Datasets:
File size: 16,569 Bytes
52fe1d5 128703c ee52243 128703c ee52243 128703c ee52243 128703c 52fe1d5 ee52243 128703c ee52243 1232242 ad258ab ee52243 b8360c6 ee52243 b8360c6 ee52243 128703c b8360c6 128703c b8360c6 ee52243 b8360c6 128703c b8360c6 ee52243 b8360c6 4c5feb7 ee52243 128703c ee52243 b8360c6 ee52243 b8360c6 128703c ee52243 128703c ee52243 b8360c6 ee52243 128703c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
---
dataset_info:
- config_name: raw
features:
- name: image
dtype: image
- name: source
dtype: string
- name: width
dtype: int16
- name: height
dtype: int16
- name: dept
dtype: int8
- name: segmented
dtype: int8
- name: objects
list:
- name: name
dtype:
class_label:
names:
"0": zebra
"1": tree
"2": nude
"3": crucifixion
"4": scroll
"5": head
"6": swan
"7": shield
"8": lily
"9": mouse
"10": knight
"11": dragon
"12": horn
"13": dog
"14": palm
"15": tiara
"16": helmet
"17": sheep
"18": deer
"19": person
"20": sword
"21": rooster
"22": bear
"23": halo
"24": lion
"25": monkey
"26": prayer
"27": crown of thorns
"28": elephant
"29": zucchetto
"30": unicorn
"31": holy shroud
"32": cat
"33": apple
"34": banana
"35": chalice
"36": bird
"37": eagle
"38": pegasus
"39": crown
"40": camauro
"41": saturno
"42": arrow
"43": dove
"44": centaur
"45": horse
"46": hands
"47": skull
"48": orange
"49": monk
"50": trumpet
"51": key of heaven
"52": fish
"53": cow
"54": angel
"55": devil
"56": book
"57": stole
"58": butterfly
"59": serpent
"60": judith
"61": mitre
"62": banner
"63": donkey
"64": shepherd
"65": boat
"66": god the father
"67": crozier
"68": jug
"69": lance
- name: pose
dtype:
class_label:
names:
"0": stand
"1": sit
"2": partial
"3": Unspecified
"4": squats
"5": lie
"6": bend
"7": fall
"8": walk
"9": push
"10": pray
"11": undefined
"12": kneel
"13": unrecognize
"14": unknown
"15": other
"16": ride
- name: diffult
dtype: int32
- name: xmin
dtype: float64
- name: ymin
dtype: float64
- name: xmax
dtype: float64
- name: ymax
dtype: float64
splits:
- name: train
num_bytes: 9046918
num_examples: 15156
download_size: 18160510195
dataset_size: 9046918
- config_name: coco
features:
- name: image
dtype: image
- name: source
dtype: string
- name: width
dtype: int16
- name: height
dtype: int16
- name: dept
dtype: int8
- name: segmented
dtype: int8
- name: objects
list:
- name: category_id
dtype:
class_label:
names:
"0": zebra
"1": tree
"2": nude
"3": crucifixion
"4": scroll
"5": head
"6": swan
"7": shield
"8": lily
"9": mouse
"10": knight
"11": dragon
"12": horn
"13": dog
"14": palm
"15": tiara
"16": helmet
"17": sheep
"18": deer
"19": person
"20": sword
"21": rooster
"22": bear
"23": halo
"24": lion
"25": monkey
"26": prayer
"27": crown of thorns
"28": elephant
"29": zucchetto
"30": unicorn
"31": holy shroud
"32": cat
"33": apple
"34": banana
"35": chalice
"36": bird
"37": eagle
"38": pegasus
"39": crown
"40": camauro
"41": saturno
"42": arrow
"43": dove
"44": centaur
"45": horse
"46": hands
"47": skull
"48": orange
"49": monk
"50": trumpet
"51": key of heaven
"52": fish
"53": cow
"54": angel
"55": devil
"56": book
"57": stole
"58": butterfly
"59": serpent
"60": judith
"61": mitre
"62": banner
"63": donkey
"64": shepherd
"65": boat
"66": god the father
"67": crozier
"68": jug
"69": lance
- name: image_id
dtype: string
- name: area
dtype: int64
- name: bbox
sequence: float32
length: 4
- name: segmentation
list:
list: float32
- name: iscrowd
dtype: bool
- name: image_id
dtype: string
splits:
- name: train
num_bytes: 8285204
num_examples: 15156
download_size: 18160510195
dataset_size: 8285204
license: cc-by-nc-2.0
task_categories:
- object-detection
- image-classification
tags:
- lam
- art
- historical
pretty_name: "DEArt: Dataset of European Art"
size_categories:
- 10K<n<100K
---
# Dataset Card for DEArt: Dataset of European Art
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** https://doi.org/10.5281/zenodo.6984525
- **Paper:** https://arxiv.org/abs/2211.01226
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
> DEArt is an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are cultural heritage specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art.
