repo_id
stringlengths 15
89
| file_path
stringlengths 27
180
| content
stringlengths 1
2.23M
| __index_level_0__
int64 0
0
|
---|---|---|---|
hf_public_repos/candle/candle-core | hf_public_repos/candle/candle-core/src/tensor.rs | //! Tensors are N-dimensional matrixes of elements using a single data type.
#![allow(clippy::redundant_closure_call)]
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{
BackpropOp, BinaryOp, CmpOp, CustomOp1, CustomOp2, CustomOp3, Op, ReduceOp, UnaryOp,
};
use crate::scalar::TensorOrScalar;
use crate::shape::{Dim, Dims};
use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape};
use std::sync::{Arc, RwLock};
/// Unique identifier for tensors.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TensorId(usize);
impl TensorId {
fn new() -> Self {
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
use std::sync::atomic;
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
}
}
pub struct Tensor_ {
id: TensorId,
// As we provide inner mutability on the tensor content, the alternatives are:
// - Using a mutex, this would have the highest cost when retrieving the storage but would
// prevent errors when concurrent access takes place. Mutex would also be subject to
// deadlocks for example using the current code if the same tensor is used twice by a single
// binary op.
// - Using a refcell unsafe cell would have some intermediary cost, borrow checking would be
// verified dynamically, but the resulting tensors would not be send or sync.
// - Using an unsafe cell would have the lowest cost but undefined behavior on concurrent
// accesses.
// Ideally, we would use Arc<Storage> for tensors on which we don't plan on modifying the data
// and Arc<Mutex<Storage>> for tensors where the data could be modified, e.g. variables but
// that's tricky to encode in the current setup.
storage: Arc<RwLock<Storage>>,
layout: Layout,
op: BackpropOp,
is_variable: bool,
dtype: DType,
device: Device,
}
impl AsRef<Tensor> for Tensor {
fn as_ref(&self) -> &Tensor {
self
}
}
// Tensors are refcounted so that cloning is cheap when building the op graph.
// Storages are also refcounted independently so that its possible to avoid
// copying the storage for operations that only modify the shape or stride.
#[derive(Clone)]
/// The core struct for manipulating tensors.
///
/// ```rust
/// use candle_core::{Tensor, DType, Device};
///
/// let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
/// let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
///
/// let c = a.matmul(&b)?;
/// # Ok::<(), candle_core::Error>(())
/// ```
///
/// Tensors are reference counted with [`Arc`] so cloning them is cheap.
pub struct Tensor(Arc<Tensor_>);
impl std::ops::Deref for Tensor {
type Target = Tensor_;
fn deref(&self) -> &Self::Target {
self.0.as_ref()
}
}
macro_rules! unary_op {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name(&self) -> Result<Self> {
let shape = self.shape();
let storage = self
.storage()
.unary_impl::<crate::op::$op_name>(self.layout())?;
let op = BackpropOp::new1(self, |s| Op::Unary(s, UnaryOp::$op_name));
Ok(from_storage(storage, shape.clone(), op, false))
}
};
}
macro_rules! binary_op {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?;
let storage = self.storage().binary_impl::<crate::op::$op_name>(
&*rhs.storage(),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::Binary(t1, t2, BinaryOp::$op_name));
Ok(from_storage(storage, shape.clone(), op, false))
}
};
}
macro_rules! binary_op_scalar {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
let rhs = match rhs.to_tensor_scalar()? {
crate::scalar::TensorScalar::Tensor(rhs) => rhs,
crate::scalar::TensorScalar::Scalar(rhs) => rhs
.to_dtype(self.dtype())?
.to_device(self.device())?
.broadcast_as(self.shape())?,
};
let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?;
let storage = self.storage().binary_impl::<crate::op::$op_name>(
&*rhs.storage(),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, &rhs, |t1, t2| Op::Binary(t1, t2, BinaryOp::$op_name));
Ok(from_storage(storage, shape.clone(), op, false))
}
};
}
macro_rules! broadcast_binary_op {
($fn_name:ident, $inner_fn_name:ident) => {
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
let lhs = self;
let shape = lhs
.shape()
.broadcast_shape_binary_op(rhs.shape(), stringify!($fn_name))?;
let l_broadcast = shape != *lhs.shape();
let r_broadcast = shape != *rhs.shape();
match (l_broadcast, r_broadcast) {
(true, true) => lhs
.broadcast_as(&shape)?
.$inner_fn_name(&rhs.broadcast_as(&shape)?),
(false, true) => lhs.$inner_fn_name(&rhs.broadcast_as(&shape)?),
(true, false) => lhs.broadcast_as(&shape)?.$inner_fn_name(rhs),
(false, false) => lhs.$inner_fn_name(rhs),
}
}
};
}
/// Creates a fresh tensor structure based on a storage and a shape, this uses contiguous strides.
pub(crate) fn from_storage<S: Into<Shape>>(
storage: Storage,
shape: S,
op: BackpropOp,
is_variable: bool,
) -> Tensor {
let dtype = storage.dtype();
let device = storage.device();
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(storage)),
layout: Layout::contiguous(shape),
op,
is_variable,
dtype,
device,
};
Tensor(Arc::new(tensor_))
}
impl Tensor {
pub(crate) fn ones_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let none = BackpropOp::none();
let shape = shape.into();
let storage = device.ones(&shape, dtype)?;
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor filled with ones.
///
/// ```rust
/// use candle_core::{Tensor, DType, Device};
/// let a = Tensor::ones((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::from_slice(&[1.0f32, 1.0, 1.0, 1.0, 1.0, 1.0], (2, 3), &Device::Cpu)?;
/// // a == b
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
Self::ones_impl(shape, dtype, device, false)
}
/// Creates a new tensor filled with ones with same shape, dtype, and device as the other tensor.
///
/// ```rust
/// use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = a.ones_like()?;
/// // b == a + 1
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn ones_like(&self) -> Result<Self> {
Tensor::ones(self.shape(), self.dtype(), self.device())
}
// Do not expose outside of the crate, the `is_variable=true` case should only be accessed from
// the variable module.
pub(crate) fn zeros_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let none = BackpropOp::none();
let shape = shape.into();
let storage = device.zeros(&shape, dtype)?;
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor filled with zeros.
///
/// ```rust
/// use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::from_slice(&[0.0f32, 0.0, 0.0, 0.0, 0.0, 0.0], (2, 3), &Device::Cpu)?;
/// // a == b
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
Self::zeros_impl(shape, dtype, device, false)
}
/// Creates a new tensor filled with ones with same shape, dtype, and device as the other
/// tensor.
///
/// ```rust
/// use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = a.zeros_like()?;
/// // b is on CPU f32.
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn zeros_like(&self) -> Result<Self> {
Tensor::zeros(self.shape(), self.dtype(), self.device())
}
pub(crate) fn rand_impl<S: Into<Shape>, T: crate::FloatDType>(
lo: T,
up: T,
s: S,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_uniform(lo, up, &s)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
pub(crate) fn rand_f64_impl<S: Into<Shape>>(
lo: f64,
up: f64,
s: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_uniform_f64(lo, up, &s, dtype)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
/// Creates a new tensor initialized with values sampled uniformly between `lo` and `up`.
pub fn rand<S: Into<Shape>, T: crate::FloatDType>(
lo: T,
up: T,
s: S,
device: &Device,
) -> Result<Self> {
Self::rand_impl(lo, up, s, device, false)
}
pub fn rand_like(&self, lo: f64, up: f64) -> Result<Self> {
Tensor::rand_f64_impl(lo, up, self.shape(), self.dtype(), self.device(), false)
}
pub(crate) fn randn_impl<S: Into<Shape>, T: crate::FloatDType>(
mean: T,
std: T,
s: S,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_normal(mean, std, &s)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
pub(crate) fn randn_f64_impl<S: Into<Shape>>(
mean: f64,
std: f64,
s: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_normal_f64(mean, std, &s, dtype)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
pub fn randn_like(&self, mean: f64, stdev: f64) -> Result<Self> {
Tensor::randn_f64_impl(
mean,
stdev,
self.shape(),
self.dtype(),
self.device(),
false,
)
}
/// Creates a new tensor initialized with values sampled from a normal distribution with the
/// specified `mean` and standard deviation `std`.
pub fn randn<S: Into<Shape>, T: crate::FloatDType>(
mean: T,
std: T,
s: S,
device: &Device,
) -> Result<Self> {
Self::randn_impl(mean, std, s, device, false)
}
pub(crate) fn new_impl<A: crate::device::NdArray>(
array: A,
shape: Shape,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let n: usize = shape.elem_count();
let buffer_size: usize = array.shape()?.elem_count();
if buffer_size != n {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage(array)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor on the specified device using the content and shape of the input.
pub fn new<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> {
let shape = array.shape()?;
Self::new_impl(array, shape, device, false)
}
/// Returns a new tensor with all the elements having the same specified value. Note that
/// the tensor is not contiguous so you would have to call `.contiguous()` on it if needed.
