path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73064231/cell_9
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(1, 2, figsize=(15,5)) X = np.array([[1],[2],[3],[4],[8],[9],[10],[11]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 12, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[0].plot(x_values, y_values) ax[0].scatter(X, Y, c='b'); ax[0].title.set_text('Рис. 1') X = np.array([[1],[2],[3],[4],[8],[9],[10],[11], [18], [19], [20], [21], [22], [23], [24]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 25, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[1].plot(x_values, y_values) ax[1].scatter(X, Y, c='b'); ax[1].title.set_text('Рис. 2') def sigmoid(x): return 1 / (1 + np.exp(-x)) fig, ax = plt.subplots(1, 2, figsize=(15,5)) x_values = np.linspace(-5, 5, 100) y_values = [sigmoid(x) for x in x_values] ax[0].plot(x_values, y_values); X = np.array([[-1],[-2],[-3],[-4],[-8],[-9],[5],[8], [12], [13], [14], [15]]) Y = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) x_values = np.linspace(-10, 25, 100) y_values = [sigmoid(x) for x in x_values] ax[1].plot(x_values, y_values); ax[1].scatter(X, [sigmoid(x) for x in X], c='r'); fig, ax = plt.subplots(1, 2, figsize=(15, 5)) def if_y_1(hx): return -np.log(hx) x_values = np.linspace(0.001, 1, 100) y_values = [if_y_1(hx) for hx in x_values] ax[0].plot(x_values, y_values) ax[0].title.set_text('If y = 1') ax[0].set_xlabel('h(x) - sigmoid output') ax[0].set_ylabel('Cost') def if_y_0(hx): return -np.log(1 - hx) x_values = np.linspace(0, 0.999, 100) y_values = [if_y_0(hx) for hx in x_values] ax[1].plot(x_values, y_values) ax[1].title.set_text('If y = 0') ax[1].set_xlabel('h(x) - sigmoid output') ax[1].set_ylabel('Cost')
code
73064231/cell_19
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(1, 2, figsize=(15,5)) X = np.array([[1],[2],[3],[4],[8],[9],[10],[11]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 12, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[0].plot(x_values, y_values) ax[0].scatter(X, Y, c='b'); ax[0].title.set_text('Рис. 1') X = np.array([[1],[2],[3],[4],[8],[9],[10],[11], [18], [19], [20], [21], [22], [23], [24]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 25, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[1].plot(x_values, y_values) ax[1].scatter(X, Y, c='b'); ax[1].title.set_text('Рис. 2') def sigmoid(x): return 1 / (1 + np.exp(-x)) fig, ax = plt.subplots(1, 2, figsize=(15,5)) x_values = np.linspace(-5, 5, 100) y_values = [sigmoid(x) for x in x_values] ax[0].plot(x_values, y_values); X = np.array([[-1],[-2],[-3],[-4],[-8],[-9],[5],[8], [12], [13], [14], [15]]) Y = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) x_values = np.linspace(-10, 25, 100) y_values = [sigmoid(x) for x in x_values] ax[1].plot(x_values, y_values); ax[1].scatter(X, [sigmoid(x) for x in X], c='r'); # hx - sigmoid values between (0, 1) fig, ax = plt.subplots(1, 2, figsize=(15,5)) def if_y_1(hx): return -np.log(hx) x_values = np.linspace(0.001, 1, 100) y_values = [if_y_1(hx) for hx in x_values] ax[0].plot(x_values, y_values) ax[0].title.set_text('If y = 1'); ax[0].set_xlabel('h(x) - sigmoid output') ax[0].set_ylabel('Cost') def if_y_0(hx): return -np.log(1 - hx) x_values = np.linspace(0, 0.999, 100) y_values = [if_y_0(hx) for hx in x_values] ax[1].plot(x_values, y_values) ax[1].title.set_text('If y = 0'); ax[1].set_xlabel('h(x) - sigmoid output') ax[1].set_ylabel('Cost'); class LogisticRegression: def __init__(self, lr=0.1, n_iters=1000): self.lr = lr self.n_iters = n_iters self.weights = None self.bias = None def fit(self, X, y): n_samples, n_features = X.shape self.weights = np.zeros(n_features) self.bias = 0 for _ in range(self.n_iters): linear_model = np.dot(X, self.weights) + self.bias hx = self._sigmoid(linear_model) dw = (X.T * (hx - y)).T.mean(axis=0) db = (hx - y).mean(axis=0) self.weights -= self.lr * dw self.bias -= self.lr * db def predict(self, X): linear_model = np.dot(X, self.weights) + self.bias y_predicted = self._sigmoid(linear_model) y_predicted_cls = [1 if i > 0.5 else 0 for i in y_predicted] return y_predicted_cls def _sigmoid(self, x): return 1 / (1 + np.exp(-x)) fig, ax = plt.subplots(1, 2, figsize=(15,5)) color = ['blue' if l == 0 else 'green' for l in y_train] ax[0].scatter(X_train[:, 0], X_train[:, 1], c=color, label='1') ax[0].title.set_text('Train sample') color = ['blue' if l == 0 else 'green' for l in y_test] ax[1].scatter(X_test[:, 0], X_test[:, 1], c=color, label='1'); ax[1 ].title.set_text('Test sample') model = LogisticRegression() model.fit(X_train, y_train) fig, ax = plt.subplots(1, 2, figsize=(15, 5)) x_values = np.linspace(X_train[:, 0].min(), X_train[:, 0].max(), 100) y_values = [(-model.bias - model.weights[0] * x) / model.weights[1] for x in x_values] color = ['blue' if l == 0 else 'green' for l in y_train] ax[0].scatter(X_train[:, 0], X_train[:, 1], c=color, label='1') ax[0].plot(x_values, y_values) ax[0].title.set_text('Train sample, accuracy: {}'.format(accuracy_score(y_train, model.predict(X_train)))) x_values = np.linspace(X_test[:, 0].min(), X_test[:, 0].max(), 100) y_values = [(-model.bias - model.weights[0] * x) / model.weights[1] for x in x_values] color = ['blue' if l == 0 else 'green' for l in y_test] ax[1].scatter(X_test[:, 0], X_test[:, 1], c=color, label='1') ax[1].plot(x_values, y_values) ax[1].title.set_text('Test sample, accuracy: {}'.format(accuracy_score(y_test, model.predict(X_test))))
