content
stringlengths
22
815k
id
int64
0
4.91M
def parseParams(opt): """Parse a set of name=value parameters in the input value. Return list of (name,value) pairs. Raise ValueError if a parameter is badly formatted. """ params = [] for nameval in opt: try: name, val = nameval.split("=") except ValueError: raise ValueError("Bad name=value format for '%s'" % nameval) params.append((name, val)) return params
5,356,800
def test_list_short_enumeration_2_nistxml_sv_iv_list_short_enumeration_3_5(mode, save_output, output_format): """ Type list/short is restricted by facet enumeration. """ assert_bindings( schema="nistData/list/short/Schema+Instance/NISTSchema-SV-IV-list-short-enumeration-3.xsd", instance="nistData/list/short/Schema+Instance/NISTXML-SV-IV-list-short-enumeration-3-5.xml", class_name="NistschemaSvIvListShortEnumeration3", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,356,801
def alert_remove(alert_id): """Remove the specified alert""" key = get_api_key() # Get the list api = shodan.Shodan(key) try: api.delete_alert(alert_id) except shodan.APIError as e: raise quo.Outliers(e.value) quo.echo("Alert deleted")
5,356,802
def asnumpy(a, dtype=None, order=None): """Returns a dense numpy array from an arbitrary source array. Args: a: Arbitrary object that can be converted to :class:`numpy.ndarray`. order ({'C', 'F', 'A'}): The desired memory layout of the output array. When ``order`` is 'A', it uses 'F' if ``a`` is fortran-contiguous and 'C' otherwise. Returns: numpy.ndarray: Converted array on the host memory. """ from ._sparse_array import SparseArray if isinstance(a, SparseArray): a = a.todense() return np.array(a, dtype=dtype, copy=False, order=order)
5,356,803
def render_array_items( item_renderer: ITEM_RENDERER_TYPE, summary_renderer: ITEM_RENDERER_TYPE, index: INDEX_TYPE, array: np.ndarray, edge_items: int, ) -> ITEM_GENERATOR_TYPE: """Render array, dispatching to `render_array_summarised` if required. :param item_renderer: item renderer :param summary_renderer: summary item renderer :param index: index :param array: array to render :param edge_items: number of edge items when summarising :return: """ if edge_items and len(array) > 2 * edge_items: yield from render_array_items_summarized( item_renderer, summary_renderer, index, array, edge_items ) else: for i, item in enumerate(array): yield from item_renderer(extend_index(index, i), item, edge_items)
5,356,804
def get_next_cpi_date(): """ Get next CPI release date """ df = pd.read_html(r"https://www.bls.gov/schedule/news_release/cpi.htm")[0][:-1] df["Release Date"] = pd.to_datetime(df["Release Date"], errors='coerce') df = df[df["Release Date"] >= current_date].iloc[0] df['Release Date'] = df['Release Date'].strftime('%Y-%m-%d') return df
5,356,805
async def on_ready(): """ 確認機器人上線 """ print("Bot is ready.")
5,356,806
def date_arithmetic() -> Tuple[datetime, datetime, int]: """ This function is used to calculate what is the date after 3 days is given and the differences between two given dates """ date1: str = "Feb 27, 2020" date_2020: datetime = datetime.strptime( date1, "%b %d, %Y") + timedelta(3) date2: str = "Feb 27, 2019" date_2019: datetime = datetime.strptime( date2, "%b %d, %Y") + timedelta(3) date3: str = "Feb 1, 2019" date4: str = "Sep 30, 2019" days_passed: int = datetime.strptime( date3, "%b %d, %Y") - datetime.strptime(date4, "%b %d, %Y") three_days_after_02272020: datetime = date_2020.strftime("%b %d, %Y") three_days_after_02272019: datetime = date_2019.strftime("%b %d, %Y") days_passed_02012019_09302019: int = abs(days_passed.days) return three_days_after_02272020, three_days_after_02272019, days_passed_02012019_09302019
5,356,807
def update_investment_projects_for_gva_multiplier_task(gva_multiplier_id): """ Updates the normalised gross_value_added for all investment projects with the associated GVA Multiplier. """ try: instance = GVAMultiplier.objects.get(id=gva_multiplier_id) except GVAMultiplier.DoesNotExist: logger.warning( f'Unable to find GVA Multiplier [{gva_multiplier_id}]' ' - Unable to update associated investment projects', ) else: _update_investment_projects_for_gva_multiplier(instance)
5,356,808
def get_words_from_line_list(text): """ Applies Translations and returns the list of words from the text document """ text = text.translate(translation_table) word_list = [x for x in text.split() if x not in set(stopwords.words('english'))] return word_list
5,356,809
def _get_name(dist): """Attempts to get a distribution's short name, excluding the name scope.""" return getattr(dist, 'parameters', {}).get('name', dist.name)
5,356,810
def seta_count(ent): """Enrich the match.""" data = {'body_part': 'seta'} location = [] for token in ent: label = token._.cached_label if label == 'seta': data['seta'] = REPLACE.get(token.lower_, token.lower_) elif label == 'number_word': data['count'] = int(REPLACE.get(token.lower_, -1)) elif token.lower_ in MISSING: data['count'] = 0 elif label == 'group': data['group'] = token.lower_ elif match := IS_INT.match(token.text): data['count'] = to_positive_int(match.group(0)) if data.get('count', data.get('low')) is None: data['present'] = True if location: data['type'] = ' '.join(location) ent._.new_label = 'seta_count' ent._.data = data
5,356,811
def compute_mean_std(all_X): """Return an approximate mean and std for every feature""" concatenated = np.concatenate(all_X, axis=0).astype(np.float64) mean = np.mean(concatenated, axis=0) std = np.std(concatenated, axis=0) std[std == 0] = 1 return mean, std
5,356,812
def frontend_handler(socketio_request_json): """Handler of SocketIO request for frontend.""" SocketIOApi.execute(socketio_request_json)
5,356,813
def GenerateConfig(context): """Generates configuration.""" key_ring = { 'name': 'keyRing', 'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings', 'properties': { 'parent': 'projects/' + context.env['project'] + '/locations/' + context.properties['region'], 'keyRingId': context.env['deployment'] + '-key-ring' } } crypto_key = { 'name': 'cryptoKey', 'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings.cryptoKeys', 'properties': { 'parent': '$(ref.keyRing.name)', 'cryptoKeyId': context.env['deployment'] + '-crypto-key', 'purpose': 'ENCRYPT_DECRYPT' } } resources = [key_ring, crypto_key] outputs = [{ 'name': 'primaryVersion', 'value': '$(ref.cryptoKey.primary)' }] return { 'resources': resources, 'outputs': outputs }
5,356,814
def plot_embedding(X, y, d, title=None, imgName=None): """ Plot an embedding X with the class label y colored by the domain d. :param X: embedding :param y: label :param d: domain :param title: title on the figure :param imgName: the name of saving image :return: """ if params.fig_mode is None: return # normalization x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) # Plot colors numbers plt.figure(figsize=(10,10)) ax = plt.subplot(111) for i in range(X.shape[0]): # plot colored number plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.bwr(d[i]/1.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]), plt.yticks([]) # If title is not given, we assign training_mode to the title. if title is not None: plt.title(title) else: plt.title(params.training_mode) #plt.subplot(212) #for i in range(X.shape[0]): # plot colored number # plt.plot(X[i, 0], X[i, 1], # color=plt.cm.bwr(y[i]) # ) #plt.xticks([]), plt.yticks([]) if params.fig_mode == 'display': # Directly display if no folder provided. plt.show() if params.fig_mode == 'save': # Check if folder exist, otherwise need to create it. folder = os.path.abspath(params.save_dir) if not os.path.exists(folder): os.makedirs(folder) if imgName is None: imgName = 'plot_embedding' + str(int(time.time())) # Check extension in case. if not (imgName.endswith('.jpg') or imgName.endswith('.png') or imgName.endswith('.jpeg')): imgName = os.path.join(folder, imgName + '.jpg') print('Saving ' + imgName + ' ...') plt.savefig(imgName) plt.close() def save_checkpoint(checkpoint_path, model, optimizer): state = {'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict()} torch.save(state, checkpoint_path) print('model saved to %s' % checkpoint_path) def load_checkpoint(checkpoint_path, model, optimizer): state = torch.load(checkpoint_path) model.load_state_dict(state['state_dict']) optimizer.load_state_dict(state['optimizer']) print('model loaded from %s' % checkpoint_path)
5,356,815
def get_valid_collapsed_products(products, limit): """wraps around collapse_products and respecting a limit to ensure that uncomplete products are not collapsed """ next_min_scanid = get_next_min_scanid(products, limit) collapsed_products = [] for scanid, scan in groupby(products, itemgetter('ScanID')): if scanid == next_min_scanid: continue collapsed_products.extend(collapse_products(list(scan))) return collapsed_products, next_min_scanid
5,356,816
def get_imd(): """Fetches data about LA IMD status. The "local concentration" measure is used - this gives higher weight to particularly deprived areas Source: http://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 """ imd = pd.read_csv( PROJECT_DIR / "inputs/data/societal-wellbeing_imd2019_indicesbyla.csv", usecols=[1, 2], skiprows=7, ) return imd
5,356,817
