hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
231c0b0aa33747333e0b4c3386547f35f72e9e5c
717
agda
Agda
zerepoch-metatheory/test/StringLiteral.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
null
null
null
zerepoch-metatheory/test/StringLiteral.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
null
null
null
zerepoch-metatheory/test/StringLiteral.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
2
2021-11-13T21:25:19.000Z
2022-02-21T16:38:59.000Z
module test.StringLiteral where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ -- zerepoch/zerepoch-core/test/data/stringLiteral.plc postulate str1 : ByteString {-# FOREIGN GHC import qualified Data.ByteString.Char8 as BS #-} {-# COMPILE GHC str1 = BS.pack "4321758fabce1aa4780193f" #-} open import Relation.Binary.PropositionalEquality open import Agda.Builtin.TrustMe lemma1 : length str1 ≡ 23 lemma1 = primTrustMe open import Data.Nat lemma1' : BoundedB 100 str1 lemma1' rewrite lemma1 = gen _ _ _ stringLit : ∀{Γ} → Γ ⊢ con bytestring (size⋆ 100) stringLit = con (bytestring 100 str1 lemma1')
25.607143
64
0.76569
18c12b19a0849193da4e59da89bc6f9568d7811c
1,573
agda
Agda
RefactorAgdaEngine/Test/Tests/input/Test.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
5
2019-01-31T14:10:18.000Z
2019-05-03T10:03:36.000Z
RefactorAgdaEngine/Test/Tests/input/Test.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
3
2019-01-31T08:03:07.000Z
2019-02-05T12:53:36.000Z
RefactorAgdaEngine/Test/Tests/input/Test.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
1
2019-01-31T08:40:41.000Z
2019-01-31T08:40:41.000Z
-- a few random examples module Test where import Agda.Builtin.Bool data Nat : Set where zero : Nat -- Comment which gets eaten suc : Nat -> Nat --Comment which is preserved plus {- preserved comment {- which may be nested -} -} : {- comment after Colon, also preserved-} {-comments are essentially whitespace, even through they get parsed-} Nat -> {-comment, preserved-} Nat -> Nat {-# BUILTIN NATURAL Nat #-} plus zero m = m plus (suc n) m = suc (plus n m) {-# BUILTIN NATPLUS plus #-} --excess brackets are not preserved minus : ((Nat)) -> Nat -- We can nest holes correctly minus a = {! ? {! Hole inside hole !} !} -- Seriously long and complicated function type func : {A : Set} -> {B : A -> Set} -> {C : (x : A) -> B x -> Set} -> (f : {x : A} -> (y : B x) -> C x y) -> (g : (x : A) -> B x) -> (x : A) -> C x (g x) func f g x = f (g x) -- Holes can go here as well id : {a : Set} -> a -> {! !} id x = x -- and the code from the planning report, rewritten in Baby-Agda data List (A : Set) : Set where empty : List A cons : A -> List A -> List A append : {A : Set} -> List A -> List A -> List A append empty ys = ys append (cons x xs) ys = cons x (append xs ys) -- proposed code after refactoring data List2 (A : Set) : Nat -> Set where empty2 : List2 A 0 cons2 : {n : Nat} -> A -> List2 A n -> List2 A (plus 1 n) append2 : {n : Nat} -> {m : Nat} -> {A : Set} -> List2 A m -> List2 A n -> List2 A (plus m n) append2 empty2 ys = ys append2 (cons2 x xs) ys = cons2 x (append2 xs ys)
27.12069
114
0.570884
dcb5acf35308f7bcd79e254be15f06f9773adde2
2,669
agda
Agda
src/SystemF/BigStep/Types.agda
ajrouvoet/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/SystemF/BigStep/Types.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
src/SystemF/BigStep/Types.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
module SystemF.BigStep.Types where open import Prelude -- types are indexed by the number of open tvars infixl 10 _⇒_ data Type (n : ℕ) : Set where Unit : Type n ν : (i : Fin n) → Type n _⇒_ : Type n → Type n → Type n ∀' : Type (suc n) → Type n open import Data.Fin.Substitution open import Data.Vec module App {T} (l : Lift T Type )where open Lift l hiding (var) _/_ : ∀ {m n} → Type m → Sub T m n → Type n Unit / s = Unit ν i / s = lift (lookup i s) (a ⇒ b) / s = (a / s) ⇒ (b / s) ∀' x / s = ∀' (x / (s ↑)) open Application (record { _/_ = _/_ }) using (_/✶_) open import Data.Star Unit-/✶-↑✶ : ∀ k {m n} (ρs : Subs T m n) → Unit /✶ ρs ↑✶ k ≡ Unit Unit-/✶-↑✶ k ε = refl Unit-/✶-↑✶ k (x ◅ ρs) = cong₂ _/_ (Unit-/✶-↑✶ k ρs) refl ∀-/✶-↑✶ : ∀ k {m n t} (ρs : Subs T m n) → ∀' t /✶ ρs ↑✶ k ≡ ∀' (t /✶ ρs ↑✶ suc k) ∀-/✶-↑✶ k ε = refl ∀-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (∀-/✶-↑✶ k ρs) refl ⇒-/✶-↑✶ : ∀ k {m n t₁ t₂} (ρs : Subs T m n) → t₁ ⇒ t₂ /✶ ρs ↑✶ k ≡ (t₁ /✶ ρs ↑✶ k) ⇒ (t₂ /✶ ρs ↑✶ k) ⇒-/✶-↑✶ k ε = refl ⇒-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (⇒-/✶-↑✶ k ρs) refl tmSubst : TermSubst Type tmSubst = record { var = ν; app = App._/_ } open TermSubst tmSubst hiding (var; subst) public module Lemmas where open import Data.Fin.Substitution.Lemmas tyLemmas : TermLemmas Type tyLemmas = record { termSubst = tmSubst ; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where module Lemma {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) → (∀ k x → ν x /✶₁ ρs₁ ↑✶₁ k ≡ ν x /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k Unit = begin _ ≡⟨ App.Unit-/✶-↑✶ _ k ρs₁ ⟩ Unit ≡⟨ sym $ App.Unit-/✶-↑✶ _ k ρs₂ ⟩ _ ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (ν i) = hyp k i /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin _ ≡⟨ App.⇒-/✶-↑✶ _ k ρs₁ ⟩ (a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) ((/✶-↑✶ ρs₁ ρs₂ hyp k b)) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym $ App.⇒-/✶-↑✶ _ k ρs₂ ⟩ _ ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' x) = begin _ ≡⟨ App.∀-/✶-↑✶ _ k ρs₁ ⟩ ∀' (x /✶₁ ρs₁ ↑✶₁ (suc k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) x) ⟩ ∀' (x /✶₂ ρs₂ ↑✶₂ (suc k)) ≡⟨ sym $ App.∀-/✶-↑✶ _ k ρs₂ ⟩ _ ∎ open TermLemmas tyLemmas public hiding (var)
32.54878
86
0.449981
4a77449488fbd7dcde1b9f52534f28351388fc07
432
agda
Agda
examples/outdated-and-incorrect/syntax/ModuleA.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/syntax/ModuleA.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/syntax/ModuleA.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- This module is used to illustrate how to import a non-parameterised module. module examples.syntax.ModuleA where data Nat : Set where zero : Nat suc : Nat -> Nat plus : Nat -> Nat -> Nat eval : Nat -> Nat eval zero = zero eval (suc x) = suc (eval x) eval (plus zero y) = eval y eval (plus (suc x) y) = suc (eval (plus x y)) eval (plus (plus x y) z) = eval (plus x (plus y z))
25.411765
78
0.578704
4ad3c06cc886e1fccd72b9d044ff3379d6110948
1,086
agda
Agda
agda/BBSTree/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/BBSTree/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/BBSTree/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module BBSTree.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import BBSTree _≤_ open import Bound.Total A open import Bound.Total.Order.Properties _≤_ trans≤ open import List.Order.Simple _≤_ open import List.Order.Simple.Properties _≤_ trans≤ open import List.Sorted _≤_ lemma-bbst-*≤ : {b : Bound}(x : A) → (t : BBSTree b (val x)) → flatten t *≤ x lemma-bbst-*≤ x (bslf _) = lenx lemma-bbst-*≤ x (bsnd {x = y} b≤y y≤x l r) = lemma-++-*≤ (lemma-LeB≤ y≤x) (lemma-bbst-*≤ y l) (lemma-bbst-*≤ x r) lemma-bbst-≤* : {b : Bound}(x : A) → (t : BBSTree (val x) b) → x ≤* flatten t lemma-bbst-≤* x (bslf _) = genx lemma-bbst-≤* x (bsnd {x = y} x≤y y≤t l r) = lemma-≤*-++ (lemma-LeB≤ x≤y) (lemma-bbst-≤* x l) (lemma-bbst-≤* y r) lemma-bbst-sorted : {b t : Bound}(t : BBSTree b t) → Sorted (flatten t) lemma-bbst-sorted (bslf _) = nils lemma-bbst-sorted (bsnd {x = x} b≤x x≤t l r) = lemma-sorted++ (lemma-bbst-*≤ x l) (lemma-bbst-≤* x r) (lemma-bbst-sorted l) (lemma-bbst-sorted r)
43.44
145
0.601289
d0812e6d80d1d1dd7edd607673845ac239779985
2,329
agda
Agda
Cubical/Data/Unit/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Unit/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Unit/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.Unit.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Unit.Base open import Cubical.Data.Prod.Base open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Reflection.StrictEquiv isContrUnit : isContr Unit isContrUnit = tt , λ {tt → refl} isPropUnit : isProp Unit isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit isSetUnit : isSet Unit isSetUnit = isProp→isSet isPropUnit isOfHLevelUnit : (n : HLevel) → isOfHLevel n Unit isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit module _ {ℓ} (A : Type ℓ) where UnitToType≃ : (Unit → A) ≃ A unquoteDef UnitToType≃ = defStrictEquiv UnitToType≃ (λ f → f _) const UnitToTypePath : ∀ {ℓ} (A : Type ℓ) → (Unit → A) ≡ A UnitToTypePath A = ua (UnitToType≃ A) isContr→Iso2 : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isContr A → Iso (A → B) B Iso.fun (isContr→Iso2 iscontr) f = f (fst iscontr) Iso.inv (isContr→Iso2 iscontr) b _ = b Iso.rightInv (isContr→Iso2 iscontr) _ = refl Iso.leftInv (isContr→Iso2 iscontr) f = funExt λ x → cong f (snd iscontr x) diagonal-unit : Unit ≡ Unit × Unit diagonal-unit = isoToPath (iso (λ x → tt , tt) (λ x → tt) (λ {(tt , tt) i → tt , tt}) λ {tt i → tt}) fibId : ∀ {ℓ} (A : Type ℓ) → (fiber (λ (x : A) → tt) tt) ≡ A fibId A = ua e where unquoteDecl e = declStrictEquiv e fst (λ a → a , refl) isContr→≃Unit : ∀ {ℓ} {A : Type ℓ} → isContr A → A ≃ Unit isContr→≃Unit contr = isoToEquiv (iso (λ _ → tt) (λ _ → fst contr) (λ _ → refl) λ _ → snd contr _) isContr→≡Unit : {A : Type₀} → isContr A → A ≡ Unit isContr→≡Unit contr = ua (isContr→≃Unit contr) isContrUnit* : ∀ {ℓ} → isContr (Unit* {ℓ}) isContrUnit* = tt* , λ _ → refl isPropUnit* : ∀ {ℓ} → isProp (Unit* {ℓ}) isPropUnit* _ _ = refl isOfHLevelUnit* : ∀ {ℓ} (n : HLevel) → isOfHLevel n (Unit* {ℓ}) isOfHLevelUnit* zero = tt* , λ _ → refl isOfHLevelUnit* (suc zero) _ _ = refl isOfHLevelUnit* (suc (suc zero)) _ _ _ _ _ _ = tt* isOfHLevelUnit* (suc (suc (suc n))) = isOfHLevelPlus 3 (isOfHLevelUnit* n)
32.802817
100
0.686561
d0dbb310fe68f91c4388c5ab0880f9f78eac2aea
460
agda
Agda
error.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
error.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
error.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
-- a simple error monad module error where open import level open import string infixr 0 _≫=err_ _≫err_ data error-t{ℓ}(A : Set ℓ) : Set ℓ where no-error : A → error-t A yes-error : string → error-t A _≫=err_ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → error-t A → (A → error-t B) → error-t B (no-error a) ≫=err f = f a (yes-error e) ≫=err _ = yes-error e _≫err_ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → error-t A → error-t B → error-t B a ≫err b = a ≫=err λ _ → b
23
82
0.580435
d03138a23da3654205fedca1732295b242544a7d
467
agda
Agda
core/lib/types/Choice.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Choice.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Choice.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Truncation open import lib.types.Pi module lib.types.Choice where unchoose : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : A → Type j} → Trunc n (Π A B) → Π A (Trunc n ∘ B) unchoose = Trunc-rec (Π-level λ _ → Trunc-level) (λ f → [_] ∘ f) has-choice : ∀ {i} (n : ℕ₋₂) (A : Type i) j → Type (lmax i (lsucc j)) has-choice {i} n A j = (B : A → Type j) → is-equiv (unchoose {n = n} {A} {B})
31.133333
77
0.582441
cbaa18ca5e472af05ae84c6e8db67fa9276c38bd
181
agda
Agda
test/Fail/Issue3338.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3338.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3338.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate R : Set → Set1 r : {X : Set} {{ _ : R X }} → X → Set A : Set a : A instance RI : R A -- RI = {!!} -- uncommenting lets instance resolution succeed foo : r a
15.083333
63
0.524862
20acf3535af8c94d9aa0185d4b06bb44f290fcb1
6,400
agda
Agda
BasicIS4/Equipment/KripkeDyadicCanonical.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Equipment/KripkeDyadicCanonical.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Equipment/KripkeDyadicCanonical.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Canonical model equipment for Kripke-style semantics. module BasicIS4.Equipment.KripkeDyadicCanonical where open import BasicIS4.Syntax.Common public module Syntax (_⊢_ : Cx² Ty Ty → Ty → Set) (mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A) (up : ∀ {A Π} → Π ⊢ (□ A) → Π ⊢ (□ □ A)) (down : ∀ {A Π} → Π ⊢ (□ A) → Π ⊢ A) (lift : ∀ {A Γ Δ} → (Γ ⁏ Δ) ⊢ A → (□⋆ Γ ⁏ Δ) ⊢ (□ A)) where -- Worlds. Worldᶜ : Set Worldᶜ = Cx² Ty Ty -- Intuitionistic accessibility. infix 3 _≤ᶜ_ _≤ᶜ_ : Worldᶜ → Worldᶜ → Set _≤ᶜ_ = _⊆²_ refl≤ᶜ : ∀ {w} → w ≤ᶜ w refl≤ᶜ = refl⊆² trans≤ᶜ : ∀ {w w′ w″} → w ≤ᶜ w′ → w′ ≤ᶜ w″ → w ≤ᶜ w″ trans≤ᶜ = trans⊆² bot≤ᶜ : ∀ {w} → ∅² ≤ᶜ w bot≤ᶜ = bot⊆² -- The canonical modal accessibility, based on the T axiom. infix 3 _Rᶜ_ _Rᶜ_ : Worldᶜ → Worldᶜ → Set w Rᶜ w′ = ∀ {A} → w ⊢ (□ A) → w′ ⊢ A reflRᶜ : ∀ {w} → w Rᶜ w reflRᶜ = down transRᶜ : ∀ {w w′ w″} → w Rᶜ w′ → w′ Rᶜ w″ → w Rᶜ w″ transRᶜ ζ ζ′ = ζ′ ∘ ζ ∘ up botRᶜ : ∀ {w} → ∅² Rᶜ w botRᶜ = mono²⊢ bot≤ᶜ ∘ down liftRᶜ : ∀ {Γ Δ} → Γ ⁏ Δ Rᶜ □⋆ Γ ⁏ Δ liftRᶜ = down ∘ lift ∘ down -- Composition of accessibility. infix 3 _≤⨾Rᶜ_ _≤⨾Rᶜ_ : Worldᶜ → Worldᶜ → Set _≤⨾Rᶜ_ = _≤ᶜ_ ⨾ _Rᶜ_ infix 3 _R⨾≤ᶜ_ _R⨾≤ᶜ_ : Worldᶜ → Worldᶜ → Set _R⨾≤ᶜ_ = _Rᶜ_ ⨾ _≤ᶜ_ refl≤⨾Rᶜ : ∀ {w} → w ≤⨾Rᶜ w refl≤⨾Rᶜ {w} = w , (refl≤ᶜ , reflRᶜ) reflR⨾≤ᶜ : ∀ {w} → w R⨾≤ᶜ w reflR⨾≤ᶜ {w} = w , (reflRᶜ , refl≤ᶜ) -- Persistence condition, after Iemhoff; included by Ono. -- -- w′ v′ → v′ -- ◌───R───● → ● -- │ → ╱ -- ≤ ξ,ζ → R -- │ → ╱ -- ● → ● -- w → w ≤⨾R→Rᶜ : ∀ {v′ w} → w ≤⨾Rᶜ v′ → w Rᶜ v′ ≤⨾R→Rᶜ (w′ , (ξ , ζ)) = ζ ∘ mono²⊢ ξ -- Brilliance condition, after Iemhoff. -- -- v′ → v′ -- ● → ● -- │ → ╱ -- ζ,ξ ≤ → R -- │ → ╱ -- ●───R───◌ → ● -- w v → w R⨾≤→Rᶜ : ∀ {w v′} → w R⨾≤ᶜ v′ → w Rᶜ v′ R⨾≤→Rᶜ (v , (ζ , ξ)) = mono²⊢ ξ ∘ ζ -- Minor persistence condition, included by Božić and Došen. -- -- w′ v′ → v′ -- ◌───R───● → ● -- │ → │ -- ≤ ξ,ζ → ≤ -- │ → │ -- ● → ●───R───◌ -- w → w v -- -- w″ → w″ -- ● → ● -- │ → │ -- ξ′,ζ′ ≤ → │ -- │ → │ -- ●───R───◌ → ≤ -- │ v′ → │ -- ξ,ζ ≤ → │ -- │ → │ -- ●───R───◌ → ●───────R───────◌ -- w v → w v″ ≤⨾R→R⨾≤ᶜ : ∀ {v′ w} → w ≤⨾Rᶜ v′ → w R⨾≤ᶜ v′ ≤⨾R→R⨾≤ᶜ {v′} ξ,ζ = v′ , (≤⨾R→Rᶜ ξ,ζ , refl≤ᶜ) transR⨾≤ᶜ : ∀ {w′ w w″} → w R⨾≤ᶜ w′ → w′ R⨾≤ᶜ w″ → w R⨾≤ᶜ w″ transR⨾≤ᶜ {w′} (v , (ζ , ξ)) (v′ , (ζ′ , ξ′)) = let v″ , (ζ″ , ξ″) = ≤⨾R→R⨾≤ᶜ (w′ , (ξ , ζ′)) in v″ , (transRᶜ ζ ζ″ , trans≤ᶜ ξ″ ξ′) ≤→Rᶜ : ∀ {v′ w} → w ≤ᶜ v′ → w Rᶜ v′ ≤→Rᶜ {v′} ξ = ≤⨾R→Rᶜ (v′ , (ξ , reflRᶜ)) -- Minor brilliance condition, included by Ewald and Alechina et al. -- -- v′ → w′ v′ -- ● → ◌───R───● -- │ → │ -- ζ,ξ ≤ → ≤ -- │ → │ -- ●───R───◌ → ● -- w v → w -- -- v′ w″ → v″ w″ -- ◌───R───● → ◌───────R───────● -- │ → │ -- ≤ ξ′,ζ′ → │ -- v │ → │ -- ◌───R───● → ≤ -- │ w′ → │ -- ≤ ξ,ζ → │ -- │ → │ -- ● → ● -- w → w R⨾≤→≤⨾Rᶜ : ∀ {w v′} → w R⨾≤ᶜ v′ → w ≤⨾Rᶜ v′ R⨾≤→≤⨾Rᶜ {w} ζ,ξ = w , (refl≤ᶜ , R⨾≤→Rᶜ ζ,ξ) trans≤⨾Rᶜ : ∀ {w′ w w″} → w ≤⨾Rᶜ w′ → w′ ≤⨾Rᶜ w″ → w ≤⨾Rᶜ w″ trans≤⨾Rᶜ {w′} (v , (ξ , ζ)) (v′ , (ξ′ , ζ′)) = let v″ , (ξ″ , ζ″) = R⨾≤→≤⨾Rᶜ (w′ , (ζ , ξ′)) in v″ , (trans≤ᶜ ξ ξ″ , transRᶜ ζ″ ζ′) ≤→Rᶜ′ : ∀ {w v′} → w ≤ᶜ v′ → w Rᶜ v′ ≤→Rᶜ′ {w} ξ = R⨾≤→Rᶜ (w , (reflRᶜ , ξ)) -- Infimum (greatest lower bound) of accessibility. -- -- w′ -- ● -- │ -- ≤ ξ,ζ -- │ -- ◌───R───● -- w v infix 3 _≤⊓Rᶜ_ _≤⊓Rᶜ_ : Worldᶜ → Worldᶜ → Set _≤⊓Rᶜ_ = _≤ᶜ_ ⊓ _Rᶜ_ infix 3 _R⊓≤ᶜ_ _R⊓≤ᶜ_ : Worldᶜ → Worldᶜ → Set _R⊓≤ᶜ_ = _Rᶜ_ ⊓ _≤ᶜ_ ≤⊓R→R⊓≤ᶜ : ∀ {w′ v} → w′ ≤⊓Rᶜ v → v R⊓≤ᶜ w′ ≤⊓R→R⊓≤ᶜ (w , (ξ , ζ)) = w , (ζ , ξ) R⊓≤→≤⊓Rᶜ : ∀ {w′ v} → v R⊓≤ᶜ w′ → w′ ≤⊓Rᶜ v R⊓≤→≤⊓Rᶜ (w , (ζ , ξ)) = w , (ξ , ζ) -- Supremum (least upper bound) of accessibility. -- -- w′ v′ -- ●───R───◌ -- │ -- ξ,ζ ≤ -- │ -- ● -- v infix 3 _≤⊔Rᶜ_ _≤⊔Rᶜ_ : Worldᶜ → Worldᶜ → Set _≤⊔Rᶜ_ = _≤ᶜ_ ⊔ _Rᶜ_ infix 3 _R⊔≤ᶜ_ _R⊔≤ᶜ_ : Worldᶜ → Worldᶜ → Set _R⊔≤ᶜ_ = _Rᶜ_ ⊔ _≤ᶜ_ ≤⊔R→R⊔≤ᶜ : ∀ {w′ v} → w′ ≤⊔Rᶜ v → v R⊔≤ᶜ w′ ≤⊔R→R⊔≤ᶜ (v′ , (ξ , ζ)) = v′ , (ζ , ξ) R⊔≤→≤⊔Rᶜ : ∀ {w′ v} → v R⊔≤ᶜ w′ → w′ ≤⊔Rᶜ v R⊔≤→≤⊔Rᶜ (v′ , (ζ , ξ)) = v′ , (ξ , ζ) -- Infimum-to-supremum condition, included by Ewald. -- -- w′ → w′ v′ -- ● → ●───R───◌ -- │ → │ -- ≤ ξ,ζ → ≤ -- │ → │ -- ◌───R───● → ● -- w v → v -- NOTE: This could be more precise. ≤⊓R→≤⊔Rᶜ : ∀ {v w′} → w′ ≤⊓Rᶜ v → v ≤⊔Rᶜ w′ ≤⊓R→≤⊔Rᶜ {v} {w′} (w , (ξ , ζ)) = (w′ ⧺² v) , (weak⊆²⧺₂ , mono²⊢ (weak⊆²⧺₁ v) ∘ down) -- Supremum-to-infimum condition. -- -- w′ v′ → w′ -- ●───R───◌ → ● -- │ → │ -- ξ,ζ ≤ → ≤ -- │ → │ -- ● → ◌───R───● -- v → w v -- NOTE: This could be more precise. ≤⊔R→≤⊓Rᶜ : ∀ {w′ v} → v ≤⊔Rᶜ w′ → w′ ≤⊓Rᶜ v ≤⊔R→≤⊓Rᶜ (v′ , (ξ , ζ)) = ∅² , (bot≤ᶜ , botRᶜ)
25.498008
95
0.29125
18edd7f3f8de07c4efdcd52c84f3356c105cfafa
3,091
agda
Agda
OlderBasicILP/Direct/Translation.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
OlderBasicILP/Direct/Translation.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
OlderBasicILP/Direct/Translation.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module OlderBasicILP.Direct.Translation where open import Common.Context public -- import OlderBasicILP.Direct.Hilbert.Sequential as HS import OlderBasicILP.Direct.Hilbert.Nested as HN import OlderBasicILP.Direct.Gentzen as G -- open HS using () renaming (_⊢×_ to HS⟨_⊢×_⟩ ; _⊢_ to HS⟨_⊢_⟩) public open HN using () renaming (_⊢_ to HN⟨_⊢_⟩ ; _⊢⋆_ to HN⟨_⊢⋆_⟩) public open G using () renaming (_⊢_ to G⟨_⊢_⟩ ; _⊢⋆_ to G⟨_⊢⋆_⟩) public -- Translation from sequential Hilbert-style to nested. -- hs→hn : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HN⟨ Γ ⊢ A ⟩ -- hs→hn = ? -- Translation from nested Hilbert-style to sequential. -- hn→hs : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ -- hn→hs = ? -- Deduction theorem for sequential Hilbert-style. -- hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩ -- hs-lam = hn→hs ∘ HN.lam ∘ hs→hn -- Translation from Hilbert-style to Gentzen-style. mutual hn→gᵇᵒˣ : HN.Box → G.Box hn→gᵇᵒˣ HN.[ t ] = {!G.[ hn→g t ]!} hn→gᵀ : HN.Ty → G.Ty hn→gᵀ (HN.α P) = G.α P hn→gᵀ (A HN.▻ B) = hn→gᵀ A G.▻ hn→gᵀ B hn→gᵀ (T HN.⦂ A) = hn→gᵇᵒˣ T G.⦂ hn→gᵀ A hn→gᵀ (A HN.∧ B) = hn→gᵀ A G.∧ hn→gᵀ B hn→gᵀ HN.⊤ = G.⊤ hn→gᵀ⋆ : Cx HN.Ty → Cx G.Ty hn→gᵀ⋆ ∅ = ∅ hn→gᵀ⋆ (Γ , A) = hn→gᵀ⋆ Γ , hn→gᵀ A hn→gⁱ : ∀ {A Γ} → A ∈ Γ → hn→gᵀ A ∈ hn→gᵀ⋆ Γ hn→gⁱ top = top hn→gⁱ (pop i) = pop (hn→gⁱ i) hn→g : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → G⟨ hn→gᵀ⋆ Γ ⊢ hn→gᵀ A ⟩ hn→g (HN.var i) = G.var (hn→gⁱ i) hn→g (HN.app t u) = G.app (hn→g t) (hn→g u) hn→g HN.ci = G.ci hn→g HN.ck = G.ck hn→g HN.cs = G.cs hn→g (HN.box t) = {!G.box (hn→g t)!} hn→g HN.cdist = {!G.cdist!} hn→g HN.cup = {!G.cup!} hn→g HN.cdown = G.cdown hn→g HN.cpair = G.cpair hn→g HN.cfst = G.cfst hn→g HN.csnd = G.csnd hn→g HN.unit = G.unit -- hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ -- hs→g = hn→g ∘ hs→hn -- Translation from Gentzen-style to Hilbert-style. mutual g→hnᵇᵒˣ : G.Box → HN.Box g→hnᵇᵒˣ G.[ t ] = {!HN.[ g→hn t ]!} g→hnᵀ : G.Ty → HN.Ty g→hnᵀ (G.α P) = HN.α P g→hnᵀ (A G.▻ B) = g→hnᵀ A HN.▻ g→hnᵀ B g→hnᵀ (T G.⦂ A) = g→hnᵇᵒˣ T HN.⦂ g→hnᵀ A g→hnᵀ (A G.∧ B) = g→hnᵀ A HN.∧ g→hnᵀ B g→hnᵀ G.⊤ = HN.⊤ g→hnᵀ⋆ : Cx G.Ty → Cx HN.Ty g→hnᵀ⋆ ∅ = ∅ g→hnᵀ⋆ (Γ , A) = g→hnᵀ⋆ Γ , g→hnᵀ A g→hnⁱ : ∀ {A Γ} → A ∈ Γ → g→hnᵀ A ∈ g→hnᵀ⋆ Γ g→hnⁱ top = top g→hnⁱ (pop i) = pop (g→hnⁱ i) g→hn : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HN⟨ g→hnᵀ⋆ Γ ⊢ g→hnᵀ A ⟩ g→hn (G.var i) = HN.var (g→hnⁱ i) g→hn (G.lam t) = HN.lam (g→hn t) g→hn (G.app t u) = HN.app (g→hn t) (g→hn u) -- g→hn (G.multibox ts u) = {!HN.multibox (g→hn⋆ ts) (g→hn u)!} g→hn (G.down t) = HN.down (g→hn t) g→hn (G.pair t u) = HN.pair (g→hn t) (g→hn u) g→hn (G.fst t) = HN.fst (g→hn t) g→hn (G.snd t) = HN.snd (g→hn t) g→hn G.unit = HN.unit g→hn⋆ : ∀ {Ξ Γ} → G⟨ Γ ⊢⋆ Ξ ⟩ → HN⟨ g→hnᵀ⋆ Γ ⊢⋆ g→hnᵀ⋆ Ξ ⟩ g→hn⋆ {∅} ∙ = ∙ g→hn⋆ {Ξ , A} (ts , t) = g→hn⋆ ts , g→hn t -- g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ -- g→hs = hn→hs ∘ g→hn
28.1
71
0.484309
23cd1fa90ad8819501191f3f8e0afa103fefa2c5
8,585
agda
Agda
agda/PLRTree/Drop/Complete.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/PLRTree/Drop/Complete.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/PLRTree/Drop/Complete.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module PLRTree.Drop.Complete {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Sum open import PLRTree {A} open import PLRTree.Complete {A} open import PLRTree.Compound {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.DropLast.Complete _≤_ tot≤ open import PLRTree.Equality {A} open import PLRTree.Order.Properties {A} open import PLRTree.Push.Complete _≤_ tot≤ lemma-setRoot-complete : {t : PLRTree}(x : A) → Complete t → Complete (setRoot x t) lemma-setRoot-complete x leaf = leaf lemma-setRoot-complete x (perfect _ cl cr l≃r) = perfect x cl cr l≃r lemma-setRoot-complete x (left _ cl cr l⋘r) = left x cl cr l⋘r lemma-setRoot-complete x (right _ cl cr l⋙r) = right x cl cr l⋙r lemma-drop-complete : {t : PLRTree} → Complete t → Complete (drop t) lemma-drop-complete leaf = leaf lemma-drop-complete (perfect _ _ _ ≃lf) = leaf lemma-drop-complete (perfect {node perfect x' l' r'} {node perfect x'' l'' r''} x (perfect .x' cl' cr' _) (perfect .x'' cl'' cr'' _) (≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'')) = let z = last (node perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) compound ; t' = dropLast (node perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) ; ct' = right x (perfect x' cl' cr' l'≃r') (lemma-dropLast-complete (perfect x'' cl'' cr'' l''≃r'')) (lemma-dropLast-≃ (≃nd x' x'' l'≃r' l''≃r'' l'≃l'') compound) in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left {l} {r} x cl cr l⋘r) with l | r | l⋘r | lemma-dropLast-⋘ l⋘r ... | leaf | _ | () | _ ... | node perfect x' l' r' | _ | () | _ ... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₁ ld⋘r with dropLast (node left x' l' r') | ld⋘r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node left x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node right x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node right x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left x cl cr l⋘r) | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₂ ld≃r with dropLast (node left x' l' r') | ld≃r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | cld = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node perfect x (node perfect x''' l''' r''') (node perfect x'' l'' r'') ; ct' = perfect x cld cr ld≃r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | leaf | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₁ () lemma-drop-complete (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₂ x'≃x''' = let z = last (node left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) compound ; t' = dropLast (node left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) ; ct' = perfect x (perfect x' leaf leaf ≃lf) cr x'≃x''' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₁ ld⋘r with dropLast (node right x' l' r') | ld⋘r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node left x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node right x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node right x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₂ ld≃r with dropLast (node right x' l' r') | ld≃r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | cld = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node perfect x (node perfect x''' l''' r''') (node perfect x'' l'' r'') ; ct' = perfect x cld cr ld≃r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node left x'' l'' r'' | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node right x'' l'' r'' | () | _ lemma-drop-complete (right {l} {r} x cl cr l⋙r) with l | r | l⋙r | lemma-dropLast-⋙ l⋙r ... | leaf | leaf | ⋙p () | _ ... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') | _ = cl ... | node perfect _ _ (node _ _ _ _) | leaf | ⋙p () | _ ... | node perfect _ (node _ _ _ _) _ | leaf | ⋙p () | _ ... | node left _ _ _ | leaf | ⋙p () | _ ... | node right _ _ _ | leaf | ⋙p () | _ ... | leaf | node perfect _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') | _ = let z = last (node right x (node perfect x' l' r') (node perfect x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; ct' = left x (lemma-dropLast-complete cl) cr (lemma-dropLast-⋗ (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l'') compound) in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node left _ _ _ | node perfect _ _ _ | ⋙p () | _ ... | node right _ _ _ | node perfect _ _ _ | ⋙p () | _ ... | leaf | node left _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node left x'' l'' r'' | _ | inj₁ l⋙rd = let z = last (node right x (node perfect x' l' r') (node left x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node left x'' l'' r'')) ; ct' = right x cl (lemma-dropLast-complete cr) l⋙rd in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node perfect _ _ _ | node left _ _ _ | _ | inj₂ () ... | node left _ _ _ | node left _ _ _ | ⋙p () | _ ... | node right _ _ _ | node left _ _ _ | ⋙p () | _ ... | leaf | node right _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node right x'' l'' r'' | _ | inj₁ l⋙rd = let z = last (node right x (node perfect x' l' r') (node right x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node right x'' l'' r'')) ; ct' = right x cl (lemma-dropLast-complete cr) l⋙rd in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node perfect _ _ _ | node right _ _ _ | _ | inj₂ () ... | node left _ _ _ | node right _ _ _ | ⋙p () | _ ... | node right _ _ _ | node right _ _ _ | ⋙p () | _
68.134921
183
0.509726
dc9dc9dfdba90fecaee0970cb9b796d6b42d7e7d
6,441
agda
Agda
Cubical/Relation/Binary/Definitions.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Definitions.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Definitions.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Definitions where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Logic hiding (_⇒_; _⇔_; ¬_) open import Cubical.Foundations.HLevels open import Cubical.Data.Maybe.Base using (Maybe) open import Cubical.Data.Sum.Base using (_⊎_) open import Cubical.Data.Sigma.Base open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.Relation.Binary.Base open import Cubical.Relation.Nullary.Decidable private variable a b c ℓ ℓ′ ℓ′′ ℓ′′′ : Level A : Type a B : Type b C : Type c ------------------------------------------------------------------------ -- Basic defintions ------------------------------------------------------------------------ infix 7 _⇒_ _⇔_ _=[_]⇒_ infix 8 _⟶_Respects_ _Respects_ _Respectsˡ_ _Respectsʳ_ _Respects₂_ idRel : (A : Type ℓ) → Rel A ℓ idRel A a b .fst = ∥ a ≡ b ∥ idRel A _ _ .snd = squash invRel : REL A B ℓ′ → REL B A ℓ′ invRel R b a = R a b compRel : REL A B ℓ′ → REL B C ℓ′′ → REL A C _ compRel R S a c .fst = ∃[ b ∈ _ ] ⟨ R a b ⟩ × ⟨ S b c ⟩ compRel R S _ _ .snd = squash graphRel : {B : Type b} → (A → B) → isSet B → REL A B b graphRel f isSetB a b .fst = f a ≡ b graphRel f isSetB a b .snd = isSetB (f a) b -- Implication/containment - could also be written _⊆_. -- and corresponding notion of equivalence _⇒_ : REL A B ℓ → REL A B ℓ′ → Type _ P ⇒ Q = ∀ {x y} → ⟨ P x y ⟩ → ⟨ Q x y ⟩ _⇔_ : REL A B ℓ → REL A B ℓ′ → Type _ P ⇔ Q = P ⇒ Q × Q ⇒ P -- Generalised implication - if P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : Rel A ℓ → (A → B) → Rel B ℓ′ → Type _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym for _=[_]⇒_. _Preserves_⟶_ : (A → B) → Rel A ℓ → Rel B ℓ′ → Type _ f Preserves P ⟶ Q = P =[ f ]⇒ Q -- An endomorphic variant of _Preserves_⟶_. _Preserves_ : (A → A) → Rel A ℓ → Type _ f Preserves P = f Preserves P ⟶ P -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → Rel A ℓ → Rel B ℓ′ → Rel C ℓ′′ → Type _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → ⟨ P x y ⟩ → ⟨ Q u v ⟩ → ⟨ R (x ∙ u) (y ∙ v) ⟩ ------------------------------------------------------------------------ -- Property predicates ------------------------------------------------------------------------ -- Reflexivity. Reflexive : Rel A ℓ → Type _ Reflexive _∼_ = ∀ {x} → ⟨ x ∼ x ⟩ -- Equality can be converted to proof of relation. FromEq : Rel A ℓ → Type _ FromEq _∼_ = _≡ₚ_ ⇒ _∼_ -- Irreflexivity. Irreflexive : Rel A ℓ → Type _ Irreflexive _<_ = ∀ {x} → ¬ ⟨ x < x ⟩ -- Relation implies inequality. ToNotEq : Rel A ℓ → Type _ ToNotEq _<_ = _<_ ⇒ _≢ₚ_ -- Generalised symmetry. Sym : REL A B ℓ → REL B A ℓ′ → Type _ Sym P Q = P ⇒ flip Q -- Symmetry. Symmetric : Rel A ℓ → Type _ Symmetric _∼_ = Sym _∼_ _∼_ -- Generalised transitivity. Trans : REL A B ℓ → REL B C ℓ′ → REL A C ℓ′′ → Type _ Trans P Q R = ∀ {i j k} → ⟨ P i j ⟩ → ⟨ Q j k ⟩ → ⟨ R i k ⟩ -- A flipped variant of generalised transitivity. TransFlip : REL A B ℓ → REL B C ℓ′ → REL A C ℓ′′ → Type _ TransFlip P Q R = ∀ {i j k} → ⟨ Q j k ⟩ → ⟨ P i j ⟩ → ⟨ R i k ⟩ -- Transitivity. Transitive : Rel A ℓ → Type _ Transitive _∼_ = Trans _∼_ _∼_ _∼_ -- Generalised antisymmetry. Antisym : REL A B ℓ → REL B A ℓ′ → REL A B ℓ′′ → Type _ Antisym R S E = ∀ {i j} → ⟨ R i j ⟩ → ⟨ S j i ⟩ → ⟨ E i j ⟩ -- Antisymmetry. Antisymmetric : Rel A ℓ → Type _ Antisymmetric _≤_ = Antisym _≤_ _≤_ _≡ₚ_ -- Asymmetry. Asymmetric : Rel A ℓ → Type _ Asymmetric _<_ = ∀ {x y} → ⟨ x < y ⟩ → ¬ ⟨ y < x ⟩ -- Generalised connex - exactly one of the two relations holds. RawConnex : REL A B ℓ → REL B A ℓ′ → Type _ RawConnex P Q = ∀ x y → ⟨ P x y ⟩ ⊎ ⟨ Q y x ⟩ -- Totality. RawTotal : Rel A ℓ → Type _ RawTotal _∼_ = RawConnex _∼_ _∼_ -- Truncated connex - Preserves propositions. Connex : REL A B ℓ → REL B A ℓ′ → Type _ Connex P Q = ∀ x y → ⟨ P x y ⊔ Q y x ⟩ -- Truncated totality. Total : Rel A ℓ → Type _ Total _∼_ = Connex _∼_ _∼_ -- Generalised trichotomy - exactly one of three types has a witness. data Tri (A : Type a) (B : Type b) (C : Type c) : Type (ℓ-max a (ℓ-max b c)) where tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C tri≡ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C -- Trichotomy. Trichotomous : Rel A ℓ → Type _ Trichotomous _<_ = ∀ x y → Tri ⟨ x < y ⟩ (x ≡ y) ⟨ x > y ⟩ where _>_ = flip _<_ -- Maximum element. Maximum : REL A B ℓ → B → Type _ Maximum _≤_ g = ∀ x → ⟨ x ≤ g ⟩ -- Minimum element Minimum : REL A B ℓ → A → Type _ Minimum _≤_ l = ∀ x → ⟨ l ≤ x ⟩ -- Unary relations respecting a binary relation. _⟶_Respects_ : (A → hProp ℓ) → (B → hProp ℓ′) → REL A B ℓ′′ → Type _ P ⟶ Q Respects _∼_ = ∀ {x y} → ⟨ x ∼ y ⟩ → ⟨ P x ⟩ → ⟨ Q y ⟩ -- Unary relation respects a binary relation. _Respects_ : (A → hProp ℓ) → Rel A ℓ′ → Type _ P Respects _∼_ = P ⟶ P Respects _∼_ -- Right respecting - relatedness is preserved on the right by some equivalence. _Respectsʳ_ : REL A B ℓ → Rel B ℓ′ → Type _ _∼_ Respectsʳ _≈_ = ∀ {x} → (x ∼_) Respects _≈_ -- Left respecting - relatedness is preserved on the left by some equivalence. _Respectsˡ_ : REL A B ℓ → Rel A ℓ′ → Type _ _∼_ Respectsˡ _≈_ = ∀ {y} → (_∼ y) Respects _≈_ -- Respecting - relatedness is preserved on both sides by some equivalence. _Respects₂_ : Rel A ℓ → Rel A ℓ′ → Type _ _∼_ Respects₂ _≈_ = (_∼_ Respectsʳ _≈_) × (_∼_ Respectsˡ _≈_) -- Substitutivity - any two related elements satisfy exactly the same -- set of unary relations. Note that only the various derivatives -- of propositional equality can satisfy this property. Substitutive : Rel A ℓ → (ℓ′ : Level) → Type _ Substitutive {A = A} _∼_ p = (P : A → hProp p) → P Respects _∼_ -- Decidability - it is possible to determine whether a given pair of -- elements are related. Decidable : REL A B ℓ → Type _ Decidable _∼_ = ∀ x y → Dec ⟨ x ∼ y ⟩ -- Weak decidability - it is sometimes possible to determine if a given -- pair of elements are related. WeaklyDecidable : REL A B ℓ → Type _ WeaklyDecidable _∼_ = ∀ x y → Maybe ⟨ x ∼ y ⟩ -- Universal - all pairs of elements are related Universal : REL A B ℓ → Type _ Universal _∼_ = ∀ x y → ⟨ x ∼ y ⟩ -- Non-emptiness - at least one pair of elements are related. NonEmpty : REL A B ℓ → Type _ NonEmpty _∼_ = ∃[ x ∈ _ ] ∃[ y ∈ _ ] ⟨ x ∼ y ⟩
26.615702
86
0.581121
18749005038c4224dd0b5dabb5fc0301239f4ae8
398
agda
Agda
Dave/Logic/Bool.agda
DavidStahl97/formal-proofs
05213fb6ab1f51f770f9858b61526ba950e06232
[ "MIT" ]
null
null
null
Dave/Logic/Bool.agda
DavidStahl97/formal-proofs
05213fb6ab1f51f770f9858b61526ba950e06232
[ "MIT" ]
null
null
null
Dave/Logic/Bool.agda
DavidStahl97/formal-proofs
05213fb6ab1f51f770f9858b61526ba950e06232
[ "MIT" ]
null
null
null
module Dave.Logic.Bool where data Bool : Set where false : Bool true : Bool ¬_ : Bool → Bool ¬ true = false ¬ false = true _∧_ : Bool → Bool → Bool a ∧ true = a a ∧ false = false if_then_else_ : {A : Set} → Bool → A → A → A if false then a else b = b if true then a else b = a identity : {A : Set} → A → A identity a = a
18.952381
48
0.497487
df6c57d9c4a5497b18535f6543357d0c01433d32
2,269
agda
Agda
src/regular-star.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/regular-star.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/regular-star.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
module regular-star where open import Level renaming ( suc to Suc ; zero to Zero ) open import Data.List open import Data.Nat hiding ( _≟_ ) open import Data.Fin hiding ( _+_ ) open import Data.Empty open import Data.Unit open import Data.Product -- open import Data.Maybe open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import nat open import automaton open import regular-language open import nfa open import sbconst2 open import finiteSet open import finiteSetUtil open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import regular-concat open Automaton open FiniteSet open RegularLanguage Star-NFA : {Σ : Set} → (A : RegularLanguage Σ ) → NAutomaton (states A ) Σ Star-NFA {Σ} A = record { Nδ = δnfa ; Nend = nend } module Star-NFA where δnfa : states A → Σ → states A → Bool δnfa q i q₁ with aend (automaton A) q ... | true = equal? (afin A) ( astart A) q₁ ... | false = equal? (afin A) (δ (automaton A) q i) q₁ nend : states A → Bool nend q = aend (automaton A) q Star-NFA-start : {Σ : Set} → (A : RegularLanguage Σ ) → states A → Bool Star-NFA-start A q = equal? (afin A) (astart A) q \/ aend (automaton A) q SNFA-exist : {Σ : Set} → (A : RegularLanguage Σ ) → (states A → Bool) → Bool SNFA-exist A qs = exists (afin A) qs M-Star : {Σ : Set} → (A : RegularLanguage Σ ) → RegularLanguage Σ M-Star {Σ} A = record { states = states A → Bool ; astart = Star-NFA-start A ; afin = fin→ (afin A) ; automaton = subset-construction (SNFA-exist A ) (Star-NFA A ) } open Split open _∧_ open NAutomaton open import Data.List.Properties closed-in-star : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Star (contain A) ) x ( M-Star A ) closed-in-star {Σ} A B x = ≡-Bool-func closed-in-star→ closed-in-star← where NFA = (Star-NFA A ) closed-in-star→ : Star (contain A) x ≡ true → contain (M-Star A ) x ≡ true closed-in-star→ star = {!!} open Found closed-in-star← : contain (M-Star A ) x ≡ true → Star (contain A) x ≡ true closed-in-star← C with subset-construction-lemma← (SNFA-exist A ) NFA {!!} x C ... | CC = {!!}
29.467532
121
0.641252
0ec54904ef9ae3e6f8039e3004035d13472975ae
9,825
agda
Agda
fracGC/Singleton.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
fracGC/Singleton.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
fracGC/Singleton.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K --safe #-} -- Singleton type and its 'inverse' module Singleton where open import Data.Unit using (⊤; tt) open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong ; cong₂ ; inspect ; [_]) -- open import Level -- using (zero) -- open import Axiom.Extensionality.Propositional -- using (Extensionality) is-contr : Set → Set is-contr A = Σ A (λ a → (x : A) → a ≡ x) is-prop : Set → Set is-prop A = (x y : A) → x ≡ y is-set : Set → Set is-set A = (x y : A) → is-prop (x ≡ y) contr-prop : {A : Set} → is-contr A → is-prop A contr-prop (a , ϕ) x y = trans (sym (ϕ x)) (ϕ y) apd : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) {x y} → (p : x ≡ y) → subst B p (f x) ≡ f y apd f refl = refl prop-set : {A : Set} → is-prop A → is-set A prop-set {A} ϕ x y p q = trans (l p) (sym (l q)) where g : (z : A) → x ≡ z g z = ϕ x z unitr : {y z : A} (p : y ≡ z) → refl ≡ trans (sym p) p unitr refl = refl l : {y z : A} (p : y ≡ z) → p ≡ trans (sym (g y)) (g z) l refl = unitr (g _) prop-contr : {A : Set} → is-prop A → A → is-contr A prop-contr ϕ a = a , ϕ a ------------------------------------------------------------------------------ -- Singleton type: A type with a distinguished point -- The 'interesting' part is that the point is both a parameter -- and a field. {-- record Singleton (A : Set) (v : A) : Set where constructor ⇑ field ● : A v≡● : v ≡ ● open Singleton public --} Singleton : (A : Set) → (v : A) → Set Singleton A v = ∃ (λ ● → v ≡ ●) -- Singleton types are contractible: pointed-contr : {A : Set} {v : A} → is-contr (Singleton A v) --pointed-contr {A} {v} = ⇑ v refl , λ { (⇑ ● refl) → refl } pointed-contr {A} {v} = (v , refl) , λ { ( ● , refl) → refl } -- and thus have all paths between them: pointed-all-paths : {A : Set} {v : A} {p q : Singleton A v} → p ≡ q pointed-all-paths = contr-prop pointed-contr _ _ -- What does Singleton of Singleton do? -- Values of type Singleton A v are of the form (w , p) where p : v ≡ w -- Values of type Singleton (Singleton A v) x ssv : (A : Set) (v : A) (x : Singleton A v) → Singleton (Singleton A v) x ssv A v (.v , refl) = (v , refl) , refl {-- ss=s : (A : Set) (v : A) (x : Singleton A v) → Singleton (Singleton A v) x ≡ Singleton A v ss=s A v (.v , refl) with pointed-contr {A} {v} ... | (.v , refl) , f = let p = f (v , refl) in {!!} -- ?? --} ------------------------------------------------------------------------------ -- The 'reciprocal' of a Singleton type is a function that accepts exactly -- that point, and returns no information. It acts as a 'witness' that -- the right point has been fed to it. {-- Recip : (A : Set) → (v : A) → Set Recip A v = (w : A) → (v ≡ w) → ⊤ --} Recip : (A : Set) → (v : A) → Set Recip A v = Singleton A v → ⊤ -- Recip A v = Singleton A v → ⊤ -- Recip is also contractible, if we're thinking of homotopy types. -- We need funext to prove it which is not --safe -- posulate -- funext : Extensionality zero zero -- recip-contr : {A : Set} {v : A} → is-contr (Recip A v) -- recip-contr = (λ _ _ → tt) , λ r → funext λ _ → funext λ _ → refl ------------------------------------------------------------------------------ -- Recip' : {A : Set} {v : A} → Singleton A v → Set -- Recip' {A} {v} (⇑ w v≡w) = v ≡ w -- Recip'-ptd : {A : Set} {v : A} → (p : Singleton A v) → Singleton (Recip' p) (v≡● p) -- Recip'-ptd (⇑ w v≡w) = ⇑ v≡w refl -- family of path types from arbitrary w to a fixed v Recip' : (A : Set) → (v : A) → Set Recip' A v = (w : A) → v ≡ w -- If A is a n-type, Recip' is a (n-1)-type -- recip'-contr : {A : Set} {v : A} → is-prop A → is-contr (Recip' A v) -- recip'-contr {A} {v} ϕ = (λ w → ϕ v w) , λ r → funext λ x → prop-set ϕ v x (ϕ v x) (r x) -- recip'-prop : {A : Set} {v : A} → is-set A → is-prop (Recip' A v) -- recip'-prop ϕ r s = funext (λ x → ϕ _ x (r x) (s x)) ------------------------------------------------------------------------------ -- Singleton is an idempotent bimonad on pointed sets -- (need to check some coherences) ∙Set = Σ Set (λ X → X) ∙Set[_,_] : ∙Set → ∙Set → Set ∙Set[ (A , a) , (B , b) ] = Σ (A → B) λ f → f a ≡ b _∙×_ : ∙Set → ∙Set → ∙Set (A , a) ∙× (B , b) = (A × B) , (a , b) -- left version, there's also a right version -- note that this isn't a coproduct -- wedge sum is the coproduct _∙+_ : ∙Set → ∙Set → ∙Set (A , a) ∙+ (B , b) = (A ⊎ B) , inj₁ a ∙id : ∀{∙A} → ∙Set[ ∙A , ∙A ] ∙id = (λ a → a) , refl _∘_ : ∀ {∙A ∙B ∙C} → ∙Set[ ∙A , ∙B ] → ∙Set[ ∙B , ∙C ] → ∙Set[ ∙A , ∙C ] (f , p) ∘ (g , q) = (λ x → g (f x)) , trans (cong g p) q -- terminal and initial ∙1 : ∙Set ∙1 = ⊤ , tt ∙![_] : ∀ ∙A → ∙Set[ ∙A , ∙1 ] ∙![ (A , a) ] = (λ _ → tt) , refl ∙!-uniq : ∀ {∙A} {x : ∙A .proj₁} → (∙f : ∙Set[ ∙A , ∙1 ]) → (∙f .proj₁) x ≡ (∙![ ∙A ] .proj₁) x ∙!-uniq {A , a} {x} (f , p) = refl ∙¡[_] : ∀ ∙A → ∙Set[ ∙1 , ∙A ] ∙¡[ A , a ] = (λ _ → a) , refl ∙¡-uniq : ∀ {∙A} → (∙f : ∙Set[ ∙1 , ∙A ]) → (∙f .proj₁) tt ≡ (∙¡[ ∙A ] .proj₁) tt ∙¡-uniq (f , p) = p record ∙Iso[_,_] (∙A ∙B : ∙Set) : Set where constructor iso field ∙f : ∙Set[ ∙A , ∙B ] ∙g : ∙Set[ ∙B , ∙A ] f = ∙f .proj₁ g = ∙g .proj₁ field f-g : ∀ b → f (g b) ≡ b g-f : ∀ a → g (f a) ≡ a open ∙Iso[_,_] ∙Iso⁻¹ : ∀ {∙A ∙B} → ∙Iso[ ∙A , ∙B ] → ∙Iso[ ∙B , ∙A ] ∙Iso⁻¹ (iso ∙f ∙g f-g g-f) = iso ∙g ∙f g-f f-g Sing : ∙Set → ∙Set Sing (A , a) = Singleton A a , a , refl Sing[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A , ∙B ] → ∙Set[ Sing ∙A , Sing ∙B ] Sing[ (A , a) , (B , .(f a)) ] (f , refl) = (λ { (x , refl) → f x , refl }) , refl -- monad η[_] : ∀ ∙A → ∙Set[ ∙A , Sing ∙A ] η[ (A , a) ] = (λ x → a , refl) , refl -- Sing(A) is terminal η-uniq : ∀ {∙A} {x : ∙A .proj₁} → (∙f : ∙Set[ ∙A , Sing ∙A ]) → (∙f .proj₁) x ≡ (η[ ∙A ] .proj₁) x η-uniq {A , a} (f , p) = pointed-all-paths Sing≃1 : ∀ {∙A} → ∙Iso[ Sing ∙A , ∙1 ] Sing≃1 {∙A@(A , a)} = iso ∙![ Sing ∙A ] ( ((λ _ → a) , refl) ∘ η[ ∙A ]) (λ _ → refl) (λ _ → pointed-all-paths) μ[_] : ∀ ∙A → ∙Iso[ Sing (Sing ∙A) , Sing ∙A ] μ[ (A , a) ] = iso ((λ { (.(a , refl) , refl) → a , refl }) , refl) ((λ { (a , refl) → (a , refl) , refl }) , refl) (λ { (a , refl) → refl}) (λ { ((a , refl) , refl) → refl }) -- check Sη-μ : ∀ {∙A} → ((Sing[ ∙A , Sing ∙A ] η[ ∙A ] ∘ (μ[ ∙A ] .∙f)) .proj₁) (∙A .proj₂ , refl) ≡ (∙A .proj₂ , refl) Sη-μ = refl ηS-μ : ∀ {∙A} → ((Sing[ Sing ∙A , Sing (Sing ∙A) ] η[ Sing ∙A ] ∘ (μ[ Sing ∙A ] .∙f)) .proj₁) ((∙A .proj₂ , refl) , refl) ≡ ((∙A .proj₂ , refl) , refl) ηS-μ = refl -- strength σ×[_,_] : ∀ ∙A ∙B → ∙Set[ Sing ∙A ∙× ∙B , Sing (∙A ∙× ∙B) ] σ×[ (A , a) , (B , b) ] = (λ { ((a , refl) , _) → (a , b) , refl }) , refl τ×[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A ∙× Sing ∙B , Sing (∙A ∙× ∙B) ] τ×[ (A , a) , (B , b) ] = (λ { (_ , (b , refl)) → (a , b) , refl }) , refl σ+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing ∙A ∙+ ∙B , Sing (∙A ∙+ ∙B) ] σ+[ (A , a) , (B , b) ] = (λ _ → inj₁ a , refl) , refl τ+[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A ∙+ Sing ∙B , Sing (∙A ∙+ ∙B) ] τ+[ (A , a) , (B , b) ] = (λ _ → inj₁ a , refl) , refl -- comonad ε[_] : ∀ ∙A → ∙Set[ Sing ∙A , ∙A ] ε[ (A , a) ] = (λ { (x , refl) → x }) , refl δ[_] : ∀ ∙A → ∙Iso[ Sing ∙A , Sing (Sing ∙A) ] δ[ ∙A ] = ∙Iso⁻¹ μ[ ∙A ] -- check δ-Sε : ∀ {∙A} → ((δ[ ∙A ] .∙f ∘ Sing[ Sing ∙A , ∙A ] ε[ ∙A ]) .proj₁) (∙A .proj₂ , refl) ≡ (∙A .proj₂ , refl) δ-Sε = refl δ-εS : ∀ {∙A} → ((δ[ Sing ∙A ] .∙f ∘ Sing[ Sing (Sing ∙A) , Sing ∙A ] ε[ Sing ∙A ]) .proj₁) ((∙A .proj₂ , refl) , refl) ≡ ((∙A .proj₂ , refl) , refl) δ-εS = refl -- costrength σ'×[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙× ∙B) , Sing ∙A ∙× ∙B ] σ'×[ (A , a) , (B , b) ] = (λ { (.(a , b) , refl) → (a , refl) , b }) , refl τ'×[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙× ∙B) , ∙A ∙× Sing ∙B ] τ'×[ (A , a) , (B , b) ] = (λ { (.(a , b) , refl) → a , (b , refl) }) , refl σ'+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙+ ∙B) , Sing ∙A ∙+ ∙B ] σ'+[ (A , a) , (B , b) ] = (λ _ → inj₁ (a , refl)) , refl τ'+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙+ ∙B) , ∙A ∙+ Sing ∙B ] τ'+[ (A , a) , (B , b) ] = (λ _ → inj₁ a) , refl -- even better, strong monoidal functor ν×[_,_] : ∀ ∙A ∙B → ∙Iso[ Sing ∙A ∙× Sing ∙B , Sing (∙A ∙× ∙B) ] ν×[ (A , a) , (B , b) ] = iso ((λ _ → (a , b) , refl) , refl) ((λ _ → (a , refl) , b , refl) , refl) (λ { (.(a , b) , refl) → refl }) (λ { ((a , refl) , (b , refl)) → refl }) -- this one is only lax ν+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing ∙A ∙+ Sing ∙B , Sing (∙A ∙+ ∙B) ] ν+[ (A , a) , (B , b) ] = (λ _ → inj₁ a , refl) , refl -- free pointed set U : ∙Set → Set U = proj₁ U[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A , ∙B ] → (U ∙A → U ∙B) U[ _ , _ ] = proj₁ F : Set → ∙Set F A = (A ⊎ ⊤) , inj₂ tt F[_,_] : ∀ A B → (A → B) → ∙Set[ F A , F B ] F[ A , B ] f = (λ { (inj₁ a) → inj₁ (f a) ; (inj₂ tt) → inj₂ tt }) , refl ->adj : ∀ {A ∙B} → (A → U ∙B) → ∙Set[ F A , ∙B ] ->adj f = (λ { (inj₁ a) → f a ; (inj₂ tt) → _ }) , refl <-adj : ∀ {A ∙B} → ∙Set[ F A , ∙B ] → (A → U ∙B) <-adj (f , refl) a = f (inj₁ a) η-adj : ∀ {A} → (A → U (F A)) η-adj = <-adj ∙id ε-adj : ∀ {∙A} → ∙Set[ F (U ∙A), ∙A ] ε-adj = ->adj λ x → x -- maybe monad T : Set → Set T A = U (F A) T-η[_] : ∀ A → (A → T A) T-η[ A ] = η-adj T-μ[_] : ∀ A → (T (T A) → T A) T-μ[ A ] = U[ F (T A) , F A ] ε-adj -- comaybe comonad D : ∙Set → ∙Set D ∙A = F (U ∙A) D-ε[_] : ∀ ∙A → ∙Set[ D ∙A , ∙A ] D-ε[ ∙A ] = ε-adj D-δ[_] : ∀ ∙A → ∙Set[ D ∙A , D (D ∙A) ] D-δ[ ∙A ] = F[ U ∙A , U (D ∙A) ] η-adj -- but also D-η[_] : ∀ ∙A → ∙Set[ ∙A , D ∙A ] D-η[ ∙A ] = (λ _ → inj₂ tt) , refl -- D ∙A is not contractible -- distributive laws? -- same as ∙Set[ ∙1 , D ∙1 ] so follows D-η Λ : ∀ {∙A} → ∙Set[ Sing (D ∙A) , D (Sing ∙A) ] Λ = (λ { (.(inj₂ tt) , refl) → inj₂ tt }) , refl
