content
stringlengths
22
815k
id
int64
0
4.91M
def _prettify(elem,indent_level=0): """Return a pretty-printed XML string for the Element. """ indent = " " res = indent_level*indent + '<'+elem.tag.encode('utf-8') for k in elem.keys(): res += " "+k.encode('utf-8')+'="'+_escape_nl(elem.get(k)).encode('utf-8')+'"' children = elem.getchildren() if len(children)==0 and not elem.text: res += ' />' return res res += '>' if elem.text: res += _escape_nl(elem.text).encode('utf-8') for c in children: res += '\n'+_prettify(c,indent_level+1) if len(children)>0: res += '\n'+indent_level*indent res += '</'+elem.tag.encode('utf-8')+'>' return res
5,355,700
def predict(text): """ Predict the language of a text. Parameters ---------- text : str Returns ------- language_code : str """ if language_models is None: init_language_models(comp_metric, unicode_cutoff=10**6) x_distribution = get_distribution(text, language_models_chars) return predict_param(language_models, comp_metric, x_distribution, best_only=True)
5,355,701
def kgup(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), organizasyon_eic="", uevcb_eic=""): """ İlgili tarih aralığı için kaynak bazlı kesinleşmiş günlük üretim planı (KGÜP) bilgisini vermektedir. Not: "organizasyon_eic" değeri girildiği, "uevcb_eic" değeri girilmediği taktirde organizasyona ait tüm uevcb'lerin toplamı için kgüp bilgisini vermektedir. Her iki değer de girildiği taktirde ilgili organizasyonun ilgili uevcb'si için kgüp bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) organizasyon_eic : metin formatında organizasyon eic kodu (Varsayılan: "") uevcb_eic : metin formatında metin formatında uevcb eic kodu (Varsayılan: "") Geri Dönüş Değeri ----------------- KGUP (Tarih, Saat, Doğalgaz, Barajlı, Linyit, Akarsu, İthal Kömür, Rüzgar, Fuel Oil, Jeo Termal, Taş Kömür, Biyokütle ,Nafta, Diğer, Toplam) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = __first_part_url + "dpp" + "?startDate=" + baslangic_tarihi + "&endDate=" + bitis_tarihi \ + "&organizationEIC=" + organizasyon_eic + "&uevcbEIC=" + uevcb_eic json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["dppList"]) df["Saat"] = df["tarih"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["tarih"].apply(lambda d: d[:10])) df.rename(index=str, columns={"akarsu": "Akarsu", "barajli": "Barajlı", "biokutle": "Biyokütle", "diger": "Diğer", "dogalgaz": "Doğalgaz", "fuelOil": "Fuel Oil", "ithalKomur": "İthal Kömür", "jeotermal": "Jeo Termal", "linyit": "Linyit", "nafta": "Nafta", "ruzgar": "Rüzgar", "tasKomur": "Taş Kömür", "toplam": "Toplam"}, inplace=True) df = df[["Tarih", "Saat", "Doğalgaz", "Barajlı", "Linyit", "Akarsu", "İthal Kömür", "Rüzgar", "Fuel Oil", "Jeo Termal", "Taş Kömür", "Biyokütle", "Nafta", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df
5,355,702
def _output_rdf_graph_as_html_no_jinja(theCgi, top_url, error_msg, gbl_cgi_env_list): """ This transforms an internal data graph into a HTML document. """ page_title = theCgi.m_page_title grph = theCgi.m_graph display_html_text_header(page_title) WrtAsUtf('<body>') script_information = "".join(_script_information_html_iterator(theCgi, gbl_cgi_env_list)) WrtAsUtf(script_information) object_information = "".join(_object_information_html_iterator(theCgi)) WrtAsUtf(object_information) WrtAsUtf("".join(_write_errors_no_jinja(error_msg))) dict_class_subj_prop_obj = _create_objects_list(grph) WrtAsUtf("".join(_write_all_objects_no_jinja(dict_class_subj_prop_obj))) parameters_edition_html = "".join(_parameters_edition_html_iterator(theCgi)) if parameters_edition_html: WrtAsUtf("<h2>Script parameters</h2>") WrtAsUtf(parameters_edition_html) # Scripts do not apply when displaying a class. # TODO: When in a enumerate script such as enumerate_CIM_LogicalDisk.py, # it should assume the same: No id but a class. if(theCgi.m_entity_type == "") or (theCgi.m_entity_id != ""): WrtAsUtf("<h2>Related data scripts</h2>") WrtAsUtf("".join(_scripts_tree_html_iterator(theCgi))) WrtAsUtf("<h2>Other related urls</h2>") WrtAsUtf('<table class="other_urls">') WrtAsUtf("".join(_other_urls_html_iterator(top_url))) WrtAsUtf("".join(_cim_urls_html_iterator())) WrtAsUtf('</table>') html_footer = "".join(display_html_text_footer()) WrtAsUtf(html_footer) WrtAsUtf("</body>") WrtAsUtf("</html> ")
5,355,703
def distance_loop(x1, x2): """ Returns the Euclidean distance between the 1-d numpy arrays x1 and x2""" return -1
5,355,704
def get_ps_calls_and_summary(filtered_guide_counts_matrix, f_map): """Calculates protospacer calls per cell and summarizes them Args: filtered_guide_counts_matrix: CountMatrix - obtained by selecting features by CRISPR library type on the feature counts matrix f_map: dict - map of feature ID:feature sequence pairs Returns: First 3 outputs as specified in docstring for get_perturbation_calls ps_calls_summary is a Pandas dataframe summarizing descriptive statistics for each perturbation_call (unique combination of protospacers) found in the dataset, along with some overall summary statistics about the mulitplicty of infection """ if feature_utils.check_if_none_or_empty(filtered_guide_counts_matrix): return (None, None, None, None, None) (ps_calls_table, presence_calls, cells_with_ps, umi_thresholds) = get_perturbation_calls(filtered_guide_counts_matrix, f_map,) ps_calls_table.sort_values(by=['feature_call'], inplace=True, kind='mergesort') ps_calls_summary = get_ps_calls_summary(ps_calls_table, filtered_guide_counts_matrix) return (ps_calls_table, presence_calls, cells_with_ps, ps_calls_summary, umi_thresholds)
5,355,705
def symbol_by_name(name, aliases={}, imp=None, package=None, sep='.', default=None, **kwargs): """Get symbol by qualified name. The name should be the full dot-separated path to the class:: modulename.ClassName Example:: celery.concurrency.processes.TaskPool ^- class name or using ':' to separate module and symbol:: celery.concurrency.processes:TaskPool If `aliases` is provided, a dict containing short name/long name mappings, the name is looked up in the aliases first. Examples: >>> symbol_by_name("celery.concurrency.processes.TaskPool") <class 'celery.concurrency.processes.TaskPool'> >>> symbol_by_name("default", { ... "default": "celery.concurrency.processes.TaskPool"}) <class 'celery.concurrency.processes.TaskPool'> # Does not try to look up non-string names. >>> from celery.concurrency.processes import TaskPool >>> symbol_by_name(TaskPool) is TaskPool True """ if imp is None: imp = importlib.import_module if not isinstance(name, basestring): return name # already a class name = aliases.get(name) or name sep = ':' if ':' in name else sep module_name, _, cls_name = name.rpartition(sep) if not module_name: cls_name, module_name = None, package if package else cls_name try: try: module = imp(module_name, package=package, **kwargs) except ValueError, exc: raise ValueError, ValueError( "Couldn't import %r: %s" % (name, exc)), sys.exc_info()[2] return getattr(module, cls_name) if cls_name else module except (ImportError, AttributeError): if default is None: raise return default
5,355,706
def coefficients_of_line_from_points( point_a: Tuple[float, float], point_b: Tuple[float, float] ) -> Tuple[float, float]: """Computes the m and c coefficients of the equation (y=mx+c) for a straight line from two points. Args: point_a: point 1 coordinates point_b: point 2 coordinates Returns: m coefficient and c coefficient """ points = [point_a, point_b] x_coords, y_coords = zip(*points) coord_array = np.vstack([x_coords, np.ones(len(x_coords))]).T m, c = np.linalg.lstsq(coord_array, y_coords, rcond=None)[0] return m, c
5,355,707
def logDirManager(): """ Directory manager for TensorFlow logging """ print('Cleaning and initialising logging directory... \n') # Ensure function is starting from project root.. if os.getcwd() != "/Users/Oliver/AnacondaProjects/SNSS_TF": os.chdir("/Users/Oliver/AnacondaProjects/SNSS_TF") os.chdir("tb_log") # Go to logging folder.. stdout = subprocess.check_output(["ls", "-a"]) # Send ls command to terminal # Decode output from terminal folders = DictReader(stdout.decode('ascii').splitlines(), delimiter=' ', skipinitialspace=True, fieldnames=['name']) # For every folder in ordered dict... for f in folders: path = f.get('name') # Get path if (path != ('.')) & (path != ('..')) & (path != '.DS_Store'): # Ignore parent dirs cDate = datetime.fromtimestamp(os.stat(os.getcwd() + '/' + f.get('name')).st_ctime) delta = datetime.today() - cDate # Get age of folder. if delta.days > 6: # If older than 1 week... rmtree(path) # Delete folder. print('Removed old folder: "' + path + '" \n') # Log deletion to console. # print('Name: ' + str + ' Created on: ' + cDate.isoformat()) # Debugging logDir = "log_dir/" + date.today().isoformat() + "/" +\ datetime.now().time().isoformat(timespec='minutes').replace(':', '') # Create todays folder for logging print('Tensorflow logging to : ~/' + logDir + '\n') os.chdir('..') return logDir
5,355,708
def read_tiff(fname, slc=None): """ Read data from tiff file. Parameters ---------- fname : str String defining the path of file or file name. slc : sequence of tuples, optional Range of values for slicing data in each axis. ((start_1, end_1, step_1), ... , (start_N, end_N, step_N)) defines slicing parameters for each axis of the data matrix. Returns ------- ndarray Output 2D image. """ fname = _check_read(fname) try: import tifffile arr = tifffile.imread(fname, memmap=True) except IOError: logger.error('No such file or directory: %s', fname) return False arr = _slice_array(arr, slc) _log_imported_data(fname, arr) return arr
5,355,709
def sorted_non_max_suppression_padded(scores, boxes, max_output_size, iou_threshold): """A wrapper that handles non-maximum suppression. Assumption: * The boxes are sorted by scores unless the box is a dot (all coordinates are zero). * Boxes with higher scores can be used to suppress boxes with lower scores. The overal design of the algorithm is to handle boxes tile-by-tile: boxes = boxes.pad_to_multiply_of(tile_size) num_tiles = len(boxes) // tile_size output_boxes = [] for i in range(num_tiles): box_tile = boxes[i*tile_size : (i+1)*tile_size] for j in range(i - 1): suppressing_tile = boxes[j*tile_size : (j+1)*tile_size] iou = bbox_overlap(box_tile, suppressing_tile) # if the box is suppressed in iou, clear it to a dot box_tile *= _update_boxes(iou) # Iteratively handle the diagnal tile. iou = _box_overlap(box_tile, box_tile) iou_changed = True while iou_changed: # boxes that are not suppressed by anything else suppressing_boxes = _get_suppressing_boxes(iou) # boxes that are suppressed by suppressing_boxes suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes) # clear iou to 0 for boxes that are suppressed, as they cannot be used # to suppress other boxes any more new_iou = _clear_iou(iou, suppressed_boxes) iou_changed = (new_iou != iou) iou = new_iou # remaining boxes that can still suppress others, are selected boxes. output_boxes.append(_get_suppressing_boxes(iou)) if len(output_boxes) >= max_output_size: break Args: scores: a tensor with a shape of [batch_size, anchors]. boxes: a tensor with a shape of [batch_size, anchors, 4]. max_output_size: a scalar integer `Tensor` representing the maximum number of boxes to be selected by non max suppression. iou_threshold: a float representing the threshold for deciding whether boxes overlap too much with respect to IOU. Returns: nms_scores: a tensor with a shape of [batch_size, anchors]. It has same dtype as input scores. nms_proposals: a tensor with a shape of [batch_size, anchors, 4]. It has same dtype as input boxes. """ batch_size = tf.shape(boxes)[0] num_boxes = tf.shape(boxes)[1] pad = tf.cast( tf.math.ceil(tf.cast(num_boxes, tf.float32) / NMS_TILE_SIZE), tf.int32) * NMS_TILE_SIZE - num_boxes boxes = tf.pad(tf.cast(boxes, tf.float32), [[0, 0], [0, pad], [0, 0]]) scores = tf.pad( tf.cast(scores, tf.float32), [[0, 0], [0, pad]], constant_values=-1) num_boxes += pad def _loop_cond(unused_boxes, unused_threshold, output_size, idx): return tf.logical_and( tf.reduce_min(output_size) < max_output_size, idx < num_boxes // NMS_TILE_SIZE) selected_boxes, _, output_size, _ = tf.while_loop( _loop_cond, _suppression_loop_body, [ boxes, iou_threshold, tf.zeros([batch_size], tf.int32), tf.constant(0) ]) idx = num_boxes - tf.cast( tf.nn.top_k( tf.cast(tf.reduce_any(selected_boxes > 0, [2]), tf.int32) * tf.expand_dims(tf.range(num_boxes, 0, -1), 0), max_output_size)[0], tf.int32) idx = tf.minimum(idx, num_boxes - 1) idx = tf.reshape( idx + tf.reshape(tf.range(batch_size) * num_boxes, [-1, 1]), [-1]) boxes = tf.reshape( tf.gather(tf.reshape(boxes, [-1, 4]), idx), [batch_size, max_output_size, 4]) boxes = boxes * tf.cast( tf.reshape(tf.range(max_output_size), [1, -1, 1]) < tf.reshape( output_size, [-1, 1, 1]), boxes.dtype) scores = tf.reshape( tf.gather(tf.reshape(scores, [-1, 1]), idx), [batch_size, max_output_size]) scores = scores * tf.cast( tf.reshape(tf.range(max_output_size), [1, -1]) < tf.reshape( output_size, [-1, 1]), scores.dtype) return scores, boxes
5,355,710
def create_session() -> Session: """ Creates a new session using the aforementioned engine :return: session """ return Session(bind=engine)
5,355,711
