hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
4a1d5e8a5493ac3bf95714a071fe33bcdf42fa99
178
agda
Agda
Cubical/HITs/ListedFiniteSet.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/ListedFiniteSet.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/ListedFiniteSet.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.ListedFiniteSet where open import Cubical.HITs.ListedFiniteSet.Base public open import Cubical.HITs.ListedFiniteSet.Properties public
29.666667
58
0.820225
dc67728d6b964f20dfaf3496797d011f2e64312f
17,049
agda
Agda
src-cbpv/GradedCBPVSup.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
19
2018-05-16T08:08:51.000Z
2021-04-27T19:10:49.000Z
src-cbpv/GradedCBPVSup.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
null
null
null
src-cbpv/GradedCBPVSup.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
2
2018-11-13T16:01:46.000Z
2021-02-25T20:39:03.000Z
{-# OPTIONS --rewriting #-} -- Normalization by Evaluation for Graded Call-By-Push-Value. -- With supremum of effects. module GradedCBPVSup where -- Imports from the Agda standard library. open import Library hiding (_×̇_) open import Data.Nat using (ℕ) open import Data.Fin using (Fin) pattern here! = here refl -- We postulate a set of generic value types. -- There are no operations defined on these types, thus, -- they play the type of (universal) type variables. postulate Base : Set variable o : Base -- Variants (Σ) (and records (Π), resp.) can in principle have any number of -- constructors (fields, resp.), including infinitely one. -- In general, the constructor (field, resp.) names are given by a set I. -- However, I : Set would make syntax already a big type, living in Set₁. -- To keep it in Set₀, we only consider variants (records) with finitely -- many constructors (fields), thus, I : ℕ. -- Branching over I is then realized as functions out of El I, where -- El I = { i | i < I} = Fin I. set = ℕ El = Fin -- Let I range over arities (constructor/field sets) and i over -- constructor/field names. variable I : set i : El I -- We postulate an effect algebra which is an additively written -- monoid with supremum. postulate Eff : Set ∅ : Eff _+_ : (e e' : Eff) → Eff _∨_ : (e e' : Eff) → Eff sup : {I : set} (es : El I → Eff) → Eff variable e e' e₁ e₂ e₃ : Eff es : El I → Eff postulate +-unitˡ : ∅ + e ≡ e +-unitʳ : e + ∅ ≡ e +-assoc : (e₁ + e₂) + e₃ ≡ e₁ + (e₂ + e₃) +-supʳ : sup es + e ≡ sup λ i → es i + e sup-k : sup {I = I} (λ _ → e) ≡ e {-# REWRITE +-unitˡ +-unitʳ +-assoc +-supʳ sup-k #-} -- The types of CBPV are classified into value types P : Ty⁺ which we -- refer to as positive types, and computation types N : Ty⁻ which we -- refer to as negative types. mutual -- Value types data Ty⁺ : Set where base : (o : Base) → Ty⁺ -- Base type. _×̇_ : (P₁ P₂ : Ty⁺) → Ty⁺ -- Finite product (tensor). Σ̇ : (I : set) (Ps : El I → Ty⁺) → Ty⁺ -- Variant (sum). [_] : (e : Eff) (N : Ty⁻) → Ty⁺ -- Thunk (U). -- Remembers effects. -- Computation types data Ty⁻ : Set where ◇̇ : (P : Ty⁺) → Ty⁻ -- Comp (F). Π̇ : (I : set) (Ns : El I → Ty⁻) → Ty⁻ -- Record (lazy product). _⇒̇_ : (P : Ty⁺) (N : Ty⁻) → Ty⁻ -- Function type. -- In CBPV, a variable stands for a value. -- Thus, environments only contain values, -- and typing contexts only value types. -- We use introduce syntax in an intrinsically well-typed way -- with variables being de Bruijn indices into the typing context. -- Thus, contexts are just lists of types. Cxt = List Ty⁺ variable Γ Δ Φ : Cxt J : Cxt → Set P P₁ P₂ P' P′ Q : Ty⁺ N N₁ N₂ N' N′ : Ty⁻ Ps : El I → Ty⁺ Ns : El I → Ty⁻ -- Generic values module _ (Var : Ty⁺ → Cxt → Set) (Comp : Eff → Ty⁻ → Cxt → Set) where -- Right non-invertible data Val' : (P : Ty⁺) (Γ : Cxt) → Set where var : (x : Var P Γ) → Val' P Γ pair : (v₁ : Val' P₁ Γ) (v₂ : Val' P₂ Γ) → Val' (P₁ ×̇ P₂) Γ inj : (i : _) (v : Val' (Ps i) Γ) → Val' (Σ̇ I Ps) Γ thunk : (t : Comp e N Γ) → Val' ([ e ] N) Γ -- Terms mutual Val = Val' _∈_ Comp data Comp : (e : Eff) (N : Ty⁻) (Γ : Cxt) → Set where -- introductions ret : (v : Val P Γ) → Comp ∅ (◇̇ P) Γ rec : (t : ∀ i → Comp (es i) (Ns i) Γ) → Comp (sup es) (Π̇ I Ns) Γ abs : (t : Comp e N (P ∷ Γ)) → Comp e (P ⇒̇ N) Γ -- positive eliminations split : (v : Val (P₁ ×̇ P₂) Γ) (t : Comp e N (P₂ ∷ P₁ ∷ Γ)) → Comp e N Γ case : (v : Val (Σ̇ I Ps) Γ) (t : ∀ i → Comp (es i) N (Ps i ∷ Γ)) → Comp (sup es) N Γ bind : (u : Comp e₁ (◇̇ P) Γ) (t : Comp e₂ N (P ∷ Γ)) → Comp (e₁ + e₂) N Γ -- cut letv : (v : Val P Γ) (t : Comp e N (P ∷ Γ)) → Comp e N Γ -- negative eliminations force : (v : Val ([ e ] N) Γ) → Comp e N Γ prj : (i : _) (t : Comp e (Π̇ I Ns) Γ) → Comp e (Ns i) Γ app : (t : Comp e (P ⇒̇ N) Γ) (v : Val P Γ) → Comp e N Γ -- Normal forms ------------------------------------------------------------------------ -- Normal values only reference variables of base type NVar : (P : Ty⁺) (Γ : Cxt) → Set NVar (base o) Γ = base o ∈ Γ NVar _ _ = ⊥ -- Negative neutrals module _ (Val : Ty⁺ → Cxt → Set) where -- Right non-invertible -- Propagates the effect from the head variable, a thunk. data Ne' (e : Eff) : (N : Ty⁻) (Γ : Cxt) → Set where force : (x : [ e ] N ∈ Γ) → Ne' e N Γ prj : (i : El I) (t : Ne' e (Π̇ I Ns) Γ) → Ne' e (Ns i) Γ app : (t : Ne' e (P ⇒̇ N) Γ) (v : Val P Γ) → Ne' e N Γ mutual NVal = Val' NVar Nf Ne = Ne' NVal -- Cover monad (generalized case tree). -- Collects effects from all bind nodes. data ◇ (J : Cxt → Set) : (e : Eff) (Γ : Cxt) → Set where return : (j : J Γ) → ◇ J ∅ Γ bind : (u : Ne e₁ (◇̇ P) Γ) (t : ◇ J e₂ (P ∷ Γ)) → ◇ J (e₁ + e₂) Γ case : (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → ◇ J (es i) (Ps i ∷ Γ)) → ◇ J (sup es) Γ split : (x : (P₁ ×̇ P₂) ∈ Γ) (t : ◇ J e (P₂ ∷ P₁ ∷ Γ)) → ◇ J e Γ ⟨_⟩ : ∀ e J Γ → Set ⟨ e ⟩ J Γ = ◇ J e Γ -- syntax ◇ J e = ⟨ e ⟩ J -- Right invertible. data Nf : (e : Eff) (N : Ty⁻) (Γ : Cxt) → Set where -- ne is only needed for negative base types -- ne : let N = ◇̇ (base o) in (n : ◇ (Ne e₁ N) e₂ Γ) → Nf (e₂ + e₁) N Γ -- UNUSED ret : (v : ◇ (NVal P) e Γ) → Nf e (◇̇ P) Γ -- Invoke RFoc rec : ∀{es} (ts : ∀ i → Nf (es i) (Ns i) Γ) → Nf (sup es) (Π̇ I Ns) Γ abs : (t : Nf e N (P ∷ Γ)) → Nf e (P ⇒̇ N) Γ -- NComp is obsolete thanks to the Cover monad ◇. data NComp : (e : Eff) (Q : Ty⁺) (Γ : Cxt) → Set where -- Base cases ret : (v : NVal Q Γ) → NComp ∅ Q Γ -- Invoke RFoc ne : (n : Ne e (◇̇ Q) Γ) → NComp e Q Γ -- Finish with LFoc -- e.g. app (force f) x -- Use lemma LFoc bind : (u : Ne e₁ (◇̇ P) Γ) (t : NComp e₂ Q (P ∷ Γ)) → NComp (e₁ + e₂) Q Γ -- Left invertible split : (x : (P₁ ×̇ P₂) ∈ Γ) (t : NComp e Q (P₂ ∷ P₁ ∷ Γ)) → NComp e Q Γ case : (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → NComp (es i) Q (Ps i ∷ Γ)) → NComp (sup es) Q Γ -- Context-indexed sets ------------------------------------------------------------------------ PSet = (Γ : Cxt) → Set NSet = (e : Eff) (Γ : Cxt) → Set variable C A A' A₁ A₂ : PSet B B' B₁ B₂ : NSet F G As : (i : El I) → PSet Bs Bs' Bs₁ Bs₂ : (i : El I) → NSet -- Constructions on PSet 1̂ : PSet 1̂ Γ = ⊤ _×̂_ : (A₁ A₂ : PSet) → PSet (A₁ ×̂ A₂) Γ = A₁ Γ × A₂ Γ Σ̂ : (I : set) (As : El I → PSet) → PSet (Σ̂ I F) Γ = ∃ λ i → F i Γ _⇒̂_ : (A₁ A₂ : PSet) → PSet (A₁ ⇒̂ A₂) Γ = A₁ Γ → A₂ Γ Π̂ : (I : set) (As : El I → PSet) → PSet (Π̂ I As) Γ = ∀ i → As i Γ ⟪_⟫ : (P : Ty⁺) (A : PSet) → PSet ⟪ P ⟫ A Γ = A (P ∷ Γ) -- Constructions on NSet _⇒ⁿ_ : (A : PSet) (B : NSet) → NSet (A ⇒ⁿ B) e Γ = A Γ → B e Γ Πⁿ : (I : set) (Bs : El I → NSet) → NSet (Πⁿ I Bs) e Γ = ∀ i → Bs i e Γ -- Morphisms between ISets _→̇_ : (A₁ A₂ : PSet) → Set A₁ →̇ A₂ = ∀{Γ} → A₁ Γ → A₂ Γ _→̈_ : (B₁ B₂ : NSet) → Set B₁ →̈ B₂ = ∀{e Γ} → B₁ e Γ → B₂ e Γ ⟨_⊙_⟩→̇_ : (P Q R : PSet) → Set ⟨ P ⊙ Q ⟩→̇ R = ∀{Γ} → P Γ → Q Γ → R Γ ⟨_⊙_⊙_⟩→̇_ : (P Q R S : PSet) → Set ⟨ P ⊙ Q ⊙ R ⟩→̇ S = ∀{Γ} → P Γ → Q Γ → R Γ → S Γ Map : (F : (PSet) → PSet) → Set₁ Map F = ∀{A B : PSet} (f : A →̇ B) → F A →̇ F B Π-map : (∀ i {e} → Bs i e →̇ Bs' i e) → ∀{e} → Πⁿ I Bs e →̇ Πⁿ I Bs' e Π-map f r i = f i (r i) -- -- Introductions and eliminations for ×̂ -- p̂air : ⟨ A ⊙ B ⟩→̇ (A ×̂ B) -- p̂air a b = λ -- Monotonicity ------------------------------------------------------------------------ -- Monotonization □ is a monoidal comonad □ : (A : PSet) → PSet □ A Γ = ∀{Δ} (τ : Γ ⊆ Δ) → A Δ extract : □ A →̇ A extract a = a ⊆-refl duplicate : □ A →̇ □ (□ A) duplicate a τ τ′ = a (⊆-trans τ τ′) □-map : Map □ □-map f a τ = f (a τ) extend : (□ A →̇ C) → □ A →̇ □ C extend f = □-map f ∘ duplicate □-weak : □ A →̇ ⟪ P ⟫ (□ A) □-weak a τ = a (⊆-trans (_ ∷ʳ ⊆-refl) τ) □-weak' : □ A →̇ □ (⟪ P ⟫ A) □-weak' a τ = a (_ ∷ʳ τ) □-sum : Σ̂ I (□ ∘ F) →̇ □ (Σ̂ I F) □-sum (i , a) τ = i , a τ -- Monoidality: □-unit : 1̂ →̇ □ 1̂ □-unit = _ □-pair : ⟨ □ A₁ ⊙ □ A₂ ⟩→̇ □ (A₁ ×̂ A₂) □-pair a b τ = (a τ , b τ) -- -- Strong functoriality Map! : (F : PSet → PSet) → Set₁ Map! F = ∀{A C} → ⟨ □ (λ Γ → A Γ → C Γ) ⊙ F A ⟩→̇ F C -- Monotonicity Mon : (A : PSet) → Set Mon A = A →̇ □ A monVar : Mon (P ∈_) monVar x τ = ⊆-lookup τ x -- Positive ISets are monotone □-mon : Mon (□ A) □-mon = duplicate 1-mon : Mon 1̂ 1-mon = □-unit ×-mon : Mon A₁ → Mon A₂ → Mon (A₁ ×̂ A₂) ×-mon mA mB (a , b) = □-pair (mA a) (mB b) Σ-mon : ((i : El I) → Mon (F i)) → Mon (Σ̂ I F) Σ-mon m (i , a) = □-sum (i , m i a) □-intro : Mon A → (A →̇ C) → (A →̇ □ C) □-intro mA f = □-map f ∘ mA -- Cover monad: a strong graded monad ------------------------------------------------------------------------ -- join needs effect algebra laws: +-unitˡ +-assoc +-supʳ. join : ⟨ e₁ ⟩ (⟨ e₂ ⟩ A) →̇ ⟨ e₁ + e₂ ⟩ A join (return c) = c join (bind u c) = bind u (join c) join (case x t) = case x (join ∘ t) join (split x c) = split x (join c) ◇-map : Map ⟨ e ⟩ ◇-map f (return j) = return (f j) ◇-map f (bind u a) = bind u (◇-map f a) ◇-map f (case x t) = case x (λ i → ◇-map f (t i)) ◇-map f (split x a) = split x (◇-map f a) ◇-map! : Map! ⟨ e ⟩ ◇-map! f (return j) = return (extract f j) ◇-map! f (bind u a) = bind u (◇-map! (□-weak f) a) ◇-map! f (case x t) = case x (λ i → ◇-map! (□-weak f) (t i)) ◇-map! f (split x a) = split x (◇-map! (□-weak (□-weak f)) a) ◇-bind : A →̇ ⟨ e₂ ⟩ C → ⟨ e₁ ⟩ A →̇ ⟨ e₁ + e₂ ⟩ C ◇-bind f = join ∘ ◇-map f ◇-record : (⟨ e ⟩ ∘ Πⁿ I Bs) →̈ Πⁿ I (λ i → ⟨ e ⟩ ∘ Bs i) ◇-record c i = ◇-map (_$ i) c ◇-fun : Mon A → (⟨ e ⟩ ∘ A ⇒ⁿ B) →̈ (A ⇒ⁿ (⟨ e ⟩ ∘ B)) ◇-fun mA c a = ◇-map! (λ τ f → f (mA a τ)) c -- Monoidal functoriality ◇-pair : ⟨ □ (⟨ e₁ ⟩ A₁) ⊙ ⟨ e₂ ⟩ (□ A₂) ⟩→̇ ⟨ e₂ + e₁ ⟩ (A₁ ×̂ A₂) ◇-pair ca = join ∘ ◇-map! λ τ b → ◇-map! (λ τ′ a → a , b τ′) (ca τ) _⋉_ = ◇-pair □◇-pair' : ⟨ □ (⟨ e₁ ⟩ A₁) ⊙ □ (⟨ e₂ ⟩ (□ A₂)) ⟩→̇ □ (⟨ e₂ + e₁ ⟩ (A₁ ×̂ A₂)) □◇-pair' ca cb τ = ◇-pair (□-mon ca τ) (cb τ) □◇-pair : Mon A₂ → ⟨ □ (⟨ e₁ ⟩ A₁) ⊙ □ (⟨ e₂ ⟩ A₂) ⟩→̇ □ (⟨ e₂ + e₁ ⟩ (A₁ ×̂ A₂)) □◇-pair mB ca cb τ = join $ ◇-map! (λ τ₁ b → ◇-map! (λ τ₂ a → a , mB b τ₂) (ca (⊆-trans τ τ₁))) (cb τ) ◇□-pair' : ⟨ ⟨ e₁ ⟩ (□ A₁) ⊙ □ (⟨ e₂ ⟩ (□ A₂)) ⟩→̇ ⟨ e₁ + e₂ ⟩ (□ (A₁ ×̂ A₂)) ◇□-pair' ca cb = join (◇-map! (λ τ a → ◇-map! (λ τ₁ b {_} τ₂ → a (⊆-trans τ₁ τ₂) , b τ₂) (cb τ)) ca) -- Without the abstraction over {_}, there is an incomprehensible error. ◇□-pair : ⟨ □ (⟨ e₁ ⟩ (□ A₁)) ⊙ ⟨ e₂ ⟩ (□ A₂) ⟩→̇ ⟨ e₂ + e₁ ⟩ (□ (A₁ ×̂ A₂)) ◇□-pair ca cb = join (◇-map! (λ τ b → ◇-map! (λ τ₁ a {_} τ₂ → a τ₂ , b (⊆-trans τ₁ τ₂)) (ca τ)) cb) -- Without the abstraction over {_}, there is an incomprehensible error. -- Runnability Run : (B : NSet) → Set Run B = ∀{e₁ e₂} → ⟨ e₁ ⟩ (B e₂) →̇ B (e₁ + e₂) -- Negative ISets are runnable ◇-run : Run (◇ A) ◇-run = join Π-run : (∀ i → Run (Bs i)) → Run (Πⁿ I Bs) Π-run f c i = f i (◇-map (_$ i) c) -- Π-run f x i = Π-map {!λ j → f j!} {!!} {!!} -- Π-run f = {!Π-map f!} ∘ ◇-record ⇒-run : Mon A → Run B → Run (A ⇒ⁿ B) ⇒-run {B = B} mA rB f = rB ∘ ◇-fun {B = B} mA f -- Bind for the ◇ monad ◇-elim : Run B → (A →̇ B e₂) → ⟨ e₁ ⟩ A →̇ B (e₁ + e₂) ◇-elim rB f = rB ∘ ◇-map f ◇-elim! : Run B → ⟨ □ (A ⇒̂ B e₂) ⊙ ⟨ e₁ ⟩ A ⟩→̇ B (e₁ + e₂) ◇-elim! rB f = rB ∘ ◇-map! f ◇-elim-□ : Run B → ⟨ □ (A ⇒̂ B e₂) ⊙ □ (⟨ e₁ ⟩ A) ⟩→̇ □ (B (e₁ + e₂)) ◇-elim-□ {B = B} rB f c = □-map (uncurry (◇-elim! {B = B} rB)) (□-pair (□-mon f) c) ◇-elim-□-alt : Run B → ⟨ □ (A ⇒̂ B e₂) ⊙ □ (⟨ e₁ ⟩ A) ⟩→̇ □ (B (e₁ + e₂)) ◇-elim-□-alt {B = B} rB f c τ = ◇-elim! {B = B} rB (□-mon f τ) (c τ) bind! : Mon C → Run B → (C →̇ ⟨ e₁ ⟩ A) → (C →̇ (A ⇒̂ B e₂)) → C →̇ B (e₁ + e₂) bind! {B = B} mC rB f k γ = ◇-elim! {B = B} rB (λ τ a → k (mC γ τ) a) (f γ) -- Type interpretation ------------------------------------------------------------------------ mutual ⟦_⟧⁺ : Ty⁺ → PSet ⟦ base o ⟧⁺ = base o ∈_ ⟦ P₁ ×̇ P₂ ⟧⁺ = ⟦ P₁ ⟧⁺ ×̂ ⟦ P₂ ⟧⁺ ⟦ Σ̇ I P ⟧⁺ = Σ̂ I λ i → ⟦ P i ⟧⁺ ⟦ [ e ] N ⟧⁺ = □ (⟦ N ⟧⁻ e) ⟦_⟧⁻ : Ty⁻ → NSet ⟦ ◇̇ P ⟧⁻ = ◇ ⟦ P ⟧⁺ ⟦ Π̇ I N ⟧⁻ = Πⁿ I λ i → ⟦ N i ⟧⁻ ⟦ P ⇒̇ N ⟧⁻ = ⟦ P ⟧⁺ ⇒ⁿ ⟦ N ⟧⁻ ⟦_⟧ᶜ : Cxt → PSet ⟦_⟧ᶜ Γ Δ = All (λ P → ⟦ P ⟧⁺ Δ) Γ -- ⟦ [] ⟧ᶜ = 1̂ -- ⟦ P ∷ Γ ⟧ᶜ = ⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺ -- Positive types are monotone. mon⁺ : (P : Ty⁺) → Mon ⟦ P ⟧⁺ mon⁺ (base o) = monVar mon⁺ (P₁ ×̇ P₂) = ×-mon (mon⁺ P₁) (mon⁺ P₂) mon⁺ (Σ̇ I P) = Σ-mon (mon⁺ ∘ P) mon⁺ ([ e ] N) = □-mon monᶜ : (Γ : Cxt) → Mon ⟦ Γ ⟧ᶜ monᶜ Γ γ τ = All.map (λ {P} v → mon⁺ P v τ) γ -- Negative types are runnable. run⁻ : (N : Ty⁻) → Run ⟦ N ⟧⁻ run⁻ (◇̇ P) = ◇-run run⁻ (Π̇ I N) = Π-run (run⁻ ∘ N) run⁻ (P ⇒̇ N) = ⇒-run {B = ⟦ N ⟧⁻} (mon⁺ P) (run⁻ N) -- monᶜ [] = 1-mon -- monᶜ (P ∷ Γ) = ×-mon (monᶜ Γ) (mon⁺ P) -- Interpretation ------------------------------------------------------------------------ mutual ⦅_⦆⁺ : Val P Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⟧⁺ ⦅ var x ⦆⁺ = λ γ → All.lookup γ x ⦅ pair v₁ v₂ ⦆⁺ = < ⦅ v₁ ⦆⁺ , ⦅ v₂ ⦆⁺ > ⦅ inj i v ⦆⁺ = (i ,_) ∘ ⦅ v ⦆⁺ ⦅ thunk t ⦆⁺ = □-intro (monᶜ _) ⦅ t ⦆⁻ λ⦅_⦆⁻ : Comp e N (P ∷ Γ) → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⇒̇ N ⟧⁻ e λ⦅ t ⦆⁻ γ a = ⦅ t ⦆⁻ (a ∷ γ) ⦅_⦆⁻ : Comp e N Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ N ⟧⁻ e ⦅ ret v ⦆⁻ = return ∘ ⦅ v ⦆⁺ ⦅ rec t ⦆⁻ = flip λ i → {! ⦅ t i ⦆⁻ !} -- need effect subsumption es i ≤ sup es ⦅ abs t ⦆⁻ = λ⦅ t ⦆⁻ ⦅ split v t ⦆⁻ γ = let (a₁ , a₂) = ⦅ v ⦆⁺ γ in ⦅ t ⦆⁻ (a₂ ∷ (a₁ ∷ γ)) ⦅ case v t ⦆⁻ γ = let (i , a) = ⦅ v ⦆⁺ γ in {! ⦅ t i ⦆⁻ (a ∷ γ) !} -- eff sub ⦅ bind {Γ = Γ} {N = N} t t₁ ⦆⁻ = bind! {B = ⟦ N ⟧⁻} (monᶜ Γ) (run⁻ N) ⦅ t ⦆⁻ λ⦅ t₁ ⦆⁻ ⦅ force v ⦆⁻ = extract ∘ ⦅ v ⦆⁺ ⦅ prj i t ⦆⁻ = (_$ i) ∘ ⦅ t ⦆⁻ ⦅ app t v ⦆⁻ = ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺ ⦅ letv v t ⦆⁻ = λ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺ -- Reflection and reification mutual fresh□◇□ : ∀ P {Γ} → ⟪ P ⟫ (□ (⟨ ∅ ⟩ (□ ⟦ P ⟧⁺))) Γ fresh□◇□ P = reflect⁺□ P ∘ monVar here! fresh□ : ∀ P {Γ} → ⟪ P ⟫ (□ (⟨ ∅ ⟩ ⟦ P ⟧⁺)) Γ fresh□ P = ◇-map extract ∘ reflect⁺□ P ∘ monVar here! fresh□ P = reflect⁺ P ∘ monVar here! fresh : ∀ {P Γ} → ⟪ P ⟫ (⟨ ∅ ⟩ ⟦ P ⟧⁺) Γ fresh {P} = ◇-map extract (reflect⁺□ P here!) fresh {P} = reflect⁺ P here! fresh◇ : ∀ {P Γ} → ⟪ P ⟫ (⟨ ∅ ⟩ (□ ⟦ P ⟧⁺)) Γ fresh◇ {P} = reflect⁺□ P here! fresh◇ {P} = ◇-map (mon⁺ P) fresh -- saves us use of Mon P in freshᶜ reflect⁺□ : (P : Ty⁺) → (P ∈_) →̇ (⟨ ∅ ⟩ (□ ⟦ P ⟧⁺)) reflect⁺□ (base o) x = return (monVar x) reflect⁺□ (P₁ ×̇ P₂) x = split x (◇□-pair (reflect⁺□ P₁ ∘ monVar (there here!)) fresh◇) reflect⁺□ (Σ̇ I Ps) x = case x λ i → ◇-map (□-map (i ,_)) fresh◇ reflect⁺□ ([ e ] N) x = return (□-mon (reflect⁻ N ∘ force ∘ monVar x)) reflect⁺ : (P : Ty⁺) → (P ∈_) →̇ (⟨ ∅ ⟩ ⟦ P ⟧⁺) reflect⁺ (base o) x = return x reflect⁺ (P₁ ×̇ P₂) x = split x (□-weak (fresh□ P₁) ⋉ fresh◇) reflect⁺ (Σ̇ I Ps) x = case x λ i → ◇-map (i ,_) fresh reflect⁺ ([ e ] N) x = return λ τ → reflect⁻ N (force (monVar x τ)) reflect⁻ : (N : Ty⁻) → Ne e N →̇ ⟦ N ⟧⁻ e reflect⁻ (◇̇ P) u = bind u fresh reflect⁻ (Π̇ I Ns) u = λ i → reflect⁻ (Ns i) (prj i u) reflect⁻ (P ⇒̇ N) u = λ a → reflect⁻ N (app u (reify⁺ P a)) reify⁺ : (P : Ty⁺) → ⟦ P ⟧⁺ →̇ NVal P reify⁺ (base o) = var reify⁺ (P₁ ×̇ P₂) (a₁ , a₂) = pair (reify⁺ P₁ a₁) (reify⁺ P₂ a₂) reify⁺ (Σ̇ I Ps) (i , a ) = inj i (reify⁺ (Ps i) a) reify⁺ ([ e ] N) a = thunk (reify⁻ N a) reify⁻ : (N : Ty⁻) → □ (⟦ N ⟧⁻ e) →̇ Nf e N reify⁻ (◇̇ P) f = ret (◇-map (reify⁺ P) (extract f)) reify⁻ {e = e} (Π̇ I Ns) f = rec {es = λ i → e} λ i → reify⁻ (Ns i) (□-map (_$ i) f) reify⁻ (P ⇒̇ N) f = abs $ reify⁻ N $ ◇-elim-□ {B = ⟦ N ⟧⁻} (run⁻ N) (□-weak f) $ fresh□ P ext : (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ⟦ P ∷ Γ ⟧ᶜ ext (γ , a) = a ∷ γ ◇-ext : ⟨ e ⟩ (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ⟨ e ⟩ ⟦ P ∷ Γ ⟧ᶜ ◇-ext = ◇-map ext -- Without the use of ◇-mon! freshᶜ : (Γ : Cxt) → □ (⟨ ∅ ⟩ ⟦ Γ ⟧ᶜ) Γ freshᶜ [] = λ τ → return [] freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (fresh□◇□ P) freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair (mon⁺ P) (□-weak (freshᶜ Γ)) (fresh□ P) freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (◇-map (mon⁺ P) ∘ (fresh□ P)) freshᶜ (P ∷ Γ) = ◇-ext ∘ λ τ → (□-weak (□-mon (freshᶜ Γ)) τ) ⋉ ◇-map (mon⁺ P) (fresh□ P τ) norm : Comp e N →̇ Nf e N norm {N = N} {Γ = Γ} t = reify⁻ N $ □-map (run⁻ N ∘ ◇-map ⦅ t ⦆⁻) $ freshᶜ Γ norm {N = N} {Γ = Γ} t = reify⁻ N $ run⁻ N ∘ ◇-map ⦅ t ⦆⁻ ∘ freshᶜ Γ -- -} -- -} -- -} -- -} -- -} -- -}
29.858144
100
0.436565
c50ffa5cd957bd24dae5e6d58f6dbd39d08d4d60
568
agda
Agda
archive/agda-3/src/Test/Test5.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Test/Test5.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Test/Test5.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Everything module Test.Test5 {𝔵} {𝔛 : Ø 𝔵} {𝔞} {𝔒₁ : 𝔛 → Ø 𝔞} {𝔟} {𝔒₂ : 𝔛 → Ø 𝔟} {ℓ} {ℓ̇} (_↦_ : ∀ {x} → 𝔒₂ x → 𝔒₂ x → Ø ℓ̇) ⦃ _ : [ExtensibleType] _↦_ ⦄ ⦃ _ : Smap!.class (Arrow 𝔒₁ 𝔒₂) (Extension 𝔒₂) ⦄ ⦃ _ : Surjextensionality!.class (Arrow 𝔒₁ 𝔒₂) (Pointwise _↦_) (Extension 𝔒₂) (Pointwise _↦_) ⦄ -- ⦃ _ : [𝓢urjectivity] (Arrow 𝔒₁ 𝔒₂) (Extension $ ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_) ⦄ where test[∙] : ∀ {x y} → ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_ x → Arrow 𝔒₁ 𝔒₂ x y → ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_ y test[∙] P f = f ◃ P
33.411765
117
0.575704
4a22e3e65870ba8d94c94a58f73c60777a14a112
8,493
agda
Agda
src/Tactic/Nat/Simpl/Lemmas.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Nat/Simpl/Lemmas.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Nat/Simpl/Lemmas.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Nat.Simpl.Lemmas where open import Prelude open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Container.Bag open import Tactic.Nat.Auto open import Prelude.Nat.Properties open import Container.List.Properties open import Tactic.Nat.Auto.Lemmas product1-sound : ∀ xs → product1 xs ≡ productR xs product1-sound [] = refl product1-sound (x ∷ xs) rewrite sym (cong (λ x → foldl _*_ x xs) (mul-one-r x)) | foldl-assoc _*_ mul-assoc x 1 xs | foldl-foldr _*_ 1 mul-assoc add-zero-r mul-one-r xs = refl map-eq : ∀ {c b} {A : Set c} {B : Set b} (f g : A → B) → (∀ x → f x ≡ g x) → ∀ xs → map f xs ≡ map g xs map-eq f g f=g [] = refl map-eq f g f=g (x ∷ xs) rewrite f=g x | map-eq f g f=g xs = refl fst-*** : ∀ {a b} {A₁ A₂ : Set a} {B₁ B₂ : Set b} (f : A₁ → B₁) (g : A₂ → B₂) (p : A₁ × A₂) → fst ((f *** g) p) ≡ f (fst p) fst-*** f g (x , y) = refl snd-*** : ∀ {a b} {A₁ A₂ : Set a} {B₁ B₂ : Set b} (f : A₁ → B₁) (g : A₂ → B₂) (p : A₁ × A₂) → snd ((f *** g) p) ≡ g (snd p) snd-*** f g (x , y) = refl eta : ∀ {a b} {A : Set a} {B : Set b} (p : A × B) → p ≡ (fst p , snd p) eta (x , y) = refl private shuffle₁ : (a b c : Nat) → a + (b + c) ≡ b + (a + c) shuffle₁ a b c = auto module _ {Atom : Set} {{_ : Ord Atom}} where NFEqS : NF Atom × NF Atom → Env Atom → Set NFEqS (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧ns ρ ≡ ⟦ nf₂ ⟧ns ρ NFEq : NF Atom × NF Atom → Env Atom → Set NFEq (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧n ρ ≡ ⟦ nf₂ ⟧n ρ ts-sound : ∀ x (ρ : Env Atom) → ⟦ x ⟧ts ρ ≡ ⟦ x ⟧t ρ ts-sound (0 , x) ρ = mul-zero-r (product1 (map ρ x)) ts-sound (1 , x) ρ = product1-sound (map ρ x) ⟨≡⟩ʳ add-zero-r _ ts-sound (suc (suc i) , x) ρ rewrite sym (product1-sound (map ρ x)) = auto private et : Env Atom → Nat × Tm Atom → Nat et = flip ⟦_⟧t ets : Env Atom → Nat × Tm Atom → Nat ets = flip ⟦_⟧ts plus-nf : Nat → Env Atom → NF Atom → Nat plus-nf = λ a ρ xs → a + ⟦ xs ⟧n ρ ns-sound : ∀ nf (ρ : Env Atom) → ⟦ nf ⟧ns ρ ≡ ⟦ nf ⟧n ρ ns-sound [] ρ = refl ns-sound (x ∷ nf) ρ rewrite sym (foldl-map-fusion _+_ (ets ρ) (ets ρ x) nf) | ts-sound x ρ | map-eq (ets ρ) (et ρ) (flip ts-sound ρ) nf | sym (foldl-foldr _+_ 0 add-assoc (λ _ → refl) add-zero-r (map (et ρ) nf)) | sym (foldl-assoc _+_ add-assoc (et ρ x) 0 (map (et ρ) nf)) | add-zero-r (et ρ x) = refl private lem-sound : ∀ a b ρ f g (xs : NF Atom × NF Atom) → a + ⟦ fst ((f *** g) xs) ⟧n ρ ≡ b + ⟦ snd ((f *** g) xs) ⟧n ρ → a + ⟦ f (fst xs) ⟧n ρ ≡ b + ⟦ g (snd xs) ⟧n ρ lem-sound a b ρ f g xs H = cong (plus-nf a ρ) (fst-*** f g xs) ʳ⟨≡⟩ H ⟨≡⟩ cong (plus-nf b ρ) (snd-*** f g xs) cancel-sound′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ fst (cancel nf₁ nf₂) ⟧n ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧n ρ → a + ⟦ nf₁ ⟧n ρ ≡ b + ⟦ nf₂ ⟧n ρ cancel-sound′ a b [] [] ρ H = H cancel-sound′ a b [] (x ∷ nf₂) ρ H = H cancel-sound′ a b (x ∷ nf₁) [] ρ H = H cancel-sound′ a b ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) ρ H with cancel-sound′ (a + et ρ (i , x)) b nf₁ ((j , y) ∷ nf₂) ρ | compare x y ... | ih | less _ = add-assoc a _ _ ⟨≡⟩ ih (add-assoc a _ _ ʳ⟨≡⟩ lem-sound a b ρ (_∷_ (i , x)) id (cancel nf₁ ((j , y) ∷ nf₂)) H) ... | _ | greater _ = cancel-sound′ a (b + et ρ (j , y)) ((i , x) ∷ nf₁) nf₂ ρ (lem-sound a b ρ id (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂) H ⟨≡⟩ add-assoc b _ _) ⟨≡⟩ʳ add-assoc b _ _ cancel-sound′ a b ((i , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | _ | equal refl with compare i j cancel-sound′ a b ((i , x) ∷ nf₁) ((.(suc k + i) , .x) ∷ nf₂) ρ H | _ | equal refl | less (diff! k) = shuffle₁ a (et ρ (i , x)) _ ⟨≡⟩ cong (et ρ (i , x) +_) (cancel-sound′ a (b + et ρ (suc k , x)) nf₁ nf₂ ρ (lem-sound a b ρ id (_∷_ (suc k , x)) (cancel nf₁ nf₂) H ⟨≡⟩ add-assoc b _ _)) ⟨≡⟩ auto cancel-sound′ a b ((.(suc k + j) , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | _ | equal refl | greater (diff! k) = sym (shuffle₁ b (et ρ (j , x)) _ ⟨≡⟩ cong (et ρ (j , x) +_) (sym (cancel-sound′ (a + et ρ (suc k , x)) b nf₁ nf₂ ρ (add-assoc a _ _ ʳ⟨≡⟩ lem-sound a b ρ (_∷_ (suc k , x)) id (cancel nf₁ nf₂) H))) ⟨≡⟩ auto) cancel-sound′ a b ((i , x) ∷ nf₁) ((.i , .x) ∷ nf₂) ρ H | _ | equal refl | equal refl = shuffle₁ a (et ρ (i , x)) _ ⟨≡⟩ cong (et ρ (i , x) +_) (cancel-sound′ a b nf₁ nf₂ ρ H) ⟨≡⟩ shuffle₁ (et ρ (i , x)) b _ cancel-sound-s′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ fst (cancel nf₁ nf₂) ⟧ns ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧ns ρ → a + ⟦ nf₁ ⟧ns ρ ≡ b + ⟦ nf₂ ⟧ns ρ cancel-sound-s′ a b nf₁ nf₂ ρ eq = (a +_) $≡ ns-sound nf₁ ρ ⟨≡⟩ cancel-sound′ a b nf₁ nf₂ ρ ((a +_) $≡ ns-sound (fst (cancel nf₁ nf₂)) ρ ʳ⟨≡⟩ eq ⟨≡⟩ (b +_) $≡ ns-sound (snd (cancel nf₁ nf₂)) ρ) ⟨≡⟩ʳ (b +_) $≡ ns-sound nf₂ ρ cancel-sound : ∀ nf₁ nf₂ ρ → NFEqS (cancel nf₁ nf₂) ρ → NFEq (nf₁ , nf₂) ρ cancel-sound nf₁ nf₂ ρ H rewrite cong (λ p → NFEqS p ρ) (eta (cancel nf₁ nf₂)) = (cancel-sound′ 0 0 nf₁ nf₂ ρ (ns-sound (fst (cancel nf₁ nf₂)) ρ ʳ⟨≡⟩ H ⟨≡⟩ ns-sound (snd (cancel nf₁ nf₂)) ρ)) private prod : Env Atom → List Atom → Nat prod ρ x = productR (map ρ x) private lem-complete : ∀ a b ρ f g (xs : NF Atom × NF Atom) → a + ⟦ f (fst xs) ⟧n ρ ≡ b + ⟦ g (snd xs) ⟧n ρ → a + ⟦ fst ((f *** g) xs) ⟧n ρ ≡ b + ⟦ snd ((f *** g) xs) ⟧n ρ lem-complete a b ρ f g xs H = cong (plus-nf a ρ) (fst-*** f g xs) ⟨≡⟩ H ⟨≡⟩ʳ cong (plus-nf b ρ) (snd-*** f g xs) cancel-complete′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ nf₁ ⟧n ρ ≡ b + ⟦ nf₂ ⟧n ρ → a + ⟦ fst (cancel nf₁ nf₂) ⟧n ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧n ρ cancel-complete′ a b [] [] ρ H = H cancel-complete′ a b [] (x ∷ nf₂) ρ H = H cancel-complete′ a b (x ∷ nf₁) [] ρ H = H cancel-complete′ a b ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) ρ H with cancel-complete′ (a + et ρ (i , x)) b nf₁ ((j , y) ∷ nf₂) ρ | compare x y ... | ih | less lt = lem-complete a b ρ (_∷_ (i , x)) id (cancel nf₁ ((j , y) ∷ nf₂)) (add-assoc a _ _ ⟨≡⟩ ih (add-assoc a _ _ ʳ⟨≡⟩ H)) ... | _ | greater _ = lem-complete a b ρ id (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂) (cancel-complete′ a (b + et ρ (j , y)) ((i , x) ∷ nf₁) nf₂ ρ (H ⟨≡⟩ add-assoc b _ _) ⟨≡⟩ʳ add-assoc b _ _) cancel-complete′ a b ((i , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | _ | equal refl with compare i j cancel-complete′ a b ((i , x) ∷ nf₁) ((.(suc (k + i)) , .x) ∷ nf₂) ρ H | _ | equal refl | less (diff! k) = lem-complete a b ρ id (_∷_ (suc k , x)) (cancel nf₁ nf₂) (cancel-complete′ a (b + suc k * prod ρ x) nf₁ nf₂ ρ (add-inj₂ (i * prod ρ x) _ _ (shuffle₁ (i * prod ρ x) a _ ⟨≡⟩ H ⟨≡⟩ auto)) ⟨≡⟩ʳ add-assoc b _ _) cancel-complete′ a b ((.(suc (k + j)) , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | _ | equal refl | greater (diff! k) = lem-complete a b ρ (_∷_ (suc k , x)) id (cancel nf₁ nf₂) (add-assoc a _ _ ⟨≡⟩ cancel-complete′ (a + suc k * prod ρ x) b nf₁ nf₂ ρ (add-inj₂ (j * prod ρ x) _ _ (sym (shuffle₁ (j * prod ρ x) b _ ⟨≡⟩ʳ auto ʳ⟨≡⟩ H)))) cancel-complete′ a b ((i , x) ∷ nf₁) ((.i , .x) ∷ nf₂) ρ H | _ | equal refl | equal refl = cancel-complete′ a b nf₁ nf₂ ρ (add-inj₂ (i * prod ρ x) _ _ (shuffle₁ a (i * prod ρ x) _ ʳ⟨≡⟩ H ⟨≡⟩ shuffle₁ b (i * prod ρ x) _)) cancel-complete-s′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ nf₁ ⟧ns ρ ≡ b + ⟦ nf₂ ⟧ns ρ → a + ⟦ fst (cancel nf₁ nf₂) ⟧ns ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧ns ρ cancel-complete-s′ a b nf₁ nf₂ ρ eq = (a +_) $≡ ns-sound (fst (cancel nf₁ nf₂)) ρ ⟨≡⟩ cancel-complete′ a b nf₁ nf₂ ρ ((a +_) $≡ ns-sound nf₁ ρ ʳ⟨≡⟩ eq ⟨≡⟩ (b +_) $≡ ns-sound nf₂ ρ) ⟨≡⟩ʳ (b +_) $≡ ns-sound (snd (cancel nf₁ nf₂)) ρ cancel-complete : ∀ nf₁ nf₂ ρ → NFEq (nf₁ , nf₂) ρ → NFEqS (cancel nf₁ nf₂) ρ cancel-complete nf₁ nf₂ ρ H rewrite cong (λ p → NFEqS p ρ) (eta (cancel nf₁ nf₂)) = ns-sound (fst (cancel nf₁ nf₂)) ρ ⟨≡⟩ cancel-complete′ 0 0 nf₁ nf₂ ρ H ⟨≡⟩ʳ ns-sound (snd (cancel nf₁ nf₂)) ρ
42.044554
111
0.477334
238280a4272d90264c6c87906d6c70529f5026d1
3,587
agda
Agda
LibraBFT/Abstract/System.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/System.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/System.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Abstract.Types -- This module defines and abstract view if a system, encompassing only a predicate for Records, -- another for Votes and a proof that, if a Vote is included in a QC in the system, then and -- equivalent Vote is also in the system. It further defines a notion "Complete", which states that -- if an honest vote is included in a QC in the system, then there is a RecordChain up to the block -- that the QC extends, such that all Records in the RecordChain are also in the system. The latter -- property is used to extend correctness conditions on RecordChains to correctness conditions that -- require only a short suffix of a RecordChain. module LibraBFT.Abstract.System (𝓔 : EpochConfig) (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (𝓥 : VoteEvidence 𝓔 UID) where open import LibraBFT.Abstract.Records 𝓔 UID _≟UID_ 𝓥 open import LibraBFT.Abstract.Records.Extends 𝓔 UID _≟UID_ 𝓥 open import LibraBFT.Abstract.RecordChain 𝓔 UID _≟UID_ 𝓥 -- Since the invariants we want to specify (votes-once and locked-round-rule), -- are predicates over a /System State/, we must factor out the necessary -- functionality. -- -- An /AbsSystemState/ supports a few different notions; namely, record AbsSystemState (ℓ : Level) : Set (ℓ+1 ℓ) where field -- A notion of membership of records InSys : Record → Set ℓ -- A predicate about whether votes have been transfered -- amongst participants HasBeenSent : Vote → Set ℓ -- Such that, the votes that belong to honest participants inside a -- QC that exists in the system must have been sent ∈QC⇒HasBeenSent : ∀{q α} → InSys (Q q) → Meta-Honest-Member 𝓔 α → (va : α ∈QC q) → HasBeenSent (∈QC-Vote q va) module All-InSys-props {ℓ}(InSys : Record → Set ℓ) where All-InSys : ∀ {o r} → RecordChainFrom o r → Set ℓ All-InSys rc = {r' : Record} → r' ∈RC-simple rc → InSys r' All-InSys⇒last-InSys : ∀ {r} → {rc : RecordChain r} → All-InSys rc → InSys r All-InSys⇒last-InSys {rc = empty} a∈s = a∈s here All-InSys⇒last-InSys {r = r'} {step {r' = .r'} rc ext} a∈s = a∈s here All-InSys-unstep : ∀ {o r r' rc ext } → All-InSys (step {o} {r} {r'} rc ext) → All-InSys rc All-InSys-unstep {ext = ext} a∈s r'∈RC = a∈s (there ext r'∈RC) All-InSys-step : ∀ {r r' }{rc : RecordChain r} → All-InSys rc → (ext : r ← r') → InSys r' → All-InSys (step rc ext) All-InSys-step hyp ext r here = r All-InSys-step hyp ext r (there .ext r∈rc) = hyp r∈rc -- We say an /AbsSystemState/ is /Complete/ when we can construct a record chain -- from any vote by an honest participant. This essentially says that whenever -- an honest participant casts a vote, they have checked that the voted-for -- block is in a RecordChain whose records are all in the system. Complete : ∀{ℓ} → AbsSystemState ℓ → Set ℓ Complete sys = ∀{α q } → Meta-Honest-Member 𝓔 α → (va : α ∈QC q) → InSys (Q q) → ∃[ b ] (B b ← Q q × Σ (RecordChain (B b)) (λ rc → All-InSys rc)) where open AbsSystemState sys open All-InSys-props InSys
44.8375
111
0.638974
209f81d43eec8e1809188b41a32aec02dec25fd7
317
agda
Agda
test/interaction/Highlighting.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/interaction/Highlighting.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/interaction/Highlighting.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Highlighting where Set-one : Set₂ Set-one = Set₁ record R (A : Set) : Set-one where constructor con field X : Set F : Set → Set → Set F A B = B field P : F A X → Set Q : F A X → Set Q = Q postulate P : _ open import Highlighting.M data D (A : Set) : Set-one where d : let X = D in X A
12.68
34
0.589905
cb70662292bf43ed1bd6237d7088a8530c954fff
339
agda
Agda
test/Compiler/simple/Issue561/Core.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue561/Core.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue561/Core.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue561.Core where postulate Char : Set {-# BUILTIN CHAR Char #-} open import Agda.Builtin.IO public postulate return : ∀ {a} {A : Set a} → A → IO A {-# COMPILE GHC return = \_ _ -> return #-} {-# COMPILE JS return = function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-}
22.6
105
0.610619
23e22ecd162430b4a8d86a87828a884c47480f20
21,739
agda
Agda
Cubical/HITs/Truncation/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Truncation.Properties where open import Cubical.Data.NatMinusOne open import Cubical.HITs.Truncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv open import Cubical.Modalities.Modality open Modality open import Cubical.Data.Empty.Base as ⊥ renaming (rec to ⊥rec ; elim to ⊥elim) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Data.Unit open import Cubical.HITs.Sn.Base open import Cubical.HITs.S1 open import Cubical.HITs.Susp open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.PropositionalTruncation as PropTrunc renaming (∥_∥ to ∥_∥₁; ∣_∣ to ∣_∣₁; squash to squash₁) using () open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₃; ∣_∣₃; squash₃) open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₄; ∣_∣₄; squash₄) private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' sphereFill : (n : ℕ) (f : S₊ n → A) → Type _ sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S₊ n) → top ≡ f x) isSphereFilled : ℕ → Type ℓ → Type ℓ isSphereFilled n A = (f : S₊ n → A) → sphereFill n f isSphereFilled∥∥ : {n : ℕ} → isSphereFilled n (HubAndSpoke A n) isSphereFilled∥∥ f = (hub f) , (spoke f) isSphereFilled→isOfHLevel : (n : ℕ) → isSphereFilled n A → isOfHLevel (suc n) A isSphereFilled→isOfHLevel {A = A} zero h x y = sym (snd (h f) true) ∙ snd (h f) false where f : Bool → A f true = x f false = y isSphereFilled→isOfHLevel {A = A} (suc zero) h x y = J (λ y q → (p : x ≡ y) → q ≡ p) (helper x) where helper : (x : A) (p : x ≡ x) → refl ≡ p helper x p i j = hcomp (λ k → λ { (i = i0) → h S¹→A .snd base k ; (i = i1) → p j ; (j = i0) → h S¹→A .snd base (i ∨ k) ; (j = i1) → h S¹→A .snd base (i ∨ k)}) (h S¹→A .snd (loop j) i) where S¹→A : S¹ → A S¹→A base = x S¹→A (loop i) = p i isSphereFilled→isOfHLevel {A = A} (suc (suc n)) h x y = isSphereFilled→isOfHLevel (suc n) (helper h x y) where helper : {n : ℕ} → isSphereFilled (suc (suc n)) A → (x y : A) → isSphereFilled (suc n) (x ≡ y) helper {n = n} h x y f = sym (snd (h f') north) ∙ (snd (h f') south) , r where f' : Susp (S₊ (suc n)) → A f' north = x f' south = y f' (merid u i) = f u i r : (s : S₊ (suc n)) → sym (snd (h f') north) ∙ (snd (h f') south) ≡ f s r s i j = hcomp (λ k → λ { (i = i1) → snd (h f') (merid s j) k ; (j = i0) → snd (h f') north (k ∨ (~ i)) ; (j = i1) → snd (h f') south k }) (snd (h f') north (~ i ∧ ~ j)) isOfHLevel→isSphereFilled : (n : ℕ) → isOfHLevel (suc n) A → isSphereFilled n A isOfHLevel→isSphereFilled zero h f = (f true) , (λ _ → h _ _) isOfHLevel→isSphereFilled {A = A} (suc zero) h f = (f base) , toPropElim (λ _ → h _ _) refl isOfHLevel→isSphereFilled {A = A} (suc (suc n)) h = helper λ x y → isOfHLevel→isSphereFilled (suc n) (h x y) where helper : {n : ℕ} → ((x y : A) → isSphereFilled (suc n) (x ≡ y)) → isSphereFilled (suc (suc n)) A helper {n = n} h f = f north , r where r : (x : S₊ (suc (suc n))) → f north ≡ f x r north = refl r south = h (f north) (f south) (λ x → cong f (merid x)) .fst r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north ; (i = i1) → h (f north) (f south) (λ x → cong f (merid x)) .snd x (~ k) j ; (j = i0) → f north ; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j))) isOfHLevelTrunc : (n : ℕ) → isOfHLevel n (∥ A ∥ n) isOfHLevelTrunc zero = isOfHLevelUnit* 0 isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevel n isSphereFilled∥∥ rec : {n : HLevel} {B : Type ℓ'} → isOfHLevel (suc n) B → (A → B) → hLevelTrunc (suc n) A → B rec h g ∣ x ∣ = g x rec {n = n} {B = B} hB g (hub f) = isOfHLevel→isSphereFilled n hB (λ x → rec hB g (f x)) .fst rec {n = n} hB g (spoke f x i) = isOfHLevel→isSphereFilled n hB (λ x → rec hB g (f x)) .snd x i elim : {n : ℕ} {B : ∥ A ∥ (suc n) → Type ℓ'} (hB : (x : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x)) (g : (a : A) → B (∣ a ∣)) (x : ∥ A ∥ (suc n)) → B x elim hB g (∣ a ∣ ) = g a elim {B = B} hB g (hub f) = isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (elim hB g (f x)) ) .fst elim {B = B} hB g (spoke f x i) = toPathP {A = λ i → B (spoke f x (~ i))} (sym (isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (elim hB g (f x))) .snd x)) (~ i) elim2 : {n : ℕ} {B : ∥ A ∥ (suc n) → ∥ A ∥ (suc n) → Type ℓ'} (hB : ((x y : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x y))) (g : (a b : A) → B ∣ a ∣ ∣ b ∣) (x y : ∥ A ∥ (suc n)) → B x y elim2 {n = n} hB g = elim (λ _ → isOfHLevelΠ (suc n) (λ _ → hB _ _)) λ a → elim (λ _ → hB _ _) (λ b → g a b) elim3 : {n : ℕ} {B : (x y z : ∥ A ∥ (suc n)) → Type ℓ'} (hB : ((x y z : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x y z))) (g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : ∥ A ∥ (suc n)) → B x y z elim3 {n = n} hB g = elim2 (λ _ _ → isOfHLevelΠ (suc n) (hB _ _)) λ a b → elim (λ _ → hB _ _ _) (λ c → g a b c) isContr→isContr∥ : (n : ℕ) → isContr A → isContr (∥ A ∥ n) isContr→isContr∥ zero _ = tt* , (λ _ _ → tt*) isContr→isContr∥ (suc n) contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a i → ∣ snd contr a i ∣)) isOfHLevelMin→isOfHLevel : {n m : ℕ} → isOfHLevel (min n m) A → isOfHLevel n A × isOfHLevel m A isOfHLevelMin→isOfHLevel {n = zero} {m = m} h = h , isContr→isOfHLevel m h isOfHLevelMin→isOfHLevel {n = suc n} {m = zero} h = (isContr→isOfHLevel (suc n) h) , h isOfHLevelMin→isOfHLevel {A = A} {n = suc n} {m = suc m} h = subst (λ x → isOfHLevel x A) (helper n m) (isOfHLevelPlus (suc n ∸ (suc (min n m))) h) , subst (λ x → isOfHLevel x A) ((λ i → m ∸ (minComm n m i) + suc (minComm n m i)) ∙ helper m n) (isOfHLevelPlus (suc m ∸ (suc (min n m))) h) where helper : (n m : ℕ) → n ∸ min n m + suc (min n m) ≡ suc n helper zero zero = refl helper zero (suc m) = refl helper (suc n) zero = cong suc (+-comm n 1) helper (suc n) (suc m) = +-suc _ _ ∙ cong suc (helper n m) ΣTruncElim : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {n m : ℕ} {B : (x : ∥ A ∥ (suc n)) → Type ℓ'} {C : (Σ[ a ∈ (∥ A ∥ (suc n)) ] (∥ B a ∥ (suc m))) → Type ℓ''} → ((x : (Σ[ a ∈ (∥ A ∥ (suc n)) ] (∥ B a ∥ (suc m)))) → isOfHLevel (min (suc n) (suc m)) (C x)) → ((a : A) (b : B (∣ a ∣)) → C (∣ a ∣ , ∣ b ∣)) → (x : (Σ[ a ∈ (∥ A ∥ (suc n)) ] (∥ B a ∥ (suc m)))) → (C x) ΣTruncElim {n = n} {m = m} {B = B} {C = C} hB g (a , b) = elim {B = λ a → (b : (∥ B a ∥ (suc m))) → C (a , b)} (λ x → isOfHLevelΠ (suc n) λ b → isOfHLevelMin→isOfHLevel (hB (x , b)) .fst ) (λ a → elim (λ _ → isOfHLevelMin→isOfHLevel (hB (∣ a ∣ , _)) .snd) λ b → g a b) a b truncIdempotentIso : (n : ℕ) → isOfHLevel n A → Iso (∥ A ∥ n) A truncIdempotentIso zero hA = isContr→Iso (isOfHLevelUnit* 0) hA Iso.fun (truncIdempotentIso (suc n) hA) = rec hA λ a → a Iso.inv (truncIdempotentIso (suc n) hA) = ∣_∣ Iso.rightInv (truncIdempotentIso (suc n) hA) _ = refl Iso.leftInv (truncIdempotentIso (suc n) hA) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ _ → refl truncIdempotent≃ : (n : ℕ) → isOfHLevel n A → ∥ A ∥ n ≃ A truncIdempotent≃ n hA = isoToEquiv (truncIdempotentIso n hA) truncIdempotent : (n : ℕ) → isOfHLevel n A → ∥ A ∥ n ≡ A truncIdempotent n hA = ua (truncIdempotent≃ n hA) HLevelTruncModality : ∀ {ℓ} (n : HLevel) → Modality ℓ isModal (HLevelTruncModality n) = isOfHLevel n isModalIsProp (HLevelTruncModality n) = isPropIsOfHLevel n ◯ (HLevelTruncModality n) = hLevelTrunc n ◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n η (HLevelTruncModality zero) _ = tt* η (HLevelTruncModality (suc n)) = ∣_∣ ◯-elim (HLevelTruncModality zero) cB _ tt* = cB tt* .fst ◯-elim (HLevelTruncModality (suc n)) = elim ◯-elim-β (HLevelTruncModality zero) cB f a = cB tt* .snd (f a) ◯-elim-β (HLevelTruncModality (suc n)) = λ _ _ _ → refl ◯-=-isModal (HLevelTruncModality zero) x y = (isOfHLevelUnit* 1 x y) , (isOfHLevelUnit* 2 x y _) ◯-=-isModal (HLevelTruncModality (suc n)) = isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) -- universal property univTrunc : ∀ {ℓ} (n : HLevel) {B : TypeOfHLevel ℓ n} → Iso (hLevelTrunc n A → B .fst) (A → B .fst) univTrunc zero {B , lev} = isContr→Iso (isOfHLevelΠ 0 (λ _ → lev)) (isOfHLevelΠ 0 λ _ → lev) Iso.fun (univTrunc (suc n) {B , lev}) g a = g ∣ a ∣ Iso.inv (univTrunc (suc n) {B , lev}) = rec lev Iso.rightInv (univTrunc (suc n) {B , lev}) b = refl Iso.leftInv (univTrunc (suc n) {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _) λ a → refl) -- functorial action map : {n : HLevel} {B : Type ℓ'} (g : A → B) → hLevelTrunc n A → hLevelTrunc n B map {n = zero} g = λ _ → tt* map {n = suc n} g = rec (isOfHLevelTrunc _) (λ a → ∣ g a ∣) mapCompIso : {n : HLevel} {B : Type ℓ'} → (Iso A B) → Iso (hLevelTrunc n A) (hLevelTrunc n B) mapCompIso {n = zero} {B} _ = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0) Iso.fun (mapCompIso {n = (suc n)} g) = map (Iso.fun g) Iso.inv (mapCompIso {n = (suc n)} g) = map (Iso.inv g) Iso.rightInv (mapCompIso {n = (suc n)} g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ b → cong ∣_∣ (Iso.rightInv g b) Iso.leftInv (mapCompIso {n = (suc n)} g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ a → cong ∣_∣ (Iso.leftInv g a) mapId : {n : HLevel} → ∀ t → map {n = n} (idfun A) t ≡ t mapId {n = 0} tt* = refl mapId {n = (suc n)} = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ _ → refl) -- equivalences to prop/set/groupoid truncations propTruncTrunc1Iso : Iso ∥ A ∥₁ (∥ A ∥ 1) Iso.fun propTruncTrunc1Iso = PropTrunc.rec (isOfHLevelTrunc 1) ∣_∣ Iso.inv propTruncTrunc1Iso = rec squash₁ ∣_∣₁ Iso.rightInv propTruncTrunc1Iso = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl) Iso.leftInv propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₁ _ _) (λ _ → refl) propTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1 propTrunc≃Trunc1 = isoToEquiv propTruncTrunc1Iso propTrunc≡Trunc1 : ∥ A ∥₁ ≡ ∥ A ∥ 1 propTrunc≡Trunc1 = ua propTrunc≃Trunc1 setTruncTrunc2Iso : Iso ∥ A ∥₂ (∥ A ∥ 2) Iso.fun setTruncTrunc2Iso = SetTrunc.rec (isOfHLevelTrunc 2) ∣_∣ Iso.inv setTruncTrunc2Iso = rec squash₂ ∣_∣₂ Iso.rightInv setTruncTrunc2Iso = elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl) Iso.leftInv setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ → refl) setTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2 setTrunc≃Trunc2 = isoToEquiv setTruncTrunc2Iso propTrunc≡Trunc2 : ∥ A ∥₂ ≡ ∥ A ∥ 2 propTrunc≡Trunc2 = ua setTrunc≃Trunc2 groupoidTruncTrunc3Iso : Iso ∥ A ∥₃ (∥ A ∥ 3) Iso.fun groupoidTruncTrunc3Iso = GpdTrunc.rec (isOfHLevelTrunc 3) ∣_∣ Iso.inv groupoidTruncTrunc3Iso = rec squash₃ ∣_∣₃ Iso.rightInv groupoidTruncTrunc3Iso = elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl) Iso.leftInv groupoidTruncTrunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₃ _ _) (λ _ → refl) groupoidTrunc≃Trunc3 : ∥ A ∥₃ ≃ ∥ A ∥ 3 groupoidTrunc≃Trunc3 = isoToEquiv groupoidTruncTrunc3Iso groupoidTrunc≡Trunc3 : ∥ A ∥₃ ≡ ∥ A ∥ 3 groupoidTrunc≡Trunc3 = ua groupoidTrunc≃Trunc3 2GroupoidTruncTrunc4Iso : Iso ∥ A ∥₄ (∥ A ∥ 4) Iso.fun 2GroupoidTruncTrunc4Iso = 2GpdTrunc.rec (isOfHLevelTrunc 4) ∣_∣ Iso.inv 2GroupoidTruncTrunc4Iso = rec squash₄ ∣_∣₄ Iso.rightInv 2GroupoidTruncTrunc4Iso = elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl) Iso.leftInv 2GroupoidTruncTrunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl) 2GroupoidTrunc≃Trunc4 : ∥ A ∥₄ ≃ ∥ A ∥ 4 2GroupoidTrunc≃Trunc4 = isoToEquiv 2GroupoidTruncTrunc4Iso 2GroupoidTrunc≡Trunc4 : ∥ A ∥₄ ≡ ∥ A ∥ 4 2GroupoidTrunc≡Trunc4 = ua 2GroupoidTrunc≃Trunc4 isContr→isContrTrunc : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → isContr (hLevelTrunc n A) isContr→isContrTrunc zero contr = isOfHLevelUnit* 0 isContr→isContrTrunc (suc n) contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → cong ∣_∣ (snd contr a)) truncOfProdIso : (n : ℕ) → Iso (hLevelTrunc n (A × B)) (hLevelTrunc n A × hLevelTrunc n B) truncOfProdIso 0 = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevel× 0 (isOfHLevelUnit* 0) (isOfHLevelUnit* 0)) Iso.fun (truncOfProdIso (suc n)) = rec (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) λ {(a , b) → ∣ a ∣ , ∣ b ∣} Iso.inv (truncOfProdIso (suc n)) (a , b) = rec (isOfHLevelTrunc (suc n)) (λ a → rec (isOfHLevelTrunc (suc n)) (λ b → ∣ a , b ∣) b) a Iso.rightInv (truncOfProdIso (suc n)) (a , b) = elim {B = λ a → Iso.fun (truncOfProdIso (suc n)) (Iso.inv (truncOfProdIso (suc n)) (a , b)) ≡ (a , b)} (λ _ → isOfHLevelPath (suc n) (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) _ _) (λ a → elim {B = λ b → Iso.fun (truncOfProdIso (suc n)) (Iso.inv (truncOfProdIso (suc n)) (∣ a ∣ , b)) ≡ (∣ a ∣ , b)} (λ _ → isOfHLevelPath (suc n) (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) _ _) (λ b → refl) b) a Iso.leftInv (truncOfProdIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl ---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ---- {- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -} module ΩTrunc where {- We define the fibration P to show a more general result -} P : {X : Type ℓ} {n : HLevel} → ∥ X ∥ (2 + n) → ∥ X ∥ (2 + n) → Type ℓ P {n = n} x y = elim2 (λ _ _ → isOfHLevelTypeOfHLevel (suc n)) (λ a b → ∥ a ≡ b ∥ (suc n) , isOfHLevelTrunc (suc n)) x y .fst {- We will need P to be of hLevel n + 3 -} hLevelP : {X : Type ℓ} {n : HLevel} (a b : ∥ X ∥ (2 + n)) → isOfHLevel ((2 + n)) (P a b) hLevelP {n = n} = elim2 (λ x y → isProp→isOfHLevelSuc (suc n) (isPropIsOfHLevel (2 + n))) (λ a b → isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n))) {- decode function from P x y to x ≡ y -} decode-fun : {X : Type ℓ} {n : HLevel} (x y : ∥ X ∥ (2 + n)) → P x y → x ≡ y decode-fun {n = n} = elim2 (λ u v → isOfHLevelΠ (2 + n) (λ _ → isOfHLevelSuc (2 + n) (isOfHLevelTrunc (2 + n)) u v)) decode* where decode* : ∀ {n : HLevel} (u v : B) → P {n = n} ∣ u ∣ ∣ v ∣ → Path (∥ B ∥ (2 + n)) ∣ u ∣ ∣ v ∣ decode* {B = B} {n = zero} u v = rec (isOfHLevelTrunc 2 _ _) (cong ∣_∣) decode* {n = suc n} u v = rec (isOfHLevelTrunc (3 + n) ∣ u ∣ ∣ v ∣) (cong ∣_∣) {- auxiliary function r used to define encode -} r : {X : Type ℓ} {n : HLevel} (u : ∥ X ∥ (2 + n)) → P u u r = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣) {- encode function from x ≡ y to P x y -} encode-fun : {X : Type ℓ} {n : HLevel} (x y : ∥ X ∥ (2 + n)) → x ≡ y → P x y encode-fun x y p = subst (P x) p (r x) {- We need the following two lemmas on the functions behaviour for refl -} dec-refl : {X : Type ℓ} {n : HLevel} (x : ∥ X ∥ (2 + n)) → decode-fun x x (r x) ≡ refl dec-refl {n = zero} = elim (λ _ → isOfHLevelSuc 2 (isOfHLevelSuc 1 (isOfHLevelTrunc 2 _ _)) _ _) λ _ → refl dec-refl {n = suc n} = elim (λ x → isOfHLevelSuc (2 + n) (isOfHLevelSuc (2 + n) (isOfHLevelTrunc (3 + n) x x) (decode-fun x x (r x)) refl)) (λ _ → refl) enc-refl : {X : Type ℓ} {n : HLevel} (x : ∥ X ∥ (2 + n)) → encode-fun x x refl ≡ r x enc-refl x j = transp (λ _ → P x x) j (r x) {- decode-fun is a right-inverse -} P-rinv : {X : Type ℓ} {n : HLevel} (u v : ∥ X ∥ (2 + n)) (x : Path (∥ X ∥ (2 + n)) u v) → decode-fun u v (encode-fun u v x) ≡ x P-rinv u v = J (λ y p → decode-fun u y (encode-fun u y p) ≡ p) (cong (decode-fun u u) (enc-refl u) ∙ dec-refl u) {- decode-fun is a left-inverse -} P-linv : {X : Type ℓ} {n : HLevel} (u v : ∥ X ∥ (2 + n)) (x : P u v) → encode-fun u v (decode-fun u v x) ≡ x P-linv {n = n} = elim2 (λ x y → isOfHLevelΠ (2 + n) (λ z → isOfHLevelSuc (2 + n) (hLevelP x y) _ _)) helper where helper : {X : Type ℓ} {n : HLevel} (a b : X) (p : P {n = n} ∣ a ∣ ∣ b ∣) → encode-fun _ _ (decode-fun ∣ a ∣ ∣ b ∣ p) ≡ p helper {n = zero} a b = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (J (λ y p → encode-fun ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) helper {n = suc n} a b = elim (λ x → hLevelP {n = suc n} ∣ a ∣ ∣ b ∣ _ _) (J (λ y p → encode-fun {n = (suc n)} ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) {- The final Iso established -} IsoFinal : {B : Type ℓ} (n : HLevel) (x y : ∥ B ∥ (2 + n)) → Iso (x ≡ y) (P x y) Iso.fun (IsoFinal _ x y) = encode-fun x y Iso.inv (IsoFinal _ x y) = decode-fun x y Iso.rightInv (IsoFinal _ x y) = P-linv x y Iso.leftInv (IsoFinal _ x y) = P-rinv x y PathIdTruncIso : {a b : A} (n : HLevel) → Iso (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) (∥ a ≡ b ∥ n) PathIdTruncIso zero = isContr→Iso ((isOfHLevelTrunc 1 _ _) , isOfHLevelPath 1 (isOfHLevelTrunc 1) ∣ _ ∣ ∣ _ ∣ _) (isOfHLevelUnit* 0) PathIdTruncIso (suc n) = ΩTrunc.IsoFinal n ∣ _ ∣ ∣ _ ∣ PathIdTrunc : {a b : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n) PathIdTrunc n = isoToPath (PathIdTruncIso n) PathΩ : {a : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n) PathΩ n = PathIdTrunc n {- Special case using direct defs of truncations -} PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁ PathIdTrunc₀Iso = compIso (congIso setTruncTrunc2Iso) (compIso (ΩTrunc.IsoFinal _ ∣ _ ∣ ∣ _ ∣) (invIso propTruncTrunc1Iso)) ------------------------- truncOfTruncIso : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncIso zero m = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0) Iso.fun (truncOfTruncIso (suc n) zero) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣ Iso.fun (truncOfTruncIso (suc n) (suc m)) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣ Iso.inv (truncOfTruncIso (suc n) zero) = rec (isOfHLevelTrunc (suc n)) (rec (isOfHLevelTrunc (suc n)) λ a → ∣ a ∣) Iso.inv (truncOfTruncIso (suc n) (suc m)) = rec (isOfHLevelTrunc (suc n)) (rec (isOfHLevelPlus (suc m) (isOfHLevelTrunc (suc n))) λ a → ∣ a ∣) Iso.rightInv (truncOfTruncIso (suc n) zero) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ ) (elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ ) λ a → refl) Iso.rightInv (truncOfTruncIso (suc n) (suc m)) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ ) (elim (λ x → isOfHLevelPath ((suc m) + (suc n)) (isOfHLevelPlus (suc m) (isOfHLevelTrunc (suc n))) _ _ ) λ a → refl) Iso.leftInv (truncOfTruncIso (suc n) zero) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl Iso.leftInv (truncOfTruncIso (suc n) (suc m)) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl truncOfTruncEq : (n m : ℕ) → (hLevelTrunc n A) ≃ (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncEq n m = isoToEquiv (truncOfTruncIso n m) truncOfTruncIso2 : (n m : HLevel) → Iso (hLevelTrunc (m + n) (hLevelTrunc n A)) (hLevelTrunc n A) truncOfTruncIso2 n m = truncIdempotentIso (m + n) (isOfHLevelPlus m (isOfHLevelTrunc n)) truncOfΣIso : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : A → Type ℓ'} → Iso (hLevelTrunc n (Σ A B)) (hLevelTrunc n (Σ A λ x → hLevelTrunc n (B x))) truncOfΣIso zero = idIso Iso.fun (truncOfΣIso (suc n)) = map λ {(a , b) → a , ∣ b ∣} Iso.inv (truncOfΣIso (suc n)) = rec (isOfHLevelTrunc (suc n)) (uncurry λ a → rec (isOfHLevelTrunc (suc n)) λ b → ∣ a , b ∣) Iso.rightInv (truncOfΣIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (uncurry λ a → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ b → refl) Iso.leftInv (truncOfΣIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ {(a , b) → refl}
47.465066
146
0.556327
398748dcb3eda8d2d87374ee6dc9898d3571588b
24
agda
Agda
test/interaction/Issue2536-1.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2536-1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2536-1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
id : Set → Set id A = A
8
14
0.5
4a6bbdb7e83937510c75ae59b7e601883c14021a
528
agda
Agda
test/Foo.agda
andreasabel/agda2lagda
93d317c87bddf973e3fa6abd5bf24dcfa9a797f0
[ "Unlicense" ]
11
2020-10-01T12:10:15.000Z
2021-08-16T07:28:10.000Z
test/Foo.agda
andreasabel/agda2lagda
93d317c87bddf973e3fa6abd5bf24dcfa9a797f0
[ "Unlicense" ]
null
null
null
test/Foo.agda
andreasabel/agda2lagda
93d317c87bddf973e3fa6abd5bf24dcfa9a797f0
[ "Unlicense" ]
null
null
null
-- Sample non-literate Agda program -- ================================ -- -- A remark to test bulleted lists: -- -- * This file serves as example for agda2lagda. -- -- * The content may be non-sensical. -- -- Indeed! module Foo where -- Some data type. data D : Set where c : D -- A function. foo : D → D foo c = c -- basically, the identity {- This part is commented out. {- bar : D → Set bar x = D -- -} -- -} -- A subheading --------------- module Submodule where postulate zeta : D -- That's it. -- Bye.
