'hillclimbsearch' (default) 'ex' or 'exhaustivesearch' 'cs' or 'constraintsearch' scoretype : str, (default : 'bic') Scoring function for the search spaces. 'bic', 'k2', 'bdeu' black_list : List or None, (default : None) If a list of edges is provided as black_list, they are excluded from the search and the resulting model will not contain any of those edges. The default is None. Works only in case of methodtype='hc'. See also paramter: `bw_list_method` white_list : List or None, (default : None) If a list of edges is provided as white_list, the search is limited to those edges. The resulting model will then only contain edges that are in white_list. The default is None. Works only in case of methodtype='hc'/ See also paramter: `bw_list_method` bw_list_method : str, (default : 'enforce') 'enforce' : A list of edges can optionally be passed as `black_list` or `white_list` to exclude those edges or to limit the search. This option is limited to only methodtype='hc' 'filter' : Filter the dataframe based on `black_list` or `white_list`. Filtering can be done for every methodtype/scoretype. max_indegree : int, (default : None) If provided and unequal None, the procedure only searches among models where all nodes have at most max_indegree parents. (only in case of methodtype='hc') epsilon: float (default: 1e-4) Defines the exit condition. If the improvement in score is less than `epsilon`, the learned model is returned. (only in case of methodtype='hc') max_iter: int (default: 1e6) The maximum number of iterations allowed. Returns the learned model when the number of iterations is greater than `max_iter`. (only in case of methodtype='hc') verbose : int, (default : 3) Print progress to screen. 0: NONE 1: ERROR 2: WARNING 3: INFO (default) 4: DEBUG 5: TRACE Returns ------- dict with model. Examples -------- >>> import bnlearn as bn >>> >>> # Load asia DAG >>> model = bn.import_DAG('asia') >>> >>> # plot ground truth >>> G = bn.plot(model) >>> >>> # Sampling >>> df = bn.sampling(model, n=10000) >>> >>> # Structure learning of sampled dataset >>> model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic') >>> >>> # Plot based on structure learning of sampled data >>> bn.plot(model_sl, pos=G['pos']) >>> >>> # Compare networks and make plot >>> bn.compare_networks(model, model_sl, pos=G['pos']) """ assert isinstance(pd.DataFrame(), type(df)), 'df must be of type pd.DataFrame()' assert (scoretype=='bic') | (scoretype=='k2') | (scoretype=='bdeu'), 'scoretype must be string: "bic", "k2" or "bdeu"' assert (methodtype=='hc') | (methodtype=='ex')| (methodtype=='cs') | (methodtype=='exhaustivesearch')| (methodtype=='hillclimbsearch')| (methodtype=='constraintsearch'), 'Methodtype string is invalid' # noqa if isinstance(white_list, str): white_list = [white_list] if isinstance(black_list, str): black_list = [black_list] if (white_list is not None) and len(white_list)==0: white_list = None if (black_list is not None) and len(black_list)==0: black_list = None if (bw_list_method is None) : bw_list_method='enforce' config = {} config['verbose'] = verbose config['method'] = methodtype config['scoring'] = scoretype config['black_list'] = black_list config['white_list'] = white_list config['bw_list_method'] = bw_list_method config['max_indegree'] = max_indegree config['epsilon'] = epsilon config['max_iter'] = max_iter # Show warnings # PGMPY_VER = version.parse(pgmpy.__version__)>version.parse("0.1.9") # Can be be removed if pgmpy >v0.1.9 # if (not PGMPY_VER) and ((black_list is not None) or (white_list is not None)): # if config['verbose']>=2: print('[bnlearn] >Warning: black_list and white_list only works for pgmpy > v0.1.9') # Can be be removed if pgmpy >v0.1.9 if df.shape[1]>10 and df.shape[1]<15: if config['verbose']>=2: print('[bnlearn] >Warning: Computing DAG with %d nodes can take a very long time!' %(df.shape[1])) if (black_list is not None) and methodtype!='hc': if config['verbose']>=2: print('[bnlearn] >Warning: blacklist only works in case of methodtype="hc"') if (white_list is not None) and methodtype!='hc': if config['verbose']>=2: print('[bnlearn] >Warning: white_list only works in case of methodtype="hc"') if (max_indegree is not None) and methodtype!='hc': if config['verbose']>=2: print('[bnlearn] >Warning: max_indegree only works in case of methodtype="hc"') if config['verbose']>=3: print('[bnlearn] >Computing best DAG using [%s]' %(config['method'])) # Make sure columns are of type string df.columns = df.columns.astype(str) # Filter on white_list and black_list df = _white_black_list(df, white_list, black_list, bw_list_method=config['bw_list_method'], verbose=verbose) # ExhaustiveSearch can be used to compute the score for every DAG and returns the best-scoring one: if config['method']=='ex' or config['method']=='exhaustivesearch': """The first property makes exhaustive search intractable for all but very small networks, the second prohibits efficient local optimization algorithms to always find the optimal structure. Thus, identifiying the ideal structure is often not tractable. Despite these bad news, heuristic search strategies often yields good results If only few nodes are involved (read: less than 5).""" if (df.shape[1]>15) and (config['verbose']>=3): print('[bnlearn] >Warning: Structure learning with more then 15 nodes is computationally not feasable with exhaustivesearch. Use hillclimbsearch or constraintsearch instead!!') # noqa out = _exhaustivesearch(df, scoretype=config['scoring'], verbose=config['verbose']) # HillClimbSearch if config['method']=='hc' or config['method']=='hillclimbsearch': out = _hillclimbsearch(df, scoretype=config['scoring'], black_list=config['black_list'], white_list=config['white_list'], max_indegree=config['max_indegree'], bw_list_method=config['bw_list_method'], epsilon=config['epsilon'], max_iter=config['max_iter'], verbose=config['verbose'], ) # Constraint-based Structure Learning if config['method']=='cs' or config['method']=='constraintsearch': """Constraint-based Structure Learning A different, but quite straightforward approach to build a DAG from data is this: Identify independencies in the data set using hypothesis tests Construct DAG (pattern) according to identified independencies (Conditional) Independence Tests Independencies in the data can be identified using chi2 conditional independence tests.""" out = _constraintsearch(df, verbose=config['verbose']) # Setup simmilarity matrix adjmat = _dag2adjmat(out['model']) # adjmat = pd.DataFrame(data=False, index=out['model'].nodes(), columns=out['model'].nodes()).astype('Bool') # # Fill adjmat with edges # edges = out['model'].edges() # for edge in edges: # adjmat.loc[edge[0],edge[1]]=True # adjmat.index.name = 'source' # adjmat.columns.name = 'target' # Store out['adjmat'] = adjmat out['config'] = config # return return(out)
5,355,621
def handle_index(): """ Kezeli az index oldalat, elokesziti es visszakulti a html-t a kliensnek. :return: """ return render_template("index.html")
5,355,622
def save_pkl(obj, file_name): """Save an object to the given file name as pickle.""" with open(file_name, "wb") as f: pickle.dump(obj, f)
5,355,623
def get_polynomial_coefficients(degree=5): """ Return a list with coefficient names, [1 x y x^2 xy y^2 x^3 ...] """ names = ["1"] for exp in range(1, degree + 1): # 0, ..., degree for x_exp in range(exp, -1, -1): y_exp = exp - x_exp if x_exp == 0: x_str = "" elif x_exp == 1: x_str = r"$x$" else: x_str = rf"$x^{x_exp}$" if y_exp == 0: y_str = "" elif y_exp == 1: y_str = r"$y$" else: y_str = rf"$y^{y_exp}$" names.append(x_str + y_str) return names
5,355,624
def cluster_stats(all_cluster_labels, draw = False): """ In this function, we want to derive the mean and variance of cluster as the number of cluster differs :param all_cluster_labels: :return: """ cluster_count = np.zeros(max(all_cluster_labels) + 1) dictionary = dict() dictionary['size'] = cluster_count for cluster_label in all_cluster_labels: cluster_count[cluster_label] += 1 print(f"Median: {np.median(cluster_count)}, Variance: {np.var(cluster_count)}") print(f"Normalized Median: {np.median(cluster_count) / len(cluster_count)}, " f"Normalized Var: {np.var(cluster_count) / len(cluster_count)}") if draw: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) x_axis = [i for i in range(len(cluster_count))] ## let's sort the y_axis by cluster_count cluster_count = np.sort(cluster_count) y_axis = cluster_count ax.bar(x_axis, y_axis) plt.show()
5,355,625
def _get_configured_credentials() -> Dict[str, bytes]: """ Get the encryupted credentials stored in disk """ path = get_credentials_path() credentials: Dict[str, bytes] with open(path, "rb") as file_handle: credentials = pickle.load(file_handle) if len(credentials) == 0: raise ConfigurationError( "You have not setup your credentials yet. " "Please do so by using 'omigami credentials-helper' CLI functionality and try again." ) if not all(key in ["k", "u", "p"] for key in credentials.keys()): raise ConfigurationError( "Something seems wrong with your credentials. " "Please, run 'omigami credentials-helper --unset' to remove them and then set them again." ) return credentials
5,355,626
def open(request: HttpRequest, *args, **kwargs) -> HttpResponse: """ Create a temporary project from a single source. This view allows for all users, including anonymous users, to create a temporary project which they can later save as a permanent project if they wish. It aims to be a quick way to start a project and preview publishing of a file. TODO: See https://github.com/stencila/hub/pull/552 for more todos """ if request.method == "GET": # TODO: If a GET request attempt to get source from end of URL or a query parameter return render(request, "projects/open.html") if request.method == "POST": viewset = ProjectsViewSet.init("create", request, args, kwargs) serializer = viewset.get_serializer(data=dict(temporary=True, public=True)) serializer.is_valid(raise_exception=True) project = serializer.create(serializer.validated_data) url = request.POST.get("url") if url: Source.from_address(url, project=project, path="main") file = request.FILES.get("file") if file: UploadSource.objects.create(project=project, path=file.name, file=file) # TODO: Make the source the project's main file. How to do before pulling it? # TODO: Create a newer simpler job preview page, that is visible to # anon users and redirect to that instead of to the project overview page # job = source.pull() return redir("ui-projects-retrieve", "temp", project.name) raise Http404
5,355,627
def __Logout(si): """ Disconnect (logout) service instance @param si: Service instance (returned from Connect) """ try: if si: content = si.RetrieveContent() content.sessionManager.Logout() except Exception as e: pass
5,355,628
def kabsch_rotate(P, Q): """ Rotate matrix P unto matrix Q using Kabsch algorithm """ U = kabsch(P, Q) # Rotate P P = np.dot(P, U) return P
5,355,629
def matrix( odoo=ODOO_VERSIONS, pg=PG_VERSIONS, odoo_skip=frozenset(), pg_skip=frozenset() ): """All possible combinations. We compute the variable matrix here instead of in ``.travis.yml`` because this generates faster builds, given the scripts found in ``hooks`` directory are already multi-version-build aware. """ return map( dict, product( product(("ODOO_MINOR",), ODOO_VERSIONS & odoo - odoo_skip), product(("DB_VERSION",), PG_VERSIONS & pg - pg_skip), ), )
5,355,630
def iterate_pagerank(corpus, damping_factor): """ Return PageRank values for each page by iteratively updating PageRank values until convergence. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ # Initialize a dict with {"page": 1/n} for all pages in corpus new_dist = dict([(page, 1 / len(corpus)) for page in corpus]) finished = False while not finished: # Make copy before changing prev_dist = copy.deepcopy(new_dist) for page in corpus: # Run the iterative algorithm on each page new_dist[page] = iter_algorithm(damping_factor, len(corpus), page, corpus, new_dist) # If any page has a difference over .001 from the previous run, the while loop will continue for pg in new_dist: finished = True if abs(prev_dist[pg] - new_dist[pg]) > 0.001: finished = False break return new_dist
5,355,631
def user_enabled(inst, opt): """ Check whether the option is enabled. :param inst: instance from content object init :param url: Option to be checked :return: True if enabled, False if disabled or non present """ return opt in inst.settings and inst.settings[opt]
5,355,632
async def get_buttons_data(client: Client, message: Message): """ Get callback_data and urls of all the inline buttons of the message you replied to. """ reply_message = message.reply_to_message if reply_message and reply_message.reply_markup: if reply_message.reply_markup.inline_keyboard: row_lines = [] for i, row in enumerate(reply_message.reply_markup.inline_keyboard): row_buttons = [] for button in row: if button.callback_data: data = button.callback_data elif button.url: data = button.url else: continue row_buttons.append(f"<i>{quote_html(button.text)}:</i> <code>{quote_html(data)}</code>") buttons = "\n".join(row_buttons) row_lines.append(f"<b>Row {i + 1}:</b>\n{buttons}") if row_lines: clean_time = 20 await message.edit_text("\n\n".join(row_lines)) else: clean_time = 4 await message.edit_text("There is no any callback_data or url button inside this keyboard.") return await clean_up(client, message.chat.id, message.message_id, clear_after=clean_time) await message.edit_text("Reply to a message containing an inline keyboard to extract callback_data and urls.") await clean_up(client, message.chat.id, message.message_id, clear_after=4)
5,355,633
def send_notification(*, subsystem, recipients, subject, body_html, body_text): """Method to send a notification. A plugin may use only part of the information, but all fields are required. Args: subsystem (`str`): Name of the subsystem originating the notification recipients (`list` of :obj:`NotificationContact`): List of recipients subject (`str`): Subject / title of the notification body_html (`str)`: HTML formatted version of the message body_text (`str`): Text formatted version of the message Returns: `None` """ from cloud_inquisitor import CINQ_PLUGINS if not body_html and not body_text: raise ValueError('body_html or body_text must be provided') # Make sure that we don't have any duplicate recipients recipients = list(set(recipients)) notifiers = map(lambda plugin: plugin.load(), CINQ_PLUGINS['cloud_inquisitor.plugins.notifiers']['plugins']) for cls in filter(lambda x: x.enabled(), notifiers): for recipient in recipients: if isinstance(recipient, NotificationContact): if recipient.type == cls.notifier_type: try: notifier = cls() notifier.notify(subsystem, recipient.value, subject, body_html, body_text) except Exception: log.exception('Failed sending notification for {}/{}'.format( recipient.type, recipient.value )) else: log.warning('Unexpected recipient {}'.format(recipient))
5,355,634
def convert_img_k_to_jy(imagename, outfile): """ Calculated from flux density / brightness temp conversion page: https://science.nrao.edu/facilities/vla/proposing/TBconv NOTE the implicit conversion at the top for (beam/omega) into [ster] Image must have units: restfreq -> Hz bmaj -> arcsec bmin -> arcsec cdelt1 -> rad Parameters ---------- imagename : str outfile : str perbeam : bool, default True return in units of "Jy/beam", otherwise "Jy/beam" if False """ # rest frequency for K to Jy conversion freq_d = imhead(imagename, mode='get', hdkey='restfreq') assert freq_d['unit'] == 'Hz' nu_ghz = freq_d['value'] / 1e9 # to GHz # beam major FWHM bmaj_d = imhead(imagename, mode='get', hdkey='bmaj') assert bmaj_d['unit'] == 'arcsec' thetamaj_as = bmaj_d['value'] # beam minor FWHM bmin_d = imhead(imagename, mode='get', hdkey='bmin') assert bmin_d['unit'] == 'arcsec' thetamin_as = bmin_d['value'] # pixel size, square pixels, from coordinate delta cdelt1 = imhead(imagename, mode='get', hdkey='cdelt1') assert cdelt1['unit'] == 'rad' pixsize_as = abs(cdelt1['value']) * 206264.8 # to arcsec # beam to pixel_size, prefactor = pi / (4 log(2)) beamsize_as2 = 1.3309004 * thetamaj_as * thetamin_as pixperbeam = beamsize_as2 / pixsize_as**2 # compute image in units of Jy/beam jybmimage = outfile + '.jybm' if_exists_remove(jybmimage) immath( imagename=imagename, expr='8.18249739e-7*{0:.6f}*{0:.6f}*IM0*{1:.6f}*{2:.6f}'.format( nu_ghz, thetamaj_as, thetamin_as), outfile=jybmimage, ) imhead(jybmimage, mode='put', hdkey='bunit', hdvalue='Jy/beam') # compute image in units of Jy/pix jypiximage = outfile + '.jypix' if_exists_remove(jypiximage) immath( imagename=jybmimage, expr='IM0/{0:.6f}'.format(pixperbeam), outfile=jypiximage, ) imhead(jypiximage, mode='put', hdkey='bunit', hdvalue='Jy/pixel')