code
73064231/cell_7
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(1, 2, figsize=(15,5)) X = np.array([[1],[2],[3],[4],[8],[9],[10],[11]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 12, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[0].plot(x_values, y_values) ax[0].scatter(X, Y, c='b'); ax[0].title.set_text('Рис. 1') X = np.array([[1],[2],[3],[4],[8],[9],[10],[11], [18], [19], [20], [21], [22], [23], [24]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 25, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[1].plot(x_values, y_values) ax[1].scatter(X, Y, c='b'); ax[1].title.set_text('Рис. 2') def sigmoid(x): return 1 / (1 + np.exp(-x)) fig, ax = plt.subplots(1, 2, figsize=(15, 5)) x_values = np.linspace(-5, 5, 100) y_values = [sigmoid(x) for x in x_values] ax[0].plot(x_values, y_values) X = np.array([[-1], [-2], [-3], [-4], [-8], [-9], [5], [8], [12], [13], [14], [15]]) Y = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) x_values = np.linspace(-10, 25, 100) y_values = [sigmoid(x) for x in x_values] ax[1].plot(x_values, y_values) ax[1].scatter(X, [sigmoid(x) for x in X], c='r')
code
73064231/cell_16
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(1, 2, figsize=(15,5)) X = np.array([[1],[2],[3],[4],[8],[9],[10],[11]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 12, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[0].plot(x_values, y_values) ax[0].scatter(X, Y, c='b'); ax[0].title.set_text('Рис. 1') X = np.array([[1],[2],[3],[4],[8],[9],[10],[11], [18], [19], [20], [21], [22], [23], [24]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 25, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[1].plot(x_values, y_values) ax[1].scatter(X, Y, c='b'); ax[1].title.set_text('Рис. 2') def sigmoid(x): return 1 / (1 + np.exp(-x)) fig, ax = plt.subplots(1, 2, figsize=(15,5)) x_values = np.linspace(-5, 5, 100) y_values = [sigmoid(x) for x in x_values] ax[0].plot(x_values, y_values); X = np.array([[-1],[-2],[-3],[-4],[-8],[-9],[5],[8], [12], [13], [14], [15]]) Y = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) x_values = np.linspace(-10, 25, 100) y_values = [sigmoid(x) for x in x_values] ax[1].plot(x_values, y_values); ax[1].scatter(X, [sigmoid(x) for x in X], c='r'); # hx - sigmoid values between (0, 1) fig, ax = plt.subplots(1, 2, figsize=(15,5)) def if_y_1(hx): return -np.log(hx) x_values = np.linspace(0.001, 1, 100) y_values = [if_y_1(hx) for hx in x_values] ax[0].plot(x_values, y_values) ax[0].title.set_text('If y = 1'); ax[0].set_xlabel('h(x) - sigmoid output') ax[0].set_ylabel('Cost') def if_y_0(hx): return -np.log(1 - hx) x_values = np.linspace(0, 0.999, 100) y_values = [if_y_0(hx) for hx in x_values] ax[1].plot(x_values, y_values) ax[1].title.set_text('If y = 0'); ax[1].set_xlabel('h(x) - sigmoid output') ax[1].set_ylabel('Cost'); fig, ax = plt.subplots(1, 2, figsize=(15, 5)) color = ['blue' if l == 0 else 'green' for l in y_train] ax[0].scatter(X_train[:, 0], X_train[:, 1], c=color, label='1') ax[0].title.set_text('Train sample') color = ['blue' if l == 0 else 'green' for l in y_test] ax[1].scatter(X_test[:, 0], X_test[:, 1], c=color, label='1') ax[1].title.set_text('Test sample')
code
73064231/cell_5
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(1, 2, figsize=(15, 5)) X = np.array([[1], [2], [3], [4], [8], [9], [10], [11]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 12, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[0].plot(x_values, y_values) ax[0].scatter(X, Y, c='b') ax[0].title.set_text('Рис. 1') X = np.array([[1], [2], [3], [4], [8], [9], [10], [11], [18], [19], [20], [21], [22], [23], [24]]) Y = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) model = LinearRegression() model.fit(X, Y) x_values = np.linspace(0, 25, 100) y_values = [model.intercept_ + x * model.coef_[0] for x in x_values] ax[1].plot(x_values, y_values) ax[1].scatter(X, Y, c='b') ax[1].title.set_text('Рис. 2')
code