13.2
48
0.551136
c5f61abd5a97d2d055a50889f55cd0d0e0ae41c3
14,088
agda
Agda
TotalParserCombinators/Congruence/Sound.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2020-07-03T08:56:13.000Z
2020-07-03T08:56:13.000Z
TotalParserCombinators/Congruence/Sound.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
TotalParserCombinators/Congruence/Sound.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The parser equivalence proof language is sound ------------------------------------------------------------------------ module TotalParserCombinators.Congruence.Sound where open import Category.Monad open import Codata.Musical.Notation open import Data.List open import Data.List.Membership.Propositional using (_∈_) import Data.List.Categorical as ListMonad open import Data.List.Relation.Binary.BagAndSetEquality renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe hiding (_>>=_) open import Data.Product open import Function import Function.Related as Related open import Level open import Relation.Binary import Relation.Binary.PropositionalEquality as P open Related using (SK-sym) open Related.EquationalReasoning renaming (_∼⟨_⟩_ to _∼⟨_⟩′_; _∎ to _∎′) open RawMonad {f = zero} ListMonad.monad using () renaming (_⊛_ to _⊛′_; _>>=_ to _>>=′_) private module BSOrd {k} {A : Set} = Preorder ([ k ]-Order A) open import TotalParserCombinators.Derivative using (D) open import TotalParserCombinators.CoinductiveEquality as CE using (_∼[_]c_; _∷_) open import TotalParserCombinators.Congruence open import TotalParserCombinators.Laws open import TotalParserCombinators.Lib using (return⋆) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics using (_∼[_]_) ------------------------------------------------------------------------ -- Some lemmas private ⊛flatten-lemma : ∀ {k} {R₁ R₂ : Set} {fs₁ fs₂ : List (R₁ → R₂)} (xs₁ xs₂ : Maybe (List R₁)) → fs₁ List-∼[ k ] fs₂ → flatten xs₁ List-∼[ k ] flatten xs₂ → fs₁ ⊛flatten xs₁ List-∼[ k ] fs₂ ⊛flatten xs₂ ⊛flatten-lemma {k} {fs₁ = fs₁} {fs₂} xs₁ xs₂ fs₁≈fs₂ = helper xs₁ xs₂ where helper : ∀ xs₁ xs₂ → flatten xs₁ List-∼[ k ] flatten xs₂ → fs₁ ⊛flatten xs₁ List-∼[ k ] fs₂ ⊛flatten xs₂ helper nothing nothing []∼[] = BSOrd.refl helper (just xs₁) (just xs₂) xs₁≈xs₂ = ⊛-cong fs₁≈fs₂ xs₁≈xs₂ helper nothing (just xs₂) []≈xs₂ {x} = x ∈ [] ↔⟨ BSOrd.reflexive $ P.sym $ ListMonad.Applicative.right-zero fs₂ ⟩ x ∈ (fs₂ ⊛′ []) ∼⟨ ⊛-cong (BSOrd.refl {x = fs₂}) []≈xs₂ ⟩′ x ∈ (fs₂ ⊛′ xs₂) ∎′ helper (just xs₁) nothing xs₁∼[] {x} = x ∈ (fs₁ ⊛′ xs₁) ∼⟨ ⊛-cong (BSOrd.refl {x = fs₁}) xs₁∼[] ⟩′ x ∈ (fs₁ ⊛′ []) ↔⟨ BSOrd.reflexive $ ListMonad.Applicative.right-zero fs₁ ⟩ x ∈ [] ∎′ []-⊛flatten : ∀ {A B : Set} (xs : Maybe (List A)) → [] ⊛flatten xs List-∼[ bag ] [] {A = B} []-⊛flatten nothing = BSOrd.refl []-⊛flatten (just xs) = BSOrd.refl bind-lemma : ∀ {k} {R₁ R₂ : Set} {xs₁ xs₂ : Maybe (List R₁)} (f₁ f₂ : Maybe (R₁ → List R₂)) → flatten xs₁ List-∼[ k ] flatten xs₂ → (∀ x → apply f₁ x List-∼[ k ] apply f₂ x) → bind xs₁ f₁ List-∼[ k ] bind xs₂ f₂ bind-lemma {k} {xs₁ = xs₁} {xs₂} f₁ f₂ xs₁≈xs₂ = helper f₁ f₂ where helper : ∀ f₁ f₂ → (∀ x → apply f₁ x List-∼[ k ] apply f₂ x) → bind xs₁ f₁ List-∼[ k ] bind xs₂ f₂ helper nothing nothing []∼[] = BSOrd.refl helper (just f₁) (just f₂) f₁≈f₂ = >>=-cong xs₁≈xs₂ f₁≈f₂ helper nothing (just f₂) []≈f₂ {x} = x ∈ [] ∼⟨ BSOrd.reflexive $ P.sym $ ListMonad.MonadProperties.right-zero (flatten xs₂) ⟩′ x ∈ (flatten xs₂ >>=′ λ _ → []) ∼⟨ >>=-cong (BSOrd.refl {x = flatten xs₂}) []≈f₂ ⟩′ x ∈ (flatten xs₂ >>=′ f₂) ∎′ helper (just f₁) nothing f₁∼[] {x} = x ∈ (flatten xs₁ >>=′ f₁) ∼⟨ >>=-cong (BSOrd.refl {x = flatten xs₁}) f₁∼[] ⟩′ x ∈ (flatten xs₁ >>=′ λ _ → []) ∼⟨ BSOrd.reflexive $ ListMonad.MonadProperties.right-zero (flatten xs₁) ⟩′ x ∈ [] ∎′ bind-nothing : ∀ {A B : Set} (f : Maybe (A → List B)) → bind nothing f List-∼[ bag ] [] bind-nothing nothing = BSOrd.refl bind-nothing (just f) = BSOrd.refl ------------------------------------------------------------------------ -- Equality is closed under initial-bag initial-bag-cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → initial-bag p₁ List-∼[ k ] initial-bag p₂ initial-bag-cong (xs₁≈xs₂ ∷ Dp₁≈Dp₂) = xs₁≈xs₂ initial-bag-cong (p ∎) = BSOrd.refl initial-bag-cong (p₁ ∼⟨ p₁≈p₂ ⟩ p₂≈p₃) = _ ∼⟨ initial-bag-cong p₁≈p₂ ⟩′ initial-bag-cong p₂≈p₃ initial-bag-cong (p₁ ≅⟨ p₁≅p₂ ⟩ p₂≈p₃) = _ ↔⟨ initial-bag-cong p₁≅p₂ ⟩ initial-bag-cong p₂≈p₃ initial-bag-cong (sym p₁≈p₂) = SK-sym (initial-bag-cong p₁≈p₂) initial-bag-cong (return x₁≡x₂) = BSOrd.reflexive $ P.cong [_] x₁≡x₂ initial-bag-cong fail = BSOrd.refl initial-bag-cong token = BSOrd.refl initial-bag-cong (p₁≈p₃ ∣ p₂≈p₄) = ++-cong (initial-bag-cong p₁≈p₃) (initial-bag-cong p₂≈p₄) initial-bag-cong (f₁≗f₂ <$> p₁≈p₂) = map-cong f₁≗f₂ $ initial-bag-cong p₁≈p₂ initial-bag-cong (nonempty p₁≈p₂) = BSOrd.refl initial-bag-cong (cast {xs₁ = xs₁} {xs₂ = xs₂} {xs₁′ = xs₁′} {xs₂′ = xs₂′} {xs₁≈xs₁′ = xs₁≈xs₁′} {xs₂≈xs₂′ = xs₂≈xs₂′} p₁≈p₂) {x} = x ∈ xs₁′ ↔⟨ SK-sym xs₁≈xs₁′ ⟩ x ∈ xs₁ ∼⟨ initial-bag-cong p₁≈p₂ ⟩′ x ∈ xs₂ ↔⟨ xs₂≈xs₂′ ⟩ x ∈ xs₂′ ∎′ initial-bag-cong ([ nothing - _ ] p₁≈p₃ ⊛ p₂≈p₄) = BSOrd.refl initial-bag-cong ([ just (xs₁ , xs₂) - just _ ] p₁≈p₃ ⊛ p₂≈p₄) = ⊛flatten-lemma xs₁ xs₂ (initial-bag-cong p₁≈p₃) (initial-bag-cong p₂≈p₄) initial-bag-cong ([ just (xs₁ , xs₂) - nothing ] p₁≈p₃ ⊛ p₂≈p₄) {x} = x ∈ [] ⊛flatten xs₁ ↔⟨ []-⊛flatten xs₁ ⟩ x ∈ [] ↔⟨ SK-sym $ []-⊛flatten xs₂ ⟩ x ∈ [] ⊛flatten xs₂ ∎′ initial-bag-cong ([ nothing - _ ] p₁≈p₃ >>= p₂≈p₄) = BSOrd.refl initial-bag-cong ([ just (f₁ , f₂) - just _ ] p₁≈p₃ >>= p₂≈p₄) = bind-lemma f₁ f₂ (initial-bag-cong p₁≈p₃) (λ x → initial-bag-cong (p₂≈p₄ x)) initial-bag-cong ([ just (f₁ , f₂) - nothing ] p₁≈p₃ >>= p₂≈p₄) {x} = x ∈ bind nothing f₁ ↔⟨ bind-nothing f₁ ⟩ x ∈ [] ↔⟨ SK-sym $ bind-nothing f₂ ⟩ x ∈ bind nothing f₂ ∎′ ------------------------------------------------------------------------ -- Equality is closed under D D-cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → ∀ {t} → D t p₁ ∼[ k ]P D t p₂ D-cong (xs₁≈xs₂ ∷ Dp₁≈Dp₂) {t} = ♭ (Dp₁≈Dp₂ t) D-cong (p ∎) {t} = D t p ∎ D-cong (p₁ ∼⟨ p₁≈p₂ ⟩ p₂≈p₃) {t} = D t p₁ ∼⟨ D-cong p₁≈p₂ ⟩ D-cong p₂≈p₃ D-cong (p₁ ≅⟨ p₁≅p₂ ⟩ p₂≈p₃) {t} = D t p₁ ≅⟨ D-cong p₁≅p₂ ⟩ D-cong p₂≈p₃ D-cong (sym p₁≈p₂) = _∼[_]P_.sym (D-cong p₁≈p₂) D-cong (return x₁≡x₂) = fail ∎ D-cong fail = fail ∎ D-cong token {t} = return t ∎ D-cong (p₁≈p₃ ∣ p₂≈p₄) = D-cong p₁≈p₃ ∣ D-cong p₂≈p₄ D-cong (f₁≗f₂ <$> p₁≈p₂) = f₁≗f₂ <$> D-cong p₁≈p₂ D-cong (nonempty p₁≈p₂) = D-cong p₁≈p₂ D-cong (cast p₁≈p₂) = D-cong p₁≈p₂ D-cong ([_-_]_⊛_ nothing nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) ⊛ ♭ p₂≈p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_⊛_ nothing (just (fs₁ , fs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ≅⟨ D.D-⊛ p₁ p₂ ⟩ D t (♭ p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs₁) ⊛ D t (♭? p₂) ≅⟨ [ ○ - ◌ - ○ - ○ ] D t (♭ p₁) ∎ ⊛ (♭? p₂ ∎) ∣ (_ ∎) ⟩ ♯ D t (♭ p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs₁) ⊛ D t (♭? p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) ⊛ p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong (♭ p₁≈p₃)) ⊛ D-cong p₂≈p₄ ⟩ ♯ D t (♭ p₃) ⊛ ♭? p₄ ∣ return⋆ (flatten fs₂) ⊛ D t (♭? p₄) ≅⟨ [ ◌ - ○ - ○ - ○ ] D t (♭ p₃) ∎ ⊛ (♭? p₄ ∎) ∣ (_ ∎) ⟩ D t (♭ p₃) ⊛ ♭? p₄ ∣ return⋆ (flatten fs₂) ⊛ D t (♭? p₄) ≅⟨ _∼[_]P_.sym $ D.D-⊛ p₃ p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_⊛_ (just _) nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ≅⟨ D.D-⊛ p₁ p₂ ⟩ D t (♭? p₁) ⊛ ♭ p₂ ∣ return⋆ [] ⊛ D t (♭ p₂) ≅⟨ (D t (♭? p₁) ⊛ ♭ p₂ ∎) ∣ [ ○ - ○ - ○ - ◌ ] return⋆ [] ∎ ⊛ (D t (♭ p₂) ∎) ⟩ D t (♭? p₁) ⊛ ♭ p₂ ∣ return⋆ [] ⊛ ♯ D t (♭ p₂) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ ⊛ ♭ p₂≈p₄ ∣ [ just (○ , ○) - nothing ] (return⋆ [] ∎) ⊛ ♯ D-cong (♭ p₂≈p₄) ⟩ D t (♭? p₃) ⊛ ♭ p₄ ∣ return⋆ [] ⊛ ♯ D t (♭ p₄) ≅⟨ (D t (♭? p₃) ⊛ ♭ p₄ ∎) ∣ [ ○ - ○ - ◌ - ○ ] return⋆ [] ∎ ⊛ (D t (♭ p₄) ∎) ⟩ D t (♭? p₃) ⊛ ♭ p₄ ∣ return⋆ [] ⊛ D t (♭ p₄) ≅⟨ _∼[_]P_.sym $ D.D-⊛ p₃ p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_⊛_ (just _) (just (fs₁ , fs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ≅⟨ D.D-⊛ p₁ p₂ ⟩ D t (♭? p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs₁) ⊛ D t (♭? p₂) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ ⊛ p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong p₁≈p₃) ⊛ D-cong p₂≈p₄ ⟩ D t (♭? p₃) ⊛ ♭? p₄ ∣ return⋆ (flatten fs₂) ⊛ D t (♭? p₄) ≅⟨ _∼[_]P_.sym $ D.D-⊛ p₃ p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_>>=_ nothing nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) >>= (♭ ∘ p₂≈p₄) ⟩ D t (p₃ >>= p₄) ∎ D-cong ([_-_]_>>=_ nothing (just (xs₁ , xs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ≅⟨ D.D->>= p₁ p₂ ⟩ D t (♭ p₁) >>= (♭? ∘ p₂) ∣ return⋆ (flatten xs₁) >>= (D t ∘ ♭? ∘ p₂) ≅⟨ [ ○ - ◌ - ○ - ○ ] D t (♭ p₁) ∎ >>= (λ x → ♭? (p₂ x) ∎) ∣ (_ ∎) ⟩ ♯ D t (♭ p₁) >>= (♭? ∘ p₂) ∣ return⋆ (flatten xs₁) >>= (D t ∘ ♭? ∘ p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) >>= p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong (♭ p₁≈p₃)) >>= (λ x → D-cong (p₂≈p₄ x)) ⟩ ♯ D t (♭ p₃) >>= (♭? ∘ p₄) ∣ return⋆ (flatten xs₂) >>= (D t ∘ ♭? ∘ p₄) ≅⟨ [ ◌ - ○ - ○ - ○ ] D t (♭ p₃) ∎ >>= (λ x → ♭? (p₄ x) ∎) ∣ (_ ∎) ⟩ D t (♭ p₃) >>= (♭? ∘ p₄) ∣ return⋆ (flatten xs₂) >>= (D t ∘ ♭? ∘ p₄) ≅⟨ _∼[_]P_.sym $ D.D->>= p₃ p₄ ⟩ D t (p₃ >>= p₄) ∎ D-cong ([_-_]_>>=_ (just _) nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ≅⟨ D.D->>= p₁ p₂ ⟩ D t (♭? p₁) >>= (♭ ∘ p₂) ∣ return⋆ [] >>= (D t ∘ ♭ ∘ p₂) ≅⟨ (D t (♭? p₁) >>= (♭ ∘ p₂) ∎) ∣ [ ○ - ○ - ○ - ◌ ] return⋆ [] ∎ >>= (λ x → D t (♭ (p₂ x)) ∎) ⟩ D t (♭? p₁) >>= (♭ ∘ p₂) ∣ return⋆ [] >>= (λ x → ♯ D t (♭ (p₂ x))) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ >>= (♭ ∘ p₂≈p₄) ∣ [ just (○ , ○) - nothing ] (return⋆ [] ∎) >>= (λ x → ♯ D-cong (♭ (p₂≈p₄ x))) ⟩ D t (♭? p₃) >>= (♭ ∘ p₄) ∣ return⋆ [] >>= (λ x → ♯ D t (♭ (p₄ x))) ≅⟨ (D t (♭? p₃) >>= (♭ ∘ p₄) ∎) ∣ [ ○ - ○ - ◌ - ○ ] return⋆ [] ∎ >>= (λ x → D t (♭ (p₄ x)) ∎) ⟩ D t (♭? p₃) >>= (♭ ∘ p₄) ∣ return⋆ [] >>= (D t ∘ ♭ ∘ p₄) ≅⟨ _∼[_]P_.sym $ D.D->>= p₃ p₄ ⟩ D t (p₃ >>= p₄) ∎ D-cong ([_-_]_>>=_ (just _) (just (xs₁ , xs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ≅⟨ D.D->>= p₁ p₂ ⟩ D t (♭? p₁) >>= (♭? ∘ p₂) ∣ return⋆ (flatten xs₁) >>= (D t ∘ ♭? ∘ p₂) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ >>= p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong p₁≈p₃) >>= (λ x → D-cong (p₂≈p₄ x)) ⟩ D t (♭? p₃) >>= (♭? ∘ p₄) ∣ return⋆ (flatten xs₂) >>= (D t ∘ ♭? ∘ p₄) ≅⟨ _∼[_]P_.sym $ D.D->>= p₃ p₄ ⟩ D t (p₃ >>= p₄) ∎ ------------------------------------------------------------------------ -- Soundness sound : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → p₁ ∼[ k ] p₂ sound = CE.sound ∘ sound′ where sound′ : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → p₁ ∼[ k ]c p₂ sound′ p₁≈p₂ = initial-bag-cong p₁≈p₂ ∷ λ t → ♯ sound′ (D-cong p₁≈p₂)
58.456432
135
0.389338
dcde433233e311310d93d0affaa71e0bb31849fd
435
agda
Agda
archive/agda-3/src/Test/Test1.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Test/Test1.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Test/Test1.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} -- FIXME open import Everything module Test.Test1 where test-functor-transextensionality : ∀ {𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} ⦃ functor : Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ ⦄ (open Functor functor) → {!Transextensionality!.type _∼₁_ _∼̇₁_!} test-functor-transextensionality = transextensionality -- test-functor-transextensionality ⦃ functor ⦄ = let open Functor ⦃ … ⦄ in transextensionality1
31.071429
98
0.705747
0e09b13a713739e33e0bb5341e26809e487b383f
1,853
agda
Agda
SOAS/Metatheory/Semantics.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
SOAS/Metatheory/Semantics.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
SOAS/Metatheory/Semantics.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
open import SOAS.Common open import SOAS.Families.Core open import Categories.Object.Initial open import SOAS.Coalgebraic.Strength import SOAS.Metatheory.MetaAlgebra -- Initial-algebra semantics module SOAS.Metatheory.Semantics {T : Set} (⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F) (𝔛 : Familyₛ) (open SOAS.Metatheory.MetaAlgebra ⅀F 𝔛) (𝕋:Init : Initial 𝕄etaAlgebras) where open import SOAS.Context open import SOAS.Variable open import SOAS.Construction.Structure as Structure open import SOAS.Abstract.Hom import SOAS.Abstract.Coalgebra as →□ ; open →□.Sorted import SOAS.Abstract.Box as □ ; open □.Sorted open import SOAS.Metatheory.Algebra ⅀F open Strength ⅀:Str private variable Γ Δ Θ Π : Ctx α β : T 𝒫 𝒬 𝒜 : Familyₛ open Initial 𝕋:Init open Object ⊥ public renaming (𝐶 to 𝕋 ; ˢ to 𝕋ᵃ) open MetaAlg 𝕋ᵃ public renaming (𝑎𝑙𝑔 to 𝕒𝕝𝕘 ; 𝑣𝑎𝑟 to 𝕧𝕒𝕣 ; 𝑚𝑣𝑎𝑟 to 𝕞𝕧𝕒𝕣 ; 𝑚≈₁ to 𝕞≈₁ ; 𝑚≈₂ to 𝕞≈₂) module Semantics (𝒜ᵃ : MetaAlg 𝒜) where open Morphism (! {𝒜 ⋉ 𝒜ᵃ}) public renaming (𝑓 to 𝕤𝕖𝕞 ; ˢ⇒ to 𝕤𝕖𝕞ᵃ⇒) open MetaAlg⇒ 𝕤𝕖𝕞ᵃ⇒ public renaming (⟨𝑎𝑙𝑔⟩ to ⟨𝕒⟩ ; ⟨𝑣𝑎𝑟⟩ to ⟨𝕧⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ to ⟨𝕞⟩) open MetaAlg 𝒜ᵃ module 𝒜 = MetaAlg 𝒜ᵃ eq : {g h : 𝕋 ⇾̣ 𝒜} (gᵃ : MetaAlg⇒ 𝕋ᵃ 𝒜ᵃ g) (hᵃ : MetaAlg⇒ 𝕋ᵃ 𝒜ᵃ h) (t : 𝕋 α Γ) → g t ≡ h t eq {g = g}{h} gᵃ hᵃ t = !-unique₂ (g ⋉ gᵃ) (h ⋉ hᵃ) {x = t} -- The interpretation is equal to any other pointed meta-Λ-algebra 𝕤𝕖𝕞! : {g : 𝕋 ⇾̣ 𝒜}(gᵃ : MetaAlg⇒ 𝕋ᵃ 𝒜ᵃ g)(t : 𝕋 α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕤𝕖𝕞! {g = g} gᵃ t = !-unique (g ⋉ gᵃ) {x = t} -- Corollaries: every meta-algebra endo-homomorphism is the identity, including 𝕤𝕖𝕞 eq-id : {g : 𝕋 ⇾̣ 𝕋} (gᵃ : MetaAlg⇒ 𝕋ᵃ 𝕋ᵃ g) (t : 𝕋 α Γ) → g t ≡ t eq-id gᵃ t = Semantics.eq 𝕋ᵃ gᵃ (idᵃ 𝕋ᵃ) t 𝕤𝕖𝕞-id : {t : 𝕋 α Γ} → Semantics.𝕤𝕖𝕞 𝕋ᵃ t ≡ t 𝕤𝕖𝕞-id {t = t} = eq-id (Semantics.𝕤𝕖𝕞ᵃ⇒ 𝕋ᵃ) t
30.377049
83
0.637345
dc1f2e0b54a58c284b6f32c0d2cce8cf2ec1564a
10,597
agda
Agda
Cubical/Talks/EPA2020.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Talks/EPA2020.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Talks/EPA2020.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- Cubical Agda - A Dependently Typed PL with Univalence and HITs ============================================================== Anders Mörtberg Every Proof Assistant - September 17, 2020 Link to slides: https://staff.math.su.se/anders.mortberg/slides/EPA2020.pdf Link to video: https://vimeo.com/459020971 -} -- To make Agda cubical add the --cubical option. -- This is implicitly added for files in the cubical library via the cubical.agda-lib file. {-# OPTIONS --safe #-} module Cubical.Talks.EPA2020 where -- The "Foundations" package contain a lot of important results (in -- particular the univalence theorem) open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Int open import Cubical.Data.Prod.Base -- The interval in Cubical Agda is written I and the endpoints i0 and i1. apply0 : (A : Type) (p : I → A) → A apply0 A p = p i0 -- We omit the universe level ℓ for simplicity in this talk. In the -- library everything is maximally universe polymorphic. -- We can write functions out of the interval using λ-abstraction: refl' : {A : Type} (x : A) → x ≡ x refl' x = λ i → x -- In fact, x ≡ y is short for PathP (λ _ → A) x y refl'' : {A : Type} (x : A) → PathP (λ _ → A) x x refl'' x = λ _ → x -- In general PathP A x y has A : I → Type, x : A i0 and y : A i1 -- PathP = Dependent paths (Path over a Path) -- We cannot pattern-match on interval variables as I is not inductively defined -- foo : {A : Type} → I → A -- foo r = {!r!} -- Try typing C-c C-c -- cong has a direct proof cong' : {A B : Type} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong' f p i = f (p i) -- function extensionality also has a direct proof. -- It also has computational content: swap the arguments. funExt' : {A B : Type} {f g : A → B} (p : (x : A) → f x ≡ g x) → f ≡ g funExt' p i x = p x i -- Transport is more complex as ≡ isn't inductively defined (so we -- can't define it by pattern-matching on p) transport' : {A B : Type} → A ≡ B → A → B transport' p a = transp (λ i → p i) i0 a -- This lets us define subst (which is called "transport" in the HoTT book) subst' : {A : Type} (P : A → Type) {x y : A} (p : x ≡ y) → P x → P y subst' P p pa = transport (λ i → P (p i)) pa -- The transp operation reduces differently for different types -- formers. For paths it reduces to another primitive operation called -- hcomp. -- We can also define the J eliminator (aka path induction) J' : {A : Type} {B : A → Type} {x : A} (P : (z : A) → x ≡ z → Type) (d : P x refl) {y : A} (p : x ≡ y) → P y p J' P d p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d -- So J is provable, but it doesn't satisfy computation rule -- definitionally. This is almost never a problem in practice as the -- cubical primitives satisfy many new definitional equalities. -- Another key concept in HoTT/UF is the Univalence Axiom. In Cubical -- Agda this is provable, we hence refer to it as the Univalence -- Theorem. -- The univalence theorem: equivalences of types give paths of types ua' : {A B : Type} → A ≃ B → A ≡ B ua' = ua -- Any isomorphism of types gives rise to an equivalence isoToEquiv' : {A B : Type} → Iso A B → A ≃ B isoToEquiv' = isoToEquiv -- And hence to a path isoToPath' : {A B : Type} → Iso A B → A ≡ B isoToPath' e = ua' (isoToEquiv' e) -- ua satisfies the following computation rule -- This suffices to be able to prove the standard formulation of univalence. uaβ' : {A B : Type} (e : A ≃ B) (x : A) → transport (ua' e) x ≡ fst e x uaβ' e x = transportRefl (equivFun e x) -- Time for an example! -- Booleans data Bool : Type where false true : Bool not : Bool → Bool not false = true not true = false notPath : Bool ≡ Bool notPath = isoToPath' (iso not not rem rem) where rem : (b : Bool) → not (not b) ≡ b rem false = refl rem true = refl _ : transport notPath true ≡ false _ = refl -- Another example, integers: sucPath : ℤ ≡ ℤ sucPath = isoToPath' (iso sucℤ predℤ sucPred predSuc) _ : transport sucPath (pos 0) ≡ pos 1 _ = refl _ : transport (sucPath ∙ sucPath) (pos 0) ≡ pos 2 _ = refl _ : transport (sym sucPath) (pos 0) ≡ negsuc 0 _ = refl ----------------------------------------------------------------------------- -- Higher inductive types -- The following definition of finite multisets is due to Vikraman -- Choudhury and Marcelo Fiore. infixr 5 _∷_ data FMSet (A : Type) : Type where [] : FMSet A _∷_ : (x : A) → (xs : FMSet A) → FMSet A comm : (x y : A) (xs : FMSet A) → x ∷ y ∷ xs ≡ y ∷ x ∷ xs -- trunc : (xs ys : FMSet A) (p q : xs ≡ ys) → p ≡ q -- We need to add the trunc constructor for FMSets to be sets, omitted -- here for simplicity. _++_ : ∀ {A : Type} (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i -- trunc xs zs p q i j ++ ys = -- trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j unitr-++ : {A : Type} (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ [] = refl unitr-++ (x ∷ xs) = cong (x ∷_) (unitr-++ xs) unitr-++ (comm x y xs i) j = comm x y (unitr-++ xs j) i -- unitr-++ (trunc xs ys x y i j) = {!!} -- This is a special case of set quotients! Very useful for -- programming and set level mathematics data _/_ (A : Type) (R : A → A → Type) : Type where [_] : A → A / R eq/ : (a b : A) → R a b → [ a ] ≡ [ b ] trunc : (a b : A / R) (p q : a ≡ b) → p ≡ q -- Proving that they are effective ((a b : A) → [ a ] ≡ [ b ] → R a b) -- requires univalence for propositions. ------------------------------------------------------------------------- -- Topological examples of things that are not sets -- We can define the circle as the following simple data declaration: data S¹ : Type where base : S¹ loop : base ≡ base -- We can write functions on S¹ using pattern-matching equations: double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i helix : S¹ → Type helix base = ℤ helix (loop i) = sucPathℤ i ΩS¹ : Type ΩS¹ = base ≡ base winding : ΩS¹ → ℤ winding p = subst helix p (pos 0) _ : winding (λ i → double ((loop ∙ loop) i)) ≡ pos 4 _ = refl -- We can define the Torus as: data Torus : Type where point : Torus line1 : point ≡ point line2 : point ≡ point square : PathP (λ i → line1 i ≡ line1 i) line2 line2 -- And prove that it is equivalent to two circle: t2c : Torus → S¹ × S¹ t2c point = (base , base) t2c (line1 i) = (loop i , base) t2c (line2 j) = (base , loop j) t2c (square i j) = (loop i , loop j) c2t : S¹ × S¹ → Torus c2t (base , base) = point c2t (loop i , base) = line1 i c2t (base , loop j) = line2 j c2t (loop i , loop j) = square i j c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t c2t-t2c point = refl c2t-t2c (line1 _) = refl c2t-t2c (line2 _) = refl c2t-t2c (square _ _) = refl t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p t2c-c2t (base , base) = refl t2c-c2t (base , loop _) = refl t2c-c2t (loop _ , base) = refl t2c-c2t (loop _ , loop _) = refl -- Using univalence we get the following equality: Torus≡S¹×S¹ : Torus ≡ S¹ × S¹ Torus≡S¹×S¹ = isoToPath' (iso t2c c2t t2c-c2t c2t-t2c) windingTorus : point ≡ point → ℤ × ℤ windingTorus l = ( winding (λ i → proj₁ (t2c (l i))) , winding (λ i → proj₂ (t2c (l i)))) _ : windingTorus (line1 ∙ sym line2) ≡ (pos 1 , negsuc 0) _ = refl -- We have many more topological examples, including Klein bottle, RP^n, -- higher spheres, suspensions, join, wedges, smash product: open import Cubical.HITs.KleinBottle open import Cubical.HITs.RPn open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Susp open import Cubical.HITs.Join open import Cubical.HITs.Wedge open import Cubical.HITs.SmashProduct -- There's also a proof of the "3x3 lemma" for pushouts in less than -- 200LOC. In HoTT-Agda this took about 3000LOC. For details see: -- https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3 open import Cubical.HITs.Pushout -- We also defined the Hopf fibration and proved that its total space -- is S³ in about 300LOC: open import Cubical.Homotopy.Hopf open S¹Hopf -- There is also some integer cohomology: open import Cubical.ZCohomology.Everything -- To compute cohomology groups of various spaces we need a bunch of -- interesting theorems: Freudenthal suspension theorem, -- Mayer-Vietoris sequence... open import Cubical.Homotopy.Freudenthal open import Cubical.ZCohomology.MayerVietorisUnreduced ------------------------------------------------------------------------- -- The structure identity principle -- A more efficient version of finite multisets based on association lists open import Cubical.HITs.AssocList.Base -- data AssocList (A : Type) : Type where -- ⟨⟩ : AssocList A -- ⟨_,_⟩∷_ : (a : A) (n : ℕ) (xs : AssocList A) → AssocList A -- per : (a b : A) (m n : ℕ) (xs : AssocList A) -- → ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs -- agg : (a : A) (m n : ℕ) (xs : AssocList A) -- → ⟨ a , m ⟩∷ ⟨ a , n ⟩∷ xs ≡ ⟨ a , m + n ⟩∷ xs -- del : (a : A) (xs : AssocList A) → ⟨ a , 0 ⟩∷ xs ≡ xs -- trunc : (xs ys : AssocList A) (p q : xs ≡ ys) → p ≡ q -- Programming and proving is more complicated with AssocList compared -- to FMSet. This kind of example occurs everywhere in programming and -- mathematics: one representation is easier to work with, but not -- efficient, while another is efficient but difficult to work with. -- Solution: substitute using univalence substIso : {A B : Type} (P : Type → Type) (e : Iso A B) → P A → P B substIso P e = subst P (isoToPath e) -- Can transport for example Monoid structure from FMSet to AssocList -- this way, but the achieved Monoid structure is not very efficient -- to work with. A better solution is to prove that FMSet and -- AssocList are equal *as monoids*, but how to do this? -- Solution: structure identity principle (SIP) -- This is a very useful consequence of univalence open import Cubical.Foundations.SIP sip' : {ℓ : Level} {S : Type ℓ → Type ℓ} {ι : StrEquiv S ℓ} (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ S) → A ≃[ ι ] B → A ≡ B sip' = sip -- The tricky thing is to prove that (S,ι) is a univalent structure. -- Luckily we provide automation for this in the library, see for example: open import Cubical.Algebra.Monoid.Base -- Another cool application of the SIP: matrices represented as -- functions out of pairs of Fin's and vectors are equal as abelian -- groups: open import Cubical.Algebra.Matrix -- The end, back to slides!
30.805233
91
0.629329
39a88769e3a876207b8d1af3b0f2fd860796400b
1,283
agda
Agda
agda/Avionics/Probability.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
agda/Avionics/Probability.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
agda/Avionics/Probability.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} module Avionics.Probability where open import Data.Nat using (ℕ; zero; suc) open import Relation.Unary using (_∈_) open import Avionics.Real using ( ℝ; _+_; _-_; _*_; _÷_; _^_; √_; 1/_; _^2; -1/2; π; e; 2ℝ; ⟨0,∞⟩; [0,∞⟩; [0,1]) --postulate -- Vec : Set → ℕ → Set -- Mat : Set → ℕ → ℕ → Set record Dist (Input : Set) : Set where field pdf : Input → ℝ cdf : Input → ℝ pdf→[0,∞⟩ : ∀ x → pdf x ∈ [0,∞⟩ cdf→[0,1] : ∀ x → cdf x ∈ [0,1] --∫pdf≡cdf : ∫ pdf ≡ cdf --∫pdf[-∞,∞]≡1ℝ : ∫ pdf [ -∞ , ∞ ] ≡ 1ℝ record NormalDist : Set where constructor ND field μ : ℝ σ : ℝ dist : Dist ℝ dist = record { pdf = pdf ; cdf = ? ; pdf→[0,∞⟩ = ? ; cdf→[0,1] = ? } where √2π = (√ (2ℝ * π)) 1/⟨σ√2π⟩ = (1/ (σ * √2π)) pdf : ℝ → ℝ pdf x = 1/⟨σ√2π⟩ * e ^ (-1/2 * (⟨x-μ⟩÷σ ^2)) where ⟨x-μ⟩÷σ = ((x - μ) ÷ σ) --MultiNormal : ∀ {n : ℕ} → Vec ℝ n → Mat ℝ n n → Dist (Vec ℝ n) --MultiNormal {n} means cov = record -- { -- pdf = ? -- ; cdf = ? -- } --Things to prove using this approach --_ : ∀ (mean1 std1 mean2 std2 x) -- → Dist.pdf (Normal mean1 std1) x + Dist.pdf (Normal mean2 std2) x ≡ Dist.pdf (Normal (mean1 + mean2) (...))
21.745763
111
0.47311
23f78c7361920216f7bc36d72f3a782430067d85
784
agda
Agda
Cubical/Data/InfNat/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/InfNat/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/InfNat/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.InfNat.Base where open import Cubical.Data.Nat as ℕ using (ℕ) open import Cubical.Core.Primitives data ℕ+∞ : Type₀ where ∞ : ℕ+∞ fin : ℕ → ℕ+∞ suc : ℕ+∞ → ℕ+∞ suc ∞ = ∞ suc (fin n) = fin (ℕ.suc n) zero : ℕ+∞ zero = fin ℕ.zero caseInfNat : ∀ {ℓ} → {A : Type ℓ} → (aF aI : A) → ℕ+∞ → A caseInfNat aF aI (fin n) = aF caseInfNat aF aI ∞ = aI infixl 6 _+_ _+_ : ℕ+∞ → ℕ+∞ → ℕ+∞ ∞ + m = ∞ fin n + ∞ = ∞ fin n + fin m = fin (n ℕ.+ m) infixl 7 _*_ _*_ : ℕ+∞ → ℕ+∞ → ℕ+∞ fin m * fin n = fin (m ℕ.* n) ∞ * fin ℕ.zero = zero fin ℕ.zero * ∞ = zero ∞ * ∞ = ∞ ∞ * fin (ℕ.suc _) = ∞ fin (ℕ.suc _) * ∞ = ∞
21.189189
57
0.443878
0e6e6d4c1efa85657fc648cb181a7103dce2b49a
2,298
agda
Agda
vendor/stdlib/src/Data/List/Equality.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/List/Equality.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/List/Equality.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- List equality ------------------------------------------------------------------------ module Data.List.Equality where open import Data.List open import Relation.Nullary open import Relation.Binary module Equality (S : Setoid) where open Setoid S renaming (_≈_ to _≊_) infixr 5 _∷_ infix 4 _≈_ data _≈_ : List carrier → List carrier → Set where [] : [] ≈ [] _∷_ : ∀ {x xs y ys} (x≈y : x ≊ y) (xs≈ys : xs ≈ ys) → x ∷ xs ≈ y ∷ ys setoid : Setoid setoid = record { carrier = List carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = refl' ; sym = sym' ; trans = trans' } } where refl' : Reflexive _≈_ refl' {[]} = [] refl' {x ∷ xs} = refl ∷ refl' {xs} sym' : Symmetric _≈_ sym' [] = [] sym' (x≈y ∷ xs≈ys) = sym x≈y ∷ sym' xs≈ys trans' : Transitive _≈_ trans' [] [] = [] trans' (x≈y ∷ xs≈ys) (y≈z ∷ ys≈zs) = trans x≈y y≈z ∷ trans' xs≈ys ys≈zs open Setoid setoid public hiding (_≈_) module DecidableEquality (D : DecSetoid) where open DecSetoid D hiding (_≈_) open Equality setoid renaming (setoid to List-setoid) decSetoid : DecSetoid decSetoid = record { isDecEquivalence = record { isEquivalence = Setoid.isEquivalence List-setoid ; _≟_ = dec } } where dec : Decidable _≈_ dec [] [] = yes [] dec (x ∷ xs) (y ∷ ys) with x ≟ y | dec xs ys ... | yes x≈y | yes xs≈ys = yes (x≈y ∷ xs≈ys) ... | no ¬x≈y | _ = no helper where helper : ¬ _≈_ (x ∷ xs) (y ∷ ys) helper (x≈y ∷ _) = ¬x≈y x≈y ... | _ | no ¬xs≈ys = no helper where helper : ¬ _≈_ (x ∷ xs) (y ∷ ys) helper (_ ∷ xs≈ys) = ¬xs≈ys xs≈ys dec [] (y ∷ ys) = no λ() dec (x ∷ xs) [] = no λ() open DecSetoid decSetoid public module PropositionalEquality {A : Set} where open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) renaming (refl to ≡-refl) open Equality (PropEq.setoid A) public ≈⇒≡ : _≈_ ⇒ _≡_ ≈⇒≡ [] = ≡-refl ≈⇒≡ (≡-refl ∷ xs≈ys) with ≈⇒≡ xs≈ys ≈⇒≡ (≡-refl ∷ xs≈ys) | ≡-refl = ≡-refl
25.820225
72
0.477807
dfbcf7e8a17efef13e33d9812d44058cc0f7f4ef
674
agda
Agda
test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --experimental-irrelevance #-} module ShapeIrrelevantParameterNoBecauseOfRecursion where data ⊥ : Set where record ⊤ : Set where data Bool : Set where true false : Bool True : Bool → Set True false = ⊥ True true = ⊤ data D ..(b : Bool) : Set where c : True b → D b -- should fail -- Jesper, 2017-09-14: I think the definition of D is fine, but the definition -- of cast below should fail since `D a` and `D b` are different types. -- Jesper, 2018-11-15: I disagree with Jesper!2017, D should be rejected. fromD : {b : Bool} → D b → True b fromD (c p) = p cast : .(a b : Bool) → D a → D b cast _ _ x = x bot : ⊥ bot = fromD (cast true false (c _))
22.466667
78
0.651335
20ae99d8b2d4486f41f17bad0d8cfebff614daf6
2,786
agda
Agda
src/LibraBFT/Impl/IO/OBM/Properties/Start.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/IO/OBM/Properties/Start.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/IO/OBM/Properties/Start.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.Records open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.ConsensusProvider as ConsensusProvider open import LibraBFT.Impl.Consensus.Properties.ConsensusProvider as ConsensusProviderProps import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile open import LibraBFT.Impl.IO.OBM.InputOutputHandlers open import LibraBFT.Impl.IO.OBM.Start open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.NetworkMsg open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.PKCS open import Util.Prelude open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms open Invariants open RoundManagerTransProps open InitProofDefs module LibraBFT.Impl.IO.OBM.Properties.Start where module startViaConsensusProviderSpec (now : Instant) (nfl : GenKeyFile.NfLiwsVsVvPe) (txTDS : TxTypeDependentStuffForNetwork) where -- It is somewhat of an overkill to write a separate contract for the last step, -- but keeping it explicit for pedagogical reasons contract-step₁ : ∀ (tup : (NodeConfig × OnChainConfigPayload × LedgerInfoWithSignatures × SK × ProposerElection)) → EitherD-weakestPre (startViaConsensusProvider-ed.step₁ now nfl txTDS tup) (InitContract nothing) contract-step₁ (nodeConfig , payload , liws , sk , pe) = startConsensusSpec.contract' nodeConfig now payload liws sk ObmNeedFetch∙new (txTDS ^∙ ttdsnProposalGenerator) (txTDS ^∙ ttdsnStateComputer) contract' : EitherD-weakestPre (startViaConsensusProvider-ed-abs now nfl txTDS) (InitContract nothing) contract' rewrite startViaConsensusProvider-ed-abs-≡ = -- TODO-2: this is silly; perhaps we should have an EitherD-⇒-bind-const or something for when -- we don't need to know anything about the values returned by part before the bind? EitherD-⇒-bind (ConsensusProvider.obmInitialData-ed-abs nfl) (EitherD-vacuous (ConsensusProvider.obmInitialData-ed-abs nfl)) P⇒Q where P⇒Q : EitherD-Post-⇒ (const Unit) (EitherD-weakestPre-bindPost _ (InitContract nothing)) P⇒Q (Left _) _ = tt P⇒Q (Right tup') _ c refl = contract-step₁ tup'
48.034483
115
0.753769
0ece5c884cadcbc10ccb7846f8df14d3dfec964c
185
agda
Agda
Cubical/Data/DescendingList.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.DescendingList where open import Cubical.Data.DescendingList.Base public open import Cubical.Data.DescendingList.Properties public
30.833333
57
0.810811
cbc389bd2033dd620b687c3d3fd2bb7756a3339e
442
agda
Agda
test/Succeed/Issue3134.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3134.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3134.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat open import Agda.Builtin.Equality postulate ⊤ ⊥ : Set _&_ : Set → Set → Set _≤_ : Nat → Nat → Set {-# TERMINATING #-} _∣_ : Nat → Nat → Set m ∣ zero = ⊤ zero ∣ suc n = ⊥ suc m ∣ suc n = (suc m ≤ suc n) & (suc m ∣ (n - m)) variable m n : Nat postulate divide-to-nat : n ∣ m → Nat trivial : m ≡ n divide-to-nat-correct : (e : m ∣ n) → divide-to-nat e * n ≡ m divide-to-nat-correct e = trivial
18.416667
61
0.570136
1881f05bd1ec35505d7144fd0a1364127236e3c2
466
agda
Agda
test/Succeed/Issue353.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue353.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue353.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.polarity:10 #-} module Issue353 where data Func : Set₁ where K : (A : Set) → Func -- Doesn't work. module M where const : ∀ {A B : Set₁} → A → B → A const x = λ _ → x ⟦_⟧ : Func → Set → Set ⟦ K A ⟧ X = const A X data μ (F : Func) : Set where ⟨_⟩ : ⟦ F ⟧ (μ F) → μ F -- Error: μ is not strictly positive, because it occurs in the second -- argument to ⟦_⟧ in the type of the constructor ⟨_⟩ in the -- definition of μ.