5,355,635
def update_document( *, db_session: Session = Depends(get_db), document_id: PrimaryKey, document_in: DocumentUpdate ): """Update a document.""" document = get(db_session=db_session, document_id=document_id) if not document: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=[{"msg": "The document with this id does not exist."}], ) document = update(db_session=db_session, document=document, document_in=document_in) return document
5,355,636
def from_jabsorb(request, seems_raw=False): """ Transforms a jabsorb request into a more Python data model (converts maps and lists) :param request: Data coming from Jabsorb :param seems_raw: Set it to True if the given data seems to already have been parsed (no Java class hint). If True, the lists will be kept as lists instead of being converted to tuples. :return: A Python representation of the given data """ if isinstance(request, (tuple, set, frozenset)): # Special case : JSON arrays (Python lists) return type(request)(from_jabsorb(element) for element in request) elif isinstance(request, list): # Check if we were a list or a tuple if seems_raw: return list(from_jabsorb(element) for element in request) else: return tuple(from_jabsorb(element) for element in request) elif isinstance(request, dict): # Dictionary java_class = request.get(JAVA_CLASS) json_class = request.get(JSON_CLASS) seems_raw = not java_class and not json_class if java_class: # Java Map ? if JAVA_MAPS_PATTERN.match(java_class) is not None: return HashableDict((from_jabsorb(key), from_jabsorb(value)) for key, value in request["map"].items()) # Java List ? elif JAVA_LISTS_PATTERN.match(java_class) is not None: return HashableList(from_jabsorb(element) for element in request["list"]) # Java Set ? elif JAVA_SETS_PATTERN.match(java_class) is not None: return HashableSet(from_jabsorb(element) for element in request["set"]) # Any other case result = AttributeMap((from_jabsorb(key), from_jabsorb(value, seems_raw)) for key, value in request.items()) # Keep JSON class information as is if json_class: result[JSON_CLASS] = json_class return result elif not _is_builtin(request): # Bean for attr in dir(request): # Only convert public fields if not attr[0] == '_': # Field conversion setattr(request, attr, from_jabsorb(getattr(request, attr))) return request else: # Any other case return request
5,355,637
def write_board_to_svg_file(board, file_name, hex_edge=50, hex_offset=0, board_padding=None, pointy_top=True, trim_board=True, style=None): """ Writes given board to a svg file of given name. :param board: 2 dimensional list of fields, each represented as a number :param file_name name of the output file :param hex_edge: length of hexagon's side (in pixels) :param hex_offset: distance between side of one hexagon and its neighbour (in pixels) :param board_padding padding of the board (in pixels) :param pointy_top: specifies if hexagons should be pointy topped or flat topped :param trim_board: if True, fields with a value 0 will be removed during transformation :param style css style (as string) """ if board_padding is None: board_padding = hex_edge styles = ['.board { fill: white } .hex-field { fill: white; stroke: black } .hex-field-0 { fill: black }'] if style is not None: styles.append(style) hexagons = transform_board_into_hexagons(board, hex_edge, hex_offset, pointy_top, trim_board) min_x, min_y, max_x, max_y = calculate_bounding_box(hexagons) offset = (board_padding - min_x, board_padding - min_y) hexagons = move_hexagons_by_offset(hexagons, offset) board_size = (2 * board_padding + max_x - min_x, 2 * board_padding + max_y - min_y) svg_image = create_svg_image(styles, board_size, hexagons) svg_image.saveas(file_name) return svg_image
5,355,638
def ensure_conf(app): """ Ensure for the given app the the redbeat_conf attribute is set to an instance of the RedBeatConfig class. """ name = 'redbeat_conf' app = app_or_default(app) try: config = getattr(app, name) except AttributeError: config = RedBeatConfig(app) setattr(app, name, config) return config
5,355,639
def check_if_process_present(string_to_find): """Checks if process runs on machine Parameters: string_to_find (string): process we want to find Returns: found (bool): True if found process running """ output = check_output(["ps", "-ax"], universal_newlines=True) if string_to_find in output: return True else: return False
5,355,640
def test_boussole_compile_auto(tests_settings, temp_builds_dir, manifest_name): """ Testing everything: * Sass helpers correctly generate CSS; * Manifest is correctly serialized to expected datas; * Builded CSS is the same than stored one in data fixtures; """ manifest_css = manifest_name + ".css" manifest_json = os.path.join( tests_settings.fixtures_path, 'json', manifest_name + ".json", ) # Open JSON fixture for expected serialized data from parsed manifest with open(manifest_json, "r") as fp: expected = json.load(fp) basepath = temp_builds_dir.join( 'sass_helper_boussole_compile_{}'.format(manifest_css) ) basedir = basepath.strpath template_sassdir = os.path.join(tests_settings.fixtures_path, 'sass') test_sassdir = os.path.join(basedir, 'sass') test_config_filepath = os.path.join(test_sassdir, 'settings.json') # Copy Sass sources to compile from template shutil.copytree(template_sassdir, test_sassdir) # Get expected CSS content from file in fixture expected_css_filepath = os.path.join( tests_settings.fixtures_path, "sass", "css", manifest_css ) with io.open(expected_css_filepath, 'r') as fp: expected_css_content = fp.read() # Load boussole settings and search for compilable files project = ProjectBase(backend_name="json") settings = project.backend_engine.load(filepath=test_config_filepath) compilable_files = ScssFinder().mirror_sources( settings.SOURCES_PATH, targetdir=settings.TARGET_PATH, excludes=settings.EXCLUDES ) # Since Boussole list every compilable Sass source, we select only the entry # corresponding to the manifest we seek for (from "manifest_css") source_css_filename = None source_sass_filename = None for k, v in compilable_files: if v.endswith(manifest_css): source_sass_filename = k source_css_filename = v break # Compile only the source we target from "manifest_css" compiler = SassCompileHelper() success, message = compiler.safe_compile( settings, source_sass_filename, source_css_filename ) # Output error to ease debug if not success: print(u"Compile error with: {}".format(source_sass_filename)) print(message) else: # Builded CSS is identical to the expected one from fixture with io.open(source_css_filename, 'r') as fp: compiled_content = fp.read() assert expected_css_content == compiled_content # Described manifest is the same as expected payload from fixture manifest = Manifest() manifest.load(compiled_content) dump = json.loads(manifest.to_json()) assert expected == dump
5,355,641
def consulta_dicionario(nivel): """ Entrada: Parâmetro do nível selecionado (fácil, médio, difícil) Tarefa: Determinar qual dicionário a ser consultado Saída: Parâmetros do dicionário (texto, lacunas, gabarito) """ nivel_dicionario = nivel if nivel_dicionario == 'facil': texto = dicionario_nivel_facil['texto'] lacunas = dicionario_nivel_facil['lacunas'] gabarito = dicionario_nivel_facil['gabarito'] elif nivel_dicionario == 'medio': texto = dicionario_nivel_medio['texto'] lacunas = dicionario_nivel_medio['lacunas'] gabarito = dicionario_nivel_medio['gabarito'] elif nivel_dicionario == 'dificil': texto = dicionario_nivel_dificil['texto'] lacunas = dicionario_nivel_dificil['lacunas'] gabarito = dicionario_nivel_dificil['gabarito'] return texto, lacunas, gabarito
5,355,642
def stats_check( main_table: Table, compare_table: Table, checks: List[OutlierCheck] = [], max_rows_returned: int = 100, ): """ :param main_table: main table :type main_table: table object :param compare_table: table to be compared :type compare_table: table object :param checks: check class object, which represent boolean expression :type checks: Check :param max_rows_returned: number of row returned if the check fails. :type max_rows_returned: int """ return AgnosticStatsCheck( main_table=main_table, compare_table=compare_table, checks=checks, max_rows_returned=max_rows_returned, )
5,355,643
async def get_collectible_name(collectible_id: int, db: AsyncSession = Depends(get_db_session)): """Gets the collectible name""" result = await destiny_items.get_collectible(db=db, collectible_id=collectible_id) return NameModel(name=result.name) if result else NameModel(name=None)
5,355,644
def test_pyflann_searches(): """ """ try: num_neighbors = 3 pts = testdata_points(nPts=5743, nDims=2) qpts = testdata_points(nPts=7, nDims=2) import vtool_ibeis as vt # sample a radius radius = vt.L2(pts[0:1], qpts[0:1])[0] * 2 + 1 flann = FLANN_CLS() print('NN_OnTheFly') # build nn_index on the fly indices1, dists1 = flann.nn(pts, qpts, num_neighbors, algorithm='hierarchical') print(ub.hzcat('indices1, dists1 = ', indices1, dists1)) _build_params = flann.build_index(pts, algorithm='kmeans') del _build_params print('NN_Index') indices2, dists2 = flann.nn_index(qpts, num_neighbors=num_neighbors) print(ub.hzcat('indices2, dists2 = ', indices2, dists2)) # this can only be called on one query point at a time # because the output size is unknown print('NN_Radius, radius=%r' % (radius,)) indices3, dists3 = flann.nn_radius(pts[0], radius) print('indices3 = %r ' % (indices3,)) print('dists3 = %r ' % (dists3,)) assert np.all(dists3 < radius) except Exception as ex: import utool as ut ut.printex(ex, key_list=[ 'query', 'query.shape', 'pts.shape', ], pad_stdout=True) #utool.embed() raise
5,355,645
def prime_factors(n): """ Return a list of prime factors of n :param n: int :return: list """ # check if 2 is the largest prime all_factors = set() t = n while t % 2 == 0: t /= 2 all_factors.add(2) # check the divisors greater than 2 d = 3 while d < n ** 0.5: while not t % d: t /= d all_factors.add(d) d += 2 return all_factors
5,355,646
def calculate_central_age(Ns, Ni, zeta, seZeta, rhod, Nd, sigma=0.15): """Function to calculate central age.""" Ns = np.array(Ns) Ni = np.array(Ni) # We just replace 0 counts with a low value, the age will be rounded to # 2 decimals. That should take care of the zero count issue. Ns = np.where(Ns == 0, 1e-10, Ns) # Do this to account for 0 track counts Ni = np.where(Ni == 0, 1e-10, Ni) # Do this to account for 0 track counts # Calculate mj LAMBDA = 1.55125e-4 G = 0.5 m = Ns + Ni p = Ns / m theta = np.sum(Ns) / np.sum(m) for i in range(0, 30): w = m / (theta * (1 - theta) + (m - 1) * theta**2 * (1 - theta)**2 * sigma**2) sigma = sigma * np.sqrt(np.sum(w**2 * (p - theta)**2) / np.sum(w)) theta = np.sum(w * p) / np.sum(w) t = (1.0 / LAMBDA) * np.log( 1.0 + G * LAMBDA * zeta * rhod * (theta) / (1.0 - theta)) se = np.sqrt(1 / (theta**2 * (1.0 - theta)**2 * np.sum(w)) + 1.0 / Nd + (seZeta / zeta)**2) * t return {"Central": np.round(t, 2), "se": np.round(se, 2), "sigma": np.round(sigma, 2)}
5,355,647
def _get_cross_reference_token(auth_cookie: str) -> str: """Gets a new cross reference token affiliated with the Roblox auth cookie. :param auth_cookie: Your Roblox authentication cookie. :return: A fresh cross reference token. """ session: requests.Session = _get_session(auth_cookie) response: requests.Response = session.post("https://auth.roblox.com/v2/logout") try: token = response.headers["x-csrf-token"] except KeyError: raise Exception("Please specify a valid auth cookie") return token
5,355,648
def erase_not_displayed(client): """Erase all non-displayed models from memory. Args: client (obj): creopyson Client. Returns: None """ return client._creoson_post("file", "erase_not_displayed")
5,355,649
def reset_position_for_friends_image_details_from_voter(voter, twitter_profile_image_url_https, facebook_profile_image_url_https): """ Reset all position image urls in PositionForFriends from we vote image details :param voter: :param twitter_profile_image_url_https: :param facebook_profile_image_url_https: :return: """ position_list_manager = PositionListManager() position_manager = PositionManager() stance_we_are_looking_for = ANY_STANCE friends_vs_public = FRIENDS_ONLY speaker_image_url_https = None reset_all_position_image_urls_results = [] if positive_value_exists(twitter_profile_image_url_https): speaker_image_url_https = twitter_profile_image_url_https elif positive_value_exists(facebook_profile_image_url_https): speaker_image_url_https = facebook_profile_image_url_https positions_for_voter_results = position_list_manager.retrieve_all_positions_for_voter( voter.id, voter.we_vote_id, stance_we_are_looking_for, friends_vs_public) if positions_for_voter_results['position_list_found']: friends_position_list = positions_for_voter_results['position_list'] for position_object in friends_position_list: reset_position_image_urls_results = position_manager.reset_position_image_details( position_object, speaker_image_url_https=speaker_image_url_https) reset_all_position_image_urls_results.append(reset_position_image_urls_results) results = { 'success': True, 'reset_all_position_results': reset_all_position_image_urls_results } return results
5,355,650
def get_analysis(panda_data): """ Get Analysis of CSV Data :param panda_data: Panda dataframes :return: panda data frames """ # Create Object for Analysis0 sentiment_object = SentimentConfig.sentiment_object ner_object = SentimentConfig.ner_object # Get list of sentences list = panda_data['text'].to_list() sentiment_result = np.array([sentiment_object.get_sentiment(i) for i in list]) panda_data["Positive Score"] = sentiment_result[:, 2] panda_data["Negative Score"] = sentiment_result[:, 0] panda_data["Neutral Score"] = sentiment_result[:, 1] panda_data["Sentiment Result"] = sentiment_result[:, 3] # NER Data Analysis Added ner_result = np.array([ner_object.get_ner(i) for i in list]) panda_data["Entity Result"] = ner_result # Adjective Analysis Added adjective_result = np.array([ner_object.get_adjectives(i) for i in list]) panda_data["Adjective Result"] = adjective_result return panda_data
5,355,651
def create_coordinate_string_dict(): """31パターンのヒモ。""" w = 120 h = 120 return { 47: (0, 0), 57: (1*-w, 0), 58: (2*-w, 0), 16: (4*-w, 0), 35: (5*-w, 0), 36: (6*-w, 0), 38: (0, 1*-h), 13: (1*-w, 1*-h), 14: (2*-w, 1*-h), 15: (3*-w, 1*-h), 25: (4*-w, 1*-h), 17: (5*-w, 1*-h), 27: (6*-w, 1*-h), 37: (7*-w, 1*-h), 1357: (0, 2*-h), 1571: (1*-w, 2*-h), 7135: (2*-w, 2*-h), 3583: (4*-w, 2*-h), 274: (5*-w, 2*-h), 1361: (6*-w, 2*-h), 1371: (0, 3*-h), 15037: (1*-w, 3*-h), 3573: (2*-w, 3*-h), 416: (4*-w, 3*-h), 258: (6*-w, 3*-h), 1753: (0, 4*-h), 1351: (1*-w, 4*-h), 3175: (2*-w, 4*-h), 2572: (4*-w, 4*-h), 638: (5*-w, 4*-h), 1471: (6*-w, 4*-h), }
5,355,652
