Datasets:

ArXiv:
License:
File size: 16,569 Bytes
52fe1d5
 
128703c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee52243
 
128703c
 
ee52243
128703c
 
 
 
ee52243
128703c
52fe1d5
ee52243
 
 
 
128703c
ee52243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232242
ad258ab
ee52243
 
 
 
 
b8360c6
ee52243
 
 
b8360c6
 
ee52243
 
 
128703c
b8360c6
128703c
 
b8360c6
ee52243
 
b8360c6
128703c
b8360c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee52243
b8360c6
4c5feb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee52243
 
128703c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee52243
 
 
b8360c6
ee52243
 
 
 
b8360c6
128703c
ee52243
128703c
ee52243
 
 
b8360c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee52243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128703c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
---
dataset_info:
  - config_name: raw
    features:
      - name: image
        dtype: image
      - name: source
        dtype: string
      - name: width
        dtype: int16
      - name: height
        dtype: int16
      - name: dept
        dtype: int8
      - name: segmented
        dtype: int8
      - name: objects
        list:
          - name: name
            dtype:
              class_label:
                names:
                  "0": zebra
                  "1": tree
                  "2": nude
                  "3": crucifixion
                  "4": scroll
                  "5": head
                  "6": swan
                  "7": shield
                  "8": lily
                  "9": mouse
                  "10": knight
                  "11": dragon
                  "12": horn
                  "13": dog
                  "14": palm
                  "15": tiara
                  "16": helmet
                  "17": sheep
                  "18": deer
                  "19": person
                  "20": sword
                  "21": rooster
                  "22": bear
                  "23": halo
                  "24": lion
                  "25": monkey
                  "26": prayer
                  "27": crown of thorns
                  "28": elephant
                  "29": zucchetto
                  "30": unicorn
                  "31": holy shroud
                  "32": cat
                  "33": apple
                  "34": banana
                  "35": chalice
                  "36": bird
                  "37": eagle
                  "38": pegasus
                  "39": crown
                  "40": camauro
                  "41": saturno
                  "42": arrow
                  "43": dove
                  "44": centaur
                  "45": horse
                  "46": hands
                  "47": skull
                  "48": orange
                  "49": monk
                  "50": trumpet
                  "51": key of heaven
                  "52": fish
                  "53": cow
                  "54": angel
                  "55": devil
                  "56": book
                  "57": stole
                  "58": butterfly
                  "59": serpent
                  "60": judith
                  "61": mitre
                  "62": banner
                  "63": donkey
                  "64": shepherd
                  "65": boat
                  "66": god the father
                  "67": crozier
                  "68": jug
                  "69": lance
          - name: pose
            dtype:
              class_label:
                names:
                  "0": stand
                  "1": sit
                  "2": partial
                  "3": Unspecified
                  "4": squats
                  "5": lie
                  "6": bend
                  "7": fall
                  "8": walk
                  "9": push
                  "10": pray
                  "11": undefined
                  "12": kneel
                  "13": unrecognize
                  "14": unknown
                  "15": other
                  "16": ride
          - name: diffult
            dtype: int32
          - name: xmin
            dtype: float64
          - name: ymin
            dtype: float64
          - name: xmax
            dtype: float64
          - name: ymax
            dtype: float64
    splits:
      - name: train
        num_bytes: 9046918
        num_examples: 15156
    download_size: 18160510195
    dataset_size: 9046918
  - config_name: coco
    features:
      - name: image
        dtype: image
      - name: source
        dtype: string
      - name: width
        dtype: int16
      - name: height
        dtype: int16
      - name: dept
        dtype: int8
      - name: segmented
        dtype: int8
      - name: objects
        list:
          - name: category_id
            dtype:
              class_label:
                names:
                  "0": zebra
                  "1": tree
                  "2": nude
                  "3": crucifixion
                  "4": scroll
                  "5": head
                  "6": swan
                  "7": shield
                  "8": lily
                  "9": mouse
                  "10": knight
                  "11": dragon
                  "12": horn
                  "13": dog
                  "14": palm
                  "15": tiara
                  "16": helmet
                  "17": sheep
                  "18": deer
                  "19": person
                  "20": sword
                  "21": rooster
                  "22": bear
                  "23": halo
                  "24": lion
                  "25": monkey
                  "26": prayer
                  "27": crown of thorns
                  "28": elephant
                  "29": zucchetto
                  "30": unicorn
                  "31": holy shroud
                  "32": cat
                  "33": apple
                  "34": banana
                  "35": chalice
                  "36": bird
                  "37": eagle
                  "38": pegasus
                  "39": crown
                  "40": camauro
                  "41": saturno
                  "42": arrow
                  "43": dove
                  "44": centaur
                  "45": horse
                  "46": hands
                  "47": skull
                  "48": orange
                  "49": monk
                  "50": trumpet
                  "51": key of heaven
                  "52": fish
                  "53": cow
                  "54": angel
                  "55": devil
                  "56": book
                  "57": stole
                  "58": butterfly
                  "59": serpent
                  "60": judith
                  "61": mitre
                  "62": banner
                  "63": donkey
                  "64": shepherd
                  "65": boat
                  "66": god the father
                  "67": crozier
                  "68": jug
                  "69": lance
          - name: image_id
            dtype: string
          - name: area
            dtype: int64
          - name: bbox
            sequence: float32
            length: 4
          - name: segmentation
            list:
              list: float32
          - name: iscrowd
            dtype: bool
      - name: image_id
        dtype: string
    splits:
      - name: train
        num_bytes: 8285204
        num_examples: 15156
    download_size: 18160510195
    dataset_size: 8285204
license: cc-by-nc-2.0
task_categories:
  - object-detection
  - image-classification
tags:
  - lam
  - art
  - historical
pretty_name: "DEArt: Dataset of European Art"
size_categories:
  - 10K<n<100K
---