def get_instance_snapshots(pageToken=None): """ Returns all instance snapshots for the user's account. See also: AWS API Documentation :example: response = client.get_instance_snapshots( pageToken='string' ) :type pageToken: string :param pageToken: A token used for advancing to the next page of results from your get instance snapshots request. :rtype: dict :return: { 'instanceSnapshots': [ { 'name': 'string', 'arn': 'string', 'supportCode': 'string', 'createdAt': datetime(2015, 1, 1), 'location': { 'availabilityZone': 'string', 'regionName': 'us-east-1'|'us-west-1'|'us-west-2'|'eu-west-1'|'eu-central-1'|'ap-south-1'|'ap-southeast-1'|'ap-southeast-2'|'ap-northeast-1'|'ap-northeast-2' }, 'resourceType': 'Instance'|'StaticIp'|'KeyPair'|'InstanceSnapshot'|'Domain'|'PeeredVpc', 'state': 'pending'|'error'|'available', 'progress': 'string', 'fromInstanceName': 'string', 'fromInstanceArn': 'string', 'fromBlueprintId': 'string', 'fromBundleId': 'string', 'sizeInGb': 123 }, ], 'nextPageToken': 'string' } """ pass
5,356,818
def read_bgr(file): """指定ファイルからBGRイメージとして読み込む. # Args: file: イメージファイル名. # Returns: 成功したらイメージ、失敗したら None. """ return cv2.imread(file, cv2.IMREAD_COLOR)
5,356,819
def _remove_none_from_post_data_additional_rules_list(json): """ removes hidden field value from json field "additional_rules" list, which is there to ensure field exists for editing purposes :param json: this is data that is going to be posted """ data = json additional_rules = json.get("additional_rules", None) if additional_rules and "None" in additional_rules: new_additional_rules = [] for rule in additional_rules: if rule != "None": new_additional_rules.append(rule) data["additional_rules"] = new_additional_rules return data
5,356,820
def add_email(request, pk): """ This Endpoint will add the email id into the person contact details. It expects personId in URL param. """ try: request_data = request.data email = request_data.get("email") person = Person.objects.filter(id=pk).last() if email: Email.objects.create( email=email, person_id=person.id ) serializer = PersonDetailSerializer(person) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) except: print(traceback.format_exc()) return Response(status=status.HTTP_500_INTERNAL_SERVER_ERROR)
5,356,821
def coords_extracter(): """Exctract coords to send command to robot. To be executed inside of xarm_hand_control module.""" SKIPPED_COMMANDS = 5 COEFF = 22 current = [0] def coords_to_command(data: Any): current[0] += 1 if current[0] < SKIPPED_COMMANDS: return current[0] = 0 if np.linalg.norm(data[0:2], 2) < 0.05: return x = data[0] * COEFF / 1000 z = data[1] * COEFF / 1000 # speed = np.linalg.norm(data, ord=2) * COEFF * 50 # speed = int(speed) # # speed = np.log(speed) * COEFF # mvacc = speed * 10 speed = 500 mvacc = speed * 10 command = Command( x=x, y=0.0, z=z, speed=speed, acc=mvacc, is_radian=True, is_cartesian=True, is_relative=True, ) # print(command) send_command(command) return coords_to_command
5,356,822
def NO_MERGE(writer, segments): """This policy does not merge any existing segments. """ return segments
5,356,823
def detect_video( yolo, all_classes): """Use yolo v3 to detect video. # Argument: video: video file. yolo: YOLO, yolo model. all_classes: all classes name. """ # ipv4 address ipv4_url = 'http://192.168.171.44:8080' # read video cam = f'{ipv4_url}/video' camera= cv2.VideoCapture(cam) while True: res, frame = camera.read() frame = cv2.resize(frame, (640, 480)) if not res: break image = detect_image(frame, yolo, all_classes) cv2.imshow("Video Stream", image) if cv2.waitKey(1) & 0xFF == ord('q'): break camera.release() cv2.destroyAllWindows()
5,356,824
def save_features(): """ Writes extracted feature vectors into a binary or text file, per args. :return: none """ extractor = args.extractor features = [] if extractor == 'multi': features = extract_multi() elif extractor == 'single': features = extract_single() # print("Output shape: ", features.shape) # comment out if you don't care to know output shape extension = str(args.ext) compress = args.compressed out_path = str(args.out_path) # TODO: get rid of boilerplate code outfile = "" + out_path out_full = outfile + "." + extension if extension == "hdf5": # (Recommended, default) save to .hdf5 f = h5py.File("" + out_path + ".hdf5", "w") f.create_dataset(name=str(args.out_path), data=features) if compress: with open(out_full) as f_in: outfile_gz = out_full + ".gz" with gzip.open(outfile_gz, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) elif extension == "npy": # god please don't actually do this # Save to .npy binary (numpy) - incompressible (as of now) np.save(file=outfile, allow_pickle=True, arr=features) if compress: with open(out_full) as f_in: outfile_gz = out_full + ".gz" with gzip.open(outfile_gz, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) elif extension == "csv": # Save to .csv (or, .csv.gz if args.compressed==True) # This option is natively compressible. if compress: extension += ".gz" outfile = "" + out_path + "." + extension # TODO: This needs to return a string, no explicit save np.savetxt(fname=outfile, X=features, fmt='%1.5f') return features # TODO: (distant future) npz for the optional list of concat. 1d arrays
5,356,825
def build_ntwk(p, s_params): """ Construct a network object from the model and simulation params. """ np.random.seed(s_params['RNG_SEED']) # set membrane properties n = p['N_PC'] + p['N_INH'] t_m = cc( [np.repeat(p['T_M_PC'], p['N_PC']), np.repeat(p['T_M_INH'], p['N_INH'])]) e_l = cc( [np.repeat(p['E_L_PC'], p['N_PC']), np.repeat(p['E_L_INH'], p['N_INH'])]) v_th = cc( [np.repeat(p['V_TH_PC'], p['N_PC']), np.repeat(p['V_TH_INH'], p['N_INH'])]) v_r = cc( [np.repeat(p['V_R_PC'], p['N_PC']), np.repeat(p['V_R_INH'], p['N_INH'])]) t_rp = cc( [np.repeat(p['T_R_PC'], p['N_PC']), np.repeat(p['T_R_INH'], p['N_INH'])]) # set latent nrn positions lb = [-s_params['BOX_W']/2, -s_params['BOX_H']/2] ub = [s_params['BOX_W']/2, s_params['BOX_H']/2] # sample evenly spaced place fields ## E cells pfxs_e, pfys_e = cxn.apx_lattice(lb, ub, p['N_PC'], randomize=True) ## I cells pfxs_i, pfys_i = cxn.apx_lattice(lb, ub, p['N_INH'], randomize=True) ## join E & I place fields pfxs = cc([pfxs_e, pfxs_i]) pfys = cc([pfys_e, pfys_i]) # make upstream ws if p['W_PC_PL'] > 0: w_pc_pl_flat = np.random.lognormal( *lognormal_mu_sig(p['W_PC_PL'], p['S_PC_PL']), p['N_PC']) else: w_pc_pl_flat = np.zeros(p['N_PC']) if p['W_PC_G'] > 0: w_pc_g_flat = np.random.lognormal( *lognormal_mu_sig(p['W_PC_G'], p['S_PC_G']), p['N_PC']) else: w_pc_g_flat = np.zeros(p['N_PC']) ws_up_temp = { 'E': { ('PC', 'PL'): np.diag(w_pc_pl_flat), ('PC', 'G'): np.diag(w_pc_g_flat), }, } targs_up = cc([np.repeat('PC', p['N_PC']), np.repeat('INH', p['N_INH'])]) srcs_up = cc([np.repeat('PL', p['N_PC']), np.repeat('G', p['N_PC'])]) ws_up = join_w(targs_up, srcs_up, ws_up_temp) # make rcr ws w_pc_pc = cxn.make_w_pc_pc(pfxs[:p['N_PC']], pfys[:p['N_PC']], p) w_inh_pc = cxn.make_w_inh_pc( pfxs_inh=pfxs[-p['N_INH']:], pfys_inh=pfys[-p['N_INH']:], pfxs_pc=pfxs[:p['N_PC']], pfys_pc=pfys[:p['N_PC']], p=p) w_pc_inh = cxn.make_w_pc_inh( pfxs_pc=pfxs[:p['N_PC']], pfys_pc=pfys[:p['N_PC']], pfxs_inh=pfxs[-p['N_INH']:], pfys_inh=pfys[-p['N_INH']:], p=p) ws_rcr_temp = { 'E': { ('PC', 'PC'): w_pc_pc, ('INH', 'PC'): w_inh_pc, }, 'I': { ('PC', 'INH'): w_pc_inh, }, } targs_rcr = cc([np.repeat('PC', p['N_PC']), np.repeat('INH', p['N_INH'])]) ws_rcr = join_w(targs_rcr, targs_rcr, ws_rcr_temp) # make ntwk ntwk = LIFNtwk( t_m=t_m, e_l=e_l, v_th=v_th, v_r=v_r, t_r=t_rp, es_syn={'E': p['E_E'], 'I': p['E_I']}, ts_syn={'E': p['T_E'], 'I': p['T_I']}, ws_up=ws_up, ws_rcr=ws_rcr) ntwk.pfxs = pfxs ntwk.pfys = pfys ntwk.types_up = srcs_up ntwk.types_rcr = targs_rcr ntwk.n_pc = p['N_PC'] ntwk.n_inh = p['N_INH'] ntwk.n_g = p['N_PC'] ntwk.n_inp = p['N_PC'] ntwk.n_rcr = p['N_PC'] + p['N_INH'] ntwk.n_up = 2 * p['N_PC'] ntwk.types_up_slc = { 'PL': slice(0, p['N_PC']), 'G': slice(p['N_PC'], 2*p['N_PC']) } ntwk.types_rcr_slc = { 'PC': slice(0, p['N_PC']), 'INH': slice(p['N_PC'], p['N_PC'] + p['N_INH']) } return ntwk
5,356,826
def divideData(data): """Given test and validation sets, divide the data for three different sets""" testListFile = [] fin = file('data/multi-woz/testListFile.json') for line in fin: testListFile.append(line[:-1]) fin.close() valListFile = [] fin = file('data/multi-woz/valListFile.json') for line in fin: valListFile.append(line[:-1]) fin.close() trainListFile = open('data/trainListFile', 'w') test_dials = [] val_dials = [] train_dials = [] # dictionaries word_freqs_usr = OrderedDict() word_freqs_sys = OrderedDict() count_train, count_val, count_test = 0, 0, 0 for dialogue_name in data: # print dialogue_name dial_item = data[dialogue_name] domains = [] for dom_k, dom_v in dial_item['goal'].items(): if dom_v and dom_k not in IGNORE_KEYS_IN_GOAL: # check whether contains some goal entities domains.append(dom_k) dial = get_dial(data[dialogue_name]) if dial: dialogue = {} dialogue['dialogue_idx'] = dialogue_name dialogue['domains'] = list(set(domains)) #list(set([d['domain'] for d in dial])) last_bs = [] dialogue['dialogue'] = [] for turn_i, turn in enumerate(dial): # usr, usr_o, sys, sys_o, sys_a, domain turn_dialog = {} turn_dialog['system_transcript'] = dial[turn_i-1]['sys'] if turn_i > 0 else "" turn_dialog['turn_idx'] = turn_i turn_dialog['belief_state'] = [{"slots": [s], "act": "inform"} for s in turn['bvs']] turn_dialog['turn_label'] = [bs["slots"][0] for bs in turn_dialog['belief_state'] if bs not in last_bs] turn_dialog['transcript'] = turn['usr'] turn_dialog['system_acts'] = dial[turn_i-1]['sys_a'] if turn_i > 0 else [] turn_dialog['domain'] = turn['domain'] last_bs = turn_dialog['belief_state'] dialogue['dialogue'].append(turn_dialog) if dialogue_name in testListFile: test_dials.append(dialogue) count_test += 1 elif dialogue_name in valListFile: val_dials.append(dialogue) count_val += 1 else: trainListFile.write(dialogue_name + '\n') train_dials.append(dialogue) count_train += 1 print("# of dialogues: Train {}, Val {}, Test {}".format(count_train, count_val, count_test)) # save all dialogues with open('data/dev_dials.json', 'wb') as f: json.dump(val_dials, f, indent=4) with open('data/test_dials.json', 'wb') as f: json.dump(test_dials, f, indent=4) with open('data/train_dials.json', 'wb') as f: json.dump(train_dials, f, indent=4) # return word_freqs_usr, word_freqs_sys
