content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def initialize_window(icon, title, width,
height, graphical): # pragma: no cover
"""
Initialise l'environnement graphique et la fenêtre.
Parameters
----------
icon : Surface
Icone de la fenêtre
title : str
Nom de la fenêtre
width : int
Largeur de la fenêtre
height : int
Hauteur de la fenêtre
graphical : bool
Indique si la fenêtre doit être affichée
Returns
-------
Surface * Surface
Un couple (surface de jeu, surface à afficher)
"""
game = pygame.Surface((width, height))
if graphical:
pygame.display.set_icon(load_image(icon))
pygame.display.set_caption(title)
return (game,
pygame.display.set_mode((width, height),
flags=pygame.RESIZABLE))
return (game, None) | 5,357,000 |
def get_contour_verts(cn):
"""unpack the SVM contour values"""
contours = []
# for each contour line
for cc in cn.collections:
paths = []
# for each separate section of the contour line
for pp in cc.get_paths():
xy = []
# for each segment of that section
for vv in pp.iter_segments():
xy.append(vv[0])
paths.append(np.vstack(xy))
contours.append(paths)
return contours | 5,357,001 |
def play(data_type, stream_id, name, start=-2, duration=-1, reset=False):
"""
Construct a 'play' message to start receive audio/video data from publishers on the server.
:param data_type: int the RTMP datatype.
:param stream_id: int the stream which the message will be sent on.
:param name: str the name of the stream that is published/recorded on the server.
:param start: N/A.
:param duration: N/A.
:param reset: N/A.
"""
# TODO: Add start, duration, reset(?) Will it work with 'play'?
msg = {'msg': data_type,
'stream_id': stream_id,
'command': [u'play', 0, None, u'' + str(name)]}
return msg | 5,357,002 |
def _compute_covariances(precisions_chol):
"""Compute covariancess from Cholesky decomposition of the precision matrices.
Parameters
----------
precisions_chol : array-like, shape (n_components, n_features, n_features)
The Cholesky decomposition of the sample precisions.
Returns
-------
covariances : array-like
The covariance matrices corresponding to the given precision
matrices.
"""
n_components, n_features, _ = precisions_chol.shape
covariances = np.empty((n_components, n_features, n_features))
for k, prec_chol in enumerate(precisions_chol):
cov_chol = sl.solve_triangular(prec_chol,
np.eye(n_features), lower=True).T
covariances[k] = np.dot(cov_chol, cov_chol.T)
return covariances | 5,357,003 |
def test_load_by_file_path():
"""
Test if the image can be loaded by passing a filepath as string.
"""
image = ShdlcFirmwareImage(
EKS2.get('HEXFILE'), EKS2.get('BL_ADDR'), EKS2.get('APP_ADDR'))
assert image.size > 0 | 5,357,004 |
def rad2deg(angle):
"""
Convert radian to degree.
Parameters
----------
angle : float
Angle in radians
Returns
-------
degree : float
Angle in degrees
"""
return (180./PI) * angle | 5,357,005 |
def parse_kinetics_splits(level):
"""Parse Kinetics-400 dataset into "train", "val", "test" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
Returns:
list: "train", "val", "test" splits of Kinetics-400.
"""
def convert_label(s, keep_whitespaces=False):
"""Convert label name to a formal string.
Remove redundant '"' and convert whitespace to '_'.
Args:
s (str): String to be converted.
keep_whitespaces(bool): Whether to keep whitespace. Default: False.
Returns:
str: Converted string.
"""
if not keep_whitespaces:
return s.replace('"', '').replace(' ', '_')
else:
return s.replace('"', '')
def line_to_map(x, test=False):
"""A function to map line string to vid and label.
Args:
x (str): A single line from Kinetics-400 csv file.
test (bool): Indicate whether the line comes from test
annotation file.
Returns:
tuple[str, str]: (vid, label), vid is the video id,
label is the video label.
"""
if test:
# vid = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}'
vid = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}'
label = -1 # label unknown
return vid, label
else:
vid = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}'
if level == 2:
vid = f'{convert_label(x[0])}/{vid}'
else:
assert level == 1
label = class_mapping[convert_label(x[0])]
return vid, label
train_file = 'data/kinetics400/annotations/kinetics_train.csv'
val_file = 'data/kinetics400/annotations/kinetics_val.csv'
test_file = 'data/kinetics400/annotations/kinetics_test.csv'
csv_reader = csv.reader(open(train_file))
# skip the first line
next(csv_reader)
labels_sorted = sorted(set([convert_label(row[0]) for row in csv_reader]))
class_mapping = {label: i for i, label in enumerate(labels_sorted)}
csv_reader = csv.reader(open(train_file))
next(csv_reader)
train_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open(val_file))
next(csv_reader)
val_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open(test_file))
next(csv_reader)
test_list = [line_to_map(x, test=True) for x in csv_reader]
splits = ((train_list, val_list, test_list), )
return splits | 5,357,006 |
def execute(command, shell=True):
"""
Execute command using os package and return output to log file
:param command: The command to be executed
:type command: str
:param shell: Takes either True or False
:type shell: boolean
:return: Run the command in the background and save the
output to the logging file.
"""
loginfo(command)
p = Popen(command.split(), stderr=PIPE, stdout=PIPE)
output, error = p.communicate()
if output != b"":
loginfo(output.encode('utf-8'))
if error != b"":
logwarning(error.encode('utf-8')) | 5,357,007 |
def rotateContoursAbout(contours, about, degrees=90, ccw=True):
"""\
Rotate the given contours the given number of degrees about the point about
in a clockwise or counter-clockwise direction.
"""
rt = Transform.rotationAbout(about, degrees, ccw)
return rt.applyToContours(contours) | 5,357,008 |
def coordinate_addition(v, b, h, w, A, B, psize):
"""
Shape:
Input: (b, H*W*A, B, P*P)
Output: (b, H*W*A, B, P*P)
"""
assert h == w
v = v.view(b, h, w, A, B, psize)
coor = torch.arange(h, dtype=torch.float32) / h
coor_h = torch.cuda.FloatTensor(1, h, 1, 1, 1, psize).fill_(0.)
coor_w = torch.cuda.FloatTensor(1, 1, w, 1, 1, psize).fill_(0.)
coor_h[0, :, 0, 0, 0, 0] = coor
coor_w[0, 0, :, 0, 0, 1] = coor
v = v + coor_h + coor_w
v = v.view(b, h * w * A, B, psize)
return v | 5,357,009 |
def ticket() -> str:
"""生成请求饿百接口所需的ticket参数"""
return str(uuid.uuid1()).upper() | 5,357,010 |
def create_WchainCNOT_layered_ansatz(qc: qiskit.QuantumCircuit,
thetas: np.ndarray,
num_layers: int = 1):
"""Create WchainCNOT layered ansatz
Args:
- qc (qiskit.QuantumCircuit): init circuit
- thetas (np.ndarray): parameters
- n_layers (Int): numpy of layers
Returns:
- qiskit.QuantumCircuit
"""
n = qc.num_qubits
if isinstance(num_layers, int) != True:
num_layers = (num_layers['num_layers'])
if len(thetas) != num_layers * (n * 3):
raise Exception(
'Number of parameters must be equal n_layers * num_qubits * 3')
for i in range(0, num_layers):
phis = thetas[i * (n * 3):(i + 1) * (n * 3)]
qc = create_WchainCNOT(qc)
qc.barrier()
qc = create_rz_nqubit(qc, phis[:n])
qc = create_rx_nqubit(qc, phis[n:n * 2])
qc = create_rz_nqubit(qc, phis[n * 2:n * 3])
return qc | 5,357,011 |
def test_simple_cases(testdir):
"""Verify a simple passing test and a simple failing test.
The failing test is marked as xfail to have it skipped."""
testdir.makepyfile(
"""
import pytest
from seleniumbase import BaseCase
class MyTestCase(BaseCase):
def test_passing(self):
self.assert_equal('yes', 'yes')
@pytest.mark.xfail
def test_failing(self):
self.assert_equal('yes', 'no')
"""
)
result = testdir.inline_run("--headless", "--rs")
assert result.matchreport("test_passing").passed
assert result.matchreport("test_failing").skipped | 5,357,012 |
def birth_brander():
""" This pipeline operator will add or update a "birth" attribute for
passing individuals.
If the individual already has a birth, just let it float by with the
original value. If it doesn't, assign the individual the current birth
ID, and then increment the global, stored birth count.
We don't increment a birth ID in the ctor because that overall birth
count will bloat due to clone operations. Inserting this operator into
the pipeline will ensure that each individual that passes through is
properly "branded" with a unique birth ID. However, care must be made to
ensure that the initial population is similarly branded.
Provides:
* brand_population() to brand an entire population all at once,
which is useful for branding initial populations.
* brand() for explicitly branding a single individual
:param next_thing: preceding individual in the pipeline
:return: branded individual
"""
# incremented with each birth
num_births = itertools.count()
# sometimes next_thing is a population, so we need this to track that
# the next individual in the population
iterator = None
def brand(individual):
""" brand the given individual
:param individual: to be branded
:return: branded individual
"""
if not hasattr(individual, "birth"):
# Only assign a birth ID if they don't already have one
individual.birth = next(num_births)
return individual
def brand_population(population):
""" We want to brand an entire population in one go
Usually used to brand an initial population is one shot.
:param population: to be branded
:return: branded population
"""
return [brand(i) for i in population]
def do_birth_branding(next_thing):
""" This has the flexibility of being inserted in a pipeline such that
the preceding pipeline is a population or a generator that provides
an individual. It'll flexibly handle either situation.
:param next_thing: either the next individual in the pipeline or a population of individuals to be branded
:return: branded individual
"""
nonlocal num_births
nonlocal iterator
while True:
if is_iterable(next_thing):
# We're being passed in a single individual in a pipeline
next_thing = next(next_thing)
else:
# We're being passed a test_sequence/population
if iterator is None:
iterator = iter(next_thing)
next_thing = next(iterator)
next_thing = brand(next_thing)
yield next_thing
do_birth_branding.brand_population = brand_population
return do_birth_branding | 5,357,013 |
def find_center_vo(tomo, ind=None, smin=-50, smax=50, srad=6, step=0.5,
ratio=0.5, drop=20, smooth=True):
"""
Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
Parameters
----------
tomo : ndarray
3D tomographic data.
ind : int, optional
Index of the slice to be used for reconstruction.
smin, smax : int, optional
Coarse search radius. Reference to the horizontal center of the sinogram.
srad : float, optional
Fine search radius.
step : float, optional
Step of fine searching.
ratio : float, optional
The ratio between the FOV of the camera and the size of object.