106194820/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data new_data = pd.merge(new_data, d_sal_tra, how='inner', on='item_id') new_data new_data = pd.merge(new_data, d_shop, how='inner', on='shop_id') new_data dx = ['shop_id', 'item_id'] x = new_data[dx] y = new_data['item_cnt_day'] (x, y)
code
106194820/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test print('items categorical null values', d_item_cat.isnull().sum().sum()) print('items null values', d_items.isnull().sum().sum()) print('sales train null values', d_sal_tra.isnull().sum().sum()) print('test data null values', d_test.isnull().sum().sum())
code
106194820/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_shop.head()
code
106194820/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data new_data = pd.merge(new_data, d_sal_tra, how='inner', on='item_id') new_data new_data = pd.merge(new_data, d_shop, how='inner', on='shop_id') new_data
code
106194820/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_items.head()
code
106194820/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test
code
106194820/cell_19
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data new_data = pd.merge(new_data, d_sal_tra, how='inner', on='item_id') new_data
code
106194820/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106194820/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sam_sub.head()
code
106194820/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data
code
106194820/cell_28
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data new_data = pd.merge(new_data, d_sal_tra, how='inner', on='item_id') new_data new_data = pd.merge(new_data, d_shop, how='inner', on='shop_id') new_data dx = ['shop_id', 'item_id'] x = new_data[dx] y = new_data['item_cnt_day'] (x, y) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=20) (x_train.shape, x_test.shape, y_train.shape, y_test.shape) lr = LinearRegression() lr.fit(x_train, y_train) pred = lr.predict(x_test) pred
code
106194820/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_sal_tra.head()
code
106194820/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test print('items categorical unique values', d_item_cat.nunique()) print('items unique values', d_items.nunique()) print('sales train unique values', d_sal_tra.nunique()) print('test data unique values', d_test.nunique())
code
106194820/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data
code
106194820/cell_24
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data new_data = pd.merge(new_data, d_sal_tra, how='inner', on='item_id') new_data new_data = pd.merge(new_data, d_shop, how='inner', on='shop_id') new_data dx = ['shop_id', 'item_id'] x = new_data[dx] y = new_data['item_cnt_day'] (x, y) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=20) (x_train.shape, x_test.shape, y_train.shape, y_test.shape)
code
106194820/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') d_test.head()
code
106194820/cell_27
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') d_sam_sub = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') d_sal_tra = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') d_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') d_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') dt_test = d_test.drop(labels='ID', axis=1) dt_test new_data = d_sal_tra.copy() new_data new_data = pd.merge(d_item_cat, d_items, how='inner', on='item_category_id') new_data new_data = pd.merge(new_data, d_sal_tra, how='inner', on='item_id') new_data new_data = pd.merge(new_data, d_shop, how='inner', on='shop_id') new_data dx = ['shop_id', 'item_id'] x = new_data[dx] y = new_data['item_cnt_day'] (x, y) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=20) (x_train.shape, x_test.shape, y_train.shape, y_test.shape) lr = LinearRegression() lr.fit(x_train, y_train)
code
106194820/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) d_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') d_item_cat.head()
code
130026009/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns sns.set() df = pd.read_csv('/kaggle/input/eurovision-2023-betting-odds/data/spotify/2023-04-13-spotify-streaming.csv') top_artists = df[['artist', 'popularity']] top_artists plt.figure(figsize=(10, 6)) sns.barplot(x='popularity', y='artist', data=top_artists.head(10), palette='viridis') plt.title('top_artists') plt.xlabel('popularity') plt.ylabel('artist') plt.show()
code
130026009/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/eurovision-2023-betting-odds/data/spotify/2023-04-13-spotify-streaming.csv') df.head()
code
130026009/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130026009/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns sns.set() df = pd.read_csv('/kaggle/input/eurovision-2023-betting-odds/data/spotify/2023-04-13-spotify-streaming.csv') plt.figure(figsize=(12, 12)) sns.lineplot(x='popularity', y='song', data=df.head(10), color='blue') plt.title('Top ten popular songs') plt.xlabel('popularity') plt.ylabel('song') plt.show()