5,356,827
def createAaronWorld(): """ Create an empty world as an example to build future projects from. """ # Set up a barebones project project = makeBasicProject() # Create sprite sheet for the player sprite player_sprite_sheet = addSpriteSheet(project, "actor_animated.png", "actor_animated", "actor_animated") project.settings["playerSpriteSheetId"] = player_sprite_sheet["id"] # add a sprite we can use for the rocks a_rock_sprite = addSpriteSheet(project, "rock.png", "rock", "static") a_dog_sprite = addSpriteSheet(project, "dog.png", "dog", "static") # Add a background image default_bkg = makeBackground("placeholder.png", "placeholder") project.backgrounds.append(default_bkg) a_scene = makeScene(f"Scene", default_bkg) project.scenes.append(a_scene) actor = makeActor(a_rock_sprite, 9, 8) a_scene['actors'].append(actor) dog_actor = makeActor(a_dog_sprite, 5, 5) dog_script = [] element = makeElement() element["command"] = "EVENT_ACTOR_EMOTE" element["args"] = { "actorId": "player", "emoteId": "1" } dog_script.append(element) element = makeElement() element["command"] = "EVENT_END" dog_script.append(element) dog_actor["script"] = dog_script a_scene['actors'].append(dog_actor) # Add some music project.music.append(makeMusic("template", "template.mod")) # Set the starting scene project.settings["startSceneId"] = project.scenes[0]["id"] return project
5,356,828
def builtin_ljustify(s, w, p): """Left-justify a string to a given width with a given padding character.""" sv = s.convert(BStr()).value pv = p.convert(BStr()).value return BStr(sv.ljust(w.value, pv))
5,356,829
def package_files(directory): """package_files recursive method which will lets you set the package_data parameter in the setup call. """ paths = [] for (path, _, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join('..', path, filename)) return paths
5,356,830
def get_effective_router(appname): """Returns a private copy of the effective router for the specified application""" if not routers or appname not in routers: return None return Storage(routers[appname])
5,356,831
def build(ctx, cclean=False, sys='ninja'): """ Build C++ code and install the artifacts. """ if not check_option(sys, ['makefile', 'ninja']): return sys_build = { 'makefile' : { 'Generate' : '-G"Unix Makefiles"', 'Install' : 'make install', }, 'ninja' : { 'Generate' : '-G"Ninja" -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON', 'Install' : 'ninja install', }, } project_name, project_pwd = get_project_name_and_folder() if cclean: clean(ctx) build_folder = project_pwd + '/build/' build_folder_exists = os.path.isdir(build_folder) and os.path.exists(build_folder) sys_build_folder = project_pwd + '/build/_' + sys sys_build_folder_exists = os.path.isdir(sys_build_folder) and os.path.exists(sys_build_folder) build_commands = [ 'cd ' + project_pwd, 'mkdir build', 'cd build', 'mkdir _' + sys, 'cd _' + sys, 'cmake ' + sys_build[sys]['Generate'] + ' ../..', 'cmake --build .', ] if build_folder_exists: build_commands.remove('mkdir build') if sys_build_folder_exists: build_commands.remove('mkdir _' + sys) print_color(colors.BLUE, ">>> Building! <<<" ) ctx.run(' && '.join(build_commands)) install_commands = [ 'cd ' + project_pwd, 'cd build', 'cd _' + sys, sys_build[sys]['Install'] ] print_color(colors.BLUE, ">>> Installing! <<<" ) ctx.run(' && '.join(install_commands)) print_color(colors.BLUE, ">>> Builded and installed. <<<")
5,356,832
def is_activated(user_id): """Checks if a user has activated their account. Returns True or false""" cur = getDb().cursor() cur.execute('SELECT inactive FROM users where user_id=%s', (user_id,)) inactive = cur.fetchone()[0] cur.close() return False if inactive is 1 else True
5,356,833
def _encode(dictionary): """Encodes any arbitrary dictionary into a pagination token. Args: dictionary: (dict) Dictionary to basee64-encode Returns: (string) encoded page token representing a page of items """ # Strip ugly base64 padding. return base64.urlsafe_b64encode(json.dumps(dictionary)).rstrip('=')
5,356,834
def remove_duplicates_sharded( files: List[Path], outputs: List[Path], hashes_dir: FilesOrDir, field: str, group_hashes: int = 1, tmp_dir: Path = None, min_len: int = 0, ): """Remove duplicates in several passes, when all hashes don't fit in RAM. Note: The current implementation is not doing a 'perfect' deduplication. If a hash appear exactly once in each shard of hashes it won't be detected as a duplicate. This can be fixed if hashes are fully dedup beforehand. """ assert len(files) == len(outputs) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}" if len(hashes_files) <= group_hashes: log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}") rm_dups = DuplicatesRemover(field, hashes_files) rm_dups._prepare() run_par( (jsonql.run_pipes, (rm_dups,), dict(file=f, output=o)) for f, o in zip(files, outputs) ) return log(f"Starting deduplicate_sharded on {files}.") tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None) def tmp_files(i): return [ Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin") for f in files ] last = tmp_files(0) run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last)) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)): hashes = FlatHashSet() for h in group: hashes.load(h) log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)") intermediates = tmp_files(i + 1) # Remove hashes in parallel. Since modern OS have "copy-on-write" and # `hashes` is read-only, we will only have one version of it in RAM. run_par( (_remove_duplicate_hashes, (hashes, f, tmp), {}) for f, tmp in zip(last, intermediates) ) # Force hashes to be freed, before we start allocating a new one. del hashes gc.collect() for tmp in last: os.remove(tmp) last = intermediates def finalize(source, dedup_hashes, min_len): n_chars, n_chars_kept = 0, 0 with open(dedup_hashes, "rb") as hashes: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content or len(content) < min_len: continue sentences = content.split("\n") doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences)) chars, kept_chars = finalize_doc(doc, field, doc_hashes) n_chars += chars n_chars_kept += kept_chars yield doc selectivity = n_chars_kept / n_chars if n_chars else 0 log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") dedup_hashes = last run_par( [ ( jsonql.run_pipe, (finalize,), dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o), ) for h, f, o in zip(dedup_hashes, files, outputs) ] ) tmp_directory.cleanup()
5,356,835
def parse_checkfile(filename): """Load a module containing extra Check subclasses. This is a nuisance; programmatic module loading is different in Py2 and Py3, and it's not pleasant in either. """ global checkfile_counter modname = '_cc_%d' % (checkfile_counter,) checkfile_counter += 1 fl = open(filename) try: if sys.version_info.major == 2: import imp mod = imp.load_module(modname, fl, filename, ('.py', 'U', imp.PY_SOURCE)) # For checking the contents... classtype = types.ClassType else: # Python3 import importlib.util spec = importlib.util.spec_from_file_location(modname, filename) mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) # For checking the contents... classtype = type for key in dir(mod): val = getattr(mod, key) if type(val) is classtype and issubclass(val, Check): if val is Check: continue if val in checkclasses: continue checkclasses.insert(0, val) finally: fl.close()
5,356,836