def election_flink_cluster(cluster_group=None): """ 根据 cluster_group 的取值,选择单个选举或全部选举 当优先级为-1时表示该集群被加入黑名单,不参与选举。选举结果也不更新黑名单的集群 只有手动将集群的优先级从-1更改为0时,集群方可再次参与选举 debug集群不注册到资源系统 @param cluster_group: @return: """ cluster_label = "standard" result_list = get_flink_session_std_cluster(resource_group_id=cluster_group, active=1) # 根据 cluster_group, cluster_label, version 进行选举或另起新集群 flink_cluster_overview = [] func_info = [] jobnavi_cluster_info = {} for result in result_list: resource_group_id = result["resource_group_id"] cluster_name = result["cluster_name"] geog_area_code = result["geog_area_code"] flink_cluster_overview.append( { "cluster_group": resource_group_id, "cluster_label": cluster_label, "cluster_name": cluster_name, "geog_area_code": geog_area_code, "version": FLINK_VERSION, "overview": {}, } ) if geog_area_code not in jobnavi_cluster_info: jobnavi_cluster_id = JobNaviHelper.get_jobnavi_cluster("stream") jobnavi_cluster_info[geog_area_code] = jobnavi_cluster_id jobnavi_cluster_id = jobnavi_cluster_info[geog_area_code] params = { "geog_area_code": geog_area_code, "jobnavi_cluster_id": jobnavi_cluster_id, "cluster_name": cluster_name, } func_info.append([_get_flink_cluster_overview, params]) # 控制最大并发为 COMMON_MAX_COROUTINE_NUM threads_res = [] for segment in [ func_info[i : i + COMMON_MAX_COROUTINE_NUM] for i in range(0, len(func_info), COMMON_MAX_COROUTINE_NUM) ]: threads_res.extend(concurrent_call_func(segment)) # 根据 cluster_group, cluster_label, version 进行分组,每一个组中的值为一个选举集合 grouped_flink_cluster_info = {} error_clusters = [] for idx, flink_cluster in enumerate(flink_cluster_overview): # 若线程调用异常返回,threads_res[idx] 为 None overview = threads_res[idx] or {} if not overview: # 获取当前集群信息失败 error_clusters.append( { "cluster_group": flink_cluster["resource_group_id"], "cluster_label": cluster_label, "cluster_name": flink_cluster["cluster_name"], "version": FLINK_VERSION, } ) continue flink_clusters_to_elect = grouped_flink_cluster_info.setdefault( ( flink_cluster["cluster_group"], flink_cluster["cluster_label"], flink_cluster["version"], ), [], ) flink_clusters_to_elect.append( { "cluster_name": flink_cluster["cluster_name"], "geog_area_code": flink_cluster["geog_area_code"], "overview": overview, } ) # 打印获取信息异常的 yarn-session 集群 if error_clusters: content = "<br>".join( map( lambda _cluster: "资源组: {}, 集群名称: {}".format(_cluster["cluster_group"], _cluster["cluster_name"]), error_clusters, ) ) logger.exception("get yarn-session schedule info error: %s\n" % content) send_message(SYSTEM_ADMINISTRATORS, "《获取 yarn-session 集群信息失败》", content) max_priority_clusters = [] apply_flink_clusters = [] for group_key, _flink_clusters_info in list(grouped_flink_cluster_info.items()): # 在 _flink_clusters_info 中将负载最低的集群的优先级赋值为1,其它为0 # 若 _flink_clusters_info 中所有集群都是非正常(非低负载)状态,需要根据 group_key 申请新集群 max_yarn_session_num = -1 max_priority_cluster_name = None min_cluster_load_state = -1 # 标记当前 cluster_group、cluster_label 是否需要启动集群 has_available_cluster = False # 一个 group_key 必定对应一个 geog_area_code geog_area_code = None for _flink_cluster_info in _flink_clusters_info: _load_state = get_flink_cluster_load_state(_flink_cluster_info["overview"]) _yarn_session_num = _get_yarn_session_num(group_key[0], group_key[1], _flink_cluster_info["cluster_name"]) if _yarn_session_num > max_yarn_session_num: max_yarn_session_num = _yarn_session_num # 该标配(高配)集群组存在可用资源,不申请新集群 has_available_cluster = _load_state["available"] | has_available_cluster if min_cluster_load_state == -1 or _load_state["value"] <= min_cluster_load_state: max_priority_cluster_name = _flink_cluster_info["cluster_name"] min_cluster_load_state = _load_state["value"] geog_area_code = _flink_cluster_info["geog_area_code"] if not has_available_cluster: apply_flink_clusters.append( { "cluster_group": group_key[0], "cluster_label": group_key[1], "version": group_key[2], "cluster_name": "{}_{}{}".format(group_key[0], group_key[1], max_yarn_session_num + 1), "geog_area_code": geog_area_code, } ) # 对于当前的 group_key, 需要将 cluster_name 对应的记录的优先级置为最高 max_priority_clusters.append( { "cluster_group": group_key[0], "cluster_label": group_key[1], "version": group_key[2], "cluster_name": max_priority_cluster_name, "geog_area_code": geog_area_code, } ) # 重置优先级 _update_flink_cluster_priority(max_priority_clusters) # 申请集群 if apply_flink_clusters: _apply_yarn_session(apply_flink_clusters)
5,355,653
def all_but_ast(check): """Only passes AST to check.""" def _check_wrapper(contents, ast, **kwargs): """Wrap check and passes the AST to it.""" del contents del kwargs return check(ast) return _check_wrapper
5,355,654
def get_history_items(): """ Get all history item """ return [ readline.get_history_item(i) for i in xrange(1, readline.get_current_history_length() + 1) ]
5,355,655
def generate_nucmer_commands( filenames: List[Path], outdir: Path = Path("."), nucmer_exe: Path = pyani_config.NUCMER_DEFAULT, filter_exe: Path = pyani_config.FILTER_DEFAULT, maxmatch: bool = False, ) -> Tuple[List, List]: """Return list of NUCmer command-lines for ANIm. :param filenames: a list of paths to input FASTA files :param outdir: path to output directory :param nucmer_exe: location of the nucmer binary :param maxmatch: Boolean flag indicating to use NUCmer's -maxmatch option The first element returned is a list of NUCmer commands, and the second a corresponding list of delta_filter_wrapper.py commands. The NUCmer commands should each be run before the corresponding delta-filter command. TODO: This return value needs to be reworked as a collection. Loop over all FASTA files generating NUCmer command lines for each pairwise comparison. """ nucmer_cmdlines, delta_filter_cmdlines = [], [] filenames = sorted(filenames) # enforce ordering of filenames for idx, fname1 in enumerate(filenames[:-1]): for fname2 in filenames[idx + 1 :]: ncmd, dcmd = construct_nucmer_cmdline( fname1, fname2, outdir, nucmer_exe, filter_exe, maxmatch ) nucmer_cmdlines.append(ncmd) delta_filter_cmdlines.append(dcmd) return (nucmer_cmdlines, delta_filter_cmdlines)
5,355,656
def normalize(*args): """Scale a sequence of occurrences into probabilities that sum up to 1.""" total = sum(args) return [arg / total for arg in args]
5,355,657
def get_CZI_zstack(filename,frame,channel,filepath=None,img_info=None): """ Obtains a single z-stack from a 3D imaging time-series for a specified time and channel. Parameters ---------- filename : str Name of the file from which to retrieve the z-stack. frame : int The temporal slice of the image series from which to retrieve the z-stack. channel : int The channel from which to retrieve the z-stack. filepath : str, optional Path to the file. img_info : tuple of ints, optional 5-tuple containing lengths of the `X`, `Y`, `Z` (spatial), `T` (temporal) dimensions of the image series, and the number of channels, `num_channels`. E.g. (sizeX,sizeY,sizeZ,sizeT,num_channels). See output of get_CZI_metadata(). Pass these pre-computed values for increased speed in batch processing. Returns ------- zstack : numpy.ndarray, or None Z-stack of the image series specified by the desired `frame`; contains 3 spatial dimensions. If loading is unsuccessful, `None` is returned. """ # prepare file name, check that file exists if not (filepath is None): czi_image = os.path.join(filepath,filename) else: czi_image = filename if not os.path.exists(czi_image): return None # retrieve image dimensions, and number of channels if img_info is None: (sizeX,sizeY,sizeZ,sizeT,num_channels), _ = get_CZI_metadata(filename,filepath=filepath) else: assert len(img_info) == 5 (sizeX,sizeY,sizeZ,sizeT,num_channels) = img_info # make sure frame and channel are in bounds assert frame < sizeT assert channel < num_channels #initialize array and load z-stack zstack = np.zeros((sizeZ, sizeY,sizeX)) with bioformats.ImageReader(czi_image) as reader: for z in range(sizeZ): zstack[z,:,:] = reader.read(t=frame,z=z,c=channel) return zstack
5,355,658
def test_game(): """ Run through a few games and make sure there's no exceptions. """ for i in range(10): for n in range(2, 5): g = Game(n) while not g.winner(): g.act(random.choice(g.options()))
5,355,659
def _make_request( resource: str, from_currency_code: str, to_currency_code: str, timestamp: int, access_token: str, exchange_code: str, num_records: int, api_version: str ) -> requests.Response: """ API documentation for cryptocompare can be found at https://min-api.cryptocompare.com/documentation """ base_url = f"https://min-api.cryptocompare.com/data/{api_version}/{resource}" params = { "fsym": from_currency_code, "tsym": to_currency_code, "e": exchange_code, "limit": num_records, "toTs": timestamp, "api_key": access_token } return requests.get(base_url, params=params)
5,355,660
def dependencies_order_of_build(target_contract, dependencies_map): """ Return an ordered list of contracts that is sufficient to sucessfully deploys the target contract. Note: This function assumes that the `dependencies_map` is an acyclic graph. """ if len(dependencies_map) == 0: return [target_contract] if target_contract not in dependencies_map: raise ValueError('no dependencies defined for {}'.format(target_contract)) order = [target_contract] todo = list(dependencies_map[target_contract]) while len(todo): target_contract = todo.pop(0) target_pos = len(order) for dependency in dependencies_map[target_contract]: # we need to add the current contract before all it's depedencies if dependency in order: target_pos = order.index(dependency) else: todo.append(dependency) order.insert(target_pos, target_contract) order.reverse() return order
5,355,661
def projective_error_function(params, args): """ :param params: :param args: :return: """ # fx fy cx cy k0 k1 project_params = params[0:5] f, cx, cy, k0, k1 = project_params K = eye(3, 3) K[0,0] = f K[1,1] = f K[0, 2] = k0 K[1, 2] = k1 model, image = args tp = params[5:] _, R, t = transform(tp, model) Rt = np.c_[R, t.transpose()] # Reconstruct camera matrix P = K @ Rt # Project X = np.zeros((4, len(model[0]))) X[0:3] = model X[3] = 1 PX = P @ X image_star = PX[0:2] / PX[2] dataShape = image.shape nData = dataShape[0] * dataShape[1] imagevec = image.reshape(1, nData)[0] image_star_vec = image_star.reshape(1, nData)[0] return imagevec - image_star_vec
5,355,662
def _transform_masks(y, transform, data_format=None, **kwargs): """Based on the transform key, apply a transform function to the masks. Refer to :mod:`deepcell.utils.transform_utils` for more information about available transforms. Caution for unknown transform keys. Args: y (numpy.array): Labels of ``ndim`` 4 or 5 transform (str): Name of the transform, one of ``{"deepcell", "disc", "watershed", None}``. data_format (str): A string, one of ``channels_last`` (default) or ``channels_first``. The ordering of the dimensions in the inputs. ``channels_last`` corresponds to inputs with shape ``(batch, height, width, channels)`` while ``channels_first`` corresponds to inputs with shape ``(batch, channels, height, width)``. kwargs (dict): Optional transform keyword arguments. Returns: numpy.array: the output of the given transform function on ``y``. Raises: ValueError: Rank of ``y`` is not 4 or 5. ValueError: Channel dimension of ``y`` is not 1. ValueError: ``transform`` is invalid value. """ valid_transforms = { 'deepcell', # deprecated for "pixelwise" 'pixelwise', 'disc', 'watershed', # deprecated for "outer-distance" 'watershed-cont', # deprecated for "outer-distance" 'inner-distance', 'outer-distance', 'centroid', # deprecated for "inner-distance" 'fgbg' } if data_format is None: data_format = K.image_data_format() if y.ndim not in {4, 5}: raise ValueError('`labels` data must be of ndim 4 or 5. Got', y.ndim) channel_axis = 1 if data_format == 'channels_first' else -1 if y.shape[channel_axis] != 1: raise ValueError('Expected channel axis to be 1 dimension. Got', y.shape[1 if data_format == 'channels_first' else -1]) if isinstance(transform, str): transform = transform.lower() if transform not in valid_transforms and transform is not None: raise ValueError('`{}` is not a valid transform'.format(transform)) if transform in {'pixelwise', 'deepcell'}: if transform == 'deepcell': warnings.warn('The `{}` transform is deprecated. Please use the ' '`pixelwise` transform instead.'.format(transform), DeprecationWarning) dilation_radius = kwargs.pop('dilation_radius', None) separate_edge_classes = kwargs.pop('separate_edge_classes', False) edge_class_shape = 4 if separate_edge_classes else 3 if data_format == 'channels_first': shape = tuple([y.shape[0]] + [edge_class_shape] + list(y.shape[2:])) else: shape = tuple(list(y.shape[0:-1]) + [edge_class_shape]) # using uint8 since should only be 4 unique values. y_transform = np.zeros(shape, dtype=np.uint8) for batch in range(y_transform.shape[0]): if data_format == 'channels_first': mask = y[batch, 0, ...] else: mask = y[batch, ..., 0] y_transform[batch] = transform_utils.pixelwise_transform( mask, dilation_radius, data_format=data_format, separate_edge_classes=separate_edge_classes) elif transform in {'outer-distance', 'watershed', 'watershed-cont'}: if transform in {'watershed', 'watershed-cont'}: warnings.warn('The `{}` transform is deprecated. Please use the ' '`outer-distance` transform instead.'.format(transform), DeprecationWarning) by_frame = kwargs.pop('by_frame', True) bins = kwargs.pop('distance_bins', None) distance_kwargs = { 'bins': bins, 'erosion_width': kwargs.pop('erosion_width', 0), } # If using 3d transform, pass in scale arg if y.ndim == 5 and not by_frame: distance_kwargs['sampling'] = kwargs.pop('sampling', [0.5, 0.217, 0.217]) if data_format == 'channels_first': shape = tuple([y.shape[0]] + list(y.shape[2:])) else: shape = y.shape[0:-1] y_transform = np.zeros(shape, dtype=K.floatx()) if y.ndim == 5: if by_frame: _distance_transform = transform_utils.outer_distance_transform_movie else: _distance_transform = transform_utils.outer_distance_transform_3d else: _distance_transform = transform_utils.outer_distance_transform_2d for batch in range(y_transform.shape[0]): if data_format == 'channels_first': mask = y[batch, 0, ...] else: mask = y[batch, ..., 0] y_transform[batch] = _distance_transform(mask, **distance_kwargs) y_transform = np.expand_dims(y_transform, axis=-1) if bins is not None: # convert to one hot notation # uint8's max value of255 seems like a generous limit for binning. y_transform = to_categorical(y_transform, num_classes=bins, dtype=np.uint8) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) elif transform in {'inner-distance', 'centroid'}: if transform == 'centroid': warnings.warn('The `{}` transform is deprecated. Please use the ' '`inner-distance` transform instead.'.format(transform), DeprecationWarning) by_frame = kwargs.pop('by_frame', True) bins = kwargs.pop('distance_bins', None) distance_kwargs = { 'bins': bins, 'erosion_width': kwargs.pop('erosion_width', 0), 'alpha': kwargs.pop('alpha', 0.1), 'beta': kwargs.pop('beta', 1) } # If using 3d transform, pass in scale arg if y.ndim == 5 and not by_frame: distance_kwargs['sampling'] = kwargs.pop('sampling', [0.5, 0.217, 0.217]) if data_format == 'channels_first': shape = tuple([y.shape[0]] + list(y.shape[2:])) else: shape = y.shape[0:-1] y_transform = np.zeros(shape, dtype=K.floatx()) if y.ndim == 5: if by_frame: _distance_transform = transform_utils.inner_distance_transform_movie else: _distance_transform = transform_utils.inner_distance_transform_3d else: _distance_transform = transform_utils.inner_distance_transform_2d for batch in range(y_transform.shape[0]): if data_format == 'channels_first': mask = y[batch, 0, ...] else: mask = y[batch, ..., 0] y_transform[batch] = _distance_transform(mask, **distance_kwargs) y_transform = np.expand_dims(y_transform, axis=-1) if distance_kwargs['bins'] is not None: # convert to one hot notation # uint8's max value of255 seems like a generous limit for binning. y_transform = to_categorical(y_transform, num_classes=bins, dtype=np.uint8) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) elif transform == 'disc' or transform is None: dtype = K.floatx() if transform == 'disc' else np.int32 y_transform = to_categorical(y.squeeze(channel_axis), dtype=dtype) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) elif transform == 'fgbg': y_transform = np.where(y > 1, 1, y) # convert to one hot notation if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, 1, y.ndim) # using uint8 since should only be 2 unique values. y_transform = to_categorical(y_transform, dtype=np.uint8) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) return y_transform
5,355,663
def root_dir(): """ Returns root director for this project """ return os.path.dirname(os.path.realpath(__file__ + '/..'))