def test_checkout_start_is_transaction_date( loan_created, db, params, mock_ensure_item_is_available_for_checkout ): """Test checkout start date to transaction date when not set.""" mock_ensure_item_is_available_for_checkout.side_effect = None number_of_days = timedelta(days=10) with SwappedNestedConfig( ["CIRCULATION_POLICIES", "checkout", "duration_default"], lambda x: number_of_days, ): loan = current_circulation.circulation.trigger( loan_created, **dict(params, trigger="checkout") ) db.session.commit() assert loan["state"] == "ITEM_ON_LOAN" assert loan["start_date"] == loan["transaction_date"] start_date = parse_date(loan["start_date"]) end_date = start_date + number_of_days assert loan["end_date"] == end_date.isoformat()
5,355,712
def fft_to_complex_matrix(x): """ Create matrix with [a -b; b a] entries for complex numbers. """ x_stacked = torch.stack((x, torch.flip(x, (4,))), dim=5).permute(2, 3, 0, 4, 1, 5) x_stacked[:, :, :, 0, :, 1] *= -1 return x_stacked.reshape(-1, 2 * x.shape[0], 2 * x.shape[1])
5,355,713
def mcais(A, X, verbose=False): """ Returns the maximal constraint-admissible (positive) invariant set O_inf for the system x(t+1) = A x(t) subject to the constraint x in X. O_inf is also known as maximum output admissible set. It holds that x(0) in O_inf <=> x(t) in X for all t >= 0. (Implementation of Algorithm 3.2 from: Gilbert, Tan - Linear Systems with State and Control Constraints, The Theory and Application of Maximal Output Admissible Sets.) Sufficient conditions for this set to be finitely determined (i.e. defined by a finite number of facets) are: A stable, X bounded and containing the origin. Math ---------- At each time step t, we want to verify if at the next time step t+1 the system will go outside X. Let's consider X := {x | D_i x <= e_i, i = 1,...,n} and t = 0. In order to ensure that x(1) = A x(0) is inside X, we need to consider one by one all the constraints and for each of them, the worst-case x(0). We can do this solvin an LP V(t=0, i) = max_{x in X} D_i A x - e_i for i = 1,...,n if all these LPs has V < 0 there is no x(0) such that x(1) is outside X. The previous implies that all the time-evolution x(t) will lie in X (see Gilbert and Tan). In case one of the LPs gives a V > 0, we iterate and consider V(t=1, i) = max_{x in X, x in A X} D_i A^2 x - e_i for i = 1,...,n where A X := {x | D A x <= e}. If now all V < 0, then O_inf = X U AX, otherwise we iterate until convergence V(t, i) = max_{x in X, x in A X, ..., x in A^t X} D_i A^(t+1) x - e_i for i = 1,...,n Once at convergence O_Inf = X U A X U ... U A^t X. Arguments ---------- A : numpy.ndarray State transition matrix. X : instance of Polyhedron State-space domain of the dynamical system. verbose : bool If True prints at each iteration the convergence parameters. Returns: ---------- O_inf : instance of Polyhedron Maximal constraint-admissible (positive) ivariant. t : int Determinedness index. """ # ensure convergence of the algorithm eig_max = np.max(np.absolute(np.linalg.eig(A)[0])) if eig_max > 1.: raise ValueError('unstable system, cannot derive maximal constraint-admissible set.') [nc, nx] = X.A.shape if not X.contains(np.zeros((nx, 1))): raise ValueError('the origin is not contained in the constraint set, cannot derive maximal constraint-admissible set.') if not X.bounded: raise ValueError('unbounded constraint set, cannot derive maximal constraint-admissible set.') # initialize mcais O_inf = copy(X) # loop over time t = 1 convergence = False while not convergence: # solve one LP per facet J = X.A.dot(np.linalg.matrix_power(A,t)) residuals = [] for i in range(X.A.shape[0]): sol = linear_program(- J[i,:], O_inf.A, O_inf.b) residuals.append(- sol['min'] - X.b[i,0]) # print status of the algorithm if verbose: print('Time horizon: ' + str(t) + '.'), print('Convergence index: ' + str(max(residuals)) + '.'), print('Number of facets: ' + str(O_inf.A.shape[0]) + '. \r'), # convergence check new_facets = [i for i, r in enumerate(residuals) if r > 0.] if len(new_facets) == 0: convergence = True else: # add (only non-redundant!) facets O_inf.add_inequality(J[new_facets,:], X.b[new_facets,:]) t += 1 # remove redundant facets if verbose: print('\nMaximal constraint-admissible invariant set found.') print('Removing redundant facets ...'), O_inf.remove_redundant_inequalities() if verbose: print('minimal facets are ' + str(O_inf.A.shape[0]) + '.') return O_inf
5,355,714
def draw_tree(document: Document, sid: str, cases: List[str], bridging: bool = False, coreference: bool = False, fh: Optional[TextIO] = None, html: bool = False, ) -> None: """sid で指定された文の述語項構造・共参照関係をツリー形式で fh に書き出す Args: document (Document): sid が含まれる文書 sid (str): 出力対象の文ID cases (List[str]): 表示対象の格 bridging (bool): 橋渡し照応関係も表示するかどうか coreference (bool): 共参照関係も表示するかどうか fh (Optional[TextIO]): 出力ストリーム html (bool): html 形式で出力するかどうか """ blist: BList = document.sid2sentence[sid].blist with io.StringIO() as string: blist.draw_tag_tree(fh=string, show_pos=False) tree_strings = string.getvalue().rstrip('\n').split('\n') assert len(tree_strings) == len(blist.tag_list()) all_targets = [m.core for m in document.mentions.values()] tid2mention = {mention.tid: mention for mention in document.mentions.values() if mention.sid == sid} for bp in document[sid].bps: tree_strings[bp.tid] += ' ' if is_pas_target(bp, verbal=True, nominal=True): arguments = document.get_arguments(bp) for case in cases: args: List[BaseArgument] = arguments.get(case, []) targets = set() for arg in args: target = str(arg) if all_targets.count(str(arg)) > 1 and isinstance(arg, Argument): target += str(arg.dtid) targets.add(target) if html: color = 'black' if targets else 'gray' tree_strings[bp.tid] += f'<font color="{color}">{case}:{",".join(targets)}</font> ' else: tree_strings[bp.tid] += f'{case}:{",".join(targets)} ' if bridging and is_bridging_target(bp): args = document.get_arguments(bp).get('ノ', []) targets = set() for arg in args: target = str(arg) if all_targets.count(str(arg)) > 1 and isinstance(arg, Argument): target += str(arg.dtid) targets.add(target) if html: color = 'black' if targets else 'gray' tree_strings[bp.tid] += f'<font color="{color}">ノ:{",".join(targets)}</font> ' else: tree_strings[bp.tid] += f'ノ:{",".join(targets)} ' if coreference and is_coreference_target(bp): if bp.tid in tid2mention: src_mention = tid2mention[bp.tid] tgt_mentions = [tgt for tgt in document.get_siblings(src_mention) if tgt.dtid < src_mention.dtid] targets = set() for tgt_mention in tgt_mentions: target = tgt_mention.core if all_targets.count(tgt_mention.core) > 1: target += str(tgt_mention.dtid) targets.add(target) for eid in src_mention.eids: entity = document.entities[eid] if entity.is_special: targets.add(entity.exophor) else: targets = set() if html: color = 'black' if targets else 'gray' tree_strings[bp.tid] += f'<font color="{color}">=:{",".join(targets)}</font>' else: tree_strings[bp.tid] += f'=:{",".join(targets)}' print('\n'.join(tree_strings), file=fh)
5,355,715
def evaluation_seasonal_srmse(model_name, variable_name='mean', background='all'): """ Evaluate the model in different seasons using the standardized RMSE. :type model_name: str :param model_name: The name of the model. :type variable_name: str :param variable_name: The name of the variable which shell be evaluated\ against the ONI prediction. :returns: The SRMSE for different seasons and the \ 0, 3, 6, 9, 12 and 15-month lead times. The returned arrays have the shape \ (lead time, season). The season corresponding to the the array entry [:,0]\ is DJF and to [:,1] is JFM (and so on). """ reader = data_reader(startdate='1963-01', enddate='2017-12') # seasonal scores seas_srmse = np.zeros((n_lead, 12)) # ONI observation oni = reader.read_csv('oni') if background=="el-nino-like": obs = oni[(oni.index.year>=1982)&(oni.index.year<=2001)] elif background=="la-nina-like": obs = oni[(oni.index.year<1982)|(oni.index.year>2001)] elif background=="all": obs = oni obs_time = obs.index for i in range(n_lead): pred_all = reader.read_forecasts(model_name, lead_times[i]).loc[{'target_season':obs_time}] pred = pred_all[variable_name] seas_srmse[i, :] = seasonal_srmse(obs, pred, obs_time - pd.tseries.offsets.MonthBegin(1)) return seas_srmse
5,355,716
def create_message(): """send_message Send stream of messages to server Args: client_obj (object): Client stub class """ for _ in range(10): message_id = f'Client with message ID: {randint(0, 1000)}' yield pb2.ClientStreamingRequest(client_message=message_id)
5,355,717
def test_logged_social_connect_self(social_config, facebook_user, db_session): """Connect self.""" user = db_session.merge(facebook_user) profile = { "accounts": [ { "domain": "facebook.com", "userid": user.provider_id("facebook"), } ], "displayName": "teddy", "preferredUsername": "teddy", "emails": [{"value": user.email}], "name": "ted", } credentials = {"oauthAccessToken": "7897048593434"} provider_name = "facebook" provider_type = "facebook" request = testing.DummyRequest() request.user = user request.registry = social_config.registry request.remote_addr = "127.0.0.123" request.context = AuthenticationComplete(profile, credentials, provider_name, provider_type) request._ = mock_translate request.login_perform = MagicMock(name="login_perform") request.login_perform.return_value = {"status": True} view = SocialLoginViews(request) out = view() assert out["status"] is True user = db_session.merge(facebook_user) assert user.provider_id("facebook") == profile["accounts"][0]["userid"]
5,355,718
def generate_accession_id() -> str: """Generate Stable ID.""" accessionID = uuid4() urn = accessionID.urn LOG.debug(f"generated accession id as: {urn}") return urn
5,355,719
def _async_device_ha_info( hass: HomeAssistant, lg_device_id: str ) -> dict | None: """Gather information how this ThinQ device is represented in Home Assistant.""" device_registry = dr.async_get(hass) entity_registry = er.async_get(hass) hass_device = device_registry.async_get_device( identifiers={(DOMAIN, lg_device_id)} ) if not hass_device: return None data = { "name": hass_device.name, "name_by_user": hass_device.name_by_user, "model": hass_device.model, "manufacturer": hass_device.manufacturer, "sw_version": hass_device.sw_version, "disabled": hass_device.disabled, "disabled_by": hass_device.disabled_by, "entities": {}, } hass_entities = er.async_entries_for_device( entity_registry, device_id=hass_device.id, include_disabled_entities=True, ) for entity_entry in hass_entities: if entity_entry.platform != DOMAIN: continue state = hass.states.get(entity_entry.entity_id) state_dict = None if state: state_dict = dict(state.as_dict()) # The entity_id is already provided at root level. state_dict.pop("entity_id", None) # The context doesn't provide useful information in this case. state_dict.pop("context", None) data["entities"][entity_entry.entity_id] = { "name": entity_entry.name, "original_name": entity_entry.original_name, "disabled": entity_entry.disabled, "disabled_by": entity_entry.disabled_by, "entity_category": entity_entry.entity_category, "device_class": entity_entry.device_class, "original_device_class": entity_entry.original_device_class, "icon": entity_entry.icon, "original_icon": entity_entry.original_icon, "unit_of_measurement": entity_entry.unit_of_measurement, "state": state_dict, } return data
5,355,720
def clean(url, full=typer.Option(False, "-f")): """Clean the cache""" db_path = f"cache/{url_to_domain(url)}/posts.db" ic(db_path) if not pathlib.Path(db_path).exists(): llog.info("There is no data associated with this URL") llog.info("There is nothing to do") return db = sqlite3.connect(db_path) c = db.cursor() sql_drop_table = "DROP TABLE IF EXISTS posts" c.execute(sql_drop_table) db.commit() llog.success("Dropped posts database") if full: shutil.rmtree(f"cache/{url_to_domain(url)}") llog.success("Deleted downloaded media")
5,355,721
def get_travis_pr_num() -> Optional[int]: """Return the PR number if the job is a pull request, None otherwise Returns: int See also: - <https://docs.travis-ci.com/user/environment-variables/#default-environment-variables> """ # noqa E501 try: travis_pull_request = get_travis_env_or_fail('TRAVIS_PULL_REQUEST') if falsy(travis_pull_request): return None else: try: return int(travis_pull_request) except ValueError: return None except UnexpectedTravisEnvironmentError: return None
5,355,722
def get_updated_records(table_name: str, existing_items: List) -> List: """ Determine the list of record updates, to be sent to a DDB stream after a PartiQL update operation. Note: This is currently a fairly expensive operation, as we need to retrieve the list of all items from the table, and compare the items to the previously available. This is a limitation as we're currently using the DynamoDB Local backend as a blackbox. In future, we should consider hooking into the PartiQL query execution inside DynamoDB Local and directly extract the list of updated items. """ result = [] stream_spec = dynamodb_get_table_stream_specification(table_name=table_name) key_schema = SchemaExtractor.get_key_schema(table_name) before = ItemSet(existing_items, key_schema=key_schema) after = ItemSet(ItemFinder.get_all_table_items(table_name), key_schema=key_schema) def _add_record(item, comparison_set: ItemSet): matching_item = comparison_set.find_item(item) if matching_item == item: return # determine event type if comparison_set == after: if matching_item: return event_name = "REMOVE" else: event_name = "INSERT" if not matching_item else "MODIFY" old_image = item if event_name == "REMOVE" else matching_item new_image = matching_item if event_name == "REMOVE" else item # prepare record keys = SchemaExtractor.extract_keys_for_schema(item=item, key_schema=key_schema) record = { "eventName": event_name, "eventID": short_uid(), "dynamodb": { "Keys": keys, "NewImage": new_image, "SizeBytes": len(json.dumps(item)), }, } if stream_spec: record["dynamodb"]["StreamViewType"] = stream_spec["StreamViewType"] if old_image: record["dynamodb"]["OldImage"] = old_image result.append(record) # loop over items in new item list (find INSERT/MODIFY events) for item in after.items_list: _add_record(item, before) # loop over items in old item list (find REMOVE events) for item in before.items_list: _add_record(item, after) return result