30.799373
151
0.437557
18acd0243d181e49f889437b84f5cab28585fb6d
152
agda
Agda
Cubical/HITs/Torus.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Torus.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Torus.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Torus where open import Cubical.HITs.Torus.Base public -- open import Cubical.HITs.Torus.Properties public
21.714286
51
0.763158
dce20c39a2ab73f91a5444012e8b71b23de87047
3,215
agda
Agda
theorems/homotopy/SuspAdjointLoop.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/homotopy/SuspAdjointLoop.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/homotopy/SuspAdjointLoop.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.PtdAdjoint module homotopy.SuspAdjointLoop {i} where private SuspFunctor : PtdFunctor i i SuspFunctor = record { obj = ⊙Susp; arr = ⊙Susp-fmap; id = ⊙Susp-fmap-idf; comp = ⊙Susp-fmap-∘} LoopFunctor : PtdFunctor i i LoopFunctor = record { obj = ⊙Ω; arr = ⊙Ω-fmap; id = λ _ → ⊙Ω-fmap-idf; comp = ⊙Ω-fmap-∘} module _ (X : Ptd i) where η : de⊙ X → Ω (⊙Susp X) η x = σloop X x module E = SuspRec (pt X) (pt X) (idf _) ε : de⊙ (⊙Susp (⊙Ω X)) → de⊙ X ε = E.f ⊙η : X ⊙→ ⊙Ω (⊙Susp X) ⊙η = (η , σloop-pt) ⊙ε : ⊙Susp (⊙Ω X) ⊙→ X ⊙ε = (ε , idp) η-natural : {X Y : Ptd i} (f : X ⊙→ Y) → ⊙η Y ⊙∘ f == ⊙Ω-fmap (⊙Susp-fmap f) ⊙∘ ⊙η X η-natural {X = X} (f , idp) = ⊙λ=' (λ x → ! $ ap-∙ (Susp-fmap f) (merid x) (! (merid (pt X))) ∙ SuspFmap.merid-β f x ∙2 (ap-! (Susp-fmap f) (merid (pt X)) ∙ ap ! (SuspFmap.merid-β f (pt X)))) (pt-lemma (Susp-fmap f) (merid (pt X)) (SuspFmap.merid-β f (pt X))) where pt-lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (α : ap f p == q) → !-inv-r q == ap (ap f) (!-inv-r p) ∙ idp [ _== idp ↓ ! (ap-∙ f p (! p) ∙ α ∙2 (ap-! f p ∙ ap ! α)) ] pt-lemma f idp idp = idp ε-natural : {X Y : Ptd i} (f : X ⊙→ Y) → ⊙ε Y ⊙∘ ⊙Susp-fmap (⊙Ω-fmap f) == f ⊙∘ ⊙ε X ε-natural (f , idp) = ⊙λ=' (SuspElim.f idp idp (λ p → ↓-='-from-square $ vert-degen-square $ ap-∘ (ε _) (Susp-fmap (ap f)) (merid p) ∙ ap (ap (ε _)) (SuspFmap.merid-β (ap f) p) ∙ E.merid-β _ (ap f p) ∙ ap (ap f) (! (E.merid-β _ p)) ∙ ∘-ap f (ε _) (merid p))) idp εΣ-Ση : (X : Ptd i) → ⊙ε (⊙Susp X) ⊙∘ ⊙Susp-fmap (⊙η X) == ⊙idf _ εΣ-Ση X = ⊙λ=' (SuspElim.f idp (merid (pt X)) (λ x → ↓-='-from-square $ (ap-∘ (ε (⊙Susp X)) (Susp-fmap (η X)) (merid x) ∙ ap (ap (ε (⊙Susp X))) (SuspFmap.merid-β (η X) x) ∙ E.merid-β _ (merid x ∙ ! (merid (pt X)))) ∙v⊡ square-lemma (merid x) (merid (pt X)) ⊡v∙ ! (ap-idf (merid x)))) idp where square-lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y) → Square idp (p ∙ ! q) p q square-lemma idp idp = ids Ωε-ηΩ : (X : Ptd i) → ⊙Ω-fmap (⊙ε X) ⊙∘ ⊙η (⊙Ω X) == ⊙idf _ Ωε-ηΩ X = ⊙λ=' (λ p → ap-∙ (ε X) (merid p) (! (merid idp)) ∙ (E.merid-β X p ∙2 (ap-! (ε X) (merid idp) ∙ ap ! (E.merid-β X idp))) ∙ ∙-unit-r _) (pt-lemma (ε X) (merid idp) (E.merid-β X idp)) where pt-lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (α : ap f p == q) → ap (ap f) (!-inv-r p) ∙ idp == idp [ _== idp ↓ ap-∙ f p (! p) ∙ (α ∙2 (ap-! f p ∙ ap ! α)) ∙ !-inv-r q ] pt-lemma f idp idp = idp module Eta = E adj : CounitUnitAdjoint SuspFunctor LoopFunctor adj = record { η = ⊙η; ε = ⊙ε; η-natural = η-natural; ε-natural = ε-natural; εF-Fη = εΣ-Ση; Gε-ηG = Ωε-ηΩ} hadj = counit-unit-to-hom adj open CounitUnitAdjoint adj public open HomAdjoint hadj public
27.956522
79
0.459098
180929a2edc3c6af1d200720aff6ad5b8ff80b54
16,601
agda
Agda
core/lib/types/Sigma.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Sigma.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Sigma.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics module lib.types.Sigma where -- pointed [Σ] ⊙Σ : ∀ {i j} (X : Ptd i) → (de⊙ X → Ptd j) → Ptd (lmax i j) ⊙Σ ⊙[ A , a₀ ] Y = ⊙[ Σ A (de⊙ ∘ Y) , (a₀ , pt (Y a₀)) ] -- Cartesian product _×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j) A × B = Σ A (λ _ → B) _⊙×_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊙× Y = ⊙Σ X (λ _ → Y) infixr 80 _×_ _⊙×_ -- XXX Do we really need two versions of [⊙fst]? ⊙fstᵈ : ∀ {i j} {X : Ptd i} (Y : de⊙ X → Ptd j) → ⊙Σ X Y ⊙→ X ⊙fstᵈ Y = fst , idp ⊙fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙× Y ⊙→ X ⊙fst = ⊙fstᵈ _ ⊙snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙× Y ⊙→ Y ⊙snd = (snd , idp) fanout : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} → (A → B) → (A → C) → (A → B × C) fanout f g x = f x , g x ⊙fanout-pt : ∀ {i j} {A : Type i} {B : Type j} {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) → (a₀ , b₀) == (a₁ , b₁) :> A × B ⊙fanout-pt = pair×= ⊙fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → X ⊙→ Y → X ⊙→ Z → X ⊙→ Y ⊙× Z ⊙fanout (f , fpt) (g , gpt) = fanout f g , ⊙fanout-pt fpt gpt diag : ∀ {i} {A : Type i} → (A → A × A) diag a = a , a ⊙diag : ∀ {i} {X : Ptd i} → X ⊙→ X ⊙× X ⊙diag = ((λ x → (x , x)) , idp) ⊙×-inl : ∀ {i j} (X : Ptd i) (Y : Ptd j) → X ⊙→ X ⊙× Y ⊙×-inl X Y = (λ x → x , pt Y) , idp ⊙×-inr : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Y ⊙→ X ⊙× Y ⊙×-inr X Y = (λ y → pt X , y) , idp ⊙fst-fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : X ⊙→ Y) (g : X ⊙→ Z) → ⊙fst ⊙∘ ⊙fanout f g == f ⊙fst-fanout (f , idp) (g , idp) = idp ⊙snd-fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : X ⊙→ Y) (g : X ⊙→ Z) → ⊙snd ⊙∘ ⊙fanout f g == g ⊙snd-fanout (f , idp) (g , idp) = idp ⊙fanout-pre∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (f : Y ⊙→ Z) (g : Y ⊙→ W) (h : X ⊙→ Y) → ⊙fanout f g ⊙∘ h == ⊙fanout (f ⊙∘ h) (g ⊙∘ h) ⊙fanout-pre∘ (f , idp) (g , idp) (h , idp) = idp module _ {i j} {A : Type i} {B : A → Type j} where pair : (a : A) (b : B a) → Σ A B pair a b = (a , b) -- pair= has already been defined fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b') fst= = ap fst snd= : {ab a'b' : Σ A B} (p : ab == a'b') → (snd ab == snd a'b' [ B ↓ fst= p ]) snd= {._} {_} idp = idp fst=-β : {a a' : A} (p : a == a') {b : B a} {b' : B a'} (q : b == b' [ B ↓ p ]) → fst= (pair= p q) == p fst=-β idp idp = idp snd=-β : {a a' : A} (p : a == a') {b : B a} {b' : B a'} (q : b == b' [ B ↓ p ]) → snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ] snd=-β idp idp = idp pair=-η : {ab a'b' : Σ A B} (p : ab == a'b') → p == pair= (fst= p) (snd= p) pair=-η {._} {_} idp = idp pair== : {a a' : A} {p p' : a == a'} (α : p == p') {b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]} (β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ]) → pair= p q == pair= p' q' pair== idp idp = idp module _ {i j} {A : Type i} {B : Type j} where fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b') fst×= = ap fst snd×= : {ab a'b' : A × B} (p : ab == a'b') → (snd ab == snd a'b') snd×= = ap snd fst×=-β : {a a' : A} (p : a == a') {b b' : B} (q : b == b') → fst×= (pair×= p q) == p fst×=-β idp idp = idp snd×=-β : {a a' : A} (p : a == a') {b b' : B} (q : b == b') → snd×= (pair×= p q) == q snd×=-β idp idp = idp pair×=-η : {ab a'b' : A × B} (p : ab == a'b') → p == pair×= (fst×= p) (snd×= p) pair×=-η {._} {_} idp = idp module _ {i j} {A : Type i} {B : A → Type j} where =Σ : (x y : Σ A B) → Type (lmax i j) =Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ]) =Σ-econv : (x y : Σ A B) → (=Σ x y) ≃ (x == y) =Σ-econv x y = equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p) (λ p → ! (pair=-η p)) (λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq))) =Σ-conv : (x y : Σ A B) → (=Σ x y) == (x == y) =Σ-conv x y = ua (=Σ-econv x y) Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j} (q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B' Σ= idp idp = idp instance Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j} → has-level n A → ((x : A) → has-level n (P x)) → has-level n (Σ A P) Σ-level {n = ⟨-2⟩} p q = has-level-in ((contr-center p , (contr-center (q (contr-center p)))) , lemma) where abstract lemma = λ y → pair= (contr-path p _) (from-transp! _ _ (contr-path (q _) _)) Σ-level {n = S n} p q = has-level-in lemma where abstract lemma = λ x y → equiv-preserves-level (=Σ-econv x y) {{Σ-level (has-level-apply p _ _) (λ _ → equiv-preserves-level ((to-transp-equiv _ _)⁻¹) {{has-level-apply (q _) _ _}})}} ×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → (has-level n A → has-level n B → has-level n (A × B)) ×-level pA pB = Σ-level pA (λ x → pB) -- Equivalences in a Σ-type Σ-fmap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) → (f : A → B) → (Σ A (P ∘ f) → Σ B P) Σ-fmap-l P f (a , r) = (f a , r) ×-fmap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j) → (f : A₀ → A₁) → (A₀ × B → A₁ × B) ×-fmap-l B = Σ-fmap-l (λ _ → B) Σ-isemap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B} → is-equiv h → is-equiv (Σ-fmap-l P h) Σ-isemap-l {A = A} {B = B} P {h} e = is-eq _ g f-g g-f where f = Σ-fmap-l P h g : Σ B P → Σ A (P ∘ h) g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s) f-g : ∀ y → f (g y) == y f-g (b , s) = pair= (is-equiv.f-g e b) (transp-↓ P (is-equiv.f-g e b) s) g-f : ∀ x → g (f x) == x g-f (a , r) = pair= (is-equiv.g-f e a) (transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ]) (is-equiv.adj e a) (transp-ap-↓ P h (is-equiv.g-f e a) r)) ×-isemap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j) {h : A₀ → A₁} → is-equiv h → is-equiv (×-fmap-l B h) ×-isemap-l B = Σ-isemap-l (λ _ → B) Σ-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) → (e : A ≃ B) → (Σ A (P ∘ –> e) ≃ Σ B P) Σ-emap-l P (f , e) = _ , Σ-isemap-l P e ×-emap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j) → (e : A₀ ≃ A₁) → (A₀ × B ≃ A₁ × B) ×-emap-l B = Σ-emap-l (λ _ → B) Σ-fmap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → (∀ x → B x → C x) → (Σ A B → Σ A C) Σ-fmap-r h (a , b) = (a , h a b) ×-fmap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁} → (h : B₀ → B₁) → (A × B₀ → A × B₁) ×-fmap-r A h = Σ-fmap-r (λ _ → h) Σ-isemap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {h : ∀ x → B x → C x} → (∀ x → is-equiv (h x)) → is-equiv (Σ-fmap-r h) Σ-isemap-r {A = A} {B = B} {C = C} {h} k = is-eq _ g f-g g-f where f = Σ-fmap-r h g : Σ A C → Σ A B g (a , c) = (a , is-equiv.g (k a) c) f-g : ∀ p → f (g p) == p f-g (a , c) = pair= idp (is-equiv.f-g (k a) c) g-f : ∀ p → g (f p) == p g-f (a , b) = pair= idp (is-equiv.g-f (k a) b) ×-isemap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁} → {h : B₀ → B₁} → is-equiv h → is-equiv (×-fmap-r A h) ×-isemap-r A e = Σ-isemap-r (λ _ → e) Σ-emap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → (∀ x → B x ≃ C x) → (Σ A B ≃ Σ A C) Σ-emap-r k = _ , Σ-isemap-r (λ x → snd (k x)) ×-emap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁} → (e : B₀ ≃ B₁) → (A × B₀ ≃ A × B₁) ×-emap-r A e = Σ-emap-r (λ _ → e) hfiber-Σ-fmap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → (h : ∀ x → B x → C x) → {a : A} → (c : C a) → hfiber (Σ-fmap-r h) (a , c) ≃ hfiber (h a) c hfiber-Σ-fmap-r h {a} c = equiv to from to-from from-to where to : hfiber (Σ-fmap-r h) (a , c) → hfiber (h a) c to ((_ , b) , idp) = b , idp from : hfiber (h a) c → hfiber (Σ-fmap-r h) (a , c) from (b , idp) = (a , b) , idp abstract to-from : (x : hfiber (h a) c) → to (from x) == x to-from (b , idp) = idp from-to : (x : hfiber (Σ-fmap-r h) (a , c)) → from (to x) == x from-to ((_ , b) , idp) = idp {- -- 2016/08/20 favonia: no one is using the following two functions. -- Two ways of simultaneously applying equivalences in each component. module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where Σ-emap : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Σ A₀ B₀ ≃ Σ A₁ B₁ Σ-emap u v = Σ A₀ B₀ ≃⟨ Σ-emap-l _ (u ⁻¹) ⁻¹ ⟩ Σ A₁ (B₀ ∘ <– u) ≃⟨ Σ-emap-r v ⟩ Σ A₁ B₁ ≃∎ Σ-emap' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Σ A₀ B₀ ≃ Σ A₁ B₁ Σ-emap' u v = Σ A₀ B₀ ≃⟨ Σ-emap-r v ⟩ Σ A₀ (B₁ ∘ –> u) ≃⟨ Σ-emap-l _ u ⟩ Σ A₁ B₁ ≃∎ -} ×-fmap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} → (h : A₀ → A₁) (k : B₀ → B₁) → (A₀ × B₀ → A₁ × B₁) ×-fmap u v = ×-fmap-r _ v ∘ ×-fmap-l _ u ⊙×-fmap : ∀ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} → X ⊙→ X' → Y ⊙→ Y' → X ⊙× Y ⊙→ X' ⊙× Y' ⊙×-fmap (f , fpt) (g , gpt) = ×-fmap f g , pair×= fpt gpt ×-isemap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {h : A₀ → A₁} {k : B₀ → B₁} → is-equiv h → is-equiv k → is-equiv (×-fmap h k) ×-isemap eh ek = ×-isemap-r _ ek ∘ise ×-isemap-l _ eh ×-emap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} → (u : A₀ ≃ A₁) (v : B₀ ≃ B₁) → (A₀ × B₀ ≃ A₁ × B₁) ×-emap u v = ×-emap-r _ v ∘e ×-emap-l _ u ⊙×-emap : ∀ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} → X ⊙≃ X' → Y ⊙≃ Y' → X ⊙× Y ⊙≃ X' ⊙× Y' ⊙×-emap (F , F-ise) (G , G-ise) = ⊙×-fmap F G , ×-isemap F-ise G-ise -- Implementation of [_∙'_] on Σ Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r) Σ-∙' {p = idp} {p' = idp} q idp = idp -- Implementation of [_∙_] on Σ Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r) Σ-∙ {p = idp} {p' = idp} idp r = idp -- Implementation of [!] on Σ Σ-! : ∀ {i j} {A : Type i} {B : A → Type j} {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → ! (pair= p q) == pair= (! p) (!ᵈ q) Σ-! {p = idp} idp = idp -- Implementation of [_∙'_] on × ×-∙' : ∀ {i j} {A : Type i} {B : Type j} {x y z : A} (p : x == y) (p' : y == z) {u v w : B} (q : u == v) (q' : v == w) → (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q') ×-∙' idp idp q idp = idp -- Implementation of [_∙_] on × ×-∙ : ∀ {i j} {A : Type i} {B : Type j} {x y z : A} (p : x == y) (p' : y == z) {u v w : B} (q : u == v) (q' : v == w) → (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q') ×-∙ idp idp idp r = idp -- Implementation of [!] on × ×-! : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (p : x == y) {u v : B} (q : u == v) → ! (pair×= p q) == pair×= (! p) (! q) ×-! idp idp = idp -- Special case of [ap-,] ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j) {a : A} {x y : B a} (p : x == y) → ap (λ x → _,_ {B = B} a x) p == pair= idp p ap-cst,id B idp = idp -- hfiber fst == B module _ {i j} {A : Type i} {B : A → Type j} where private to : ∀ a → hfiber (fst :> (Σ A B → A)) a → B a to a ((.a , b) , idp) = b from : ∀ (a : A) → B a → hfiber (fst :> (Σ A B → A)) a from a b = (a , b) , idp to-from : ∀ (a : A) (b : B a) → to a (from a b) == b to-from a b = idp from-to : ∀ a b′ → from a (to a b′) == b′ from-to a ((.a , b) , idp) = idp hfiber-fst : ∀ a → hfiber (fst :> (Σ A B → A)) a ≃ B a hfiber-fst a = to a , is-eq (to a) (from a) (to-from a) (from-to a) {- Dependent paths in a Σ-type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} where ↓-Σ-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (q : r == r' [ B ↓ p ]) → s == s' [ uncurry C ↓ pair= p q ] → (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ] ↓-Σ-in {p = idp} idp t = pair= idp t ↓-Σ-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} → (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ] → r == r' [ B ↓ p ] ↓-Σ-fst {p = idp} u = fst= u ↓-Σ-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} → (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]) → s == s' [ uncurry C ↓ pair= p (↓-Σ-fst u) ] ↓-Σ-snd {p = idp} idp = idp ↓-Σ-β-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (q : r == r' [ B ↓ p ]) (t : s == s' [ uncurry C ↓ pair= p q ]) → ↓-Σ-fst (↓-Σ-in q t) == q ↓-Σ-β-fst {p = idp} idp idp = idp ↓-Σ-β-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (q : r == r' [ B ↓ p ]) (t : s == s' [ uncurry C ↓ pair= p q ]) → ↓-Σ-snd (↓-Σ-in q t) == t [ (λ q' → s == s' [ uncurry C ↓ pair= p q' ]) ↓ ↓-Σ-β-fst q t ] ↓-Σ-β-snd {p = idp} idp idp = idp ↓-Σ-η : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]) → ↓-Σ-in (↓-Σ-fst u) (↓-Σ-snd u) == u ↓-Σ-η {p = idp} idp = idp {- Dependent paths in a ×-type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-×-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x} {s' : C x'} → r == r' [ B ↓ p ] → s == s' [ C ↓ p ] → (r , s) == (r' , s') [ (λ x → B x × C x) ↓ p ] ↓-×-in {p = idp} q t = pair×= q t {- Dependent paths over a ×-type -} module _ {i j k} {A : Type i} {B : Type j} (C : A → B → Type k) where ↓-over-×-in : {x x' : A} {p : x == x'} {y y' : B} {q : y == y'} {u : C x y} {v : C x' y} {w : C x' y'} → u == v [ (λ a → C a y) ↓ p ] → v == w [ (λ b → C x' b) ↓ q ] → u == w [ uncurry C ↓ pair×= p q ] ↓-over-×-in {p = idp} {q = idp} idp idp = idp ↓-over-×-in' : {x x' : A} {p : x == x'} {y y' : B} {q : y == y'} {u : C x y} {v : C x y'} {w : C x' y'} → u == v [ (λ b → C x b) ↓ q ] → v == w [ (λ a → C a y') ↓ p ] → u == w [ uncurry C ↓ pair×= p q ] ↓-over-×-in' {p = idp} {q = idp} idp idp = idp module _ where -- An orphan lemma. ↓-cst×app-in : ∀ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} {a₁ a₂ : A} (p : a₁ == a₂) {b₁ b₂ : B} (q : b₁ == b₂) {c₁ : C a₁ b₁}{c₂ : C a₂ b₂} → c₁ == c₂ [ uncurry C ↓ pair×= p q ] → (b₁ , c₁) == (b₂ , c₂) [ (λ x → Σ B (C x)) ↓ p ] ↓-cst×app-in idp idp idp = idp {- pair= and pair×= where one argument is reflexivity -} pair=-idp-l : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) {b₁ b₂ : B a} (q : b₁ == b₂) → pair= {B = B} idp q == ap (λ y → (a , y)) q pair=-idp-l _ idp = idp pair×=-idp-l : ∀ {i j} {A : Type i} {B : Type j} (a : A) {b₁ b₂ : B} (q : b₁ == b₂) → pair×= idp q == ap (λ y → (a , y)) q pair×=-idp-l _ idp = idp pair×=-idp-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂) (b : B) → pair×= p idp == ap (λ x → (x , b)) p pair×=-idp-r idp _ = idp pair×=-split-l : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂) {b₁ b₂ : B} (q : b₁ == b₂) → pair×= p q == ap (λ a → (a , b₁)) p ∙ ap (λ b → (a₂ , b)) q pair×=-split-l idp idp = idp pair×=-split-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂) {b₁ b₂ : B} (q : b₁ == b₂) → pair×= p q == ap (λ b → (a₁ , b)) q ∙ ap (λ a → (a , b₂)) p pair×=-split-r idp idp = idp -- Commutativity of products and derivatives. module _ {i j} {A : Type i} {B : Type j} where ×-comm : Σ A (λ _ → B) ≃ Σ B (λ _ → A) ×-comm = equiv (λ {(a , b) → (b , a)}) (λ {(b , a) → (a , b)}) (λ _ → idp) (λ _ → idp) module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where Σ₂-×-comm : Σ (Σ A B) (λ ab → C (fst ab)) ≃ Σ (Σ A C) (λ ac → B (fst ac)) Σ₂-×-comm = Σ-assoc ⁻¹ ∘e Σ-emap-r (λ a → ×-comm) ∘e Σ-assoc module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where Σ₁-×-comm : Σ A (λ a → Σ B (λ b → C a b)) ≃ Σ B (λ b → Σ A (λ a → C a b)) Σ₁-×-comm = Σ-assoc ∘e Σ-emap-l _ ×-comm ∘e Σ-assoc ⁻¹
34.730126
104
0.401301
df0edac7fe15b682d10f2c81ba01952a57ba4c0a
65
agda
Agda
agda/Cham/Inference.agda
riz0id/chemical-abstract-machine
292023fc36fa67ca4a81cff9a875a325a79b9d6f
[ "BSD-3-Clause" ]
null
null
null
agda/Cham/Inference.agda
riz0id/chemical-abstract-machine
292023fc36fa67ca4a81cff9a875a325a79b9d6f
[ "BSD-3-Clause" ]
null
null
null
agda/Cham/Inference.agda
riz0id/chemical-abstract-machine
292023fc36fa67ca4a81cff9a875a325a79b9d6f
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Cham.Inference where
13
34
0.661538
4a8ada2856f2a51ee2af65e338f658d07c2f46e9
504
agda
Agda
test/interaction/Issue3526-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3526-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3526-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --prop #-} module Issue3526-2 where open import Agda.Builtin.Equality record Truth (P : Prop) : Set where constructor [_] field truth : P open Truth public data ⊥' : Prop where ⊥ = Truth ⊥' ¬ : Set → Set ¬ A = A → ⊥ unique : {A : Set} (x y : ¬ A) → x ≡ y unique x y = refl ⊥-elim : (A : Set) → ⊥ → A ⊥-elim A b = {!!} open import Agda.Builtin.Bool open import Agda.Builtin.Unit set : Bool → Set set false = ⊥ set true = ⊤ set-elim : ∀ b → set b → Set set-elim b x = {!!}
14
38
0.575397
20b11bf6c3192be0fbbf5256593cad4815ac6fd5
852
agda
Agda
Setoids/Subset.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Setoids/Subset.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Setoids/Subset.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids module Setoids.Subset {a b : _} {A : Set a} (S : Setoid {a} {b} A) where open Setoid S open Equivalence eq subset : {c : _} (pred : A → Set c) → Set (a ⊔ b ⊔ c) subset pred = ({x y : A} → x ∼ y → pred x → pred y) subsetSetoid : {c : _} {pred : A → Set c} → (subs : subset pred) → Setoid (Sg A pred) Setoid._∼_ (subsetSetoid subs) (x , predX) (y , predY) = Setoid._∼_ S x y Equivalence.reflexive (Setoid.eq (subsetSetoid subs)) {a , b} = reflexive Equivalence.symmetric (Setoid.eq (subsetSetoid subs)) {a , prA} {b , prB} x = symmetric x Equivalence.transitive (Setoid.eq (subsetSetoid subs)) {a , prA} {b , prB} {c , prC} x y = transitive x y
40.571429
105
0.659624
0e23678764864a5dac08faa2981e0a8ea4ea13ff
1,468
agda
Agda
Cubical/Algebra/Polynomials/UnivariateList/Polyn-nPoly.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Polynomials/UnivariateList/Polyn-nPoly.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Polynomials/UnivariateList/Polyn-nPoly.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.UnivariateList.Polyn-nPoly where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyList open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly0-A open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X] open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.AB-An[X]Bn[X] open import Cubical.Algebra.Polynomials.UnivariateList.Poly1-1Poly open CommRingEquivs renaming (compCommRingEquiv to _∘-ecr_ ; invCommRingEquiv to inv-ecr) private variable ℓ : Level ----------------------------------------------------------------------------- -- Definition Equiv-Polyn-nPoly : (A' : CommRing ℓ) → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (nUnivariatePolyList A' n) Equiv-Polyn-nPoly A' zero = CRE-Poly0-A A' Equiv-Polyn-nPoly A' (suc n) = inv-ecr _ _ (CRE-PolyN∘M-PolyN+M A' 1 n) ∘-ecr (lift-equiv-poly _ _ 1 (Equiv-Polyn-nPoly A' n) ∘-ecr CRE-Poly1-Poly: (nUnivariatePolyList A' n))
40.777778
110
0.709809
d0064b1c52d105bbf7325b9022f70204022663bd
4,568
agda
Agda
Cubical/Data/FinSet/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Data/FinSet/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Data/FinSet/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Data.FinSet.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Data.Empty renaming (rec to EmptyRec) open import Cubical.Data.Sigma open import Cubical.Data.Fin open import Cubical.Data.SumFin renaming (Fin to SumFin) hiding (discreteFin) open import Cubical.Data.FinSet.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Relation.Nullary.HLevels private variable ℓ ℓ' ℓ'' : Level A : Type ℓ B : Type ℓ' -- infix operator to more conveniently compose equivalences _⋆_ = compEquiv infixr 30 _⋆_ -- useful implications EquivPresIsFinSet : A ≃ B → isFinSet A → isFinSet B EquivPresIsFinSet e = rec isPropIsFinSet (λ (n , p) → ∣ n , compEquiv (invEquiv e) p ∣) isFinSetFin : {n : ℕ} → isFinSet (Fin n) isFinSetFin = ∣ _ , pathToEquiv refl ∣ isFinSetUnit : isFinSet Unit isFinSetUnit = ∣ 1 , Unit≃Fin1 ∣ isFinSet→Discrete : isFinSet A → Discrete A isFinSet→Discrete = rec isPropDiscrete (λ (_ , p) → EquivPresDiscrete (invEquiv p) discreteFin) isContr→isFinSet : isContr A → isFinSet A isContr→isFinSet h = ∣ 1 , isContr→≃Unit* h ⋆ invEquiv (Unit≃Unit* ) ⋆ Unit≃Fin1 ∣ isDecProp→isFinSet : isProp A → Dec A → isFinSet A isDecProp→isFinSet h (yes p) = isContr→isFinSet (inhProp→isContr p h) isDecProp→isFinSet h (no ¬p) = ∣ 0 , uninhabEquiv ¬p ¬Fin0 ∣ {- Alternative definition of finite sets A set is finite if it is merely equivalent to `Fin n` for some `n`. We can translate this to code in two ways: a truncated sigma of a nat and an equivalence, or a sigma of a nat and a truncated equivalence. We prove that both formulations are equivalent. -} isFinSet' : Type ℓ → Type ℓ isFinSet' A = Σ[ n ∈ ℕ ] ∥ A ≃ Fin n ∥ FinSet' : (ℓ : Level) → Type (ℓ-suc ℓ) FinSet' ℓ = TypeWithStr _ isFinSet' isPropIsFinSet' : isProp (isFinSet' A) isPropIsFinSet' {A = A} (n , equivn) (m , equivm) = Σ≡Prop (λ _ → isPropPropTrunc) n≡m where Fin-n≃Fin-m : ∥ Fin n ≃ Fin m ∥ Fin-n≃Fin-m = rec isPropPropTrunc (rec (isPropΠ λ _ → isPropPropTrunc) (λ hm hn → ∣ Fin n ≃⟨ invEquiv hn ⟩ A ≃⟨ hm ⟩ Fin m ■ ∣) equivm ) equivn Fin-n≡Fin-m : ∥ Fin n ≡ Fin m ∥ Fin-n≡Fin-m = rec isPropPropTrunc (∣_∣ ∘ ua) Fin-n≃Fin-m ∥n≡m∥ : ∥ n ≡ m ∥ ∥n≡m∥ = rec isPropPropTrunc (∣_∣ ∘ Fin-inj n m) Fin-n≡Fin-m n≡m : n ≡ m n≡m = rec (isSetℕ n m) (λ p → p) ∥n≡m∥ -- logical equivalence of two definitions isFinSet→isFinSet' : isFinSet A → isFinSet' A isFinSet→isFinSet' ∣ n , equiv ∣ = n , ∣ equiv ∣ isFinSet→isFinSet' (squash p q i) = isPropIsFinSet' (isFinSet→isFinSet' p) (isFinSet→isFinSet' q) i isFinSet'→isFinSet : isFinSet' A → isFinSet A isFinSet'→isFinSet (n , ∣ isFinSet-A ∣) = ∣ n , isFinSet-A ∣ isFinSet'→isFinSet (n , squash p q i) = isPropIsFinSet (isFinSet'→isFinSet (n , p)) (isFinSet'→isFinSet (n , q)) i isFinSet≡isFinSet' : isFinSet A ≡ isFinSet' A isFinSet≡isFinSet' {A = A} = hPropExt isPropIsFinSet isPropIsFinSet' isFinSet→isFinSet' isFinSet'→isFinSet FinSet→FinSet' : FinSet ℓ → FinSet' ℓ FinSet→FinSet' (A , isFinSetA) = A , isFinSet→isFinSet' isFinSetA FinSet'→FinSet : FinSet' ℓ → FinSet ℓ FinSet'→FinSet (A , isFinSet'A) = A , isFinSet'→isFinSet isFinSet'A FinSet≃FinSet' : FinSet ℓ ≃ FinSet' ℓ FinSet≃FinSet' = isoToEquiv (iso FinSet→FinSet' FinSet'→FinSet (λ _ → Σ≡Prop (λ _ → isPropIsFinSet') refl) (λ _ → Σ≡Prop (λ _ → isPropIsFinSet) refl)) FinSet≡FinSet' : FinSet ℓ ≡ FinSet' ℓ FinSet≡FinSet' = ua FinSet≃FinSet' -- cardinality of finite sets card : FinSet ℓ → ℕ card = fst ∘ snd ∘ FinSet→FinSet' -- definitions to reduce problems about FinSet to SumFin ≃Fin : Type ℓ → Type ℓ ≃Fin A = Σ[ n ∈ ℕ ] A ≃ Fin n ≃SumFin : Type ℓ → Type ℓ ≃SumFin A = Σ[ n ∈ ℕ ] A ≃ SumFin n ≃Fin→SumFin : ≃Fin A → ≃SumFin A ≃Fin→SumFin (n , e) = n , compEquiv e (invEquiv (SumFin≃Fin _)) ≃SumFin→Fin : ≃SumFin A → ≃Fin A ≃SumFin→Fin (n , e) = n , compEquiv e (SumFin≃Fin _) transpFamily : {A : Type ℓ}{B : A → Type ℓ'} → ((n , e) : ≃SumFin A) → (x : A) → B x ≃ B (invEq e (e .fst x)) transpFamily {B = B} (n , e) x = pathToEquiv (λ i → B (retEq e x (~ i)))
29.856209
114
0.676226
c5a11a07833c6e96f2bc423c7d62f0a7b8a25a65
2,681
agda
Agda
src/Generic/Property/Eq.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
30
2016-07-19T21:10:54.000Z
2022-02-05T10:19:38.000Z
src/Generic/Property/Eq.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
9
2017-04-06T18:58:09.000Z
2022-01-04T15:43:14.000Z
src/Generic/Property/Eq.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
4
2017-07-17T07:23:39.000Z
2021-01-27T12:57:09.000Z
module Generic.Property.Eq where open import Generic.Core SemEq : ∀ {i β} {I : Set i} -> Desc I β -> Set SemEq (var i) = ⊤ SemEq (π i q C) = ⊥ SemEq (D ⊛ E) = SemEq D × SemEq E mutual ExtendEq : ∀ {i β} {I : Set i} -> Desc I β -> Set β ExtendEq (var i) = ⊤ ExtendEq (π i q C) = ExtendEqᵇ i C q ExtendEq (D ⊛ E) = SemEq D × ExtendEq E ExtendEqᵇ : ∀ {ι α β γ q} {I : Set ι} i -> Binder α β γ i q I -> α ≤ℓ β -> Set β ExtendEqᵇ (arg-info v r) (coerce (A , D)) q = Coerce′ q $ RelEq r A × ∀ {x} -> ExtendEq (D x) instance {-# TERMINATING #-} -- Why? DataEq : ∀ {i β} {I : Set i} {D : Data (Desc I β)} {j} {{eqD : All ExtendEq (consTypes D)}} -> Eq (μ D j) DataEq {ι} {β} {I} {D₀} = record { _≟_ = decMu } where mutual decSem : ∀ D {{eqD : SemEq D}} -> IsSet (⟦ D ⟧ (μ D₀)) decSem (var i) d₁ d₂ = decMu d₁ d₂ decSem (π i q C) {{()}} decSem (D ⊛ E) {{eqD , eqE}} p₁ p₂ = decProd (decSem D {{eqD}}) (decSem E {{eqE}}) p₁ p₂ decExtend : ∀ {j} D {{eqD : ExtendEq D}} -> IsSet (Extend D (μ D₀) j) decExtend (var i) lrefl lrefl = yes refl decExtend (π i q C) p₁ p₂ = decExtendᵇ i C q p₁ p₂ decExtend (D ⊛ E) {{eqD , eqE}} p₁ p₂ = decProd (decSem D {{eqD}}) (decExtend E {{eqE}}) p₁ p₂ decExtendᵇ : ∀ {α γ q j} i (C : Binder α β γ i q I) q {{eqC : ExtendEqᵇ i C q}} -> IsSet (Extendᵇ i C q (μ D₀) j) decExtendᵇ (arg-info v r) (coerce (A , D)) q {{eqC}} p₁ p₂ = split q eqC λ eqA eqD -> decCoerce′ q (decProd (_≟_ {{EqRelValue {{eqA}}}}) (decExtend (D _) {{eqD}})) p₁ p₂ decAny : ∀ {j} (Ds : List (Desc I β)) {{eqD : All ExtendEq Ds}} -> ∀ d a b ns -> IsSet (Node D₀ (packData d a b Ds ns) j) decAny [] d a b tt () () decAny (D ∷ []) {{eqD , _}} d a b (_ , ns) e₁ e₂ = decExtend D {{eqD}} e₁ e₂ decAny (D ∷ E ∷ Ds) {{eqD , eqDs}} d a b (_ , ns) s₁ s₂ = decSum (decExtend D {{eqD}}) (decAny (E ∷ Ds) {{eqDs}} d a b ns) s₁ s₂ decMu : ∀ {j} -> IsSet (μ D₀ j) decMu (node e₁) (node e₂) = dcong node node-inj $ decAny (consTypes D₀) (dataName D₀) (parsTele D₀) (indsTele D₀) (consNames D₀) e₁ e₂
46.224138
95
0.419247
23307b665dfaacc542141a98fcc6c08a659a4b7c
444
agda
Agda
src/data/lib/prim/Agda/Builtin/String.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/String.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/String.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
module Agda.Builtin.String where open import Agda.Builtin.Bool open import Agda.Builtin.List open import Agda.Builtin.Char postulate String : Set {-# BUILTIN STRING String #-} primitive primStringToList : String → List Char primStringFromList : List Char → String primStringAppend : String → String → String primStringEquality : String → String → Bool primShowChar : Char → String primShowString : String → String
24.666667
47
0.736486
18010979c3a76485df33a30c3db24bd093d69ab8
1,296
agda
Agda
Graph/Properties/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Graph/Properties/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Graph/Properties/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Type module Graph.Properties.Proofs where open import Data.Either.Proofs open import Functional open import Function.Equals open import Lang.Instance open import Logic open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Graph open import Graph.Properties open import Relator.Equals.Proofs.Equiv open import Structure.Setoid.Uniqueness open import Structure.Relator.Properties open import Type.Properties.Singleton module _ {ℓ₁ ℓ₂} {V : Type{ℓ₁}} (_⟶_ : Graph{ℓ₁}{ℓ₂}(V)) where instance undirect-undirected : Undirected(undirect(_⟶_)) Undirected.reversable undirect-undirected = intro [∨]-symmetry Undirected.reverse-involution undirect-undirected = intro (_⊜_.proof swap-involution) -- [++]-visits : ∀{ae be a₁ b₁ a₂ b₂}{e : ae ⟶ be}{w₁ : Walk(_⟶_) a₁ b₁}{w₂ : Walk(_⟶_) a₂ b₂} → (Visits(_⟶_) e w₁) ∨ (Visits(_⟶_) e w₂) → Visits(_⟶_) e (w₁ ++ w₂) complete-singular-is-undirected : ⦃ CompleteWithLoops(_⟶_) ⦄ → ⦃ Singular(_⟶_) ⦄ → Undirected(_⟶_) Undirected.reversable complete-singular-is-undirected = intro(const (completeWithLoops(_⟶_))) Undirected.reverse-involution complete-singular-is-undirected = intro(singular(_⟶_)) -- traceable-is-connected : ⦃ Traceable(_⟶_) ⦄ → Connected(_⟶_)
39.272727
165
0.73071
d06d76352ac6af0df137cfb7d5c6a8f611b19ce4
551
agda
Agda
lib/AocIO.agda
Zalastax/adventofcode2017
37956e581dc51bf78008d7dd902bb18d2ee481f6
[ "MIT" ]
null
null
null
lib/AocIO.agda
Zalastax/adventofcode2017
37956e581dc51bf78008d7dd902bb18d2ee481f6
[ "MIT" ]
null
null
null
lib/AocIO.agda
Zalastax/adventofcode2017
37956e581dc51bf78008d7dd902bb18d2ee481f6
[ "MIT" ]
null
null
null
module AocIO where open import IO.Primitive public open import Data.String as String open import Data.List as List postulate getLine : IO Costring getArgs : IO (List String) getProgName : IO String {-# COMPILE GHC getLine = getLine #-} {-# FOREIGN GHC import qualified Data.Text as Text #-} {-# FOREIGN GHC import qualified Data.Text.IO as Text #-} {-# FOREIGN GHC import System.Environment (getArgs, getProgName) #-} {-# COMPILE GHC getArgs = fmap (map Text.pack) getArgs #-} {-# COMPILE GHC getProgName = fmap Text.pack getProgName #-}
32.411765
68
0.720508
20286fff7f1ef296a6ed47cc3778ce20a1cd2c3c
1,199
agda
Agda
Cubical/Data/FinInd.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/FinInd.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/FinInd.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- Definition of finitely indexed types A type is finitely indexed if, for some `n`, there merely exists a surjective function from `Fin n` to it. Note that a type doesn't need to be a set in order for it to be finitely indexed. For example, the circle is finitely indexed. This definition is weaker than `isFinSet`. -} {-# OPTIONS --safe #-} module Cubical.Data.FinInd where open import Cubical.Data.Nat open import Cubical.Data.Fin open import Cubical.Data.Sigma open import Cubical.Data.FinSet open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Functions.Surjection open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.S1 private variable ℓ : Level A : Type ℓ isFinInd : Type ℓ → Type ℓ isFinInd A = ∃[ n ∈ ℕ ] Fin n ↠ A isFinSet→isFinInd : isFinSet A → isFinInd A isFinSet→isFinInd = PT.rec squash λ (n , equiv) → ∣ n , invEq equiv , section→isSurjection (retEq equiv) ∣ isFinInd-S¹ : isFinInd S¹ isFinInd-S¹ = ∣ 1 , f , isSurjection-f ∣ where f : Fin 1 → S¹ f _ = base isSurjection-f : isSurjection f isSurjection-f b = PT.map (λ base≡b → fzero , base≡b) (isConnectedS¹ b)
24.469388
75
0.722269
dfd189623a5c0576f77442754a644a79e7b9e8bb
505
agda
Agda
agda-stdlib/src/Data/Float.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Float.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Float.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Floating point numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Float where ------------------------------------------------------------------------ -- Re-export base definitions and decidability of equality open import Data.Float.Base public open import Data.Float.Properties using (_≈?_; _<?_; _≟_; _==_) public
31.5625
72
0.407921
2315c9106f2b405056dca3615b0e628628c78ace
7,748
agda
Agda
Cubical/HITs/Susp/Properties.agda
ecavallo/cubical
b1d105aeeab1ba9888394c6a919b99a476390b7b
[ "MIT" ]
null
null
null
Cubical/HITs/Susp/Properties.agda
ecavallo/cubical
b1d105aeeab1ba9888394c6a919b99a476390b7b
[ "MIT" ]
null
null
null
Cubical/HITs/Susp/Properties.agda
ecavallo/cubical
b1d105aeeab1ba9888394c6a919b99a476390b7b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.Susp.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Path open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Bool open import Cubical.Data.Sigma open import Cubical.HITs.Join open import Cubical.HITs.Susp.Base open import Cubical.Homotopy.Loopspace private variable ℓ : Level open Iso Susp-iso-joinBool : ∀ {ℓ} {A : Type ℓ} → Iso (Susp A) (join A Bool) fun Susp-iso-joinBool north = inr true fun Susp-iso-joinBool south = inr false fun Susp-iso-joinBool (merid a i) = (sym (push a true) ∙ push a false) i inv Susp-iso-joinBool (inr true ) = north inv Susp-iso-joinBool (inr false) = south inv Susp-iso-joinBool (inl _) = north inv Susp-iso-joinBool (push a true i) = north inv Susp-iso-joinBool (push a false i) = merid a i rightInv Susp-iso-joinBool (inr true ) = refl rightInv Susp-iso-joinBool (inr false) = refl rightInv Susp-iso-joinBool (inl a) = sym (push a true) rightInv Susp-iso-joinBool (push a true i) j = push a true (i ∨ ~ j) rightInv Susp-iso-joinBool (push a false i) j = hcomp (λ k → λ { (i = i0) → push a true (~ j) ; (i = i1) → push a false k ; (j = i1) → push a false (i ∧ k) }) (push a true (~ i ∧ ~ j)) leftInv Susp-iso-joinBool north = refl leftInv Susp-iso-joinBool south = refl leftInv (Susp-iso-joinBool {A = A}) (merid a i) j = hcomp (λ k → λ { (i = i0) → transp (λ _ → Susp A) (k ∨ j) north ; (i = i1) → transp (λ _ → Susp A) (k ∨ j) (merid a k) ; (j = i1) → merid a (i ∧ k) }) (transp (λ _ → Susp A) j north) Susp≃joinBool : ∀ {ℓ} {A : Type ℓ} → Susp A ≃ join A Bool Susp≃joinBool = isoToEquiv Susp-iso-joinBool Susp≡joinBool : ∀ {ℓ} {A : Type ℓ} → Susp A ≡ join A Bool Susp≡joinBool = isoToPath Susp-iso-joinBool congSuspIso : ∀ {ℓ} {A B : Type ℓ} → Iso A B → Iso (Susp A) (Susp B) fun (congSuspIso is) = suspFun (fun is) inv (congSuspIso is) = suspFun (inv is) rightInv (congSuspIso is) north = refl rightInv (congSuspIso is) south = refl rightInv (congSuspIso is) (merid a i) j = merid (rightInv is a j) i leftInv (congSuspIso is) north = refl leftInv (congSuspIso is) south = refl leftInv (congSuspIso is) (merid a i) j = merid (leftInv is a j) i congSuspEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≃ B → Susp A ≃ Susp B congSuspEquiv {ℓ} {A} {B} h = isoToEquiv (congSuspIso (equivToIso h)) suspToPropElim : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Susp A → Type ℓ'} (a : A) → ((x : Susp A) → isProp (B x)) → B north → (x : Susp A) → B x suspToPropElim a isProp Bnorth north = Bnorth suspToPropElim {B = B} a isProp Bnorth south = subst B (merid a) Bnorth suspToPropElim {B = B} a isProp Bnorth (merid a₁ i) = isOfHLevel→isOfHLevelDep 1 isProp Bnorth (subst B (merid a) Bnorth) (merid a₁) i suspToPropElim2 : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Susp A → Susp A → Type ℓ'} (a : A) → ((x y : Susp A) → isProp (B x y)) → B north north → (x y : Susp A) → B x y suspToPropElim2 _ _ Bnorth north north = Bnorth suspToPropElim2 {B = B} a _ Bnorth north south = subst (B north) (merid a) Bnorth suspToPropElim2 {B = B} a isprop Bnorth north (merid x i) = isProp→PathP (λ i → isprop north (merid x i)) Bnorth (subst (B north) (merid a) Bnorth) i suspToPropElim2 {B = B} a _ Bnorth south north = subst (λ x → B x north) (merid a) Bnorth suspToPropElim2 {B = B} a _ Bnorth south south = subst (λ x → B x x) (merid a) Bnorth suspToPropElim2 {B = B} a isprop Bnorth south (merid x i) = isProp→PathP (λ i → isprop south (merid x i)) (subst (λ x → B x north) (merid a) Bnorth) (subst (λ x → B x x) (merid a) Bnorth) i suspToPropElim2 {B = B} a isprop Bnorth (merid x i) north = isProp→PathP (λ i → isprop (merid x i) north) Bnorth (subst (λ x → B x north) (merid a) Bnorth) i suspToPropElim2 {B = B} a isprop Bnorth (merid x i) south = isProp→PathP (λ i → isprop (merid x i) south) (subst (B north) (merid a) Bnorth) (subst (λ x → B x x) (merid a) Bnorth) i suspToPropElim2 {B = B} a isprop Bnorth (merid x i) (merid y j) = isSet→SquareP (λ i j → isOfHLevelSuc 1 (isprop _ _)) (isProp→PathP (λ i₁ → isprop north (merid y i₁)) Bnorth (subst (B north) (merid a) Bnorth)) (isProp→PathP (λ i₁ → isprop south (merid y i₁)) (subst (λ x₁ → B x₁ north) (merid a) Bnorth) (subst (λ x₁ → B x₁ x₁) (merid a) Bnorth)) (isProp→PathP (λ i₁ → isprop (merid x i₁) north) Bnorth (subst (λ x₁ → B x₁ north) (merid a) Bnorth)) (isProp→PathP (λ i₁ → isprop (merid x i₁) south) (subst (B north) (merid a) Bnorth) (subst (λ x₁ → B x₁ x₁) (merid a) Bnorth)) i j {- Clever proof: suspToPropElim2 a isProp Bnorth = suspToPropElim a (λ x → isOfHLevelΠ 1 λ y → isProp x y) (suspToPropElim a (λ x → isProp north x) Bnorth) -} funSpaceSuspIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → Iso (Σ[ x ∈ B ] Σ[ y ∈ B ] (A → x ≡ y)) (Susp A → B) Iso.fun funSpaceSuspIso (x , y , f) north = x Iso.fun funSpaceSuspIso (x , y , f) south = y Iso.fun funSpaceSuspIso (x , y , f) (merid a i) = f a i Iso.inv funSpaceSuspIso f = (f north) , (f south , (λ x → cong f (merid x))) Iso.rightInv funSpaceSuspIso f = funExt λ {north → refl ; south → refl ; (merid a i) → refl} Iso.leftInv funSpaceSuspIso _ = refl toSusp : (A : Pointed ℓ) → typ A → typ (Ω (Susp∙ (typ A))) toSusp A x = merid x ∙ merid (pt A) ⁻¹ toSuspPointed : (A : Pointed ℓ) → A →∙ Ω (Susp∙ (typ A)) fst (toSuspPointed A) = toSusp A snd (toSuspPointed A) = rCancel (merid (pt A)) module _ {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} where fromSusp→toΩ : Susp∙ (typ A) →∙ B → (A →∙ Ω B) fst (fromSusp→toΩ f) x = sym (snd f) ∙∙ cong (fst f) (toSusp A x) ∙∙ snd f snd (fromSusp→toΩ f) = cong (sym (snd f) ∙∙_∙∙ (snd f)) (cong (cong (fst f)) (rCancel (merid (pt A)))) ∙ ∙∙lCancel (snd f) toΩ→fromSusp : A →∙ Ω B → Susp∙ (typ A) →∙ B fst (toΩ→fromSusp f) north = pt B fst (toΩ→fromSusp f) south = pt B fst (toΩ→fromSusp f) (merid a i) = fst f a i snd (toΩ→fromSusp f) = refl ΩSuspAdjointIso : Iso (A →∙ Ω B) (Susp∙ (typ A) →∙ B) fun ΩSuspAdjointIso = toΩ→fromSusp inv ΩSuspAdjointIso = fromSusp→toΩ rightInv ΩSuspAdjointIso f = ΣPathP (funExt (λ { north → sym (snd f) ; south → sym (snd f) ∙ cong (fst f) (merid (pt A)) ; (merid a i) j → hcomp (λ k → λ { (i = i0) → snd f (~ j ∧ k) ; (i = i1) → compPath-filler' (sym (snd f)) (cong (fst f) (merid (pt A))) k j ; (j = i1) → fst f (merid a i)}) (fst f (compPath-filler (merid a) (sym (merid (pt A))) (~ j) i))}) , λ i j → snd f (~ i ∨ j)) leftInv ΩSuspAdjointIso f = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ x → sym (rUnit _) ∙ cong-∙ (fst (toΩ→fromSusp f)) (merid x) (sym (merid (pt A))) ∙ cong (fst f x ∙_) (cong sym (snd f)) ∙ sym (rUnit _)) IsoΩFunSuspFun : Iso (typ (Ω (A →∙ B ∙))) (Susp∙ (typ A) →∙ B) IsoΩFunSuspFun = compIso (ΩfunExtIso A B) ΩSuspAdjointIso
43.774011
89
0.57731
dfbfd8baed9bb721d0efca3774bcc792ba24a612
4,564
agda
Agda