21.181818
71
0.564378
dc9924299a6d2c4aab8aa21fae49aa8d8977250f
753
agda
Agda
Sets/IterativeSet.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Sets/IterativeSet.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Sets/IterativeSet.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Sets.IterativeSet where import Lvl open import Logic open import Type module _ where private variable {ℓ ℓ₁ ℓ₂} : Lvl.Level -- A model of constructive set theory (CZF) by using W-types (iterative sets). -- The interpretation of Iset being a type of sets comes from the idea that the image of `elem` is a set of elements. record Iset : Type{Lvl.𝐒(ℓ)} where constructor set inductive pattern field {Index} : Type{ℓ} elem : Index → Iset{ℓ} open Iset Iset-index-induction : ∀{P : Iset{ℓ₁} → Stmt{ℓ₂}} → (∀{A : Iset{ℓ₁}} → (∀{i : Index(A)} → P(elem(A)(i))) → P(A)) → (∀{A : Iset{ℓ₁}} → P(A)) Iset-index-induction {P = P} proof {set elem} = proof{_} \{i} → Iset-index-induction{P = P} proof {elem(i)}
32.73913
141
0.63081
101f2d65360cc65c0e445e87bb5b037c4510928a
1,684
agda
Agda
code/SizeLoop.agda
ionathanch/msc-thesis
8fe15af8f9b5021dc50bcf96665e0988abf28f3c
[ "CC-BY-4.0" ]
null
null
null
code/SizeLoop.agda
ionathanch/msc-thesis
8fe15af8f9b5021dc50bcf96665e0988abf28f3c
[ "CC-BY-4.0" ]
null
null
null
code/SizeLoop.agda
ionathanch/msc-thesis
8fe15af8f9b5021dc50bcf96665e0988abf28f3c
[ "CC-BY-4.0" ]
null
null
null
{- A counterexample from Section 5.1 of Andreas Abel's dissertation [1], showing that the types of recursive functions must be (semi-)continuous, i.e. `loop` below should be disallowed. In the example, `loop` is not used as-is, but rather the size involved is instantiated to the infinite size in order to pass in `plus2`. The conditions on ω-instantiating from John Hughes' paper [2] is essentially a stricter condition than Abel's semi-continuity on where size variables may appear in the type. [1] A Polymorphic Lambda-Calculus with Sized Higher-Order Types [2] Proving the Correctness of Reactive Systems using Sized Types -} data Size : Set where ∘ : Size ↑_ : Size → Size data Nat : Size → Set where zero : ∀ {s} → Nat (↑ s) succ : ∀ {s} → Nat s → Nat (↑ s) data NatInf : Set where ⟦_⟧ : ∀ {s} → Nat s → NatInf zero∘ : Nat (↑ ∘) zero∘ = zero {∘} shift : ∀ {s} → (NatInf → Nat (↑ (↑ s))) → NatInf → Nat (↑ s) shift f ⟦ n ⟧ with f ⟦ succ n ⟧ ... | zero = zero ... | succ m = m plus2 : NatInf → NatInf plus2 ⟦ n ⟧ = ⟦ succ (succ n) ⟧ loop : ∀ {s} → Nat s → (NatInf → Nat (↑ s)) → NatInf loop _ f with f ⟦ zero∘ ⟧ ... | zero = ⟦ zero∘ ⟧ ... | succ zero = ⟦ zero∘ ⟧ ... | succ (succ k) = loop k (shift f) {- Interpreting Nat^∞ as a size-paired natural, we need to somehow derive an infinity-instantiated version (`loopInf`) using `loop`, but we cannot produce a `NatInf → Nat (↑ s)` out of `NatInf → NatInf`: doing so amounts to proving `∃s. Nat s → ∀s. Nat s`. -} -- loop cannot be instantiated with an infinite size postulate loopInf : NatInf → (NatInf → NatInf) → NatInf uhoh : NatInf uhoh = loopInf ⟦ zero∘ ⟧ plus2
30.071429
74
0.635392
398aec7a1c4de554f55cbf0e9a1a85ef7cfdf95a
1,043
agda
Agda
src/Algebra/LabelledGraph/Reasoning.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
60
2017-12-27T14:57:04.000Z
2022-03-22T23:05:29.000Z
src/Algebra/LabelledGraph/Reasoning.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
3
2018-04-12T16:25:13.000Z
2018-06-23T13:54:02.000Z
src/Algebra/LabelledGraph/Reasoning.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
6
2017-12-17T20:48:20.000Z
2019-05-09T23:53:28.000Z
module Algebra.LabelledGraph.Reasoning where open import Algebra.Dioid open import Algebra.LabelledGraph -- Standard syntax sugar for writing equational proofs infix 4 _≈_ data _≈_ {A B eq} {d : Dioid B eq} (x y : LabelledGraph d A) : Set where prove : x ≡ y -> x ≈ y infix 1 begin_ begin_ : ∀ {A B eq} {d : Dioid B eq} {x y : LabelledGraph d A} -> x ≈ y -> x ≡ y begin prove p = p infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ {A B eq} {d : Dioid B eq} (x : LabelledGraph d A) {y z : LabelledGraph d A} -> x ≡ y -> y ≈ z -> x ≈ z _ ≡⟨ p ⟩ prove q = prove (transitivity p q) infix 3 _∎ _∎ : ∀ {A B eq} {d : Dioid B eq} (x : LabelledGraph d A) -> x ≈ x _∎ _ = prove reflexivity infixl 8 _>>_ _>>_ : ∀ {A B eq} {d : Dioid B eq} {x y z : LabelledGraph d A} -> x ≡ y -> y ≡ z -> x ≡ z _>>_ = transitivity L : ∀ {A B eq} {d : Dioid B eq} {x y z : LabelledGraph d A} {r : B} -> x ≡ y -> x [ r ]> z ≡ y [ r ]> z L = left-congruence R : ∀ {A B eq} {d : Dioid B eq} {x y z : LabelledGraph d A} {r : B} -> x ≡ y -> z [ r ]> x ≡ z [ r ]> y R = right-congruence
32.59375
113
0.563758
107e39e07959ea91c2f80a85579617eb7aaa222d
2,069
agda
Agda
agda-stdlib/src/Data/List/Kleene/AsList.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Kleene/AsList.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Kleene/AsList.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A different interface to the Kleene lists, designed to mimic -- Data.List. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Kleene.AsList where open import Level as Level using (Level) private variable a b c : Level A : Set a B : Set b C : Set c import Data.List.Kleene.Base as Kleene ------------------------------------------------------------------------ -- Here we import half of the functions from Data.KleeneList: the half -- for possibly-empty lists. open import Data.List.Kleene.Base public using ([]) renaming ( _* to List ; foldr* to foldr ; foldl* to foldl ; _++*_ to _++_ ; map* to map ; mapMaybe* to mapMaybe ; pure* to pure ; _<*>*_ to _<*>_ ; _>>=*_ to _>>=_ ; mapAccumˡ* to mapAccumˡ ; mapAccumʳ* to mapAccumʳ ; _[_]* to _[_] ; applyUpTo* to applyUpTo ; upTo* to upTo ; zipWith* to zipWith ; unzipWith* to unzipWith ; partitionSumsWith* to partitionSumsWith ; reverse* to reverse ) ------------------------------------------------------------------------ -- A pattern which mimics Data.List._∷_ infixr 5 _∷_ pattern _∷_ x xs = Kleene.∹ x Kleene.& xs ------------------------------------------------------------------------ -- The following functions change the type of the list (from ⁺ to * or vice -- versa) in Data.KleeneList, so we reimplement them here to keep the -- type the same. scanr : (A → B → B) → B → List A → List B scanr f b xs = Kleene.∹ Kleene.scanr* f b xs scanl : (B → A → B) → B → List A → List B scanl f b xs = Kleene.∹ Kleene.scanl* f b xs tails : List A → List (List A) tails xs = foldr (λ x xs → (Kleene.∹ x) ∷ xs) ([] ∷ []) (Kleene.tails* xs)
29.985507
75
0.455776
10666ba728d368d4ddbb4dbddef755e4f1c9301a
3,671
agda
Agda
examples/outdated-and-incorrect/cbs/Proof.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/cbs/Proof.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/cbs/Proof.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Proof where open import Basics hiding (_==_) open import Proc open import Path import Graph private open module G = Graph Nat open module P = Process param hiding (U; T; _!_) {- Soundness: if we get an answer there is a path Completeness: if there is a path we get an answer -} infix 18 _encodes_ data _encodes_ {G : Graph} : {x y : Nat} -> List Node -> Path G x y -> Set where nul-path : {x : Nat} -> stop :: [] encodes nul {x = x} step-path : {x y z : Nat}{xs : List Node} {step : Step G x y}{path : Path G y z} -> xs encodes path -> node y :: xs encodes step <> path test : {G : Graph}{a b c : Nat} {ab : Step G a b}{bc : Step G b c} -> node b :: node c :: stop :: [] encodes ab <> bc <> nul test = step-path (step-path nul-path) target : {G : Graph}{x y : Nat} -> Step G x y -> Nat target {y = y} _ = y encoding : {G : Graph}{x y : Nat} -> Path G x y -> List Node encoding nul = stop :: [] encoding (step <> path) = node (target step) :: encoding path lem-encode : {G : Graph}{x y : Nat}(path : Path G x y) -> encoding path encodes path lem-encode nul = nul-path lem-encode (step <> path) = step-path (lem-encode path) data WellFormed : List Node -> Set where good-stop : WellFormed (stop :: []) good-:: : forall {x xs} -> WellFormed xs -> WellFormed (node x :: xs) data MalFormed : List Node -> Set where bad-[] : MalFormed [] bad-:: : forall {x xs} -> MalFormed xs -> MalFormed (node x :: xs) bad-stop : forall {x xs} -> MalFormed (stop :: x :: xs) module Theorems (G : Graph)(start end : Nat) where mainp = main G start end Complete : Set Complete = (path : Path G start end) -> ∃ \q -> Silent q /\ mainp -! encoding path !->* q Sound : Set Sound = forall q xs -> Silent q -> WellFormed xs -> mainp -! xs !->* q -> ∃ \(path : Path G start end) -> xs encodes path Sound-Fail : Set Sound-Fail = forall q xs -> Silent q -> MalFormed xs -> mainp -! xs !->* q -> Path G start end -> False silent-edges : {a : U} -> Graph -> Proc a silent-edges [] = o silent-edges (_ :: G) = o || silent-edges G silent-silent-edges : {a : U}(G : Graph) -> Silent (silent-edges {a} G) silent-silent-edges [] = silent-o silent-silent-edges (_ :: G) = silent-|| silent-o (silent-silent-edges G) module Proofs (G : Graph) where private open module T = Theorems G complete : (start end : Nat) -> Complete start end complete x .x nul = ∃-intro q (silent-q , run) where edg₁ = {! !} edg₂ = {! !} edg₃ = silent-edges G silent-edg₃ : Silent edg₃ silent-edg₃ = silent-silent-edges G q = φ /| o || o || edg₃ silent-q : Silent q silent-q = silent-/| (silent-|| silent-o (silent-|| silent-o silent-edg₃)) rx-edg₁ : edges G -[ lift (forward stop (node x)) ]-> edg₁ rx-edg₁ = {! !} rx-edg₂ : edg₁ -[ {! !} ]-> edg₂ rx-edg₂ = {! !} run-edg₃ : φ /| o || o || edg₂ -! [] !->* φ /| o || o || edg₃ run-edg₃ = {! !} tx-batter : (n : Nat) -> if node n == node n then backward stop ! o else def (start x) -! lift (backward stop) !-> o tx-batter zero = tx-! tx-batter (suc n) = tx-batter n run : mainp x x -! stop :: [] !->* q run = (tx-/| (tx-!| (tx-def tx-!) (rx-|| (rx-def rx->) rx-edg₁))) >*> (tx-/| (tx-|! rx-o (tx-!| (tx-batter x) rx-edg₂))) >!> run-edg₃
27.601504
80
0.517298
d030e1dbec3b9dda2e98e0782c16d5980adc2d8f
312
agda
Agda
test/succeed/IndexOnBuiltin.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/succeed/IndexOnBuiltin.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/IndexOnBuiltin.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module IndexOnBuiltin where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} data Fin : Nat -> Set where fz : {n : Nat} -> Fin (suc n) fs : {n : Nat} -> Fin n -> Fin (suc n) f : Fin 2 -> Fin 1 f fz = fz f (fs i) = i
16.421053
40
0.538462
cb0cefeb35679421ec05bde7c494006e45cdebf0
1,384
agda
Agda
test/Succeed/Issue2101.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2101.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2101.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2016-07-17 issue 2101 reported by Serge Mechveliani. -- It should be possible to place a single function with a where block -- inside `abstract`. -- This will work if type signatures inside a where-block -- are considered private, since in private type signatures, -- abstract definitions are transparent. -- (Unlike in public type signatures.) record Wrap (A : Set) : Set where field unwrap : A postulate P : ∀{A : Set} → A → Set module AbstractPrivate (A : Set) where abstract B : Set B = Wrap A postulate b : B private -- this makes abstract defs transparent in type signatures postulate test : P (Wrap.unwrap b) -- should succeed abstract unnamedWhere : (A : Set) → Set unnamedWhere A = A where -- the following definitions are private! B : Set B = Wrap A postulate b : B test : P (Wrap.unwrap b) -- should succeed namedWherePrivate : (A : Set) → Set namedWherePrivate A = A module MP where B : Set B = Wrap A private postulate b : B test : P (Wrap.unwrap b) -- should succeed namedWhereAnonymous : (A : Set) → Set namedWhereAnonymous A = A module _ where -- the definitions in this module are not private! B : Set B = Wrap A private postulate b : B test : P (Wrap.unwrap b) -- should succeed
21.968254
70
0.631503
395aa45da6e443c6d6a7400031f40cf1c078fbd9
1,937
agda
Agda
src/Examples/Sorting/Comparable.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Examples/Sorting/Comparable.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Examples/Sorting/Comparable.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --rewriting #-} open import Calf.CostMonoid open import Data.Nat using (ℕ) module Examples.Sorting.Comparable (costMonoid : CostMonoid) (fromℕ : ℕ → CostMonoid.ℂ costMonoid) where open CostMonoid costMonoid using (ℂ) open import Calf costMonoid open import Calf.Types.Bool open import Calf.Types.Bounded costMonoid open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning) open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃) open import Function record Comparable : Set₁ where field A : tp pos _≤_ : val A → val A → Set _≤ᵇ_ : val A → val A → cmp (F bool) ≤ᵇ-reflects-≤ : ∀ {x y b} → ◯ ((x ≤ᵇ y) ≡ ret b → Reflects (x ≤ y) b) ≤-refl : Reflexive _≤_ ≤-trans : Transitive _≤_ ≤-total : Total _≤_ ≤-antisym : Antisymmetric _≡_ _≤_ h-cost : (x y : val A) → IsBounded bool (x ≤ᵇ y) (fromℕ 1) NatComparable : Comparable NatComparable = record { A = nat ; _≤_ = _≤_ ; _≤ᵇ_ = λ x y → step (F bool) (fromℕ 1) (ret (x ≤ᵇ y)) ; ≤ᵇ-reflects-≤ = reflects ; ≤-refl = ≤-refl ; ≤-trans = ≤-trans ; ≤-total = ≤-total ; ≤-antisym = ≤-antisym ; h-cost = λ _ _ → bound/relax (λ u → CostMonoid.≤-reflexive costMonoid (CostMonoid.+-identityʳ costMonoid (fromℕ 1))) (bound/step (fromℕ 1) (CostMonoid.zero costMonoid) bound/ret) } where open import Calf.Types.Nat open import Data.Nat open import Data.Nat.Properties ret-injective : ∀ {𝕊 v₁ v₂} → ret {U (meta 𝕊)} v₁ ≡ ret {U (meta 𝕊)} v₂ → v₁ ≡ v₂ ret-injective {𝕊} = Eq.cong (λ e → bind {U (meta 𝕊)} (meta 𝕊) e id) reflects : ∀ {m n b} → ◯ (step (F bool) (fromℕ 1) (ret (m ≤ᵇ n)) ≡ ret {bool} b → Reflects (m ≤ n) b) reflects {m} {n} {b} u h with ret-injective (Eq.subst (_≡ ret b) (step/ext (F bool) (ret (m ≤ᵇ n)) (fromℕ 1) u) h) ... | refl = ≤ᵇ-reflects-≤ m n
31.754098
118
0.617966
cb871915319534c4077375a3c69f969df259fc6c
662
agda
Agda
test/Succeed/Issue2484-3.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue2484-3.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2484-3.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module _ (_ : Set) where open import Agda.Builtin.Size postulate I : Set record ∃ (B : I → Set) : Set where constructor _,_ field proj₁ : I proj₂ : B proj₁ mutual data P (i : Size) (x y : I) : Set where ⟨_⟩ : ∃ (Q i x) → P i x y record Q (i : Size) (x y : I) : Set where coinductive field force : {j : Size< i} → P j x y postulate map : (B : I → Set) → (∀ x → B x → B x) → ∃ B → ∃ B lemma : ∀ x y i → Q i x y → Q i x y p : ∀ x i → P i x x q′ : ∀ x i → ∃ λ y → Q i x y q : ∀ x i → Q i x x q′ x i = x , q x i p x i = ⟨ map _ (λ y → lemma x y _) (q′ x _) ⟩ Q.force (q x i) {j} = p _ _
18.914286
60
0.453172
dcb6e3331b852ada164f61679cbde3736594f220
71
agda
Agda
test/Fail/IndentedCheckingMessages.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/IndentedCheckingMessages.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/IndentedCheckingMessages.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module IndentedCheckingMessages where import A.M Foo : Set Foo = Foo
10.142857
37
0.774648
10f3954b1bca967aad685d54960e8cdfd9daeb1e
30
agda
Agda
Categories/Topos.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Topos.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Topos.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
module Categories.Topos where
15
29
0.866667
23f2816284495c7828793df5804b81a580c84e57
7,732
agda
Agda
README/DependentlyTyped/NBE.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
5
2020-04-16T12:14:44.000Z
2020-07-08T22:51:36.000Z
README/DependentlyTyped/NBE.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
README/DependentlyTyped/NBE.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Normalisation by evaluation ------------------------------------------------------------------------ import Axiom.Extensionality.Propositional as E import Level open import Data.Universe -- The code makes use of the assumption that propositional equality of -- functions is extensional. module README.DependentlyTyped.NBE (Uni₀ : Universe Level.zero Level.zero) (ext : E.Extensionality Level.zero Level.zero) where open import Data.Empty open import Data.Product renaming (curry to c) open import deBruijn.Substitution.Data open import Function hiding (_∋_) renaming (const to k) import README.DependentlyTyped.NormalForm as NF open NF Uni₀ renaming ([_] to [_]n) import README.DependentlyTyped.Term as Term; open Term Uni₀ import README.DependentlyTyped.Term.Substitution as S; open S Uni₀ import Relation.Binary.PropositionalEquality as P open import Relation.Nullary using (¬_) open P.≡-Reasoning -- The values that are used by the NBE algorithm. import README.DependentlyTyped.NBE.Value as Value open Value Uni₀ public -- Weakening for the values. import README.DependentlyTyped.NBE.Weakening as Weakening open Weakening Uni₀ ext public -- Application. infix 9 [_]_·̌_ [_]_·̌_ : ∀ {Γ sp₁ sp₂} σ → V̌alue Γ (π sp₁ sp₂ , σ) → (v : V̌alue Γ (fst σ)) → V̌alue Γ (snd σ /̂ ŝub ⟦̌ v ⟧) [ _ ] f ·̌ v = proj₁ f ε v abstract -- Lifting can be expressed using žero. ∘̂-ŵk-▻̂-žero : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) σ → ρ̂ ∘̂ ŵk ▻̂[ σ ] ⟦ žero _ (proj₂ σ /̂I ρ̂) ⟧n ≅-⇨̂ ρ̂ ↑̂ σ ∘̂-ŵk-▻̂-žero ρ̂ σ = begin [ ρ̂ ∘̂ ŵk ▻̂ ⟦ žero _ _ ⟧n ] ≡⟨ ▻̂-cong P.refl P.refl (ňeutral-to-normal-identity _ (var zero)) ⟩ [ ρ̂ ∘̂ ŵk ▻̂ ⟦ var zero ⟧ ] ≡⟨ P.refl ⟩ [ ρ̂ ↑̂ ] ∎ mutual -- Evaluation. eval : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ → Sub V̌al ρ̂ → V̌alue Δ (σ /̂ ρ̂) eval (var x) ρ = x /∋ ρ eval (ƛ t) ρ = (eval[ƛ t ] ρ) , eval[ƛ t ] ρ well-behaved eval (t₁ · t₂) ρ = eval[ t₁ · t₂ ] ρ -- Some abbreviations. eval[ƛ_] : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} → Γ ▻ σ ⊢ τ → Sub V̌al ρ̂ → V̌alue-π Δ _ _ (IType-π σ τ /̂I ρ̂) eval[ƛ t ] ρ Γ₊ v = eval t (V̌al-subst.wk-subst₊ Γ₊ ρ ▻ v) eval[_·_] : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ (π sp₁ sp₂ , σ) → (t₂ : Γ ⊢ fst σ) → Sub V̌al ρ̂ → V̌alue Δ (snd σ /̂ ŝub ⟦ t₂ ⟧ ∘̂ ρ̂) eval[_·_] {σ = σ} t₁ t₂ ρ = cast ([ σ /I ρ ] eval t₁ ρ ·̌ eval t₂ ρ) where cast = P.subst (λ v → V̌alue _ (snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v)) (≅-Value-⇒-≡ $ P.sym $ eval-lemma t₂ ρ) abstract -- The ƛ case is well-behaved. eval[ƛ_]_well-behaved : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ▻ σ ⊢ τ) (ρ : Sub V̌al ρ̂) → W̌ell-behaved _ _ (IType-π σ τ /I ρ) (eval[ƛ t ] ρ) eval[ƛ_]_well-behaved {σ = σ} {τ = τ} t ρ Γ₊ v = let υ = IType-π σ τ /I ρ in begin [ (⟦̌ υ ∣ eval[ƛ t ] ρ ⟧-π /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ] ≡⟨ ˢ-cong (/̂Val-cong (P.sym $ eval-lemma-ƛ t ρ) P.refl) P.refl ⟩ [ (c ⟦ t ⟧ /̂Val ⟦ ρ ⟧⇨ ∘̂ ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ] ≡⟨ P.refl ⟩ [ ⟦ t ⟧ /̂Val (⟦ ρ ⟧⇨ ∘̂ ŵk₊ Γ₊ ▻̂ ⟦̌ v ⟧) ] ≡⟨ eval-lemma t _ ⟩ [ ⟦̌ eval t (V̌al-subst.wk-subst₊ Γ₊ ρ ▻ v) ⟧ ] ∎ -- An unfolding lemma. eval-· : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ) (t₂ : Γ ⊢ fst σ) (ρ : Sub V̌al ρ̂) → eval[ t₁ · t₂ ] ρ ≅-V̌alue [ σ /I ρ ] eval t₁ ρ ·̌ eval t₂ ρ eval-· {σ = σ} t₁ t₂ ρ = drop-subst-V̌alue (λ v → snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v) (≅-Value-⇒-≡ $ P.sym $ eval-lemma t₂ ρ) -- The evaluator is correct (with respect to the standard -- semantics). eval-lemma : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ σ) (ρ : Sub V̌al ρ̂) → ⟦ t ⟧ /Val ρ ≅-Value ⟦̌ eval t ρ ⟧ eval-lemma (var x) ρ = V̌al-subst./̂∋-⟦⟧⇨ x ρ eval-lemma (ƛ t) ρ = eval-lemma-ƛ t ρ eval-lemma (_·_ {σ = σ} t₁ t₂) ρ = begin [ ⟦ t₁ · t₂ ⟧ /Val ρ ] ≡⟨ P.refl ⟩ [ (⟦ t₁ ⟧ /Val ρ) ˢ (⟦ t₂ ⟧ /Val ρ) ] ≡⟨ ˢ-cong (eval-lemma t₁ ρ) (eval-lemma t₂ ρ) ⟩ [ ⟦̌_⟧ {σ = σ /I ρ} (eval t₁ ρ) ˢ ⟦̌ eval t₂ ρ ⟧ ] ≡⟨ proj₂ (eval t₁ ρ) ε (eval t₂ ρ) ⟩ [ ⟦̌ [ σ /I ρ ] eval t₁ ρ ·̌ eval t₂ ρ ⟧ ] ≡⟨ ⟦̌⟧-cong (P.sym $ eval-· t₁ t₂ ρ) ⟩ [ ⟦̌ eval[ t₁ · t₂ ] ρ ⟧ ] ∎ private eval-lemma-ƛ : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ▻ σ ⊢ τ) (ρ : Sub V̌al ρ̂) → ⟦ ƛ t ⟧ /Val ρ ≅-Value ⟦̌ IType-π σ τ /I ρ ∣ eval[ƛ t ] ρ ⟧-π eval-lemma-ƛ {σ = σ} {τ = τ} t ρ = let υ = IType-π σ τ /I ρ ρ↑ = V̌al-subst.wk-subst₊ (σ / ρ ◅ ε) ρ ▻ v̌ar ⊙ zero in begin [ c ⟦ t ⟧ /Val ρ ] ≡⟨ P.refl ⟩ [ c (⟦ t ⟧ /̂Val ⟦ ρ ⟧⇨ ↑̂) ] ≡⟨ curry-cong $ /̂Val-cong (P.refl {x = [ ⟦ t ⟧ ]}) (P.sym $ ∘̂-ŵk-▻̂-žero ⟦ ρ ⟧⇨ _) ⟩ [ c (⟦ t ⟧ /Val ρ↑) ] ≡⟨ curry-cong (eval-lemma t ρ↑) ⟩ [ c ⟦̌ eval t ρ↑ ⟧ ] ≡⟨ P.sym $ unfold-⟦̌∣⟧-π υ (eval[ƛ t ] ρ) ⟩ [ ⟦̌ υ ∣ eval[ƛ t ] ρ ⟧-π ] ∎ -- Normalisation. normalise : ∀ {Γ σ} → Γ ⊢ σ → Γ ⊢ σ ⟨ no ⟩ normalise t = řeify _ (eval t V̌al-subst.id) -- Normalisation is semantics-preserving. normalise-lemma : ∀ {Γ σ} (t : Γ ⊢ σ) → ⟦ t ⟧ ≅-Value ⟦ normalise t ⟧n normalise-lemma t = eval-lemma t V̌al-subst.id -- Some congruence lemmas. ·̌-cong : ∀ {Γ₁ sp₁₁ sp₂₁ σ₁} {f₁ : V̌alue Γ₁ (π sp₁₁ sp₂₁ , σ₁)} {v₁ : V̌alue Γ₁ (fst σ₁)} {Γ₂ sp₁₂ sp₂₂ σ₂} {f₂ : V̌alue Γ₂ (π sp₁₂ sp₂₂ , σ₂)} {v₂ : V̌alue Γ₂ (fst σ₂)} → σ₁ ≅-IType σ₂ → _≅-V̌alue_ {σ₁ = -, σ₁} f₁ {σ₂ = -, σ₂} f₂ → v₁ ≅-V̌alue v₂ → [ σ₁ ] f₁ ·̌ v₁ ≅-V̌alue [ σ₂ ] f₂ ·̌ v₂ ·̌-cong P.refl P.refl P.refl = P.refl eval-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {t₁ : Γ₁ ⊢ σ₁} {ρ₁ : Sub V̌al ρ̂₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {t₂ : Γ₂ ⊢ σ₂} {ρ₂ : Sub V̌al ρ̂₂} → t₁ ≅-⊢ t₂ → ρ₁ ≅-⇨ ρ₂ → eval t₁ ρ₁ ≅-V̌alue eval t₂ ρ₂ eval-cong P.refl P.refl = P.refl normalise-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁} {Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂} → t₁ ≅-⊢ t₂ → normalise t₁ ≅-⊢n normalise t₂ normalise-cong P.refl = P.refl abstract -- Note that we can /not/ prove that normalise takes semantically -- equal terms to identical normal forms, assuming extensionality -- and the existence of a universe code which decodes to an empty -- type: normal-forms-not-unique : E.Extensionality Level.zero Level.zero → (∃ λ (bot : U₀) → ¬ El₀ bot) → ¬ (∀ {Γ σ} (t₁ t₂ : Γ ⊢ σ) → ⟦ t₁ ⟧ ≅-Value ⟦ t₂ ⟧ → normalise t₁ ≅-⊢n normalise t₂) normal-forms-not-unique ext (bot , empty) hyp = ⊥-elim (x₁≇x₂ x₁≅x₂) where Γ : Ctxt Γ = ε ▻ (⋆ , _) ▻ (⋆ , _) ▻ (el , k bot) x₁ : Γ ∋ (⋆ , _) x₁ = suc (suc zero) x₂ : Γ ∋ (⋆ , _) x₂ = suc zero x₁≇x₂ : ¬ (ne ⋆ (var x₁) ≅-⊢n ne ⋆ (var x₂)) x₁≇x₂ () ⟦x₁⟧≡⟦x₂⟧ : ⟦ var x₁ ⟧ ≅-Value ⟦ var x₂ ⟧ ⟦x₁⟧≡⟦x₂⟧ = P.cong [_] (ext λ γ → ⊥-elim $ empty $ proj₂ γ) norm-x₁≅norm-x₂ : normalise (var x₁) ≅-⊢n normalise (var x₂) norm-x₁≅norm-x₂ = hyp (var x₁) (var x₂) ⟦x₁⟧≡⟦x₂⟧ lemma : (x : Γ ∋ (⋆ , _)) → normalise (var x) ≅-⊢n ne ⋆ (var x) lemma x = begin [ normalise (var x) ]n ≡⟨ P.refl ⟩ [ ne ⋆ (x /∋ V̌al-subst.id) ]n ≡⟨ ne-cong $ ≅-Value-⋆-⇒-≅-⊢n $ V̌al-subst./∋-id x ⟩ [ ne ⋆ (var x) ]n ∎ x₁≅x₂ : ne ⋆ (var x₁) ≅-⊢n ne ⋆ (var x₂) x₁≅x₂ = begin [ ne ⋆ (var x₁) ]n ≡⟨ P.sym $ lemma x₁ ⟩ [ normalise (var x₁) ]n ≡⟨ norm-x₁≅norm-x₂ ⟩ [ normalise (var x₂) ]n ≡⟨ lemma x₂ ⟩ [ ne ⋆ (var x₂) ]n ∎
35.46789
125
0.474392
4a6e719d59c1cdf7109b53da90597f880b8bcb25
1,483
agda
Agda
notes/FOT/FOTC/Program/Mirror/Induction/InductionPrinciples.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Program/Mirror/Induction/InductionPrinciples.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Program/Mirror/Induction/InductionPrinciples.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Induction principles for Tree and Forest ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.Induction.InductionPrinciples where open import FOTC.Base open import FOTC.Base.List open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- These induction principles *not cover* the mutual structure of the -- types Tree and Rose (Bertot and Casterán, 2004, p. 401). -- Induction principle for Tree. Tree-ind : (A : D → Set) → (∀ d {ts} → Forest ts → A (node d ts)) → ∀ {t} → Tree t → A t Tree-ind A h (tree d Fts) = h d Fts -- Induction principle for Forest. Forest-ind : (A : D → Set) → A [] → (∀ {t ts} → Tree t → Forest ts → A ts → A (t ∷ ts)) → ∀ {ts} → Forest ts → A ts Forest-ind A A[] h fnil = A[] Forest-ind A A[] h (fcons Tt Fts) = h Tt Fts (Forest-ind A A[] h Fts) ------------------------------------------------------------------------------ -- References -- -- Bertot, Yves and Castéran, Pierre (2004). Interactive Theorem -- Proving and Program Development. Coq’Art: The Calculus of Inductive -- Constructions. Springer.
37.075
78
0.47269
d0c0673d7807830d72daa03b51cea3fc559f057b
326
agda
Agda
README.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
13
2017-05-01T16:45:41.000Z
2022-01-17T03:33:12.000Z
README.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
18
2017-03-08T14:33:10.000Z
2017-12-18T16:34:21.000Z
README.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
2
2017-03-30T16:41:56.000Z
2017-12-01T17:01:25.000Z
open import Data.Nat using ( ℕ ) module README ( n : ℕ ) where ------------------------------------------------------------------------------ -- Agda-Prop Library. -- Deep Embedding for Propositional Logic. ------------------------------------------------------------------------------ open import Data.PropFormula n public
32.6
78
0.377301
dc90a3f57fee49eafa8283522ef59dee01f7b1d5
2,216
agda
Agda
Syntax/Implication.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Syntax/Implication.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Syntax/Implication.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
-- Example: -- postulate ℓ : Lvl.Level -- postulate A B C D : Type{ℓ} -- postulate a : A -- postulate ab : A → B -- postulate bc : B → C -- postulate cd : C → D -- -- ad : A → D -- ad = -- A ⇒-[ ab ] -- B ⇒-[ bc ] -- C ⇒-[ cd ] -- D ⇒-end -- -- d : D -- d = -- a ⇒ -- A ⇒-[ ab ] -- B ⇒-[ bc ] -- C ⇒-[ cd ] -- D ⇒-end module Syntax.Implication where open import Functional using (const ; id ; _∘_ ; _∘₂_ ; _∘₃_ ; swap) open import Logic.Propositional import Lvl import Syntax.Implication.Dependent as Dependent open import Type private variable ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Lvl.Level open Dependent using (_⇒-end ; _⇒_) public _⇒-start_ : ∀{X : Type{ℓ₁}}{Y : Type{ℓ₂}} → X → (X → Y) → Y _⇒-start_ x xy = xy x infixr 0.98 _⇒-start_ {-# INLINE _⇒-start_ #-} _⇒-[_]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}}{Z : Type{ℓ₃}} → (X → Y) → (Y → Z) → (X → Z) _⇒-[_]_ _ = swap(_∘_) infixr 0.98 _⇒-[_]_ {-# INLINE _⇒-[_]_ #-} _⇒-[]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}} → (X → Y) → (X → Y) _⇒-[]_ _ = id infixr 0.98 _⇒-[]_ {-# INLINE _⇒-[]_ #-} •_•_⇒₂-[_]_ : ∀{X₁ : Type{ℓ₁}}{X₂ : Type{ℓ₂}}{Y : Type{ℓ₃}}{Z : Type{ℓ₄}} → X₁ → X₂ → (X₁ → X₂ → Y) → (Y → Z) → Z •_•_⇒₂-[_]_ x₁ x₂ g f = (f ∘₂ g) x₁ x₂ infixr 0.97 •_•_⇒₂-[_]_ {-# INLINE •_•_⇒₂-[_]_ #-} •_•_•_⇒₃-[_]_ : ∀{X₁ : Type{ℓ₁}}{X₂ : Type{ℓ₂}}{X₃ : Type{ℓ₃}}{Y : Type{ℓ₄}}{Z : Type{ℓ₅}} → X₁ → X₂ → X₃ → (X₁ → X₂ → X₃ → Y) → (Y → Z) → Z •_•_•_⇒₃-[_]_ x₁ x₂ x₃ g f = (f ∘₃ g) x₁ x₂ x₃ infixr 0.97 •_•_•_⇒₃-[_]_ {-# INLINE •_•_•_⇒₃-[_]_ #-} _⇔-end : ∀(X : Type{ℓ₁}) → (X ↔ X) _⇔-end _ = [↔]-intro id id infixr 0.99 _⇔-end {-# INLINE _⇔-end #-} _⇔_ = Functional.apply infixl 0.97 _⇔_ {-# INLINE _⇔_ #-} _⇔-[_]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}}{Z : Type{ℓ₃}} → (X ↔ Y) → (Y ↔ Z) → (X ↔ Z) _⇔-[_]_ _ ([↔]-intro pₗ pᵣ) ([↔]-intro qₗ qᵣ) = [↔]-intro (pₗ ∘ qₗ) (qᵣ ∘ pᵣ) infixr 0.98 _⇔-[_]_ {-# INLINE _⇔-[_]_ #-} _⇔-[_]-sym_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}}{Z : Type{ℓ₃}} → (Y ↔ X) → (Y ↔ Z) → (X ↔ Z) _⇔-[_]-sym_ X ([↔]-intro pₗ pᵣ) q = X ⇔-[ ([↔]-intro pᵣ pₗ) ] q infixr 0.98 _⇔-[_]-sym_ {-# INLINE _⇔-[_]-sym_ #-} _⇔-[]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}} → (X ↔ Y) → (X ↔ Y) _⇔-[]_ _ = id infixr 0.98 _⇔-[]_ {-# INLINE _⇔-[]_ #-}
26.698795
140
0.466606
230a2144d37701d0bd970977aae5530d7fda0f97
8,258
agda
Agda
LibraBFT/Abstract/Records.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Abstract/Records.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Abstract/Records.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Abstract.Types.EpochConfig open import LibraBFT.Base.Types open import LibraBFT.Lemmas open import LibraBFT.Prelude open WithAbsVote -- This module defines abstract records (the initial or "genesis" record, blocks, and quorum -- certificates), along with related definitions and properties. module LibraBFT.Abstract.Records (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) -- Needed to prove ≟Block and ≈?QC (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Types UID NodeId open EpochConfig 𝓔 -- Abstract blocks do /not/ need to carry the state hash. Since the -- state hash of a concrete block is supposed to be hashed in the -- UID of an abstract one; the connection between states is implicit. -- Our proofs all work modulo injectivity of UID anyway. record Block : Set where constructor Block∙new field bRound : Round bId : UID bPrevQC : Maybe UID -- 'nothing' indicates it extends the genesis block. open Block public Block-η : {b b' : Block} → bRound b ≡ bRound b' → bId b ≡ bId b' → bPrevQC b ≡ bPrevQC b' → b ≡ b' Block-η refl refl refl = refl -- We define a Vote as an AbsVoteData applied -- to the correct parameters; This helps in defining -- and manipulating the 𝓥 vote evidence predicate. Vote : Set Vote = AbsVoteData UID NodeId 𝓔 vRound : Vote → Round vRound = abs-vRound vMember : Vote → EpochConfig.Member 𝓔 vMember = abs-vMember vBlockUID : Vote → UID vBlockUID = abs-vBlockUID Vote-η : {v v' : Vote} → vRound v ≡ vRound v' → vMember v ≡ vMember v' → vBlockUID v ≡ vBlockUID v' → v ≡ v' Vote-η refl refl refl = refl -- * Quorum Certificates -- -- A valid quorum certificate contains at least 'QuorumSize ec' -- votes from different authors. record QC : Set where constructor QC∙new field qRound : Round qCertBlockId : UID -- this is the id for the block it certifies. qVotes : List Vote -- The voters form a quorum qVotes-C1 : IsQuorum (List-map vMember qVotes) -- All votes are for the same blockId qVotes-C2 : All (λ v → vBlockUID v ≡ qCertBlockId) qVotes -- Likewise for rounds qVotes-C3 : All (λ v → vRound v ≡ qRound) qVotes -- And we have evidence for all votes qVotes-C4 : All 𝓥 qVotes open QC public ------------------------ -- QC's make a setoid -- ------------------------ -- Two QC's are said to be equivalent if they have the same ID; -- that is, they certify the same block. As we are talking about -- /abstract/ QCs, we have proofs that both have at least QuorumSize -- votes for /the same block/! -- -- It might be tempting to want qRound q₀ ≡ qRound q₁ in here, -- but the proof of ←-≈Rec in LibraBFT.Abstract.Records.Extends -- would be impossible. _≈QC_ : QC → QC → Set q₀ ≈QC q₁ = qCertBlockId q₀ ≡ qCertBlockId q₁ _≈QC?_ : (q₀ q₁ : QC) → Dec (q₀ ≈QC q₁) q₀ ≈QC? q₁ with qCertBlockId q₀ ≟UID qCertBlockId q₁ ...| yes refl = yes refl ...| no neq = no λ x → neq x ≈QC-refl : Reflexive _≈QC_ ≈QC-refl = refl ≈QC-sym : Symmetric _≈QC_ ≈QC-sym refl = refl ≈QC-trans : Transitive _≈QC_ ≈QC-trans refl x = x QC-setoid : Setoid ℓ0 ℓ0 QC-setoid = record { Carrier = QC ; _≈_ = _≈QC_ ; isEquivalence = record { refl = λ {q} → ≈QC-refl {q} ; sym = λ {q} {u} → ≈QC-sym {q} {u} ; trans = λ {q} {u} {l} → ≈QC-trans {q} {u} {l} } } -- Accessing common fields in different Records types is a nuissance; yet, Blocks, -- votes and QC's all have three important common fields: author, round and maybe the -- ID of a previous record. Therefore we declare a type-class that provide "getters" -- for commonly used fields. record HasRound (A : Set) : Set where constructor is-librabft-record field getRound : A → Round open HasRound {{...}} public instance block-is-record : HasRound Block block-is-record = is-librabft-record bRound vote-is-record : HasRound Vote vote-is-record = is-librabft-record vRound qc-is-record : HasRound QC qc-is-record = is-librabft-record qRound _≟Block_ : (b₀ b₁ : Block) → Dec (b₀ ≡ b₁) b₀ ≟Block b₁ with bRound b₀ ≟ bRound b₁ ...| no neq = no λ x → neq (cong bRound x) ...| yes r≡ with (bId b₀) ≟UID (bId b₁) ...| no neq = no λ x → neq (cong bId x) ...| yes i≡ with Maybe-≡-dec {A = UID} _≟UID_ (bPrevQC b₀) (bPrevQC b₁) ...| no neq = no λ x → neq (cong bPrevQC x) ...| yes p≡ = yes (Block-η r≡ i≡ p≡) qcVotes : QC → List Vote qcVotes = qVotes -- Now we can state whether an author has voted in a given QC. _∈QC_ : Member → QC → Set a ∈QC qc = Any (λ v → vMember v ≡ a) (qcVotes qc) ∈QC-Member : ∀{α}(q : QC)(v : α ∈QC q) → α ≡ vMember (List-lookup (qcVotes q) (Any-index v)) ∈QC-Member {α} q v = aux v where aux : ∀{vs}(p : Any (λ v → vMember v ≡ α) vs) → α ≡ vMember (List-lookup vs (Any-index p)) aux (here px) = sym px aux (there p) = aux p -- Gets the vote of a ∈QC -- TODO-1: make q explicit; a implicit ∈QC-Vote : {a : Member} (q : QC) → (a ∈QC q) → Vote ∈QC-Vote q a∈q = Any-lookup a∈q ∈QC-Vote-correct : ∀ q → {a : Member} → (p : a ∈QC q) → (∈QC-Vote {a} q p) ∈ qcVotes q ∈QC-Vote-correct q a∈q = Any-lookup-correct a∈q -- Same vote in two QC's means the QCs are equivalent ∈QC-Vote-≈ : {v : Vote}{q q' : QC} → v ∈ qcVotes q → v ∈ qcVotes q' → q ≈QC q' ∈QC-Vote-≈ {v} {q} {q'} vq vq' = trans (sym (All-lookup (qVotes-C2 q) vq)) (All-lookup (qVotes-C2 q') vq') -- A record is either one of the types introduced above or the initial/genesis record. data Record : Set where I : Record B : Block → Record Q : QC → Record -- Records are equivalent if and only if they are either not -- QCs and propositionally equal or they are equivalent qcs. data _≈Rec_ : Record → Record → Set where eq-I : I ≈Rec I eq-Q : ∀{q₀ q₁} → q₀ ≈QC q₁ → Q q₀ ≈Rec Q q₁ eq-B : ∀{b₀ b₁} → b₀ ≡ b₁ → B b₀ ≈Rec B b₁ ≈Rec-refl : Reflexive _≈Rec_ ≈Rec-refl {I} = eq-I ≈Rec-refl {B x} = eq-B refl ≈Rec-refl {Q x} = eq-Q (≈QC-refl {x}) ≈Rec-sym : Symmetric _≈Rec_ ≈Rec-sym {I} eq-I = eq-I ≈Rec-sym {B x} (eq-B prf) = eq-B (sym prf) ≈Rec-sym {Q x} {Q y} (eq-Q prf) = eq-Q (≈QC-sym {x} {y} prf) ≈Rec-trans : Transitive _≈Rec_ ≈Rec-trans {I} eq-I eq-I = eq-I ≈Rec-trans {B x} (eq-B p₀) (eq-B p₁) = eq-B (trans p₀ p₁) ≈Rec-trans {Q x} {Q y} {Q z} (eq-Q p₀) (eq-Q p₁) = eq-Q (≈QC-trans {x} {y} {z} p₀ p₁) Rec-setoid : Setoid ℓ0 ℓ0 Rec-setoid = record { Carrier = Record ; _≈_ = _≈Rec_ ; isEquivalence = record { refl = λ {q} → ≈Rec-refl {q} ; sym = λ {q} {u} → ≈Rec-sym {q} {u} ; trans = λ {q} {u} {l} → ≈Rec-trans {q} {u} {l} } } -- Record unique ids carry whether the abstract id was assigned -- to a QC or a Block; this can be useful to avoid having to deal -- with 'blockId ≟ initialAgreedID' in order to decide whether -- a block is the genesis block or not. data TypedUID : Set where id-I : TypedUID id-B∨Q : UID -> TypedUID id-I≢id-B∨Q : ∀{id} → id-I ≡ id-B∨Q id → ⊥ id-I≢id-B∨Q () id-B∨Q-inj : ∀{u₁ u₂} → id-B∨Q u₁ ≡ id-B∨Q u₂ → u₁ ≡ u₂ id-B∨Q-inj refl = refl uid : Record → TypedUID uid I = id-I uid (B b) = id-B∨Q (bId b) uid (Q q) = id-B∨Q (qCertBlockId q) -- Each record has a round round : Record → Round round I = 0 round (B b) = getRound b round (Q q) = getRound q
32.511811
111
0.581012
189b4fb2aeabf0ad7fcda56f7107fe1841b0f6a6
10,168
agda
Agda
src/M.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/M.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/M.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- M-types ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types #-} open import Equality module M {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq import Equivalence eq as Eq open import Function-universe eq hiding (_∘_) open import Function-universe.Size eq open import H-level eq open import H-level.Closure eq open import Prelude open import Prelude.Size ------------------------------------------------------------------------ -- M-types mutual data M {a b} (A : Type a) (B : A → Type b) (i : Size) : Type (a ⊔ b) where dns : (x : A) (f : B x → M′ A B i) → M A B i record M′ {a b} (A : Type a) (B : A → Type b) (i : Size) : Type (a ⊔ b) where coinductive field force : {j : Size< i} → M A B j open M′ public -- Projections. pɐǝɥ : ∀ {a b i} {A : Type a} {B : A → Type b} → M A B i → A pɐǝɥ (dns x f) = x lıɐʇ : ∀ {a b i} {j : Size< i} {A : Type a} {B : A → Type b} → (x : M A B i) → B (pɐǝɥ x) → M A B j lıɐʇ (dns x f) y = force (f y) ------------------------------------------------------------------------ -- Equality -- M-types are isomorphic to Σ-types containing M-types (almost). M-unfolding : ∀ {a b} {i} {A : Type a} {B : A → Type b} → M A B i ↔ ∃ λ (x : A) → B x → M′ A B i M-unfolding = record { surjection = record { logical-equivalence = record { to = λ { (dns x f) → x , f } ; from = uncurry dns } ; right-inverse-of = refl } ; left-inverse-of = λ { (dns x f) → refl (dns x f) } } abstract -- Equality between elements of an M-type can be proved using a pair -- of equalities (assuming extensionality and a kind of η law). -- -- Note that, because the equality type former is not sized, this -- lemma is perhaps not very useful. M-≡,≡↔≡ : ∀ {a b i} {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → (∀ {x} {f g : B x → M′ A B i} → _≡_ {A = B x → {j : Size< i} → M A B j} (force ∘ f) (force ∘ g) ↔ f ≡ g) → ∀ {x y} {f : B x → M′ A B i} {g : B y → M′ A B i} → (∃ λ (p : x ≡ y) → ∀ b {j : Size< i} → force (f b) {j = j} ≡ force (g (subst B p b))) ↔ _≡_ {A = M A B i} (dns x f) (dns y g) M-≡,≡↔≡ {a} {i = i} {A} {B} ext η {x} {y} {f} {g} = (∃ λ (p : x ≡ y) → ∀ b {j : Size< i} → force (f b) {j = j} ≡ force (g (subst B p b))) ↝⟨ ∃-cong lemma ⟩ (∃ λ (p : x ≡ y) → subst (λ x → B x → M′ A B i) p f ≡ g) ↝⟨ Bijection.Σ-≡,≡↔≡ ⟩ (_≡_ {A = ∃ λ (x : A) → B x → M′ A B i} (x , f) (y , g)) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ M-unfolding) ⟩□ (dns x f ≡ dns y g) □ where lemma : (p : x ≡ y) → ((b : B x) {j : Size< i} → f b .force {j = j} ≡ g (subst B p b) .force) ↔ (subst (λ x → B x → M′ A B i) p f ≡ g) lemma p = elim (λ {x y} p → (f : B x → M′ A B i) (g : B y → M′ A B i) → (∀ b {j : Size< i} → f b .force {j = j} ≡ g (subst B p b) .force) ↔ (subst (λ x → B x → M′ A B i) p f ≡ g)) (λ x f g → (∀ b {j : Size< i} → f b .force {j = j} ≡ g (subst B (refl x) b) .force) ↝⟨ subst (λ h → (∀ b {j : Size< i} → f b .force ≡ g (h b) .force) ↔ (∀ b {j : Size< i} → f b .force ≡ g b .force)) (sym (apply-ext (lower-extensionality lzero a ext) (subst-refl B))) Bijection.id ⟩ (∀ b {j : Size< i} → f b .force {j = j} ≡ g b .force) ↔⟨ ∀-cong ext (λ _ → implicit-Π-size-≃-Π-size) ⟩ (∀ b (j : Size< i) → f b .force {j = j} ≡ g b .force) ↔⟨ ∀-cong ext (λ _ → Π-size-≃) ⟩ (∀ b (j : Size< i in-type) → f b .force {j = size j} ≡ g b .force {j = size j}) ↔⟨ ∀-cong ext (λ _ → Eq.extensionality-isomorphism (lower-extensionality _ lzero ext)) ⟩ ((b : B x) → _≡_ {A = (j : Size< i in-type) → M A B (size j)} (λ j → f b .force {j = size j}) (λ j → g b .force {j = size j})) ↔⟨ ∀-cong ext (λ _ → Eq.≃-≡ $ Eq.↔⇒≃ Bijection.implicit-Π↔Π) ⟩ ((b : B x) → _≡_ {A = {j : Size< i in-type} → M A B (size j)} (λ {j} → f b .force {j = size j}) (λ {j} → g b .force {j = size j})) ↔⟨ ∀-cong ext (λ _ → Eq.≃-≡ implicit-Π-size-≃) ⟩ ((b : B x) → _≡_ {A = {j : Size< i} → M A B j} (λ { {j} → f b .force {j = j} }) (λ { {j} → g b .force {j = j} })) ↔⟨ Eq.extensionality-isomorphism ext ⟩ (force ∘ f ≡ force ∘ g) ↝⟨ η ⟩ (f ≡ g) ↝⟨ subst (λ h → (f ≡ g) ↔ (h ≡ g)) (sym $ subst-refl (λ x' → B x' → M′ A B i) f) Bijection.id ⟩□ (subst (λ x → B x → M′ A B i) (refl x) f ≡ g) □) p f g ------------------------------------------------------------------------ -- Bisimilarity and bisimilarity for bisimilarity -- Bisimilarity. mutual infix 4 [_]_≡M_ [_]_≡M′_ data [_]_≡M_ {a b} {A : Type a} {B : A → Type b} (i : Size) (x y : M A B ∞) : Type (a ⊔ b) where dns : (p : pɐǝɥ x ≡ pɐǝɥ y) → (∀ b → [ i ] lıɐʇ x b ≡M′ lıɐʇ y (subst B p b)) → [ i ] x ≡M y record [_]_≡M′_ {a b} {A : Type a} {B : A → Type b} (i : Size) (x y : M A B ∞) : Type (a ⊔ b) where coinductive field force : {j : Size< i} → [ j ] x ≡M y open [_]_≡M′_ public -- Projections. pɐǝɥ≡ : ∀ {a b i} {A : Type a} {B : A → Type b} {x y : M A B ∞} → [ i ] x ≡M y → pɐǝɥ x ≡ pɐǝɥ y pɐǝɥ≡ (dns p q) = p lıɐʇ≡ : ∀ {a b i} {A : Type a} {B : A → Type b} {x y : M A B ∞} → (p : [ i ] x ≡M y) → ∀ b {j : Size< i} → [ j ] lıɐʇ x b ≡M lıɐʇ y (subst B (pɐǝɥ≡ p) b) lıɐʇ≡ (dns p q) y = force (q y) -- Equality implies bisimilarity. ≡⇒≡M : ∀ {a b i} {A : Type a} {B : A → Type b} {x y : M A B ∞} → x ≡ y → [ i ] x ≡M y ≡⇒≡M {i = i} {B = B} {dns x f} {dns y g} p = dns (proj₁ q) helper where q = elim (λ {m m′} m≡m′ → ∃ λ (x≡y : pɐǝɥ m ≡ pɐǝɥ m′) → ∀ b → lıɐʇ m b ≡ lıɐʇ m′ (subst B x≡y b)) (λ m → refl (pɐǝɥ m) , λ b → lıɐʇ m b ≡⟨ cong (lıɐʇ m) (sym $ subst-refl B _) ⟩∎ lıɐʇ m (subst B (refl (pɐǝɥ m)) b) ∎) p helper : ∀ b → [ i ] lıɐʇ (dns x f) b ≡M′ lıɐʇ (dns y g) (subst B (proj₁ q) b) force (helper b) = ≡⇒≡M (proj₂ q b) -- Bisimilarity for the bisimilarity type. mutual data [_]_≡≡M_ {a b} {A : Type a} {B : A → Type b} {x y : M A B ∞} (i : Size) (p q : [ ∞ ] x ≡M y) : Type (a ⊔ b) where dns : (r : pɐǝɥ≡ p ≡ pɐǝɥ≡ q) → (∀ b → [ i ] lıɐʇ≡ p b ≡≡M′ subst (λ p → [ ∞ ] lıɐʇ x b ≡M lıɐʇ y (subst B p b)) (sym r) (lıɐʇ≡ q b)) → [ i ] p ≡≡M q record [_]_≡≡M′_ {a b} {A : Type a} {B : A → Type b} {x y : M A B ∞} (i : Size) (p q : [ ∞ ] x ≡M y) : Type (a ⊔ b) where coinductive field force : {j : Size< i} → [ j ] p ≡≡M q open [_]_≡≡M′_ public ------------------------------------------------------------------------ -- Closure under various h-levels abstract -- If we assume a notion of extensionality (bisimilarity implies -- equality) then Contractible is closed under M. M-closure-contractible : ∀ {a b} {A : Type a} {B : A → Type b} → ({x y : M A B ∞} → [ ∞ ] x ≡M y → x ≡ y) → Contractible A → Contractible (M A B ∞) M-closure-contractible {A = A} {B} ext (z , irrA) = (x , ext ∘ irr) where x : ∀ {i} → M A B i x = dns z λ _ → λ { .force → x } irr : ∀ {i} y → [ i ] x ≡M y irr {i} (dns x′ f) = dns (irrA x′) helper where helper : ∀ y → [ i ] x ≡M′ force (f (subst B (irrA x′) y)) force (helper _) = irr _ -- The same applies to Is-proposition. M-closure-propositional : ∀ {a b} {A : Type a} {B : A → Type b} → ({x y : M A B ∞} → [ ∞ ] x ≡M y → x ≡ y) → Is-proposition A → Is-proposition (M A B ∞) M-closure-propositional {A = A} {B} ext p = λ x y → ext $ irrelevant x y where irrelevant : ∀ {i} (x y : M A B ∞) → [ i ] x ≡M y irrelevant {i} (dns x f) (dns y g) = dns (p x y) helper where helper : (y′ : B x) → [ i ] force (f y′) ≡M′ force (g (subst B (p x y) y′)) force (helper _) = irrelevant _ _ -- If we assume that we have another notion of extensionality, then -- Is-set is closed under M. M-closure-set : ∀ {a b} {A : Type a} {B : A → Type b} → ({x y : M A B ∞} {p q : x ≡ y} → [ ∞ ] ≡⇒≡M p ≡≡M ≡⇒≡M q → p ≡ q) → Is-set A → Is-set (M A B ∞) M-closure-set {A = A} {B} ext s = λ p q → ext $ uip (≡⇒≡M p) (≡⇒≡M q) where uip : ∀ {i} {x y : M A B ∞} (p q : [ ∞ ] x ≡M y) → [ i ] p ≡≡M q uip {i} {x} {y} (dns p f) (dns q g) = dns (s p q) helper where helper : (b : B (pɐǝɥ x)) → [ i ] force (f b) ≡≡M′ subst (λ eq → [ ∞ ] lıɐʇ x b ≡M lıɐʇ y (subst B eq b)) (sym (s p q)) (force (g b)) force (helper _) = uip _ _
36.974545
139
0.380016
1c10510d44e0775ad2a859ad05a6d61731b10add
937
agda
Agda
notes/thesis/report/FOTC/Even.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/thesis/report/FOTC/Even.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/thesis/report/FOTC/Even.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Even predicate ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Even where open import FOTC.Base open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ data Even : D → Set where ezero : Even zero enext : ∀ {n} → Even n → Even (succ₁ (succ₁ n)) Even-ind : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ (succ₁ n))) → ∀ {n} → Even n → A n Even-ind A A0 h ezero = A0 Even-ind A A0 h (enext En) = h (Even-ind A A0 h En) Even→N : ∀ {n} → Even n → N n Even→N ezero = nzero Even→N (enext En) = nsucc (nsucc (Even→N En))
30.225806
78
0.38207
104a9feaf915851e9d3b2e96d604fff0decda834
580
agda
Agda
test/Succeed/Issue1592a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1592a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1592a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas 2015-01-07 fixing polarity of projection-like functions -- {-# OPTIONS -v tc.polarity:20 -v tc.proj.like:10 #-} -- {-# OPTIONS -v tc.conv.elim:25 --show-implicit #-} open import Common.Size -- List covariant covariant data List (i : Size) (A : Set) : Set where [] : List i A cons : ∀{j : Size< i} → A → List j A → List i A -- Id mixed mixed mixed covariant -- Id is projection-like in argument l Id : ∀{i A} (l : List i A) → Set → Set Id [] X = X Id (cons _ _) X = X -- should pass cast : ∀{i A} (l : List i A) → Id l (List i A) → Id l (List ∞ A) cast l x = x
26.363636
66
0.6
c53c8f55165034237128f22ec9bed845fe614f4c
403
agda
Agda
examples/outdated-and-incorrect/lattice/Chain.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/lattice/Chain.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/lattice/Chain.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Chain { A : Set } (_==_ : A -> A -> Set ) (refl : (x : A) -> x == x) (trans : (x y z : A) -> x == y -> y == z -> x == z) where infix 2 chain>_ infixl 2 _===_ infix 3 _by_ chain>_ : (x : A) -> x == x chain> x = refl _ _===_ : {x y z : A} -> x == y -> y == z -> x == z xy === yz = trans _ _ _ xy yz _by_ : {x : A}(y : A) -> x == y -> x == y y by eq = eq
18.318182
55
0.369727
4a19b0cb190859c8676e0d731bd59ce28857d58d
992
agda
Agda
test/Succeed/Issue2607b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2607b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2607b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --overlapping-instances #-} postulate Nat : Set Fin : Nat → Set Finnat : Nat → Set fortytwo : Nat finnatic : Finnat fortytwo _==_ : Finnat fortytwo → Finnat fortytwo → Set record Fixer : Set where field fix : ∀ {x} → Finnat x → Finnat fortytwo open Fixer {{...}} postulate Fixidentity : {{_ : Fixer}} → Set instance fixidentity : {{fx : Fixer}} {{fxi : Fixidentity}} {f : Finnat fortytwo} → fix f == f InstanceWrapper : Set iwrap : InstanceWrapper instance IrrFixerInstance : .{{_ : InstanceWrapper}} → Fixer instance FixerInstance : Fixer FixerInstance = IrrFixerInstance {{iwrap}} instance postulate FixidentityInstance : Fixidentity it : ∀ {a} {A : Set a} {{x : A}} → A it {{x}} = x fails : Fixer.fix FixerInstance finnatic == finnatic fails = fixidentity works : Fixer.fix FixerInstance finnatic == finnatic works = fixidentity {{fx = it}} works₂ : Fixer.fix FixerInstance finnatic == finnatic works₂ = fixidentity {{fxi = it}}
23.069767
89
0.671371
c5ff4733926626f30baed18a671612fefd6eaf2f
2,482
agda
Agda
src/Categories/Object/Duality.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Object/Duality.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/Object/Duality.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Properties relating Initial and Terminal Objects, -- and Product / Coproduct via op module Categories.Object.Duality {o ℓ e} (C : Category o ℓ e) where open Category C open import Level open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Categories.Morphism C open import Categories.Object.Terminal op open import Categories.Object.Initial C open import Categories.Object.Product op open import Categories.Object.Coproduct C IsInitial⇒coIsTerminal : ∀ {X} → IsInitial X → IsTerminal X IsInitial⇒coIsTerminal is⊥ = record { ! = ! ; !-unique = !-unique } where open IsInitial is⊥ ⊥⇒op⊤ : Initial → Terminal ⊥⇒op⊤ i = record { ⊤ = ⊥ ; ⊤-is-terminal = IsInitial⇒coIsTerminal ⊥-is-initial } where open Initial i coIsTerminal⇒IsInitial : ∀ {X} → IsTerminal X → IsInitial X coIsTerminal⇒IsInitial is⊤ = record { ! = ! ; !-unique = !-unique } where open IsTerminal is⊤ op⊤⇒⊥ : Terminal → Initial op⊤⇒⊥ t = record { ⊥ = ⊤ ; ⊥-is-initial = coIsTerminal⇒IsInitial ⊤-is-terminal } where open Terminal t Coproduct⇒coProduct : ∀ {A B} → Coproduct A B → Product A B Coproduct⇒coProduct A+B = record { A×B = A+B.A+B ; π₁ = A+B.i₁ ; π₂ = A+B.i₂ ; ⟨_,_⟩ = A+B.[_,_] ; project₁ = A+B.inject₁ ; project₂ = A+B.inject₂ ; unique = A+B.unique } where module A+B = Coproduct A+B coProduct⇒Coproduct : ∀ {A B} → Product A B → Coproduct A B coProduct⇒Coproduct A×B = record { A+B = A×B.A×B ; i₁ = A×B.π₁ ; i₂ = A×B.π₂ ; [_,_] = A×B.⟨_,_⟩ ; inject₁ = A×B.project₁ ; inject₂ = A×B.project₂ ; unique = A×B.unique } where module A×B = Product A×B private coIsTerminal⟺IsInitial : ∀ {X} (⊥ : IsInitial X) → coIsTerminal⇒IsInitial (IsInitial⇒coIsTerminal ⊥) ≡ ⊥ coIsTerminal⟺IsInitial _ = ≡.refl IsInitial⟺coIsTerminal : ∀ {X} (⊤ : IsTerminal X) → IsInitial⇒coIsTerminal (coIsTerminal⇒IsInitial ⊤) ≡ ⊤ IsInitial⟺coIsTerminal _ = ≡.refl ⊥⟺op⊤ : (⊤ : Terminal) → ⊥⇒op⊤ (op⊤⇒⊥ ⊤) ≡ ⊤ ⊥⟺op⊤ _ = ≡.refl op⊤⟺⊥ : (⊥ : Initial) → op⊤⇒⊥ (⊥⇒op⊤ ⊥) ≡ ⊥ op⊤⟺⊥ _ = ≡.refl Coproduct⟺coProduct : ∀ {A B} (p : Product A B) → Coproduct⇒coProduct (coProduct⇒Coproduct p) ≡ p Coproduct⟺coProduct _ = ≡.refl coProduct⟺Coproduct : ∀ {A B} (p : Coproduct A B) → coProduct⇒Coproduct (Coproduct⇒coProduct p) ≡ p coProduct⟺Coproduct _ = ≡.refl
26.126316
101
0.622885
2356b644c5eb0850b67836a08224f03bf39b0819
5,125
agda
Agda
Natural.agda
kands-code/agda-exercise
b3c9c4f678feac75af6f30d0dd941ab58b9f40dd
[ "MIT" ]
null
null
null
Natural.agda
kands-code/agda-exercise
b3c9c4f678feac75af6f30d0dd941ab58b9f40dd
[ "MIT" ]
null
null
null
Natural.agda
kands-code/agda-exercise
b3c9c4f678feac75af6f30d0dd941ab58b9f40dd
[ "MIT" ]
null
null
null
module Natural where open import Agda.Builtin.Equality data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- seven = suc (suc (suc (suc (suc (suc (suc zero)))))) {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ infixl 6 _+_ zero + b = b (suc a) + b = suc (a + b) {-# BUILTIN NATPLUS _+_ #-} +-id : ∀ (a : ℕ) → a + zero ≡ zero + a +-id zero = refl +-id (suc a) rewrite +-id a = refl +-comm : ∀ (a b : ℕ) → a + b ≡ b + a +-comm zero b rewrite +-id b = refl +-comm (suc a) zero rewrite +-id (suc a) = refl +-comm (suc a) (suc b) rewrite +-comm a (suc b) | +-comm b (suc a) | +-comm a b = refl +-asso : ∀ (a b c : ℕ) → a + b + c ≡ a + (b + c) +-asso zero b c = refl +-asso (suc a) zero c rewrite +-id (suc a) | +-id a = refl +-asso (suc a) (suc b) zero rewrite +-id (suc a + suc b) | +-id b = refl +-asso (suc a) (suc b) (suc c) rewrite (+-comm a (suc b)) | +-comm (b + a) (suc c) | +-comm b a | +-comm c (a + b) | +-comm b (suc c) | +-comm a (suc (suc (c + b))) | +-comm c b | +-comm (b + c) a | +-asso a b c = refl +-rear : ∀ (a b c d : ℕ) → a + b + (c + d) ≡ a + (b + c) + d +-rear zero b c d rewrite +-asso b c d = refl +-rear (suc a) b c d rewrite (+-asso (suc a) b (c + d)) | +-asso a (b + c) d | +-asso b c d = refl +-swap : ∀ (a b c : ℕ) → a + (b + c) ≡ b + (a + c) +-swap a b c rewrite (+-comm a (b + c)) | +-comm b (a + c) | +-asso a c b | +-comm c b | +-comm a (b + c) = refl _*_ : ℕ → ℕ → ℕ infixl 7 _*_ zero * b = zero suc a * b = b + a * b {-# BUILTIN NATTIMES _*_ #-} *-id : ∀ (a : ℕ) → a * (suc zero) ≡ (suc zero) * a *-id zero = refl *-id (suc a) rewrite +-comm (suc zero) a | *-id a = refl *-z : ∀ (a : ℕ) → a * zero ≡ zero * a *-z zero = refl *-z (suc a) rewrite *-z a = refl *-comm : ∀ (a b : ℕ) → a * b ≡ b * a *-comm zero b rewrite *-z b = refl *-comm (suc a) zero rewrite *-z a = refl *-comm (suc a) (suc b) rewrite (*-comm a (suc b)) | (*-comm b (suc a)) | (*-comm a b ) | (+-comm b (a + b * a)) | (+-comm a (b + b * a)) | (+-comm a (b * a)) | (+-comm b (b * a)) | (+-asso (b * a) a b) | (+-asso (b * a) b a) | (+-comm a b) = refl *-+-dist-r : ∀ (a b c : ℕ) → (a + b) * c ≡ a * c + b * c *-+-dist-r zero b c = refl *-+-dist-r (suc a) zero c rewrite (+-comm (suc a) zero) | +-comm a zero | +-asso c (a * c) zero | +-comm (a * c) zero = refl *-+-dist-r (suc a) (suc b) c rewrite (+-comm a (suc b)) | +-rear c (a * c) c (b * c) | +-comm (a * c) c | +-asso c (c + a * c) (b * c) | +-asso c (a * c) (b * c) | +-comm (a * c) (b * c) | *-+-dist-r b a c = refl *-+-dist-l : ∀ (a b c : ℕ) → a * (b + c) ≡ a * b + a * c *-+-dist-l a zero c rewrite (*-z a) = refl *-+-dist-l a (suc b) zero rewrite (+-comm (suc b) zero) | *-z a | +-comm (a * suc b) zero = refl *-+-dist-l a (suc b) (suc c) rewrite (+-comm b (suc c)) | *-comm a (suc (suc (c + b))) | *-comm a (suc b) | *-comm a (suc c) | +-rear a (b * a) a (c * a) | +-comm (b * a) a | +-asso a (a + b * a) (c * a) | +-asso a (b * a) (c * a) | +-comm (b * a) (c * a) | *-comm (c + b) a | *-comm c a | *-comm b a | *-+-dist-l a c b = refl *-asso : ∀ (a b c : ℕ) → a * b * c ≡ a * (b * c) *-asso zero b c = refl *-asso (suc a) zero c rewrite (*-asso a zero c) = refl *-asso (suc a) (suc b) c rewrite (*-+-dist-r (suc b) (a * suc b) c) | *-asso a (suc b) c = refl _^_ : ℕ → ℕ → ℕ m ^ zero = suc zero m ^ (suc n) = m * (m ^ n) ^-dist-+-*-l : ∀ (a b c : ℕ) → a ^ (b + c) ≡ (a ^ b) * (a ^ c) ^-dist-+-*-l a zero c rewrite (+-comm zero (a ^ c)) | +-asso (a ^ c) zero zero = refl ^-dist-+-*-l a (suc b) c rewrite *-asso a (a ^ b) (a ^ c) | ^-dist-+-*-l a b c = refl ^-dist-*-r : ∀ (a b c : ℕ) → (a * b) ^ c ≡ (a ^ c) * (b ^ c) ^-dist-*-r a b zero rewrite (+-comm (suc zero) zero) = refl ^-dist-*-r a b (suc c) rewrite (*-asso a (a ^ c) (b * (b ^ c))) | *-comm (a ^ c) (b * (b ^ c)) | *-asso b (b ^ c) (a ^ c) | *-comm (b ^ c) (a ^ c) | *-asso a b ((a * b) ^ c) | ^-dist-*-r a b c = refl ^-asso-* : ∀ (a b c : ℕ) → (a ^ b) ^ c ≡ a ^ (b * c) ^-asso-* a b zero rewrite (*-comm b zero) = refl ^-asso-* a b (suc c) rewrite (*-comm b (suc c)) | ^-dist-+-*-l a b (c * b) | *-comm c b | ^-asso-* a b c = refl data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (n O) = n I inc (n I) = (inc n) O to : ℕ → Bin to zero = ⟨⟩ O to (suc n) = inc (to n) from : Bin → ℕ from ⟨⟩ = zero from (n O) = 2 * (from n) from (n I) = suc (2 * (from n)) thm₁ : ∀ (b : Bin) → from (inc b) ≡ suc (from b) thm₁ ⟨⟩ = refl thm₁ (a O) = refl thm₁ (a I) rewrite thm₁ a | +-comm (suc (from a)) zero | +-comm (from a) zero | +-comm (from a) (suc (from a)) = refl -- thm₂ : ∀ (b : Bin) → to (from b) = b -- 这是错误的,因为 Bin 中的 (⟨⟩ O) 和 (⟨⟩) -- 都和 自然数 的 0 对应 -- from 并非单射 thm₃ : ∀ (n : ℕ) → from (to n) ≡ n thm₃ zero = refl thm₃ (suc n) rewrite thm₁ (to (suc n)) | thm₁ (to n) | thm₃ n = refl