5,355,723
def kill_server(): """ Kills the forked process that is hosting the Director repositories via Python's simple HTTP server. This does not affect the Director service (which handles manifests and responds to requests from Primaries), nor does it affect the metadata in the repositories or the state of the repositories at all. host() can be run afterwards to begin hosting again. """ global repo_server_process if repo_server_process is None: print(LOG_PREFIX + 'No repository hosting process to stop.') return else: print(LOG_PREFIX + 'Killing repository hosting process with pid: ' + str(repo_server_process.pid)) repo_server_process.kill() repo_server_process = None
5,355,724
def normalize_record(input_object, parent_name="root_entity"): """ This function orchestrates the main normalization. It will go through the json document and recursively work with the data to: - unnest (flatten/normalize) keys in objects with the standard <parentkey>_<itemkey> convention - identify arrays, which will be pulled out and normalized - create an array of entities, ready for streaming or export for each item in the object: if the item is a non object or non list item: append to this flattened_dict object if the item is a dictionary: trigger the flatten dict function the flatten dict function will iterate through the items and append them to a dictionary. it will return a dictionary with {"dictionary": <dict_data>, "array": <arrays>} join flattened_dict and the returned[dictionary] data append returned[array] to arrays layer arrays will be dealt with a little differently. Because we're expecting multiple entries we'll be workign with a loop which will always belong to an array create new dict object dict_object = {"name": <dict name>, "data": [dict array entries data]} for each in the array loop - trigger normalize_layer with parent name of array name dict_object.append the `dicts_array`["data"] to the dict_object["data"] array """ arrays = [] dicts = [] output_dictionary = {} parent_keys = extract_parent_keys(dictionary_name=parent_name, dictionary_object=input_object) if isinstance(input_object, (dict)): for key, value in input_object.items(): if not isinstance(value, (dict,list) ): # if the item is a non object or non list item: output_dictionary[key] = value elif isinstance(value, dict): # if the item is a dictionary: # trigger the flatten dict function dict_contents = flatten_object(key,value) # will return {"dictionary": <dict_data>, "array": <arrays>} instance_dictionary = dict_contents["dictionary"] instance_array = dict_contents["array"] if len(instance_array) >0: arrays.extend(instance_array) output_dictionary = merge_two_dicts(output_dictionary,instance_dictionary) #join the dict elif isinstance(value, list): arrays.append({"name":key, "data":value, "parent_keys": parent_keys}) elif isinstance(input_object, (list)): arrays.append({"name":parent_name,"data":input_object }) ############################## ### Now process the arrays ### ############################## for each_array in arrays: for each_entry in each_array["data"]: each_entry = each_entry try: if each_array["parent_keys"]: each_entry = merge_two_dicts(each_entry, each_array["parent_keys"]) except: pass normalized_array = (normalize_record(input_object = each_entry, parent_name = each_array["name"]) ) #expect list here #let the normalizer recursively work through and pull the data out. Once it's out, we can append the data to the dicts array :) #may return 1 or more dictionaries for each_normalized_array_entry in normalized_array: # iterate through each output in the normalized array #check if there is an instance of this data already matches = False for each_dictionary_entity in dicts: if each_normalized_array_entry["name"] == each_dictionary_entity["name"]: #check if there is data in place already for this. If so, we add an entry to it each_dictionary_entity["data"].extend(each_normalized_array_entry["data"]) matches = True if matches == False: dicts.append({"name": each_normalized_array_entry["name"] , "data": each_normalized_array_entry["data"] }) dicts.append({"name":parent_name, "data": [output_dictionary]}) return(dicts)
5,355,725
def rmse(f, p, xdata, ydata): """Root-mean-square error.""" results = np.asarray([f(p, x) for x in xdata]) sqerr = (results - ydata)**2 return np.sqrt(sqerr.mean())
5,355,726
def get_logger(name=None, propagate=True): """Get logger object""" logger = logging.getLogger(name) logger.propagate = propagate loggers.append(logger) return logger
5,355,727
def load_movielens1m(infile=None, event_dtype=event_dtype_timestamp): """ load the MovieLens 1m data set Original file ``ml-1m.zip`` is distributed by the Grouplens Research Project at the site: `MovieLens Data Sets <http://www.grouplens.org/node/73>`_. Parameters ---------- infile : optional, file or str input file if specified; otherwise, read from default sample directory. event_dtype : np.dtype dtype of extra event features. as default, it consists of only a ``timestamp`` feature. Returns ------- data : :class:`kamrecsys.data.EventWithScoreData` sample data Notes ----- Format of events: * each event consists of a vector whose format is [user, item]. * 1,000,209 events in total * 6,040 users rate 3,706 items (=movies) * dtype=int Format of scores: * one score is given to each event * domain of score is [1.0, 2.0, 3.0, 4.0, 5.0] * dtype=float Default format of event_features ( `data.event_feature` ): timestamp : int represented in seconds since the epoch as returned by time(2) Format of user's feature ( `data.feature[0]` ): gender : int gender of the user, {0:male, 1:female} age : int, {0, 1,..., 6} age of the user, where 1:"Under 18", 18:"18-24", 25:"25-34", 35:"35-44", 45:"45-49", 50:"50-55", 56:"56+" occupation : int, {0,1,...,20} the number indicates the occupation of the user as follows: 0:"other" or not specified, 1:"academic/educator", 2:"artist", 3:"clerical/admin", 4:"college/grad student" 5:"customer service", 6:"doctor/health care", 7:"executive/managerial" 8:"farmer", 9:"homemaker", 10:"K-12 student", 11:"lawyer", 12:"programmer", 13:"retired", 14:"sales/marketing", 15:"scientist", 16:"self-employed", 17:"technician/engineer", 18:"tradesman/craftsman", 19:"unemployed", 20:"writer" zip : str, length=5 zip code of 5 digits, which represents the residential area of the user Format of item's feature ( `data.feature[1]` ): name : str, length=[8, 82] title of the movie with release year year : int released year genre : binary_int * 18 18 binary numbers represents a genre of the movie. 1 if the movie belongs to the genre; 0 other wise. All 0 implies unknown. Each column corresponds to the following genres: 0:Action, 1:Adventure, 2:Animation, 3:Children's, 4:Comedy, 5:Crime, 6:Documentary, 7:Drama, 8:Fantasy, 9:Film-Noir, 10:Horror, 11:Musical, 12:Mystery, 13:Romance, 14:Sci-Fi, 15:Thriller, 16:War, 17:Western """ # load event file if infile is None: infile = os.path.join(SAMPLE_PATH, 'movielens1m.event') data = load_event_with_score( infile, n_otypes=2, event_otypes=(0, 1), score_domain=(1., 5., 1.), event_dtype=event_dtype) # load user's feature file infile = os.path.join(SAMPLE_PATH, 'movielens1m.user') fdtype = np.dtype([('gender', int), ('age', int), ('occupation', int), ('zip', 'U5')]) dtype = np.dtype([('eid', int), ('feature', fdtype)]) x = np.genfromtxt(fname=infile, delimiter='\t', dtype=dtype) data.set_feature(0, x['eid'], x['feature']) # load item's feature file infile = os.path.join(SAMPLE_PATH, 'movielens1m.item') fdtype = np.dtype([('name', 'U82'), ('year', int), ('genre', 'i1', 18)]) dtype = np.dtype([('eid', int), ('feature', fdtype)]) x = np.genfromtxt(fname=infile, delimiter='\t', dtype=dtype, converters={1: np.char.decode}) data.set_feature(1, x['eid'], x['feature']) return data
5,355,728
def load_coco_data(split): """load the `split` data containing image and label Args: split (str): the split of the dataset (train, val, test) Returns: tf.data.Dataset: the dataset contains image and label image (tf.tensor), shape (224, 224, 3) label (tf.tensor), shape (1000, ) """ dataset = tfds.load(name="coco_captions", split=split) write_captions_of_iamges_to_file(dataset, split) img_cap_dict = get_captions_of_images(dataset, split) attr_list = get_attributes_list( os.path.join(WORKING_PATH, "finetune", "attribute_list.pickle") ) attr2idx = {word: idx for idx, word in enumerate(attr_list)} attr_dict = get_attributes_dict(dataset, split, attr_list, img_cap_dict) attr_onehot = get_onehot_attributes(attr_dict, attr2idx, split) attr_onehot_labels = [attr_onehot[idx] for idx in attr_onehot.keys()] attr_onehot_labels = tf.data.Dataset.from_tensor_slices( tf.cast(attr_onehot_labels, tf.int32) ) def process(image): image = tf.image.resize(image, (224, 224)) image = tf.cast(image, tf.float32) image = image / 255 return image def parse_fn(feature): image = feature["image"] return process(image) img_dataset = dataset.map(parse_fn) ds = tf.data.Dataset.zip((img_dataset, attr_onehot_labels)) return ds
5,355,729
def get_args(): """ Get User defined arguments, or assign defaults :rtype: argparse.ArgumentParser() :return: User defined or default arguments """ parser = argparse.ArgumentParser() # Positional arguments parser.add_argument("main_args", type=str, nargs="*", help="task for Seisflows to perform") # Optional parameters parser.add_argument("-w", "--workdir", nargs="?", default=os.getcwd()) parser.add_argument("-p", "--parameter_file", nargs="?", default="parameters.yaml") return parser.parse_args()
5,355,730
def getMatches(tournamentName=None, matchDate=None, matchPatch=None, matchTeam=None): """ Params: tournamentName: str/List[str]/Tuple(str) : filter by tournament names (e.g. LCK 2020 Spring) matchDate: str/List[str]/Tuple(str) : date in the format of yyyy-mm-dd matchPatch: str/List[str]/Tuple(str) : game patch the match is played on (e.g. 10.15) matchTeam: str/List[str]/Tuple(str) Returns: List[Match] """ argsString = " AND ".join(filter(None, [ _formatArgs(tournamentName, "SG.Tournament"), _formatDateTimeArgs(matchDate, "SG.DateTime_UTC"), _formatArgs(matchPatch, "SG.Patch") ])) url = MATCHES_URL.format(argsString) matchesJson = requests.get(url).json()["cargoquery"] matches = [] uniqueMatchMap = {} for i in range(len(matchesJson)): matchJson = matchesJson[i]["title"] # apply team filter if isinstance(matchTeam, str): matchTeam = [matchTeam] if isinstance(matchTeam, list): if matchJson["Team1"] not in matchTeam and matchJson["Team2"] not in matchTeam: continue elif isinstance(matchTeam, tuple): if not set(matchTeam).issubset(set([matchJson["Team1"], matchJson["Team2"]])): continue uniqueMatch = matchJson["UniqueGame"][:-2] if uniqueMatch not in uniqueMatchMap: match = Match(uniqueMatch) match._uniqueGames.append(matchJson["UniqueGame"]) match.dateTime = matchJson["DateTime UTC"] match.patch = matchJson["Patch"] match.teams = (matchJson["Team1"], matchJson["Team2"]) match.scores = (int(matchJson["Team1Score"]), int(matchJson["Team2Score"])) matches.append(match) uniqueMatchMap[uniqueMatch] = match else: match = uniqueMatchMap[uniqueMatch] match._uniqueGames.append(matchJson["UniqueGame"]) match.dateTime = matchJson["DateTime UTC"] return matches
5,355,731
def parse_e_elect(path: str, zpe_scale_factor: float = 1., ) -> Optional[float]: """ Parse the electronic energy from an sp job output file. Args: path (str): The ESS log file to parse from. zpe_scale_factor (float): The ZPE scaling factor, used only for composite methods in Gaussian via Arkane. Returns: Optional[float] The electronic energy in kJ/mol. """ if not os.path.isfile(path): raise InputError(f'Could not find file {path}') log = ess_factory(fullpath=path) try: e_elect = log.load_energy(zpe_scale_factor) * 0.001 # convert to kJ/mol except (LogError, NotImplementedError): logger.warning(f'Could not read e_elect from {path}') e_elect = None return e_elect
5,355,732
def test_get_slates(): """Tests get slates""" pass
5,355,733
def create_app(): """Creates the instance of an app.""" configuration_file=os.getcwd()+'/./configuration.cfg' app=Flask(__name__) app.config.from_pyfile(configuration_file) bootstrap.init_app(app) mail.init_app(app) from my_app.admin import admin app.register_blueprint(admin) from my_app.main import main app.register_blueprint(main) return app
5,355,734