def test_downsample_in_time_totally_flagged(hera_uvh5, future_shapes): """Test the downsample_in_time method with totally flagged integrations""" uv_object = hera_uvh5 if future_shapes: uv_object.use_future_array_shapes() uv_object.phase_to_time(Time(uv_object.time_array[0], format="jd")) # reorder to make sure we get the right value later uv_object.reorder_blts(order="baseline", minor_order="time") uv_object2 = uv_object.copy() # save some values for later init_wf = uv_object.get_data(0, 1) original_int_time = np.amax(uv_object.integration_time) # check that there are no flags assert np.nonzero(uv_object.flag_array)[0].size == 0 init_ns = uv_object.get_nsamples(0, 1) # change the target integration time min_integration_time = original_int_time * 2.0 # add more flags and try again. When all the input points are flagged, # data and nsample should have the same results as no flags but the output # should be flagged inds01 = uv_object.antpair2ind(0, 1) if future_shapes: uv_object.flag_array[inds01[:2], 0, 0] = True else: uv_object.flag_array[inds01[:2], 0, 0, 0] = True uv_object2 = uv_object.copy() uv_object.downsample_in_time( min_int_time=min_integration_time, blt_order="baseline", minor_order="time" ) out_wf = uv_object.get_data(0, 1) assert np.isclose((init_wf[0, 0, 0] + init_wf[1, 0, 0]) / 2.0, out_wf[0, 0, 0]) # make sure nsamples is correct out_ns = uv_object.get_nsamples(0, 1) assert np.isclose((init_ns[0, 0, 0] + init_ns[1, 0, 0]) / 2.0, out_ns[0, 0, 0]) # check that the new sample is flagged out_flag = uv_object.get_flags(0, 1) assert out_flag[0, 0, 0] # Compare doing it with n_times_to_avg uv_object2.downsample_in_time( n_times_to_avg=2, blt_order="baseline", minor_order="time" ) assert uv_object.history != uv_object2.history uv_object2.history = uv_object.history assert uv_object == uv_object2
5,356,837
def stop_stream_encryption(StreamName=None, EncryptionType=None, KeyId=None): """ Disables server-side encryption for a specified stream. Stopping encryption is an asynchronous operation. Upon receiving the request, Kinesis Data Streams returns immediately and sets the status of the stream to UPDATING . After the update is complete, Kinesis Data Streams sets the status of the stream back to ACTIVE . Stopping encryption normally takes a few seconds to complete, but it can take minutes. You can continue to read and write data to your stream while its status is UPDATING . Once the status of the stream is ACTIVE , records written to the stream are no longer encrypted by Kinesis Data Streams. API Limits: You can successfully disable server-side encryption 25 times in a rolling 24-hour period. Note: It can take up to 5 seconds after the stream is in an ACTIVE status before all records written to the stream are no longer subject to encryption. After you disabled encryption, you can verify that encryption is not applied by inspecting the API response from PutRecord or PutRecords . See also: AWS API Documentation Exceptions :example: response = client.stop_stream_encryption( StreamName='string', EncryptionType='NONE'|'KMS', KeyId='string' ) :type StreamName: string :param StreamName: [REQUIRED]\nThe name of the stream on which to stop encrypting records.\n :type EncryptionType: string :param EncryptionType: [REQUIRED]\nThe encryption type. The only valid value is KMS .\n :type KeyId: string :param KeyId: [REQUIRED]\nThe GUID for the customer-managed AWS KMS key to use for encryption. This value can be a globally unique identifier, a fully specified Amazon Resource Name (ARN) to either an alias or a key, or an alias name prefixed by 'alias/'.You can also use a master key owned by Kinesis Data Streams by specifying the alias aws/kinesis .\n\nKey ARN example: arn:aws:kms:us-east-1:123456789012:key/12345678-1234-1234-1234-123456789012\nAlias ARN example: arn:aws:kms:us-east-1:123456789012:alias/MyAliasName\nGlobally unique key ID example: 12345678-1234-1234-1234-123456789012\nAlias name example: alias/MyAliasName\nMaster key owned by Kinesis Data Streams: alias/aws/kinesis\n\n :returns: Kinesis.Client.exceptions.InvalidArgumentException Kinesis.Client.exceptions.LimitExceededException Kinesis.Client.exceptions.ResourceInUseException Kinesis.Client.exceptions.ResourceNotFoundException """ pass
5,356,838
def selectPlate(plates, jdRange, normalise=False, scope='all'): """From a list of simulated plates, returns the optimal one.""" # Gets the JD range for the following night nextNightJDrange = _getNextNightRange(jdRange) # First we exclude plates without new exposures plates = [plate for plate in plates if plate._after['nNewExposures'] > 0] # Sorts plates by inverse plate completion. plates = sorted(plates, reverse=True, key=lambda plate: plate.getPlateCompletion() if plate.getPlateCompletion() <= 1 else 1. / plate.getPlateCompletion()) if len(plates) == 0: return None # If we are scheduling only plugged plates, we rather plug a new plate # unless we can observe a plugged plate at least for a whole set. availableTime = (jdRange[1] - jdRange[0]) * 24. completionIncrease = np.array( [plate._after['completion'] - plate._before['completion'] for plate in plates]) # minSchedulingTime ensures that if the remaining time < length of a set, # we still use the plugged plates, if any. if scope == 'plugged': if (availableTime > minSchedulingTime and np.all(completionIncrease == 0)): return None else: # If no plate has been observed for a whole set, we try to use first # plates that are already plugged. if np.all(completionIncrease == 0): pluggedPlates = [plate for plate in plates if plate.isPlugged] if len(pluggedPlates) > 0: plates = pluggedPlates # If plugger, tries to select only plates at APO if scope == 'plugged': platesAtAPO = [plate for plate in plates if plate.getLocation() == 'APO'] if len(platesAtAPO) > 0: plates = platesAtAPO # Now tries to select only plates that have been marked. markedPlates = [ plate for plate in plates if 'Accepted' in [status.label for status in plate.statuses] ] if len(markedPlates) > 0: plates = markedPlates # We check if any of the plate is complete after the simulation. # If so, we return the one with fewer new exposures. completePlates = [plate for plate in plates if plate._after['completion'] > plate.completion_factor] nNewExposures = [plate._after['nNewExposures'] for plate in completePlates] if len(completePlates) > 0: return completePlates[np.argmin(nNewExposures)] # We record the real completion before and after. We will normalise the # other completions based on our scheduling logic. for plate in plates: plate._before['realCompletion'] = plate._before['completion'] plate._before['realCompletion+'] = plate._before['completion+'] plate._after['realCompletion'] = plate._after['completion'] plate._after['realCompletion+'] = plate._after['completion+'] # If normalise=True, we divide the several completion values by the # length of the observing window for the plate, normalised by the length # of the minimum plate window. The effect of this is that plates with short # observing windows get comparatively larger completions and, thus, have # higher chance of being selected. This is good for plugged plates, as it # tries to schedule first plates with short windows even if other plates # could be completed at the time. # We also increase the completion of plates for which we have patched sets, # while we penalise those with incomplete sets. With this logic, we hope # that plates are observed when their incomplete sets can be patched. if normalise: _normaliseWindowLength(plates, jdRange, factor=1.0, apply=True) # We also normalise using the following night, if possible. if nextNightJDrange is not None: _normaliseWindowLength(plates, nextNightJDrange, factor=nextNightFactor, apply=True) # Now we normalise plate completion using a metric that gives higher # priority to plates for which we have patched incomplete sets. patchedSetFactor = [] for plate in plates: nSetsFactor = 0 for ss in plate.sets: if not ss.isMock: nNewExps = 0 for exp in ss.totoroExposures: if hasattr(exp, '_tmp') and exp._tmp: nNewExps += 1 setComplete = ss.getStatus()[0] in ['Good', 'Excellent'] if setComplete and nNewExps == 0: pass else: if nNewExps > 0: nSetsFactor += 2 * nNewExps if setComplete: nSetsFactor *= 2 else: nSetsFactor -= 1 patchedSetFactor.append(1. + patchSetFactor * nSetsFactor) _completionFactor(plates, patchedSetFactor) # We add the priority into the mix platePriorities = np.array([plate.priority for plate in plates]) - 5. _completionFactor(plates, 1 + platePriorityFactor * platePriorities) ancillaryPriorities = [] for plate in plates: if hasattr(plate, 'ancillary_weight'): ancillaryPriorities.append(plate.ancillary_weight) else: ancillaryPriorities.append(1) _completionFactor(plates, np.array(ancillaryPriorities)) # Selects the plates that have the largest increase in completion completionIncrease = [plate._after['completion'] - plate._before['completion'] for plate in plates if plate.completion_factor <= 1.] if len(completionIncrease) == 0: for plate in plates: if plate.completion_factor > 1: completionIncrease.append( plate._after['completion'] - plate._before['completion']) completionIncrease = np.array(completionIncrease) plates = np.array(plates) maxCompletionIncrease = np.max(completionIncrease) plates = plates[np.where(completionIncrease == maxCompletionIncrease)] if len(plates) == 1: return plates[0] # If maxCompletionIncrease is 0, it means that no plate has been # observed for at least a set. In this case, if possible, we want to use # a plate that already has signal. if maxCompletionIncrease == 0: platesWithSignal = [plate for plate in plates if plate._before['completion+'] > 0] if len(platesWithSignal) > 0: plates = platesWithSignal # If several plates have maximum completion increase, use the incomplete # sets to break the tie. completionIncreasePlus = np.array( [plate._after['completion+'] - plate._before['completion+'] for plate in plates]) return plates[np.argmax(completionIncreasePlus)]
5,356,839