24.404762
63
0.431805
df51a812afc788d77152c7daac1f461fedca6dce
782
agda
Agda
test/Succeed/Issue937.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue937.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue937.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --copatterns #-} -- {-# OPTIONS -v interaction.give:20 -v tc.cc:60 -v reify.clause:60 -v tc.section.check:10 -v tc:90 #-} -- {-# OPTIONS -v tc.lhs:20 #-} module Issue937 where open import Common.Equality data Nat : Set where zero : Nat suc : Nat → Nat record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public data _≤_ : Nat → Nat → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n _<_ : Nat → Nat → Set m < n = suc m ≤ n ex : Σ Nat (λ n → zero < n) proj₁ ex = suc zero proj₂ ex = s≤s z≤n module _ (A : Set) where ex'' : Σ Nat (λ n → zero < n) proj₁ ex'' = suc zero proj₂ ex'' = s≤s z≤n test : ex'' Nat ≡ (suc zero , s≤s z≤n) test = refl
20.051282
104
0.544757
cb71a2231d2d2b7b6e5dc8c74cb35dede9865ee2
12,861
agda
Agda
Cubical/HITs/Ints/BiInvInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- Definition of the integers as a HIT ported from the redtt library: https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red For the naive, but incorrect, way to define the integers as a HIT, see HITs.IsoInt This file contains: - definition of BiInvInt - proof that Int ≡ BiInvInt - [discreteBiInvInt] and [isSetBiInvInt] - versions of the point constructors of BiInvInt which satisfy the path constructors judgmentally -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.BiInvInt.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Equiv.BiInvertible open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Relation.Nullary data BiInvInt : Type₀ where zero : BiInvInt suc : BiInvInt -> BiInvInt -- suc is a bi-invertible equivalence: predr : BiInvInt -> BiInvInt suc-predr : ∀ z -> suc (predr z) ≡ z predl : BiInvInt -> BiInvInt predl-suc : ∀ z -> predl (suc z) ≡ z suc-biinvequiv : BiInvEquiv BiInvInt BiInvInt suc-biinvequiv = record { fun = suc ; invr = predr ; invr-rightInv = suc-predr ; invl = predl ; invl-leftInv = predl-suc } predr-suc : ∀ z -> predr (suc z) ≡ z predr-suc = BiInvEquiv.invr-leftInv suc-biinvequiv -- since we want to use suc-adj and pred-adj (defined below) later on, we will need the -- definition of suc-predl taken from HAEquiv instead of from BiInvEquiv suc-haequiv : HAEquiv BiInvInt BiInvInt suc-haequiv = biInvEquiv→HAEquiv suc-biinvequiv suc-predl : ∀ z -> suc (predl z) ≡ z suc-predl = isHAEquiv.ret (snd suc-haequiv) -- predr and predl (as well as suc-predr and suc-predl - up to a path) are indistinguishable, -- so we can safely define 'pred' to just be predl predl≡predr : ∀ z -> predl z ≡ predr z predl≡predr z i = cong fst (isContr→isProp (isContr-hasSection (biInvEquiv→Equiv-left suc-biinvequiv)) (predl , suc-predl) (predr , suc-predr)) i z suc-predl≡predr : ∀ z -> PathP (λ j → suc (predl≡predr z j) ≡ z) (suc-predl z) (suc-predr z) suc-predl≡predr z i = cong snd (isContr→isProp (isContr-hasSection (biInvEquiv→Equiv-left suc-biinvequiv)) (predl , suc-predl) (predr , suc-predr)) i z pred : BiInvInt -> BiInvInt pred = predl suc-pred = suc-predl pred-suc = predl-suc -- these paths from HAEquiv will be useful later suc-adj : ∀ z → (λ i → suc (pred-suc z i)) ≡ suc-pred (suc z) pred-adj : ∀ z → (λ i → pred (suc-pred z i)) ≡ pred-suc (pred z) suc-adj z = isHAEquiv.com (snd suc-haequiv) z pred-adj z = isHAEquiv.com-op (snd suc-haequiv) z -- Int ≡ BiInvInt fwd : Int -> BiInvInt fwd (pos zero) = zero fwd (pos (suc n)) = suc (fwd (pos n)) fwd (negsuc zero) = pred zero fwd (negsuc (suc n)) = pred (fwd (negsuc n)) bwd : BiInvInt -> Int bwd zero = pos zero bwd (suc z) = sucInt (bwd z) bwd (predr z) = predInt (bwd z) bwd (suc-predr z i) = sucPred (bwd z) i bwd (predl z) = predInt (bwd z) bwd (predl-suc z i) = predSuc (bwd z) i bwd-fwd : ∀ (x : Int) -> bwd (fwd x) ≡ x bwd-fwd (pos zero) = refl bwd-fwd (pos (suc n)) = cong sucInt (bwd-fwd (pos n)) bwd-fwd (negsuc zero) = refl bwd-fwd (negsuc (suc n)) = cong predInt (bwd-fwd (negsuc n)) fwd-sucInt : ∀ (x : Int) → fwd (sucInt x) ≡ suc (fwd x) fwd-sucInt (pos n) = refl fwd-sucInt (negsuc zero) = sym (suc-pred (fwd (pos zero))) fwd-sucInt (negsuc (suc n)) = sym (suc-pred (fwd (negsuc n))) fwd-predInt : ∀ (x : Int) → fwd (predInt x) ≡ pred (fwd x) fwd-predInt (pos zero) = refl fwd-predInt (pos (suc n)) = sym (predl-suc (fwd (pos n))) fwd-predInt (negsuc n) = refl private sym-filler : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → Square {- (i = i0) -} (sym p) {- (i = i1) -} refl {- (j = i0) -} refl {- (j = i1) -} p sym-filler {y = y} p i j = hcomp (λ k → λ { (j = i0) → y ; (i = i0) → p ((~ j) ∨ (~ k)) ; (i = i1) → y ; (j = i1) → p (i ∨ (~ k)) }) y fwd-sucPred : ∀ (x : Int) → Square {- (i = i0) -} (fwd-sucInt (predInt x) ∙ (λ i → suc (fwd-predInt x i))) {- (i = i1) -} (λ _ → fwd x) {- (j = i0) -} (λ i → fwd (sucPred x i)) {- (j = i1) -} (suc-pred (fwd x)) fwd-sucPred (pos zero) i j = hcomp (λ k → λ { (j = i0) → fwd (pos zero) ; (i = i0) → rUnit (sym (suc-pred (fwd (pos zero)))) k j -- because fwd-sucInt (predInt (pos zero)) ≡ sym (suc-pred (fwd (pos zero))) ; (i = i1) → fwd (pos zero) ; (j = i1) → suc-pred (fwd (pos zero)) i }) (sym-filler (suc-pred (fwd (pos zero))) i j) fwd-sucPred (pos (suc n)) i j = hcomp (λ k → λ { (j = i0) → suc (fwd (pos n)) ; (i = i0) → lUnit (λ i → suc (sym (predl-suc (fwd (pos n))) i)) k j -- because fwd-predInt (pos (suc n)) ≡ sym (predl-suc (fwd (pos n))) ; (i = i1) → suc (fwd (pos n)) ; (j = i1) → suc-adj (fwd (pos n)) k i }) (suc (sym-filler (pred-suc (fwd (pos n))) i j)) fwd-sucPred (negsuc n) i j = hcomp (λ k → λ { (j = i0) → fwd (negsuc n) ; (i = i0) → rUnit (sym (suc-pred (fwd (negsuc n)))) k j -- because fwd-sucInt (predInt (negsuc n)) ≡ sym (suc-pred (fwd (negsuc n))) ; (i = i1) → fwd (negsuc n) ; (j = i1) → suc-pred (fwd (negsuc n)) i }) (sym-filler (suc-pred (fwd (negsuc n))) i j) fwd-predSuc : ∀ (x : Int) → Square {- (i = i0) -} (fwd-predInt (sucInt x) ∙ (λ i → pred (fwd-sucInt x i))) {- (i = i1) -} (λ _ → fwd x) {- (j = i0) -} (λ i → fwd (predSuc x i)) {- (j = i1) -} (pred-suc (fwd x)) fwd-predSuc (pos n) i j = hcomp (λ k → λ { (j = i0) → fwd (pos n) ; (i = i0) → rUnit (sym (pred-suc (fwd (pos n)))) k j -- because fwd-predInt (sucInt (pos n)) ≡ sym (pred-suc (fwd (pos n))) ; (i = i1) → fwd (pos n) ; (j = i1) → pred-suc (fwd (pos n)) i }) (sym-filler (pred-suc (fwd (pos n))) i j) fwd-predSuc (negsuc zero) i j = hcomp (λ k → λ { (j = i0) → fwd (negsuc zero) ; (i = i0) → lUnit (λ i → pred (sym (suc-pred (fwd (pos zero))) i)) k j -- because fwd-sucInt (negsuc zero) ≡ sym (suc-pred (fwd (pos zero))) ; (i = i1) → fwd (negsuc zero) ; (j = i1) → pred-adj (fwd (pos zero)) k i }) (pred (sym-filler (suc-pred (fwd (pos zero))) i j)) fwd-predSuc (negsuc (suc n)) i j = hcomp (λ k → λ { (j = i0) → fwd (negsuc (suc n)) ; (i = i0) → lUnit (λ i → pred (sym (suc-pred (fwd (negsuc n))) i)) k j -- because fwd-sucInt (negsuc (suc n)) ≡ sym (suc-pred (fwd (negsuc n))) ; (i = i1) → fwd (negsuc (suc n)) ; (j = i1) → pred-adj (fwd (negsuc n)) k i }) (pred (sym-filler (suc-pred (fwd (negsuc n))) i j)) fwd-bwd : ∀ (z : BiInvInt) -> fwd (bwd z) ≡ z fwd-bwd zero = refl fwd-bwd (suc z) = fwd-sucInt (bwd z) ∙ (λ i → suc (fwd-bwd z i)) fwd-bwd (predr z) = fwd-predInt (bwd z) ∙ (λ i → predl≡predr (fwd-bwd z i) i) fwd-bwd (predl z) = fwd-predInt (bwd z) ∙ (λ i → pred (fwd-bwd z i)) fwd-bwd (suc-predr z i) j = hcomp (λ k → λ { (j = i0) → fwd (sucPred (bwd z) i) ; (i = i0) → (fwd-sucInt (predInt (bwd z)) ∙ (λ i → suc (compPath-filler (fwd-predInt (bwd z)) (λ i' → predl≡predr (fwd-bwd z i') i') k i))) j ; (i = i1) → fwd-bwd z (j ∧ k) ; (j = i1) → suc-predl≡predr (fwd-bwd z k) k i }) (fwd-sucPred (bwd z) i j) fwd-bwd (predl-suc z i) j = hcomp (λ k → λ { (j = i0) → fwd (predSuc (bwd z) i) ; (i = i0) → (fwd-predInt (sucInt (bwd z)) ∙ (λ i → pred (compPath-filler (fwd-sucInt (bwd z)) (λ i' → suc (fwd-bwd z i')) k i))) j ; (i = i1) → fwd-bwd z (j ∧ k) ; (j = i1) → pred-suc (fwd-bwd z k) i }) (fwd-predSuc (bwd z) i j) Int≡BiInvInt : Int ≡ BiInvInt Int≡BiInvInt = isoToPath (iso fwd bwd fwd-bwd bwd-fwd) discreteBiInvInt : Discrete BiInvInt discreteBiInvInt = subst Discrete Int≡BiInvInt discreteInt isSetBiInvInt : isSet BiInvInt isSetBiInvInt = subst isSet Int≡BiInvInt isSetInt -- suc' is equal to suc (suc≡suc') but cancels pred *exactly* (see suc'-pred) suc'ᵖ : (z : BiInvInt) -> Σ BiInvInt (suc z ≡_) suc' = fst ∘ suc'ᵖ suc≡suc' = snd ∘ suc'ᵖ suc'ᵖ zero = suc zero , refl suc'ᵖ (suc z) = suc (suc z) , refl suc'ᵖ (predr z) = z , suc-predr z suc'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → suc (suc (predr z)) ; (i = i1) → suc≡suc' z j }) (inS (suc (suc-predr z i))) j in filler i1 i , λ j → filler j i suc'ᵖ (predl z) = z , suc-predl z suc'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → suc-predl (suc z) j ; (i = i1) → suc≡suc' z j }) (inS (suc (predl-suc z i))) j in filler i1 i , λ j → filler j i private suc'-pred : ∀ z → suc' (pred z) ≡ z suc'-pred z = refl -- pred' is equal to pred (pred≡pred') but cancels suc *exactly* (see pred'-suc) predr'ᵖ : (z : BiInvInt) -> Σ BiInvInt (predr z ≡_) predr' = fst ∘ predr'ᵖ predr≡predr' = snd ∘ predr'ᵖ predr'ᵖ zero = predr zero , refl predr'ᵖ (suc z) = z , predr-suc z predr'ᵖ (predr z) = predr (predr z) , refl predr'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predr-suc (predr z) j ; (i = i1) → predr≡predr' z j }) (inS (predr (suc-predr z i))) j in filler i1 i , λ j → filler j i predr'ᵖ (predl z) = predr (predl z) , refl predr'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predr (predl (suc z)) ; (i = i1) → predr≡predr' z j }) (inS (predr (predl-suc z i))) j in filler i1 i , λ j → filler j i predl'ᵖ : (z : BiInvInt) -> Σ BiInvInt (predl z ≡_) predl' = fst ∘ predl'ᵖ predl≡predl' = snd ∘ predl'ᵖ predl'ᵖ zero = predl zero , refl predl'ᵖ (suc z) = z , predl-suc z predl'ᵖ (predr z) = predl (predr z) , refl predl'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predl-suc (predr z) j ; (i = i1) → predl≡predl' z j }) (inS (predl (suc-predr z i))) j in filler i1 i , λ j → filler j i predl'ᵖ (predl z) = predl (predl z) , refl predl'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predl (predl (suc z)) ; (i = i1) → predl≡predl' z j }) (inS (predl (predl-suc z i))) j in filler i1 i , λ j → filler j i private predr'-suc : ∀ z → predr' (suc z) ≡ z predr'-suc z = refl predl'-suc : ∀ z → predl' (suc z) ≡ z predl'-suc z = refl
41.353698
108
0.479356
1812d3eff3ee73c3d37ba8dc96e38937fe856be2
4,860
agda
Agda
PiFrac/Category.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
PiFrac/Category.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
PiFrac/Category.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
module PiFrac.Category where open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided open import Categories.Category.Monoidal.Symmetric open import Categories.Category.Monoidal.Rigid open import Categories.Category.Monoidal.CompactClosed open import Categories.Functor.Bifunctor open import Categories.Category open import Categories.Category.Product open import Categories.Category.Groupoid open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Maybe open import Relation.Binary.Core open import Relation.Binary hiding (Symmetric) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.Interp open import PiFrac.Properties Pi∙ : Category _ _ _ Pi∙ = record { Obj = Σ[ t ∈ 𝕌 ] ⟦ t ⟧ ; _⇒_ = λ (A , a) (B , b) → Σ[ c ∈ (A ↔ B) ] (interp c a ≡ just b) ; _≈_ = λ {(A , a)} {(B , b)} (c , eq) (c' , eq) → ⊤ ; id = id↔ , refl ; _∘_ = λ (c₂ , eq₂) (c₁ , eq₁) → comp (c₁ , eq₁) (c₂ , eq₂) ; assoc = tt ; sym-assoc = tt ; identityˡ = tt ; identityʳ = tt ; identity² = tt ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; ∘-resp-≈ = λ _ _ → tt } where comp : ∀ {A B C a b c} → Σ[ c₁ ∈ (A ↔ B) ] (interp c₁ a ≡ just b) → Σ[ c₂ ∈ (B ↔ C) ] (interp c₂ b ≡ just c) → Σ[ c' ∈ (A ↔ C) ] (interp c' a ≡ just c) comp {c = c} (c₁ , eq₁) (c₂ , eq₂) = (c₁ ⨾ c₂) , subst (λ x → (x >>= interp c₂) ≡ just c) (sym eq₁) eq₂ Pi∙Groupoid : Groupoid _ _ _ Pi∙Groupoid = record { category = Pi∙ ; isGroupoid = record { _⁻¹ = λ (c , eq) → ! c , interp! c _ _ eq ; iso = record { isoˡ = tt ; isoʳ = tt } } } Pi∙Monoidal : Monoidal Pi∙ Pi∙Monoidal = record { ⊗ = record { F₀ = λ ((A , a) , (B , b)) → (A ×ᵤ B) , (a , b) ; F₁ = λ {((A , a) , (B , b))} {((C , c) , (D , d))} ((c₁ , eq₁) , (c₂ , eq₂)) → (c₁ ⊗ c₂) , subst (λ x → (x >>= (λ v₁' → interp c₂ b >>= λ v₂' → just (v₁' , v₂'))) ≡ just (c , d)) (sym eq₁) (subst (λ x → (x >>= λ v₂' → just (c , v₂')) ≡ just (c , d)) (sym eq₂) refl) ; identity = tt ; homomorphism = tt ; F-resp-≈ = λ _ → tt } ; unit = (𝟙 , tt) ; unitorˡ = record { from = unite⋆l , refl ; to = uniti⋆l , refl ; iso = record { isoˡ = tt ; isoʳ = tt } } ; unitorʳ = record { from = unite⋆r , refl ; to = uniti⋆r , refl ; iso = record { isoˡ = tt ; isoʳ = tt } } ; associator = record { from = assocr⋆ , refl ; to = assocl⋆ , refl ; iso = record { isoˡ = tt ; isoʳ = tt } } ; unitorˡ-commute-from = tt ; unitorˡ-commute-to = tt ; unitorʳ-commute-from = tt ; unitorʳ-commute-to = tt ; assoc-commute-from = tt ; assoc-commute-to = tt ; triangle = tt ; pentagon = tt } Pi∙Braided : Braided Pi∙Monoidal Pi∙Braided = record { braiding = record { F⇒G = record { η = λ _ → swap⋆ , refl ; commute = λ _ → tt ; sym-commute = λ _ → tt } ; F⇐G = record { η = λ _ → swap⋆ , refl ; commute = λ _ → tt ; sym-commute = λ _ → tt } ; iso = λ X → record { isoˡ = tt ; isoʳ = tt } } ; hexagon₁ = tt ; hexagon₂ = tt } Pi∙Symmetric : Symmetric Pi∙Monoidal Pi∙Symmetric = record { braided = Pi∙Braided ; commutative = tt} Pi∙Rigid : LeftRigid Pi∙Monoidal Pi∙Rigid = record { _⁻¹ = λ {(A , a) → 𝟙/ a , ↻} ; η = λ {(X , x)} → ηₓ x , refl ; ε = λ {(X , x)} → (swap⋆ ⨾ εₓ x) , εₓ≡ ; snake₁ = tt ; snake₂ = tt} where εₓ≡ : ∀ {X} {x : ⟦ X ⟧} → interp (swap⋆ ⨾ εₓ x) (↻ , x) ≡ just tt εₓ≡ {X} {x} with x ≟ x ... | yes refl = refl ... | no neq = ⊥-elim (neq refl) Pi∙CompactClosed : CompactClosed Pi∙Monoidal Pi∙CompactClosed = record { symmetric = Pi∙Symmetric ; rigid = inj₁ Pi∙Rigid }
43.00885
129
0.445062
201ac71e304a024836603e6cf5326769f6145419
1,120
agda
Agda
test/asset/agda-stdlib-1.0/Data/Bool/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Bool/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Bool/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- The type for booleans and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool.Base where open import Data.Unit.Base using (⊤) open import Data.Empty open import Relation.Nullary infixr 6 _∧_ infixr 5 _∨_ _xor_ infix 0 if_then_else_ ------------------------------------------------------------------------ -- The boolean type open import Agda.Builtin.Bool public ------------------------------------------------------------------------ -- Some operations not : Bool → Bool not true = false not false = true -- A function mapping true to an inhabited type and false to an empty -- type. T : Bool → Set T true = ⊤ T false = ⊥ if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if true then t else f = t if false then t else f = f _∧_ : Bool → Bool → Bool true ∧ b = b false ∧ b = false _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b _xor_ : Bool → Bool → Bool true xor b = not b false xor b = b
21.132075
72
0.485714
4a5a0c51cf7e76b0dfcaa2ddfe9ac8e8f9ecee2b
349
agda
Agda
test/fail/Issue256.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/Issue256.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue256.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Issue256 where open import Imports.Level const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x = λ _ → x level : ∀ {ℓ} → Set ℓ → Level level {ℓ} _ = ℓ -- termination check should fail for the following definition ℓ : Level ℓ = const zero (Set ℓ) -- A : Set (suc {!ℓ!}) -- A = Set (level A)
18.368421
61
0.598854
4a8264dcd0852a13c8c5775a80b9d1b898c57589
647
agda
Agda
Eq.agda
brunoczim/ual
ea0260e1a0612ba581e4283dfb187f531a944dfd
[ "MIT" ]
null
null
null
Eq.agda
brunoczim/ual
ea0260e1a0612ba581e4283dfb187f531a944dfd
[ "MIT" ]
null
null
null
Eq.agda
brunoczim/ual
ea0260e1a0612ba581e4283dfb187f531a944dfd
[ "MIT" ]
null
null
null
module Ual.Eq where open import Agda.Primitive open import Ual.Void record Eq {a} (A : Set a) : Set (lsuc a) where infix 30 _==_ infix 30 _≠_ field _==_ : A → A → Set self : {x : A} → x == x sym : {x y : A} → x == y → y == x trans : {x y z : A} → x == y → y == z → x == z _≠_ : A → A → Set x ≠ y = ¬ (x == y) open Eq ⦃ ... ⦄ public data Equality {a} {A : Set a} ⦃ eqA : Eq A ⦄ : A → A → Set where equal : {x y : A} → x == y → Equality x y notEqual : {x y : A} → x ≠ y → Equality x y record Test {a} (A : Set a) : Set (lsuc a) where field ⦃ eqA ⦄ : Eq A test : (x : A) → (y : A) → Equality x y
23.962963
64
0.469861
4a3c3d8917e5ebeaf1a876d64a81c495a0520bee
1,193
agda
Agda
public/cloc-1.82/tests/inputs/Lookup.agda
josema62/Memoria
93ebd98095434bc76d85d3fe8f32c913ed451e43
[ "MIT" ]
1
2021-12-28T12:50:26.000Z
2021-12-28T12:50:26.000Z
public/cloc-1.82/tests/inputs/Lookup.agda
josema62/Memoria
93ebd98095434bc76d85d3fe8f32c913ed451e43
[ "MIT" ]
null
null
null
public/cloc-1.82/tests/inputs/Lookup.agda
josema62/Memoria
93ebd98095434bc76d85d3fe8f32c913ed451e43
[ "MIT" ]
null
null
null
{- https://raw.githubusercontent.com/agda/agda/master/examples/Lookup.agda -} module Lookup where data Bool : Set where false : Bool true : Bool data IsTrue : Bool -> Set where isTrue : IsTrue true data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B module Map {- comment -} (Key : Set) (_==_ : Key -> Key -> Bool) (Code : Set) (Val : Code -> Set) where infixr 40 _⟼_,_ infix 20 _∈_ data Map : List Code -> Set where ε : Map [] _⟼_,_ : forall {c cs} -> Key -> Val c -> Map cs -> Map (c :: cs) _∈_ : forall {cs} -> Key -> Map cs -> Bool k ∈ ε = false k ∈ (k' ⟼ _ , m) with k == k' ... | true = true ... | false = k ∈ m Lookup : forall {cs} -> (k : Key)(m : Map cs) -> IsTrue (k ∈ m) -> Set Lookup k ε () Lookup k (_⟼_,_ {c} k' _ m) p with k == k' ... | true = Val c ... | false = Lookup k m p lookup : {cs : List Code}(k : Key)(m : Map cs)(p : IsTrue (k ∈ m)) -> Lookup k m p lookup k ε () lookup k (k' ⟼ v , m) p with k == k' ... | true = v ... | false = lookup k m p
22.942308
72
0.479464
cbf2c03f0d5ffb5042a9da359738463ad2595ba2
115,097
agda
Agda
complexity/complexity-final/submit/Interp-WithLet.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/complexity-final/submit/Interp-WithLet.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/complexity-final/submit/Interp-WithLet.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
{- NEW INTERP WITHOUT RREC -} open import Preliminaries open import Preorder open import Complexity module Interp-WithLet where -- interpret complexity types as preorders [_]t : CTp → PREORDER [ unit ]t = unit-p [ nat ]t = Nat , ♭nat-p [ τ ->c τ₁ ]t = [ τ ]t ->p [ τ₁ ]t [ τ ×c τ₁ ]t = [ τ ]t ×p [ τ₁ ]t [ list τ ]t = (List (fst [ τ ]t)) , list-p (snd [ τ ]t) [ bool ]t = Bool , bool-p [ C ]t = Nat , nat-p [ rnat ]t = Nat , nat-p [_]tm : ∀ {A} → CTpM A → Preorder-max-str (snd [ A ]t) [ runit ]tm = unit-pM [ rnat-max ]tm = nat-pM [ e ×cm e₁ ]tm = axb-pM [ e ]tm [ e₁ ]tm [ _->cm_ {τ1} e ]tm = mono-pM [ e ]tm -- interpret contexts as preorders [_]c : Ctx → PREORDER [ [] ]c = unit-p [ τ :: Γ ]c = [ Γ ]c ×p [ τ ]t lookup : ∀{Γ τ} → τ ∈ Γ → el ([ Γ ]c ->p [ τ ]t) lookup (i0 {Γ} {τ}) = snd' id lookup (iS {Γ} {τ} {τ1} x) = comp (fst' id) (lookup x) interpE : ∀{Γ τ} → Γ |- τ → el ([ Γ ]c ->p [ τ ]t) sound : ∀ {Γ τ} (e e' : Γ |- τ) → e ≤s e' → PREORDER≤ ([ Γ ]c ->p [ τ ]t) (interpE e) (interpE e') interpE unit = monotone (λ x → <>) (λ x y x₁ → <>) interpE 0C = monotone (λ x → Z) (λ x y x₁ → <>) interpE 1C = monotone (λ x → S Z) (λ x y x₁ → <>) interpE (plusC e e₁) = monotone (λ x → Monotone.f (interpE e) x + Monotone.f (interpE e₁) x) (λ x y x₁ → plus-lem (Monotone.f (interpE e) x) (Monotone.f (interpE e₁) x) (Monotone.f (interpE e) y) (Monotone.f (interpE e₁) y) (Monotone.is-monotone (interpE e) x y x₁) (Monotone.is-monotone (interpE e₁) x y x₁)) interpE (var x) = lookup x interpE z = monotone (λ x → Z) (λ x y x₁ → <>) interpE (s e) = monotone (λ x → S (Monotone.f (interpE e) x)) (λ x y x₁ → Monotone.is-monotone (interpE e) x y x₁) interpE {Γ} {τ} (rec e e₁ e₂) = comp (pair' id (interpE e)) (♭rec' (interpE e₁) (interpE e₂)) interpE (lam e) = lam' (interpE e) interpE (app e e₁) = app' (interpE e) (interpE e₁) interpE (prod e e₁) = pair' (interpE e) (interpE e₁) interpE (l-proj e) = fst' (interpE e) interpE (r-proj e) = snd' (interpE e) interpE nil = nil' interpE (e ::c e₁) = cons' (interpE e) (interpE e₁) interpE (listrec e e₁ e₂) = comp (pair' id (interpE e)) (lrec' (interpE e₁) (interpE e₂)) interpE true = monotone (λ x → True) (λ x y x₁ → <>) interpE false = monotone (λ x → False) (λ x y x₁ → <>) interpE (letc e e') = app' (lam' (interpE e)) (interpE e') interpE {Γ} {τ'} (max τ e1 e2) = monotone (λ x → Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x)) (λ x y x₁ → Preorder-max-str.max-lub [ τ ]tm (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)) (Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x) (Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e1) x) (Monotone.f (interpE e1) y) (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)) (Monotone.is-monotone (interpE e1) x y x₁) (Preorder-max-str.max-l [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))) (Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e2) x) (Monotone.f (interpE e2) y) (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)) (Monotone.is-monotone (interpE e2) x y x₁) (Preorder-max-str.max-r [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)))) throw-r : ∀ {Γ Γ' τ} → rctx Γ (τ :: Γ') → rctx Γ Γ' throw-r d = λ x → d (iS x) interpR : ∀ {Γ Γ'} → rctx Γ Γ' → MONOTONE [ Γ ]c [ Γ' ]c interpR {Γ' = []} ρ = monotone (λ _ → <>) (λ x y x₁ → <>) interpR {Γ' = τ :: Γ'} ρ = monotone (λ x → (Monotone.f (interpR (throw-r ρ)) x) , (Monotone.f (lookup (ρ i0)) x)) (λ x y x₁ → (Monotone.is-monotone (interpR (throw-r ρ)) x y x₁) , (Monotone.is-monotone (lookup (ρ i0)) x y x₁)) throw-s : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw-s d = λ x → d (iS x) interpS : ∀ {Γ Γ'} → sctx Γ Γ' → el ([ Γ ]c ->p [ Γ' ]c) interpS {Γ' = []} Θ = monotone (λ _ → <>) (λ x y x₁ → <>) interpS {Γ' = τ :: Γ'} Θ = monotone (λ x → Monotone.f (interpS (throw-s Θ)) x , Monotone.f (interpE (Θ i0)) x) (λ x y x₁ → Monotone.is-monotone (interpS (throw-s Θ)) x y x₁ , (Monotone.is-monotone (interpE (Θ i0)) x y x₁)) ren-eq-l-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x)) (Monotone.f (interpR ρ) k) ren-eq-l-lam {Γ' = []} ρ k x = <> ren-eq-l-lam {Γ' = x :: Γ'} ρ k x₁ = (ren-eq-l-lam (throw-r ρ) k x₁) , (Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k)) ren-eq-l : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) ren-eq-l ρ unit k = <> ren-eq-l ρ 0C k = <> ren-eq-l ρ 1C k = <> ren-eq-l ρ (plusC e e₁) k = plus-lem (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e k) (ren-eq-l ρ e₁ k) ren-eq-l {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k) ren-eq-l {τ = τ} ρ (var (iS x)) k = ren-eq-l (throw-r ρ) (var x) k ren-eq-l ρ z k = <> ren-eq-l ρ (s e) k = ren-eq-l ρ e k ren-eq-l {Γ} {Γ'} {τ = τ} ρ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE (ren e ρ)) k)) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (♭h-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend ρ)))) (k , (Monotone.f (interpE (ren e ρ)) k)) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (ren-eq-l ρ e k)) (♭h-cong (interpE (ren e₁ ρ)) (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₂ (r-extend (r-extend ρ)))) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁))) , (snd (fst x₁))) , (snd x₁)))) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (λ x → ren-eq-l ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x) (Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)) (Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)) (ren-eq-l (r-extend (r-extend ρ)) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x))) (Monotone.f (interpR ρ) (fst (fst x))) (ren-eq-l-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x)) (ren-eq-l-lam ρ (fst (fst x)) (snd (fst x))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))))) ren-eq-l {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x)) (ren-eq-l (r-extend ρ) e (k , x)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)) (Monotone.f (interpR ρ) k , x) (ren-eq-l-lam ρ k x , (Preorder-str.refl (snd [ τ1 ]t) x))) ren-eq-l {Γ} {τ = τ} ρ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e₁ k)) (ren-eq-l ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) ren-eq-l ρ (prod e e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k) ren-eq-l ρ (l-proj e) k = fst (ren-eq-l ρ e k) ren-eq-l ρ (r-proj e) k = snd (ren-eq-l ρ e k) ren-eq-l ρ nil k = <> ren-eq-l ρ (e ::c e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k) ren-eq-l {Γ} {Γ'} {τ = τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁))) (listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (k , (Monotone.f (interpE (ren e ρ)) k)) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) ((Preorder-str.refl (snd [ Γ ]c) k) , (ren-eq-l ρ e k))) (lrec-cong (interpE (ren e₁ ρ)) (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (monotone (λ x → Monotone.f (interpE e₂) ((((Monotone.f (interpR ρ) (fst (fst (fst x)))) , (snd (fst (fst x)))) , (snd (fst x))) , (snd x))) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) ((((Monotone.is-monotone (interpR ρ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁)))) , (snd (fst (fst x₁)))) , (snd (fst x₁))) , (snd x₁)))) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (λ x → ren-eq-l ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x) (Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)) (Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (ren-eq-l (r-extend (r-extend (r-extend ρ))) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (Monotone.f (interpR ρ) (fst (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x)) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (ren-eq-l-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x)) (ren-eq-l-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x)))) (ren-eq-l-lam ρ (fst (fst (fst x))) (snd (fst (fst x)))) , Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x)))) , l-refl (snd [ τ' ]t) (snd (fst x))) , Preorder-str.refl (snd [ τ' ]t) (snd x))))) ren-eq-l ρ true k = <> ren-eq-l ρ false k = <> ren-eq-l {Γ} {Γ'} {τ = τ} ρ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e (r-extend ρ))) (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k))) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k))) (ren-eq-l (r-extend ρ) e (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k)) (ren-eq-l-lam ρ k (Monotone.f (interpE (ren e' ρ)) k) , ren-eq-l ρ e' k)) ren-eq-l {τ = τ} ρ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))) ren-eq-r-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR ρ) k) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x)) ren-eq-r-lam {Γ' = []} ρ k x = <> ren-eq-r-lam {Γ' = x :: Γ'} ρ k x₁ = (ren-eq-r-lam (throw-r ρ) k x₁) , (Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k)) ren-eq-r : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) ren-eq-r ρ unit k = <> ren-eq-r ρ 0C k = <> ren-eq-r ρ 1C k = <> ren-eq-r ρ (plusC e e₁) k = plus-lem (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (ren-eq-r ρ e k) (ren-eq-r ρ e₁ k) ren-eq-r {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k) ren-eq-r {τ = τ} ρ (var (iS x)) k = ren-eq-r (throw-r ρ) (var x) k ren-eq-r ρ z k = <> ren-eq-r ρ (s e) k = ren-eq-r ρ e k ren-eq-r {Γ} {Γ'} {τ} ρ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE (ren e ρ)) k)) (♭h-cong (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₁ ρ)) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y) ((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁))) (interpE (ren e₂ (r-extend (r-extend ρ)))) (k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (λ x → ren-eq-r ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)) (Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x) (Monotone.is-monotone (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR ρ) (fst (fst x))) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x))) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x) (ren-eq-r-lam ρ (fst (fst x)) (snd (fst x))) (ren-eq-r-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))) (ren-eq-r (r-extend (r-extend ρ)) e₂ x))) (♭h-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend ρ)))) (k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (k , Monotone.f (interpE (ren e ρ)) k) (ren-eq-r ρ e k)) ren-eq-r {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x)) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))) (Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x) ((Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ) k , x) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)) (ren-eq-r-lam ρ k x , (Preorder-str.refl (snd [ τ1 ]t) x)))) (ren-eq-r (r-extend ρ) e (k , x)) ren-eq-r {Γ} {τ = τ} ρ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)) (ren-eq-r ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (ren-eq-r ρ e₁ k)) ren-eq-r ρ (prod e e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k) ren-eq-r ρ (l-proj e) k = fst (ren-eq-r ρ e k) ren-eq-r ρ (r-proj e) k = snd (ren-eq-r ρ e k) ren-eq-r ρ nil k = <> ren-eq-r ρ (e ::c e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k) ren-eq-r {Γ} {Γ'} {τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec-cong (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₁ ρ)) (monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpR ρ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁))) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (λ x → ren-eq-r ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)) (Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x) (Monotone.is-monotone (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR ρ) (fst (fst (fst x)))) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (ren-eq-r-lam ρ (fst (fst (fst x))) (snd (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x)) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (ren-eq-r-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x))) (ren-eq-r-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x)))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) , (l-refl (snd [ τ' ]t) (snd (fst x)))) , (Preorder-str.refl (snd [ τ' ]t) (snd x)))) (ren-eq-r (r-extend (r-extend (r-extend ρ))) e₂ x))) (listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (k , Monotone.f (interpE (ren e ρ)) k) (Preorder-str.refl (snd [ Γ ]c) k , ren-eq-r ρ e k)) ren-eq-r ρ true k = <> ren-eq-r ρ false k = <> ren-eq-r {Γ} {Γ'} {τ = τ} ρ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k))) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k))) (Monotone.f (interpE (ren e (r-extend ρ))) (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k)) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k)) (ren-eq-r-lam ρ k (Monotone.f (interpE (ren e' ρ)) k) , ren-eq-r ρ e' k)) (ren-eq-r (r-extend ρ) e (k , Monotone.f (interpE (ren e' ρ)) k)) ren-eq-r {τ = τ} ρ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (ren (max x e e₁) ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren (max x e e₁) ρ)) k) (ren-eq-r ρ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE (ren (max x e e₁) ρ)) k) (ren-eq-r ρ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))) ids-lem-l : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k ids-lem-l {[]} k = <> ids-lem-l {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1) k1 (ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2) (ids-lem-l {Γ} k1)) , (Preorder-str.refl (snd [ x ]t) k2) subst-eq-l-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x)) (Monotone.f (interpS Θ) k) subst-eq-l-lam {Γ' = []} Θ k x = <> subst-eq-l-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ = (subst-eq-l-lam (throw-s Θ) k x₁) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁)) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))) (snd (Monotone.f (interpS Θ) k)) (ren-eq-l iS (Θ i0) (k , x₁)) (Monotone.is-monotone (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) k (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k (ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k x₁) (ids-lem-l {Γ} k))) subst-eq-l : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) subst-eq-l Θ unit k = <> subst-eq-l Θ 0C k = <> subst-eq-l Θ 1C k = <> subst-eq-l Θ (plusC e e₁) k = plus-lem (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e k) (subst-eq-l Θ e₁ k) subst-eq-l {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k) subst-eq-l {τ = τ} Θ (var (iS x)) k = subst-eq-l (throw-s Θ) (var x) k subst-eq-l Θ z k = <> subst-eq-l Θ (s e) k = subst-eq-l Θ e k subst-eq-l {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE (subst e Θ)) k)) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (♭h-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend Θ)))) (k , Monotone.f (interpE (subst e Θ)) k) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e k)) (♭h-cong (interpE (subst e₁ Θ)) (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₂ (s-extend (s-extend Θ)))) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y) ((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (λ x → subst-eq-l Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x) (Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)) (Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)) (subst-eq-l (s-extend (s-extend Θ)) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x) (Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x)) (Monotone.f (interpS Θ) (fst (fst x))) (subst-eq-l-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x)) (subst-eq-l-lam Θ (fst (fst x)) (snd (fst x)))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))))) subst-eq-l {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x)) (subst-eq-l (s-extend Θ) e (k , x)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)) (Monotone.f (interpS Θ) k , x) (subst-eq-l-lam Θ k x , (Preorder-str.refl (snd [ τ1 ]t) x))) subst-eq-l {Γ} {τ = τ} Θ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e₁ k)) (subst-eq-l Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) subst-eq-l Θ (prod e e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k) subst-eq-l Θ (l-proj e) k = fst (subst-eq-l Θ e k) subst-eq-l Θ (r-proj e) k = snd (subst-eq-l Θ e k) subst-eq-l Θ nil k = <> subst-eq-l Θ (e ::c e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k) subst-eq-l {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁))) (listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (k , Monotone.f (interpE (subst e Θ)) k) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Preorder-str.refl (snd [ Γ ]c) k , subst-eq-l Θ e k)) (lrec-cong (interpE (subst e₁ Θ)) (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpS Θ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (λ x → subst-eq-l Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x) (Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)) (Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (subst-eq-l (s-extend (s-extend (s-extend Θ))) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (Monotone.f (interpS Θ) (fst (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x)) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (subst-eq-l-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x)) (subst-eq-l-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x)))) (subst-eq-l-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x))))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) , (l-refl (snd [ τ' ]t) (snd (fst x)))) , (Preorder-str.refl (snd [ τ' ]t) (snd x)))))) subst-eq-l Θ true k = <> subst-eq-l Θ false k = <> subst-eq-l {Γ} {Γ'} {τ = τ} Θ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend Θ))) (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k))) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k))) (subst-eq-l (s-extend Θ) e (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k)) ((subst-eq-l-lam Θ k (Monotone.f (interpE (subst e' Θ)) k)) , (subst-eq-l Θ e' k))) subst-eq-l {τ = τ} Θ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))) ids-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) ids-lem-r {[]} k = <> ids-lem-r {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) k1 (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1) (Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2)) (ids-lem-r {Γ} k1) (ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2)) , (Preorder-str.refl (snd [ x ]t) k2) subst-eq-r-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x)) subst-eq-r-lam {Γ' = []} Θ k x = <> subst-eq-r-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ = (subst-eq-r-lam (throw-s Θ) k x₁) , Preorder-str.trans (snd [ x ]t) (snd (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))) (Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁)) (Monotone.is-monotone (interpE (Θ i0)) k (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) (Preorder-str.trans (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) (ids-lem-r {Γ} k) (ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k x₁))) (ren-eq-r iS (Θ i0) (k , x₁)) subst-eq-r : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) subst-eq-r Θ unit k = <> subst-eq-r Θ 0C k = <> subst-eq-r Θ 1C k = <> subst-eq-r Θ (plusC e e₁) k = plus-lem (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (subst-eq-r Θ e k) (subst-eq-r Θ e₁ k) subst-eq-r {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k) subst-eq-r {τ = τ} Θ (var (iS x)) k = subst-eq-r (throw-s Θ) (var x) k subst-eq-r Θ z k = <> subst-eq-r Θ (s e) k = subst-eq-r Θ e k subst-eq-r {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE (subst e Θ)) k)) (♭h-cong (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₁ Θ)) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y) ((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁))) (interpE (subst e₂ (s-extend (s-extend Θ)))) (k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (λ x → subst-eq-r Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)) (Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x) (Monotone.is-monotone (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) (fst (fst x))) (Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x)) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x) (subst-eq-r-lam Θ (fst (fst x)) (snd (fst x))) (subst-eq-r-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))) (subst-eq-r (s-extend (s-extend Θ)) e₂ x))) (♭h-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend Θ)))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (k , Monotone.f (interpE (subst e Θ)) k) (subst-eq-r Θ e k)) subst-eq-r {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x)) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))) (Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x) ((Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k , x) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)) (subst-eq-r-lam Θ k x , (Preorder-str.refl (snd [ τ1 ]t) x)))) (subst-eq-r (s-extend Θ) e (k , x)) subst-eq-r {Γ} {τ = τ} Θ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)) (subst-eq-r Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (subst-eq-r Θ e₁ k)) subst-eq-r Θ (prod e e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k) subst-eq-r Θ (l-proj e) k = fst (subst-eq-r Θ e k) subst-eq-r Θ (r-proj e) k = snd (subst-eq-r Θ e k) subst-eq-r Θ nil k = <> subst-eq-r Θ (e ::c e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k) subst-eq-r {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec-cong (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₁ Θ)) (monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpS Θ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁))) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (λ x → subst-eq-r Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)) (Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x) (Monotone.is-monotone (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) (fst (fst (fst x)))) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (subst-eq-r-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x)) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (subst-eq-r-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x))) (subst-eq-r-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x)))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) , (l-refl (snd [ τ' ]t) (snd (fst x)))) , (Preorder-str.refl (snd [ τ' ]t) (snd x)))) (subst-eq-r (s-extend (s-extend (s-extend Θ))) e₂ x))) (listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (k , Monotone.f (interpE (subst e Θ)) k) (Preorder-str.refl (snd [ Γ ]c) k , subst-eq-r Θ e k)) subst-eq-r Θ true k = <> subst-eq-r Θ false k = <> subst-eq-r {Γ} {Γ'} {τ = τ} Θ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k))) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k))) (Monotone.f (interpE (subst e (s-extend Θ))) (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k)) ((subst-eq-r-lam Θ k (Monotone.f (interpE (subst e' Θ)) k)) , (subst-eq-r Θ e' k))) (subst-eq-r (s-extend Θ) e (k , Monotone.f (interpE (subst e' Θ)) k)) subst-eq-r {τ = τ} Θ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (subst (max x e e₁) Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst (max x e e₁) Θ)) k) (subst-eq-r Θ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE (subst (max x e e₁) Θ)) k) (subst-eq-r Θ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))) interp-rr-l : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k) interp-rr-l {Γ'' = []} ρ1 ρ2 k = <> interp-rr-l {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-l ρ1 (throw-r ρ2) k) , (ren-eq-r ρ1 (var (ρ2 i0)) k) interp-rr-r : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) interp-rr-r {Γ'' = []} ρ1 ρ2 k = <> interp-rr-r {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-r ρ1 (throw-r ρ2) k) , (ren-eq-l ρ1 (var (ρ2 i0)) k) interp-rs-l : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) (Monotone.f (interpS (λ x → ren (Θ x) ρ)) k) interp-rs-l {Γ'' = []} ρ Θ k = <> interp-rs-l {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-l ρ (throw-s Θ) k) , (ren-eq-r ρ (Θ i0) k) interp-rs-r : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS (λ x → ren (Θ x) ρ)) k) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) interp-rs-r {Γ'' = []} ρ Θ k = <> interp-rs-r {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-r ρ (throw-s Θ) k) , (ren-eq-l ρ (Θ i0) k) interp-sr-l : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (λ x → Θ (ρ x))) k) interp-sr-l {Γ'' = []} Θ ρ k = <> interp-sr-l {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-l Θ (throw-r ρ) k) , (subst-eq-r Θ (var (ρ i0)) k) interp-sr-r : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS (λ x → Θ (ρ x))) k) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) interp-sr-r {Γ'' = []} Θ ρ k = <> interp-sr-r {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-r Θ (throw-r ρ) k) , (subst-eq-l Θ (var (ρ i0)) k) interp-ss-l : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) interp-ss-l {Γ'' = []} Θ1 Θ2 k = <> interp-ss-l {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-l Θ1 (throw-s Θ2) k) , (subst-eq-l Θ1 (Θ2 i0) k) interp-ss-r : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k) interp-ss-r {Γ'' = []} Θ1 Θ2 k = <> interp-ss-r {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-r Θ1 (throw-s Θ2) k) , (subst-eq-r Θ1 (Θ2 i0) k) lam-s-lem : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpS {Γ} {Γ} ids) k) k lam-s-lem {[]} k = <> lam-s-lem {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2)) (Monotone.f (interpS {Γ} {Γ} ids) k1) k1 (subst-eq-l-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2))) (lam-s-lem {Γ} k1)) , (Preorder-str.refl (snd [ x ]t) k2) lam-s-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpS {Γ} {Γ} ids) k) lam-s-lem-r {[]} k = <> lam-s-lem-r {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) k1 (Monotone.f (interpS {Γ} {Γ} ids) k1) (Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2)) (lam-s-lem-r {Γ} k1) (subst-eq-r-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2)))) , (Preorder-str.refl (snd [ x ]t) k2) interp-subst-comp-l : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) (Monotone.f (interpS (λ x → Θ x)) k) interp-subst-comp-l {Γ' = []} Θ v k = <> interp-subst-comp-l {Γ} {Γ' = x :: Γ'} {τ'} Θ v k = (interp-subst-comp-l (throw-s Θ) v k) , (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.f (interpE (Θ i0)) k) (subst-eq-l (lem3' ids v) (ren (Θ i0) iS) k) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))) (Monotone.f (interpE (Θ i0)) k) (ren-eq-l iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.is-monotone (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) k (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k) (k , Monotone.f (interpE v) k) (lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))) (ren-eq-l-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k))) (ids-lem-l {Γ} k))))) interp-subst-comp-r : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (λ x → Θ x)) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) interp-subst-comp-r {Γ' = []} Θ v k = <> interp-subst-comp-r {Γ} {Γ' = x :: Γ'} {τ'} Θ v k = (interp-subst-comp-r (throw-s Θ) v k) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (Θ i0)) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (Θ i0)) k) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.is-monotone (interpE (Θ i0)) k (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (Preorder-str.trans (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (ids-lem-r {Γ} k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (ren-eq-r-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k)) (Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k) (lam-s-lem-r {Γ} k , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))))) (ren-eq-r iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k))) (subst-eq-r (lem3' ids v) (ren (Θ i0) iS) k) interp-subst-comp2-l : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'') → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) interp-subst-comp2-l {Γ' = []} Θ k v1 v2 = <> interp-subst-comp2-l {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 = (interp-subst-comp2-l (throw-s Θ) k v1 v2) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (ren-eq-l iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k)) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (Monotone.is-monotone (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (lem3' ids v2)) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpS {Γ} ids) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (ren-eq-l-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)) (ren-eq-l-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k))) (interp-sr-l {Γ} ids (λ x₁ → x₁) k) , Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))) (subst-eq-r (lem3' ids v2) (ren (Θ i0) iS) k)) interp-subst-comp2-r : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'') → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) interp-subst-comp2-r {Γ' = []} Θ k v1 v2 = <> interp-subst-comp2-r {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 = (interp-subst-comp2-r (throw-s Θ) k v1 v2) , (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k)) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (subst-eq-l (lem3' ids v2) (ren (Θ i0) iS) k) (Monotone.is-monotone (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) ((Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-sr-r {Γ} ids (λ x₁ → x₁) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k)) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (ren-eq-r-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k)) (ren-eq-r-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))) , (Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))))) (ren-eq-r iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) interp-subst-comp3-l : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) interp-subst-comp3-l {Γ' = []} Θ k v3 v2 v1 = <> interp-subst-comp3-l {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 = (interp-subst-comp3-l (throw-s Θ) k v3 v2 v1) , (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS)) (((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (ren-eq-l iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) ((Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpS {Γ} ids) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (fst (ren-eq-l-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k))) (ren-eq-l-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k))) (ren-eq-l-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k))) (interp-sr-l {Γ} ids (λ x₁ → x₁) k) , Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k)) , Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k)))) interp-subst-comp3-r : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) interp-subst-comp3-r {Γ' = []} Θ k v3 v2 v1 = <> interp-subst-comp3-r {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 = (interp-subst-comp3-r (throw-s Θ) k v3 v2 v1) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS)) (((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (((Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-sr-r {Γ} ids (λ x₁ → x₁) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (ren-eq-r-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k)) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (ren-eq-r-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k)) (fst (ren-eq-r-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))))) , (Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) , (Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k)))) (ren-eq-r iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) s-cong2-lem : ∀ {Γ Γ'} (Θ Θ' : sctx Γ Γ') (k : fst [ Γ ]c) (x : (τ₁ : CTp) (x₁ : τ₁ ∈ Γ') → Preorder-str.≤ (snd [ τ₁ ]t) (Monotone.f (interpE (Θ x₁)) k) (Monotone.f (interpE (Θ' x₁)) k)) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS Θ') k) s-cong2-lem {Γ' = []} Θ Θ' x k = <> s-cong2-lem {Γ' = x :: Γ'} Θ Θ' x₁ k = (s-cong2-lem (throw-s Θ) (throw-s Θ') x₁ (λ τ₁ x₂ → k τ₁ (iS x₂))) , k x i0 sound {_} {τ} e .e refl-s k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} e e' (trans-s {.