def execute(args): """This function invokes the forage model given user inputs. args - a python dictionary with the following required entries: args['latitude'] - site latitude in degrees. If south of the equator, this should be negative args['prop_legume'] - proportion of the pasture by weight that is legume, ranging from 0:1 args['steepness'] - site steepness, ranging from 1:2 args['DOY'] - initial day of the year, an integer ranging from 1:365 args['start_year'] - initial year, an integer args['start_month'] - initial month, an integer ranging from 1:12 corresponding to January:December args['num_months'] - number of months to run the simulation args['grz_months'] - (optional) months when grazing should be applied, where month 0 is the first month of the simulation args['density_series'] - (optional) stocking density by month, where month 0 is the first month of the simulation args['mgmt_threshold'] - management threshold (kg/ha), residual biomass that is required to remain, limiting herbivore offtake args['input_dir'] - local file directory containing inputs to run CENTURY args['century_dir'] - local file directory containing the executable and global parameter files to run the CENTURY ecosystem model args['outdir'] - local file directory where intermediate and output files will be saved args['template_level'] - template grazing level. # TODO replace this args['fix_file'] - file basename of CENTURY fix file, which resides in the directory args['century_dir'] args['user_define_protein'] - boolean (0: false, 1: true). Should crude protein of forage be drawn from forage input supplied by the user? If false, it is calculated from CENTURY outputs args['user_define_digestibility'] - boolean (0: false, 1: true). Should digestibility of forage be drawn from forage input supplied by the user? If false, it is calculated from CENTURY outputs args['herbivore_csv'] - an absolute path to a csv file containing all necessary descriptors of each herbivore type args['grass_csv'] - an absolute path to a csv file containing all necessary descriptors of the grass available as forage args['supp_csv'] - an absolute path to a csv file containing all necessary descriptors of supplemental feed (optional) args['diet_verbose'] - save details of diet selection? args['digestibility_flag'] - flag to use a particular regression equation to calculate digestibility from crude protein returns nothing.""" for opt_arg in [ 'grz_months', 'density_series', 'digestibility_flag', 'diet_verbose']: try: val = args[opt_arg] except KeyError: args[opt_arg] = None now_str = datetime.now().strftime("%Y-%m-%d--%H_%M_%S") if not os.path.exists(args['outdir']): os.makedirs(args['outdir']) intermediate_dir = os.path.join( args['outdir'], 'CENTURY_outputs_spin_up') if not os.path.exists(intermediate_dir): os.makedirs(intermediate_dir) forage.write_inputs_log(args, now_str) forage.set_time_step('month') # current default, enforced by CENTURY add_event = 1 # TODO should this ever be 0? steps_per_year = forage.find_steps_per_year() graz_file = os.path.join(args[u'century_dir'], 'graz.100') cent.set_century_directory(args[u'century_dir']) if args['diet_verbose']: master_diet_dict = {} diet_segregation_dict = {'step': [], 'segregation': []} herbivore_list = [] if args[u'herbivore_csv'] is not None: herbivore_input = (pandas.read_csv( args[u'herbivore_csv'])).to_dict(orient='records') for herb_class in herbivore_input: herd = forage.HerbivoreClass(herb_class) herbivore_list.append(herd) grass_list = (pandas.read_csv( args[u'grass_csv'])).to_dict(orient='records') for grass in grass_list: if not isinstance(grass['label'], str): grass['label'] = str(grass['label']) forage.check_initial_biomass(grass_list) results_dict = {'step': [], 'year': [], 'month': []} for herb_class in herbivore_list: results_dict[herb_class.label + '_MEItotal'] = [] results_dict[herb_class.label + '_DPLS'] = [] results_dict[herb_class.label + '_E_req'] = [] results_dict[herb_class.label + '_P_req'] = [] results_dict[herb_class.label + '_intake_forage_per_indiv_kg'] = [] for grass in grass_list: results_dict[grass['label'] + '_green_kgha'] = [] results_dict[grass['label'] + '_dead_kgha'] = [] results_dict['total_offtake'] = [] schedule_list = [] for grass in grass_list: schedule = os.path.join(args[u'input_dir'], (grass['label'] + '.sch')) if os.path.exists(schedule): schedule_list.append(schedule) else: er = "Error: schedule file not found" raise Exception(er) # write CENTURY batch file for spin-up simulation hist_bat = os.path.join( args[u'input_dir'], (grass['label'] + '_hist.bat')) hist_schedule = grass['label'] + '_hist.sch' hist_output = grass['label'] + '_hist' cent.write_century_bat( args[u'input_dir'], hist_bat, hist_schedule, hist_output, args[u'fix_file'], 'outvars.txt') # write CENTURY bat for extend simulation extend_bat = os.path.join( args[u'input_dir'], (grass['label'] + '.bat')) schedule = grass['label'] + '.sch' output = grass['label'] extend = grass['label'] + '_hist' cent.write_century_bat( args[u'input_dir'], extend_bat, schedule, output, args[u'fix_file'], 'outvars.txt', extend) supp_available = 0 if 'supp_csv' in args.keys(): supp_list = (pandas.read_csv(args[u'supp_csv'])).to_dict( orient='records') assert len(supp_list) == 1, "Only one supplement type is allowed" supp_info = supp_list[0] supp = forage.Supplement( FreerParam.FreerParamCattle('indicus'), supp_info['digestibility'], supp_info['kg_per_day'], supp_info['M_per_d'], supp_info['ether_extract'], supp_info['crude_protein'], supp_info['rumen_degradability']) if supp.DMO > 0.: supp_available = 1 else: supp = None # assume fix file is in the input directory, copy it to Century directory shutil.copyfile( os.path.join(args['input_dir'], args['fix_file']), os.path.join(args['century_dir'], args['fix_file'])) # make a copy of the original graz params and schedule file shutil.copyfile( graz_file, os.path.join(args[u'century_dir'], 'graz_orig.100')) for schedule in schedule_list: label = os.path.basename(schedule)[:-4] copy_name = label + '_orig.sch' shutil.copyfile( schedule, os.path.join(args[u'input_dir'], copy_name)) file_list = [] for grass in grass_list: move_outputs = [ grass['label']+'_hist_log.txt', grass['label']+'_hist.lis', grass['label']+'_log.txt', grass['label']+'.lis', grass['label']+'.bin'] # move CENTURY run files to CENTURY dir hist_bat = os.path.join( args[u'input_dir'], (grass['label'] + '_hist.bat')) extend_bat = os.path.join( args[u'input_dir'], (grass['label'] + '.bat')) e_schedule = os.path.join(args[u'input_dir'], grass['label'] + '.sch') h_schedule = os.path.join( args[u'input_dir'], grass['label'] + '_hist.sch') site_file, weather_file = cent.get_site_weather_files( e_schedule, args[u'input_dir']) grass_files = [ hist_bat, extend_bat, e_schedule, h_schedule, site_file] for file_name in grass_files: file_list.append(file_name) if weather_file != 'NA': file_list.append(weather_file) for file_name in file_list: shutil.copyfile( file_name, os.path.join(args[u'century_dir'], os.path.basename(file_name))) # run CENTURY for spin-up for each grass type up to start_year and # start_month hist_bat = os.path.join( args[u'century_dir'], (grass['label'] + '_hist.bat')) century_bat = os.path.join( args[u'century_dir'], (grass['label'] + '.bat')) cent.launch_CENTURY_subprocess(hist_bat) cent.launch_CENTURY_subprocess(century_bat) # save copies of CENTURY outputs, but remove from CENTURY dir for file_name in move_outputs: shutil.move( os.path.join(args[u'century_dir'], file_name), os.path.join(intermediate_dir, file_name)) stocking_density_dict = forage.populate_sd_dict(herbivore_list) total_SD = forage.calc_total_stocking_density(herbivore_list) site = forage.SiteInfo(args[u'steepness'], args[u'latitude']) # add starting conditions to summary file step = -1 step_month = args[u'start_month'] + step if step_month == 0: month = 12 year = args[u'start_year'] - 1 else: month = step_month year = args[u'start_year'] results_dict['step'].append(step) results_dict['year'].append(year) results_dict['month'].append(month) results_dict['total_offtake'].append('NA') for herb_class in herbivore_list: results_dict[herb_class.label + '_MEItotal'].append('NA') results_dict[herb_class.label + '_DPLS'].append('NA') results_dict[herb_class.label + '_E_req'].append('NA') results_dict[herb_class.label + '_P_req'].append('NA') results_dict[herb_class.label + '_intake_forage_per_indiv_kg'].append('NA') try: for step in xrange(args[u'num_months']): step_month = args[u'start_month'] + step if step_month > 12: mod = step_month % 12 if mod == 0: month = 12 year = (step_month / 12) + args[u'start_year'] - 1 else: month = mod year = (step_month / 12) + args[u'start_year'] else: month = step_month year = (step / 12) + args[u'start_year'] for herb_class in herbivore_list: herb_class.update(step) # get biomass and crude protein for each grass type from CENTURY for grass in grass_list: output_file = os.path.join( intermediate_dir, grass['label'] + '.lis') outputs = cent.read_CENTURY_outputs( output_file, year - 1, year + 1) outputs = outputs[~outputs.index.duplicated(keep='first')] target_month = cent.find_prev_month(year, month) grass['prev_g_gm2'] = grass['green_gm2'] grass['prev_d_gm2'] = grass['dead_gm2'] try: grass['green_gm2'] = outputs.loc[target_month, 'aglivc'] except KeyError: raise Exception("CENTURY outputs not as expected") grass['dead_gm2'] = outputs.loc[target_month, 'stdedc'] if grass['green_gm2'] == 0: grass['green_gm2'] = 0.000001 if grass['dead_gm2'] == 0: grass['dead_gm2'] = 0.000001 if not args[u'user_define_protein']: try: N_mult = grass['N_multiplier'] except KeyError: N_mult = 1 grass['cprotein_green'] = ( outputs.loc[target_month, 'aglive1'] / outputs.loc[target_month, 'aglivc'] * N_mult) grass['cprotein_dead'] = ( outputs.loc[target_month, 'stdede1'] / outputs.loc[target_month, 'stdedc'] * N_mult) if step == 0: available_forage = forage.calc_feed_types(grass_list) else: available_forage = forage.update_feed_types( grass_list, available_forage) available_forage = forage.restrict_available_forage( available_forage, args['mgmt_threshold']) results_dict['step'].append(step) results_dict['year'].append(year) results_dict['month'].append(month) for feed_type in available_forage: results_dict[ feed_type.label + '_' + feed_type.green_or_dead + '_kgha'].append( feed_type.biomass) if not args[u'user_define_digestibility']: for feed_type in available_forage: feed_type.calc_digestibility_from_protein( args['digestibility_flag']) diet_dict = {} for herb_class in herbivore_list: if (args['grz_months'] is not None and step not in args['grz_months']): diet = forage.Diet() diet.fill_intake_zero(available_forage) diet_dict[herb_class.label] = diet continue if (args['density_series'] is not None and step in args['density_series'].keys()): herb_class.stocking_density = args['density_series'][step] stocking_density_dict = forage.populate_sd_dict( herbivore_list) total_SD = forage.calc_total_stocking_density( herbivore_list) herb_class.calc_distance_walked( site.S, total_SD, available_forage) max_intake = herb_class.calc_max_intake() ZF = herb_class.calc_ZF() HR = forage.calc_relative_height(available_forage) diet = forage.diet_selection_t2( ZF, HR, args[u'prop_legume'], supp_available, max_intake, herb_class.FParam, available_forage, herb_class.f_w, herb_class.q_w, supp) diet_interm = forage.calc_diet_intermediates( diet, herb_class, args[u'prop_legume'], args[u'DOY'], site, supp) if herb_class.type != 'hindgut_fermenter': reduced_max_intake = forage.check_max_intake( diet, diet_interm, herb_class, max_intake) if reduced_max_intake < max_intake: diet = forage.diet_selection_t2( ZF, HR, args[u'prop_legume'], supp_available, reduced_max_intake, herb_class.FParam, available_forage, herb_class.f_w, herb_class.q_w, supp) diet_dict[herb_class.label] = diet forage.reduce_demand( diet_dict, stocking_density_dict, available_forage) total_intake_step = forage.calc_total_intake( diet_dict, stocking_density_dict) if args['diet_verbose']: # save diet_dict across steps to be written out later master_diet_dict[step] = diet_dict diet_segregation = forage.calc_diet_segregation(diet_dict) diet_segregation_dict['step'].append(step) diet_segregation_dict['segregation'].append(diet_segregation) for herb_class in herbivore_list: diet = diet_dict[herb_class.label] # if herb_class.type != 'hindgut_fermenter': diet_interm = forage.calc_diet_intermediates( diet, herb_class, args[u'prop_legume'], args[u'DOY'], site, supp) results_dict[herb_class.label + '_MEItotal'].append( diet_interm.MEItotal) results_dict[herb_class.label + '_DPLS'].append( diet_interm.DPLS) results_dict[herb_class.label + '_E_req'].append( diet_interm.MEm + diet_interm.MEc + diet_interm.MEl + diet_interm.NEw) results_dict[herb_class.label + '_P_req'].append( diet_interm.Pm + diet_interm.Pc + diet_interm.Pl + diet_interm.Pw) results_dict[ herb_class.label + '_intake_forage_per_indiv_kg'].append( forage.convert_daily_to_step(diet.If)) if herb_class.sex == 'lac_female': results_dict['milk_prod_kg'].append( forage.convert_daily_to_step(milk_kg_day)) # calculate percent live and dead removed for each grass type consumed_dict = forage.calc_percent_consumed( available_forage, diet_dict, stocking_density_dict) results_dict['total_offtake'].append(total_intake_step) # send to CENTURY for this month's scheduled grazing event date = year + float('%.2f' % (month / 12.)) for grass in grass_list: g_label = ';'.join([grass['label'], 'green']) d_label = ';'.join([grass['label'], 'dead']) # only modify schedule if any of this grass was grazed if consumed_dict[g_label] > 0 or consumed_dict[d_label] > 0: schedule = os.path.join( args[u'century_dir'], (grass['label'] + '.sch')) target_dict = cent.find_target_month( add_event, schedule, date, 12) if target_dict == 0: raise Exception, """Error: grazing event already scheduled in file""" new_code = cent.add_new_graz_level( grass, consumed_dict, graz_file, args[u'template_level'], args[u'outdir'], step) cent.modify_schedule( schedule, add_event, target_dict, new_code, args[u'outdir'], step) # call CENTURY from the batch file century_bat = os.path.join( args[u'century_dir'], (grass['label'] + '.bat')) cent.launch_CENTURY_subprocess(century_bat) # save copies of CENTURY outputs, but remove from CENTURY dir century_outputs = [ grass['label']+'_log.txt', grass['label']+'.lis', grass['label']+'.bin'] intermediate_dir = os.path.join( args['outdir'], 'CENTURY_outputs_m%d_y%d' % (month, year)) if not os.path.exists(intermediate_dir): os.makedirs(intermediate_dir) for file_name in century_outputs: n_tries = 6 while True: if n_tries == 0: break try: n_tries -= 1 shutil.move( os.path.join(args[u'century_dir'], file_name), os.path.join(intermediate_dir, file_name)) break except OSError: print ( 'OSError in moving %s, trying again' % file_name) time.sleep(1.0) # add final standing biomass to summary file newstep = args[u'num_months'] step_month = args[u'start_month'] + newstep if step_month > 12: mod = step_month % 12 if mod == 0: month = 12 year = (step_month / 12) + args[u'start_year'] - 1 else: month = mod year = (step_month / 12) + args[u'start_year'] else: month = step_month year = (newstep / 12) + args[u'start_year'] for grass in grass_list: output_file = os.path.join( intermediate_dir, grass['label'] + '.lis') outputs = cent.read_CENTURY_outputs( output_file, year - 1, year + 1) outputs = outputs[~outputs.index.duplicated(keep='first')] target_month = cent.find_prev_month(year, month) grass['prev_g_gm2'] = grass['green_gm2'] grass['prev_d_gm2'] = grass['dead_gm2'] try: grass['green_gm2'] = outputs.loc[target_month, 'aglivc'] except KeyError: raise Exception("CENTURY outputs not as expected") grass['dead_gm2'] = outputs.loc[target_month, 'stdedc'] available_forage = forage.update_feed_types( grass_list, available_forage) for feed_type in available_forage: results_dict[ feed_type.label + '_' + feed_type.green_or_dead + '_kgha'].append(feed_type.biomass) except: raise finally: ### Cleanup files # replace graz params used by CENTURY with original file os.remove(graz_file) shutil.copyfile( os.path.join(args[u'century_dir'], 'graz_orig.100'), graz_file) os.remove(os.path.join(args[u'century_dir'], 'graz_orig.100')) file_list = set(file_list) files_to_remove = [ os.path.join(args[u'century_dir'], os.path.basename(f)) for f in file_list] for file_name in files_to_remove: os.remove(file_name) for grass in grass_list: os.remove( os.path.join( args[u'century_dir'], grass['label'] + '_hist.bin')) for schedule in schedule_list: label = os.path.basename(schedule)[:-4] orig_copy = os.path.join(args[u'input_dir'], label + '_orig.sch') os.remove(orig_copy) for grass in grass_list: os.remove( os.path.join( args[u'input_dir'], (grass['label'] + '_hist.bat'))) os.remove(os.path.join(args[u'input_dir'], (grass['label'] + '.bat'))) for ext in ['.lis', '.bin', '_log.txt']: obj = os.path.join(args[u'century_dir'], grass['label'] + ext) if os.path.isfile(obj): os.remove(obj) if args['diet_verbose']: df = pandas.DataFrame(diet_segregation_dict) save_as = os.path.join(args['outdir'], 'diet_segregation.csv') df.to_csv(save_as, index=False) for h_label in master_diet_dict[0].keys(): new_dict = {} new_dict['step'] = master_diet_dict.keys() new_dict['DMDf'] = [ master_diet_dict[step][h_label].DMDf for step in master_diet_dict.keys()] new_dict['CPIf'] = [ master_diet_dict[step][h_label].CPIf for step in master_diet_dict.keys()] grass_labels = master_diet_dict[0][h_label].intake.keys() for g_label in grass_labels: new_dict['intake_' + g_label] = ( [master_diet_dict[step][h_label].intake[g_label] for step in master_diet_dict.keys()]) df = pandas.DataFrame(new_dict) save_as = os.path.join(args['outdir'], h_label + '_diet.csv') df.to_csv(save_as, index=False) filled_dict = forage.fill_dict(results_dict, 'NA') df = pandas.DataFrame(filled_dict) df.to_csv(os.path.join(args['outdir'], 'summary_results.csv'))
5,355,735
def start(): """ Start the application """ with settings(user=env.sudouser): sudo('initctl start %s' % env.appuser)
5,355,736
def get_fields(fields): """ From the last column of a GTF, return a dictionary mapping each value. Parameters: fields (str): The last column of a GTF Returns: attributes (dict): Dictionary created from fields. """ attributes = {} description = fields.strip() description = [x.strip() for x in description.split(";")] for pair in description: if pair == "": continue pair = pair.replace('"', '') key, val = pair.split() attributes[key] = val # put in placeholders for important attributes (such as gene_id) if they # are absent if 'gene_id' not in attributes: attributes['gene_id'] = 'NULL' return attributes
5,355,737
def add_log_group_name_params(log_group_name, configs): """Add a "log_group_name": log_group_name to every config.""" for config in configs: config.update({"log_group_name": log_group_name}) return configs
5,355,738
def on_update_user_info(data: dict, activity: Activity) -> (int, Union[str, None]): """ broadcast a user info update to a room, or all rooms the user is in if no target.id specified :param data: activity streams format, must include object.attachments (user info) :param activity: the parsed activity, supplied by @pre_process decorator, NOT by calling endpoint :return: {'status_code': ECodes.OK, 'data': '<same AS as client sent, plus timestamp>'} """ activity.actor.display_name = utils.b64e(environ.env.session.get(SessionKeys.user_name.value)) data['actor']['displayName'] = activity.actor.display_name environ.env.observer.emit('on_update_user_info', (data, activity)) return ECodes.OK, data
5,355,739
def discover(isamAppliance, check_mode=False, force=False): """ Discover available updates """ return isamAppliance.invoke_get("Discover available updates", "/updates/available/discover")
5,355,740
def jest_test(name, **kwargs): """Wrapper macro around jest_test cli""" _jest_test( name = name, args = [ "--no-cache", "--no-watchman", "--no-colors", "--ci", ], chdir = native.package_name(), **kwargs )
5,355,741
def ENsettimeparam(paramcode, timevalue): """Sets the value of a time parameter. Arguments: paramcode: time parameter code EN_DURATION EN_HYDSTEP EN_QUALSTEP EN_PATTERNSTEP EN_PATTERNSTART EN_REPORTSTEP EN_REPORTSTART EN_RULESTEP EN_STATISTIC EN_PERIODS timevalue: value of time parameter in seconds The codes for EN_STATISTIC are: EN_NONE none EN_AVERAGE averaged EN_MINIMUM minimums EN_MAXIMUM maximums EN_RANGE ranges""" ierr= _lib.ENsettimeparam(ctypes.c_int(paramcode), ctypes.c_int(timevalue)) if ierr!=0: raise ENtoolkitError(ierr)
5,355,742
def ltistep(U, A=A, B=B, C=C): """ LTI( A B C ): U -> y linear straight up """ U, A, B, C = map(np.asarray, (U, A, B, C)) xk = np.zeros(A.shape[1]) x = [xk] for u in U[:-1]: xk = A.dot(xk) + B.dot(u) x.append(xk.copy()) return np.dot(x, C)
5,355,743
def _registry(): """Registry to download images from.""" return _registry_config()["host"]
5,355,744
def load_structure(query, reduce=True, strip='solvent&~@/pseudoBonds'): """ Load a structure in Chimera. It can be anything accepted by `open` command. Parameters ========== query : str Path to molecular file, or special query for Chimera's open (e.g. pdb:3pk2). reduce : bool Add hydrogens to structure. Defaults to True. strip : str Chimera selection spec that will be removed. Defaults to solvent&~@/pseudoBonds (solvent that is not attached to a metal ion). """ print('Opening', query) chimera.runCommand('open ' + query) m = chimera.openModels.list()[0] m.setAllPDBHeaders({}) if strip: print(' Removing {}...'.format(strip)) chimera.runCommand('del ' + strip) if reduce: print(' Adding hydrogens...') chimera.runCommand('addh') return m
5,355,745
def is_into_keyword(token): """ INTO判定 """ return token.match(T.Keyword, "INTO")
5,355,746
def exp( value: Union[Tensor, MPCTensor, int, float], iterations: int = 8 ) -> Union[MPCTensor, float, Tensor]: """Approximates the exponential function using a limit approximation. exp(x) = lim_{n -> infty} (1 + x / n) ^ n Here we compute exp by choosing n = 2 ** d for some large d equal to iterations. We then compute (1 + x / n) once and square `d` times. Args: value: tensor whose exp is to be calculated iterations (int): number of iterations for limit approximation Ref: https://github.com/LaRiffle/approximate-models Returns: MPCTensor: the calculated exponential of the given tensor """ result = (value / 2**iterations) + 1 for _ in range(iterations): result = result * result return result
5,355,747
def train(estimator: Estimator, data_root_dir: str, max_steps: int) -> Any: """Train a Tensorflow estimator""" train_spec = tf.estimator.TrainSpec( input_fn=_build_input_fn(data_root_dir, ModeKeys.TRAIN), max_steps=max_steps, ) if max_steps > Training.LONG_TRAINING_STEPS: throttle_secs = Training.LONG_DELAY else: throttle_secs = Training.SHORT_DELAY eval_spec = tf.estimator.EvalSpec( input_fn=_build_input_fn(data_root_dir, ModeKeys.EVAL), start_delay_secs=Training.SHORT_DELAY, throttle_secs=throttle_secs, ) LOGGER.debug('Train the model') results = tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) training_metrics = results[0] return training_metrics
5,355,748
def plot(data_input,categorical_name=[],drop=[],PLOT_COLUMNS_SIZE = 4,bin_size=20,bar_width=0.2,wspace=0.5,hspace=0.8): """ This is the main function to give Bivariate analysis between the target variable and the input features. Parameters ----------- data_input : Dataframe This is the input Dataframe with all data. categorical_name : list Names of all categorical variable columns with more than 2 classes, to distinguish with the continuous variables. drop : list Names of columns to be dropped. PLOT_COLUMNS_SIZE : int; default =4 Number of plots to display vertically in the display window.The row size is adjusted accordingly. bin_size : int ;default="auto" Number of bins for the histogram displayed in the categorical vs categorical category. wspace : float32 ;default = 0.5 Horizontal padding between subplot on the display window. hspace : float32 ;default = 0.8 Vertical padding between subplot on the display window. ----------- """ if type(data_input).__name__ == "DataFrame" : # Column names columns_name = data_input.columns.values #To drop user specified columns. if is_present(columns_name,drop): data_input = data_input.drop(drop,axis=1) columns_name = data_input.columns.values categorical_name = remove_drop_from_catglist(drop,categorical_name) else: raise ValueError("Couldn't find it in the input Dataframe!") #Checks if the categorical_name are present in the orignal dataframe columns. categorical_is_present = is_present(columns_name,categorical_name) if categorical_is_present: category_dict,catg_list,cont_list = get_category(data_input,categorical_name,columns_name) #Subplot(Total number of graphs) total = total_subplots(data_input,[catg_list,cont_list]) if total < PLOT_COLUMNS_SIZE: total = PLOT_COLUMNS_SIZE PLOT_ROW_SIZE = ceil(float(total)/PLOT_COLUMNS_SIZE) plot,count = univariate_analysis_continous(cont_list,data_input,total,COUNTER,bin_size,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) plot,count = univariate_analysis_categorical(catg_list,data_input,total,count,bar_width,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) fig.subplots_adjust(bottom=0.08,left = 0.05,right=0.97,top=0.93,wspace = wspace,hspace = hspace) plot.show() else: raise ValueError("The input doesn't seems to be Dataframe")
5,355,749
def assert_similar_time(dt1: datetime, dt2: datetime, threshold: float = 0.5) -> None: """Assert the delta between the two datetimes is less than the given threshold (in seconds). This is required as there seems to be small data loss when marshalling and unmarshalling datetimes, for example: 2021-09-26T15:00:18.708000+00:00 -> 2021-09-26T15:00:18.708776+00:00 This issue does not appear to be solvable by us, please create an issue if you know of a solution. """ if dt1 > dt2: delta = dt1 - dt2 else: delta = dt2 - dt1 assert delta.days == 0 assert delta.total_seconds() < threshold
5,355,750
def isDllInCorrectPath(): """ Returns True if the BUFFY DLL is present and in the correct location (...\<BTS>\Mods\<BUFFY>\Assets\). """ return IS_DLL_IN_CORRECT_PATH
5,355,751
def time_remaining(event_time): """ Args: event_time (time.struct_time): Time of the event. Returns: float: Time remaining between now and the event, in seconds since epoch. """ now = time.localtime() time_remaining = time.mktime(event_time) - time.mktime(now) return time_remaining
5,355,752
def _repeat(values, count): """Produces a list of lists suitable for testing interleave. Args: values: for each element `x` the result contains `[x] * x` count: determines how many times to repeat `[x] * x` in the result Returns: A list of lists of values suitable for testing interleave. """ return [[value] * value for value in np.tile(values, count)]
5,355,753