5,355,664
def query_subgraph(seeds, genes_top, output_path): # pylint: disable=too-many-locals """ This function queries the data, writes the resulting subgraph and returns a dictionary containing the number of nodes and edges. seeds: list genes_top: dict whose keys are genes and values are their ranks """ genes_list = list(genes_top.keys()) genes = set(seeds + genes_list) seeds_set = frozenset(seeds) # Produce the induced subgraph of genes in all networks. nodes_raw, edges_raw = query_sqlite(genes) # Only keep the nodes of interest. nodes = [node for node in nodes_raw if normalized_node_id(node["_id"]) in genes] edges = [ edge for edge in edges_raw if ( normalized_node_id(edge["_from"]) in genes and normalized_node_id(edge["_to"]) in genes ) ] def node_is_seed(node_id): return normalized_node_id(node_id) in seeds_set # graph data cytoscape_nodes = [ dict( data=cytoscape_node( node, genes_top.get(normalized_node_id(node["_id"])), seed=node_is_seed(node["_id"]), ) ) for node in nodes ] cytoscape_edges = [dict(data=cytoscape_edge(edge)) for edge in edges] cytoscape_data = dict( nodes=cytoscape_nodes, edges=cytoscape_edges, ) cytoscape_path = os.path.join(output_path, "graph.json") with open(cytoscape_path, "w") as cytoscape_json: cytoscape_json.write(json.dumps(cytoscape_data)) # graph metadata return dict( nodes=len(nodes), edges=len(edges), )
5,355,665
def get_cur_version(): """ Get current apk version string """ pkg_name = cur_activity.getPackageName() return str( cur_activity.getPackageManager().getPackageInfo( pkg_name, 0).versionName)
5,355,666
def get_item(TableName=None, Key=None, AttributesToGet=None, ConsistentRead=None, ReturnConsumedCapacity=None, ProjectionExpression=None, ExpressionAttributeNames=None): """ The GetItem operation returns a set of attributes for the item with the given primary key. If there is no matching item, GetItem does not return any data and there will be no Item element in the response. See also: AWS API Documentation Exceptions Examples This example retrieves an item from the Music table. The table has a partition key and a sort key (Artist and SongTitle), so you must specify both of these attributes. Expected Output: :example: response = client.get_item( TableName='string', Key={ 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } }, AttributesToGet=[ 'string', ], ConsistentRead=True|False, ReturnConsumedCapacity='INDEXES'|'TOTAL'|'NONE', ProjectionExpression='string', ExpressionAttributeNames={ 'string': 'string' } ) :type TableName: string :param TableName: [REQUIRED]\nThe name of the table containing the requested item.\n :type Key: dict :param Key: [REQUIRED]\nA map of attribute names to AttributeValue objects, representing the primary key of the item to retrieve.\nFor the primary key, you must provide all of the attributes. For example, with a simple primary key, you only need to provide a value for the partition key. For a composite primary key, you must provide values for both the partition key and the sort key.\n\n(string) --\n(dict) --Represents the data for an attribute.\nEach attribute value is described as a name-value pair. The name is the data type, and the value is the data itself.\nFor more information, see Data Types in the Amazon DynamoDB Developer Guide .\n\nS (string) --An attribute of type String. For example:\n\n'S': 'Hello'\n\nN (string) --An attribute of type Number. For example:\n\n'N': '123.45'\nNumbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations.\n\nB (bytes) --An attribute of type Binary. For example:\n\n'B': 'dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk'\n\nSS (list) --An attribute of type String Set. For example:\n\n'SS': ['Giraffe', 'Hippo' ,'Zebra']\n\n(string) --\n\n\nNS (list) --An attribute of type Number Set. For example:\n\n'NS': ['42.2', '-19', '7.5', '3.14']\nNumbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations.\n\n(string) --\n\n\nBS (list) --An attribute of type Binary Set. For example:\n\n'BS': ['U3Vubnk=', 'UmFpbnk=', 'U25vd3k=']\n\n(bytes) --\n\n\nM (dict) --An attribute of type Map. For example:\n\n'M': {'Name': {'S': 'Joe'}, 'Age': {'N': '35'}}\n\n(string) --\n(dict) --Represents the data for an attribute.\nEach attribute value is described as a name-value pair. The name is the data type, and the value is the data itself.\nFor more information, see Data Types in the Amazon DynamoDB Developer Guide .\n\n\n\n\n\nL (list) --An attribute of type List. For example:\n\n'L': [ {'S': 'Cookies'} , {'S': 'Coffee'}, {'N', '3.14159'}]\n\n(dict) --Represents the data for an attribute.\nEach attribute value is described as a name-value pair. The name is the data type, and the value is the data itself.\nFor more information, see Data Types in the Amazon DynamoDB Developer Guide .\n\n\n\nNULL (boolean) --An attribute of type Null. For example:\n\n'NULL': true\n\nBOOL (boolean) --An attribute of type Boolean. For example:\n\n'BOOL': true\n\n\n\n\n\n\n :type AttributesToGet: list :param AttributesToGet: This is a legacy parameter. Use ProjectionExpression instead. For more information, see AttributesToGet in the Amazon DynamoDB Developer Guide .\n\n(string) --\n\n :type ConsistentRead: boolean :param ConsistentRead: Determines the read consistency model: If set to true , then the operation uses strongly consistent reads; otherwise, the operation uses eventually consistent reads. :type ReturnConsumedCapacity: string :param ReturnConsumedCapacity: Determines the level of detail about provisioned throughput consumption that is returned in the response:\n\nINDEXES - The response includes the aggregate ConsumedCapacity for the operation, together with ConsumedCapacity for each table and secondary index that was accessed. Note that some operations, such as GetItem and BatchGetItem , do not access any indexes at all. In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).\nTOTAL - The response includes only the aggregate ConsumedCapacity for the operation.\nNONE - No ConsumedCapacity details are included in the response.\n\n :type ProjectionExpression: string :param ProjectionExpression: A string that identifies one or more attributes to retrieve from the table. These attributes can include scalars, sets, or elements of a JSON document. The attributes in the expression must be separated by commas.\nIf no attribute names are specified, then all attributes are returned. If any of the requested attributes are not found, they do not appear in the result.\nFor more information, see Specifying Item Attributes in the Amazon DynamoDB Developer Guide .\n :type ExpressionAttributeNames: dict :param ExpressionAttributeNames: One or more substitution tokens for attribute names in an expression. The following are some use cases for using ExpressionAttributeNames :\n\nTo access an attribute whose name conflicts with a DynamoDB reserved word.\nTo create a placeholder for repeating occurrences of an attribute name in an expression.\nTo prevent special characters in an attribute name from being misinterpreted in an expression.\n\nUse the # character in an expression to dereference an attribute name. For example, consider the following attribute name:\n\nPercentile\n\nThe name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression. (For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer Guide ). To work around this, you could specify the following for ExpressionAttributeNames :\n\n{'#P':'Percentile'}\n\nYou could then use this substitution in an expression, as in this example:\n\n#P = :val\n\n\nNote\nTokens that begin with the : character are expression attribute values , which are placeholders for the actual value at runtime.\n\nFor more information on expression attribute names, see Specifying Item Attributes in the Amazon DynamoDB Developer Guide .\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Item': { 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } }, 'ConsumedCapacity': { 'TableName': 'string', 'CapacityUnits': 123.0, 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'Table': { 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'CapacityUnits': 123.0 }, 'LocalSecondaryIndexes': { 'string': { 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'CapacityUnits': 123.0 } }, 'GlobalSecondaryIndexes': { 'string': { 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'CapacityUnits': 123.0 } } } } Response Structure (dict) -- Represents the output of a GetItem operation. Item (dict) -- A map of attribute names to AttributeValue objects, as specified by ProjectionExpression . (string) -- (dict) -- Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . S (string) -- An attribute of type String. For example: "S": "Hello" N (string) -- An attribute of type Number. For example: "N": "123.45" Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. B (bytes) -- An attribute of type Binary. For example: "B": "dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk" SS (list) -- An attribute of type String Set. For example: "SS": ["Giraffe", "Hippo" ,"Zebra"] (string) -- NS (list) -- An attribute of type Number Set. For example: "NS": ["42.2", "-19", "7.5", "3.14"] Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. (string) -- BS (list) -- An attribute of type Binary Set. For example: "BS": ["U3Vubnk=", "UmFpbnk=", "U25vd3k="] (bytes) -- M (dict) -- An attribute of type Map. For example: "M": {"Name": {"S": "Joe"}, "Age": {"N": "35"}} (string) -- (dict) -- Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . L (list) -- An attribute of type List. For example: "L": [ {"S": "Cookies"} , {"S": "Coffee"}, {"N", "3.14159"}] (dict) -- Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . NULL (boolean) -- An attribute of type Null. For example: "NULL": true BOOL (boolean) -- An attribute of type Boolean. For example: "BOOL": true ConsumedCapacity (dict) -- The capacity units consumed by the GetItem operation. The data returned includes the total provisioned throughput consumed, along with statistics for the table and any indexes involved in the operation. ConsumedCapacity is only returned if the ReturnConsumedCapacity parameter was specified. For more information, see Read/Write Capacity Mode in the Amazon DynamoDB Developer Guide . TableName (string) -- The name of the table that was affected by the operation. CapacityUnits (float) -- The total number of capacity units consumed by the operation. ReadCapacityUnits (float) -- The total number of read capacity units consumed by the operation. WriteCapacityUnits (float) -- The total number of write capacity units consumed by the operation. Table (dict) -- The amount of throughput consumed on the table affected by the operation. ReadCapacityUnits (float) -- The total number of read capacity units consumed on a table or an index. WriteCapacityUnits (float) -- The total number of write capacity units consumed on a table or an index. CapacityUnits (float) -- The total number of capacity units consumed on a table or an index. LocalSecondaryIndexes (dict) -- The amount of throughput consumed on each local index affected by the operation. (string) -- (dict) -- Represents the amount of provisioned throughput capacity consumed on a table or an index. ReadCapacityUnits (float) -- The total number of read capacity units consumed on a table or an index. WriteCapacityUnits (float) -- The total number of write capacity units consumed on a table or an index. CapacityUnits (float) -- The total number of capacity units consumed on a table or an index. GlobalSecondaryIndexes (dict) -- The amount of throughput consumed on each global index affected by the operation. (string) -- (dict) -- Represents the amount of provisioned throughput capacity consumed on a table or an index. ReadCapacityUnits (float) -- The total number of read capacity units consumed on a table or an index. WriteCapacityUnits (float) -- The total number of write capacity units consumed on a table or an index. CapacityUnits (float) -- The total number of capacity units consumed on a table or an index. Exceptions DynamoDB.Client.exceptions.ProvisionedThroughputExceededException DynamoDB.Client.exceptions.ResourceNotFoundException DynamoDB.Client.exceptions.RequestLimitExceeded DynamoDB.Client.exceptions.InternalServerError Examples This example retrieves an item from the Music table. The table has a partition key and a sort key (Artist and SongTitle), so you must specify both of these attributes. response = client.get_item( Key={ 'Artist': { 'S': 'Acme Band', }, 'SongTitle': { 'S': 'Happy Day', }, }, TableName='Music', ) print(response) Expected Output: { 'Item': { 'AlbumTitle': { 'S': 'Songs About Life', }, 'Artist': { 'S': 'Acme Band', }, 'SongTitle': { 'S': 'Happy Day', }, }, 'ResponseMetadata': { '...': '...', }, } :return: { 'Item': { 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } }, 'ConsumedCapacity': { 'TableName': 'string', 'CapacityUnits': 123.0, 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'Table': { 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'CapacityUnits': 123.0 }, 'LocalSecondaryIndexes': { 'string': { 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'CapacityUnits': 123.0 } }, 'GlobalSecondaryIndexes': { 'string': { 'ReadCapacityUnits': 123.0, 'WriteCapacityUnits': 123.0, 'CapacityUnits': 123.0 } } } } :returns: (string) -- """ pass
5,355,667
def main(arguments=None): """Parse args and run """ parser = parse_arguments() args = parser.parse_args(arguments) smif.cli.log.setup_logging(args.verbose) def exception_handler(exception_type, exception, traceback, debug_hook=sys.excepthook): if args.verbose: debug_hook(exception_type, exception, traceback) else: print("{}: {}".format(exception_type.__name__, exception)) sys.excepthook = exception_handler if 'func' in args: args.func(args) else: parser.print_help()
5,355,668
def checkpointload(checkpointfile): """Loads an hyperoptimizer checkpoint from file Returns a list of tuples (params, loss) referring to previous hyperoptimization trials """ try: with open(checkpointfile, "rb") as f: return pkl.load(f) except (FileNotFoundError, EOFError): return []
5,355,669
def encrypt_password(password, key): """ Encrypts the password using the given key. Args: password (str): password to be encrypted key (str): key to be used to encrypt the password """ from time import time from array import array import hmac import base64 h_hash = get_sha_hash uhash = h_hash(','.join(str(x) for x in [repr(time()), repr(os.getpid()), repr(len(password)), password, key]))[:16] k_enc, k_auth = h_hash('enc' + key + uhash), h_hash('auth' + key + uhash) pwd_len = len(password) password_stream = array('L', password + '0000'[pwd_len & 3:]) x_key = expand_key(k_enc, pwd_len + 4) for i_cnt in range(len(password_stream)): password_stream[i_cnt] = password_stream[i_cnt] ^ x_key[i_cnt] cipher_t = uhash + password_stream.tostring()[:pwd_len] auth = hmac.new(cipher_t, k_auth).digest() encrypt_str = cipher_t + auth[:8] encoded_str = base64.encodestring(encrypt_str) encrypted_password = encoded_str.rstrip('\n') return encrypted_password
5,355,670