Γ} {.τ} {.e} {e''} {.e'} d d₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) k) (Monotone.f (interpE e'') k) (Monotone.f (interpE e') k) (sound e e'' d k) (sound e'' e' d₁ k) sound {_} {τ} e .e (cong-refl Refl) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {_} {._} ._ ._ (lt {._}) k = <> sound {_} {τ} (letc e e') .(app (lam e) e') letc-app-l k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) (k , Monotone.f (interpE e') k)) sound {_} {τ} (app (lam e) e') .(letc e e') letc-app-r k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) (k , Monotone.f (interpE e') k)) sound .(plusC 0C e') e' +-unit-l k = Preorder-str.refl (snd [ C ]t) (Monotone.f (interpE e') k) sound e .(plusC 0C e) +-unit-l' k = Preorder-str.refl (snd [ C ]t) (Monotone.f (interpE e) k) sound {_} {.C} .(plusC e' 0C) e' +-unit-r k = +-unit (Monotone.f (interpE e') k) sound e .(plusC e 0C) +-unit-r' k = plus-lem' (Monotone.f (interpE e) k) (Monotone.f (interpE e) k) Z (nat-refl (Monotone.f (interpE e) k)) sound {Γ} {.C} ._ ._ (+-assoc {.Γ} {e1} {e2} {e3}) k = plus-assoc (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k) sound {Γ} {.C} ._ ._ (+-assoc' {.Γ} {e1} {e2} {e3}) k = plus-assoc' (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k) sound {Γ} {.C} ._ ._ (refl-+ {.Γ} {e0} {e1}) k = +-comm (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k) sound {Γ} {C} ._ ._ (cong-+ {.Γ} {e0} {e1} {e0'} {e1'} d d₁) k = --also called plus-s. should really delete this rule so we don't have duplicates plus-lem (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k) (Monotone.f (interpE e0') k) (Monotone.f (interpE e1') k) (sound e0 e0' d k) (sound e1 e1' d₁ k) sound {Γ} {τ} ._ ._ (cong-lproj {.Γ} {.τ} {_} {e} {e'} d) k = fst (sound e e' d k) sound {Γ} {τ} ._ ._ (cong-rproj {.Γ} {_} {.τ} {e} {e'} d) k = snd (sound e e' d k) sound {Γ} {τ} ._ ._ (cong-app {.Γ} {τ'} {.τ} {e} {e'} {e1} d) k = sound e e' d k (Monotone.f (interpE e1) k) sound {Γ} {τ} ._ ._ (ren-cong {.Γ} {Γ'} {.τ} {e1} {e2} {ρ} d) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e1 ρ)) k) (Monotone.f (interpE e1) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e2 ρ)) k) (ren-eq-l ρ e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e2) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e2 ρ)) k) (sound e1 e2 d (Monotone.f (interpR ρ) k)) (ren-eq-r ρ e2 k)) sound {Γ} {τ} ._ ._ (subst-cong {.Γ} {Γ'} {.τ} {e1} {e2} {Θ} d) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 Θ)) k) (Monotone.f (interpE e1) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e2 Θ)) k) (subst-eq-l Θ e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e2) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e2 Θ)) k) (sound e1 e2 d (Monotone.f (interpS Θ) k)) (subst-eq-r Θ e2 k)) sound {Γ} {τ} ._ ._ (subst-cong2 {.Γ} {Γ'} {.τ} {Θ} {Θ'} {e} x) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ')) k) (subst-eq-l Θ e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ') k)) (Monotone.f (interpE (subst e Θ')) k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k) (Monotone.f (interpS Θ') k) (s-cong2-lem Θ Θ' k (λ τ1 x1 → sound _ _ (x _ x1) k))) (subst-eq-r Θ' e k)) sound {Γ} {τ} ._ ._ (cong-rec {.Γ} {.τ} {e} {e'} {e0} {e1} d) k = ♭h-fix-args (interpE e0) (interpE e1) (k , Monotone.f (interpE e) k) (k , Monotone.f (interpE e') k) (sound e e' d k) sound {Γ} {τ} ._ ._ (cong-listrec {.Γ} {τ'} {.τ} {e} {e'} {e0} {e1} d) k = listrec-fix-args (interpE e0) (interpE e1) (k , (Monotone.f (interpE e) k)) (k , Monotone.f (interpE e') k) ((Preorder-str.refl (snd [ Γ ]c) k) , (sound e e' d k)) sound {Γ} {τ} ._ ._ (lam-s {.Γ} {τ'} {.τ} {e} {e2}) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (q e2))) k) (Monotone.f (interpE e) (Monotone.f (interpS (q e2)) k)) (Monotone.f (interpE e) (k , Monotone.f (interpE e2) k)) (subst-eq-l (q e2) e k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (q e2)) k) (k , Monotone.f (interpE e2) k) (lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE e2) k)))) sound {Γ} {τ} e ._ (l-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} e ._ (r-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {_} {τ} e ._ rec-steps-z k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} ._ ._ (rec-steps-s {.Γ} {.τ} {e} {e0} {e1}) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids (rec e e0 e1)) e))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k)) (Monotone.f (interpE e1) ((k , natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k)) (subst-eq-l (lem3' (lem3' ids (rec e e0 e1)) e) e1 k) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k) ((k , natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k) ((lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ ]t) (natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)))) , (♭nat-refl (Monotone.f (interpE e) k)))) sound {Γ} {τ} e ._ listrec-steps-nil k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} ._ ._ (listrec-steps-cons {.Γ} {τ'} {.τ} {h} {t} {e0} {e1}) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k)) (Monotone.f (interpE e1) (((k , lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) , Monotone.f (interpE t) k) , Monotone.f (interpE h) k)) (subst-eq-l (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h) e1 k) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k) (((k , lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) , Monotone.f (interpE t) k) , Monotone.f (interpE h) k) (((lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ ]t) (lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))))) , (l-refl (snd [ τ' ]t) (Monotone.f (interpE t) k))) , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE h) k)))) sound {Γ} {τ} .(ren (ren e ρ2) ρ1) ._ (ren-comp-l ρ1 ρ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren (ren e ρ2) ρ1)) k) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (ren-eq-l ρ1 (ren e ρ2) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (ren-eq-l ρ2 e (Monotone.f (interpR ρ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k) (interp-rr-l ρ1 ρ2 k))) (ren-eq-r (ρ1 ∙rr ρ2) e k)) sound {Γ} {τ} ._ .(ren (ren e ρ2) ρ1) (ren-comp-r ρ1 ρ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE (ren (ren e ρ2) ρ1)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (ren-eq-l (ρ1 ∙rr ρ2) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) (interp-rr-r ρ1 ρ2 k)) (ren-eq-r ρ2 e (Monotone.f (interpR ρ1) k)))) (ren-eq-r ρ1 (ren e ρ2) k) sound {Γ} {τ} e ._ (subst-id-l .e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) k) (Monotone.f (interpE e) (Monotone.f (interpS {Γ} {Γ} ids) k)) (Monotone.f (interpE (subst e ids)) k) (Monotone.is-monotone (interpE e) k (Monotone.f (interpS {Γ} {Γ} ids) k) (lam-s-lem-r {Γ} k)) (subst-eq-r ids e k) sound {Γ} {τ} ._ e' (subst-id-r .e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e' ids)) k) (Monotone.f (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k)) (Monotone.f (interpE e') k) (subst-eq-l ids e' k) (Monotone.is-monotone (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k) k (lam-s-lem {Γ} k)) sound {Γ} {τ} .(ren (subst e Θ) ρ) ._ (subst-rs-l ρ Θ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren (subst e Θ) ρ)) k) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (ren-eq-l ρ (subst e Θ) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (subst-eq-l Θ e (Monotone.f (interpR ρ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k)) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) (Monotone.f (interpS (ρ rs Θ)) k) (interp-rs-l ρ Θ k)) (subst-eq-r (ρ rs Θ) e k))) sound {Γ} {τ} ._ .(ren (subst e Θ) ρ) (subst-rs-r ρ Θ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren (subst e Θ) ρ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (subst-eq-l (ρ rs Θ) e k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (ρ rs Θ)) k) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) (interp-rs-r ρ Θ k))) (subst-eq-r Θ e (Monotone.f (interpR ρ) k))) (ren-eq-r ρ (subst e Θ) k) sound {Γ} {τ} .(subst (ren e ρ) Θ) ._ (subst-sr-l Θ ρ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (ren e ρ) Θ)) k) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (subst-eq-l Θ (ren e ρ) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (ren-eq-l ρ e (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (Θ sr ρ)) k) (interp-sr-l Θ ρ k))) (subst-eq-r (Θ sr ρ) e k)) sound {Γ} {τ} ._ .(subst (ren e ρ) Θ) (subst-sr-r Θ ρ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst (ren e ρ) Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (subst-eq-l (Θ sr ρ) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (Θ sr ρ)) k) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) (interp-sr-r Θ ρ k)) (ren-eq-r ρ e (Monotone.f (interpS Θ) k)))) (subst-eq-r Θ (ren e ρ) k) sound {Γ} {τ} ._ .(subst (subst e Θ2) Θ1) (subst-ss-l Θ1 Θ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (Θ1 ss Θ2))) k) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (subst-eq-l (Θ1 ss Θ2) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) (interp-ss-l Θ1 Θ2 k)) (subst-eq-r Θ2 e (Monotone.f (interpS Θ1) k))) (subst-eq-r Θ1 (subst e Θ2) k)) sound {Γ} {τ} .(subst (subst e Θ2) Θ1) ._ (subst-ss-r Θ1 Θ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE (subst e (Θ1 ss Θ2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (subst-eq-l Θ1 (subst e Θ2) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (subst-eq-l Θ2 e (Monotone.f (interpS Θ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpS (Θ1 ss Θ2)) k) (interp-ss-r Θ1 Θ2 k)))) (subst-eq-r (Θ1 ss Θ2) e k) sound {Γ} {τ} ._ .(subst e (lem3' Θ v)) (subst-compose-l {.Γ} {Γ'} {τ'} Θ v e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (subst-eq-l (q v) (subst e (s-extend Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (subst-eq-l (s-extend Θ) e (Monotone.f (interpS (q v)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)) (Monotone.f (interpS (lem3' Θ v)) k) (Preorder-str.trans (snd [ Γ' ]c) (fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k))) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) (Monotone.f (interpS Θ) k) (fst (interp-ss-r (q v) (s-extend Θ) k)) (interp-subst-comp-l Θ v k) , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))) (subst-eq-r (lem3' Θ v) e k)) sound {Γ} {τ} .(subst e (lem3' Θ v)) ._ (subst-compose-r {.Γ} {Γ'} {τ'} Θ v e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (subst-eq-l (lem3' Θ v) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (lem3' Θ v)) k) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) (fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k))) (interp-subst-comp-r Θ v k) (fst (interp-ss-l (q v) (s-extend Θ) k))) , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))) (subst-eq-r (s-extend Θ) e (Monotone.f (interpS (q v)) k)))) (subst-eq-r (q v) (subst e (s-extend Θ)) k) sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose2-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpS (lem4' Θ v1 v2)) k) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS Θ) k) (interp-subst-comp2-l Θ k v1 v2) (interp-subst-comp-l Θ v2 k) , Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)) , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (lem4' Θ v1 v2) e1 k)) sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose2-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (subst-eq-l (lem4' Θ v1 v2) e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp-r Θ v2 k) (interp-subst-comp2-r Θ k v1 v2)) , (Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)))) (subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) (subst-compose3-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (subst-eq-l Θ (subst e1 (lem3' (lem3' ids v2) v1)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (subst-eq-l (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k) (((interp-ss-r Θ ids k) , (subst-eq-r Θ v2 k)) , (subst-eq-r Θ v1 k)))) (subst-eq-r (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k)) sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) ._ (subst-compose3-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (subst-eq-l (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)) (((interp-ss-l Θ ids k) , (subst-eq-l Θ v2 k)) , (subst-eq-l Θ v1 k))) (subst-eq-r (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k)))) (subst-eq-r Θ (subst e1 (lem3' (lem3' ids v2) v1)) k) sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose4-l {.Γ} {Γ'} Θ v1 v2 e1) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpS (lem4' Θ v1 v2)) k) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS Θ) k) (interp-subst-comp2-l Θ k v1 v2) (interp-subst-comp-l Θ v2 k) , Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k)) , Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (lem4' Θ v1 v2) e1 k)) sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose4-r {.Γ} {Γ'} Θ v1 v2 e1) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (subst-eq-l (lem4' Θ v1 v2) e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp-r Θ v2 k) (interp-subst-comp2-r Θ k v1 v2)) , (Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)))) (subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) sound {Γ} {τ} ._ .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) (subst-compose5-l {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (subst-eq-l (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (subst-eq-l (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (Monotone.f (interpS Θ) k) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (interp-subst-comp3-l Θ k v3 v2 v1) (interp-subst-comp2-l Θ k v2 v3)) (interp-subst-comp-l Θ v3 k)) , (Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) , (Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k))))) (subst-eq-r (lem3' (lem3' (lem3' Θ v3) v2) v1) e k)) sound {Γ} {τ} .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) ._ (subst-compose5-r {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (subst-eq-l (lem3' (lem3' (lem3' Θ v3) v2) v1) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp-r Θ v3 k) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp2-r Θ k v2 v3) (interp-subst-comp3-r Θ k v3 v2 v1))) , (Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) , (Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)))) (subst-eq-r (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k)
66.645628
172
0.510187
2377d1eb8d548ba65cd0f1e56248495f0bdf286a
3,995
agda
Agda
src/Implicits/Resolution/GenericFinite/Algorithm.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Resolution/GenericFinite/Algorithm.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Resolution/GenericFinite/Algorithm.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude renaming (_<_ to _N<_) module Implicits.Resolution.GenericFinite.Algorithm where open import Induction.WellFounded open import Induction.Nat open import Data.Vec open import Data.List open import Data.Fin.Substitution open import Data.Nat.Base using (_<′_) open import Data.Maybe open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.GenericFinite.Resolution open import Implicits.Resolution.GenericFinite.TerminationCondition open import Implicits.Resolution.Termination private module M = MetaTypeMetaSubst module Lemmas where m<-Acc : ∀ {m ν} → MetaType m ν → Set m<-Acc {m} {ν} r = Acc _m<_ (m , ν , r) ρ<-Acc : ∀ {ν} → Type ν → Set ρ<-Acc {ν} r = Acc _ρ<_ (ν , r) module Arg<-well-founded where open Lexicographic (_N<_) (const _ρ<_) open import Induction.Nat open import Data.Nat.Properties module image = Subrelation {A = ℕ} {_N<_} {_<′_} ≤⇒≤′ arg<-well-founded : Well-founded _<_ arg<-well-founded = well-founded (image.well-founded <-well-founded) ρ<-well-founded _arg<_ = _<_ -- Accessibility of the 'goal' type during resolution. -- Either the *head* of the goal shrinks (Oliveira's termination condition) -- Or the head size remains equal and the goal shrinks in an absolute sense. Arg<-Acc : ∀ {ν} → Type ν → Set Arg<-Acc a = Acc _arg<_ (h|| a || , (, a)) open Arg<-well-founded using (Arg<-Acc; arg<-well-founded) public open Lemmas module ResolutionAlgorithm (cond : TerminationCondition) where open TerminationCondition cond open ResolutionRules cond mutual match' : ∀ {m ν} (Δ : ICtx ν) (Φ : TCtx) τ → (r : MetaType m ν) → T-Acc Φ → m<-Acc r → Maybe (Sub (flip MetaType ν) m zero) match' Δ Φ τ (simpl x) f g = mgu (simpl x) τ match' Δ Φ τ (a ⇒ b) f (acc g) with match' Δ Φ τ b f (g _ (b-m<-a⇒b a b)) match' Δ Φ τ (a ⇒ b) f (acc g) | nothing = nothing match' Δ Φ τ (a ⇒ b) f (acc g) | just u with (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) <? Φ match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< with resolve' Δ (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) (from-meta (a M./ u)) (f _ Φ<) match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< | true = just u match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< | false = nothing match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | no φ> = nothing match' Δ Φ τ (∀' a) f (acc g) with match' Δ Φ τ (open-meta a) f (g _ (open-meta-a-m<-∀'a a)) match' Δ Φ τ (∀' a) f (acc g) | just p = just (tail p) match' Δ Φ τ (∀' r) f (acc g) | nothing = nothing -- match defers to match', which concerns itself with MetaTypes. -- If match' finds a match, we can use the fact that we have zero unification variables open here -- to show that we found the right thing. match : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) τ r → T-Acc Φ → Bool match Δ Φ τ a f = is-just (match' Δ Φ τ (to-meta {zero} a) f (m<-well-founded _)) match1st : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) (ρs : ICtx ν) → (τ : SimpleType ν) → T-Acc Φ → Bool match1st Δ Φ [] τ Φ↓ = false match1st Δ Φ (x ∷ xs) τ Φ↓ with match Δ Φ τ x Φ↓ match1st Δ Φ (x ∷ xs) τ Φ↓ | true = true match1st Δ Φ (x ∷ xs) τ Φ↓ | false = match1st Δ Φ xs τ Φ↓ resolve' : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) r → T-Acc Φ → Bool resolve' Δ Φ (simpl x) Φ↓ = match1st Δ Φ Δ x Φ↓ resolve' Δ Φ (a ⇒ b) Φ↓ = resolve' (a ∷ Δ) Φ b Φ↓ resolve' Δ Φ (∀' r) Φ↓ = resolve' (ictx-weaken Δ) Φ r Φ↓ resolve : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) r → Bool resolve Δ Φ r = resolve' Δ Φ r (wf-< Φ)
38.786408
101
0.614268
cbfd8af310ac7adbb38daa45aa5038b64fa18b41
246
agda
Agda
Inductive/Examples/Unit.agda
mr-ohman/general-induction
dc157acda597a2c758e82b5637e4fd6717ccec3f
[ "MIT" ]
null
null
null
Inductive/Examples/Unit.agda
mr-ohman/general-induction
dc157acda597a2c758e82b5637e4fd6717ccec3f
[ "MIT" ]
null
null
null
Inductive/Examples/Unit.agda
mr-ohman/general-induction
dc157acda597a2c758e82b5637e4fd6717ccec3f
[ "MIT" ]
null
null
null
module Inductive.Examples.Unit where open import Inductive open import Tuple open import Data.Fin open import Data.Product open import Data.List open import Data.Vec ⊤ : Set ⊤ = Inductive (([] , []) ∷ []) unit : ⊤ unit = construct zero [] []
15.375
36
0.699187
4a1572d181db3826c806c2a2ad2ad68df8aca789
444
agda
Agda
test/Fail/Issue1209-4.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1209-4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1209-4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --safe --no-sized-types #-} open import Agda.Builtin.Size record Stream (A : Set) (i : Size) : Set where coinductive field head : A tail : {j : Size< i} → Stream A j open Stream destroy-guardedness : ∀ {A i} → Stream A i → Stream A i destroy-guardedness xs .head = xs .head destroy-guardedness xs .tail = xs .tail repeat : ∀ {A i} → A → Stream A i repeat x .head = x repeat x .tail = destroy-guardedness (repeat x)
22.2
55
0.646396
cb42725ccb89e4e1ee0f6e590e1610bcc6f8d9bb
1,121
agda
Agda
src/fot/LTC-PCF/Base/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Base/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Base/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- LTC-PCF terms properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Base.Properties where open import LTC-PCF.Base ------------------------------------------------------------------------------ -- Congruence properties ·-leftCong : ∀ {m n o} → m ≡ n → m · o ≡ n · o ·-leftCong refl = refl ·-rightCong : ∀ {m n o} → n ≡ o → m · n ≡ m · o ·-rightCong refl = refl succCong : ∀ {m n} → m ≡ n → succ₁ m ≡ succ₁ n succCong refl = refl predCong : ∀ {m n} → m ≡ n → pred₁ m ≡ pred₁ n predCong refl = refl ------------------------------------------------------------------------------ S≢0 : ∀ {n} → succ₁ n ≢ zero S≢0 S≡0 = 0≢S (sym S≡0) -- We added Common.Relation.Binary.PropositionalEquality.cong, so this -- theorem is not necessary. -- x≡y→Sx≡Sy : ∀ {m n} → m ≡ n → succ₁ m ≡ -- succ₁ n x≡y→Sx≡Sy refl = refl
29.5
78
0.409456
1027768d379b3561dbba2677335e95106e5f7b27
4,792
agda
Agda
agda/BBHeap/Insert.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/BBHeap/Insert.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/BBHeap/Insert.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module BBHeap.Insert {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import BBHeap.Properties _≤_ open import BBHeap.Subtyping.Properties _≤_ trans≤ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Bound.Lower.Order.Properties _≤_ trans≤ open import Data.Sum renaming (_⊎_ to _∨_) open import Order.Total _≤_ tot≤ mutual insert : {b : Bound}{x : A} → LeB b (val x) → BBHeap b → BBHeap b insert b≤x leaf = left b≤x lf⋘ insert {x = x} b≤x (left {x = y} b≤y l⋘r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋘ (lexy refl≤) l⋘r ... | inj₁ lᵢ⋘r = left b≤x (subtyping⋘ (lexy x≤y) (lexy x≤y) lᵢ⋘r) ... | inj₂ lᵢ⋗r = right b≤x (subtyping⋙ (lexy x≤y) (lexy x≤y) (lemma⋗ lᵢ⋗r)) insert {x = x} b≤x (left {x = y} b≤y l⋘r) | inj₂ y≤x with lemma-insert⋘ (lexy y≤x) l⋘r ... | inj₁ lᵢ⋘r = left b≤y lᵢ⋘r ... | inj₂ lᵢ⋗r = right b≤y (lemma⋗ lᵢ⋗r) insert {x = x} b≤x (right {x = y} b≤y l⋙r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋙ (lexy refl≤) l⋙r ... | inj₁ l⋙rᵢ = right b≤x (subtyping⋙ (lexy x≤y) (lexy x≤y) l⋙rᵢ) ... | inj₂ l≃rᵢ = left b≤x (subtyping⋘ (lexy x≤y) (lexy x≤y) (lemma≃ l≃rᵢ)) insert {x = x} b≤x (right {x = y} b≤y l⋙r) | inj₂ y≤x with lemma-insert⋙ (lexy y≤x) l⋙r ... | inj₁ l⋙rᵢ = right b≤y l⋙rᵢ ... | inj₂ l≃rᵢ = left b≤y (lemma≃ l≃rᵢ) lemma-insert⋘ : {b b' : Bound}{x : A}{h : BBHeap b}{h' : BBHeap b'} → (b≤x : LeB b (val x)) → h ⋘ h' → insert b≤x h ⋘ h' ∨ insert b≤x h ⋗ h' lemma-insert⋘ b≤x lf⋘ = inj₂ (⋗lf b≤x) lemma-insert⋘ {x = x} b≤x (ll⋘ {x = y} b≤y b'≤y' l⋘r l'⋘r' l'≃r' r≃l') with tot≤ x y ... | inj₁ x≤y with lemma-insert⋘ (lexy refl≤) l⋘r ... | inj₁ lᵢ⋘r = inj₁ (ll⋘ b≤x b'≤y' (subtyping⋘ (lexy x≤y) (lexy x≤y) lᵢ⋘r) l'⋘r' l'≃r' (subtyping≃l (lexy x≤y) r≃l')) ... | inj₂ lᵢ⋗r = inj₁ (lr⋘ b≤x b'≤y' (subtyping⋙ (lexy x≤y) (lexy x≤y) (lemma⋗ lᵢ⋗r)) l'⋘r' l'≃r' (subtyping⋗l (lexy x≤y) (lemma⋗≃ lᵢ⋗r r≃l'))) lemma-insert⋘ {x = x} b≤x (ll⋘ {x = y} b≤y b'≤y' l⋘r l'⋘r' l'≃r' r≃l') | inj₂ y≤x with lemma-insert⋘ (lexy y≤x) l⋘r ... | inj₁ lᵢ⋘r = inj₁ (ll⋘ b≤y b'≤y' lᵢ⋘r l'⋘r' l'≃r' r≃l') ... | inj₂ lᵢ⋗r = inj₁ (lr⋘ b≤y b'≤y' (lemma⋗ lᵢ⋗r) l'⋘r' l'≃r' (lemma⋗≃ lᵢ⋗r r≃l')) lemma-insert⋘ {x = x} b≤x (lr⋘ {x = y} b≤y b'≤y' l⋙r l'⋘r' l'≃r' l⋗l') with tot≤ x y ... | inj₁ x≤y with lemma-insert⋙ (lexy refl≤) l⋙r ... | inj₁ l⋙rᵢ = inj₁ (lr⋘ b≤x b'≤y' (subtyping⋙ (lexy x≤y) (lexy x≤y) l⋙rᵢ) l'⋘r' l'≃r' (subtyping⋗l (lexy x≤y) l⋗l')) ... | inj₂ l≃rᵢ = inj₂ (⋗nd b≤x b'≤y' (subtyping⋘ (lexy x≤y) (lexy x≤y) (lemma≃ l≃rᵢ)) l'⋘r' (subtyping≃ (lexy x≤y) (lexy x≤y) l≃rᵢ) l'≃r' (subtyping⋗l (lexy x≤y) l⋗l')) lemma-insert⋘ {x = x} b≤x (lr⋘ {x = y} b≤y b'≤y' l⋙r l'⋘r' l'≃r' l⋗l') | inj₂ y≤x with lemma-insert⋙ (lexy y≤x) l⋙r ... | inj₁ l⋙rᵢ = inj₁ (lr⋘ b≤y b'≤y' l⋙rᵢ l'⋘r' l'≃r' l⋗l') ... | inj₂ l≃rᵢ = inj₂ (⋗nd b≤y b'≤y' (lemma≃ l≃rᵢ) l'⋘r' l≃rᵢ l'≃r' l⋗l') lemma-insert⋙ : {b b' : Bound}{x : A}{h : BBHeap b}{h' : BBHeap b'} → (b'≤x : LeB b' (val x)) → h ⋙ h' → h ⋙ insert b'≤x h' ∨ h ≃ insert b'≤x h' lemma-insert⋙ {x = x} b'≤x (⋙lf {x = y} b≤y) = inj₂ (≃nd b≤y b'≤x lf⋘ lf⋘ ≃lf ≃lf ≃lf) lemma-insert⋙ {x = x} b'≤x (⋙rl {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋘r' l⋗r') with tot≤ x y' ... | inj₁ x≤y' with lemma-insert⋘ (lexy refl≤) l'⋘r' ... | inj₁ l'ᵢ⋘r' = inj₁ (⋙rl b≤y b'≤x l⋘r l≃r (subtyping⋘ (lexy x≤y') (lexy x≤y') l'ᵢ⋘r') (subtyping⋗r (lexy x≤y') l⋗r')) ... | inj₂ l'ᵢ⋗r' = inj₁ (⋙rr b≤y b'≤x l⋘r l≃r (subtyping⋙ (lexy x≤y') (lexy x≤y') (lemma⋗ l'ᵢ⋗r')) (subtyping≃r (lexy x≤y') (lemma⋗⋗ l⋗r' l'ᵢ⋗r'))) lemma-insert⋙ {x = x} b'≤x (⋙rl {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋘r' l⋗r') | inj₂ y'≤x with lemma-insert⋘ (lexy y'≤x) l'⋘r' ... | inj₁ l'ᵢ⋘r' = inj₁ (⋙rl b≤y b'≤y' l⋘r l≃r l'ᵢ⋘r' l⋗r') ... | inj₂ l'ᵢ⋗r' = inj₁ (⋙rr b≤y b'≤y' l⋘r l≃r (lemma⋗ l'ᵢ⋗r') (lemma⋗⋗ l⋗r' l'ᵢ⋗r')) lemma-insert⋙ {x = x} b'≤x (⋙rr {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋙r' l≃l') with tot≤ x y' ... | inj₁ x≤y' with lemma-insert⋙ (lexy refl≤) l'⋙r' ... | inj₁ l'⋙r'ᵢ = inj₁ (⋙rr b≤y b'≤x l⋘r l≃r (subtyping⋙ (lexy x≤y') (lexy x≤y') l'⋙r'ᵢ) (subtyping≃r (lexy x≤y') l≃l')) ... | inj₂ l'≃r'ᵢ = inj₂ (≃nd b≤y b'≤x l⋘r (subtyping⋘ (lexy x≤y') (lexy x≤y') (lemma≃ l'≃r'ᵢ)) l≃r (subtyping≃ (lexy x≤y') (lexy x≤y') l'≃r'ᵢ) (subtyping≃r (lexy x≤y') l≃l')) lemma-insert⋙ {x = x} b'≤x (⋙rr {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋙r' l≃l') | inj₂ y'≤x with lemma-insert⋙ (lexy y'≤x) l'⋙r' ... | inj₁ l'⋙r'ᵢ = inj₁ (⋙rr b≤y b'≤y' l⋘r l≃r l'⋙r'ᵢ l≃l') ... | inj₂ l'≃r'ᵢ = inj₂ (≃nd b≤y b'≤y' l⋘r (lemma≃ l'≃r'ᵢ) l≃r l'≃r'ᵢ l≃l')
55.72093
177
0.501461
2042b2c14737b7d571ace0e3f5c55332746b30f7
1,692
agda
Agda
archive/agda-3/src/Oscar/Class/Surjidentity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Surjidentity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Surjidentity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Surjection open import Oscar.Class.Smap open import Oscar.Class.Reflexivity open import Oscar.Data.Proposequality module Oscar.Class.Surjidentity where module _ {𝔬₁ 𝔯₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂} where module Surjidentity {μ : Surjection.type 𝔒₁ 𝔒₂} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (§ : Smap.type _∼₁_ _∼₂_ μ μ) (ε₁ : Reflexivity.type _∼₁_) (ε₂ : Reflexivity.type _∼₂_) = ℭLASS ((λ {x} {y} → § {x} {y}) , (λ {x} → ε₁ {x}) , (λ {x y} → _∼̇₂_ {x} {y}) , (λ {x} → ε₂ {x})) (∀ {x} → § (ε₁ {x}) ∼̇₂ ε₂) module _ {μ : Surjection.type 𝔒₁ 𝔒₂} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂} {§ : Smap.type _∼₁_ _∼₂_ μ μ} {ε₁ : Reflexivity.type _∼₁_} {ε₂ : Reflexivity.type _∼₂_} where surjidentity = Surjidentity.method _∼₁_ _∼₂_ _∼̇₂_ (λ {x} {y} → § {x} {y}) (λ {x} → ε₁ {x}) (λ {x} → ε₂ {x}) module Surjidentity! (∼₁ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) (∼₂ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (∼̇₂ : ∀ {x y} → ∼₂ x y → ∼₂ x y → Ø ℓ₂) ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class ∼₁ ∼₂ ⦄ ⦃ _ : Reflexivity.class ∼₁ ⦄ ⦃ _ : Reflexivity.class ∼₂ ⦄ = Surjidentity {surjection} ∼₁ ∼₂ ∼̇₂ § ε ε module _ (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ _ : Reflexivity.class _∼₁_ ⦄ ⦃ _ : Reflexivity.class _∼₂_ ⦄ where surjidentity[_,_] = Surjidentity.method {surjection} _∼₁_ _∼₂_ _∼̇₂_ § ε ε
31.333333
131
0.518913
4aad91ece69147364b6845da78b574b39ebf2330
947
agda
Agda
Lists/Concat.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Lists/Concat.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Lists/Concat.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Lists.Definition open import Lists.Length open import Numbers.Naturals.Semiring module Lists.Concat where appendEmptyList : {a : _} → {A : Set a} → (l : List A) → (l ++ [] ≡ l) appendEmptyList [] = refl appendEmptyList (x :: l) = applyEquality (_::_ x) (appendEmptyList l) concatAssoc : {a : _} → {A : Set a} → (x : List A) → (y : List A) → (z : List A) → ((x ++ y) ++ z) ≡ x ++ (y ++ z) concatAssoc [] m n = refl concatAssoc (x :: l) m n = applyEquality (_::_ x) (concatAssoc l m n) canMovePrepend : {a : _} → {A : Set a} → (l : A) → (x : List A) (y : List A) → ((l :: x) ++ y ≡ l :: (x ++ y)) canMovePrepend l [] n = refl canMovePrepend l (x :: m) n = refl lengthConcat : {a : _} {A : Set a} (l1 l2 : List A) → length (l1 ++ l2) ≡ length l1 +N length l2 lengthConcat [] l2 = refl lengthConcat (x :: l1) l2 = applyEquality succ (lengthConcat l1 l2)
37.88
114
0.596621
39c25590e7a8d0f7797cc77b259e18d825464ec3
11,197
agda
Agda
theorems/homotopy/VanKampen.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/VanKampen.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/VanKampen.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.RelativelyConstantToSetExtendsViaSurjection as SurjExt module homotopy.VanKampen {i j k l} (span : Span {i} {j} {k}) {D : Type l} (h : D → Span.C span) (h-is-surj : is-surj h) where open Span span open import homotopy.vankampen.CodeAP span h h-is-surj open import homotopy.vankampen.CodeBP span h h-is-surj open import homotopy.vankampen.Code span h h-is-surj -- favonia: [pPP] means path from [P] to [P]. encode-idp : ∀ p → code p p encode-idp = Pushout-elim {P = λ p → code p p} (λ a → q[ ⟧a idp₀ ]) (λ b → q[ ⟧b idp₀ ]) lemma where abstract lemma : ∀ c → q[ ⟧a idp₀ ] == q[ ⟧b idp₀ ] [ (λ p → code p p) ↓ glue c ] lemma = SurjExt.ext (λ c → ↓-preserves-set SetQuot-is-set) h h-is-surj (λ d → from-transp (λ p → code p p) (glue (h d)) $ transport (λ p → code p p) (glue (h d)) q[ ⟧a idp₀ ] =⟨ ap (λ pPP → coe pPP q[ pc-a idp₀ ]) ((! (ap2-diag code (glue (h d)))) ∙ ap2-out code (glue (h d)) (glue (h d))) ⟩ coe (ap (λ p₀ → code p₀ (left (f (h d)))) (glue (h d)) ∙ ap (codeBP (g (h d))) (glue (h d))) q[ ⟧a idp₀ ] =⟨ coe-∙ (ap (λ p₀ → code p₀ (left (f (h d)))) (glue (h d))) (ap (codeBP (g (h d))) (glue (h d))) q[ pc-a idp₀ ] ⟩ transport (codeBP (g (h d))) (glue (h d)) (transport (λ p₀ → code p₀ (left (f (h d)))) (glue (h d)) q[ ⟧a idp₀ ]) =⟨ transp-cPA-glue d (⟧a idp₀) |in-ctx transport (λ p₁ → code (right (g (h d))) p₁) (glue (h d)) ⟩ transport (codeBP (g (h d))) (glue (h d)) q[ ⟧b idp₀ bb⟦ d ⟧a idp₀ ] =⟨ transp-cBP-glue d (⟧b idp₀ bb⟦ d ⟧a idp₀) ⟩ q[ ⟧b idp₀ bb⟦ d ⟧a idp₀ ba⟦ d ⟧b idp₀ ] =⟨ quot-rel (pcBBr-idp₀-idp₀ (pc-b idp₀)) ⟩ q[ ⟧b idp₀ ] =∎) (λ _ _ _ → prop-has-all-paths-↓ $ ↓-level SetQuot-is-set) encode : ∀ {p₀ p₁} → p₀ =₀ p₁ → code p₀ p₁ encode {p₀} {p₁} pPP = transport₀ (code p₀) (code-is-set {p₀} {p₁}) pPP (encode-idp p₀) abstract decode-encode-idp : ∀ p → decode {p} {p} (encode-idp p) == idp₀ decode-encode-idp = Pushout-elim {P = λ p → decode {p} {p} (encode-idp p) == idp₀} (λ _ → idp) (λ _ → idp) (λ c → prop-has-all-paths-↓ (Trunc-level {n = 0} idp₀ (idp₀ :> Trunc 0 (right (g c) == _)))) decode-encode' : ∀ {p₀ p₁} (pPP : p₀ == p₁) → decode {p₀} {p₁} (encode [ pPP ]) == [ pPP ] decode-encode' idp = decode-encode-idp _ decode-encode : ∀ {p₀ p₁} (pPP : p₀ =₀ p₁) → decode {p₀} {p₁} (encode pPP) == pPP decode-encode = Trunc-elim (λ _ → =-preserves-set Trunc-level) decode-encode' abstract transp-idcAA-r : ∀ {a₀ a₁} (p : a₀ == a₁) -- [idc] = identity code → transport (codeAA a₀) p q[ ⟧a idp₀ ] == q[ ⟧a [ p ] ] transp-idcAA-r idp = idp encode-decodeAA : ∀ {a₀ a₁} (c : precodeAA a₀ a₁) → encode (decodeAA q[ c ]) == q[ c ] encode-decodeAB : ∀ {a₀ b₁} (c : precodeAB a₀ b₁) → encode (decodeAB q[ c ]) == q[ c ] encode-decodeAA {a₀} (pc-a pA) = Trunc-elim {P = λ pA → encode (decodeAA q[ ⟧a pA ]) == q[ ⟧a pA ]} (λ _ → =-preserves-set SetQuot-is-set) (λ pA → transport (codeAP a₀) (ap left pA) q[ ⟧a idp₀ ] =⟨ ap (λ e → coe e q[ ⟧a idp₀ ]) (∘-ap (codeAP a₀) left pA) ⟩ transport (codeAA a₀) pA q[ ⟧a idp₀ ] =⟨ transp-idcAA-r pA ⟩ q[ ⟧a [ pA ] ] =∎) pA encode-decodeAA {a₀} (pc-aba d pc pA) = Trunc-elim {P = λ pA → encode (decodeAA q[ pc ab⟦ d ⟧a pA ]) == q[ pc ab⟦ d ⟧a pA ]} (λ _ → =-preserves-set SetQuot-is-set) (λ pA → encode (decodeAB q[ pc ] ∙₀' [ ! (glue (h d)) ∙' ap left pA ]) =⟨ transp₀-∙₀' (λ p₁ → code-is-set {left a₀} {p₁}) (decodeAB q[ pc ]) [ ! (glue (h d)) ∙' ap left pA ] (encode-idp (left a₀)) ⟩ transport (codeAP a₀) (! (glue (h d)) ∙' ap left pA) (encode (decodeAB q[ pc ])) =⟨ ap (transport (codeAP a₀) (! (glue (h d)) ∙' ap left pA)) (encode-decodeAB pc) ⟩ transport (codeAP a₀) (! (glue (h d)) ∙' ap left pA) q[ pc ] =⟨ transp-∙' {B = codeAP a₀} (! (glue (h d))) (ap left pA) q[ pc ] ⟩ transport (codeAP a₀) (ap left pA) (transport (codeAP a₀) (! (glue (h d))) q[ pc ]) =⟨ ap (transport (codeAP a₀) (ap left pA)) (transp-cAP-!glue d pc) ⟩ transport (codeAP a₀) (ap left pA) q[ pc ab⟦ d ⟧a idp₀ ] =⟨ ap (λ e → coe e q[ pc ab⟦ d ⟧a idp₀ ]) (∘-ap (codeAP a₀) left pA) ⟩ transport (codeAA a₀) pA q[ pc ab⟦ d ⟧a idp₀ ] =⟨ transp-cAA-r d pA (pc ab⟦ d ⟧a idp₀) ⟩ q[ pc ab⟦ d ⟧a idp₀ aa⟦ d ⟧b idp₀ ab⟦ d ⟧a [ pA ] ] =⟨ quot-rel (pcAAr-cong (pcABr-idp₀-idp₀ pc) [ pA ]) ⟩ q[ pc ab⟦ d ⟧a [ pA ] ] =∎) pA encode-decodeAB {a₀} (pc-aab d pc pB) = Trunc-elim {P = λ pB → encode (decodeAB q[ pc aa⟦ d ⟧b pB ]) == q[ pc aa⟦ d ⟧b pB ]} (λ _ → =-preserves-set SetQuot-is-set) (λ pB → encode (decodeAA q[ pc ] ∙₀' [ glue (h d) ∙' ap right pB ]) =⟨ transp₀-∙₀' (λ p₁ → code-is-set {left a₀} {p₁}) (decodeAA q[ pc ]) [ glue (h d) ∙' ap right pB ] (encode-idp (left a₀)) ⟩ transport (codeAP a₀) (glue (h d) ∙' ap right pB) (encode (decodeAA q[ pc ])) =⟨ ap (transport (codeAP a₀) (glue (h d) ∙' ap right pB)) (encode-decodeAA pc) ⟩ transport (codeAP a₀) (glue (h d) ∙' ap right pB) q[ pc ] =⟨ transp-∙' {B = codeAP a₀} (glue (h d)) (ap right pB) q[ pc ] ⟩ transport (codeAP a₀) (ap right pB) (transport (codeAP a₀) (glue (h d)) q[ pc ]) =⟨ ap (transport (codeAP a₀) (ap right pB)) (transp-cAP-glue d pc) ⟩ transport (codeAP a₀) (ap right pB) q[ pc aa⟦ d ⟧b idp₀ ] =⟨ ap (λ e → coe e q[ pc aa⟦ d ⟧b idp₀ ]) (∘-ap (codeAP a₀) right pB) ⟩ transport (codeAB a₀) pB q[ pc aa⟦ d ⟧b idp₀ ] =⟨ transp-cAB-r d pB (pc aa⟦ d ⟧b idp₀) ⟩ q[ pc aa⟦ d ⟧b idp₀ ab⟦ d ⟧a idp₀ aa⟦ d ⟧b [ pB ] ] =⟨ quot-rel (pcABr-cong (pcAAr-idp₀-idp₀ pc) [ pB ]) ⟩ q[ pc aa⟦ d ⟧b [ pB ] ] =∎) pB abstract transp-idcBB-r : ∀ {b₀ b₁} (p : b₀ == b₁) -- [idc] = identity code → transport (codeBB b₀) p q[ ⟧b idp₀ ] == q[ ⟧b [ p ] ] transp-idcBB-r idp = idp encode-decodeBA : ∀ {b₀ a₁} (c : precodeBA b₀ a₁) → encode (decodeBA q[ c ]) == q[ c ] encode-decodeBB : ∀ {b₀ b₁} (c : precodeBB b₀ b₁) → encode (decodeBB q[ c ]) == q[ c ] encode-decodeBA {b₀} (pc-bba d pc pA) = Trunc-elim {P = λ pA → encode (decodeBA q[ pc bb⟦ d ⟧a pA ]) == q[ pc bb⟦ d ⟧a pA ]} (λ _ → =-preserves-set SetQuot-is-set) (λ pA → encode (decodeBB q[ pc ] ∙₀' [ ! (glue (h d)) ∙' ap left pA ]) =⟨ transp₀-∙₀' (λ p₁ → code-is-set {right b₀} {p₁}) (decodeBB q[ pc ]) [ ! (glue (h d)) ∙' ap left pA ] (encode-idp (right b₀)) ⟩ transport (codeBP b₀) (! (glue (h d)) ∙' ap left pA) (encode (decodeBB q[ pc ])) =⟨ ap (transport (codeBP b₀) (! (glue (h d)) ∙' ap left pA)) (encode-decodeBB pc) ⟩ transport (codeBP b₀) (! (glue (h d)) ∙' ap left pA) q[ pc ] =⟨ transp-∙' {B = codeBP b₀} (! (glue (h d))) (ap left pA) q[ pc ] ⟩ transport (codeBP b₀) (ap left pA) (transport (codeBP b₀) (! (glue (h d))) q[ pc ]) =⟨ ap (transport (codeBP b₀) (ap left pA)) (transp-cBP-!glue d pc) ⟩ transport (codeBP b₀) (ap left pA) q[ pc bb⟦ d ⟧a idp₀ ] =⟨ ap (λ e → coe e q[ pc bb⟦ d ⟧a idp₀ ]) (∘-ap (codeBP b₀) left pA) ⟩ transport (codeBA b₀) pA q[ pc bb⟦ d ⟧a idp₀ ] =⟨ transp-cBA-r d pA (pc bb⟦ d ⟧a idp₀) ⟩ q[ pc bb⟦ d ⟧a idp₀ ba⟦ d ⟧b idp₀ bb⟦ d ⟧a [ pA ] ] =⟨ quot-rel (pcBAr-cong (pcBBr-idp₀-idp₀ pc) [ pA ]) ⟩ q[ pc bb⟦ d ⟧a [ pA ] ] =∎) pA encode-decodeBB {b₀} (pc-b pB) = Trunc-elim {P = λ pB → encode (decodeBB q[ ⟧b pB ]) == q[ ⟧b pB ]} (λ _ → =-preserves-set SetQuot-is-set) (λ pB → transport (codeBP b₀) (ap right pB) q[ ⟧b idp₀ ] =⟨ ap (λ e → coe e q[ ⟧b idp₀ ]) (∘-ap (codeBP b₀) right pB) ⟩ transport (codeBB b₀) pB q[ ⟧b idp₀ ] =⟨ transp-idcBB-r pB ⟩ q[ ⟧b [ pB ] ] =∎) pB encode-decodeBB {b₀} (pc-bab d pc pB) = Trunc-elim {P = λ pB → encode (decodeBB q[ pc ba⟦ d ⟧b pB ]) == q[ pc ba⟦ d ⟧b pB ]} (λ _ → =-preserves-set SetQuot-is-set) (λ pB → encode (decodeBA q[ pc ] ∙₀' [ glue (h d) ∙' ap right pB ]) =⟨ transp₀-∙₀' (λ p₁ → code-is-set {right b₀} {p₁}) (decodeBA q[ pc ]) [ glue (h d) ∙' ap right pB ] (encode-idp (right b₀)) ⟩ transport (codeBP b₀) (glue (h d) ∙' ap right pB) (encode (decodeBA q[ pc ])) =⟨ ap (transport (codeBP b₀) (glue (h d) ∙' ap right pB)) (encode-decodeBA pc) ⟩ transport (codeBP b₀) (glue (h d) ∙' ap right pB) q[ pc ] =⟨ transp-∙' {B = codeBP b₀} (glue (h d)) (ap right pB) q[ pc ] ⟩ transport (codeBP b₀) (ap right pB) (transport (codeBP b₀) (glue (h d)) q[ pc ]) =⟨ ap (transport (codeBP b₀) (ap right pB)) (transp-cBP-glue d pc) ⟩ transport (codeBP b₀) (ap right pB) q[ pc ba⟦ d ⟧b idp₀ ] =⟨ ap (λ e → coe e q[ pc ba⟦ d ⟧b idp₀ ]) (∘-ap (codeBP b₀) right pB) ⟩ transport (codeBB b₀) pB q[ pc ba⟦ d ⟧b idp₀ ] =⟨ transp-cBB-r d pB (pc ba⟦ d ⟧b idp₀) ⟩ q[ pc ba⟦ d ⟧b idp₀ bb⟦ d ⟧a idp₀ ba⟦ d ⟧b [ pB ] ] =⟨ quot-rel (pcBBr-cong (pcBAr-idp₀-idp₀ pc) [ pB ]) ⟩ q[ pc ba⟦ d ⟧b [ pB ] ] =∎) pB abstract encode-decode : ∀ {p₀ p₁} (cPP : code p₀ p₁) → encode {p₀} {p₁} (decode {p₀} {p₁} cPP) == cPP encode-decode {p₀} {p₁} = Pushout-elim {P = λ p₀ → ∀ p₁ → (cPP : code p₀ p₁) → encode (decode {p₀} {p₁} cPP) == cPP} (λ a₀ → Pushout-elim (λ a₁ → SetQuot-elim {P = λ cPP → encode (decodeAA cPP) == cPP} (λ _ → =-preserves-set SetQuot-is-set) (encode-decodeAA {a₀} {a₁}) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _))) (λ b₁ → SetQuot-elim {P = λ cPP → encode (decodeAB cPP) == cPP} (λ _ → =-preserves-set SetQuot-is-set) (encode-decodeAB {a₀} {b₁}) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _))) (λ _ → prop-has-all-paths-↓ $ Π-is-prop λ cPP → SetQuot-is-set _ _)) (λ b₀ → Pushout-elim (λ a₁ → SetQuot-elim {P = λ cPP → encode (decodeBA cPP) == cPP} (λ _ → =-preserves-set SetQuot-is-set) (encode-decodeBA {b₀} {a₁}) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _))) (λ b₁ → SetQuot-elim {P = λ cPP → encode (decodeBB cPP) == cPP} (λ _ → =-preserves-set SetQuot-is-set) (encode-decodeBB {b₀} {b₁}) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _))) (λ _ → prop-has-all-paths-↓ $ Π-is-prop λ cPP → SetQuot-is-set _ _)) (λ _ → prop-has-all-paths-↓ $ Π-is-prop λ p₁ → Π-is-prop λ cPP → codeBP-is-set {p₁ = p₁} _ _) p₀ p₁ vankampen : ∀ p₀ p₁ → (p₀ =₀ p₁) ≃ code p₀ p₁ vankampen p₀ p₁ = equiv (encode {p₀} {p₁}) (decode {p₀} {p₁}) (encode-decode {p₀} {p₁}) (decode-encode {p₀} {p₁})
51.837963
139
0.504599
18486bc200479d8da5769c7bd1616519d0f1bd7d
2,946
agda
Agda
src/Web/Semantic/DL/Category/Properties/Composition/RespectsWiring.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/Category/Properties/Composition/RespectsWiring.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/Category/Properties/Composition/RespectsWiring.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( proj₁ ; proj₂ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; sym ; cong ) open import Relation.Unary using ( _⊆_ ) open import Web.Semantic.DL.ABox using ( ABox ; ⟨ABox⟩ ; Assertions ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; bnodes ; _,_ ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin ; iface ) open import Web.Semantic.DL.Category.Morphism using ( impl ; _≣_ ; _⊑_ ; _,_ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using ( compose-left ; compose-right ; compose-resp-⊨a ) open import Web.Semantic.DL.Category.Wiring using ( wiring ; wires-≈ ; wires-≈⁻¹ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-refl′ ; ≈-trans ) open import Web.Semantic.Util using ( _∘_ ; False ; elim ; _⊕_⊕_ ; inode ; bnode ; enode ) module Web.Semantic.DL.Category.Properties.Composition.RespectsWiring {Σ : Signature} {S T : TBox Σ} where compose-resp-wiring : ∀ (A B C : Object S T) → (f : IN B → IN A) → (f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) → (g : IN C → IN B) → (g✓ : Assertions (⟨ABox⟩ g (iface C)) ⊆ Assertions (iface B)) → (h : IN C → IN A) → (h✓ : Assertions (⟨ABox⟩ h (iface C)) ⊆ Assertions (iface A)) → (∀ x → f (g x) ≡ h x) → (wiring A B f f✓ ∙ wiring B C g g✓ ≣ wiring A C h h✓) compose-resp-wiring A B C f f✓ g g✓ h h✓ fg≡h = (LHS⊑RHS , RHS⊑LHS) where LHS⊑RHS : wiring A B f f✓ ∙ wiring B C g g✓ ⊑ wiring A C h h✓ LHS⊑RHS I I⊨STA I⊨F = (elim , I⊨RHS) where lemma : ∀ x → ⌊ I ⌋ ⊨ ind I (inode (h x)) ≈ ind I (enode x) lemma x = ≈-trans ⌊ I ⌋ (≈-refl′ ⌊ I ⌋ (cong (ind I ∘ inode) (sym (fg≡h x)))) (≈-trans ⌊ I ⌋ (wires-≈ f (proj₂ (fin B) (g x)) (compose-left (wiring A B f f✓) (wiring B C g g✓) I I⊨F)) (wires-≈ g (proj₂ (fin C) x) (compose-right (wiring A B f f✓) (wiring B C g g✓) I I⊨F))) I⊨RHS : bnodes I elim ⊨a impl (wiring A C h h✓) I⊨RHS = wires-≈⁻¹ h lemma (proj₁ (fin C)) RHS⊑LHS : wiring A C h h✓ ⊑ wiring A B f f✓ ∙ wiring B C g g✓ RHS⊑LHS I I⊨STA I⊨F = (i , I⊨LHS) where i : (False ⊕ IN B ⊕ False) → Δ ⌊ I ⌋ i (inode ()) i (bnode y) = ind I (inode (f y)) i (enode ()) lemma : ∀ x → ⌊ I ⌋ ⊨ ind I (inode (f (g x))) ≈ ind I (enode x) lemma x = ≈-trans ⌊ I ⌋ (≈-refl′ ⌊ I ⌋ (cong (ind I ∘ inode) (fg≡h x))) (wires-≈ h (proj₂ (fin C) x) I⊨F) I⊨LHS : bnodes I i ⊨a impl (wiring A B f f✓ ∙ wiring B C g g✓) I⊨LHS = compose-resp-⊨a (wiring A B f f✓) (wiring B C g g✓) (bnodes I i) (wires-≈⁻¹ f (λ x → ≈-refl ⌊ I ⌋) (proj₁ (fin B))) (wires-≈⁻¹ g lemma (proj₁ (fin C)))
43.323529
79
0.580109
2331b6e54529447e807efcc1cd97f23d2cd80ae7
3,349
agda
Agda
Cubical/Experiments/IntegerMatrix.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Experiments/IntegerMatrix.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Experiments/IntegerMatrix.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- Normalize Integer Matrices -} {-# OPTIONS --safe #-} module Cubical.Experiments.IntegerMatrix where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.Data.FinData open import Cubical.Data.List open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤ to ℤRing) open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.IntegerMatrix.Smith open import Cubical.Algebra.IntegerMatrix.Diagonalization private variable m n : ℕ open Coefficient ℤRing -- Get divisors directly open isSmithNormal open Smith open isDiagonal open Diag getElemDiv : Mat m n → List ℤ getElemDiv M = smith M .isnormal .divs .fst getDiagDiv : Mat m n → List ℤ getDiagDiv M = diagonalize M .isdiag .divs .fst -- Constructing matrices makeMat2×2 : ℤ → ℤ → ℤ → ℤ → Mat 2 2 makeMat2×2 a00 _ _ _ zero zero = a00 makeMat2×2 _ a01 _ _ zero one = a01 makeMat2×2 _ _ a10 _ one zero = a10 makeMat2×2 _ _ _ a11 one one = a11 makeMat3×3 : ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → Mat 3 3 makeMat3×3 a00 _ _ _ _ _ _ _ _ zero zero = a00 makeMat3×3 _ a01 _ _ _ _ _ _ _ zero one = a01 makeMat3×3 _ _ a02 _ _ _ _ _ _ zero two = a02 makeMat3×3 _ _ _ a10 _ _ _ _ _ one zero = a10 makeMat3×3 _ _ _ _ a11 _ _ _ _ one one = a11 makeMat3×3 _ _ _ _ _ a12 _ _ _ one two = a12 makeMat3×3 _ _ _ _ _ _ a20 _ _ two zero = a20 makeMat3×3 _ _ _ _ _ _ _ a21 _ two one = a21 makeMat3×3 _ _ _ _ _ _ _ _ a22 two two = a22 -- The Tests -- One can add flag "-vprofile.interactive:10" to this file, -- then C-c C-n to run these tests and also get the time. -- It turns out that, "smith" is much slower than "diagonalize" -- and it doesn't work even for simple 3×3-matrices. -- The "diagonalize" works only for very simple 3×3-matrices. -- One subtle point is, if one only do one-step in Smith normalization -- and simply add the time cost in each steps, -- the result is far less than running the whole function "smith". -- So the recursive procedure slows down the procedure -- for some reasons I don't fully understand. -- Also, the performance of "smith" is very bad at certain trivial cases, -- much worse than some non-trivial cases. mat1 = makeMat2×2 1 0 0 1 -- Time: 528ms test1 = getElemDiv mat1 -- Time: 51ms test1' = getDiagDiv mat1 mat2 = makeMat2×2 2 0 0 1 -- Time: 89,437ms -- Why so slow? test2 = getElemDiv mat2 -- Time: 51ms test2' = getDiagDiv mat2 mat3 = makeMat2×2 2 1 3 5 -- Time: 3,308ms test3 = getElemDiv mat3 -- Time: 1,887ms test3' = getDiagDiv mat3 mat4 = makeMat2×2 4 2 2 4 -- Time: 3,284ms test4 = getElemDiv mat4 -- Time: 1,942ms test4' = getDiagDiv mat4 mat5 = makeMat3×3 1 0 0 0 0 0 0 0 0 -- Time: 9,400ms test5 = getElemDiv mat5 -- Time: 337ms test5' = getDiagDiv mat5 mat6 = makeMat3×3 1 0 0 0 1 0 0 0 1 -- Time: ??? -- It doesn't work out already. test6 = getElemDiv mat6 -- Time: 8,598ms test6' = getDiagDiv mat6 mat7 = makeMat3×3 1 1 0 3 2 1 2 0 1 -- Time: ??? test7 = getElemDiv mat7 -- Time: 14,149ms test7' = getDiagDiv mat7 mat8 = makeMat3×3 2 3 1 2 2 3 1 1 0 -- Time: ??? test8 = getElemDiv mat8 -- Time: ??? -- Not working either. test8' = getDiagDiv mat8
22.326667
73
0.681696
dff9f50b3ab5808f51b017dda63a1408f284979f
7,225
agda
Agda
src/Data/Fin/Subset/Properties/Cardinality.agda
tizmd/agda-finitary
abacd166f63582b7395d9cc10b6323c0f69649e5
[ "MIT" ]
null
null
null
src/Data/Fin/Subset/Properties/Cardinality.agda
tizmd/agda-finitary
abacd166f63582b7395d9cc10b6323c0f69649e5
[ "MIT" ]
null
null
null
src/Data/Fin/Subset/Properties/Cardinality.agda
tizmd/agda-finitary
abacd166f63582b7395d9cc10b6323c0f69649e5
[ "MIT" ]
null
null
null
module Data.Fin.Subset.Properties.Cardinality where open import Data.Nat as ℕ using (ℕ) open import Data.Nat.Properties as NP open import Data.Empty using (⊥-elim) open import Data.Fin open import Data.Fin.Subset open import Data.Fin.Subset.Properties open import Data.Vec using (_∷_; []) open import Data.Vec.Any using (here ; there) open import Data.Vec.Properties as VP open import Data.Product open import Data.Sum open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq open import Relation.Nullary.Negation open import Function -- some trivial lemma ∣p∣≡0→≡⊥ : ∀ {n}(p : Subset n) → ∣ p ∣ ≡ 0 → p ≡ ⊥ ∣p∣≡0→≡⊥ {ℕ.zero} [] refl = refl ∣p∣≡0→≡⊥ {ℕ.suc n} (outside ∷ p) eq = cong (outside ∷_) (∣p∣≡0→≡⊥ p eq) ∣p∣≡0→≡⊥ {ℕ.suc n} (inside ∷ p) () ∣p∣≡n→≡⊤ : ∀ {n}(p : Subset n) → ∣ p ∣ ≡ n → p ≡ ⊤ ∣p∣≡n→≡⊤ {ℕ.zero} [] refl = refl ∣p∣≡n→≡⊤ {ℕ.suc n} (outside ∷ p) eq = ⊥-elim (1+n≰n (≤-respˡ-≈ eq (∣p∣≤n p))) where open IsPartialOrder NP.≤-isPartialOrder using (≤-respˡ-≈) ∣p∣≡n→≡⊤ {ℕ.suc n} (inside ∷ p) eq = cong (inside ∷_) (∣p∣≡n→≡⊤ p (NP.suc-injective eq)) ∣p∣≡1→≡⁅x⁆ : ∀ {n}(p : Subset n) → ∣ p ∣ ≡ 1 → ∃ λ x → p ≡ ⁅ x ⁆ ∣p∣≡1→≡⁅x⁆ {ℕ.zero} [] () ∣p∣≡1→≡⁅x⁆ {ℕ.suc n} (outside ∷ p) eq with ∣p∣≡1→≡⁅x⁆ p eq ... | x , q = suc x , cong (outside ∷_) q ∣p∣≡1→≡⁅x⁆ {ℕ.suc n} (inside ∷ p) eq rewrite ∣p∣≡0→≡⊥ p (NP.suc-injective eq) = zero , refl -- union ≤∪ˡ : ∀ {n} {p} (q : Subset n) → ∣ p ∣ ℕ.≤ ∣ p ∪ q ∣ ≤∪ˡ {n}{p} q = p⊆q⇒∣p∣<∣q∣ (p⊆p∪q {p = p} q) ≤∪ʳ : ∀ {n} (p q : Subset n) → ∣ q ∣ ℕ.≤ ∣ p ∪ q ∣ ≤∪ʳ p q = p⊆q⇒∣p∣<∣q∣ (q⊆p∪q p q) ∪≤ : ∀ {n} (p q : Subset n) → ∣ p ∪ q ∣ ℕ.≤ ∣ p ∣ ℕ.+ ∣ q ∣ ∪≤ {ℕ.zero} [] [] = ℕ.z≤n ∪≤ {ℕ.suc n} (outside ∷ p) (outside ∷ q) = ∪≤ p q ∪≤ {ℕ.suc n} (outside ∷ p) (inside ∷ q) rewrite +-suc ∣ p ∣ ∣ q ∣ = ℕ.s≤s (∪≤ p q) ∪≤ {ℕ.suc n} (inside ∷ p) (outside ∷ q) = ℕ.s≤s (∪≤ p q) ∪≤ {ℕ.suc n} (inside ∷ p) (inside ∷ q) = ℕ.s≤s (NP.≤-trans (∪≤ p q) (NP.+-mono-≤ (≤-refl {∣ p ∣}) (n≤1+n _))) disjoint-∪≡+ : ∀ {n} (p q : Subset n) → p ∩ q ≡ ⊥ → ∣ p ∪ q ∣ ≡ ∣ p ∣ ℕ.+ ∣ q ∣ disjoint-∪≡+ {ℕ.zero} [] [] refl = refl disjoint-∪≡+ {ℕ.suc n} (outside ∷ p) (outside ∷ q) dis = disjoint-∪≡+ p q (VP.∷-injectiveʳ dis) disjoint-∪≡+ {ℕ.suc n} (outside ∷ p) (inside ∷ q) dis = Eq.trans (Eq.cong ℕ.suc (disjoint-∪≡+ p q (VP.∷-injectiveʳ dis))) (Eq.sym (NP.+-suc _ _)) disjoint-∪≡+ {ℕ.suc n} (inside ∷ p) (outside ∷ q) dis = Eq.cong ℕ.suc (disjoint-∪≡+ p q (VP.∷-injectiveʳ dis)) disjoint-∪≡+ {ℕ.suc n} (inside ∷ p) (inside ∷ q) () x∈p⇒⁅x⁆∪p≡p : ∀ {n} (x : Fin n)(p : Subset n) → x ∈ p → ⁅ x ⁆ ∪ p ≡ p x∈p⇒⁅x⁆∪p≡p x p x∈p = ⊆-antisym from to where from : ∀ {y} → y ∈ ⁅ x ⁆ ∪ p → y ∈ p from h with x∈p∪q⁻ ⁅ x ⁆ p h from h | inj₁ y∈⁅x⁆ rewrite x∈⁅y⁆⇒x≡y _ y∈⁅x⁆ = x∈p from h | inj₂ y∈p = y∈p to : ∀ {y} → y ∈ p → y ∈ ⁅ x ⁆ ∪ p to h = x∈p∪q⁺ (inj₂ h) ∣⁅x⁆∪p∣≡1+∣p∣⇒x∉p : ∀ {n}(x : Fin n)(p : Subset n) → ∣ ⁅ x ⁆ ∪ p ∣ ≡ 1 ℕ.+ ∣ p ∣ → x ∉ p ∣⁅x⁆∪p∣≡1+∣p∣⇒x∉p x p h x∈p rewrite x∈p⇒⁅x⁆∪p≡p x p x∈p = contradiction h lemma where lemma : ∀ {n} → n ≢ ℕ.suc n lemma () ∣⁅x⁆∪⁅y⁆∣≡2⇒x≢y : ∀ {n}(x y : Fin n) → ∣ ⁅ x ⁆ ∪ ⁅ y ⁆ ∣ ≡ 2 → x ≢ y ∣⁅x⁆∪⁅y⁆∣≡2⇒x≢y x .x h refl with ∣⁅x⁆∪p∣≡1+∣p∣⇒x∉p x ⁅ x ⁆ (trans h (cong ℕ.suc (sym (∣⁅x⁆∣≡1 x)))) ... | x∉⁅y⁆ = contradiction (x∈⁅x⁆ _) x∉⁅y⁆ module _ {n : ℕ} where open import Algebra.Structures {A = Subset n} _≡_ open IsBooleanAlgebra (∪-∩-isBooleanAlgebra n) renaming (∧-complementʳ to ∩-complementʳ; ∨-complementʳ to ∪-complementʳ) ∣p∣+∣∁p∣≡n : ∀ (p : Subset n) → ∣ p ∣ ℕ.+ ∣ ∁ p ∣ ≡ n ∣p∣+∣∁p∣≡n p = ∣ p ∣ ℕ.+ ∣ ∁ p ∣ ≡⟨ Eq.sym (disjoint-∪≡+ _ _ (∩-complementʳ p)) ⟩ _ ≡⟨ Eq.cong ∣_∣ (∪-complementʳ p) ⟩ _ ≡⟨ ∣⊤∣≡n _ ⟩ n ∎ where open Eq.≡-Reasoning ∩≤ˡ : ∀ {n} (a b : Subset n) → ∣ a ∩ b ∣ ℕ.≤ ∣ a ∣ ∩≤ˡ {n} a b = p⊆q⇒∣p∣<∣q∣ (p∩q⊆p a b) ∩≤ʳ : ∀ {n} (a b : Subset n) → ∣ a ∩ b ∣ ℕ.≤ ∣ b ∣ ∩≤ʳ {n} a b = p⊆q⇒∣p∣<∣q∣ (p∩q⊆q a b) ∣p∣<∣q∣⇒∣∁q∣<∣∁p∣ : ∀ {n} (p q : Subset n) → ∣ p ∣ ℕ.< ∣ q ∣ → ∣ ∁ q ∣ ℕ.< ∣ ∁ p ∣ ∣p∣<∣q∣⇒∣∁q∣<∣∁p∣ p q p<q = NP.+-cancelˡ-< ∣ q ∣ (begin-strict ∣ q ∣ ℕ.+ ∣ ∁ q ∣ ≡⟨ ∣p∣+∣∁p∣≡n q ⟩ _ ≡⟨ sym (∣p∣+∣∁p∣≡n p) ⟩ ∣ p ∣ ℕ.+ ∣ ∁ p ∣ <⟨ NP.+-monoˡ-< _ p<q ⟩ ∣ q ∣ ℕ.+ ∣ ∁ p ∣ ∎) where open NP.≤-Reasoning -- intersection {- private open import Relation.Nullary.Negation using (contraposition) p∩∁q≡⊥→p⊆q : ∀ {n} {p q : Subset n} → p ∩ ∁ q ≡ ⊥ → p ⊆ q p∩∁q≡⊥→p⊆q {zero} {[]} {[]} refl () p∩∁q≡⊥→p⊆q {suc n} {true ∷ p} {outside ∷ q} () here p∩∁q≡⊥→p⊆q {suc n} {inside ∷ p} {inside ∷ q} eq here = here p∩∁q≡⊥→p⊆q {suc n} {true ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq ... | _ , teq = there (p∩∁q≡⊥→p⊆q teq x∈p) p∩∁q≡⊥→p⊆q {suc n} {outside ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq ... | _ , teq = there (p∩∁q≡⊥→p⊆q teq x∈p) p∩q≡p→p⊆q : ∀ {n} {p q : Subset n} → p ∩ q ≡ p → p ⊆ q p∩q≡p→p⊆q {zero} {[]} {[]} refl () p∩q≡p→p⊆q {suc n} {inside ∷ p} {x ∷ q} eq here with ∷-injective eq p∩q≡p→p⊆q {suc n} {inside ∷ p} {.inside ∷ q} eq here | refl , _ = here p∩q≡p→p⊆q {suc n} {inside ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq ... | _ , teq = there (p∩q≡p→p⊆q teq x∈p) p∩q≡p→p⊆q {suc n} {outside ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq ... | _ , teq = there (p∩q≡p→p⊆q teq x∈p) p⊈q→p∩q≢p : ∀ {n} {p q : Subset n} → p ⊈ q → p ∩ q ≢ p p⊈q→p∩q≢p = contraposition p∩q≡p→p⊆q split-size : ∀ {n} {a} (b : Subset n) → ∣ a ∣ ≡ ∣ a ∩ b ∣ ℕ.+ ∣ a ∩ ∁ b ∣ split-size {n}{a} b = ∣a∣≡∣a∩b∣+∣a∩∁b∣ where open P.≡-Reasoning a∩b∩a∩∁b≡⊥ : (a ∩ b) ∩ (a ∩ ∁ b) ≡ ⊥ a∩b∩a∩∁b≡⊥ = begin (a ∩ b) ∩ (a ∩ ∁ b) ≡⟨ ∩-assoc _ _ _ ⟩ _ ≡⟨ cong (a ∩_ ) (sym (∩-assoc _ _ _)) ⟩ _ ≡⟨ cong (a ∩_ ) (cong (_∩ _) (∩-comm _ _)) ⟩ _ ≡⟨ cong (a ∩_ ) (∩-assoc _ _ _) ⟩ _ ≡⟨ cong (a ∩_ ) (cong (a ∩_) (∩-complementʳ _)) ⟩ _ ≡⟨ cong (a ∩_ ) (∩-zeroʳ _) ⟩ _ ≡⟨ ∩-zeroʳ _ ⟩ ⊥ ∎ a≡a∩b∪a∩∁b : a ≡ (a ∩ b) ∪ (a ∩ ∁ b) a≡a∩b∪a∩∁b = begin a ≡⟨ sym (∩-identityʳ _) ⟩ a ∩ ⊤ ≡⟨ cong (_ ∩_) (sym (∪-complementʳ _)) ⟩ a ∩ (b ∪ ∁ b) ≡⟨ (proj₁ ∪-∩-distrib) _ _ _ ⟩ (a ∩ b) ∪ (a ∩ ∁ b) ∎ ∣a∣≡∣a∩b∣+∣a∩∁b∣ : ∣ a ∣ ≡ ∣ a ∩ b ∣ ℕ.+ ∣ a ∩ ∁ b ∣ ∣a∣≡∣a∩b∣+∣a∩∁b∣ = begin ∣ a ∣ ≡⟨ cong size a≡a∩b∪a∩∁b ⟩ ∣ (a ∩ b) ∪ (a ∩ ∁ b) ∣ ≡⟨ disjoint-∪≡ a∩b∩a∩∁b≡⊥ ⟩ ∣ a ∩ b ∣ ℕ.+ ∣ a ∩ ∁ b ∣ ∎ ⊈→∩<ˡ : ∀ {n} {a b : Subset n} → a ⊈ b → ∣ a ∩ b ∣ ℕ.< ∣ a ∣ ⊈→∩<ˡ {n}{a}{b} a⊈b = ≤+≢⇒< (∩≤ˡ a b) lemma where open P.≡-Reasoning n+m≡n→m≡0 : ∀ {n m} → n ℕ.+ m ≡ n → m ≡ 0 n+m≡n→m≡0 {n}{m} eq = +-cancelˡ-≡ n (P.trans eq (sym (+-identityʳ n))) lemma : ∣ a ∩ b ∣ ≢ ∣ a ∣ lemma eq = (contraposition p∩∁q≡⊥→p⊆q a⊈b) (size0 (n+m≡n→m≡0 (sym (P.trans eq (split-size b))))) -}
41.763006
141
0.424913
10380419b26b51991cebef1380a603d499af5036
2,607
agda
Agda
src/Web/Semantic/Everything.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/Everything.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/Everything.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