It's used to generate the mask.
drop : int, optional
Drop lines around vertical center of the mask.
smooth : bool, optional
Whether to apply additional smoothing or not.
Returns
-------
float
Rotation axis location.
"""
tomo = dtype.as_float32(tomo)
if ind is None:
ind = tomo.shape[1] // 2
_tomo = tomo[:, ind, :]
# Reduce noise by smooth filters. Use different filters for coarse and fine search
_tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1)) if smooth else _tomo
_tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2)) if smooth else _tomo
# Coarse and fine searches for finding the rotation center.
if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
_tomo_coarse = downsample(np.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
init_cen = _search_coarse(_tomo_coarse, smin / 4.0, smax / 4.0, ratio, drop)
fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
else:
init_cen = _search_coarse(_tomo_cs, smin, smax, ratio, drop)
fine_cen = _search_fine(_tomo_fs, srad, step, init_cen, ratio, drop)
logger.debug('Rotation center search finished: %i', fine_cen)
return fine_cen | 5,357,014 |
def random_fit_nonnegative(values, n):
"""
Generates n random values using a normal distribution fitted from values used as argument.
Returns only non-negative values.
:param values: array/list to use as model fot the random data
:param n: number of random elements to return
:returns: an array of n random non-negative numbers
"""
values = np.array(values)
mean = np.mean(values)
sd = np.std(values)
random_values = np.empty(0)
offset = 0.05 # 5% offset to compensate values less than 0
while len(random_values) < n:
random_values = np.round(np.random.normal(mean, sd, round(n * (1 + offset))))
random_values = random_values[random_values >= 0]
# If the while loop check fail, next time will try with a larger offset
offset *= 2
# slice n first elements and shape the array to int
return random_values[:n].astype("int") | 5,357,015 |
def passthrough(world1, world2, signaling_pipe):
""" Simple passthrough filter: wait for changes on a world world1 and
propagate these changes to world world2.
"""
name = "passthrough_filter_%s_to_%s" % (world1, world2)
with underworlds.Context(name) as ctx:
world1 = ctx.worlds[world1]
world2 = ctx.worlds[world2]
try:
print("Waiting for changes...")
while not signaling_pipe.poll():
#print("%f -- %s waiting" % (time.time(), name))
change = world1.scene.waitforchanges(0.5)
#print("%f -- %s Done waiting (last change: %s)" % (time.time(), name, str(change)))
if change is not None:
id, op = change
#print("%f -- propagating from %s to %s" % (time.time(), name, world1, world2))
world2.scene.update_and_propagate(world1.scene.nodes[id])
change = None
except Exception as e:
import traceback
traceback.print_exc()
print("Stopping passthrough")
print("Passthrough stopped") | 5,357,016 |
def connected_components(weak_crossings=None,
strong_crossings=None,
probe_adjacency_list=None,
join_size=None,
channels=None):
"""Find all connected components in binary arrays of threshold crossings.
Parameters
----------
weak_crossings : array
`(n_samples, n_channels)` array with weak threshold crossings
strong_crossings : array
`(n_samples, n_channels)` array with strong threshold crossings
probe_adjacency_list : dict
A dict `{channel: [neighbors]}`
channels : array
An (n_channels,) array with a list of all non-dead channels
join_size : int
The number of samples defining the tolerance in time for
finding connected components
Returns
-------
A list of lists of pairs `(samp, chan)` of the connected components in
the 2D array `weak_crossings`, where a pair is adjacent if the samples are
within `join_size` of each other, and the channels are adjacent in
`probe_adjacency_list`, the channel graph.
Note
----
The channel mapping assumes that column #i in the data array is channel #i
in the probe adjacency graph.
"""
if probe_adjacency_list is None:
probe_adjacency_list = {}
if channels is None:
channels = []
# If the channels aren't referenced at all but exist in 'channels', add a
# trivial self-connection so temporal floodfill will work. If this channel
# is dead, it should be removed from 'channels'.
probe_adjacency_list.update({i: {i} for i in channels
if not probe_adjacency_list.get(i)})
# Make sure the values are sets.
probe_adjacency_list = {c: set(cs)
for c, cs in probe_adjacency_list.items()}
if strong_crossings is None:
strong_crossings = weak_crossings
assert weak_crossings.shape == strong_crossings.shape
# Set of connected component labels which contain at least one strong
# node.
strong_nodes = set()
n_s, n_ch = weak_crossings.shape
join_size = int(join_size or 0)
# An array with the component label for each node in the array
label_buffer = np.zeros((n_s, n_ch), dtype=np.int32)
# Component indices, a dictionary with keys the label of the component
# and values a list of pairs (sample, channel) belonging to that component
comp_inds = {}
# mgraph is the channel graph, but with edge node connected to itself
# because we want to include ourself in the adjacency. Each key of the
# channel graph (a dictionary) is a node, and the value is a set of nodes
# which are connected to it by an edge
mgraph = {}
for source, targets in probe_adjacency_list.items():
# we add self connections
mgraph[source] = targets.union([source])
# Label of the next component
c_label = 1
# For all pairs sample, channel which are nonzero (note that numpy .nonzero
# returns (all_i_s, all_i_ch), a pair of lists whose values at the
# corresponding place are the sample, channel pair which is nonzero. The
# lists are also returned in sorted order, so that i_s is always increasing
# and i_ch is always increasing for a given value of i_s. izip is an
# iterator version of the Python zip function, i.e. does the same as zip
# but quicker. zip(A,B) is a list of all pairs (a,b) with a in A and b in B
# in order (i.e. (A[0], B[0]), (A[1], B[1]), .... In conclusion, the next
# line loops through all the samples i_s, and for each sample it loops
# through all the channels.
for i_s, i_ch in zip(*weak_crossings.nonzero()):
# The next two lines iterate through all the neighbours of i_s, i_ch
# in the graph defined by graph in the case of edges, and
# j_s from i_s-join_size to i_s.
for j_s in range(i_s - join_size, i_s + 1):
# Allow us to leave out a channel from the graph to exclude bad
# channels
if i_ch not in mgraph:
continue
for j_ch in mgraph[i_ch]:
# Label of the adjacent element.
adjlabel = label_buffer[j_s, j_ch]
# If the adjacent element is nonzero we need to do something.
if adjlabel:
curlabel = label_buffer[i_s, i_ch]
if curlabel == 0:
# If current element is still zero, we just assign
# the label of the adjacent element to the current one.
label_buffer[i_s, i_ch] = adjlabel
# And add it to the list for the labelled component.
comp_inds[adjlabel].append((i_s, i_ch))
elif curlabel != adjlabel:
# If the current element is unequal to the adjacent
# one, we merge them by reassigning the elements of the
# adjacent component to the current one.
# samps_chans is an array of pairs sample, channel
# currently assigned to component adjlabel.
samps_chans = np.array(comp_inds[adjlabel],
dtype=np.int32)
# samps_chans[:, 0] is the sample indices, so this
# gives only the samp,chan pairs that are within
# join_size of the current point.
# TODO: is this the right behaviour? If a component can
# have a width bigger than join_size I think it isn't!
samps_chans = samps_chans[i_s - samps_chans[:, 0] <=
join_size]
# Relabel the adjacent samp,chan points with current
# label.
samps, chans = samps_chans[:, 0], samps_chans[:, 1]
label_buffer[samps, chans] = curlabel
# Add them to the current label list, and remove the
# adjacent component entirely.
comp_inds[curlabel].extend(comp_inds.pop(adjlabel))
# Did not deal with merge condition, now fixed it
# seems...
# WARNING: might this "in" incur a performance hit
# here...?
if adjlabel in strong_nodes:
strong_nodes.add(curlabel)
strong_nodes.remove(adjlabel)
# NEW: add the current component label to the set of all
# strong nodes, if the current node is strong.
if curlabel > 0 and strong_crossings[i_s, i_ch]:
strong_nodes.add(curlabel)
if label_buffer[i_s, i_ch] == 0:
# If nothing is adjacent, we have the beginnings of a new
# component, # so we label it, create a new list for the new
# component which is given label c_label,
# then increase c_label for the next new component afterwards.
label_buffer[i_s, i_ch] = c_label
comp_inds[c_label] = [(i_s, i_ch)]
if strong_crossings[i_s, i_ch]:
strong_nodes.add(c_label)
c_label += 1
# Only return the values, because we don't actually need the labels.
comps = [comp_inds[key] for key in comp_inds.keys() if key in strong_nodes]
return comps | 5,357,017 |
def channel_values(channel_freqs, channel_samples, dt, t):
"""Computes value of channels with given frequencies, samples, sample size and current time.
Args:
channel_freqs (array): 1d array of channel frequencies
channel_samples (array): 2d array of channel samples, the first index being time step and
the second index indexing channel
dt (float): size of each sample
t (float): current time
Returns:
array: array of channel values at the given time
"""
sample_idx = int(t // dt)
if sample_idx >= len(channel_samples):
sample_idx = len(channel_samples) - 1
sample_vals = channel_samples[sample_idx]
return np.real(sample_vals * np.exp(1j * 2 * np.pi * channel_freqs * t)) | 5,357,018 |
def bandpass_voxels(realigned_file, bandpass_freqs, sample_period = None):
"""
Performs ideal bandpass filtering on each voxel time-series.
Parameters
----------
realigned_file : string
Path of a realigned nifti file.
bandpass_freqs : tuple
Tuple containing the bandpass frequencies. (LowCutoff, HighCutoff)
sample_period : float, optional
Length of sampling period in seconds. If not specified,
this value is read from the nifti file provided.
Returns
-------
bandpassed_file : string
Path of filtered output (nifti file).