Cubical/Foundations/SIP.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Foundations/SIP.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Foundations/SIP.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- In this file we apply the cubical machinery to Martin Hötzel-Escardó's structure identity principle: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -} {-# OPTIONS --safe #-} module Cubical.Foundations.SIP where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence renaming (ua-pathToEquiv to ua-pathToEquiv') open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Foundations.Structure public private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level S : Type ℓ₁ → Type ℓ₂ -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure or SNS. -- We will use a different definition, but the two definitions are interchangeable. SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) SNS {ℓ₁} S ι = ∀ {X : Type ℓ₁} (s t : S X) → ι (X , s) (X , t) (idEquiv X) ≃ (s ≡ t) -- We introduce the notation for structure preserving equivalences a -- bit differently, but this definition doesn't actually change from -- Escardó's notes. _≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrEquiv S ℓ₂) (B : TypeWithStr ℓ₁ S) → Type (ℓ-max ℓ₁ ℓ₂) A ≃[ ι ] B = Σ[ e ∈ typ A ≃ typ B ] (ι A B e) -- The following PathP version of SNS is a bit easier to work with -- for the proof of the SIP UnivalentStr : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) UnivalentStr {ℓ₁} S ι = {A B : TypeWithStr ℓ₁ S} (e : typ A ≃ typ B) → ι A B e ≃ PathP (λ i → S (ua e i)) (str A) (str B) -- A quick sanity-check that our definition is interchangeable with -- Escardó's. The direction SNS→UnivalentStr corresponds more or less -- to a dependent EquivJ formulation of Escardó's homomorphism-lemma. UnivalentStr→SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → UnivalentStr S ι → SNS S ι UnivalentStr→SNS S ι θ {X = X} s t = ι (X , s) (X , t) (idEquiv X) ≃⟨ θ (idEquiv X) ⟩ PathP (λ i → S (ua (idEquiv X) i)) s t ≃⟨ pathToEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = X} j i)) s t) ⟩ s ≡ t ■ SNS→UnivalentStr : (ι : StrEquiv S ℓ₃) → SNS S ι → UnivalentStr S ι SNS→UnivalentStr {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B) where Y = typ B P : (X : Type _) → X ≃ Y → Type _ P X e' = (s : S X) (t : S Y) → ι (X , s) (Y , t) e' ≃ PathP (λ i → S (ua e' i)) s t C : (s t : S Y) → ι (Y , s) (Y , t) (idEquiv Y) ≃ PathP (λ i → S (ua (idEquiv Y) i)) s t C s t = ι (Y , s) (Y , t) (idEquiv Y) ≃⟨ θ s t ⟩ s ≡ t ≃⟨ pathToEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = Y} (~ j) i)) s t) ⟩ PathP (λ i → S (ua (idEquiv Y) i)) s t ■ TransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → Type (ℓ-max (ℓ-suc ℓ) ℓ₁) TransportStr {ℓ} {S = S} α = {X Y : Type ℓ} (e : X ≃ Y) (s : S X) → equivFun (α e) s ≡ subst S (ua e) s TransportStr→UnivalentStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → TransportStr α → UnivalentStr S (EquivAction→StrEquiv α) TransportStr→UnivalentStr {S = S} α τ {X , s} {Y , t} e = equivFun (α e) s ≡ t ≃⟨ pathToEquiv (cong (_≡ t) (τ e s)) ⟩ subst S (ua e) s ≡ t ≃⟨ invEquiv (PathP≃Path _ _ _) ⟩ PathP (λ i → S (ua e i)) s t ■ UnivalentStr→TransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → UnivalentStr S (EquivAction→StrEquiv α) → TransportStr α UnivalentStr→TransportStr {S = S} α θ e s = invEq (θ e) (transport-filler (cong S (ua e)) s) invTransportStr : {S : Type ℓ → Type ℓ₂} (α : EquivAction S) (τ : TransportStr α) {X Y : Type ℓ} (e : X ≃ Y) (t : S Y) → invEq (α e) t ≡ subst⁻ S (ua e) t invTransportStr {S = S} α τ e t = sym (transport⁻Transport (cong S (ua e)) (invEq (α e) t)) ∙∙ sym (cong (subst⁻ S (ua e)) (τ e (invEq (α e) t))) ∙∙ cong (subst⁻ S (ua e)) (secEq (α e) t) --- We can now define an invertible function --- --- sip : A ≃[ ι ] B → A ≡ B module _ {S : Type ℓ₁ → Type ℓ₂} {ι : StrEquiv S ℓ₃} (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ₁ S) where sip : A ≃[ ι ] B → A ≡ B sip (e , p) i = ua e i , θ e .fst p i SIP : A ≃[ ι ] B ≃ (A ≡ B) SIP = sip , isoToIsEquiv (compIso (Σ-cong-iso (invIso univalenceIso) (equivToIso ∘ θ)) ΣPathIsoPathΣ) sip⁻ : A ≡ B → A ≃[ ι ] B sip⁻ = invEq SIP
36.512
99
0.610649
cb074778afa666bde0170e5a17471343ac14cb2b
3,270
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda
banacorn/agda
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
[ "MIT" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda
banacorn/agda
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
[ "MIT" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda
banacorn/agda
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
[ "MIT" ]
1
2021-04-18T13:34:07.000Z
2021-04-18T13:34:07.000Z
{-# OPTIONS --erased-cubical --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Cubical.HCompU where open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_; primHComp to hcomp; primTransp to transp; primComp to comp; itIsOne to 1=1) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to outS; inc to inS) module Helpers where -- Homogeneous filling hfill : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : ∀ i → Partial φ A) (u0 : A [ φ ↦ u i0 ]) (i : I) → A hfill {φ = φ} u u0 i = hcomp (λ j → \ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Heterogeneous filling defined using comp fill : ∀ {ℓ : I → Level} (A : ∀ i → Set (ℓ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) → ∀ i → A i fill A {φ = φ} u u0 i = comp (λ j → A (i ∧ j)) (λ j → \ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS {φ = φ} u0) module _ {ℓ} {A : Set ℓ} where refl : {x : A} → x ≡ x refl {x = x} = λ _ → x sym : {x y : A} → x ≡ y → y ≡ x sym p = λ i → p (~ i) cong : ∀ {ℓ'} {B : A → Set ℓ'} {x y : A} (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p = λ i → f (p i) isContr : ∀ {ℓ} → Set ℓ → Set ℓ isContr A = Σ A \ x → (∀ y → x ≡ y) fiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ ⊔ ℓ') fiber {A = A} f y = Σ A \ x → f x ≡ y open Helpers primitive prim^glueU : {la : Level} {φ : I} {T : I → Partial φ (Set la)} {A : Set la [ φ ↦ T i0 ]} → PartialP φ (T i1) → outS A → hcomp T (outS A) prim^unglueU : {la : Level} {φ : I} {T : I → Partial φ (Set la)} {A : Set la [ φ ↦ T i0 ]} → hcomp T (outS A) → outS A -- Needed for transp. primFaceForall : (I → I) → I transpProof : ∀ {l} → (e : I → Set l) → (φ : I) → (a : Partial φ (e i0)) → (b : e i1 [ φ ↦ (\ o → transp (\ i → e i) i0 (a o)) ] ) → fiber (transp (\ i → e i) i0) (outS b) transpProof e φ a b = f , \ j → comp (\ i → e i) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ i)) (~ i) (a 1=1) ; (j = i0) → transp (\ j → e (j ∧ i)) (~ i) f ; (j = i1) → g (~ i) }) f where b' = outS {u = (\ o → transp (\ i → e i) i0 (a o))} b g : (k : I) → e (~ k) g k = fill (\ i → e (~ i)) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ ~ i)) i (a 1=1) ; (φ = i0) → transp (\ j → e (~ j ∨ ~ i)) (~ i) b' }) (inS b') k f = comp (\ i → e (~ i)) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ ~ i)) i (a 1=1); (φ = i0) → transp (\ j → e (~ j ∨ ~ i)) (~ i) b' }) b' {-# BUILTIN TRANSPPROOF transpProof #-}
40.875
171
0.384404
23434b998cc8a96bcc2e3df591683718c4a39cd8
3,392
agda
Agda
Cubical/HITs/Colimit/Examples.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/HITs/Colimit/Examples.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/HITs/Colimit/Examples.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Colimit.Examples where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.SumFin open import Cubical.Data.Graph open import Cubical.HITs.Colimit.Base open import Cubical.HITs.Pushout -- Pushouts are colimits over the graph ⇐⇒ module _ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} where PushoutDiag : (A → B) → (A → C) → Diag (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) ⇐⇒ (PushoutDiag f g) $ fzero = Lift {j = ℓ-max ℓ ℓ'' } B (PushoutDiag f g) $ fsuc fzero = Lift {j = ℓ-max ℓ' ℓ'' } A (PushoutDiag f g) $ fsuc (fsuc fzero) = Lift {j = ℓ-max ℓ ℓ' } C _<$>_ (PushoutDiag f g) {fsuc fzero} {fzero} tt (lift a) = lift (f a) _<$>_ (PushoutDiag f g) {fsuc fzero} {fsuc (fsuc fzero)} tt (lift a) = lift (g a) module _ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {f : A → B} {g : A → C} where PushoutCocone : Cocone _ (PushoutDiag f g) (Pushout f g) leg PushoutCocone fzero (lift b) = inl b leg PushoutCocone (fsuc fzero) (lift a) = inr (g a) leg PushoutCocone (fsuc (fsuc fzero)) (lift c) = inr c com PushoutCocone {fsuc fzero} {fzero} tt i (lift a) = push a i com PushoutCocone {fsuc fzero} {fsuc (fsuc fzero)} tt i (lift a) = inr (g a) private module _ ℓq (Y : Type ℓq) where fwd : (Pushout f g → Y) → Cocone ℓq (PushoutDiag f g) Y fwd = postcomp PushoutCocone module _ (C : Cocone ℓq (PushoutDiag f g) Y) where coml : ∀ a → leg C fzero (lift (f a)) ≡ leg C (fsuc fzero) (lift a) comr : ∀ a → leg C (fsuc (fsuc fzero)) (lift (g a)) ≡ leg C (fsuc fzero) (lift a) coml a i = com C {j = fsuc fzero} {k = fzero} tt i (lift a) comr a i = com C {j = fsuc fzero} {k = fsuc (fsuc fzero)} tt i (lift a) bwd : Cocone ℓq (PushoutDiag f g) Y → (Pushout f g → Y) bwd C (inl b) = leg C fzero (lift b) bwd C (inr c) = leg C (fsuc (fsuc fzero)) (lift c) bwd C (push a i) = (coml C a ∙ sym (comr C a)) i bwd-fwd : ∀ F → bwd (fwd F) ≡ F bwd-fwd F i (inl b) = F (inl b) bwd-fwd F i (inr c) = F (inr c) bwd-fwd F i (push a j) = compPath-filler (coml (fwd F) a) (sym (comr (fwd F) a)) (~ i) j fwd-bwd : ∀ C → fwd (bwd C) ≡ C leg (fwd-bwd C i) fzero (lift b) = leg C fzero (lift b) leg (fwd-bwd C i) (fsuc fzero) (lift a) = comr C a i leg (fwd-bwd C i) (fsuc (fsuc fzero)) (lift c) = leg C (fsuc (fsuc fzero)) (lift c) com (fwd-bwd C i) {fsuc fzero} {fzero} tt j (lift a) -- coml (fwd-bwd C i) = ... = compPath-filler (coml C a) (sym (comr C a)) (~ i) j com (fwd-bwd C i) {fsuc fzero} {fsuc (fsuc fzero)} tt j (lift a) -- comr (fwd-bwd C i) = ... = comr C a (i ∧ j) eqv : isEquiv {A = (Pushout f g → Y)} {B = Cocone ℓq (PushoutDiag f g) Y} (postcomp PushoutCocone) eqv = isoToIsEquiv (iso fwd bwd fwd-bwd bwd-fwd) isColimPushout : isColimit (PushoutDiag f g) (Pushout f g) cone isColimPushout = PushoutCocone univ isColimPushout = eqv colim≃Pushout : colim (PushoutDiag f g) ≃ Pushout f g colim≃Pushout = uniqColimit colimIsColimit isColimPushout
43.487179
104
0.576651
d04aa38ec38ea816b2c3262847d3827b023f0fa5
2,559
agda
Agda
examples/outdated-and-incorrect/cbs/Path.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/cbs/Path.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/cbs/Path.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Path where open import Basics hiding (_==_) open import Proc import Graph private open module G = Graph Nat data Node : Set where node : Nat -> Node stop : Node _==_ : Node -> Node -> Bool stop == stop = true node zero == node zero = true node (suc n) == node (suc m) = node n == node m _ == _ = false data U : Set where int : U ext : U data Name : Set where fwd-edge : Nat -> Nat -> Name bwd-edge : Nat -> Node -> Name start : Nat -> Name finish : Nat -> Name N : U -> Set N int = Name N ext = False data Msg : Set where forward : Node -> Node -> Msg backward : Node -> Msg T : U -> Set T int = Msg T ext = Node private module Impl where private module P = ProcDef U T N open P hiding (_!_) P = Proc int infixr 40 _!_ _!_ : Msg -> P -> P m ! p = P._!_ (lift m) p fwd : Nat -> Nat -> Msg fwd from to = forward (node from) (node to) fwd-runner : Nat -> Nat -> P fwd-runner from to = > react where react : Msg -> P react (forward from' to') = if to' == node from then fwd from to ! def (bwd-edge from from') else def (fwd-edge from to) react (backward _) = o bwd-runner : Nat -> Node -> P bwd-runner from w = > react where react : Msg -> P react (backward n) = if n == w then o else if n == node from then backward w ! o else def (bwd-edge from w) react (forward _ _) = def (bwd-edge from w) pitcher : Nat -> P pitcher n = forward stop (node n) ! o batter : Nat -> P batter n = > react where react : Msg -> P react (forward from to) = if to == node n then backward from ! o else def (start n) react _ = def (start n) env : Env env int (fwd-edge from to) = fwd-runner from to env int (bwd-edge from w) = bwd-runner from w env int (start n) = batter n env int (finish n) = pitcher n env ext () edges : Graph -> P edges [] = o edges (edge x y :: G) = def (fwd-edge x y) || edges G φ : Tran ext int φ = record { upV = up; downV = down } where down : Node -> Lift Msg down x = lift (backward x) up : Msg -> Lift Node up (forward _ _) = bot up (backward x) = lift x main : Graph -> Nat -> Nat -> Proc ext main G x y = φ /| def (finish y) || def (start x) || edges G open Impl public param : Param param = record { U = U ; T = T ; Name = N ; env = env }
20.804878
62
0.527941
dce10ae403b7b2e782498e896631ca4a4111ae49
489
agda
Agda
test/interaction/Issue3095-fail.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/interaction/Issue3095-fail.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue3095-fail.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2018-05-28, issue #3095, fail on attempt to make hidden parent variable visible data Nat : Set where suc : {n : Nat} → Nat data IsSuc : Nat → Set where isSuc : ∀{n} → IsSuc (suc {n}) test : ∀{m} → IsSuc m → Set test p = aux p where aux : ∀{n} → IsSuc n → Set aux isSuc = {!.m!} -- Split on .m here -- Context: -- p : IsSuc .m -- .m : Nat -- .n : Nat -- Expected error: -- Cannot split on module parameter .m -- when checking that the expression ? has type Set
21.26087
91
0.603272
d0ee96ab8ae2f32f73f6a4a56b76e66e06c50392
1,159
agda
Agda
src/Categories/Category/Instance/StrictGroupoids.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Category/Instance/StrictGroupoids.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/Category/Instance/StrictGroupoids.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.StrictGroupoids where -- The 'strict' category of groupoids. -- The difference here is that _≈_ is not |NaturalIsomorphism| but |_≡F_| open import Level open import Relation.Binary.PropositionalEquality using (refl) open import Categories.Category using (Category) open import Categories.Category.Groupoid using (Groupoid) open import Categories.Category.Instance.Groupoids using (F-resp-⁻¹) open import Categories.Functor using (Functor; id; _∘F_) open import Categories.Functor.Equivalence private variable o ℓ e : Level open Groupoid using (category) Groupoids : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Groupoids o ℓ e = record { Obj = Groupoid o ℓ e ; _⇒_ = λ G H → Functor (category G) (category H) ; _≈_ = _≡F_ ; id = id ; _∘_ = _∘F_ ; assoc = λ {_ _ _ _ F G H} → ≡F-assoc {F = F} {G} {H} ; sym-assoc = λ {_ _ _ _ F G H} → ≡F-sym-assoc {F = F} {G} {H} ; identityˡ = ≡F-identityˡ ; identityʳ = ≡F-identityʳ ; identity² = ≡F-identity² ; equiv = ≡F-equiv ; ∘-resp-≈ = ∘F-resp-≡F }
31.324324
73
0.63503
4ac1eae2d07c0eab6556c1eac17ff2596960da2b
2,515
agda
Agda
LC/Reduction.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
2
2020-08-25T07:34:40.000Z
2020-08-25T14:05:01.000Z
LC/Reduction.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
LC/Reduction.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
module LC.Reduction where open import LC.Base open import LC.Subst open import Data.Nat open import Data.Nat.Properties open import Relation.Nullary -- β-reduction infix 3 _β→_ data _β→_ : Term → Term → Set where β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ (M [ N ]) β-ƛ : ∀ {M N} → M β→ N → ƛ M β→ ƛ N β-∙-l : ∀ {L M N} → M β→ N → M ∙ L β→ N ∙ L β-∙-r : ∀ {L M N} → M β→ N → L ∙ M β→ L ∙ N open import Relation.Binary.Construct.Closure.ReflexiveTransitive infix 2 _β→*_ _β→*_ : Term → Term → Set _β→*_ = Star _β→_ {-# DISPLAY Star _β→_ = _β→*_ #-} open import Relation.Binary.PropositionalEquality hiding ([_]; preorder) ≡⇒β→* : ∀ {M N} → M ≡ N → M β→* N ≡⇒β→* refl = ε cong-var : ∀ {x y} → x ≡ y → var x β→* var y cong-var {x} {y} refl = ε cong-ƛ : {M N : Term} → M β→* N → ƛ M β→* ƛ N cong-ƛ = gmap _ β-ƛ cong-∙-l : {L M N : Term} → M β→* N → M ∙ L β→* N ∙ L cong-∙-l = gmap _ β-∙-l cong-∙-r : {L M N : Term} → M β→* N → L ∙ M β→* L ∙ N cong-∙-r = gmap _ β-∙-r cong-∙ : {M M' N N' : Term} → M β→* M' → N β→* N' → M ∙ N β→* M' ∙ N' cong-∙ M→M' N→N' = (cong-∙-l M→M') ◅◅ (cong-∙-r N→N') open import LC.Subst.Term cong-lift : {n i : ℕ} {M N : Term} → M β→ N → lift n i M β→* lift n i N cong-lift (β-ƛ M→N) = cong-ƛ (cong-lift M→N) cong-lift (β-ƛ-∙ {M} {N}) = β-ƛ-∙ ◅ ≡⇒β→* (lemma M N) cong-lift (β-∙-l M→N) = cong-∙-l (cong-lift M→N) cong-lift (β-∙-r M→N) = cong-∙-r (cong-lift M→N) cong-[]-r : ∀ L {M N i} → M β→ N → L [ M / i ] β→* L [ N / i ] cong-[]-r (var x) {M} {N} {i} M→N with match x i ... | Under _ = ε ... | Exact _ = cong-lift M→N ... | Above _ _ = ε cong-[]-r (ƛ L) M→N = cong-ƛ (cong-[]-r L M→N) cong-[]-r (K ∙ L) M→N = cong-∙ (cong-[]-r K M→N) (cong-[]-r L M→N) cong-[]-l : ∀ {M N L i} → M β→ N → M [ L / i ] β→* N [ L / i ] cong-[]-l {ƛ M} (β-ƛ M→N) = cong-ƛ (cong-[]-l M→N) cong-[]-l {.(ƛ K) ∙ M} {L = L} (β-ƛ-∙ {K}) = β-ƛ-∙ ◅ ≡⇒β→* (subst-lemma K M L) cong-[]-l {K ∙ M} (β-∙-l M→N) = cong-∙-l (cong-[]-l M→N) cong-[]-l {K ∙ M} (β-∙-r M→N) = cong-∙-r (cong-[]-l M→N) cong-[] : {M M' N N' : Term} → M β→* M' → N β→* N' → M [ N ] β→* M' [ N' ] cong-[] {M} ε ε = ε cong-[] {M} {N = L} {N'} ε (_◅_ {j = N} L→N N→N') = M[L]→M[N] ◅◅ M[N]→M[N'] where M[L]→M[N] : M [ L ] β→* M [ N ] M[L]→M[N] = cong-[]-r M L→N M[N]→M[N'] : M [ N ] β→* M [ N' ] M[N]→M[N'] = cong-[] {M} ε N→N' cong-[] {M} (K→M ◅ M→M') N→N' = cong-[]-l K→M ◅◅ cong-[] M→M' N→N'
29.588235
79
0.438171
dc6ef7a1c631933beed92000c1544c40d5843d14
634
agda
Agda
test/interaction/Issue734a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue734a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue734a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue734a where module M₁ (Z : Set₁) where postulate P : Set Q : Set → Set module M₂ (X Y : Set) where module M₁′ = M₁ Set open M₁′ p : P p = {!!} -- Previous and current agda2-goal-and-context: -- Y : Set -- X : Set -- --------- -- Goal: P q : Q X q = {!!} -- Previous and current agda2-goal-and-context: -- Y : Set -- X : Set -- ----------- -- Goal: Q X postulate X : Set pp : M₂.M₁′.P X X pp = {!!} -- Previous agda2-goal-and-context: -- ---------------- -- Goal: M₁.P Set -- Current agda2-goal-and-context: -- -------------------- -- Goal: M₂.M₁′.P X X
13.208333
49
0.474763
c5eb248ef0ce077c8bb33c1be48058bf71500831
217
agda
Agda
test/interaction/Issue564.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue564.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue564.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue564 where open import Agda.Primitive using (Level) renaming (lzero to zero) postulate A : Level → Set module M ℓ where postulate a : A ℓ postulate P : A zero → Set open M zero p : P a p = {!!}
12.055556
65
0.668203
c5bbd51599da7b39add0b090611ab0144138b759
349
agda
Agda
test/interaction/Issue2589.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2589.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2589.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat -- splitting on a 'with' argument should not expand the ellipsis foo : Nat → Nat foo m with 0 ... | n = {!n!} -- splitting on variable hidden by ellipsis should expand the ellipsis bar : Nat → Nat bar m with 0 ... | n = {!m!} -- test case with nested with baz : Nat → Nat baz m with m ... | n with n ... | p = {!p!}
18.368421
70
0.630372
d06600309078b58961a2bddacd8f091a17ccb058
239
agda
Agda
HoTT/Equivalence/Empty.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Equivalence/Empty.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Equivalence/Empty.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence module HoTT.Equivalence.Empty where open variables 𝟎-equiv : {A : 𝒰 i} → ¬ A → 𝟎 {i} ≃ A 𝟎-equiv ¬a = 𝟎-rec , qinv→isequiv (𝟎-rec ∘ ¬a , 𝟎-ind , 𝟎-rec ∘ ¬a)
21.727273
67
0.631799
d01d571db09094efe8ff066e174a27752ae62e47
2,266
agda
Agda
src/MLib/Algebra/PropertyCode.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
src/MLib/Algebra/PropertyCode.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
src/MLib/Algebra/PropertyCode.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
module MLib.Algebra.PropertyCode where open import MLib.Prelude open import MLib.Finite open import MLib.Algebra.PropertyCode.RawStruct public open import MLib.Algebra.PropertyCode.Core as Core public using (Property; Properties; Code; IsSubcode; _∈ₚ_; _⇒ₚ_; ⟦_⟧P) renaming (⇒ₚ-weaken to weaken) open Core.PropKind public open Core.PropertyC using (_on_; _is_for_; _⟨_⟩ₚ_) public import Relation.Unary as U using (Decidable) open import Relation.Binary as B using (Setoid) open import Data.List.All as All using (All; _∷_; []) public open import Data.List.Any using (Any; here; there) open import Data.Bool using (_∨_) open import Category.Applicative record Struct {k} (code : Code k) c ℓ : Set (sucˡ (c ⊔ˡ ℓ ⊔ˡ k)) where open Code code public field rawStruct : RawStruct K c ℓ Π : Properties code open RawStruct rawStruct public open Properties Π public field reify : ∀ {π} → π ∈ₚ Π → ⟦ π ⟧P rawStruct Hasₚ : (Π′ : Properties code) → Set Hasₚ Π′ = Π′ ⇒ₚ Π Has : List (Property K) → Set Has = Hasₚ ∘ Core.fromList Has₁ : Property K → Set Has₁ π = Hasₚ (Core.singleton π) use : ∀ π ⦃ hasπ : π ∈ₚ Π ⦄ → ⟦ π ⟧P rawStruct use _ ⦃ hasπ ⦄ = reify hasπ from : ∀ {Π′} (hasΠ′ : Hasₚ Π′) π ⦃ hasπ : π ∈ₚ Π′ ⦄ → ⟦ π ⟧P rawStruct from hasΠ′ _ ⦃ hasπ ⦄ = use _ ⦃ Core.⇒ₚ-MP hasπ hasΠ′ ⦄ substruct : ∀ {k′} {code′ : Code k′} → IsSubcode code′ code → Struct code′ c ℓ substruct isSub = record { rawStruct = record { Carrier = Carrier ; _≈_ = _≈_ ; appOp = appOp ∘ Core.subK→supK isSub ; isRawStruct = isRawStruct′ } ; Π = Core.subcodeProperties isSub Π ; reify = Core.reinterpret isSub rawStruct isRawStruct′ _ ∘ reify ∘ Core.fromSubcode isSub } where isRawStruct′ = record { isEquivalence = isEquivalence ; congⁿ = congⁿ ∘ Core.subK→supK isSub } toSubstruct : ∀ {k′} {code′ : Code k′} (isSub : IsSubcode code′ code) → ∀ {Π′ : Properties code′} (hasΠ′ : Hasₚ (Core.supcodeProperties isSub Π′)) → Π′ ⇒ₚ Core.subcodeProperties isSub Π toSubstruct isSub hasΠ′ = Core.→ₚ-⇒ₚ λ π hasπ → Core.fromSupcode isSub (Core.⇒ₚ-→ₚ hasΠ′ (Core.mapProperty (Core.subK→supK isSub) π) (Core.fromSupcode′ isSub hasπ))
29.051282
94
0.645631
cb402aca562b3db4110afe310a1e4ae9d0fc4f2f
589
agda
Agda
benchmark/cwf/Chain.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/cwf/Chain.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/cwf/Chain.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Chain {U : Set}(T : U -> Set) (_==_ : {a b : U} -> T a -> T b -> Set) (refl : {a : U}(x : T a) -> x == x) (trans : {a b c : U}(x : T a)(y : T b)(z : T c) -> x == y -> y == z -> x == z) where infix 30 _∼_ infix 3 proof_ infixl 2 _≡_by_ infix 1 _qed data _∼_ {a b : U}(x : T a)(y : T b) : Set where prf : x == y -> x ∼ y proof_ : {a : U}(x : T a) -> x ∼ x proof x = prf (refl x) _≡_by_ : {a b c : U}{x : T a}{y : T b} -> x ∼ y -> (z : T c) -> y == z -> x ∼ z prf p ≡ z by q = prf (trans _ _ _ p q) _qed : {a b : U}{x : T a}{y : T b} -> x ∼ y -> x == y prf p qed = p
23.56
80
0.410866
d02407c3b7af4d59ab91723a907584f745859858
560
agda
Agda
test/Fail/Issue610-module-alias.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue610-module-alias.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue610-module-alias.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2016-02-11, bug reported by sanzhiyan module Issue610-module-alias where import Common.Level open import Common.Equality data ⊥ : Set where record ⊤ : Set where data A : Set₁ where set : .Set → A module M .(x : Set) where .out : _ out = x .ack : A → Set ack (set x) = M.out x hah : set ⊤ ≡ set ⊥ hah = refl .moo' : ⊥ moo' = subst (λ x → x) (cong ack hah) _ -- Expected error: -- .(⊥) !=< ⊥ of type Set -- when checking that the expression subst (λ x → x) (cong ack hah) _ has type ⊥ baa : .⊥ → ⊥ baa () yoink : ⊥ yoink = baa moo'
15.135135
80
0.603571
dfeefa1af3e66f5827393f529a82a468873ff2d8
2,735
agda
Agda
Prelude.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
Prelude.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
Prelude.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
module Prelude where open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax) -- empty type data ⊥ : Set where -- from false, derive whatever abort : ∀ {C : Set} → ⊥ → C abort () -- unit data ⊤ : Set where <> : ⊤ -- sums data _+_ (A B : Set) : Set where Inl : A → A + B Inr : B → A + B -- pairs infixr 1 _,_ record Σ {l1 l2 : Level} (A : Set l1) (B : A → Set l2) : Set (lmax l1 l2) where constructor _,_ field π1 : A π2 : B π1 open Σ public -- Sigma types, or dependent pairs, with nice notation. syntax Σ A (\ x -> B) = Σ[ x ∈ A ] B _×_ : {l1 : Level} {l2 : Level} → (Set l1) → (Set l2) → Set (lmax l1 l2) A × B = Σ A λ _ → B infixr 1 _×_ infixr 1 _+_ -- equality data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where refl : M == M infixr 9 _==_ -- disequality _≠_ : {l : Level} {A : Set l} → (a b : A) → Set l a ≠ b = (a == b) → ⊥ {-# BUILTIN EQUALITY _==_ #-} -- transitivity of equality _·_ : {l : Level} {α : Set l} {x y z : α} → x == y → y == z → x == z refl · refl = refl -- symmetry of equality ! : {l : Level} {α : Set l} {x y : α} → x == y → y == x ! refl = refl -- ap, in the sense of HoTT, that all functions respect equality in their -- arguments. named in a slightly non-standard way to avoid naming -- clashes with hazelnut constructors. ap1 : {l1 l2 : Level} {α : Set l1} {β : Set l2} {x y : α} (F : α → β) → x == y → F x == F y ap1 F refl = refl -- transport, in the sense of HoTT, that fibrations respect equality tr : {l1 l2 : Level} {α : Set l1} {x y : α} (B : α → Set l2) → x == y → B x → B y tr B refl x₁ = x₁ -- options data Maybe (A : Set) : Set where Some : A → Maybe A None : Maybe A -- the some constructor is injective. perhaps unsurprisingly. someinj : {A : Set} {x y : A} → Some x == Some y → x == y someinj refl = refl -- some isn't none. somenotnone : {A : Set} {x : A} → Some x == None → ⊥ somenotnone () -- function extensionality, used to reason about contexts as finite -- functions. postulate funext : {A : Set} {B : A → Set} {f g : (x : A) → (B x)} → ((x : A) → f x == g x) → f == g -- non-equality is commutative flip : {A : Set} {x y : A} → (x == y → ⊥) → (y == x → ⊥) flip neq eq = neq (! eq) -- two types are said to be equivalent, or isomorphic, if there is a pair -- of functions between them where both round-trips are stable up to == _≃_ : Set → Set → Set _≃_ A B = Σ[ f ∈ (A → B) ] Σ[ g ∈ (B → A) ] (((a : A) → g (f a) == a) × (((b : B) → f (g b) == b)))
27.079208
81
0.503839
dcc4fdee8e50180e22f376fc20568534841db841
1,486
agda
Agda
src/Delay-monad/Sized.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Sized.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Sized.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The delay monad, defined coinductively, with a sized type parameter ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Sized where open import Equality.Propositional open import Prelude open import Prelude.Size open import Bijection equality-with-J using (_↔_) -- The delay monad. mutual data Delay {a} (A : Size → Type a) (i : Size) : Type a where now : A i → Delay A i later : Delay′ A i → Delay A i record Delay′ {a} (A : Size → Type a) (i : Size) : Type a where coinductive field force : {j : Size< i} → Delay A j open Delay′ public module _ {a} {A : Size → Type a} where mutual -- A non-terminating computation. never : ∀ {i} → Delay A i never = later never′ never′ : ∀ {i} → Delay′ A i force never′ = never -- Removes a later constructor, if possible. drop-later : Delay A ∞ → Delay A ∞ drop-later (now x) = now x drop-later (later x) = force x -- An unfolding lemma for Delay. Delay↔ : ∀ {i} → Delay A i ↔ A i ⊎ Delay′ A i Delay↔ = record { surjection = record { logical-equivalence = record { to = λ { (now x) → inj₁ x; (later x) → inj₂ x } ; from = [ now , later ] } ; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ] } ; left-inverse-of = λ { (now _) → refl; (later _) → refl } }
24.360656
72
0.519515
18e948affb321af2fda685b7f446991e06a725a6
3,206
agda
Agda
test/LibSucceed/Issue4312.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2016-05-20T13:58:52.000Z
2016-05-20T13:58:52.000Z
test/LibSucceed/Issue4312.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/LibSucceed/Issue4312.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-04-18T13:34:07.000Z
2021-04-18T13:34:07.000Z
{-# OPTIONS --without-K --safe #-} open import Level record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Obj → Obj → Set ℓ _≈_ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) CommutativeSquare : ∀ {A B C D} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _ CommutativeSquare f g h i = h ∘ f ≈ i ∘ g infix 10 _[_,_] _[_,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ _[_,_] = Category._⇒_ module Inner {x₁ x₂ x₃} (CC : Category x₁ x₂ x₃) where open import Level private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level open import Data.Product using (_×_; Σ; _,_; curry′; proj₁; proj₂; zip; map; <_,_>; swap) zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y) zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q) syntax zipWith f g h = f -< h >- g record Functor (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where eta-equality private module C = Category C private module D = Category D field F₀ : C.Obj → D.Obj F₁ : ∀ {A B} (f : C [ A , B ]) → D [ F₀ A , F₀ B ] Product : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product C D = record { Obj = C.Obj × D.Obj ; _⇒_ = C._⇒_ -< _×_ >- D._⇒_ ; _≈_ = C._≈_ -< _×_ >- D._≈_ ; _∘_ = zip C._∘_ D._∘_ } where module C = Category C module D = Category D Bifunctor : Category o ℓ e → Category o′ ℓ′ e′ → Category o″ ℓ″ e″ → Set _ Bifunctor C D E = Functor (Product C D) E private module CC = Category CC open CC infix 4 _≅_ record _≅_ (A B : Obj) : Set (x₂) where field from : A ⇒ B to : B ⇒ A private variable X Y Z W : Obj f g h : X ⇒ Y record Monoidal : Set (x₁ ⊔ x₂ ⊔ x₃) where infixr 10 _⊗₀_ _⊗₁_ field ⊗ : Bifunctor CC CC CC module ⊗ = Functor ⊗ open Functor ⊗ _⊗₀_ : Obj → Obj → Obj _⊗₀_ = curry′ F₀ -- this is also 'curry', but a very-dependent version _⊗₁_ : X ⇒ Y → Z ⇒ W → X ⊗₀ Z ⇒ Y ⊗₀ W f ⊗₁ g = F₁ (f , g) field associator : (X ⊗₀ Y) ⊗₀ Z ≅ X ⊗₀ (Y ⊗₀ Z) module associator {X} {Y} {Z} = _≅_ (associator {X} {Y} {Z}) -- for exporting, it makes sense to use the above long names, but for -- internal consumption, the traditional (short!) categorical names are more -- convenient. However, they are not symmetric, even though the concepts are, so -- we'll use ⇒ and ⇐ arrows to indicate that private α⇒ = associator.from α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z} field assoc-commute-from : CommutativeSquare ((f ⊗₁ g) ⊗₁ h) α⇒ α⇒ (f ⊗₁ (g ⊗₁ h)) assoc-commute-to : CommutativeSquare (f ⊗₁ (g ⊗₁ h)) α⇐ α⇐ ((f ⊗₁ g) ⊗₁ h)
29.412844
311
0.498129
4a55f09bdd1af018bea62646a338e27c696c9252
659
agda
Agda
tests/covered/reflnat.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
3
2015-08-10T15:33:56.000Z
2018-12-06T17:24:25.000Z
tests/covered/reflnat.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
tests/covered/reflnat.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
module reflnat where data ℕ : Set where Z : ℕ S : ℕ -> ℕ _+_ : ℕ -> ℕ -> ℕ n + Z = n n + S m = S (n + m) infixr 10 _+_ infixr 20 _*_ _*_ : ℕ -> ℕ -> ℕ n * Z = Z n * S m = n * m + n data Bool : Set where tt : Bool ff : Bool data ⊤ : Set where true : ⊤ data ⊥ : Set where Atom : Bool -> Set Atom tt = ⊤ Atom ff = ⊥ _==Bool_ : ℕ -> ℕ -> Bool Z ==Bool Z = tt (S n) ==Bool (S m) = n ==Bool m _ ==Bool _ = ff -- Z ==Bool (S _) = ff -- (S _) ==Bool Z = ff _==_ : ℕ -> ℕ -> Set n == m = Atom ( n ==Bool m) Refl : Set Refl = (n : ℕ) -> n == n refl : Refl refl Z = true refl (S n) = refl n
10.983333
32
0.432473
18844cf563d0d89b213cb7833c285e63826dc5ae
678
agda
Agda
test/Fail/RecordConstructorsInErrorMessages.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/RecordConstructorsInErrorMessages.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/RecordConstructorsInErrorMessages.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- This file tests that record constructors are used in error -- messages, if possible. -- Andreas, 2016-07-20 Repaired this long disfunctional test case. module RecordConstructorsInErrorMessages where record R : Set₁ where constructor con field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E postulate A : Set r : R data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x foo : r ≡ record { A = A ; f = λ x → x ; B = A ; C = A ; D = A ; g = λ x _ → x } foo = refl -- EXPECTED ERROR: -- .R.A r != A of type Set -- when checking that the expression refl has type -- r ≡ con (λ x → x) A (λ x _ → x)
18.324324
66
0.547198
dffdcf717e22e73b03b14555c46927f47a63ed60
3,641
agda
Agda
BasicIS4/Metatheory/Gentzen-TarskiOvergluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Metatheory/Gentzen-TarskiOvergluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Metatheory/Gentzen-TarskiOvergluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIS4.Metatheory.Gentzen-TarskiOvergluedGentzen where open import BasicIS4.Syntax.Gentzen public open import BasicIS4.Semantics.TarskiOvergluedGentzen public -- Internalisation of syntax as syntax representation in a particular model. module _ {{_ : Model}} where mutual [_] : ∀ {A Γ} → Γ ⊢ A → Γ [⊢] A [ var i ] = [var] i [ lam t ] = [lam] [ t ] [ app t u ] = [app] [ t ] [ u ] [ multibox ts u ] = [multibox] ([⊢]⋆→[⊢⋆] [ ts ]⋆) [ u ] [ down t ] = [down] [ t ] [ pair t u ] = [pair] [ t ] [ u ] [ fst t ] = [fst] [ t ] [ snd t ] = [snd] [ t ] [ unit ] = [unit] [_]⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ [⊢]⋆ Ξ [_]⋆ {∅} ∙ = ∙ [_]⋆ {Ξ , A} (ts , t) = [ ts ]⋆ , [ t ] -- Soundness with respect to all models, or evaluation. mutual eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ η → let γ′ = mono⊩⋆ η γ in [multicut] (reifyʳ⋆ γ′) [ lam t ] ⅋ λ a → eval t (γ′ , a) eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval (multibox ts u) γ = λ η → let γ′ = mono⊩⋆ η γ in [multicut] (reifyʳ⋆ γ′) [ multibox ts u ] ⅋ eval u (eval⋆ ts γ′) eval (down t) γ = ⟪↓⟫ (eval t γ) eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ eval⋆ {∅} ∙ γ = ∙ eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ Γ P → Γ ⊢ α P ; mono⊩ᵅ = mono⊢ ; _[⊢]_ = _⊢_ ; _[⊢⋆]_ = _⊢⋆_ ; mono[⊢] = mono⊢ ; [var] = var ; [lam] = lam ; [app] = app ; [multibox] = multibox ; [down] = down ; [pair] = pair ; [fst] = fst ; [snd] = snd ; [unit] = unit ; top[⊢⋆] = refl ; pop[⊢⋆] = refl } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t in t′ ⅋ λ a → reflectᶜ (app t′ (reifyᶜ a)) reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t in t′ ⅋ reflectᶜ (down t′) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A reifyᶜ {α P} s = syn s reifyᶜ {A ▻ B} s = syn (s refl⊆) reifyᶜ {□ A} s = syn (s refl⊆) reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s)) reifyᶜ {⊤} s = unit reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reifyᶜ (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
28.445313
81
0.439165
c58baf2e4f66e131d8759e724a44f686fe1fce5e
2,531
agda
Agda
examples/outdated-and-incorrect/Warshall.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Warshall.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Warshall.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Warshall (X : Set) ((≤) : X -> X -> Prop) -- and axioms... where id : {A:Set} -> A -> A id x = x (∘) : {A B C:Set} -> (B -> C) -> (A -> B) -> A -> C f ∘ g = \x -> f (g x) -- Natural numbers -------------------------------------------------------- data Nat : Set where zero : Nat suc : Nat -> Nat (+) : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- Finite sets ------------------------------------------------------------ data Zero : Set where data Suc (A:Set) : Set where fzero_ : Suc A fsuc_ : A -> Suc A mutual data Fin (n:Nat) : Set where finI : Fin_ n -> Fin n Fin_ : Nat -> Set Fin_ zero = Zero Fin_ (suc n) = Suc (Fin n) fzero : {n:Nat} -> Fin (suc n) fzero = finI fzero_ fsuc : {n:Nat} -> Fin n -> Fin (suc n) fsuc i = finI (fsuc_ i) finE : {n:Nat} -> Fin n -> Fin_ n finE (finI i) = i infixr 15 :: -- Vectors ---------------------------------------------------------------- data Nil : Set where nil_ : Nil data Cons (Xs:Set) : Set where cons_ : X -> Xs -> Cons Xs mutual data Vec (n:Nat) : Set where vecI : Vec_ n -> Vec n Vec_ : Nat -> Set Vec_ zero = Nil Vec_ (suc n) = Cons (Vec n) nil : Vec zero nil = vecI nil_ (::) : {n:Nat} -> X -> Vec n -> Vec (suc n) x :: xs = vecI (cons_ x xs) vecE : {n:Nat} -> Vec n -> Vec_ n vecE (vecI xs) = xs vec : (n:Nat) -> X -> Vec n vec zero _ = nil vec (suc n) x = x :: vec n x map : {n:Nat} -> (X -> X) -> Vec n -> Vec n map {zero} f (vecI nil_) = nil map {suc n} f (vecI (cons_ x xs)) = f x :: map f xs (!) : {n:Nat} -> Vec n -> Fin n -> X (!) {suc n} (vecI (cons_ x _ )) (finI fzero_) = x (!) {suc n} (vecI (cons_ _ xs)) (finI (fsuc_ i)) = xs ! i upd : {n:Nat} -> Fin n -> X -> Vec n -> Vec n upd {suc n} (finI fzero_) x (vecI (cons_ _ xs)) = x :: xs upd {suc n} (finI (fsuc_ i)) x (vecI (cons_ y xs)) = y :: upd i x xs tabulate : {n:Nat} -> (Fin n -> X) -> Vec n tabulate {zero} f = nil tabulate {suc n} f = f fzero :: tabulate (\x -> f (fsuc x)) postulate (===) : {n:Nat} -> Vec n -> Vec n -> Prop module Proof (F : {n:Nat} -> Vec n -> Vec n) -- and axioms... where stepF : {n:Nat} -> Fin n -> Vec n -> Vec n stepF i xs = upd i (F xs ! i) xs unsafeF' : {n:Nat} -> Nat -> Vec (suc n) -> Vec (suc n) unsafeF' zero = id unsafeF' (suc m) = unsafeF' m ∘ stepF fzero unsafeF : {n:Nat} -> Vec n -> Vec n unsafeF {zero} = id unsafeF {suc n} = unsafeF' (suc n) thm : {n:Nat} -> (xs:Vec n) -> F xs === unsafeF xs thm = ?
20.917355
75
0.467404
dc491588b6da84ff68e257a3c8ee7d1859c1ac1b
8,147
agda
Agda
Cubical/Foundations/Prelude.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
{- This file proves a variety of basic results about paths: - refl, sym, cong and composition of paths. This is used to set up equational reasoning. - Transport, subst and functional extensionality - J and its computation rule (up to a path) - Σ-types and contractibility of singletons - Converting PathP to and from a homogeneous path with transp - Direct definitions of lower h-levels - Export natural numbers - Export universe lifting -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Prelude where open import Cubical.Core.Primitives public infixr 30 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ -- Basic theory about paths. These proofs should typically be -- inlined. This module also makes equational reasoning work with -- (non-dependent) paths. private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ x y z : A refl : x ≡ x refl {x = x} = λ _ → x sym : x ≡ y → y ≡ x sym p i = p (~ i) symP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ i → A (~ i)) y x symP p j = p (~ j) cong : ∀ (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) cong₂ : ∀ {C : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → C a b) → (p : x ≡ y) → {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v) → PathP (λ i → C (p i) (q i)) (f x u) (f y v) cong₂ f p q i = f (p i) (q i) -- The filler of homogeneous path composition: -- compPath-filler p q = PathP (λ i → x ≡ q i) p (p ∙ q) compPath-filler : ∀ {x y z : A} → x ≡ y → y ≡ z → I → I → A compPath-filler {x = x} p q j i = hfill (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) j _∙_ : x ≡ y → y ≡ z → x ≡ z (p ∙ q) j = compPath-filler p q i1 j -- The filler of heterogeneous path composition: -- compPathP-filler p q = PathP (λ i → PathP (λ j → (compPath-filler (λ i → A i) B i j)) x (q i)) p (compPathP p q) compPathP-filler : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → {B_i1 : Type ℓ} {B : A i1 ≡ B_i1} → {z : B i1} → (p : PathP A x y) → (q : PathP (λ i → B i) y z) → ∀ (i j : I) → compPath-filler (λ i → A i) B j i compPathP-filler {A = A} {x = x} {B = B} p q i = fill (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) compPathP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} → {z : B i1} → (p : PathP A x y) → (q : PathP (λ i → B i) y z) → PathP (λ j → ((λ i → A i) ∙ B) j) x z compPathP p q j = compPathP-filler p q j i1 _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z ≡⟨⟩-syntax : (x : A) → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 2 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y _∎ : (x : A) → x ≡ x _ ∎ = refl -- another definition of composition, useful for some proofs compPath'-filler : ∀ {x y z : A} → x ≡ y → y ≡ z → I → I → A compPath'-filler {z = z} p q j i = hfill (λ j → λ { (i = i0) → p (~ j) ; (i = i1) → z }) (inS (q i)) j _□_ : x ≡ y → y ≡ z → x ≡ z (p □ q) j = compPath'-filler p q i1 j □≡∙ : (p : x ≡ y) (q : y ≡ z) → p □ q ≡ p ∙ q □≡∙ {x = x} {y = y} {z = z} p q i j = hcomp (λ k → \ { (i = i0) → compPath'-filler p q k j ; (i = i1) → compPath-filler p q k j ; (j = i0) → p ( ~ i ∧ ~ k) ; (j = i1) → q (k ∨ ~ i) }) (helper i j) where helper : PathP (λ i → p (~ i) ≡ q (~ i)) q p helper i j = hcomp (λ k → \ { (i = i0) → q (k ∧ j) ; (i = i1) → p (~ k ∨ j) ; (j = i0) → p (~ i ∨ ~ k) ; (j = i1) → q (~ i ∧ k) }) y -- Transport, subst and functional extensionality -- transport is a special case of transp transport : {A B : Type ℓ} → A ≡ B → A → B transport p a = transp (λ i → p i) i0 a -- Transporting in a constant family is the identity function (up to a -- path). If we would have regularity this would be definitional. transportRefl : (x : A) → transport refl x ≡ x transportRefl {A = A} x i = transp (λ _ → A) i x -- We want B to be explicit in subst subst : (B : A → Type ℓ') (p : x ≡ y) → B x → B y subst B p pa = transport (λ i → B (p i)) pa substRefl : (px : B x) → subst B refl px ≡ px substRefl px = transportRefl px funExt : {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p i x = p x i -- J for paths and its computation rule module _ (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where J : (p : x ≡ y) → P y p J p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d JRefl : J refl ≡ d JRefl = transportRefl d -- Contractibility of singletons singl : (a : A) → Type _ singl {A = A} a = Σ[ x ∈ A ] (a ≡ x) contrSingl : (p : x ≡ y) → Path (singl x) (x , refl) (y , p) contrSingl p i = (p i , λ j → p (i ∧ j)) -- Converting to and from a PathP module _ {A : I → Type ℓ} {x : A i0} {y : A i1} where toPathP : transp A i0 x ≡ y → PathP A x y toPathP p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) fromPathP : PathP A x y → transp A i0 x ≡ y fromPathP p i = transp (λ j → A (i ∨ j)) i (p i) -- Direct definitions of lower h-levels isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) Square : ∀{w x y z : A} → (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → Set _ Square p q r s = PathP (λ i → p i ≡ s i) q r isSet' : Type ℓ → Type ℓ isSet' A = {x y z w : A} → (p : x ≡ y) (q : z ≡ w) (r : x ≡ z) (s : y ≡ w) → Square r p q s isGroupoid : Type ℓ → Type ℓ isGroupoid A = ∀ a b → isSet (Path A a b) Cube : ∀{w x y z w' x' y' z' : A} → {p : w ≡ y} {q : w ≡ x} {r : y ≡ z} {s : x ≡ z} → {p' : w' ≡ y'} {q' : w' ≡ x'} {r' : y' ≡ z'} {s' : x' ≡ z'} → {a : w ≡ w'} {b : x ≡ x'} {c : y ≡ y'} {d : z ≡ z'} → (ps : Square a p p' c) (qs : Square a q q' b) → (rs : Square c r r' d) (ss : Square b s s' d) → (f0 : Square p q r s) (f1 : Square p' q' r' s') → Set _ Cube ps qs rs ss f0 f1 = PathP (λ k → Square (ps k) (qs k) (rs k) (ss k)) f0 f1 isGroupoid' : Set ℓ → Set ℓ isGroupoid' A = ∀{w x y z w' x' y' z' : A} → {p : w ≡ y} {q : w ≡ x} {r : y ≡ z} {s : x ≡ z} → {p' : w' ≡ y'} {q' : w' ≡ x'} {r' : y' ≡ z'} {s' : x' ≡ z'} → {a : w ≡ w'} {b : x ≡ x'} {c : y ≡ y'} {d : z ≡ z'} → (fp : Square a p p' c) → (fq : Square a q q' b) → (fr : Square c r r' d) → (fs : Square b s s' d) → (f0 : Square p q r s) → (f1 : Square p' q' r' s') → Cube fp fq fr fs f0 f1 is2Groupoid : Type ℓ → Type ℓ is2Groupoid A = ∀ a b → isGroupoid (Path A a b) -- Essential consequences of isProp and isContr isProp→PathP : ((x : A) → isProp (B x)) → {a0 a1 : A} → (p : a0 ≡ a1) (b0 : B a0) (b1 : B a1) → PathP (λ i → B (p i)) b0 b1 isProp→PathP P p b0 b1 = toPathP (P _ _ _) isProp-PathP-I : ∀ {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → PathP (λ i → B i) b0 b1 isProp-PathP-I hB b0 b1 = toPathP (hB _ _ _) isPropIsContr : isProp (isContr A) isPropIsContr z0 z1 j = ( z0 .snd (z1 .fst) j , λ x i → hcomp (λ k → λ { (i = i0) → z0 .snd (z1 .fst) j ; (i = i1) → z0 .snd x (j ∨ k) ; (j = i0) → z0 .snd x (i ∧ k) ; (j = i1) → z1 .snd x i }) (z0 .snd (z1 .snd x i) j)) isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b i = hcomp (λ j → λ { (i = i0) → p a j ; (i = i1) → p b j }) x isProp→isSet : isProp A → isSet A isProp→isSet h a b p q j i = hcomp (λ k → λ { (i = i0) → h a a k ; (i = i1) → h a b k ; (j = i0) → h a (p i) k ; (j = i1) → h a (q i) k }) a -- Universe lifting record Lift {i j} (A : Type i) : Type (ℓ-max i j) where instance constructor lift field lower : A open Lift public