def scenario_3_2(): """ Same day, same recipient list, different shift start (for example 6am and 6pm on same day) Should send email in all cases """ shift_date_morning_str = datetime.datetime.strftime(date_utils.key_to_date('2022010200') , date_utils.HOUR_KEY_FMT) # recepients same as third record (not to send) assert correspondence_manager.was_notification_sent(agency, category_shift, report_type, recip3_summary, shift_date_1_str, recepients3) == True # same recipients, same date, but different shift start (ok to send) assert correspondence_manager.was_notification_sent(agency, category_shift, report_type, recip2_summary, shift_date_morning_str, recepients2) == False print('Scenario 3_2 Pass')
5,356,840
def test_link_image_layers_all_attributes(key, value): """Test linking common attributes across layers of similar types.""" l1 = layers.Image(np.random.rand(10, 10), contrast_limits=(0, 0.8)) l2 = layers.Image(np.random.rand(10, 10), contrast_limits=(0.1, 0.9)) link_layers([l1, l2]) # linking does (currently) apply to things that were unequal before linking assert l1.contrast_limits != l2.contrast_limits # once we set either... they will both be changed assert getattr(l1, key) != value setattr(l2, key, value) assert getattr(l1, key) == getattr(l2, key) == value
5,356,841
def get_events( raw: mne.io.BaseRaw, event_picks: Union[str, list[str], list[tuple[str, str]]], ) -> tuple[np.ndarray, dict]: """Get events from given Raw instance and event id.""" if isinstance(event_picks, str): event_picks = [event_picks] events = None for event_pick in event_picks: if isinstance(event_pick, str): event_id = {event_pick: 1} else: event_id = {event_pick[0]: 1, event_pick[1]: -1} try: events, _ = mne.events_from_annotations( raw=raw, event_id=event_id, verbose=True, ) return events, event_id except ValueError as error: print(error) _, event_id_found = mne.events_from_annotations( raw=raw, verbose=False, ) raise ValueError( f"None of the given `event_picks´ found: {event_picks}." f"Possible events: {*event_id_found.keys(),}" )
5,356,842
def transplant(root, u, v): """ 注意, 这里要返回root, 不然修改不了 """ if u.parent == None: root = v elif u.parent.left == u: u.parent.left = v else: u.parent.right = v if v: v.parent = u.parent return root
5,356,843
def is_head_moderator(): """ Returns true if invoking author is a Head Moderator (role). """ async def predicate(ctx: Context): if not any(config.HEAD_MOD_ROLE in role.id for role in ctx.author.roles): raise NotStaff("The command `{}` can only be used by a Head Moderator.".format(ctx.invoked_with)) return True return commands.check(predicate)
5,356,844
def compute_adj_matrices(type, normalize=True): """ Computes adjacency matrices 'n', 'd' or 's' used in GCRAM. """ # Get channel names raw = mne.io.read_raw_edf('dataset/physionet.org/files/eegmmidb/1.0.0/S001/S001R01.edf', preload=True, verbose=False).to_data_frame() ch_names = raw.columns[2:] n_channels = 64 # Compute channel position distances using electrode positions. Required for computing 'd' and 's' adjacency matrices ch_pos_1010 = get_sensor_pos(ch_names) ch_pos_1010_names = [] ch_pos_1010_dist = [] for name, value in ch_pos_1010.items(): ch_pos_1010_names.append(name) ch_pos_1010_dist.append(value) ch_pos_1010_dist = np.array(ch_pos_1010_dist) # Compute adjacency matrices if type=='n': A = n_graph() elif type=='d': A = d_graph(n_channels, ch_pos_1010_dist) elif type=='s': A = s_graph(n_channels, ch_pos_1010_dist) # Normalize adjacency matrices if normalize: A = normalize_adj(A) A = np.array(A, dtype=np.float32) return A
5,356,845
def build_census_chart( *, alt, census_floor_df: pd.DataFrame, max_y_axis: Optional[int] = None, use_log_scale: bool = False ) -> Chart: """ This builds the "Admitted Patients" census chart, projecting total number of patients in the hospital over time. Args: alt: Reference to Altair package. census_floor_df: Pandas data frame containing three columns: "census_hospitalized", "census_icu", and "census_ventilated". max_y_axis: Optional maximum value for the Y axis of the chart. use_log_scale: Set to true to use a logarithmic scale on the Y axis. Default is linear scale. Returns: The newly created chart. """ adjusted_census_floor_df = __adjust_data_for_log_scale(census_floor_df) if use_log_scale else census_floor_df y_scale = __build_y_scale(alt, max_y_axis, use_log_scale) x = dict(shorthand="date:T", title=i18n.t("charts-date"), axis=alt.Axis(format=(DATE_FORMAT))) y = dict(shorthand="value:Q", title=i18n.t("charts-census"), scale=y_scale) color = "key:N" tooltip = ["date:T", alt.Tooltip("value:Q", format=".0f", title="Census"), "key:N"] # TODO fix the fold to allow any number of dispositions points = ( alt.Chart() .transform_fold(fold=[i18n.t("census_hospitalized"), i18n.t("census_icu"), i18n.t("census_ventilated")]) .encode(x=alt.X(**x), y=alt.Y(**y), color=color, tooltip=tooltip) .mark_line(point=True) .encode( x=alt.X(**x), y=alt.Y(**y), color=color, tooltip=tooltip, ) ) bar = ( alt.Chart() .encode(x=alt.X(**x)) .transform_filter(alt.datum.day == 0) .mark_rule(color="black", opacity=0.35, size=2) ) census_floor_df_renamed = adjusted_census_floor_df.rename({ "census_hospitalized": i18n.t("census_hospitalized"), "census_icu": i18n.t("census_icu"), "census_ventilated": i18n.t("census_ventilated") }, axis=1) return ( alt.layer(points, bar, data=census_floor_df_renamed) .configure_legend(orient="bottom") .interactive() )
5,356,846
def hasNonAsciiCharacters(sText): """ Returns True is specified string has non-ASCII characters, False if ASCII only. """ sTmp = unicode(sText, errors='ignore') if isinstance(sText, str) else sText; return not all(ord(ch) < 128 for ch in sTmp);
5,356,847
def draw_matches(image_1, image_1_keypoints, image_2, image_2_keypoints, matches): """ Draws the matches between the image_1 and image_2. (Credit: GT CP2017 course provided source) Params: image_1: The first image (can be color or grayscale). image_1_keypoints: The image_1 keypoints. image_2: The image to search in (can be color or grayscale) image_2_keypoints: The image_2 keypoints. Returns: output: Image with a line drawn between matched keypoints. """ # Compute number of channels. num_channels = 1 if len(image_1.shape) == 3: num_channels = image_1.shape[2] # Separation between images. margin = 10 # Create an array that will fit both images (with a margin of 10 to # separate the two images) joined_image = np.zeros((max(image_1.shape[0], image_2.shape[0]), image_1.shape[1] + image_2.shape[1] + margin, 3)) if num_channels == 1: for channel_idx in range(3): joined_image[:image_1.shape[0], :image_1.shape[1], channel_idx] = image_1 joined_image[:image_2.shape[0], image_1.shape[1] + margin:, channel_idx] = image_2 else: joined_image[:image_1.shape[0], :image_1.shape[1]] = image_1 joined_image[:image_2.shape[0], image_1.shape[1] + margin:] = image_2 for match in matches: image_1_point = (int(image_1_keypoints[match.queryIdx].pt[0]), int(image_1_keypoints[match.queryIdx].pt[1])) image_2_point = (int(image_2_keypoints[match.trainIdx].pt[0] + image_1.shape[1] + margin), int(image_2_keypoints[match.trainIdx].pt[1])) rgb = (np.random.rand(3) * 255).astype(np.int) cv2.circle(joined_image, image_1_point, 5, rgb, thickness=-1) cv2.circle(joined_image, image_2_point, 5, rgb, thickness=-1) cv2.line(joined_image, image_1_point, image_2_point, rgb, thickness=3) return joined_image
5,356,848
def copy_ttl_in(): """ COPY_TTL_IN Action """ return _action("COPY_TTL_IN")
5,356,849
def neuron_weight( layer: str, weight: torch.Tensor, x: Optional[int] = None, y: Optional[int] = None, batch: Optional[int] = None, ) -> Objective: """Linearly weighted channel activation at one location as objective :param layer: Name of the layer :type layer: str :param weight: A torch.Tensor of same length as the number of channels :type weight: torch.Tensor :param x: x-position, defaults to None :type x: Optional[int], optional :param y: y-position, defaults to None :type y: Optional[int], optional :param batch: which position at the batch dimension of the image tensor this objective is applied to, defaults to None :type batch: Optional[int], optional :return: Objective to optimize input for a linearly weighted channel activation at one location :rtype: Objective """ @handle_batch(batch) def inner(model): layer_t = model(layer) layer_t = _extract_act_pos(layer_t, x, y) if weight is None: return -layer_t.mean() else: return -(layer_t.squeeze() * weight).mean() return inner
5,356,850
def off(): """Set all LEDs to 0/off""" all(0) show()
5,356,851
def genargs() -> ArgumentParser: """ Generate an input string parser :return: parser """ parser = ArgumentParser() parser.add_argument("indir", help="Location of input shexj files") parser.add_argument("outdir", help="Location of output shexc files") parser.add_argument("-s", "--save", help="Save edited shexj image before conversion", action="store_true") return parser
5,356,852
def backup_plugin(): """ Backup scraping-prod mongodb """ backup('plugin')
5,356,853
def _find_and_remove_value_info_by_name(graph, name): """Find and remove value info in a graph by name. """ for value_info in graph.value_info: if value_info.name == name: graph.value_info.remove(value_info) break
5,356,854