"""
import os
import nibabel as nb
import numpy as np
def ideal_bandpass(data, sample_period, bandpass_freqs):
#Derived from YAN Chao-Gan 120504 based on REST.
from scipy.fftpack import fft, ifft
# sample_period = T
# LowCutoff = 10.
# HighCutoff = 15.
# data = x
def nextpow2(n):
x = np.log2(n)
return 2**np.ceil(x)
sample_freq = 1./sample_period
sample_length = data.shape[0]
data_p = np.zeros(nextpow2(sample_length))
data_p[:sample_length] = data
LowCutoff, HighCutoff = bandpass_freqs
if(LowCutoff is None): #No lower cutoff (low-pass filter)
low_cutoff_i = 0
elif(LowCutoff > sample_freq/2.): #Cutoff beyond fs/2 (all-stop filter)
low_cutoff_i = int(data_p.shape[0]/2)
else:
low_cutoff_i = np.ceil(LowCutoff*data_p.shape[0]*sample_period).astype('int')
if(HighCutoff > sample_freq/2. or HighCutoff is None): #Cutoff beyond fs/2 or unspecified (become a highpass filter)
high_cutoff_i = int(data_p.shape[0]/2)
else:
high_cutoff_i = np.fix(HighCutoff*data_p.shape[0]*sample_period).astype('int')
freq_mask = np.zeros_like(data_p, dtype='bool')
freq_mask[low_cutoff_i:high_cutoff_i+1] = True
freq_mask[data_p.shape[0]-high_cutoff_i:data_p.shape[0]+1-low_cutoff_i] = True
f_data = fft(data_p)
f_data[freq_mask != True] = 0.
data_bp = np.real_if_close(ifft(f_data)[:sample_length])
return data_bp
nii = nb.load(realigned_file)
data = nii.get_data().astype('float64')
mask = (data != 0).sum(-1) != 0
Y = data[mask].T
Yc = Y - np.tile(Y.mean(0), (Y.shape[0], 1))
if not sample_period:
hdr = nii.get_header()
sample_period = float(hdr.get_zooms()[3])
# Sketchy check to convert TRs in millisecond units
if sample_period > 20.0:
sample_period /= 1000.0
print 'Frequency filtering using sample period: ', sample_period, 'sec'
Y_bp = np.zeros_like(Y)
for j in range(Y.shape[1]):
Y_bp[:,j] = ideal_bandpass(Yc[:,j], sample_period, bandpass_freqs)
data[mask] = Y_bp.T
img = nb.Nifti1Image(data, header=nii.get_header(), affine=nii.get_affine())
bandpassed_file = os.path.join(os.getcwd(), 'bandpassed_demeaned_filtered.nii.gz')
img.to_filename(bandpassed_file)
return bandpassed_file | 5,357,019 |
def get_small_corpus(num=10000):
"""
获取小型文本库,用于调试网络模型
:param num: 文本库前n/2条对联
:return: 默认返回前500条对联(1000句话)的list
"""
list = getFile('/total_list.json')
return list[:num] | 5,357,020 |
def groupby_apply2(df_1, df_2, cols, f, tqdn=True):
"""Apply a function `f` that takes two dataframes and returns a dataframe.
Groups inputs by `cols`, evaluates for each group, and concatenates the result.
"""
d_1 = {k: v for k,v in df_1.groupby(cols)}
d_2 = {k: v for k,v in df_2.groupby(cols)}
if tqdn:
from tqdm import tqdm_notebook
progress = tqdm_notebook
else:
progress = lambda x: x
arr = []
for k in progress(d_1):
arr.append(f(d_1[k], d_2[k]))
return pd.concat(arr) | 5,357,021 |
def login(request):
"""Logs in the user if given credentials are valid"""
username = request.data['username']
password = request.data['password']
try:
user = User.objects.get(username=username)
except:
user = None
if user is not None:
encoded = user.password
hasher = PBKDF2PasswordHasher()
login_valid = hasher.verify(password, encoded)
if login_valid:
key = username + str(datetime.datetime.now())
key = hasher.encode(key, 'key', 10)
life = datetime.datetime.now() + datetime.timedelta(hours=14)
timezone = pytz.timezone("America/Bogota")
life_aware = timezone.localize(life)
loginsession = LoginSession(key=key, life=life_aware, user=user)
loginsession.save()
request.session['loginsession'] = key
data = {
'success': True,
'key': key
}
return Response(data, status=status.HTTP_200_OK, content_type='application/json')
data = {
'success': False,
'message':"Nombre de usuario o contraseña incorrectos"
}
return Response(data, status=status.HTTP_200_OK, content_type='application/json') | 5,357,022 |
def replace_data_in_gbq_table(project_id, table_id, complete_dataset):
""" replacing data in Google Cloud Table """
complete_dataset.to_gbq(
destination_table=table_id,
project_id=project_id,
credentials=credentials,
if_exists="replace",
)
return None | 5,357,023 |
def default_pubkey_inner(ctx):
"""Default expression for "pubkey_inner": tap.inner_pubkey."""
return get(ctx, "tap").inner_pubkey | 5,357,024 |
def presenter(poss, last_move):
""" Présenter les choix à l'utilisateur. """
prop = "CHOIX :" + "\n"
prop += " espace : arrière" + "\n"
prop += " entrée : automatique" + "\n"
prop += " autre : hasard" + "\n"
for i, p in enumerate(poss):
star = " "
if last_move == p:
star = "*"
prop += " {}{}:{}\n".format(star, i, p)
prop += "\n" * (8 - len(poss))
print(prop) | 5,357,025 |
def assert_array_almost_equal(x: numpy.ndarray, y: List[complex]):
"""
usage.scipy: 6
"""
... | 5,357,026 |
def quantize_8(image):
"""Converts and quantizes an image to 2^8 discrete levels in [0, 1]."""
q8 = tf.image.convert_image_dtype(image, tf.uint8, saturate=True)
return tf.cast(q8, tf.float32) * (1.0 / 255.0) | 5,357,027 |
def get_clients( wlc, *vargs, **kvargs ):
"""
create a single dictionary containing information
about all associated stations.
"""
rsp = wlc.rpc.get_stat_user_session_status()
ret_data = {}
for session in rsp.findall('.//USER-SESSION-STATUS'):
locstat = session.find('.//USER-LOCATION-MEMBER')
ret_data[session.get('mac-addr')] = dict(session.attrib)
ret_data[session.get('mac-addr')].update(locstat.attrib)
return ret_data | 5,357,028 |
def coalmine(eia923_dfs, eia923_transformed_dfs):
"""Transforms the coalmine_eia923 table.
Transformations include:
* Remove fields implicated elsewhere.
* Drop duplicates with MSHA ID.
Args:
eia923_dfs (dict): Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the Excel
spreadsheets they distribute.
eia923_transformed_dfs (dict): A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).
Returns:
dict: eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).
"""
# These are the columns that we want to keep from FRC for the
# coal mine info table.
coalmine_cols = ['mine_name',
'mine_type',
'state',
'county_id_fips',
'mine_id_msha']
# Make a copy so we don't alter the FRC data frame... which we'll need
# to use again for populating the FRC table (see below)
cmi_df = eia923_dfs['fuel_receipts_costs'].copy()
# Keep only the columns listed above:
cmi_df = _coalmine_cleanup(cmi_df)
cmi_df = cmi_df[coalmine_cols]
# If we actually *have* an MSHA ID for a mine, then we have a totally
# unique identifier for that mine, and we can safely drop duplicates and
# keep just one copy of that mine, no matter how different all the other
# fields associated with the mine info are... Here we split out all the
# coalmine records that have an MSHA ID, remove them from the CMI
# data frame, drop duplicates, and then bring the unique mine records
# back into the overall CMI dataframe...
cmi_with_msha = cmi_df[cmi_df['mine_id_msha'] > 0]
cmi_with_msha = cmi_with_msha.drop_duplicates(subset=['mine_id_msha', ])
cmi_df.drop(cmi_df[cmi_df['mine_id_msha'] > 0].index)
cmi_df.append(cmi_with_msha)
cmi_df = cmi_df.drop_duplicates(subset=['mine_name',
'state',
'mine_id_msha',
'mine_type',
'county_id_fips'])
# drop null values if they occur in vital fields....
cmi_df.dropna(subset=['mine_name', 'state'], inplace=True)
# we need an mine id to associate this coalmine table with the frc
# table. In order to do that, we need to create a clean index, like
# an autoincremeted id column in a db, which will later be used as a
# primary key in the coalmine table and a forigen key in the frc table
# first we reset the index to get a clean index
cmi_df = cmi_df.reset_index()
# then we get rid of the old index
cmi_df = cmi_df.drop(labels=['index'], axis=1)
# then name the index id
cmi_df.index.name = 'mine_id_pudl'
# then make the id index a column for simpler transferability
cmi_df = cmi_df.reset_index()
cmi_df = PUDL_META.get_resource("coalmine_eia923").encode(cmi_df)
eia923_transformed_dfs['coalmine_eia923'] = cmi_df
return eia923_transformed_dfs | 5,357,029 |
def _throw_object_x_at_y():
"""
Interesting interactions:
* If anything is breakable
:return:
"""
all_pickupable_objects_x = env.all_objects_with_properties({'pickupable': True})
x_weights = [10.0 if (x['breakable'] or x['mass'] > 4.0) else 1.0 for x in all_pickupable_objects_x]
if len(all_pickupable_objects_x) == 0:
raise ValueError('No pickupable objects')
all_objects_y = env.all_objects_with_properties({'pickupable': True})
y_weights = [10.0 if (y['breakable'] and not y['pickupable']) else (
4.0 if y['breakable'] else 1.0) for y in all_objects_y]
object_x = all_pickupable_objects_x[_weighted_choice(x_weights)]
object_y = all_objects_y[_weighted_choice(y_weights)]
if object_x['objectId'] == object_y['objectId']:
raise ValueError('objects are the same?')