def prepare_test_data(datapath): """ Wrapper function to load the test dataset """ print("Loading and encoding the test dataset") depth_test = np.array(pd.read_csv(os.path.join(datapath,'test_depth.txt'),sep="\t", header = None)) depth_test = depth_test.reshape(depth_test.shape[0],depth_test.shape[1], 1) exp_test = np.array(pd.read_csv(os.path.join(datapath,'test_expression.txt'),sep="\t", header = None)) exp_test = exp_test.reshape(exp_test.shape[0], exp_test.shape[1],1) time_test = np.array(pd.read_csv(os.path.join(datapath,'test_ref.txt'),sep="\t", header = None)) time_test = time_test.reshape(time_test.shape[0], time_test.shape[1], 1) foldchange_test = np.array(pd.read_csv(os.path.join(datapath,'test_foldchange.txt'),sep="\t", header = None)) foldchange_test = foldchange_test.reshape(foldchange_test.shape[0], foldchange_test.shape[1], 1) weight_test = time_test*foldchange_test seq_test, y_test = load_sequence_data(datapath, 'test_sequences.csv') test_bed= pr.read_bed(os.path.join(datapath,"test_tiles.bed"), as_df=True) print('Test labels shape:', y_test.shape) print('Test features shape:', depth_test.shape, seq_test.shape, exp_test.shape, weight_test.shape) return depth_test, exp_test, weight_test, seq_test, y_test, test_bed
5,355,671
def get_case_color_marker(case): """Get color and marker based on case.""" black_o = ("#000000", "o") teal_D = ("#469990", "D") orange_s = ("#de9f16", "s") purple_v = ("#802f99", "v") bs = case["batch_size"] sub = case["subsampling"] mc = case["mc_samples"] if sub is None and mc == 0: # only bs mapping = {2: purple_v, 8: orange_s, 32: teal_D, 128: black_o} try: return mapping[bs] except KeyError: warn(f"Could not map bs={bs} to color-marker-pair. Returning (black, o)") return black_o if sub is not None and mc == 0: # only bs & sub return teal_D if sub is None and mc != 0: # only bs & mc return orange_s if sub is not None and mc != 0: # bs, sub & mc return purple_v
5,355,672
def clean_integer_score(x): """Converts x from potentially a float or string into a clean integer, and replace NA and NP values with one string character""" try: x = str(int(float(x))) except Exception as exc: if isinstance(x, basestring): pass else: raise x = x.lower().strip() return 'A' if x == 'na (not assesible)' else 'P' if x == 'np (not performed)' else x
5,355,673
def do_stuff2(): """This is not right.""" (first, second) = 1, 2, 3 return first + second
5,355,674
def rule_block_distributor(rule_param, src_cortical_area, dst_cortical_area, src_neuron_id, z_offset): """ This rule helps to take a set of unique inputs from one cortical area and develop synaptic projections that can lead to a comprehensive set of unique connections that covers all the combinations of the input values. Note: This function is designed for the corner case of the destination cortical area being 1 dimensional in z direction """ # todo: generalize this function so it takes the direction of the source and destination cortical areas as input candidate_list = list() block_list = blocks.z_block_refs(cortical_area=dst_cortical_area, x_ref=0, y_ref=0) source_x_depth = runtime_data.genome['blueprint'][src_cortical_area]['neuron_params']['block_boundaries'][0] for offset in range(source_x_depth): for block_ref in block_list: if blocks.block_ref_2_id(block_ref)[2] // (2 ** offset) % 2 == 0: for neuron in blocks.neurons_in_the_block(cortical_area=dst_cortical_area, block_ref=block_ref): candidate_list.append(neuron) return candidate_list
5,355,675
def get_extra(item_container): """ liefert die erste passende image_url """ if item_container.item.extra != '': return get_extra_data(item_container) item_container = item_container.get_parent() while item_container.item.app.name == 'dmsEduFolder': if item_container.item.extra != '': return get_extra_data(item_container) item_container = item_container.get_parent() if item_container.item.app.name != 'dmsEduFolder': return None
5,355,676
def abort_if_requests_doesnt_exists(id): """Checks if given id exists in the database""" if not Requests.get_one_by_field('id', value=id): api.abort(404, "Request with id {} doesn't exist or your provided an id that does not belong to you".format(id))
5,355,677
def pt_accuracy(output, target, topk=(1,)): """Compute the accuracy over the k top predictions for the specified values of k.""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res
5,355,678
def compute_phasing_counts(variant_to_read_names_dict): """ Parameters ---------- variants_to_read_names : dict Dictionary mapping varcode.Variant to set of read names Returns ------- Dictionary from variant to Counter(Variant) """ read_names_to_variants = defaultdict(set) for variant, read_names in variant_to_read_names_dict.items(): for read_name in read_names: read_names_to_variants[read_name].add(variant) # now count up how many reads are shared between pairs of variants phasing_counts = defaultdict(Counter) for variant, read_names in variant_to_read_names_dict.items(): for read_name in read_names: for other_variant in read_names_to_variants[read_name]: if variant != other_variant: phasing_counts[variant][other_variant] += 1 return phasing_counts
5,355,679
def run_bar( bar, sort_by=["sample_num"], dryrun=0, rev=[False], delete_as_complete=True, retract_when_done=False, save_as_complete="", ): """ run all sample dictionaries stored in the list bar @param bar: a list of sample dictionaries @param sort_by: list of strings determining the sorting of scans strings include project, configuration, sample_id, plan, plan_args, spriority, apriority within which all of one acquisition, etc @param dryrun: Print out the list of plans instead of actually doing anything - safe to do during setup @param rev: list the same length of sort_by, or booleans, wetierh to reverse that sort @param delete_as_complete: remove the acquisitions from the bar as we go, so we can automatically start back up @param retract_when_done: go to throughstation mode at the end of all runs. @param save_as_complete: if a valid path, will save the running bar to this position in case of failure @return: """ config_change_time = 120 # time to change between configurations, in seconds. save_to_file = False try: open(save_as_complete, "w") except OSError: save_to_file = False pass else: save_to_file = True list_out = [] for samp_num, s in enumerate(bar): sample = s sample_id = s["sample_id"] sample_project = s["project_name"] for acq_num, a in enumerate(s["acquisitions"]): if "priority" not in a.keys(): a["priority"] = 50 list_out.append( [ sample_id, # 0 X sample_project, # 1 X a["configuration"], # 2 X a["plan_name"], # 3 avg_scan_time(a["plan_name"], 2), # 4 calculated plan time sample, # 5 full sample dict a, # 6 full acquisition dict samp_num, # 7 sample index acq_num, # 8 acq index a["args"], # 9 X s["density"], # 10 s["proposal_id"], # 11 X s["sample_priority"], # 12 X a["priority"], ] ) # 13 X switcher = { "sample_id": 0, "project": 1, "config": 2, "plan": 3, "plan_args": 9, "proposal": 11, "spriority": 12, "apriority": 13, "sample_num": 7, } # add anything to the above list, and make a key in the above dictionary, # using that element to sort by something else try: sort_by.reverse() rev.reverse() except AttributeError: if isinstance(sort_by, str): sort_by = [sort_by] rev = [rev] else: print( "sort_by needs to be a list of strings\n" "such as project, configuration, sample_id, plan, plan_args, spriority, apriority" ) return try: for k, r in zip(sort_by, rev): list_out = sorted(list_out, key=itemgetter(switcher[k]), reverse=r) except KeyError: print( "sort_by needs to be a list of strings\n" "such as project, configuration, sample_id, plan, plan_args, spriority, apriority" ) return if dryrun: text = "" total_time = 0 for i, step in enumerate(list_out): # check configuration # check sample position # check acquisition text += "load {} from {}, config {}, run {} (p {} a {}), starts @ {} takes {}\n".format( step[5]["sample_name"], step[1], step[2], step[3], step[12], step[13], time_sec(total_time), time_sec(step[4]), ) total_time += step[4] if step[2] != list_out[i - 1][2]: total_time += config_change_time text += ( f"\n\nTotal estimated time including config changes {time_sec(total_time)}" ) boxed_text("Dry Run", text, "lightblue", width=120, shrink=True) else: run_start_time = datetime.datetime.now() for i, step in enumerate(list_out): time_remaining = sum([avg_scan_time(row[3],nscans=2) for row in list_out[i:]]) this_step_time = avg_scan_time(step[3],nscans=2) start_time = datetime.datetime.now() total_time = datetime.datetime.now() - run_start_time boxed_text( "Scan Status", "\nTime so far: {}".format(str(total_time)) + "\nStarting scan {} out of {}".format( colored(f"#{i + 1}", "blue"), len(list_out) ) + "{} of {} in project {} Proposal # {}\n which should take {}\n".format( colored(step[3], "blue"), # plan colored(step[0], "blue"), # sample_id colored(step[1], "blue"), # project colored(step[11], "blue"), # proposal time_sec(this_step_time), ) + f"time remaining approx {time_sec(time_remaining)} \n\n", "red", width=120, shrink=True, ) rsoxs_bot.send_message( f"Starting scan {i + 1} out of {len(list_out)}\n" + f"{step[3]} of {step[0]} in project {step[1]} Proposal # {step[11]}" f"\nwhich should take {time_sec(this_step_time)}" + f"\nTime so far: {str(total_time)}" f"time remaining approx {time_sec(time_remaining)}" ) yield from load_configuration(step[2]) # move to configuration yield from load_sample(step[5]) # move to sample / load sample metadata yield from do_acquisitions( [step[6]] ) # run acquisition (will load configuration again) uid = db[-1].uid print(f"acq uid = {uid}") scan_id = db[uid].start["scan_id"] timestamp = db[uid].start["time"] success = db[uid].stop["exit_status"] bar[step[7]].setdefault("acq_history", []).append( { "uid": uid, "scan_id": scan_id, "acq": step[6], "time": timestamp, "status": success, } ) if delete_as_complete: bar[step[7]]["acquisitions"].remove(step[6]) if save_to_file: save_samplesxls(bar, save_as_complete) elapsed_time = datetime.datetime.now() - start_time rsoxs_bot.send_message( f"Acquisition {scan_id} complete. Actual time : {str(elapsed_time)}," ) rsoxs_bot.send_message("All scans complete!") if retract_when_done: yield from all_out()
5,355,680
def test_domain_command_failure(client, mocker): """ When there is a invalid response then ValueError should be raised with valid message """ from GoogleChronicleBackstory import domain_command dummy_response = "{ \"error\": { \"code\": 400, \"message\": \"Invalid JSON payload received. Unknown name " \ "\'artifact.domai_name\': Cannot bind query parameter. Field \'domai_name\' could not be found " \ "in request message.\", \"status\": \"INVALID_ARGUMENT\", \"details\": [ { } ] } } " mock_response = ( Response(dict(status=400)), dummy_response ) client.http_client.request.return_value = mock_response mocker.patch('GoogleChronicleBackstory.return_error', new=return_error) with pytest.raises(ValueError) as error: domain_command(client, ARGS['domain']) expected_message = "Status code: 400\nError: Invalid JSON payload received. Unknown name \'artifact.domai_name\': " \ "Cannot bind query parameter. Field \'domai_name\' could not be found in request message." assert str(error.value) == expected_message
5,355,681
def _inputs_and_vae(hparams): """Constructs a VAE.""" obs_encoder = codec.MLPObsEncoder(hparams) obs_decoder = codec.MLPObsDecoder( hparams, codec.BernoulliDecoder(squeeze_input=True), param_size=1) inputs = context_mod.EncodeObserved(obs_encoder) vae = vae_mod.make(hparams, obs_encoder, obs_decoder) return inputs, vae
5,355,682
def main(): """Starts the bot.""" # TODO: Handle network errors, see: # https://github.com/python-telegram-bot/python-telegram-bot/wiki/Handling-network-errors # TODO: Multithreading can be implemented for performance. See: # https://github.com/python-telegram-bot/python-telegram-bot/wiki/Performance-Optimizations # Increase the connection pool size to 8 (Check telegram/ext/updater.py for # pool size requirements): req = Request(con_pool_size=8) # Set a limit of 29 messages per second (30 is the max. allowed, 29 should # ensure safety) for all chats, 19 per minute for groups (20 is maximum).: msgq = mq.MessageQueue(all_burst_limit=29, group_burst_limit=19) skiwobot = SanalkiwoBot(TOKEN, request=req, msg_queue=msgq) updater = UpdaterBotStop(bot=skiwobot, use_context=True) dp = updater.dispatcher jobq = updater.job_queue global BOT_ID BOT_ID = skiwobot.id # On command messages: # dp.add_handler(CommandHandler({"start", "basla", "baslat"}, start)) dp.add_handler(CommandHandler({"help", "yardim", "info"}, help_info)) dp.add_handler( CommandHandler({"corona", "covid", "covid19", "korona"}, corona) ) dp.add_handler( CommandHandler({"abonelik", "subscription"}, annc_subscription) ) dp.add_handler(CommandHandler({"db_backup"}, db_backup)) dp.add_handler(CommandHandler({"duyur", "announce"}, announce)) dp.add_handler(CommandHandler({"iptal", "abort"}, abort_state)) dp.add_handler( CommandHandler({"duyurusil", "revokeannc"}, revoke_announcement) ) # On non-command updates: # # Text messages which do not solely consist of commands and ignores # edits: dp.add_handler( MessageHandler( (Filters.text & (~Filters.update.edited_message)), read_incoming ) ) # (use different Filters attributes to associate message edits and other # types of messages with different func.s) # Log all errors: dp.add_error_handler(error_log) # Clean leftover files once a day with db_cleanup func.: # TODO: JobQueue might benefit from a better implementation. see: # https://github.com/python-telegram-bot/python-telegram-bot/wiki/Extensions-%E2%80%93-JobQueue jobq.run_repeating(db_cleanup, interval=dt.timedelta(days=1), first=0) # Start the bot: if DEPLOYED: updater.start_webhook( listen="0.0.0.0", port=PORT, url_path=TOKEN ) updater.bot.set_webhook("https://sanalkiwobot.herokuapp.com/" + TOKEN) else: updater.start_polling() logger.info("Waiting for input...") # Run the bot until the process receives SIGINT, SIGTERM or SIGABRT updater.idle()
5,355,683
def read_grid_hdf5(filepath, name): """Read a grid from HDF5 file. Parameters ---------- filepath : string or pathlib.Path object Path of the HDF5 file. name : string Name of the grid. Returns ------- x : numpy.ndarray The x-coordinates along a gridline in the x-direction. y : numpy.ndarray The y-coordinates along a gridline in the y-direction. z : numpy.ndarray The z-coordinates along a gridline in the z-direction. """ f = h5py.File(str(filepath), 'r') dim = len(f[name]) x, y, z = f[name]['x'][:], f[name]['y'][:], None if dim == 3: z = f[name]['z'][:] f.close() if z is None or len(z) == 1: return x, y return x, y, z
5,355,684
def string_to_version(verstring): """ Return a tuple of (epoch, version, release) from a version string This function replaces rpmUtils.miscutils.stringToVersion, see https://bugzilla.redhat.com/1364504 """ # is there an epoch? components = verstring.split(':') if len(components) > 1: epoch = components[0] else: epoch = 0 remaining = components[:2][0].split('-') version = remaining[0] release = remaining[1] return (epoch, version, release)
5,355,685