code
130026009/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import seaborn as sns import seaborn as sns sns.set()
code
104120390/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='marital')
code
104120390/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='default')
code
104120390/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() bdata.marital.value_counts().plot(kind='bar') plt.title('Marital Status Distribution') plt.ylabel('Number of people') plt.xlabel('Marital Status')
code
104120390/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='education')
code
104120390/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='job')
code
104120390/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts()
code
104120390/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() palette = sns.color_palette('bright') for col in bdata.select_dtypes('object'): palette_color = sns.color_palette('bright') bdata[col].value_counts().plot.pie(colors=palette_color, autopct='%.0f%%') plt.figure()
code
104120390/cell_2
[ "text_plain_output_1.png" ]
import os import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104120390/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='y')
code
104120390/cell_7
[ "image_output_5.png", "image_output_4.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts().plot(kind='bar') plt.title('Job Distribution') plt.xlabel('Jobs') plt.ylabel('Number of People')
code
104120390/cell_8
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import matplotlib.pyplot as plt #for data visualization. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts()
code
104120390/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='housing')
code
104120390/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.head()
code
104120390/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() sns.kdeplot(data=bdata, x='age', hue='loan')
code
104120390/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() bdata.education.value_counts().plot(kind='bar') plt.title('Education Distribution') plt.xlabel('Education Level') plt.ylabel('Number of People')
code
104120390/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #for data visualization. import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize': (14, 7)}) import random from scipy import stats import math import os bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.job.value_counts() bdata.job.value_counts() palette = sns.color_palette('bright') for col in bdata.select_dtypes('float64'): plt.figure() sns.distplot(bdata[col], bins=7, color=random.choice(palette))
code
104120390/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bdata = pd.read_csv('../input/bank-marketing/bank-additional-full.csv', sep=';') bdata.describe()
code
90128350/cell_21
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.kdeplot(data=data_stroke1, x='age', color='red', fill=True) sns.kdeplot(data=data_stroke0, x='age', color='green', fill=True)
code
90128350/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() label = ['No', 'Yes'] value_label = data_orgin['stroke'].value_counts() explode = [0.1, 0.05] fig, ax = plt.subplots() ax.pie(value_label, explode=explode, labels=label, autopct='%1.2f%%', shadow=True) ax.set(title='Stroke')
code
90128350/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique()
code
90128350/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() data_orgin[data_orgin['hypertension'] == 1].stroke.value_counts()
code
90128350/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.barplot(data=data_orgin, x='ever_married', y='stroke')
code
90128350/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.barplot(data=data_orgin, x='work_type', y='stroke')
code
90128350/cell_20
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() sns.displot(x=data_orgin['age'], kde=True)
code
90128350/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.describe()
code