#####################
hardness_options = {'softly': 10.0, 'normally': 100.0, 'aggressively': 1000.0}
hardness = random.choice(sorted(hardness_options.keys()))
renv = RecordingEnv(env,
text=f'Throw $1 at $2 {hardness}.',
main_object_ids=(object_x['objectId'], object_y['objectId'])
)
s_a = pickup_object(renv, object_x['objectId'], navigate=True)
print("Pickup {} succeeds".format(object_x['objectId']), flush=True)
path2use = path_to_object(renv.env, object_y, angle_noise=0, dist_to_obj_penalty=0.1)
while len(path2use) > 0 and path2use[-1]['action'].startswith(('Rotate', 'Look')):
path2use.pop(-1)
for p in path2use:
renv.step(p)
# Teleport, throw, then snap back to grid
# Face object
old_pos = renv.env.get_agent_location()
new_pos = {k: v for k, v in old_pos.items()}
new_pos['rotation'] = rotation_angle_to_object(object_y, renv.env.get_agent_location())
new_pos['horizon'] = horizon_angle_to_object(object_y, renv.env.get_agent_location())
renv.env.teleport_agent_to(**new_pos, ignore_y_diffs=True,
only_initially_reachable=False)
if not renv.env.last_action_success:
raise ValueError("teleport failed")
if renv.env.get_agent_location()['y'] < -10:
raise ValueError("negative coords")
s_b = renv.step(dict(action='ThrowObject', moveMagnitude=hardness_options[hardness],
forceAction=True))
# If something broke then things are interesting
is_interesting = s_b and any([(x['isBroken'] or 'Cracked' in x['objectType']) for x in renv.new_items.values()])
renv.env.teleport_agent_to(**old_pos, ignore_y_diffs=True)
return renv, is_interesting | 5,357,030 |
def concatenate_best_aligned_pus(peeling_level, aligned_pu_pdb, all_pu_ref):
"""
Write the full PDB of the best aligned PUs by concatenating them in the right order.
Args:
peeling_level (int): Actual peeling level
aligned_pu_pdb (str): Path to the PDB into which will be written all the best aligned PUs
all_pu_ref (list of tuples): Full list of the PU bounds of the actual peeling level
"""
open_mode = "w" if os.path.isfile(aligned_pu_pdb) else "a"
with open(aligned_pu_pdb, open_mode) as f_out:
# Loop over the PUs
for pu_index in range(len(all_pu_ref)):
# Find PDB of the best PU for this index
aln_max_pu_file = "tmp/{}_aln_max_pu_{}.pdb".format(peeling_level+1, pu_index+1)
# Concatenate to the full PDB
with open(aln_max_pu_file, "r") as f_in:
for line in f_in:
f_out.write(line) | 5,357,031 |
def GraficarConstantesAsintoticas(historiaCABIS, historiaCANR, historiaCANRM, historiaCASEC, funcion):
"""
Recibe las historias de de las constantes de ordenes de convergencia, estas deben de ser validas, caso contrario,
se indicara en el grafico la falta de datos.
Necesita tambien de la funcion para usarlo como titulo identificatorio del grafico.
"""
plt.figure()
axes = plt.gca()
axes.set_ylim([0, 1.5])
graficar(historiaCABIS, 'Biseccion', 'blue')
graficar(historiaCANR, 'Newton-Raphson', 'red')
graficar(historiaCANRM, 'NR modificado', 'orange')
graficar(historiaCASEC, 'Secante', 'green')
plt.xlabel('Iteración')
plt.ylabel('Lambda')
plt.legend(loc='best')
plt.title(funcion)
plt.grid(True)
plt.show() | 5,357,032 |
def plot(
X,
color_by=None,
color_map="Spectral",
colors=None,
edges=None,
axis_limits=None,
background_color=None,
marker_size=1.0,
figsize_inches=(8.0, 8.0),
savepath=None,
):
"""Plot an embedding, in one, two, or three dimensions.
This function plots embeddings. The input embedding's dimension should
be at most 3.
The embedding is visualized as a scatter plot. The points can
optionally be colored according to categorical or continuous values,
or according to a pre-defined sequence of colors. Additionally,
edges can optionally be superimposed.
Arguments
---------
X: array-like
The embedding to plot, of shape ``(n_items, embedding_dim)``. The
second dimension should be 1, 2, or 3.
color_by: array-like, optional
A sequence of values, one for each item, which should be
used to color each embedding vector. These values may either
be categorical or continuous. For example, if ``n_items`` is 4,
.. code:: python3
np.ndarray(['dog', 'cat', 'zebra', 'cat'])
np.ndarray([0, 1, 1, 2]
np.ndarray([0.1, 0.5, 0.31, 0.99]
are all acceptable. The first two are treated as categorical,
the third is continuous. A finite number of colors is used
when the values are categorical, while a spectrum of colors is
used when the values are continuous.
color_map: str or matplotlib colormap instance
Color map to use when resolving ``color_by`` to colors; ignored
when ``color_by`` is None.
colors: array-like, optional
A sequence of colors, one for each item, specifying the exact
color each item should be colored. Each row must represent
an RGBA value.
Only one of ``color_by`` and ``colors`` should be non-None.
edges: array-like, optional
List of edges to superimpose over the scatter plot, shape ``(any, 2)``
axis_limits: tuple, optional
tuple ``(limit_low, limit_high)`` of axis limits, applied to both
the x and y axis.
background_color: str, optional
color of background
marker_size: float, optional
size of each point in the scatter plot
figsize_inches: tuple
size of figures in inches: ``(width_inches, height_inches)``
savepath: str, optional
path to save the plot.
Returns
-------
matplotlib.Axes:
Axis on which the embedding is plotted.
"""
if color_by is not None and colors is not None:
raise ValueError("Only one of 'color_by` and `colors` can be non-None")
ax = _plot(
X=X,
color_by=color_by,
cmap=color_map,
colors=colors,
edges=edges,
lim=axis_limits,
background_color=background_color,
s=marker_size,
figsize=figsize_inches,
)
if savepath is not None:
plt.savefig(savepath)
return ax | 5,357,033 |
def test_dqn_pong():
"""Test tf/dqn_pong.py with reduced replay buffer size for reduced memory
consumption.
"""
env = os.environ.copy()
env['GARAGE_EXAMPLE_TEST_N_EPOCHS'] = '1'
assert subprocess.run(
[str(EXAMPLES_ROOT_DIR / 'tf/dqn_pong.py'), '--buffer_size', '5'],
check=False,
env=env).returncode == 0 | 5,357,034 |
def CausalConvIntSingle(val, time, kernel):
"""
Computing convolution of time varying data with given kernel function.
"""
ntime = time.size
dt_temp = np.diff(time)
dt = np.r_[time[0], dt_temp]
out = np.zeros_like(val)
for i in range(1, ntime):
temp = 0.
if i==0:
temp += val[0]*kernel(time[i]-time[0])*dt[0]*0.5
for k in range(1,i+1):
temp += val[k-1]*kernel(time[i]-time[k-1])*dt[k]*0.5
temp += val[k]*kernel(time[i]-time[k])*dt[k]*0.5
out[i] = temp
return out | 5,357,035 |
def sbox1(v):
"""AES inverse S-Box."""
w = mpc.to_bits(v)
z = mpc.vector_add(w, B)
y = mpc.matrix_prod([z], A1, True)[0]
x = mpc.from_bits(y)**254
return x | 5,357,036 |
def _get_photon_info_COS(tag, x1d, traceloc='stsci'):
"""
Add spectral units (wavelength, cross dispersion distance, energy/area)
to the photon table in the fits data unit "tag".
For G230L, you will get several 'xdisp' columns -- one for each segment. This allows for the use of overlapping
background regions.
Parameters
----------
tag
x1d
traceloc
Returns
-------
xdisp, order
"""
if x1d is not None:
xd, xh = x1d[1].data, x1d[1].header
det = tag[0].header['detector']
segment = tag[0].header['segment']
data_list = []
for i,t in enumerate(tag):
if t.name != 'EVENTS': continue
td,th = t.data, t.header
"""
Note: How STScI extracts the spectrum is unclear. Using 'y_lower/upper_outer' from the x1d reproduces the
x1d gross array, but these results in an extraction ribbon that has a varying height and center -- not
the parallelogram that is described in the Data Handbook as of 2015-07-28. The parameters in the
xtractab reference file differ from those populated in the x1d header. So, I've punted and stuck with
using the x1d header parameters because it is easy and I think it will make little difference for most
sources. The largest slope listed in the xtractab results in a 10% shift in the spectral trace over the
length of the detector. In general, I should just check to be sure the extraction regions I'm using are
reasonable.
"""
data = [td[s] for s in ['time', 'wavelength', 'epsilon', 'dq', 'pha']]
if det == 'NUV':
# all "orders" (segments) of the NUV spectra fall on the same detector and are just offset in y,
# I'll just duplicate the events for each spectrum
segs = [s[-1] for s in xd['segment']]
orders = list(range(len(segs)))
else:
seg = segment[-1]
segs = [seg]
orders = [0 if seg == 'A' else 1]
for order, seg in zip(orders, segs):
if not (traceloc == 'stsci' or type(traceloc) in [int, float]) and det == 'NUV':
raise NotImplementedError('NUV detector has multiple traces on the same detector, so custom traceloc '
'has not been implemented.')
if traceloc == 'stsci':
yspec = xh['SP_LOC_'+seg]
elif traceloc == 'median':
Npixx = th['talen2']
x, y = td['xfull'], td['yfull']
yspec = _median_trace(x, y, Npixx, 8)
elif traceloc == 'lya':
Npixy = th['talen3']
yspec = _lya_trace(td['wavelength'], td['yfull'], Npixy)
elif type(traceloc) in [int, float]:
yspec = float(traceloc)
else:
raise ValueError('traceloc={} not recognized.'.format(traceloc))
xdisp = td['yfull'] - yspec
order_vec = _np.ones_like(xdisp, 'i2')*order
if det == 'NUV':
w = data[1]
keep = (xdisp > -15.) & (xdisp < 15.)