def cff2provn(filename): """Parse cml xml file and return a prov bundle object""" #filename = "/Users/fariba/Desktop/UCI/freesurfer/scripts/meta-MC-SCA-023_tp1.cml" tree = xml.dom.minidom.parse(filename) collections = tree.documentElement g = prov.ProvBundle() g.add_namespace(xsd) g.add_namespace(dcterms) g.add_namespace(cml) url_entity = g.entity(cml[get_id()]) url_entity.add_extra_attributes({prov.PROV['type']: nidm['nidm:ConnectomeFileFormat'], prov.PROV['location']: prov.Literal(filename, prov.XSD['String'])}) cml_collection = g.collection(cml[get_id()]) cml_collection.add_extra_attributes( {prov.PROV['type']: cml['connectome'], prov.PROV['label']: filename}) g.wasDerivedFrom(cml_collection, url_entity) # get species, subject_name, and subject_timepoint species = tree.getElementsByTagName('cml:species')[0].toxml() species = species.replace('<cml:species>', '').replace('</cml:species>', '') tp = '' sub = '' tags = collections.getElementsByTagName("cml:tag") for t in tags: if t.attributes['key'].value == 'subject_name': sub = t.toxml() if t.attributes['key'].value == 'subject_timepoint': tp = t.toxml() sub = sub.replace('<cml:tag key="subject_name">', '').replace('</cml:tag>', '') tp = tp.replace('<cml:tag key="subject_timepoint">', '').replace('</cml:tag>', '') #print species + " " + sub + " " + tp cml_meta = g.entity(cml[get_id()]) cml_meta.add_extra_attributes( {prov.PROV['type']: cml['connectome-meta'], cml['species']: species, cml['timepoint']: tp, cml['subject_name']: sub}) g.hadMember(cml_collection, cml_meta) volumes = collections.getElementsByTagName("cml:connectome-volume") c = 0 for v in volumes: c = c + 1 #print v.getAttribute("src") + " " + v.getAttribute("dtype") + " " + v.getAttribute("name") + " " + v.getAttribute("fileformat") #print v.attributes['fileformat'].value dtype = v.getAttribute('dtype') src = v.getAttribute('src') name = v.getAttribute('name') fileformat = v.getAttribute('fileformat') cml_volume = g.entity(cml[get_id()]) cml_volume.add_extra_attributes( {prov.PROV['type']: cml['connectome-volume'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_volume) tracks = collections.getElementsByTagName("cml:connectome-track") c = 0 for t in tracks: c = c + 1 #print t.getAttribute("src") + " " + t.getAttribute("dtype") + " " + t.getAttribute("name") + " " + t.getAttribute("fileformat") dtype = t.getAttribute('dtype') src = t.getAttribute('src') name = t.getAttribute('name') fileformat = t.getAttribute('fileformat') cml_track = g.entity(cml[get_id()]) cml_track.add_extra_attributes( {prov.PROV['type']: cml['connectome-track'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_track) networks = collections.getElementsByTagName("cml:connectome-network") c = 0 for n in networks: c = c + 1 #print n.getAttribute("src") + " " + n.getAttribute("dtype") + " " + n.getAttribute("name") + " " + n.getAttribute("fileformat") dtype = n.getAttribute('dtype') src = n.getAttribute('src') name = n.getAttribute('name') fileformat = n.getAttribute('fileformat') cml_network = g.entity(cml[get_id()]) cml_network.add_extra_attributes( {prov.PROV['type']: cml['connectome-network'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_network) surfaces = collections.getElementsByTagName("cml:connectome-surface") c = 0 for s in surfaces: c = c + 1 #print s.getAttribute("src") + " " + s.getAttribute("dtype") + " " + s.getAttribute("name") + " " + s.getAttribute("fileformat") dtype = s.getAttribute('dtype') src = s.getAttribute('src') name = s.getAttribute('name') fileformat = s.getAttribute('fileformat') cml_surface = g.entity(cml[get_id()]) cml_surface.add_extra_attributes( {prov.PROV['type']: cml['connectome-surface'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_surface) data = collections.getElementsByTagName("cml:connectome-data") c = 0 for d in data: c = c + 1 #print d.getAttribute("src") + " " + d.getAttribute("dtype") + " " + d.getAttribute("name") + " " + d.getAttribute("fileformat") dtype = d.getAttribute('dtype') src = d.getAttribute('src') name = d.getAttribute('name') cml_data = g.entity(cml[get_id()]) cml_data.add_extra_attributes( {prov.PROV['type']: cml['connectome-data'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_data) return g
5,355,686
def optional(idx, *args): """A converter for functions having optional arguments. The index to the last non-optional parameter is specified and a list of types for optional arguments follows. """ return lambda ctx, typespecs: _optional_imp(ctx, typespecs[idx], args)
5,355,687
def analysis(): """Work out numbers of patients done this year and whether on target""" def report_number_this_week(): try: with open('d:\\JOHN TILLET\\episode_data\\' 'jtdata\\weekly_data.py', 'rb') as pf: weekly = pickle.load(pf) print('Number this week: {}'.format(str(weekly['number']))) except IOError: print('Cant find weekly_data file') sys.exit(1) print() desired_weekly = int(input('Weekly target: ')) print(' **********') print('This period starts 1-7-2017') first_date = datetime.datetime(2017, 7, 1) today = datetime.datetime.today() days_diff = (today - first_date).days print('Days this period %d' % days_diff) first_invoice = 5057 csvfile = 'd:\\JOHN TILLET\\episode_data\\jtdata\\patients.csv' with open(csvfile, 'r') as file_handle: reader = csv.reader(file_handle) first_bill = next(reader) first_bill_invoice = int(first_bill[15]) with open('d:\\JOHN TILLET\\episode_data\\' 'jtdata\\invoice_store.py', 'rb') as handle: last_invoice = pickle.load(handle) invoice_diff = int(last_invoice - first_invoice) desired_number = int(days_diff * desired_weekly / 7) weekly_number = int((7 * invoice_diff / days_diff)) number_to_give_away = invoice_diff - desired_number print('Weekly target %d' % desired_weekly) print('Number done this period %d' % invoice_diff) report_number_this_week() print('Number done this print run %d' % (int(last_invoice) - first_bill_invoice)) print('Weekly no. patients %d' % weekly_number) print('Number available to give away %d to avereage %d per week.' % (number_to_give_away, desired_weekly)) print(' **********')
5,355,688
def calc_plot_ROC(y1, y2): """ Take two distributions and plot the ROC curve if you used the difference in those distributions as a binary classifier. :param y1: :param y2: :return: """ y_score = np.concatenate([y1, y2]) y_true = np.concatenate([np.zeros(len(y1)), np.ones(len(y2))]) return plot_ROC(y_true, y_score)
5,355,689
def custom_leastsq(obj_fn, jac_fn, x0, f_norm2_tol=1e-6, jac_norm_tol=1e-6, rel_ftol=1e-6, rel_xtol=1e-6, max_iter=100, num_fd_iters=0, max_dx_scale=1.0, damping_mode="identity", damping_basis="diagonal_values", damping_clip=None, use_acceleration=False, uphill_step_threshold=0.0, init_munu="auto", oob_check_interval=0, oob_action="reject", oob_check_mode=0, resource_alloc=None, arrays_interface=None, serial_solve_proc_threshold=100, x_limits=None, verbosity=0, profiler=None): """ An implementation of the Levenberg-Marquardt least-squares optimization algorithm customized for use within pyGSTi. This general purpose routine mimic to a large extent the interface used by `scipy.optimize.leastsq`, though it implements a newer (and more robust) version of the algorithm. Parameters ---------- obj_fn : function The objective function. Must accept and return 1D numpy ndarrays of length N and M respectively. Same form as scipy.optimize.leastsq. jac_fn : function The jacobian function (not optional!). Accepts a 1D array of length N and returns an array of shape (M,N). x0 : numpy.ndarray Initial evaluation point. f_norm2_tol : float, optional Tolerace for `F^2` where `F = `norm( sum(obj_fn(x)**2) )` is the least-squares residual. If `F**2 < f_norm2_tol`, then mark converged. jac_norm_tol : float, optional Tolerance for jacobian norm, namely if `infn(dot(J.T,f)) < jac_norm_tol` then mark converged, where `infn` is the infinity-norm and `f = obj_fn(x)`. rel_ftol : float, optional Tolerance on the relative reduction in `F^2`, that is, if `d(F^2)/F^2 < rel_ftol` then mark converged. rel_xtol : float, optional Tolerance on the relative value of `|x|`, so that if `d(|x|)/|x| < rel_xtol` then mark converged. max_iter : int, optional The maximum number of (outer) interations. num_fd_iters : int optional Internally compute the Jacobian using a finite-difference method for the first `num_fd_iters` iterations. This is useful when `x0` lies at a special or singular point where the analytic Jacobian is misleading. max_dx_scale : float, optional If not None, impose a limit on the magnitude of the step, so that `|dx|^2 < max_dx_scale^2 * len(dx)` (so elements of `dx` should be, roughly, less than `max_dx_scale`). damping_mode : {'identity', 'JTJ', 'invJTJ', 'adaptive'} How damping is applied. `'identity'` means that the damping parameter mu multiplies the identity matrix. `'JTJ'` means that mu multiplies the diagonal or singular values (depending on `scaling_mode`) of the JTJ (Fischer information and approx. hessaian) matrix, whereas `'invJTJ'` means mu multiplies the reciprocals of these values instead. The `'adaptive'` mode adaptively chooses a damping strategy. damping_basis : {'diagonal_values', 'singular_values'} Whether the the diagonal or singular values of the JTJ matrix are used during damping. If `'singular_values'` is selected, then a SVD of the Jacobian (J) matrix is performed and damping is performed in the basis of (right) singular vectors. If `'diagonal_values'` is selected, the diagonal values of relevant matrices are used as a proxy for the the singular values (saving the cost of performing a SVD). damping_clip : tuple, optional A 2-tuple giving upper and lower bounds for the values that mu multiplies. If `damping_mode == "identity"` then this argument is ignored, as mu always multiplies a 1.0 on the diagonal if the identity matrix. If None, then no clipping is applied. use_acceleration : bool, optional Whether to include a geodesic acceleration term as suggested in arXiv:1201.5885. This is supposed to increase the rate of convergence with very little overhead. In practice we've seen mixed results. uphill_step_threshold : float, optional Allows uphill steps when taking two consecutive steps in nearly the same direction. The condition for accepting an uphill step is that `(uphill_step_threshold-beta)*new_objective < old_objective`, where `beta` is the cosine of the angle between successive steps. If `uphill_step_threshold == 0` then no uphill steps are allowed, otherwise it should take a value between 1.0 and 2.0, with 1.0 being the most permissive to uphill steps. init_munu : tuple, optional If not None, a (mu, nu) tuple of 2 floats giving the initial values for mu and nu. oob_check_interval : int, optional Every `oob_check_interval` outer iterations, the objective function (`obj_fn`) is called with a second argument 'oob_check', set to True. In this case, `obj_fn` can raise a ValueError exception to indicate that it is Out Of Bounds. If `oob_check_interval` is 0 then this check is never performed; if 1 then it is always performed. oob_action : {"reject","stop"} What to do when the objective function indicates (by raising a ValueError as described above). `"reject"` means the step is rejected but the optimization proceeds; `"stop"` means the optimization stops and returns as converged at the last known-in-bounds point. oob_check_mode : int, optional An advanced option, expert use only. If 0 then the optimization is halted as soon as an *attempt* is made to evaluate the function out of bounds. If 1 then the optimization is halted only when a would-be *accepted* step is out of bounds. resource_alloc : ResourceAllocation, optional When not None, an resource allocation object used for distributing the computation across multiple processors. arrays_interface : ArraysInterface An object that provides an interface for creating and manipulating data arrays. serial_solve_proc_threshold : int optional When there are fewer than this many processors, the optimizer will solve linear systems serially, using SciPy on a single processor, rather than using a parallelized Gaussian Elimination (with partial pivoting) algorithm coded in Python. Since SciPy's implementation is more efficient, it's not worth using the parallel version until there are many processors to spread the work among. x_limits : numpy.ndarray, optional A (num_params, 2)-shaped array, holding on each row the (min, max) values for the corresponding parameter (element of the "x" vector). If `None`, then no limits are imposed. verbosity : int, optional Amount of detail to print to stdout. profiler : Profiler, optional A profiler object used for to track timing and memory usage. Returns ------- x : numpy.ndarray The optimal solution. converged : bool Whether the solution converged. msg : str A message indicating why the solution converged (or didn't). """ resource_alloc = _ResourceAllocation.cast(resource_alloc) comm = resource_alloc.comm printer = _VerbosityPrinter.create_printer(verbosity, comm) ari = arrays_interface # shorthand # MEM from ..baseobjs.profiler import Profiler # MEM debug_prof = Profiler(comm, True) # MEM profiler = debug_prof msg = "" converged = False global_x = x0.copy() f = obj_fn(global_x) # 'E'-type array norm_f = ari.norm2_f(f) # _np.linalg.norm(f)**2 half_max_nu = 2**62 # what should this be?? tau = 1e-3 alpha = 0.5 # for acceleration nu = 2 mu = 1 # just a guess - initialized on 1st iter and only used if rejected #Allocate potentially shared memory used in loop JTJ = ari.allocate_jtj() JTf = ari.allocate_jtf() x = ari.allocate_jtf() #x_for_jac = ari.allocate_x_for_jac() if num_fd_iters > 0: fdJac = ari.allocate_jac() ari.allscatter_x(global_x, x) if x_limits is not None: x_lower_limits = ari.allocate_jtf() x_upper_limits = ari.allocate_jtf() ari.allscatter_x(x_limits[:, 0], x_lower_limits) ari.allscatter_x(x_limits[:, 1], x_upper_limits) if damping_basis == "singular_values": Jac_V = ari.allocate_jtj() if damping_mode == 'adaptive': dx_lst = [ari.allocate_jtf(), ari.allocate_jtf(), ari.allocate_jtf()] new_x_lst = [ari.allocate_jtf(), ari.allocate_jtf(), ari.allocate_jtf()] global_new_x_lst = [global_x.copy() for i in range(3)] else: dx = ari.allocate_jtf() new_x = ari.allocate_jtf() global_new_x = global_x.copy() if use_acceleration: dx1 = ari.allocate_jtf() dx2 = ari.allocate_jtf() df2_x = ari.allocate_jtf() JTdf2 = ari.allocate_jtf() global_accel_x = global_x.copy() # don't let any component change by more than ~max_dx_scale if max_dx_scale: max_norm_dx = (max_dx_scale**2) * len(global_x) else: max_norm_dx = None if not _np.isfinite(norm_f): msg = "Infinite norm of objective function at initial point!" if len(global_x) == 0: # a model with 0 parameters - nothing to optimize msg = "No parameters to optimize"; converged = True # DB: from ..tools import matrixtools as _mt # DB: print("DB F0 (%s)=" % str(f.shape)); _mt.print_mx(f,prec=0,width=4) #num_fd_iters = 1000000 # DEBUG: use finite difference iterations instead # print("DEBUG: setting num_fd_iters == 0!"); num_fd_iters = 0 # DEBUG last_accepted_dx = None min_norm_f = 1e100 # sentinel best_x = ari.allocate_jtf() best_x[:] = x[:] # like x.copy() -the x-value corresponding to min_norm_f ('P'-type) spow = 0.0 # for damping_mode == 'adaptive' if damping_clip is not None: def dclip(ar): return _np.clip(ar, damping_clip[0], damping_clip[1]) else: def dclip(ar): return ar if init_munu != "auto": mu, nu = init_munu best_x_state = (mu, nu, norm_f, f.copy(), spow, None) # need