30.513109
115
0.465202
dfb0dd456cdba86282ec86cd097f024986e81d19
539
agda
Agda
test/Fail/Issue691.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue691.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue691.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-09-07 -- {-# OPTIONS -v tc.polarity:10 -v tc.conv.irr:20 -v tc.conv.elim:25 -v tc.conv.term:10 #-} module Issue691 where open import Common.Equality data Bool : Set where true false : Bool assert : (A : Set) → A → Bool → Bool assert _ _ true = true assert _ _ false = false g : Bool -> Bool -> Bool g x true = true g x false = true unsolved : Bool -> Bool unsolved y = let X : Bool X = _ in assert (g X y ≡ g true y) refl X -- X should be left unsolved istrue : (unsolved false) ≡ true istrue = refl
19.25
92
0.636364
20a60b2e57aea4ad74acca023799635586da693b
1,381
agda
Agda
test/Succeed/Issue892b.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue892b.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue892b.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
-- {-# OPTIONS -v scope:20 #-} module _ (X : Set) where postulate X₁ X₂ : Set data D : Set where d : D module Q (x : D) where module M1 (z : X₁) where g = x module M2 (y : D) (z : X₂) where h = y open M1 public -- module Qd = Q d -- This fails to apply g to d! module QM2d = Q.M2 d d module QM2p (x : D) = Q.M2 x x test-h : X₂ → D test-h = QM2d.h test-g₁ : X₁ → D test-g₁ = QM2d.g test-g₂ : D → X₁ → D test-g₂ = QM2p.g data Nat : Set where zero : Nat suc : Nat → Nat postulate Lift : Nat → Set mkLift : ∀ n → Lift n module TS (T : Nat) where module Lifted (lift : Lift T) where postulate f : Nat record Bla (T : Nat) : Set₁ where module TST = TS T module LT = TST.Lifted (mkLift T) Z : Nat Z = LT.f postulate A : Set module C (X : Set) where postulate cA : X module C′ = C module C′A = C′ A dA' : A → A dA' x = C′A.cA postulate B : Set module TermSubst (X : Set) where module Lifted (Y : Set) where f : Set f = Y record TermLemmas (Z : Set) : Set₁ where module TZ = TermSubst A module TZL = TZ.Lifted B foo : Set foo = TZL.f field Y : Set module NatCore where module NatT (X Y : Set) where Z : Set Z = X → Y module NatTrans (Y : Set) where open NatCore public module NT = NatTrans foo : Set → Set foo X = Eta.Z module Local where module Eta = NT.NatT X X
14.536842
40
0.581463
df86b08059bdd69fcab788dfb4a90c4a502abda4
2,068
agda
Agda
test/Succeed/Issue1796rewrite.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1796rewrite.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1796rewrite.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-04-14 issue 1796 for rewrite -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.size.solve:100 #-} -- {-# OPTIONS -v tc.with.abstract:40 #-} {-# OPTIONS --sized-types #-} open import Common.Size open import Common.Equality data Either (A B : Set) : Set where left : A → Either A B right : B → Either A B either : {A B : Set} → Either A B → ∀{C : Set} → (A → C) → (B → C) → C either (left a) l r = l a either (right b) l r = r b data Nat : Size → Set where zero : ∀{i} → Nat (↑ i) suc : ∀{i} → Nat i → Nat (↑ i) primrec : ∀{ℓ} (C : Size → Set ℓ) → (z : ∀{i} → C i) → (s : ∀{i} → Nat i → C i → C (↑ i)) → ∀{i} → Nat i → C i primrec C z s zero = z primrec C z s (suc n) = s n (primrec C z s n) case : ∀{i} → Nat i → ∀{ℓ} (C : Size → Set ℓ) → (z : ∀{i} → C i) → (s : ∀{i} → Nat i → C (↑ i)) → C i case n C z s = primrec C z (λ n r → s n) n diff : ∀{i} → Nat i → ∀{j} → Nat j → Either (Nat i) (Nat j) diff = primrec (λ i → ∀{j} → Nat j → Either (Nat i) (Nat j)) -- case zero: the second number is bigger and the difference right -- case suc n: (λ{i} n r m → case m (λ j → Either (Nat (↑ i)) (Nat j)) -- subcase zero: the first number (suc n) is bigger and the difference (left (suc n)) -- subcase suc m: recurse on (n,m) r) gcd : ∀{i} → Nat i → ∀{j} → Nat j → Nat ∞ gcd zero m = m gcd (suc n) zero = suc n gcd (suc n) (suc m) = either (diff n m) (λ n' → gcd n' (suc m)) (λ m' → gcd (suc n) m') er : ∀{i} → Nat i → Nat ∞ er zero = zero er (suc n) = suc (er n) diff-diag-erase : ∀{i} (n : Nat i) → diff (er n) (er n) ≡ right zero diff-diag-erase zero = refl diff-diag-erase (suc n) = diff-diag-erase n gcd-diag-erase : ∀{i} (n : Nat i) → gcd (er n) (er n) ≡ er n gcd-diag-erase zero = refl gcd-diag-erase (suc {i} n) rewrite diff-diag-erase n -- Before fix: diff-diag-erase {i} n. -- The {i} was necessary, otherwise rewrite failed -- because an unsolved size var prevented abstraction. | gcd-diag-erase n = refl
28.328767
74
0.527563
c5825c66a10a1320262bb7d98e70f8f205f8bf25
450
agda
Agda
test/Succeed/Issue4638-Cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4638-Cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4638-Cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical --safe #-} open import Agda.Builtin.Cubical.Path open import Agda.Primitive private variable a : Level A B : Set a Is-proposition : Set a → Set a Is-proposition A = (x y : A) → x ≡ y data ∥_∥ (A : Set a) : Set a where ∣_∣ : A → ∥ A ∥ @0 trivial : Is-proposition ∥ A ∥ rec : @0 Is-proposition B → (A → B) → ∥ A ∥ → B rec p f ∣ x ∣ = f x rec p f (trivial x y i) = p (rec p f x) (rec p f y) i
21.428571
53
0.54
0e562ebc662e5ccd02c12a3c649a2dff37803af8
6,384
agda
Agda
Cubical/Algebra/Group/EilenbergMacLane1.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/EilenbergMacLane1.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/EilenbergMacLane1.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.EilenbergMacLane1 where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Base open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Homotopy.Connected open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.Truncation.FromNegOne as Trunc renaming (rec to trRec; elim to trElim) open import Cubical.HITs.EilenbergMacLane1 private variable ℓ : Level module _ (G : Group {ℓ}) where open Group G emloop-id : emloop 0g ≡ refl emloop-id = -- emloop 0g ≡⟨ rUnit (emloop 0g) ⟩ emloop 0g ≡⟨ rUnit (emloop 0g) ⟩ emloop 0g ∙ refl ≡⟨ cong (emloop 0g ∙_) (rCancel (emloop 0g) ⁻¹) ⟩ emloop 0g ∙ (emloop 0g ∙ (emloop 0g) ⁻¹) ≡⟨ ∙assoc _ _ _ ⟩ (emloop 0g ∙ emloop 0g) ∙ (emloop 0g) ⁻¹ ≡⟨ cong (_∙ emloop 0g ⁻¹) ((emloop-comp G 0g 0g) ⁻¹) ⟩ emloop (0g + 0g) ∙ (emloop 0g) ⁻¹ ≡⟨ cong (λ g → emloop {G = G} g ∙ (emloop 0g) ⁻¹) (rid 0g) ⟩ emloop 0g ∙ (emloop 0g) ⁻¹ ≡⟨ rCancel (emloop 0g) ⟩ refl ∎ emloop-inv : (g : Carrier) → emloop (- g) ≡ (emloop g) ⁻¹ emloop-inv g = emloop (- g) ≡⟨ rUnit (emloop (- g)) ⟩ emloop (- g) ∙ refl ≡⟨ cong (emloop (- g) ∙_) (rCancel (emloop g) ⁻¹) ⟩ emloop (- g) ∙ (emloop g ∙ (emloop g) ⁻¹) ≡⟨ ∙assoc _ _ _ ⟩ (emloop (- g) ∙ emloop g) ∙ (emloop g) ⁻¹ ≡⟨ cong (_∙ emloop g ⁻¹) ((emloop-comp G (- g) g) ⁻¹) ⟩ emloop (- g + g) ∙ (emloop g) ⁻¹ ≡⟨ cong (λ h → emloop {G = G} h ∙ (emloop g) ⁻¹) (invl g) ⟩ emloop 0g ∙ (emloop g) ⁻¹ ≡⟨ cong (_∙ (emloop g) ⁻¹) emloop-id ⟩ refl ∙ (emloop g) ⁻¹ ≡⟨ (lUnit ((emloop g) ⁻¹)) ⁻¹ ⟩ (emloop g) ⁻¹ ∎ EM₁Groupoid : isGroupoid (EM₁ G) EM₁Groupoid = emsquash EM₁Connected : isConnected 2 (EM₁ G) EM₁Connected = ∣ embase ∣ , h where h : (y : hLevelTrunc 2 (EM₁ G)) → ∣ embase ∣ ≡ y h = trElim (λ y → isOfHLevelSuc 1 (isOfHLevelTrunc 2 ∣ embase ∣ y)) (elimProp G (λ x → isOfHLevelTrunc 2 ∣ embase ∣ ∣ x ∣) refl) {- since we write composition in diagrammatic order, and function composition in the other order, we need right multiplication here -} rightEquiv : (g : Carrier) → Carrier ≃ Carrier rightEquiv g = isoToEquiv (iso (_+ g) (_+ - g) (λ h → (h + - g) + g ≡⟨ (assoc h (- g) g) ⁻¹ ⟩ h + - g + g ≡⟨ cong (h +_) (invl g) ⟩ h + 0g ≡⟨ rid h ⟩ h ∎) λ h → (h + g) + - g ≡⟨ (assoc h g (- g)) ⁻¹ ⟩ h + g + - g ≡⟨ cong (h +_) (invr g) ⟩ h + 0g ≡⟨ rid h ⟩ h ∎) compRightEquiv : (g h : Carrier) → compEquiv (rightEquiv g) (rightEquiv h) ≡ rightEquiv (g + h) compRightEquiv g h = equivEq _ _ (funExt (λ x → (assoc x g h) ⁻¹)) CodesSet : EM₁ G → hSet ℓ CodesSet = rec G (isOfHLevelTypeOfHLevel 2) (Carrier , is-set) RE REComp where RE : (g : Carrier) → Path (hSet ℓ) (Carrier , is-set) (Carrier , is-set) RE g = Σ≡Prop (λ X → isPropIsOfHLevel {A = X} 2) (ua (rightEquiv g)) lemma₁ : (g h : Carrier) → Square (ua (rightEquiv g)) (ua (rightEquiv (g + h))) refl (ua (rightEquiv h)) lemma₁ g h = invEq (Square≃doubleComp (ua (rightEquiv g)) (ua (rightEquiv (g + h))) refl (ua (rightEquiv h))) (ua (rightEquiv g) ∙ ua (rightEquiv h) ≡⟨ (uaCompEquiv (rightEquiv g) (rightEquiv h)) ⁻¹ ⟩ ua (compEquiv (rightEquiv g) (rightEquiv h)) ≡⟨ cong ua (compRightEquiv g h) ⟩ ua (rightEquiv (g + h)) ∎) lemma₂ : {A₀₀ A₀₁ : hSet ℓ} (p₀₋ : A₀₀ ≡ A₀₁) {A₁₀ A₁₁ : hSet ℓ} (p₁₋ : A₁₀ ≡ A₁₁) (p₋₀ : A₀₀ ≡ A₁₀) (p₋₁ : A₀₁ ≡ A₁₁) (s : Square (cong fst p₀₋) (cong fst p₁₋) (cong fst p₋₀) (cong fst p₋₁)) → Square p₀₋ p₁₋ p₋₀ p₋₁ fst (lemma₂ p₀₋ p₁₋ p₋₀ p₋₁ s i j) = s i j snd (lemma₂ p₀₋ p₁₋ p₋₀ p₋₁ s i j) = isSet→isSetDep (λ X → isProp→isSet (isPropIsOfHLevel {A = X} 2)) (cong fst p₀₋) (cong fst p₁₋) (cong fst p₋₀) (cong fst p₋₁) s (cong snd p₀₋) (cong snd p₁₋) (cong snd p₋₀) (cong snd p₋₁) i j REComp : (g h : Carrier) → Square (RE g) (RE (g + h)) refl (RE h) REComp g h = lemma₂ (RE g) (RE (g + h)) refl (RE h) (lemma₁ g h) Codes : EM₁ G → Type ℓ Codes x = CodesSet x .fst encode : (x : EM₁ G) → embase ≡ x → Codes x encode x p = subst Codes p 0g decode : (x : EM₁ G) → Codes x → embase ≡ x decode = elimSet G (λ x → isOfHLevelΠ 2 (λ c → EM₁Groupoid (embase) x)) emloop lem₂ where module _ (g : Carrier) where lem₁ : (h : Carrier) → PathP (λ i → embase ≡ emloop g i) (emloop h) (emloop (h + g)) lem₁ h = emcomp h g lem₂ : PathP (λ i → Codes (emloop g i) → embase ≡ emloop g i) emloop emloop lem₂ = ua→ {A₀ = Carrier} {A₁ = Carrier} {e = rightEquiv g} lem₁ decode-encode : (x : EM₁ G) (p : embase ≡ x) → decode x (encode x p) ≡ p decode-encode x p = J (λ y q → decode y (encode y q) ≡ q) (emloop (transport refl 0g) ≡⟨ cong emloop (transportRefl 0g) ⟩ emloop 0g ≡⟨ emloop-id ⟩ refl ∎) p encode-decode : (x : EM₁ G) (c : Codes x) → encode x (decode x c) ≡ c encode-decode = elimProp G (λ x → isOfHLevelΠ 1 (λ c → CodesSet x .snd _ _)) λ g → encode embase (decode embase g) ≡⟨ refl ⟩ encode embase (emloop g) ≡⟨ refl ⟩ transport (ua (rightEquiv g)) 0g ≡⟨ uaβ (rightEquiv g) 0g ⟩ 0g + g ≡⟨ lid g ⟩ g ∎ ΩEM₁Iso : Iso (Path (EM₁ G) embase embase) Carrier Iso.fun ΩEM₁Iso = encode embase Iso.inv ΩEM₁Iso = emloop Iso.rightInv ΩEM₁Iso = encode-decode embase Iso.leftInv ΩEM₁Iso = decode-encode embase ΩEM₁≡ : (Path (EM₁ G) embase embase) ≡ Carrier ΩEM₁≡ = isoToPath ΩEM₁Iso
42
101
0.58255
df32481ec7391291f5ef19e7d2140ea00d19bb0a
1,706
agda
Agda
Definition/LogicalRelation/Properties/Universe.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/LogicalRelation/Properties/Universe.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/LogicalRelation/Properties/Universe.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Universe {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped hiding (_∷_) open import Definition.Typed open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Tools.Nat private variable n : Nat Γ : Con Term n -- Helper function for reducible terms of type U for specific type derivations. univEq′ : ∀ {l A} ([U] : Γ ⊩⟨ l ⟩U) → Γ ⊩⟨ l ⟩ A ∷ U / U-intr [U] → Γ ⊩⟨ ⁰ ⟩ A univEq′ (noemb (Uᵣ .⁰ 0<1 ⊢Γ)) (Uₜ A₁ d typeA A≡A [A]) = [A] univEq′ (emb 0<1 x) [A] = univEq′ x [A] -- Reducible terms of type U are reducible types. univEq : ∀ {l A} ([U] : Γ ⊩⟨ l ⟩ U) → Γ ⊩⟨ l ⟩ A ∷ U / [U] → Γ ⊩⟨ ⁰ ⟩ A univEq [U] [A] = univEq′ (U-elim [U]) (irrelevanceTerm [U] (U-intr (U-elim [U])) [A]) -- Helper function for reducible term equality of type U for specific type derivations. univEqEq′ : ∀ {l l′ A B} ([U] : Γ ⊩⟨ l ⟩U) ([A] : Γ ⊩⟨ l′ ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ B ∷ U / U-intr [U] → Γ ⊩⟨ l′ ⟩ A ≡ B / [A] univEqEq′ (noemb (Uᵣ .⁰ 0<1 ⊢Γ)) [A] (Uₜ₌ A₁ B₁ d d′ typeA typeB A≡B [t] [u] [t≡u]) = irrelevanceEq [t] [A] [t≡u] univEqEq′ (emb 0<1 x) [A] [A≡B] = univEqEq′ x [A] [A≡B] -- Reducible term equality of type U is reducible type equality. univEqEq : ∀ {l l′ A B} ([U] : Γ ⊩⟨ l ⟩ U) ([A] : Γ ⊩⟨ l′ ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ B ∷ U / [U] → Γ ⊩⟨ l′ ⟩ A ≡ B / [A] univEqEq [U] [A] [A≡B] = let [A≡B]′ = irrelevanceEqTerm [U] (U-intr (U-elim [U])) [A≡B] in univEqEq′ (U-elim [U]) [A] [A≡B]′
36.297872
87
0.564478
18ee8850dd3be541c6427a92ba88311a3e42ed04
24,693
agda
Agda
SemiLinRE.agda
JoeyEremondi/agda-parikh
1e28103ff7dd1d4f3351ef21397833aa4490b7ea
[ "BSD-3-Clause" ]
null
null
null
SemiLinRE.agda
JoeyEremondi/agda-parikh
1e28103ff7dd1d4f3351ef21397833aa4490b7ea
[ "BSD-3-Clause" ]
null
null
null
SemiLinRE.agda
JoeyEremondi/agda-parikh
1e28103ff7dd1d4f3351ef21397833aa4490b7ea
[ "BSD-3-Clause" ]
null
null
null
{- Joseph Eremondi Utrecht University Capita Selecta UU# 4229924 July 22, 2015 -} module SemiLinRE where open import Data.Vec open import Data.Nat import Data.Fin as Fin open import Data.List import Data.List.All open import Data.Bool open import Data.Char open import Data.Maybe open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Binary.Core open import Category.Monad open import Data.Nat.Properties.Simple open import Data.Maybe open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Utils open import Function import RETypes open import Data.Sum open import SemiLin open import Data.Vec.Equality open import Data.Nat.Properties.Simple module VecNatEq = Data.Vec.Equality.DecidableEquality (Relation.Binary.PropositionalEquality.decSetoid Data.Nat._≟_) --Find the Parikh vector of a given word --Here cmap is the mapping of each character to its position --in the Parikh vector wordParikh : {n : ℕ} -> (Char -> Fin.Fin n) -> (w : List Char) -> Parikh n wordParikh cmap [] = v0 wordParikh cmap (x ∷ w) = (basis (cmap x)) +v (wordParikh cmap w) --Show that the Parikh of concatenating two words --Is the sum of their Parikhs wordParikhPlus : {n : ℕ} -> (cmap : Char -> Fin.Fin n) -> (u : List Char) -> (v : List Char) -> wordParikh cmap (u Data.List.++ v) ≡ (wordParikh cmap u) +v (wordParikh cmap v) wordParikhPlus cmap [] v = sym v0identLeft wordParikhPlus {n} cmap (x ∷ u) v = begin basis (cmap x) +v wordParikh cmap (u ++l v) ≡⟨ cong (λ y → basis (cmap x) +v y) (wordParikhPlus cmap u v) ⟩ basis (cmap x) +v (wordParikh cmap u +v wordParikh cmap v) ≡⟨ sym vAssoc ⟩ ((basis (cmap x) +v wordParikh cmap u) +v wordParikh cmap v ∎) where _++l_ = Data.List._++_ --The algorithm mapping regular expressions to the Parikh set of --the language matched by the RE --We prove this correct below reSemiLin : {n : ℕ} {null? : RETypes.Null?} -> (Char -> Fin.Fin n) -> RETypes.RE null? -> SemiLinSet n reSemiLin cmap RETypes.ε = Data.List.[ v0 , 0 , [] ] reSemiLin cmap RETypes.∅ = [] reSemiLin cmap (RETypes.Lit x) = Data.List.[ basis (cmap x ) , 0 , [] ] reSemiLin cmap (r1 RETypes.+ r2) = reSemiLin cmap r1 Data.List.++ reSemiLin cmap r2 reSemiLin cmap (r1 RETypes.· r2) = reSemiLin cmap r1 +s reSemiLin cmap r2 reSemiLin cmap (r RETypes.*) = starSemiLin (reSemiLin cmap r) {- Show that s* ⊆ s +v s* Not implemented due to time restrictions, but should be possible, given that linStarExtend is implemented in SemiLin.agda -} starExtend : {n : ℕ} -> (v1 v2 : Parikh n ) -> ( s ss : SemiLinSet n) -> ss ≡ starSemiLin s -> InSemiLin v1 s -> InSemiLin v2 ss -> InSemiLin (v1 +v v2) (starSemiLin s) starExtend v1 v2 s ss spf inS inSS = {!!} {- Show that s* ⊇ s +v s* Not completely implemented due to time restrictions, but should be possible, given that linStarDecomp is implemented in SemiLin.agda. There are also some hard parts, for example, dealing with the proofs that the returned vectors are non-zero (otherwise, we'd just trivially return v0 and v) -} starDecomp : {n : ℕ} -> (v : Parikh n) -> (s ss : SemiLinSet n) -> v ≢ v0 -> ss ≡ starSemiLin s -> InSemiLin v ss -> (∃ λ v1 -> ∃ λ v2 -> v1 +v v2 ≡ v × InSemiLin v1 s × InSemiLin v2 ss × v1 ≢ v0 ) starDecomp v s ss vpf spf inSemi = {!!} {- starDecomp v sh st .(sh ∷ st) .((v0 , 0 , []) ∷ starSum sh st ∷ []) vnz refl refl (InHead .v .(v0 , 0 , []) .(starSum sh st ∷ []) x) with emptyCombZero v x | vnz (emptyCombZero v x) starDecomp .v0 sh st .(sh ∷ st) .((v0 , zero , []) ∷ [] Data.List.++ starSum sh st ∷ []) vnz refl refl (InHead .v0 .(v0 , zero , []) .(starSum sh st ∷ []) x) | refl | () starDecomp v sh [] .(sh ∷ []) .((v0 , 0 , []) ∷ (proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) vnz refl refl (InTail .v .(v0 , 0 , []) .((proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) (InHead .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] starComb)) with linStarDecomp v sh _ vnz {!!} refl starComb starDecomp v sh [] .(sh ∷ []) .((v0 , zero , []) ∷ [] Data.List.++ starSum sh [] ∷ []) vnz refl refl (InTail .v .(v0 , zero , []) .(starSum sh [] ∷ []) (InHead .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] starComb)) | inj₁ lComb = v , v0 , v0identRight , InHead v sh [] lComb , InHead v0 (v0 , zero , []) _ (v0 , refl) , vnz starDecomp v sh [] .(sh ∷ []) .((v0 , zero , []) ∷ [] Data.List.++ starSum sh [] ∷ []) vnz refl refl (InTail .v .(v0 , zero , []) .(starSum sh [] ∷ []) (InHead .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] starComb)) | inj₂ (v1 , v2 , sumPf , comb1 , comb2 , zpf ) = v1 , v2 , sumPf , InHead v1 sh [] comb1 , InTail v2 (v0 , zero , []) _ (InHead v2 _ [] comb2) , zpf starDecomp v sh [] .(sh ∷ []) .((v0 , 0 , []) ∷ (proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) vnz refl refl (InTail .v .(v0 , 0 , []) .((proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) (InTail .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] ())) starDecomp v sh (x ∷ st) .(sh ∷ x ∷ st) .((v0 , 0 , []) ∷ (proj₁ x +v proj₁ (starSum sh st) , suc (proj₁ (proj₂ x) + proj₁ (proj₂ (starSum sh st))) , proj₁ x ∷ proj₂ (proj₂ x) Data.Vec.++ proj₂ (proj₂ (starSum sh st))) ∷ []) vnz refl refl (InTail .v .(v0 , 0 , []) .((proj₁ x +v proj₁ (starSum sh st) , suc (proj₁ (proj₂ x) + proj₁ (proj₂ (starSum sh st))) , proj₁ x ∷ proj₂ (proj₂ x) Data.Vec.++ proj₂ (proj₂ (starSum sh st))) ∷ []) inSemi) = {!!} -} --Stolen from the stdlib listIdentity : {A : Set} -> (x : List A) -> (x Data.List.++ [] ) ≡ x listIdentity [] = refl listIdentity (x ∷ xs) = cong (_∷_ x) (listIdentity xs) {- Show that +s is actually the sum of two sets, that is, if v1 is in S1, and v2 is in S2, then v1 +v v2 is in S1 +s S2 -} sumPreserved : {n : ℕ} -> (u : Parikh n) -> (v : Parikh n) -- -> (uv : Parikh n) -> (su : SemiLinSet n) -> (sv : SemiLinSet n) -- -> (suv : SemiLinSet n) -- -> (uv ≡ u +v v) -- -> (suv ≡ su +s sv) -> InSemiLin u su -> InSemiLin v sv -> InSemiLin (u +v v) (su +s sv) sumPreserved u v .((ub , um , uvecs) ∷ st) .((vb , vm , vvecs) ∷ st₁) (InHead .u (ub , um , uvecs) st (uconsts , upf)) (InHead .v (vb , vm , vvecs) st₁ (vconsts , vpf)) rewrite upf | vpf = InHead (u +v v) (ub +v vb , um + vm , uvecs Data.Vec.++ vvecs) (Data.List.map (_+l_ (ub , um , uvecs)) st₁ Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map (λ z → z +l (vb , vm , vvecs) ∷ Data.List.map (_+l_ z) st₁) st)) ((uconsts Data.Vec.++ vconsts) , trans (combSplit ub vb um vm uvecs vvecs uconsts vconsts) (sym (subst (λ x → u +v v ≡ x +v applyLinComb vb vm vvecs vconsts) (sym upf) (cong (λ x → u +v x) (sym vpf)))) ) sumPreserved u v .(sh ∷ st) .(sh₁ ∷ st₁) (InHead .u sh st x) (InTail .v sh₁ st₁ vIn) = let subCall1 : InSemiLin (u +v v) ((sh ∷ []) +s st₁) subCall1 = sumPreserved u v (sh ∷ []) ( st₁) (InHead u sh [] x) vIn eqTest : (sh ∷ []) +s ( st₁) ≡ Data.List.map (λ l2 → sh +l l2) st₁ eqTest = begin (sh ∷ []) +s (st₁) ≡⟨ refl ⟩ Data.List.map (λ l2 → sh +l l2) ( st₁) Data.List.++ [] ≡⟨ listIdentity (Data.List.map (_+l_ sh) st₁) ⟩ Data.List.map (λ l2 → sh +l l2) (st₁) ≡⟨ refl ⟩ (Data.List.map (λ l2 → sh +l l2) st₁ ∎) newCall = slExtend (u +v v) (Data.List.map (_+l_ sh) st₁) (subst (InSemiLin (u +v v)) eqTest subCall1) (sh +l sh₁) -- in slConcatRight (u +v v) (Data.List.map (λ l2 → sh +l l2) (sh₁ ∷ st₁)) newCall (Data.List.foldr Data.List._++_ [] (Data.List.map (λ z → z +l sh₁ ∷ Data.List.map (_+l_ z) st₁) st)) sumPreserved u v .(sh ∷ st) sv (InTail .u sh st uIn) vIn = (slConcatLeft (u +v v) (st +s sv) (sumPreserved u v st sv uIn vIn) (Data.List.map (λ x → sh +l x) sv)) --A useful lemma, avoids having to dig into the List monoid instance rightCons : {A : Set} -> (l : List A) -> (l Data.List.++ [] ≡ l) rightCons [] = refl rightCons (x ∷ l) rewrite rightCons l = refl {- Show that, if a vector is in the union of two semi-linear sets, then it must be in one of those sets. Used in the proof for Union. Called concat because we represent semi-linear sets as lists, so union is just concatenating two semi-linear sets -} decomposeConcat : {n : ℕ} -> (v : Parikh n) -> (s1 s2 s3 : SemiLinSet n) -> (s3 ≡ s1 Data.List.++ s2 ) -> InSemiLin v s3 -> InSemiLin v s1 ⊎ InSemiLin v s2 decomposeConcat v [] s2 .s2 refl inSemi = inj₂ inSemi decomposeConcat v (x ∷ s1) s2 .(x ∷ s1 Data.List.++ s2) refl (InHead .v .x .(s1 Data.List.++ s2) x₁) = inj₁ (InHead v x s1 x₁) decomposeConcat v (x ∷ s1) s2 .(x ∷ s1 Data.List.++ s2) refl (InTail .v .x .(s1 Data.List.++ s2) inSemi) with decomposeConcat v s1 s2 _ refl inSemi decomposeConcat v (x₁ ∷ s1) s2 .(x₁ ∷ s1 Data.List.++ s2) refl (InTail .v .x₁ .(s1 Data.List.++ s2) inSemi) | inj₁ x = inj₁ (InTail v x₁ s1 x) decomposeConcat v (x ∷ s1) s2 .(x ∷ s1 Data.List.++ s2) refl (InTail .v .x .(s1 Data.List.++ s2) inSemi) | inj₂ y = inj₂ y concatEq : {n : ℕ} -> (l : LinSet n) -> (s : SemiLinSet n) -> (l ∷ []) +s s ≡ (Data.List.map (_+l_ l) s) concatEq l [] = refl concatEq l (x ∷ s) rewrite concatEq l s | listIdentity (l ∷ []) = refl {- Show that if v is in l1 +l l2, then v = v1 +v v2 for some v1 in l1 and v2 in l2. This is the other half of the correcness proof of our sum functions, +l and +s -} decomposeLin : {n : ℕ} -> (v : Parikh n) -> (l1 l2 l3 : LinSet n) -> (l3 ≡ l1 +l l2 ) -> LinComb v l3 -> ∃ λ v1 → ∃ λ v2 -> (v1 +v v2 ≡ v) × (LinComb v1 l1) × (LinComb v2 l2 ) decomposeLin .(applyLinComb (b1 +v b2) (m1 + m2) (vecs1 Data.Vec.++ vecs2) coeffs) (b1 , m1 , vecs1) (b2 , m2 , vecs2) .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) refl (coeffs , refl) with Data.Vec.splitAt m1 coeffs decomposeLin .(applyLinComb (b1 +v b2) (m1 + m2) (vecs1 Data.Vec.++ vecs2) (coeffs1 Data.Vec.++ coeffs2)) (b1 , m1 , vecs1) (b2 , m2 , vecs2) .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) refl (.(coeffs1 Data.Vec.++ coeffs2) , refl) | coeffs1 , coeffs2 , refl rewrite combSplit b1 b2 m1 m2 vecs1 vecs2 coeffs1 coeffs2 = applyLinComb b1 m1 vecs1 coeffs1 , (applyLinComb b2 m2 vecs2 coeffs2 , (refl , ((coeffs1 , refl) , (coeffs2 , refl)))) {- Show that our Parikh function is a superset of the actual Parikh image of a Regular Expression. We do this by showing that, for every word matching an RE, its Parikh vector is in the Parikh Image of the RE -} reParikhCorrect : {n : ℕ} -> {null? : RETypes.Null?} -> (cmap : Char -> Fin.Fin n) -> (r : RETypes.RE null?) -> (w : List Char ) -> RETypes.REMatch w r -> (wordPar : Parikh n) -> (wordParikh cmap w ≡ wordPar) -> (langParikh : SemiLinSet n) -> (langParikh ≡ reSemiLin cmap r ) -> (InSemiLin wordPar langParikh ) reParikhCorrect cmap .RETypes.ε .[] RETypes.EmptyMatch .v0 refl .((v0 , 0 , []) ∷ []) refl = InHead v0 (v0 , zero , []) [] ([] , refl) reParikhCorrect cmap .(RETypes.Lit c) .(c ∷ []) (RETypes.LitMatch c) .(basis (cmap c) +v v0) refl .((basis (cmap c) , 0 , []) ∷ []) refl = InHead (basis (cmap c) +v v0) (basis (cmap c) , zero , []) [] (subst (λ x → LinComb x (basis (cmap c) , zero , [])) (sym v0identRight) (v0 , (v0apply (basis (cmap c)) []))) reParikhCorrect cmap (r1 RETypes.+ .r2) w (RETypes.LeftPlusMatch r2 match) wordPar wpf langParikh lpf = let leftParikh = reSemiLin cmap r1 leftInSemi = reParikhCorrect cmap r1 w match wordPar wpf leftParikh refl --Idea: show that langParikh is leftParikh ++ rightParikh --And that this means that it must be in the concatentation extendToConcat : InSemiLin wordPar ((reSemiLin cmap r1 ) Data.List.++ (reSemiLin cmap r2)) extendToConcat = slConcatRight wordPar (reSemiLin cmap r1) leftInSemi (reSemiLin cmap r2) in subst (λ x → InSemiLin wordPar x) (sym lpf) extendToConcat reParikhCorrect cmap (.r1 RETypes.+ r2) w (RETypes.RightPlusMatch r1 match) wordPar wpf langParikh lpf = let rightParikh = reSemiLin cmap r2 rightInSemi = reParikhCorrect cmap r2 w match wordPar wpf rightParikh refl --Idea: show that langParikh is leftParikh ++ rightParikh --And that this means that it must be in the concatentation extendToConcat : InSemiLin wordPar ((reSemiLin cmap r1 ) Data.List.++ (reSemiLin cmap r2)) extendToConcat = slConcatLeft wordPar (reSemiLin cmap r2) rightInSemi (reSemiLin cmap r1) in subst (λ x → InSemiLin wordPar x) (sym lpf) extendToConcat reParikhCorrect cmap (r1 RETypes.· r2) s3 (RETypes.ConcatMatch {s1 = s1} {s2 = s2} {spf = spf} match1 match2) .(wordParikh cmap s3) refl ._ refl rewrite (sym spf) | (wordParikhPlus cmap s1 s2) = let leftParikh = reSemiLin cmap r1 leftInSemi : InSemiLin (wordParikh cmap s1) leftParikh leftInSemi = reParikhCorrect cmap r1 s1 match1 (wordParikh cmap s1) refl (reSemiLin cmap r1) refl rightParikh = reSemiLin cmap r2 rightInSemi : InSemiLin (wordParikh cmap s2) rightParikh rightInSemi = reParikhCorrect cmap r2 s2 match2 (wordParikh cmap s2) refl (reSemiLin cmap r2) refl wordParikhIsPlus : (wordParikh cmap s1) +v (wordParikh cmap s2) ≡ (wordParikh cmap (s1 Data.List.++ s2 )) wordParikhIsPlus = sym (wordParikhPlus cmap s1 s2) in sumPreserved (wordParikh cmap s1) (wordParikh cmap s2) leftParikh rightParikh leftInSemi rightInSemi reParikhCorrect cmap (r RETypes.*) [] RETypes.EmptyStarMatch .v0 refl .(starSemiLin (reSemiLin cmap r)) refl = zeroInStar (reSemiLin cmap r) (starSemiLin (reSemiLin cmap r)) refl reParikhCorrect cmap (r RETypes.*) .(s1 Data.List.++ s2 ) (RETypes.StarMatch {s1 = s1} {s2 = s2} {spf = refl} m1 m2) ._ refl .(starSemiLin (reSemiLin cmap r)) refl rewrite wordParikhPlus cmap s1 s2 = starExtend (wordParikh cmap s1) (wordParikh cmap s2) (reSemiLin cmap r) _ refl (reParikhCorrect cmap r s1 m1 (wordParikh cmap s1) refl (reSemiLin cmap r) refl) (reParikhCorrect cmap (r RETypes.*) s2 m2 (wordParikh cmap s2) refl (starSemiLin (reSemiLin cmap r)) refl) {- Show that if v is in s1 +s s2, then v = v1 +v v2 for some v1 in s1 and v2 in s2. This is the other half of the correcness proof of our sum functions, +l and +s -} decomposeSum : {n : ℕ} -> (v : Parikh n) -> (s1 s2 s3 : SemiLinSet n) -> (s3 ≡ s1 +s s2 ) -> InSemiLin v s3 -> ∃ λ (v1 : Parikh n) → ∃ λ (v2 : Parikh n) -> (v1 +v v2 ≡ v) × (InSemiLin v1 s1) × (InSemiLin v2 s2 ) decomposeSum v [] [] .[] refl () decomposeSum v [] (x ∷ s2) .[] refl () decomposeSum v (x ∷ s1) [] .(Data.List.foldr Data.List._++_ [] (Data.List.map (λ l1 → []) s1)) refl () decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) ._ refl (InHead .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) ._ lcomb) = let (v1 , v2 , plusPf , comb1 , comb2 ) = decomposeLin v (b1 , m1 , vecs1) (b2 , m2 , vecs2) (b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) refl lcomb in v1 , v2 , plusPf , InHead v1 (b1 , m1 , vecs1) s1 comb1 , InHead v2 (b2 , m2 , vecs2) s2 comb2 decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) ._ refl (InTail .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) ._ inSemi) with decomposeConcat v (Data.List.map (_+l_ (b1 , m1 , vecs1)) s2) (Data.List.foldr Data.List._++_ [] (Data.List.map (λ z → z +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ z) s2) s1)) (Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map (λ z → z +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ z) s2) s1)) refl inSemi decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) .((b1 , m1 , vecs1) +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) refl (InTail .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) .(Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) inSemi) | inj₁ inSub = let subCall1 = decomposeSum v ((b1 , m1 , vecs1) ∷ []) s2 _ refl (subst (λ x → InSemiLin v x) (sym (concatEq (b1 , m1 , vecs1) s2)) inSub) v1 , v2 , pf , xIn , yIn = subCall1 in v1 , (v2 , (pf , (slCons v1 s1 (b1 , m1 , vecs1) xIn , slExtend v2 s2 yIn (b2 , m2 , vecs2)))) decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) .((b1 , m1 , vecs1) +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) refl (InTail .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) .(Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) inSemi) | inj₂ inSub = let subCall1 = decomposeSum v s1 ((b2 , m2 , vecs2) ∷ s2) _ refl inSub v1 , v2 , pf , xIn , yIn = subCall1 in v1 , v2 , pf , slExtend v1 s1 xIn (b1 , m1 , vecs1) , yIn {- Show that the generated Parikh image is a subset of the actual Parikh image. We do this by showing that, for every vector in the generated Parikh image, there's some word matched by the RE whose Parikh vector is that vector. -} --We have to convince the compiler that this is terminating --Since I didn't have time to implement the proofs of non-zero vectors --Which show that we only recurse on strictly smaller vectors in the Star case {-# TERMINATING #-} reParikhComplete : {n : ℕ} -> {null? : RETypes.Null?} -> (cmap : Char -> Fin.Fin n) -- -> (imap : Fin.Fin n -> Char) -- -> (invPf1 : (x : Char ) -> imap (cmap x) ≡ x) -- -> (invPf2 : (x : Fin.Fin n ) -> cmap (imap x) ≡ x ) -> (r : RETypes.RE null?) -> (v : Parikh n ) -> (langParikh : SemiLinSet n) -> langParikh ≡ (reSemiLin cmap r ) -> (InSemiLin v langParikh ) -> ∃ (λ w -> (v ≡ wordParikh cmap w) × (RETypes.REMatch w r) ) reParikhComplete cmap RETypes.ε .v0 .((v0 , 0 , []) ∷ []) refl (InHead .v0 .(v0 , 0 , []) .[] (combConsts , refl)) = [] , refl , RETypes.EmptyMatch reParikhComplete cmap RETypes.ε v .((v0 , 0 , []) ∷ []) refl (InTail .v .(v0 , 0 , []) .[] ()) --reParikhComplete cmap RETypes.ε v .(sh ∷ st) lpf (InTail .v sh st inSemi) = {!!} reParikhComplete cmap RETypes.∅ v [] lpf () reParikhComplete cmap RETypes.∅ v (h ∷ t) () inSemi reParikhComplete cmap (RETypes.Lit x) langParikh [] inSemi () reParikhComplete cmap (RETypes.Lit x) .(basis (cmap x)) .((basis (cmap x) , 0 , []) ∷ []) refl (InHead .(basis (cmap x)) .(basis (cmap x) , 0 , []) .[] (consts , refl)) = (x ∷ []) , (sym v0identRight , RETypes.LitMatch x) reParikhComplete cmap (RETypes.Lit x) v .((basis (cmap x) , 0 , []) ∷ []) refl (InTail .v .(basis (cmap x) , 0 , []) .[] ()) --reParikhComplete cmap (RETypes.Lit x) v .((basis (cmap x) , 0 , []) ∷ []) refl (InTail .v .(basis (cmap x) , 0 , []) .[] ()) reParikhComplete {null? = null?} cmap (r1 RETypes.+ r2) v langParikh lpf inSemi with decomposeConcat v (reSemiLin cmap r1) (reSemiLin cmap r2) langParikh lpf inSemi ... | inj₁ in1 = let (subw , subPf , subMatch) = reParikhComplete cmap r1 v (reSemiLin cmap r1) refl in1 in subw , (subPf , (RETypes.LeftPlusMatch r2 subMatch)) ... | inj₂ in2 = let (subw , subPf , subMatch) = reParikhComplete cmap r2 v (reSemiLin cmap r2) refl in2 in subw , (subPf , (RETypes.RightPlusMatch r1 subMatch)) reParikhComplete cmap (r1 RETypes.· r2) v ._ refl inSemi with decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2) (reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi | reParikhComplete cmap r1 (proj₁ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2) (reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi)) (reSemiLin cmap r1) refl (proj₁ (proj₂ (proj₂ (proj₂ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2) (reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi))))) | reParikhComplete cmap r2 (proj₁ (proj₂ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2) (reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi))) (reSemiLin cmap r2) refl (proj₂ (proj₂ (proj₂ (proj₂ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2) (reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi))))) reParikhComplete cmap (r1 RETypes.· r2) .(wordParikh cmap w1 +v wordParikh cmap w2) .(Data.List.foldr Data.List._++_ [] (Data.List.map _ (reSemiLin cmap r1))) refl inSemi | .(wordParikh cmap w1) , .(wordParikh cmap w2) , refl , inSemi1 , inSemi2 | w1 , refl , match1 | w2 , refl , match2 = (w1 Data.List.++ w2) , ((sym (wordParikhPlus cmap w1 w2)) , (RETypes.ConcatMatch match1 match2)) reParikhComplete cmap (r RETypes.*) v langParikh lpf inSemi with (reSemiLin cmap r ) reParikhComplete cmap (r RETypes.*) v .((v0 , 0 , []) ∷ []) refl (InHead .v .(v0 , 0 , []) .[] x) | [] = [] , ((sym (proj₂ x)) , RETypes.EmptyStarMatch) reParikhComplete cmap (r RETypes.*) v .((v0 , 0 , []) ∷ []) refl (InTail .v .(v0 , 0 , []) .[] ()) | [] reParikhComplete cmap (r RETypes.*) v .((v0 , 0 , []) ∷ starSum x rsl ∷ []) refl inSemi | x ∷ rsl = let --The first hole is the non-zero proofs that I couldn't work out --I'm not totally sure about the second, but I think I just need to apply some associativity to inSemi to get it to fit --into the second hole. splitVec = starDecomp v (reSemiLin cmap r) _ {!!} refl {!!} v1 , v2 , vpf , inS , inSS , _ = splitVec subCall1 = reParikhComplete cmap r v1 _ refl inS w1 , wpf1 , match = subCall1 subCall2 = reParikhComplete cmap (r RETypes.*) v2 _ refl inSS w2 , wpf2 , match2 = subCall2 in (w1 Data.List.++ w2) , (trans (sym vpf) (sym (wordParikhPlus cmap w1 w2)) , RETypes.StarMatch match match2)
60.226829
590
0.553922
230581f6984d3aa2d3b109a078ec9fa2d7b8bb0f
488
agda
Agda
agda/TreeSort/Impl1.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/TreeSort/Impl1.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/TreeSort/Impl1.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module TreeSort.Impl1 {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import BTree {A} open import Data.List open import Data.Sum insert : A → BTree → BTree insert x leaf = node x leaf leaf insert x (node y l r) with tot≤ x y ... | inj₁ x≤y = node y (insert x l) r ... | inj₂ y≤x = node y l (insert x r) treeSort : List A → BTree treeSort [] = leaf treeSort (x ∷ xs) = insert x (treeSort xs)
19.52
43
0.586066
0e640b3a95da81aef38c6c3894038523065ffc3a
24,698
agda
Agda
src/bijection.agda
shinji-kono/HyperReal-in-agda
64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891
[ "MIT" ]
null
null
null
src/bijection.agda
shinji-kono/HyperReal-in-agda
64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891
[ "MIT" ]
null
null
null
src/bijection.agda
shinji-kono/HyperReal-in-agda
64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891
[ "MIT" ]
null
null
null
module bijection where open import Level renaming ( zero to Zero ; suc to Suc ) open import Data.Nat open import Data.Maybe open import Data.List hiding ([_] ; sum ) open import Data.Nat.Properties open import Relation.Nullary open import Data.Empty open import Data.Unit hiding ( _≤_ ) open import Relation.Binary.Core hiding (_⇔_) open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality open import logic open import nat -- record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where -- field -- fun← : S → R -- fun→ : R → S -- fiso← : (x : R) → fun← ( fun→ x ) ≡ x -- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x -- -- injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) -- injection R S f = (x y : R) → f x ≡ f y → x ≡ y open Bijection bi-trans : {n m l : Level} (R : Set n) (S : Set m) (T : Set l) → Bijection R S → Bijection S T → Bijection R T bi-trans R S T rs st = record { fun← = λ x → fun← rs ( fun← st x ) ; fun→ = λ x → fun→ st ( fun→ rs x ) ; fiso← = λ x → trans (cong (λ k → fun← rs k) (fiso← st (fun→ rs x))) ( fiso← rs x) ; fiso→ = λ x → trans (cong (λ k → fun→ st k) (fiso→ rs (fun← st x))) ( fiso→ st x) } bid : {n : Level} (R : Set n) → Bijection R R bid {n} R = record { fun← = λ x → x ; fun→ = λ x → x ; fiso← = λ _ → refl ; fiso→ = λ _ → refl } bi-sym : {n m : Level} (R : Set n) (S : Set m) → Bijection R S → Bijection S R bi-sym R S eq = record { fun← = fun→ eq ; fun→ = fun← eq ; fiso← = fiso→ eq ; fiso→ = fiso← eq } open import Relation.Binary.Structures bijIsEquivalence : {n : Level } → IsEquivalence (Bijection {n} {n}) bijIsEquivalence = record { refl = λ {R} → bid R ; sym = λ {R} {S} → bi-sym R S ; trans = λ {R} {S} {T} → bi-trans R S T } -- ¬ A = A → ⊥ -- -- famous diagnostic function -- diag : {S : Set } (b : Bijection ( S → Bool ) S) → S → Bool diag b n = not (fun← b n n) diagonal : { S : Set } → ¬ Bijection ( S → Bool ) S diagonal {S} b = diagn1 (fun→ b (λ n → diag b n) ) refl where diagn1 : (n : S ) → ¬ (fun→ b (λ n → diag b n) ≡ n ) diagn1 n dn = ¬t=f (diag b n ) ( begin not (diag b n) ≡⟨⟩ not (not fun← b n n) ≡⟨ cong (λ k → not (k n) ) (sym (fiso← b _)) ⟩ not (fun← b (fun→ b (diag b)) n) ≡⟨ cong (λ k → not (fun← b k n) ) dn ⟩ not (fun← b n n) ≡⟨⟩ diag b n ∎ ) where open ≡-Reasoning b1 : (b : Bijection ( ℕ → Bool ) ℕ) → ℕ b1 b = fun→ b (diag b) b-iso : (b : Bijection ( ℕ → Bool ) ℕ) → fun← b (b1 b) ≡ (diag b) b-iso b = fiso← b _ -- -- ℕ <=> ℕ + 1 -- to1 : {n : Level} {R : Set n} → Bijection ℕ R → Bijection ℕ (⊤ ∨ R ) to1 {n} {R} b = record { fun← = to11 ; fun→ = to12 ; fiso← = to13 ; fiso→ = to14 } where to11 : ⊤ ∨ R → ℕ to11 (case1 tt) = 0 to11 (case2 x) = suc ( fun← b x ) to12 : ℕ → ⊤ ∨ R to12 zero = case1 tt to12 (suc n) = case2 ( fun→ b n) to13 : (x : ℕ) → to11 (to12 x) ≡ x to13 zero = refl to13 (suc x) = cong suc (fiso← b x) to14 : (x : ⊤ ∨ R) → to12 (to11 x) ≡ x to14 (case1 x) = refl to14 (case2 x) = cong case2 (fiso→ b x) open _∧_ record NN ( i : ℕ) (nxn→n : ℕ → ℕ → ℕ) (n→nxn : ℕ → ℕ ∧ ℕ) : Set where field j k sum stage : ℕ nn : j + k ≡ sum ni : i ≡ j + stage -- not used k1 : nxn→n j k ≡ i k0 : n→nxn i ≡ ⟪ j , k ⟫ nn-unique : {j0 k0 : ℕ } → nxn→n j0 k0 ≡ i → ⟪ j , k ⟫ ≡ ⟪ j0 , k0 ⟫ i≤0→i≡0 : {i : ℕ } → i ≤ 0 → i ≡ 0 i≤0→i≡0 {0} z≤n = refl nxn : Bijection ℕ (ℕ ∧ ℕ) nxn = record { fun← = λ p → nxn→n (proj1 p) (proj2 p) ; fun→ = n→nxn ; fiso← = n-id ; fiso→ = λ x → nn-id (proj1 x) (proj2 x) } where nxn→n : ℕ → ℕ → ℕ nxn→n zero zero = zero nxn→n zero (suc j) = j + suc (nxn→n zero j) nxn→n (suc i) zero = suc i + suc (nxn→n i zero) nxn→n (suc i) (suc j) = suc i + suc j + suc (nxn→n i (suc j)) n→nxn : ℕ → ℕ ∧ ℕ n→nxn zero = ⟪ 0 , 0 ⟫ n→nxn (suc i) with n→nxn i ... | ⟪ x , zero ⟫ = ⟪ zero , suc x ⟫ ... | ⟪ x , suc y ⟫ = ⟪ suc x , y ⟫ nxn→n0 : { j k : ℕ } → nxn→n j k ≡ 0 → ( j ≡ 0 ) ∧ ( k ≡ 0 ) nxn→n0 {zero} {zero} eq = ⟪ refl , refl ⟫ nxn→n0 {zero} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (subst (λ k → 0 < k) (+-comm _ k) (s≤s z≤n))) nxn→n0 {(suc j)} {zero} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) nxn→n0 {(suc j)} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) nid20 : (i : ℕ) → i + (nxn→n 0 i) ≡ nxn→n i 0 nid20 zero = refl -- suc (i + (i + suc (nxn→n 0 i))) ≡ suc (i + suc (nxn→n i 0)) nid20 (suc i) = begin suc (i + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (i + k)) (sym (+-assoc i 1 (nxn→n 0 i))) ⟩ suc (i + ((i + 1) + nxn→n 0 i)) ≡⟨ cong (λ k → suc (i + (k + nxn→n 0 i))) (+-comm i 1) ⟩ suc (i + suc (i + nxn→n 0 i)) ≡⟨ cong ( λ k → suc (i + suc k)) (nid20 i) ⟩ suc (i + suc (nxn→n i 0)) ∎ where open ≡-Reasoning nid4 : {i j : ℕ} → i + 1 + j ≡ i + suc j nid4 {zero} {j} = refl nid4 {suc i} {j} = cong suc (nid4 {i} {j} ) nid5 : {i j k : ℕ} → i + suc (suc j) + suc k ≡ i + suc j + suc (suc k ) nid5 {zero} {j} {k} = begin suc (suc j) + suc k ≡⟨ +-assoc 1 (suc j) _ ⟩ 1 + (suc j + suc k) ≡⟨ +-comm 1 _ ⟩ (suc j + suc k) + 1 ≡⟨ +-assoc (suc j) (suc k) _ ⟩ suc j + (suc k + 1) ≡⟨ cong (λ k → suc j + k ) (+-comm (suc k) 1) ⟩ suc j + suc (suc k) ∎ where open ≡-Reasoning nid5 {suc i} {j} {k} = cong suc (nid5 {i} {j} {k} ) -- increment in ths same stage nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nid2 zero zero = refl nid2 zero (suc j) = refl nid2 (suc i) zero = begin suc (nxn→n (suc i) 1) ≡⟨ refl ⟩ suc (suc (i + 1 + suc (nxn→n i 1))) ≡⟨ cong (λ k → suc (suc k)) nid4 ⟩ suc (suc (i + suc (suc (nxn→n i 1)))) ≡⟨ cong (λ k → suc (suc (i + suc (suc k)))) (nid3 i) ⟩ suc (suc (i + suc (suc (i + suc (nxn→n i 0))))) ≡⟨ refl ⟩ nxn→n (suc (suc i)) zero ∎ where open ≡-Reasoning nid3 : (i : ℕ) → nxn→n i 1 ≡ i + suc (nxn→n i 0) nid3 zero = refl nid3 (suc i) = begin suc (i + 1 + suc (nxn→n i 1)) ≡⟨ cong suc nid4 ⟩ suc (i + suc (suc (nxn→n i 1))) ≡⟨ cong (λ k → suc (i + suc (suc k))) (nid3 i) ⟩ suc (i + suc (suc (i + suc (nxn→n i 0)))) ∎ nid2 (suc i) (suc j) = begin suc (nxn→n (suc i) (suc (suc j))) ≡⟨ refl ⟩ suc (suc (i + suc (suc j) + suc (nxn→n i (suc (suc j))))) ≡⟨ cong (λ k → suc (suc (i + suc (suc j) + k))) (nid2 i (suc j)) ⟩ suc (suc (i + suc (suc j) + suc (i + suc j + suc (nxn→n i (suc j))))) ≡⟨ cong ( λ k → suc (suc k)) nid5 ⟩ suc (suc (i + suc j + suc (suc (i + suc j + suc (nxn→n i (suc j)))))) ≡⟨ refl ⟩ nxn→n (suc (suc i)) (suc j) ∎ where open ≡-Reasoning -- increment ths stage nid00 : (i : ℕ) → suc (nxn→n i 0) ≡ nxn→n 0 (suc i) nid00 zero = refl nid00 (suc i) = begin suc (suc (i + suc (nxn→n i 0))) ≡⟨ cong (λ k → suc (suc (i + k ))) (nid00 i) ⟩ suc (suc (i + (nxn→n 0 (suc i)))) ≡⟨ refl ⟩ suc (suc (i + (i + suc (nxn→n 0 i)))) ≡⟨ cong suc (sym ( +-assoc 1 i (i + suc (nxn→n 0 i)))) ⟩ suc ((1 + i) + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (k + (i + suc (nxn→n 0 i)))) (+-comm 1 i) ⟩ suc ((i + 1) + (i + suc (nxn→n 0 i))) ≡⟨ cong suc (+-assoc i 1 (i + suc (nxn→n 0 i))) ⟩ suc (i + suc (i + suc (nxn→n 0 i))) ∎ where open ≡-Reasoning ----- -- -- create the invariant NN for all n -- nn : ( i : ℕ) → NN i nxn→n n→nxn nn zero = record { j = 0 ; k = 0 ; sum = 0 ; stage = 0 ; nn = refl ; ni = refl ; k1 = refl ; k0 = refl ; nn-unique = λ {j0} {k0} eq → cong₂ (λ x y → ⟪ x , y ⟫) (sym (proj1 (nxn→n0 eq))) (sym (proj2 (nxn→n0 {j0} {k0} eq))) } nn (suc i) with NN.k (nn i) | inspect NN.k (nn i) ... | zero | record { eq = eq } = record { k = suc (NN.sum (nn i)) ; j = 0 ; sum = suc (NN.sum (nn i)) ; stage = suc (NN.sum (nn i)) + (NN.stage (nn i)) ; nn = refl ; ni = nn01 ; k1 = nn02 ; k0 = nn03 ; nn-unique = nn04 } where --- --- increment the stage --- sum = NN.sum (nn i) stage = NN.stage (nn i) j = NN.j (nn i) nn01 : suc i ≡ 0 + (suc sum + stage ) nn01 = begin suc i ≡⟨ cong suc (NN.ni (nn i)) ⟩ suc ((NN.j (nn i) ) + stage ) ≡⟨ cong (λ k → suc (k + stage )) (+-comm 0 _ ) ⟩ suc ((NN.j (nn i) + 0 ) + stage ) ≡⟨ cong (λ k → suc ((NN.j (nn i) + k) + stage )) (sym eq) ⟩ suc ((NN.j (nn i) + NN.k (nn i)) + stage ) ≡⟨ cong (λ k → suc ( k + stage )) (NN.nn (nn i)) ⟩ 0 + (suc sum + stage ) ∎ where open ≡-Reasoning nn02 : nxn→n 0 (suc sum) ≡ suc i nn02 = begin sum + suc (nxn→n 0 sum) ≡⟨ sym (+-assoc sum 1 (nxn→n 0 sum)) ⟩ (sum + 1) + nxn→n 0 sum ≡⟨ cong (λ k → k + nxn→n 0 sum ) (+-comm sum 1 )⟩ suc (sum + nxn→n 0 sum) ≡⟨ cong suc (nid20 sum ) ⟩ suc (nxn→n sum 0) ≡⟨ cong (λ k → suc (nxn→n k 0 )) (sym (NN.nn (nn i))) ⟩ suc (nxn→n (NN.j (nn i) + (NN.k (nn i)) ) 0) ≡⟨ cong₂ (λ j k → suc (nxn→n (NN.j (nn i) + j) k )) eq (sym eq) ⟩ suc (nxn→n (NN.j (nn i) + 0 ) (NN.k (nn i))) ≡⟨ cong (λ k → suc ( nxn→n k (NN.k (nn i)))) (+-comm (NN.j (nn i)) 0) ⟩ suc (nxn→n (NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i) ) ⟩ suc i ∎ where open ≡-Reasoning nn03 : n→nxn (suc i) ≡ ⟪ 0 , suc (NN.sum (nn i)) ⟫ -- k0 : n→nxn i ≡ ⟪ NN.j (nn i) = sum , NN.k (nn i) = 0 ⟫ nn03 with n→nxn i | inspect n→nxn i ... | ⟪ x , zero ⟫ | record { eq = eq1 } = begin ⟪ zero , suc x ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (sym (cong proj1 eq1)) ⟩ ⟪ zero , suc (proj1 (n→nxn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (cong proj1 (NN.k0 (nn i))) ⟩ ⟪ zero , suc (NN.j (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (+-comm 0 _ ) ⟩ ⟪ zero , suc (NN.j (nn i) + 0) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc (NN.j (nn i) + k) ⟫ ) (sym eq) ⟩ ⟪ zero , suc (NN.j (nn i) + NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫ ) (NN.nn (nn i)) ⟩ ⟪ 0 , suc sum ⟫ ∎ where open ≡-Reasoning ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 (NN.k0 (nn i)))) (begin suc (NN.k (nn i)) ≡⟨ cong suc eq ⟩ suc 0 ≤⟨ s≤s z≤n ⟩ suc y ≡⟨ sym (cong proj2 eq1) ⟩ proj2 (n→nxn i) ∎ )) where open ≤-Reasoning -- nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nn04 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ 0 , suc (NN.sum (nn i)) ⟫ ≡ ⟪ j0 , k0 ⟫ nn04 {zero} {suc k0} eq1 = cong (λ k → ⟪ 0 , k ⟫ ) (cong suc (sym nn08)) where -- eq : nxn→n zero (suc k0) ≡ suc i -- nn07 : nxn→n k0 0 ≡ i nn07 = cong pred ( begin suc ( nxn→n k0 0 ) ≡⟨ nid00 k0 ⟩ nxn→n 0 (suc k0 ) ≡⟨ eq1 ⟩ suc i ∎ ) where open ≡-Reasoning nn08 : k0 ≡ sum nn08 = begin k0 ≡⟨ cong proj1 (sym (NN.nn-unique (nn i) nn07)) ⟩ NN.j (nn i) ≡⟨ +-comm 0 _ ⟩ NN.j (nn i) + 0 ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NN.nn (nn i) ⟩ sum ∎ where open ≡-Reasoning nn04 {suc j0} {k0} eq1 = ⊥-elim ( nat-≡< (cong proj2 (nn06 nn05)) (subst (λ k → k < suc k0) (sym eq) (s≤s z≤n))) where nn05 : nxn→n j0 (suc k0) ≡ i nn05 = begin nxn→n j0 (suc k0) ≡⟨ cong pred ( begin suc (nxn→n j0 (suc k0)) ≡⟨ nid2 j0 k0 ⟩ nxn→n (suc j0) k0 ≡⟨ eq1 ⟩ suc i ∎ ) ⟩ i ∎ where open ≡-Reasoning nn06 : nxn→n j0 (suc k0) ≡ i → ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn06 = NN.nn-unique (nn i) ... | suc k | record {eq = eq} = record { k = k ; j = suc (NN.j (nn i)) ; sum = NN.sum (nn i) ; stage = NN.stage (nn i) ; nn = nn10 ; ni = cong suc (NN.ni (nn i)) ; k1 = nn11 ; k0 = nn12 ; nn-unique = nn13 } where --- --- increment in a stage --- nn10 : suc (NN.j (nn i)) + k ≡ NN.sum (nn i) nn10 = begin suc (NN.j (nn i)) + k ≡⟨ cong (λ x → x + k) (+-comm 1 _) ⟩ (NN.j (nn i) + 1) + k ≡⟨ +-assoc (NN.j (nn i)) 1 k ⟩ NN.j (nn i) + suc k ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NN.nn (nn i) ⟩ NN.sum (nn i) ∎ where open ≡-Reasoning nn11 : nxn→n (suc (NN.j (nn i))) k ≡ suc i -- nxn→n ( NN.j (nn i)) (NN.k (nn i) ≡ i nn11 = begin nxn→n (suc (NN.j (nn i))) k ≡⟨ sym (nid2 (NN.j (nn i)) k) ⟩ suc (nxn→n (NN.j (nn i)) (suc k)) ≡⟨ cong (λ k → suc (nxn→n (NN.j (nn i)) k)) (sym eq) ⟩ suc (nxn→n ( NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i)) ⟩ suc i ∎ where open ≡-Reasoning nn18 : zero < NN.k (nn i) nn18 = subst (λ k → 0 < k ) ( begin suc k ≡⟨ sym eq ⟩ NN.k (nn i) ∎ ) (s≤s z≤n ) where open ≡-Reasoning nn12 : n→nxn (suc i) ≡ ⟪ suc (NN.j (nn i)) , k ⟫ -- n→nxn i ≡ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ nn12 with n→nxn i | inspect n→nxn i ... | ⟪ x , zero ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 eq1)) (subst (λ k → 0 < k ) ( begin suc k ≡⟨ sym eq ⟩ NN.k (nn i) ≡⟨ cong proj2 (sym (NN.k0 (nn i)) ) ⟩ proj2 (n→nxn i) ∎ ) (s≤s z≤n )) ) where open ≡-Reasoning -- eq1 n→nxn i ≡ ⟪ x , zero ⟫ ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = begin -- n→nxn i ≡ ⟪ x , suc y ⟫ ⟪ suc x , y ⟫ ≡⟨ refl ⟩ ⟪ suc x , pred (suc y) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin ⟪ x , suc y ⟫ ≡⟨ sym eq1 ⟩ n→nxn i ≡⟨ NN.k0 (nn i) ⟩ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ∎ ) ⟩ ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (NN.j (nn i)) , pred k ⟫) eq ⟩ ⟪ suc (NN.j (nn i)) , k ⟫ ∎ where open ≡-Reasoning nn13 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ suc (NN.j (nn i)) , k ⟫ ≡ ⟪ j0 , k0 ⟫ nn13 {zero} {suc k0} eq1 = ⊥-elim ( nat-≡< (sym (cong proj2 nn17)) nn18 ) where -- (nxn→n zero (suc k0)) ≡ suc i nn16 : nxn→n k0 zero ≡ i nn16 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid00 k0 )) eq1 ) nn17 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ k0 , zero ⟫ nn17 = NN.nn-unique (nn i) nn16 nn13 {suc j0} {k0} eq1 = begin ⟪ suc (NN.j (nn i)) , pred (suc k) ⟫ ≡⟨ cong (λ k → ⟪ suc (NN.j (nn i)) , pred k ⟫ ) (sym eq) ⟩ ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡⟨ nn15 ⟩ ⟪ j0 , suc k0 ⟫ ∎ ) ⟩ ⟪ suc j0 , k0 ⟫ ∎ where -- nxn→n (suc j0) k0 ≡ suc i open ≡-Reasoning nn14 : nxn→n j0 (suc k0) ≡ i nn14 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid2 j0 k0 )) eq1 ) nn15 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn15 = NN.nn-unique (nn i) nn14 n-id : (i : ℕ) → nxn→n (proj1 (n→nxn i)) (proj2 (n→nxn i)) ≡ i n-id i = subst (λ k → nxn→n (proj1 k) (proj2 k) ≡ i ) (sym (NN.k0 (nn i))) (NN.k1 (nn i)) nn-id : (j k : ℕ) → n→nxn (nxn→n j k) ≡ ⟪ j , k ⟫ nn-id j k = begin n→nxn (nxn→n j k) ≡⟨ NN.k0 (nn (nxn→n j k)) ⟩ ⟪ NN.j (nn (nxn→n j k)) , NN.k (nn (nxn→n j k)) ⟫ ≡⟨ NN.nn-unique (nn (nxn→n j k)) refl ⟩ ⟪ j , k ⟫ ∎ where open ≡-Reasoning -- [] 0 -- 0 → 1 -- 1 → 2 -- 01 → 3 -- 11 → 4 -- ... -- -- binary invariant -- record LB (n : ℕ) (lton : List Bool → ℕ ) : Set where field nlist : List Bool isBin : lton nlist ≡ n isUnique : (x : List Bool) → lton x ≡ n → nlist ≡ x -- we don't need this lb+1 : List Bool → List Bool lb+1 [] = false ∷ [] lb+1 (false ∷ t) = true ∷ t lb+1 (true ∷ t) = false ∷ lb+1 t lb-1 : List Bool → List Bool lb-1 [] = [] lb-1 (true ∷ t) = false ∷ t lb-1 (false ∷ t) with lb-1 t ... | [] = true ∷ [] ... | x ∷ t1 = true ∷ x ∷ t1 LBℕ : Bijection ℕ ( List Bool ) LBℕ = record { fun← = λ x → lton x ; fun→ = λ n → LB.nlist (lb n) ; fiso← = λ n → LB.isBin (lb n) ; fiso→ = λ x → LB.isUnique (lb (lton x)) x refl } where lton1 : List Bool → ℕ lton1 [] = 1 lton1 (true ∷ t) = suc (lton1 t + lton1 t) lton1 (false ∷ t) = lton1 t + lton1 t lton : List Bool → ℕ lton x = pred (lton1 x) lton1>0 : (x : List Bool ) → 0 < lton1 x lton1>0 [] = a<sa lton1>0 (true ∷ x₁) = 0<s lton1>0 (false ∷ t) = ≤-trans (lton1>0 t) x≤x+y 2lton1>0 : (t : List Bool ) → 0 < lton1 t + lton1 t 2lton1>0 t = ≤-trans (lton1>0 t) x≤x+y lb=3 : {x y : ℕ} → 0 < x → 0 < y → 1 ≤ pred (x + y) lb=3 {suc x} {suc y} (s≤s 0<x) (s≤s 0<y) = subst (λ k → 1 ≤ k ) (+-comm (suc y) _ ) (s≤s z≤n) lton-cons>0 : {x : Bool} {y : List Bool } → 0 < lton (x ∷ y) lton-cons>0 {true} {[]} = refl-≤s lton-cons>0 {true} {x ∷ y} = ≤-trans ( lb=3 (lton1>0 (x ∷ y)) (lton1>0 (x ∷ y))) px≤x lton-cons>0 {false} {[]} = refl-≤ lton-cons>0 {false} {x ∷ y} = lb=3 (lton1>0 (x ∷ y)) (lton1>0 (x ∷ y)) lb=0 : {x y : ℕ } → pred x < pred y → suc (x + x ∸ 1) < suc (y + y ∸ 1) lb=0 {0} {suc y} lt = s≤s (subst (λ k → 0 < k ) (+-comm (suc y) y ) 0<s) lb=0 {suc x} {suc y} lt = begin suc (suc ((suc x + suc x) ∸ 1)) ≡⟨ refl ⟩ suc (suc x) + suc x ≡⟨ refl ⟩ suc (suc x + suc x) ≤⟨ <-plus (s≤s lt) ⟩ suc y + suc x <⟨ <-plus-0 {suc x} {suc y} {suc y} (s≤s lt) ⟩ suc y + suc y ≡⟨ refl ⟩ suc ((suc y + suc y) ∸ 1) ∎ where open ≤-Reasoning lb=2 : {x y : ℕ } → pred x < pred y → suc (x + x ) < suc (y + y ) lb=2 {zero} {suc y} lt = s≤s 0<s lb=2 {suc x} {suc y} lt = s≤s (lb=0 {suc x} {suc y} lt) lb=1 : {x y : List Bool} {z : Bool} → lton (z ∷ x) ≡ lton (z ∷ y) → lton x ≡ lton y lb=1 {x} {y} {true} eq with <-cmp (lton x) (lton y) ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< (cong suc eq) (lb=2 {lton1 x} {lton1 y} a)) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< (cong suc (sym eq)) (lb=2 {lton1 y} {lton1 x} c)) lb=1 {x} {y} {false} eq with <-cmp (lton x) (lton y) ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< (cong suc eq) (lb=0 {lton1 x} {lton1 y} a)) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< (cong suc (sym eq)) (lb=0 {lton1 y} {lton1 x} c)) --- --- lton is unique in a head --- lb-tf : {x y : List Bool } → ¬ (lton (true ∷ x) ≡ lton (false ∷ y)) lb-tf {x} {y} eq with <-cmp (lton1 x) (lton1 y) ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (lb=01 a)) where lb=01 : {x y : ℕ } → x < y → x + x < (y + y ∸ 1) lb=01 {x} {y} x<y = begin suc (x + x) ≡⟨ refl ⟩ suc x + x ≤⟨ ≤-plus x<y ⟩ y + x ≡⟨ refl ⟩ pred (suc y + x) ≡⟨ cong (λ k → pred ( k + x)) (+-comm 1 y) ⟩ pred ((y + 1) + x ) ≡⟨ cong pred (+-assoc y 1 x) ⟩ pred (y + suc x) ≤⟨ px≤py (≤-plus-0 {suc x} {y} {y} x<y) ⟩ (y + y) ∸ 1 ∎ where open ≤-Reasoning ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (lb=02 c) ) where lb=02 : {x y : ℕ } → x < y → x + x ∸ 1 < y + y lb=02 {0} {y} lt = ≤-trans lt x≤x+y lb=02 {suc x} {y} lt = begin suc ( suc x + suc x ∸ 1 ) ≡⟨ refl ⟩ suc x + suc x ≤⟨ ≤-plus {suc x} (<to≤ lt) ⟩ y + suc x ≤⟨ ≤-plus-0 (<to≤ lt) ⟩ y + y ∎ where open ≤-Reasoning ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (sym eq) ( begin suc (lton1 y + lton1 y ∸ 1) ≡⟨ sucprd ( 2lton1>0 y) ⟩ lton1 y + lton1 y ≡⟨ cong (λ k → k + k ) (sym b) ⟩ lton1 x + lton1 x ∎ )) where open ≤-Reasoning --- --- lton uniqueness --- lb=b : (x y : List Bool) → lton x ≡ lton y → x ≡ y lb=b [] [] eq = refl lb=b [] (x ∷ y) eq = ⊥-elim ( nat-≡< eq (lton-cons>0 {x} {y} )) lb=b (x ∷ y) [] eq = ⊥-elim ( nat-≡< (sym eq) (lton-cons>0 {x} {y} )) lb=b (true ∷ x) (false ∷ y) eq = ⊥-elim ( lb-tf {x} {y} eq ) lb=b (false ∷ x) (true ∷ y) eq = ⊥-elim ( lb-tf {y} {x} (sym eq) ) lb=b (true ∷ x) (true ∷ y) eq = cong (λ k → true ∷ k ) (lb=b x y (lb=1 {x} {y} {true} eq)) lb=b (false ∷ x) (false ∷ y) eq = cong (λ k → false ∷ k ) (lb=b x y (lb=1 {x} {y} {false} eq)) lb : (n : ℕ) → LB n lton lb zero = record { nlist = [] ; isBin = refl ; isUnique = lb05 } where lb05 : (x : List Bool) → lton x ≡ zero → [] ≡ x lb05 x eq = lb=b [] x (sym eq) lb (suc n) with LB.nlist (lb n) | inspect LB.nlist (lb n) ... | [] | record { eq = eq } = record { nlist = false ∷ [] ; isUnique = lb06 ; isBin = lb10 } where open ≡-Reasoning lb10 : lton1 (false ∷ []) ∸ 1 ≡ suc n lb10 = begin lton (false ∷ []) ≡⟨ refl ⟩ suc 0 ≡⟨ refl ⟩ suc (lton []) ≡⟨ cong (λ k → suc (lton k)) (sym eq) ⟩ suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n) ) ⟩ suc n ∎ lb06 : (x : List Bool) → pred (lton1 x ) ≡ suc n → false ∷ [] ≡ x lb06 x eq1 = lb=b (false ∷ []) x (trans lb10 (sym eq1)) -- lton (false ∷ []) ≡ lton x ... | false ∷ t | record { eq = eq } = record { nlist = true ∷ t ; isBin = lb01 ; isUnique = lb09 } where lb01 : lton (true ∷ t) ≡ suc n lb01 = begin lton (true ∷ t) ≡⟨ refl ⟩ lton1 t + lton1 t ≡⟨ sym ( sucprd (2lton1>0 t) ) ⟩ suc (pred (lton1 t + lton1 t )) ≡⟨ refl ⟩ suc (lton (false ∷ t)) ≡⟨ cong (λ k → suc (lton k )) (sym eq) ⟩ suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n)) ⟩ suc n ∎ where open ≡-Reasoning lb09 : (x : List Bool) → lton1 x ∸ 1 ≡ suc n → true ∷ t ≡ x lb09 x eq1 = lb=b (true ∷ t) x (trans lb01 (sym eq1) ) -- lton (true ∷ t) ≡ lton x ... | true ∷ t | record { eq = eq } = record { nlist = lb+1 (true ∷ t) ; isBin = lb02 (true ∷ t) lb03 ; isUnique = lb07 } where lb03 : lton (true ∷ t) ≡ n lb03 = begin lton (true ∷ t) ≡⟨ cong (λ k → lton k ) (sym eq ) ⟩ lton (LB.nlist (lb n)) ≡⟨ LB.isBin (lb n) ⟩ n ∎ where open ≡-Reasoning add11 : (x1 : ℕ ) → suc x1 + suc x1 ≡ suc (suc (x1 + x1)) add11 zero = refl add11 (suc x) = cong (λ k → suc (suc k)) (trans (+-comm x _) (cong suc (+-comm _ x))) lb04 : (t : List Bool) → suc (lton1 t) ≡ lton1 (lb+1 t) lb04 [] = refl lb04 (false ∷ t) = refl lb04 (true ∷ []) = refl lb04 (true ∷ t0 ) = begin suc (suc (lton1 t0 + lton1 t0)) ≡⟨ sym (add11 (lton1 t0)) ⟩ suc (lton1 t0) + suc (lton1 t0) ≡⟨ cong (λ k → k + k ) (lb04 t0 ) ⟩ lton1 (lb+1 t0) + lton1 (lb+1 t0) ∎ where open ≡-Reasoning lb02 : (t : List Bool) → lton t ≡ n → lton (lb+1 t) ≡ suc n lb02 [] refl = refl lb02 t eq1 = begin lton (lb+1 t) ≡⟨ refl ⟩ pred (lton1 (lb+1 t)) ≡⟨ cong pred (sym (lb04 t)) ⟩ pred (suc (lton1 t)) ≡⟨ sym (sucprd (lton1>0 t)) ⟩ suc (pred (lton1 t)) ≡⟨ refl ⟩ suc (lton t) ≡⟨ cong suc eq1 ⟩ suc n ∎ where open ≡-Reasoning lb07 : (x : List Bool) → pred (lton1 x ) ≡ suc n → lb+1 (true ∷ t) ≡ x lb07 x eq1 = lb=b (lb+1 (true ∷ t)) x (trans ( lb02 (true ∷ t) lb03 ) (sym eq1))
48.14425
159
0.422423
0e7fa4834c66420bdf98dc6475abc495765d65de
67,509
agda
Agda
agda-stdlib/src/Data/Nat/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Nat/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Nat/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A bunch of properties about natural number operations ------------------------------------------------------------------------ -- See README.Data.Nat for some examples showing how this module can be -- used. {-# OPTIONS --without-K --safe #-} module Data.Nat.Properties where open import Axiom.UniquenessOfIdentityProofs open import Algebra.Bundles open import Algebra.Morphism open import Algebra.Consequences.Propositional open import Data.Bool.Base using (Bool; false; true; T) open import Data.Bool.Properties using (T?) open import Data.Empty open import Data.Nat.Base open import Data.Product open import Data.Sum.Base as Sum open import Data.Unit using (tt) open import Function.Base open import Function.Injection using (_↣_) open import Level using (0ℓ) open import Relation.Binary open import Relation.Binary.Consequences using (flip-Connex) open import Relation.Binary.PropositionalEquality open import Relation.Nullary hiding (Irrelevant) open import Relation.Nullary.Decidable using (True; via-injection; map′) open import Relation.Nullary.Negation using (contradiction) open import Algebra.Definitions {A = ℕ} _≡_ hiding (LeftCancellative; RightCancellative; Cancellative) open import Algebra.Definitions using (LeftCancellative; RightCancellative; Cancellative) open import Algebra.Structures {A = ℕ} _≡_ ------------------------------------------------------------------------ -- Properties of _≡_ ------------------------------------------------------------------------ suc-injective : ∀ {m n} → suc m ≡ suc n → m ≡ n suc-injective refl = refl ≡ᵇ⇒≡ : ∀ m n → T (m ≡ᵇ n) → m ≡ n ≡ᵇ⇒≡ zero zero _ = refl ≡ᵇ⇒≡ (suc m) (suc n) eq = cong suc (≡ᵇ⇒≡ m n eq) ≡⇒≡ᵇ : ∀ m n → m ≡ n → T (m ≡ᵇ n) ≡⇒≡ᵇ zero zero eq = _ ≡⇒≡ᵇ (suc m) (suc n) eq = ≡⇒≡ᵇ m n (suc-injective eq) -- NB: we use the builtin function `_≡ᵇ_` here so that the function -- quickly decides whether to return `yes` or `no`. It still takes -- a linear amount of time to generate the proof if it is inspected. -- We expect the main benefit to be visible in compiled code as the -- backend erases proofs. infix 4 _≟_ _≟_ : Decidable {A = ℕ} _≡_ m ≟ n = map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (T? (m ≡ᵇ n)) ≡-irrelevant : Irrelevant {A = ℕ} _≡_ ≡-irrelevant = Decidable⇒UIP.≡-irrelevant _≟_ ≟-diag : ∀ {m n} (eq : m ≡ n) → (m ≟ n) ≡ yes eq ≟-diag = ≡-≟-identity _≟_ ≡-isDecEquivalence : IsDecEquivalence (_≡_ {A = ℕ}) ≡-isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = record { Carrier = ℕ ; _≈_ = _≡_ ; isDecEquivalence = ≡-isDecEquivalence } 0≢1+n : ∀ {n} → 0 ≢ suc n 0≢1+n () 1+n≢0 : ∀ {n} → suc n ≢ 0 1+n≢0 () 1+n≢n : ∀ {n} → suc n ≢ n 1+n≢n {suc n} = 1+n≢n ∘ suc-injective ------------------------------------------------------------------------ -- Properties of _<ᵇ_ ------------------------------------------------------------------------ <ᵇ⇒< : ∀ m n → T (m <ᵇ n) → m < n <ᵇ⇒< zero (suc n) m<n = s≤s z≤n <ᵇ⇒< (suc m) (suc n) m<n = s≤s (<ᵇ⇒< m n m<n) <⇒<ᵇ : ∀ {m n} → m < n → T (m <ᵇ n) <⇒<ᵇ (s≤s z≤n) = tt <⇒<ᵇ (s≤s (s≤s m<n)) = <⇒<ᵇ (s≤s m<n) ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ ≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n ≤-pred (s≤s m≤n) = m≤n ------------------------------------------------------------------------ -- Relational properties of _≤_ ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive {zero} refl = z≤n ≤-reflexive {suc m} refl = s≤s (≤-reflexive refl) ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive refl ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym z≤n z≤n = refl ≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m) ≤-trans : Transitive _≤_ ≤-trans z≤n _ = z≤n ≤-trans (s≤s m≤n) (s≤s n≤o) = s≤s (≤-trans m≤n n≤o) ≤-total : Total _≤_ ≤-total zero _ = inj₁ z≤n ≤-total _ zero = inj₂ z≤n ≤-total (suc m) (suc n) with ≤-total m n ... | inj₁ m≤n = inj₁ (s≤s m≤n) ... | inj₂ n≤m = inj₂ (s≤s n≤m) ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant z≤n z≤n = refl ≤-irrelevant (s≤s m≤n₁) (s≤s m≤n₂) = cong s≤s (≤-irrelevant m≤n₁ m≤n₂) -- NB: we use the builtin function `_<ᵇ_` here so that the function -- quickly decides whether to return `yes` or `no`. It still takes -- a linear amount of time to generate the proof if it is inspected. -- We expect the main benefit to be visible in compiled code as the -- backend erases proofs. infix 4 _≤?_ _≥?_ _≤?_ : Decidable _≤_ zero ≤? _ = yes z≤n suc m ≤? n = map′ (<ᵇ⇒< m n) <⇒<ᵇ (T? (m <ᵇ n)) _≥?_ : Decidable _≥_ _≥?_ = flip _≤?_ ------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-preorder : Preorder 0ℓ 0ℓ 0ℓ ≤-preorder = record { isPreorder = ≤-isPreorder } ≤-poset : Poset 0ℓ 0ℓ 0ℓ ≤-poset = record { isPartialOrder = ≤-isPartialOrder } ≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ ≤-totalOrder = record { isTotalOrder = ≤-isTotalOrder } ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------ -- Other properties of _≤_ s≤s-injective : ∀ {m n} {p q : m ≤ n} → s≤s p ≡ s≤s q → p ≡ q s≤s-injective refl = refl ≤-step : ∀ {m n} → m ≤ n → m ≤ 1 + n ≤-step z≤n = z≤n ≤-step (s≤s m≤n) = s≤s (≤-step m≤n) n≤1+n : ∀ n → n ≤ 1 + n n≤1+n _ = ≤-step ≤-refl 1+n≰n : ∀ {n} → 1 + n ≰ n 1+n≰n (s≤s le) = 1+n≰n le n≤0⇒n≡0 : ∀ {n} → n ≤ 0 → n ≡ 0 n≤0⇒n≡0 z≤n = refl ------------------------------------------------------------------------ -- Properties of _<_ ------------------------------------------------------------------------ -- Relationships between the various relations <⇒≤ : _<_ ⇒ _≤_ <⇒≤ (s≤s m≤n) = ≤-trans m≤n (≤-step ≤-refl) <⇒≢ : _<_ ⇒ _≢_ <⇒≢ m<n refl = 1+n≰n m<n ≤⇒≯ : _≤_ ⇒ _≯_ ≤⇒≯ (s≤s m≤n) (s≤s n≤m) = ≤⇒≯ m≤n n≤m <⇒≱ : _<_ ⇒ _≱_ <⇒≱ (s≤s m+1≤n) (s≤s n≤m) = <⇒≱ m+1≤n n≤m <⇒≯ : _<_ ⇒ _≯_ <⇒≯ (s≤s m<n) (s≤s n<m) = <⇒≯ m<n n<m ≰⇒≮ : _≰_ ⇒ _≮_ ≰⇒≮ m≰n 1+m≤n = m≰n (<⇒≤ 1+m≤n) ≰⇒> : _≰_ ⇒ _>_ ≰⇒> {zero} z≰n = contradiction z≤n z≰n ≰⇒> {suc m} {zero} _ = s≤s z≤n ≰⇒> {suc m} {suc n} m≰n = s≤s (≰⇒> (m≰n ∘ s≤s)) ≰⇒≥ : _≰_ ⇒ _≥_ ≰⇒≥ = <⇒≤ ∘ ≰⇒> ≮⇒≥ : _≮_ ⇒ _≥_ ≮⇒≥ {_} {zero} _ = z≤n ≮⇒≥ {zero} {suc j} 1≮j+1 = contradiction (s≤s z≤n) 1≮j+1 ≮⇒≥ {suc i} {suc j} i+1≮j+1 = s≤s (≮⇒≥ (i+1≮j+1 ∘ s≤s)) ≤∧≢⇒< : ∀ {m n} → m ≤ n → m ≢ n → m < n ≤∧≢⇒< {_} {zero} z≤n m≢n = contradiction refl m≢n ≤∧≢⇒< {_} {suc n} z≤n m≢n = s≤s z≤n ≤∧≢⇒< {_} {suc n} (s≤s m≤n) 1+m≢1+n = s≤s (≤∧≢⇒< m≤n (1+m≢1+n ∘ cong suc)) ≤-<-connex : Connex _≤_ _<_ ≤-<-connex m n with m ≤? n ... | yes m≤n = inj₁ m≤n ... | no ¬m≤n = inj₂ (≰⇒> ¬m≤n) ≥->-connex : Connex _≥_ _>_ ≥->-connex = flip ≤-<-connex <-≤-connex : Connex _<_ _≤_ <-≤-connex = flip-Connex ≤-<-connex >-≥-connex : Connex _>_ _≥_ >-≥-connex = flip-Connex ≥->-connex ------------------------------------------------------------------------ -- Relational properties of _<_ <-irrefl : Irreflexive _≡_ _<_ <-irrefl refl (s≤s n<n) = <-irrefl refl n<n <-asym : Asymmetric _<_ <-asym (s≤s n<m) (s≤s m<n) = <-asym n<m m<n <-trans : Transitive _<_ <-trans (s≤s i≤j) (s≤s j<k) = s≤s (≤-trans i≤j (≤-trans (n≤1+n _) j<k)) <-transʳ : Trans _≤_ _<_ _<_ <-transʳ m≤n (s≤s n≤o) = s≤s (≤-trans m≤n n≤o) <-transˡ : Trans _<_ _≤_ _<_ <-transˡ (s≤s m≤n) (s≤s n≤o) = s≤s (≤-trans m≤n n≤o) -- NB: we use the builtin function `_<ᵇ_` here so that the function -- quickly decides which constructor to return. It still takes a -- linear amount of time to generate the proof if it is inspected. -- We expect the main benefit to be visible in compiled code as the -- backend erases proofs. <-cmp : Trichotomous _≡_ _<_ <-cmp m n with m ≟ n | T? (m <ᵇ n) ... | yes m≡n | _ = tri≈ (<-irrefl m≡n) m≡n (<-irrefl (sym m≡n)) ... | no m≢n | yes m<n = tri< (<ᵇ⇒< m n m<n) m≢n (<⇒≯ (<ᵇ⇒< m n m<n)) ... | no m≢n | no m≮n = tri> (m≮n ∘ <⇒<ᵇ) m≢n (≤∧≢⇒< (≮⇒≥ (m≮n ∘ <⇒<ᵇ)) (m≢n ∘ sym)) infix 4 _<?_ _>?_ _<?_ : Decidable _<_ m <? n = suc m ≤? n _>?_ : Decidable _>_ _>?_ = flip _<?_ <-irrelevant : Irrelevant _<_ <-irrelevant = ≤-irrelevant <-resp₂-≡ : _<_ Respects₂ _≡_ <-resp₂-≡ = subst (_ <_) , subst (_< _) ------------------------------------------------------------------------ -- Bundles <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = <-resp₂-≡ } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = <-trans ; compare = <-cmp } <-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } ------------------------------------------------------------------------ -- Other properties of _<_ n≮n : ∀ n → n ≮ n n≮n n = <-irrefl (refl {x = n}) 0<1+n : ∀ {n} → 0 < suc n 0<1+n = s≤s z≤n n<1+n : ∀ n → n < suc n n<1+n n = ≤-refl n≢0⇒n>0 : ∀ {n} → n ≢ 0 → n > 0 n≢0⇒n>0 {zero} 0≢0 = contradiction refl 0≢0 n≢0⇒n>0 {suc n} _ = 0<1+n m<n⇒n≢0 : ∀ {m n} → m < n → n ≢ 0 m<n⇒n≢0 (s≤s m≤n) () m<n⇒m≤1+n : ∀ {m n} → m < n → m ≤ suc n m<n⇒m≤1+n (s≤s z≤n) = z≤n m<n⇒m≤1+n (s≤s (s≤s m<n)) = s≤s (m<n⇒m≤1+n (s≤s m<n)) ∀[m≤n⇒m≢o]⇒n<o : ∀ n o → (∀ {m} → m ≤ n → m ≢ o) → n < o ∀[m≤n⇒m≢o]⇒n<o _ zero m≤n⇒n≢0 = contradiction refl (m≤n⇒n≢0 z≤n) ∀[m≤n⇒m≢o]⇒n<o zero (suc o) _ = 0<1+n ∀[m≤n⇒m≢o]⇒n<o (suc n) (suc o) m≤n⇒n≢o = s≤s (∀[m≤n⇒m≢o]⇒n<o n o rec) where rec : ∀ {m} → m ≤ n → m ≢ o rec m≤n refl = m≤n⇒n≢o (s≤s m≤n) refl ∀[m<n⇒m≢o]⇒n≤o : ∀ n o → (∀ {m} → m < n → m ≢ o) → n ≤ o ∀[m<n⇒m≢o]⇒n≤o zero n _ = z≤n ∀[m<n⇒m≢o]⇒n≤o (suc n) zero m<n⇒m≢0 = contradiction refl (m<n⇒m≢0 0<1+n) ∀[m<n⇒m≢o]⇒n≤o (suc n) (suc o) m<n⇒m≢o = s≤s (∀[m<n⇒m≢o]⇒n≤o n o rec) where rec : ∀ {m} → m < n → m ≢ o rec x<m refl = m<n⇒m≢o (s≤s x<m) refl ------------------------------------------------------------------------ -- A module for reasoning about the _≤_ and _<_ relations ------------------------------------------------------------------------ module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder <-trans (resp₂ _<_) <⇒≤ <-transˡ <-transʳ public hiding (step-≈; step-≈˘) open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of pred ------------------------------------------------------------------------ pred-mono : pred Preserves _≤_ ⟶ _≤_ pred-mono z≤n = z≤n pred-mono (s≤s le) = le ≤pred⇒≤ : ∀ {m n} → m ≤ pred n → m ≤ n ≤pred⇒≤ {m} {zero} le = le ≤pred⇒≤ {m} {suc n} le = ≤-step le ≤⇒pred≤ : ∀ {m n} → m ≤ n → pred m ≤ n ≤⇒pred≤ {zero} le = le ≤⇒pred≤ {suc m} le = ≤-trans (n≤1+n m) le <⇒≤pred : ∀ {m n} → m < n → m ≤ pred n <⇒≤pred (s≤s le) = le suc[pred[n]]≡n : ∀ {n} → n ≢ 0 → suc (pred n) ≡ n suc[pred[n]]≡n {zero} n≢0 = contradiction refl n≢0 suc[pred[n]]≡n {suc n} n≢0 = refl ------------------------------------------------------------------------ -- Properties of _+_ ------------------------------------------------------------------------ +-suc : ∀ m n → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) ------------------------------------------------------------------------ -- Algebraic properties of _+_ +-assoc : Associative _+_ +-assoc zero _ _ = refl +-assoc (suc m) n o = cong suc (+-assoc m n o) +-identityˡ : LeftIdentity 0 _+_ +-identityˡ _ = refl +-identityʳ : RightIdentity 0 _+_ +-identityʳ zero = refl +-identityʳ (suc n) = cong suc (+-identityʳ n) +-identity : Identity 0 _+_ +-identity = +-identityˡ , +-identityʳ +-comm : Commutative _+_ +-comm zero n = sym (+-identityʳ n) +-comm (suc m) n = begin-equality suc m + n ≡⟨⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ suc (n + m) ≡⟨ sym (+-suc n m) ⟩ n + suc m ∎ +-cancelˡ-≡ : LeftCancellative _≡_ _+_ +-cancelˡ-≡ zero eq = eq +-cancelˡ-≡ (suc m) eq = +-cancelˡ-≡ m (cong pred eq) +-cancelʳ-≡ : RightCancellative _≡_ _+_ +-cancelʳ-≡ = comm+cancelˡ⇒cancelʳ +-comm +-cancelˡ-≡ +-cancel-≡ : Cancellative _≡_ _+_ +-cancel-≡ = +-cancelˡ-≡ , +-cancelʳ-≡ ------------------------------------------------------------------------ -- Structures +-isMagma : IsMagma _+_ +-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _+_ } +-isSemigroup : IsSemigroup _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-isCommutativeSemigroup : IsCommutativeSemigroup _+_ +-isCommutativeSemigroup = record { isSemigroup = +-isSemigroup ; comm = +-comm } +-0-isMonoid : IsMonoid _+_ 0 +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0 +-0-isCommutativeMonoid = record { isMonoid = +-0-isMonoid ; comm = +-comm } ------------------------------------------------------------------------ -- Raw bundles +-rawMagma : RawMagma 0ℓ 0ℓ +-rawMagma = record { _≈_ = _≡_ ; _∙_ = _+_ } +-0-rawMonoid : RawMonoid 0ℓ 0ℓ +-0-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _+_ ; ε = 0 } ------------------------------------------------------------------------ -- Bundles +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ +-commutativeSemigroup = record { isCommutativeSemigroup = +-isCommutativeSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } ------------------------------------------------------------------------ -- Other properties of _+_ and _≡_ m≢1+m+n : ∀ m {n} → m ≢ suc (m + n) m≢1+m+n (suc m) eq = m≢1+m+n m (cong pred eq) m≢1+n+m : ∀ m {n} → m ≢ suc (n + m) m≢1+n+m m m≡1+n+m = m≢1+m+n m (trans m≡1+n+m (cong suc (+-comm _ m))) m+1+n≢m : ∀ m {n} → m + suc n ≢ m m+1+n≢m (suc m) = (m+1+n≢m m) ∘ suc-injective m+1+n≢0 : ∀ m {n} → m + suc n ≢ 0 m+1+n≢0 m {n} rewrite +-suc m n = λ() m+n≡0⇒m≡0 : ∀ m {n} → m + n ≡ 0 → m ≡ 0 m+n≡0⇒m≡0 zero eq = refl m+n≡0⇒n≡0 : ∀ m {n} → m + n ≡ 0 → n ≡ 0 m+n≡0⇒n≡0 m {n} m+n≡0 = m+n≡0⇒m≡0 n (trans (+-comm n m) (m+n≡0)) ------------------------------------------------------------------------ -- Properties of _+_ and _≤_/_<_ +-cancelˡ-≤ : LeftCancellative _≤_ _+_ +-cancelˡ-≤ zero le = le +-cancelˡ-≤ (suc m) (s≤s le) = +-cancelˡ-≤ m le +-cancelʳ-≤ : RightCancellative _≤_ _+_ +-cancelʳ-≤ {m} n o le = +-cancelˡ-≤ m (subst₂ _≤_ (+-comm n m) (+-comm o m) le) +-cancel-≤ : Cancellative _≤_ _+_ +-cancel-≤ = +-cancelˡ-≤ , +-cancelʳ-≤ +-cancelˡ-< : LeftCancellative _<_ _+_ +-cancelˡ-< m {n} {o} = +-cancelˡ-≤ m ∘ subst (_≤ m + o) (sym (+-suc m n)) +-cancelʳ-< : RightCancellative _<_ _+_ +-cancelʳ-< n o n+m<o+m = +-cancelʳ-≤ (suc n) o n+m<o+m +-cancel-< : Cancellative _<_ _+_ +-cancel-< = +-cancelˡ-< , +-cancelʳ-< ≤-stepsˡ : ∀ {m n} o → m ≤ n → m ≤ o + n ≤-stepsˡ zero m≤n = m≤n ≤-stepsˡ (suc o) m≤n = ≤-step (≤-stepsˡ o m≤n) ≤-stepsʳ : ∀ {m n} o → m ≤ n → m ≤ n + o ≤-stepsʳ {m} o m≤n = subst (m ≤_) (+-comm o _) (≤-stepsˡ o m≤n) m≤m+n : ∀ m n → m ≤ m + n m≤m+n zero n = z≤n m≤m+n (suc m) n = s≤s (m≤m+n m n) m≤n+m : ∀ m n → m ≤ n + m m≤n+m m n = subst (m ≤_) (+-comm m n) (m≤m+n m n) m≤n⇒m<n∨m≡n : ∀ {m n} → m ≤ n → m < n ⊎ m ≡ n m≤n⇒m<n∨m≡n {0} {0} _ = inj₂ refl m≤n⇒m<n∨m≡n {0} {suc n} _ = inj₁ 0<1+n m≤n⇒m<n∨m≡n {suc m} {suc n} (s≤s m≤n) with m≤n⇒m<n∨m≡n m≤n ... | inj₂ m≡n = inj₂ (cong suc m≡n) ... | inj₁ m<n = inj₁ (s≤s m<n) m+n≤o⇒m≤o : ∀ m {n o} → m + n ≤ o → m ≤ o m+n≤o⇒m≤o zero m+n≤o = z≤n m+n≤o⇒m≤o (suc m) (s≤s m+n≤o) = s≤s (m+n≤o⇒m≤o m m+n≤o) m+n≤o⇒n≤o : ∀ m {n o} → m + n ≤ o → n ≤ o m+n≤o⇒n≤o zero n≤o = n≤o m+n≤o⇒n≤o (suc m) m+n<o = m+n≤o⇒n≤o m (<⇒≤ m+n<o) +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ {_} {m} z≤n o≤p = ≤-trans o≤p (m≤n+m _ m) +-mono-≤ {_} {_} (s≤s m≤n) o≤p = s≤s (+-mono-≤ m≤n o≤p) +-monoˡ-≤ : ∀ n → (_+ n) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ n m≤o = +-mono-≤ m≤o (≤-refl {n}) +-monoʳ-≤ : ∀ n → (n +_) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ n m≤o = +-mono-≤ (≤-refl {n}) m≤o +-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_ +-mono-<-≤ {_} {suc n} (s≤s z≤n) o≤p = s≤s (≤-stepsˡ n o≤p) +-mono-<-≤ {_} {_} (s≤s (s≤s m<n)) o≤p = s≤s (+-mono-<-≤ (s≤s m<n) o≤p) +-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_ +-mono-≤-< {_} {n} z≤n o<p = ≤-trans o<p (m≤n+m _ n) +-mono-≤-< {_} {_} (s≤s m≤n) o<p = s≤s (+-mono-≤-< m≤n o<p) +-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ +-mono-< m≤n = +-mono-≤-< (<⇒≤ m≤n) +-monoˡ-< : ∀ n → (_+ n) Preserves _<_ ⟶ _<_ +-monoˡ-< n = +-monoˡ-≤ n +-monoʳ-< : ∀ n → (n +_) Preserves _<_ ⟶ _<_ +-monoʳ-< zero m≤o = m≤o +-monoʳ-< (suc n) m≤o = s≤s (+-monoʳ-< n m≤o) m+1+n≰m : ∀ m {n} → m + suc n ≰ m m+1+n≰m (suc m) le = m+1+n≰m m (≤-pred le) m<m+n : ∀ m {n} → n > 0 → m < m + n m<m+n zero n>0 = n>0 m<m+n (suc m) n>0 = s≤s (m<m+n m n>0) m<n+m : ∀ m {n} → n > 0 → m < n + m m<n+m m {n} n>0 rewrite +-comm n m = m<m+n m n>0 m+n≮n : ∀ m n → m + n ≮ n m+n≮n zero n = n≮n n m+n≮n (suc m) (suc n) (s≤s m+n<n) = m+n≮n m (suc n) (≤-step m+n<n) m+n≮m : ∀ m n → m + n ≮ m m+n≮m m n = subst (_≮ m) (+-comm n m) (m+n≮n n m) ------------------------------------------------------------------------ -- Properties of _*_ ------------------------------------------------------------------------ *-suc : ∀ m n → m * suc n ≡ m + m * n *-suc zero n = refl *-suc (suc m) n = begin-equality suc m * suc n ≡⟨⟩ suc n + m * suc n ≡⟨ cong (suc n +_) (*-suc m n) ⟩ suc n + (m + m * n) ≡⟨⟩ suc (n + (m + m * n)) ≡⟨ cong suc (sym (+-assoc n m (m * n))) ⟩ suc (n + m + m * n) ≡⟨ cong (λ x → suc (x + m * n)) (+-comm n m) ⟩ suc (m + n + m * n) ≡⟨ cong suc (+-assoc m n (m * n)) ⟩ suc (m + (n + m * n)) ≡⟨⟩ suc m + suc m * n ∎ ------------------------------------------------------------------------ -- Algebraic properties of _*_ *-identityˡ : LeftIdentity 1 _*_ *-identityˡ n = +-identityʳ n *-identityʳ : RightIdentity 1 _*_ *-identityʳ zero = refl *-identityʳ (suc n) = cong suc (*-identityʳ n) *-identity : Identity 1 _*_ *-identity = *-identityˡ , *-identityʳ *-zeroˡ : LeftZero 0 _*_ *-zeroˡ _ = refl *-zeroʳ : RightZero 0 _*_ *-zeroʳ zero = refl *-zeroʳ (suc n) = *-zeroʳ n *-zero : Zero 0 _*_ *-zero = *-zeroˡ , *-zeroʳ *-comm : Commutative _*_ *-comm zero n = sym (*-zeroʳ n) *-comm (suc m) n = begin-equality suc m * n ≡⟨⟩ n + m * n ≡⟨ cong (n +_) (*-comm m n) ⟩ n + n * m ≡⟨ sym (*-suc n m) ⟩ n * suc m ∎ *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ m zero o = refl *-distribʳ-+ m (suc n) o = begin-equality (suc n + o) * m ≡⟨⟩ m + (n + o) * m ≡⟨ cong (m +_) (*-distribʳ-+ m n o) ⟩ m + (n * m + o * m) ≡⟨ sym (+-assoc m (n * m) (o * m)) ⟩ m + n * m + o * m ≡⟨⟩ suc n * m + o * m ∎ *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ *-assoc : Associative _*_ *-assoc zero n o = refl *-assoc (suc m) n o = begin-equality (suc m * n) * o ≡⟨⟩ (n + m * n) * o ≡⟨ *-distribʳ-+ o n (m * n) ⟩ n * o + (m * n) * o ≡⟨ cong (n * o +_) (*-assoc m n o) ⟩ n * o + m * (n * o) ≡⟨⟩ suc m * (n * o) ∎ ------------------------------------------------------------------------ -- Structures *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-isCommutativeSemigroup : IsCommutativeSemigroup _*_ *-isCommutativeSemigroup = record { isSemigroup = *-isSemigroup ; comm = *-comm } *-1-isMonoid : IsMonoid _*_ 1 *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1 *-1-isCommutativeMonoid = record { isMonoid = *-1-isMonoid ; comm = *-comm } *-+-isSemiring : IsSemiring _+_ _*_ 0 1 *-+-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-0-isCommutativeMonoid ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ } ; zero = *-zero } *-+-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ 0 1 *-+-isCommutativeSemiring = record { isSemiring = *-+-isSemiring ; *-comm = *-comm } ------------------------------------------------------------------------ -- Bundles *-rawMagma : RawMagma 0ℓ 0ℓ *-rawMagma = record { _≈_ = _≡_ ; _∙_ = _*_ } *-1-rawMonoid : RawMonoid 0ℓ 0ℓ *-1-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _*_ ; ε = 1 } *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ *-commutativeSemigroup = record { isCommutativeSemigroup = *-isCommutativeSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } *-+-semiring : Semiring 0ℓ 0ℓ *-+-semiring = record { isSemiring = *-+-isSemiring } *-+-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ *-+-commutativeSemiring = record { isCommutativeSemiring = *-+-isCommutativeSemiring } ------------------------------------------------------------------------ -- Other properties of _*_ and _≡_ *-cancelʳ-≡ : ∀ m n {o} → m * suc o ≡ n * suc o → m ≡ n *-cancelʳ-≡ zero zero eq = refl *-cancelʳ-≡ (suc m) (suc n) {o} eq = cong suc (*-cancelʳ-≡ m n (+-cancelˡ-≡ (suc o) eq)) *-cancelˡ-≡ : ∀ {m n} o → suc o * m ≡ suc o * n → m ≡ n *-cancelˡ-≡ {m} {n} o eq = *-cancelʳ-≡ m n (subst₂ _≡_ (*-comm (suc o) m) (*-comm (suc o) n) eq) m*n≡0⇒m≡0∨n≡0 : ∀ m {n} → m * n ≡ 0 → m ≡ 0 ⊎ n ≡ 0 m*n≡0⇒m≡0∨n≡0 zero {n} eq = inj₁ refl m*n≡0⇒m≡0∨n≡0 (suc m) {zero} eq = inj₂ refl m*n≡1⇒m≡1 : ∀ m n → m * n ≡ 1 → m ≡ 1 m*n≡1⇒m≡1 (suc zero) n _ = refl m*n≡1⇒m≡1 (suc (suc m)) (suc zero) () m*n≡1⇒m≡1 (suc (suc m)) zero eq = contradiction (trans (sym $ *-zeroʳ m) eq) λ() m*n≡1⇒n≡1 : ∀ m n → m * n ≡ 1 → n ≡ 1 m*n≡1⇒n≡1 m n eq = m*n≡1⇒m≡1 n m (trans (*-comm n m) eq) ------------------------------------------------------------------------ -- Other properties of _*_ and _≤_/_<_ *-cancelʳ-≤ : ∀ m n o → m * suc o ≤ n * suc o → m ≤ n *-cancelʳ-≤ zero _ _ _ = z≤n *-cancelʳ-≤ (suc m) (suc n) o le = s≤s (*-cancelʳ-≤ m n o (+-cancelˡ-≤ (suc o) le)) *-cancelˡ-≤ : ∀ {m n} o → suc o * m ≤ suc o * n → m ≤ n *-cancelˡ-≤ {m} {n} o rewrite *-comm (suc o) m | *-comm (suc o) n = *-cancelʳ-≤ m n o *-mono-≤ : _*_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ *-mono-≤ z≤n _ = z≤n *-mono-≤ (s≤s m≤n) u≤v = +-mono-≤ u≤v (*-mono-≤ m≤n u≤v) *-monoˡ-≤ : ∀ n → (_* n) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤ n m≤o = *-mono-≤ m≤o (≤-refl {n}) *-monoʳ-≤ : ∀ n → (n *_) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤ n m≤o = *-mono-≤ (≤-refl {n}) m≤o *-mono-< : _*_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ *-mono-< (s≤s z≤n) (s≤s u≤v) = s≤s z≤n *-mono-< (s≤s (s≤s m≤n)) (s≤s u≤v) = +-mono-< (s≤s u≤v) (*-mono-< (s≤s m≤n) (s≤s u≤v)) *-monoˡ-< : ∀ n → (_* suc n) Preserves _<_ ⟶ _<_ *-monoˡ-< n (s≤s z≤n) = s≤s z≤n *-monoˡ-< n (s≤s (s≤s m≤o)) = +-mono-≤-< (≤-refl {suc n}) (*-monoˡ-< n (s≤s m≤o)) *-monoʳ-< : ∀ n → (suc n *_) Preserves _<_ ⟶ _<_ *-monoʳ-< zero (s≤s m≤o) = +-mono-≤ (s≤s m≤o) z≤n *-monoʳ-< (suc n) (s≤s m≤o) = +-mono-≤ (s≤s m≤o) (<⇒≤ (*-monoʳ-< n (s≤s m≤o))) m≤m*n : ∀ m {n} → 0 < n → m ≤ m * n m≤m*n m {n} 0<n = begin m ≡⟨ sym (*-identityʳ m) ⟩ m * 1 ≤⟨ *-monoʳ-≤ m 0<n ⟩ m * n ∎ m<m*n : ∀ {m n} → 0 < m → 1 < n → m < m * n m<m*n {m@(suc m-1)} {n@(suc (suc n-2))} (s≤s _) (s≤s (s≤s _)) = begin-strict m <⟨ s≤s (s≤s (m≤n+m m-1 n-2)) ⟩ n + m-1 ≤⟨ +-monoʳ-≤ n (m≤m*n m-1 0<1+n) ⟩ n + m-1 * n ≡⟨⟩ m * n ∎ *-cancelʳ-< : RightCancellative _<_ _*_ *-cancelʳ-< {zero} zero (suc o) _ = 0<1+n *-cancelʳ-< {suc m} zero (suc o) _ = 0<1+n *-cancelʳ-< {m} (suc n) (suc o) nm<om = s≤s (*-cancelʳ-< n o (+-cancelˡ-< m nm<om)) -- Redo in terms of `comm+cancelʳ⇒cancelˡ` when generalised *-cancelˡ-< : LeftCancellative _<_ _*_ *-cancelˡ-< x {y} {z} rewrite *-comm x y | *-comm x z = *-cancelʳ-< y z *-cancel-< : Cancellative _<_ _*_ *-cancel-< = *-cancelˡ-< , *-cancelʳ-< ------------------------------------------------------------------------ -- Properties of _^_ ------------------------------------------------------------------------ ^-identityʳ : RightIdentity 1 _^_ ^-identityʳ zero = refl ^-identityʳ (suc n) = cong suc (^-identityʳ n) ^-zeroˡ : LeftZero 1 _^_ ^-zeroˡ zero = refl ^-zeroˡ (suc n) = begin-equality 1 ^ suc n ≡⟨⟩ 1 * (1 ^ n) ≡⟨ *-identityˡ (1 ^ n) ⟩ 1 ^ n ≡⟨ ^-zeroˡ n ⟩ 1 ∎ ^-distribˡ-+-* : ∀ m n o → m ^ (n + o) ≡ m ^ n * m ^ o ^-distribˡ-+-* m zero o = sym (+-identityʳ (m ^ o)) ^-distribˡ-+-* m (suc n) o = begin-equality m * (m ^ (n + o)) ≡⟨ cong (m *_) (^-distribˡ-+-* m n o) ⟩ m * ((m ^ n) * (m ^ o)) ≡⟨ sym (*-assoc m _ _) ⟩ (m * (m ^ n)) * (m ^ o) ∎ ^-semigroup-morphism : ∀ {n} → (n ^_) Is +-semigroup -Semigroup⟶ *-semigroup ^-semigroup-morphism = record { ⟦⟧-cong = cong (_ ^_) ; ∙-homo = ^-distribˡ-+-* _ } ^-monoid-morphism : ∀ {n} → (n ^_) Is +-0-monoid -Monoid⟶ *-1-monoid ^-monoid-morphism = record { sm-homo = ^-semigroup-morphism ; ε-homo = refl } ^-*-assoc : ∀ m n o → (m ^ n) ^ o ≡ m ^ (n * o) ^-*-assoc m n zero = cong (m ^_) (sym $ *-zeroʳ n) ^-*-assoc m n (suc o) = begin-equality (m ^ n) * ((m ^ n) ^ o) ≡⟨ cong ((m ^ n) *_) (^-*-assoc m n o) ⟩ (m ^ n) * (m ^ (n * o)) ≡⟨ sym (^-distribˡ-+-* m n (n * o)) ⟩ m ^ (n + n * o) ≡⟨ cong (m ^_) (sym (*-suc n o)) ⟩ m ^ (n * (suc o)) ∎ m^n≡0⇒m≡0 : ∀ m n → m ^ n ≡ 0 → m ≡ 0 m^n≡0⇒m≡0 m (suc n) eq = [ id , m^n≡0⇒m≡0 m n ]′ (m*n≡0⇒m≡0∨n≡0 m eq) m^n≡1⇒n≡0∨m≡1 : ∀ m n → m ^ n ≡ 1 → n ≡ 0 ⊎ m ≡ 1 m^n≡1⇒n≡0∨m≡1 m zero _ = inj₁ refl m^n≡1⇒n≡0∨m≡1 m (suc n) eq = inj₂ (m*n≡1⇒m≡1 m (m ^ n) eq) ------------------------------------------------------------------------ -- Properties of _⊔_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Algebraic properties ⊔-assoc : Associative _⊔_ ⊔-assoc zero _ _ = refl ⊔-assoc (suc m) zero o = refl ⊔-assoc (suc m) (suc n) zero = refl ⊔-assoc (suc m) (suc n) (suc o) = cong suc $ ⊔-assoc m n o ⊔-identityˡ : LeftIdentity 0 _⊔_ ⊔-identityˡ _ = refl ⊔-identityʳ : RightIdentity 0 _⊔_ ⊔-identityʳ zero = refl ⊔-identityʳ (suc n) = refl ⊔-identity : Identity 0 _⊔_ ⊔-identity = ⊔-identityˡ , ⊔-identityʳ ⊔-comm : Commutative _⊔_ ⊔-comm zero n = sym $ ⊔-identityʳ n ⊔-comm (suc m) zero = refl ⊔-comm (suc m) (suc n) = cong suc (⊔-comm m n) ⊔-sel : Selective _⊔_ ⊔-sel zero _ = inj₂ refl ⊔-sel (suc m) zero = inj₁ refl ⊔-sel (suc m) (suc n) with ⊔-sel m n ... | inj₁ m⊔n≡m = inj₁ (cong suc m⊔n≡m) ... | inj₂ m⊔n≡n = inj₂ (cong suc m⊔n≡n) ⊔-idem : Idempotent _⊔_ ⊔-idem = sel⇒idem ⊔-sel ⊔-least : ∀ {m n o} → m ≤ o → n ≤ o → m ⊔ n ≤ o ⊔-least {m} {n} m≤o n≤o with ⊔-sel m n ... | inj₁ m⊔n≡m rewrite m⊔n≡m = m≤o ... | inj₂ m⊔n≡n rewrite m⊔n≡n = n≤o ------------------------------------------------------------------------ -- Structures ⊔-isMagma : IsMagma _⊔_ ⊔-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _⊔_ } ⊔-isSemigroup : IsSemigroup _⊔_ ⊔-isSemigroup = record { isMagma = ⊔-isMagma ; assoc = ⊔-assoc } ⊔-isBand : IsBand _⊔_ ⊔-isBand = record { isSemigroup = ⊔-isSemigroup ; idem = ⊔-idem } ⊔-isSemilattice : IsSemilattice _⊔_ ⊔-isSemilattice = record { isBand = ⊔-isBand ; comm = ⊔-comm } ⊔-0-isMonoid : IsMonoid _⊔_ 0 ⊔-0-isMonoid = record { isSemigroup = ⊔-isSemigroup ; identity = ⊔-identity } ⊔-0-isCommutativeMonoid : IsCommutativeMonoid _⊔_ 0 ⊔-0-isCommutativeMonoid = record { isMonoid = ⊔-0-isMonoid ; comm = ⊔-comm } ------------------------------------------------------------------------ -- Bundles ⊔-magma : Magma 0ℓ 0ℓ ⊔-magma = record { isMagma = ⊔-isMagma } ⊔-semigroup : Semigroup 0ℓ 0ℓ ⊔-semigroup = record { isSemigroup = ⊔-isSemigroup } ⊔-band : Band 0ℓ 0ℓ ⊔-band = record { isBand = ⊔-isBand } ⊔-semilattice : Semilattice 0ℓ 0ℓ ⊔-semilattice = record { isSemilattice = ⊔-isSemilattice } ⊔-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ ⊔-0-commutativeMonoid = record { isCommutativeMonoid = ⊔-0-isCommutativeMonoid } ------------------------------------------------------------------------ -- Other properties of _⊔_ and _≡_ ⊔-triangulate : ∀ m n o → m ⊔ n ⊔ o ≡ (m ⊔ n) ⊔ (n ⊔ o) ⊔-triangulate m n o = begin-equality m ⊔ n ⊔ o ≡⟨ cong (λ v → m ⊔ v ⊔ o) (sym (⊔-idem n)) ⟩ m ⊔ (n ⊔ n) ⊔ o ≡⟨ ⊔-assoc m _ _ ⟩ m ⊔ ((n ⊔ n) ⊔ o) ≡⟨ cong (m ⊔_) (⊔-assoc n _ _) ⟩ m ⊔ (n ⊔ (n ⊔ o)) ≡⟨ sym (⊔-assoc m _ _) ⟩ (m ⊔ n) ⊔ (n ⊔ o) ∎ ------------------------------------------------------------------------ -- Other properties of _⊔_ and _≤_/_<_ m≤m⊔n : ∀ m n → m ≤ m ⊔ n m≤m⊔n zero _ = z≤n m≤m⊔n (suc m) zero = ≤-refl m≤m⊔n (suc m) (suc n) = s≤s $ m≤m⊔n m n n≤m⊔n : ∀ m n → n ≤ m ⊔ n n≤m⊔n m n = subst (n ≤_) (⊔-comm n m) (m≤m⊔n n m) m≤n⇒n⊔m≡n : ∀ {m n} → m ≤ n → n ⊔ m ≡ n m≤n⇒n⊔m≡n z≤n = ⊔-identityʳ _ m≤n⇒n⊔m≡n (s≤s m≤n) = cong suc (m≤n⇒n⊔m≡n m≤n) m≤n⇒m⊔n≡n : ∀ {m n} → m ≤ n → m ⊔ n ≡ n m≤n⇒m⊔n≡n {m} m≤n = trans (⊔-comm m _) (m≤n⇒n⊔m≡n m≤n) n⊔m≡m⇒n≤m : ∀ {m n} → n ⊔ m ≡ m → n ≤ m n⊔m≡m⇒n≤m n⊔m≡m = subst (_ ≤_) n⊔m≡m (m≤m⊔n _ _) n⊔m≡n⇒m≤n : ∀ {m n} → n ⊔ m ≡ n → m ≤ n n⊔m≡n⇒m≤n n⊔m≡n = subst (_ ≤_) n⊔m≡n (n≤m⊔n _ _) m≤n⇒m≤n⊔o : ∀ {m n} o → m ≤ n → m ≤ n ⊔ o m≤n⇒m≤n⊔o o m≤n = ≤-trans m≤n (m≤m⊔n _ o) m≤n⇒m≤o⊔n : ∀ {m n} o → m ≤ n → m ≤ o ⊔ n m≤n⇒m≤o⊔n n m≤n = ≤-trans m≤n (n≤m⊔n n _) m⊔n≤o⇒m≤o : ∀ m n {o} → m ⊔ n ≤ o → m ≤ o m⊔n≤o⇒m≤o m n m⊔n≤o = ≤-trans (m≤m⊔n m n) m⊔n≤o m⊔n≤o⇒n≤o : ∀ m n {o} → m ⊔ n ≤ o → n ≤ o m⊔n≤o⇒n≤o m n m⊔n≤o = ≤-trans (n≤m⊔n m n) m⊔n≤o m<n⇒m<n⊔o : ∀ {m n} o → m < n → m < n ⊔ o m<n⇒m<n⊔o = m≤n⇒m≤n⊔o m<n⇒m<o⊔n : ∀ {m n} o → m < n → m < o ⊔ n m<n⇒m<o⊔n = m≤n⇒m≤o⊔n m⊔n<o⇒m<o : ∀ m n {o} → m ⊔ n < o → m < o m⊔n<o⇒m<o m n m⊔n<o = <-transʳ (m≤m⊔n m n) m⊔n<o m⊔n<o⇒n<o : ∀ m n {o} → m ⊔ n < o → n < o m⊔n<o⇒n<o m n m⊔n<o = <-transʳ (n≤m⊔n m n) m⊔n<o ⊔-mono-≤ : _⊔_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ ⊔-mono-≤ {m} {n} {u} {v} m≤n u≤v with ⊔-sel m u ... | inj₁ m⊔u≡m rewrite m⊔u≡m = ≤-trans m≤n (m≤m⊔n n v) ... | inj₂ m⊔u≡u rewrite m⊔u≡u = ≤-trans u≤v (n≤m⊔n n v) ⊔-monoˡ-≤ : ∀ n → (_⊔ n) Preserves _≤_ ⟶ _≤_ ⊔-monoˡ-≤ n m≤o = ⊔-mono-≤ m≤o (≤-refl {n}) ⊔-monoʳ-≤ : ∀ n → (n ⊔_) Preserves _≤_ ⟶ _≤_ ⊔-monoʳ-≤ n m≤o = ⊔-mono-≤ (≤-refl {n}) m≤o ⊔-mono-< : _⊔_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ ⊔-mono-< = ⊔-mono-≤ ⊔-pres-≤m : ∀ {m n o} → n ≤ m → o ≤ m → n ⊔ o ≤ m ⊔-pres-≤m {m} n≤m o≤m = subst (_ ≤_) (⊔-idem m) (⊔-mono-≤ n≤m o≤m) ⊔-pres-<m : ∀ {m n o} → n < m → o < m → n ⊔ o < m ⊔-pres-<m {m} n<m o<m = subst (_ <_) (⊔-idem m) (⊔-mono-< n<m o<m) ------------------------------------------------------------------------ -- Other properties of _⊔_ and _+_ +-distribˡ-⊔ : _+_ DistributesOverˡ _⊔_ +-distribˡ-⊔ zero n o = refl +-distribˡ-⊔ (suc m) n o = cong suc (+-distribˡ-⊔ m n o) +-distribʳ-⊔ : _+_ DistributesOverʳ _⊔_ +-distribʳ-⊔ = comm+distrˡ⇒distrʳ +-comm +-distribˡ-⊔ +-distrib-⊔ : _+_ DistributesOver _⊔_ +-distrib-⊔ = +-distribˡ-⊔ , +-distribʳ-⊔ m⊔n≤m+n : ∀ m n → m ⊔ n ≤ m + n m⊔n≤m+n m n with ⊔-sel m n ... | inj₁ m⊔n≡m rewrite m⊔n≡m = m≤m+n m n ... | inj₂ m⊔n≡n rewrite m⊔n≡n = m≤n+m n m ------------------------------------------------------------------------ -- Properties of _⊓_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Algebraic properties ⊓-assoc : Associative _⊓_ ⊓-assoc zero _ _ = refl ⊓-assoc (suc m) zero o = refl ⊓-assoc (suc m) (suc n) zero = refl ⊓-assoc (suc m) (suc n) (suc o) = cong suc $ ⊓-assoc m n o ⊓-zeroˡ : LeftZero 0 _⊓_ ⊓-zeroˡ _ = refl ⊓-zeroʳ : RightZero 0 _⊓_ ⊓-zeroʳ zero = refl ⊓-zeroʳ (suc n) = refl ⊓-zero : Zero 0 _⊓_ ⊓-zero = ⊓-zeroˡ , ⊓-zeroʳ ⊓-comm : Commutative _⊓_ ⊓-comm zero n = sym $ ⊓-zeroʳ n ⊓-comm (suc m) zero = refl ⊓-comm (suc m) (suc n) = cong suc (⊓-comm m n) ⊓-sel : Selective _⊓_ ⊓-sel zero _ = inj₁ refl ⊓-sel (suc m) zero = inj₂ refl ⊓-sel (suc m) (suc n) with ⊓-sel m n ... | inj₁ m⊓n≡m = inj₁ (cong suc m⊓n≡m) ... | inj₂ m⊓n≡n = inj₂ (cong suc m⊓n≡n) ⊓-idem : Idempotent _⊓_ ⊓-idem = sel⇒idem ⊓-sel ⊓-greatest : ∀ {m n o} → m ≥ o → n ≥ o → m ⊓ n ≥ o ⊓-greatest {m} {n} m≥o n≥o with ⊓-sel m n ... | inj₁ m⊓n≡m rewrite m⊓n≡m = m≥o ... | inj₂ m⊓n≡n rewrite m⊓n≡n = n≥o ⊓-distribʳ-⊔ : _⊓_ DistributesOverʳ _⊔_ ⊓-distribʳ-⊔ (suc m) (suc n) (suc o) = cong suc $ ⊓-distribʳ-⊔ m n o ⊓-distribʳ-⊔ (suc m) (suc n) zero = cong suc $ refl ⊓-distribʳ-⊔ (suc m) zero o = refl ⊓-distribʳ-⊔ zero n o = begin-equality (n ⊔ o) ⊓ 0 ≡⟨ ⊓-comm (n ⊔ o) 0 ⟩ 0 ⊓ (n ⊔ o) ≡⟨⟩ 0 ⊓ n ⊔ 0 ⊓ o ≡⟨ ⊓-comm 0 n ⟨ cong₂ _⊔_ ⟩ ⊓-comm 0 o ⟩ n ⊓ 0 ⊔ o ⊓ 0 ∎ ⊓-distribˡ-⊔ : _⊓_ DistributesOverˡ _⊔_ ⊓-distribˡ-⊔ = comm+distrʳ⇒distrˡ ⊓-comm ⊓-distribʳ-⊔ ⊓-distrib-⊔ : _⊓_ DistributesOver _⊔_ ⊓-distrib-⊔ = ⊓-distribˡ-⊔ , ⊓-distribʳ-⊔ ⊔-abs-⊓ : _⊔_ Absorbs _⊓_ ⊔-abs-⊓ zero n = refl ⊔-abs-⊓ (suc m) zero = refl ⊔-abs-⊓ (suc m) (suc n) = cong suc $ ⊔-abs-⊓ m n ⊓-abs-⊔ : _⊓_ Absorbs _⊔_ ⊓-abs-⊔ zero n = refl ⊓-abs-⊔ (suc m) (suc n) = cong suc $ ⊓-abs-⊔ m n ⊓-abs-⊔ (suc m) zero = cong suc $ begin-equality m ⊓ m ≡⟨ cong (m ⊓_) $ sym $ ⊔-identityʳ m ⟩ m ⊓ (m ⊔ 0) ≡⟨ ⊓-abs-⊔ m zero ⟩ m ∎ ⊓-⊔-absorptive : Absorptive _⊓_ _⊔_ ⊓-⊔-absorptive = ⊓-abs-⊔ , ⊔-abs-⊓ ------------------------------------------------------------------------ -- Structures ⊓-isMagma : IsMagma _⊓_ ⊓-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _⊓_ } ⊓-isSemigroup : IsSemigroup _⊓_ ⊓-isSemigroup = record { isMagma = ⊓-isMagma ; assoc = ⊓-assoc } ⊓-isBand : IsBand _⊓_ ⊓-isBand = record { isSemigroup = ⊓-isSemigroup ; idem = ⊓-idem } ⊓-isSemilattice : IsSemilattice _⊓_ ⊓-isSemilattice = record { isBand = ⊓-isBand ; comm = ⊓-comm } ⊔-⊓-isSemiringWithoutOne : IsSemiringWithoutOne _⊔_ _⊓_ 0 ⊔-⊓-isSemiringWithoutOne = record { +-isCommutativeMonoid = ⊔-0-isCommutativeMonoid ; *-isSemigroup = ⊓-isSemigroup ; distrib = ⊓-distrib-⊔ ; zero = ⊓-zero } ⊔-⊓-isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _⊔_ _⊓_ 0 ⊔-⊓-isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = ⊔-⊓-isSemiringWithoutOne ; *-comm = ⊓-comm } ⊓-⊔-isLattice : IsLattice _⊓_ _⊔_ ⊓-⊔-isLattice = record { isEquivalence = isEquivalence ; ∨-comm = ⊓-comm ; ∨-assoc = ⊓-assoc ; ∨-cong = cong₂ _⊓_ ; ∧-comm = ⊔-comm ; ∧-assoc = ⊔-assoc ; ∧-cong = cong₂ _⊔_ ; absorptive = ⊓-⊔-absorptive } ⊓-⊔-isDistributiveLattice : IsDistributiveLattice _⊓_ _⊔_ ⊓-⊔-isDistributiveLattice = record { isLattice = ⊓-⊔-isLattice ; ∨-distribʳ-∧ = ⊓-distribʳ-⊔ } ------------------------------------------------------------------------ -- Bundles ⊓-magma : Magma 0ℓ 0ℓ ⊓-magma = record { isMagma = ⊓-isMagma } ⊓-semigroup : Semigroup 0ℓ 0ℓ ⊓-semigroup = record { isSemigroup = ⊔-isSemigroup } ⊓-band : Band 0ℓ 0ℓ ⊓-band = record { isBand = ⊓-isBand } ⊓-semilattice : Semilattice 0ℓ 0ℓ ⊓-semilattice = record { isSemilattice = ⊓-isSemilattice } ⊔-⊓-commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne 0ℓ 0ℓ ⊔-⊓-commutativeSemiringWithoutOne = record { isCommutativeSemiringWithoutOne = ⊔-⊓-isCommutativeSemiringWithoutOne } ⊓-⊔-lattice : Lattice 0ℓ 0ℓ ⊓-⊔-lattice = record { isLattice = ⊓-⊔-isLattice } ⊓-⊔-distributiveLattice : DistributiveLattice 0ℓ 0ℓ ⊓-⊔-distributiveLattice = record { isDistributiveLattice = ⊓-⊔-isDistributiveLattice } ------------------------------------------------------------------------ -- Other properties of _⊓_ and _≡_ ⊓-triangulate : ∀ m n o → m ⊓ n ⊓ o ≡ (m ⊓ n) ⊓ (n ⊓ o) ⊓-triangulate m n o = begin-equality m ⊓ n ⊓ o ≡⟨ sym (cong (λ v → m ⊓ v ⊓ o) (⊓-idem n)) ⟩ m ⊓ (n ⊓ n) ⊓ o ≡⟨ ⊓-assoc m _ _ ⟩ m ⊓ ((n ⊓ n) ⊓ o) ≡⟨ cong (m ⊓_) (⊓-assoc n _ _) ⟩ m ⊓ (n ⊓ (n ⊓ o)) ≡⟨ sym (⊓-assoc m _ _) ⟩ (m ⊓ n) ⊓ (n ⊓ o) ∎ ------------------------------------------------------------------------ -- Other properties of _⊓_ and _≤_/_<_ m⊓n≤m : ∀ m n → m ⊓ n ≤ m m⊓n≤m zero _ = z≤n m⊓n≤m (suc m) zero = z≤n m⊓n≤m (suc m) (suc n) = s≤s $ m⊓n≤m m n m⊓n≤n : ∀ m n → m ⊓ n ≤ n m⊓n≤n m n = subst (_≤ n) (⊓-comm n m) (m⊓n≤m n m) m≤n⇒m⊓n≡m : ∀ {m n} → m ≤ n → m ⊓ n ≡ m m≤n⇒m⊓n≡m z≤n = refl m≤n⇒m⊓n≡m (s≤s m≤n) = cong suc (m≤n⇒m⊓n≡m m≤n) m≤n⇒n⊓m≡m : ∀ {m n} → m ≤ n → n ⊓ m ≡ m m≤n⇒n⊓m≡m {m} m≤n = trans (⊓-comm _ m) (m≤n⇒m⊓n≡m m≤n) m⊓n≡m⇒m≤n : ∀ {m n} → m ⊓ n ≡ m → m ≤ n m⊓n≡m⇒m≤n m⊓n≡m = subst (_≤ _) m⊓n≡m (m⊓n≤n _ _) m⊓n≡n⇒n≤m : ∀ {m n} → m ⊓ n ≡ n → n ≤ m m⊓n≡n⇒n≤m m⊓n≡n = subst (_≤ _) m⊓n≡n (m⊓n≤m _ _) m≤n⇒m⊓o≤n : ∀ {m n} o → m ≤ n → m ⊓ o ≤ n m≤n⇒m⊓o≤n o m≤n = ≤-trans (m⊓n≤m _ o) m≤n m≤n⇒o⊓m≤n : ∀ {m n} o → m ≤ n → o ⊓ m ≤ n m≤n⇒o⊓m≤n n m≤n = ≤-trans (m⊓n≤n n _) m≤n m≤n⊓o⇒m≤n : ∀ {m} n o → m ≤ n ⊓ o → m ≤ n m≤n⊓o⇒m≤n n o m≤n⊓o = ≤-trans m≤n⊓o (m⊓n≤m n o) m≤n⊓o⇒m≤o : ∀ {m} n o → m ≤ n ⊓ o → m ≤ o m≤n⊓o⇒m≤o n o m≤n⊓o = ≤-trans m≤n⊓o (m⊓n≤n n o) m<n⇒m⊓o<n : ∀ {m n} o → m < n → m ⊓ o < n m<n⇒m⊓o<n o m<n = <-transʳ (m⊓n≤m _ o) m<n m<n⇒o⊓m<n : ∀ {m n} o → m < n → o ⊓ m < n m<n⇒o⊓m<n o m<n = <-transʳ (m⊓n≤n o _) m<n m<n⊓o⇒m<n : ∀ {m} n o → m < n ⊓ o → m < n m<n⊓o⇒m<n = m≤n⊓o⇒m≤n m<n⊓o⇒m<o : ∀ {m} n o → m < n ⊓ o → m < o m<n⊓o⇒m<o = m≤n⊓o⇒m≤o ⊓-mono-≤ : _⊓_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ ⊓-mono-≤ {m} {n} {u} {v} m≤n u≤v with ⊓-sel n v ... | inj₁ n⊓v≡n rewrite n⊓v≡n = ≤-trans (m⊓n≤m m u) m≤n ... | inj₂ n⊓v≡v rewrite n⊓v≡v = ≤-trans (m⊓n≤n m u) u≤v ⊓-monoˡ-≤ : ∀ n → (_⊓ n) Preserves _≤_ ⟶ _≤_ ⊓-monoˡ-≤ n m≤o = ⊓-mono-≤ m≤o (≤-refl {n}) ⊓-monoʳ-≤ : ∀ n → (n ⊓_) Preserves _≤_ ⟶ _≤_ ⊓-monoʳ-≤ n m≤o = ⊓-mono-≤ (≤-refl {n}) m≤o ⊓-mono-< : _⊓_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ ⊓-mono-< = ⊓-mono-≤ m⊓n≤m⊔n : ∀ m n → m ⊓ n ≤ m ⊔ n m⊓n≤m⊔n zero n = z≤n m⊓n≤m⊔n (suc m) zero = z≤n m⊓n≤m⊔n (suc m) (suc n) = s≤s (m⊓n≤m⊔n m n) ⊓-pres-m≤ : ∀ {m n o} → m ≤ n → m ≤ o → m ≤ n ⊓ o ⊓-pres-m≤ {m} m≤n m≤o = subst (_≤ _) (⊓-idem m) (⊓-mono-≤ m≤n m≤o) ⊓-pres-m< : ∀ {m n o} → m < n → m < o → m < n ⊓ o ⊓-pres-m< {m} m<n m<o = subst (_< _) (⊓-idem m) (⊓-mono-< m<n m<o) ------------------------------------------------------------------------ -- Other properties of _⊓_ and _+_ +-distribˡ-⊓ : _+_ DistributesOverˡ _⊓_ +-distribˡ-⊓ zero n o = refl +-distribˡ-⊓ (suc m) n o = cong suc (+-distribˡ-⊓ m n o) +-distribʳ-⊓ : _+_ DistributesOverʳ _⊓_ +-distribʳ-⊓ = comm+distrˡ⇒distrʳ +-comm +-distribˡ-⊓ +-distrib-⊓ : _+_ DistributesOver _⊓_ +-distrib-⊓ = +-distribˡ-⊓ , +-distribʳ-⊓ m⊓n≤m+n : ∀ m n → m ⊓ n ≤ m + n m⊓n≤m+n m n with ⊓-sel m n ... | inj₁ m⊓n≡m rewrite m⊓n≡m = m≤m+n m n ... | inj₂ m⊓n≡n rewrite m⊓n≡n = m≤n+m n m ------------------------------------------------------------------------ -- Properties of _∸_ ------------------------------------------------------------------------ 0∸n≡0 : LeftZero zero _∸_ 0∸n≡0 zero = refl 0∸n≡0 (suc _) = refl n∸n≡0 : ∀ n → n ∸ n ≡ 0 n∸n≡0 zero = refl n∸n≡0 (suc n) = n∸n≡0 n ------------------------------------------------------------------------ -- Properties of _∸_ and _≤_/_<_ m∸n≤m : ∀ m n → m ∸ n ≤ m m∸n≤m n zero = ≤-refl m∸n≤m zero (suc n) = ≤-refl m∸n≤m (suc m) (suc n) = ≤-trans (m∸n≤m m n) (n≤1+n m) m≮m∸n : ∀ m n → m ≮ m ∸ n m≮m∸n m zero = n≮n m m≮m∸n (suc m) (suc n) = m≮m∸n m n ∘ ≤-trans (n≤1+n (suc m)) 1+m≢m∸n : ∀ {m} n → suc m ≢ m ∸ n 1+m≢m∸n {m} n eq = m≮m∸n m n (≤-reflexive eq) ∸-mono : _∸_ Preserves₂ _≤_ ⟶ _≥_ ⟶ _≤_ ∸-mono z≤n (s≤s n₁≥n₂) = z≤n ∸-mono (s≤s m₁≤m₂) (s≤s n₁≥n₂) = ∸-mono m₁≤m₂ n₁≥n₂ ∸-mono m₁≤m₂ (z≤n {n = n₁}) = ≤-trans (m∸n≤m _ n₁) m₁≤m₂ ∸-monoˡ-≤ : ∀ {m n} o → m ≤ n → m ∸ o ≤ n ∸ o ∸-monoˡ-≤ o m≤n = ∸-mono {u = o} m≤n ≤-refl ∸-monoʳ-≤ : ∀ {m n} o → m ≤ n → o ∸ m ≥ o ∸ n ∸-monoʳ-≤ _ m≤n = ∸-mono ≤-refl m≤n ∸-monoʳ-< : ∀ {m n o} → o < n → n ≤ m → m ∸ n < m ∸ o ∸-monoʳ-< {n = suc n} {zero} (s≤s o<n) (s≤s n<m) = s≤s (m∸n≤m _ n) ∸-monoʳ-< {n = suc n} {suc o} (s≤s o<n) (s≤s n<m) = ∸-monoʳ-< o<n n<m ∸-cancelʳ-≤ : ∀ {m n o} → m ≤ o → o ∸ n ≤ o ∸ m → m ≤ n ∸-cancelʳ-≤ {_} {_} z≤n _ = z≤n ∸-cancelʳ-≤ {suc m} {zero} (s≤s _) o<o∸m = contradiction o<o∸m (m≮m∸n _ m) ∸-cancelʳ-≤ {suc m} {suc n} (s≤s m≤o) o∸n<o∸m = s≤s (∸-cancelʳ-≤ m≤o o∸n<o∸m) ∸-cancelʳ-< : ∀ {m n o} → o ∸ m < o ∸ n → n < m ∸-cancelʳ-< {zero} {n} {o} o<o∸n = contradiction o<o∸n (m≮m∸n o n) ∸-cancelʳ-< {suc m} {zero} {_} o∸n<o∸m = 0<1+n ∸-cancelʳ-< {suc m} {suc n} {suc o} o∸n<o∸m = s≤s (∸-cancelʳ-< o∸n<o∸m) ∸-cancelˡ-≡ : ∀ {m n o} → n ≤ m → o ≤ m → m ∸ n ≡ m ∸ o → n ≡ o ∸-cancelˡ-≡ {_} z≤n z≤n _ = refl ∸-cancelˡ-≡ {o = suc o} z≤n (s≤s _) eq = contradiction eq (1+m≢m∸n o) ∸-cancelˡ-≡ {n = suc n} (s≤s _) z≤n eq = contradiction (sym eq) (1+m≢m∸n n) ∸-cancelˡ-≡ {_} (s≤s n≤m) (s≤s o≤m) eq = cong suc (∸-cancelˡ-≡ n≤m o≤m eq) ∸-cancelʳ-≡ : ∀ {m n o} → o ≤ m → o ≤ n → m ∸ o ≡ n ∸ o → m ≡ n ∸-cancelʳ-≡ z≤n z≤n eq = eq ∸-cancelʳ-≡ (s≤s o≤m) (s≤s o≤n) eq = cong suc (∸-cancelʳ-≡ o≤m o≤n eq) m∸n≡0⇒m≤n : ∀ {m n} → m ∸ n ≡ 0 → m ≤ n m∸n≡0⇒m≤n {zero} {_} _ = z≤n m∸n≡0⇒m≤n {suc m} {suc n} eq = s≤s (m∸n≡0⇒m≤n eq) m≤n⇒m∸n≡0 : ∀ {m n} → m ≤ n → m ∸ n ≡ 0 m≤n⇒m∸n≡0 {n = n} z≤n = 0∸n≡0 n m≤n⇒m∸n≡0 {_} (s≤s m≤n) = m≤n⇒m∸n≡0 m≤n m<n⇒0<n∸m : ∀ {m n} → m < n → 0 < n ∸ m m<n⇒0<n∸m {zero} {suc n} _ = 0<1+n m<n⇒0<n∸m {suc m} {suc n} (s≤s m<n) = m<n⇒0<n∸m m<n m∸n≢0⇒n<m : ∀ {m n} → m ∸ n ≢ 0 → n < m m∸n≢0⇒n<m {m} {n} m∸n≢0 with n <? m ... | yes n<m = n<m ... | no n≮m = contradiction (m≤n⇒m∸n≡0 (≮⇒≥ n≮m)) m∸n≢0 m>n⇒m∸n≢0 : ∀ {m n} → m > n → m ∸ n ≢ 0 m>n⇒m∸n≢0 {n = suc n} (s≤s m>n) = m>n⇒m∸n≢0 m>n --------------------------------------------------------------- -- Properties of _∸_ and _+_ +-∸-comm : ∀ {m} n {o} → o ≤ m → (m + n) ∸ o ≡ (m ∸ o) + n +-∸-comm {zero} _ {zero} _ = refl +-∸-comm {suc m} _ {zero} _ = refl +-∸-comm {suc m} n {suc o} (s≤s o≤m) = +-∸-comm n o≤m ∸-+-assoc : ∀ m n o → (m ∸ n) ∸ o ≡ m ∸ (n + o) ∸-+-assoc zero zero o = refl ∸-+-assoc zero (suc n) o = 0∸n≡0 o ∸-+-assoc (suc m) zero o = refl ∸-+-assoc (suc m) (suc n) o = ∸-+-assoc m n o +-∸-assoc : ∀ m {n o} → o ≤ n → (m + n) ∸ o ≡ m + (n ∸ o) +-∸-assoc m (z≤n {n = n}) = begin-equality m + n ∎ +-∸-assoc m (s≤s {m = o} {n = n} o≤n) = begin-equality (m + suc n) ∸ suc o ≡⟨ cong (_∸ suc o) (+-suc m n) ⟩ suc (m + n) ∸ suc o ≡⟨⟩ (m + n) ∸ o ≡⟨ +-∸-assoc m o≤n ⟩ m + (n ∸ o) ∎ m≤n+m∸n : ∀ m n → m ≤ n + (m ∸ n) m≤n+m∸n zero n = z≤n m≤n+m∸n (suc m) zero = ≤-refl m≤n+m∸n (suc m) (suc n) = s≤s (m≤n+m∸n m n) m+n∸n≡m : ∀ m n → m + n ∸ n ≡ m m+n∸n≡m m n = begin-equality (m + n) ∸ n ≡⟨ +-∸-assoc m (≤-refl {x = n}) ⟩ m + (n ∸ n) ≡⟨ cong (m +_) (n∸n≡0 n) ⟩ m + 0 ≡⟨ +-identityʳ m ⟩ m ∎ m+n∸m≡n : ∀ m n → m + n ∸ m ≡ n m+n∸m≡n m n = trans (cong (_∸ m) (+-comm m n)) (m+n∸n≡m n m) m+[n∸m]≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n m+[n∸m]≡n {m} {n} m≤n = begin-equality m + (n ∸ m) ≡⟨ sym $ +-∸-assoc m m≤n ⟩ (m + n) ∸ m ≡⟨ cong (_∸ m) (+-comm m n) ⟩ (n + m) ∸ m ≡⟨ m+n∸n≡m n m ⟩ n ∎ m∸n+n≡m : ∀ {m n} → n ≤ m → (m ∸ n) + n ≡ m m∸n+n≡m {m} {n} n≤m = begin-equality (m ∸ n) + n ≡⟨ sym (+-∸-comm n n≤m) ⟩ (m + n) ∸ n ≡⟨ m+n∸n≡m m n ⟩ m ∎ m∸[m∸n]≡n : ∀ {m n} → n ≤ m → m ∸ (m ∸ n) ≡ n m∸[m∸n]≡n {m} {_} z≤n = n∸n≡0 m m∸[m∸n]≡n {suc m} {suc n} (s≤s n≤m) = begin-equality suc m ∸ (m ∸ n) ≡⟨ +-∸-assoc 1 (m∸n≤m m n) ⟩ suc (m ∸ (m ∸ n)) ≡⟨ cong suc (m∸[m∸n]≡n n≤m) ⟩ suc n ∎ [m+n]∸[m+o]≡n∸o : ∀ m n o → (m + n) ∸ (m + o) ≡ n ∸ o [m+n]∸[m+o]≡n∸o zero n o = refl [m+n]∸[m+o]≡n∸o (suc m) n o = [m+n]∸[m+o]≡n∸o m n o ------------------------------------------------------------------------ -- Properties of _∸_ and _*_ *-distribʳ-∸ : _*_ DistributesOverʳ _∸_ *-distribʳ-∸ m zero zero = refl *-distribʳ-∸ zero zero (suc o) = sym (0∸n≡0 (o * zero)) *-distribʳ-∸ (suc m) zero (suc o) = refl *-distribʳ-∸ m (suc n) zero = refl *-distribʳ-∸ m (suc n) (suc o) = begin-equality (n ∸ o) * m ≡⟨ *-distribʳ-∸ m n o ⟩ n * m ∸ o * m ≡⟨ sym $ [m+n]∸[m+o]≡n∸o m _ _ ⟩ m + n * m ∸ (m + o * m) ∎ *-distribˡ-∸ : _*_ DistributesOverˡ _∸_ *-distribˡ-∸ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-∸ *-distrib-∸ : _*_ DistributesOver _∸_ *-distrib-∸ = *-distribˡ-∸ , *-distribʳ-∸ even≢odd : ∀ m n → 2 * m ≢ suc (2 * n) even≢odd (suc m) zero eq = contradiction (suc-injective eq) (m+1+n≢0 m) even≢odd (suc m) (suc n) eq = even≢odd m n (suc-injective (begin-equality suc (2 * m) ≡⟨ sym (+-suc m _) ⟩ m + suc (m + 0) ≡⟨ suc-injective eq ⟩ suc n + suc (n + 0) ≡⟨ cong suc (+-suc n _) ⟩ suc (suc (2 * n)) ∎)) ------------------------------------------------------------------------ -- Properties of _∸_ and _⊓_ and _⊔_ m⊓n+n∸m≡n : ∀ m n → (m ⊓ n) + (n ∸ m) ≡ n m⊓n+n∸m≡n zero n = refl m⊓n+n∸m≡n (suc m) zero = refl m⊓n+n∸m≡n (suc m) (suc n) = cong suc $ m⊓n+n∸m≡n m n [m∸n]⊓[n∸m]≡0 : ∀ m n → (m ∸ n) ⊓ (n ∸ m) ≡ 0 [m∸n]⊓[n∸m]≡0 zero zero = refl [m∸n]⊓[n∸m]≡0 zero (suc n) = refl [m∸n]⊓[n∸m]≡0 (suc m) zero = refl [m∸n]⊓[n∸m]≡0 (suc m) (suc n) = [m∸n]⊓[n∸m]≡0 m n ∸-distribˡ-⊓-⊔ : ∀ m n o → m ∸ (n ⊓ o) ≡ (m ∸ n) ⊔ (m ∸ o) ∸-distribˡ-⊓-⊔ m zero zero = sym (⊔-idem m) ∸-distribˡ-⊓-⊔ zero zero (suc o) = refl ∸-distribˡ-⊓-⊔ zero (suc n) zero = refl ∸-distribˡ-⊓-⊔ zero (suc n) (suc o) = refl ∸-distribˡ-⊓-⊔ (suc m) (suc n) zero = sym (m≤n⇒m⊔n≡n (≤-step (m∸n≤m m n))) ∸-distribˡ-⊓-⊔ (suc m) zero (suc o) = sym (m≤n⇒n⊔m≡n (≤-step (m∸n≤m m o))) ∸-distribˡ-⊓-⊔ (suc m) (suc n) (suc o) = ∸-distribˡ-⊓-⊔ m n o ∸-distribʳ-⊓ : _∸_ DistributesOverʳ _⊓_ ∸-distribʳ-⊓ zero n o = refl ∸-distribʳ-⊓ (suc m) zero o = refl ∸-distribʳ-⊓ (suc m) (suc n) zero = sym (⊓-zeroʳ (n ∸ m)) ∸-distribʳ-⊓ (suc m) (suc n) (suc o) = ∸-distribʳ-⊓ m n o ∸-distribˡ-⊔-⊓ : ∀ m n o → m ∸ (n ⊔ o) ≡ (m ∸ n) ⊓ (m ∸ o) ∸-distribˡ-⊔-⊓ m zero zero = sym (⊓-idem m) ∸-distribˡ-⊔-⊓ zero zero o = 0∸n≡0 o ∸-distribˡ-⊔-⊓ zero (suc n) o = 0∸n≡0 (suc n ⊔ o) ∸-distribˡ-⊔-⊓ (suc m) (suc n) zero = sym (m≤n⇒m⊓n≡m (≤-step (m∸n≤m m n))) ∸-distribˡ-⊔-⊓ (suc m) zero (suc o) = sym (m≤n⇒n⊓m≡m (≤-step (m∸n≤m m o))) ∸-distribˡ-⊔-⊓ (suc m) (suc n) (suc o) = ∸-distribˡ-⊔-⊓ m n o ∸-distribʳ-⊔ : _∸_ DistributesOverʳ _⊔_ ∸-distribʳ-⊔ zero n o = refl ∸-distribʳ-⊔ (suc m) zero o = refl ∸-distribʳ-⊔ (suc m) (suc n) zero = sym (⊔-identityʳ (n ∸ m)) ∸-distribʳ-⊔ (suc m) (suc n) (suc o) = ∸-distribʳ-⊔ m n o ------------------------------------------------------------------------ -- Properties of ∣_-_∣ ------------------------------------------------------------------------ m≡n⇒∣m-n∣≡0 : ∀ {m n} → m ≡ n → ∣ m - n ∣ ≡ 0 m≡n⇒∣m-n∣≡0 {zero} refl = refl m≡n⇒∣m-n∣≡0 {suc m} refl = m≡n⇒∣m-n∣≡0 {m} refl ∣m-n∣≡0⇒m≡n : ∀ {m n} → ∣ m - n ∣ ≡ 0 → m ≡ n ∣m-n∣≡0⇒m≡n {zero} {zero} eq = refl ∣m-n∣≡0⇒m≡n {suc m} {suc n} eq = cong suc (∣m-n∣≡0⇒m≡n eq) m≤n⇒∣n-m∣≡n∸m : ∀ {m n} → m ≤ n → ∣ n - m ∣ ≡ n ∸ m m≤n⇒∣n-m∣≡n∸m {_} {zero} z≤n = refl m≤n⇒∣n-m∣≡n∸m {_} {suc m} z≤n = refl m≤n⇒∣n-m∣≡n∸m {_} {_} (s≤s m≤n) = m≤n⇒∣n-m∣≡n∸m m≤n ∣m-n∣≡m∸n⇒n≤m : ∀ {m n} → ∣ m - n ∣ ≡ m ∸ n → n ≤ m ∣m-n∣≡m∸n⇒n≤m {zero} {zero} eq = z≤n ∣m-n∣≡m∸n⇒n≤m {suc m} {zero} eq = z≤n ∣m-n∣≡m∸n⇒n≤m {suc m} {suc n} eq = s≤s (∣m-n∣≡m∸n⇒n≤m eq) ∣n-n∣≡0 : ∀ n → ∣ n - n ∣ ≡ 0 ∣n-n∣≡0 n = m≡n⇒∣m-n∣≡0 {n} refl ∣m-m+n∣≡n : ∀ m n → ∣ m - m + n ∣ ≡ n ∣m-m+n∣≡n zero n = refl ∣m-m+n∣≡n (suc m) n = ∣m-m+n∣≡n m n ∣m+n-m+o∣≡∣n-o| : ∀ m n o → ∣ m + n - m + o ∣ ≡ ∣ n - o ∣ ∣m+n-m+o∣≡∣n-o| zero n o = refl ∣m+n-m+o∣≡∣n-o| (suc m) n o = ∣m+n-m+o∣≡∣n-o| m n o m∸n≤∣m-n∣ : ∀ m n → m ∸ n ≤ ∣ m - n ∣ m∸n≤∣m-n∣ m n with ≤-total m n ... | inj₁ m≤n = subst (_≤ ∣ m - n ∣) (sym (m≤n⇒m∸n≡0 m≤n)) z≤n ... | inj₂ n≤m = subst (m ∸ n ≤_) (sym (m≤n⇒∣n-m∣≡n∸m n≤m)) ≤-refl ∣m-n∣≤m⊔n : ∀ m n → ∣ m - n ∣ ≤ m ⊔ n ∣m-n∣≤m⊔n zero m = ≤-refl ∣m-n∣≤m⊔n (suc m) zero = ≤-refl ∣m-n∣≤m⊔n (suc m) (suc n) = ≤-step (∣m-n∣≤m⊔n m n) ∣-∣-identityˡ : LeftIdentity 0 ∣_-_∣ ∣-∣-identityˡ x = refl ∣-∣-identityʳ : RightIdentity 0 ∣_-_∣ ∣-∣-identityʳ zero = refl ∣-∣-identityʳ (suc x) = refl ∣-∣-identity : Identity 0 ∣_-_∣ ∣-∣-identity = ∣-∣-identityˡ , ∣-∣-identityʳ ∣-∣-comm : Commutative ∣_-_∣ ∣-∣-comm zero zero = refl ∣-∣-comm zero (suc n) = refl ∣-∣-comm (suc m) zero = refl ∣-∣-comm (suc m) (suc n) = ∣-∣-comm m n ∣m-n∣≡[m∸n]∨[n∸m] : ∀ m n → (∣ m - n ∣ ≡ m ∸ n) ⊎ (∣ m - n ∣ ≡ n ∸ m) ∣m-n∣≡[m∸n]∨[n∸m] m n with ≤-total m n ... | inj₂ n≤m = inj₁ $ m≤n⇒∣n-m∣≡n∸m n≤m ... | inj₁ m≤n = inj₂ $ begin-equality ∣ m - n ∣ ≡⟨ ∣-∣-comm m n ⟩ ∣ n - m ∣ ≡⟨ m≤n⇒∣n-m∣≡n∸m m≤n ⟩ n ∸ m ∎ private *-distribˡ-∣-∣-aux : ∀ a m n → m ≤ n → a * ∣ n - m ∣ ≡ ∣ a * n - a * m ∣ *-distribˡ-∣-∣-aux a m n m≤n = begin-equality a * ∣ n - m ∣ ≡⟨ cong (a *_) (m≤n⇒∣n-m∣≡n∸m m≤n) ⟩ a * (n ∸ m) ≡⟨ *-distribˡ-∸ a n m ⟩ a * n ∸ a * m ≡⟨ sym $′ m≤n⇒∣n-m∣≡n∸m (*-monoʳ-≤ a m≤n) ⟩ ∣ a * n - a * m ∣ ∎ *-distribˡ-∣-∣ : _*_ DistributesOverˡ ∣_-_∣ *-distribˡ-∣-∣ a m n with ≤-total m n ... | inj₁ m≤n = begin-equality a * ∣ m - n ∣ ≡⟨ cong (a *_) (∣-∣-comm m n) ⟩ a * ∣ n - m ∣ ≡⟨ *-distribˡ-∣-∣-aux a m n m≤n ⟩ ∣ a * n - a * m ∣ ≡⟨ ∣-∣-comm (a * n) (a * m) ⟩ ∣ a * m - a * n ∣ ∎ ... | inj₂ n≤m = *-distribˡ-∣-∣-aux a n m n≤m *-distribʳ-∣-∣ : _*_ DistributesOverʳ ∣_-_∣ *-distribʳ-∣-∣ = comm+distrˡ⇒distrʳ *-comm *-distribˡ-∣-∣ *-distrib-∣-∣ : _*_ DistributesOver ∣_-_∣ *-distrib-∣-∣ = *-distribˡ-∣-∣ , *-distribʳ-∣-∣ m≤n+∣n-m∣ : ∀ m n → m ≤ n + ∣ n - m ∣ m≤n+∣n-m∣ zero n = z≤n m≤n+∣n-m∣ (suc m) zero = ≤-refl m≤n+∣n-m∣ (suc m) (suc n) = s≤s (m≤n+∣n-m∣ m n) m≤n+∣m-n∣ : ∀ m n → m ≤ n + ∣ m - n ∣ m≤n+∣m-n∣ m n = subst (m ≤_) (cong (n +_) (∣-∣-comm n m)) (m≤n+∣n-m∣ m n) m≤∣m-n∣+n : ∀ m n → m ≤ ∣ m - n ∣ + n m≤∣m-n∣+n m n = subst (m ≤_) (+-comm n _) (m≤n+∣m-n∣ m n) ------------------------------------------------------------------------ -- Properties of ⌊_/2⌋ and ⌈_/2⌉ ------------------------------------------------------------------------ ⌊n/2⌋-mono : ⌊_/2⌋ Preserves _≤_ ⟶ _≤_ ⌊n/2⌋-mono z≤n = z≤n ⌊n/2⌋-mono (s≤s z≤n) = z≤n ⌊n/2⌋-mono (s≤s (s≤s m≤n)) = s≤s (⌊n/2⌋-mono m≤n) ⌈n/2⌉-mono : ⌈_/2⌉ Preserves _≤_ ⟶ _≤_ ⌈n/2⌉-mono m≤n = ⌊n/2⌋-mono (s≤s m≤n) ⌊n/2⌋≤⌈n/2⌉ : ∀ n → ⌊ n /2⌋ ≤ ⌈ n /2⌉ ⌊n/2⌋≤⌈n/2⌉ zero = z≤n ⌊n/2⌋≤⌈n/2⌉ (suc zero) = z≤n ⌊n/2⌋≤⌈n/2⌉ (suc (suc n)) = s≤s (⌊n/2⌋≤⌈n/2⌉ n) ⌊n/2⌋+⌈n/2⌉≡n : ∀ n → ⌊ n /2⌋ + ⌈ n /2⌉ ≡ n ⌊n/2⌋+⌈n/2⌉≡n zero = refl ⌊n/2⌋+⌈n/2⌉≡n (suc n) = begin-equality ⌊ suc n /2⌋ + suc ⌊ n /2⌋ ≡⟨ +-comm ⌊ suc n /2⌋ (suc ⌊ n /2⌋) ⟩ suc ⌊ n /2⌋ + ⌊ suc n /2⌋ ≡⟨⟩ suc (⌊ n /2⌋ + ⌊ suc n /2⌋) ≡⟨ cong suc (⌊n/2⌋+⌈n/2⌉≡n n) ⟩ suc n ∎ ⌊n/2⌋≤n : ∀ n → ⌊ n /2⌋ ≤ n ⌊n/2⌋≤n zero = z≤n ⌊n/2⌋≤n (suc zero) = z≤n ⌊n/2⌋≤n (suc (suc n)) = s≤s (≤-step (⌊n/2⌋≤n n)) ⌊n/2⌋<n : ∀ n → ⌊ suc n /2⌋ < suc n ⌊n/2⌋<n zero = s≤s z≤n ⌊n/2⌋<n (suc n) = s≤s (s≤s (⌊n/2⌋≤n n)) ⌈n/2⌉≤n : ∀ n → ⌈ n /2⌉ ≤ n ⌈n/2⌉≤n zero = z≤n ⌈n/2⌉≤n (suc n) = s≤s (⌊n/2⌋≤n n) ⌈n/2⌉<n : ∀ n → ⌈ suc (suc n) /2⌉ < suc (suc n) ⌈n/2⌉<n n = s≤s (⌊n/2⌋<n n) ------------------------------------------------------------------------ -- Properties of _≤′_ and _<′_ ------------------------------------------------------------------------ ≤′-trans : Transitive _≤′_ ≤′-trans m≤n ≤′-refl = m≤n ≤′-trans m≤n (≤′-step n≤o) = ≤′-step (≤′-trans m≤n n≤o) z≤′n : ∀ {n} → zero ≤′ n z≤′n {zero} = ≤′-refl z≤′n {suc n} = ≤′-step z≤′n s≤′s : ∀ {m n} → m ≤′ n → suc m ≤′ suc n s≤′s ≤′-refl = ≤′-refl s≤′s (≤′-step m≤′n) = ≤′-step (s≤′s m≤′n) ≤′⇒≤ : _≤′_ ⇒ _≤_ ≤′⇒≤ ≤′-refl = ≤-refl ≤′⇒≤ (≤′-step m≤′n) = ≤-step (≤′⇒≤ m≤′n) ≤⇒≤′ : _≤_ ⇒ _≤′_ ≤⇒≤′ z≤n = z≤′n ≤⇒≤′ (s≤s m≤n) = s≤′s (≤⇒≤′ m≤n) ≤′-step-injective : ∀ {m n} {p q : m ≤′ n} → ≤′-step p ≡ ≤′-step q → p ≡ q ≤′-step-injective refl = refl infix 4 _≤′?_ _<′?_ _≥′?_ _>′?_ _≤′?_ : Decidable _≤′_ m ≤′? n = map′ ≤⇒≤′ ≤′⇒≤ (m ≤? n) _<′?_ : Decidable _<′_ m <′? n = suc m ≤′? n _≥′?_ : Decidable _≥′_ _≥′?_ = flip _≤′?_ _>′?_ : Decidable _>′_ _>′?_ = flip _<′?_ m≤′m+n : ∀ m n → m ≤′ m + n m≤′m+n m n = ≤⇒≤′ (m≤m+n m n) n≤′m+n : ∀ m n → n ≤′ m + n n≤′m+n zero n = ≤′-refl n≤′m+n (suc m) n = ≤′-step (n≤′m+n m n) ⌈n/2⌉≤′n : ∀ n → ⌈ n /2⌉ ≤′ n ⌈n/2⌉≤′n zero = ≤′-refl ⌈n/2⌉≤′n (suc zero) = ≤′-refl ⌈n/2⌉≤′n (suc (suc n)) = s≤′s (≤′-step (⌈n/2⌉≤′n n)) ⌊n/2⌋≤′n : ∀ n → ⌊ n /2⌋ ≤′ n ⌊n/2⌋≤′n zero = ≤′-refl ⌊n/2⌋≤′n (suc n) = ≤′-step (⌈n/2⌉≤′n n) ------------------------------------------------------------------------ -- Properties of _≤″_ and _<″_ ------------------------------------------------------------------------ m<ᵇn⇒1+m+[n-1+m]≡n : ∀ m n → T (m <ᵇ n) → suc m + (n ∸ suc m) ≡ n m<ᵇn⇒1+m+[n-1+m]≡n m n lt = m+[n∸m]≡n (<ᵇ⇒< m n lt) m<ᵇ1+m+n : ∀ m {n} → T (m <ᵇ suc (m + n)) m<ᵇ1+m+n m = <⇒<ᵇ (m≤m+n (suc m) _) <ᵇ⇒<″ : ∀ {m n} → T (m <ᵇ n) → m <″ n <ᵇ⇒<″ {m} {n} leq = less-than-or-equal (m+[n∸m]≡n (<ᵇ⇒< m n leq)) <″⇒<ᵇ : ∀ {m n} → m <″ n → T (m <ᵇ n) <″⇒<ᵇ {m} (less-than-or-equal refl) = <⇒<ᵇ (m≤m+n (suc m) _) -- equivalence to _≤_ ≤″⇒≤ : _≤″_ ⇒ _≤_ ≤″⇒≤ {zero} (less-than-or-equal refl) = z≤n ≤″⇒≤ {suc m} (less-than-or-equal refl) = s≤s (≤″⇒≤ (less-than-or-equal refl)) ≤⇒≤″ : _≤_ ⇒ _≤″_ ≤⇒≤″ = less-than-or-equal ∘ m+[n∸m]≡n -- NB: we use the builtin function `_<ᵇ_ : (m n : ℕ) → Bool` here so -- that the function quickly decides whether to return `yes` or `no`. -- It still takes a linear amount of time to generate the proof if it -- is inspected. We expect the main benefit to be visible for compiled -- code: the backend erases proofs. infix 4 _<″?_ _≤″?_ _≥″?_ _>″?_ _<″?_ : Decidable _<″_ m <″? n = map′ <ᵇ⇒<″ <″⇒<ᵇ (T? (m <ᵇ n)) _≤″?_ : Decidable _≤″_ zero ≤″? n = yes (less-than-or-equal refl) suc m ≤″? n = m <″? n _≥″?_ : Decidable _≥″_ _≥″?_ = flip _≤″?_ _>″?_ : Decidable _>″_ _>″?_ = flip _<″?_ ≤″-irrelevant : Irrelevant _≤″_ ≤″-irrelevant {m} (less-than-or-equal eq₁) (less-than-or-equal eq₂) with +-cancelˡ-≡ m (trans eq₁ (sym eq₂)) ... | refl = cong less-than-or-equal (≡-irrelevant eq₁ eq₂) <″-irrelevant : Irrelevant _<″_ <″-irrelevant = ≤″-irrelevant >″-irrelevant : Irrelevant _>″_ >″-irrelevant = ≤″-irrelevant ≥″-irrelevant : Irrelevant _≥″_ ≥″-irrelevant = ≤″-irrelevant ------------------------------------------------------------------------ -- Properties of _≤‴_ ------------------------------------------------------------------------ ≤‴⇒≤″ : ∀{m n} → m ≤‴ n → m ≤″ n ≤‴⇒≤″ {m = m} ≤‴-refl = less-than-or-equal {k = 0} (+-identityʳ m) ≤‴⇒≤″ {m = m} (≤‴-step x) = less-than-or-equal (trans (+-suc m _) (_≤″_.proof ind)) where ind = ≤‴⇒≤″ x m≤‴m+k : ∀{m n k} → m + k ≡ n → m ≤‴ n m≤‴m+k {m} {k = zero} refl = subst (λ z → m ≤‴ z) (sym (+-identityʳ m)) (≤‴-refl {m}) m≤‴m+k {m} {k = suc k} proof = ≤‴-step (m≤‴m+k {k = k} (trans (sym (+-suc m _)) proof)) ≤″⇒≤‴ : ∀{m n} → m ≤″ n → m ≤‴ n ≤″⇒≤‴ (less-than-or-equal {k} proof) = m≤‴m+k proof ------------------------------------------------------------------------ -- Other properties ------------------------------------------------------------------------ -- If there is an injection from a type to ℕ, then the type has -- decidable equality. eq? : ∀ {a} {A : Set a} → A ↣ ℕ → Decidable {A = A} _≡_ eq? inj = via-injection inj _≟_ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.14 _*-mono_ = *-mono-≤ {-# WARNING_ON_USAGE _*-mono_ "Warning: _*-mono_ was deprecated in v0.14. Please use *-mono-≤ instead." #-} _+-mono_ = +-mono-≤ {-# WARNING_ON_USAGE _+-mono_ "Warning: _+-mono_ was deprecated in v0.14. Please use +-mono-≤ instead." #-} +-right-identity = +-identityʳ {-# WARNING_ON_USAGE +-right-identity "Warning: +-right-identity was deprecated in v0.14. Please use +-identityʳ instead." #-} *-right-zero = *-zeroʳ {-# WARNING_ON_USAGE *-right-zero "Warning: *-right-zero was deprecated in v0.14. Please use *-zeroʳ instead." #-} distribʳ-*-+ = *-distribʳ-+ {-# WARNING_ON_USAGE distribʳ-*-+ "Warning: distribʳ-*-+ was deprecated in v0.14. Please use *-distribʳ-+ instead." #-} *-distrib-∸ʳ = *-distribʳ-∸ {-# WARNING_ON_USAGE *-distrib-∸ʳ "Warning: *-distrib-∸ʳ was deprecated in v0.14. Please use *-distribʳ-∸ instead." #-} cancel-+-left = +-cancelˡ-≡ {-# WARNING_ON_USAGE cancel-+-left "Warning: cancel-+-left was deprecated in v0.14. Please use +-cancelˡ-≡ instead." #-} cancel-+-left-≤ = +-cancelˡ-≤ {-# WARNING_ON_USAGE cancel-+-left-≤ "Warning: cancel-+-left-≤ was deprecated in v0.14. Please use +-cancelˡ-≤ instead." #-} cancel-*-right = *-cancelʳ-≡ {-# WARNING_ON_USAGE cancel-*-right "Warning: cancel-*-right was deprecated in v0.14. Please use *-cancelʳ-≡ instead." #-} cancel-*-right-≤ = *-cancelʳ-≤ {-# WARNING_ON_USAGE cancel-*-right-≤ "Warning: cancel-*-right-≤ was deprecated in v0.14. Please use *-cancelʳ-≤ instead." #-} strictTotalOrder = <-strictTotalOrder {-# WARNING_ON_USAGE strictTotalOrder "Warning: strictTotalOrder was deprecated in v0.14. Please use <-strictTotalOrder instead." #-} isCommutativeSemiring = *-+-isCommutativeSemiring {-# WARNING_ON_USAGE isCommutativeSemiring "Warning: isCommutativeSemiring was deprecated in v0.14. Please use *-+-isCommutativeSemiring instead." #-} commutativeSemiring = *-+-commutativeSemiring {-# WARNING_ON_USAGE commutativeSemiring "Warning: commutativeSemiring was deprecated in v0.14. Please use *-+-commutativeSemiring instead." #-} isDistributiveLattice = ⊓-⊔-isDistributiveLattice {-# WARNING_ON_USAGE isDistributiveLattice "Warning: isDistributiveLattice was deprecated in v0.14. Please use ⊓-⊔-isDistributiveLattice instead." #-} distributiveLattice = ⊓-⊔-distributiveLattice {-# WARNING_ON_USAGE distributiveLattice "Warning: distributiveLattice was deprecated in v0.14. Please use ⊓-⊔-distributiveLattice instead." #-} ⊔-⊓-0-isSemiringWithoutOne = ⊔-⊓-isSemiringWithoutOne {-# WARNING_ON_USAGE ⊔-⊓-0-isSemiringWithoutOne "Warning: ⊔-⊓-0-isSemiringWithoutOne was deprecated in v0.14. Please use ⊔-⊓-isSemiringWithoutOne instead." #-} ⊔-⊓-0-isCommutativeSemiringWithoutOne = ⊔-⊓-isCommutativeSemiringWithoutOne {-# WARNING_ON_USAGE ⊔-⊓-0-isCommutativeSemiringWithoutOne "Warning: ⊔-⊓-0-isCommutativeSemiringWithoutOne was deprecated in v0.14. Please use ⊔-⊓-isCommutativeSemiringWithoutOne instead." #-} ⊔-⊓-0-commutativeSemiringWithoutOne = ⊔-⊓-commutativeSemiringWithoutOne {-# WARNING_ON_USAGE ⊔-⊓-0-commutativeSemiringWithoutOne "Warning: ⊔-⊓-0-commutativeSemiringWithoutOne was deprecated in v0.14. Please use ⊔-⊓-commutativeSemiringWithoutOne instead." #-} -- Version 0.15 ¬i+1+j≤i = m+1+n≰m {-# WARNING_ON_USAGE ¬i+1+j≤i "Warning: ¬i+1+j≤i was deprecated in v0.15. Please use m+1+n≰m instead." #-} ≤-steps = ≤-stepsˡ {-# WARNING_ON_USAGE ≤-steps "Warning: ≤-steps was deprecated in v0.15. Please use ≤-stepsˡ instead." #-} -- Version 0.17 i∸k∸j+j∸k≡i+j∸k : ∀ i j k → i ∸ (k ∸ j) + (j ∸ k) ≡ i + j ∸ k i∸k∸j+j∸k≡i+j∸k zero j k = cong (_+ (j ∸ k)) (0∸n≡0 (k ∸ j)) i∸k∸j+j∸k≡i+j∸k (suc i) j zero = cong (λ x → suc i ∸ x + j) (0∸n≡0 j) i∸k∸j+j∸k≡i+j∸k (suc i) zero (suc k) = begin-equality i ∸ k + 0 ≡⟨ +-identityʳ _ ⟩ i ∸ k ≡⟨ cong (_∸ k) (sym (+-identityʳ _)) ⟩ i + 0 ∸ k ∎ i∸k∸j+j∸k≡i+j∸k (suc i) (suc j) (suc k) = begin-equality suc i ∸ (k ∸ j) + (j ∸ k) ≡⟨ i∸k∸j+j∸k≡i+j∸k (suc i) j k ⟩ suc i + j ∸ k ≡⟨ cong (_∸ k) (sym (+-suc i j)) ⟩ i + suc j ∸ k ∎ {-# WARNING_ON_USAGE i∸k∸j+j∸k≡i+j∸k "Warning: i∸k∸j+j∸k≡i+j∸k was deprecated in v0.17." #-} im≡jm+n⇒[i∸j]m≡n : ∀ i j m n → i * m ≡ j * m + n → (i ∸ j) * m ≡ n im≡jm+n⇒[i∸j]m≡n i j m n eq = begin-equality (i ∸ j) * m ≡⟨ *-distribʳ-∸ m i j ⟩ (i * m) ∸ (j * m) ≡⟨ cong (_∸ j * m) eq ⟩ (j * m + n) ∸ (j * m) ≡⟨ cong (_∸ j * m) (+-comm (j * m) n) ⟩ (n + j * m) ∸ (j * m) ≡⟨ m+n∸n≡m n (j * m) ⟩ n ∎ {-# WARNING_ON_USAGE im≡jm+n⇒[i∸j]m≡n "Warning: im≡jm+n⇒[i∸j]m≡n was deprecated in v0.17." #-} ≤+≢⇒< = ≤∧≢⇒< {-# WARNING_ON_USAGE ≤+≢⇒< "Warning: ≤+≢⇒< was deprecated in v0.17. Please use ≤∧≢⇒< instead." #-} -- Version 1.0 ≤-irrelevance = ≤-irrelevant {-# WARNING_ON_USAGE ≤-irrelevance "Warning: ≤-irrelevance was deprecated in v1.0. Please use ≤-irrelevant instead." #-} <-irrelevance = <-irrelevant {-# WARNING_ON_USAGE <-irrelevance "Warning: <-irrelevance was deprecated in v1.0. Please use <-irrelevant instead." #-} -- Version 1.1 i+1+j≢i = m+1+n≢m {-# WARNING_ON_USAGE i+1+j≢i "Warning: i+1+j≢i was deprecated in v1.1. Please use m+1+n≢m instead." #-} i+j≡0⇒i≡0 = m+n≡0⇒m≡0 {-# WARNING_ON_USAGE i+j≡0⇒i≡0 "Warning: i+j≡0⇒i≡0 was deprecated in v1.1. Please use m+n≡0⇒m≡0 instead." #-} i+j≡0⇒j≡0 = m+n≡0⇒n≡0 {-# WARNING_ON_USAGE i+j≡0⇒j≡0 "Warning: i+j≡0⇒j≡0 was deprecated in v1.1. Please use m+n≡0⇒n≡0 instead." #-} i+1+j≰i = m+1+n≰m {-# WARNING_ON_USAGE i+1+j≰i "Warning: i+1+j≰i was deprecated in v1.1. Please use m+1+n≰m instead." #-} i*j≡0⇒i≡0∨j≡0 = m*n≡0⇒m≡0∨n≡0 {-# WARNING_ON_USAGE i*j≡0⇒i≡0∨j≡0 "Warning: i*j≡0⇒i≡0∨j≡0 was deprecated in v1.1. Please use m*n≡0⇒m≡0∨n≡0 instead." #-} i*j≡1⇒i≡1 = m*n≡1⇒m≡1 {-# WARNING_ON_USAGE i*j≡1⇒i≡1 "Warning: i*j≡1⇒i≡1 was deprecated in v1.1. Please use m*n≡1⇒m≡1 instead." #-} i*j≡1⇒j≡1 = m*n≡1⇒n≡1 {-# WARNING_ON_USAGE i*j≡1⇒j≡1 "Warning: i*j≡1⇒j≡1 was deprecated in v1.1. Please use m*n≡1⇒n≡1 instead." #-} i^j≡0⇒i≡0 = m^n≡0⇒m≡0 {-# WARNING_ON_USAGE i^j≡0⇒i≡0 "Warning: i^j≡0⇒i≡0 was deprecated in v1.1. Please use m^n≡0⇒m≡0 instead." #-} i^j≡1⇒j≡0∨i≡1 = m^n≡1⇒n≡0∨m≡1 {-# WARNING_ON_USAGE i^j≡1⇒j≡0∨i≡1 "Warning: i^j≡1⇒j≡0∨i≡1 was deprecated in v1.1. Please use m^n≡1⇒n≡0∨m≡1 instead." #-} [i+j]∸[i+k]≡j∸k = [m+n]∸[m+o]≡n∸o {-# WARNING_ON_USAGE [i+j]∸[i+k]≡j∸k "Warning: [i+j]∸[i+k]≡j∸k was deprecated in v1.1. Please use [m+n]∸[m+o]≡n∸o instead." #-} m≢0⇒suc[pred[m]]≡m = suc[pred[n]]≡n {-# WARNING_ON_USAGE m≢0⇒suc[pred[m]]≡m "Warning: m≢0⇒suc[pred[m]]≡m was deprecated in v1.1. Please use suc[pred[n]]≡n instead." #-} n≡m⇒∣n-m∣≡0 = m≡n⇒∣m-n∣≡0 {-# WARNING_ON_USAGE n≡m⇒∣n-m∣≡0 "Warning: n≡m⇒∣n-m∣≡0 was deprecated in v1.1. Please use m≡n⇒∣m-n∣≡0 instead." #-} ∣n-m∣≡0⇒n≡m = ∣m-n∣≡0⇒m≡n {-# WARNING_ON_USAGE ∣n-m∣≡0⇒n≡m "Warning: ∣n-m∣≡0⇒n≡m was deprecated in v1.1. Please use ∣m-n∣≡0⇒m≡n instead." #-} ∣n-m∣≡n∸m⇒m≤n = ∣m-n∣≡m∸n⇒n≤m {-# WARNING_ON_USAGE ∣n-m∣≡n∸m⇒m≤n "Warning: ∣n-m∣≡n∸m⇒m≤n was deprecated in v1.1. Please use ∣m-n∣≡m∸n⇒n≤m instead." #-} ∣n-n+m∣≡m = ∣m-m+n∣≡n {-# WARNING_ON_USAGE ∣n-n+m∣≡m "Warning: ∣n-n+m∣≡m was deprecated in v1.1. Please use ∣m-m+n∣≡n instead." #-} ∣n+m-n+o∣≡∣m-o| = ∣m+n-m+o∣≡∣n-o| {-# WARNING_ON_USAGE ∣n+m-n+o∣≡∣m-o| "Warning: ∣n+m-n+o∣≡∣m-o| was deprecated in v1.1. Please use ∣m+n-m+o∣≡∣n-o| instead." #-} n∸m≤∣n-m∣ = m∸n≤∣m-n∣ {-# WARNING_ON_USAGE n∸m≤∣n-m∣ "Warning: n∸m≤∣n-m∣ was deprecated in v1.1. Please use m∸n≤∣m-n∣ instead." #-} ∣n-m∣≤n⊔m = ∣m-n∣≤m⊔n {-# WARNING_ON_USAGE ∣n-m∣≤n⊔m "Warning: ∣n-m∣≤n⊔m was deprecated in v1.1. Please use ∣m-n∣≤m⊔n instead." #-} n≤m+n : ∀ m n → n ≤ m + n n≤m+n m n = subst (n ≤_) (+-comm n m) (m≤m+n n m) {-# WARNING_ON_USAGE n≤m+n "Warning: n≤m+n was deprecated in v1.1. Please use m≤n+m instead (note, you will need to switch the argument order)." #-} n≤m+n∸m : ∀ m n → n ≤ m + (n ∸ m) n≤m+n∸m m zero = z≤n n≤m+n∸m zero (suc n) = ≤-refl n≤m+n∸m (suc m) (suc n) = s≤s (n≤m+n∸m m n) {-# WARNING_ON_USAGE n≤m+n∸m "Warning: n≤m+n∸m was deprecated in v1.1. Please use m≤n+m∸n instead (note, you will need to switch the argument order)." #-} ∣n-m∣≡[n∸m]∨[m∸n] : ∀ m n → (∣ n - m ∣ ≡ n ∸ m) ⊎ (∣ n - m ∣ ≡ m ∸ n) ∣n-m∣≡[n∸m]∨[m∸n] m n with ≤-total m n ... | inj₁ m≤n = inj₁ $ m≤n⇒∣n-m∣≡n∸m m≤n ... | inj₂ n≤m = inj₂ $ begin-equality ∣ n - m ∣ ≡⟨ ∣-∣-comm n m ⟩ ∣ m - n ∣ ≡⟨ m≤n⇒∣n-m∣≡n∸m n≤m ⟩ m ∸ n ∎ {-# WARNING_ON_USAGE ∣n-m∣≡[n∸m]∨[m∸n] "Warning: ∣n-m∣≡[n∸m]∨[m∸n] was deprecated in v1.1. Please use ∣m-n∣≡[m∸n]∨[n∸m] instead (note, you will need to switch the argument order)." #-} -- Version 1.2 +-*-suc = *-suc {-# WARNING_ON_USAGE +-*-suc "Warning: +-*-suc was deprecated in v1.2. Please use *-suc instead." #-} n∸m≤n : ∀ m n → n ∸ m ≤ n n∸m≤n m n = m∸n≤m n m {-# WARNING_ON_USAGE n∸m≤n "Warning: n∸m≤n was deprecated in v1.2. Please use m∸n≤m instead (note, you will need to switch the argument order)." #-} -- Version 1.3 ∀[m≤n⇒m≢o]⇒o<n : ∀ n o → (∀ {m} → m ≤ n → m ≢ o) → n < o ∀[m≤n⇒m≢o]⇒o<n = ∀[m≤n⇒m≢o]⇒n<o {-# WARNING_ON_USAGE n∸m≤∣n-m∣ "Warning: ∀[m≤n⇒m≢o]⇒o<n was deprecated in v1.3. Please use ∀[m≤n⇒m≢o]⇒n<o instead." #-} ∀[m<n⇒m≢o]⇒o≤n : ∀ n o → (∀ {m} → m < n → m ≢ o) → n ≤ o ∀[m<n⇒m≢o]⇒o≤n = ∀[m<n⇒m≢o]⇒n≤o {-# WARNING_ON_USAGE n∸m≤∣n-m∣ "Warning: ∀[m<n⇒m≢o]⇒o≤n was deprecated in v1.3. Please use ∀[m<n⇒m≢o]⇒n≤o instead." #-}
29.713468
89
0.473981
c5942ce6c1238af1d4aab88608cc8b5b07af1e27
823
agda
Agda
agda/Categories/Pushout.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
agda/Categories/Pushout.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Categories/Pushout.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} open import Prelude hiding (A; B) open import Categories module Categories.Pushout {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where open Category C private variable A B : Ob h₁ h₂ j : A ⟶ B record Pushout (f : X ⟶ Y) (g : X ⟶ Z) : Type (ℓ₁ ℓ⊔ ℓ₂) where field {Q} : Ob i₁ : Y ⟶ Q i₂ : Z ⟶ Q commute : i₁ · f ≡ i₂ · g universal : h₁ · f ≡ h₂ · g → Q ⟶ Codomain h₁ unique : ∀ {eq : h₁ · f ≡ h₂ · g} → j · i₁ ≡ h₁ → j · i₂ ≡ h₂ → j ≡ universal eq universal·i₁≡h₁ : ∀ {eq : h₁ · f ≡ h₂ · g} → universal eq · i₁ ≡ h₁ universal·i₂≡h₂ : ∀ {eq : h₁ · f ≡ h₂ · g} → universal eq · i₂ ≡ h₂ HasPushouts : Type (ℓ₁ ℓ⊔ ℓ₂) HasPushouts = ∀ {X Y Z} → (f : X ⟶ Y) → (g : X ⟶ Z) → Pushout f g
24.939394
65
0.476306
235a824b62084edce3febd84b8c52ad2634a5a3e
316
agda
Agda
test/Common/Size.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
4
2017-02-24T16:53:22.000Z
2019-12-23T04:56:23.000Z
test/Common/Size.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
6
2017-02-24T19:27:31.000Z
2017-02-24T19:38:17.000Z
test/Common/Size.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2022-03-12T11:39:14.000Z
2022-03-12T11:39:14.000Z
------------------------------------------------------------------------ -- From the Agda standard library -- -- Sizes for Agda's sized types ------------------------------------------------------------------------ module Common.Size where open import Agda.Builtin.Size public renaming (ω to ∞; SizeU to SizeUniv)
31.6
73
0.401899
cb61f43baa8e6c9169b9a890009372a7cc2bad7c
2,912
agda
Agda
tests/covered/l02.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
3
2015-08-10T15:33:56.000Z
2018-12-06T17:24:25.000Z
tests/covered/l02.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
tests/covered/l02.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
{- Computer Aided Formal Reasoning (G53CFR, G54CFR) Thorsten Altenkirch Lecture 2: A first taste of Agda In this lecture we start to explore the Agda system, a functional programming language based on Type Theory. We start with some ordinary examples which we could have developed in Haskell as well. -} module l02 where -- module myNat where {- Agda has no automatically loaded prelude. Hence we can start from scratch and define the natural numbers. Later we will use the standard libray. -} data ℕ : Set where -- to type ℕ we type \bn zero : ℕ suc : (m : ℕ) → ℕ -- \-> or \to {- To process an Agda file we use C-c C-c from emacs. Once Agda has checked the file the type checker also colours the different symbols. -} {- We define addition. Note Agda's syntax for mixfix operations. The arguments are represented by _s -} _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) {- Try to evaluate: (suc (suc zero)) + (suc (suc zero)) by typing in C-c C-n -} {- Better we import the library definition of ℕ This way we can type 2 instead of (suc (suc zero)) -} -- open import Data.Nat {- We define Lists : -} data List (A : Set) : Set where [] : List A _∷_ : (a : A) → (as : List A) → List A {- In future we'll use open import Data.List -} {- declare the fixity of ∷ (type \::) -} infixr 5 _∷_ {- Two example lists -} {- l1 : List ℕ l1 = 1 ∷ 2 ∷ 3 ∷ [] l2 : List ℕ l2 = 4 ∷ 5 ∷ [] -} {- implementing append (++) -} _++_ : {A : Set} → List A → List A → List A [] ++ bs = bs (a ∷ as) ++ bs = a ∷ (as ++ bs) {- Note that Agda checks wether a function is terminating. If we type (a ∷ as) ++ bs = (a ∷ as) ++ bs in the 2nd line Agda will complain by coloring the offending function calls in red. -} {- What does the following variant of ++ do ? -} _++'_ : {A : Set} → List A → List A → List A as ++' [] = as as ++' (b ∷ bs) = (b ∷ as) ++' bs {- Indeed it can be used to define reverse. This way to implement reverse is often called fast reverse because it is "tail recursive" which leads to a more efficient execution than the naive implementation. -} rev : {A : Set} → List A → List A rev as = [] ++' as {- We tried to define a function which accesses the nth element of a list: _!!_ : {A : Set} → List A → ℕ → A [] !! n = {!!} (a ∷ as) !! zero = a (a ∷ as) !! suc n = as !! n but there is no way to complete the first line (consider what happens if A is the empty type! -} {- To fix this we handle errors explicitely, using Maybe -} -- open import Data.Maybe data Maybe (A : Set) : Set where just : (x : A) → Maybe A nothing : Maybe A {- This version of the function can either return an element of the list (just a) or an error (nothing). -} _!!_ : {A : Set} → List A → ℕ → Maybe A [] !! n = nothing (a ∷ as) !! zero = just a (a ∷ as) !! suc n = as !! n
24.266667
74
0.608516
182c65f5d4799af74661321cd765ad8654172fbf
389
agda
Agda
Cats/Category/Fun/Facts.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Fun/Facts.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Fun/Facts.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Fun.Facts where open import Cats.Category.Fun.Facts.Iso public using ( ≈→≅ ; ≅→≈ ) open import Cats.Category.Fun.Facts.Limit public using ( complete ) open import Cats.Category.Fun.Facts.Product public using ( hasBinaryProducts ; hasFiniteProducts ) open import Cats.Category.Fun.Facts.Terminal public using ( hasTerminal )
32.416667
57
0.745501
0e9fc926a00b48028df26550ca2280dec6c99377
867
agda
Agda
out/CommGroup/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/CommGroup/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/CommGroup/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order signature was created from the following second-order syntax description: syntax CommGroup | CG type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 neg : * -> * | ⊖_ r40 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊖N⊕ᴸ) a |> add (neg (a), a) = unit (⊖N⊕ᴿ) a |> add (a, neg (a)) = unit (⊕C) a b |> add(a, b) = add(b, a) -} module CommGroup.Signature where open import SOAS.Context open import SOAS.Common open import SOAS.Syntax.Signature *T public open import SOAS.Syntax.Build *T public -- Operator symbols data CGₒ : Set where unitₒ addₒ negₒ : CGₒ -- Term signature CG:Sig : Signature CGₒ CG:Sig = sig λ { unitₒ → ⟼₀ * ; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ * ; negₒ → (⊢₀ *) ⟼₁ * } open Signature CG:Sig public
18.847826
91
0.565167
230fad8b185bb731c0f6f1e6b64bb9932aaf5594
4,536
agda
Agda
src/fot/FOTC/Program/ABP/CorrectnessProofI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/ABP/CorrectnessProofI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/ABP/CorrectnessProofI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The alternating bit protocol (ABP) is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the ABP following the -- formalization in Dybjer and Sander (1989). module FOTC.Program.ABP.CorrectnessProofI where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.Stream.Type open import FOTC.Data.Stream.Equality.PropertiesI open import FOTC.Program.ABP.ABP open import FOTC.Program.ABP.Lemma1I open import FOTC.Program.ABP.Lemma2I open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Terms open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ -- Main theorem. abpCorrect : ∀ {b os₁ os₂ is} → Bit b → Fair os₁ → Fair os₂ → Stream is → is ≈ abpTransfer b os₁ os₂ is abpCorrect {b} {os₁} {os₂} {is} Bb Fos₁ Fos₂ Sis = ≈-coind B h₁ h₂ where h₁ : ∀ {ks ls} → B ks ls → ∃[ k' ] ∃[ ks' ] ∃[ ls' ] ks ≡ k' ∷ ks' ∧ ls ≡ k' ∷ ls' ∧ B ks' ls' h₁ {ks} {ls} (b , os₁ , os₂ , as , bs , cs , ds , Sks , Bb , Fos₁ , Fos₂ , h) with Stream-out Sks ... | (k' , ks' , ks≡k'∷ks' , Sks') = k' , ks' , ls' , ks≡k'∷ks' , ls≡k'∷ls' , Bks'ls' where S-helper : ks ≡ k' ∷ ks' → S b ks os₁ os₂ as bs cs ds ls → S b (k' ∷ ks') os₁ os₂ as bs cs ds ls S-helper h₁ h₂ = subst (λ t → S b t os₁ os₂ as bs cs ds ls) h₁ h₂ S'-lemma₁ : ∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ ls' ] Fair os₁' ∧ Fair os₂' ∧ S' b k' ks' os₁' os₂' as' bs' cs' ds' ls' ∧ ls ≡ k' ∷ ls' S'-lemma₁ = lemma₁ Bb Fos₁ Fos₂ (S-helper ks≡k'∷ks' h) -- Following Martin Escardo advice (see Agda mailing list, heap -- mistery) we use pattern matching instead of ∃ eliminators to -- project the elements of the existentials. -- 2011-08-25 update: It does not seems strictly necessary because -- the Agda issue 415 was fixed. ls' : D ls' with S'-lemma₁ ... | _ , _ , _ , _ , _ , _ , ls' , _ = ls' ls≡k'∷ls' : ls ≡ k' ∷ ls' ls≡k'∷ls' with S'-lemma₁ ... | _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , prf = prf S-lemma₂ : ∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ] Fair os₁'' ∧ Fair os₂'' ∧ S (not b) ks' os₁'' os₂'' as'' bs'' cs'' ds'' ls' S-lemma₂ with S'-lemma₁ ... | _ , _ , _ , _ , _ , _ , _ , Fos₁' , Fos₂' , s' , _ = lemma₂ Bb Fos₁' Fos₂' s' Bks'ls' : B ks' ls' Bks'ls' with S-lemma₂ ... | os₁'' , os₂'' , as'' , bs'' , cs'' , ds'' , Fos₁'' , Fos₂'' , s = not b , os₁'' , os₂'' , as'' , bs'' , cs'' , ds'' , Sks' , not-Bool Bb , Fos₁'' , Fos₂'' , s h₂ : B is (abpTransfer b os₁ os₂ is) h₂ = b , os₁ , os₂ , has aux₁ aux₂ aux₃ aux₄ aux₅ is , hbs aux₁ aux₂ aux₃ aux₄ aux₅ is , hcs aux₁ aux₂ aux₃ aux₄ aux₅ is , hds aux₁ aux₂ aux₃ aux₄ aux₅ is , Sis , Bb , Fos₁ , Fos₂ , has-eq aux₁ aux₂ aux₃ aux₄ aux₅ is , hbs-eq aux₁ aux₂ aux₃ aux₄ aux₅ is , hcs-eq aux₁ aux₂ aux₃ aux₄ aux₅ is , hds-eq aux₁ aux₂ aux₃ aux₄ aux₅ is , trans (abpTransfer-eq b os₁ os₂ is) (transfer-eq aux₁ aux₂ aux₃ aux₄ aux₅ is) where aux₁ aux₂ aux₃ aux₄ aux₅ : D aux₁ = send b aux₂ = ack b aux₃ = out b aux₄ = corrupt os₁ aux₅ = corrupt os₂ ------------------------------------------------------------------------------ -- abpTransfer produces a Stream. abpTransfer-Stream : ∀ {b os₁ os₂ is} → Bit b → Fair os₁ → Fair os₂ → Stream is → Stream (abpTransfer b os₁ os₂ is) abpTransfer-Stream Bb Fos₁ Fos₂ Sis = ≈→Stream₂ (abpCorrect Bb Fos₁ Fos₂ Sis) ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter and Sander, Herbert P. (1989). A Functional -- Programming Approach to the Specification and Verification of -- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
36.580645
80
0.491402
102bb4a31a9912be7855a6fdf7b97af781fbaae6
479
agda
Agda
test/Succeed/Issue679u.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue679u.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue679u.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, Ulf, 2016-06-01, discussing issue #679 -- {-# OPTIONS -v tc.with.strip:20 #-} postulate anything : {A : Set} → A data Ty : Set where _=>_ : (a b : Ty) → Ty ⟦_⟧ : Ty → Set ⟦ a => b ⟧ = ⟦ a ⟧ → ⟦ b ⟧ eq : (a : Ty) → ⟦ a ⟧ → ⟦ a ⟧ → Set eq (a => b) f g = ∀ {x y : ⟦ a ⟧} → eq a x y → eq b (f x) (g y) bad : (a : Ty) (x : ⟦ a ⟧) → eq a x x bad (a => b) f h with b bad (a => b) f h | _ = anything -- ERROR WAS: Too few arguments in with clause! -- Should work now.