x = td['xfull']
xref, wref = x[keep], w[keep]
isort = _np.argsort(xref)
xref, wref = xref[isort], wref[isort]
wnew = _np.interp(x, xref, wref)
data_list.append(data[:1] + [wnew] + data[2:] + [xdisp, order_vec])
else:
data_list.append(data + [xdisp, order_vec])
data = list(map(_np.hstack, list(zip(*data_list))))
return data | 5,357,037 |
def maximum_value(tab):
"""
brief: return maximum value of the list
args:
tab: a list of numeric value expects at leas one positive value
return:
the max value of the list
the index of the max value
raises:
ValueError if expected a list as input
ValueError if no positive value found
"""
if not(isinstance(tab, list)):
raise ValueError('Expected a list as input')
valMax = 0.0
valMaxIndex = -1;
nPositiveValues = 0
for i in range(len(tab)):
if tab[i] >= 0 and tab[i] > valMax:
valMax = float(tab[i])
valMaxIndex = i
nPositiveValues += 1
if nPositiveValues <= 0:
raise ValueError('No positive value found')
return valMax, valMaxIndex | 5,357,038 |
def writer(q: Queue):
"""Receives messages from queue and writes to file"""
while True:
try:
data = q.get()
logger.info(data)
if data.get("service_exit", False):
raise SerialDevicePoolError("Restarting device pool")
name = data["name"]
row = data["row"]
row["time"] = row["time"].isoformat()
date = row["time"][0:10]
path = os.path.join(DATAPATH, name, f"{date}.csv")
should_write_header = not os.path.exists(path)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "a") as f:
writer = csv.DictWriter(f, fieldnames=row.keys())
if should_write_header:
writer.writeheader()
writer.writerow(row)
except (SerialDevicePoolError, KeyboardInterrupt, SystemExit):
raise | 5,357,039 |
def create_index_from_registry(registry_path, index_path, parser):
"""Generate an index files from the IEEE registry file."""
oui_parser = parser(registry_path)
oui_parser.attach(FileIndexer(index_path))
oui_parser.parse() | 5,357,040 |
def pdf(x, k, loc, scale):
"""
Probability density function for the Weibull distribution (for minima).
This is a three-parameter version of the distribution. The more typical
two-parameter version has just the parameters k and scale.
"""
with mpmath.extradps(5):
x = mpmath.mpf(x)
k, loc, scale = _validate_params(k, loc, scale)
if x == loc:
if k < 1:
return mpmath.mp.inf
elif k == 1:
return 1/scale
else:
return mpmath.mp.zero
if x < loc:
return mpmath.mp.zero
return mpmath.exp(logpdf(x, k, loc, scale)) | 5,357,041 |
def add_flight():
"""Allows users to add flights."""
if request.method == "GET":
return render_template("add.html", airports=AIRPORTS)
else:
# Move request.form into a dictionary that's a bit shorter to access than request.form
form = dict(request.form)
# Change hour and minute into integers
form["hour"] = int(form["hour"])
form["minute"] = int(form["minute"])
# TODO: Return error message if hour not in valid 0-23 range
# TODO: Return error message if minute not in valid 0-59 range
# TODO: Return error message if either airport not in AIRPORTS, or if they're equal
# Insert into database
insert_flight(db, form)
# TODO: Redirect user to homepage
return "TODO" | 5,357,042 |
def rescale_column_test(img, img_shape, gt_bboxes, gt_label, gt_num):
"""rescale operation for image of eval"""
img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
if img_data.shape[0] > config.img_height:
img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
scale_factor = scale_factor*scale_factor2
pad_h = config.img_height - img_data.shape[0]
pad_w = config.img_width - img_data.shape[1]
assert ((pad_h >= 0) and (pad_w >= 0))
pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data
img_shape = np.append(img_shape, (scale_factor, scale_factor))
img_shape = np.asarray(img_shape, dtype=np.float32)
return (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num) | 5,357,043 |
async def start_workers(
search_requests: Union[List[SearchIndexRequest], asyncio.Queue]
) -> Set[str]:
"""Runs the pipeline using asyncio concurrency with three main coroutines:
- get results: fetch the search requests queue, perform the search and output the results
- download and parse the body: fetch the results queue, download and parse the body and meta from S3
- persist the data: fetch the 'to_persist' queue and serialize the data to ndjson files
"""
results_queue = asyncio.Queue(maxsize=settings.MAX_RESULTS_QUEUE_SIZE)
to_persist_queue = asyncio.Queue(maxsize=settings.MAX_PERSIST_QUEUE_SIZE)
search_end_event = asyncio.Event()
download_end_event = asyncio.Event()
if isinstance(search_requests, asyncio.Queue):
search_requests_queue = search_requests
else:
search_requests_queue = asyncio.Queue()
for request in search_requests:
await search_requests_queue.put(request)
num_search_requests = search_requests_queue.qsize()
logger.info(
f"Starting pipeline. Total of {num_search_requests} search index requests to process."
)
async with create_client() as client:
gateway = CDXGateway(client)
search_indexes = SearchIndexesExecutor(
gateway, results_queue, search_requests_queue
)
search_indexes_task = asyncio.create_task(search_indexes.run())
download_task = asyncio.create_task(
download_executor(
results_queue,
to_persist_queue,
client,
search_end_event,
)
)
store_results_task = asyncio.create_task(
store_results(to_persist_queue, download_end_event, os.getpid())
)
while not search_indexes_task.done():
await asyncio.sleep(1)
logger.debug(
f"Search index requests pending: {search_requests_queue.qsize()}"
)
else:
search_end_event.set()
while not download_task.done():
await asyncio.sleep(1)
else:
download_end_event.set()
while not store_results_task.done():
await asyncio.sleep(1)
for task in [search_indexes_task, download_task, store_results_task]:
exc = task.exception()
if exc:
logger.exception(exc_info=exc)
logger.info("Pipeline finished, exiting.")
return store_results_task.result() | 5,357,044 |
def resolvability_query(m, walks_):
"""
:param m: cost matrix
:param walks_: list of 0-percolation followed by its index of redundancy
as returned by percolation_finder
:return: M again untouched, followed by the list of $0$-percolation with
minimal index of redundancy, and with a flag, True if the minimal index
is 0 and so we have already our solution, False otherwise.
"""
min_redundancy = np.min(walks_[1::2])
filtered_walks = [walks_[i] for i in list(range(len(walks_)))[::2] \
if walks_[i + 1] == min_redundancy]
if min_redundancy == 0:
flag = True
else:
flag = False
return [m, filtered_walks, flag] | 5,357,045 |
def teardown_module():
# type: () -> None
""" Removes any created stats files, if any. """
for stats_file in TEST_STATS_FILES:
if os.path.exists(stats_file):
os.remove(stats_file) | 5,357,046 |
def lock_parent_directory(filename, timeout=10):
"""
Context manager that acquires a lock on the parent directory of the given
file path. This will block until the lock can be acquired, or the timeout
time has expired (whichever occurs first).
:param filename: file path of the parent directory to be locked
:param timeout: timeout (in seconds)
"""
return lock_path(os.path.dirname(filename), timeout=timeout) | 5,357,047 |
def test_invalid_domain_names_options(absolute_path):
"""End-to-End test to check domain names options validation works."""
process = subprocess.Popen(
[
'flake8',
'--isolated',
'--select',
'WPS',
# values from `allowed-domain-names` cannot intersect with
# `--forbidden-domain-names`
'--allowed-domain-names',
'item,items,handle,visitor',
'--forbidden-domain-names',
'handle,visitor,node',
absolute_path('fixtures', 'noqa.py'),
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
encoding='utf8',
)
_, stderr = process.communicate()
assert process.returncode == 1
assert 'ValueError' in stderr
assert 'handle' in stderr
assert 'visitor' in stderr | 5,357,048 |
def dsh(
incidence1: float, solar_az1: float, incidence2: float, solar_az2: float
):
"""Returns the Shadow-Tip Distance (dsh) as detailed in
Becker et al.(2015).
The input angles are assumed to be in radians.
This is defined as the distance between the tips of the shadows
in the two images for a hypothetical vertical post of unit
height. The "shadow length" describes the shadow of a hypothetical
pole so it applies whether there are actually shadows in the
image or not. It's a simple and consistent geometrical way to
quantify the difference in illumination. This quantity is
computed analogously to dp.
"""
def shx(inc: float, sunazgnd: float):
return -1 * math.tan(inc) * math.cos(sunazgnd)
def shy(inc: float, sunazgnd: float):
return math.tan(inc) * math.sin(sunazgnd)
shx1 = shx(incidence1, solar_az1)
shx2 = shx(incidence2, solar_az2)
shy1 = shy(incidence1, solar_az1)
shy2 = shy(incidence2, solar_az2)
return math.sqrt(math.pow(shx1 - shx2, 2) + math.pow(shy1 - shy2, 2)) | 5,357,049 |
def fix_commitment(mod, g, tmp):
"""
Fix committed capacity based on number of committed units and unit size
"""
mod.Commit_Capacity_MW[g, tmp] = \
mod.fixed_commitment[g, mod.prev_stage_tmp_map[tmp]]
mod.Commit_Capacity_MW[g, tmp].fixed = True | 5,357,050 |
def similarity(vec1, vec2):
"""Cosine similarity."""
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) | 5,357,051 |
def epv00(date1, date2):
""" Earth position and velocity, heliocentric and barycentric, with
respect to the Barycentric Celestial Reference System.
:param date1, date2: TDB as a two-part Julian date.
:type date1, date2: float
:returns: a tuple of two items:
* heliocentric Earth position velocity as a numpy.matrix of shape \
2x3.
* barycentric Earth position/velocity as a numpy.matrix of shape \
2x3.
:raises: :exc:`UserWarning` if the date falls outside the range 1900-2100.