pub fn full<D: crate::WithDType, S: Into<Shape>>(
value: D,
shape: S,
device: &Device,
) -> Result<Self> {
Self::from_vec_impl(vec![value], (), device, false)?.broadcast_as(shape)
}
/// Creates a new 1D tensor from an iterator.
pub fn from_iter<D: crate::WithDType>(
iter: impl IntoIterator<Item = D>,
device: &Device,
) -> Result<Self> {
let data = iter.into_iter().collect::<Vec<_>>();
let len = data.len();
Self::from_vec_impl(data, len, device, false)
}
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
/// difference `1` from `start`.
pub fn arange<D: crate::WithDType>(start: D, end: D, device: &Device) -> Result<Self> {
Self::arange_step(start, end, D::one(), device)
}
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
/// difference `step` from `start`.
pub fn arange_step<D: crate::WithDType>(
start: D,
end: D,
step: D,
device: &Device,
) -> Result<Self> {
if D::is_zero(&step) {
bail!("step cannot be zero")
}
let mut data = vec![];
let mut current = start;
if step >= D::zero() {
while current < end {
data.push(current);
current += step;
}
} else {
while current > end {
data.push(current);
current += step;
}
}
let len = data.len();
Self::from_vec_impl(data, len, device, false)
}
pub(crate) fn from_vec_impl<S: Into<Shape>, D: crate::WithDType>(
data: Vec<D>,
shape: S,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let shape = shape.into();
let buffer_size = data.len();
if buffer_size != shape.elem_count() {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage_owned(data)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor initialized with values from the input vector. The number of elements
/// in this vector must be the same as the number of elements defined by the shape.
/// If the device is cpu, no data copy is made.
pub fn from_vec<S: Into<Shape>, D: crate::WithDType>(
data: Vec<D>,
shape: S,
device: &Device,
) -> Result<Self> {
Self::from_vec_impl(data, shape, device, false)
}
/// Creates a new tensor initialized with values from the input slice. The number of elements
/// in this vector must be the same as the number of elements defined by the shape.
pub fn from_slice<S: Into<Shape>, D: crate::WithDType>(
array: &[D],
shape: S,
device: &Device,
) -> Result<Self> {
Self::new_impl(array, shape.into(), device, false)
}
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {
let lhs = self.shape();
let rhs = rhs.shape();
if lhs != rhs {
Err(Error::ShapeMismatchBinaryOp {
lhs: lhs.clone(),
rhs: rhs.clone(),
op,
}
.bt())
} else {
Ok(lhs)
}
}
/// Returns true if the computation graph should track this op, that is if it is
/// a variable or if it has some variable as dependencies.
pub fn track_op(&self) -> bool {
self.is_variable || self.op.is_some()
}
// TODO: Also make an inplace version or a pre-allocated? This could be tricky
// if this can create cycles in the compute graph.
binary_op!(add, Add);
binary_op!(mul, Mul);
binary_op!(sub, Sub);
binary_op!(div, Div);
binary_op_scalar!(maximum, Maximum);
binary_op_scalar!(minimum, Minimum);
broadcast_binary_op!(broadcast_add, add);
broadcast_binary_op!(broadcast_mul, mul);
broadcast_binary_op!(broadcast_sub, sub);
broadcast_binary_op!(broadcast_div, div);
broadcast_binary_op!(broadcast_maximum, maximum);
broadcast_binary_op!(broadcast_minimum, minimum);
broadcast_binary_op!(broadcast_eq, eq);
broadcast_binary_op!(broadcast_ne, ne);
broadcast_binary_op!(broadcast_lt, lt);
broadcast_binary_op!(broadcast_le, le);
broadcast_binary_op!(broadcast_gt, gt);
broadcast_binary_op!(broadcast_ge, ge);
unary_op!(recip, Recip);
unary_op!(neg, Neg);
unary_op!(exp, Exp);
unary_op!(log, Log);
unary_op!(sin, Sin);
unary_op!(cos, Cos);
unary_op!(tanh, Tanh);
unary_op!(abs, Abs);
unary_op!(sqr, Sqr);
unary_op!(sqrt, Sqrt);
unary_op!(gelu, Gelu);
unary_op!(gelu_erf, GeluErf);
unary_op!(erf, Erf);
unary_op!(relu, Relu);
unary_op!(ceil, Ceil);
unary_op!(floor, Floor);
unary_op!(round, Round);
/// Round element of the input tensor to the nearest integer.
///
/// If the number of decimals is negative, it specifies the number of positions to the left of
/// the decimal point.
pub fn round_to(&self, decimals: i32) -> Result<Self> {
let mult = 10f64.powi(decimals);
(self * mult)?.round()? * (1f64 / mult)
}
/// Retrieves the single scalar value hold in the tensor. If the tensor contains multiple
/// dimensions, an error is returned instead.
pub fn to_scalar<S: crate::WithDType>(&self) -> Result<S> {
if self.rank() != 0 {
Err(Error::UnexpectedNumberOfDims {
expected: 0,
got: self.rank(),
shape: self.shape().clone(),
}
.bt())?
}
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
Ok::<_, Error>(data[self.layout().start_offset()])
};
match &*self.storage() {
Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// An alias for `to_scalar`.
pub fn to_vec0<S: crate::WithDType>(&self) -> Result<S> {
self.to_scalar::<S>()
}
/// Repeat this tensor along the specified dimensions.
pub fn repeat<S: Into<Shape>>(&self, shape: S) -> Result<Tensor> {
// Similar to PyTorch, we extend the number of dimensions of self if needed.
let repeats = shape.into();
let repeats = repeats.dims();
let mut inp = if self.rank() < repeats.len() {
let shape = [vec![1; repeats.len() - self.rank()], self.dims().to_vec()].concat();
self.reshape(shape)?
} else {
self.clone()
};
for (idx, &repeat) in repeats.iter().enumerate() {
if repeat > 1 {
inp = Tensor::cat(&vec![&inp; repeat], idx)?
}
}
Ok(inp)
}
/// Creates grids of coordinates specified by the 1D inputs.
///
/// # Arguments
///
/// * `args` - A slice of 1D tensors.
/// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the
/// first dimension corresponds to the cardinality of the second input and the second
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
/// dimensions are in the same order as the cardinality of the inputs.
///
/// # Examples
///
/// ```rust
/// use candle_core::{Tensor, Device, Shape};
/// let x = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?;
/// let y = Tensor::new(&[4f32, 5., 6.], &Device::Cpu)?;
///
/// let grids_xy = Tensor::meshgrid(&[&x, &y], true)?;
///
/// assert_eq!(grids_xy.len(), 2);
/// assert_eq!(grids_xy[0].dims(), &[3, 3]);
///
/// assert_eq!(grids_xy[0].to_vec2::<f32>()?, &[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]);
/// assert_eq!(grids_xy[1].to_vec2::<f32>()?, &[[4., 4., 4.], [5., 5., 5.], [6., 6., 6.]]);
///
/// let grids_ij = Tensor::meshgrid(&[&x, &y], false)?;
///
/// assert_eq!(grids_ij[0].to_vec2::<f32>()?, &[[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]);
/// assert_eq!(grids_ij[1].to_vec2::<f32>()?, &[[4., 5., 6.], [4., 5., 6.], [4., 5., 6.]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
///
/// # Errors
///
/// * Will return `Err` if `args` contains less than 2 tensors.
///
pub fn meshgrid<A: AsRef<Tensor>>(args: &[A], xy_indexing: bool) -> Result<Vec<Self>> {
if args.len() <= 1 {
Err(Error::OpRequiresAtLeastTwoTensors { op: "meshgrid" }.bt())?
}
let args: Vec<_> = if xy_indexing {
args.iter().rev().collect()
} else {
args.iter().collect()
};
let mut shape = Vec::with_capacity(args.len());
for arg in args.iter() {
shape.push(arg.as_ref().dims1()?)
}
let mut grids = Vec::with_capacity(args.len());
for idx in 0..args.len() {
let mut ones = vec![1usize; args.len()];
ones[idx] = shape[idx];
let arg = args[idx].as_ref().reshape(ones)?;
let mut repeats = shape.clone();
repeats[idx] = 1;
let repeated_tensor = arg.repeat(repeats)?;
grids.push(repeated_tensor);
}
if xy_indexing {
grids.reverse();
}
Ok(grids)
}
/// This operation multiplies the input tensor by `mul` then adds `add` and return the result.
/// The input values `mul` and `add` are casted to the appropriate type so some rounding might
/// be performed.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?;
/// let a = a.affine(4., -2.)?;
/// assert_eq!(a.to_vec2::<f32>()?, &[[-2.0, 2.0], [6.0, 10.0]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn affine(&self, mul: f64, add: f64) -> Result<Self> {
let storage = self.storage().affine(self.layout(), mul, add)?;
let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add });
Ok(from_storage(storage, self.shape(), op, false))
}
/// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor.
pub fn elu(&self, alpha: f64) -> Result<Self> {
let storage = self.storage().elu(self.layout(), alpha)?;
let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha));
Ok(from_storage(storage, self.shape(), op, false))
}
/// Raise the tensor to some float exponent `e`.
pub fn powf(&self, e: f64) -> Result<Self> {
let storage = self.storage().powf(self.layout(), e)?;
let op = BackpropOp::new1(self, |t| Op::Powf(t, e));
Ok(from_storage(storage, self.shape(), op, false))
}
fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
if dim >= self.dims().len() {
Err(Error::DimOutOfRange {
shape: self.shape().clone(),
dim: dim as i32,
op,
}
.bt())?