def get_model_name(factory_class): """Get model fixture name by factory.""" return ( inflection.underscore(factory_class._meta.model.__name__) if not isinstance(factory_class._meta.model, str) else factory_class._meta.model)
5,356,855
def validate_and_filter_args(cls_list, ns): """ For each CONDITIONAL item found, if conditional holds true, then argument must be set else, then argument shouldn't be changed (value should be None or default) """ d = ns.__dict__.copy() n_errs = [0] def set_error(s): print colorize(s,'red') n_errs[0] += 1 for cls in cls_list: group_cond_holds = eval(cls._group_condition, d) #pylint: disable=W0212 for (attr_name,conditional) in cls.items(): val = conditional.val cond_holds = eval(conditional.cond, d) and group_cond_holds if cond_holds: if d[attr_name] is None: # required param with no default value was not specified set_error("missing conditionally required argument %s. (condition: \"%s\", group condition: \"%s\".)"%(attr_name, conditional.cond, cls._group_condition)) #pylint: disable=W0212 else: # Specified value for param with no default value, or optional param with a default value if isinstance(val,type) and d[attr_name] is not None or (not isinstance(val,type)) and d[attr_name] != val: set_error("Specified value for conditional argument %s, but conditional doesn't hold (condition: \"%s\", group condition: \"%s\")"%(attr_name, conditional.cond, cls._group_condition)) #pylint: disable=W0212 del ns.__dict__[attr_name] # print "removed",attr_name if n_errs[0] > 0: raise RuntimeError("%i argument errors"%n_errs[0])
5,356,856
def keywords(kwarg1=None, kwarg2=None): """ Test function for live kwargs | str --> None Copy paste following to test: arg1 = foo, arg2 = bar """ print('Keywords: ' + kwarg2 + ' ' + kwarg1)
5,356,857
def GetSpatialFeatures(img, size=(32, 32), isFeatureVector=True): """ Extracts spatial features of the image. param: img: Source image param: size: Target image size param: isFeatureVector: Indication if the result needs to be unrolled into a feature vector returns: Spatial features """ resizedImg = cv2.resize(img, size) if isFeatureVector: return resizedImg.ravel() else: return resizedImg
5,356,858
def html_to_text(content): """Filter out HTML from the text.""" text = content['text'] try: text = html.document_fromstring(text).text_content() except etree.Error as e: logging.error( 'Syntax error while processing {}: {}\n\n' 'Falling back to regexes'.format(text, e)) text = re.sub(r'<[^>]*>', '', text) text = _to_unicode(text) content['text'] = text return content
5,356,859
def backup_local(config): """ Creates a local backup of the local folder """ for folder in config.folders: folder_path = getrealhome(folder['path']) backup_path = folder_path + ".backup" gui.debug("Backing up from " + folder_path + " to " + backup_path) if not os.path.exists(backup_path): gui.debug(backup_path + " does not exist, creating") os.makedirs(backup_path) cmd = 'rsync -av ' + folder_path + '/ ' + backup_path cmd_run = subprocess.Popen([cmd], stdout=subprocess.PIPE, shell=True)
5,356,860
async def get_robot_positions() -> control.RobotPositionsResponse: """ Positions determined experimentally by issuing move commands. Change pipette position offsets the mount to the left or right such that a user can easily access the pipette mount screws with a screwdriver. Attach tip position places either pipette roughly in the front-center of the deck area """ robot_positions = control.RobotPositions( change_pipette=control.ChangePipette( target=control.MotionTarget.mount, left=[300, 40, 30], right=[95, 40, 30] ), attach_tip=control.AttachTip( target=control.MotionTarget.pipette, point=[200, 90, 150] ), ) return control.RobotPositionsResponse(positions=robot_positions)
5,356,861
def compute_basis(normal): """ Compute an orthonormal basis for a vector. """ u = [0.0, 0.0, 0.0] v = [0.0, 0.0, 0.0] u[0] = -normal[1] u[1] = normal[0] u[2] = 0.0 if ((u[0] == 0.0) and (u[1] == 0.0)): u[0] = 1.0 mag = vector_mag(u) if (mag == 0.0): return for i in range(0, 3): u[i] = u[i] / mag v = cross_product(normal, u) mag = vector_mag(v) if (mag != 0.0): for i in range(0, 3): v[i] = v[i] / mag return u, v
5,356,862
def do_LEE_correction(max_local_sig, u1, u2, exp_phi_1, exp_phi_2): """ Return the global p-value for an observed local significance after correcting for the look-elsewhere effect given expected Euler characteristic exp_phi_1 above level u1 and exp_phi_2 above level u2 """ n1, n2 = get_coefficients(u1,u2,exp_phi_1, exp_phi_2) this_global_p = global_pvalue(max_local_sig**2, n1, n2) print ' n1, n2 =', n1, n2 print ' local p_value = %f, local significance = %f' %(norm.cdf(-max_local_sig), max_local_sig) print 'global p_value = %f, global significance = %f' %(this_global_p, -norm.ppf(this_global_p)) return this_global_p
5,356,863
def _check_password(request, mail_pass, uid): """ [メソッド概要] パスワードチェック """ error_msg = {} if len(mail_pass) <= 0: error_msg['mailPw'] = get_message('MOSJA10004', request.user.get_lang_mode()) logger.user_log('LOSI10012', request=request) logger.logic_log('LOSM17015', request=request) else: password_hash = OaseCommon.oase_hash(mail_pass) user = User.objects.get(user_id=uid) if not user: error_msg['mailPw'] = get_message('MOSJA32010', request.user.get_lang_mode()) logger.user_log('LOSI10013', request=request) logger.logic_log('LOSM17001', request=request) if user and user.password != password_hash: error_msg['mailPw'] = get_message('MOSJA32038', request.user.get_lang_mode()) logger.user_log('LOSI10013', request=request) logger.logic_log('LOSM17016', request=request) return error_msg
5,356,864
def localize(): """Return to using page-specific workers for copyvio checks. This disables changes made by :func:`globalize`, including stoping the global worker threads. This function is not thread-safe and should only be called when no checks are being done. """ global _is_globalized, _global_queues, _global_workers if not _is_globalized: return for i in range(len(_global_workers)): _global_queues.unassigned.put((StopIteration, None)) _global_queues = None _global_workers = [] _is_globalized = False
5,356,865
def _read_wb_indicator(indicator: str, start: int, end: int) -> pd.DataFrame: """Read an indicator from WB""" return pd.read_feather(config.paths.data + rf"/{indicator}_{start}_{end}.feather")
5,356,866
def pr_branches() -> list[str]: """List of branches that start with 'pr-'""" out = subprocess.run( [ "git", "for-each-ref", "--shell", '--format="%(refname:strip=3)"', "refs/remotes/origin/pr-*", ], capture_output=True, ) branches = out.stdout.decode().splitlines() return [branch.replace('"', "").replace("'", "") for branch in branches]
5,356,867
def scatter_raster_plot(spike_amps, spike_depths, spike_times, n_amp_bins=10, cmap='BuPu', subsample_factor=100, display=False): """ Prepare data for 2D raster plot of spikes with colour and size indicative of spike amplitude :param spike_amps: :param spike_depths: :param spike_times: :param n_amp_bins: no. of colour and size bins into which to split amplitude data :param cmap: :param subsample_factor: factor by which to subsample data when too many points for efficient display :param display: generate figure :return: ScatterPlot object, if display=True also returns matplotlib fig and ax objects """ amp_range = np.quantile(spike_amps, [0, 0.9]) amp_bins = np.linspace(amp_range[0], amp_range[1], n_amp_bins) color_bin = np.linspace(0.0, 1.0, n_amp_bins + 1) colors = (cm.get_cmap(cmap)(color_bin)[np.newaxis, :, :3][0]) spike_amps = spike_amps[0:-1:subsample_factor] spike_colors = np.zeros((spike_amps.size, 3)) spike_size = np.zeros(spike_amps.size) for iA in range(amp_bins.size): if iA == (amp_bins.size - 1): idx = np.where(spike_amps > amp_bins[iA])[0] # Make saturated spikes the darkest colour spike_colors[idx] = colors[-1] else: idx = np.where((spike_amps > amp_bins[iA]) & (spike_amps <= amp_bins[iA + 1]))[0] spike_colors[idx] = [*colors[iA]] spike_size[idx] = iA / (n_amp_bins / 8) data = ScatterPlot(x=spike_times[0:-1:subsample_factor], y=spike_depths[0:-1:subsample_factor], c=spike_amps * 1e6, cmap='BuPu') data.set_ylim((0, 3840)) data.set_color(color=spike_colors) data.set_clim(clim=amp_range * 1e6) data.set_marker_size(marker_size=spike_size) data.set_labels(title='Spike times vs Spike depths', xlabel='Time (s)', ylabel='Distance from probe tip (um)', clabel='Spike amplitude (uV)') if display: fig, ax = plot_scatter(data.convert2dict()) return data.convert2dict(), fig, ax return data
5,356,868
def is_pack_real(*args): """ is_pack_real(F) -> bool 'FF_PACKREAL' @param F (C++: flags_t) """ return _ida_bytes.is_pack_real(*args)
5,356,869
def _get_sim205(node: ast.UnaryOp) -> List[Tuple[int, int, str]]: """Get a list of all calls of the type "not (a <= b)".""" errors: List[Tuple[int, int, str]] = [] if ( not isinstance(node.op, ast.Not) or not isinstance(node.operand, ast.Compare) or len(node.operand.ops) != 1 or not isinstance(node.operand.ops[0], ast.LtE) ): return errors comparison = node.operand left = to_source(comparison.left) right = to_source(comparison.comparators[0]) errors.append( (node.lineno, node.col_offset, SIM205.format(a=left, b=right)) ) return errors
5,356,870