.. seealso:: |MANUAL| page 79
"""
pvh = _np.asmatrix(_np.zeros(shape=(2,3), dtype=float, order='C'))
pvb = _np.asmatrix(_np.zeros(shape=(2,3), dtype=float, order='C'))
s = _sofa.iauEpv00(date1, date2, pvh, pvb)
if s != 0:
_warnings.warn(_epv00_msg[s], UserWarning, 2)
return pvh, pvb | 5,357,052 |
def label(Z, n):
"""Correctly label clusters in unsorted dendrogram."""
uf = LinkageUnionFind(n)
for i in range(n - 1):
x, y = int(Z[i, 0]), int(Z[i, 1])
x_root, y_root = uf.find(x), uf.find(y)
if x_root < y_root:
Z[i, 0], Z[i, 1] = x_root, y_root
else:
Z[i, 0], Z[i, 1] = y_root, x_root
Z[i, 3] = uf.merge(x_root, y_root) | 5,357,053 |
def comp_pack(ctx: Context):
"""Force packing resources."""
for ent in ctx.vmf.by_class['comp_pack']:
ent.remove()
for key, value in ent.keys.items():
# Not important.
if key in {'classname', 'origin', 'angles', 'hammerid'}:
continue
# We allow numeric suffixes for multiple - generic45.
try:
res_type = PACK_TYPES[key.rstrip('0123456789').casefold()]
except KeyError:
LOGGER.warning(
'Unknown resource type: "{}" @ {}',
key,
ent['origin'],
)
res_type = FileType.GENERIC
ctx.pack.pack_file(value, res_type) | 5,357,054 |
def algorithm_conflict(old_config, new_config):
"""Generate an algorithm configuration conflict"""
return conflicts.AlgorithmConflict(old_config, new_config) | 5,357,055 |
def nin():
"""
:return:
"""
def nin_block(num_channels, kernel_size, strides, padding):
blk = nn.Sequential()
blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'))
return blk
net = nn.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(pool_size=3, strides=2), nn.Dropout(0.5),
# 标签类别数是10
nin_block(10, kernel_size=3, strides=1, padding=1),
# 全局平均池化层将窗口形状自动设置成输入的高和宽
nn.GlobalAvgPool2D(),
# 将四维的输出转成二维的输出,其形状为(批量大小, 10)
nn.Flatten())
X = nd.random.uniform(shape=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape:\t', X.shape)
lr, num_epochs, batch_size, ctx = 0.1, 5, 128, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs) | 5,357,056 |
def factorial(n):
"""
Return the product of the integers 1 through n.
n must be a nonnegative integer.
"""
return product(range(2, n + 1)) | 5,357,057 |
def nftparams():
""" Show params of all NFTs
"""
nfts = Nfts()
t = PrettyTable(["key", "value"])
t.align = "l"
params = nfts.get_nft_params()
for key in params:
t.add_row([key, str(params[key])])
print(t) | 5,357,058 |
def get_status_lines(frames, check_transposed=True):
"""
Extract status lines from the given frames.
`frames` can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of array.
Automatically check if the status line is present; return ``None`` if it's not.
If ``check_transposed==True``, check for the case where the image is transposed (i.e., line becomes a column).
"""
if isinstance(frames,list):
return [get_status_lines(f,check_transposed=check_transposed) for f in frames]
if frames.shape[-1]>=4:
lines=_extract_line(frames,True)
if _check_magic(lines):
return lines
lines=_extract_line(frames,False)
if _check_magic(lines):
return lines
if check_transposed:
tframes=frames.T if frames.ndim==2 else frames.transpose((0,2,1))
return get_status_lines(tframes,check_transposed=False)
return None | 5,357,059 |
def returnLendingHistory(*, start, end, limit=None):
"""
Returns your lending history within a time range.
:param session: Aiohttp client session object
:param String api_key: The API key
:param String secret_key: The API secret key
:param String start:
UNIX timestamp. Every returned value will have a timestamps
greater or equal.
:param String end:
UNIX timestamp. Every returned value will have a timestamps
lower or equal.
:param String limit:
Maximum number of returned values.
"""
pass | 5,357,060 |
async def receiver():
"""receive messages with polling"""
pull = ctx.socket(zmq.PULL)
pull.connect(url)
poller = Poller()
poller.register(pull, zmq.POLLIN)
while True:
events = await poller.poll()
if pull in dict(events):
print("recving", events)
msg = await pull.recv_multipart()
print('recvd', msg) | 5,357,061 |
def quote():
"""Get stock quote."""
if request.method == "POST":
quote = lookup(request.form.get("symbol"))
if quote == None:
return apology("invalid symbol", 400)
return render_template("quoted.html", quote=quote)
# User reached route via GET (as by clicking a link or via redi)
else:
return render_template("quote.html") | 5,357,062 |
def stats(api, containers=None, stream=True):
"""Get container stats container
When stream is set to true, the raw HTTPResponse is returned.
"""
path = "/containers/stats"
params = {'stream': stream}
if containers is not None:
params['containers'] = containers
try:
response = api.get(path, params=params)
if stream:
return response
return json.loads(str(response.read(), 'utf-8'))
except errors.NotFoundError as e:
api.raise_not_found(e, e.response, errors.ContainerNotFound) | 5,357,063 |
def sendTGMessage(prepared_data):
"""
Prepared data should be json which includes at least `chat_id` and `text`
"""
message_url = Variables.BOT_URL + prepared_data["reqType"]
requests.post(message_url, json=prepared_data["data"]) | 5,357,064 |
def add_engineered(features):
"""Add engineered features to features dict.
Args:
features: dict, dictionary of input features.
Returns:
features: dict, dictionary with engineered features added.
"""
features["londiff"] = features["dropofflon"] - features["pickuplon"]
features["latdiff"] = features["dropofflat"] - features["pickuplat"]
features["euclidean"] = tf.math.sqrt(
features["londiff"]**2 + features["latdiff"]**2)
return features | 5,357,065 |
def test_3tris():
"""3 triangles"""
conv = ToPointsAndSegments()
polygons = [
[[(0, 0), (1, 0), (0.5, -0.5), (0, 0)]],
[[(1, 0.5), (2, 0.5), (1.5, 1), (1, 0.5)]],
[[(2, 0), (3, 0), (2.5, -0.5), (2, 0)]],
]
for polygon in polygons:
conv.add_polygon(polygon)
return conv, 24, 16, 8 | 5,357,066 |
def test_envvar_windows(
cd_tmp_path: Path, cp_config: CpConfigTypeDef, monkeypatch: MonkeyPatch
) -> None:
"""Test envvars for Windows."""
monkeypatch.setattr("platform.system", MagicMock(return_value="Windows"))
monkeypatch.delenv("MSYSTEM", raising=False)
cp_config("simple_env_vars", cd_tmp_path)
runner = CliRunner()
result0 = runner.invoke(cli, ["envvars"])
assert result0.exit_code == 0
assert result0.output == PSH_OUTPUT
monkeypatch.setenv("MSYSTEM", "MINGW")
result1 = runner.invoke(cli, ["envvars"])
assert result1.output == POSIX_OUTPUT | 5,357,067 |
def program_modules_with_functions(module_type, function_templates):
""" list the programs implementing a given set of functions
"""
prog_lsts = [program_modules_with_function(module_type, function_template)
for function_template in function_templates]
# get the intersection of all of them
progs = _reduce(set.intersection, map(set, prog_lsts))
return tuple(sorted(progs)) | 5,357,068 |
def tasmax_below_tasmin(
tasmax: xarray.DataArray,
tasmin: xarray.DataArray,
) -> xarray.DataArray:
"""Check if tasmax values are below tasmin values for any given day.
Parameters
----------
tasmax : xarray.DataArray
tasmin : xarray.DataArray
Returns
-------
xarray.DataArray, [bool]
Examples
--------
To gain access to the flag_array:
>>> from xclim.core.dataflags import tasmax_below_tasmin
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tasmax_below_tasmin(ds.tasmax, ds.tasmin)
"""
tasmax_lt_tasmin = _sanitize_attrs(tasmax < tasmin)
description = "Maximum temperature values found below minimum temperatures."
tasmax_lt_tasmin.attrs["description"] = description
tasmax_lt_tasmin.attrs["units"] = ""
return tasmax_lt_tasmin | 5,357,069 |
def laplace_attention(q, k, v, scale, normalize):
"""
Laplace exponential attention
Parameters
----------
q : torch.Tensor
Shape (batch_size, m, k_dim)
k : torch.Tensor
Shape (batch_size, n, k_dim)
v : torch.Tensor
Shape (batch_size, n, v_dim)
scale : float
scale in the L1 distance
normalize : bool
does the weights sum to 1?
Returns
-------
r : torch.Tensor
Shape (batch_size, m, v_dim)
"""
k = k.unsqueeze(1) # shape [B, 1, n, k_dim]
q = q.unsqueeze(2) # shape [B, m, 1, k_dim]
unnorm_weights = - torch.abs((k - q) / scale) # shape [B, m, n, k_dim]
unnorm_weights = torch.mean(weights, dim=-1) # shape [B, m, n]
if normalize:
weight_fn = F.softmax
else:
weight_fn = lambda x: 1 + torch.tanh(x)
weights = weight_fn(unnorm_weights) # shape [B, m, n]
r = torch.einsum('bij,bjk->bik', weights, v) # shape [B, m, v_dim]
return r | 5,357,070 |
def test_range_integrity_check_fails(full_range_stream_fresh, error_msg):
"""
Putting a range “into” (i.e. with shared positions on) the central
‘mid-body’ of an existing range (without first trimming the existing
range), will cause the existing range to automatically ‘split’ its
RangeSet to ‘give way’ to the new range (this is the behaviour of
RangeDict upon adding new keys whose range intersects the existing
range key of a RangeSet, and means keys remain unique, but gives
‘loose ends’ as the singleton rangeset for the existing range
splits into a doublet RangeSet of pre- and post- subranges)
"""
with raises(ValueError, match=error_msg):
full_range_stream_fresh._ranges.add(rng=Range(4, 6), value=123)
full_range_stream_fresh.check_range_integrity() | 5,357,071 |
def instantiate(class_name, *args, **kwargs):
"""Helper to dynamically instantiate a class from a name."""
split_name = class_name.split(".")
module_name = split_name[0]
class_name = ".".join(split_name[1:])
module = __import__(module_name)
class_ = getattr(module, class_name)
return class_(*args, **kwargs) | 5,357,072 |
def fawa(pv_or_state, grid=None, levels=None, interpolate=None):
"""Finite-Amplitude Wave Activity according to Nakamura and Zhu (2010).
- If the first parameter is not a `barotropic.State`, `grid` must be
specified.
- `levels` specifies the number of contours generated for the equivalent
latitude zonalization.