} else {
Ok(())
}
}
/// Split a tensor into the specified number of chunks, this may return less chunks than
/// specified.
pub fn chunk<D: Dim>(&self, chunks: usize, dim: D) -> Result<Vec<Self>> {
let dim = dim.to_index(self.shape(), "chunk")?;
let size = self.dim(dim)?;
if size < chunks {
(0..size).map(|i| self.narrow(dim, i, 1)).collect()
} else {
let chunk_size = size / chunks;
let cnt_additional = size % chunks;
let mut tensors = vec![];
let mut sum_chunk_size = 0;
for i in 0..chunks {
let chunk_size = if i < cnt_additional {
chunk_size + 1
} else {
chunk_size
};
let tensor = self.narrow(dim, sum_chunk_size, chunk_size)?;
tensors.push(tensor);
sum_chunk_size += chunk_size
}
Ok(tensors)
}
}
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
/// ranges from `start` to `start + len`.
pub fn narrow<D: Dim>(&self, dim: D, start: usize, len: usize) -> Result<Self> {
let dims = self.dims();
let dim = dim.to_index(self.shape(), "narrow")?;
let err = |msg| {
Err::<(), _>(
Error::NarrowInvalidArgs {
shape: self.shape().clone(),
dim,
start,
len,
msg,
}
.bt(),
)
};
if start > dims[dim] {
err("start > dim_len")?
}
if start.saturating_add(len) > dims[dim] {
err("start + len > dim_len")?
}
if start == 0 && dims[dim] == len {
Ok(self.clone())
} else {
let op = BackpropOp::new1(self, |t| Op::Narrow(t, dim, start, len));
let layout = self.layout().narrow(dim, start, len)?;
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout,
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
}
fn squeeze_dims(self, dims: &[usize]) -> Result<Self> {
match dims {
[] => Ok(self),
[i] => self.squeeze(*i),
dims => {
let dims = self
.dims()
.iter()
.enumerate()
.filter_map(|(dim_idx, &v)| {
if dims.contains(&dim_idx) {
None
} else {
Some(v)
}
})
.collect::<Vec<_>>();
self.reshape(dims)
}
}
}
fn reduce_impl<D: Dim>(&self, dim: D, keepdim: bool, op: ReduceOp) -> Result<Self> {
let dim = dim.to_index(self.shape(), op.name())?;
let storage = self.storage().reduce_op(op, self.layout(), &[dim])?;
let mut dims = self.dims().to_vec();
dims[dim] = 1;
let op = match op {
ReduceOp::Sum | ReduceOp::Min | ReduceOp::Max => {
BackpropOp::new1(self, |arg| Op::Reduce(arg, op, dims.to_vec()))
}
ReduceOp::ArgMin | ReduceOp::ArgMax => BackpropOp::none(),
};
let res = from_storage(storage, dims, op, false);
if keepdim {
Ok(res)
} else {
res.squeeze_dims(&[dim])
}
}
fn sum_impl<D: Dims>(&self, sum_dims: D, keepdim: bool) -> Result<Self> {
let sum_dims = sum_dims.to_indexes(self.shape(), "sum")?;
let storage = self
.storage()
.reduce_op(ReduceOp::Sum, self.layout(), &sum_dims)?;
let mut dims = self.dims().to_vec();
for &sum_dim in sum_dims.iter() {
dims[sum_dim] = 1
}
let op = BackpropOp::new1(self, |a| Op::Reduce(a, ReduceOp::Sum, dims.to_vec()));
let sum = from_storage(storage, dims, op, false);
if keepdim {
Ok(sum)
} else {
sum.squeeze_dims(&sum_dims)
}
}
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
/// input dimensions.
///
/// The resulting tensor has a shape that is similar to the shape of the input tensor, except
/// that the number of elements for each dimension index in `sum_dims` is 1.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?;
/// let s = a.sum_keepdim(0)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[2., 4.]]);
/// let s = a.sum_keepdim(1)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[1.], [5.]]);
/// let s = a.sum_keepdim((0, 1))?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[6.]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn sum_keepdim<D: Dims>(&self, sum_dims: D) -> Result<Self> {
self.sum_impl(sum_dims, true)
}
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
/// input dimensions and compared to `sum_keepdim` these dimensions are squeezed rather than
/// kept.
pub fn sum<D: Dims>(&self, sum_dims: D) -> Result<Self> {
self.sum_impl(sum_dims, false)
}
/// Returns the mean of all elements in the input tensor. The mean is performed over all the
/// input dimensions.
///
/// The resulting tensor has a shape that is similar to the shape of the input tensor, except
/// that the number of elements for each dimension index in `mean_dims` is 1.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?;
/// let s = a.mean_keepdim(0)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[1., 2.]]);
/// let s = a.mean_keepdim(1)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[0.5], [2.5]]);
/// let s = a.mean_keepdim((0, 1))?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[1.5]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn mean_keepdim<D: Dims>(&self, mean_dims: D) -> Result<Self> {
let mean_dims = mean_dims.to_indexes(self.shape(), "mean-keepdim")?;
let reduced_dim: usize = mean_dims.iter().map(|i| self.dims()[*i]).product();
let scale = 1f64 / (reduced_dim as f64);
self.sum_impl(mean_dims, true)? * scale
}
/// Returns the mean of all elements in the input tensor. The mean is performed over all the
/// input dimensions and compared to `mean_keepdim` these dimensions are squeezed rather than
/// kept.
pub fn mean<D: Dims>(&self, mean_dims: D) -> Result<Self> {
let mean_dims = mean_dims.to_indexes(self.shape(), "mean")?;
let reduced_dim: usize = mean_dims.iter().map(|i| self.dims()[*i]).product();
let scale = 1f64 / (reduced_dim as f64);
self.sum_impl(mean_dims, false)? * scale
}
/// Returns the unbiased variance over the selected dimension.
pub fn var_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
let mean = self.mean_keepdim(dim)?;
let squares = self.broadcast_sub(&mean)?.sqr()?;
squares.sum_impl(dim, true)? / (self.dim(dim)? - 1) as f64
}
/// Returns the unbiased variance over the selected dimension.
pub fn var<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
self.var_keepdim(dim)?.squeeze(dim)
}
/// Gathers the maximum value across the selected dimension. The resulting shape has the same
/// number of dimensions as the original tensor and the select dimension has a single element.
pub fn max_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::Max)
}
/// Similar to `max_keepdim` but the target dimension is squeezed.
pub fn max<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::Max)
}
/// Gathers the minimum value across the selected dimension. The resulting shape has the same
/// number of dimensions as the original tensor and the select dimension has a single element.
pub fn min_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::Min)
}
/// Similar to `min_keepdim` but the target dimension is squeezed.
pub fn min<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::Min)
}
pub fn argmax_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::ArgMax)
}
/// Similar to `argmax_keepdim` but the target dimension is squeezed.
pub fn argmax<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::ArgMax)
}
pub fn argmin_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::ArgMin)
}
/// Similar to `argmin_keepdim` but the target dimension is squeezed.
pub fn argmin<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::ArgMin)
}
/// Element-wise comparison between two tensors, e.g. equality, greater than, ... The actual
/// comparison operation is specified by the `op` argument.
///
/// The returned tensor has the same shape as the original tensors and uses `u8` elements.
pub fn cmp<T: TensorOrScalar>(&self, rhs: T, op: CmpOp) -> Result<Self> {
let rhs = match rhs.to_tensor_scalar()? {
crate::scalar::TensorScalar::Tensor(rhs) => rhs,
crate::scalar::TensorScalar::Scalar(rhs) => rhs
.to_dtype(self.dtype())?
.to_device(self.device())?
.broadcast_as(self.shape())?,
};
let shape = self.same_shape_binary_op(&rhs, "cmp")?;
let storage = self
.storage()
.cmp(op, &rhs.storage(), self.layout(), rhs.layout())?;
let op = BackpropOp::new1(self, |a| Op::Cmp(a, op));
Ok(from_storage(storage, shape.dims(), op, false))
}
/// Element-wise equality.
pub fn eq<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Eq)
}
/// Element-wise non-equality.
pub fn ne<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Ne)
}
/// Element-wise comparison with lower-than, the returned tensor uses value 1 where `self <
/// rhs` and 0 otherwise.
pub fn lt<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Lt)
}
/// Element-wise comparison with greater-than, the returned tensor uses value 1 where `self >
/// rhs` and 0 otherwise.
pub fn gt<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Gt)
}
/// Element-wise comparison with greater-equal, the returned tensor uses value 1 where `self >=
/// rhs` and 0 otherwise.
pub fn ge<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Ge)
}
/// Element-wise comparison with lower-equal, the returned tensor uses value 1 where `self <=
/// rhs` and 0 otherwise.
pub fn le<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Le)
}
/// Clamp the tensor values to be between `min` and `max`.
pub fn clamp<T1: TensorOrScalar, T2: TensorOrScalar>(&self, min: T1, max: T2) -> Result<Self> {
self.maximum(min)?.minimum(max)
}
/// Interpolate the input tensor to the `target_size` size, taking the value of the nearest element.