f.copy() b/c f is objfn mem rawJTJ_scratch = None jtj_buf = ari.allocate_jtj_shared_mem_buf() try: for k in range(max_iter): # outer loop # assume global_x, x, f, fnorm hold valid values if len(msg) > 0: break # exit outer loop if an exit-message has been set if norm_f < f_norm2_tol: if oob_check_interval <= 1: msg = "Sum of squares is at most %g" % f_norm2_tol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state continue # can't make use of saved JTJ yet - recompute on nxt iter #printer.log("--- Outer Iter %d: norm_f = %g, mu=%g" % (k,norm_f,mu)) if profiler: profiler.memory_check("custom_leastsq: begin outer iter *before de-alloc*") Jac = None if profiler: profiler.memory_check("custom_leastsq: begin outer iter") # unnecessary b/c global_x is already valid: ari.allgather_x(x, global_x) if k >= num_fd_iters: Jac = jac_fn(global_x) # 'EP'-type, but doesn't actually allocate any more mem (!) else: # Note: x holds only number of "fine"-division params - need to use global_x, and # Jac only holds a subset of the derivative and element columns and rows, respectively. f_fixed = f.copy() # a static part of the distributed `f` resturned by obj_fn - MUST copy this. pslice = ari.jac_param_slice(only_if_leader=True) eps = 1e-7 #Don't do this: for ii, i in enumerate(range(pslice.start, pslice.stop)): (must keep procs in sync) for i in range(len(global_x)): x_plus_dx = global_x.copy() x_plus_dx[i] += eps fd = (obj_fn(x_plus_dx) - f_fixed) / eps if pslice.start <= i < pslice.stop: fdJac[:, i - pslice.start] = fd #if comm is not None: comm.barrier() # overkill for shared memory leader host barrier Jac = fdJac #DEBUG: compare with analytic jacobian (need to uncomment num_fd_iters DEBUG line above too) #Jac_analytic = jac_fn(x) #if _np.linalg.norm(Jac_analytic-Jac) > 1e-6: # print("JACDIFF = ",_np.linalg.norm(Jac_analytic-Jac)," per el=", # _np.linalg.norm(Jac_analytic-Jac)/Jac.size," sz=",Jac.size) # DB: from ..tools import matrixtools as _mt # DB: print("DB JAC (%s)=" % str(Jac.shape)); _mt.print_mx(Jac,prec=0,width=4); assert(False) if profiler: profiler.memory_check("custom_leastsq: after jacobian:" + "shape=%s, GB=%.2f" % (str(Jac.shape), Jac.nbytes / (1024.0**3))) Jnorm = _np.sqrt(ari.norm2_jac(Jac)) xnorm = _np.sqrt(ari.norm2_x(x)) printer.log("--- Outer Iter %d: norm_f = %g, mu=%g, |x|=%g, |J|=%g" % (k, norm_f, mu, xnorm, Jnorm)) #assert(_np.isfinite(Jac).all()), "Non-finite Jacobian!" # NaNs tracking #assert(_np.isfinite(_np.linalg.norm(Jac))), "Finite Jacobian has inf norm!" # NaNs tracking tm = _time.time() #OLD MPI-enabled JTJ computation ##if my_mpidot_qtys is None: ## my_mpidot_qtys = _mpit.distribute_for_dot(Jac.T.shape, Jac.shape, resource_alloc) #JTJ, JTJ_shm = _mpit.mpidot(Jac.T, Jac, my_mpidot_qtys[0], my_mpidot_qtys[1], # my_mpidot_qtys[2], resource_alloc, JTJ, JTJ_shm) # _np.dot(Jac.T,Jac) 'PP' ari.fill_jtj(Jac, JTJ, jtj_buf) ari.fill_jtf(Jac, f, JTf) # 'P'-type if profiler: profiler.add_time("custom_leastsq: dotprods", tm) #assert(not _np.isnan(JTJ).any()), "NaN in JTJ!" # NaNs tracking #assert(not _np.isinf(JTJ).any()), "inf in JTJ! norm Jac = %g" % _np.linalg.norm(Jac) # NaNs tracking #assert(_np.isfinite(JTJ).all()), "Non-finite JTJ!" # NaNs tracking #assert(_np.isfinite(JTf).all()), "Non-finite JTf!" # NaNs tracking idiag = ari.jtj_diag_indices(JTJ) norm_JTf = ari.infnorm_x(JTf) norm_x = ari.norm2_x(x) # _np.linalg.norm(x)**2 undamped_JTJ_diag = JTJ[idiag].copy() # 'P'-type #max_JTJ_diag = JTJ.diagonal().copy() JTf *= -1.0; minus_JTf = JTf # use the same memory for -JTf below (shouldn't use JTf anymore) #Maybe just have a minus_JTf variable? # FUTURE TODO: keep tallying allocated memory, i.e. array_types (stopped here) if damping_basis == "singular_values": # Jac = U * s * Vh; J.T * J = conj(V) * s * U.T * U * s * Vh = conj(V) * s^2 * Vh # Jac_U, Jac_s, Jac_Vh = _np.linalg.svd(Jac, full_matrices=False) # Jac_V = _np.conjugate(Jac_Vh.T) global_JTJ = ari.gather_jtj(JTJ) if comm is None or comm.rank == 0: global_Jac_s2, global_Jac_V = _np.linalg.eigh(global_JTJ) ari.scatter_jtj(global_Jac_V, Jac_V) comm.bcast(global_Jac_s2, root=0) else: ari.scatter_jtj(None, Jac_V) global_Jac_s2 = comm.bcast(None, root=0) #print("Rank %d: min s2 = %g" % (comm.rank, min(global_Jac_s2))) #if min(global_Jac_s2) < -1e-4 and (comm is None or comm.rank == 0): # print("WARNING: min Jac s^2 = %g (max = %g)" % (min(global_Jac_s2), max(global_Jac_s2))) assert(min(global_Jac_s2) / abs(max(global_Jac_s2)) > -1e-6), "JTJ should be positive!" global_Jac_s = _np.sqrt(_np.clip(global_Jac_s2, 1e-12, None)) # eigvals of JTJ must be >= 0 global_Jac_VT_mJTf = ari.global_svd_dot(Jac_V, minus_JTf) # = dot(Jac_V.T, minus_JTf) #DEBUG #num_large_svals = _np.count_nonzero(Jac_s > _np.max(Jac_s) / 1e2) #Jac_Uproj = Jac_U[:,0:num_large_svals] #JTJ_evals, JTJ_U = _np.linalg.eig(JTJ) #printer.log("JTJ (dim=%d) eval min/max=%g, %g; %d large svals (of %d)" % ( # JTJ.shape[0], _np.min(_np.abs(JTJ_evals)), _np.max(_np.abs(JTJ_evals)), # num_large_svals, len(Jac_s))) if norm_JTf < jac_norm_tol: if oob_check_interval <= 1: msg = "norm(jacobian) is at most %g" % jac_norm_tol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state continue # can't make use of saved JTJ yet - recompute on nxt iter if k == 0: if init_munu == "auto": if damping_mode == 'identity': mu = tau * ari.max_x(undamped_JTJ_diag) # initial damping element #mu = min(mu, MU_TOL1) else: # initial multiplicative damping element #mu = tau # initial damping element - but this seem to low, at least for termgap... mu = min(1.0e5, ari.max_x(undamped_JTJ_diag) / norm_JTf) # Erik's heuristic #tries to avoid making mu so large that dx is tiny and we declare victory prematurely else: mu, nu = init_munu rawJTJ_scratch = JTJ.copy() # allocates the memory for a copy of JTJ so only update mem elsewhere best_x_state = mu, nu, norm_f, f.copy(), spow, rawJTJ_scratch # update mu,nu,JTJ of initial best state else: #on all other iterations, update JTJ of best_x_state if best_x == x, i.e. if we've just evaluated # a previously accepted step that was deemed the best we've seen so far if _np.allclose(x, best_x): rawJTJ_scratch[:, :] = JTJ[:, :] # use pre-allocated memory rawJTJ_scratch[idiag] = undamped_JTJ_diag # no damping; the "raw" JTJ best_x_state = best_x_state[0:5] + (rawJTJ_scratch,) # update mu,nu,JTJ of initial "best state" #determing increment using adaptive damping while True: # inner loop if profiler: profiler.memory_check("custom_leastsq: begin inner iter") #print("DB: Pre-damping JTJ diag = [",_np.min(_np.abs(JTJ[idiag])),_np.max(_np.abs(JTJ[idiag])),"]") if damping_mode == 'identity': assert(damping_clip is None), "damping_clip cannot be used with damping_mode == 'identity'" if damping_basis == "singular_values": reg_Jac_s = global_Jac_s + mu #Notes: #Previously we computed inv_JTJ here and below computed dx: #inv_JTJ = _np.dot(Jac_V, _np.dot(_np.diag(1 / reg_Jac_s**2), Jac_V.T)) # dx = _np.dot(Jac_V, _np.diag(1 / reg_Jac_s**2), global_Jac_VT_mJTf #But now we just compute reg_Jac_s here, and so the rest below. else: # ok if assume fine-param-proc.size == 1 (otherwise need to sync setting local JTJ) JTJ[idiag] = undamped_JTJ_diag + mu # augment normal equations elif damping_mode == 'JTJ': if damping_basis == "singular_values": reg_Jac_s = global_Jac_s + mu * dclip(global_Jac_s) else: add_to_diag = mu * dclip(undamped_JTJ_diag) JTJ[idiag] = undamped_JTJ_diag + add_to_diag # ok if assume fine-param-proc.size == 1 elif damping_mode == 'invJTJ': if damping_basis == "singular_values": reg_Jac_s = global_Jac_s + mu * dclip(1.0 / global_Jac_s) else: add_to_diag = mu * dclip(1.0 / undamped_JTJ_diag) JTJ[idiag] = undamped_JTJ_diag + add_to_diag # ok if assume fine-param-proc.size == 1 elif damping_mode == 'adaptive': if damping_basis == "singular_values": reg_Jac_s_lst = [global_Jac_s + mu * dclip(global_Jac_s**(spow + 0.1)), global_Jac_s + mu * dclip(global_Jac_s**spow), global_Jac_s + mu * dclip(global_Jac_s**(spow - 0.1))] else: add_to_diag_lst = [mu * dclip(undamped_JTJ_diag**(spow + 0.1)), mu * dclip(undamped_JTJ_diag**spow), mu * dclip(undamped_JTJ_diag**(spow - 0.1))] else: raise ValueError("Invalid damping mode: %s" % damping_mode) #assert(_np.isfinite(JTJ).all()), "Non-finite JTJ (inner)!" # NaNs tracking #assert(_np.isfinite(JTf).all()), "Non-finite JTf (inner)!" # NaNs tracking try: if profiler: profiler.memory_check("custom_leastsq: before linsolve") tm = _time.time() success = True if damping_basis == 'diagonal_values': if damping_mode == 'adaptive': for ii, add_to_diag in enumerate(add_to_diag_lst): JTJ[idiag] = undamped_JTJ_diag + add_to_diag # ok if assume fine-param-proc.size == 1 #dx_lst.append(_scipy.linalg.solve(JTJ, -JTf, sym_pos=True)) #dx_lst.append(custom_solve(JTJ, -JTf, resource_alloc)) _custom_solve(JTJ, minus_JTf, dx_lst[ii], ari, resource_alloc, serial_solve_proc_threshold) else: #dx = _scipy.linalg.solve(JTJ, -JTf, sym_pos=True) _custom_solve(JTJ, minus_JTf, dx, ari, resource_alloc, serial_solve_proc_threshold) elif damping_basis == 'singular_values': #Note: above solves JTJ*x = -JTf => x = inv_JTJ * (-JTf) # but: J = U*s*Vh => JTJ = (VhT*s*UT)(U*s*Vh) = VhT*s^2*Vh, and inv_Vh = V b/c V is unitary # so inv_JTJ = inv_Vh * 1/s^2 * inv_VhT = V * 1/s^2 * VT = (N,K)*(K,K)*(K,N) if use psuedoinv if damping_mode == 'adaptive': #dx_lst = [_np.dot(ijtj, minus_JTf) for ijtj in inv_JTJ_lst] # special case for ii, s in enumerate(reg_Jac_s_lst): ari.fill_dx_svd(Jac_V, (1 / s**2) * global_Jac_VT_mJTf, dx_lst[ii]) else: # dx = _np.dot(inv_JTJ, minus_JTf) ari.fill_dx_svd(Jac_V, (1 / reg_Jac_s**2) * global_Jac_VT_mJTf, dx) else: raise ValueError("Invalid damping_basis = '%s'" % damping_basis) if profiler: profiler.add_time("custom_leastsq: linsolve", tm) #except _np.linalg.LinAlgError: except _scipy.linalg.LinAlgError: # DIST TODO - a different kind of exception caught? success = False if success and use_acceleration: # Find acceleration term: assert(damping_mode != 'adaptive'), "Cannot use acceleration in adaptive mode (yet)" assert(damping_basis != 'singular_values'), "Cannot use acceleration w/singular-value basis (yet)" df2_eps = 1.0 try: #df2 = (obj_fn(x + df2_dx) + obj_fn(x - df2_dx) - 2 * f) / \ # df2_eps**2 # 2nd deriv of f along dx direction # Above line expanded to reuse shared memory df2 = -2 * f df2_x[:] = x + df2_eps * dx ari.allgather_x(df2_x, global_accel_x) df2 += obj_fn(global_accel_x) df2_x[:] = x - df2_eps * dx ari.allgather_x(df2_x, global_accel_x) df2 += obj_fn(global_accel_x) df2 /= df2_eps**2 f[:] = df2; df2 = f # use `f` as an appropriate shared-mem object for fill_jtf below ari.fill_jtf(Jac, df2, JTdf2) JTdf2 *= -0.5 # keep using JTdf2 memory in solve call below #dx2 = _scipy.linalg.solve(JTJ, -0.5 * JTdf2, sym_pos=True) # Note: JTJ not init w/'adaptive' _custom_solve(JTJ, JTdf2, dx2, ari, resource_alloc, serial_solve_proc_threshold) dx1[:] = dx[:] dx += dx2 # add acceleration term to dx except _scipy.linalg.LinAlgError: print("WARNING - linear solve failed for acceleration term!") # but ok to continue - just stick with first order term except ValueError: print("WARNING - value error during computation of acceleration term!") reject_msg = "" if profiler: profiler.memory_check("custom_leastsq: after linsolve") if success: # linear solve succeeded #dx = _hack_dx(obj_fn, x, dx, Jac, JTJ, JTf, f, norm_f) if damping_mode != 'adaptive': new_x[:] = x + dx norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 #ensure dx isn't too large - don't let any component change by more than ~max_dx_scale if max_norm_dx and norm_dx > max_norm_dx: dx *= _np.sqrt(max_norm_dx / norm_dx) new_x[:] = x + dx norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 #apply x limits (bounds) if x_limits is not None: # Approach 1: project x into valid space by simply clipping out-of-bounds values for i, (x_el, lower, upper) in enumerate(zip(x, x_lower_limits, x_upper_limits)): if new_x[i] < lower: new_x[i] = lower dx[i] = lower - x_el elif new_x[i] > upper: new_x[i] = upper dx[i] = upper - x_el norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 # Approach 2: by scaling back dx (seems less good, but here in case we want it later) # # minimally reduce dx s.t. new_x = x + dx so that x_lower_limits <= x+dx <= x_upper_limits # # x_lower_limits - x <= dx <= x_upper_limits - x. Note: use potentially updated dx from # # max_norm_dx block above. For 0 <= scale <= 1, # # 1) require x + scale*dx - x_upper_limits <= 0 => scale <= (x_upper_limits - x) / dx # # [Note: above assumes dx > 0 b/c if not it moves x away from bound and scale < 0] # # so if scale >= 0, then scale = min((x_upper_limits - x) / dx, 1.0) # scale = None # new_x[:] = (x_upper_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min # # # 2) require x + scale*dx - x_lower_limits <= 0 => scale <= (x - x_lower_limits) / (-dx) # new_x[:] = (x_lower_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min if (scale is None) else min(new_x_min, scale) # # if scale is not None: # dx *= scale # new_x[:] = x + dx # norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 else: for dx, new_x in zip(dx_lst, new_x_lst): new_x[:] = x + dx norm_dx_lst = [ari.norm2_x(dx) for dx in dx_lst] #ensure dx isn't too large - don't let any component change by more than ~max_dx_scale if max_norm_dx: for i, norm_dx in enumerate(norm_dx_lst): if norm_dx > max_norm_dx: dx_lst[i] *= _np.sqrt(max_norm_dx / norm_dx) new_x_lst[i][:] = x + dx_lst[i] norm_dx_lst[i] = ari.norm2_x(dx_lst[i]) #apply x limits (bounds) if x_limits is not None: for i, (dx, new_x) in enumerate(zip(dx_lst, new_x_lst)): # Do same thing as above for each possible dx in dx_lst # Approach 1: for ii, (x_el, lower, upper) in enumerate(zip(x, x_lower_limits, x_upper_limits)): if new_x[ii] < lower: new_x[ii] = lower dx[ii] = lower - x_el elif new_x[ii] > upper: new_x[ii] = upper dx[ii] = upper - x_el norm_dx_lst[i] = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 # Approach 2: # scale = None # new_x[:] = (x_upper_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min # # new_x[:] = (x_lower_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min if (scale is None) else min(new_x_min, scale) # # if scale is not None: # dx *= scale # new_x[:] = x + dx # norm_dx_lst[i] = ari.norm2_x(dx) norm_dx = norm_dx_lst[1] # just use center value for printing & checks below printer.log(" - Inner Loop: mu=%g, norm_dx=%g" % (mu, norm_dx), 2) #MEM if profiler: profiler.memory_check("custom_leastsq: mid inner loop") #print("DB: new_x = ", new_x) if norm_dx < (rel_xtol**2) * norm_x: # and mu < MU_TOL2: if oob_check_interval <= 1: msg = "Relative change, |dx|/|x|, is at most %g" % rel_xtol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state break if norm_dx > (norm_x + rel_xtol) / (_MACH_PRECISION**2): msg = "(near-)singular linear system"; break if oob_check_interval > 0 and oob_check_mode == 0: if k % oob_check_interval == 0: #Check to see if objective function is out of bounds in_bounds = [] if damping_mode == 'adaptive': new_f_lst = [] for new_x, global_new_x in zip(new_x_lst, global_new_x_lst): ari.allgather_x(new_x, global_new_x) try: new_f = obj_fn(global_new_x, oob_check=True) except ValueError: # Use this to mean - "not