def start_selenium_server(logfile=None, jarpath=None, *params): """A hook to start the Selenium Server provided with SeleniumLibrary. `logfile` must be either an opened file (or file-like object) or None. If not None, Selenium Server log will be written to it. `jarpath` must be either the absolute path to the selenium-server.jar or None. If None, the jar file distributed with the library will be used. It is possible to give a list of additional command line options to Selenium Server in `*params`. A custom automation friendly Firefox profile is enabled by default using the `-firefoxProfileTemplate` option. If there is `user-extensions.js` file in the same directory as the jar, it is loaded automatically using the option `-userExtensions`. For more information about these options, see the documentation of the start_selenium_server method of the Selenium class. Note that this function requires `subprocess` module which is available on Python/Jython 2.5 or newer. """ if not subprocess: raise RuntimeError('This function requires `subprocess` module which ' 'is available on Python/Jython 2.5 or newer.') cmd = _server_startup_command(jarpath, *params) try: subprocess.Popen(cmd, stdout=logfile, stderr=subprocess.STDOUT) except OSError: raise RuntimeError('Starting Selenium Server failed. Check that you ' 'have Java 1.5 or newer installed by running ' '`java -version` on the command prompt.') print 'Selenium Server started with command "%s" ' % ' '.join(cmd)
5,355,754
def P2D_l_TAN(df, cond, attr): # P(attr | 'target', cond) """Calcule la probabilité d'un attribut sachant la classe et un autre attribut. Parameters ---------- df : pandas.DataFrame La base d'examples. cond : str Le nom de l'attribut conditionnant. attr : str Le nom de l'attribut conditionné. Returns ------- dict of (int, number): (dict of number: float) Un dictionnaire associant au couple (`t`, `c`), de classe `t` et de valeur d'attribut conditionnant `c`, un dictionnaire qui associe à la valeur `a` de l'attribut conditionné la probabilité .. math:: P(attr=a|target=t,cond=c). """ joint_target_cond_attr = getJoint(df, ['target', cond, attr]) joint_target_cond = getJoint(df, ['target', cond]) raw_dico = dict(divide(joint_target_cond_attr, joint_target_cond)) dicos = [{(k_t, k_c): {k_a: proba}} for (k_t, k_c, k_a), proba in raw_dico.items()] res = {} reduce(reduce_update, [res] + dicos) return res
5,355,755
def has_no_jump(bigram, peaks_groundtruth): """ Tell if the two components of the bigram are same or successive in the sequence of valid peaks or not For exemple, if groundtruth = [1,2,3], [1,1] or [2,3] have no jump but [1,3] has a jump. bigram : the bigram to judge peaks_groundtruth : the list of valid peaks Return boolean """ assert len(bigram) == 2 if len(set(bigram)) == 1: return True sorted_groundtruth = sorted(peaks_groundtruth) sorted_peaks = sorted(list(bigram)) begin = sorted_groundtruth.index(sorted_peaks[0]) end = begin+len(sorted_peaks) return sorted_peaks == sorted_groundtruth[begin:end]
5,355,756
def Base64WSDecode(s): """ Return decoded version of given Base64 string. Ignore whitespace. Uses URL-safe alphabet: - replaces +, _ replaces /. Will convert s of type unicode to string type first. @param s: Base64 string to decode @type s: string @return: original string that was encoded as Base64 @rtype: bytes @raise Base64DecodingError: If length of string (ignoring whitespace) is one more than a multiple of four. """ s = RawString(s) # Base64W decode can only work with strings s = ''.join(s.splitlines()) s = str(s.replace(" ", "")) # kill whitespace, make string (not unicode) d = len(s) % 4 if d == 1: raise kzr_errors.Base64DecodingError() elif d == 2: s += "==" elif d == 3: s += "=" s = RawBytes(s) try: return base64.urlsafe_b64decode(s) except TypeError: # Decoding raises TypeError if s contains invalid characters. raise kzr_errors.Base64DecodingError()
5,355,757
def make_window(): """create the window""" window = Tk() window.title("Pac-Man") window.geometry("%dx%d+%d+%d" % ( WINDOW_WIDTH, WINDOW_HEIGHT, X_WIN_POS, Y_WIN_POS ) ) window = window return window
5,355,758
def construct_scrape_regex_patterns(scrape_info: dict[str, Union[ParseResult, str]]) -> dict[str, Union[ParseResult, str]]: """ Construct regex patterns for seasons/episodes """ logger.debug("Constructing scrape regexes") for info in scrape_info: if info == 'url': continue if info == 'seasons': if scrape_info[info] is not None: if re.search(r'/season-\d{1,6}', scrape_info['url'].geturl()): logger.warning("Season already specified in url") raise exceptions.InvalidInput("Season already specified in url") scrape_info['seasons'] = parse_scrape_info(scrape_info[info]) else: s = re.search(r'/season-(\d{1,6})', scrape_info['url'].geturl()) if s: scrape_info['seasons'] = s.group(1) else: scrape_info['seasons'] = r'\d{1,6}' if info == 'episodes': if scrape_info[info] is not None: if re.search(r'/episode-\d{1,6}', scrape_info['url'].geturl()): logger.warning("Episode already specified in url") raise exceptions.InvalidInput("Episode already specified in url") scrape_info['episodes'] = parse_scrape_info(scrape_info[info]) else: e = re.search(r'/episode-(\d{1,6})', scrape_info['url'].geturl()) if e: scrape_info['episodes'] = e.group(1) else: scrape_info['episodes'] = r'\d{1,6}' return scrape_info
5,355,759
def hasf(e): """ Returns a function which if applied with `x` tests whether `x` has `e`. Examples -------- >>> filter(hasf("."), ['statement', 'A sentence.']) ['A sentence.'] """ return lambda x: e in x
5,355,760
def borehole_model(x, theta): """Given x and theta, return matrix of [row x] times [row theta] of values.""" return f
5,355,761
def findNodesOnHostname(hostname): """Return the list of nodes name of a (non-dmgr) node on the given hostname, or None Function parameters: hostname - the hostname to check, with or without the domain suffix """ m = "findNodesOnHostname:" nodes = [] for nodename in listNodes(): if hostname.lower() == getNodeHostname(nodename).lower(): sop(m, "Found node %s which is on %s" % (nodename, hostname)) nodes.append(nodename) #endif #endfor # Not found - try matching without domain - z/OS systems might not have domain configured shorthostname = hostname.split(".")[0].lower() for nodename in listNodes(): shortnodehostname = getNodeHostname(nodename).split(".")[0].lower() if shortnodehostname == shorthostname: if nodename in nodes : sop(m, "Node name %s was already found with the domain attached" % nodename) else : nodes.append(nodename) sop(m, "Found node %s which is on %s" % (nodename, hostname)) #endif #endif #endfor if len(nodes) == 0 : sop(m,"WARNING: Unable to find any node with the hostname %s (not case-sensitive)" % hostname) sop(m,"HERE are the hostnames that your nodes think they're on:") for nodename in listNodes(): sop(m,"\tNode %s: hostname %s" % (nodename, getNodeHostname(nodename))) #endfor return None else : return nodes #endif
5,355,762
def test_transaction_saved_from_new(session): """Assert that the payment is saved to the table.""" payment_account = factory_payment_account() payment = factory_payment() payment_account.save() payment.save() invoice = factory_invoice(payment.id, payment_account.id) invoice.save() fee_schedule = FeeSchedule.find_by_filing_type_and_corp_type('CP', 'OTANN') line = factory_payment_line_item(invoice.id, fee_schedule_id=fee_schedule.fee_schedule_id) line.save() payment_transaction = PaymentTransactionService() payment_transaction.status_code = 'DRAFT' payment_transaction.transaction_end_time = datetime.now() payment_transaction.transaction_start_time = datetime.now() payment_transaction.pay_system_url = 'http://google.com' payment_transaction.client_system_url = 'http://google.com' payment_transaction.payment_id = payment.id payment_transaction = payment_transaction.save() transaction = PaymentTransactionService.find_by_id(payment.id, payment_transaction.id) assert transaction is not None assert transaction.id is not None assert transaction.status_code is not None assert transaction.payment_id is not None assert transaction.client_system_url is not None assert transaction.pay_system_url is not None assert transaction.transaction_start_time is not None assert transaction.transaction_end_time is not None
5,355,763
def MakeControlClass( controlClass, name = None ): """Given a CoClass in a generated .py file, this function will return a Class object which can be used as an OCX control. This function is used when you do not want to handle any events from the OCX control. If you need events, then you should derive a class from both the activex.Control class and the CoClass """ if name is None: name = controlClass.__name__ return new_type("OCX" + name, (Control, controlClass), {})
5,355,764
def obtenTipoNom(linea): """ Obtiene por ahora la primera palabra del título, tendría que regresar de que se trata""" res = linea.split('\t') return res[6].partition(' ')[0]
5,355,765
def histogramfrom2Darray(array, nbins): """ Creates histogram of elements from 2 dimensional array :param array: input 2 dimensional array :param nbins: number of bins so that bin size = (maximum value in array - minimum value in array) / nbins the motivation for returning this array is for the purpose of easily plotting with matplotlib :return: list of three elements: list[0] = length nbins list of integers, a histogram of the array elements list[1] = length nbins list of values of array element types, values of the lower end of the bins list[2] = [minimum in list, maximum in list] this is just good to know sometimes. """ #find minimum minimum = np.min(array) #find maximu maximum = np.max(array) #compute bin size binsize = (maximum - minimum) / nbins #create bin array bins = [minimum + binsize * i for i in range(nbins)] histo = [0 for b in range(nbins)] for x in array: for y in x: #find the lower end of the affiliated bin ab = y - (minimum + fmod(y - minimum, binsize)) histo[int(ab/binsize)-1] += 1 return [histo, bins, [minimum, maximum]]
5,355,766
def build_pert_reg(unsupervised_regularizer, cut_backg_noise=1.0, cut_prob=1.0, box_reg_scale_mode='fixed', box_reg_scale=0.25, box_reg_random_aspect_ratio=False, cow_sigma_range=(4.0, 8.0), cow_prop_range=(0.0, 1.0),): """Build perturbation regularizer.""" if unsupervised_regularizer == 'none': unsup_reg = None augment_twice = False elif unsupervised_regularizer == 'mt': unsup_reg = regularizers.IdentityRegularizer() augment_twice = False elif unsupervised_regularizer == 'aug': unsup_reg = regularizers.IdentityRegularizer() augment_twice = True elif unsupervised_regularizer == 'cutout': unsup_reg = regularizers.BoxMaskRegularizer( cut_backg_noise, cut_prob, box_reg_scale_mode, box_reg_scale, box_reg_random_aspect_ratio) augment_twice = False elif unsupervised_regularizer == 'aug_cutout': unsup_reg = regularizers.BoxMaskRegularizer( cut_backg_noise, cut_prob, box_reg_scale_mode, box_reg_scale, box_reg_random_aspect_ratio) augment_twice = True elif unsupervised_regularizer == 'cowout': unsup_reg = regularizers.CowMaskRegularizer( cut_backg_noise, cut_prob, cow_sigma_range, cow_prop_range) augment_twice = False elif unsupervised_regularizer == 'aug_cowout': unsup_reg = regularizers.CowMaskRegularizer( cut_backg_noise, cut_prob, cow_sigma_range, cow_prop_range) augment_twice = True else: raise ValueError('Unknown supervised_regularizer \'{}\''.format( unsupervised_regularizer)) return unsup_reg, augment_twice
5,355,767
def part_5b_avg_std_dev_of_replicates_analysis_completed(*jobs): """Check that the initial job data is written to the json files.""" file_written_bool_list = [] all_file_written_bool_pass = False for job in jobs: data_written_bool = False if job.isfile( f"../../src/engines/gomc/averagesWithinReplicatez.txt" ) and job.isfile(f"../../src/engines/gomc/setAverages.txt"): data_written_bool = True file_written_bool_list.append(data_written_bool) if False not in file_written_bool_list: all_file_written_bool_pass = True return all_file_written_bool_pass
5,355,768
def get_ifort_version(conf, fc): """get the compiler version""" version_re = re.compile(r"ifort\s*\(IFORT\)\s*(?P<major>\d*)\.(?P<minor>\d*)", re.I).search cmd = fc + ['--version'] out, err = fc_config.getoutput(conf, cmd, stdin=False) if out: match = version_re(out) else: match = version_re(err) if not match: conf.fatal('cannot determine ifort version.') k = match.groupdict() conf.env['FC_VERSION'] = (k['major'], k['minor'])
5,355,769