///
/// The input tensor should have three dimensions, `(batch, channels, l)`, the returned
/// tensor also has three dimensions, `(batch, channels, target_size)`.
pub fn interpolate1d(&self, target_size: usize) -> Result<Self> {
let (n, c, _l) = self.dims3()?;
let op = BackpropOp::new1(self, Op::UpsampleNearest1D);
let storage = self
.storage()
.upsample_nearest1d(self.layout(), target_size)?;
Ok(from_storage(storage, (n, c, target_size), op, false))
}
/// Alias for `interpolate1d`.
pub fn upsample_nearest1d(&self, target_size: usize) -> Result<Self> {
self.interpolate1d(target_size)
}
/// Interpolate the input tensor to the `(target_h, target_w)` size, taking the value of the
/// nearest element.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, target_h, target_w)`.
pub fn interpolate2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
let (n, c, _h, _w) = self.dims4()?;
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest2D {
arg,
target_h,
target_w,
});
let storage = self
.storage()
.upsample_nearest2d(self.layout(), target_h, target_w)?;
Ok(from_storage(storage, (n, c, target_h, target_w), op, false))
}
/// Alias for `interpolate2d`.
pub fn upsample_nearest2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
self.interpolate2d(target_h, target_w)
}
/// 2D average pooling over an input tensor with multiple channels.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, h', w')`. The pooling is performed on
/// the two last dimensions using a kernel of size `sz`. The returned element is the average
/// value over the kernel window.
pub fn avg_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> {
let sz = sz.to_usize2();
self.avg_pool2d_with_stride(sz, sz)
}
/// Same as `avg_pool2d` but with a `stride` that can be set to a value different from the
/// kernel size.
pub fn avg_pool2d_with_stride<T: crate::ToUsize2>(
&self,
kernel_size: T,
stride: T,
) -> Result<Self> {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
let op = BackpropOp::new1(self, |arg| Op::AvgPool2D {
arg,
kernel_size,
stride,
});
let storage = self
.storage()
.avg_pool2d(self.layout(), kernel_size, stride)?;
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
/// 2D max pooling over an input tensor with multiple channels.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, h', w')`. The pooling is performed on
/// the two last dimensions using a kernel of size `sz`, the returned element is the maximum
/// value over the kernel window.
pub fn max_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> {
let sz = sz.to_usize2();
self.max_pool2d_with_stride(sz, sz)
}
/// Same as `max_pool2d` but with a `stride` that can be set to a value different from the
/// kernel size.
pub fn max_pool2d_with_stride<T: crate::ToUsize2>(
&self,
kernel_size: T,
stride: T,
) -> Result<Self> {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
let op = BackpropOp::new1(self, |arg| Op::MaxPool2D {
arg,
kernel_size,
stride,
});
let storage = self
.storage()
.max_pool2d(self.layout(), kernel_size, stride)?;
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
/// Returns the matrix-multiplication of the input tensor with the other provided tensor.
///
/// # Arguments
///
/// * `self` - A tensor with dimensions `b1, b2, ..., bi, m, k`.
/// * `rhs` - A tensor with dimensions `b1, b2, ..., bi, k, n`.
///
/// The resulting tensor has dimensions `b1, b2, ..., bi, m, n`.
pub fn matmul(&self, rhs: &Self) -> Result<Self> {
let a_dims = self.shape().dims();
let b_dims = rhs.shape().dims();
let dim = a_dims.len();
if dim < 2 || b_dims.len() != dim {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
}
.bt())?
}
let m = a_dims[dim - 2];
let k = a_dims[dim - 1];
let k2 = b_dims[dim - 2];
let n = b_dims[dim - 1];
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
let batching: usize = a_dims[..dim - 2].iter().product();
let batching_b: usize = b_dims[..dim - 2].iter().product();
if k != k2 || batching != batching_b {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
}
.bt())?
}
let storage = self.storage().matmul(
&rhs.storage(),
(batching, m, n, k),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, rhs, Op::Matmul);
Ok(from_storage(storage, c_shape, op, false))
}
/// Matrix-multiplication with broadcasting support.
///
/// Compared to `matmul` the two matrixes are allowed to have different dimensions as long as
/// they are compatible for broadcast. E.g. if `self` has shape `(j, 1, n, k)` and `rhs` has
/// shape `(l, k, m)`, the output will have shape `(j, l, n, m)`.
pub fn broadcast_matmul(&self, rhs: &Self) -> Result<Self> {
let lhs = self;
let (l_shape, r_shape) = lhs.shape().broadcast_shape_matmul(rhs.shape())?;
let l_broadcast = l_shape != *lhs.shape();
let r_broadcast = r_shape != *rhs.shape();
// TODO: Avoid concretising the broadcasted matrixes via contiguous.
match (l_broadcast, r_broadcast) {
(true, true) => lhs
.broadcast_as(&l_shape)?
.contiguous()?
.matmul(&rhs.broadcast_as(&r_shape)?.contiguous()?),
(false, true) => lhs.matmul(&rhs.broadcast_as(&r_shape)?.contiguous()?),
(true, false) => lhs.broadcast_as(&l_shape)?.contiguous()?.matmul(rhs),
(false, false) => lhs.matmul(rhs),
}
}
/// Returns a tensor with the same shape as the input tensor, the values are taken from
/// `on_true` if the input tensor value is not zero, and `on_false` at the positions where the
/// input tensor is equal to zero.
pub fn where_cond(&self, on_true: &Self, on_false: &Self) -> Result<Self> {
let _shap = self.same_shape_binary_op(on_true, "where_cond")?;
let shape = self.same_shape_binary_op(on_false, "where_cond")?;
let storage = self.storage().where_cond(
self.layout(),
&on_true.storage(),
on_true.layout(),
&on_false.storage(),
on_false.layout(),
)?;
let op = BackpropOp::new3(self, on_true, on_false, Op::WhereCond);
Ok(from_storage(storage, shape, op, false))
}
/// Returns a tensor with the values from the `self` tensor at the index corresponding to the
/// values hold in the `ids` tensor.
///
/// # Arguments
///
/// * `self` - A tensor with dimensions `v, h`.
/// * `ids` - A tensor with dimensions `s` and with integer values between 0 and v (exclusive).
///
/// The resulting tensor has dimensions `s, h`. `s` is called the sequence length, `v` the
/// vocabulary size, and `h` the hidden size.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let values = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let ids = Tensor::new(&[2u32, 1u32, 2u32], &Device::Cpu)?;
/// let emb = values.embedding(&ids)?;
/// assert_eq!(emb.to_vec2::<f32>()?, &[[4., 5.], [2., 3.], [4., 5.]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn embedding(&self, ids: &Self) -> Result<Self> {
if self.rank() != 2 || ids.rank() != 1 {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: ids.shape().clone(),
op: "embedding",
}
.bt())?
}
self.index_select(ids, 0)
}
pub fn scatter_add<D: Dim>(&self, indexes: &Self, source: &Self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "scatter-add")?;
let source_dims = source.dims();
let self_dims = self.dims();
let mismatch = if source_dims.len() != self_dims.len() {
true
} else {
let mut mismatch = false;
for (i, (&d1, &d2)) in self_dims.iter().zip(source_dims.iter()).enumerate() {
if i != dim && d1 != d2 {
mismatch = true;
break;
}
}
mismatch
};
if mismatch {
Err(Error::ShapeMismatchBinaryOp {
op: "scatter-add (self, src)",
lhs: self.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
}
if indexes.dims() != source.dims() {
Err(Error::ShapeMismatchBinaryOp {
op: "scatter-add (indexes, src)",
lhs: indexes.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
}
let storage = self.storage().scatter_add(
self.layout(),
&indexes.storage(),
indexes.layout(),
&source.storage(),
source.layout(),
dim,
)?;
let op = BackpropOp::new3(self, indexes, source, |t1, t2, t3| {
Op::ScatterAdd(t1, t2, t3, dim)
});
Ok(from_storage(storage, self.shape(), op, false))
}
/// Embeds the values of the `src` tensor into the `self` tensor on the specified dimension.
pub fn slice_scatter<D: Dim>(&self, src: &Self, dim: D, start: usize) -> Result<Self> {
let dim = dim.to_index(self.shape(), "slice-scatter")?;
if dim == 0 {
self.slice_scatter0(src, start)
} else {
// TODO: Maybe we want to add a more efficient implementation at some point.
self.transpose(0, dim)?
.slice_scatter0(&src.transpose(0, dim)?, start)?
.transpose(0, dim)
}
}
/// Embeds the values of the `src` tensor into the `self` tensor on the first dimension.
pub fn slice_scatter0(&self, src: &Self, start: usize) -> Result<Self> {
if self.dtype() != src.dtype() {
Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: src.dtype(),
op: "slice-scatter",
}
.bt())?