-- A module which imports every Web.Semantic module. module Web.Semantic.Everything where import Web.Semantic.DL.ABox import Web.Semantic.DL.ABox.Interp import Web.Semantic.DL.ABox.Interp.Meet import Web.Semantic.DL.ABox.Interp.Morphism import Web.Semantic.DL.ABox.Model import Web.Semantic.DL.ABox.Skolemization import Web.Semantic.DL.Category import Web.Semantic.DL.Category.Composition import Web.Semantic.DL.Category.Morphism import Web.Semantic.DL.Category.Object import Web.Semantic.DL.Category.Properties import Web.Semantic.DL.Category.Properties.Composition import Web.Semantic.DL.Category.Properties.Composition.Assoc import Web.Semantic.DL.Category.Properties.Composition.LeftUnit import Web.Semantic.DL.Category.Properties.Composition.Lemmas import Web.Semantic.DL.Category.Properties.Composition.RespectsEquiv import Web.Semantic.DL.Category.Properties.Composition.RespectsWiring import Web.Semantic.DL.Category.Properties.Composition.RightUnit import Web.Semantic.DL.Category.Properties.Equivalence import Web.Semantic.DL.Category.Properties.Tensor import Web.Semantic.DL.Category.Properties.Tensor.AssocNatural import Web.Semantic.DL.Category.Properties.Tensor.Coherence import Web.Semantic.DL.Category.Properties.Tensor.Functor import Web.Semantic.DL.Category.Properties.Tensor.Isomorphisms import Web.Semantic.DL.Category.Properties.Tensor.Lemmas import Web.Semantic.DL.Category.Properties.Tensor.RespectsEquiv import Web.Semantic.DL.Category.Properties.Tensor.RespectsWiring import Web.Semantic.DL.Category.Properties.Tensor.SymmNatural import Web.Semantic.DL.Category.Properties.Tensor.UnitNatural import Web.Semantic.DL.Category.Tensor import Web.Semantic.DL.Category.Unit import Web.Semantic.DL.Category.Wiring import Web.Semantic.DL.Concept import Web.Semantic.DL.Concept.Model import Web.Semantic.DL.Concept.Skolemization import Web.Semantic.DL.FOL import Web.Semantic.DL.FOL.Model import Web.Semantic.DL.Integrity import Web.Semantic.DL.Integrity.Closed import Web.Semantic.DL.Integrity.Closed.Alternate import Web.Semantic.DL.Integrity.Closed.Properties import Web.Semantic.DL.KB import Web.Semantic.DL.KB.Model import Web.Semantic.DL.KB.Skolemization import Web.Semantic.DL.Role import Web.Semantic.DL.Role.Model import Web.Semantic.DL.Role.Skolemization import Web.Semantic.DL.Sequent import Web.Semantic.DL.Sequent.Model import Web.Semantic.DL.Signature import Web.Semantic.DL.TBox import Web.Semantic.DL.TBox.Interp import Web.Semantic.DL.TBox.Interp.Morphism import Web.Semantic.DL.TBox.Minimizable import Web.Semantic.DL.TBox.Model import Web.Semantic.DL.TBox.Skolemization
42.737705
69
0.853088
20a905348f3d5a6cde748e27c16c25f7e8915734
149
agda
Agda
test/fail/AgdalightTelescopeSyntax.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/AgdalightTelescopeSyntax.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/AgdalightTelescopeSyntax.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module AgdalightTelescopeSyntax where postulate A : Set B : A -> Set g : (x y : A; z : B x) -> A -- this is Agdalight syntax, should not parse
21.285714
45
0.644295
d0b56f25578c1af6c0970e5f5660198eb27d2a93
911
agda
Agda
archive/agda-3/src/Test/UnifiesSubstitunction.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Test/UnifiesSubstitunction.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Test/UnifiesSubstitunction.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Everything module Test.UnifiesSubstitunction {𝔭} (𝔓 : Ø 𝔭) where open Substitunction 𝔓 open Term 𝔓 open Substitist 𝔓 ≡-Unifies₀-Term : ∀ {m} → Term m → Term m → Ṗroperty ∅̂ (Arrow Fin Term m) ≡-Unifies₀-Term = ≡-surjcollation ≡-Unifies₀-Term' : ∀ {m} → Term m → Term m → Ṗroperty ∅̂ (Arrow Fin Term m) ≡-Unifies₀-Term' = ≡-surjcollation[ Term ]⟦ Substitunction ⟧ ≡-Unifies₀-Terms : ∀ {N m} → Terms N m → Terms N m → Ṗroperty ∅̂ (Arrow Fin Term m) ≡-Unifies₀-Terms = λ x → ≡-surjcollation x ≡-ExtensionalUnifies-Term : ∀ {m} → Term m → Term m → ArrowExtensionṖroperty ∅̂ Fin Term _≡_ m ≡-ExtensionalUnifies-Term = Surjextenscollation.method Substitunction _≡̇_ ≡-ExtensionalUnifies-Terms : ∀ {N m} → Terms N m → Terms N m → LeftExtensionṖroperty ∅̂ (Arrow Fin Term) (Pointwise Proposequality) m ≡-ExtensionalUnifies-Terms = surjextenscollation⟦ Pointwise _≡_ ⟧
37.958333
136
0.675082
180afb6f3a8b171701d088ac389396a55f659ab1
14,572
agda
Agda
Cubical/Categories/Constructions/Slice.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Categories/Constructions/Slice.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Categories/Constructions/Slice.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} open import Cubical.Categories.Category open import Cubical.Categories.Morphism renaming (isIso to isIsoC) open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open Iso open import Cubical.Foundations.HLevels open Precategory open import Cubical.Core.Glue open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport using (transpFill) module Cubical.Categories.Constructions.Slice {ℓ ℓ' : Level} (C : Precategory ℓ ℓ') (c : C .ob) {{isC : isCategory C}} where open import Cubical.Data.Sigma -- just a helper to prevent redundency TypeC : Type (ℓ-suc (ℓ-max ℓ ℓ')) TypeC = Type (ℓ-max ℓ ℓ') -- Components of a slice category record SliceOb : TypeC where constructor sliceob field {S-ob} : C .ob S-arr : C [ S-ob , c ] open SliceOb public record SliceHom (a b : SliceOb) : Type ℓ' where constructor slicehom field S-hom : C [ S-ob a , S-ob b ] -- commutative diagram S-comm : S-hom ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a open SliceHom public -- Helpers for working with equality -- can probably replace these by showing that SliceOb is isomorphic to Sigma and -- that paths are isomorphic to Sigma? But sounds like that would need a lot of transp SliceOb-≡-intro : ∀ {a b} {f g} → (p : a ≡ b) → PathP (λ i → C [ p i , c ]) f g → sliceob {a} f ≡ sliceob {b} g SliceOb-≡-intro p q = λ i → sliceob {p i} (q i) module _ {xf yg : SliceOb} where private x = xf .S-ob f = xf .S-arr y = yg .S-ob g = yg .S-arr -- a path between slice objects is the "same" as a pair of paths between C obs and C arrows SOPathIsoPathΣ : Iso (xf ≡ yg) (Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g) SOPathIsoPathΣ .fun p = (λ i → (p i) .S-ob) , (λ i → (p i) .S-arr) SOPathIsoPathΣ .inv (p , q) i = sliceob {p i} (q i) SOPathIsoPathΣ .rightInv _ = refl SOPathIsoPathΣ .leftInv _ = refl SOPath≃PathΣ = isoToEquiv SOPathIsoPathΣ SOPath≡PathΣ = ua (isoToEquiv SOPathIsoPathΣ) -- intro and elim for working with SliceHom equalities (is there a better way to do this?) SliceHom-≡-intro : ∀ {a b} {f g} {c₁} {c₂} → (p : f ≡ g) → PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ → slicehom f c₁ ≡ slicehom g c₂ SliceHom-≡-intro p q = λ i → slicehom (p i) (q i) SliceHom-≡-elim : ∀ {a b} {f g} {c₁} {c₂} → slicehom f c₁ ≡ slicehom g c₂ → Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ SliceHom-≡-elim r = (λ i → S-hom (r i)) , λ i → S-comm (r i) SliceHom-≡-intro' : ∀ {a b} {f g : C [ a .S-ob , b .S-ob ]} {c₁} {c₂} → (p : f ≡ g) → slicehom f c₁ ≡ slicehom g c₂ SliceHom-≡-intro' {a} {b} {f} {g} {c₁} {c₂} p i = slicehom (p i) (c₁≡c₂ i) where c₁≡c₂ : PathP (λ i → (p i) ⋆⟨ C ⟩ (b .S-arr) ≡ a .S-arr) c₁ c₂ c₁≡c₂ = isOfHLevel→isOfHLevelDep 1 (λ _ → isC .isSetHom _ _) c₁ c₂ p -- SliceHom is isomorphic to the Sigma type with the same components SliceHom-Σ-Iso : ∀ {a b} → Iso (SliceHom a b) (Σ[ h ∈ C [ S-ob a , S-ob b ] ] h ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) SliceHom-Σ-Iso .fun (slicehom h c) = h , c SliceHom-Σ-Iso .inv (h , c) = slicehom h c SliceHom-Σ-Iso .rightInv = λ x → refl SliceHom-Σ-Iso .leftInv = λ x → refl -- Precategory definition SliceCat : Precategory _ _ SliceCat .ob = SliceOb SliceCat .Hom[_,_] = SliceHom SliceCat .id (sliceob {x} f) = slicehom (C .id x) (C .⋆IdL _) SliceCat ._⋆_ {sliceob j} {sliceob k} {sliceob l} (slicehom f p) (slicehom g p') = slicehom (f ⋆⟨ C ⟩ g) ( f ⋆⟨ C ⟩ g ⋆⟨ C ⟩ l ≡⟨ C .⋆Assoc _ _ _ ⟩ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ l) ≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) p' ⟩ f ⋆⟨ C ⟩ k ≡⟨ p ⟩ j ∎) SliceCat .⋆IdL (slicehom S-hom S-comm) = SliceHom-≡-intro (⋆IdL C _) (toPathP (isC .isSetHom _ _ _ _)) SliceCat .⋆IdR (slicehom S-hom S-comm) = SliceHom-≡-intro (⋆IdR C _) (toPathP (isC .isSetHom _ _ _ _)) SliceCat .⋆Assoc f g h = SliceHom-≡-intro (⋆Assoc C _ _ _) (toPathP (isC .isSetHom _ _ _ _)) -- SliceCat is a Category instance isCatSlice : isCategory SliceCat isCatSlice .isSetHom {a} {b} (slicehom f c₁) (slicehom g c₂) p q = cong isoP p'≡q' where -- paths between SliceHoms are equivalent to the projection paths p' : Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ p' = SliceHom-≡-elim p q' : Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ q' = SliceHom-≡-elim q -- we want all paths between (dependent) paths of this type to be equal B = λ v → v ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a -- need the groupoidness for dependent paths homIsGroupoidDep : isOfHLevelDep 2 B homIsGroupoidDep = isOfHLevel→isOfHLevelDep 2 (λ v x y → isSet→isGroupoid (isC .isSetHom) _ _ x y) -- we first prove that the projected paths are equal p'≡q' : p' ≡ q' p'≡q' = ΣPathP ((isC .isSetHom _ _ _ _) , toPathP (homIsGroupoidDep _ _ _ _ _)) -- and then we can use equivalence to lift these paths up -- to actual SliceHom paths isoP = λ g → cong (inv SliceHom-Σ-Iso) (fun (ΣPathIsoPathΣ) g) -- SliceCat is univalent if C is univalent module _ ⦃ isU : isUnivalent C ⦄ where open CatIso open Iso module _ { xf yg : SliceOb } where private x = xf .S-ob y = yg .S-ob -- names for the equivalences/isos pathIsoEquiv : (x ≡ y) ≃ (CatIso x y) pathIsoEquiv = univEquiv isU x y isoPathEquiv : (CatIso x y) ≃ (x ≡ y) isoPathEquiv = invEquiv pathIsoEquiv pToIIso' : Iso (x ≡ y) (CatIso x y) pToIIso' = equivToIso pathIsoEquiv -- the iso in SliceCat we're given induces an iso in C between x and y module _ ( cIso@(catiso kc lc s r) : CatIso {C = SliceCat} xf yg ) where extractIso' : CatIso {C = C} x y extractIso' .mor = kc .S-hom extractIso' .inv = lc .S-hom extractIso' .sec i = (s i) .S-hom extractIso' .ret i = (r i) .S-hom instance preservesUnivalenceSlice : isUnivalent SliceCat -- we prove the equivalence by going through Iso preservesUnivalenceSlice .univ xf@(sliceob {x} f) yg@(sliceob {y} g) = isoToIsEquiv sIso where -- this is just here because the type checker can't seem to infer xf and yg pToIIso : Iso (x ≡ y) (CatIso x y) pToIIso = pToIIso' {xf = xf} {yg} -- the meat of the proof sIso : Iso (xf ≡ yg) (CatIso xf yg) sIso .fun p = pathToIso xf yg p -- we use the normal pathToIso via path induction to get an isomorphism sIso .inv is@(catiso kc lc s r) = SliceOb-≡-intro x≡y (symP (sym (lc .S-comm) ◁ lf≡f)) where -- we get a path between xf and yg by combining paths between -- x and y, and f and g -- 1. x≡y follows from univalence of C -- 2. f≡g is more tricky; by commutativity, we know that g ≡ l ⋆ f -- so we want l to be id; we get this by showing: id ≡ pathToIso x y x≡y ≡ l -- where the first step follows from path induction, and the second from univalence of C -- morphisms in C from kc and lc k = kc .S-hom l = lc .S-hom -- extract out the iso between x and y extractIso : CatIso {C = C} x y extractIso = extractIso' is -- and we can use univalence of C to get x ≡ y x≡y : x ≡ y x≡y = pToIIso .inv extractIso -- to show that f ≡ g, we show that l ≡ id -- by using C's isomorphism pToI≡id : PathP (λ i → C [ x≡y (~ i) , x ]) (pathToIso {C = C} x y x≡y .inv) (C .id x) pToI≡id = J (λ y p → PathP (λ i → C [ p (~ i) , x ]) (pathToIso {C = C} x y p .inv) (C .id x)) (λ j → JRefl pToIFam pToIBase j .inv) x≡y where idx = C .id x pToIFam = (λ z _ → CatIso {C = C} x z) pToIBase = catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx) l≡pToI : l ≡ pathToIso {C = C} x y x≡y .inv l≡pToI i = pToIIso .rightInv extractIso (~ i) .inv l≡id : PathP (λ i → C [ x≡y (~ i) , x ]) l (C .id x) l≡id = l≡pToI ◁ pToI≡id lf≡f : PathP (λ i → C [ x≡y (~ i) , c ]) (l ⋆⟨ C ⟩ f) f lf≡f = (λ i → (l≡id i) ⋆⟨ C ⟩ f) ▷ C .⋆IdL _ sIso .rightInv is@(catiso kc lc s r) i = catiso (kc'≡kc i) (lc'≡lc i) (s'≡s i) (r'≡r i) -- we prove rightInv using a combination of univalence and the fact that homs are an h-set where kc' = (sIso .fun) (sIso .inv is) .mor lc' = (sIso .fun) (sIso .inv is) .inv k' = kc' .S-hom l' = lc' .S-hom k = kc .S-hom l = lc .S-hom extractIso : CatIso {C = C} x y extractIso = extractIso' is -- we do the equality component wise -- mor k'≡k : k' ≡ k k'≡k i = (pToIIso .rightInv extractIso) i .mor kcom'≡kcom : PathP (λ j → (k'≡k j) ⋆⟨ C ⟩ g ≡ f) (kc' .S-comm) (kc .S-comm) kcom'≡kcom = isSetHomP1 _ _ λ i → (k'≡k i) ⋆⟨ C ⟩ g kc'≡kc : kc' ≡ kc kc'≡kc i = slicehom (k'≡k i) (kcom'≡kcom i) -- inv l'≡l : l' ≡ l l'≡l i = (pToIIso .rightInv extractIso) i .inv lcom'≡lcom : PathP (λ j → (l'≡l j) ⋆⟨ C ⟩ f ≡ g) (lc' .S-comm) (lc .S-comm) lcom'≡lcom = isSetHomP1 _ _ λ i → (l'≡l i) ⋆⟨ C ⟩ f lc'≡lc : lc' ≡ lc lc'≡lc i = slicehom (l'≡l i) (lcom'≡lcom i) -- sec s' = (sIso .fun) (sIso .inv is) .sec s'≡s : PathP (λ i → lc'≡lc i ⋆⟨ SliceCat ⟩ kc'≡kc i ≡ SliceCat .id _) s' s s'≡s = isSetHomP1 _ _ λ i → lc'≡lc i ⋆⟨ SliceCat ⟩ kc'≡kc i -- ret r' = (sIso .fun) (sIso .inv is) .ret r'≡r : PathP (λ i → kc'≡kc i ⋆⟨ SliceCat ⟩ lc'≡lc i ≡ SliceCat .id _) r' r r'≡r = isSetHomP1 _ _ λ i → kc'≡kc i ⋆⟨ SliceCat ⟩ lc'≡lc i sIso .leftInv p = p'≡p -- to show that the round trip is equivalent to the identity -- we show that this is true for each component (S-ob, S-arr) -- and then combine -- specifically, we show that p'Ob≡pOb and p'Mor≡pMor -- and it follows that p'≡p where p' = (sIso .inv) (sIso .fun p) pOb : x ≡ y pOb i = (p i) .S-ob p'Ob : x ≡ y p'Ob i = (p' i) .S-ob pMor : PathP (λ i → C [ pOb i , c ]) f g pMor i = (p i) .S-arr p'Mor : PathP (λ i → C [ p'Ob i , c ]) f g p'Mor i = (p' i) .S-arr -- we first show that it's equivalent to use sIso first then extract, or to extract first than use pToIIso extractCom : extractIso' (sIso .fun p) ≡ pToIIso .fun pOb extractCom = J (λ yg' p̃ → extractIso' (pathToIso xf yg' p̃) ≡ pToIIso' {xf = xf} {yg'} .fun (λ i → (p̃ i) .S-ob)) (cong extractIso' (JRefl pToIFam' pToIBase') ∙ sym (JRefl pToIFam pToIBase)) p where idx = C .id x pToIFam = (λ z _ → CatIso {C = C} x z) pToIBase = catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx) idxf = SliceCat .id xf pToIFam' = (λ z _ → CatIso {C = SliceCat} xf z) pToIBase' = catiso (SliceCat .id xf) idxf (SliceCat .⋆IdL idxf) (SliceCat .⋆IdL idxf) -- why does this not follow definitionally? -- from extractCom, we get that performing the roundtrip on pOb gives us back p'Ob ppp : p'Ob ≡ (pToIIso .inv) (pToIIso .fun pOb) ppp = cong (pToIIso .inv) extractCom -- apply univalence of C -- this gives us the first component that we want p'Ob≡pOb : p'Ob ≡ pOb p'Ob≡pOb = ppp ∙ pToIIso .leftInv pOb -- isSetHom gives us the second component, path between morphisms p'Mor≡pMor : PathP (λ j → PathP (λ i → C [ (p'Ob≡pOb j) i , c ]) f g) p'Mor pMor p'Mor≡pMor = isSetHomP2l _ _ p'Mor pMor p'Ob≡pOb -- we can use the above paths to show that p' ≡ p p'≡p : p' ≡ p p'≡p i = comp (λ i' → SOPath≡PathΣ {xf = xf} {yg} (~ i')) (λ j → λ { (i = i0) → left (~ j) ; (i = i1) → right (~ j) }) (p'Σ≡pΣ i) where -- we break up p' and p into their constituent paths -- first via transport and then via our component definitions from before -- we show that p'ΣT ≡ p'Σ (and same for p) via univalence -- and p'Σ≡pΣ follows from our work from above p'ΣT : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g p'ΣT = transport SOPath≡PathΣ p' p'Σ : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g p'Σ = (p'Ob , p'Mor) pΣT : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g pΣT = transport SOPath≡PathΣ p pΣ : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g pΣ = (pOb , pMor)-- transport SOPathP≡PathPSO p -- using the computation rule to ua p'ΣT≡p'Σ : p'ΣT ≡ p'Σ p'ΣT≡p'Σ = uaβ SOPath≃PathΣ p' pΣT≡pΣ : pΣT ≡ pΣ pΣT≡pΣ = uaβ SOPath≃PathΣ p p'Σ≡pΣ : p'Σ ≡ pΣ p'Σ≡pΣ = ΣPathP (p'Ob≡pOb , p'Mor≡pMor) -- two sides of the square we're connecting left : PathP (λ i → SOPath≡PathΣ {xf = xf} {yg} i) p' p'Σ left = transport-filler SOPath≡PathΣ p' ▷ p'ΣT≡p'Σ right : PathP (λ i → SOPath≡PathΣ {xf = xf} {yg} i) p pΣ right = transport-filler SOPath≡PathΣ p ▷ pΣT≡pΣ -- properties -- TODO: move to own file open isIsoC renaming (inv to invC) -- make a slice isomorphism from just the hom sliceIso : ∀ {a b} (f : C [ a .S-ob , b .S-ob ]) (c : (f ⋆⟨ C ⟩ b .S-arr) ≡ a .S-arr) → isIsoC {C = C} f → isIsoC {C = SliceCat} (slicehom f c) sliceIso f c isof .invC = slicehom (isof .invC) (sym (invMoveL (isIso→areInv isof) c)) sliceIso f c isof .sec = SliceHom-≡-intro' (isof .sec) sliceIso f c isof .ret = SliceHom-≡-intro' (isof .ret)
37.947917
126
0.522372
dc3f0d4782fc14c1cd3b9eb176646641c903aee7
5,833
agda
Agda
src/FOmegaInt/Typing/Inversion.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/FOmegaInt/Typing/Inversion.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/FOmegaInt/Typing/Inversion.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Inversion of (sub)typing in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Typing.Inversion where open import Data.Product using (_,_; proj₁; proj₂; _×_; map) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary using (¬_) open import FOmegaInt.Syntax open import FOmegaInt.Typing open import FOmegaInt.Typing.Validity open import FOmegaInt.Kinding.Declarative.Normalization open import FOmegaInt.Kinding.Canonical.Equivalence using (sound-<:; sound-<∷; complete-<∷; complete-<:-⋯) import FOmegaInt.Kinding.Canonical.Inversion as CanInv open Syntax open TermCtx hiding (map) open Typing open Substitution using (_[_]; weaken) open WfCtxOps using (lookup-tp) open TypedSubstitution open TypedNarrowing ------------------------------------------------------------------------ -- Generation/inversion of typing. infix 4 _⊢Tm-gen_∈_ -- The possible types of a term (i.e. the possible results of -- generating/inverting _⊢Tp_∈_). data _⊢Tm-gen_∈_ {n} (Γ : Ctx n) : Term n → Term n → Set where ∈-var : ∀ {a b} x → Γ ctx → lookup Γ x ≡ tp a → Γ ⊢ a <: b ∈ * → Γ ⊢Tm-gen var x ∈ b ∈-∀-i : ∀ {k a b c} → Γ ⊢ k kd → kd k ∷ Γ ⊢Tm a ∈ b → Γ ⊢ Π k b <: c ∈ * → Γ ⊢Tm-gen Λ k a ∈ c ∈-→-i : ∀ {a b c d} → Γ ⊢Tp a ∈ * → tp a ∷ Γ ⊢Tm b ∈ weaken c → Γ ⊢ a ⇒ c <: d ∈ * → Γ ⊢Tm-gen ƛ a b ∈ d ∈-∀-e : ∀ {a b k c d} → Γ ⊢Tm a ∈ Π k c → Γ ⊢Tp b ∈ k → Γ ⊢ c [ b ] <: d ∈ * → Γ ⊢Tm-gen a ⊡ b ∈ d ∈-→-e : ∀ {a b c d e} → Γ ⊢Tm a ∈ c ⇒ d → Γ ⊢Tm b ∈ c → Γ ⊢ d <: e ∈ * → Γ ⊢Tm-gen a · b ∈ e -- Generation/inversion of typing. Tm∈-gen : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Tm a ∈ b → Γ ⊢Tm-gen a ∈ b Tm∈-gen (∈-var x Γ-ctx Γ[x]≡kd-a) = ∈-var x Γ-ctx Γ[x]≡kd-a (<:-refl (Tm∈-valid (∈-var x Γ-ctx Γ[x]≡kd-a))) Tm∈-gen (∈-∀-i k-kd a∈b) = ∈-∀-i k-kd a∈b (<:-refl (Tm∈-valid (∈-∀-i k-kd a∈b))) Tm∈-gen (∈-→-i a∈* b∈c c∈*) = ∈-→-i a∈* b∈c (<:-refl (Tm∈-valid (∈-→-i a∈* b∈c c∈*))) Tm∈-gen (∈-∀-e a∈∀kc b∈k) = ∈-∀-e a∈∀kc b∈k (<:-refl (Tm∈-valid (∈-∀-e a∈∀kc b∈k))) Tm∈-gen (∈-→-e a∈c⇒d b∈c) = ∈-→-e a∈c⇒d b∈c (<:-refl (Tm∈-valid (∈-→-e a∈c⇒d b∈c))) Tm∈-gen (∈-⇑ a∈b b<:c) with Tm∈-gen a∈b Tm∈-gen (∈-⇑ x∈b c<:d) | ∈-var x Γ-ctx Γ[x]≡kd-a a<:b = ∈-var x Γ-ctx Γ[x]≡kd-a (<:-trans a<:b c<:d) Tm∈-gen (∈-⇑ Λka∈b b<:c) | ∈-∀-i k-kd a∈d ∀kd<:b = ∈-∀-i k-kd a∈d (<:-trans ∀kd<:b b<:c) Tm∈-gen (∈-⇑ ƛab∈c c<:d) | ∈-→-i a∈* b∈c a⇒c<:d = ∈-→-i a∈* b∈c (<:-trans a⇒c<:d c<:d) Tm∈-gen (∈-⇑ a·b∈e e<:f) | ∈-∀-e a∈Πcd b∈c d[b]<:e = ∈-∀-e a∈Πcd b∈c (<:-trans d[b]<:e e<:f) Tm∈-gen (∈-⇑ a·b∈e e<:f) | ∈-→-e a∈c⇒d b∈c d<:e = ∈-→-e a∈c⇒d b∈c (<:-trans d<:e e<:f) ------------------------------------------------------------------------ -- Inversion of subtyping (in the empty context). -- NOTE. The following two lemmas only hold in the empty context -- because we can not invert instances of the interval projection -- rules (<:-⟨| and (<:-|⟩) in arbitrary contexts. This is because -- instances of these rules can reflect arbitrary subtyping -- assumptions into the subtyping relation. Consider, e.g. -- -- Γ, X :: ⊤..⊥ ctx Γ(X) = ⊥..⊤ -- ------------------------------- (∈-var) -- Γ, X :: ⊤..⊥ ⊢ X :: ⊤..⊥ -- -------------------------- (<:-⟨|, <:-|⟩) -- Γ, X :: ⊤..⊥ ⊢ ⊤ <: X <: ⊥ -- -- Which allows us to prove that ⊤ <: ⊥ using (<:-trans) under the -- assumption (X : ⊤..⊥). On the other hand, it is impossible to give -- a transitivity-free proof of ⊤ <: ⊥. In general, it is therefore -- impossible to invert subtyping statements in non-empty contexts, -- i.e. one cannot prove lemmas like (<:-→-inv) or (<:-∀-inv) below -- for arbitrary contexts. <:-∀-inv : ∀ {k₁ k₂ : Kind Term 0} {a₁ a₂} → [] ⊢ Π k₁ a₁ <: Π k₂ a₂ ∈ * → [] ⊢ k₂ <∷ k₁ × kd k₂ ∷ [] ⊢ a₁ <: a₂ ∈ * <:-∀-inv ∀k₁a₁<:∀k₂a₂∈* = let nf-∀k₁a₁<:nf-∀k₂a₂ = complete-<:-⋯ ∀k₁a₁<:∀k₂a₂∈* nf-k₂<∷nf-k₁ , nf-a₁<:nf-a₂ = CanInv.<:-∀-inv nf-∀k₁a₁<:nf-∀k₂a₂ ∀k₁a₁∈* , ∀k₂a₂∈* = <:-valid ∀k₁a₁<:∀k₂a₂∈* k₁≅nf-k₁∈* , a₁≃nf-a₁∈* = Tp∈-∀-≃-⌞⌟-nf ∀k₁a₁∈* k₂≅nf-k₂∈* , a₂≃nf-a₂∈* = Tp∈-∀-≃-⌞⌟-nf ∀k₂a₂∈* k₂<∷nf-k₂∈* = ≅⇒<∷ k₂≅nf-k₂∈* k₂<∷k₁ = <∷-trans (<∷-trans k₂<∷nf-k₂∈* (sound-<∷ nf-k₂<∷nf-k₁)) (≅⇒<∷ (≅-sym k₁≅nf-k₁∈*)) in k₂<∷k₁ , <:-trans (<:-trans (⇓-<: k₂<∷k₁ (≃⇒<: a₁≃nf-a₁∈*)) (⇓-<: k₂<∷nf-k₂∈* (sound-<: nf-a₁<:nf-a₂))) (≃⇒<: (≃-sym a₂≃nf-a₂∈*)) <:-→-inv : ∀ {a₁ a₂ b₁ b₂ : Term 0} → [] ⊢ a₁ ⇒ b₁ <: a₂ ⇒ b₂ ∈ * → [] ⊢ a₂ <: a₁ ∈ * × [] ⊢ b₁ <: b₂ ∈ * <:-→-inv a₁⇒b₁<:a₂⇒b₂∈* = let nf-a₁⇒b₁<:nf-a₂⇒b₂ = complete-<:-⋯ a₁⇒b₁<:a₂⇒b₂∈* nf-a₂<:nf-a₁ , nf-b₁<:nf-b₂ = CanInv.<:-→-inv nf-a₁⇒b₁<:nf-a₂⇒b₂ a₁⇒b₁∈* , a₂⇒b₂∈* = <:-valid a₁⇒b₁<:a₂⇒b₂∈* a₁≃nf-a₁∈* , b₁≃nf-b₁∈* = Tp∈-→-≃-⌞⌟-nf a₁⇒b₁∈* a₂≃nf-a₂∈* , b₂≃nf-b₂∈* = Tp∈-→-≃-⌞⌟-nf a₂⇒b₂∈* in <:-trans (<:-trans (≃⇒<: a₂≃nf-a₂∈*) (sound-<: nf-a₂<:nf-a₁)) (≃⇒<: (≃-sym a₁≃nf-a₁∈*)) , <:-trans (<:-trans (≃⇒<: b₁≃nf-b₁∈*) (sound-<: nf-b₁<:nf-b₂)) (≃⇒<: (≃-sym b₂≃nf-b₂∈*)) -- ⊤ is not a subtype of ⊥. ⊤-≮:-⊥ : ∀ {a : Term 0} → ¬ [] ⊢ ⊤ <: ⊥ ∈ * ⊤-≮:-⊥ ⊤<:⊥ with CanInv.⊤-<:-max (complete-<:-⋯ ⊤<:⊥) ⊤-≮:-⊥ ⊤<:⊥ | () -- Arrows are not canonical subtypes of universals and vice-versa. ⇒-≮:-Π : ∀ {a₁ b₁ : Term 0} {k₂ a₂} → ¬ [] ⊢ a₁ ⇒ b₁ <: Π k₂ a₂ ∈ * ⇒-≮:-Π a₁⇒b₁<:∀k₂a₂∈* = CanInv.⇒-≮:-Π (complete-<:-⋯ a₁⇒b₁<:∀k₂a₂∈*) Π-≮:-⇒ : ∀ {k₁ a₁} {a₂ b₂ : Term 0} → ¬ [] ⊢ Π k₁ a₁ <: a₂ ⇒ b₂ ∈ * Π-≮:-⇒ ∀k₁a₁<:a₂⇒b₂∈* = CanInv.Π-≮:-⇒ (complete-<:-⋯ ∀k₁a₁<:a₂⇒b₂∈*)
42.268116
80
0.454655
1c500609e4d4316c507da27fe4f65329ee7d750c
2,638
agda
Agda
nicolai/pseudotruncations/pointed-O-Sphere.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/pseudotruncations/pointed-O-Sphere.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/pseudotruncations/pointed-O-Sphere.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.PathGroupoid open import lib.types.Bool open import lib.types.IteratedSuspension open import lib.types.Lift open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Suspension open import lib.types.TLevel open import lib.types.Unit open SuspensionRec public using () renaming (f to Susp-rec) open import nicolai.pseudotruncations.Preliminary-definitions open import nicolai.pseudotruncations.Liblemmas module nicolai.pseudotruncations.pointed-O-Sphere where {- helper file for some technical things -} module _ {i} where bool = fst (⊙Sphere {i} O) tt₀ : bool tt₀ = snd (⊙Sphere {i} O) ff₀ : bool ff₀ = lift false module bool-neutral {i j} (P : bool {i} → Type j) (p₀ : P tt₀) where bool-pair : (P tt₀ × P ff₀) ≃ ((b : bool) → P b) bool-pair = equiv (λ tf → (λ { (lift true) → fst tf ; (lift false) → snd tf })) (λ f → (f tt₀ , f ff₀)) (λ f → λ= (λ { (lift true) → idp ; (lift false) → idp })) (λ tf → idp) pair-red : Σ (P tt₀ × P ff₀) (λ tf → fst tf == p₀) → P ff₀ pair-red ((pt , pf) , q) = pf sing-exp : P ff₀ → Σ (P tt₀ × P ff₀) (λ tf → fst tf == p₀) sing-exp pf = ((p₀ , pf) , idp) red-exp : (pf : P ff₀) → pair-red (sing-exp pf) == pf red-exp _ = idp exp-red : (x : Σ (P tt₀ × P ff₀) (λ tf → fst tf == p₀)) → sing-exp (pair-red x) == x exp-red ((.p₀ , pf) , idp) = idp {- I tried to do it with pattern matching, but this does not introduce a dot [.] before [p₀]. Thus, is fails. Is this a bug? -} pair-one-determined : Σ (P tt₀ × P ff₀) (λ tf → fst tf == p₀) ≃ P ff₀ pair-one-determined = equiv pair-red sing-exp red-exp exp-red {- This reduction result is (on paper) trivial, but for our formalization quite powerful! -} reduction : (Σ ((b : bool) → P b) λ g → g tt₀ == p₀) ≃ P ff₀ reduction = (Σ ((b : bool) → P b) λ g → g tt₀ == p₀) ≃⟨ equiv-Σ-fst {A = P tt₀ × P ff₀} {B = (b : bool) → P b} (λ g → g tt₀ == p₀) {h = fst bool-pair} (snd bool-pair) ⁻¹ ⟩ Σ (P tt₀ × P ff₀) ((λ g → g tt₀ == p₀) ∘ fst bool-pair) ≃⟨ ide _ ⟩ Σ (P tt₀ × P ff₀) (λ tf → fst tf == p₀) ≃⟨ pair-one-determined ⟩ P ff₀ ≃∎
31.035294
86
0.543215
dc2e62faae68467252b56000acc7ddcbdcdc801f
1,297
agda
Agda
LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor/Properties.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor/Properties.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor/Properties.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module contains properties that are only about the behavior of the handlers, nothing to do -- with system state open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Base.ByteString open import LibraBFT.Base.Types open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Util module LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor.Properties (hash : BitString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor hash hash-cr -- The quorum certificates sent in SyncInfo with votes are those from the peer state procPMCerts≡ : ∀ {ts pm pre vm αs} → (SendVote vm αs) ∈ LBFT-outs (processProposalMsg ts pm) pre → vm ^∙ vmSyncInfo ≡ mkSyncInfo (₋epHighestQC pre) (₋epHighestCommitQC pre) procPMCerts≡ (there x) = ⊥-elim (¬Any[] x) -- processProposalMsg sends only one vote procPMCerts≡ (here refl) = refl
40.53125
111
0.737857
c5d1d8a5c7048a2269ad44c6867cd7b42563c4eb
39,444
agda
Agda
combinations-of-lift-and-list.agda
Saizan/Agda-proofs
add34af6c5c0c106c7aaa2d9612d54e041ab5d3b
[ "MIT" ]
null
null
null
combinations-of-lift-and-list.agda
Saizan/Agda-proofs
add34af6c5c0c106c7aaa2d9612d54e041ab5d3b
[ "MIT" ]
null
null
null
combinations-of-lift-and-list.agda
Saizan/Agda-proofs
add34af6c5c0c106c7aaa2d9612d54e041ab5d3b
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --guarded -W ignore #-} module combinations-of-lift-and-list where open import Clocked.Primitives open import Cubical.Foundations.Prelude open import Cubical.Data.List as List open import Cubical.Data.List.Properties open import Cubical.Data.Sum using (_⊎_; inl; inr) --**********************************************************************-- --**********************************************************************-- -- Combining the monads Lift and List freely and via a distributive law -- --**********************************************************************-- --**********************************************************************-- -- In this document I want to define a monad, called ListLift, that is the free combination of the Lift monad and the List monad. -- In order to do so, I will first define the Lift monad and the List monad, and check that they are indeed monads (Step 1 and 2). -- Then I define the LiftList monad, check that it is a monad (Step 3), and finally check that it is the free monad on the algebra -- structures of a delay algebra and a monoid (Step 4). -- In addition to the free combination of the List and the Lift monads, I also compose the two monads to form the monad -- LcL : A → Lift(List A). This composition uses a distributive law, which I prove does indeed satisfy all the axioms for a -- distributive law. --************************-- -- Step 1: The Lift monad -- --************************-- -- Defining the monad myLift. --(note that the return/unit is just x → nowL x) data myLift (A : Set) (κ : Cl) : Set where nowL : A → (myLift A κ) stepL : ▹ κ (myLift A κ) → (myLift A κ) bindL : {A B : Set} (κ : Cl) → (A → (myLift B κ)) → myLift A κ → myLift B κ bindL κ f (nowL a) = f a bindL κ f (stepL x) = stepL \(α) → bindL κ f (x α) identity : {A : Set} → A → A identity x = x MultL : {A : Set} (κ : Cl) → (myLift (myLift A κ) κ) → (myLift A κ) MultL κ = bindL κ identity mapL : {A B : Set} (κ : Cl) → (A → B) → (myLift A κ) → (myLift B κ) mapL κ f (nowL x) = nowL (f x) mapL κ f (stepL x) = stepL (\ α → mapL κ f (x α)) --checking that it is indeed a monad -- needs to satisfy three monad laws: -- unit is a left-identity for bind: bind (f, return) = f -- unit is a right-identity for bind: bind (return, x) = x -- bind is associative: bind (\x ­> bind (g, f(x)), x) = bind(g,bind(f, x)) -- The first of these is satisfied by definition -- The other two laws we check here below -- unit law, two versions to learn and remember to ways of doing guarded recursion in agda: unitlawL : {A : Set}(κ : Cl) → ∀(x : (myLift A κ)) → (bindL {A} κ nowL x) ≡ x unitlawL κ (nowL x) = refl unitlawL κ (stepL x) = cong stepL (later-ext (\ α → unitlawL κ (x α))) unitlawL' : {A : Set}(κ : Cl) → ∀(x : (myLift A κ)) → (bindL {A} κ nowL x) ≡ x unitlawL' κ (nowL x) = refl unitlawL' κ (stepL x) = \ i → stepL (\ α → unitlawL' κ (x α) i ) -- associative law: associativelawL : {A B C : Set}(κ : Cl) → ∀(f : A → (myLift B κ)) → ∀ (g : B → (myLift C κ)) → ∀ (y : (myLift A κ)) → (bindL κ (\ x → (bindL κ g (f x))) y) ≡ (bindL κ g (bindL κ f y)) associativelawL κ f g (nowL x) = refl associativelawL κ f g (stepL x) = cong stepL (((later-ext (\ α → associativelawL κ f g (x α))))) -- Some properties that will be useful later: -- interaction of mapL and MultL: MultMap : {A B : Set} (κ : Cl) → ∀(x : myLift (myLift A κ) κ) → ∀(f : A → B) → mapL κ f (MultL κ x) ≡ MultL κ (mapL κ (mapL κ f) x) MultMap κ (nowL x) f = refl MultMap κ (stepL x) f = \ i → stepL (\ α → MultMap κ (x α) f i) -- mapmap for mapL mapmapL : {A B C : Set} (κ : Cl) → ∀(f : A → B) → ∀(g : B → C) → ∀(x : myLift A κ) → mapL κ g (mapL κ f x) ≡ mapL κ (\ y → g(f y)) x mapmapL κ f g (nowL x) = refl mapmapL κ f g (stepL x) = (\ i → stepL (\ α → mapmapL κ f g (x α) i )) --************************-- -- Step 2: The List monad -- --************************-- -- Defining the monad List --List is already defined, but we define a unit and multiplication for it, so it becomes a monad List-unit : {A : Set} → A → List A List-unit x = [ x ] List-mult : {A : Set} → List (List A) → List A List-mult {A} = foldr _++_ [] List-bind : {A B : Set} → (A → List B) → List A → List B List-bind f [] = [] List-bind f (x ∷ xs) = (f x) ++ (List-bind f xs) -- and some other useful functions for later safe-head : {A : Set} → A → List A → A safe-head x [] = x safe-head _ (x ∷ _) = x tail : {A : Set} → List A → List A tail [] = [] tail (x ∷ xs) = xs -- Proving that this forms a monad -- satisfying the laws: -- List-mult (List-unit L) = L -- List-mult (map List-unit L) = L -- List-mult (List-Mult L) = List-mult (map List-mult L) -- and both the unit and the multiplication are natural transformations -- List-mult (List-unit L) = L List-unitlaw1 : {A : Set} → ∀(L : List A) → List-mult (List-unit L) ≡ L List-unitlaw1 [] = refl List-unitlaw1 (x ∷ L) = cong (_++_ [ x ]) (List-unitlaw1 L) -- List-mult (map List-unit L) = L List-unitlaw2 : {A : Set} → ∀(L : List A) → List-mult (map List-unit L) ≡ L List-unitlaw2 [] = refl List-unitlaw2 (x ∷ L) = cong (_++_ [ x ]) (List-unitlaw2 L ) -- List-mult (List-Mult L) = List-mult (map List-mult L) lemma : {A : Set} → ∀(L₁ L₂ : List (List A)) -> List-mult (L₁ ++ L₂) ≡ (List-mult L₁) ++ (List-mult L₂) lemma [] L₂ = refl lemma (L₁ ∷ L₃) L₂ = L₁ ++ List-mult (L₃ ++ L₂) ≡⟨ cong (L₁ ++_) (lemma L₃ L₂) ⟩ L₁ ++ ((List-mult L₃) ++ (List-mult L₂)) ≡⟨ sym (++-assoc L₁ (List-mult L₃) (List-mult L₂)) ⟩ (L₁ ++ List-mult L₃) ++ List-mult L₂ ≡⟨ refl ⟩ (List-mult (L₁ ∷ L₃)) ++ (List-mult L₂) ∎ List-multlaw : {A : Set} -> ∀(L : List (List (List A))) -> List-mult (List-mult L) ≡ List-mult (map List-mult L) List-multlaw [] = refl List-multlaw (L ∷ L₁) = List-mult (L ++ List-mult L₁) ≡⟨ lemma L (List-mult L₁) ⟩ (List-mult L ++ List-mult (List-mult L₁)) ≡⟨ cong (List-mult L ++_) (List-multlaw L₁) ⟩ List-mult L ++ List-mult (map List-mult L₁) ∎ -- the unit is a natural transformation: nattrans-Listunit : {A B : Set} → ∀(f : A → B) → ∀(x : A) → map f (List-unit x) ≡ List-unit (f x) nattrans-Listunit f x = refl -- the multiplication is a natural transformation: lemma-map++ : {A B : Set} → ∀(f : A → B) → ∀(xs ys : List A) → map f (xs ++ ys) ≡ (map f xs) ++ (map f ys) lemma-map++ f [] ys = refl lemma-map++ f (x ∷ xs) ys = cong ((f x) ∷_) (lemma-map++ f xs ys) nattrans-Listmult : {A B : Set} → ∀(f : A → B) → ∀(xss : List (List A)) → map f (List-mult xss) ≡ List-mult (map (map f) xss) nattrans-Listmult f [] = refl nattrans-Listmult f (xs ∷ xss) = map f (xs ++ List-mult xss) ≡⟨ lemma-map++ f xs (List-mult xss) ⟩ map f xs ++ map f (List-mult xss) ≡⟨ cong (map f xs ++_) (nattrans-Listmult f xss) ⟩ map f xs ++ List-mult (map (map f) xss) ∎ --****************************-- -- Step 3: The ListLift monad -- --****************************-- --Now that we have a list monad and a lift monad, I want to show that the following combination of the two is again a monad: --ListLift : (A : Set) → (κ : Cl) → Set --ListLift A κ = List (A ⊎ (▹ κ (ListLift A κ))) data ListLift (A : Set) (κ : Cl) : Set where conLL : List (A ⊎ (▹ κ (ListLift A κ))) -> ListLift A κ --***algebraic structure for ListLift***-- --nowLL and stepLL turn ListLift into a delay algebra structure: nowLL : {A : Set} (κ : Cl) → A → (ListLift A κ) nowLL κ a = conLL [ (inl a) ] stepLL : {A : Set} (κ : Cl) → ▹ κ (ListLift A κ) → (ListLift A κ) stepLL κ a = conLL [ (inr a) ] --union, derived from list concatenation, turns ListLift into a monoid: _∪_ : {A : Set} {κ : Cl} → (ListLift A κ) → (ListLift A κ) → (ListLift A κ) _∪_ {A} {κ} (conLL x) (conLL y) = conLL (x ++ y) --proof that this union does indeed provide a monoid structure: conLLempty-rightunit : {A : Set} (κ : Cl) → ∀ (xs : (ListLift A κ)) → xs ∪ conLL [] ≡ xs conLLempty-rightunit κ (conLL x) = conLL (x ++ []) ≡⟨ cong conLL (++-unit-r x) ⟩ conLL x ∎ conLLempty-leftunit : {A : Set} (κ : Cl) → ∀ (xs : (ListLift A κ)) → conLL [] ∪ xs ≡ xs conLLempty-leftunit κ (conLL x) = refl assoc∪ : {A : Set} {κ : Cl} → ∀(xs ys zs : (ListLift A κ)) → (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) assoc∪ {A} {κ} (conLL x) (conLL x₁) (conLL x₂) = cong conLL (++-assoc x x₁ x₂) --a bind operator to make ListLift into a monad bindLL : {A B : Set} (κ : Cl) → (A → (ListLift B κ)) → ListLift A κ → ListLift B κ bindLL κ f (conLL []) = conLL [] bindLL κ f (conLL (inl x ∷ x₁)) = (f x) ∪ bindLL κ f (conLL x₁) bindLL κ f (conLL (inr x ∷ x₁)) = (stepLL κ (\ α → bindLL κ f (x α))) ∪ bindLL κ f (conLL x₁) --bind commutes with ∪ bindLL∪ : {A B : Set} (κ : Cl) → ∀(f : A → (ListLift B κ)) → ∀(xs ys : (ListLift A κ)) → bindLL κ f (xs ∪ ys) ≡ (bindLL κ f xs) ∪ (bindLL κ f ys) bindLL∪ κ f xs (conLL []) = bindLL κ f (xs ∪ conLL []) ≡⟨ cong (bindLL κ f) (conLLempty-rightunit κ xs) ⟩ bindLL κ f xs ≡⟨ sym (conLLempty-rightunit κ (bindLL κ f xs)) ⟩ (bindLL κ f xs ∪ conLL [])∎ bindLL∪ κ f (conLL []) (conLL (x ∷ x₁)) = bindLL κ f (conLL (x ∷ x₁)) ≡⟨ sym (conLLempty-leftunit κ (bindLL κ f (conLL (x ∷ x₁)))) ⟩ (conLL [] ∪ bindLL κ f (conLL (x ∷ x₁))) ∎ bindLL∪ κ f (conLL (inl x₂ ∷ x₃)) (conLL (x ∷ x₁)) = (f x₂ ∪ bindLL κ f ((conLL x₃) ∪ (conLL (x ∷ x₁)))) ≡⟨ cong (f x₂ ∪_) (bindLL∪ κ f (conLL x₃) (conLL (x ∷ x₁))) ⟩ (f x₂ ∪ (bindLL κ f (conLL x₃) ∪ bindLL κ f (conLL (x ∷ x₁)))) ≡⟨ sym (assoc∪ (f x₂) (bindLL κ f (conLL x₃)) (bindLL κ f (conLL (x ∷ x₁)))) ⟩ ((f x₂ ∪ bindLL κ f (conLL x₃)) ∪ bindLL κ f (conLL (x ∷ x₁))) ∎ bindLL∪ κ f (conLL (inr x₂ ∷ x₃)) (conLL (x ∷ x₁)) = (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪ bindLL κ f ((conLL x₃) ∪ (conLL (x ∷ x₁)))) ≡⟨ cong (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪_) (bindLL∪ κ f (conLL x₃) (conLL (x ∷ x₁))) ⟩ (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪ ((bindLL κ f (conLL x₃) ∪ bindLL κ f (conLL (x ∷ x₁))))) ≡⟨ sym (assoc∪ (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ [])) (bindLL κ f (conLL x₃)) (bindLL κ f (conLL (x ∷ x₁)))) ⟩ ((conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪ bindLL κ f (conLL x₃)) ∪ bindLL κ f (conLL (x ∷ x₁))) ∎ --and a map function to prove naturality of bind and now mapLL : {A B : Set} (κ : Cl) → (f : A → B) → (ListLift A κ) → (ListLift B κ) mapLL κ f (conLL []) = conLL [] mapLL κ f (conLL (inl x ∷ x₁)) = conLL ([ inl (f x) ]) ∪ mapLL κ f (conLL x₁) mapLL κ f (conLL (inr x ∷ x₁)) = (stepLL κ (\ α → mapLL κ f (x α))) ∪ mapLL κ f (conLL x₁) --***proving that ListLift is a monad***-- --bindLL and nowLL need to be natural transformations nattrans-nowLL : {A B : Set} (κ : Cl) → ∀(f : A → B) → ∀(x : A) → mapLL κ f (nowLL κ x) ≡ nowLL κ (f x) nattrans-nowLL {A}{B} κ f x = refl --TODO: bind is a natural transformation -- bindLL and nowLL also need to satisfy three monad laws: -- unit is a left-identity for bind: bind (f, nowLL) = f -- unit is a right-identity for bind: bind (nowLL, x) = x -- bind is associative: bind (\x ­> bind (g, f(x)), x) = bind(g,bind(f, x)) -- unit is a left-identity for bind unitlawLL1 : {A B : Set} (κ : Cl) → ∀ (f : A → (ListLift B κ)) → ∀ (x : A) → (bindLL {A} κ f (nowLL κ x)) ≡ f x unitlawLL1 κ f x = (f x ∪ conLL []) ≡⟨ conLLempty-rightunit κ (f x) ⟩ f x ∎ -- unit is a right-identity for bind unitlawLL2 : {A : Set}(κ : Cl) → ∀(x : (ListLift A κ)) → (bindLL κ (nowLL κ) x) ≡ x unitlawLL2 κ (conLL []) = refl unitlawLL2 κ (conLL (inl x ∷ x₁)) = (conLL ([ inl x ]) ∪ bindLL κ (nowLL κ) (conLL x₁)) ≡⟨ cong (conLL ([ inl x ]) ∪_ ) (unitlawLL2 κ (conLL x₁)) ⟩ (conLL ([ inl x ]) ∪ conLL x₁) ≡⟨ refl ⟩ conLL (inl x ∷ x₁) ∎ unitlawLL2 κ (conLL (inr x ∷ x₁)) = (stepLL κ (\ α → bindLL κ (nowLL κ) (x α))) ∪ bindLL κ (nowLL κ) (conLL x₁) ≡⟨ cong ((stepLL κ (\ α → bindLL κ (nowLL κ) (x α))) ∪_) (unitlawLL2 κ (conLL x₁)) ⟩ (stepLL κ (\ α → bindLL κ (nowLL κ) (x α))) ∪ conLL x₁ ≡⟨ cong (_∪ conLL x₁) (\ i → stepLL κ (\ α → unitlawLL2 κ (x α) i ) ) ⟩ conLL ([ inr x ]) ∪ conLL x₁ ≡⟨ refl ⟩ conLL (inr x ∷ x₁) ∎ -- bind is associative assoclawLL : {A B C : Set}(κ : Cl) → ∀(f : A → (ListLift B κ)) → ∀ (g : B → (ListLift C κ)) → ∀ (x : (ListLift A κ)) → (bindLL κ (\ y → (bindLL κ g (f y))) x) ≡ (bindLL κ g (bindLL κ f x)) assoclawLL {A} {B} {C} κ f g (conLL []) = refl assoclawLL {A} {B} {C} κ f g (conLL (inl x ∷ x₁)) = (bindLL κ g (f x) ∪ bindLL κ (λ y → bindLL κ g (f y)) (conLL x₁)) ≡⟨ cong (bindLL κ g (f x) ∪_) (assoclawLL κ f g (conLL x₁)) ⟩ (bindLL κ g (f x) ∪ bindLL κ g (bindLL κ f (conLL x₁))) ≡⟨ sym (bindLL∪ κ g (f x) (bindLL κ f (conLL x₁))) ⟩ bindLL κ g (f x ∪ bindLL κ f (conLL x₁)) ∎ assoclawLL {A} {B} {C} κ f g (conLL (inr x ∷ x₁)) = (conLL (inr (λ α → bindLL κ (λ y → bindLL κ g (f y)) (x α)) ∷ []) ∪ bindLL κ (λ y → bindLL κ g (f y)) (conLL x₁)) ≡⟨ cong (conLL (inr (λ α → bindLL κ (λ y → bindLL κ g (f y)) (x α)) ∷ []) ∪_) (assoclawLL κ f g (conLL x₁)) ⟩ (conLL (inr (λ α → bindLL κ (λ y → bindLL κ g (f y)) (x α)) ∷ []) ∪ (bindLL κ g (bindLL κ f (conLL x₁)))) ≡⟨ cong (_∪ (bindLL κ g (bindLL κ f (conLL x₁)))) (\ i → stepLL κ (\ α → assoclawLL κ f g (x α) i ) ) ⟩ ((bindLL κ g (conLL (inr (λ α → bindLL κ f (x α)) ∷ []))) ∪ (bindLL κ g (bindLL κ f (conLL x₁))) ) ≡⟨ sym (bindLL∪ κ g (conLL (inr (λ α → bindLL κ f (x α)) ∷ [])) (bindLL κ f (conLL x₁))) ⟩ bindLL κ g (conLL (inr (λ α → bindLL κ f (x α)) ∷ []) ∪ bindLL κ f (conLL x₁)) ∎ -- If I want to do it via fixpoints instead: module WithFix where LiftList : (A : Set) → (κ : Cl) → Set LiftList A κ = fix (\ (X : ▹ κ Set) → List(A ⊎ (▸ κ \ α → (X α)))) nowLLfix : {A : Set} (κ : Cl) → A → (LiftList A κ) nowLLfix κ a = [ (inl a) ] stepLLfix : {A : Set} (κ : Cl) → ▹ κ (LiftList A κ) → (LiftList A κ) stepLLfix {A} κ a = transport (λ i → fix-eq (λ (X : ▹ κ Type) → List (A ⊎ (▸ κ (λ α → X α)))) (~ i)) [ (inr a) ] --***********************************************************************-- -- Step 4: The ListLift monad as the free delay-algebra and monoid monad -- --***********************************************************************-- -- We already know that (ListLift, stepLL) forms a delay algebra structure -- and (Listlift, conLL [], _∪_) forms a monoid. -- What we need to show is that ListLift is the free monad with these properties. -- That is, for a set A, and any other structure (B, δ, ε, _·_) where (B, δ) is a delay algebra and (B, ε, _·_) a monoid -- given a function f : A → B, there is a unique function ListLift A → B extending f that preserves the algebra structures. record IsDelayalg {A : Set}(κ : Cl)(nextA : ▹ κ A → A) : Set where constructor isdelayalg record IsMonoid {A : Set} (ε : A) (_·_ : A → A → A) : Set where constructor ismonoid field assoc : (x y z : A) → (x · y) · z ≡ x · (y · z) leftid : (x : A) → ε · x ≡ x rightid : (x : A) → x · ε ≡ x record DelayMonoidData (A : Set) (κ : Cl) : Set where constructor dmdata field nextA : ▹ κ A → A ε : A _·_ : A → A → A record IsDelayMonoid {A : Set}(κ : Cl) (dm : DelayMonoidData A κ) : Set where constructor isdelaymonoid open DelayMonoidData dm field isMonoid : IsMonoid (ε) (_·_) isDelayalg : IsDelayalg κ (nextA) open IsMonoid isMonoid public open IsDelayalg isDelayalg public record IsPreservingDM {A B : Set}(κ : Cl) dmA dmB (g : A → B) : Set where constructor ispreservingDM open DelayMonoidData dmA renaming (ε to εA) open DelayMonoidData dmB renaming (ε to εB; nextA to nextB; _·_ to _*_) field unit-preserve : g (εA) ≡ εB next-preserve : (x : ▹ κ A) → g (nextA x) ≡ nextB (\ α → g (x α)) union-preserve : (x y : A) → g (x · y) ≡ (g x) * (g y) record IsExtending {A B : Set}{κ : Cl} (f : A → B) (h : (ListLift A κ) → B) : Set where constructor isextending field extends : (x : A) → h (nowLL κ x) ≡ (f x) --fold defines the function we are after fold : {A B : Set}{κ : Cl} → isSet A → isSet B → ∀ dm → IsDelayMonoid {B} κ dm → (A → B) → (ListLift A κ) → B fold setA setB (dmdata nextB ε _·_) isDMB f (conLL []) = ε fold setA setB dm@(dmdata nextB ε _·_) isDMB f (conLL (inl x ∷ x₁)) = (f x) · fold setA setB dm isDMB f (conLL x₁) fold setA setB dm@(dmdata nextB ε _·_) isDMB f (conLL (inr x ∷ x₁)) = (nextB (\ α → fold setA setB dm isDMB f (x α))) · fold setA setB dm isDMB f (conLL x₁) --fold extends the function f : A → B -- direct proof: fold-extends-f : {A B : Set}{κ : Cl} → ∀(setA : isSet A) → ∀(setB : isSet B) → ∀ dm → ∀(isDMB : IsDelayMonoid {B} κ dm) → ∀ (f : A → B) → ∀ (x : A) → fold setA setB dm isDMB f (nowLL κ x) ≡ f x fold-extends-f setA setB dm isDMB f x = IsDelayMonoid.rightid isDMB (f x) -- or via the record "IsExtending": fold-extends : {A B : Set}{κ : Cl} → ∀(setA : isSet A) → ∀(setB : isSet B) → ∀ dm → ∀(isDMB : IsDelayMonoid {B} κ dm) → ∀ (f : A → B) → IsExtending f (fold setA setB dm isDMB f) IsExtending.extends (fold-extends setA setB dm isDMB f) x = IsDelayMonoid.rightid isDMB (f x) module _ {A B : Set}{κ : Cl} (setA : isSet A) (setB : isSet B) (dm : _) (isDMB : IsDelayMonoid {B} κ dm) (f : A → B) where open IsPreservingDM open DelayMonoidData dm renaming (nextA to nextB) --fold preseves the DelayMonoid structure fold-preserves : IsPreservingDM {ListLift A κ}{B} κ (dmdata (stepLL κ) (conLL []) _∪_) dm (fold setA setB dm isDMB f) unit-preserve fold-preserves = refl next-preserve fold-preserves x = IsDelayMonoid.rightid isDMB (nextB (λ α → fold setA setB dm isDMB f (x α))) union-preserve fold-preserves (conLL xs) (conLL ys) = lemma-union xs ys where lemma-union : ∀ xs ys → fold setA setB dm isDMB f (conLL xs ∪ conLL ys) ≡ (fold setA setB dm isDMB f (conLL xs) · fold setA setB dm isDMB f (conLL ys)) lemma-union [] y = sym (IsDelayMonoid.leftid isDMB (fold setA setB dm isDMB f (conLL y))) lemma-union (inl x ∷ x₁) y = (f x · fold setA setB dm isDMB f (conLL (x₁ ++ y))) ≡⟨ cong (f x ·_) (lemma-union x₁ y) ⟩ ((f x · (fold setA setB dm isDMB f (conLL x₁) · fold setA setB dm isDMB f (conLL y)))) ≡⟨ sym (IsDelayMonoid.assoc isDMB (f x) (fold setA setB dm isDMB f (conLL x₁)) (fold setA setB dm isDMB f (conLL y))) ⟩ ((f x · fold setA setB dm isDMB f (conLL x₁)) · fold setA setB dm isDMB f (conLL y)) ∎ lemma-union (inr x ∷ x₁) y = (nextB (λ α → fold setA setB dm isDMB f (x α)) · fold setA setB dm isDMB f (conLL (x₁ ++ y))) ≡⟨ cong (nextB (λ α → fold setA setB dm isDMB f (x α)) ·_) (lemma-union x₁ y) ⟩ ( (nextB (λ α → fold setA setB dm isDMB f (x α)) · (fold setA setB dm isDMB f (conLL x₁) · fold setA setB dm isDMB f (conLL y)))) ≡⟨ sym (IsDelayMonoid.assoc isDMB (nextB (λ α → fold setA setB dm isDMB f (x α))) (fold setA setB dm isDMB f (conLL x₁)) (fold setA setB dm isDMB f (conLL y))) ⟩ ((nextB (λ α → fold setA setB dm isDMB f (x α)) · fold setA setB dm isDMB f (conLL x₁)) · fold setA setB dm isDMB f (conLL y)) ∎ --and fold is unique in doing so. That is, for any function h that both preserves the algebra structure and extends the function f : A → B, -- h is equivalent to fold. module _ {A B : Set} {κ : Cl} (h : ListLift A κ → B) (setA : isSet A) (setB : isSet B) (dm : _) (isDMB : IsDelayMonoid {B} κ dm) (f : A → B) (isPDM : IsPreservingDM {ListLift A κ}{B} κ (dmdata (stepLL κ) (conLL []) _∪_ ) dm h) (isExt : IsExtending f h) where open DelayMonoidData dm renaming (nextA to nextB) fold-uniquenessLL : (x : (ListLift A κ)) → h x ≡ (fold setA setB dm isDMB f x) fold-uniquenessLL (conLL []) = h (conLL []) ≡⟨ IsPreservingDM.unit-preserve isPDM ⟩ ε ≡⟨ refl ⟩ fold setA setB dm isDMB f (conLL []) ∎ fold-uniquenessLL (conLL (inl x ∷ x₁)) = h (conLL (inl x ∷ x₁)) ≡⟨ refl ⟩ h ((conLL [ inl x ]) ∪ (conLL x₁)) ≡⟨ IsPreservingDM.union-preserve isPDM (conLL [ inl x ]) (conLL x₁) ⟩ ((h (conLL [ inl x ])) · (h (conLL x₁)) ) ≡⟨ cong (_· (h (conLL x₁)) ) (IsExtending.extends isExt x) ⟩ (f x · (h (conLL x₁))) ≡⟨ cong (f x ·_)(fold-uniquenessLL (conLL x₁)) ⟩ (f x · fold setA setB dm isDMB f (conLL x₁)) ∎ fold-uniquenessLL (conLL (inr x ∷ x₁)) = h (conLL (inr x ∷ x₁)) ≡⟨ cong (h ) refl ⟩ h ((conLL [ inr x ]) ∪ (conLL x₁)) ≡⟨ IsPreservingDM.union-preserve isPDM (conLL [ inr x ]) (conLL x₁) ⟩ (h (conLL [ inr x ])) · (h (conLL x₁)) ≡⟨ cong (_· h (conLL x₁)) refl ⟩ ((h (stepLL κ x)) · (h (conLL x₁)) ) ≡⟨ cong (_· h (conLL x₁)) (IsPreservingDM.next-preserve isPDM x) ⟩ (((nextB (λ α → h (x α))) · (h (conLL x₁)))) ≡⟨ cong (_· h (conLL x₁)) (cong (nextB) (later-ext (\ α → fold-uniquenessLL (x α)))) ⟩ ((nextB (λ α → fold setA setB dm isDMB f (x α))) · (h (conLL x₁))) ≡⟨ cong (nextB (λ α → fold setA setB dm isDMB f (x α)) ·_) (fold-uniquenessLL (conLL x₁)) ⟩ (nextB (λ α → fold setA setB dm isDMB f (x α)) · fold setA setB dm isDMB f (conLL x₁)) ∎ --************************************************-- -- Composing Lift and List via a distributive law -- --************************************************-- --We now define a composite monad of the List and Lift monads, formed via a distributive law. LcL : (A : Set) → (κ : Cl) → Set LcL A κ = myLift (List A) κ -- the unit of this monad is simply the composit of the units for Lift (nowL x) and List ([x]) nowLcL : {A : Set} {κ : Cl} → A → (LcL A κ) nowLcL x = nowL [ x ] -- LcL is a monad via a distributive law, distributing List over Lift. -- Here is the distributive law: distlawLcL : {A : Set} (κ : Cl) → List (myLift A κ) → (LcL A κ) distlawLcL κ [] = nowL [] distlawLcL κ (nowL x ∷ xs) = MultL κ (nowL (mapL κ (([ x ]) ++_) (distlawLcL κ xs))) distlawLcL κ (stepL x ∷ xs) = stepL (\ α → distlawLcL κ ((x α) ∷ xs)) --proof that distlawLcL is indeed a distributive law: --unit laws: unitlawLcL1 : {A : Set} (κ : Cl) → ∀(x : myLift A κ) → (distlawLcL κ (List-unit x )) ≡ mapL κ List-unit x unitlawLcL1 κ (nowL x) = refl unitlawLcL1 κ (stepL x) = (\ i → stepL (\ α → unitlawLcL1 κ (x α) i )) unitlawLcL2 : {A : Set} (κ : Cl) → ∀(xs : List A) → (distlawLcL κ (map nowL xs)) ≡ nowL xs unitlawLcL2 κ [] = refl unitlawLcL2 κ (x ∷ xs) = mapL κ (λ ys → x ∷ ys) (distlawLcL κ (map nowL xs)) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (unitlawLcL2 κ xs) ⟩ mapL κ (λ ys → x ∷ ys) (nowL xs) ≡⟨ refl ⟩ nowL (x ∷ xs) ∎ --multiplication laws: -- In the proof of the first multiplication law, I need a lemma about list concatenation, -- namely that putting a singleton list in front of a list of lists, and concatening the result -- yields the same list as putting the element of the signleton in front of the first list in the list of lists, -- and then concatenating the result. -- The lemma is split into two parts, first the general result as described in words here, -- followed by the specific situation in which I need it in the proofs below. lemma7a : {A : Set} → ∀(x : A) → ∀(xss : (List (List A))) → List-mult ((x ∷ safe-head [] xss) ∷ tail xss ) ≡ List-mult (([ x ]) ∷ xss) lemma7a x [] = refl lemma7a x (xs ∷ xss) = refl lemma7b : {A : Set} (κ : Cl) → ∀(y : myLift (List (List A)) κ) → ∀(x : A) → mapL κ (λ xss → List-mult ((x ∷ safe-head [] xss) ∷ tail xss)) y ≡ mapL κ (λ xss → List-mult (([ x ]) ∷ xss)) y lemma7b κ (nowL xss) x = cong nowL (lemma7a x xss) lemma7b κ (stepL xss) x = (\ i → stepL (\ α → lemma7b κ (xss α) x i )) -- in addition, I need this rather technical lemma that allows me to pull a mapL through the distributive law. -- without it, I could not finish the proof. lemma8 : {A : Set} (κ : Cl) → ∀(x : A) → ∀(xs : myLift (List A) κ) → ∀(xss : List (myLift (List A) κ)) → mapL κ (λ yss → ((x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (xs ∷ xss)) ≡ distlawLcL κ (mapL κ (λ ys → x ∷ ys) xs ∷ xss) lemma8 κ x (nowL ys) [] = refl lemma8 κ x (stepL ys) [] = (\ i → stepL (λ α → lemma8 κ x (ys α) [] i )) lemma8 κ x (nowL []) (zs ∷ xss) = mapL κ (λ yss → (x ∷ safe-head [] yss) ∷ tail yss) (mapL κ (λ zss → [] ∷ zss) (distlawLcL κ (zs ∷ xss))) ≡⟨ mapmapL κ ((λ zss → [] ∷ zss)) ((λ yss → (x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (zs ∷ xss)) ⟩ mapL κ (λ yss → (x ∷ safe-head [] ([] ∷ yss)) ∷ tail ([] ∷ yss)) (distlawLcL κ (zs ∷ xss)) ≡⟨ refl ⟩ mapL κ (λ yss → (x ∷ []) ∷ yss) (distlawLcL κ (zs ∷ xss)) ∎ lemma8 κ x (nowL (y ∷ ys)) (zs ∷ xss) = mapL κ (λ yss → (x ∷ safe-head [] yss) ∷ tail yss) (mapL κ (λ zss → (y ∷ ys) ∷ zss) (distlawLcL κ (zs ∷ xss))) ≡⟨ mapmapL κ ((λ zss → (y ∷ ys) ∷ zss)) ((λ yss → (x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (zs ∷ xss)) ⟩ mapL κ (λ yss → (x ∷ safe-head []((y ∷ ys) ∷ yss)) ∷ tail((y ∷ ys) ∷ yss)) (distlawLcL κ (zs ∷ xss)) ≡⟨ refl ⟩ mapL κ (λ yss → (x ∷ y ∷ ys) ∷ yss) (distlawLcL κ (zs ∷ xss)) ∎ lemma8 κ x (stepL ys) (zs ∷ xss) = (\ i → stepL (λ α → lemma8 κ x (ys α) (zs ∷ xss) i )) --now we are ready to prove the multiplication laws: multlawLcL1 : {A : Set} (κ : Cl) → ∀(xss : List (List (myLift A κ))) → distlawLcL κ (List-mult xss) ≡ mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) xss)) multlawLcL1 κ [] = refl multlawLcL1 κ ([] ∷ xss) = distlawLcL κ (List-mult xss) ≡⟨ multlawLcL1 κ xss ⟩ mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ refl ⟩ mapL κ (λ ys → List-mult ([] ∷ ys)) (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ sym (mapmapL κ (\ ys → [] ∷ ys) List-mult ((distlawLcL κ (map (distlawLcL κ) xss)))) ⟩ mapL κ List-mult (mapL κ (λ ys → [] ∷ ys) (distlawLcL κ (map (distlawLcL κ) xss))) ∎ multlawLcL1 κ ((nowL x ∷ []) ∷ xss) = mapL κ (λ ys → x ∷ ys) (distlawLcL κ (List-mult xss)) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (multlawLcL1 κ xss) ⟩ mapL κ (λ ys → x ∷ ys) (mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) xss))) ≡⟨ mapmapL κ List-mult (λ ys → x ∷ ys) (distlawLcL κ (map (distlawLcL κ) xss)) ⟩ mapL κ (λ ys → x ∷ List-mult ys) (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ refl ⟩ mapL κ (λ ys → List-mult (([ x ]) ∷ ys)) (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ sym( mapmapL κ (λ ys → ([ x ]) ∷ ys) List-mult (distlawLcL κ (map (distlawLcL κ) xss))) ⟩ mapL κ List-mult (mapL κ (λ ys → ([ x ]) ∷ ys) (distlawLcL κ (map (distlawLcL κ) xss))) ∎ multlawLcL1 κ ((nowL x ∷ y ∷ xs) ∷ xss) = mapL κ (λ ys → x ∷ ys) (distlawLcL κ (List-mult ((y ∷ xs) ∷ xss))) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (multlawLcL1 κ ((y ∷ xs) ∷ xss)) ⟩ mapL κ (λ ys → x ∷ ys) (mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) ((y ∷ xs) ∷ xss)))) ≡⟨ mapmapL κ List-mult (λ ys → x ∷ ys) (distlawLcL κ (map (distlawLcL κ) ((y ∷ xs) ∷ xss))) ⟩ mapL κ (λ yss → x ∷ (List-mult yss)) (distlawLcL κ (map (distlawLcL κ) ((y ∷ xs) ∷ xss))) ≡⟨ refl ⟩ mapL κ (λ yss → x ∷ List-mult yss) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)) ≡⟨ refl ⟩ mapL κ (λ yss → List-mult (([ x ]) ∷ yss)) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)) ≡⟨ sym (lemma7b κ ((distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss))) x) ⟩ mapL κ (λ yss → List-mult ((x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)) ≡⟨ sym (mapmapL κ ((λ yss → ((x ∷ safe-head [] yss) ∷ tail yss))) List-mult ((distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)))) ⟩ mapL κ List-mult (mapL κ (λ yss → ((x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss))) ≡⟨ cong (mapL κ List-mult) (lemma8 κ x ((distlawLcL κ (y ∷ xs))) ((map (distlawLcL κ) xss))) ⟩ mapL κ List-mult (distlawLcL κ (mapL κ (λ ys → x ∷ ys) (distlawLcL κ (y ∷ xs)) ∷ (map (distlawLcL κ) xss))) ∎ multlawLcL1 κ ((stepL x ∷ xs) ∷ xss) = (\ i → stepL (\ α → multlawLcL1 κ ((x α ∷ xs) ∷ xss) i )) lemma9a : {A : Set} (κ : Cl) → ∀(x : ▹ κ (myLift A κ)) → ∀(y : ▹ κ (myLift (List (myLift A κ)) κ)) → MultL κ (stepL (λ α → stepL (λ β → mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) ≡ MultL κ (stepL (λ β → stepL (λ α → mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) lemma9a κ x y = cong (MultL κ) (cong stepL (later-ext λ α → cong stepL (later-ext λ β → cong₂ (mapL κ) (funExt (λ ys → cong (distlawLcL _) (cong₂ _∷_ (tick-irr x α β) refl))) (sym (tick-irr y α β))))) lemma9 : {A : Set} (κ : Cl) → ∀(x : ▹ κ (myLift A κ)) → ∀(y : myLift (List (myLift A κ)) κ) → MultL κ (stepL (λ α → (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) y))) ≡ MultL κ (mapL κ (λ ys → stepL (λ α → distlawLcL κ (x α ∷ ys))) y) lemma9 κ x (nowL y) = refl lemma9 κ x (stepL y) = stepL (λ α → stepL (λ β → MultL κ (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) ≡⟨ lemma9a κ x y ⟩ stepL (λ β → stepL (λ α → MultL κ (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) ≡⟨ ( (\ i → stepL (\ β → lemma9 κ x (y β) i ))) ⟩ stepL (λ β → MultL κ (mapL κ (λ ys → stepL (λ α → distlawLcL κ (x α ∷ ys))) (y β))) ∎ multlawLcL2 : {A : Set} (κ : Cl) → ∀(xs : List (myLift (myLift A κ) κ)) → distlawLcL κ (map (MultL κ) xs) ≡ MultL κ (mapL κ (distlawLcL κ) (distlawLcL κ xs)) multlawLcL2 κ [] = refl multlawLcL2 κ (nowL (nowL x) ∷ xs) = distlawLcL κ ((nowL x) ∷ map (MultL κ) xs) ≡⟨ refl ⟩ mapL κ (λ ys → x ∷ ys) (distlawLcL κ (map (MultL κ) xs)) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (multlawLcL2 κ xs) ⟩ mapL κ (λ ys → x ∷ ys) (MultL κ (mapL κ (distlawLcL κ) (distlawLcL κ xs))) ≡⟨ MultMap κ (mapL κ (distlawLcL κ) (distlawLcL κ xs)) (λ ys → x ∷ ys) ⟩ MultL κ (mapL κ (mapL κ (λ ys → x ∷ ys)) (mapL κ (distlawLcL κ) (distlawLcL κ xs)) ) ≡⟨ cong (MultL κ) (mapmapL κ ((distlawLcL κ)) (mapL κ (λ ys → x ∷ ys)) ((distlawLcL κ xs))) ⟩ MultL κ (mapL κ (λ ys → mapL κ (λ zs → x ∷ zs) (distlawLcL κ ys)) (distlawLcL κ xs)) ≡⟨ refl ⟩ MultL κ (mapL κ (λ ys → (distlawLcL κ) ((nowL x) ∷ ys)) (distlawLcL κ xs)) ≡⟨ cong (MultL κ) (sym (mapmapL κ ((λ ys → (nowL x) ∷ ys)) ((distlawLcL κ)) ((distlawLcL κ xs)))) ⟩ MultL κ (mapL κ (distlawLcL κ) (mapL κ (λ ys → (nowL x) ∷ ys) (distlawLcL κ xs))) ∎ multlawLcL2 κ (nowL (stepL x) ∷ xs) = distlawLcL κ ((stepL x) ∷ map (MultL κ) xs) ≡⟨ refl ⟩ stepL (λ α → distlawLcL κ (x α ∷ map (MultL κ) xs)) ≡⟨ refl ⟩ stepL (λ α → distlawLcL κ (map (MultL κ) ((nowL (x α)) ∷ xs))) ≡⟨ (\ i → stepL (\ α → multlawLcL2 κ (((nowL (x α)) ∷ xs)) i )) ⟩ stepL (λ α → MultL κ (mapL κ (distlawLcL κ) (distlawLcL κ ((nowL (x α) ∷ xs)))) ) ≡⟨ refl ⟩ MultL κ (stepL (λ α → (mapL κ (distlawLcL κ) (distlawLcL κ ((nowL (x α) ∷ xs)))))) ≡⟨ refl ⟩ MultL κ (stepL (λ α → (mapL κ (distlawLcL κ) (mapL κ (λ ys → x α ∷ ys) (distlawLcL κ xs))))) ≡⟨ cong (MultL κ) ((λ i → stepL (\ α → (mapmapL κ ((λ ys → x α ∷ ys)) ((distlawLcL κ)) ((distlawLcL κ xs))) i ))) ⟩ MultL κ (stepL (λ α → (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (distlawLcL κ xs)))) ≡⟨ lemma9 κ x (distlawLcL κ xs) ⟩ MultL κ (mapL κ (λ ys → stepL (λ α → distlawLcL κ (x α ∷ ys))) (distlawLcL κ xs)) ≡⟨ refl ⟩ MultL κ (mapL κ (λ ys → (distlawLcL κ) ((stepL x) ∷ ys)) (distlawLcL κ xs)) ≡⟨ cong (MultL κ) (sym (mapmapL κ ((λ ys → (stepL x) ∷ ys)) ((distlawLcL κ)) ((distlawLcL κ xs)))) ⟩ MultL κ (mapL κ (distlawLcL κ) (mapL κ (λ ys → (stepL x) ∷ ys) (distlawLcL κ xs))) ∎ multlawLcL2 κ (stepL x ∷ xs) = (\ i → stepL (\ α → multlawLcL2 κ ((x α ∷ xs)) i )) -- Bonusmaterial: -- we define a union on LcL. _l∪l_ : {A : Set} {κ : Cl} → (LcL A κ) → (LcL A κ) → (LcL A κ) nowL x l∪l nowL y = nowL (x ++ y) nowL x l∪l stepL y = stepL (\ α → (nowL x l∪l (y α))) stepL x l∪l y = stepL (\ α → ((x α) l∪l y)) --nowL [] is a unit for l∪l left-unitl∪l : {A : Set} {κ : Cl} → ∀(x : LcL A κ) → (nowL []) l∪l x ≡ x left-unitl∪l (nowL x) = refl left-unitl∪l (stepL x) = stepL (λ α → nowL [] l∪l x α) ≡⟨ ((\ i → stepL (\ α → left-unitl∪l (x α) i ))) ⟩ stepL (λ α → x α) ≡⟨ refl ⟩ stepL x ∎ right-unitl∪l : {A : Set} {κ : Cl} → ∀(x : LcL A κ) → x l∪l (nowL []) ≡ x right-unitl∪l (nowL x) = cong nowL (++-unit-r x) right-unitl∪l (stepL x) = stepL (λ α → x α l∪l nowL []) ≡⟨ ((\ i → stepL (\ α → right-unitl∪l (x α) i ))) ⟩ stepL (λ α → x α) ≡⟨ refl ⟩ stepL x ∎ --mapL κ f distributes over l∪l if f distributes over ++ dist-mapL-l∪l : {A B : Set} (κ : Cl) → ∀(f : (List A) → (List B)) → ∀(fcom : ∀(xs : List A) → ∀(ys : List A) → f (xs ++ ys) ≡ f xs ++ f ys) → ∀(x : (LcL A κ)) → ∀(y : LcL A κ) → mapL κ f (x l∪l y) ≡ (mapL κ f x) l∪l (mapL κ f y) dist-mapL-l∪l κ f fcom (nowL x) (nowL y) = cong nowL (fcom x y) dist-mapL-l∪l κ f fcom (nowL x) (stepL y) = (\ i → stepL (\ α → dist-mapL-l∪l κ f fcom (nowL x) (y α) i )) dist-mapL-l∪l κ f fcom (stepL x) y = \ i → stepL (\ α → dist-mapL-l∪l κ f fcom (x α) y i )