- By default, FAWA is returned on the computed equivalent latitudes. To
obtain FAWA interpolated to a specific set of latitudes, specify these
with the `interpolate` parameter.
Returns a tuple containing FAWA and its latitude coordinates.
"""
grid, pv = _get_grid_vars(["pv"], grid, pv_or_state)
# Compute zonalized background state of PV
qq, yy = grid.zonalize_eqlat(pv, levels=levels, interpolate=None, quad="sptrapz")
# Use formulation that integrates PV over areas north of PV
# contour/equivalent latitude and then computes difference
q_int = np.vectorize(lambda q: grid.quad_sptrapz(pv, pv - q))
y_int = np.vectorize(lambda y: grid.quad_sptrapz(pv, grid.lat - y))
# Normalize by zonal circumference at each latitude
fawa = (q_int(qq) - y_int(yy)) / grid.circumference(yy)
# Interpolate to a given set of latitudes if specified
if interpolate is not None:
fawa = np.interp(interpolate, yy, fawa, left=0, right=0)
yy = interpolate
return fawa, yy | 5,357,073 |
def bmm_update(context, bmm_id, values, session=None):
"""
Updates Bare Metal Machine record.
"""
if not session:
session = get_session_dodai()
session.begin()
bmm_ref = bmm_get(context, bmm_id, session=session)
bmm_ref.update(values)
bmm_ref.save(session=session)
return bmm_ref | 5,357,074 |
def to_unified(entry):
"""
Convert to a unified entry
"""
assert isinstance(entry, StatementEntry)
date = datetime.datetime.strptime(entry.Date, '%d/%m/%Y').date()
return UnifiedEntry(date, entry.Reference, method=entry.Transaction_Type, credit=entry.Money_In,
debit=entry.Money_Out) | 5,357,075 |
def evaluate(args, model, data):
""" This function samples images via Gibbs sampling chain in order to inspect the marginal distribution of the
visible variables.
Args:
args: parse_args input command-line arguments (hyperparameters).
model: model to sample from.
data: data to measure pseudo_log_likelihood (pll) that model assign to it (if pll is used).
"""
for e in range(args.n_eval_samples):
model.sample_v_marg(epoch=-(e + 1)) | 5,357,076 |
def call_crawlers(dataset_list):
"""
Call crawlers to get latest data.
"""
for dataset_name in dataset_list:
crawler_module = importlib.import_module(
'thousandaire.crawlers.%s' % dataset_name)
crawler = crawler_module.Crawler(dataset_name)
cur_data = DataLoader([dataset_name]).get_all()[dataset_name]
last_date, new_data = crawler.update()
if not os.path.isdir(DATA_DIR):
os.mkdir(DATA_DIR)
data_path = os.path.join(DATA_DIR, dataset_name)
with open(data_path, 'wb') as file:
for key in new_data:
if key in cur_data.keys():
cur_data[key].extend(new_data[key])
else:
cur_data[key] = new_data[key]
pickle.dump(cur_data, file)
crawler.set_last_modified_date(last_date) | 5,357,077 |
def test_tree():
"""Trains a Tree"""
X, y = getdata()
clf = buildtree(X, y)
clf.predict([[2., 2.]]) | 5,357,078 |
def edit_profile():
"""
POST endpoint that edits the student profile.
"""
user = get_current_user()
json = g.clean_json
user.majors = Major.objects.filter(id__in=json['majors'])
user.minors = Minor.objects.filter(id__in=json['minors'])
user.interests = Tag.objects.filter(id__in=json['interests'])
user.save()
return _fetch_user_profile(user) | 5,357,079 |
def _stringcoll(coll):
"""
Predicate function to determine whether COLL is a non-empty
collection (list/tuple) containing only strings.
Arguments:
- `coll`:*
Return: bool
Exceptions: None
"""
if isinstance(coll, (list, tuple)) and coll:
return len([s for s in coll if isinstance(s, six.string_types)]) == len(coll)
return False | 5,357,080 |
def create_user_db_context(
database=Database(),
*args, **kwargs):
"""
Create a context manager for an auto-configured :func:`msdss_users_api.tools.create_user_db_func` function.
Parameters
----------
database : :class:`msdss_base_database:msdss_base_database.core.Database`
Database to use for managing users.
*args, **kwargs
Additional arguments passed to :func:`msdss_users_api.tools.create_user_db_func`.
Return
------
dict
Returns a dictionary with the following keys:
* ``get_user_db_context`` (:func:`contextlib.asynccontextmanager`): function returned from :func:`contextlib.asynccontextmanager` created from an auto-configured :func:`msdss_users_api.tools.create_user_db_func` function
* ``get_user_db`` (func): user db function from :func:`msdss_users_api.tools.create_user_db_func`
* ``async_database`` (:class:`databases:databases.Database`): auto-configured :class:`databases:databases.Database` from env vars
* ``database_engine`` (:class:`sqlalchemy:sqlalchemy.engine.Engine`): auto-configured :class:`sqlalchemy:sqlalchemy.engine.Engine` from env vars
Author
------
Richard Wen <[email protected]>
Example
-------
.. jupyter-execute::
from msdss_users_api.tools import *
results = create_user_db_context()
get_user_db_context = results['get_user_db_context']
async_database = results['async_database']
"""
# (create_user_db_func_db) Create databases
database_engine = database._connection
async_database = databases.Database(str(database_engine.url))
# (get_user_db_context_return) Return user db context
get_user_db = create_user_db_func(database_engine=database_engine, async_database=async_database, *args, **kwargs)
out = dict(
get_user_db_context=contextlib.asynccontextmanager(get_user_db),
get_user_db=get_user_db,
async_database=async_database,
database_engine=database_engine
)
return out | 5,357,081 |
def config(base_config):
""":py:class:`nemo_nowcast.Config` instance from YAML fragment to use as config for unit tests."""
config_file = Path(base_config.file)
with config_file.open("at") as f:
f.write(
textwrap.dedent(
"""\
file group: allen
vhfr fvcom runs:
host: arbutus.cloud
run types:
nowcast x2:
results: /nemoShare/MEOPAR/SalishSea/fvcom-nowcast-x2/
forecast x2:
results: /nemoShare/MEOPAR/SalishSea/fvcom-forecast-x2/
nowcast r12:
results: /nemoShare/MEOPAR/SalishSea/fvcom-nowcast-r12/
results archive:
nowcast x2: /opp/fvcom/nowcast-x2/
forecast x2: /opp/fvcom/forecast-x2/
nowcast r12: /opp/fvcom/nowcast-r12/
"""
)
)
config_ = nemo_nowcast.Config()
config_.load(config_file)
return config_ | 5,357,082 |
def enable_image_registry_default_route():
"""Enables the Image Registry default route with the Custom Resource
Definition
https://docs.openshift.com/container-platform/latest/registry/configuring-registry-operator.html#registry-operator-default-crd_configuring-registry-operator
"""
oc_patch_args = [
"patch",
"configs.imageregistry.operator.openshift.io/cluster",
"--patch",
'{"spec":{"defaultRoute":true}}',
"--type",
"merge",
]
execute_oc_command(oc_patch_args) | 5,357,083 |
def check_nodes_in_graph(graph, nodes):
"""
Validate if nodes are in graph
:param graph: graph that should contain nodes
:type graph: :graphit:GraphBase
:param nodes: nodes to check
:type nodes: :py:list
:return: True if validation successful
:rtype: :py:bool
:raises GraphitNodeNotFound
"""
nodes_not_present = [nid for nid in nodes if nid not in graph.nodes.keys()]
if nodes_not_present:
raise GraphitNodeNotFound('Nodes not in graph: {0}'.format(repr(nodes_not_present).strip('[]'))) | 5,357,084 |
def __check_complete_list(list_, nb_max, def_value):
"""
make sure the list is long enough
complete with default value if not
:param list_: list to check
:param nb_max: maximum length of the list
:param def_value: if list too small,
completes it with this value
:return: boolean, False if the list is too long
"""
if len(list_) <= nb_max:
list_.extend([def_value] * (nb_max - len(list_)))
return True
else:
return False | 5,357,085 |
def _fill_function(func, globals, defaults, closure, dct):
""" Fills in the rest of function data into the skeleton function object
that were created via _make_skel_func().
"""
func.func_globals.update(globals)
func.func_defaults = defaults
func.func_dict = dct
if len(closure) != len(func.func_closure):
raise pickle.UnpicklingError("closure lengths don't match up")
for i in range(len(closure)):
_change_cell_value(func.func_closure[i], closure[i])
return func | 5,357,086 |
def symlink_gfid_to_path(brick, gfid):
"""
Each directories are symlinked to file named GFID
in .glusterfs directory of brick backend. Using readlink
we get PARGFID/basename of dir. readlink recursively till
we get PARGFID as ROOT_GFID.