}
if self.device().location() != src.device.location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: self.device().location(),
rhs: src.device().location(),
op: "slice-scatter",
}
.bt())?
}
if self.rank() != src.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: self.rank(),
got: src.rank(),
shape: src.shape().clone(),
}
.bt())?
}
let shape_ok =
self.dims()
.iter()
.zip(src.dims().iter())
.enumerate()
.all(|(dim_idx, (&d1, &d2))| {
if 0 == dim_idx {
d2 + start <= d1
} else {
d1 == d2
}
});
if !shape_ok {
Err(Error::ShapeMismatchBinaryOp {
op: "slice-scatter (self, src)",
lhs: self.shape().clone(),
rhs: src.shape().clone(),
}
.bt())?
}
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let offset = start * src.dims()[1..].iter().product::<usize>();
src.storage()
.copy_strided_src(&mut storage, offset, src.layout())?;
let op = BackpropOp::new2(self, src, |t1, t2| Op::SliceScatter0(t1, t2, start));
Ok(from_storage(storage, self.shape(), op, false))
}
/// Accumulate element from `source` at indexes `indexes` and add them to `self`.
pub fn index_add<D: Dim>(&self, indexes: &Self, source: &Self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "index-add")?;
let source_dims = source.dims();
let self_dims = self.dims();
let mismatch = if source_dims.len() != self_dims.len() {
true
} else {
let mut mismatch = false;
for (i, (&d1, &d2)) in self_dims.iter().zip(source_dims.iter()).enumerate() {
if i != dim && d1 != d2 {
mismatch = true;
break;
}
}
mismatch
};
if mismatch {
Err(Error::ShapeMismatchBinaryOp {
op: "index-add (self, source)",
lhs: self.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
}
// The number of element in indexes must match the dimension on which the add is
// performed on the source tensor (and the index values from `indexes` are taken from
// the target tensor self)
let indexes_len = indexes.dims1()?;
if source_dims[dim] != indexes_len {
Err(Error::ShapeMismatchBinaryOp {
op: "index-add (ids, source))",
lhs: indexes.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
}
let storage = self.storage().index_add(
self.layout(),
&indexes.storage(),
indexes.layout(),
&source.storage(),
source.layout(),
dim,
)?;
let op = BackpropOp::new3(self, indexes, source, |t1, t2, t3| {
Op::IndexAdd(t1, t2, t3, dim)
});
Ok(from_storage(storage, self.shape(), op, false))
}
/// Gather values across the target dimension.
///
/// # Arguments
///
/// * `self` - The input tensor.
/// * `indexes` - The indices of elements to gather, this should have the same shape as `self`
/// but can have a different number of elements on the target dimension.
/// * `dim` - the target dimension.
///
/// The resulting tensor has the same shape as `indexes` and use values from `self` indexed on
/// dimension `dim` by the values in `indexes`.
pub fn gather<D: Dim>(&self, indexes: &Self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "gather")?;
let self_dims = self.dims();
let indexes_dims = indexes.dims();
let mismatch = if indexes_dims.len() != self_dims.len() {
true
} else {
let mut mismatch = false;
for (i, (&d1, &d2)) in self_dims.iter().zip(indexes_dims.iter()).enumerate() {
if i != dim && d1 != d2 {
mismatch = true;
break;
}
}
mismatch
};
if mismatch {
Err(Error::ShapeMismatchBinaryOp {
op: "gather",
lhs: self.shape().clone(),
rhs: indexes.shape().clone(),
}
.bt())?
}
let storage =
self.storage()
.gather(self.layout(), &indexes.storage(), indexes.layout(), dim)?;
let op = BackpropOp::new2(self, indexes, |t1, t2| Op::Gather(t1, t2, dim));
Ok(from_storage(storage, indexes.shape(), op, false))
}
/// Select values for the input tensor at the target indexes across the specified dimension.
///
/// The `indexes` is argument is an int tensor with a single dimension.
/// The output has the same number of dimension as the `self` input. The target dimension of
/// the output has length the length of `indexes` and the values are taken from `self` using
/// the index from `indexes`. Other dimensions have the same number of elements as the input
/// tensor.
pub fn index_select<D: Dim>(&self, indexes: &Self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "index-select")?;
let indexes_len = match indexes.dims() {
[l] => *l,
_ => Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: indexes.shape().clone(),
op: "index-select",
}
.bt())?,
};
let storage = self.storage().index_select(
&indexes.storage(),
self.layout(),
indexes.layout(),
dim,
)?;
let mut dims = self.dims().to_vec();
dims[dim] = indexes_len;
let op = BackpropOp::new2(self, indexes, |t1, t2| Op::IndexSelect(t1, t2, dim));
Ok(from_storage(storage, dims, op, false))
}
/// Returns an iterator over position of the elements in the storage when ranging over the
/// index tuples in lexicographic order.
pub fn strided_index(&self) -> crate::StridedIndex {
self.layout.strided_index()
}
/// Similar to `strided_index` but returns the position of the start of each contiguous block
/// as well as the length of the contiguous blocks. For a contiguous tensor, the index iterator
/// will only return the start offset and the size would be the number of elements in the
/// tensor.
pub fn strided_blocks(&self) -> crate::StridedBlocks {
self.layout.strided_blocks()
}
/// Returns the data contained in a 1D tensor as a vector of scalar values.
pub fn to_vec1<S: crate::WithDType>(&self) -> Result<Vec<S>> {
if self.rank() != 1 {
Err(Error::UnexpectedNumberOfDims {
expected: 1,
got: self.rank(),
shape: self.shape().clone(),
}
.bt())?
}
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let data = match self.layout.contiguous_offsets() {
Some((o1, o2)) => data[o1..o2].to_vec(),
None => self.strided_index().map(|i| data[i]).collect(),
};
Ok::<Vec<_>, Error>(data)
};
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// Returns the data contained in a 2D tensor as a vector of vector of scalar values.
pub fn to_vec2<S: crate::WithDType>(&self) -> Result<Vec<Vec<S>>> {
let (dim1, dim2) = self.dims2()?;
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let mut rows = vec![];
match self.layout.contiguous_offsets() {
Some((o1, o2)) => {
let data = &data[o1..o2];
for idx_row in 0..dim1 {
rows.push(data[idx_row * dim2..(idx_row + 1) * dim2].to_vec())
}
}
None => {
let mut src_index = self.strided_index();
for _idx_row in 0..dim1 {
let row = (0..dim2).map(|_| data[src_index.next().unwrap()]).collect();
rows.push(row)
}
assert!(src_index.next().is_none());
}
}
Ok(rows)
};
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// Returns the data contained in a 3D tensor.
pub fn to_vec3<S: crate::WithDType>(&self) -> Result<Vec<Vec<Vec<S>>>> {
let (dim1, dim2, dim3) = self.dims3()?;
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let mut top_rows = vec![];
match self.layout.contiguous_offsets() {
Some((o1, o2)) => {
let data = &data[o1..o2];
let dim23 = dim2 * dim3;
for idx1 in 0..dim1 {
let data = &data[idx1 * dim23..(idx1 + 1) * dim23];
let mut rows = vec![];
for idx2 in 0..dim2 {
rows.push(data[idx2 * dim3..(idx2 + 1) * dim3].to_vec())
}
top_rows.push(rows);
}
}
None => {
let mut src_index = self.strided_index();
for _idx in 0..dim1 {
let mut rows = vec![];
for _jdx in 0..dim2 {
let row = (0..dim3).map(|_| data[src_index.next().unwrap()]).collect();
rows.push(row)
}
top_rows.push(rows);
}
assert!(src_index.next().is_none());
}
}
Ok(top_rows)
};
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// The dtype for the elements stored in the input tensor.
pub fn dtype(&self) -> DType {
self.dtype
}
/// The device on which the input tensor is located.
pub fn device(&self) -> &Device {
&self.device
}
/// The tensor shape, i.e. dimension sizes on each axis.
pub fn shape(&self) -> &Shape {
self.layout().shape()
}
/// The dimension size for this tensor on each axis.
pub fn dims(&self) -> &[usize] {
self.shape().dims()
}
/// The dimension size for a specified dimension index.