### Supported Tasks and Leaderboards
- `object-detection`: This dataset can be used to train or evaluate models for object-detection on historical document images.
- `image-classification`: This dataset can be used for image classification tasks by using only the labels and not the bounding box information
## Dataset Structure
This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to integrate the data with existing processing pipelines.
- The first configuration, `raw, uses the data's original format.
- The second configuration converts the annotations into a format that is closer to the `COCO` annotation format. This is done to make it easier to work with the [`image_processors`](https://huggingface.co/docs/transformers/main_classes/image_processor) (formerly known as`feature_extractor`s) from the `Transformers` models for object detection, which expects data to be in a COCO-style format.
### Data Instances
An instance from the `raw` config:
```python
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
'source': 'Europeana Collection',
'width': 1019,
'height': 1680,
'dept': 3,
'segmented': None,
'objects': [{'name': 40,
'pose': 3,
'diffult': 0,
'xmin': 259.0,
'ymin': 166.0,
'xmax': 679.0,
'ymax': 479.0},
{'name': 19,
'pose': 2,
'diffult': 0,
'xmin': 115.0,
'ymin': 354.0,
'xmax': 882.0,
'ymax': 1168.0},
{'name': 15,
'pose': 3,
'diffult': 0,
'xmin': 445.0,
'ymin': 1170.0,
'xmax': 579.0,
'ymax': 1302.0},
{'name': 51,
'pose': 3,
'diffult': 0,
'xmin': 354.0,
'ymin': 1196.0,
'xmax': 445.0,
'ymax': 1330.0},
{'name': 51,
'pose': 3,
'diffult': 0,
'xmin': 580.0,
'ymin': 1203.0,
'xmax': 701.0,
'ymax': 1326.0},
{'name': 57,
'pose': 3,
'diffult': 0,
'xmin': 203.0,
'ymin': 642.0,
'xmax': 882.0,
'ymax': 1172.0}]}
```
An instance from the `coco` config:
```python
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
'source': 'Europeana Collection',
'width': 1019,
'height': 1680,
'dept': 3,
'segmented': None,
'image_id': '0',
'annotations': [{'category_id': 40,
'image_id': '0',
'area': 131460,
'bbox': [259.0, 166.0, 420.0, 313.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 19,
'image_id': '0',
'area': 624338,
'bbox': [115.0, 354.0, 767.0, 814.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 15,
'image_id': '0',
'area': 17688,
'bbox': [445.0, 1170.0, 134.0, 132.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 51,
'image_id': '0',
'area': 12194,
'bbox': [354.0, 1196.0, 91.0, 134.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 51,
'image_id': '0',
'area': 14883,
'bbox': [580.0, 1203.0, 121.0, 123.0],
'segmentation': [],
'iscrowd': False},
{'category_id': 57,
'image_id': '0',
'area': 359870,
'bbox': [203.0, 642.0, 679.0, 530.0],
'segmentation': [],
'iscrowd': False}]}
```
### Data Fields
The fields for the COCO config:
- `image`: The Image being annotated
- `source`: source of the image i.e.'Europeana Collection'
- `width`: width of the image
- `height`: height of the image
- `dept`: number of channels in the image
- `segmented`: Whether the image has been segmented
- `image_id`: ID for the image
- `annotations`: annotations in coco format, consisting of a list containing dictionaries with the following keys:
- `bbox`: bounding boxes for the images
- `category_id`: a label for the image
- `image_id`: id for the image
- `iscrowd`: COCO `iscrowd` flag
- `segmentation`: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts)
### Data Splits
The dataset doesn't define set splits, so only a train split is provided. The paper associated with the dataset does discuss a train and validation split, but it doesn't appear this split was shared.
## Dataset Creation
### Curation Rationale
The creators of the dataset authors outline some of their motivations for creating the dataset in the abstract for their paper:
> Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations.
### Source Data
The source data comes from several cultural heritage institutions that have shared openly licenced images. The dictionary below shows the institutions and the frequency with which they are the provider of images in the dataset.
```python
{'National Museum in Warsaw': 2030,
'Europeana Collection': 1991,
'The Art Institute of Chicago': 1237,
'The Metropolitan Museum of Art': 1218,
'Rijksmuseum': 1066,
'National Gallery of Art': 871,
'Philadelphia Museum of Art': 774,
'WikiArt': 687,
'National museum in Krakow': 661,
'National Gallery of Denmark': 660,
'British Museum': 618,
'Victoria and Albert Museum': 561,
'Paul Mellon Centre': 391,
'National Gallery of Scotland': 384,
'Yale University Art Gallery': 376,
'Museo Nacional Thyssen-Bornemisza': 332,
'Harvard Art Museum': 279,
'The National Museum of Norvay': 270,
'LACMA': 262,
'The Cleveland Museum of Art': 242,
'The Leiden Collection': 159,
'The Clark Museum': 77,
'Pharos': 6,
'Wikimedia Commons': 2,
'Wikipedia': 1,
'Unknown': 1}
```
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|