59.225225
179
0.461946
dc8845e48846199c7c070ff87390e0316080a65d
475
agda
Agda
test/interaction/Issue1523.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1523.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1523.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-07-22 Fixed bug in test for empty type of sizes {-# OPTIONS --copatterns --sized-types #-} open import Common.Size record U (i : Size) : Set where coinductive field out : (j : Size< i) → U j open U fixU : {A : Size → Set} (let C = λ i → A i → U i) → ∀ i (f : ∀ i → (∀ (j : Size< i) → C j) → C i) → C i out (fixU i f a) j = out (f i {!λ (j : Size< i) → fixU j f!} a) j -- Giving should succeed (even if termination checking might not succeed yet)
27.941176
77
0.583158
20be4f0630f18af1ca5786bcecfc58203b373d8f
545
agda
Agda
test/Succeed/Issue2329.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2329.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2329.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2017-01-20, issue #2329 -- Neutral sizes cannot be used by the size solver, -- thus, should be handled by coerceSize. -- {-# OPTIONS -v tc:10 #-} -- {-# OPTIONS -v tc.conv.coerce:20 #-} -- {-# OPTIONS -v tc.size:20 #-} -- {-# OPTIONS -v tc.size.solve:50 #-} open import Agda.Builtin.Size record R (i : Size) : Set where field j : Size< i postulate f : ∀ i → R i works : ∀ i → R i R.j (works i) = R.j {i} (f i) test : ∀ i → R i R.j (test i) = R.j (f i) -- Error WAS: -- Unsolved constraint: -- ↑ R.j (f i) =< i : Size
18.793103
51
0.565138
20c5c2889eb20637c3f055250391b58e4596de46
1,556
agda
Agda
src/Dodo/Binary/Maximal.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/Maximal.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/Maximal.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Maximal where -- Stdlib imports open import Level using (Level; _⊔_) open import Function using (_∘_) open import Data.Product using (_,_; ∃-syntax) open import Data.Empty using (⊥-elim) open import Relation.Nullary using (¬_) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel) open import Relation.Binary using (Trichotomous; tri<; tri≈; tri>) -- Local imports open import Dodo.Unary.Equality open import Dodo.Unary.Unique open import Dodo.Binary.Equality -- # Definitions # maximal : ∀ {a ℓ : Level} {A : Set a} → Rel A ℓ -------------- → Pred A (a ⊔ ℓ) maximal r = λ x → ¬ (∃[ y ] r x y) -- # Properties # module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} where max-unique-tri : Trichotomous ≈ < → Unique₁ ≈ (maximal <) max-unique-tri tri {x} {y} ¬∃z[x<z] ¬∃z[y<z] with tri x y ... | tri< x<y _ _ = ⊥-elim (¬∃z[x<z] (y , x<y)) ... | tri≈ _ x≈y _ = x≈y ... | tri> _ _ y<x = ⊥-elim (¬∃z[y<z] (x , y<x)) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where max-flips-⊆ : P ⊆₂ Q → maximal Q ⊆₁ maximal P max-flips-⊆ P⊆Q = ⊆: lemma where lemma : maximal Q ⊆₁' maximal P lemma x ¬∃zQxz (z , Pxz) = ¬∃zQxz (z , ⊆₂-apply P⊆Q Pxz) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where max-preserves-⇔ : P ⇔₂ Q → maximal P ⇔₁ maximal Q max-preserves-⇔ = ⇔₁-sym ∘ ⇔₁-compose-⇔₂ max-flips-⊆ max-flips-⊆
29.358491
75
0.568123
18a60b11fa16fcabeb708d228c01e7a98ed194a1
643
agda
Agda
test/succeed/ListsWithIrrelevantProofs.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/ListsWithIrrelevantProofs.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/ListsWithIrrelevantProofs.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
module ListsWithIrrelevantProofs where data _≡_ {A : Set}(a : A) : A → Set where refl : a ≡ a data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} postulate _≤_ : ℕ → ℕ → Set p1 : 0 ≤ 1 p2 : 0 ≤ 1 -- descending lists indexed by upper bound for largest element data SList (bound : ℕ) : Set where [] : SList bound scons : (head : ℕ) → .(head ≤ bound) → -- irrelevant proof, dotted non-dependent domain (tail : SList head) → SList bound l1 : SList 1 l1 = scons 0 p1 [] l2 : SList 1 l2 = scons 0 p2 [] -- proofs in list are irrelevant l1≡l2 : l1 ≡ l2 l1≡l2 = refl
16.921053
78
0.570762
0e905285b1628b873b394f7585c4df4e70aaaff8
6,349
agda
Agda
Languages/Stream.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Languages/Stream.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Languages/Stream.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns --sized-types #-} open import Level as Level using (zero) open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Data.List using (List; module List; []; _∷_; _++_; length) open import Data.Nat using (ℕ; zero; suc) open import Data.Product renaming (map to pmap) open import Relations -- Sized streams via head/tail. record Stream {i : Size} (A : Set) : Set where coinductive constructor _∷_ field hd : A tl : ∀ {j : Size< i} → Stream {j} A open Stream public -- Shorthand Str = Stream tl' : ∀ {A} → Str A → Str A tl' s = tl s {∞} -- Constructor scons : ∀{A} → A → Str A → Str A hd (scons a s) = a tl (scons a s) = s -- | Corecursion corec : ∀ {X A : Set} → (X → A) → (X → X) → (X → Str A) hd (corec h s x) = h x tl (corec h s x) = corec h s (s x) -- Functoriality. map : ∀ {i A B} (f : A → B) (s : Stream {i} A) → Stream {i} B hd (map f s) = f (hd s) tl (map {i} f s) {j} = map {j} f (tl s {j}) -- Derivative δ : ∀{A} → ℕ → Stream A → Stream A δ 0 s = s δ (suc n) s = δ n (tl s) -- Indexing _at_ : ∀{A} → Stream A → ℕ → A s at n = hd (δ n s) fromStr = _at_ -- | Inverse for at toStr : ∀ {A} → (ℕ → A) → Str A hd (toStr f) = f 0 tl (toStr f) = toStr (λ n → f (suc n)) module Bisim (S : Setoid Level.zero Level.zero) where infix 2 _∼_ open Setoid S renaming (Carrier to A; isEquivalence to S-equiv) module SE = IsEquivalence S-equiv -- Stream equality is bisimilarity record _∼_ {i : Size} (s t : Stream A) : Set where coinductive field hd≈ : hd s ≈ hd t tl∼ : ∀ {j : Size< i} → _∼_ {j} (tl s) (tl t) open _∼_ public _∼[_]_ : Stream A → Size → Stream A → Set s ∼[ i ] t = _∼_ {i} s t s-bisim-refl : ∀ {i} {s : Stream A} → s ∼[ i ] s hd≈ s-bisim-refl = SE.refl tl∼ (s-bisim-refl {_} {s}) {j} = s-bisim-refl {j} {tl s} s-bisim-sym : ∀ {i} {s t : Stream A} → s ∼[ i ] t → t ∼[ i ] s hd≈ (s-bisim-sym p) = SE.sym (hd≈ p) tl∼ (s-bisim-sym {_} {s} {t} p) {j} = s-bisim-sym {j} {tl s} {tl t} (tl∼ p) s-bisim-trans : ∀ {i} {r s t : Stream A} → r ∼[ i ] s → s ∼[ i ] t → r ∼[ i ] t hd≈ (s-bisim-trans p q) = SE.trans (hd≈ p) (hd≈ q) tl∼ (s-bisim-trans {_} {r} {s} {t} p q) {j} = s-bisim-trans {j} {tl r} {tl s} {tl t} (tl∼ p) (tl∼ q) stream-setoid : Setoid _ _ stream-setoid = record { Carrier = Stream A ; _≈_ = _∼_ ; isEquivalence = record { refl = s-bisim-refl ; sym = s-bisim-sym ; trans = s-bisim-trans } } import Relation.Binary.EqReasoning as EqR module ∼-Reasoning where module _ where open EqR (stream-setoid) public hiding (_≡⟨_⟩_) renaming (_≈⟨_⟩_ to _∼⟨_⟩_; begin_ to begin_; _∎ to _∎) -- | As usual, bisimilarity implies equality at every index. bisim→ext-≡ : ∀ {s t : Stream A} → s ∼ t → ∀ {n} → s at n ≈ t at n bisim→ext-≡ p {zero} = hd≈ p bisim→ext-≡ p {suc n} = bisim→ext-≡ (tl∼ p) {n} -- | Definition of bisimulation isBisim : Rel (Str A) Level.zero → Set isBisim R = (s t : Str A) → R s t → (hd s ≈ hd t) × R (tl s) (tl t) -- | Bisimulation proof principle ∃-bisim→∼ : ∀ {R} → isBisim R → (s t : Str A) → R s t → s ∼ t hd≈ (∃-bisim→∼ R-isBisim s t q) = proj₁ (R-isBisim s t q) tl∼ (∃-bisim→∼ R-isBisim s t q) = ∃-bisim→∼ R-isBisim (tl s) (tl t) (proj₂ (R-isBisim s t q)) StrRel : Set₁ StrRel = Rel (Str A) Level.zero -- | Relation transformer that characterises bisimulations Φ : Rel (Str A) Level.zero → Rel (Str A) Level.zero Φ R s t = (hd s ≈ hd t) × R (tl s) (tl t) isBisim' : Rel (Str A) Level.zero → Set isBisim' R = R ⇒ Φ R isBisim'→isBisim : ∀ {R} → isBisim' R → isBisim R isBisim'→isBisim p s t q = p q Φ-compat : RelTrans (Str A) → Set₁ Φ-compat F = Monotone F × (∀ {R} → F (Φ R) ⇒ Φ (F R)) isBisim-upto : RelTrans (Str A) → Rel (Str A) Level.zero → Set isBisim-upto F R = R ⇒ Φ (F R) Φ-compat-pres-upto : {F : RelTrans (Str A)} (P : Φ-compat F) {R : StrRel} → isBisim-upto F R → isBisim-upto F (F R) Φ-compat-pres-upto (M , P) p = P ∘ (M p) iterTrans : RelTrans (Str A) → ℕ → StrRel → StrRel iterTrans F zero R = R iterTrans F (suc n) R = iterTrans F n (F R) -- Closure of up-to technique, which will be the the bisimulation we generate from it bisimCls : RelTrans (Str A) → StrRel → StrRel bisimCls F R s t = ∃ λ n → iterTrans F n R s t clsIsBisim : {F : RelTrans (Str A)} (P : Φ-compat F) {R : StrRel} → isBisim-upto F R → isBisim' (bisimCls F R) clsIsBisim P p {s} {t} (zero , sRt) = (proj₁ (p sRt) , 1 , proj₂ (p sRt)) clsIsBisim {F} (M , P) {R} p {s} {t} (suc n , inFIter) = let foo = clsIsBisim (M , P) {F R} (Φ-compat-pres-upto (M , P) p) (n , inFIter) in (proj₁ foo , (pmap suc id) (proj₂ foo)) -- Compatible up-to techniques are sound compat-sound : {F : RelTrans (Str A)} (P : Φ-compat F) {R : StrRel} → isBisim-upto F R → (s t : Str A) → R s t → s ∼ t compat-sound {F} P {R} p s t sRt = ∃-bisim→∼ (isBisim'→isBisim {bisimCls F R} (clsIsBisim P p)) s t (0 , sRt) -- | Useful general up-to technique: the equivalence closure is Φ-compatible. equivCls-compat : Φ-compat EquivCls equivCls-compat = equivCls-monotone , compat where compat : {R : StrRel} → EquivCls (Φ R) ⇒ Φ (EquivCls R) compat (cls-incl (h≈ , tR)) = (h≈ , cls-incl tR) compat cls-refl = (SE.refl , cls-refl) compat {R} (cls-sym p) = let (h≈ , tR) = compat {R} p in (SE.sym h≈ , cls-sym tR) compat {R} (cls-trans p q) = let (hx≈hy , txRty) = compat {R} p (hy≈hz , tyRtz) = compat {R} q in (SE.trans hx≈hy hy≈hz , cls-trans txRty tyRtz) -- | Element repetition repeat : ∀{A} → A → Stream A hd (repeat a) = a tl (repeat a) = repeat a -- Streams and lists. -- Prepending a list to a stream. _++ˢ_ : ∀ {A} → List A → Stream A → Stream A [] ++ˢ s = s (a ∷ as) ++ˢ s = a ∷ (as ++ˢ s) -- Taking an initial segment of a stream. takeˢ : ∀ {A} (n : ℕ) (s : Stream A) → List A takeˢ 0 s = [] takeˢ (suc n) s = hd s ∷ takeˢ n (tl s) _↓_ : ∀ {A} (s : Stream A) (n : ℕ) → List A s ↓ n = takeˢ n s
29.668224
87
0.54607
df43bde3501cf4582ae0edb2d98581adf0873da0
131
agda
Agda
test/Fail/Issue216.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue216.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue216.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Should fail with S i != i module Issue216 where open import Common.Level Foo : {i : Level} → Set i Foo {i} = (R : Set i) → R
14.555556
28
0.610687
39115d30831d7d1ea9dba4096d9dd27b3937a031
5,296
agda
Agda
Chapter3/Formalization.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter3/Formalization.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter3/Formalization.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module Chapter3.Formalization where -- Sets and n-types -- ---------------- open import Data.Unit open import Data.Empty open import Data.Nat open import Data.Sum open import Relation.Nullary using (¬_) open import Data.Bool open import Data.Product open import Basics open import Relation.Equivalence.Univalence open import Relation.Equality open import Relation.Equality.Extensionality open import Relation.Path.Operation isSet : ∀ {a} → Set a → Set a isSet A = (x y : A) (p q : x ≡ y) → p ≡ q -- The only possible inhabitants of ⊤ is tt which means everything -- is reflexivity. is-1-set : isSet ⊤ is-1-set tt tt refl refl = refl -- Ex falso quodlibet strikes again is-0-set : isSet ⊥ is-0-set () hasDecEq : ∀ {i} → Set i → Set i hasDecEq A = (x y : A) → (x ≡ y) ⊎ ¬ (x ≡ y) decEqIsSet : ∀ {i}{A : Set i} → hasDecEq A → isSet A decEqIsSet {A} d x y = {! !} -- TBD: Hedberg's Theorem -- Natural numbers are also a set because every equality type is decidable. -- Boy, it's a pain in the ass proving that, though. is-ℕ-set : isSet ℕ is-ℕ-set = decEqIsSet hasDecEq-ℕ where hasDecEq-ℕ : hasDecEq ℕ hasDecEq-ℕ zero zero = inj₁ refl hasDecEq-ℕ zero (suc y) = inj₂ (λ ()) hasDecEq-ℕ (suc x) zero = inj₂ (λ ()) hasDecEq-ℕ (suc x) (suc y) with hasDecEq-ℕ x y hasDecEq-ℕ (suc x) (suc y) | inj₁ x₁ = inj₁ (ap {f = suc} x₁) hasDecEq-ℕ (suc x) (suc y) | inj₂ pnot = inj₂ (λ p → pnot (ap {f = remark} p)) where remark : ℕ → ℕ remark zero = 42 remark (suc n) = n is-×-set : ∀ {a b}{A : Set a}{B : Set b} → isSet A → isSet B → isSet (A × B) is-×-set SA SB x y p q = {! !} is-1-type : ∀ {a} → Set a → Set a is-1-type A = (x y : A) → (p q : x ≡ y) → (r s : p ≡ q) → r ≡ s 3-1-8 : ∀ {a}{A : Set a} → isSet A → is-1-type A 3-1-8 f x y p q r s = {! apd r !} where g : (q : x ≡ y) → (p ≡ q) g q = f x y p q 3-1-9 : ¬ (isSet Set) 3-1-9 x = {! !} where f : Bool → Bool f false = true f true = false contra : ¬ (false ≡ true) contra () lem : IsEquiv f lem = record { from = f ; iso₁ = λ x → mlem {x} ; iso₂ = λ x → mlem {x} } where mlem : ∀ {x : Bool} → f (f x) ≡ x mlem {false} = refl mlem {true} = refl not-double-neg : ∀ {A : Set} → (¬ (¬ A) → A) → ⊥ not-double-neg f = {! !} where e : Bool ≃ Bool e = e-equiv , record { from = e-equiv ; iso₁ = λ x → helper {x} ; iso₂ = λ x → helper {x} } where e-equiv : Bool → Bool e-equiv true = false e-equiv false = true helper : ∀ {x : Bool} → e-equiv (e-equiv x) ≡ x helper {true} = refl helper {false} = refl -- 3-2-4 : (x : Bool) → ¬ (e x ≡ x) -- 3-2-4 = ? p : Bool ≡ Bool p = {! ua e !} not-lem : ∀ {A : Set} → ¬ (A ⊎ (¬ A)) not-lem {A} (inj₁ x) = not-double-neg (λ _ → x) not-lem {A} (inj₂ w) = not-double-neg (λ x → ⊥-elim (x w)) -- This defines "mere propositions" -- If all elements of P are connected by a path, then p contains no -- higher homotopy. -- -- "The adjective “mere” emphasizes that although any type may be regarded as a -- proposition (which we prove by giving an inhabitant of it), a type that is a -- mere proposition cannot usefully be regarded as any more than a proposition: -- there is no additional information contained in a witness of its truth." isProp : ∀ {a} → Set a → Set a isProp P = (x y : P) → (x ≡ y) top-is-prop : isProp ⊤ top-is-prop tt tt = refl 3-3-3 : ∀ {a b}{P : Set a}{Q : Set b} → (p : isProp P)(q : isProp Q) → (f : P → Q) → (g : Q → P) → P ≃ Q 3-3-3 p q f g = f , record { from = g ; iso₁ = λ x → p (g (f x)) x ; iso₂ = λ y → q (f (g y)) y } 3-3-2 : ∀ {a}{P : Set a} → (p : isProp P) → (x₀ : P) → P ≃ ⊤ 3-3-2 {_}{P} p x₀ = 3-3-3 p (top-is-prop) f g where f : P → ⊤ f x = tt g : ⊤ → P g u = x₀ isProp-isSet : ∀ {a}{A : Set a} → isProp A → isSet A isProp-isSet {_}{A} f x y p q = lem p ∙ lem q ⁻¹ where g : (y : A) → x ≡ y g y = f x y -- Read bottom-to-top lem : (p : x ≡ y) → p ≡ (g x ⁻¹ ∙ g y) lem p = (ap {f = (λ z → z ∙ p)} (back-and-there-again {p = (g x)}) ⁻¹) -- we have p = g(x)−1 g(y) = q. ∙ (assoc (g x ⁻¹) (g x) p ⁻¹) -- and after a little convincing ∙ ap {f = (λ z → (g x ⁻¹) ∙ z)} -- which is to say that p = g(y)⁻¹ ∙ g(z) ( (2-11-2 x p (g x) ⁻¹) -- Hence by Lemma 2.11.2, we have g(y) ∙ p = g(z) ∙ (apd {f = g} p) -- we have apd(p) : p(g(y)) = g(z). ) -- Then for any y,z : A and p : y = z isProp-is-prop : ∀ {a}{A : Set a} → isProp (isProp A) isProp-is-prop f g = funext λ x → funext λ y → isProp-isSet f _ _ (f x y) (g x y) isSet-is-prop : ∀ {a}{A : Set a} → isProp (isSet A) isSet-is-prop f g = funext λ x → funext λ y → funext λ p → funext λ q → isProp-isSet (f x y) _ _ (f x y p q) (g x y p q) 3-5-1 : ∀ {a}{A : Set a} → (P : A → Set) → ({x : A} → isProp (P x)) → (u v : Σ[ x ∈ A ] P x) → (proj₁ u ≡ proj₁ v) → u ≡ v 3-5-1 P x u v p = {! !} 3-6-1 : ∀ {a b}{A : Set a}{B : Set b} → (isProp A) → (isProp B) → isProp (A × B) 3-6-1 PA PB px py = {! !} 3-6-2 : ∀ {a b}{A : Set a}{B : A → Set b}{x : A} → (isProp (B x)) → isProp ((x : A) → B x) 3-6-2 PPI f g = funext λ x → {! f x ≡ g x !}
31.337278
122
0.51926
c573dbad1d832f5089982df95bc455a8cea47bf9
9,110
agda
Agda
Sets/IterativeSet/Oper/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Sets/IterativeSet/Oper/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Sets/IterativeSet/Oper/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Sets.IterativeSet.Oper.Proofs where import Lvl open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using () open import Functional open import Logic open import Logic.Propositional open import Logic.Predicate open import Relator.Equals using () renaming (_≡_ to Id ; [≡]-intro to intro) open import Sets.IterativeSet.Oper open import Sets.IterativeSet.Relator open import Sets.IterativeSet.Relator.Proofs open import Sets.IterativeSet open import Structure.Function.Domain open import Structure.Function open import Structure.Relator.Properties open import Structure.Relator open import Syntax.Function open import Syntax.Transitivity open import Type.Dependent open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs module _ where private variable {ℓ ℓ₁ ℓ₂} : Lvl.Level open Iset -- If there is an element in the empty set, then there exists an instance of the empty type by definition, and that is false by definition. ∅-membership : ∀{x : Iset{ℓ₁}} → (x ∉ ∅ {ℓ₂}) ∅-membership () -- There is a bijection between (A ‖ B) and ∃{Lvl.Up Bool}(\{(Lvl.up 𝐹) → A ; (Lvl.up 𝑇) → B}). pair-membership : ∀{a b x : Iset{ℓ}} → (x ∈ pair a b) ↔ (x ≡ a)∨(x ≡ b) Tuple.left (pair-membership {a = a} {x}) ([∨]-introₗ p) = [∃]-intro (Lvl.up 𝐹) ⦃ p ⦄ Tuple.left (pair-membership {a = a} {x}) ([∨]-introᵣ p) = [∃]-intro (Lvl.up 𝑇) ⦃ p ⦄ Tuple.right (pair-membership {a = a} {x}) ([∃]-intro (Lvl.up 𝐹) ⦃ eq ⦄) = [∨]-introₗ eq Tuple.right (pair-membership {a = a} {x}) ([∃]-intro (Lvl.up 𝑇) ⦃ eq ⦄) = [∨]-introᵣ eq -- There is a bijection between (A) and ∃{Unit}(\{<> → A}). singleton-membership : ∀{a x : Iset{ℓ}} → (x ∈ singleton(a)) ↔ (x ≡ a) Tuple.left (singleton-membership {a = a} {x}) xin = [∃]-intro <> ⦃ xin ⦄ Tuple.right (singleton-membership {a = a} {x}) ([∃]-intro i ⦃ eq ⦄ ) = eq [∪]-membership : ∀{A B x : Iset{ℓ}} → (x ∈ (A ∪ B)) ↔ (x ∈ A)∨(x ∈ B) Tuple.left ([∪]-membership {A = A} {B} {x}) ([∨]-introₗ ([∃]-intro ia)) = [∃]-intro (Either.Left ia) Tuple.left ([∪]-membership {A = A} {B} {x}) ([∨]-introᵣ ([∃]-intro ib)) = [∃]-intro (Either.Right ib) Tuple.right ([∪]-membership {A = A} {B} {x}) ([∃]-intro ([∨]-introₗ ia)) = [∨]-introₗ ([∃]-intro ia) Tuple.right ([∪]-membership {A = A} {B} {x}) ([∃]-intro ([∨]-introᵣ ib)) = [∨]-introᵣ ([∃]-intro ib) [⋃]-membership : ∀{A x : Iset{ℓ}} → (x ∈ (⋃ A)) ↔ ∃(a ↦ (a ∈ A) ∧ (x ∈ a)) Σ.left (∃.witness (Tuple.left ([⋃]-membership {A = A} {x}) ([∃]-intro a ⦃ [∧]-intro ([∃]-intro iA) _ ⦄))) = iA Σ.right (∃.witness (Tuple.left ([⋃]-membership {A = A} {x}) ([∃]-intro a ⦃ [∧]-intro ([∃]-intro iA ⦃ aA ⦄) ([∃]-intro ia) ⦄))) = _⊆_.map (Tuple.right aA) ia ∃.proof (Tuple.left ([⋃]-membership {A = A} {x}) ([∃]-intro a ⦃ [∧]-intro ([∃]-intro iA ⦃ aA ⦄) ([∃]-intro ia ⦃ xa ⦄) ⦄)) = [≡]-transitivity-raw xa ([⊆]-with-elem (sub₂(_≡_)(_⊆_) aA) {ia}) ∃.witness (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄)) = elem(A)(iA) Tuple.left (∃.proof (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄))) = [∈]-of-elem {A = A} ∃.witness (Tuple.right (∃.proof (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄)))) = ia ∃.proof (Tuple.right (∃.proof (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄)))) = proof module _ {A : Iset{ℓ}} where open import Relator.Equals.Proofs.Equivalence using ([≡]-equiv) instance _ = [≡]-equiv {T = Index(A)} module _ {P : Index(A) → Stmt{ℓ}} where indexFilter-elem-membershipₗ : ∀{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) ← P(i) Σ.left (∃.witness ((indexFilter-elem-membershipₗ {i = i}) pi)) = i Σ.right(∃.witness ((indexFilter-elem-membershipₗ {i = i}) pi)) = pi Tuple.left (∃.proof (indexFilter-elem-membershipₗ pi)) = intro id [≡]-reflexivity-raw Tuple.right (∃.proof (indexFilter-elem-membershipₗ pi)) = intro id [≡]-reflexivity-raw module _ ⦃ _ : Injective(elem A) ⦄ -- TODO: Is this satisfiable? {P : Index(A) → Stmt{ℓ}} ⦃ unaryRelator-P : UnaryRelator(P) ⦄ where indexFilter-elem-membership : ∀{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) ↔ P(i) Tuple.left indexFilter-elem-membership = indexFilter-elem-membershipₗ Tuple.right (indexFilter-elem-membership {i = i}) ([∃]-intro (intro iA PiA) ⦃ pp ⦄) = substitute₁(P) (injective(elem A) (symmetry(_≡_) pp)) PiA filter-elem-membership : ∀{A : Iset{ℓ}}{P} ⦃ _ : UnaryRelator(P) ⦄ {i : Index(A)} → (elem(A)(i) ∈ filter A P) ↔ P(elem(A)(i)) Tuple.left (filter-elem-membership {A = A}{P = P}) = indexFilter-elem-membershipₗ {A = A}{P = P ∘ elem(A)} Tuple.right (filter-elem-membership {P = P}) ([∃]-intro (intro iA PiA) ⦃ pp ⦄) = substitute₁(P) (symmetry(_≡_) pp) PiA filter-membership : ∀{A : Iset{ℓ}}{P} ⦃ _ : UnaryRelator(P) ⦄ {x : Iset{ℓ}} → (x ∈ filter A P) ↔ ((x ∈ A) ∧ P(x)) ∃.witness (Tuple.left(filter-membership {P = P}) ([∧]-intro ([∃]-intro i ⦃ p ⦄) pb)) = intro i (substitute₁(P) p pb) ∃.proof (Tuple.left(filter-membership) ([∧]-intro ([∃]-intro i ⦃ p ⦄) pb)) = p ∃.witness (Tuple.left (Tuple.right(filter-membership) ([∃]-intro (intro iA PiA) ⦃ pp ⦄))) = iA ∃.proof (Tuple.left (Tuple.right(filter-membership) ([∃]-intro (intro iA PiA) ⦃ pp ⦄))) = pp Tuple.right (Tuple.right(filter-membership {P = P}) ([∃]-intro (intro iA PiA) ⦃ pp ⦄)) = substitute₁(P) (symmetry(_≡_) pp) PiA mapSet-membership : ∀{A : Iset{ℓ}}{f} ⦃ _ : Function(f) ⦄ {y : Iset{ℓ}} → (y ∈ mapSet f(A)) ↔ ∃(x ↦ (x ∈ A) ∧ (y ≡ f(x))) ∃.witness (Tuple.left (mapSet-membership) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) = [∃]-witness xA ∃.proof (Tuple.left (mapSet-membership {A = A} {f = f} {y = y}) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) = y 🝖[ _≡_ ]-[ fxy ] f(x) 🝖[ _≡_ ]-[ congruence₁(f) ([∃]-proof xA) ] f(elem(A) ([∃]-witness xA)) 🝖[ _≡_ ]-[] elem (mapSet f(A)) ([∃]-witness xA) 🝖[ _≡_ ]-end ∃.witness (Tuple.right (mapSet-membership {A = A}) ([∃]-intro iA)) = elem(A) iA Tuple.left (∃.proof (Tuple.right (mapSet-membership {A = A}) ([∃]-intro iA ⦃ p ⦄))) = [∈]-of-elem {A = A} {ia = iA} Tuple.right (∃.proof (Tuple.right mapSet-membership ([∃]-intro iA ⦃ p ⦄))) = p open import Logic.Classical module _ ⦃ classical : ∀{ℓ}{P} → Classical{ℓ}(P) ⦄ where instance _ = classical-to-decidable instance _ = classical-to-decider indexFilterBool-subset : ∀{A : Iset{ℓ}}{P} → (indexFilterBool A P ⊆ A) _⊇_.map indexFilterBool-subset (intro iA _) = iA _⊇_.proof (indexFilterBool-subset {ℓ = ℓ}{A = A}{P = P}) {intro iA (Lvl.up PiA)} = elem (indexFilterBool A P) (intro iA (Lvl.up PiA)) 🝖[ _≡_ ]-[] elem (indexFilter A (Lvl.Up ∘ IsTrue ∘ P)) (intro iA (Lvl.up PiA)) 🝖[ _≡_ ]-[] elem A (Σ.left {B = Lvl.Up{ℓ} ∘ IsTrue ∘ P} (intro iA (Lvl.up PiA))) 🝖[ _≡_ ]-[] elem A iA 🝖[ _≡_ ]-end ℘-membershipₗ : ∀{A : Iset{ℓ}}{B : Iset{ℓ}} → (B ∈ ℘(A)) ← (B ⊆ A) ∃.witness (℘-membershipₗ {A = A}{B = B} BA) iA = decide(0)(∃(iB ↦ Id(_⊆_.map BA iB) iA)) _⊇_.map (Tuple.left (∃.proof (℘-membershipₗ {A = A} {B = B} _))) (intro iA (Lvl.up mapiBiA)) = [∃]-witness([↔]-to-[←] decider-true mapiBiA) _⊇_.proof (Tuple.left (∃.proof (℘-membershipₗ {ℓ = ℓ} {A = A} {B = B} BA))) {intro iA (Lvl.up mapiBiA)} = elem (elem (℘ A) f) (intro iA (Lvl.up mapiBiA)) 🝖[ _≡_ ]-[] elem (indexFilterBool A f) (intro iA (Lvl.up mapiBiA)) 🝖[ _≡_ ]-[] elem (indexFilter A (Lvl.Up ∘ IsTrue ∘ f)) (intro iA (Lvl.up mapiBiA)) 🝖[ _≡_ ]-[] elem A (Σ.left {B = Lvl.Up{ℓ} ∘ IsTrue ∘ f} (intro iA (Lvl.up mapiBiA))) 🝖[ _≡_ ]-[] elem A iA 🝖[ _≡_ ]-[ [≡]-to-equivalence(congruence₁(elem A) ([∃]-proof emapiBiA)) ]-sym elem A (_⊆_.map BA ([∃]-witness emapiBiA)) 🝖[ _≡_ ]-[ _⊆_.proof BA {[∃]-witness emapiBiA} ]-sym elem B ([∃]-witness emapiBiA) 🝖[ _≡_ ]-end where f = \iA → decide(0)(∃(iB ↦ Id(_⊆_.map BA iB) iA)) emapiBiA = [↔]-to-[←] decider-true mapiBiA open import Relator.Equals.Proofs.Equiv using ([≡]-to-equivalence) _⊇_.map (Tuple.right (∃.proof (℘-membershipₗ {A = A} {B = B} BA))) iB = intro (_⊆_.map BA iB) (Lvl.up ([↔]-to-[→] decider-true ([∃]-intro iB ⦃ intro ⦄))) _⊇_.proof (Tuple.right (∃.proof (℘-membershipₗ {A = A} {B = B} BA))) = _⊆_.proof BA ℘-membershipᵣ : ∀{A : Iset{ℓ}}{B : Iset{ℓ}} → (B ∈ ℘(A)) → (B ⊆ A) ℘-membershipᵣ ([∃]-intro witness ⦃ b≡indexFilterBool ⦄) = substitute₂ₗ(_⊆_) (symmetry(_≡_) b≡indexFilterBool) indexFilterBool-subset ℘-membership : ∀{A : Iset{ℓ}}{x : Iset{ℓ}} → (x ∈ ℘(A)) ↔ (x ⊆ A) ℘-membership = [↔]-intro ℘-membershipₗ ℘-membershipᵣ
64.15493
190
0.554007
399682558c63730eef0bf55acf28a4d523daeb5e
253
agda
Agda
test/Succeed/Issue5683.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue5683.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue5683.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Equality open import Agda.Builtin.Sigma postulate X : Set variable x : X data C : Σ X (λ x → x ≡ x) → Set where mkC : let eq : x ≡ x -- don't generalize over x at eq eq = refl {x = x} in C (x , eq)
16.866667
50
0.56917
dcfacdeee67a710d81c1876827ffeac891055452
2,582
agda
Agda
Categories/Support/EqReasoning.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
1
2018-12-29T21:51:57.000Z
2018-12-29T21:51:57.000Z
Categories/Support/EqReasoning.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
Categories/Support/EqReasoning.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Categories.Support.EqReasoning where open import Categories.Support.Equivalence using (Setoid; module Setoid) open import Relation.Binary.PropositionalEquality using () renaming (_≡_ to _≣_; trans to ≣-trans; sym to ≣-sym; refl to ≣-refl) module SetoidReasoning {s₁ s₂} (S : Setoid s₁ s₂) where open Setoid S infix 4 _IsRelatedTo_ infix 1 begin_ infixr 2 _≈⟨_⟩_ _↓⟨_⟩_ _↑⟨_⟩_ _↓≣⟨_⟩_ _↑≣⟨_⟩_ _↕_ infix 3 _∎ -- This seemingly unnecessary type is used to make it possible to -- infer arguments even if the underlying equality evaluates. data _IsRelatedTo_ (x y : Carrier) : Set s₂ where relTo : (x∼y : x ≈ y) → x IsRelatedTo y .begin_ : ∀ {x y} → x IsRelatedTo y → x ≈ y begin relTo x∼y = x∼y ._↓⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z _ ↓⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z) -- where open IsEquivalence isEquivalence ._↑⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z _ ↑⟨ y∼x ⟩ relTo y∼z = relTo (trans (sym y∼x) y∼z) -- where open IsEquivalence isEquivalence -- the syntax of the ancients, for compatibility ._≈⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z _≈⟨_⟩_ = _↓⟨_⟩_ ._↓≣⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z _ ↓≣⟨ ≣-refl ⟩ y∼z = y∼z ._↑≣⟨_⟩_ : ∀ x {y z} → y ≣ x → y IsRelatedTo z → x IsRelatedTo z _ ↑≣⟨ ≣-refl ⟩ y∼z = y∼z ._↕_ : ∀ x {z} → x IsRelatedTo z → x IsRelatedTo z _ ↕ x∼z = x∼z ._∎ : ∀ x → x IsRelatedTo x _∎ _ = relTo refl -- where open IsEquivalence isEquivalence module ≣-reasoning {ℓ} (S : Set ℓ) where infix 4 _IsRelatedTo_ infix 2 _∎ infixr 2 _≈⟨_⟩_ infixr 2 _↓⟨_⟩_ infixr 2 _↑⟨_⟩_ infixr 2 _↕_ infix 1 begin_ -- This seemingly unnecessary type is used to make it possible to -- infer arguments even if the underlying equality evaluates. data _IsRelatedTo_ (x y : S) : Set ℓ where relTo : (x∼y : x ≣ y) → x IsRelatedTo y begin_ : ∀ {x y} → x IsRelatedTo y → x ≣ y begin relTo x∼y = x∼y -- the syntax of the ancients, for compatibility _≈⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z _ ≈⟨ x∼y ⟩ relTo y∼z = relTo (≣-trans x∼y y∼z) _↓⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z _ ↓⟨ x∼y ⟩ relTo y∼z = relTo (≣-trans x∼y y∼z) _↑⟨_⟩_ : ∀ x {y z} → y ≣ x → y IsRelatedTo z → x IsRelatedTo z _ ↑⟨ y∼x ⟩ relTo y∼z = relTo (≣-trans (≣-sym y∼x) y∼z) _↕_ : ∀ x {z} → x IsRelatedTo z → x IsRelatedTo z _ ↕ x∼z = x∼z _∎ : ∀ x → x IsRelatedTo x _∎ _ = relTo ≣-refl
30.738095
128
0.60031
4a213ae0825e64637c78b95b88109a1bfb08ea1f
269
agda
Agda
archive/agda-1/PredicateName.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/PredicateName.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/PredicateName.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module PredicateName where open import OscarPrelude record PredicateName : Set where constructor ⟨_⟩ field name : Nat open PredicateName public instance EqPredicateName : Eq PredicateName Eq._==_ EqPredicateName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
16.8125
66
0.747212
185e892390ce8b46d5a343286bffdfc5cc843fdf
1,445
agda
Agda
agda-stdlib-0.9/src/Data/Conat.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Conat.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Conat.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Coinductive "natural" numbers ------------------------------------------------------------------------ module Data.Conat where open import Coinduction open import Data.Nat using (ℕ; zero; suc) open import Relation.Binary ------------------------------------------------------------------------ -- The type data Coℕ : Set where zero : Coℕ suc : (n : ∞ Coℕ) → Coℕ ------------------------------------------------------------------------ -- Some operations fromℕ : ℕ → Coℕ fromℕ zero = zero fromℕ (suc n) = suc (♯ fromℕ n) ∞ℕ : Coℕ ∞ℕ = suc (♯ ∞ℕ) infixl 6 _+_ _+_ : Coℕ → Coℕ → Coℕ zero + n = n suc m + n = suc (♯ (♭ m + n)) ------------------------------------------------------------------------ -- Equality data _≈_ : Coℕ → Coℕ → Set where zero : zero ≈ zero suc : ∀ {m n} (m≈n : ∞ (♭ m ≈ ♭ n)) → suc m ≈ suc n setoid : Setoid _ _ setoid = record { Carrier = Coℕ ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : Reflexive _≈_ refl {zero} = zero refl {suc n} = suc (♯ refl) sym : Symmetric _≈_ sym zero = zero sym (suc m≈n) = suc (♯ sym (♭ m≈n)) trans : Transitive _≈_ trans zero zero = zero trans (suc m≈n) (suc n≈k) = suc (♯ trans (♭ m≈n) (♭ n≈k))
22.230769
72
0.393772
d054d023aa191431255484b87b08432dfbccd32f
5,818
agda
Agda
Cubical/Reflection/RecordEquiv.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Reflection/RecordEquiv.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Reflection/RecordEquiv.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Reflection-based tools for converting between iterated record types, particularly between record types and iterated Σ-types. Currently requires eta equality. See end of file for examples. -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Reflection.RecordEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.List as List open import Cubical.Data.Nat open import Cubical.Data.Maybe open import Cubical.Data.Sigma import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base Projections = List R.Name -- Describes a correspondence between two iterated record types Assoc = List (Projections × Projections) -- Describes a correspondence between a record type and an iterated Σ-types; -- more convenient than Assoc for this special case data ΣFormat : Type where leaf : R.Name → ΣFormat _,_ : ΣFormat → ΣFormat → ΣFormat infixr 4 _,_ module Internal where flipAssoc : Assoc → Assoc flipAssoc = List.map λ {p .fst → p .snd; p .snd → p .fst} list→ΣFormat : List R.Name → Maybe ΣFormat list→ΣFormat [] = nothing list→ΣFormat (x ∷ []) = just (leaf x) list→ΣFormat (x ∷ y ∷ xs) = map-Maybe (leaf x ,_) (list→ΣFormat (y ∷ xs)) recordName→ΣFormat : R.Name → R.TC (Maybe ΣFormat) recordName→ΣFormat name = R.getDefinition name >>= go where go : R.Definition → R.TC (Maybe ΣFormat) go (R.record-type c fs) = R.returnTC (list→ΣFormat (List.map (λ {(R.arg _ n) → n}) fs)) go _ = R.typeError (R.strErr "Not a record type name:" ∷ R.nameErr name ∷ []) ΣFormat→Assoc : ΣFormat → Assoc ΣFormat→Assoc = go [] where go : List R.Name → ΣFormat → Assoc go prefix (leaf fieldName) = [ prefix , [ fieldName ] ] go prefix (sig₁ , sig₂) = go (quote fst ∷ prefix) sig₁ ++ go (quote snd ∷ prefix) sig₂ MaybeΣFormat→Assoc : Maybe ΣFormat → Assoc MaybeΣFormat→Assoc nothing = [ [] , [] ] MaybeΣFormat→Assoc (just sig) = ΣFormat→Assoc sig convertTerm : Assoc → R.Term → R.Term convertTerm al term = R.pat-lam (List.map makeClause al) [] where makeClause : Projections × Projections → R.Clause makeClause (projl , projr) = R.clause [] (goPat [] projr) (goTm projl) where goPat : List (R.Arg R.Pattern) → List R.Name → List (R.Arg R.Pattern) goPat acc [] = acc goPat acc (π ∷ projs) = goPat (varg (R.proj π) ∷ acc) projs goTm : List R.Name → R.Term goTm [] = term goTm (π ∷ projs) = R.def π [ varg (goTm projs) ] convertFun : Assoc → R.Term convertFun al = vlam "ρ" (convertTerm al (v 0)) convertMacro : Assoc → R.Term → R.TC Unit convertMacro al hole = R.unify hole (convertFun al) equivMacro : Assoc → R.Term → R.TC Unit equivMacro al hole = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ hole₂ → let iso : R.Term iso = R.pat-lam ( R.clause [] [ varg (R.proj (quote Iso.fun)) ] hole₁ ∷ R.clause [] [ varg (R.proj (quote Iso.inv)) ] hole₂ ∷ R.clause [] [ varg (R.proj (quote Iso.rightInv)) ] (vlam "_" (R.def (quote refl) [])) ∷ R.clause [] [ varg (R.proj (quote Iso.leftInv)) ] (vlam "_" (R.def (quote refl) [])) ∷ [] ) [] in R.unify hole (R.def (quote isoToEquiv) [ varg iso ]) >> convertMacro al hole₁ >> convertMacro (flipAssoc al) hole₂ open Internal macro -- ΣFormat → <Σ-Type> ≃ <RecordType> Σ≃Record : ΣFormat → R.Term → R.TC Unit Σ≃Record sig = equivMacro (ΣFormat→Assoc sig) -- ΣFormat → <RecordType> ≃ <Σ-Type> Record≃Σ : ΣFormat → R.Term → R.TC Unit Record≃Σ sig = equivMacro (flipAssoc (ΣFormat→Assoc sig)) -- <RecordTypeName> → <Σ-Type> ≃ <RecordType> FlatΣ≃Record : R.Name → R.Term → R.TC Unit FlatΣ≃Record name hole = recordName→ΣFormat name >>= λ sig → equivMacro (MaybeΣFormat→Assoc sig) hole -- <RecordTypeName> → <RecordType> ≃ <Σ-Type> Record≃FlatΣ : R.Name → R.Term → R.TC Unit Record≃FlatΣ name hole = recordName→ΣFormat name >>= λ sig → equivMacro (flipAssoc (MaybeΣFormat→Assoc sig)) hole -- ΣFormat → <RecordType₁> ≃ <RecordType₂> Record≃Record : Assoc → R.Term → R.TC Unit Record≃Record = equivMacro module Example where private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ' record Example {A : Type ℓ} (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where field cool : A fun : A wow : B cool open Example {- Example: Equivalence between a Σ-type and record type using FlatΣ≃Record -} Example0 : (Σ[ a ∈ A ] Σ[ a' ∈ A ] B a) ≃ Example B Example0 = FlatΣ≃Record Example Example0' : Example B ≃ (Σ[ a ∈ A ] Σ[ a' ∈ A ] B a) Example0' = Record≃FlatΣ Example Example0'' : Unit ≃ Unit -- any record with no fields is equivalent to unit Example0'' = FlatΣ≃Record Unit {- Example: Equivalence between an arbitrarily arrange Σ-type and record type using Σ≃Record -} Example1 : (Σ[ p ∈ A × A ] B (p .snd)) ≃ Example B Example1 = Σ≃Record ((leaf (quote fun) , leaf (quote cool)) , leaf (quote wow)) {- Example: Equivalence between arbitrary iterated record types (less convenient) using Record≃Record -} record Inner {A : Type ℓ} (B : A → Type ℓ') (a : A) : Type (ℓ-max ℓ ℓ') where field fun' : A wow' : B a record Outer {A : Type ℓ} (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where field cool' : A inner : B cool' open Inner open Outer Example2 : Example B ≃ Outer (Inner B) Example2 = Record≃Record ( ([ quote cool ] , [ quote cool' ]) ∷ ([ quote fun ] , (quote fun' ∷ quote inner ∷ [])) ∷ ([ quote wow ] , (quote wow' ∷ quote inner ∷ [])) ∷ [] )
29.532995
97
0.623926
231a43654a6cd07684fac0cbc45573f79f9f058d
1,717
agda
Agda
src/Algebra.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/Algebra.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/Algebra.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
module Algebra where -- Core graph construction primitives data Graph (A : Set) : Set where ε : Graph A -- Empty graph v : A -> Graph A -- Graph comprising a single vertex _+_ : Graph A -> Graph A -> Graph A -- Overlay two graphs _*_ : Graph A -> Graph A -> Graph A -- Connect two graphs infixl 4 _≡_ infixl 8 _+_ infixl 9 _*_ infix 10 _⊆_ -- Equational theory of graphs data _≡_ {A} : (x y : Graph A) -> Set where -- Equivalence relation reflexivity : ∀ {x : Graph A} -> x ≡ x symmetry : ∀ {x y : Graph A} -> x ≡ y -> y ≡ x transitivity : ∀ {x y z : Graph A} -> x ≡ y -> y ≡ z -> x ≡ z -- Congruence +left-congruence : ∀ {x y z : Graph A} -> x ≡ y -> x + z ≡ y + z +right-congruence : ∀ {x y z : Graph A} -> x ≡ y -> z + x ≡ z + y *left-congruence : ∀ {x y z : Graph A} -> x ≡ y -> x * z ≡ y * z *right-congruence : ∀ {x y z : Graph A} -> x ≡ y -> z * x ≡ z * y -- Axioms of + +commutativity : ∀ {x y : Graph A} -> x + y ≡ y + x +associativity : ∀ {x y z : Graph A} -> x + (y + z) ≡ (x + y) + z -- Axioms of * *left-identity : ∀ {x : Graph A} -> ε * x ≡ x *right-identity : ∀ {x : Graph A} -> x * ε ≡ x *associativity : ∀ {x y z : Graph A} -> x * (y * z) ≡ (x * y) * z -- Other axioms left-distributivity : ∀ {x y z : Graph A} -> x * (y + z) ≡ x * y + x * z right-distributivity : ∀ {x y z : Graph A} -> (x + y) * z ≡ x * z + y * z decomposition : ∀ {x y z : Graph A} -> x * y * z ≡ x * y + x * z + y * z -- Subgraph relation _⊆_ : ∀ {A} -> Graph A -> Graph A -> Set x ⊆ y = x + y ≡ y
38.155556
85
0.45661
df2673785dc63ce8d945613da1ed98346a036562
1,833
agda
Agda
src/Tactic/Nat/Coprime.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Tactic/Nat/Coprime.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Tactic/Nat/Coprime.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
-- Tactic for proving coprimality. -- Finds Coprime hypotheses in the context. module Tactic.Nat.Coprime where import Agda.Builtin.Nat as Builtin open import Prelude open import Control.Monad.Zero open import Control.Monad.State open import Container.List open import Container.Traversable open import Numeric.Nat open import Tactic.Reflection open import Tactic.Reflection.Parse open import Tactic.Reflection.Quote open import Tactic.Nat.Coprime.Problem open import Tactic.Nat.Coprime.Decide open import Tactic.Nat.Coprime.Reflect private Proof : Problem → Env → Set Proof Q ρ with canProve Q ... | true = ⟦ Q ⟧p ρ ... | false = ⊤ erasePrf : ∀ Q {ρ} → ⟦ Q ⟧p ρ → ⟦ Q ⟧p ρ erasePrf ([] ⊨ a ⋈ b) Ξ = eraseEquality Ξ erasePrf (ψ ∷ Γ ⊨ φ) Ξ = λ H → erasePrf (Γ ⊨ φ) (Ξ H) proof : ∀ Q ρ → Proof Q ρ proof Q ρ with canProve Q | sound Q ... | true | prf = erasePrf Q (prf refl ρ) ... | false | _ = _ -- For the error message unquoteE : List Term → Exp → Term unquoteE ρ (atom x) = fromMaybe (lit (nat 0)) (index ρ x) unquoteE ρ (e ⊗ e₁) = def₂ (quote _*_) (unquoteE ρ e) (unquoteE ρ e₁) unquoteF : List Term → Formula → Term unquoteF ρ (a ⋈ b) = def₂ (quote Coprime) (unquoteE ρ a) (unquoteE ρ b) macro auto-coprime : Tactic auto-coprime ?hole = withNormalisation true $ do goal ← inferType ?hole ensureNoMetas goal cxt ← reverse <$> getContext (_ , Hyps , Q) , ρ ← runParse (parseProblem (map unArg cxt) goal) unify ?hole (def (quote proof) $ map vArg (` Q ∷ quotedEnv ρ ∷ Hyps)) <|> do case Q of λ where (Γ ⊨ φ) → typeError (strErr "Cannot prove" ∷ termErr (unquoteF ρ φ) ∷ strErr "from" ∷ punctuate (strErr "and") (map (termErr ∘ unquoteF ρ) Γ))
31.067797
87
0.624659
cb79f55a2d3744378695aa7f2e1e215003fb792a
8,899
agda
Agda
LibraBFT/Base/PKCS.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Base/PKCS.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Base/PKCS.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Lemmas open import LibraBFT.Prelude open import LibraBFT.Base.Encode open import LibraBFT.Base.ByteString -- This module contains a model of cryptographic signatures on -- certain data structures, and creation and verification -- thereof. These data structures, defined by the WithVerSig -- type, can be optionally signed, and if they are signed, the -- signature covers a ByteString derived from the data structure, -- enabling support for signature that cover only (functions of) -- specific parts of the data structure. The module also -- contains some properties we have found useful in other -- contexts, though they are not yet used in this repo. module LibraBFT.Base.PKCS where postulate -- valid assumption signature-size : ℕ Signature : Set Signature = Σ ByteString (λ s → length s ≡ signature-size) postulate -- valid assumptions PK : Set SK : Set IsKeyPair : PK → SK → Set _≟PK_ : (pk1 pk2 : PK) → Dec (pk1 ≡ pk2) instance enc-PK : Encoder PK enc-SigMB : Encoder (Maybe Signature) sign-raw : ByteString → SK → Signature verify : ByteString → Signature → PK → Bool -- We assume no "signature collisions", as represented by verify-pk-inj verify-pk-inj : ∀{bs sig pk pk'} → verify bs sig pk ≡ true → verify bs sig pk' ≡ true → pk ≡ pk' verify-bs-inj : ∀{bs bs' sig pk} → verify bs sig pk ≡ true → verify bs' sig pk ≡ true → bs ≡ bs' verify-pi : ∀{bs sig pk} → (v1 : verify bs sig pk ≡ true) → (v2 : verify bs sig pk ≡ true) → v1 ≡ v2 verify-sign : ∀{bs pk sk} → IsKeyPair pk sk → verify bs (sign-raw bs sk) pk ≡ true verify-fail : ∀{bs pk sk} → ¬ IsKeyPair pk sk → verify bs (sign-raw bs sk) pk ≡ false -- We consider a PK to be (permanently) either honest or not, -- respresented by the following postulate. This is relevant -- in reasoning about possible behaviours of a modeled system. -- Specifically, the secret key corresponding to an honest PK -- is assumed not to be leaked, ensuring that cheaters cannot -- forge new signatures for honest PKs. Furthermore, if a peer -- is assigned we use possession -- of an honest PK in a given epoch to modelWe will postulate that, among -- the PKs chosen for a particular epoch, the number of them -- that are dishonest is at most the number of faults to be -- tolerated for that epoch. This definition is /meta/: the -- information about which PKs are (dis)honest should never be -- used by the implementation -- it is only for modeling and -- proofs. Meta-Dishonest-PK : PK → Set Meta-Honest-PK : PK → Set Meta-Honest-PK = ¬_ ∘ Meta-Dishonest-PK -- A datatype C might that might carry values with -- signatures should be an instance of 'WithSig' below. record WithSig (C : Set) : Set₁ where field -- A decidable predicate indicates whether values have -- been signed Signed : C → Set Signed-pi : ∀ (c : C) → (is1 : Signed c) → (is2 : Signed c) → is1 ≡ is2 isSigned? : (c : C) → Dec (Signed c) -- Signed values must have a signature signature : (c : C)(hasSig : Signed c) → Signature -- All values must be /encoded/ into a ByteString that -- is supposed to be verified against a signature. signableFields : C → ByteString open WithSig {{...}} public sign : {C : Set} ⦃ ws : WithSig C ⦄ → C → SK → Signature sign c = sign-raw (signableFields c) Signature≡ : {C : Set} ⦃ ws : WithSig C ⦄ → C → Signature → Set Signature≡ c sig = Σ (Signed c) (λ s → signature c s ≡ sig) -- A value of a datatype C can have its signature -- verified; A value of type WithVerSig c is a proof of that. -- Hence; the set (Σ C WithVerSig) is the set of values of -- type C with verified signatures. record WithVerSig {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) : Set where constructor mkWithVerSig field isSigned : Signed c verified : verify (signableFields c) (signature c isSigned) pk ≡ true open WithVerSig public ver-signature : ∀{C pk}⦃ ws : WithSig C ⦄{c : C} → WithVerSig pk c → Signature ver-signature {c = c} wvs = signature c (isSigned wvs) verCast : {C : Set} ⦃ ws : WithSig C ⦄ {c : C} {is1 is2 : Signed c} {pk1 pk2 : PK} → verify (signableFields c) (signature c is1) pk1 ≡ true → pk1 ≡ pk2 → is1 ≡ is2 → verify (signableFields c) (signature c is2) pk2 ≡ true verCast prf refl refl = prf wvsCast : {C : Set} ⦃ ws : WithSig C ⦄ {c : C} {pk1 pk2 : PK} → WithVerSig pk1 c → pk2 ≡ pk1 → WithVerSig pk2 c wvsCast {c = c} wvs refl = wvs withVerSig-≡ : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → {wvs1 : WithVerSig pk c} → {wvs2 : WithVerSig pk c} → isSigned wvs1 ≡ isSigned wvs2 → wvs1 ≡ wvs2 withVerSig-≡ {wvs1 = wvs1} {wvs2 = wvs2} refl with verified wvs2 | inspect verified wvs2 | verCast (verified wvs1) refl refl ...| vwvs2 | [ R ] | vwvs1 rewrite verify-pi vwvs1 vwvs2 | sym R = refl withVerSig-pi : {C : Set} {pk : PK} {c : C} ⦃ ws : WithSig C ⦄ → (wvs1 : WithVerSig pk c) → (wvs2 : WithVerSig pk c) → wvs2 ≡ wvs1 withVerSig-pi {C} {pk} {c} ⦃ ws ⦄ wvs2 wvs1 with isSigned? c ...| no ¬Signed = ⊥-elim (¬Signed (isSigned wvs1)) ...| yes sc = withVerSig-≡ {wvs1 = wvs1} {wvs2 = wvs2} (Signed-pi c (isSigned wvs1) (isSigned wvs2)) data SigCheckResult {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) : Set where notSigned : ¬ Signed c → SigCheckResult pk c checkFailed : (sc : Signed c) → verify (signableFields c) (signature c sc) pk ≡ false → SigCheckResult pk c sigVerified : WithVerSig pk c → SigCheckResult pk c checkFailed≢sigVerified : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} {wvs : WithVerSig ⦃ ws ⦄ pk c} {sc : Signed c} {v : verify (signableFields c) (signature c sc) pk ≡ false} → checkFailed sc v ≡ sigVerified wvs → ⊥ checkFailed≢sigVerified () data SigCheckOutcome : Set where notSigned : SigCheckOutcome checkFailed : SigCheckOutcome sigVerified : SigCheckOutcome data SigCheckFailed : Set where notSigned : SigCheckFailed checkFailed : SigCheckFailed check-signature : {C : Set} ⦃ ws : WithSig C ⦄ → (pk : PK) → (c : C) → SigCheckResult pk c check-signature pk c with isSigned? c ...| no ns = notSigned ns ...| yes sc with verify (signableFields c) (signature c sc) pk | inspect (verify (signableFields c) (signature c sc)) pk ...| false | [ nv ] = checkFailed sc nv ...| true | [ v ] = sigVerified (record { isSigned = sc ; verified = v }) sigCheckOutcomeFor : {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) → SigCheckOutcome sigCheckOutcomeFor pk c with check-signature pk c ...| notSigned _ = notSigned ...| checkFailed _ _ = checkFailed ...| sigVerified _ = sigVerified sigVerifiedVerSigCS : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → sigCheckOutcomeFor pk c ≡ sigVerified → ∃[ wvs ] (check-signature ⦃ ws ⦄ pk c ≡ sigVerified wvs) sigVerifiedVerSigCS {pk = pk} {c = c} prf with check-signature pk c | inspect (check-signature pk) c ...| sigVerified verSig | [ R ] rewrite R = verSig , refl sigVerifiedVerSig : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → sigCheckOutcomeFor pk c ≡ sigVerified → WithVerSig pk c sigVerifiedVerSig = proj₁ ∘ sigVerifiedVerSigCS sigVerifiedSCO : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → (wvs : WithVerSig pk c) → sigCheckOutcomeFor pk c ≡ sigVerified sigVerifiedSCO {pk = pk} {c = c} wvs with check-signature pk c ...| notSigned ns = ⊥-elim (ns (isSigned wvs)) ...| checkFailed xx xxs rewrite Signed-pi c xx (isSigned wvs) = ⊥-elim (false≢true (trans (sym xxs) (verified wvs))) ...| sigVerified wvs' = refl failedSigCheckOutcome : {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) → sigCheckOutcomeFor pk c ≢ sigVerified → SigCheckFailed failedSigCheckOutcome pk c prf with sigCheckOutcomeFor pk c ...| notSigned = notSigned ...| checkFailed = checkFailed ...| sigVerified = ⊥-elim (prf refl)
40.085586
117
0.605461
20bea768640f454fa95cdebb541ab888f150597e
4,342
agda
Agda