def db_table_update_column(db_name,table_name,key,values,key_ref,values_ref): """Update key values in table where key_ref = values_ref.""" db_commands = [] for i in range(len(values)): value = values[i] value_ref = values_ref[i] db_commands.append(('UPDATE "{}" SET {}={} WHERE {}={}'.format(table_name,key,value,key_ref,value_ref))) db_query(db_name, db_commands)
5,356,871
def parse_boolean(val: str) -> Union[str, bool]: """Try to parse a string into boolean. The string is returned as-is if it does not look like a boolean value. """ val = val.lower() if val in ('y', 'yes', 't', 'true', 'on', '1'): return True if val in ('n', 'no', 'f', 'false', 'off', '0'): return False return val
5,356,872
def load_users(usertable): """ `usertable` is the path to a CSV with the following fields: user.* account.organisation SELECT user.*, account.organisation FROM user LEFT JOIN account ON user.account_id = account.id; """ users = [] with open(usertable) as f: reader = csv.reader(f) next(reader) # skip headers for row in reader: fields = iter(row) _ = next(fields) # id email = next(fields) hash = next(fields) password_invalid = bool(int(next(fields))) salt = next(fields) first_name = next(fields) last_name = next(fields) is_verified = bool(int(next(fields))) is_admin = bool(int(next(fields))) _ = next(fields) # verification_uuid _ = next(fields) # account_id created = datetime.datetime.strptime(next(fields), DATE_FORMAT) updated = datetime.datetime.strptime(next(fields), DATE_FORMAT) # from user.account: organisation = next(fields) # not importing these: if password_invalid or not is_verified or (is_admin and email == '[email protected]'): print('Warning: not importing user %s' % email) continue encoded = reencode_password(salt, hash) users.append(UserDef(email, encoded, first_name, last_name, organisation, created, updated)) return users
5,356,873
def get_progress_status_view(request): """Get progress status of a given task Each submitted task is identified by an ID defined when the task is created """ if 'progress_id' not in request.params: raise HTTPBadRequest("Missing argument") return get_progress_status(request.params['progress_id'])
5,356,874
def test_discrete_time_zeeman_switchoff_only(): """ Check that switching off a field works even if no dt_update is given (i.e. the field is just a pulse that is switched off after a while). """ field_expr = df.Expression(("1", "2", "3"), degree=1) H_ext = DiscreteTimeZeeman(field_expr, dt_update=None, t_off=2) H_ext.setup(m, Field(df.FunctionSpace(m.mesh(), 'DG', 0), Ms)) assert diff(H_ext, np.array([1, 2, 3])) < TOL assert(H_ext.switched_off == False) H_ext.update(1) assert diff(H_ext, np.array([1, 2, 3])) < TOL # not yet updating assert(H_ext.switched_off == False) H_ext.update(2.1) assert diff(H_ext, np.array([0, 0, 0])) < TOL assert(H_ext.switched_off == True)
5,356,875
async def test_unsupported_condition_icon_data(hass): """Test with unsupported condition icon data.""" await init_integration(hass, forecast=True, unsupported_icon=True) state = hass.states.get("weather.home") assert state.attributes.get(ATTR_FORECAST_CONDITION) is None
5,356,876
def pretty_param_string(param_ids: "collection") -> str: """Creates a nice string showing the parameters in the given collection""" return ' '.join(sorted(param_ids, key=utilize_params_util.order_param_id))
5,356,877
def _center_crop(image, size): """Crops to center of image with specified `size`.""" # Reference: https://github.com/mlperf/inference/blob/master/v0.5/classification_and_detection/python/dataset.py#L144 # pylint: disable=line-too-long height = tf.shape(image)[0] width = tf.shape(image)[1] out_height = size out_width = size # Reference code: # left = (width - out_width) / 2 # right = (width + out_width) / 2 # top = (height - out_height) / 2 # bottom = (height + out_height) / 2 # img = img.crop((left, top, right, bottom)) offset_height = tf.to_int32((height - out_height) / 2) offset_width = tf.to_int32((width - out_width) / 2) image = tf.image.crop_to_bounding_box( image, offset_height, offset_width, target_height=out_height, target_width=out_width, ) return image
5,356,878
def resample(ts, values, num_samples): """Convert a list of times and a list of values to evenly spaced samples with linear interpolation""" assert np.all(np.diff(ts) > 0) ts = normalize(ts) return np.interp(np.linspace(0.0, 1.0, num_samples), ts, values)
5,356,879
def main(): """ Main Prog """ args = get_args() # for i in range(args.num, 0, -1): # print(verse(i)) print('\n\n'.join(map(verse, range(args.num, 0, -1)))) # # Alternative way # for n in range(args.num, 0, -1): # print(verse(n), end='\n' * (2 if n > 1 else 1))
5,356,880
def test_get_encoder_for(solver_z, D_hat, algorithm, loss, uv_constraint, feasible_evaluation): """Test for valid values.""" with get_z_encoder_for(solver=solver_z, X=X, D_hat=D_hat, n_atoms=N_ATOMS, atom_support=N_TIMES_ATOM, algorithm=algorithm, loss=loss, uv_constraint=uv_constraint, feasible_evaluation=feasible_evaluation, n_jobs=2) as z_encoder: assert z_encoder is not None
5,356,881
def merge_align_moa(data_dir, cp_moa_link): """ This function aligns L1000 MOAs with the cell painting MOAs and further fill null MOAs in one of the them (cell painting or L1000) with another, so far they are of the same broad sample ID. The function outputs aligned L1000 MOA metadata dataframe, that will be used for further analysis. params: data_dir: directory that contains L1000 files cp_moa_link: github link to cell painting MOA metadata information .csv file Returns: df_pertinfo: dataframe with aligned L1000 MOA metadata pertubation information. """ df_pertinfo_5 = pd.read_csv(os.path.join(data_dir, 'REP.A_A549_pert_info.txt'), delimiter = "\t") df_moa_cp = pd.read_csv(cp_moa_link, sep="\t") df_pertinfo_5 = df_pertinfo_5[['pert_id', 'pert_iname', 'moa']].copy() df_moa_cp = df_moa_cp[['broad_id', 'pert_iname', 'moa']].copy() df_pertinfo_5.rename(columns={"pert_id": "broad_id", "pert_iname": "pert_iname_L1000", "moa": "moa_L1000"}, inplace = True) df_moa_cp.rename(columns={"pert_iname": "pert_iname_cell_painting", "moa": "moa_cell_painting"}, inplace = True) df_pertinfo = pd.merge(df_pertinfo_5, df_moa_cp, on=['broad_id'], how = 'left') ##fill NaNs in columns - moa_L1000, pert_iname_L1000, with corresponding values in cell_painting and VICE VERSA df_pertinfo['moa_L1000'].fillna(value=df_pertinfo['moa_cell_painting'], inplace=True) df_pertinfo['moa_cell_painting'].fillna(value=df_pertinfo['moa_L1000'], inplace=True) df_pertinfo['pert_iname_cell_painting'].fillna(value=df_pertinfo['pert_iname_L1000'], inplace=True) for col in ['pert_iname_L1000', 'moa_L1000', 'pert_iname_cell_painting', 'moa_cell_painting']: df_pertinfo[col] = df_pertinfo[col].apply(lambda x: x.lower()) df_pertinfo.rename(columns={"broad_id": "pert_id", "pert_iname_L1000": "pert_iname", "moa_L1000": "moa"}, inplace = True) df_pertinfo.drop(['pert_iname_cell_painting', 'moa_cell_painting'], axis = 1, inplace = True) return df_pertinfo
5,356,882
def supports_color(stream) -> bool: # type: ignore """Determine whether an output stream (e.g. stdout/stderr) supports displaying colored text. A stream that is redirected to a file does not support color. """ return stream.isatty() and hasattr(stream, "isatty")
5,356,883
def flush(): """Flush changes made to clusto objects to the database.""" SESSION.flush()
5,356,884
def parse_repo_links( html: Union[str, bytes], base_url: Optional[str] = None, from_encoding: Optional[str] = None, ) -> Tuple[Dict[str, str], List[Link]]: """ .. versionadded:: 0.7.0 Parse an HTML page from a simple repository and return a ``(metadata, links)`` pair. The ``metadata`` element is a ``Dict[str, str]``. Currently, the only key that may appear in it is ``"repository_version"``, which maps to the repository version reported by the HTML page in accordance with :pep:`629`. If the HTML page does not contain a repository version, this key is absent from the `dict`. The ``links`` element is a list of `Link` objects giving the hyperlinks found in the HTML page. :param html: the HTML to parse :type html: str or bytes :param Optional[str] base_url: an optional URL to join to the front of the links' URLs (usually the URL of the page being parsed) :param Optional[str] from_encoding: an optional hint to Beautiful Soup as to the encoding of ``html`` when it is `bytes` (usually the ``charset`` parameter of the response's :mailheader:`Content-Type` header) :rtype: Tuple[Dict[str, str], List[Link]] :raises UnsupportedRepoVersionError: if the repository version has a greater major component than the supported repository version """ soup = BeautifulSoup(html, "html.parser", from_encoding=from_encoding) base_tag = soup.find("base", href=True) if base_tag is not None: if base_url is None: base_url = base_tag["href"] else: base_url = urljoin(base_url, base_tag["href"]) if base_url is None: def basejoin(url: str) -> str: return url else: def basejoin(url: str) -> str: assert isinstance(base_url, str) return urljoin(base_url, url) metadata = {} pep629_meta = soup.find( "meta", attrs={"name": "pypi:repository-version", "content": True}, ) if pep629_meta is not None: metadata["repository_version"] = pep629_meta["content"] check_repo_version(metadata["repository_version"]) links = [] for link in soup.find_all("a", href=True): links.append( Link( text="".join(link.strings).strip(), url=basejoin(link["href"]), attrs=link.attrs, ) ) return (metadata, links)