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
let dim = dim.to_index(self.shape(), "dim")?;
Ok(self.dims()[dim])
}
/// The layout of the input tensor, this stores both the shape of the tensor as well as the
/// strides and the start offset to apply to the underlying storage.
pub fn layout(&self) -> &Layout {
&self.layout
}
pub fn stride(&self) -> &[usize] {
self.layout.stride()
}
/// The number of dimensions for this tensor, 0 for a scalar tensor, 1 for a 1D tensor, etc.
pub fn rank(&self) -> usize {
self.shape().rank()
}
/// The number of elements stored in this tensor.
pub fn elem_count(&self) -> usize {
self.shape().elem_count()
}
/// The unique identifier for this tensor.
pub fn id(&self) -> TensorId {
self.id
}
/// Whether this tensor is a variable or not. A variable is a tensor for which gradient is
/// tracked and on which backpropagation can be performed.
pub fn is_variable(&self) -> bool {
self.is_variable
}
pub(crate) fn op(&self) -> &Option<Op> {
&self.op
}
/// Computes the sum of all the elements in this tensor and returns a tensor holding this
/// scalar with zero dimensions.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.sum_all()?;
/// assert_eq!(tensor.to_scalar::<f32>()?, 15.);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn sum_all(&self) -> Result<Tensor> {
let dims: Vec<_> = (0..self.rank()).collect();
self.sum(dims)
}
pub fn mean_all(&self) -> Result<Tensor> {
self.sum_all()? / self.elem_count() as f64
}
fn flatten_<D1: Dim, D2: Dim>(
&self,
start_dim: Option<D1>,
end_dim: Option<D2>,
) -> Result<Tensor> {
if self.rank() == 0 {
self.reshape(1)
} else {
let start_dim = match start_dim {
None => 0,
Some(dim) => dim.to_index(self.shape(), "flatten")?,
};
let end_dim = match end_dim {
None => self.rank() - 1,
Some(dim) => dim.to_index(self.shape(), "flatten")?,
};
if start_dim < end_dim {
let dims = self.dims();
let mut dst_dims = dims[..start_dim].to_vec();
dst_dims.push(dims[start_dim..end_dim + 1].iter().product::<usize>());
if end_dim + 1 < dims.len() {
dst_dims.extend(&dims[end_dim + 1..]);
}
self.reshape(dst_dims)
} else {
Ok(self.clone())
}
}
}
/// Flattens the input tensor on the dimension indexes from `start_dim` to `end_dim` (both
/// inclusive).
pub fn flatten<D1: Dim, D2: Dim>(&self, start_dim: D1, end_dim: D2) -> Result<Tensor> {
self.flatten_(Some(start_dim), Some(end_dim))
}
/// Flattens the input tensor on the dimension indexes from `0` to `end_dim` (inclusive).
pub fn flatten_to<D: Dim>(&self, end_dim: D) -> Result<Tensor> {
self.flatten_(None::<usize>, Some(end_dim))
}
/// Flattens the input tensor on the dimension indexes from `start_dim` (inclusive) to the last
/// dimension.
pub fn flatten_from<D: Dim>(&self, start_dim: D) -> Result<Tensor> {
self.flatten_(Some(start_dim), None::<usize>)
}
/// Flattens the input tensor by reshaping it into a one dimension tensor.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.flatten_all()?;
/// assert_eq!(tensor.to_vec1::<f32>()?, &[0., 1., 2., 3., 4., 5.]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn flatten_all(&self) -> Result<Tensor> {
self.flatten_(None::<usize>, None::<usize>)
}
/// Returns the sub-tensor fixing the index at `i` on the first dimension.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let t = tensor.get(0)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[0., 1.]);
/// let t = tensor.get(1)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn get(&self, i: usize) -> Result<Tensor> {
let dims = self.dims();
if dims.is_empty() {
Ok(self.clone())
} else {
self.narrow(0, i, 1)?.reshape(&dims[1..])
}
}
/// Returns the sub-tensor fixing the index at `index` on the dimension `dim`.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let t = tensor.get_on_dim(1, 0)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[0., 2., 4.]);
/// let t = tensor.get_on_dim(1, 1)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[1., 3., 5.]);
/// let t = tensor.get_on_dim(0, 1)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn get_on_dim<D: Dim>(&self, dim: D, index: usize) -> Result<Tensor> {
let dim = dim.to_index(self.shape(), "get_on_dim")?;
self.narrow(dim, index, 1)?.squeeze(dim)
}
/// Returns a tensor that is a transposed version of the input, the two last dimensions of the
/// input are swapped.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.t()?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[0.0, 2.0, 4.0], [1.0, 3.0, 5.0]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn t(&self) -> Result<Tensor> {
let rank = self.rank();
if rank < 2 {
Err(Error::UnexpectedNumberOfDims {
expected: 2,
got: rank,
shape: self.shape().clone(),
}
.bt())?
}
self.transpose(rank - 2, rank - 1)
}
/// Returns a tensor that is a transposed version of the input, the given dimensions are
/// swapped.
pub fn transpose<D1: Dim, D2: Dim>(&self, dim1: D1, dim2: D2) -> Result<Tensor> {
let dim1 = dim1.to_index(self.shape(), "transpose")?;
let dim2 = dim2.to_index(self.shape(), "transpose")?;
if dim1 == dim2 {
return Ok(self.clone());
}
let op = BackpropOp::new1(self, |t| Op::Transpose(t, dim1, dim2));
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.transpose(dim1, dim2)?,
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Returns a tensor with the same data as the input where the dimensions have been permuted.
/// dims must be a permutation, i.e. include each dimension index exactly once.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::arange(0u32, 120u32, &Device::Cpu)?.reshape((2, 3, 4, 5))?;
/// assert_eq!(tensor.dims(), &[2, 3, 4, 5]);
/// let tensor = tensor.permute((2, 3, 1, 0))?;
/// assert_eq!(tensor.dims(), &[4, 5, 3, 2]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn permute<D: Dims>(&self, dims: D) -> Result<Tensor> {
let dims = dims.to_indexes(self.shape(), "permute")?;
// O(n^2) permutation check but these arrays are small.
let is_permutation =
dims.len() == self.rank() && (0..dims.len()).all(|i| dims.contains(&i));
if !is_permutation {
bail!(
"dimension mismatch in permute, tensor {:?}, dims: {:?}",
self.dims(),
dims
)
}
let op = BackpropOp::new1(self, |t| Op::Permute(t, dims.clone()));
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.permute(&dims)?,
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Returns true if the data is stored in a C contiguous (aka row major) way.
pub fn is_contiguous(&self) -> bool {
self.layout.is_contiguous()
}
/// Returns true if the data is stored in a Fortran contiguous (aka column major) way.
pub fn is_fortran_contiguous(&self) -> bool {
self.layout.is_fortran_contiguous()
}
/// Compared to clone, this copies the actual storage but may fail because of running out of
/// memory.
pub fn copy(&self) -> Result<Tensor> {
let op = BackpropOp::new1(self, Op::Copy);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(self.storage().try_clone(self.layout())?)),
layout: self.layout.clone(),
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Returns a new tensor detached from the current graph, gradient are not propagated through
/// this new node. The storage of this tensor is shared with the initial tensor.
///
/// If the tensor is already detached from the computation graph, the same tensor is returned.
pub fn detach(&self) -> Result<Tensor> {
if self.op.is_none() && !self.is_variable {
Ok(self.clone())
} else {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.clone(),
op: BackpropOp::none(),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
}
/// If the target device is the same as the tensor device, only a shallow copy is performed.
pub fn to_device(&self, device: &Device) -> Result<Tensor> {
if self.device().same_device(device) {
Ok(self.clone())
} else {
let storage = match (&*self.storage(), device) {
(Storage::Cpu(storage), Device::Cuda(cuda)) => {
Storage::Cuda(cuda.storage_from_cpu_storage(storage)?)
}
(Storage::Cpu(storage), Device::Metal(metal)) => {
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
// are the same.
let cpu_storage = storage.to_cpu_storage()?;
Storage::Cuda(cuda.storage_from_cpu_storage(&cpu_storage)?)
}
(Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()),
_ => {
bail!("not implemented yet")
}
};
let op = BackpropOp::new1(self, Op::ToDevice);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(storage)),
layout: self.layout.clone(),
op,
is_variable: false,
dtype: self.dtype,
device: device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
}
/// Returns a new tensor duplicating data from the original tensor. New dimensions are inserted
/// on the left.
pub fn broadcast_left<S: Into<Shape>>(&self, left_shape: S) -> Result<Self> {
let left_shape = left_shape.into();
let mut dims = left_shape.into_dims();
dims.extend(self.dims());
self.broadcast_as(dims)
}
/// Broadcast the input tensor to the target shape. This returns an error if the input shape is
/// not compatible with the target shape.
///
/// If the input shape is `i_1, i_2, ... i_k`, the target shape has to have `k` dimensions or
/// more and shape `j_1, ..., j_l, t_1, t_2, ..., t_k`. The dimensions `j_1` to `j_l` can have
/// any value, the dimension `t_a` must be equal to `i_a` if `i_a` is different from 1. If
/// `i_a` is equal to 1, any value can be used.
pub fn broadcast_as<S: Into<Shape>>(&self, shape: S) -> Result<Self> {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.broadcast_as(shape)?,
op: BackpropOp::new1(self, Op::Broadcast),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// An alias for broadcast_as.
pub fn expand<S: Into<Shape>>(&self, shape: S) -> Result<Self> {
self.broadcast_as(shape)
}
/// Casts the input tensor to the target `dtype`.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(3.14159265358979f64, &Device::Cpu)?;
/// assert_eq!(tensor.to_scalar::<f64>()?, 3.14159265358979);
/// let tensor = tensor.to_dtype(candle_core::DType::F32)?;
/// assert_eq!(tensor.to_scalar::<f32>()?, 3.1415927);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn to_dtype(&self, dtype: DType) -> Result<Self> {
if self.dtype() == dtype {
Ok(self.clone())
} else {
let shape = self.shape();
let storage = self.storage().to_dtype(self.layout(), dtype)?;
let op = BackpropOp::new1(self, Op::ToDType);
Ok(from_storage(storage, shape.clone(), op, false))
}
}
/// Returns a tensor that is in row major order. This is the same as the original tensor if it
/// was already contiguous, otherwise a copy is triggered.
pub fn contiguous(&self) -> Result<Tensor> {
if self.is_contiguous() {
Ok(self.clone())
} else {
let shape = self.shape();
let mut storage = self.device().zeros(shape, self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let op = BackpropOp::new1(self, Op::Copy);
Ok(from_storage(storage, shape.clone(), op, false))
}
}
/// Create a variable based on the values currently stored in a tensor. The storage is always
/// copied.
pub(crate) fn make_var(&self) -> Result<Tensor> {
let shape = self.shape().clone();
let mut storage = self.device().zeros(&shape, self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
Ok(from_storage(storage, shape, BackpropOp::none(), true))
}
/// Reshape returns a tensor with the target shape provided that the number of elements of the
/// original tensor is the same.