23.95
63
0.482255
c57f5df53e1046f5683fe9744361ac39c74c318b
586
agda
Agda
test/Succeed/Issue366.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue366.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue366.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2010-11-21 -- testing correct implementation of eta for records with higher-order fields module Issue366 where data Bool : Set where true false : Bool record R (A : Set) : Set where constructor r field unR : A open R foo : Bool foo = unR (r (unR (r (λ (_ : Bool) → false)) true)) -- before 2010-11-21, an incorrect implementation of eta-contraction -- reduced foo to (unR true) -- Error message was (due to clause compilation): -- Incomplete pattern matching data _==_ {A : Set}(a : A) : A -> Set where refl : a == a test : foo == false test = refl
19.533333
77
0.650171
4ad7613cf7acd003ff4067c2044b0183711d73d0
743
agda
Agda
test/Succeed/Issue2196.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2196.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2196.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-09-20, issue #2196 reported by mechvel -- Test case by Ulf -- {-# OPTIONS -v tc.lhs.dot:40 #-} data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ EqP₁ : ∀ {A B} (p q : A × B) → Set EqP₁ (x , y) (z , w) = (x ≡ z) × (y ≡ w) EqP₂ : ∀ {A B} (p q : A × B) → Set EqP₂ p q = (fst p ≡ fst q) × (snd p ≡ snd q) works : {A : Set} (p q : A × A) → EqP₁ p q → Set₁ works (x , y) .(x , y) (refl , refl) = Set test : {A : Set} (p q : A × A) → EqP₂ p q → Set₁ test (x , y) .(x , y) (refl , refl) = Set -- ERROR WAS: -- Failed to infer the value of dotted pattern -- when checking that the pattern .(x , y) has type .A × .A
24.766667
59
0.51144
101be0715035e0a991825b68b30bca259522c65a
632
agda
Agda
agda-stdlib/src/Data/Vec/Relation/Equality/DecSetoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/Relation/Equality/DecSetoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/Relation/Equality/DecSetoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Equality.DecSetoid directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.Vec.Relation.Equality.DecSetoid {a ℓ} (DS : DecSetoid a ℓ) where open import Data.Vec.Relation.Binary.Equality.DecSetoid public {-# WARNING_ON_IMPORT "Data.Vec.Relation.Equality.DecSetoid was deprecated in v1.0. Use Data.Vec.Relation.Binary.Equality.DecSetoid instead." #-}
30.095238
72
0.583861
dc7c69bcae3831dc1293e632d8251f82d478492b
464
agda
Agda
test/interaction/Issue2407.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/interaction/Issue2407.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue2407.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Jesper, 2017-01-24: if we allow a variable to be instantiated with a value -- of a supertype, the resulting dot pattern won't be type-correct. open import Common.Size data D (i : Size) : (j : Size< ↑ i) → Set where c : ∀ (j : Size< ↑ i) (k : Size< ↑ j) → D i j → D j k → D i k split : ∀ i (j : Size< ↑ i) → D i j → Set split i j x = {!x!} -- split on x -- Expected: splitting on x succeeds with -- split i .k (c j k x x₁) = {!!}
24.421053
77
0.549569
0e9a7e2cfc1e12c084cce2f6bfabd05ca6874a31
1,810
agda
Agda
Streams/Relations.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/Relations.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/Relations.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
module Relations where open import Level as Level using (zero) open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning RelTrans : Set → Set₁ RelTrans B = Rel B Level.zero → Rel B Level.zero Monotone : ∀{B} → RelTrans B → Set₁ Monotone F = ∀ {R S} → R ⇒ S → F R ⇒ F S -- | Useful example of a compatible up-to technique: equivalence closure. data EquivCls {B : Set} (R : Rel B Level.zero) : Rel B Level.zero where cls-incl : {a b : B} → R a b → EquivCls R a b cls-refl : {b : B} → EquivCls R b b cls-sym : {a b : B} → EquivCls R a b → EquivCls R b a cls-trans : {a b c : B} → EquivCls R a b → EquivCls R b c → EquivCls R a c -- | The operation of taking the equivalence closure is monotone. equivCls-monotone : ∀{B} → Monotone {B} EquivCls equivCls-monotone R≤S (cls-incl xRy) = cls-incl (R≤S xRy) equivCls-monotone R≤S cls-refl = cls-refl equivCls-monotone R≤S (cls-sym p) = cls-sym (equivCls-monotone R≤S p) equivCls-monotone R≤S (cls-trans p q) = cls-trans (equivCls-monotone R≤S p) (equivCls-monotone R≤S q) -- | The equivalence closure is indeed a closure operator. equivCls-expanding : ∀{B R} → R ⇒ EquivCls {B} R equivCls-expanding p = cls-incl p equivCls-idempotent : ∀{B R} → EquivCls (EquivCls R) ⇒ EquivCls {B} R equivCls-idempotent (cls-incl p) = p equivCls-idempotent cls-refl = cls-refl equivCls-idempotent (cls-sym p) = cls-sym (equivCls-idempotent p) equivCls-idempotent (cls-trans p q) = cls-trans (equivCls-idempotent p) (equivCls-idempotent q) -- | Equivalence closure gives indeed equivalence relation equivCls-equiv : ∀{A} → (R : Rel A _) → IsEquivalence (EquivCls R) equivCls-equiv R = record { refl = cls-refl ; sym = cls-sym ; trans = cls-trans }
36.938776
76
0.683425
2378e3234f8a18c77063c5783478f910e6011553
90
agda
Agda
test/interaction/SetInf.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/interaction/SetInf.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/interaction/SetInf.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module SetInf where id : ∀ {A} → A → A id x = x
12.857143
39
0.588889
d0d6d5f8be903c1ab1c0a3477872d93064c0a7f3
7,371
agda
Agda
src/Data/Context/Properties.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/Data/Context/Properties.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/Data/Context/Properties.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Propierties of abstract typing contexts ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Data.Context.Properties where open import Data.Fin using (Fin; zero; suc; lift; raise) open import Data.Fin.Substitution.Extra using (Extension) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Product using (_×_; _,_) open import Data.Vec as Vec using (Vec; []; _∷_) import Data.Vec.Properties as VecProps open import Function as Fun using (_∘_; flip) open import Relation.Binary.PropositionalEquality hiding (subst-∘) open ≡-Reasoning open import Relation.Unary using (Pred) open import Data.Context open import Data.Context.WellFormed ------------------------------------------------------------------------ -- Properties of abstract contexts and context extensions. -- Properties of the `map' functions. module _ {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} where -- pointwise equality is a congruence w.r.t. map and mapExt. map-cong : ∀ {n} {f g : ∀ {k} → T₁ k → T₂ k} → (∀ {k} → f {k} ≗ g {k}) → _≗_ {A = Ctx T₁ n} (map f) (map g) map-cong f≗g [] = refl map-cong f≗g (_∷_ t Γ) = cong₂ _∷_ (f≗g t) (map-cong f≗g Γ) mapExt-cong : ∀ {k m n} {f g : ∀ i → T₁ (i + m) → T₂ (i + n)} → (∀ {i} → f i ≗ g i) → _≗_ {A = CtxExt T₁ m k} (mapExt {T₂ = T₂} f) (mapExt g) mapExt-cong f≗g [] = refl mapExt-cong f≗g (_∷_ {l} t Γ) = cong₂ _∷_ (f≗g {l} t) (mapExt-cong f≗g Γ) module _ {ℓ} {T : Pred ℕ ℓ} where -- map and mapExt are functorial. map-id : ∀ {n} → _≗_ {A = Ctx T n} (map Fun.id) Fun.id map-id [] = refl map-id (t ∷ Γ) = cong (t ∷_) (map-id Γ) mapExt-id : ∀ {m n} → _≗_ {A = CtxExt T m n} (mapExt λ _ t → t) Fun.id mapExt-id [] = refl mapExt-id (t ∷ Γ) = cong (t ∷_) (mapExt-id Γ) module _ {ℓ₁ ℓ₂ ℓ₃} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} {T₃ : Pred ℕ ℓ₃} where map-∘ : ∀ {n} (f : ∀ {k} → T₂ k → T₃ k) (g : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) → map {T₂ = T₃} (f ∘ g) Γ ≡ map {T₁ = T₂} f (map g Γ) map-∘ f g [] = refl map-∘ f g (t ∷ Γ) = cong (_ ∷_) (map-∘ f g Γ) mapExt-∘ : ∀ {k l m n} (f : ∀ i → T₂ (i + m) → T₃ (i + n)) (g : ∀ i → T₁ (i + l) → T₂ (i + m)) → (Γ : CtxExt T₁ l k) → mapExt {T₂ = T₃} (λ i t → f i (g i t)) Γ ≡ mapExt {T₁ = T₂} f (mapExt g Γ) mapExt-∘ f g [] = refl mapExt-∘ f g (t ∷ Γ) = cong (_ ∷_) (mapExt-∘ f g Γ) -- Lemmas about operations on contexts that require weakening of -- types. module WeakenOpsLemmas {ℓ} {T : Pred ℕ ℓ} (extension : Extension T) where -- The underlyig operations. open WeakenOps extension -- Conversion to vector representation commutes with -- concatenation. toVec-++ : ∀ {m n} (Δ : CtxExt T m n) (Γ : Ctx T m) → toVec (Δ ++ Γ) ≡ extToVec Δ (toVec Γ) toVec-++ [] Γ = refl toVec-++ (t ∷ Δ) Γ = cong ((_ ∷_) ∘ Vec.map weaken) (toVec-++ Δ Γ) -- Lookup commutes with concatenation. lookup-++ : ∀ {m n} (Δ : CtxExt T m n) (Γ : Ctx T m) x → lookup (Δ ++ Γ) x ≡ extLookup Δ (toVec Γ) x lookup-++ Δ Γ x = cong (flip Vec.lookup x) (toVec-++ Δ Γ) -- We can skip the first element when looking up others. lookup-suc : ∀ {n} t (Γ : Ctx T n) x → lookup (t ∷ Γ) (suc x) ≡ weaken (lookup Γ x) lookup-suc t Γ x = VecProps.lookup-map x weaken (toVec Γ) extLookup-suc : ∀ {k m n} t (Γ : CtxExt T m n) (ts : Vec (T m) k) x → extLookup (t ∷ Γ) ts (suc x) ≡ weaken (extLookup Γ ts x) extLookup-suc t Γ ts x = VecProps.lookup-map x weaken (extToVec Γ ts) -- We can skip a spliced-in element when looking up others. lookup-lift : ∀ {k m n} (Γ : CtxExt T m n) t (ts : Vec (T m) k) x → extLookup Γ ts x ≡ extLookup Γ (t ∷ ts) (lift n suc x) lookup-lift [] t ts x = refl lookup-lift (u ∷ Δ) t ts zero = refl lookup-lift {n = suc n} (u ∷ Δ) t ts (suc x) = begin extLookup (u ∷ Δ) ts (suc x) ≡⟨ extLookup-suc u Δ ts x ⟩ weaken (extLookup Δ ts x) ≡⟨ cong weaken (lookup-lift Δ t ts x) ⟩ weaken (extLookup Δ (t ∷ ts) (lift n suc x)) ≡⟨ sym (extLookup-suc u Δ (t ∷ ts) (lift n suc x)) ⟩ extLookup (u ∷ Δ) (t ∷ ts) (suc (lift n suc x)) ∎ -- Lookup in the prefix of a concatenation results in weakening. lookup-weaken⋆ : ∀ {m} n (Δ : CtxExt T m n) (Γ : Ctx T m) x → lookup (Δ ++ Γ) (raise n x) ≡ weaken⋆ n (lookup Γ x) lookup-weaken⋆ zero [] Γ x = refl lookup-weaken⋆ (suc n) (t ∷ Δ) Γ x = begin lookup (t ∷ Δ ++ Γ) (suc (raise n x)) ≡⟨ VecProps.lookup-map (raise n x) weaken (toVec (Δ ++ Γ)) ⟩ weaken (lookup (Δ ++ Γ) (raise n x)) ≡⟨ cong weaken (lookup-weaken⋆ n Δ Γ x) ⟩ weaken (weaken⋆ n (lookup Γ x)) ∎ -- Lemmas relating conversions of context extensions to vector -- representation with conversions of the underling entries. module ConversionLemmas {T₁ T₂ : ℕ → Set} (extension₁ : Extension T₁) (extension₂ : Extension T₂) where private module W₁ = WeakenOps extension₁ module W₂ = WeakenOps extension₂ toVec-map : ∀ {n} (f : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) → (∀ {k} (t : T₁ k) → W₂.weaken (f t) ≡ f (W₁.weaken t)) → W₂.toVec (map f Γ) ≡ Vec.map f (W₁.toVec Γ) toVec-map f [] _ = refl toVec-map f (_∷_ t Γ) hyp = cong₂ _∷_ (hyp t) (begin Vec.map W₂.weaken (W₂.toVec (map f Γ)) ≡⟨ cong (Vec.map W₂.weaken) (toVec-map f Γ hyp) ⟩ (Vec.map W₂.weaken (Vec.map f (W₁.toVec Γ))) ≡⟨ sym (VecProps.map-∘ W₂.weaken f (W₁.toVec Γ)) ⟩ (Vec.map (W₂.weaken ∘ f) (W₁.toVec Γ)) ≡⟨ VecProps.map-cong hyp (W₁.toVec Γ) ⟩ (Vec.map (f ∘ W₁.weaken) (W₁.toVec Γ)) ≡⟨ VecProps.map-∘ f W₁.weaken (W₁.toVec Γ) ⟩ (Vec.map f (Vec.map W₁.weaken (W₁.toVec Γ))) ∎) -- Lookup commutes with re-indexing, provided that the reindexing -- function commutes with weakening. lookup-map : ∀ {n} (f : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) x → (∀ {k} (t : T₁ k) → W₂.weaken (f t) ≡ f (W₁.weaken t)) → W₂.lookup (map f Γ) x ≡ f (W₁.lookup Γ x) lookup-map f Γ x hyp = begin W₂.lookup (map f Γ) x ≡⟨ cong (flip Vec.lookup x) (toVec-map f Γ hyp) ⟩ Vec.lookup (Vec.map f (W₁.toVec Γ)) x ≡⟨ VecProps.lookup-map x f (W₁.toVec Γ) ⟩ f (W₁.lookup Γ x) ∎ -- Lemmas about well-formed contexts and context extensions. module ContextFormationLemmas {t ℓ} {T : Pred ℕ t} (_⊢_wf : Wf T T ℓ) where open ContextFormation _⊢_wf -- Concatenation preserves well-formedness of contexts. wf-++-wfExt : ∀ {m n} {Δ : CtxExt T m n} {Γ : Ctx T m} → Γ ⊢ Δ wfExt → Γ wf → Δ ++ Γ wf wf-++-wfExt [] Γ-wf = Γ-wf wf-++-wfExt (t-wf ∷ Δ-wfExt) Γ-wf = t-wf ∷ wf-++-wfExt Δ-wfExt Γ-wf -- Splitting of well-formed contexts. wf-split : ∀ {m n} {Δ : CtxExt T m n} {Γ : Ctx T m} → Δ ++ Γ wf → Γ ⊢ Δ wfExt × Γ wf wf-split {Δ = []} Γ-wf = [] , Γ-wf wf-split {Δ = t ∷ Δ} (t-wf ∷ Δ++Γ-wf) = let Δ-wfExt , Γ-wf = wf-split Δ++Γ-wf in t-wf ∷ Δ-wfExt , Γ-wf
37.994845
78
0.521368
df08a5a68aa923693641cb02d52c6e56bf6f38f1
617
agda
Agda
test/Fail/ShapeIrrelevantIndexNoBecauseOfRecursion.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ShapeIrrelevantIndexNoBecauseOfRecursion.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ShapeIrrelevantIndexNoBecauseOfRecursion.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --experimental-irrelevance #-} module ShapeIrrelevantIndexNoBecauseOfRecursion where data ⊥ : Set where record ⊤ : Set where constructor trivial data Bool : Set where true false : Bool True : Bool → Set True false = ⊥ True true = ⊤ data D : ..(b : Bool) → Set where c : {b : Bool} → True b → D b -- because of the irrelevant index, -- D is in essence an existental type D : Set -- with constructor c : {b : Bool} → True b → D fromD : {b : Bool} → D b → True b fromD (c p) = p -- should fail cast : .(a b : Bool) → D a → D b cast _ _ x = x bot : ⊥ bot = fromD (cast true false (c trivial))
20.566667
53
0.628849
dcce79f5b28d082ca607724f9b8a42bcf1c83003
4,105
agda
Agda
LibraBFT/Concrete/Records.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Records.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Records.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types.EpochIndep open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open WithAbsVote -- Here we have the abstraction functions that connect -- the datatypes defined in LibraBFT.Impl.Consensus.Types -- to the abstract records from LibraBFT.Abstract.Records -- for a given EpochConfig. -- module LibraBFT.Concrete.Records (𝓔 : EpochConfig) where open import LibraBFT.Impl.Consensus.Types.EpochDep 𝓔 open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 ConcreteVoteEvidence as Abs hiding (bId; qcVotes; Block) open EpochConfig 𝓔 -------------------------------- -- Abstracting Blocks and QCs -- -------------------------------- α-Block : Block → Abs.Block α-Block b with ₋bdBlockType (₋bBlockData b) ...| NilBlock = record { bId = ₋bId b ; bPrevQC = just (b ^∙ (bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId)) ; bRound = b ^∙ bBlockData ∙ bdRound } ...| Genesis = record { bId = b ^∙ bId ; bPrevQC = nothing ; bRound = b ^∙ bBlockData ∙ bdRound } ...| Proposal cmd α = record { bId = b ^∙ bId ; bPrevQC = just (b ^∙ bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId) ; bRound = b ^∙ bBlockData ∙ bdRound } α-VoteData-Block : VoteData → Abs.Block α-VoteData-Block vd = record { bId = vd ^∙ vdProposed ∙ biId ; bPrevQC = just (vd ^∙ vdParent ∙ biId) ; bRound = vd ^∙ vdProposed ∙ biRound } α-Vote : (qc : QuorumCert)(valid : MetaIsValidQC qc) → ∀ {as} → as ∈ qcVotes qc → Abs.Vote α-Vote qc v {as} as∈QC = α-ValidVote (rebuildVote qc as) (₋ivvMember (All-lookup (₋ivqcMetaVotesValid v) as∈QC)) -- Abstraction of votes produce votes that carry evidence -- they have been cast. α-Vote-evidence : (qc : QuorumCert)(valid : MetaIsValidQC qc) → ∀{vs} (prf : vs ∈ qcVotes qc) → ConcreteVoteEvidence (α-Vote qc valid prf) α-Vote-evidence qc valid {as} v∈qc = record { ₋cveVote = rebuildVote qc as ; ₋cveIsValidVote = All-lookup (₋ivqcMetaVotesValid valid) v∈qc ; ₋cveIsAbs = refl } α-QC : Σ QuorumCert MetaIsValidQC → Abs.QC α-QC (qc , valid) = record { qCertBlockId = qc ^∙ qcVoteData ∙ vdProposed ∙ biId ; qRound = qc ^∙ qcVoteData ∙ vdProposed ∙ biRound ; qVotes = All-reduce (α-Vote qc valid) All-self ; qVotes-C1 = {! MetaIsValidQC.₋ivqcMetaIsQuorum valid!} ; qVotes-C2 = All-reduce⁺ (α-Vote qc valid) (λ _ → refl) All-self ; qVotes-C3 = All-reduce⁺ (α-Vote qc valid) (λ _ → refl) All-self ; qVotes-C4 = All-reduce⁺ (α-Vote qc valid) (α-Vote-evidence qc valid) All-self } -- What does it mean for an (abstract) Block or QC to be represented in a NetworkMsg? data _α-∈NM_ : Abs.Record → NetworkMsg → Set where qc∈NM : ∀ {cqc q nm} → (valid : MetaIsValidQC cqc) → cqc QC∈NM nm → q ≡ α-QC (cqc , valid) → Abs.Q q α-∈NM nm b∈NM : ∀ {cb pm nm} → nm ≡ P pm → pm ^∙ pmProposal ≡ cb → Abs.B (α-Block cb) α-∈NM nm -- Our system model contains a message pool, which is a list of NodeId-NetworkMsg pairs. The -- following relation expresses that an abstract record r is represented in a given message pool -- sm. data _α-Sent_ (r : Abs.Record) (sm : List (NodeId × NetworkMsg)) : Set where ws : ∀ {p nm} → getEpoch nm ≡ epoch → (p , nm) ∈ sm → r α-∈NM nm → r α-Sent sm
40.643564
116
0.629963
c55a0708aada5a31f152bfde5fee09f5218517e3
5,959
agda
Agda
src/plfa/part1/Equality.agda
abolotina/plfa.github.io
75bef9bb35643160e2d2ab4221a3057f22eb3324
[ "CC-BY-4.0" ]
null
null
null
src/plfa/part1/Equality.agda
abolotina/plfa.github.io
75bef9bb35643160e2d2ab4221a3057f22eb3324
[ "CC-BY-4.0" ]
null
null
null
src/plfa/part1/Equality.agda
abolotina/plfa.github.io
75bef9bb35643160e2d2ab4221a3057f22eb3324
[ "CC-BY-4.0" ]
null
null
null
module Equality where -- Equality data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x infix 4 _≡_ -- Equality is an equivalence relation sym : ∀ {A : Set} {x y : A} → x ≡ y ----- → y ≡ x sym {A} {x} {.x} refl = refl trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z ----- → x ≡ z trans {A} {x} {.x} {.x} refl refl = refl -- Congruence and substitution cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y --------- → f x ≡ f y cong f refl = refl cong₂ : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B} → u ≡ x → v ≡ y ------------- → f u v ≡ f x y cong₂ f refl refl = refl cong-app : ∀ {A B : Set} {f g : A → B} → f ≡ g --------------------- → ∀ (x : A) → f x ≡ g x cong-app refl x = refl subst : ∀ {A : Set} {x y : A} (P : A → Set) → x ≡ y --------- → P x → P y subst P refl px = px open import AuxDefs data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n ------------ → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n ----------- → odd (suc n) postulate +-comm : ∀ (m n : ℕ) → m + n ≡ n + m even-comm : ∀ (m n : ℕ) → even (m + n) ------------ → even (n + m) even-comm m n = subst even (+-comm m n) -- Chains of equations module ≡-Reasoning {A : Set} where infix 1 begin_ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infix 3 _∎ begin_ : ∀ {x y : A} → x ≡ y ----- → x ≡ y begin x≡y = x≡y _≡⟨⟩_ : ∀ (x : A) {y : A} → x ≡ y ----- → x ≡ y x ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : ∀ (x : A) {y z : A} → x ≡ y → y ≡ z ----- → x ≡ z x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : ∀ (x : A) ----- → x ≡ x x ∎ = refl open ≡-Reasoning trans′ : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z ----- → x ≡ z trans′ {A} {x} {y} {z} x≡y y≡z = -- begin (x ≡⟨ x≡y ⟩ (y ≡⟨ y≡z ⟩ (z ∎))) begin -- ==> x -- trans x≡y (trans y≡z refl) ≡⟨ x≡y ⟩ y ≡⟨ y≡z ⟩ z ∎ -- Chains of equations, another example postulate +-identity : ∀ (m : ℕ) → m + zero ≡ m +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-comm′ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm′ m zero = begin m + zero ≡⟨ +-identity m ⟩ m ≡⟨⟩ zero + m ∎ +-comm′ m (suc n) = begin m + suc n ≡⟨ +-suc m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm′ m n) ⟩ suc (n + m) ≡⟨⟩ suc n + m ∎ {- Exercise ≤-Reasoning The proof of monotonicity from Chapter Relations can be written in a more readable form by using an analogue of our notation for ≡-Reasoning. Define ≤-Reasoning analogously, and use it to write out an alternative proof that addition is monotonic with regard to inequality. Rewrite all of +-monoˡ-≤, +-monoʳ-≤, and +-mono-≤. -} -- Rewriting {- data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n ------------ → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n ----------- → odd (suc n) -} {-# BUILTIN EQUALITY _≡_ #-} even-comm′ : ∀ (m n : ℕ) → even (m + n) ------------ → even (n + m) even-comm′ m n ev = {!!} -- Multiple rewrites +-comm″ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm″ zero n = {!!} +-comm″ (suc m) n = {!!} -- With-abstraction (examples from the Agda docs) data List (A : Set) : Set where [] : List A _∷_ : (x : A) → (xs : List A) → List A infixr 5 _∷_ filter : {A : Set} → (A → Bool) → List A → List A filter p [] = [] filter p (x ∷ xs) with p x ... | true = x ∷ filter p xs ... | false = filter p xs compare : ℕ → ℕ → Comparison compare x y with x < y ... | false with y < x ... | false = equal ... | true = greater compare x y | true = less compare′ : ℕ → ℕ → Comparison compare′ x y with x < y | y < x ... | true | _ = less ... | _ | true = greater ... | false | false = equal -- Rewriting expanded even-comm″ : ∀ (m n : ℕ) → even (m + n) ------------ → even (n + m) even-comm″ m n ev with m + n | +-comm m n ... | mn | eq = {!!} -- Leibniz equality _≐_ : ∀ {A : Set} (x y : A) → Set₁ -- Set : Set₁, Set₁ : Set₂, and so on _≐_ {A} x y = ∀ (P : A → Set) → P x → P y refl-≐ : ∀ {A : Set} {x : A} → x ≐ x refl-≐ P Px = {!!} trans-≐ : ∀ {A : Set} {x y z : A} → x ≐ y → y ≐ z ----- → x ≐ z trans-≐ x≐y y≐z P Px = {!!} sym-≐ : ∀ {A : Set} {x y : A} → x ≐ y ----- → y ≐ x sym-≐ {A} {x} {y} x≐y P = Qy where Q : A → Set Q z = P z → P x Qx : Q x Qx = refl-≐ P Qy : Q y Qy = x≐y Q Qx -- subst : ∀ {A : Set} {x y : A} (P : A → Set) -- → x ≡ y -- --------- -- → P x → P y ≡-implies-≐ : ∀ {A : Set} {x y : A} → x ≡ y ----- → x ≐ y ≡-implies-≐ x≡y P = subst P x≡y ≐-implies-≡ : ∀ {A : Set} {x y : A} → x ≐ y ----- → x ≡ y ≐-implies-≡ {A} {x} {y} x≐y = Qy where Q : A → Set Q z = x ≡ z Qx : Q x Qx = refl Qy : Q y Qy = x≐y Q Qx -- Universe polymorphism open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) -- lzero : Level -- lsuc : Level → Level -- Set₀ ==> Set lzero -- Set₁ ==> Set (lsuc lzero) -- Set₂ ==> Set (lsuc (lsuc lzero)) -- Given two levels, returns the larger of the two -- _⊔_ : Level → Level → Level data _≡′_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set ℓ where refl′ : x ≡′ x sym′ : ∀ {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡′ y ------ → y ≡′ x sym′ refl′ = refl′ _≐′_ : ∀ {ℓ : Level} {A : Set ℓ} (x y : A) → Set (lsuc ℓ) _≐′_ {ℓ} {A} x y = ∀ (P : A → Set ℓ) → P x → P y _∘_ : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} → (B → C) → (A → B) → A → C (g ∘ f) x = g (f x)
16.691877
84
0.412821
0e2b477eeeea3c2689cbeaa9783f05a40bac8151
6,480
agda
Agda
src/Model/Quantification.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
5
2021-04-13T21:31:17.000Z
2021-06-26T06:37:31.000Z
src/Model/Quantification.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
src/Model/Quantification.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module Model.Quantification where open import Model.RGraph as RG using (RGraph) open import Model.Size as MS using (_<_ ; ⟦_⟧Δ ; ⟦_⟧n ; ⟦_⟧σ) open import Model.Type.Core open import Source.Size.Substitution.Theory open import Source.Size.Substitution.Universe as SS using (Sub⊢ᵤ) open import Util.HoTT.Equiv open import Util.HoTT.FunctionalExtensionality open import Util.HoTT.HLevel open import Util.Prelude hiding (_∘_) open import Util.Relation.Binary.PropositionalEquality using ( Σ-≡⁺ ; subst-sym-subst ; subst-subst-sym ) import Source.Size as SS import Source.Type as ST open RGraph open RG._⇒_ open SS.Ctx open SS.Sub⊢ᵤ record ⟦∀⟧′ {Δ} n (T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ) (δ : Obj ⟦ Δ ⟧Δ) : Set where no-eta-equality field arr : ∀ m (m<n : m < ⟦ n ⟧n .fobj δ) → Obj T (δ , m , m<n) param : ∀ m m<n m′ m′<n → eq T _ (arr m m<n) (arr m′ m′<n) open ⟦∀⟧′ public ⟦∀⟧′Canon : ∀ {Δ} n (T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ) (δ : Obj ⟦ Δ ⟧Δ) → Set ⟦∀⟧′Canon n T δ = Σ[ f ∈ (∀ m (m<n : m < ⟦ n ⟧n .fobj δ) → Obj T (δ , m , m<n)) ] (∀ m m<n m′ m′<n → eq T _ (f m m<n) (f m′ m′<n)) ⟦∀⟧′≅⟦∀⟧′Canon : ∀ {Δ n T δ} → ⟦∀⟧′ {Δ} n T δ ≅ ⟦∀⟧′Canon n T δ ⟦∀⟧′≅⟦∀⟧′Canon = record { forth = λ { record { arr = x ; param = y } → x , y } ; isIso = record { back = λ x → record { arr = proj₁ x ; param = proj₂ x } ; back∘forth = λ { record {} → refl } ; forth∘back = λ _ → refl } } abstract ⟦∀⟧′Canon-IsSet : ∀ {Δ n T δ} → IsSet (⟦∀⟧′Canon {Δ} n T δ) ⟦∀⟧′Canon-IsSet {T = T} = Σ-IsSet (∀-IsSet λ m → ∀-IsSet λ m<n → λ _ _ → T .Obj-IsSet _ _) (λ f → IsOfHLevel-suc 1 (∀-IsProp λ m → ∀-IsProp λ m<n → ∀-IsProp λ m′ → ∀-IsProp λ m′<n → T .eq-IsProp)) ⟦∀⟧′-IsSet : ∀ {Δ n T δ} → IsSet (⟦∀⟧′ {Δ} n T δ) ⟦∀⟧′-IsSet {Δ} {n} {T} {δ} = ≅-pres-IsOfHLevel 2 (≅-sym ⟦∀⟧′≅⟦∀⟧′Canon) (⟦∀⟧′Canon-IsSet {Δ} {n} {T} {δ}) ⟦∀⟧′-≡⁺ : ∀ {Δ n T δ} (f g : ⟦∀⟧′ {Δ} n T δ) → (∀ m m<n → f .arr m m<n ≡ g .arr m m<n) → f ≡ g ⟦∀⟧′-≡⁺ {T = T} record{} record{} f≈g = ≅-Injective ⟦∀⟧′≅⟦∀⟧′Canon (Σ-≡⁺ ( (funext λ m → funext λ m<n → f≈g m m<n) , funext λ m → funext λ m<n → funext λ m′ → funext λ m<n′ → T .eq-IsProp _ _)) ⟦∀⟧′-resp-≈⟦Type⟧ : ∀ {Δ n T U} → T ≈⟦Type⟧ U → ∀ {δ} → ⟦∀⟧′ {Δ} n T δ ≅ ⟦∀⟧′ n U δ ⟦∀⟧′-resp-≈⟦Type⟧ T≈U = record { forth = λ f → record { arr = λ m m<n → T≈U .forth .fobj (f .arr m m<n) ; param = λ m m<n m′ m′<n → T≈U .forth .feq _ (f .param m m<n m′ m′<n) } ; isIso = record { back = λ f → record { arr = λ m m<n → T≈U .back .fobj (f .arr m m<n) ; param = λ m m<n m′ m′<n → T≈U .back .feq _ (f .param m m<n m′ m′<n) } ; back∘forth = λ x → ⟦∀⟧′-≡⁺ _ _ λ m m<n → T≈U .back-forth .≈⁻ _ _ ; forth∘back = λ x → ⟦∀⟧′-≡⁺ _ _ λ m m<n → T≈U .forth-back .≈⁻ _ _ } } ⟦∀⟧ : ∀ {Δ} n (T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ) → ⟦Type⟧ ⟦ Δ ⟧Δ ⟦∀⟧ n T = record { ObjHSet = λ δ → HLevel⁺ (⟦∀⟧′ n T δ) ⟦∀⟧′-IsSet ; eqHProp = λ _ f g → ∀-HProp _ λ m → ∀-HProp _ λ m<n → ∀-HProp _ λ m′ → ∀-HProp _ λ m′<n → T .eqHProp _ (f .arr m m<n) (g .arr m′ m′<n) ; eq-refl = λ f → f .param } ⟦∀⟧-resp-≈⟦Type⟧ : ∀ {Δ} n {T U : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ} → T ≈⟦Type⟧ U → ⟦∀⟧ n T ≈⟦Type⟧ ⟦∀⟧ n U ⟦∀⟧-resp-≈⟦Type⟧ n T≈U = record { forth = record { fobj = ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .forth ; feq = λ δ≈δ′ x≈y a a₁ a₂ a₃ → T≈U .forth .feq _ (x≈y a a₁ a₂ a₃) } ; back = record { fobj = ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .back ; feq = λ δ≈δ′ x≈y a a₁ a₂ a₃ → T≈U .back .feq _ (x≈y a a₁ a₂ a₃) } ; back-forth = ≈⁺ λ δ x → ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .back∘forth _ ; forth-back = ≈⁺ λ δ x → ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .forth∘back _ } absₛ : ∀ {Δ n} {Γ : ⟦Type⟧ ⟦ Δ ⟧Δ} {T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ} → subT ⟦ SS.Wk ⟧σ Γ ⇒ T → Γ ⇒ ⟦∀⟧ n T absₛ {Δ} {n} {Γ} {T} f = record { fobj = λ {δ} x → record { arr = λ m m<n → f .fobj x ; param = λ m m<n m′ m′<n → f .feq _ (Γ .eq-refl x) } ; feq = λ _ x≈y m m′ m<nγ m′<nγ′ → f .feq _ x≈y } appₛ : ∀ {Δ n m} {Γ : ⟦Type⟧ ⟦ Δ ⟧Δ} {T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ} → (m<n : m SS.< n) → Γ ⇒ ⟦∀⟧ n T → Γ ⇒ subT ⟦ SS.Sing m<n ⟧σ T appₛ {m = m} {T = T} m<n f = record { fobj = λ {δ} x → f .fobj x .arr (⟦ m ⟧n .fobj δ) (MS.⟦<⟧ m<n) ; feq = λ δ≈δ′ {x y} x≈y → f .feq _ x≈y _ _ _ _ } subT-⟦∀⟧ : ∀ {Δ Ω n σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (T : ⟦Type⟧ ⟦ Ω ∙ n ⟧Δ) → ⟦∀⟧ (n [ σ ]ᵤ) (subT (⟦_⟧σ {Ω = Ω ∙ n} (Lift ⊢σ refl)) T) ≈⟦Type⟧ subT ⟦ ⊢σ ⟧σ (⟦∀⟧ n T) subT-⟦∀⟧ {Δ} {Ω} {n} {σ} ⊢σ T = record { forth = record { fobj = λ {γ} f → record { arr = λ m m<n → transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (f .arr m (subst (m <_) (sym (MS.⟦sub⟧ ⊢σ n)) m<n)) ; param = λ m m<n m′ m′<n → transportObj-resp-eq T _ _ (f .param _ _ _ _) } ; feq = λ γ≈γ′ f≈g a a₁ a₂ a₃ → transportObj-resp-eq T _ _ (f≈g _ _ _ _) } ; back = record { fobj = λ {γ} f → record { arr = λ m m<n → transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (f .arr m (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n)) ; param = λ m m<n m′ m′<n → transportObj-resp-eq T _ _ (f .param _ _ _ _) } ; feq = λ γ≈γ′ f≈g a a₁ a₂ a₃ → transportObj-resp-eq T _ _ (f≈g _ _ _ _) } ; back-forth = ≈⁺ λ γ f → ⟦∀⟧′-≡⁺ _ _ λ m m<n → trans (transportObj∘transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl)) (trans (cong (λ p → transportObj T (trans (MS.⟦Δ∙n⟧-≡⁺ Ω n (subst (m <_) (MS.⟦sub⟧ ⊢σ n) p) (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n) refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n) (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n) refl refl)) (f .arr m p)) (subst-sym-subst (MS.⟦sub⟧ ⊢σ n))) (transportObj-refl T _)) ; forth-back = ≈⁺ λ γ f → ⟦∀⟧′-≡⁺ _ _ λ m m<n → trans (transportObj∘transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl)) (trans (cong (λ p → transportObj T (trans (MS.⟦Δ∙n⟧-≡⁺ Ω n p p refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n p m<n refl refl)) (f .arr m p)) (subst-subst-sym (MS.⟦sub⟧ ⊢σ n))) (transportObj-refl T _)) }
32.238806
82
0.439352
1821abad4bd1c8ec808cdd4a58700db91d725f37
3,038
agda
Agda
Groups/FreeGroup/Word.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/FreeGroup/Word.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/FreeGroup/Word.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error #-} open import Setoids.Setoids open import Groups.SymmetricGroups.Definition open import Groups.FreeGroup.Definition open import Decidable.Sets open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import LogicalFormulae open import Boolean.Definition module Groups.FreeGroup.Word {a : _} {A : Set a} (decA : DecidableSet A) where data ReducedWord : Set a wordLength : ReducedWord → ℕ firstLetter : (w : ReducedWord) → .(0 <N wordLength w) → FreeCompletion A data PrependIsValid (w : ReducedWord) (l : FreeCompletion A) : Set a where wordEmpty : wordLength w ≡ 0 → PrependIsValid w l wordEnding : .(pr : 0 <N wordLength w) → .(freeCompletionEqual decA l (freeInverse (firstLetter w pr)) ≡ BoolFalse) → PrependIsValid w l data ReducedWord where empty : ReducedWord prependLetter : (letter : FreeCompletion A) → (w : ReducedWord) → PrependIsValid w letter → ReducedWord firstLetter empty () firstLetter (prependLetter letter w x) pr = letter wordLength empty = 0 wordLength (prependLetter letter w pr) = succ (wordLength w) prependLetterRefl : {x : FreeCompletion A} {w : ReducedWord} → {pr1 pr2 : PrependIsValid w x} → prependLetter x w pr1 ≡ prependLetter x w pr2 prependLetterRefl {x} {empty} {wordEmpty refl} {wordEmpty refl} = refl prependLetterRefl {x} {empty} {wordEmpty refl} {wordEnding () x₂} prependLetterRefl {x} {empty} {wordEnding () x₁} {pr2} prependLetterRefl {x} {prependLetter letter w x₁} {wordEmpty ()} {pr2} prependLetterRefl {x} {prependLetter letter w x₁} {wordEnding pr x₂} {wordEmpty ()} prependLetterRefl {x} {prependLetter letter w x₁} {wordEnding pr2 r2} {wordEnding pr1 r1} = refl prependLetterInjective : {x : FreeCompletion A} {w1 w2 : ReducedWord} {pr1 : PrependIsValid w1 x} {pr2 : PrependIsValid w2 x} → prependLetter x w1 pr1 ≡ prependLetter x w2 pr2 → w1 ≡ w2 prependLetterInjective {x = x} {empty} {empty} {pr1} {pr2} pr = refl prependLetterInjective {x = x} {prependLetter l1 w1 x1} {prependLetter .l1 .w1 .x1} {wordEnding pr₁ x₁} {wordEnding pr₂ x₂} refl = refl prependLetterInjective' : {x y : FreeCompletion A} {w1 w2 : ReducedWord} {pr1 : PrependIsValid w1 x} {pr2 : PrependIsValid w2 y} → prependLetter x w1 pr1 ≡ prependLetter y w2 pr2 → x ≡ y prependLetterInjective' refl = refl badPrepend : {x : A} {w : ReducedWord} {pr : PrependIsValid w (ofInv x)} → (PrependIsValid (prependLetter (ofInv x) w pr) (ofLetter x)) → False badPrepend (wordEmpty ()) badPrepend {x = x} (wordEnding pr bad) with decidableFreeCompletion decA (ofLetter x) (ofLetter x) badPrepend {x} (wordEnding pr ()) | inl x₁ badPrepend {x} (wordEnding pr bad) | inr pr2 = pr2 refl badPrepend' : {x : A} {w : ReducedWord} {pr : PrependIsValid w (ofLetter x)} → (PrependIsValid (prependLetter (ofLetter x) w pr) (ofInv x)) → False badPrepend' (wordEmpty ()) badPrepend' {x = x} (wordEnding pr x₁) with decidableFreeCompletion decA (ofInv x) (ofInv x) badPrepend' {x} (wordEnding pr ()) | inl x₂ badPrepend' {x} (wordEnding pr x₁) | inr pr2 = pr2 refl
52.37931
186
0.730744
4a5161698d4659779b09b67653f8b924c6f277e7
16,408
agda
Agda
Math/Combinatorics/ListFunction/Properties.agda
rei1024/agda-combinatorics
9fafa35c940ff7b893a80120f6a1f22b0a3917b7
[ "MIT" ]
3
2019-06-25T08:24:15.000Z
2020-04-25T07:25:27.000Z
Math/Combinatorics/ListFunction/Properties.agda
rei1024/agda-combinatorics
9fafa35c940ff7b893a80120f6a1f22b0a3917b7
[ "MIT" ]
null
null
null
Math/Combinatorics/ListFunction/Properties.agda
rei1024/agda-combinatorics
9fafa35c940ff7b893a80120f6a1f22b0a3917b7
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Properties of functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.ListFunction.Properties where -- agda-stdlib open import Data.List hiding (_∷ʳ_) import Data.List.Properties as Lₚ open import Data.List.Membership.Propositional using (_∈_; _∉_) import Data.List.Membership.Propositional.Properties as ∈ₚ open import Data.List.Relation.Binary.BagAndSetEquality open import Data.List.Relation.Binary.Sublist.Propositional using (_⊆_; []; _∷_; _∷ʳ_) import Data.List.Relation.Binary.Sublist.Propositional.Properties as Sublistₚ open import Data.List.Relation.Unary.All as All using (All; []; _∷_) import Data.List.Relation.Unary.All.Properties as Allₚ open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) import Data.List.Relation.Unary.Unique.Propositional as UniqueP import Data.List.Relation.Unary.Unique.Propositional.Properties as UniquePₚ import Data.List.Relation.Unary.Unique.Setoid as UniqueS import Data.List.Relation.Unary.Unique.Setoid.Properties as UniqueSₚ open import Data.Nat open import Data.Product as Prod using (_×_; _,_; ∃; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Function.Base open import Function.Equivalence using (_⇔_; equivalence) -- TODO: use new packages open import Relation.Binary.PropositionalEquality as P -- agda-combinatorics open import Math.Combinatorics.Function open import Math.Combinatorics.Function.Properties open import Math.Combinatorics.ListFunction import Math.Combinatorics.ListFunction.Properties.Lemma as Lemma ------------------------------------------------------------------------ -- Properties of `applyEach` module _ {a} {A : Set a} where open ≡-Reasoning length-applyEach : ∀ (f : A → A) (xs : List A) → length (applyEach f xs) ≡ length xs length-applyEach f [] = refl length-applyEach f (x ∷ xs) = begin 1 + length (map (x ∷_) (applyEach f xs)) ≡⟨ cong suc $ Lₚ.length-map (x ∷_) (applyEach f xs ) ⟩ 1 + length (applyEach f xs) ≡⟨ cong suc $ length-applyEach f xs ⟩ 1 + length xs ∎ All-length-applyEach : ∀ (f : A → A) (xs : List A) → All (λ ys → length ys ≡ length xs) (applyEach f xs) All-length-applyEach f [] = [] All-length-applyEach f (x ∷ xs) = refl ∷ (Allₚ.map⁺ $ All.map (cong suc) $ All-length-applyEach f xs) applyEach-cong : ∀ (f g : A → A) (xs : List A) → (∀ x → f x ≡ g x) → applyEach f xs ≡ applyEach g xs applyEach-cong f g [] f≡g = refl applyEach-cong f g (x ∷ xs) f≡g = begin (f x ∷ xs) ∷ map (_∷_ x) (applyEach f xs) ≡⟨ cong₂ (λ u v → (u ∷ xs) ∷ map (_∷_ x) v) (f≡g x) (applyEach-cong f g xs f≡g) ⟩ (g x ∷ xs) ∷ map (_∷_ x) (applyEach g xs) ∎ ------------------------------------------------------------------------ -- Properties of `combinations` module _ {a} {A : Set a} where open ≡-Reasoning length-combinations : ∀ (k : ℕ) (xs : List A) → length (combinations k xs) ≡ C (length xs) k length-combinations 0 xs = refl length-combinations (suc k) [] = refl length-combinations (suc k) (x ∷ xs) = begin length (map (x ∷_) (combinations k xs) ++ combinations (suc k) xs) ≡⟨ Lₚ.length-++ (map (x ∷_) (combinations k xs)) ⟩ length (map (x ∷_) (combinations k xs)) + length (combinations (suc k) xs) ≡⟨ cong₂ _+_ (Lₚ.length-map (x ∷_) (combinations k xs)) refl ⟩ length (combinations k xs) + length (combinations (suc k) xs) ≡⟨ cong₂ _+_ (length-combinations k xs) (length-combinations (suc k) xs) ⟩ C (length xs) k + C (length xs) (suc k) ≡⟨ sym $ C[1+n,1+k]≡C[n,k]+C[n,1+k] (length xs) k ⟩ C (length (x ∷ xs)) (suc k) ∎ All-length-combinations : ∀ (k : ℕ) (xs : List A) → All (λ ys → length ys ≡ k) (combinations k xs) All-length-combinations 0 xs = refl ∷ [] All-length-combinations (suc k) [] = [] All-length-combinations (suc k) (x ∷ xs) = Allₚ.++⁺ (Allₚ.map⁺ $ All.map (cong suc) $ All-length-combinations k xs) (All-length-combinations (suc k) xs) ∈-length-combinations : ∀ (xs : List A) k ys → xs ∈ combinations k ys → length xs ≡ k ∈-length-combinations xs k ys xs∈combinations[k,ys] = All.lookup (All-length-combinations k ys) xs∈combinations[k,ys] combinations-⊆⇒∈ : ∀ {xs ys : List A} → xs ⊆ ys → xs ∈ combinations (length xs) ys combinations-⊆⇒∈ {[]} {ys} xs⊆ys = here refl combinations-⊆⇒∈ {x ∷ xs} {y ∷ ys} (.y ∷ʳ x∷xs⊆ys) = ∈ₚ.∈-++⁺ʳ (map (y ∷_) (combinations (length xs) ys)) (combinations-⊆⇒∈ x∷xs⊆ys) combinations-⊆⇒∈ {x ∷ xs} {.x ∷ ys} (refl ∷ xs⊆ys) = ∈ₚ.∈-++⁺ˡ $ ∈ₚ.∈-map⁺ (x ∷_) $ combinations-⊆⇒∈ xs⊆ys combinations-∈⇒⊆ : ∀ {xs ys : List A} → xs ∈ combinations (length xs) ys → xs ⊆ ys combinations-∈⇒⊆ {[]} {ys} _ = Lemma.[]⊆xs ys combinations-∈⇒⊆ {x ∷ xs} {y ∷ ys} x∷xs∈c[len[x∷xs],y∷ys] with ∈ₚ.∈-++⁻ (map (y ∷_) (combinations (length xs) ys)) x∷xs∈c[len[x∷xs],y∷ys] ... | inj₁ x∷xs∈map[y∷-][c[len[xs],ys]] with ∈ₚ.∈-map⁻ (y ∷_) x∷xs∈map[y∷-][c[len[xs],ys]] -- ∷ ∃ λ zs → zs ∈ combinations (length xs) ys × x ∷ xs ≡ y ∷ zs combinations-∈⇒⊆ {x ∷ xs} {y ∷ ys} _ | inj₁ _ | zs , (zs∈c[len[xs],ys] , x∷xs≡y∷zs) = x≡y ∷ xs⊆ys where xs≡zs : xs ≡ zs xs≡zs = Lₚ.∷-injectiveʳ x∷xs≡y∷zs x≡y : x ≡ y x≡y = Lₚ.∷-injectiveˡ x∷xs≡y∷zs xs⊆ys : xs ⊆ ys xs⊆ys = combinations-∈⇒⊆ $ subst (λ v → v ∈ combinations (length xs) ys) (sym xs≡zs) zs∈c[len[xs],ys] combinations-∈⇒⊆ {x ∷ xs} {y ∷ ys} _ | inj₂ x∷xs∈c[len[x∷xs],ys] = y ∷ʳ x∷xs⊆ys where x∷xs⊆ys : x ∷ xs ⊆ ys x∷xs⊆ys = combinations-∈⇒⊆ x∷xs∈c[len[x∷xs],ys] combinations-∈⇔⊆ : ∀ {xs ys : List A} → (xs ∈ combinations (length xs) ys) ⇔ (xs ⊆ ys) combinations-∈⇔⊆ = equivalence combinations-∈⇒⊆ combinations-⊆⇒∈ All-⊆-combinations : ∀ k (xs : List A) → All (_⊆ xs) (combinations k xs) All-⊆-combinations k xs = All.tabulate λ {ys} ys∈combinations[k,xs] → combinations-∈⇒⊆ $ subst (λ v → ys ∈ combinations v xs) (sym $ ∈-length-combinations ys k xs ys∈combinations[k,xs]) ys∈combinations[k,xs] combinations-∈⇒⊆∧length : ∀ {xs : List A} {k ys} → xs ∈ combinations k ys → (xs ⊆ ys × length xs ≡ k) combinations-∈⇒⊆∧length {xs} {k} {ys} xs∈c[k,ys] = combinations-∈⇒⊆ xs∈c[len[xs],ys] , length[xs]≡k where length[xs]≡k : length xs ≡ k length[xs]≡k = ∈-length-combinations xs k ys xs∈c[k,ys] xs∈c[len[xs],ys] : xs ∈ combinations (length xs) ys xs∈c[len[xs],ys] = subst (λ v → xs ∈ combinations v ys) (sym length[xs]≡k) xs∈c[k,ys] combinations-⊆∧length⇒∈ : ∀ {xs ys : List A} {k} → (xs ⊆ ys × length xs ≡ k) → xs ∈ combinations k ys combinations-⊆∧length⇒∈ {xs} {ys} {k} (xs⊆ys , len[xs]≡k) = subst (λ v → xs ∈ combinations v ys) len[xs]≡k (combinations-⊆⇒∈ xs⊆ys) combinations-∈⇔⊆∧length : ∀ {xs : List A} {k} {ys} → xs ∈ combinations k ys ⇔ (xs ⊆ ys × length xs ≡ k) combinations-∈⇔⊆∧length = equivalence combinations-∈⇒⊆∧length combinations-⊆∧length⇒∈ unique-combinations : ∀ k {xs : List A} → UniqueP.Unique xs → UniqueP.Unique (combinations k xs) unique-combinations 0 {xs} xs-unique = [] ∷ [] unique-combinations (suc k) {[]} xs-unique = [] unique-combinations (suc k) {x ∷ xs} (All[x≢-]xs ∷ xs-unique) = UniquePₚ.++⁺ {_} {_} {map (x ∷_) (combinations k xs)} {combinations (suc k) xs} (UniquePₚ.map⁺ Lₚ.∷-injectiveʳ (unique-combinations k {xs} xs-unique)) (unique-combinations (suc k) {xs} xs-unique) λ {vs} vs∈map[x∷-]c[k,xs]×vs∈c[1+k,xs] → let vs∈map[x∷-]c[k,xs] = proj₁ vs∈map[x∷-]c[k,xs]×vs∈c[1+k,xs] vs∈c[1+k,xs] = proj₂ vs∈map[x∷-]c[k,xs]×vs∈c[1+k,xs] proof = ∈ₚ.∈-map⁻ (x ∷_) vs∈map[x∷-]c[k,xs] us = proj₁ proof vs≡x∷us : vs ≡ x ∷ us vs≡x∷us = proj₂ (proj₂ proof) x∈vs : x ∈ vs x∈vs = subst (x ∈_) (sym vs≡x∷us) (here refl) vs⊆xs : vs ⊆ xs vs⊆xs = proj₁ $ combinations-∈⇒⊆∧length {vs} {suc k} {xs} vs∈c[1+k,xs] All[x≢-]vs : All (x ≢_) vs All[x≢-]vs = Sublistₚ.All-resp-⊆ vs⊆xs All[x≢-]xs x∉vs : x ∉ vs x∉vs = Allₚ.All¬⇒¬Any All[x≢-]vs in x∉vs x∈vs {- -- unique⇒drop-cons-set : ∀ {a} {A : Set a} {x : A} {xs ys} → unique-combinations-set : ∀ k {xs : List A} → UniqueP.Unique xs → UniqueS.Unique ([ set ]-Equality A) (combinations k xs) unique-combinations-set 0 xs-unique = [] ∷ [] unique-combinations-set (suc k) {[]} xs-unique = [] unique-combinations-set (suc k) {x ∷ xs} (this ∷ xs-unique) = UniqueSₚ.++⁺ ([ set ]-Equality A) (UniqueSₚ.map⁺ ([ set ]-Equality A) ([ set ]-Equality A) (λ → {! !}) (unique-combinations-set k {xs} xs-unique)) (unique-combinations-set (suc k) {xs} xs-unique) {! !} -- {- x∉xs -} Unique -[ set ] xs → Unique -[ set ] (x ∷ xs) -} module _ {a b} {A : Set a} {B : Set b} where combinations-map : ∀ k (f : A → B) (xs : List A) → combinations k (map f xs) ≡ map (map f) (combinations k xs) combinations-map 0 f xs = refl combinations-map (suc k) f [] = refl combinations-map (suc k) f (x ∷ xs) = begin map (f x ∷_) (combinations k (map f xs)) ++ combinations (suc k) (map f xs) ≡⟨ cong₂ _++_ (cong (map (f x ∷_)) (combinations-map k f xs)) (combinations-map (suc k) f xs) ⟩ map (f x ∷_) (map (map f) (combinations k xs)) ++ map (map f) (combinations (suc k) xs) ≡⟨ cong (_++ map (map f) (combinations (suc k) xs)) $ Lemma.lemma₁ f x (combinations k xs) ⟩ map (map f) (map (x ∷_) (combinations k xs)) ++ map (map f) (combinations (suc k) xs) ≡⟨ sym $ Lₚ.map-++-commute (map f) (map (x ∷_) (combinations k xs)) (combinations (suc k) xs) ⟩ map (map f) (map (x ∷_) (combinations k xs) ++ combinations (suc k) xs) ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of `combinationsWithComplement` module _ {a} {A : Set a} where open ≡-Reasoning map-proj₁-combinationsWithComplement : ∀ k (xs : List A) → map proj₁ (combinationsWithComplement k xs) ≡ combinations k xs map-proj₁-combinationsWithComplement 0 xs = refl map-proj₁-combinationsWithComplement (suc k) [] = refl map-proj₁-combinationsWithComplement (suc k) (x ∷ xs) = begin map proj₁ (map f ys ++ map g zs) ≡⟨ Lₚ.map-++-commute proj₁ (map f ys) (map g zs) ⟩ map proj₁ (map f ys) ++ map proj₁ (map g zs) ≡⟨ sym $ Lₚ.map-compose ys ⟨ cong₂ _++_ ⟩ Lₚ.map-compose zs ⟩ map (proj₁ ∘′ f) ys ++ map (λ v → proj₁ (g v)) zs ≡⟨ Lₚ.map-cong lemma₁ ys ⟨ cong₂ _++_ ⟩ Lₚ.map-cong lemma₂ zs ⟩ map ((x ∷_) ∘′ proj₁) ys ++ map proj₁ zs ≡⟨ cong (_++ map proj₁ zs) $ Lₚ.map-compose ys ⟩ map (x ∷_) (map proj₁ ys) ++ map proj₁ zs ≡⟨ cong (map (x ∷_)) (map-proj₁-combinationsWithComplement k xs) ⟨ cong₂ _++_ ⟩ map-proj₁-combinationsWithComplement (suc k) xs ⟩ map (x ∷_) (combinations k xs) ++ combinations (suc k) xs ∎ where ys = combinationsWithComplement k xs zs = combinationsWithComplement (suc k) xs f g : List A × List A → List A × List A f = Prod.map₁ (x ∷_) g = Prod.map₂ (x ∷_) lemma₁ : ∀ (t : List A × List A) → proj₁ (Prod.map₁ (x ∷_) t) ≡ x ∷ proj₁ t lemma₁ t = Lemma.proj₁-map₁ (x ∷_) t lemma₂ : ∀ (t : List A × List A) → Lemma.proj₁′ {_} {_} {_} {List A} (Prod.map₂ (x ∷_) t) ≡ proj₁ t lemma₂ t = Lemma.proj₁-map₂ (x ∷_) t length-combinationsWithComplement : ∀ k (xs : List A) → length (combinationsWithComplement k xs) ≡ C (length xs) k length-combinationsWithComplement k xs = begin length (combinationsWithComplement k xs) ≡⟨ sym $ Lₚ.length-map proj₁ (combinationsWithComplement k xs) ⟩ length (map proj₁ (combinationsWithComplement k xs)) ≡⟨ cong length $ map-proj₁-combinationsWithComplement k xs ⟩ length (combinations k xs) ≡⟨ length-combinations k xs ⟩ C (length xs) k ∎ ------------------------------------------------------------------------ -- Properties of `splits₂` module _ {a} {A : Set a} where open ≡-Reasoning open Prod using (map₁; map₂) length-splits₂ : ∀ (xs : List A) → length (splits₂ xs) ≡ 1 + length xs length-splits₂ [] = refl length-splits₂ (x ∷ xs) = begin 1 + length (map (map₁ (x ∷_)) (splits₂ xs)) ≡⟨ cong (1 +_) $ Lₚ.length-map (map₁ (x ∷_)) (splits₂ xs) ⟩ 1 + length (splits₂ xs) ≡⟨ cong (1 +_) $ length-splits₂ xs ⟩ 1 + length (x ∷ xs) ∎ splits₂-defn : ∀ (xs : List A) → splits₂ xs ≡ zip (inits xs) (tails xs) splits₂-defn [] = refl splits₂-defn (x ∷ xs) = begin splits₂ (x ∷ xs) ≡⟨⟩ ([] , x ∷ xs) ∷ map (map₁ (x ∷_)) (splits₂ xs) ≡⟨ cong (([] , x ∷ xs) ∷_) (begin map (map₁ (x ∷_)) (splits₂ xs) ≡⟨ cong (map (map₁ (x ∷_))) $ splits₂-defn xs ⟩ map (map₁ (x ∷_)) (zip is ts) ≡⟨ Lₚ.map-zipWith _,_ (map₁ (x ∷_)) is ts ⟩ zipWith (λ ys zs → map₁ (x ∷_) (ys , zs)) is ts ≡⟨ sym $ Lₚ.zipWith-map _,_ (x ∷_) id is ts ⟩ zip (map (x ∷_) is) (map id ts) ≡⟨ cong (zip (map (x ∷_) is)) $ Lₚ.map-id ts ⟩ zip (map (x ∷_) is) ts ∎) ⟩ ([] , x ∷ xs) ∷ zip (map (x ∷_) is) ts ∎ where is = inits xs ts = tails xs All-++-splits₂ : (xs : List A) → All (Prod.uncurry (λ ys zs → ys ++ zs ≡ xs)) (splits₂ xs) All-++-splits₂ [] = refl ∷ [] All-++-splits₂ (x ∷ xs) = All._∷_ refl $ Allₚ.map⁺ $ All.map (cong (x ∷_)) $ All-++-splits₂ xs splits₂-∈⇒++ : {xs ys zs : List A} → (ys , zs) ∈ splits₂ xs → ys ++ zs ≡ xs splits₂-∈⇒++ {xs = xs} = All.lookup (All-++-splits₂ xs) private [],xs∈splits₂[xs] : (xs : List A) → ([] , xs) ∈ splits₂ xs [],xs∈splits₂[xs] [] = here refl [],xs∈splits₂[xs] (x ∷ xs) = here refl ∈-split₂-++ : (xs ys : List A) → (xs , ys) ∈ splits₂ (xs ++ ys) ∈-split₂-++ [] ys = [],xs∈splits₂[xs] ys ∈-split₂-++ (x ∷ xs) ys = Any.there $ ∈ₚ.∈-map⁺ (map₁ (x ∷_)) $ ∈-split₂-++ xs ys splits₂-++⇒∈ : {xs ys zs : List A} → xs ++ ys ≡ zs → (xs , ys) ∈ splits₂ zs splits₂-++⇒∈ {xs} {ys} {zs} xs++ys≡zs = subst (λ v → (xs , ys) ∈ splits₂ v) xs++ys≡zs (∈-split₂-++ xs ys) splits₂-∈⇔++ : {xs ys zs : List A} → (xs , ys) ∈ splits₂ zs ⇔ xs ++ ys ≡ zs splits₂-∈⇔++ = equivalence splits₂-∈⇒++ splits₂-++⇒∈ module _ {a b} {A : Set a} {B : Set b} where open ≡-Reasoning {- splits₂-map : ∀ (f : A → B) (xs : List A) → splits₂ (map f xs) ≡ map (Prod.map (map f) (map f)) (splits₂ xs) splits₂-map f [] = refl splits₂-map f (x ∷ xs) = {! !} -} -- length[xs]<k⇒combinations[k,xs]≡[] -- All-unique-combinations : UniqueP.Unique xs → All (UniqueP.Unique) (combinations k xs) -- All-unique-combinations-set : UniqueP.Unique xs → All (UniqueS.Unique [ set ]-Equality A) (combinations k xs) -- unique-combinations-PW : UniqueS.Unique S xs → UniqueS.Unique (Equality S) (combinations k xs) -- unique-combinations-set : UniqueP.Unique xs → Unique (_-[ set ]_) (combinations k xs) -- sorted-combinations : Sorted _<_ xs → Sorted {- Lex._<_ _<_ -} (combinations k xs) -- All-sorted-combinations : Sorted _<_ xs → All (Sorted _<_) (combinations k xs) -- filter-combinations = filter P ∘ combinations k xs -- each-disjoint-combinationsWithComplement : Unique zs → (xs , ys) ∈ combinationsWithComplement k zs → Disjoint xs ys -- combinationsWithComplement-∈⇒⊆ : (xs , ys) ∈ combinationsWithComplement (length xs) zs → xs ⊆ zs × ys ⊆ zs -- length-splits : length (splits k xs) ≡ C (length xs + k ∸ 1) (length xs) -- length-partitionsAll : length (partitionsAll xs) ≡ B (length xs) -- length-insertEverywhere : length (insertEverywhere x xs) ≡ 1 + length xs -- All-length-insertEverywhere : All (λ ys → length ys ≡ 1 + length xs) (insertEverywhere x xs) -- length-permutations : length (permutations xs) ≡ length xs !