5,356,885
def process_page_metadata(generator, metadata): """ Process page metadata and assign css """ global bnews_default_settings, bnews_settings # Inject article listing article_listing = bnews_settings['articles'] bnews_settings = copy.deepcopy(bnews_default_settings) bnews_settings['articles'] = article_listing if u'styles' not in metadata: metadata[u'styles'] = [] if u'bnews' in metadata and (metadata['bnews'] == 'True' or metadata['bnews'] == 'true'): bnews_settings['show'] = True bnews_settings['template-variable'] = True else: bnews_settings['show'] = False bnews_settings['template-variable'] = False if u'bnews_mode' in metadata: bnews_settings['mode'] = metadata['bnews_mode'] if u'bnews_panel_color' in metadata: bnews_settings['panel-color'] = metadata['bnews_panel_color'] if u'bnews_header' in metadata: bnews_settings['header'] = metadata['bnews_header'] if u'bnews_header_link' in metadata: bnews_settings['header-link'] = metadata['bnews_header_link'] if u'bnews_count' in metadata: bnews_settings['count'] = int(metadata['bnews_count']) if u'bnews_category' in metadata: bnews_settings['category'] = metadata['bnews_category'] if u'bnews_show_categories' in metadata: bnews_settings['show-categories'] = metadata['bnews_show_categories'] if u'bnews_show_summary' in metadata: bnews_settings['show-summary'] = metadata['bnews_show_summary']
5,356,886
def calc_kappa4Franci(T_K, a_H, a_H2CO3s): """ Calculates kappa4 in the PWP equation using approach from Franci's code. Parameters ---------- T_K : float temperature Kelvin a_H : float activity of hydrogen (mol/L) a_H2CO3s : float activity of carbonic acid (mol/L) Returns ------- kappa4 : float constant kappa4 in the PWP equation (cm^4/mmol/s) Notes ----- See more info under documentation for pwpRateFranci(). """ K_2 = calc_K_2(T_K) K_c = calc_K_c(T_K) kappa1 = calc_kappa1(T_K) kappa2 = calc_kappa2(T_K) kappa3 = calc_kappa3(T_K) kappa4 = (K_2/K_c)*(kappa1 + 1/a_H*(kappa2*a_H2CO3s + kappa3) ) return kappa4
5,356,887
def get_candidates_from_single_line(single_line_address, out_spatial_reference, max_locations): """ parses the single line address and passes it to the AGRC geocoding service and then returns the results as an array of candidates """ try: parsed_address = Address(single_line_address) except Exception: return [] return make_request( parsed_address.normalized, parsed_address.zip_code or parsed_address.city, out_spatial_reference, max_locations )
5,356,888
def create_store(): """Gathers all the necessary info to create a new store""" print("What is the name of the store?") store_name = raw_input('> ') return receipt.Store(store_name)
5,356,889
def set_retention_policy(bucket_name, retention_period): """Defines a retention policy on a given bucket""" # [START storage_set_retention_policy] # bucket_name = "my-bucket" # retention_period = 10 storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) bucket.retention_period = retention_period bucket.patch() print('Bucket {} retention period set for {} seconds'.format( bucket.name, bucket.retention_period)) # [END storage_set_retention_policy]
5,356,890
def vgg11_bn_vib(cutting_layer, logger, num_client = 1, num_class = 10, initialize_different = False, adds_bottleneck = False, bottleneck_option = "C8S1"): """VGG 11-layer model (configuration "A") with batch normalization""" return VGG_vib(make_layers(cutting_layer,cfg['A'], batch_norm=True, adds_bottleneck = adds_bottleneck, bottleneck_option = bottleneck_option), logger, num_client = num_client, num_class = num_class, initialize_different = initialize_different)
5,356,891
def test_command_line_tool_activate_server(mock_main_runner, mock_requests): """Test activating a server""" runner = mock_main_runner context = mock_main_runner.get_context() assert context.get_active_server().name == "testserver" result = runner.invoke( entrypoint.cli, "server activate testserver2", catch_exceptions=False ) assert "Set active server to" in result.output assert context.get_active_server().name == "testserver2" # activating a non-existant server name should just give a nice message, no crashes result = runner.invoke(entrypoint.cli, "server activate yomomma") assert "Invalid value" in result.output
5,356,892
def pytest_sessionstart(session): """ pytest hook to configure plugin. """ config = session.config # Get registered options platform = config.getoption('--topology-platform') plot_format = config.getoption('--topology-plot-format') plot_dir = config.getoption('--topology-plot-dir') nml_dir = config.getoption('--topology-nml-dir') injection_file = config.getoption('--topology-inject') log_dir = config.getoption('--topology-log-dir') szn_dir = config.getoption('--topology-szn-dir') platform_options = config.getoption('--topology-platform-options') build_retries = config.getoption('--topology-build-retries') if build_retries < 0: raise Exception('--topology-build-retries can\'t be less than 0') def create_dir(path): if path: if not isabs(path): path = join(abspath(getcwd()), path) if not exists(path): makedirs(path) # Determine plot, NML and log directory paths and create them if required create_dir(plot_dir) create_dir(nml_dir) create_dir(log_dir) # Parse attributes injection file from pyszn.injection import parse_attribute_injection injected_attr = None if injection_file is not None: log.info('Processing attribute injection...') start_time = time() # Get a list of all testing directories search_paths = [ realpath(arg) for arg in config.args if isdir(arg) ] injected_attr = parse_attribute_injection( injection_file, search_paths=search_paths, ignored_paths=config.getini('norecursedirs'), szn_dir=szn_dir ) log.info( 'Attribute injection completed after {}s' .format(time() - start_time) ) # Create and register plugin config._topology_plugin = TopologyPlugin( platform, plot_dir, plot_format.lstrip('.'), nml_dir, injected_attr, log_dir, szn_dir, parse_options(platform_options), build_retries ) config.pluginmanager.register(config._topology_plugin) # Add test_id marker config.addinivalue_line( 'markers', 'test_id(id): assign a test identifier to the test' ) # Add topology_compatible marker config.addinivalue_line( 'markers', 'platform_incompatible(platforms, reason=None): ' 'mark a test as incompatible with a list of platform engines. ' 'Optionally specify a reason for better reporting' )
5,356,893
def test_synchrotron_lum(particle_dists): """ test sync calculation """ from ..models import Synchrotron ECPL,PL,BPL = particle_dists lum_ref = [2.523130675e-04, 1.689956354e-02, 3.118110763e-04] We_ref = [8.782070535e+09, 1.443896523e+10, 1.056827286e+09] Wes = [] lsys = [] for pdist in particle_dists: sy = Synchrotron(pdist) Wes.append(sy.We.to('erg').value) lsy = trapz_loglog(sy.spectrum(energy) * energy, energy).to('erg/s') assert(lsy.unit == u.erg / u.s) lsys.append(lsy.value) assert_allclose(lsys, lum_ref) assert_allclose(Wes, We_ref) sy = Synchrotron(ECPL,B=1*u.G) lsy = trapz_loglog(sy.spectrum(energy) * energy, energy).to('erg/s') assert(lsy.unit == u.erg / u.s) assert_allclose(lsy.value, 31668900.60668014)
5,356,894
def perform_init_checks(wrapper, input_list, input_mapper, in_output_list, output_list, param_list, mapper_list, short_name, level_names): """Perform checks on objects created by running or slicing an indicator.""" if input_mapper is not None: checks.assert_equal(input_mapper.shape[0], wrapper.shape_2d[1]) for ts in input_list: checks.assert_equal(ts.shape[0], wrapper.shape_2d[0]) for ts in in_output_list + output_list: checks.assert_equal(ts.shape, wrapper.shape_2d) for params in param_list: checks.assert_len_equal(param_list[0], params) for mapper in mapper_list: checks.assert_equal(len(mapper), wrapper.shape_2d[1]) checks.assert_type(short_name, str) checks.assert_len_equal(level_names, param_list)
5,356,895
def get_conf_paths(project_metadata): """ Get conf paths using the default kedro patterns, and the CONF_ROOT directory set in the projects settings.py """ configure_project(project_metadata.package_name) session = KedroSession.create(project_metadata.package_name) _activate_session(session, force=True) context = session.load_context() pats = ("catalog*", "catalog*/**", "**/catalog*") conf_paths = context.config_loader._lookup_config_filepaths(Path(context.config_loader.conf_paths[0]), pats, set()) return conf_paths
5,356,896
def _mat_ptrs(a): """Creates an array of pointers to matrices Args: a: A batch of matrices on GPU Returns: GPU array of pointers to matrices """ return cuda.to_gpu(numpy.arange( a.ptr, a.ptr + a.shape[0] * a.strides[0], a.strides[0], dtype=ctypes.c_void_p))
5,356,897
def file_upload_quota_broken(request): """ You can't change handlers after reading FILES; this view shouldn't work. """ response = file_upload_echo(request) request.upload_handlers.insert(0, QuotaUploadHandler()) return response
5,356,898
def print_error(e, print_traceback=False): """Logs error to stdout, so it's not only shown to the user through streamlit.""" print() print("=" * 80) print(f"ERROR for user {username}:", e) if print_traceback: print() traceback.print_exc() print("=" * 80) print()
5,356,899