/// If the input tensor is contiguous, this is a view on the original data. Otherwise this uses
/// a new storage and copies the data over, the returned tensor is always contiguous.
///
/// The shape can be specified using a tuple of `usize` and at most one `()` in which case
/// the behavior is the same as when using `-1` in PyTorch: this dimension size is adjusted so
/// as to match the number of elements in the tensor.
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device, D};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = a.reshape((1, 6))?;
/// assert_eq!(c.shape().dims(), &[1, 6]);
///
/// let c = a.reshape((3, 2))?;
/// assert_eq!(c.shape().dims(), &[3, 2]);
///
/// let c = a.reshape((2, (), 1))?;
/// assert_eq!(c.shape().dims(), &[2, 3, 1]);
///
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn reshape<S: crate::shape::ShapeWithOneHole>(&self, s: S) -> Result<Tensor> {
let shape = s.into_shape(self.elem_count())?;
if shape.elem_count() != self.elem_count() {
return Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: shape,
op: "reshape",
}
.bt());
}
let op = BackpropOp::new1(self, Op::Reshape);
if self.is_contiguous() {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::contiguous_with_offset(shape, self.layout.start_offset()),
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
} else {
let mut storage = self.device().zeros(&shape, self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
Ok(from_storage(storage, shape, op, false))
}
}
/// Creates a new tensor with the specified dimension removed if its size was one.
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device, D};
/// let a = Tensor::zeros((2, 3, 1), DType::F32, &Device::Cpu)?;
///
/// let c = a.squeeze(2)?;
/// assert_eq!(c.shape().dims(), &[2, 3]);
///
/// let c = a.squeeze(D::Minus1)?;
/// assert_eq!(c.shape().dims(), &[2, 3]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn squeeze<D: Dim>(&self, dim: D) -> Result<Self> {
// The PyTorch semantics are to return the same tensor if the target dimension
// does not have a size of 1.
let dims = self.dims();
let dim = dim.to_index(self.shape(), "squeeze")?;
if dims[dim] == 1 {
let mut dims = dims.to_vec();
dims.remove(dim);
self.reshape(dims)
} else {
Ok(self.clone())
}
}
/// Creates a new tensor with a dimension of size one inserted at the specified position.
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device, D};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = a.unsqueeze(0)?;
/// assert_eq!(c.shape().dims(), &[1, 2, 3]);
///
/// let c = a.unsqueeze(D::Minus1)?;
/// assert_eq!(c.shape().dims(), &[2, 3, 1]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> {
let mut dims = self.dims().to_vec();
let dim = dim.to_index_plus_one(self.shape(), "unsqueeze")?;
// Cannot panic because to_index_plus_one already checks dimensions
dims.insert(dim, 1);
self.reshape(dims)
}
/// Stacks two or more tensors along a particular dimension.
///
/// All tensors must have the same rank, and the output has one additional rank
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = Tensor::stack(&[&a, &b], 0)?;
/// assert_eq!(c.shape().dims(), &[2, 2, 3]);
///
/// let c = Tensor::stack(&[&a, &b], 2)?;
/// assert_eq!(c.shape().dims(), &[2, 3, 2]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn stack<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "stack" }.bt())?
}
let dim = dim.to_index_plus_one(args[0].as_ref().shape(), "stack")?;
let args = args
.iter()
.map(|t| t.as_ref().unsqueeze(dim))
.collect::<Result<Vec<_>>>()?;
Self::cat(&args, dim)
}
/// Concatenates two or more tensors along a particular dimension.
///
/// All tensors must of the same rank, and the output will have
/// the same rank
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = Tensor::cat(&[&a, &b], 0)?;
/// assert_eq!(c.shape().dims(), &[4, 3]);
///
/// let c = Tensor::cat(&[&a, &b], 1)?;
/// assert_eq!(c.shape().dims(), &[2, 6]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let dim = dim.to_index(arg0.shape(), "cat")?;
for arg in args {
arg.as_ref().check_dim(dim, "cat")?;
}
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg0.rank() != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: arg0.rank(),
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx != dim && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
}
if dim == 0 {
Self::cat0(args)
} else {
// TODO: Avoid these transpositions and have an implementation that works
// for dim != 0...
let args: Vec<Tensor> = args
.iter()
.map(|a| a.as_ref().transpose(0, dim))
.collect::<Result<Vec<_>>>()?;
let cat = Self::cat0(&args)?;
cat.transpose(0, dim)
}
}
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let rank = arg0.rank();
let device = arg0.device();
let dtype = arg0.dtype();
let first_dims = arg0.shape().dims();
let mut cat_dims = first_dims.to_vec();
cat_dims[0] = 0;
let mut offsets = vec![0usize];
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg.dtype() != dtype {
Err(Error::DTypeMismatchBinaryOp {
lhs: dtype,
rhs: arg.dtype(),
op: "cat",
}
.bt())?
}
if arg.device().location() != device.location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: device.location(),
rhs: arg.device().location(),
op: "cat",
}
.bt())?
}
if rank != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: rank,
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx == 0 {
cat_dims[0] += v2;
}
if dim_idx != 0 && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
let next_offset = offsets.last().unwrap() + arg.elem_count();
offsets.push(next_offset);
}
let shape = Shape::from(cat_dims);
let op = BackpropOp::new(args, |args| Op::Cat(args, 0));
let mut storage = device.zeros(&shape, dtype)?;
for (arg, &offset) in args.iter().zip(offsets.iter()) {
let arg = arg.as_ref();
arg.storage()
.copy_strided_src(&mut storage, offset, arg.layout())?;
}
Ok(from_storage(storage, shape, op, false))
}
/// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the
/// input tensor values and `right` elements after.
pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
if left == 0 && right == 0 {
Ok(self.clone())
} else if left == 0 {
let dim = dim.to_index(self.shape(), "pad_with_zeros")?;
let mut dims = self.dims().to_vec();
dims[dim] = right;
let right = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
Tensor::cat(&[self, &right], dim)
} else if right == 0 {
let dim = dim.to_index(self.shape(), "pad_with_zeros")?;
let mut dims = self.dims().to_vec();
dims[dim] = left;
let left = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
Tensor::cat(&[&left, self], dim)
} else {
let dim = dim.to_index(self.shape(), "pad_with_zeros")?;
let mut dims = self.dims().to_vec();
dims[dim] = left;
let left = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
dims[dim] = right;
let right = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
Tensor::cat(&[&left, self, &right], dim)
}
}
/// Pad the input tensor using same values along dimension `dim`. This adds `left` elements before the
/// input tensor values and `right` elements after.
pub fn pad_with_same<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
if left == 0 && right == 0 {
Ok(self.clone())
} else if self.elem_count() == 0 {
bail!("cannot use pad_with_same on an empty tensor")
} else if left == 0 {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
let mut v = vec![self];
for _ in 0..right {
v.push(&r)
}
Tensor::cat(&v, dim)
} else if right == 0 {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let l = self.narrow(dim, 0, 1)?;
let mut v = vec![];
for _ in 0..left {
v.push(&l)
}
v.push(self);
Tensor::cat(&v, dim)
} else {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let l = self.narrow(dim, 0, 1)?;
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
let mut v = vec![];
for _ in 0..left {
v.push(&l)
}
v.push(self);
for _ in 0..right {
v.push(&r)
}
Tensor::cat(&v, dim)
}
}
/// Run the `forward` method of `m` on `self`.
pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
m.forward(self)
}
/// Run the `forward` method of `m` on `self`.
pub fn apply_t<M: crate::ModuleT>(&self, m: &M, train: bool) -> Result<Self> {
m.forward_t(self, train)
}
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
self.storage.read().unwrap()
}
// If we extend the visibility of this function to be usable outside of this crate, we should
// make it unsafe.
pub(crate) fn storage_mut_and_layout(
&self,
) -> (std::sync::RwLockWriteGuard<'_, Storage>, &Layout) {
let storage = self.storage.write().unwrap();
(storage, &self.layout)
}
/// The storage used by this tensor, together with the layout to use to access it safely.
pub fn storage_and_layout(&self) -> (std::sync::RwLockReadGuard<'_, Storage>, &Layout) {
let storage = self.storage.read().unwrap();
(storage, &self.layout)
}
pub(crate) fn same_storage(&self, rhs: &Self) -> bool {
let lhs: &RwLock<Storage> = self.storage.as_ref();
let rhs: &RwLock<Storage> = rhs.storage.as_ref();
std::ptr::eq(lhs, rhs)
}
/// Applies a unary custom op without backward support
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a binary custom op without backward support
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
let (storage, shape) =
self.storage()
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a ternary custom op without backward support
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c,
)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a unary custom op.