Cubical/Algebra/CommAlgebra/Instances/Initial.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommAlgebra/Instances/Initial.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Instances/Initial.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Instances.Initial where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Unit open import Cubical.Data.Sigma.Properties using (Σ≡Prop) open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra.Base using (IsAlgebraHom) open import Cubical.Algebra.Algebra.Properties open import Cubical.Algebra.CommAlgebra import Cubical.Algebra.Algebra.Properties open AlgebraHoms private variable ℓ : Level module _ (R : CommRing ℓ) where initialCAlg : CommAlgebra R ℓ initialCAlg = let open CommRingStr (snd R) in (fst R , commalgebrastr _ _ _ _ _ (λ r x → r · x) (makeIsCommAlgebra (isSetRing (CommRing→Ring R)) +Assoc +Rid +Rinv +Comm ·Assoc ·Lid ·Ldist+ ·Comm (λ x y z → sym (·Assoc x y z)) ·Ldist+ ·Rdist+ ·Lid λ x y z → sym (·Assoc x y z))) module _ (A : CommAlgebra R ℓ) where open CommAlgebraStr ⦃... ⦄ private instance _ : CommAlgebraStr R (fst A) _ = snd A _ : CommAlgebraStr R (fst R) _ = snd initialCAlg _*_ : fst R → (fst A) → (fst A) r * a = CommAlgebraStr._⋆_ (snd A) r a initialMap : CommAlgebraHom initialCAlg A initialMap = makeCommAlgebraHom {M = initialCAlg} {N = A} (λ r → r * 1a) (⋆-lid _) (λ x y → ⋆-ldist x y 1a) (λ x y → (x · y) * 1a ≡⟨ ⋆-assoc _ _ _ ⟩ x * (y * 1a) ≡[ i ]⟨ x * (·Lid (y * 1a) (~ i)) ⟩ x * (1a · (y * 1a)) ≡⟨ sym (⋆-lassoc _ _ _) ⟩ (x * 1a) · (y * 1a) ∎) (λ r x → (r · x) * 1a ≡⟨ ⋆-assoc _ _ _ ⟩ (r * (x * 1a)) ∎) initialMapEq : (f : CommAlgebraHom initialCAlg A) → f ≡ initialMap initialMapEq f = let open IsAlgebraHom (snd f) in Σ≡Prop (isPropIsCommAlgebraHom {M = initialCAlg} {N = A}) λ i x → ((fst f) x ≡⟨ cong (fst f) (sym (·Rid _)) ⟩ fst f (x · 1a) ≡⟨ pres⋆ x 1a ⟩ CommAlgebraStr._⋆_ (snd A) x (fst f 1a) ≡⟨ cong (λ u → (snd A CommAlgebraStr.⋆ x) u) pres1 ⟩ (CommAlgebraStr._⋆_ (snd A) x 1a) ∎) i initialMapProp : (f g : CommAlgebraHom initialCAlg A) → f ≡ g initialMapProp f g = initialMapEq f ∙ sym (initialMapEq g) initialityIso : Iso (CommAlgebraHom initialCAlg A) (Unit* {ℓ = ℓ}) initialityIso = iso (λ _ → tt*) (λ _ → initialMap) (λ {tt*x → refl}) λ f → sym (initialMapEq f) initialityPath : CommAlgebraHom initialCAlg A ≡ Unit* initialityPath = isoToPath initialityIso initialityContr : isContr (CommAlgebraHom initialCAlg A) initialityContr = initialMap , λ ϕ → sym (initialMapEq ϕ) {- Show that any R-Algebra with the same universal property as the initial R-Algebra, is isomorphic to the initial R-Algebra. -} module _ (A : CommAlgebra R ℓ) where equivByInitiality : (isInitial : (B : CommAlgebra R ℓ) → isContr (CommAlgebraHom A B)) → CommAlgebraEquiv A (initialCAlg) equivByInitiality isInitial = isoToEquiv asIso , snd to where open CommAlgebraHoms to : CommAlgebraHom A initialCAlg to = fst (isInitial initialCAlg) from : CommAlgebraHom initialCAlg A from = initialMap A asIso : Iso (fst A) (fst initialCAlg) Iso.fun asIso = fst to Iso.inv asIso = fst from Iso.rightInv asIso = λ x i → cong fst (isContr→isProp (initialityContr initialCAlg) (to ∘a from) (idCAlgHom initialCAlg)) i x Iso.leftInv asIso = λ x i → cong fst (isContr→isProp (isInitial A) (from ∘a to) (idCAlgHom A)) i x
35.300813
103
0.523722
c5c44d871f2af5567964f8225d192ff69831c6c1
11,413
agda
Agda
src/data/lib/prim/Agda/Builtin/Reflection.agda
m-yac/agda
2ad3956cf0fa043eaf87f6b1f34633995e658a1a
[ "BSD-3-Clause" ]
1
2016-05-20T13:58:52.000Z
2016-05-20T13:58:52.000Z
src/data/lib/prim/Agda/Builtin/Reflection.agda
m-yac/agda
2ad3956cf0fa043eaf87f6b1f34633995e658a1a
[ "BSD-3-Clause" ]
1
2015-09-15T15:49:15.000Z
2015-09-15T15:49:15.000Z
src/data/lib/prim/Agda/Builtin/Reflection.agda
m-yac/agda
2ad3956cf0fa043eaf87f6b1f34633995e658a1a
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Reflection where open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Word open import Agda.Builtin.List open import Agda.Builtin.String open import Agda.Builtin.Char open import Agda.Builtin.Float open import Agda.Builtin.Int open import Agda.Builtin.Sigma -- Names -- postulate Name : Set {-# BUILTIN QNAME Name #-} primitive primQNameEquality : Name → Name → Bool primQNameLess : Name → Name → Bool primShowQName : Name → String -- Fixity -- data Associativity : Set where left-assoc : Associativity right-assoc : Associativity non-assoc : Associativity data Precedence : Set where related : Float → Precedence unrelated : Precedence data Fixity : Set where fixity : Associativity → Precedence → Fixity {-# BUILTIN ASSOC Associativity #-} {-# BUILTIN ASSOCLEFT left-assoc #-} {-# BUILTIN ASSOCRIGHT right-assoc #-} {-# BUILTIN ASSOCNON non-assoc #-} {-# BUILTIN PRECEDENCE Precedence #-} {-# BUILTIN PRECRELATED related #-} {-# BUILTIN PRECUNRELATED unrelated #-} {-# BUILTIN FIXITY Fixity #-} {-# BUILTIN FIXITYFIXITY fixity #-} {-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-} {-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-} {-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-} {-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-} {-# COMPILE JS left-assoc = "left-assoc" #-} {-# COMPILE JS right-assoc = "right-assoc" #-} {-# COMPILE JS non-assoc = "non-assoc" #-} {-# COMPILE JS Precedence = function (x,v) { if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-} {-# COMPILE JS related = function(x) { return x; } #-} {-# COMPILE JS unrelated = "unrelated" #-} {-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-} {-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-} primitive primQNameFixity : Name → Fixity primQNameToWord64s : Name → Σ Word64 (λ _ → Word64) -- Metavariables -- postulate Meta : Set {-# BUILTIN AGDAMETA Meta #-} primitive primMetaEquality : Meta → Meta → Bool primMetaLess : Meta → Meta → Bool primShowMeta : Meta → String primMetaToNat : Meta → Nat -- Arguments -- -- Arguments can be (visible), {hidden}, or {{instance}}. data Visibility : Set where visible hidden instance′ : Visibility {-# BUILTIN HIDING Visibility #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN INSTANCE instance′ #-} -- Arguments can be relevant or irrelevant. data Relevance : Set where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} data ArgInfo : Set where arg-info : (v : Visibility) (r : Relevance) → ArgInfo data Arg {a} (A : Set a) : Set a where arg : (i : ArgInfo) (x : A) → Arg A {-# BUILTIN ARGINFO ArgInfo #-} {-# BUILTIN ARGARGINFO arg-info #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} -- Name abstraction -- data Abs {a} (A : Set a) : Set a where abs : (s : String) (x : A) → Abs A {-# BUILTIN ABS Abs #-} {-# BUILTIN ABSABS abs #-} -- Literals -- data Literal : Set where nat : (n : Nat) → Literal word64 : (n : Word64) → Literal float : (x : Float) → Literal char : (c : Char) → Literal string : (s : String) → Literal name : (x : Name) → Literal meta : (x : Meta) → Literal {-# BUILTIN AGDALITERAL Literal #-} {-# BUILTIN AGDALITNAT nat #-} {-# BUILTIN AGDALITWORD64 word64 #-} {-# BUILTIN AGDALITFLOAT float #-} {-# BUILTIN AGDALITCHAR char #-} {-# BUILTIN AGDALITSTRING string #-} {-# BUILTIN AGDALITQNAME name #-} {-# BUILTIN AGDALITMETA meta #-} -- Patterns -- data Pattern : Set where con : (c : Name) (ps : List (Arg Pattern)) → Pattern dot : Pattern var : (s : String) → Pattern lit : (l : Literal) → Pattern proj : (f : Name) → Pattern absurd : Pattern {-# BUILTIN AGDAPATTERN Pattern #-} {-# BUILTIN AGDAPATCON con #-} {-# BUILTIN AGDAPATDOT dot #-} {-# BUILTIN AGDAPATVAR var #-} {-# BUILTIN AGDAPATLIT lit #-} {-# BUILTIN AGDAPATPROJ proj #-} {-# BUILTIN AGDAPATABSURD absurd #-} -- Terms -- data Sort : Set data Clause : Set data Term : Set Type = Term data Term where var : (x : Nat) (args : List (Arg Term)) → Term con : (c : Name) (args : List (Arg Term)) → Term def : (f : Name) (args : List (Arg Term)) → Term lam : (v : Visibility) (t : Abs Term) → Term pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term pi : (a : Arg Type) (b : Abs Type) → Term agda-sort : (s : Sort) → Term lit : (l : Literal) → Term meta : (x : Meta) → List (Arg Term) → Term unknown : Term data Sort where set : (t : Term) → Sort lit : (n : Nat) → Sort unknown : Sort data Clause where clause : (ps : List (Arg Pattern)) (t : Term) → Clause absurd-clause : (ps : List (Arg Pattern)) → Clause {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDACLAUSE Clause #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMMETA meta #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMEXTLAM pat-lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT agda-sort #-} {-# BUILTIN AGDATERMLIT lit #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} {-# BUILTIN AGDACLAUSECLAUSE clause #-} {-# BUILTIN AGDACLAUSEABSURD absurd-clause #-} -- Definitions -- data Definition : Set where function : (cs : List Clause) → Definition data-type : (pars : Nat) (cs : List Name) → Definition record-type : (c : Name) (fs : List (Arg Name)) → Definition data-cons : (d : Name) → Definition axiom : Definition prim-fun : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF function #-} {-# BUILTIN AGDADEFINITIONDATADEF data-type #-} {-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-} -- Errors -- data ErrorPart : Set where strErr : String → ErrorPart termErr : Term → ErrorPart nameErr : Name → ErrorPart {-# BUILTIN AGDAERRORPART ErrorPart #-} {-# BUILTIN AGDAERRORPARTSTRING strErr #-} {-# BUILTIN AGDAERRORPARTTERM termErr #-} {-# BUILTIN AGDAERRORPARTNAME nameErr #-} -- TC monad -- postulate TC : ∀ {a} → Set a → Set a returnTC : ∀ {a} {A : Set a} → A → TC A bindTC : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B unify : Term → Term → TC ⊤ typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A inferType : Term → TC Type checkType : Term → Type → TC Term normalise : Term → TC Term reduce : Term → TC Term catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A quoteTC : ∀ {a} {A : Set a} → A → TC Term unquoteTC : ∀ {a} {A : Set a} → Term → TC A getContext : TC (List (Arg Type)) extendContext : ∀ {a} {A : Set a} → Arg Type → TC A → TC A inContext : ∀ {a} {A : Set a} → List (Arg Type) → TC A → TC A freshName : String → TC Name declareDef : Arg Name → Type → TC ⊤ declarePostulate : Arg Name → Type → TC ⊤ defineFun : Name → List Clause → TC ⊤ getType : Name → TC Type getDefinition : Name → TC Definition blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A commitTC : TC ⊤ isMacro : Name → TC Bool -- If the argument is 'true' makes the following primitives also normalise -- their results: inferType, checkType, quoteTC, getType, and getContext withNormalisation : ∀ {a} {A : Set a} → Bool → TC A → TC A -- Prints the third argument if the corresponding verbosity level is turned -- on (with the -v flag to Agda). debugPrint : String → Nat → List ErrorPart → TC ⊤ -- Fail if the given computation gives rise to new, unsolved -- "blocking" constraints. noConstraints : ∀ {a} {A : Set a} → TC A → TC A -- Run the given TC action and return the first component. Resets to -- the old TC state if the second component is 'false', or keep the -- new TC state if it is 'true'. runSpeculative : ∀ {a} {A : Set a} → TC (Σ A λ _ → Bool) → TC A {-# BUILTIN AGDATCM TC #-} {-# BUILTIN AGDATCMRETURN returnTC #-} {-# BUILTIN AGDATCMBIND bindTC #-} {-# BUILTIN AGDATCMUNIFY unify #-} {-# BUILTIN AGDATCMTYPEERROR typeError #-} {-# BUILTIN AGDATCMINFERTYPE inferType #-} {-# BUILTIN AGDATCMCHECKTYPE checkType #-} {-# BUILTIN AGDATCMNORMALISE normalise #-} {-# BUILTIN AGDATCMREDUCE reduce #-} {-# BUILTIN AGDATCMCATCHERROR catchTC #-} {-# BUILTIN AGDATCMQUOTETERM quoteTC #-} {-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-} {-# BUILTIN AGDATCMGETCONTEXT getContext #-} {-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-} {-# BUILTIN AGDATCMINCONTEXT inContext #-} {-# BUILTIN AGDATCMFRESHNAME freshName #-} {-# BUILTIN AGDATCMDECLAREDEF declareDef #-} {-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-} {-# BUILTIN AGDATCMDEFINEFUN defineFun #-} {-# BUILTIN AGDATCMGETTYPE getType #-} {-# BUILTIN AGDATCMGETDEFINITION getDefinition #-} {-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-} {-# BUILTIN AGDATCMCOMMIT commitTC #-} {-# BUILTIN AGDATCMISMACRO isMacro #-} {-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-} {-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-} {-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-} {-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-}
36.231746
130
0.560852
d08280c309cac23987fa05fca0620c10d1b07452
139
agda
Agda
Cubical/HITs/S2.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/S2.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/S2.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.S2 where open import Cubical.HITs.S2.Base public open import Cubical.HITs.S2.Properties public
23.166667
45
0.769784
23bf21b22da4fe31e4c13a7107fd068f89cd8b69
496
agda
Agda
agda-stdlib/src/Relation/Unary/Consequences.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Unary/Consequences.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Unary/Consequences.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties imply others ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Unary.Consequences where open import Relation.Unary open import Relation.Nullary using (recompute) dec⟶recomputable : {a ℓ : _} {A : Set a} {P : Pred A ℓ} → Decidable P → Recomputable P dec⟶recomputable P-dec = recompute (P-dec _)
31
86
0.504032
df20ced28adf78f2f5e4d9e4cf1bc6599b729ed5
120
agda
Agda
examples/AIM6/RegExp/talk/Everything.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/RegExp/talk/Everything.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/RegExp/talk/Everything.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Everything where import BoolMatcher import Eq import Prelude import RegExps import Setoids import SimpleMatcher
13.333333
23
0.866667
d088c9bb77a3126ac1f372d3fe26182d0fbb0f04
1,970
agda
Agda
Cubical/DStructures/Structures/Constant.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/DStructures/Structures/Constant.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/DStructures/Structures/Constant.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{- This module contains: - constant displayed structures of URG structures - products of URG structures -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.Relation.Binary private variable ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C ℓ≅A×B : Level -- The constant displayed structure of a URG structure 𝒮-B over 𝒮-A 𝒮ᴰ-const : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A) {B : Type ℓB} (𝒮-B : URGStr B ℓ≅B) → URGStrᴰ 𝒮-A (λ _ → B) ℓ≅B 𝒮ᴰ-const {A = A} 𝒮-A {B} 𝒮-B = urgstrᴰ (λ b _ b' → b ≅ b') ρ uni where open URGStr 𝒮-B -- the total structure of the constant structure gives -- nondependent product of URG structures _×𝒮_ : {A : Type ℓA} (StrA : URGStr A ℓ≅A) {B : Type ℓB} (StrB : URGStr B ℓ≅B) → URGStr (A × B) (ℓ-max ℓ≅A ℓ≅B) _×𝒮_ StrA {B} StrB = ∫⟨ StrA ⟩ (𝒮ᴰ-const StrA StrB) -- any displayed structure defined over a -- structure on a product can also be defined -- over the swapped product ×𝒮-swap : {A : Type ℓA} {B : Type ℓB} {C : A × B → Type ℓC} {ℓ≅A×B ℓ≅ᴰ : Level} {StrA×B : URGStr (A × B) ℓ≅A×B} (StrCᴰ : URGStrᴰ StrA×B C ℓ≅ᴰ) → URGStrᴰ (𝒮-transport Σ-swap-≃ StrA×B) (λ (b , a) → C (a , b)) ℓ≅ᴰ ×𝒮-swap {C = C} {ℓ≅ᴰ = ℓ≅ᴰ} {StrA×B = StrA×B} StrCᴰ = make-𝒮ᴰ (λ c p c' → c ≅ᴰ⟨ p ⟩ c') ρᴰ λ (b , a) c → isUnivalent→contrRelSingl (λ c c' → c ≅ᴰ⟨ URGStr.ρ StrA×B (a , b) ⟩ c') ρᴰ uniᴰ c where open URGStrᴰ StrCᴰ
31.269841
99
0.543655
1c8639b49402fe61ef4ce3b723d180ac2a043c7d
1,927
agda
Agda
src/Data/FingerTree/Split/Point.agda
oisdk/agda-indexed-fingertree
39c3d96937384b052b782ffddf4fdec68c5d139f
[ "MIT" ]
1
2019-02-26T07:04:54.000Z
2019-02-26T07:04:54.000Z
src/Data/FingerTree/Split/Point.agda
oisdk/agda-indexed-fingertree
39c3d96937384b052b782ffddf4fdec68c5d139f
[ "MIT" ]
null
null
null
src/Data/FingerTree/Split/Point.agda
oisdk/agda-indexed-fingertree
39c3d96937384b052b782ffddf4fdec68c5d139f
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Algebra open import Relation.Unary open import Relation.Binary hiding (Decidable) module Data.FingerTree.Split.Point {r m} (ℳ : Monoid r m) {s} {ℙ : Pred (Monoid.Carrier ℳ) s} (ℙ-resp : ℙ Respects (Monoid._≈_ ℳ)) (ℙ? : Decidable ℙ) where open import Relation.Nullary using (¬_; yes; no; Dec) open import Level using (_⊔_) open import Data.Product open import Function open import Data.List as List using (List; _∷_; []) open import Data.FingerTree.Measures ℳ open import Data.FingerTree.Reasoning ℳ open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable using (True; toWitness; False; toWitnessFalse) open σ ⦃ ... ⦄ open Monoid ℳ renaming (Carrier to 𝓡) open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid infixr 5 _∣_ record _∣_ (left focus : 𝓡) : Set s where constructor ¬[_]ℙ[_] field ¬ℙ : ¬ ℙ left !ℙ : ℙ (left ∙ focus) open _∣_ public _∣?_ : ∀ x y → Dec (x ∣ y) x ∣? y with ℙ? x ... | yes p = no λ c → ¬ℙ c p ... | no ¬p with ℙ? (x ∙ y) ... | no ¬c = no (¬c ∘ !ℙ) ... | yes p = yes ¬[ ¬p ]ℙ[ p ] infixl 2 _≈◄⟅_⟆ _≈▻⟅_⟆ _≈⟅_∣_⟆ _◄_ _▻_ _◄_ : ∀ {l f₁ f₂} → l ∣ f₁ ∙ f₂ → ¬ ℙ (l ∙ f₁) → (l ∙ f₁) ∣ f₂ !ℙ (p ◄ ¬ℙf) = ℙ-resp (sym (assoc _ _ _)) (!ℙ p) ¬ℙ (p ◄ ¬ℙf) = ¬ℙf _▻_ : ∀ {l f₁ f₂} → l ∣ f₁ ∙ f₂ → ℙ (l ∙ f₁) → l ∣ f₁ !ℙ (p ▻ ℙf) = ℙf ¬ℙ (p ▻ ℙf) = ¬ℙ p _≈◄⟅_⟆ : ∀ {x y z} → x ∣ y → x ≈ z → z ∣ y ¬ℙ (x⟅y⟆ ≈◄⟅ x≈z ⟆) = ¬ℙ x⟅y⟆ ∘ ℙ-resp (sym x≈z) !ℙ (x⟅y⟆ ≈◄⟅ x≈z ⟆) = ℙ-resp (≪∙ x≈z) (!ℙ x⟅y⟆) _≈▻⟅_⟆ : ∀ {x y z} → x ∣ y → y ≈ z → x ∣ z ¬ℙ (x⟅y⟆ ≈▻⟅ y≈z ⟆) = ¬ℙ x⟅y⟆ !ℙ (x⟅y⟆ ≈▻⟅ y≈z ⟆) = ℙ-resp (∙≫ y≈z) (!ℙ x⟅y⟆) _≈⟅_∣_⟆ : ∀ {x₁ y₁ x₂ y₂} → x₁ ∣ y₁ → x₁ ≈ x₂ → y₁ ≈ y₂ → x₂ ∣ y₂ ¬ℙ (x⟅y⟆ ≈⟅ x≈ ∣ y≈ ⟆) = ¬ℙ x⟅y⟆ ∘ ℙ-resp (sym x≈) !ℙ (x⟅y⟆ ≈⟅ x≈ ∣ y≈ ⟆) = ℙ-resp (∙-cong x≈ y≈) (!ℙ x⟅y⟆) ¬∄ℙ : ∀ {i} → ¬ (i ∣ ε) ¬∄ℙ i⟅ε⟆ = ¬ℙ i⟅ε⟆ (ℙ-resp (identityʳ _) (!ℙ i⟅ε⟆))
26.763889
85
0.531396
39b0adc3dba7c771fae863df29f34bb95e7011dd
7,578
agda
Agda
agda-stdlib/src/Codata/Musical/Colist/Infinite-merge.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Codata/Musical/Colist/Infinite-merge.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Codata/Musical/Colist/Infinite-merge.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Infinite merge operation for coinductive lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --guardedness #-} module Codata.Musical.Colist.Infinite-merge where open import Codata.Musical.Notation open import Codata.Musical.Colist as Colist hiding (_⋎_) open import Data.Nat.Base open import Data.Nat.Induction using (<′-wellFounded) open import Data.Nat.Properties open import Data.Product as Prod open import Data.Sum.Base open import Data.Sum.Properties open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; Inverse; inverse) import Function.Related as Related open import Function.Related.TypeIsomorphisms import Induction.WellFounded as WF open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Some code that is used to work around Agda's syntactic guardedness -- checker. private infixr 5 _∷_ _⋎_ data ColistP {a} (A : Set a) : Set a where [] : ColistP A _∷_ : A → ∞ (ColistP A) → ColistP A _⋎_ : ColistP A → ColistP A → ColistP A data ColistW {a} (A : Set a) : Set a where [] : ColistW A _∷_ : A → ColistP A → ColistW A program : ∀ {a} {A : Set a} → Colist A → ColistP A program [] = [] program (x ∷ xs) = x ∷ ♯ program (♭ xs) mutual _⋎W_ : ∀ {a} {A : Set a} → ColistW A → ColistP A → ColistW A [] ⋎W ys = whnf ys (x ∷ xs) ⋎W ys = x ∷ (ys ⋎ xs) whnf : ∀ {a} {A : Set a} → ColistP A → ColistW A whnf [] = [] whnf (x ∷ xs) = x ∷ ♭ xs whnf (xs ⋎ ys) = whnf xs ⋎W ys mutual ⟦_⟧P : ∀ {a} {A : Set a} → ColistP A → Colist A ⟦ xs ⟧P = ⟦ whnf xs ⟧W ⟦_⟧W : ∀ {a} {A : Set a} → ColistW A → Colist A ⟦ [] ⟧W = [] ⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧P mutual ⋎-homP : ∀ {a} {A : Set a} (xs : ColistP A) {ys} → ⟦ xs ⋎ ys ⟧P ≈ ⟦ xs ⟧P Colist.⋎ ⟦ ys ⟧P ⋎-homP xs = ⋎-homW (whnf xs) _ ⋎-homW : ∀ {a} {A : Set a} (xs : ColistW A) ys → ⟦ xs ⋎W ys ⟧W ≈ ⟦ xs ⟧W Colist.⋎ ⟦ ys ⟧P ⋎-homW (x ∷ xs) ys = x ∷ ♯ ⋎-homP ys ⋎-homW [] ys = begin ⟦ ys ⟧P ∎ where open ≈-Reasoning ⟦program⟧P : ∀ {a} {A : Set a} (xs : Colist A) → ⟦ program xs ⟧P ≈ xs ⟦program⟧P [] = [] ⟦program⟧P (x ∷ xs) = x ∷ ♯ ⟦program⟧P (♭ xs) Any-⋎P : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} → Any P ⟦ program xs ⋎ ys ⟧P ↔ (Any P xs ⊎ Any P ⟦ ys ⟧P) Any-⋎P {P = P} xs {ys} = Any P ⟦ program xs ⋎ ys ⟧P ↔⟨ Any-cong Inv.id (⋎-homP (program xs)) ⟩ Any P (⟦ program xs ⟧P Colist.⋎ ⟦ ys ⟧P) ↔⟨ Any-⋎ _ ⟩ (Any P ⟦ program xs ⟧P ⊎ Any P ⟦ ys ⟧P) ↔⟨ Any-cong Inv.id (⟦program⟧P _) ⊎-cong (_ ∎) ⟩ (Any P xs ⊎ Any P ⟦ ys ⟧P) ∎ where open Related.EquationalReasoning index-Any-⋎P : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P ⟦ program xs ⋎ ys ⟧P) → index p ≥′ [ index , index ]′ (Inverse.to (Any-⋎P xs) ⟨$⟩ p) index-Any-⋎P xs p with Any-resp id (⋎-homW (whnf (program xs)) _) p | index-Any-resp {f = id} (⋎-homW (whnf (program xs)) _) p index-Any-⋎P xs p | q | q≡p with Inverse.to (Any-⋎ ⟦ program xs ⟧P) ⟨$⟩ q | index-Any-⋎ ⟦ program xs ⟧P q index-Any-⋎P xs p | q | q≡p | inj₂ r | r≤q rewrite q≡p = r≤q index-Any-⋎P xs p | q | q≡p | inj₁ r | r≤q with Any-resp id (⟦program⟧P xs) r | index-Any-resp {f = id} (⟦program⟧P xs) r index-Any-⋎P xs p | q | q≡p | inj₁ r | r≤q | s | s≡r rewrite s≡r | q≡p = r≤q ------------------------------------------------------------------------ -- Infinite variant of _⋎_. private merge′ : ∀ {a} {A : Set a} → Colist (A × Colist A) → ColistP A merge′ [] = [] merge′ ((x , xs) ∷ xss) = x ∷ ♯ (program xs ⋎ merge′ (♭ xss)) merge : ∀ {a} {A : Set a} → Colist (A × Colist A) → Colist A merge xss = ⟦ merge′ xss ⟧P ------------------------------------------------------------------------ -- Any lemma for merge. module _ {a p} {A : Set a} {P : A → Set p} where Any-merge : ∀ xss → Any P (merge xss) ↔ Any (λ { (x , xs) → P x ⊎ Any P xs }) xss Any-merge xss = inverse (proj₁ ∘ to xss) from (proj₂ ∘ to xss) to∘from where open P.≡-Reasoning -- The from function. Q = λ { (x , xs) → P x ⊎ Any P xs } from : ∀ {xss} → Any Q xss → Any P (merge xss) from (here (inj₁ p)) = here p from (here (inj₂ p)) = there (Inverse.from (Any-⋎P _) ⟨$⟩ inj₁ p) from (there {x = _ , xs} p) = there (Inverse.from (Any-⋎P xs) ⟨$⟩ inj₂ (from p)) -- The from function is injective. from-injective : ∀ {xss} (p₁ p₂ : Any Q xss) → from p₁ ≡ from p₂ → p₁ ≡ p₂ from-injective (here (inj₁ p)) (here (inj₁ .p)) P.refl = P.refl from-injective (here (inj₂ p₁)) (here (inj₂ p₂)) eq = P.cong (here ∘ inj₂) $ inj₁-injective $ Inverse.injective (Inv.sym (Any-⋎P _)) {x = inj₁ p₁} {y = inj₁ p₂} $ there-injective eq from-injective (here (inj₂ p₁)) (there p₂) eq with Inverse.injective (Inv.sym (Any-⋎P _)) {x = inj₁ p₁} {y = inj₂ (from p₂)} (there-injective eq) ... | () from-injective (there p₁) (here (inj₂ p₂)) eq with Inverse.injective (Inv.sym (Any-⋎P _)) {x = inj₂ (from p₁)} {y = inj₁ p₂} (there-injective eq) ... | () from-injective (there {x = _ , xs} p₁) (there p₂) eq = P.cong there $ from-injective p₁ p₂ $ inj₂-injective $ Inverse.injective (Inv.sym (Any-⋎P xs)) {x = inj₂ (from p₁)} {y = inj₂ (from p₂)} $ there-injective eq -- The to function (defined as a right inverse of from). Input = ∃ λ xss → Any P (merge xss) Pred : Input → Set _ Pred (xss , p) = ∃ λ (q : Any Q xss) → from q ≡ p to : ∀ xss p → Pred (xss , p) to = λ xss p → WF.All.wfRec (WF.InverseImage.wellFounded size <′-wellFounded) _ Pred step (xss , p) where size : Input → ℕ size (_ , p) = index p step : ∀ p → WF.WfRec (_<′_ on size) Pred p → Pred p step ([] , ()) rec step ((x , xs) ∷ xss , here p) rec = here (inj₁ p) , P.refl step ((x , xs) ∷ xss , there p) rec with Inverse.to (Any-⋎P xs) ⟨$⟩ p | Inverse.left-inverse-of (Any-⋎P xs) p | index-Any-⋎P xs p ... | inj₁ q | P.refl | _ = here (inj₂ q) , P.refl ... | inj₂ q | P.refl | q≤p = Prod.map there (P.cong (there ∘ _⟨$⟩_ (Inverse.from (Any-⋎P xs)) ∘ inj₂)) (rec (♭ xss , q) (s≤′s q≤p)) to∘from = λ p → from-injective _ _ (proj₂ (to xss (from p))) -- Every member of xss is a member of merge xss, and vice versa (with -- equal multiplicities). ∈-merge : ∀ {a} {A : Set a} {y : A} xss → y ∈ merge xss ↔ ∃₂ λ x xs → (x , xs) ∈ xss × (y ≡ x ⊎ y ∈ xs) ∈-merge {y = y} xss = y ∈ merge xss ↔⟨ Any-merge _ ⟩ Any (λ { (x , xs) → y ≡ x ⊎ y ∈ xs }) xss ↔⟨ Any-∈ ⟩ (∃ λ { (x , xs) → (x , xs) ∈ xss × (y ≡ x ⊎ y ∈ xs) }) ↔⟨ Σ-assoc ⟩ (∃₂ λ x xs → (x , xs) ∈ xss × (y ≡ x ⊎ y ∈ xs)) ∎ where open Related.EquationalReasoning
35.745283
94
0.482581
206c430b6911eb16f4e0be508f40a188ad1c48a5
9,140
agda
Agda
src/Util/PKCS.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Util/PKCS.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Util/PKCS.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Util.ByteString open import Util.Encode open import Util.Lemmas open import Util.Prelude -- This module contains a model of cryptographic signatures on -- certain data structures, and creation and verification -- thereof. These data structures, defined by the WithVerSig -- type, can be optionally signed, and if they are signed, the -- signature covers a ByteString derived from the data structure, -- enabling support for signature that cover only (functions of) -- specific parts of the data structure. The module also -- contains some properties we have found useful in other -- contexts, though they are not yet used in this repo. module Util.PKCS where postulate -- valid assumption signature-size : ℕ Signature : Set Signature = Σ ByteString (λ s → length s ≡ signature-size) postulate -- valid assumptions PK : Set SK : Set IsKeyPair : PK → SK → Set _≟PK_ : (pk1 pk2 : PK) → Dec (pk1 ≡ pk2) instance enc-PK : Encoder PK enc-SigMB : Encoder (Maybe Signature) sign-raw : ByteString → SK → Signature verify : ByteString → Signature → PK → Bool -- We assume no "signature collisions", as represented by verify-pk-inj verify-pk-inj : ∀{bs sig pk pk'} → verify bs sig pk ≡ true → verify bs sig pk' ≡ true → pk ≡ pk' verify-bs-inj : ∀{bs bs' sig pk} → verify bs sig pk ≡ true → verify bs' sig pk ≡ true → bs ≡ bs' verify-sign : ∀{bs pk sk} → IsKeyPair pk sk → verify bs (sign-raw bs sk) pk ≡ true verify-fail : ∀{bs pk sk} → ¬ IsKeyPair pk sk → verify bs (sign-raw bs sk) pk ≡ false -- We consider a PK to be (permanently) either honest or not, -- respresented by the following postulate. This is relevant -- in reasoning about possible behaviours of a modeled system. -- Specifically, the secret key corresponding to an honest PK -- is assumed not to be leaked, ensuring that cheaters cannot -- forge new signatures for honest PKs. Furthermore, if a peer -- is assigned we use possession -- of an honest PK in a given epoch to modelWe will postulate that, among -- the PKs chosen for a particular epoch, the number of them -- that are dishonest is at most the number of faults to be -- tolerated for that epoch. This definition is /meta/: the -- information about which PKs are (dis)honest should never be -- used by the implementation -- it is only for modeling and -- proofs. Meta-Dishonest-PK : PK → Set Meta-DishonestPK? : (pk : PK) → Dec (Meta-Dishonest-PK pk) verify-pi : ∀{bs sig pk} → (v1 : verify bs sig pk ≡ true) → (v2 : verify bs sig pk ≡ true) → v1 ≡ v2 verify-pi {bs} {sig} {pk} _ _ with verify bs sig pk verify-pi {bs} {sig} {pk} refl refl | .true = refl Meta-Honest-PK : PK → Set Meta-Honest-PK = ¬_ ∘ Meta-Dishonest-PK sign-encodable : ∀ {c C} → ⦃ Encoder {c} C ⦄ → C → SK → Signature sign-encodable = sign-raw ∘ encode -- A datatype C might that might carry values with -- signatures should be an instance of 'WithSig' below. record WithSig (C : Set) : Set₁ where field -- A decidable predicate indicates whether values have -- been signed Signed : C → Set Signed-pi : ∀ (c : C) → (is1 : Signed c) → (is2 : Signed c) → is1 ≡ is2 isSigned? : (c : C) → Dec (Signed c) -- Signed values must have a signature signature : (c : C)(hasSig : Signed c) → Signature -- All values must be /encoded/ into a ByteString that -- is supposed to be verified against a signature. signableFields : C → ByteString open WithSig {{...}} public sign : {C : Set} ⦃ ws : WithSig C ⦄ → C → SK → Signature sign c = sign-raw (signableFields c) Signature≡ : {C : Set} ⦃ ws : WithSig C ⦄ → C → Signature → Set Signature≡ c sig = Σ (Signed c) (λ s → signature c s ≡ sig) -- A value of a datatype C can have its signature -- verified; A value of type WithVerSig c is a proof of that. -- Hence; the set (Σ C WithVerSig) is the set of values of -- type C with verified signatures. record WithVerSig {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) : Set where constructor mkWithVerSig field isSigned : Signed c verified : verify (signableFields c) (signature c isSigned) pk ≡ true open WithVerSig public ver-signature : ∀{C pk}⦃ ws : WithSig C ⦄{c : C} → WithVerSig pk c → Signature ver-signature {c = c} wvs = signature c (isSigned wvs) verCast : {C : Set} ⦃ ws : WithSig C ⦄ {c : C} {is1 is2 : Signed c} {pk1 pk2 : PK} → verify (signableFields c) (signature c is1) pk1 ≡ true → pk1 ≡ pk2 → is1 ≡ is2 → verify (signableFields c) (signature c is2) pk2 ≡ true verCast prf refl refl = prf wvsCast : {C : Set} ⦃ ws : WithSig C ⦄ {c : C} {pk1 pk2 : PK} → WithVerSig pk1 c → pk2 ≡ pk1 → WithVerSig pk2 c wvsCast {c = c} wvs refl = wvs withVerSig-≡ : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → {wvs1 : WithVerSig pk c} → {wvs2 : WithVerSig pk c} → isSigned wvs1 ≡ isSigned wvs2 → wvs1 ≡ wvs2 withVerSig-≡ {wvs1 = wvs1} {wvs2 = wvs2} refl with verified wvs2 | inspect verified wvs2 | verCast (verified wvs1) refl refl ...| vwvs2 | [ R ] | vwvs1 rewrite verify-pi vwvs1 vwvs2 | sym R = refl withVerSig-pi : {C : Set} {pk : PK} {c : C} ⦃ ws : WithSig C ⦄ → (wvs1 : WithVerSig pk c) → (wvs2 : WithVerSig pk c) → wvs2 ≡ wvs1 withVerSig-pi {C} {pk} {c} ⦃ ws ⦄ wvs2 wvs1 with isSigned? c ...| no ¬Signed = ⊥-elim (¬Signed (isSigned wvs1)) ...| yes sc = withVerSig-≡ {wvs1 = wvs1} {wvs2 = wvs2} (Signed-pi c (isSigned wvs1) (isSigned wvs2)) data SigCheckResult {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) : Set where notSigned : ¬ Signed c → SigCheckResult pk c checkFailed : (sc : Signed c) → verify (signableFields c) (signature c sc) pk ≡ false → SigCheckResult pk c sigVerified : WithVerSig pk c → SigCheckResult pk c checkFailed≢sigVerified : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} {wvs : WithVerSig ⦃ ws ⦄ pk c} {sc : Signed c} {v : verify (signableFields c) (signature c sc) pk ≡ false} → checkFailed sc v ≡ sigVerified wvs → ⊥ checkFailed≢sigVerified () data SigCheckOutcome : Set where notSigned : SigCheckOutcome checkFailed : SigCheckOutcome sigVerified : SigCheckOutcome data SigCheckFailed : Set where notSigned : SigCheckFailed checkFailed : SigCheckFailed check-signature : {C : Set} ⦃ ws : WithSig C ⦄ → (pk : PK) → (c : C) → SigCheckResult pk c check-signature pk c with isSigned? c ...| no ns = notSigned ns ...| yes sc with verify (signableFields c) (signature c sc) pk | inspect (verify (signableFields c) (signature c sc)) pk ...| false | [ nv ] = checkFailed sc nv ...| true | [ v ] = sigVerified (record { isSigned = sc ; verified = v }) sigCheckOutcomeFor : {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) → SigCheckOutcome sigCheckOutcomeFor pk c with check-signature pk c ...| notSigned _ = notSigned ...| checkFailed _ _ = checkFailed ...| sigVerified _ = sigVerified sigVerifiedVerSigCS : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → sigCheckOutcomeFor pk c ≡ sigVerified → ∃[ wvs ] (check-signature ⦃ ws ⦄ pk c ≡ sigVerified wvs) sigVerifiedVerSigCS {pk = pk} {c = c} prf with check-signature pk c | inspect (check-signature pk) c ...| sigVerified verSig | [ R ] rewrite R = verSig , refl sigVerifiedVerSig : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → sigCheckOutcomeFor pk c ≡ sigVerified → WithVerSig pk c sigVerifiedVerSig = proj₁ ∘ sigVerifiedVerSigCS sigVerifiedSCO : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C} → (wvs : WithVerSig pk c) → sigCheckOutcomeFor pk c ≡ sigVerified sigVerifiedSCO {pk = pk} {c = c} wvs with check-signature pk c ...| notSigned ns = ⊥-elim (ns (isSigned wvs)) ...| checkFailed xx xxs rewrite Signed-pi c xx (isSigned wvs) = ⊥-elim (false≢true (trans (sym xxs) (verified wvs))) ...| sigVerified wvs' = refl failedSigCheckOutcome : {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) → sigCheckOutcomeFor pk c ≢ sigVerified → SigCheckFailed failedSigCheckOutcome pk c prf with sigCheckOutcomeFor pk c ...| notSigned = notSigned ...| checkFailed = checkFailed ...| sigVerified = ⊥-elim (prf refl)
39.5671
117
0.604595
c5df4aff60027b9e7aa30689c51999df7b610375
18,333
agda
Agda
Cubical/Foundations/GroupoidLaws.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/GroupoidLaws.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/GroupoidLaws.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- This file proves the higher groupoid structure of types for homogeneous and heterogeneous paths -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.GroupoidLaws where open import Cubical.Foundations.Prelude private variable ℓ : Level A : Type ℓ x y z w v : A _⁻¹ : (x ≡ y) → (y ≡ x) x≡y ⁻¹ = sym x≡y infix 40 _⁻¹ -- homogeneous groupoid laws symInvo : (p : x ≡ y) → p ≡ p ⁻¹ ⁻¹ symInvo p = refl rUnit : (p : x ≡ y) → p ≡ p ∙ refl rUnit p j i = compPath-filler p refl j i -- The filler of left unit: lUnit-filler p = -- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∨ i))) -- (refl i) (λ j → compPath-filler refl p i j)) (λ k i → (p (~ k ∧ i ))) (lUnit p) lUnit-filler : {x y : A} (p : x ≡ y) → I → I → I → A lUnit-filler {x = x} p j k i = hfill (λ j → λ { (i = i0) → x ; (i = i1) → p (~ k ∨ j ) ; (k = i0) → p i -- ; (k = i1) → compPath-filler refl p j i }) (inS (p (~ k ∧ i ))) j lUnit : (p : x ≡ y) → p ≡ refl ∙ p lUnit p j i = lUnit-filler p i1 j i symRefl : refl {x = x} ≡ refl ⁻¹ symRefl i = refl compPathRefl : refl {x = x} ≡ refl ∙ refl compPathRefl = rUnit refl -- The filler of right cancellation: rCancel-filler p = -- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∧ ~ i))) -- (λ j → compPath-filler p (p ⁻¹) i j) (refl i)) (λ j i → (p (i ∧ ~ j))) (rCancel p) rCancel-filler : ∀ {x y : A} (p : x ≡ y) → (k j i : I) → A rCancel-filler {x = x} p k j i = hfill (λ k → λ { (i = i0) → x ; (i = i1) → p (~ k ∧ ~ j) -- ; (j = i0) → compPath-filler p (p ⁻¹) k i ; (j = i1) → x }) (inS (p (i ∧ ~ j))) k rCancel : (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl rCancel {x = x} p j i = rCancel-filler p i1 j i rCancel-filler' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → (i j k : I) → A rCancel-filler' {x = x} {y} p i j k = hfill (λ i → λ { (j = i1) → p (~ i ∧ k) ; (k = i0) → x ; (k = i1) → p (~ i) }) (inS (p k)) (~ i) rCancel' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl rCancel' p j k = rCancel-filler' p i0 j k lCancel : (p : x ≡ y) → p ⁻¹ ∙ p ≡ refl lCancel p = rCancel (p ⁻¹) assoc : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → p ∙ q ∙ r ≡ (p ∙ q) ∙ r assoc p q r k = (compPath-filler p q k) ∙ compPath-filler' q r (~ k) -- heterogeneous groupoid laws symInvoP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → symInvo (λ i → A i) j i) x y) p (symP (symP p)) symInvoP p = refl rUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → rUnit (λ i → A i) j i) x y) p (compPathP p refl) rUnitP p j i = compPathP-filler p refl j i lUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → lUnit (λ i → A i) j i) x y) p (compPathP refl p) lUnitP {A = A} {x = x} p k i = comp (λ j → lUnit-filler (λ i → A i) j k i) (λ j → λ { (i = i0) → x ; (i = i1) → p (~ k ∨ j ) ; (k = i0) → p i }) (p (~ k ∧ i )) rCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → rCancel (λ i → A i) j i) x x) (compPathP p (symP p)) refl rCancelP {A = A} {x = x} p j i = comp (λ k → rCancel-filler (λ i → A i) k j i) (λ k → λ { (i = i0) → x ; (i = i1) → p (~ k ∧ ~ j) ; (j = i1) → x }) (p (i ∧ ~ j)) lCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → lCancel (λ i → A i) j i) y y) (compPathP (symP p) p) refl lCancelP p = rCancelP (symP p) assocP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1} {C_i1 : Type ℓ} {C : (B i1) ≡ C_i1} {w : C i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) (r : PathP (λ i → C i) z w) → PathP (λ j → PathP (λ i → assoc (λ i → A i) B C j i) x w) (compPathP p (compPathP q r)) (compPathP (compPathP p q) r) assocP {A = A} {B = B} {C = C} p q r k i = comp (hfill (λ j → λ { (i = i0) → A i0 ; (i = i1) → compPath-filler' (λ i₁ → B i₁) (λ i₁ → C i₁) (~ k) j }) (inS (compPath-filler (λ i₁ → A i₁) (λ i₁ → B i₁) k i)) ) (λ j → λ { (i = i0) → p i0 ; (i = i1) → comp (hfill ((λ l → λ { (j = i0) → B k ; (j = i1) → C l ; (k = i1) → C (j ∧ l) })) (inS (B ( j ∨ k)) ) ) (λ l → λ { (j = i0) → q k ; (j = i1) → r l ; (k = i1) → r (j ∧ l) }) (q (j ∨ k)) }) (compPathP-filler p q k i) -- Loic's code below -- some exchange law for doubleCompPath and refl invSides-filler : {x y z : A} (p : x ≡ y) (q : x ≡ z) → Square p (sym q) q (sym p) invSides-filler {x = x} p q i j = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (~ j ∧ k) ; (j = i0) → q (i ∧ k) ; (j = i1) → p (~ i ∧ k)}) x leftright : {ℓ : Level} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → (refl ∙∙ p ∙∙ q) ≡ (p ∙∙ q ∙∙ refl) leftright p q i j = hcomp (λ t → λ { (j = i0) → p (i ∧ (~ t)) ; (j = i1) → q (t ∨ i) }) (invSides-filler q (sym p) (~ i) j) -- equating doubleCompPath and a succession of two compPath split-leftright : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (refl ∙∙ (p ∙∙ q ∙∙ refl) ∙∙ r) split-leftright p q r j i = hcomp (λ t → λ { (i = i0) → p (~ j ∧ ~ t) ; (i = i1) → r t }) (doubleCompPath-filler p q refl j i) split-leftright' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙∙ (refl ∙∙ q ∙∙ r) ∙∙ refl) split-leftright' p q r j i = hcomp (λ t → λ { (i = i0) → p (~ t) ; (i = i1) → r (j ∨ t) }) (doubleCompPath-filler refl q r j i) doubleCompPath-elim : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙ q) ∙ r doubleCompPath-elim p q r = (split-leftright p q r) ∙ (λ i → (leftright p q (~ i)) ∙ r) doubleCompPath-elim' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ p ∙ (q ∙ r) doubleCompPath-elim' p q r = (split-leftright' p q r) ∙ (sym (leftright p (q ∙ r))) cong-∙ : ∀ {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ (cong f p) ∙ (cong f q) cong-∙ f p q j i = hcomp (λ k → λ { (j = i0) → f (compPath-filler p q k i) ; (i = i0) → f (p i0) ; (i = i1) → f (q k) }) (f (p i)) cong-∙∙ : ∀ {B : Type ℓ} (f : A → B) (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → cong f (p ∙∙ q ∙∙ r) ≡ (cong f p) ∙∙ (cong f q) ∙∙ (cong f r) cong-∙∙ f p q r j i = hcomp (λ k → λ { (j = i0) → f (doubleCompPath-filler p q r k i) ; (i = i0) → f (p (~ k)) ; (i = i1) → f (r k) }) (f (q i)) hcomp-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ]) → (hcomp u (outS u0) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ] hcomp-unique {φ = φ} u u0 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1 ; (i = i1) → outS (h2 k) }) (outS u0)) lid-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (h1 h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ]) → (outS (h1 i1) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ] lid-unique {φ = φ} u u0 h1 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1 ; (i = i0) → outS (h1 k) ; (i = i1) → outS (h2 k) }) (outS u0)) transp-hcomp : ∀ {ℓ} (φ : I) {A' : Type ℓ} (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A') ]) (let B = \ (i : I) → outS (A i)) → ∀ {ψ} (u : I → Partial ψ (B i0)) → (u0 : B i0 [ ψ ↦ u i0 ]) → (transp B φ (hcomp u (outS u0)) ≡ hcomp (\ i o → transp B φ (u i o)) (transp B φ (outS u0))) [ ψ ↦ (\ { (ψ = i1) → (\ i → transp B φ (u i1 1=1))}) ] transp-hcomp φ A u u0 = inS (sym (outS (hcomp-unique ((\ i o → transp B φ (u i o))) (inS (transp B φ (outS u0))) \ i → inS (transp B φ (hfill u u0 i))))) where B = \ (i : I) → outS (A i) hcomp-cong : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (u' : I → Partial φ A) → (u0' : A [ φ ↦ u' i0 ]) → (ueq : ∀ i → PartialP φ (\ o → u i o ≡ u' i o)) → (outS u0 ≡ outS u0') [ φ ↦ (\ { (φ = i1) → ueq i0 1=1}) ] → (hcomp u (outS u0) ≡ hcomp u' (outS u0')) [ φ ↦ (\ { (φ = i1) → ueq i1 1=1 }) ] hcomp-cong u u0 u' u0' ueq 0eq = inS (\ j → hcomp (\ i o → ueq i o j) (outS 0eq j)) congFunct-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y z : A} (f : A → B) (p : x ≡ y) (q : y ≡ z) → I → I → I → B congFunct-filler {x = x} f p q i j z = hfill (λ k → λ { (i = i0) → f x ; (i = i1) → f (q k) ; (j = i0) → f (compPath-filler p q k i)}) (inS (f (p i))) z congFunct : ∀ {ℓ} {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ cong f p ∙ cong f q congFunct f p q j i = congFunct-filler f p q i j i1 -- congFunct for dependent types congFunct-dep : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} (f : (a : A) → B a) (p : x ≡ y) (q : y ≡ z) → PathP (λ i → PathP (λ j → B (compPath-filler p q i j)) (f x) (f (q i))) (cong f p) (cong f (p ∙ q)) congFunct-dep {B = B} {x = x} f p q i j = f (compPath-filler p q i j) cong₂Funct : (f : A → A → A) → (p : x ≡ y) → {u v : A} (q : u ≡ v) → cong₂ f p q ≡ cong (λ x → f x u) p ∙ cong (f y) q cong₂Funct {x = x} {y = y} f p {u = u} {v = v} q j i = hcomp (λ k → λ { (i = i0) → f x u ; (i = i1) → f y (q k) ; (j = i0) → f (p i) (q (i ∧ k))}) (f (p i) u) symDistr-filler : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → I → I → I → A symDistr-filler {A = A} {z = z} p q i j k = hfill (λ k → λ { (i = i0) → q (k ∨ j) ; (i = i1) → p (~ k ∧ j) }) (inS (invSides-filler q (sym p) i j)) k symDistr : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → sym (p ∙ q) ≡ sym q ∙ sym p symDistr p q i j = symDistr-filler p q j i i1 -- we can not write hcomp-isEquiv : {ϕ : I} → (p : I → Partial ϕ A) → isEquiv (λ (a : A [ ϕ ↦ p i0 ]) → hcomp p a) -- due to size issues. But what we can write (compare to hfill) is: hcomp-equivFillerSub : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ]) → (i : I) → A [ ϕ ∨ i ∨ ~ i ↦ (λ { (i = i0) → outS a ; (i = i1) → hcomp (λ i → p (~ i)) (hcomp p (outS a)) ; (ϕ = i1) → p i0 1=1 }) ] hcomp-equivFillerSub {ϕ = ϕ} p a i = inS (hcomp (λ k → λ { (i = i1) → hfill (λ j → p (~ j)) (inS (hcomp p (outS a))) k ; (i = i0) → outS a ; (ϕ = i1) → p (~ k ∧ i) 1=1 }) (hfill p a i)) hcomp-equivFiller : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ]) → (i : I) → A hcomp-equivFiller p a i = outS (hcomp-equivFillerSub p a i) pentagonIdentity : (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) → (s : w ≡ v) → (assoc p q (r ∙ s) ∙ assoc (p ∙ q) r s) ≡ cong (p ∙_) (assoc q r s) ∙∙ assoc p (q ∙ r) s ∙∙ cong (_∙ s) (assoc p q r) pentagonIdentity {x = x} {y} p q r s = (λ i → (λ j → cong (p ∙_) (assoc q r s) (i ∧ j)) ∙∙ (λ j → lemma₀₀ i j ∙ lemma₀₁ i j) ∙∙ (λ j → lemma₁₀ i j ∙ lemma₁₁ i j) ) where lemma₀₀ : ( i j : I) → _ ≡ _ lemma₀₀ i j i₁ = hcomp (λ k → λ { (j = i0) → p i₁ ; (i₁ = i0) → x ; (i₁ = i1) → hcomp (λ k₁ → λ { (i = i0) → (q (j ∧ k)) ; (k = i0) → y ; (j = i0) → y ; (j = i1)(k = i1) → r (k₁ ∧ i)}) (q (j ∧ k)) }) (p i₁) lemma₀₁ : ( i j : I) → hcomp (λ k → λ {(i = i0) → q j ; (j = i0) → y ; (j = i1) → r (k ∧ i) }) (q j) ≡ _ lemma₀₁ i j i₁ = (hcomp (λ k → λ { (j = i1) → hcomp (λ k₁ → λ { (i₁ = i0) → r i ; (k = i0) → r i ; (i = i1) → s (k₁ ∧ k ∧ i₁) ; (i₁ = i1)(k = i1) → s k₁ }) (r ((i₁ ∧ k) ∨ i)) ; (i₁ = i0) → compPath-filler q r i j ; (i₁ = i1) → hcomp (λ k₁ → λ { (k = i0) → r i ; (k = i1) → s k₁ ; (i = i1) → s (k ∧ k₁)}) (r (i ∨ k))}) (hfill (λ k → λ { (j = i1) → r k ; (i₁ = i1) → r k ; (i₁ = i0)(j = i0) → y }) (inS (q (i₁ ∨ j))) i)) lemma₁₁ : ( i j : I) → (r (i ∨ j)) ≡ _ lemma₁₁ i j i₁ = hcomp (λ k → λ { (i = i1) → s (i₁ ∧ k) ; (j = i1) → s (i₁ ∧ k) ; (i₁ = i0) → r (i ∨ j) ; (i₁ = i1) → s k }) (r (i ∨ j ∨ i₁)) lemma₁₀-back : I → I → I → _ lemma₁₀-back i j i₁ = hcomp (λ k → λ { (i₁ = i0) → x ; (i₁ = i1) → hcomp (λ k₁ → λ { (k = i0) → q (j ∨ ~ i) ; (k = i1) → r (k₁ ∧ j) ; (j = i0) → q (k ∨ ~ i) ; (j = i1) → r (k₁ ∧ k) ; (i = i0) → r (k ∧ j ∧ k₁) }) (q (k ∨ j ∨ ~ i)) ; (i = i0)(j = i0) → (p ∙ q) i₁ }) (hcomp (λ k → λ { (i₁ = i0) → x ; (i₁ = i1) → q ((j ∨ ~ i ) ∧ k) ; (j = i0)(i = i1) → p i₁ }) (p i₁)) lemma₁₀-front : I → I → I → _ lemma₁₀-front i j i₁ = (((λ _ → x) ∙∙ compPath-filler p q j ∙∙ (λ i₁ → hcomp (λ k → λ { (i₁ = i0) → q j ; (i₁ = i1) → r (k ∧ (j ∨ i)) ; (j = i0)(i = i0) → q i₁ ; (j = i1) → r (i₁ ∧ k) }) (q (j ∨ i₁)) )) i₁) compPath-filler-in-filler : (p : _ ≡ y) → (q : _ ≡ _ ) → _≡_ {A = Square (p ∙ q) (p ∙ q) (λ _ → x) (λ _ → z)} (λ i j → hcomp (λ i₂ → λ { (j = i0) → x ; (j = i1) → q (i₂ ∨ ~ i) ; (i = i0) → (p ∙ q) j }) (compPath-filler p q (~ i) j)) (λ _ → p ∙ q) compPath-filler-in-filler p q z i j = hcomp (λ k → λ { (j = i0) → p i0 ; (j = i1) → q (k ∨ ~ i ∧ ~ z) ; (i = i0) → hcomp (λ i₂ → λ { (j = i0) → p i0 ;(j = i1) → q ((k ∨ ~ z) ∧ i₂) ;(z = i1) (k = i0) → p j }) (p j) ; (i = i1) → compPath-filler p (λ i₁ → q (k ∧ i₁)) k j ; (z = i0) → hfill ((λ i₂ → λ { (j = i0) → p i0 ; (j = i1) → q (i₂ ∨ ~ i) ; (i = i0) → (p ∙ q) j })) (inS ((compPath-filler p q (~ i) j))) k ; (z = i1) → compPath-filler p q k j }) (compPath-filler p q (~ i ∧ ~ z) j) cube-comp₋₀₋ : (c : I → I → I → A) → {a' : Square _ _ _ _} → (λ i i₁ → c i i0 i₁) ≡ a' → (I → I → I → A) cube-comp₋₀₋ c p i j k = hcomp (λ l → λ { (i = i0) → c i0 j k ;(i = i1) → c i1 j k ;(j = i0) → p l i k ;(j = i1) → c i i1 k ;(k = i0) → c i j i0 ;(k = i1) → c i j i1 }) (c i j k) cube-comp₀₋₋ : (c : I → I → I → A) → {a' : Square _ _ _ _} → (λ i i₁ → c i0 i i₁) ≡ a' → (I → I → I → A) cube-comp₀₋₋ c p i j k = hcomp (λ l → λ { (i = i0) → p l j k ;(i = i1) → c i1 j k ;(j = i0) → c i i0 k ;(j = i1) → c i i1 k ;(k = i0) → c i j i0 ;(k = i1) → c i j i1 }) (c i j k) lemma₁₀-back' : _ lemma₁₀-back' k j i₁ = (cube-comp₋₀₋ (lemma₁₀-back) (compPath-filler-in-filler p q)) k j i₁ lemma₁₀ : ( i j : I) → _ ≡ _ lemma₁₀ i j i₁ = (cube-comp₀₋₋ lemma₁₀-front (sym lemma₁₀-back')) i j i₁
38.273486
124
0.333279
23376d6e7c532228ca57275fb3115ab43a1f3508
435
agda
Agda
test/Succeed/Issue2858-Fresh.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2858-Fresh.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2858-Fresh.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue2858-Fresh {A : Set} (_#_ : A → A → Set) where interleaved mutual data Fresh : Set data IsFresh (a : A) : Fresh → Set -- nil is a fresh list data _ where [] : Fresh #[] : IsFresh a [] -- cons is fresh as long as the new value is fresh data _ where cons : (x : A) (xs : Fresh) → IsFresh x xs → Fresh #cons : ∀ {x xs p} → a # x → IsFresh a xs → IsFresh a (cons x xs p)
25.588235
73
0.54023
20d7acbde7557038e8bb6ea8dc641ce98c193eae
6,809
agda
Agda
ConfluenceTakahashi.agda
iwilare/church-rosser
2fa17f7738cc7da967375be928137adc4be38696
[ "MIT" ]
5
2020-06-02T07:27:54.000Z
2021-11-22T01:43:09.000Z
ConfluenceTakahashi.agda
iwilare/church-rosser
2fa17f7738cc7da967375be928137adc4be38696
[ "MIT" ]
null
null
null
ConfluenceTakahashi.agda
iwilare/church-rosser
2fa17f7738cc7da967375be928137adc4be38696
[ "MIT" ]
null
null
null
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; cong₂) open import Data.Nat using (ℕ; zero; suc; _≤_; z≤n; s≤s) open import Data.Nat.Properties using (≤-total) open import Data.Fin using (Fin; zero; suc) open import Data.Product using (∃; ∃-syntax; _×_; _,_) open import Data.Sum using ([_,_]) open import DeBruijn open import Substitution using (rename-subst-commute; subst-commute; extensionality) open import Beta open import BetaSubstitutivity using (sub-betas) open import Takahashi infix 8 _*⁽_⁾ _*⁽_⁾ : ∀ {n} → Term n → ℕ → Term n M *⁽ zero ⁾ = M M *⁽ suc k ⁾ = (M *) *⁽ k ⁾ data _—↠⁽_⁾_ : ∀ {n} → Term n → ℕ → Term n → Set where _∎ : ∀ {n} (M : Term n) -------------- → M —↠⁽ zero ⁾ M _—→⁽⁾⟨_⟩_ : ∀ {n} {N L : Term n} {k : ℕ} (M : Term n) → M —→ L → L —↠⁽ k ⁾ N --------------- → M —↠⁽ suc k ⁾ N lemma3-2 : ∀ {n} {M : Term n} → M —↠ M * lemma3-2 {M = # x} = # x ∎ lemma3-2 {M = ƛ _} = —↠-cong-ƛ lemma3-2 lemma3-2 {M = # _ · _} = —↠-congᵣ lemma3-2 lemma3-2 {M = _ · _ · _} = —↠-cong lemma3-2 lemma3-2 lemma3-2 {M = (ƛ M) · N} = (ƛ M) · N —→⟨ —→-β ⟩ sub-betas {M = M} lemma3-2 lemma3-2 lemma3-3 : ∀ {n} {M N : Term n} → M —→ N -------- → N —↠ M * lemma3-3 {M = # _} () lemma3-3 {M = ƛ M} (—→-ƛ M—→M′) = —↠-cong-ƛ (lemma3-3 M—→M′) lemma3-3 {M = # _ · N} (—→-ξᵣ N—→N′) = —↠-congᵣ (lemma3-3 N—→N′) lemma3-3 {M = _ · _ · N} (—→-ξᵣ N—→N′) = —↠-cong lemma3-2 (lemma3-3 N—→N′) lemma3-3 {M = M₁ · M₂ · _} (—→-ξₗ M—↠M′) = —↠-cong (lemma3-3 M—↠M′) lemma3-2 lemma3-3 {M = (ƛ M) · N} —→-β = sub-betas {M = M} lemma3-2 lemma3-2 lemma3-3 {M = (ƛ M) · N} (—→-ξᵣ {N′ = N′} N—→N′) = (ƛ M ) · N′ —→⟨ —→-β ⟩ sub-betas {M = M} lemma3-2 (lemma3-3 N—→N′) lemma3-3 {M = (ƛ M) · N} (—→-ξₗ (—→-ƛ {M′ = M′} M—→M′)) = (ƛ M′) · N —→⟨ —→-β ⟩ sub-betas {N = N} (lemma3-3 M—→M′) lemma3-2 _*ˢ : ∀ {n m} → Subst n m → Subst n m σ *ˢ = λ x → (σ x) * rename-* : ∀ {n m} (ρ : Rename n m) (M : Term n) → rename ρ (M *) ≡ (rename ρ M) * rename-* ρ (# _) = refl rename-* ρ (ƛ M) = cong ƛ_ (rename-* (ext ρ) M) rename-* ρ (# _ · N) = cong₂ _·_ refl (rename-* ρ N) rename-* ρ (M₁ · M₂ · N) = cong₂ _·_ (rename-* ρ (M₁ · M₂)) (rename-* ρ N) rename-* ρ ((ƛ M) · N) rewrite sym (rename-subst-commute {N = M *}{M = N *}{ρ = ρ}) | rename-* (ext ρ) M | rename-* ρ N = refl exts-ts-commute : ∀ {n m} (σ : Subst n m) → exts (σ *ˢ) ≡ (exts σ) *ˢ exts-ts-commute {n} σ = extensionality exts-ts-commute′ where exts-ts-commute′ : (x : Fin (suc n)) → (exts (σ *ˢ)) x ≡ ((exts σ) *ˢ) x exts-ts-commute′ zero = refl exts-ts-commute′ (suc x) = rename-* suc (σ x) app-*-join : ∀ {n} (M N : Term n) → M * · N * —↠ (M · N) * app-*-join (# x) N = # x · N * ∎ app-*-join (ƛ M) N = (ƛ M *) · N * —→⟨ —→-β ⟩ subst (subst-zero (N *)) (M *) ∎ app-*-join (M₁ · M₂) N = (M₁ · M₂) * · N * ∎ subst-ts : ∀ {n m} (σ : Subst n m) (M : Term n) → subst (σ *ˢ) (M *) —↠ (subst σ M) * subst-ts σ (# x) = σ x * ∎ subst-ts σ (ƛ M) rewrite exts-ts-commute σ = —↠-cong-ƛ (subst-ts (exts σ) M) subst-ts σ (# x · N) = —↠-trans (—↠-congᵣ (subst-ts σ N)) (app-*-join (σ x) (subst σ N)) subst-ts σ (M₁ · M₂ · N) = —↠-cong (subst-ts σ (M₁ · M₂)) (subst-ts σ N) subst-ts σ ((ƛ M) · N) rewrite sym (subst-commute {N = M *}{M = N *}{σ = σ *ˢ}) | exts-ts-commute σ = sub-betas (subst-ts (exts σ) M) (subst-ts σ N) subst-zero-ts : ∀ {n} {N : Term n} → subst-zero (N *) ≡ (subst-zero N) *ˢ subst-zero-ts = extensionality (λ { zero → refl ; (suc x) → refl }) lemma3-4 : ∀ {n} (M : Term (suc n)) (N : Term n) → M * [ N * ] —↠ (M [ N ]) * lemma3-4 M N rewrite subst-zero-ts {N = N} = subst-ts (subst-zero N) M lemma3-5 : ∀ {n} {M N : Term n} → M —→ N ---------- → M * —↠ N * lemma3-5 {M = # x} () lemma3-5 {M = ƛ M} (—→-ƛ M—→M′) = —↠-cong-ƛ (lemma3-5 M—→M′) lemma3-5 {M = # _ · N} (—→-ξᵣ M₂—→M′) = —↠-congᵣ (lemma3-5 M₂—→M′) lemma3-5 {M = (ƛ M) · N} —→-β = lemma3-4 M N lemma3-5 {M = (ƛ M) · N} (—→-ξₗ (—→-ƛ M—→M′)) = sub-betas (lemma3-5 M—→M′) (N * ∎) lemma3-5 {M = (ƛ M) · N} (—→-ξᵣ N—→N′) = sub-betas (M * ∎) (lemma3-5 N—→N′) lemma3-5 {M = M₁ · M₂ · _} (—→-ξᵣ N—→N′) = —↠-congᵣ (lemma3-5 N—→N′) lemma3-5 {M = M₁ · M₂ · _} (—→-ξₗ {M′ = # x} M₁M₂—→#x) = —↠-congₗ (lemma3-5 M₁M₂—→#x) lemma3-5 {M = M₁ · M₂ · _} (—→-ξₗ {M′ = M′₁ · M′₂} M₁M₂—→M′₁M′₂) = —↠-congₗ (lemma3-5 M₁M₂—→M′₁M′₂) lemma3-5 {M = M₁ · M₂ · N} (—→-ξₗ {M′ = ƛ M′} M₁M₂—→ƛM′) = —↠-trans (—↠-congₗ (lemma3-5 M₁M₂—→ƛM′)) ((ƛ M′ *) · N * —→⟨ —→-β ⟩ subst (subst-zero (N *)) (M′ *) ∎) corollary3-6 : ∀ {n} {M N : Term n} → M —↠ N ---------- → M * —↠ N * corollary3-6 (M ∎) = M * ∎ corollary3-6 (M —→⟨ M—→L ⟩ L—↠N) = —↠-trans (lemma3-5 M—→L) (corollary3-6 L—↠N) corollary3-7 : ∀ {n} {M N : Term n} (m : ℕ) → M —↠ N -------------------- → M *⁽ m ⁾ —↠ N *⁽ m ⁾ corollary3-7 zero M—↠N = M—↠N corollary3-7 (suc m) M—↠N = corollary3-7 m (corollary3-6 M—↠N) theorem3-8 : ∀ {n} {M N : Term n} {m : ℕ} → M —↠⁽ m ⁾ N ------------- → N —↠ M *⁽ m ⁾ theorem3-8 {m = zero} (M ∎) = M ∎ theorem3-8 {m = suc m} (M —→⁽⁾⟨ M—→L ⟩ L—↠ᵐN) = —↠-trans (theorem3-8 L—↠ᵐN) (corollary3-7 m (lemma3-3 M—→L)) unnamed-named : ∀ {n} {M N : Term n} → M —↠ N -------------------- → ∃[ m ] (M —↠⁽ m ⁾ N) unnamed-named (M ∎) = zero , (M ∎) unnamed-named (M —→⟨ M—→L ⟩ L—↠N) with unnamed-named L—↠N ... | m′ , L—↠ᵐ′N = suc m′ , (M —→⁽⁾⟨ M—→L ⟩ L—↠ᵐ′N) lift-* : ∀ {n} (M : Term n) (m : ℕ) → M —↠ M *⁽ m ⁾ lift-* M zero = M ∎ lift-* M (suc m) = —↠-trans lemma3-2 (lift-* (M *) m) complete-* : ∀ {k} (M : Term k) {n m : ℕ} → n ≤ m -------------------- → M *⁽ n ⁾ —↠ M *⁽ m ⁾ complete-* M {m = m} z≤n = lift-* M m complete-* M (s≤s k) = complete-* (M *) k theorem3-9 : ∀ {n} {M A B : Term n} → M —↠ A → M —↠ B ------------------------ → ∃[ N ] (A —↠ N × B —↠ N) theorem3-9 {M = M} M—↠A M—↠B = let n , M—↠ⁿA = unnamed-named M—↠A m , M—↠ᵐB = unnamed-named M—↠B A—↠M*ⁿ = theorem3-8 M—↠ⁿA B—↠M*ᵐ = theorem3-8 M—↠ᵐB in [ (λ n≤m → let M*ⁿ—↠M*ᵐ : M *⁽ n ⁾ —↠ M *⁽ m ⁾ M*ⁿ—↠M*ᵐ = complete-* M n≤m in M *⁽ m ⁾ , —↠-trans A—↠M*ⁿ M*ⁿ—↠M*ᵐ , B—↠M*ᵐ) , (λ m≤n → let M*ᵐ—↠M*ⁿ : M *⁽ m ⁾ —↠ M *⁽ n ⁾ M*ᵐ—↠M*ⁿ = complete-* M m≤n in M *⁽ n ⁾ , A—↠M*ⁿ , —↠-trans B—↠M*ᵐ M*ᵐ—↠M*ⁿ) ] (≤-total n m)
34.563452
126
0.422088