90128350/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() #Exploring data with stroke label=['No','Yes'] value_label=data_orgin['stroke'].value_counts() explode=[0.1,0.05] fig,ax=plt.subplots() ax.pie(value_label,explode=explode,labels=label,autopct='%1.2f%%',shadow=True) ax.set(title='Stroke'); fig,ax = plt.subplots() ax.bar(label,value_label) ax.set(title="Stroke",ylabel='Count'); categorical = ['gender', 'ever_married', 'work_type', 'Residence_type', 'smoking_status'] label_0 = ['Female', 'Male', 'Other'] label_1 = ['Yes', 'No'] label_2 = ['Private', 'Self-employed', 'children', 'Govt_job', 'Never_worked'] label_3 = ['Urban', 'Rural'] label_4 = ['Never smoked', 'Unknown', 'Formerly smoked', 'Smokes'] value_gender = data_orgin[categorical[0]].value_counts() value_married = data_orgin[categorical[1]].value_counts() value_worked = data_orgin[categorical[2]].value_counts() value_res = data_orgin[categorical[3]].value_counts() value_smoking = data_orgin[categorical[4]].value_counts() all_label=[label_0,label_1,label_2,label_3,label_4] all_sum=[value_gender,value_married,value_worked,value_res,value_smoking] attri=['Gender','Ever_married','Work_type','Residence_type','Smoking_status'] fig=plt.figure(figsize=(20,15)) for i in range(1,6): fig.add_subplot(2,3,i) plt.bar(all_label[i-1],all_sum[i-1]) plt.xlabel(attri[i-1]) data_orgin.groupby(['gender'])['stroke'].value_counts() label = ['Yes', 'No'] num_marr = data_orgin['ever_married'].value_counts() explode = [0.07, 0.05] fig, ax = plt.subplots() ax.pie(num_marr, explode=explode, labels=label, startangle=90, autopct='%1.2f%%', shadow=True) ax.set(title='Ever_married')
code
90128350/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.kdeplot(data=data_stroke1, x='bmi', color='green', fill=True) sns.kdeplot(data=data_stroke0, x='bmi', color='blue', fill=True)
code
90128350/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() data_orgin[data_orgin['heart_disease'] == 0].stroke.value_counts()
code
90128350/cell_2
[ "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.head()
code
90128350/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() sns.countplot(x=data_orgin['gender'], hue=data_orgin['stroke'])
code
90128350/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin['stroke'].value_counts()
code
90128350/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts()
code
90128350/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.countplot(data=data_orgin, x='work_type')
code
90128350/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() #Exploring data with stroke label=['No','Yes'] value_label=data_orgin['stroke'].value_counts() explode=[0.1,0.05] fig,ax=plt.subplots() ax.pie(value_label,explode=explode,labels=label,autopct='%1.2f%%',shadow=True) ax.set(title='Stroke'); fig,ax = plt.subplots() ax.bar(label,value_label) ax.set(title="Stroke",ylabel='Count'); categorical = ['gender', 'ever_married', 'work_type', 'Residence_type', 'smoking_status'] label_0 = ['Female', 'Male', 'Other'] label_1 = ['Yes', 'No'] label_2 = ['Private', 'Self-employed', 'children', 'Govt_job', 'Never_worked'] label_3 = ['Urban', 'Rural'] label_4 = ['Never smoked', 'Unknown', 'Formerly smoked', 'Smokes'] value_gender = data_orgin[categorical[0]].value_counts() value_married = data_orgin[categorical[1]].value_counts() value_worked = data_orgin[categorical[2]].value_counts() value_res = data_orgin[categorical[3]].value_counts() value_smoking = data_orgin[categorical[4]].value_counts() all_label = [label_0, label_1, label_2, label_3, label_4] all_sum = [value_gender, value_married, value_worked, value_res, value_smoking] attri = ['Gender', 'Ever_married', 'Work_type', 'Residence_type', 'Smoking_status'] fig = plt.figure(figsize=(20, 15)) for i in range(1, 6): fig.add_subplot(2, 3, i) plt.bar(all_label[i - 1], all_sum[i - 1]) plt.xlabel(attri[i - 1])
code
90128350/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.info()
code
90128350/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.barplot(data=data_orgin, x='Residence_type', y='stroke')
code
90128350/cell_24
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.barplot(data=data_orgin, x='hypertension', y='stroke')
code
90128350/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() categorical = ['gender', 'ever_married', 'work_type', 'Residence_type', 'smoking_status'] for i in range(len(categorical)): print(data_orgin[categorical[i]].value_counts())
code
90128350/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() #Exploring data with stroke label=['No','Yes'] value_label=data_orgin['stroke'].value_counts() explode=[0.1,0.05] fig,ax=plt.subplots() ax.pie(value_label,explode=explode,labels=label,autopct='%1.2f%%',shadow=True) ax.set(title='Stroke'); fig, ax = plt.subplots() ax.bar(label, value_label) ax.set(title='Stroke', ylabel='Count')
code
90128350/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.barplot(data=data_orgin, x='heart_disease', y='stroke')
code
90128350/cell_37
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() data_orgin.groupby(['gender'])['stroke'].value_counts() sns.set_theme() data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] data_stroke1 = data_orgin[data_orgin['stroke'] == 1] data_stroke0 = data_orgin[data_orgin['stroke'] == 0] sns.kdeplot(data=data_stroke1, x='avg_glucose_level', color='orange', fill=True) sns.kdeplot(data=data_stroke0, x='avg_glucose_level', color='blue', fill=True)
code