# Dataset Card for DEArt: Dataset of European Art

## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:** https://doi.org/10.5281/zenodo.6984525
- **Paper:** https://arxiv.org/abs/2211.01226
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

> DEArt is an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are cultural heritage specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art.

### Supported Tasks and Leaderboards

- `object-detection`: This dataset can be used to train or evaluate models for object-detection on historical document images.
- `image-classification`: This dataset can be used for image classification tasks by using only the labels and not the bounding box information

## Dataset Structure

This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to integrate the data with existing processing pipelines.

- The first configuration, `raw, uses the data's original format.
- The second configuration converts the annotations into a format that is closer to the `COCO` annotation format. This is done to make it easier to work with the [`image_processors`](https://huggingface.co/docs/transformers/main_classes/image_processor) (formerly known as`feature_extractor`s) from the `Transformers` models for object detection, which expects data to be in a COCO-style format.

### Data Instances

An instance from the `raw` config:

```python
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
 'source': 'Europeana Collection',
 'width': 1019,
 'height': 1680,
 'dept': 3,
 'segmented': None,
 'objects': [{'name': 40,
   'pose': 3,
   'diffult': 0,
   'xmin': 259.0,
   'ymin': 166.0,
   'xmax': 679.0,
   'ymax': 479.0},
  {'name': 19,
   'pose': 2,
   'diffult': 0,
   'xmin': 115.0,
   'ymin': 354.0,
   'xmax': 882.0,
   'ymax': 1168.0},
  {'name': 15,
   'pose': 3,
   'diffult': 0,
   'xmin': 445.0,
   'ymin': 1170.0,
   'xmax': 579.0,
   'ymax': 1302.0},
  {'name': 51,
   'pose': 3,
   'diffult': 0,
   'xmin': 354.0,
   'ymin': 1196.0,
   'xmax': 445.0,
   'ymax': 1330.0},
  {'name': 51,
   'pose': 3,
   'diffult': 0,
   'xmin': 580.0,
   'ymin': 1203.0,
   'xmax': 701.0,
   'ymax': 1326.0},
  {'name': 57,
   'pose': 3,
   'diffult': 0,
   'xmin': 203.0,
   'ymin': 642.0,
   'xmax': 882.0,
   'ymax': 1172.0}]}
```