def exportFlatClusterData(filename, root_dir, dataset_name, new_row_header,new_column_header,xt,ind1,ind2,display): """ Export the clustered results as a text file, only indicating the flat-clusters rather than the tree """ filename = string.replace(filename,'.pdf','.txt') export_text = export.ExportFile(filename) column_header = string.join(['UID','row_clusters-flat']+new_column_header,'\t')+'\n' ### format column-names for export export_text.write(column_header) column_clusters = string.join(['column_clusters-flat','']+ map(str, ind2),'\t')+'\n' ### format column-flat-clusters for export export_text.write(column_clusters) ### The clusters, dendrogram and flat clusters are drawn bottom-up, so we need to reverse the order to match #new_row_header = new_row_header[::-1] #xt = xt[::-1] try: elite_dir = getGOEliteExportDir(root_dir,dataset_name) except Exception: elite_dir = None elite_columns = string.join(['InputID','SystemCode']) try: sy = systemCodeCheck(new_row_header) except Exception: sy = None ### Export each row in the clustered data matrix xt i=0 cluster_db={} export_lines = [] for row in xt: id = new_row_header[i] if sy == '$En:Sy': cluster = 'cluster-'+string.split(id,':')[0] elif sy == 'S' and ':' in id: cluster = 'cluster-'+string.split(id,':')[0] elif sy == 'Sy' and ':' in id: cluster = 'cluster-'+string.split(id,':')[0] else: cluster = 'c'+str(ind1[i]) try: cluster_db[cluster].append(new_row_header[i]) except Exception: cluster_db[cluster] = [new_row_header[i]] export_lines.append(string.join([new_row_header[i],str(ind1[i])]+map(str, row),'\t')+'\n') i+=1 ### Reverse the order of the file export_lines.reverse() for line in export_lines: export_text.write(line) export_text.close() ### Export GO-Elite input files allGenes={} for cluster in cluster_db: export_elite = export.ExportFile(elite_dir+'/'+cluster+'.txt') if sy==None: export_elite.write('ID\n') else: export_elite.write('ID\tSystemCode\n') for id in cluster_db[cluster]: if sy == '$En:Sy': id = string.split(id,':')[1] ids = string.split(id,' ') if 'ENS' in ids[0]: id = ids[0] else: id = ids[-1] sc = 'En' elif sy == 'Sy' and ':' in id: id = string.split(id,':')[1] ids = string.split(id,' ') sc = 'Sy' elif sy == 'En:Sy': id = string.split(id,' ')[0] sc = 'En' elif sy == 'Ae': l = string.split(id,':') if len(l)==2: id = string.split(id,':')[0] ### Use the Ensembl if len(l) == 3: id = string.split(id,':')[1] ### Use the Ensembl sc = 'En' else: sc = sy if sy == 'S': if ':' in id: id = string.split(id,':')[-1] sc = 'Ae' try: export_elite.write(id+'\t'+sc+'\n') except Exception: export_elite.write(id+'\n') ### if no System Code known allGenes[id]=[] export_elite.close() try: if storeGeneSetName != None: if len(storeGeneSetName)>0 and 'driver' not in justShowTheseIDs: exportCustomGeneSet(storeGeneSetName,species,allGenes) print 'Exported geneset to "StoredGeneSets"' except Exception: pass ### Export as CDT file filename = string.replace(filename,'.txt','.cdt') if display: try: exportJTV(filename, new_column_header, new_row_header) except Exception: pass export_cdt = export.ExportFile(filename) column_header = string.join(['UNIQID','NAME','GWEIGHT']+new_column_header,'\t')+'\n' ### format column-names for export export_cdt.write(column_header) eweight = string.join(['EWEIGHT','','']+ ['1']*len(new_column_header),'\t')+'\n' ### format column-flat-clusters for export export_cdt.write(eweight) ### Export each row in the clustered data matrix xt i=0; cdt_lines=[] for row in xt: cdt_lines.append(string.join([new_row_header[i]]*2+['1']+map(str, row),'\t')+'\n') i+=1 ### Reverse the order of the file cdt_lines.reverse() for line in cdt_lines: export_cdt.write(line) export_cdt.close() return elite_dir, filename
5,355,770
def indent_multiline(s: str, indentation: str = " ", add_newlines: bool = True) -> str: """Indent the given string if it contains more than one line. Args: s: String to indent indentation: Indentation to prepend to each line. add_newlines: Whether to add newlines surrounding the result if indentation was added. """ lines = s.splitlines() if len(lines) <= 1: return s lines_str = "\n".join(f"{indentation}{line}" for line in lines) if add_newlines: return f"\n{lines_str}\n" else: return lines_str
5,355,771
def _get_property(self, key: str, *, offset: int = 0) -> Optional[int]: """Get a property from the location details. :param key: The key for the property :param offset: Any offset to apply to the value (if found) :returns: The property as an int value if found, None otherwise """ value = self.location_details.get(key) if value is None: return None return int(value[0]) + offset
5,355,772
def pca_normalization(points): """Projects points onto the directions of maximum variance.""" points = np.transpose(points) pca = PCA(n_components=len(np.transpose(points))) points = pca.fit_transform(points) return np.transpose(points)
5,355,773
def _reformTrend(percs, inits): """ Helper function to recreate original trend based on percent change data. """ trend = [] trend.append(percs[0]) for i in range(1, len(percs)): newLine = [] newLine.append(percs[i][0]) #append the date for j in range(1, len(percs[i])): #for each term on date level = float(trend[i-1][j]) * percs[i][j].numerator / percs[i][j].denominator #level is the prev level * %change newLine.append(level) trend.append(newLine) return trend
5,355,774
def create_zenpack_srcdir(zenpack_name): """Create a new ZenPack source directory.""" import shutil import errno if os.path.exists(zenpack_name): sys.exit("{} directory already exists.".format(zenpack_name)) print "Creating source directory for {}:".format(zenpack_name) zenpack_name_parts = zenpack_name.split('.') packages = reduce( lambda x, y: x + ['.'.join((x[-1], y))], zenpack_name_parts[1:], ['ZenPacks']) namespace_packages = packages[:-1] # Create ZenPacks.example.Thing/ZenPacks/example/Thing directory. module_directory = os.path.join(zenpack_name, *zenpack_name_parts) try: print " - making directory: {}".format(module_directory) os.makedirs(module_directory) except OSError as e: if e.errno == errno.EEXIST: sys.exit("{} directory already exists.".format(zenpack_name)) else: sys.exit( "Failed to create {!r} directory: {}" .format(zenpack_name, e.strerror)) # Create setup.py. setup_py_fname = os.path.join(zenpack_name, 'setup.py') print " - creating file: {}".format(setup_py_fname) with open(setup_py_fname, 'w') as setup_py_f: setup_py_f.write( SETUP_PY.format( zenpack_name=zenpack_name, namespace_packages=namespace_packages, packages=packages)) # Create MANIFEST.in. manifest_in_fname = os.path.join(zenpack_name, 'MANIFEST.in') print " - creating file: {}".format(manifest_in_fname) with open(manifest_in_fname, 'w') as manifest_in_f: manifest_in_f.write("graft ZenPacks\n") # Create __init__.py files in all namespace directories. for namespace_package in namespace_packages: namespace_init_fname = os.path.join( zenpack_name, os.path.join(*namespace_package.split('.')), '__init__.py') print " - creating file: {}".format(namespace_init_fname) with open(namespace_init_fname, 'w') as namespace_init_f: namespace_init_f.write( "__import__('pkg_resources').declare_namespace(__name__)\n") # Create __init__.py in ZenPack module directory. init_fname = os.path.join(module_directory, '__init__.py') print " - creating file: {}".format(init_fname) with open(init_fname, 'w') as init_f: init_f.write( "from . import zenpacklib\n\n" "zenpacklib.load_yaml()\n") # Create zenpack.yaml in ZenPack module directory. yaml_fname = os.path.join(module_directory, 'zenpack.yaml') print " - creating file: {}".format(yaml_fname) with open(yaml_fname, 'w') as yaml_f: yaml_f.write("name: {}\n".format(zenpack_name)) # Copy zenpacklib.py (this file) into ZenPack module directory. print " - copying: {} to {}".format(__file__, module_directory) shutil.copy2(__file__, module_directory)
5,355,775
def PET_initialize_compression_structure(N_axial,N_azimuthal,N_u,N_v): """Obtain 'offsets' and 'locations' arrays for fully sampled PET compressed projection data. """ descriptor = [{'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, { 'name':'offsets','type':'array','value':None, 'dtype':np.int32,'size':(N_azimuthal,N_axial), 'order':'F' }, { 'name':'locations','type':'array','value':None, 'dtype':np.uint16, 'size':(3,N_u * N_v * N_axial * N_azimuthal),'order':'F' }, ] r = call_c_function(niftyrec_c.PET_initialize_compression_structure, descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_initialize_compression_structure' was unsuccessful.", r.status, 'niftyrec_c.PET_initialize_compression_structure') return [r.dictionary['offsets'],r.dictionary['locations']]
5,355,776
def tic(): """Mimics Matlab's tic toc""" global __start_time_for_tictoc__ __start_time_for_tictoc__ = time.time()
5,355,777
def get_client_from_user_settings(settings_obj): """Same as get client, except its argument is a DropboxUserSettingsObject.""" return get_client(settings_obj.owner)
5,355,778
def train_student( model, dataset, test_data, test_labels, nb_labels, nb_teachers, stdnt_share, lap_scale, ): """This function trains a student using predictions made by an ensemble of teachers. The student and teacher models are trained using the same neural network architecture. :param dataset: string corresponding to mnist, cifar10, or svhn :param nb_teachers: number of teachers (in the ensemble) to learn from :return: True if student training went well """ # Call helper function to prepare student data using teacher predictions stdnt_dataset = prepare_student_data( model, dataset, test_data, test_labels, nb_labels, nb_teachers, stdnt_share, lap_scale, ) # Unpack the student dataset stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset # Prepare checkpoint filename and path filename = str(dataset) + "_" + str(nb_teachers) + "_student.ckpt" stdnt_prep = PrepareData(stdnt_data, stdnt_labels) stdnt_loader = DataLoader(stdnt_prep, batch_size=64, shuffle=False) stdnt_test_prep = PrepareData(stdnt_test_data, stdnt_test_labels) stdnt_test_loader = DataLoader(stdnt_test_prep, batch_size=64, shuffle=False) # Start student training train(model, stdnt_loader, stdnt_test_loader, ckpt_path, filename) # Compute final checkpoint name for student student_preds = softmax_preds( model, nb_labels, stdnt_test_loader, ckpt_path + filename ) # Compute teacher accuracy precision = accuracy(student_preds, stdnt_test_labels) print("\nPrecision of student after training: " + str(precision)) return True
5,355,779
def create_transition_matrix_numeric(mu, d, v): """ Use numerical integration. This is not so compatible with algopy because it goes through fortran. Note that d = 2*h - 1 following Kimura 1957. The rate mu is a catch-all scaling factor. The finite distribution v is assumed to be a stochastic vector. @param mu: scales the rate matrix @param d: dominance (as opposed to recessiveness) of preferred states. @param v: numpy array defining a distribution over states @return: transition matrix """ # Construct the numpy matrix whose entries # are differences of log equilibrium probabilities. # Everything in this code block is pure numpy. F = numpy.log(v) e = numpy.ones_like(F) S = numpy.outer(e, F) - numpy.outer(F, e) # Create the rate matrix Q and return its matrix exponential. # Things in this code block may use algopy if mu and d # are bundled with truncated Taylor information. D = d * numpy.sign(S) pre_Q = numpy.vectorize(numeric_fixation)(0.5*S, D) pre_Q = mu * pre_Q Q = pre_Q - algopy.diag(algopy.sum(pre_Q, axis=1)) P = algopy.expm(Q) return P
5,355,780
def parse_integrate(filename='INTEGRATE.LP'): """ Harvest data from INTEGRATE """ if not os.path.exists(filename): return {'failure': 'Integration step failed'} info = parser.parse(filename, 'integrate') for batch, frames in zip(info.get('batches',[]), info.pop('batch_frames', [])): batch.update(frames) return info
5,355,781
def test_backup_replica_resumes_ordering_on_lag_in_checkpoints( looper, chkFreqPatched, reqs_for_checkpoint, one_replica_and_others_in_backup_instance, sdk_pool_handle, sdk_wallet_client, view_change_done, txnPoolNodeSet): """ Verifies resumption of ordering 3PC-batches on a backup replica on detection of a lag in checkpoints """ slow_replica, other_replicas = one_replica_and_others_in_backup_instance view_no = slow_replica.viewNo # Send a request and ensure that the replica orders the batch for it sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 1) looper.run( eventually(lambda: assert_eq(slow_replica.last_ordered_3pc, (view_no, 2)), retryWait=1, timeout=waits.expectedTransactionExecutionTime(nodeCount))) # Don't receive Commits from two replicas slow_replica.node.nodeIbStasher.delay( cDelay(instId=1, sender_filter=other_replicas[0].node.name)) slow_replica.node.nodeIbStasher.delay( cDelay(instId=1, sender_filter=other_replicas[1].node.name)) # Send a request for which the replica will not be able to order the batch # due to an insufficient count of Commits sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 1) looper.runFor(waits.expectedTransactionExecutionTime(nodeCount)) # Recover reception of Commits slow_replica.node.nodeIbStasher.drop_delayeds() slow_replica.node.nodeIbStasher.resetDelays() # Send requests but in a quantity insufficient # for catch-up number of checkpoints sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, Replica.STASHED_CHECKPOINTS_BEFORE_CATCHUP * reqs_for_checkpoint - 3) looper.runFor(waits.expectedTransactionExecutionTime(nodeCount)) # Ensure that the replica has not ordered any batches # after the very first one assert slow_replica.last_ordered_3pc == (view_no, 2) # Ensure that the watermarks have not been shifted since the view start assert slow_replica.h == 0 assert slow_replica.H == LOG_SIZE # Ensure that the collections related to requests, batches and # own checkpoints are not empty. # (Note that a primary replica removes requests from requestQueues # when creating a batch with them.) if slow_replica.isPrimary: assert slow_replica._ordering_service.sentPrePrepares else: assert slow_replica._ordering_service.requestQueues[DOMAIN_LEDGER_ID] assert slow_replica._ordering_service.prePrepares assert slow_replica._ordering_service.prepares assert slow_replica._ordering_service.commits assert slow_replica._ordering_service.batches assert slow_replica._checkpointer._checkpoint_state # Ensure that there are some quorumed stashed checkpoints assert slow_replica._checkpointer._stashed_checkpoints_with_quorum() # Send more requests to reach catch-up number of checkpoints sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, reqs_for_checkpoint) # Ensure that the replica has adjusted last_ordered_3pc to the end # of the last checkpoint looper.run( eventually(lambda *args: assertExp(slow_replica.last_ordered_3pc == \ (view_no, (Replica.STASHED_CHECKPOINTS_BEFORE_CATCHUP + 1) * CHK_FREQ)), slow_replica, retryWait=1, timeout=waits.expectedTransactionExecutionTime(nodeCount))) # Ensure that the watermarks have been shifted so that the lower watermark # has the same value as last_ordered_3pc assert slow_replica.h == (Replica.STASHED_CHECKPOINTS_BEFORE_CATCHUP + 1) * CHK_FREQ assert slow_replica.H == (Replica.STASHED_CHECKPOINTS_BEFORE_CATCHUP + 1) * CHK_FREQ + LOG_SIZE # Ensure that the collections related to requests, batches and # own checkpoints have been cleared assert not slow_replica._ordering_service.requestQueues[DOMAIN_LEDGER_ID] assert not slow_replica._ordering_service.sentPrePrepares assert not slow_replica._ordering_service.prePrepares assert not slow_replica._ordering_service.prepares assert not slow_replica._ordering_service.commits assert not slow_replica._ordering_service.batches assert not slow_replica._checkpointer._checkpoint_state # Ensure that now there are no quorumed stashed checkpoints assert not slow_replica._checkpointer._stashed_checkpoints_with_quorum() # Send a request and ensure that the replica orders the batch for it sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 1) looper.run( eventually(lambda *args: assertExp(slow_replica.last_ordered_3pc == (view_no, (Replica.STASHED_CHECKPOINTS_BEFORE_CATCHUP + 1) * CHK_FREQ + 1)), slow_replica, retryWait=1, timeout=waits.expectedTransactionExecutionTime(nodeCount)))