46.613636
135
0.56058
4afa5d704094e9b8569ba6138977517aa5465585
5,662
agda
Agda
Cubical/HITs/SetQuotients/Properties.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
{- Set quotients: -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.Univalence open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.PropositionalTruncation open import Cubical.HITs.SetTruncation -- Type quotients private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ' B : A / R → Type ℓ'' elimEq/ : (Bprop : (x : A / R ) → isProp (B x)) {x y : A / R} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq/ {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimSetQuotientsProp : ((x : A / R ) → isProp (B x)) → (f : (a : A) → B ( [ a ])) → (x : A / R) → B x elimSetQuotientsProp Bprop f [ x ] = f x elimSetQuotientsProp Bprop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep {n = 2} (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimSetQuotientsProp Bprop f elimSetQuotientsProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i -- lemma 6.10.2 in hott book -- TODO: defined truncated Sigma as ∃ []surjective : (x : A / R) → ∥ Σ[ a ∈ A ] [ a ] ≡ x ∥ []surjective = elimSetQuotientsProp (λ x → squash) (λ a → ∣ a , refl ∣) elimSetQuotients : {B : A / R → Type ℓ} → (Bset : (x : A / R) → isSet (B x)) → (f : (a : A) → (B [ a ])) → (feq : (a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) → (x : A / R) → B x elimSetQuotients Bset f feq [ a ] = f a elimSetQuotients Bset f feq (eq/ a b r i) = feq a b r i elimSetQuotients Bset f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep {n = 2} Bset (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimSetQuotients Bset f feq setQuotUniversal : {B : Type ℓ} (Bset : isSet B) → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (iso intro elim elimRightInv elimLeftInv) where intro = λ g → (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) elim = λ h → elimSetQuotients (λ x → Bset) (fst h) (snd h) elimRightInv : ∀ h → intro (elim h) ≡ h elimRightInv h = refl elimLeftInv : ∀ g → elim (intro g) ≡ g elimLeftInv = λ g → funExt (λ x → elimPropTrunc {P = λ sur → elim (intro g) x ≡ g x} (λ sur → Bset (elim (intro g) x) (g x)) (λ sur → cong (elim (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x) ) open BinaryRelation effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (EquivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = elimSetQuotients (λ _ → isSetHProp) (λ c → (R a c , Rprop a c)) (λ c d cd → ΣProp≡ (λ _ → isPropIsProp) (ua (PropEquiv→Equiv (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd))))) aa≡ab : R a a ≡ R a b aa≡ab i = fst (helper (p i)) isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective {R = R} Rprop Req a b = isoToEquiv (iso intro elim intro-elim elim-intro) where intro : [ a ] ≡ [ b ] → R a b intro = effective Rprop Req a b elim : R a b → [ a ] ≡ [ b ] elim = eq/ a b intro-elim : ∀ x → intro (elim x) ≡ x intro-elim ab = Rprop a b _ _ elim-intro : ∀ x → elim (intro x) ≡ x elim-intro eq = squash/ _ _ _ _ discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elimSetQuotients ((λ a₀ → isSetPi (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁))))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elimSetQuotients ((λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁)))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b)
37.746667
142
0.536206
0e9b67207f7b2bccce6d43c696efcb23b9f508d6
801
agda
Agda
Examples/Bool.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Examples/Bool.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Examples/Bool.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Booleans ------------------------------------------------------------------------ {-# OPTIONS --guardedness #-} module Examples.Bool where open import Codata.Musical.Notation open import Data.Bool open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Grammar.Infinite using (Grammar) import Pretty open import Renderer module _ where open Grammar.Infinite bool : Grammar Bool bool = true <$ string′ "true" ∣ false <$ string′ "false" open Pretty bool-printer : Pretty-printer bool bool-printer true = left (<$ text) bool-printer false = right (<$ text) test₁ : render 4 (bool-printer true) ≡ "true" test₁ = refl test₂ : render 0 (bool-printer false) ≡ "false" test₂ = refl
22.25
72
0.585518
185f44aa68e55f43c245bf6e23a39de449883e89
3,175
agda
Agda
src/Compatibility.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
2
2020-05-21T22:58:07.000Z
2020-10-20T16:27:00.000Z
src/Compatibility.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
1
2020-05-21T23:29:54.000Z
2020-06-08T11:08:25.000Z
src/Compatibility.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Compatibility lemmas ------------------------------------------------------------------------ open import Atom module Compatibility (atoms : χ-atoms) where open import Bag-equivalence hiding (trans) open import Equality.Propositional open import Prelude hiding (const) open import Tactic.By open import List equality-with-J using (map) open import Chi atoms open import Constants atoms open import Reasoning atoms open import Values atoms open χ-atoms atoms -- A compatibility lemma that does not hold. ¬-⇓-[←]-right : ¬ (∀ {e′ v′} e x {v} → e′ ⇓ v′ → e [ x ← v′ ] ⇓ v → e [ x ← e′ ] ⇓ v) ¬-⇓-[←]-right hyp = ¬e[x←e′]⇓v (hyp e x e′⇓v′ e[x←v′]⇓v) where x : Var x = v-x e′ v′ e v : Exp e′ = apply (lambda v-x (var v-x)) (const c-true []) v′ = const c-true [] e = lambda v-y (var v-x) v = lambda v-y (const c-true []) e′⇓v′ : e′ ⇓ v′ e′⇓v′ = apply lambda (const []) (case v-x V.≟ v-x return (λ b → if b then const c-true [] else var v-x ⇓ v′) of (λ where (yes _) → const [] (no x≢x) → ⊥-elim (x≢x refl))) lemma : ∀ v → e [ x ← v ] ≡ lambda v-y v lemma _ with v-x V.≟ v-y ... | yes x≡y = ⊥-elim (V.distinct-codes→distinct-names (λ ()) x≡y) ... | no _ with v-x V.≟ v-x ... | yes _ = refl ... | no x≢x = ⊥-elim (x≢x refl) e[x←v′]⇓v : e [ x ← v′ ] ⇓ v e[x←v′]⇓v = e [ x ← v′ ] ≡⟨ lemma _ ⟩⟶ lambda v-y v′ ⇓⟨ lambda ⟩■ v ¬e[x←e′]⇓v : ¬ e [ x ← e′ ] ⇓ v ¬e[x←e′]⇓v p with _[_←_] e x e′ | lemma e′ ¬e[x←e′]⇓v () | ._ | refl mutual -- Contexts. data Context : Type where ∙ : Context apply←_ : Context → {e : Exp} → Context apply→_ : {e : Exp} → Context → Context const : {c : Const} → Context⋆ → Context case : Context → {bs : List Br} → Context data Context⋆ : Type where here : Context → {es : List Exp} → Context⋆ there : {e : Exp} → Context⋆ → Context⋆ mutual -- Filling a context's hole (∙) with an expression. infix 6 _[_] _[_]⋆ _[_] : Context → Exp → Exp ∙ [ e ] = e apply←_ c {e = e′} [ e ] = apply (c [ e ]) e′ apply→_ {e = e′} c [ e ] = apply e′ (c [ e ]) const {c = c′} c [ e ] = const c′ (c [ e ]⋆) case c {bs = bs} [ e ] = case (c [ e ]) bs _[_]⋆ : Context⋆ → Exp → List Exp here c {es = es} [ e ]⋆ = (c [ e ]) ∷ es there {e = e′} c [ e ]⋆ = e′ ∷ (c [ e ]⋆) mutual -- If e₁ terminates with v₁ and c [ v₁ ] terminates with v₂, then -- c [ e₁ ] also terminates with v₂. []⇓ : ∀ c {e₁ v₁ v₂} → e₁ ⇓ v₁ → c [ v₁ ] ⇓ v₂ → c [ e₁ ] ⇓ v₂ []⇓ ∙ {e₁} {v₁} {v₂} p q = e₁ ⇓⟨ p ⟩ v₁ ⇓⟨ q ⟩■ v₂ []⇓ (apply← c) p (apply q r s) = apply ([]⇓ c p q) r s []⇓ (apply→ c) p (apply q r s) = apply q ([]⇓ c p r) s []⇓ (const c) p (const ps) = const ([]⇓⋆ c p ps) []⇓ (case c) p (case q r s t) = case ([]⇓ c p q) r s t []⇓⋆ : ∀ c {e v vs} → e ⇓ v → c [ v ]⋆ ⇓⋆ vs → c [ e ]⋆ ⇓⋆ vs []⇓⋆ (here c) p (q ∷ qs) = []⇓ c p q ∷ qs []⇓⋆ (there c) p (q ∷ qs) = q ∷ []⇓⋆ c p qs
26.680672
72
0.444724
dc9f58ea72af0d970a51988f0af84af77501e11d
10,751
agda
Agda
lib/types/Pi.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/types/Pi.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/types/Pi.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Paths module lib.types.Pi where Π-level : ∀ {i j} {A : Type i} {B : A → Type j} {n : ℕ₋₂} → (((x : A) → has-level n (B x)) → has-level n (Π A B)) Π-level {n = ⟨-2⟩} p = ((λ x → fst (p x)) , (λ f → λ= (λ x → snd (p x) (f x)))) Π-level {n = S n} p = λ f g → equiv-preserves-level λ=-equiv (Π-level (λ x → p x (f x) (g x))) module _ {i j} {A : Type i} {B : A → Type j} where abstract Π-is-prop : ((x : A) → is-prop (B x)) → is-prop (Π A B) Π-is-prop = Π-level Π-is-set : ((x : A) → is-set (B x)) → is-set (Π A B) Π-is-set = Π-level module _ {i j} {A : Type i} {B : Type j} where abstract →-level : {n : ℕ₋₂} → (has-level n B → has-level n (A → B)) →-level p = Π-level (λ _ → p) →-is-set : is-set B → is-set (A → B) →-is-set = →-level →-is-prop : is-prop B → is-prop (A → B) →-is-prop = →-level {- Equivalences in a Π-type -} equiv-Π-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B} → is-equiv h → Π A (P ∘ h) ≃ Π B P equiv-Π-l {A = A} {B = B} P {h = h} e = equiv f g f-g g-f where w : A ≃ B w = (h , e) f : Π A (P ∘ h) → Π B P f u b = transport P (<–-inv-r w b) (u (<– w b)) g : Π B P → Π A (P ∘ h) g v a = v (–> w a) f-g : ∀ v → f (g v) == v f-g v = λ= λ b → to-transp (apd v (<–-inv-r w b)) g-f : ∀ u → g (f u) == u g-f u = λ= λ a → to-transp $ transport (λ p → u _ == _ [ P ↓ p ]) (is-equiv.adj e a) (↓-ap-in P (–> w) (apd u $ <–-inv-l w a)) equiv-Π-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → (∀ x → B x ≃ C x) → Π A B ≃ Π A C equiv-Π-r {A = A} {B = B} {C = C} k = equiv f g f-g g-f where f : Π A B → Π A C f c x = –> (k x) (c x) g : Π A C → Π A B g d x = <– (k x) (d x) f-g : ∀ d → f (g d) == d f-g d = λ= (λ x → <–-inv-r (k x) (d x)) g-f : ∀ c → g (f c) == c g-f c = λ= (λ x → <–-inv-l (k x) (c x)) module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where equiv-Π : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Π A₀ B₀ ≃ Π A₁ B₁ equiv-Π u v = Π A₀ B₀ ≃⟨ equiv-Π-l _ (snd (u ⁻¹)) ⁻¹ ⟩ Π A₁ (B₀ ∘ <– u) ≃⟨ equiv-Π-r v ⟩ Π A₁ B₁ ≃∎ equiv-Π' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Π A₀ B₀ ≃ Π A₁ B₁ equiv-Π' u v = Π A₀ B₀ ≃⟨ equiv-Π-r v ⟩ Π A₀ (B₁ ∘ –> u) ≃⟨ equiv-Π-l _ (snd u) ⟩ Π A₁ B₁ ≃∎ {- Dependent paths in a Π-type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} where ↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) → (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) ↓-Π-in {p = idp} f = λ= (λ x → f (idp {a = x})) ↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) ↓-Π-out {p = idp} q idp = app= q _ ↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (f : {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) → {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → ↓-Π-out (↓-Π-in f) q == f q ↓-Π-β {p = idp} f idp = app=-β (λ x → f (idp {a = x})) _ {- Dependent paths in a Π-type where the codomain is not dependent on anything Right now, this is defined in terms of the previous one. Maybe it’s a good idea, maybe not. -} module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x x' : A} {p : x == x'} {u : B x → C} {u' : B x' → C} where ↓-app→cst-in : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t') → (u == u' [ (λ x → B x → C) ↓ p ]) ↓-app→cst-in f = ↓-Π-in (λ q → ↓-cst-in (f q)) ↓-app→cst-out : (u == u' [ (λ x → B x → C) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t') ↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q) ↓-app→cst-β : (f : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t')) → {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → ↓-app→cst-out (↓-app→cst-in f) q == f q ↓-app→cst-β f q = ↓-app→cst-out (↓-app→cst-in f) q =⟨ idp ⟩ ↓-cst-out (↓-Π-out (↓-Π-in (λ qq → ↓-cst-in (f qq))) q) =⟨ ↓-Π-β (λ qq → ↓-cst-in (f qq)) q |in-ctx ↓-cst-out ⟩ ↓-cst-out (↓-cst-in {p = pair= p q} (f q)) =⟨ ↓-cst-β (pair= p q) (f q) ⟩ f q ∎ {- Dependent paths in an arrow type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} where ↓-→-in : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ C ↓ p ]) → (u == u' [ (λ x → B x → C x) ↓ p ]) ↓-→-in f = ↓-Π-in (λ q → ↓-cst2-in p q (f q)) ↓-→-out : (u == u' [ (λ x → B x → C x) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ C ↓ p ]) ↓-→-out r q = ↓-cst2-out p q (↓-Π-out r q) -- Dependent paths in a Π-type where the domain is constant module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where ↓-cst→app-in : {x x' : A} {p : x == x'} {u : (b : B) → C x b} {u' : (b : B) → C x' b} → ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ]) → (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) ↓-cst→app-in {p = idp} f = λ= f ↓-cst→app-out : {x x' : A} {p : x == x'} {u : (b : B) → C x b} {u' : (b : B) → C x' b} → (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) → ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ]) ↓-cst→app-out {p = idp} q = app= q split-ap2 : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} (f : Σ A B → C) {x y : A} (p : x == y) {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → ap f (pair= p q) == ↓-app→cst-out (apd (curry f) p) q split-ap2 f idp idp = idp {- Interaction of [apd] with function composition. The basic idea is that [apd (g ∘ f) p == apd g (apd f p)] but the version here is well-typed. Note that we assume a propositional equality [r] between [apd f p] and [q]. -} apd-∘ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} (g : {a : A} → Π (B a) (C a)) (f : Π A B) {x y : A} (p : x == y) {q : f x == f y [ B ↓ p ]} (r : apd f p == q) → apd (g ∘ f) p == ↓-apd-out C r (apd↓ g q) apd-∘ g f idp idp = idp {- When [g] is nondependent, it’s much simpler -} apd-∘' : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y) → apd (g ∘ f) p == ap↓ g (apd f p) apd-∘' g f idp = idp ∘'-apd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y) → ap↓ g (apd f p) == apd (g ∘ f) p ∘'-apd g f idp = idp {- 2-dimensional coherence conditions -} -- postulate -- lhs : -- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B} -- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} -- (k : (u ◃ apd g p) == (apd f p ▹ v)) -- (h : {a : A} → B a → C a) -- → ap h u ◃ apd (h ∘ g) p == ap↓ h (u ◃ apd g p) -- rhs : -- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B} -- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} -- (k : (u ◃ apd g p) == (apd f p ▹ v)) -- (h : {a : A} → B a → C a) -- → ap↓ h (apd f p ▹ v) == apd (h ∘ f) p ▹ ap h v -- ap↓-↓-=-in : -- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B} -- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} -- (k : (u ◃ apd g p) == (apd f p ▹ v)) -- (h : {a : A} → B a → C a) -- → ap↓ (λ {a} → ap (h {a = a})) (↓-=-in {p = p} {u = u} {v = v} k) -- == ↓-=-in (lhs {f = f} {g = g} k h ∙ ap (ap↓ (λ {a} → h {a = a})) k -- ∙ rhs {f = f} {g = g} k h) {- Commutation of [ap↓ (ap h)] and [↓-swap!]. This is "just" J, but it’s not as easy as it seems. -} module Ap↓-swap! {i j k ℓ} {A : Type i} {B : Type j} {C : Type k} {D : Type ℓ} (h : C → D) (f : A → C) (g : B → C) {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) (t : r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) where lhs : ap h (ap f p ∙' s) == ap (h ∘ f) p ∙' ap h s lhs = ap-∙' h (ap f p) s ∙ (ap (λ u → u ∙' ap h s) (∘-ap h f p)) rhs : ap h (s ∙ ap g q) == ap h s ∙ ap (h ∘ g) q rhs = ap-∙ h s (ap g q) ∙ (ap (λ u → ap h s ∙ u) (∘-ap h g q)) β : ap↓ (ap h) (↓-swap! f g r s t) == lhs ◃ ↓-swap! (h ∘ f) (h ∘ g) (ap h r) (ap h s) (ap↓ (ap h) t ▹ rhs) β with a | a' | p | b | b' | q | r | s | t β | a | .a | idp | b | .b | idp | r | s | t = coh r s t where T : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → Type _ T r s t = ap (ap h) (∙'-unit-l s ∙ ! (∙-unit-r s) ∙ ! t) == (ap-∙' h idp s ∙ idp) ∙ (∙'-unit-l (ap h s) ∙ ! (∙-unit-r (ap h s)) ∙ ! (ap (ap h) t ∙' (ap-∙ h s idp ∙ idp))) coh' : {x x' : C} {r s : x == x'} (t : r == s) → T r s (t ∙ ! (∙-unit-r s)) coh' {r = idp} {s = .idp} idp = idp coh : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → T r s t coh r s t = transport (λ t → T r s t) (coh2 t (∙-unit-r s)) (coh' (t ∙ ∙-unit-r s)) where coh2 : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → (p ∙ q) ∙ ! q == p coh2 idp idp = idp -- module _ {i j k} {A : Type i} {B B' : Type j} {C : Type k} (f : A → C) (g' : B' → B) (g : B → C) where -- abc : {a a' : A} {p : a == a'} {c c' : B'} {q' : c == c'} {q : g' c == g' c'} -- (r : f a == g (g' c')) (s : f a' == g (g' c)) -- (t : q == ap g' q') -- (α : r == s ∙ ap g q [ (λ x → f x == g (g' c')) ↓ p ]) -- → {!(↓-swap! f g r s α ▹ ?) ∙'2ᵈ ?!} == ↓-swap! f (g ∘ g') {p = p} {q = q'} r s (α ▹ ap (λ u → s ∙ u) (ap (ap g) t ∙ ∘-ap g g' q')) -- abc = {!!} {- Functoriality of application and function extensionality -} ∙-app= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B} (α : f == g) (β : g == h) → α ∙ β == λ= (λ x → app= α x ∙ app= β x) ∙-app= idp β = λ=-η β ∙-λ= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B} (α : (x : A) → f x == g x) (β : (x : A) → g x == h x) → λ= α ∙ λ= β == λ= (λ x → α x ∙ β x) ∙-λ= α β = ∙-app= (λ= α) (λ= β) ∙ ap λ= (λ= (λ x → ap (λ w → w ∙ app= (λ= β) x) (app=-β α x) ∙ ap (λ w → α x ∙ w) (app=-β β x)))
36.320946
139
0.365733
c532222d2970f871d277845ba5ed5cf2a8f67890
5,222
agda
Agda
SOAS/ContextMaps/CategoryOfRenamings.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
SOAS/ContextMaps/CategoryOfRenamings.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
SOAS/ContextMaps/CategoryOfRenamings.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
-- The category of contexts and renamings module SOAS.ContextMaps.CategoryOfRenamings {T : Set} where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Variable open import SOAS.ContextMaps.Combinators (ℐ {T}) open import Categories.Functor.Bifunctor open import Categories.Object.Initial open import Categories.Object.Coproduct open import Categories.Category.Cocartesian import Categories.Morphism -- The category of contexts and renamings, defined as the Lawvere theory -- associated with the clone of variables. In elementary terms it has -- contexts Γ, Δ as objects, and renamings Γ ↝ Δ ≜ Γ ~[ ℐ → ℐ ]↝ Δ as arrows. 𝔽 : Category 0ℓ 0ℓ 0ℓ 𝔽 = categoryHelper (record { Obj = Ctx ; _⇒_ = _↝_ ; _≈_ = λ {Γ} ρ₁ ρ₂ → ∀{α : T}{v : ℐ α Γ} → ρ₁ v ≡ ρ₂ v ; id = λ x → x ; _∘_ = λ ϱ ρ v → ϱ (ρ v) ; assoc = refl ; identityˡ = refl ; identityʳ = refl ; equiv = record { refl = refl ; sym = λ p → sym p ; trans = λ p q → trans p q } ; ∘-resp-≈ = λ{ {f = ρ₁} p₁ p₂ → trans (cong ρ₁ p₂) p₁ } }) module 𝔽 = Category 𝔽 using (op) renaming ( _∘_ to _∘ᵣ_ ; _≈_ to _≈ᵣ_ ; id to idᵣ ; ∘-resp-≈ to ∘-resp-≈ᵣ ) open 𝔽 public id′ᵣ : (Γ : Ctx) → Γ ↝ Γ id′ᵣ Γ = idᵣ {Γ} -- Category of context is co-Cartesian, given by the empty initial context and -- context concatenation as the monoidal product. 𝔽:Cocartesian : Cocartesian 𝔽 𝔽:Cocartesian = record { initial = record { ⊥ = ∅ ; ⊥-is-initial = record { ! = λ{()} ; !-unique = λ{ f {_} {()}} } } ; coproducts = record { coproduct = λ {Γ}{Δ} → record { A+B = Γ ∔ Δ ; i₁ = expandʳ Δ ; i₂ = expandˡ Γ ; [_,_] = copair ; inject₁ = λ{ {Θ}{ρ}{ϱ} → i₁-commute ρ ϱ _ } ; inject₂ = λ{ {Θ}{ρ}{ϱ} → i₂-commute ρ ϱ _ } ; unique = λ{ p₁ p₂ → unique {Γ}{Δ} _ _ _ p₁ p₂ _ } } } } where in₁ : (Γ Δ : Ctx) → Γ ↝ Γ ∔ Δ in₁ (α ∙ Γ) Δ new = new in₁ (α ∙ Γ) Δ (old v) = old (in₁ Γ Δ v) in₂ : (Γ Δ : Ctx) → Δ ↝ Γ ∔ Δ in₂ ∅ Δ v = v in₂ (α ∙ Γ) Δ v = old (in₂ Γ Δ v) i₁-commute : {Γ Δ Θ : Ctx}{α : T}(ρ : Γ ↝ Θ)(ϱ : Δ ↝ Θ)(v : ℐ α Γ) → copair ρ ϱ (expandʳ Δ v) ≡ ρ v i₁-commute ρ ϱ new = refl i₁-commute ρ ϱ (old v) = i₁-commute (ρ ∘ old) ϱ v i₂-commute : {Γ Δ Θ : Ctx}{α : T}(ρ : Γ ↝ Θ)(ϱ : Δ ↝ Θ)(v : ℐ α Δ) → copair ρ ϱ (expandˡ Γ v) ≡ ϱ v i₂-commute {∅} ρ ϱ v = refl i₂-commute {α ∙ Γ} ρ ϱ v = i₂-commute (ρ ∘ old) ϱ v unique : {Γ Δ Θ : Ctx}{α : T}(ρ : Γ ↝ Θ)(ϱ : Δ ↝ Θ)(π : Γ ∔ Δ ↝ Θ) → (π ∘ᵣ expandʳ Δ ≈ᵣ ρ) → (π ∘ᵣ expandˡ Γ ≈ᵣ ϱ) → (v : ℐ α (Γ ∔ Δ)) → copair ρ ϱ v ≡ π v unique {∅} ρ ϱ π p₁ p₂ v = sym p₂ unique {α ∙ Γ} ρ ϱ π p₁ p₂ new = sym p₁ unique {α ∙ Γ} ρ ϱ π p₁ p₂ (old v) = unique (ρ ∘ old) ϱ (π ∘ old) p₁ p₂ v module 𝔽:Co = Cocartesian 𝔽:Cocartesian module ∔ = BinaryCoproducts (Cocartesian.coproducts 𝔽:Cocartesian) -- | Special operations coming from the coproduct structure -- Concatenation is a bifunctor ∔:Bifunctor : Bifunctor 𝔽 𝔽 𝔽 ∔:Bifunctor = 𝔽:Co.-+- -- Left context concatenation functor Γ ∔ (-) : 𝔽 ⟶ 𝔽, for any context Γ _∔F– : Ctx → Functor 𝔽 𝔽 Γ ∔F– = Γ ∔.+- -- Right context concatenation functor (-) ∔ Δ : 𝔽 ⟶ 𝔽, for any context Δ –∔F_ : Ctx → Functor 𝔽 𝔽 –∔F Δ = ∔.-+ Δ -- Functorial mapping and injections _∣∔∣_ : {Γ₁ Γ₂ Δ₁ Δ₂ : Ctx}(ρ : Γ₁ ↝ Γ₂)(ϱ : Δ₁ ↝ Δ₂) → (Γ₁ ∔ Δ₁) ↝ (Γ₂ ∔ Δ₂) _∣∔∣_ = ∔._+₁_ _∣∔_ : {Γ₁ Γ₂ : Ctx}(ρ : Γ₁ ↝ Γ₂)(Δ : Ctx) → (Γ₁ ∔ Δ) ↝ (Γ₂ ∔ Δ) ρ ∣∔ Δ = ρ ∣∔∣ id′ᵣ Δ _∔∣_ : {Δ₁ Δ₂ : Ctx}(Γ : Ctx)(ϱ : Δ₁ ↝ Δ₂) → (Γ ∔ Δ₁) ↝ (Γ ∔ Δ₂) Γ ∔∣ ϱ = id′ᵣ Γ ∣∔∣ ϱ inl : (Γ {Δ} : Ctx) → Γ ↝ Γ ∔ Δ inl Γ {Δ} v = ∔.i₁ {Γ}{Δ} v inr : (Γ {Δ} : Ctx) → Δ ↝ Γ ∔ Δ inr Γ {Δ} v = ∔.i₂ {Γ}{Δ} v -- Left context concatenation represents weakening a variable in Γ by an -- arbitrary new context Θ to get a variable in context (Θ ∔ Γ). module Concatˡ Γ = Functor (Γ ∔F–) using () renaming ( F₁ to _∔ᵣ_ ; identity to ∔identity ; homomorphism to ∔homomorphism ; F-resp-≈ to ∔F-resp-≈) open Concatˡ public -- Context extension represents weakening by a single type, and it's a special -- case of context concatenation with a singleton context. module Ext τ = Functor (⌊ τ ⌋ ∔F–) using () renaming ( F₁ to _∙ᵣ_ ; identity to ∙identity ; homomorphism to ∙homomorphism ; F-resp-≈ to ∙F-resp-≈) open Ext public -- The two coincide (since add is a special case of copair) -- but not definitionally: ∙ᵣ is the parallel sum of id : ⌊ τ ⌋ ↝ ⌊ τ ⌋ and ρ : Γ ↝ Δ -- (i.e. the copairing of expandʳ ⌊ τ ⌋ Δ : ⌊ τ ⌋ ↝ τ ∙ Δ and old ∘ ρ : Γ ↝ τ ∙ Δ) -- while liftᵣ is the copairing of new : ⌊ τ ⌋ ↝ τ ∙ Δ and old ∘ ρ : Γ ↝ τ ∙ Δ ∙ᵣ-as-add : {α τ : T}{Γ Δ : Ctx} → (ρ : Γ ↝ Δ)(v : ℐ α (τ ∙ Γ)) → add new (old ∘ ρ) v ≡ (τ ∙ᵣ ρ) v ∙ᵣ-as-add ρ new = refl ∙ᵣ-as-add ρ (old v) = refl -- Making this a definitional equality simplifies things significantly -- Right context concatenation is possible but rarely needed. module Concatʳ Δ = Functor (–∔F Δ )
33.474359
85
0.540214
20182b23e108ba26098d869de55181c5232f1713
14,346
agda
Agda
docs/fomega/mutual-term-level-recursion/FixN.agda
NinjaTrappeur/plutus
23fd661817f2ab2f14c10e97b90166bf26d7fd4f
[ "MIT" ]
null
null
null
docs/fomega/mutual-term-level-recursion/FixN.agda
NinjaTrappeur/plutus
23fd661817f2ab2f14c10e97b90166bf26d7fd4f
[ "MIT" ]
null
null
null
docs/fomega/mutual-term-level-recursion/FixN.agda
NinjaTrappeur/plutus
23fd661817f2ab2f14c10e97b90166bf26d7fd4f
[ "MIT" ]
null
null
null
{-# OPTIONS --type-in-type #-} {-# OPTIONS --no-termination-check #-} -- In this post we'll consider how to define and generalize fixed-point combinators for families of -- mutually recursive functions. Both in the lazy and strict settings. module FixN where open import Function open import Relation.Binary.PropositionalEquality open import Data.Nat.Base open import Data.Bool.Base -- This module is parameterized by `even` and `odd` functions and defines the `Test` type -- which is used below for testing particular `even` and `odd`. module Test (even : ℕ -> Bool) (odd : ℕ -> Bool) where open import Data.List.Base open import Data.Product using (_,′_) Test : Set Test = ( map even (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ,′ map odd (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ) ≡ ( true ∷ false ∷ true ∷ false ∷ true ∷ false ∷ [] ,′ false ∷ true ∷ false ∷ true ∷ false ∷ true ∷ [] ) -- Brings `Test : (ℕ -> Bool) -> (ℕ -> Bool) -> Set` in scope. open Test module Classic where open import Data.Product -- We can use the most straightforward fixed-point operator in order to get mutual recursion. {-# TERMINATING #-} fix : {A : Set} -> (A -> A) -> A fix f = f (fix f) -- We instantiate `fix` to be defined over a pair of functions. I.e. a generic fixed-point -- combinator for a family of two mutually recursive functions has this type signature: -- `∀ {A B} -> (A × B -> A × B) -> A × B` which is an instance of `∀ {A} -> (A -> A) -> A`. -- Here is the even-and-odd example. -- `even` is denoted as the first element of the resulting tuple, `odd` is the second. evenAndOdd : (ℕ -> Bool) × (ℕ -> Bool) evenAndOdd = fix $ λ p -> -- `even` returns `true` on `0` and calls `odd` on `suc` (λ { 0 -> true ; (suc n) -> proj₂ p n }) -- `odd` returns `false` on `0` and calls `even` on `suc` , (λ { 0 -> false ; (suc n) -> proj₁ p n }) even : ℕ -> Bool even = proj₁ evenAndOdd odd : ℕ -> Bool odd = proj₂ evenAndOdd test : Test even odd test = refl -- And that's all. -- This Approach -- 1. relies on laziness -- 2. relies on tuples -- 3. allows to encode a family of arbitrary number of mutually recursive functions -- of possibly distinct types -- There is one pitfall, though, if we write this in Haskell: -- evenAndOdd :: ((Int -> Bool), (Int -> Bool)) -- evenAndOdd = fix $ \(even, odd) -> -- ( (\n -> n == 0 || odd (n - 1)) -- , (\n -> n /= 0 && even (n - 1)) -- ) -- we'll get an infinite loop, because matching over tuples is strict in Haskell (in Agda it's lazy) -- which means that in order to return a tuple, you must first compute it to whnf, which is a loop. -- This is what the author of [1] stumpled upon. The fix is simple, though: just use lazy matching -- (aka irrefutable pattern) like this: -- evenAndOdd = fix $ \(~(even, odd)) -> ... -- In general, that's a good approach for a lazy language, but Plutus Core is a strict one (so far), -- so we need something else. Besides, we can do some pretty cool generalizations, so let's do them. module PartlyUncurried2 where open import Data.Product -- It is clear that we can transform -- ∀ {A B} -> (A × B -> A × B) -> A × B -- into -- ∀ {A B R} -> (A × B -> A × B) -> (A -> B -> R) -> R -- by Church-encoding `A × B` into `∀ {R} -> (A -> B -> R) -> R`. -- However in our case we can also transform -- A × B -> A × B -- into -- ∀ {Q} -> (A -> B -> Q) -> A -> B -> Q -- Ignoring the former transformation right now, but performing the latter we get the following: fix2 : ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> A × B fix2 f = f (λ x y -> x) (proj₁ (fix2 f)) (proj₂ (fix2 f)) , f (λ x y -> y) (proj₁ (fix2 f)) (proj₂ (fix2 f)) -- `f` is what was of the `A × B -> A × B` type previously, but now instead of receiving a tuple -- and defining a tuple, `f` receives a selector and two values of types `A` and `B`. The values -- represent the functions being defined, while the selector is needed in order to select one of -- these functions. -- Consider the example: evenAndOdd : (ℕ -> Bool) × (ℕ -> Bool) evenAndOdd = fix2 $ λ select even odd -> select (λ { 0 -> true ; (suc n) -> odd n }) (λ { 0 -> false ; (suc n) -> even n }) -- `select` is only instantiated to either `λ x y -> x` or `λ x y -> y` which allow us -- to select the branch we want to go in. When defining the `even` function, we want to go in -- the first branch and thus instantiate `select` with `λ x y -> x`. When defining `odd`, -- we want the second branch and thus instantiate `select` with `λ x y -> y`. -- All these instantiations happen in the `fix2` function itself. -- It is instructive to inline `fix2` and `select` along with the particular selectors. We get: evenAndOdd-inlined : (ℕ -> Bool) × (ℕ -> Bool) evenAndOdd-inlined = defineEven (proj₁ evenAndOdd-inlined) (proj₂ evenAndOdd-inlined) , defineOdd (proj₁ evenAndOdd-inlined) (proj₂ evenAndOdd-inlined) where defineEven : (ℕ -> Bool) -> (ℕ -> Bool) -> ℕ -> Bool defineEven even odd = λ { 0 -> true ; (suc n) -> odd n } defineOdd : (ℕ -> Bool) -> (ℕ -> Bool) -> ℕ -> Bool defineOdd even odd = λ { 0 -> false ; (suc n) -> even n } -- I.e. each definition is parameterized by both functions and this is just the same fixed point -- of a tuple of functions that we've seen before. test : Test (proj₁ evenAndOdd) (proj₂ evenAndOdd) test = refl test-inlined : Test (proj₁ evenAndOdd-inlined) (proj₂ evenAndOdd-inlined) test-inlined = refl module Uncurried where -- We can now do another twist and turn `A × B` into `∀ {R} -> (A -> B -> R) -> R` which finally -- allows us to get rid of tuples: fix2 : {A B R : Set} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> (A -> B -> R) -> R fix2 f k = k (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y)) -- `k` is the continuation that represents a Church-encoded tuple returned as the result. -- But... if `k` is just another way to construct a tuple, how are we not keeping `f` outside of -- recursion? Previously it was `fix f = f (fix f)` or -- fix2 f = f (λ x y -> x) (proj₁ (fix2 f)) (proj₂ (fix2 f)) -- , f (λ x y -> y) (proj₁ (fix2 f)) (proj₂ (fix2 f)) -- i.e. `f` is always an outermost call and recursive calls are somewhere inside. But in the -- definition above `f` is inside the recursive call. How is that? Watch the hands: -- fix2 f k [1] -- = k (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y)) [2] -- ~ k (fix2 f (f (λ x y -> x))) (fix2 f (f (λ x y -> y))) [3] -- ~ k (f (λ x y -> x) (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y))) -- (f (λ x y -> y) (fix2 f (f λ x y -> y)) (fix2 f (f λ x y -> y))) -- [1] unfold the definition of `fix2` -- [2] add parens around selectors for clarity -- [3] unfold the definition of `fix` in both the arguments of `k` -- The result is very similar to the one from the previous section -- (quoted in the snippet several lines above). -- And the test: evenAndOdd : ∀ {R} -> ((ℕ -> Bool) -> (ℕ -> Bool) -> R) -> R evenAndOdd = fix2 $ λ select even odd -> select (λ { 0 -> true ; (suc n) -> odd n }) (λ { 0 -> false ; (suc n) -> even n }) test : Test (evenAndOdd λ x y -> x) (evenAndOdd λ x y -> y) test = refl -- It is straighforward to define a fixed-point combinator for a family of three mutually -- recursive functions: fix3 : {A B C R : Set} -> (∀ {Q} -> (A -> B -> C -> Q) -> A -> B -> C -> Q) -> (A -> B -> C -> R) -> R fix3 f k = k (fix3 f (f λ x y z -> x)) (fix3 f (f λ x y z -> y)) (fix3 f (f λ x y z -> z)) -- The pattern is clear and we can abstract it. module UncurriedGeneral where -- The type signatures of the fixed point combinators from the above -- ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> ∀ {R} -> (A -> B -> R) -> R -- ∀ {A B C} -> (∀ {Q} -> (A -> B -> C -> Q) -> A -> B -> C -> Q) -> ∀ {R} -> (A -> B -> C -> R) -> R -- (`∀ {R}` is moved slightly righter than what it was previously, because it helps readability below) -- can be generalized to -- ∀ {F} -> (∀ {Q} -> F Q -> F Q) -> ∀ {R} -> F R -> R -- with `F` being `λ X -> A -> B -> X` in the first case and `λ X -> A -> B -> C -> X` in the second. -- That's fact (1). -- Now let's look at the definitions. There we see -- fix2 f k = k (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y)) -- fix3 f k = k (fix3 f (f λ x y z -> x)) (fix3 f (f λ x y z -> y)) (fix3 f (f λ x y z -> z)) -- i.e. each recursive call is parameterized by the `f` that never changes, but also by -- the `f` applied to a selector and selectors do change. Thus the -- λ selector -> fix2 f (f selector) -- λ selector -> fix3 f (f selector) -- parts can be abstracted into something like -- λ selector -> fixSome f (f selector) -- where `fixSome` can be both `fix2` and `fix3` depending on what you instantiate it with. -- Then we only need combinators that duplicate the recursive case an appropriate number of times -- (2 for `fix2` and 3 for `fix3`) and supply a selector to each of the duplicates. That's fact (2). -- And those combinators have to be of the same type, so we can pass them to the generic -- fixed-point combinator we're deriving. -- To infer the type of those combinators we start by looking at the types of -- λ selector -> fix2 f (f selector) -- λ selector -> fix3 f (f selector) -- which are -- ∀ {Q} -> (A -> B -> Q) -> Q -- ∀ {Q} -> (A -> B -> C -> Q) -> Q -- correspondingly. I.e. the unifying type of -- λ selector -> fixSome f (f selector) -- is `∀ {Q} -> F Q -> Q`. -- Therefore, the combinators receive something of type `∀ {Q} -> F Q -> Q` and return something of -- type `∀ {R} -> F R -> R` (the same type, just alpha-converted for convenience), because that's -- what `fix2` and `fix3` and thus the generic fixed-point combinator return. -- I.e. the whole unifying type of those combinators is -- (∀ {R} -> (∀ {Q} -> F Q -> Q) -> F R -> R) -- That's fact (3). -- Assembling everything together, we arrive at fixBy : {F : Set -> Set} -> ((∀ {Q} -> F Q -> Q) -> ∀ {R} -> F R -> R) -- by fact (3) -> (∀ {Q} -> F Q -> F Q) -> ∀ {R} -> F R -> R -- by fact (1) fixBy by f = by (fixBy by f ∘ f) -- by fact (2) -- Let's now implement particular `by`s: by2 : {A B : Set} -> (∀ {Q} -> (A -> B -> Q) -> Q) -> {R : Set} -> (A -> B -> R) -> R by2 r k = k (r λ x y -> x) (r λ x y -> y) by3 : {A B C : Set} -> (∀ {Q} -> (A -> B -> C -> Q) -> Q) -> {R : Set} -> (A -> B -> C -> R) -> R by3 r k = k (r λ x y z -> x) (r λ x y z -> y) (r λ x y z -> z) -- and fixed-points combinators from the previous section in terms of what we derived in this one: fix2 : ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> ∀ {R} -> (A -> B -> R) -> R fix2 = fixBy by2 fix3 : ∀ {A B C} -> (∀ {Q} -> (A -> B -> C -> Q) -> A -> B -> C -> Q) -> ∀ {R} -> (A -> B -> C -> R) -> R fix3 = fixBy by3 -- That's it. One `fixBy` to rule them all. The final test: evenAndOdd : ∀ {R} -> ((ℕ -> Bool) -> (ℕ -> Bool) -> R) -> R evenAndOdd = fix2 $ λ select even odd -> select (λ { 0 -> true ; (suc n) -> odd n }) (λ { 0 -> false ; (suc n) -> even n }) test : Test (evenAndOdd λ x y -> x) (evenAndOdd λ x y -> y) test = refl module LazinessStrictness where open UncurriedGeneral using (fixBy) -- So what about strictness? `fixBy` is generic enough to allow both lazy and strict derivatives. -- The version of strict `fix2` looks like this in Haskell: -- apply :: (a -> b) -> a -> b -- apply = ($!) -- fix2 -- :: ((a1 -> b1) -> (a2 -> b2) -> a1 -> b1) -- -> ((a1 -> b1) -> (a2 -> b2) -> a2 -> b2) -- -> ((a1 -> b1) -> (a2 -> b2) -> r) -> r -- fix2 f g k = k -- (\x1 -> f `apply` fix2 f g (\x y -> x) `apply` fix2 f g (\x y -> y) `apply` x1) -- (\x2 -> g `apply` fix2 f g (\x y -> x) `apply` fix2 f g (\x y -> y) `apply` x2) -- This is just like the Z combinator is of type `((a -> b) -> a -> b) -> a -> b`, so that it can -- be used to get fixed points of functions in a strict language where the Y combinator loops forever. -- The version of `fix2` that works in a strict language can be defined as follows: by2' : {A₁ B₁ A₂ B₂ : Set} -> (∀ {Q} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> Q) -> Q) -> {R : Set} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> R) -> R by2' r k = k (λ x₁ -> r λ f₁ f₂ -> f₁ x₁) (λ x₂ -> r λ f₁ f₂ -> f₂ x₂) fix2' : {A₁ B₁ A₂ B₂ : Set} -> (∀ {Q} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> Q) -> (A₁ -> B₁) -> (A₂ -> B₂) -> Q) -> {R : Set} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> R) -> R fix2' = fixBy by2' -- The difference is that in by2 : {A B : Set} -> (∀ {Q} -> (A -> B -> Q) -> Q) -> {R : Set} -> (A -> B -> R) -> R by2 r k = k (r λ x y -> x) (r λ x y -> y) -- both calls to `r` are forced before `k` returns, while in `by2'` additional lambdas that bind -- `x₁` and `x₂` block the recursive calls from being forced, so `k` at some point can decide not to -- recurse anymore (i.e. not to force recursive calls) and return a result instead. module ComputeUncurriedGeneral where -- You might wonder whether we can define a single `fixN` which receives a natural number and -- computes the appropriate fixed-point combinator of mutually recursive functions. E.g. -- fixN 2 ~> fix2 -- fixN 3 ~> fix3 -- So that we do not even need to specify `by2` and `by3` by ourselves. Yes we can do that, see [2] -- (the naming is slightly different there). -- Moreover, we can assign a type to `fixN` in pure System Fω, see [3]. module References where -- [1] "Mutual Recursion in Final Encoding", Andreas Herrmann -- https://aherrmann.github.io/programming/2016/05/28/mutual-recursion-in-final-encoding/ -- [2] https://gist.github.com/effectfully/b3185437da14322c775f4a7691b6fe1f#file-mutualfixgenericcompute-agda -- [3] https://gist.github.com/effectfully/b3185437da14322c775f4a7691b6fe1f#file-mutualfixgenericcomputenondep-agda
40.411268
117
0.55918
c595b2b8a2a89196e67ed2a761fba4904b804cb6
3,623
agda
Agda
Categories/Bicategory/Helpers.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Bicategory/Helpers.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Bicategory/Helpers.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Bicategory.Helpers where -- quite a bit of the code below is taken from Categories.2-Category open import Data.Nat using (_+_) open import Function using (flip) open import Data.Product using (_,_; curry) open import Categories.Category open import Categories.Categories using (Categories) import Categories.Functor open import Categories.Terminal using (OneC; One; unit) open import Categories.Object.Terminal using (module Terminal) open import Categories.Bifunctor hiding (identityˡ; identityʳ; assoc) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_) open import Categories.NaturalIsomorphism open import Categories.NaturalTransformation using (NaturalTransformation) renaming (_≡_ to _≡ⁿ_; id to idⁿ) open import Categories.Product using (Product; assocʳ; πˡ; πʳ) module BicategoryHelperFunctors {o ℓ t e} (Obj : Set o) (_⇒_ : (A B : Obj) → Category ℓ t e) (—⊗— : {A B C : Obj} → Bifunctor (B ⇒ C) (A ⇒ B) (A ⇒ C)) (id : {A : Obj} → Functor {ℓ} {t} {e} OneC (A ⇒ A)) where open Terminal (One {ℓ} {t} {e}) _∘_ : {A B C : Obj} {L R : Category ℓ t e} → Functor L (B ⇒ C) → Functor R (A ⇒ B) → Bifunctor L R (A ⇒ C) _∘_ {A} {B} {C} F G = reduce-× {D₁ = B ⇒ C} {D₂ = A ⇒ B} —⊗— F G -- convenience! module _⇒_ (A B : Obj) = Category (A ⇒ B) open _⇒_ public using () renaming (Obj to _⇒₁_) private module imp⇒ {X Y : Obj} = Category (X ⇒ Y) open imp⇒ public using () renaming (_⇒_ to _⇒₂_; id to id₂; _∘_ to _•_; _≡_ to _≡₂_) id₁ : ∀ {A} → A ⇒₁ A id₁ {A} = Functor.F₀ (id {A}) unit id₁₂ : ∀ {A} → id₁ {A} ⇒₂ id₁ {A} id₁₂ {A} = id₂ {A = id₁ {A}} infixr 9 _∘₁_ _∘₁_ : ∀ {A B C} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C _∘₁_ = curry (Functor.F₀ —⊗—) -- horizontal composition infixr 9 _∘₂_ _∘₂_ : ∀ {A B C} {g g′ : B ⇒₁ C} {f f′ : A ⇒₁ B} (β : g ⇒₂ g′) (α : f ⇒₂ f′) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f′) _∘₂_ = curry (Functor.F₁ —⊗—) -- left whiskering infixl 9 _◃_ _◃_ : ∀ {A B C} {g g′ : B ⇒₁ C} → g ⇒₂ g′ → (f : A ⇒₁ B) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f) β ◃ f = β ∘₂ id₂ -- right whiskering infixr 9 _▹_ _▹_ : ∀ {A B C} (g : B ⇒₁ C) → {f f′ : A ⇒₁ B} → f ⇒₂ f′ → (g ∘₁ f) ⇒₂ (g ∘₁ f′) g ▹ α = id₂ ∘₂ α module Coherence (identityˡ : {A B : Obj} → NaturalIsomorphism (id ∘ idF {C = A ⇒ B}) (πʳ {C = ⊤} {A ⇒ B})) (identityʳ : {A B : Obj} → NaturalIsomorphism (idF {C = A ⇒ B} ∘ id) (πˡ {C = A ⇒ B})) (assoc : {A B C D : Obj} → NaturalIsomorphism (idF ∘ —⊗—) ((—⊗— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)) ) where open Categories.NaturalTransformation.NaturalTransformation -- left/right are inverted between in certain situations! -- private so as to not clash with the ones in Bicategory itself private ρᵤ : {A B : Obj} (f : A ⇒₁ B) → (id₁ ∘₁ f) ⇒₂ f ρᵤ f = η (NaturalIsomorphism.F⇒G identityˡ) (unit , f) λᵤ : {A B : Obj} (f : A ⇒₁ B) → (f ∘₁ id₁) ⇒₂ f λᵤ f = η (NaturalIsomorphism.F⇒G identityʳ) (f , unit) α : {A B C D : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) (h : C ⇒₁ D) → (h ∘₁ (g ∘₁ f)) ⇒₂ ((h ∘₁ g) ∘₁ f) α f g h = η (NaturalIsomorphism.F⇒G assoc) (h , g , f) -- Triangle identity. Look how closely it matches with the one on -- http://ncatlab.org/nlab/show/bicategory Triangle : {A B C : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) → Set e Triangle f g = (g ▹ ρᵤ f) ≡₂ ((λᵤ g ◃ f) • (α f id₁ g)) -- Pentagon identity. Ditto. Pentagon : {A B C D E : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) (h : C ⇒₁ D) (i : D ⇒₁ E) → Set e Pentagon f g h i = ((α g h i ◃ f) • (α f (h ∘₁ g) i)) • (i ▹ α f g h) ≡₂ (α f g (i ∘₁ h) • α (g ∘₁ f) h i)
41.170455
120
0.557825
c51138e15fa1d5375f9b1ff941cf2033b8f10dec
1,022
agda
Agda
test/Fail/Issue970.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue970.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue970.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
data Dec (A : Set) : Set where yes : A → Dec A no : Dec A record ⊤ : Set where constructor tt data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x subst : ∀ {A}(P : A → Set){x y} → x ≡ y → P x → P y subst P refl px = px cong : ∀ {A B}(f : A → B){x y} → x ≡ y → f x ≡ f y cong f refl = refl postulate _≟_ : (n n' : ⊤) → Dec (n ≡ n') record _×_ A B : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ data Maybe : Set where nothing : Maybe data Blah (a : Maybe × ⊤) : Set where blah : {b : Maybe × ⊤} → Blah b → Blah a update : {A : Set} → ⊤ → A → A update n m with n ≟ n update n m | yes p = m update n m | no = m lem-upd : ∀ {A} n (m : A) → update n m ≡ m lem-upd n m with n ≟ n ... | yes p = refl ... | no = refl bug : {x : Maybe × ⊤} → proj₁ x ≡ nothing → Blah x bug ia = blah (bug (subst {⊤} (λ _ → proj₁ {B = ⊤} (update tt (nothing , tt)) ≡ nothing) refl (cong proj₁ (lem-upd _ _))))
21.744681
72
0.476517
2379e1251c1d1e1be575ac976b768729a68a606a
1,951
agda
Agda
Data/Nat/Order.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/Nat/Order.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/Nat/Order.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe --postfix-projections #-} module Data.Nat.Order where open import Prelude open import Data.Nat.Properties open import Relation.Binary <-trans : Transitive _<_ <-trans {zero} {suc y} {suc z} x<y y<z = tt <-trans {suc x} {suc y} {suc z} x<y y<z = <-trans {x} {y} {z} x<y y<z <-asym : Asymmetric _<_ <-asym {suc x} {suc y} x<y y<x = <-asym {x} {y} x<y y<x <-irrefl : Irreflexive _<_ <-irrefl {suc x} = <-irrefl {x = x} <-conn : Connected _<_ <-conn {zero} {zero} x≮y y≮x = refl <-conn {zero} {suc y} x≮y y≮x = ⊥-elim (x≮y tt) <-conn {suc x} {zero} x≮y y≮x = ⊥-elim (y≮x tt) <-conn {suc x} {suc y} x≮y y≮x = cong suc (<-conn x≮y y≮x) ≤-antisym : Antisymmetric _≤_ ≤-antisym {zero} {zero} x≤y y≤x = refl ≤-antisym {suc x} {suc y} x≤y y≤x = cong suc (≤-antisym x≤y y≤x) ℕ-≰⇒> : ∀ x y → ¬ (x ≤ y) → y < x ℕ-≰⇒> x y x≰y with y <ᴮ x ... | false = x≰y tt ... | true = tt ℕ-≮⇒≥ : ∀ x y → ¬ (x < y) → y ≤ x ℕ-≮⇒≥ x y x≮y with x <ᴮ y ... | false = tt ... | true = x≮y tt totalOrder : TotalOrder ℕ ℓzero ℓzero totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder._<_ = _<_ totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder.trans {x} {y} {z} = <-trans {x} {y} {z} totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder.irrefl {x} = <-irrefl {x = x} totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.conn = <-conn totalOrder .TotalOrder.partialOrder .PartialOrder.preorder .Preorder._≤_ = _≤_ totalOrder .TotalOrder.partialOrder .PartialOrder.preorder .Preorder.refl {x} = ≤-refl x totalOrder .TotalOrder.partialOrder .PartialOrder.preorder .Preorder.trans {x} {y} {z} = ≤-trans x y z totalOrder .TotalOrder.partialOrder .PartialOrder.antisym = ≤-antisym totalOrder .TotalOrder._<?_ x y = T? (x <ᴮ y) totalOrder .TotalOrder.≰⇒> {x} {y} = ℕ-≰⇒> x y totalOrder .TotalOrder.≮⇒≥ {x} {y} = ℕ-≮⇒≥ x y
38.254902
132
0.651461
4a64e279e64489e5f4ab1c771659db3bde235eaf
1,883
agda
Agda
src/Control/Bug-Loop.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
src/Control/Bug-Loop.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
src/Control/Bug-Loop.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns #-} {-# OPTIONS -v tc.constr.findInScope:15 #-} -- One-place functors (decorations) on Set module Control.Bug-Loop where open import Function using (id; _∘_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Control.Functor open IsFunctor {{...}} record IsDecoration (D : Set → Set) : Set₁ where field traverse : ∀ {F} {{ functor : IsFunctor F }} {A B} → (A → F B) → D A → F (D B) traverse-id : ∀ {A} → traverse {F = λ A → A} {A = A} id ≡ id traverse-∘ : ∀ {F G} {{ funcF : IsFunctor F}} {{ funcG : IsFunctor G}} → ∀ {A B C} {f : A → F B} {g : B → G C} → traverse ((map g) ∘ f) ≡ map {{funcF}} (traverse g) ∘ traverse f isFunctor : IsFunctor D isFunctor = record { ops = record { map = traverse } ; laws = record { map-id = traverse-id ; map-∘ = traverse-∘ } } open IsDecoration idIsDecoration : IsDecoration (λ A → A) traverse idIsDecoration f = f traverse-id idIsDecoration = refl traverse-∘ idIsDecoration = refl compIsDecoration : ∀ {D E} → IsDecoration D → IsDecoration E → IsDecoration (λ A → D (E A)) traverse (compIsDecoration d e) f = traverse d (traverse e f) traverse-id (compIsDecoration d e) = begin traverse d (traverse e id) ≡⟨ cong (traverse d) (traverse-id e) ⟩ traverse d id ≡⟨ traverse-id d ⟩ id ∎ traverse-∘ (compIsDecoration d e) {{funcF = funcF}} {{funcG = funcG}} {f = f} {g = g} = begin traverse (compIsDecoration d e) (map g ∘ f) ≡⟨⟩ traverse d (traverse e (map g ∘ f)) ≡⟨ cong (traverse d) (traverse-∘ e) ⟩ traverse d (map (traverse e g) ∘ traverse e f) ≡⟨ traverse-∘ d ⟩ map (traverse d (traverse e g)) ∘ traverse d (traverse e f) ≡⟨⟩ map (traverse (compIsDecoration d e) g) ∘ traverse (compIsDecoration d e) f ∎
28.104478
93
0.589485
4a1badb9162f5d08724331487633a56c6540c3e7
158
agda
Agda
test/Succeed/Issue204.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue204.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue204.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --universe-polymorphism #-} module Issue204 where open import Issue204.Dependency postulate ℓ : Level r : R ℓ d : D ℓ open R r open M d
11.285714
39
0.677215
0e954ccfad75428640cd94d3664ec3b4d36314c5
3,062
agda
Agda
agda-stdlib-0.9/src/Data/Star/Decoration.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Star/Decoration.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Star/Decoration.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Decorated star-lists ------------------------------------------------------------------------ module Data.Star.Decoration where open import Data.Star open import Relation.Binary open import Function open import Data.Unit open import Level -- A predicate on relation "edges" (think of the relation as a graph). EdgePred : {I : Set} → Rel I zero → Set₁ EdgePred T = ∀ {i j} → T i j → Set data NonEmptyEdgePred {I : Set} (T : Rel I zero) (P : EdgePred T) : Set where nonEmptyEdgePred : ∀ {i j} {x : T i j} (p : P x) → NonEmptyEdgePred T P -- Decorating an edge with more information. data DecoratedWith {I : Set} {T : Rel I zero} (P : EdgePred T) : Rel (NonEmpty (Star T)) zero where ↦ : ∀ {i j k} {x : T i j} {xs : Star T j k} (p : P x) → DecoratedWith P (nonEmpty (x ◅ xs)) (nonEmpty xs) edge : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j} → DecoratedWith {T = T} P i j → NonEmpty T edge (↦ {x = x} p) = nonEmpty x decoration : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j} → (d : DecoratedWith {T = T} P i j) → P (NonEmpty.proof (edge d)) decoration (↦ p) = p -- Star-lists decorated with extra information. All P xs means that -- all edges in xs satisfy P. All : ∀ {I} {T : Rel I zero} → EdgePred T → EdgePred (Star T) All P {j = j} xs = Star (DecoratedWith P) (nonEmpty xs) (nonEmpty {y = j} ε) -- We can map over decorated vectors. gmapAll : ∀ {I} {T : Rel I zero} {P : EdgePred T} {J} {U : Rel J zero} {Q : EdgePred U} {i j} {xs : Star T i j} (f : I → J) (g : T =[ f ]⇒ U) → (∀ {i j} {x : T i j} → P x → Q (g x)) → All P xs → All {T = U} Q (gmap f g xs) gmapAll f g h ε = ε gmapAll f g h (↦ x ◅ xs) = ↦ (h x) ◅ gmapAll f g h xs -- Since we don't automatically have gmap id id xs ≡ xs it is easier -- to implement mapAll in terms of map than in terms of gmapAll. mapAll : ∀ {I} {T : Rel I zero} {P Q : EdgePred T} {i j} {xs : Star T i j} → (∀ {i j} {x : T i j} → P x → Q x) → All P xs → All Q xs mapAll {P = P} {Q} f ps = map F ps where F : DecoratedWith P ⇒ DecoratedWith Q F (↦ x) = ↦ (f x) -- We can decorate star-lists with universally true predicates. decorate : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j} → (∀ {i j} (x : T i j) → P x) → (xs : Star T i j) → All P xs decorate f ε = ε decorate f (x ◅ xs) = ↦ (f x) ◅ decorate f xs -- We can append Alls. Unfortunately _◅◅_ does not quite work. infixr 5 _◅◅◅_ _▻▻▻_ _◅◅◅_ : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j k} {xs : Star T i j} {ys : Star T j k} → All P xs → All P ys → All P (xs ◅◅ ys) ε ◅◅◅ ys = ys (↦ x ◅ xs) ◅◅◅ ys = ↦ x ◅ xs ◅◅◅ ys _▻▻▻_ : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j k} {xs : Star T j k} {ys : Star T i j} → All P xs → All P ys → All P (xs ▻▻ ys) _▻▻▻_ = flip _◅◅◅_
33.282609
76
0.500327
189861b0384510ca3c80c7c7d6c82af5a8e9d0e8
3,080
agda
Agda
src/Data/ByteString.agda
semenov-vladyslav/bytes-agda
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
[ "MIT" ]
null
null
null
src/Data/ByteString.agda
semenov-vladyslav/bytes-agda
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
[ "MIT" ]
null
null
null
src/Data/ByteString.agda
semenov-vladyslav/bytes-agda
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module Data.ByteString where import Data.ByteString.Primitive as Prim import Data.ByteString.Utf8 as Utf8 open import Data.Word8 using (Word8) open import Data.Nat using (ℕ) open import Data.Colist using (Colist) open import Data.List using (List) open import Data.String using (String) open import Data.Bool using (Bool; true; false) open import Data.Product using (_×_) open import Data.Tuple using (Pair→×) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) data ByteStringKind : Set where Lazy Strict : ByteStringKind ByteString : ByteStringKind → Set ByteString Lazy = Prim.ByteStringLazy ByteString Strict = Prim.ByteStringStrict empty : ∀ {k} → ByteString k empty {Lazy} = Prim.emptyLazy empty {Strict} = Prim.emptyStrict null : ∀ {k} → ByteString k → Bool null {Lazy} = Prim.nullLazy null {Strict} = Prim.nullStrict length : ∀ {k} → ByteString k → ℕ length {Lazy} bs = Prim.int64Toℕ (Prim.lengthLazy bs) length {Strict} bs = Prim.IntToℕ (Prim.lengthStrict bs) unsafeHead : ∀ {k} → ByteString k → Word8 unsafeHead {Lazy} = Prim.headLazy unsafeHead {Strict} = Prim.headStrict unsafeTail : ∀ {k} → ByteString k → ByteString k unsafeTail {Lazy} = Prim.tailLazy unsafeTail {Strict} = Prim.tailStrict unsafeIndex : ∀ {k} → ByteString k → ℕ → Word8 unsafeIndex {Lazy} bs ix = Prim.indexLazy bs (Prim.ℕToInt64 ix) unsafeIndex {Strict} bs ix = Prim.indexStrict bs (Prim.ℕToInt ix) unsafeSplitAt : ∀ {k} → ℕ → ByteString k → (ByteString k) × (ByteString k) unsafeSplitAt {Lazy} ix bs = Pair→× (Prim.splitAtLazy (Prim.ℕToInt64 ix) bs) unsafeSplitAt {Strict} ix bs = Pair→× (Prim.splitAtStrict (Prim.ℕToInt ix) bs) ByteStringRep : ByteStringKind → Set ByteStringRep Lazy = Colist Word8 ByteStringRep Strict = List Word8 unpack : ∀ {k} → ByteString k → ByteStringRep k unpack {Lazy} = Prim.Colist←Lazy unpack {Strict} = Prim.List←Strict pack : ∀ {k} → ByteStringRep k → ByteString k pack {Lazy} = Prim.Colist→Lazy pack {Strict} = Prim.List→Strict infix 4 _≟_ _≟_ : ∀ {k} → Decidable {A = ByteString k} _≡_ _≟_ {Lazy} s₁ s₂ with Prim.lazy≟lazy s₁ s₂ ... | true = yes trustMe ... | false = no whatever where postulate whatever : _ _≟_ {Strict} s₁ s₂ with Prim.strict≟strict s₁ s₂ ... | true = yes trustMe ... | false = no whatever where postulate whatever : _ -- behind _==_ is the same idea as in Data.String infix 4 _==_ _==_ : ∀ {k} → ByteString k → ByteString k → Bool _==_ {k} s₁ s₂ = ⌊ s₁ ≟ s₂ ⌋ _++_ : ByteString Lazy → ByteString Lazy → ByteString Lazy _++_ = Prim.appendLazy fromChunks : List (ByteString Strict) → ByteString Lazy fromChunks = Prim.fromChunks toChunks : ByteString Lazy → List (ByteString Strict) toChunks = Prim.toChunks toLazy : ByteString Strict → ByteString Lazy toLazy = Prim.toLazy toStrict : ByteString Lazy → ByteString Strict toStrict = Prim.toStrict
29.333333
78
0.727922
d096e15e2f67090b5493f6f6ffec49dc2f8823d9
4,710
agda
Agda
Streams/StreamEnc.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/StreamEnc.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/StreamEnc.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
module StreamEnc where open import Data.Unit hiding (_≤_) open import Data.Nat open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning ≤-step : ∀{k n} → k ≤ n → k ≤ suc n ≤-step z≤n = z≤n ≤-step (s≤s p) = s≤s (≤-step p) pred-≤ : ∀{k n} → suc k ≤ n → k ≤ n pred-≤ (s≤s p) = ≤-step p Str : Set → Set Str A = ℕ → A hd : ∀{A} → Str A → A hd s = s 0 tl : ∀{A} → Str A → Str A tl s n = s (suc n) _ω : ∀{A} → A → Str A (a ω) n = a _∷_ : ∀{A} → A → Str A → Str A (a ∷ s) 0 = a (a ∷ s) (suc n) = s n module Mealy (A B : Set) where M : Set → Set M X = A → B × X M₁ : {X Y : Set} → (X → Y) → M X → M Y M₁ f g a = let (b , x) = g a in (b , f x) 𝓜 : Set 𝓜 = Str A → Str B d : 𝓜 → M 𝓜 d f a = (f (a ω) 0 , (λ s n → f (a ∷ s) (suc n))) corec : ∀{X} → (c : X → M X) → X → 𝓜 corec c x s zero = proj₁ (c x (hd s)) corec c x s (suc n) = corec c (proj₂ (c x (hd s))) (tl s) n compute' : ∀{X} (c : X → M X) (x : X) → ∀ a → d (corec c x) a ≡ M₁ (corec c) (c x) a compute' c x a = begin d (corec c x) a ≡⟨ refl ⟩ ((corec c x) (a ω) 0 , λ s n → (corec c x) (a ∷ s) (suc n)) ≡⟨ refl ⟩ (proj₁ (c x (hd (a ω))) , λ s n → corec c (proj₂ (c x (hd (a ∷ s)))) (tl (a ∷ s)) n) ≡⟨ refl ⟩ (proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) (λ n → s n) n) ≡⟨ refl ⟩ (proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) s n) ≡⟨ refl ⟩ (proj₁ (c x a) , λ s → corec c (proj₂ (c x a)) s) ≡⟨ refl ⟩ (proj₁ (c x a) , corec c (proj₂ (c x a))) ≡⟨ refl ⟩ M₁ (corec c) (c x) a ∎ compute : ∀{X} (c : X → M X) (x : X) → d (corec c x) ≡ M₁ (corec c) (c x) compute c x = begin d (corec c x) ≡⟨ refl ⟩ (λ a → d (corec c x) a) ≡⟨ refl ⟩ -- Same as in compute' (λ a → M₁ (corec c) (c x) a) ≡⟨ refl ⟩ M₁ (corec c) (c x) ∎ module MealyT (A B : Set) (a₀ : A) where M : Set → Set M X = ⊤ ⊎ (A → B × X) M₁ : {X Y : Set} → (X → Y) → M X → M Y M₁ f (inj₁ x) = inj₁ x M₁ f (inj₂ g) = inj₂ (λ a → let (b , x) = g a in (b , f x)) Mono : (Str A → Str (⊤ ⊎ B)) → Set -- Mono f = ∀ n → (∃ λ s → ∃ λ b → f s n ≡ inj₂ b) → -- ∀ s → ∀ k → k ≤ n → (∃ λ b → f s k ≡ inj₂ b) Mono f = ∀ n → ∀ s₁ b₁ → f s₁ n ≡ inj₂ b₁ → ∀ s → ∀ k → k ≤ n → (∃ λ b → f s k ≡ inj₂ b) 𝓜₁ : Set 𝓜₁ = Str A → Str (⊤ ⊎ B) 𝓜 : Set 𝓜 = Σ[ f ∈ 𝓜₁ ] (Mono f) d : 𝓜 → M 𝓜 d (f , m) = F (f (a₀ ω) 0) refl where F : (u : ⊤ ⊎ B) → (f (a₀ ω) 0) ≡ u → M 𝓜 F (inj₁ tt) _ = inj₁ tt F (inj₂ b) p = inj₂ (λ a → let (b' , p') = m 0 (a₀ ω) b p (a ω) 0 z≤n f' = λ s n → f (a ∷ s) (suc n) m' : Mono f' m' = λ {n s₁ b₁ p₁ s k k≤n → m (suc n) (a ∷ s₁) b₁ p₁ (a ∷ s) (suc k) (s≤s k≤n)} in b' , f' , m') corec₁ : ∀{X} → (c : X → M X) → X → 𝓜₁ corec₁ c x s n with c x corec₁ c x s n | inj₁ tt = inj₁ tt corec₁ c x s zero | inj₂ g = inj₂ (proj₁ (g (hd s))) corec₁ c x s (suc n) | inj₂ g = corec₁ c (proj₂ (g (hd s))) (tl s) n corec₂ : ∀{X} → (c : X → M X) (x : X) → Mono (corec₁ c x) corec₂ c x n s₁ b₁ p₁ s k k≤n with c x corec₂ c x n s₁ b₁ () s k k≤n | inj₁ tt corec₂ c x n s₁ b₁ p₁ s zero k≤n | inj₂ g = (proj₁ (g (hd s)) , refl) corec₂ c x n s₁ b₁ p₁ s (suc k) sk≤n | inj₂ g = {!!} -- corec₂ c -- (proj₂ (g (hd s))) -- n -- (tl s) -- (proj₁ (g (hd s))) -- {!!} -- (tl s) k (pred-≤ sk≤n) -- compute' : ∀{X} (c : X → M X) (x : X) → -- ∀ a → d (corec c x) a ≡ M₁ (corec c) (c x) a -- compute' c x a = -- begin -- d (corec c x) a -- ≡⟨ refl ⟩ -- ((corec c x) (a ω) 0 , λ s n → (corec c x) (a ∷ s) (suc n)) -- ≡⟨ refl ⟩ -- (proj₁ (c x (hd (a ω))) -- , λ s n → corec c (proj₂ (c x (hd (a ∷ s)))) (tl (a ∷ s)) n) -- ≡⟨ refl ⟩ -- (proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) (λ n → s n) n) -- ≡⟨ refl ⟩ -- (proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) s n) -- ≡⟨ refl ⟩ -- (proj₁ (c x a) , λ s → corec c (proj₂ (c x a)) s) -- ≡⟨ refl ⟩ -- (proj₁ (c x a) , corec c (proj₂ (c x a))) -- ≡⟨ refl ⟩ -- M₁ (corec c) (c x) a -- ∎ -- compute : ∀{X} (c : X → M X) (x : X) → -- d (corec c x) ≡ M₁ (corec c) (c x) -- compute c x = -- begin -- d (corec c x) -- ≡⟨ refl ⟩ -- (λ a → d (corec c x) a) -- ≡⟨ refl ⟩ -- Same as in compute' -- (λ a → M₁ (corec c) (c x) a) -- ≡⟨ refl ⟩ -- M₁ (corec c) (c x) -- ∎
26.460674
73
0.395329
d0f3fcada2a1b2eb4693ccf9aeb5c9e83bdf41fe
418
agda
Agda
test/Fail/Issue1114.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1114.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1114.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --experimental-irrelevance #-} -- Andreas, 2015-05-18 Irrelevant module parameters -- should not be resurrected in module body. postulate A : Set module M .(a : A) where bad : (..(_ : A) -> Set) -> Set bad f = f a -- SHOULD FAIL: variable a is declared irrelevant, -- so it cannot be used here. -- This fails of course: -- fail : .(a : A) -> (..(_ : A) -> Set) -> Set -- fail a f = f a
22
54
0.590909
c5801b130b04597d30f7f70bf1e73144cdd7e66b
95
agda
Agda
test/Fail/Issue1209-3.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1209-3.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1209-3.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
-- This combination should not be allowed: {-# OPTIONS --guardedness --sized-types --safe #-}
23.75
50
0.684211
20e8a7f9eba112b5bfc7bc9aeb7f1a919879c47e
624
agda
Agda
Base/Denotation/Notation.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Base/Denotation/Notation.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Base/Denotation/Notation.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Overloading ⟦_⟧ notation -- -- This module defines a general mechanism for overloading the -- ⟦_⟧ notation, using Agda’s instance arguments. ------------------------------------------------------------------------ module Base.Denotation.Notation where open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
24
72
0.516026