"""
if gfid == ROOT_GFID:
return ""
out_path = ""
while True:
path = os.path.join(brick, ".glusterfs", gfid[0:2], gfid[2:4], gfid)
path_readlink = os.readlink(path)
pgfid = os.path.dirname(path_readlink)
out_path = os.path.join(os.path.basename(path_readlink), out_path)
if pgfid == "../../00/00/%s" % ROOT_GFID:
break
gfid = os.path.basename(pgfid)
return out_path | 5,357,087 |
def main():
"""
Main function
"""
argument_spec = vmware_argument_spec()
argument_spec.update(
state=dict(type='str', default='present', choices=['present', 'absent']),
datacenter=dict(type='str', required=False, aliases=['datacenter_name']),
cluster=dict(type='str', required=True, aliases=['cluster_name']),
group_name=dict(type='str', required=True),
vms=dict(type='list', elements='str'),
hosts=dict(type='list', elements='str')
)
module = AnsibleModule(
argument_spec=argument_spec,
supports_check_mode=True,
mutually_exclusive=[['vms', 'hosts']],
required_one_of=[['vms', 'hosts']]
)
try:
# Create instance of VmwareDrsGroupMemberManager
vmware_drs_group = VmwareDrsGroupMemberManager(module=module)
vmware_drs_group.manage_drs_group_members()
# Set results
results = dict(msg=vmware_drs_group.message,
failed=False,
changed=vmware_drs_group.changed,
drs_group_member_info=vmware_drs_group.result)
except Exception as error:
results = dict(failed=True, msg="Error: %s" % error)
if results['failed']:
module.fail_json(**results)
module.exit_json(**results) | 5,357,088 |
def resize_img(img, size, keep_aspect_ratio=True):
"""resize image using pillow
Args:
img (PIL.Image): pillow image object
size(int or tuple(in, int)): width of image or tuple of (width, height)
keep_aspect_ratio(bool): maintain aspect ratio relative to width
Returns:
(PIL.Image): pillow image
"""
if isinstance(size, int):
size = (size, size)
# get ratio
width, height = img.size
requested_width = size[0]
if keep_aspect_ratio:
ratio = width / requested_width
requested_height = height / ratio
else:
requested_height = size[1]
size = (int(requested_width), int(requested_height))
img = img.resize(size, resample=PIL.Image.LANCZOS)
return img | 5,357,089 |
def calculate_clip_from_vd(circuit: DiodeCircuit, v_d: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
:returns: v_in, v_out
"""
Rs = circuit.Rs
Is = circuit.diode.Is
n = circuit.diode.n
Vt = circuit.diode.Vt
Rp = circuit.Rp
Rd = circuit.Rd
Id = Is * (np.exp(v_d / (n * Vt)) - 1.0)
Vd = v_d
if Rp is None:
Vin = Vd + (Rd * Id) + (Rs * Id)
else:
Vin = Vd + (Rd * Id) + (Rs * Id) + (Vd * Rs / Rp) + (Id * Rd * Rs / Rp)
Vout = Vd + Id * Rd
return Vin, Vout | 5,357,090 |
def make_timeseries(input_files, roi_file, output_dir, labels=None,
regressor_files=None, regressors=None, as_voxels=False,
discard_scans=None, n_jobs=1, **masker_kwargs):
"""Extract timeseries data from input files using an roi file to demark
the region(s) of interest(s). This is the main function of this module.
Parameters
----------
input_files : list of niimg-like
List of input NIfTI functional images
mask_img : str
Image that contains region mask(s). Can either be a single binary mask
for a single region, or a numerically labeled atlas file. 0 must
indicate background (non-region voxels).
output_dir : str
Save directory.
labels : str or list of str
ROI names which are in order of ascending numeric labels in roi_file.
Default is None
regressor_files : list of str, optional
Confound .csv files for each run. Default is None
regressors : list of str, optional
Either a) list of regressor names to select from `regressor_files`
headers, b) a predefined load_confounds strategy, or c) a list of flexibe
load_confounds strategies. If none, all regressors in `regressor_files`
are used. Default isNone
as_voxels : bool, optional
Extract out individual voxel timecourses rather than mean timecourse of
the ROI, by default False. NOTE: This is only available for binary masks,
not for atlas images (yet)
discard_scans : int, optional
The number of scans to discard at the start of each functional image,
prior to any sort of extraction and post-processing. This is prevents
unstabilized signals at the start from being included in signal
standardization, etc.
n_jobs : int, optional
Number of processes to use for extraction if parallelization is
dersired. Default is 1 (no parallelization)
**masker_kwargs
Keyword arguments for `nilearn.input_data` Masker objects.
"""
masker = _set_masker(roi_file, input_files, output_dir,as_voxels, **masker_kwargs)
# set as list of NoneType if no regressor files; makes it easy for
# iterations
if regressor_files is None:
regressor_files = [regressor_files] * len(input_files)
# no parallelization
if n_jobs == 1:
for i, img in enumerate(input_files):
_mask_and_save(masker, img, output_dir, regressor_files[i],
regressors, as_voxels, labels, discard_scans)
else:
# repeat parameters are held constant for all parallelized iterations
args = zip(
repeat(masker),
input_files, # iterate over
repeat(output_dir),
regressor_files, # iterate over, paired with input_files
repeat(regressors),
repeat(as_voxels),
repeat(labels),
repeat(discard_scans)
)
with multiprocessing.Pool(processes=n_jobs) as pool:
pool.starmap(_mask_and_save, args) | 5,357,091 |
def tex_coord(x, y, n=8):
""" Return the bounding vertices of the texture square.
"""
m = 1.0 / n
dx = x * m
dy = y * m
return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m | 5,357,092 |
def compareImage(renwin, img_fname, threshold=10):
"""Compares renwin's (a vtkRenderWindow) contents with the image
file whose name is given in the second argument. If the image
file does not exist the image is generated and stored. If not the
image in the render window is compared to that of the figure.
This function also handles multiple images and finds the best
matching image. """
global _NO_IMAGE
if _NO_IMAGE:
return
w2if = vtk.vtkWindowToImageFilter()
w2if.ReadFrontBufferOff()
w2if.SetInput(renwin)
w2if.Update()
try:
compareImageWithSavedImage(w2if, img_fname, threshold)
except RuntimeError:
w2if.ReadFrontBufferOn()
compareImageWithSavedImage(w2if, img_fname, threshold)
return | 5,357,093 |
def uniindtemp_compute(da: xr.DataArray, thresh: str = "0.0 degC", freq: str = "YS"):
"""Docstring"""
out = da - convert_units_to(thresh, da)
out = out.resample(time=freq).mean()
out.attrs["units"] = da.units
return out | 5,357,094 |
def verify_parentheses(parentheses_string: str) -> bool:
"""Takes input string of only '{},[],()' and evaluates to True if valid."""
open_parentheses = []
valid_parentheses_set = {'(', ')', '[', ']', '{', '}'}
parentheses_pairs = {
')' : '(',
']' : '[',
'}' : '{'
}
if len(parentheses_string) % 2 != 0:
return False
for character in parentheses_string:
if character not in valid_parentheses_set:
raise ValueError("Only parentheses may be part of input string.")
if character in {'(', '[', '{'}:
open_parentheses.append(character)
if character in {')', ']', '}'}:
if len(open_parentheses) == 0:
return False
elif open_parentheses[-1] != parentheses_pairs[character]:
return False
del open_parentheses[-1]
if len(open_parentheses) > 0:
return False
return True | 5,357,095 |
def _stableBaselineTrainingAndExecution(env, typeAgent, numberOptions, mode):
""""Function to execute Baseline algorithms"""
if typeAgent == 2:
model = A2C(MlpPolicy, env, verbose=1)
else:
model = PPO2(MlpPolicy, env, verbose=1)
print("Training model....")
startTime = time()
model.learn(total_timesteps=DEFAULT_TRAINING_RANGE)
trainingTime = time() - startTime
print("Model trained in " + str(trainingTime) + ".")
print("Starting episodes....")
totalSteps, numberEpisodes, studentTotalScore, projectTotalScore, skillsTotalScore = 0, 0, 0., 0., 0.
bestResult = []
bestStudentScore = 0.0
bestStudentAssigned = 0
sumStudentAssigned = 0.0
allStudentsAssigned = []
allProjectAssignations = []
allSteps = []
allResults = []
allAverageStudentScore = []
allAverageProjectScore = []
allAverageSkillsScore = []
allStudentScores = []
allProjectScores = []
progressBar = Bar("-> Execution progress:", max=DEFAULT_EXECUTION_RANGE)
for i in range(DEFAULT_EXECUTION_RANGE):
state = env.reset(1)
steps, reward = 0, 0
done = False
print("Execution " + str(i))
while not done:
action, _state = model.predict(state)
state, reward, done, info = env.step(action)
# env.render()
steps += 1
numberEpisodes += 1
allSteps.append(steps)
averageStudentScore, averageProjectScore, averageSkillsScore, studentScores, projectScores, studentsAssigned, projectAssignations = env.stepScores()
allResults.append(env.finalState())
allAverageStudentScore.append(averageStudentScore)
allAverageProjectScore.append(averageProjectScore)
allAverageSkillsScore.append(averageSkillsScore)
allStudentScores.append(studentScores)
allProjectScores.append(projectScores)
allStudentsAssigned.append(studentsAssigned)
allProjectAssignations.append(projectAssignations)
averageStudentAssigned = sum(studentsAssigned) / numberOptions
sumStudentAssigned += sum(studentsAssigned) / numberOptions
if averageStudentAssigned >= bestStudentAssigned and averageStudentScore > bestStudentScore:
bestStudentAssigned = averageStudentAssigned
bestStudentScore = averageStudentScore
bestResult = env.finalState()
progressBar.next()
progressBar.finish()
print("Execution done.")
print(trainingTime)
if mode == 0:
_executionAnalysis(numberEpisodes, allStudentScores, allProjectScores, allSteps, bestStudentAssigned,
numberOptions, allStudentsAssigned, allProjectAssignations, sumStudentAssigned)
return bestResult | 5,357,096 |
def string_to_hexadecimale_device_name(name: str) -> str:
"""Encode string device name to an appropriate hexadecimal value.
Args:
name: the desired name for encoding.
Return:
Hexadecimal representation of the name argument.
"""
length = len(name)
if 1 < length < 33:
hex_name = hexlify(name.encode())
zeros_pad = ("00" * (32 - length)).encode()
return (hex_name + zeros_pad).decode()
raise ValueError("name length can vary from 2 to 32") | 5,357,097 |
def createTeam(
firstIndex, secondIndex, isRed, first = 'DefensiveAgent', second = 'OffensiveAgent'):
"""
This function should return a list of two agents that will form the
team, initialized using firstIndex and secondIndex as their agent
index numbers. isRed is True if the red team is being created, and
will be False if the blue team is being created.
As a potentially helpful development aid, this function can take
additional string-valued keyword arguments ("first" and "second" are
such arguments in the case of this function), which will come from
the --redOpts and --blueOpts command-line arguments to capture.py.
For the nightly contest, however, your team will be created without
any extra arguments, so you should make sure that the default
behavior is what you want for the nightly contest.
"""
return [eval(first)(firstIndex), eval(second)(secondIndex)] | 5,357,098 |
def str_dice(die):
"""Return a string representation of die.
>>> str_dice(dice(1, 6))
'die takes on values from 1 to 6'
"""
return 'die takes on values from {0} to {1}'.format(smallest(die), largest(die)) | 5,357,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.