5,355,782
def eprint(msg): """ Prints given ``msg`` into sys.stderr as nose test runner hides all output from sys.stdout by default and if we want to pipe stream somewhere we don't need those verbose messages anyway. Appends line break. """ sys.stderr.write(msg) sys.stderr.write('\n')
5,355,783
def channelmap(stream: Stream, *args, **kwargs) -> FilterableStream: """https://ffmpeg.org/ffmpeg-filters.html#channelmap""" return filter(stream, channelmap.__name__, *args, **kwargs)
5,355,784
def test_token(current_user: DBUser = Depends(get_current_user)): """ Test access-token """ return current_user
5,355,785
def locate_data(name, check_exists=True): """Locate the named data file. Data files under mls/data/ are copied when this package is installed. This function locates these files relative to the install directory. Parameters ---------- name : str Path of data file relative to mls/data. check_exists : bool Raise a RuntimeError if the named file does not exist when this is True. Returns ------- str Path of data file within installation directory. """ import mls pkg_path = mls.__path__[0] path = os.path.join(pkg_path, 'data', name) if check_exists and not os.path.exists(path): raise RuntimeError('No such data file: {}'.format(path)) return path
5,355,786
def links(): """ For type hints, read `PEP 484`_. See the `Python home page <http://www.python.org>`_ for info. .. _PEP 484: https://www.python.org/dev/peps/pep-0484/ """
5,355,787
def process_label_imA(im): """Crop a label image so that the result contains all labels, then return separate images, one for each label. Returns a dictionary of images and corresponding labels (for choosing colours), also a scene bounding box. Need to run shape statistics to determine the number of labels and the IDs """ # stuff to figure out which way we slice, etc isoidx = check_isotropy(im) otheridx = [0, 1, 2] otheridx.remove(isoidx) direction = get_direction(im, isoidx) sp = im.GetSpacing() sp = str2ds(sp) spacing = [sp[i] for i in otheridx] slthickness = sp[isoidx] labstats = sitk.LabelShapeStatisticsImageFilter() labstats.Execute(im) labels = labstats.GetLabels() boxes = [labstats.GetBoundingBox(i) for i in labels] # Need to compute bounding box for all labels, as # this will set the row/colums # boxes are corner and size - this code assumes 3D corners = [(x[0], x[1], x[2]) for x in boxes] othercorner = [(x[0] + x[3] - 1, x[1] + x[4] - 1, x[2] + x[5] - 1) for x in boxes] sizes = [(x[3], x[4], x[5]) for x in boxes] all_low_x = [C[0] for C in corners] all_low_y = [C[1] for C in corners] all_low_z = [C[2] for C in corners] low_x = min(all_low_x) low_y = min(all_low_y) low_z = min(all_low_z) lowcorner = (low_x, low_y, low_z) all_high_x = [C[0] for C in othercorner] all_high_y = [C[1] for C in othercorner] all_high_z = [C[2] for C in othercorner] high_x = max(all_high_x) high_y = max(all_high_y) high_z = max(all_high_z) highcorner = (high_x, high_y, high_z) allsize = (highcorner[0] - lowcorner[0] + 1, highcorner[1] - lowcorner[1] + 1, highcorner[2] - lowcorner[2] + 1) # corners [otheridx] and size[otheridx] should be all the same newcorners = [list(x) for x in corners] newsizes = [list(x) for x in sizes] a = otheridx[0] b = otheridx[1] for f in range(len(newcorners)): newcorners[f][a] = lowcorner[a] newcorners[f][b] = lowcorner[b] newsizes[f][a] = allsize[a] newsizes[f][b] = allsize[b] ims = [sitk.RegionOfInterest(im, allsize, lowcorner) == labels[i] for i in range(len(labels))] imcrop = sitk.RegionOfInterest(im, allsize, lowcorner) return({'rois': ims, 'labels': labels, 'original': im, 'cropped': imcrop})
5,355,788
def render_graphs(csv_data, append_titles=""): """ Convenience function. Gets the aggregated `monthlies` data from `aggregate_monthly_data(csv_data)` and returns a dict of graph titles mapped to rendered SVGs from `monthly_total_precip_line()` and `monthly_avg_min_max_temp_line()` using the `monthlies` data. """ monthlies = aggregate_monthly_data(csv_data) return { graph.config.title: graph.render() for graph in [ monthly_total_precip_line(monthlies, append_titles), monthly_avg_min_max_temp_line(monthlies, append_titles), monthly_max_temps_box(monthlies, append_titles), ] }
5,355,789
def _get_location(): """Return the location as a string, accounting for this function and the parent in the stack.""" return "".join(traceback.format_stack(limit=STACK_LIMIT + 2)[:-2])
5,355,790
def test_syscall_client_init(): """Tests SysCallClient.__init__""" from apyfal.client.syscall import SysCallClient from apyfal import Accelerator import apyfal.configuration as cfg import apyfal.exceptions as exc # Test: accelerator_executable_available, checks return type assert type(cfg.accelerator_executable_available()) is bool # Mocks some functions accelerator_available = True class DummySysCallClient(SysCallClient): """Dummy SysCallClient""" @staticmethod def _stop(*_, **__): """Do Nothing to skip object deletion""" def dummy_accelerator_executable_available(): """Return fake result""" return accelerator_available cfg_accelerator_executable_available = cfg.accelerator_executable_available cfg.accelerator_executable_available = ( dummy_accelerator_executable_available) # Tests try: # Accelerator not available DummySysCallClient() # Default for Accelerator if no host specified config = cfg.Configuration() try: del config._sections['host'] except KeyError: pass client = Accelerator(config=config).client client._stop = DummySysCallClient._stop # Disable __del__ assert isinstance(client, SysCallClient) # Accelerator not available accelerator_available = False with pytest.raises(exc.HostConfigurationException): SysCallClient() # Restores functions finally: cfg.accelerator_executable_available = ( cfg_accelerator_executable_available)
5,355,791
def start_session(): """do nothing here """ return Response.failed_response('Error')
5,355,792
def test_pairwise_mlp_init(pairwise_mlp): """Test PairwiseMLP.__init__ sets state correctly.""" assert pairwise_mlp.in_features == PROJ_FEATURES assert pairwise_mlp.hidden_features == PROJ_FEATURES assert pairwise_mlp.project is not None
5,355,793
def _combine_keras_model_with_trill(embedding_tfhub_handle, aggregating_model): """Combines keras model with TRILL model.""" trill_layer = hub.KerasLayer( handle=embedding_tfhub_handle, trainable=False, arguments={'sample_rate': 16000}, output_key='embedding', output_shape=[None, 2048] ) input1 = tf.keras.Input([None]) trill_output = trill_layer(input1) final_out = aggregating_model(trill_output) final_model = tf.keras.Model( inputs=input1, outputs=final_out) return final_model
5,355,794
def phases(times, names=[]): """ Creates named phases from a set of times defining the edges of hte intervals """ if not names: names = range(len(times)-1) return {names[i]:[times[i], times[i+1]] for (i, _) in enumerate(times) if i < len(times)-1}
5,355,795
def deploy(): """ 定义一个部署任务 :return: """ # 先进行打包 pack() # 备份服务器上的版本 backup() # 远程服务器的临时文件 remote_tmp_tar = '/tmp/%s' % TAR_FILE_NAME run('rm -f %s' % remote_tmp_tar) # 上传tar文件至远程服务器 put(TAR_FILE_NAME, remote_tmp_tar) remote_dist_base_dir = '/home/python' # 如果不存在, 则创建文件夹 run('mkdir -p %s' % remote_dist_base_dir) with cd(remote_dist_base_dir): print('解压文件到到目录: %s' % remote_dist_base_dir) run('tar -xzvf %s' % remote_tmp_tar) remote_dist_dir = '%s/%s' % (remote_dist_base_dir, PROJECT_NAME) name = PROJECT_NAME requirements_file = 'requirements.txt' print('上传 requirements.txt 文件 %s' % requirements_file) put(requirements_file, '%s/%s' % (remote_dist_dir, requirements_file)) with cd(remote_dist_dir): print('解压文件到到目录: %s' % remote_dist_dir) run('tar -xzvf %s' % remote_tmp_tar) print('安装 requirements.txt 中的依赖包') run('pip install -r requirements.txt') remote_settings_file = '%s/settings.py' % remote_dist_dir settings_file = './%s/deploy/settings.py' % PROJECT_NAME print('上传 settings.py 文件 %s' % settings_file) put(settings_file, remote_settings_file) # 创建日志文件夹, 因为当前启动 django 进程用的是 nobody, 会没有权限 remote_logs_path = '%s/logs' % remote_dist_dir # 如果不存在, 则创建文件夹 run('mkdir -p %s' % remote_logs_path) nginx_file = './%s/deploy/%s.conf' % (PROJECT_NAME, name) remote_nginx_file = '/etc/nginx/conf.d/%s.conf' % name print('上传 nginx 配置文件 %s' % nginx_file) put(nginx_file, remote_nginx_file) print('设置文件夹权限') run('chown -R oxygen /home/python/fomalhaut') supervisor_file = './%s/deploy/%s.ini' % (PROJECT_NAME, name) remote_supervisor_file = '/etc/supervisord.d/%s.ini' % name print('上传 supervisor 配置文件 %s' % supervisor_file) put(supervisor_file, remote_supervisor_file) run('supervisorctl reload') run('nginx -s reload') run('nginx -t') # run('service nginx restart') # 删除本地的打包文件 local('rm -f %s' % TAR_FILE_NAME) # frabic 运行 supervisorctl restart all 会提示有错误, 并中止往下运行 # run('supervisorctl restart all')
5,355,796
def smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic master equation. Dispatch to specific solvers depending on the value of the `solver` keyword argument. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. rho0 : :class:`qutip.Qobj` Initial density matrix or state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. Can depend on time, see StochasticSolverOptions help for format. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if "method" in kwargs and kwargs["method"] == "photocurrent": print("stochastic solver with photocurrent method has been moved to " "it's own function: photocurrent_mesolve") return photocurrent_mesolve(H, rho0, times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, _safe_mode=_safe_mode, args=args, **kwargs) if isket(rho0): rho0 = ket2dm(rho0) if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None sso = StochasticSolverOptions(True, H=H, state0=rho0, times=times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.solver_code == 120: return _positive_map(sso, e_ops_dict) sso.LH = liouvillian(sso.H, c_ops=sso.sc_ops + sso.c_ops) * sso.dt if sso.method == 'homodyne' or sso.method is None: if sso.m_ops is None: sso.m_ops = [op + op.dag() for op in sso.sc_ops] sso.sops = [spre(op) + spost(op.dag()) for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.m_ops) elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as m_ops") elif sso.method == 'heterodyne': if sso.m_ops is None: m_ops = [] sso.sops = [] for c in sso.sc_ops: if sso.m_ops is None: m_ops += [c + c.dag(), -1j * c - c.dag()] sso.sops += [(spre(c) + spost(c.dag())) / np.sqrt(2), (spre(c) - spost(c.dag())) * -1j / np.sqrt(2)] sso.m_ops = m_ops if not isinstance(sso.dW_factors, list): sso.dW_factors = [np.sqrt(2)] * len(sso.sops) elif len(sso.dW_factors) == len(sso.m_ops): pass elif len(sso.dW_factors) == len(sso.sc_ops): dW_factors = [] for fact in sso.dW_factors: dW_factors += [np.sqrt(2) * fact, np.sqrt(2) * fact] sso.dW_factors = dW_factors elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == "photocurrent": raise NotImplementedError("Moved to 'photocurrent_mesolve'") else: raise Exception("The method must be one of None, homodyne, heterodyne") sso.ce_ops = [QobjEvo(spre(op)) for op in sso.e_ops] sso.cm_ops = [QobjEvo(spre(op)) for op in sso.m_ops] sso.LH.compile() [op.compile() for op in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] if sso.solver_code in [103, 153]: sso.imp = 1 - sso.LH * 0.5 sso.imp.compile() sso.solver_obj = SMESolver sso.solver_name = "smesolve_" + sso.solver res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
5,355,797
def harmonic_vector(n): """ create a vector in the form [1,1/2,1/3,...1/n] """ return np.array([[1.0 / i] for i in range(1, n + 1)], dtype='double')
5,355,798
def session(connection): """ Create a transaction and session per test unit. Rolling back a transaction removes even committed rows (``session.commit``) from the database. """ transaction = connection.begin() session = Session(bind=connection) yield session session.close() transaction.rollback()
5,355,799