allowed, but don't stop" in_bounds.append(False) new_f_lst.append(None) # marks OOB attempts that shouldn't be considered else: # no exception raised in_bounds.append(True) new_f_lst.append(new_f.copy()) else: #print("DB: Trying |x| = ", _np.linalg.norm(new_x), " |x|^2=", _np.dot(new_x,new_x)) # MEM if profiler: profiler.memory_check("custom_leastsq: before oob_check obj_fn") ari.allgather_x(new_x, global_new_x) try: new_f = obj_fn(global_new_x, oob_check=True) except ValueError: # Use this to mean - "not allowed, but don't stop" in_bounds.append(False) else: in_bounds.append(True) if any(in_bounds): # In adaptive mode, proceed if *any* cases are in-bounds new_x_is_allowed = True new_x_is_known_inbounds = True else: MIN_STOP_ITER = 1 # the minimum iteration where an OOB objective stops the optimization if oob_action == "reject" or k < MIN_STOP_ITER: new_x_is_allowed = False # (and also not in bounds) elif oob_action == "stop": if oob_check_interval == 1: msg = "Objective function out-of-bounds! STOP" converged = True; break else: # reset to last know in-bounds point and not do oob check every step printer.log( ("** Hit out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state # can't make use of saved JTJ yet break # restart next outer loop else: raise ValueError("Invalid `oob_action`: '%s'" % oob_action) else: # don't check this time if damping_mode == 'adaptive': new_f_lst = [] for new_x, global_new_x in zip(new_x_lst, global_new_x_lst): ari.allgather_x(new_x, global_new_x) new_f_lst.append(obj_fn(global_new_x).copy()) else: ari.allgather_x(new_x, global_new_x) new_f = obj_fn(global_new_x, oob_check=False) new_x_is_allowed = True new_x_is_known_inbounds = False else: #Just evaluate objective function normally; never check for in-bounds condition if damping_mode == 'adaptive': new_f_lst = [] for new_x, global_new_x in zip(new_x_lst, global_new_x_lst): ari.allgather_x(new_x, global_new_x) new_f_lst.append(obj_fn(global_new_x).copy()) else: ari.allgather_x(new_x, global_new_x) new_f = obj_fn(global_new_x) new_x_is_allowed = True new_x_is_known_inbounds = bool(oob_check_interval == 0) # consider "in bounds" if not checking if new_x_is_allowed: # MEM if profiler: profiler.memory_check("custom_leastsq: after obj_fn") if damping_mode == 'adaptive': norm_new_f_lst = [ari.norm2_f(new_f) if (new_f is not None) else 1e100 for new_f in new_f_lst] # 1e100 so we don't choose OOB adaptive cases if any([not _np.isfinite(norm_new_f) for norm_new_f in norm_new_f_lst]): # avoid inf loop msg = "Infinite norm of objective function!"; break #iMin = _np.argmin(norm_new_f_lst) # pick lowest (best) objective gain_ratio_lst = [(norm_f - nnf) / ari.dot_x(dx, mu * dx + minus_JTf) for (nnf, dx) in zip(norm_new_f_lst, dx_lst)] iMin = _np.argmax(gain_ratio_lst) # pick highest (best) gain ratio # but expected decrease is |f|^2 = grad(fTf) * dx = (grad(fT)*f + fT*grad(f)) * dx # = (JT*f + fT*J) * dx # <<more explanation>> norm_new_f = norm_new_f_lst[iMin] new_f = new_f_lst[iMin] new_x = new_x_lst[iMin] global_new_x = global_new_x_lst[iMin] dx = dx_lst[iMin] if iMin == 0: spow = min(1.0, spow + 0.1) elif iMin == 2: spow = max(-1.0, spow - 0.1) printer.log("ADAPTIVE damping => i=%d b/c fs=[%s] gains=[%s] => spow=%g" % ( iMin, ", ".join(["%.3g" % v for v in norm_new_f_lst]), ", ".join(["%.3g" % v for v in gain_ratio_lst]), spow)) else: norm_new_f = ari.norm2_f(new_f) # _np.linalg.norm(new_f)**2 if not _np.isfinite(norm_new_f): # avoid infinite loop... msg = "Infinite norm of objective function!"; break # dL = expected decrease in ||F||^2 from linear model dL = ari.dot_x(dx, mu * dx + minus_JTf) dF = norm_f - norm_new_f # actual decrease in ||F||^2 #DEBUG - see if cos_phi < 0.001, say, might work as a convergence criterion #if damping_basis == 'singular_values': # # projection of new_f onto solution tangent plane # new_f_proj = _np.dot(Jac_Uproj, _np.dot(Jac_Uproj.T, new_f)) # # angle between residual vec and tangent plane # cos_phi = _np.sqrt(_np.dot(new_f_proj, new_f_proj) / norm_new_f) # #grad_f_norm = _np.linalg.norm(mu * dx - JTf) #else: # cos_phi = 0 if dF <= 0 and uphill_step_threshold > 0: beta = 0 if last_accepted_dx is None else \ (ari.dot_x(dx, last_accepted_dx) / _np.sqrt(ari.norm2_x(dx) * ari.norm2_x(last_accepted_dx))) uphill_ok = (uphill_step_threshold - beta) * norm_new_f < min(min_norm_f, norm_f) else: uphill_ok = False if use_acceleration: accel_ratio = 2 * _np.sqrt(ari.norm2_x(dx2) / ari.norm2_x(dx1)) printer.log(" (cont): norm_new_f=%g, dL=%g, dF=%g, reldL=%g, reldF=%g aC=%g" % (norm_new_f, dL, dF, dL / norm_f, dF / norm_f, accel_ratio), 2) else: printer.log(" (cont): norm_new_f=%g, dL=%g, dF=%g, reldL=%g, reldF=%g" % (norm_new_f, dL, dF, dL / norm_f, dF / norm_f), 2) accel_ratio = 0.0 if dL / norm_f < rel_ftol and dF >= 0 and dF / norm_f < rel_ftol \ and dF / dL < 2.0 and accel_ratio <= alpha: if oob_check_interval <= 1: # (if 0 then no oob checking is done) msg = "Both actual and predicted relative reductions in the" + \ " sum of squares are at most %g" % rel_ftol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, " "reverting to last know in-bounds point and setting " "interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state # can't make use of saved JTJ yet break # MEM if profiler: profiler.memory_check("custom_leastsq: before success") if (dL > 0 and dF > 0 and accel_ratio <= alpha) or uphill_ok: #Check whether an otherwise acceptable solution is in-bounds if oob_check_mode == 1 and oob_check_interval > 0 and k % oob_check_interval == 0: #Check to see if objective function is out of bounds try: #print("DB: Trying |x| = ", _np.linalg.norm(new_x), " |x|^2=", _np.dot(new_x,new_x)) # MEM if profiler: # MEM profiler.memory_check("custom_leastsq: before oob_check obj_fn mode 1") obj_fn(global_new_x, oob_check=True) # don't actually need return val (== new_f) new_f_is_allowed = True new_x_is_known_inbounds = True except ValueError: # Use this to mean - "not allowed, but don't stop" MIN_STOP_ITER = 1 # the minimum iteration where an OOB objective can stops the opt. if oob_action == "reject" or k < MIN_STOP_ITER: new_f_is_allowed = False # (and also not in bounds) elif oob_action == "stop": if oob_check_interval == 1: msg = "Objective function out-of-bounds! STOP" converged = True; break else: # reset to last know in-bounds point and not do oob check every step printer.log( ("** Hit out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state # can't use of saved JTJ yet break # restart next outer loop else: raise ValueError("Invalid `oob_action`: '%s'" % oob_action) else: new_f_is_allowed = True if new_f_is_allowed: # reduction in error: increment accepted! t = 1.0 - (2 * dF / dL - 1.0)**3 # dF/dL == gain ratio # always reduce mu for accepted step when |dx| is small mu_factor = max(t, 1.0 / 3.0) if norm_dx > 1e-8 else 0.3 mu *= mu_factor nu = 2 x[:] = new_x[:]; f[:] = new_f[:]; norm_f = norm_new_f global_x[:] = global_new_x[:] printer.log(" Accepted%s! gain ratio=%g mu * %g => %g" % (" UPHILL" if uphill_ok else "", dF / dL, mu_factor, mu), 2) last_accepted_dx = dx.copy() if new_x_is_known_inbounds and norm_f < min_norm_f: min_norm_f = norm_f best_x[:] = x[:] best_x_state = (mu, nu, norm_f, f.copy(), spow, None) #Note: we use rawJTJ=None above because the current `JTJ` was evaluated # at the *last* x-value -- we need to wait for the next outer loop # to compute the JTJ for this best_x_state #assert(_np.isfinite(x).all()), "Non-finite x!" # NaNs tracking #assert(_np.isfinite(f).all()), "Non-finite f!" # NaNs tracking ##Check to see if we *would* switch to Q-N method in a hybrid algorithm #new_Jac = jac_fn(new_x) #new_JTf = _np.dot(new_Jac.T,new_f) #print(" CHECK: %g < %g ?" % (_np.linalg.norm(new_JTf, # ord=_np.inf),0.02 * _np.linalg.norm(new_f))) break # exit inner loop normally else: reject_msg = " (out-of-bounds)" else: reject_msg = " (out-of-bounds)" else: reject_msg = " (LinSolve Failure)" # if this point is reached, either the linear solve failed # or the error did not reduce. In either case, reject increment. #Increase damping (mu), then increase damping factor to # accelerate further damping increases. mu *= nu if nu > half_max_nu: # watch for nu getting too large (&overflow) msg = "Stopping after nu overflow!"; break nu = 2 * nu printer.log(" Rejected%s! mu => mu*nu = %g, nu => 2*nu = %g" % (reject_msg, mu, nu), 2) #end of inner loop #end of outer loop else: #if no break stmt hit, then we've exceeded max_iter msg = "Maximum iterations (%d) exceeded" % max_iter converged = True # call result "converged" even in this case, but issue warning: printer.warning("Treating result as *converged* after maximum iterations (%d) were exceeded." % max_iter) except KeyboardInterrupt: if comm is not None: # ensure all procs agree on what best_x is (in case the interrupt occurred around x being updated) comm.Bcast(best_x, root=0) printer.log("Rank %d caught keyboard interrupt! Returning the current solution as being *converged*." % comm.Get_rank()) else: printer.log("Caught keyboard interrupt! Returning the current solution as being *converged*.") msg = "Keyboard interrupt!" converged = True if comm is not None: comm.barrier() # Just to be safe, so procs stay synchronized and we don't free anything too soon ari.deallocate_jtj(JTJ) ari.deallocate_jtf(JTf) ari.deallocate_jtf(x) ari.deallocate_jtj_shared_mem_buf(jtj_buf) #ari.deallocate_x_for_jac(x_for_jac) if x_limits is not None: ari.deallocate_jtf(x_lower_limits) ari.deallocate_jtf(x_upper_limits) if damping_basis == "singular_values": ari.deallocate_jtj(Jac_V) if damping_mode == 'adaptive': for xx in dx_lst: ari.deallocate_jtf(xx) for xx in new_x_lst: ari.deallocate_jtf(xx) else: ari.deallocate_jtf(dx) ari.deallocate_jtf(new_x) if use_acceleration: ari.deallocate_jtf(dx1) ari.deallocate_jtf(dx2) ari.deallocate_jtf(df2_x) ari.deallocate_jtf(JTdf2) if num_fd_iters > 0: ari.deallocate_jac(fdJac) ari.allgather_x(best_x, global_x) ari.deallocate_jtf(best_x) #JTJ[idiag] = undampled_JTJ_diag #restore diagonal mu, nu, norm_f, f[:], spow, rawJTJ = best_x_state global_f = _np.empty(ari.global_num_elements(), 'd') ari.allgather_f(f, global_f) return global_x, converged, msg, mu, nu, norm_f, global_f, rawJTJ #solution = _optResult() #solution.x = x; solution.fun = f #solution.success = converged #solution.message = msg #return solution
5,355,690
def degrees(x): """Converts angle x from radians to degrees. :type x: numbers.Real :rtype: float """ return 0.0
5,355,691
def account_credit(account=None, asset=None, date=None, tp=None, order_by=['tp', 'account', 'asset'], hide_empty=False): """ Get credit operations for the account Args: account: filter by account code asset: filter by asset code date: get balance for specified date/time tp: FIlter by account type sort: field or list of sorting fields hide_empty: don't return zero balances Returns: generator object """ return _account_summary('credit', account=account, asset=asset, date=date, tp=tp, order_by=order_by, hide_empty=hide_empty)
5,355,692
def get_logger(log_file=None): """ Initialize logger configuration. Returns: logger. """ formatter = logging.Formatter( '%(asctime)s %(name)s.%(funcName)s +%(lineno)s: ' '%(levelname)-8s [%(process)d] %(message)s' ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) if log_file: file_handler = handlers.RotatingFileHandler(log_file, backupCount=10) file_handler.setFormatter(formatter) logger.addHandler(file_handler) console_handler = logging.StreamHandler() console_handler.setFormatter(formatter) logger.addHandler(console_handler) return logger
5,355,693
def verify(model): """ 测试数据模型检验 :param model: 网络模型以及其参数 :return res: 返回对应的列表 """ device = 'cuda' if torch.cuda.is_available() else 'cpu' model = model.to(device) if device == 'cuda': model = torch.nn.DataParallel(model) cudnn.benchmark = True res = [] for idx, data in enumerate(test_loader): img, label = data img, label = img.to(device), label.to(device) label2 = label.numpy()[0] img = img.view(img.size(0), -1) out = model(img) all_output = [] for i in out.data: all_output.append(i.numpy()) all_output = all_output[0] if max(all_output) == all_output[label2]: correct = True else: correct = False all_output = sorted(all_output, reverse=True) bvsb = all_output[0] - all_output[1] obj = { "label": int(label2), "correct": correct, "bvsb": float(bvsb) } res.append(obj) if idx >= test_num - 1: break return res
5,355,694
def parse_solution_file(solution_file): """Parse a solution file.""" ids = [] classes = [] with open(solution_file) as file_handle: solution_reader = csv.reader(file_handle) header = next(solution_reader, None) if header != HEADER: raise ValueError( 'Incorrect header found: {}, should be: {}'.format( header, HEADER)) solution = sorted(list(solution_reader), key=lambda x: x[0]) for row in solution: if len(row) < 2: raise ValueError( 'Bad row length: {}, ' 'should be at least {} for row {}'.format( len(row), len(HEADER), row)) row_classes = row[1:] if any(class_ not in POSSIBLE_CLASSES for class_ in row_classes): raise ValueError( 'Unknown class found among: {}'.format(row_classes)) ids.append(row[0]) classes.append(row_classes) return ids, classes
5,355,695
def fibonacci_modulo(number, modulo): """ Calculating (n-th Fibonacci number) mod m Args: number: fibonacci number modulo: modulo Returns: (n-th Fibonacci number) mod m Examples: >>> fibonacci_modulo(11527523930876953, 26673) 10552 """ period = _pisano_period_len(modulo) answer = _fib(number - number // period * period) % modulo return answer
5,355,696
def _str_unusual_grades(df: pd.DataFrame) -> Union[str, None]: """Print the number of unusual grades.""" grades = np.arange(0, 10.5, 0.5).astype(float) catch_grades = [] for item in df["grade"]: try: if float(item) not in grades: catch_grades.append(item) except ValueError: catch_grades.append(item) if catch_grades == []: return None else: return ( f"– Over all grades, {len(catch_grades)} of {len(df)} cards do not receive" f" standard grades. These grades are in {set(catch_grades)}" )
5,355,697
def _adjust_estimator_options(estimator: Any, est_options: Dict[str, Any], **kwargs) -> Dict[str, Any]: """ Adds specific required classifier options to the `clf_options` dictionary. Parameters ---------- classifier : Any The classifier object for which the options have to be added clf_options : Dict[str, Any] Dictionary, where the additional classifier options should be added to kwargs : Additional classifier options as keyword arguments Returns ------- Dict[str, Any] The input `clf_options` dictionary containing the additional classifier options """ if estimator.__name__ == 'XGBClassifier': est_options['num_class'] = kwargs['n_categories'] elif estimator.__name__ == 'DNNClassifier': est_options['n_classes'] = kwargs['n_categories'] est_options['n_features'] = kwargs['n_features'] est_options['random_state'] = kwargs['random_seed'] return est_options
5,355,698
def run(args): """ Create all registered downloads (locally). """ if args.domain: args.env['request'].environ['HTTP_HOST'] = args.domain for name, download in args.env['registry'].getUtilitiesFor(IDownload): args.log.info('creating download %s' % name) if not args.list: download.create(args.env['request'])
5,355,699