90128350/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum() numerical = ['age', 'hypertension', 'heart_disease', 'avg_glucose_level', 'bmi'] data_orgin[numerical].hist(bins=30, figsize=(20, 15))
code
90128350/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, classification_report from sklearn.metrics import roc_curve from imblearn.under_sampling import NearMiss from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE from sklearn.model_selection import GridSearchCV data_orgin = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data_orgin.nunique() data_orgin.isnull().sum()
code
129022563/cell_42
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] train_null[0]
code
129022563/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' print(test.isna().sum().sort_values(ascending=False))
code
129022563/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() print(train.isna().sum().sort_values(ascending=False))
code
129022563/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count()
code
129022563/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' test.describe()
code
129022563/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 print(FEATURES)
code
129022563/cell_44
[ "text_html_output_2.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] fig = make_subplots(rows = 1, cols = 2, column_titles = ["Train Data","Test Data"], x_title = "Missing Values") fig.show() train_null.index fig.add_trace(go.Bar(x=train_null[0], y=train_null.index, orientation='h'), 1, 1) fig.show()
code
129022563/cell_55
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() missing_train_row.value_counts()
code
129022563/cell_39
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) test_null = test_null.sort_values(by=0, ascending=False) test_null
code
129022563/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' submission.head()
code
129022563/cell_41
[ "text_plain_output_1.png" ]
from plotly.subplots import make_subplots fig = make_subplots(rows=1, cols=2, column_titles=['Train Data', 'Test Data'], x_title='Missing Values') fig.show()
code
129022563/cell_54
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() missing_train_row
code
129022563/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() print(f'Number of rows in train data: {train.shape[0]}') print(f'Number of columns in train data: {train.shape[1]}') print(f'Number of values in train data: {train.count().sum()}') print(f'Number of missing values in train data: {sum(train.isna().sum())}')
code
129022563/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' print(f'Number of rows in test data: {test.shape[0]}') print(f'Number of columns in test data: {test.shape[1]}') print(f'Number of values in test data: {test.count().sum()}') print(f'Number of missing values in test data: {sum(test.isna().sum())}')
code
129022563/cell_50
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() train.isna().sum(axis=1).unique()
code
129022563/cell_52
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() train.isna().sum(axis=1).unique() train.shape[0] train.isna().sum(axis=1).value_counts()
code
129022563/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129022563/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.head()
code
129022563/cell_45
[ "text_plain_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) test_null = test_null.sort_values(by=0, ascending=False) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] fig = make_subplots(rows = 1, cols = 2, column_titles = ["Train Data","Test Data"], x_title = "Missing Values") fig.show() train_null.index fig.add_trace(go.Bar(x=train_null[0], y=train_null.index, orientation='h'), 1, 1) fig.add_trace(go.Bar(x=test_null[0], y=test_null.index, orientation='h'), 1, 2) fig.show()
code
129022563/cell_49
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() missing_train_row
code
129022563/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' test.head()
code
129022563/cell_32
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False)
code
129022563/cell_51
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() train.isna().sum(axis=1).unique() train.shape[0]
code
129022563/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape
code
129022563/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.describe()
code
129022563/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt import plotly.graph_objects as go from plotly.subplots import make_subplots from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder
code
129022563/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum()
code
129022563/cell_43
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] train_null.index
code
129022563/cell_31
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train
code