An instance from the `coco` config:

```python
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
 'source': 'Europeana Collection',
 'width': 1019,
 'height': 1680,
 'dept': 3,
 'segmented': None,
 'image_id': '0',
 'annotations': [{'category_id': 40,
   'image_id': '0',
   'area': 131460,
   'bbox': [259.0, 166.0, 420.0, 313.0],
   'segmentation': [],
   'iscrowd': False},
  {'category_id': 19,
   'image_id': '0',
   'area': 624338,
   'bbox': [115.0, 354.0, 767.0, 814.0],
   'segmentation': [],
   'iscrowd': False},
  {'category_id': 15,
   'image_id': '0',
   'area': 17688,
   'bbox': [445.0, 1170.0, 134.0, 132.0],
   'segmentation': [],
   'iscrowd': False},
  {'category_id': 51,
   'image_id': '0',
   'area': 12194,
   'bbox': [354.0, 1196.0, 91.0, 134.0],
   'segmentation': [],
   'iscrowd': False},
  {'category_id': 51,
   'image_id': '0',
   'area': 14883,
   'bbox': [580.0, 1203.0, 121.0, 123.0],
   'segmentation': [],
   'iscrowd': False},
  {'category_id': 57,
   'image_id': '0',
   'area': 359870,
   'bbox': [203.0, 642.0, 679.0, 530.0],
   'segmentation': [],
   'iscrowd': False}]}
```

### Data Fields

The fields for the COCO config:

- `image`: The Image being annotated
- `source`: source of the image i.e.'Europeana Collection'
- `width`: width of the image
- `height`: height of the image
- `dept`: number of channels in the image
- `segmented`: Whether the image has been segmented
- `image_id`: ID for the image
- `annotations`: annotations in coco format, consisting of a list containing dictionaries with the following keys:
  - `bbox`: bounding boxes for the images
  - `category_id`: a label for the image
  - `image_id`: id for the image
  - `iscrowd`: COCO `iscrowd` flag
  - `segmentation`: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts)

### Data Splits

The dataset doesn't define set splits, so only a train split is provided. The paper associated with the dataset does discuss a train and validation split, but it doesn't appear this split was shared.

## Dataset Creation

### Curation Rationale

The creators of the dataset authors outline some of their motivations for creating the dataset in the abstract for their paper:

> Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations.

### Source Data

The source data comes from several cultural heritage institutions that have shared openly licenced images. The dictionary below shows the institutions and the frequency with which they are the provider of images in the dataset.

```python
{'National Museum in Warsaw': 2030,
 'Europeana Collection': 1991,
 'The Art Institute of Chicago': 1237,
 'The Metropolitan Museum of Art': 1218,
 'Rijksmuseum': 1066,
 'National Gallery of Art': 871,
 'Philadelphia Museum of Art': 774,
 'WikiArt': 687,
 'National museum in Krakow': 661,
 'National Gallery of Denmark': 660,
 'British Museum': 618,
 'Victoria and Albert Museum': 561,
 'Paul Mellon Centre': 391,
 'National Gallery of Scotland': 384,
 'Yale University Art Gallery': 376,
 'Museo Nacional Thyssen-Bornemisza': 332,
 'Harvard Art Museum': 279,
 'The National Museum of Norvay': 270,
 'LACMA': 262,
 'The Cleveland Museum of Art': 242,
 'The Leiden Collection': 159,
 'The Clark Museum': 77,
 'Pharos': 6,
 'Wikimedia Commons': 2,
 'Wikipedia': 1,
 'Unknown': 1}
```

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.