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
let (storage, shape) = self
.storage()
.apply_op1(self.layout(), c.as_ref().as_ref())?;
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
self.apply_op1_arc(Arc::new(Box::new(c)))
}
/// Applies a binary custom op.
pub fn apply_op2_arc(
&self,
rhs: &Self,
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op2(
self.layout(),
&rhs.storage(),
rhs.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
self.apply_op2_arc(r, Arc::new(Box::new(c)))
}
/// Applies a ternary custom op.
pub fn apply_op3_arc(
&self,
t2: &Self,
t3: &Self,
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
Op::CustomOp3(t1, t2, t3, c.clone())
});
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
&self,
t2: &Self,
t3: &Self,
c: C,
) -> Result<Self> {
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
}
/// Normalize a 'relative' axis value: positive values are kept, negative
/// values means counting the dimensions from the back.
pub fn normalize_axis(&self, axis: i64) -> Result<usize> {
let rank = self.rank() as i64;
if rank <= axis {
bail!("axis {axis} is too large, tensor rank {rank}")
} else if 0 <= axis {
Ok(axis as usize)
} else {
let naxis = rank + axis;
if naxis < 0 {
bail!("axis {axis} is too small, tensor rank {rank}")
}
Ok(naxis as usize)
}
}
/// Returns a lower triangular matrix of ones of size n by n.
pub fn tril2(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.le(&t2)?.to_dtype(dtype)
}
/// Returns an upper triangular matrix of ones of size n by n.
pub fn triu2(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.ge(&t2)?.to_dtype(dtype)
}
/// Returns a matrix with a diagonal of ones of size n by n.
pub fn eye(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.eq(&t2)?.to_dtype(dtype)
}
/// Returns the cumulative sum of elements of the input tensor summed over the specified
/// dimension.
///
/// This operation is most efficient when dim is the last dimension of the tensor.
pub fn cumsum<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "cumsum")?;
let rank = self.rank();
if rank == 0 {
return Ok(self.clone());
}
let n_axis = self.dim(dim)?;
let triu = Tensor::triu2(n_axis, self.dtype(), self.device())?;
if rank == 1 {
self.unsqueeze(0)?.matmul(&triu)?.squeeze(0)
} else {
let last = rank - 1;
let t = self.transpose(dim, last)?;
let t = t.broadcast_matmul(&triu)?;
t.transpose(dim, last)
}
}
/// Returns a copy of `self` where the values within `ranges` have been replaced with the
/// content of `src`.
pub fn slice_assign<D: std::ops::RangeBounds<usize>>(
&self,
ranges: &[D],
src: &Tensor,
) -> Result<Self> {
let src_dims = src.dims();
let self_dims = self.dims();
if self_dims.len() != src_dims.len() {
bail!(
"slice-assign requires input with the same rank {} <> {}",
self_dims.len(),
src_dims.len()
)
}
if self_dims.len() != ranges.len() {
bail!(
"slice-assign requires input with the same rank as there are ranges {} <> {}",
self_dims.len(),
ranges.len()
)
}
let mut src = src.clone();
let mut mask = Self::ones(src.shape(), DType::U8, src.device())?;
for (i, range) in ranges.iter().enumerate() {
let start_included = match range.start_bound() {
std::ops::Bound::Unbounded => 0,
std::ops::Bound::Included(v) => *v,
std::ops::Bound::Excluded(v) => *v + 1,
};
let end_excluded = match range.end_bound() {
std::ops::Bound::Unbounded => self_dims[i],
std::ops::Bound::Included(v) => *v + 1,
std::ops::Bound::Excluded(v) => *v,
};
if end_excluded <= start_included {
bail!("slice-assign: empty range for dim {i}, {start_included} {end_excluded}")
}
if self_dims[i] < end_excluded {
bail!(
"slice-assign: upper bound is out of range for dim {i}, {end_excluded} {}",
self_dims[i]
)
}
if end_excluded - start_included != src_dims[i] {
bail!(
"slice-assign: the range for dim {i} ({start_included}..{end_excluded}) does not match the size of src {}", src_dims[i]
)
}
src = src.pad_with_zeros(i, start_included, self_dims[i] - end_excluded)?;
mask = mask.pad_with_zeros(i, start_included, self_dims[i] - end_excluded)?
}
mask.where_cond(/* on_true= */ &src, /* on_false= */ self)
}
/// Returns log(sum(exp(tensor), dim)).
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
let exp = self.exp()?;
let sum = exp.sum(sum_dims)?;
sum.log()
}
/// Pointwise pow operation.
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.mul(&self.log()?)?.exp()
}
/// Broadcasting version of `pow`.
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.broadcast_mul(&self.log()?)?.exp()
}
}
macro_rules! bin_trait {
($trait:ident, $fn1:ident, $mul:expr, $add:expr) => {
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<B> for Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: B) -> Self::Output {
Tensor::$fn1(&self, rhs.borrow())
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<B> for &Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: B) -> Self::Output {
Tensor::$fn1(&self, rhs.borrow())
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Tensor> for Result<B> {
type Output = Result<Tensor>;
fn $fn1(self, rhs: Tensor) -> Self::Output {
Tensor::$fn1(self?.borrow(), &rhs)
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<&Tensor> for Result<B> {
type Output = Result<Tensor>;
fn $fn1(self, rhs: &Tensor) -> Self::Output {
Tensor::$fn1(self?.borrow(), rhs)
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Result<B>> for Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: Result<B>) -> Self::Output {
Tensor::$fn1(&self, rhs?.borrow())
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Result<B>> for &Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: Result<B>) -> Self::Output {
Tensor::$fn1(&self, rhs?.borrow())
}
}
impl std::ops::$trait<f64> for Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: f64) -> Self::Output {
self.affine($mul(rhs), $add(rhs))
}
}
impl std::ops::$trait<f64> for &Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: f64) -> Self::Output {
self.affine($mul(rhs), $add(rhs))
}
}
};
}
bin_trait!(Add, add, |_| 1., |v| v);
bin_trait!(Sub, sub, |_| 1., |v: f64| -v);
bin_trait!(Mul, mul, |v| v, |_| 0.);
bin_trait!(Div, div, |v| 1. / v, |_| 0.);
impl std::ops::Add<Tensor> for f64 {
type Output = Result<Tensor>;
fn add(self, rhs: Tensor) -> Self::Output {
rhs + self
}
}
impl std::ops::Add<&Tensor> for f64 {
type Output = Result<Tensor>;
fn add(self, rhs: &Tensor) -> Self::Output {
rhs + self
}
}
impl std::ops::Mul<Tensor> for f64 {
type Output = Result<Tensor>;
fn mul(self, rhs: Tensor) -> Self::Output {
rhs * self
}
}
impl std::ops::Mul<&Tensor> for f64 {
type Output = Result<Tensor>;
fn mul(self, rhs: &Tensor) -> Self::Output {
rhs * self
}
}
impl std::ops::Sub<Tensor> for f64 {
type Output = Result<Tensor>;
fn sub(self, rhs: Tensor) -> Self::Output {
rhs.affine(-1., self)
}
}
impl std::ops::Sub<&Tensor> for f64 {
type Output = Result<Tensor>;
fn sub(self, rhs: &Tensor) -> Self::Output {
rhs.affine(-1., self)
}
}
impl std::ops::Div<Tensor> for f64 {
type Output = Result<Tensor>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Tensor) -> Self::Output {
rhs.recip()? * self
}
}
impl std::ops::Div<&Tensor> for f64 {
type Output = Result<Tensor>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: &Tensor) -> Self::Output {
rhs.recip()? * self
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/k_quants.rs | use super::utils::{
get_scale_min_k4, group_for_dequantization, group_for_quantization, make_q3_quants,
make_qkx1_quants, make_qx_quants, nearest_int,
};
use super::GgmlDType;
use crate::Result;
use byteorder::{ByteOrder, LittleEndian};
use half::f16;
use rayon::prelude::*;
// Default to QK_K 256 rather than 64.
pub const QK_K: usize = 256;
pub const K_SCALE_SIZE: usize = 12;
pub const QK4_0: usize = 32;
pub const QK4_1: usize = 32;
pub const QK5_0: usize = 32;
pub const QK5_1: usize = 32;
pub const QK8_0: usize = 32;
pub const QK8_1: usize = 32;
pub trait GgmlType: Sized + Clone + Send + Sync {
const DTYPE: GgmlDType;
const BLCK_SIZE: usize;
type VecDotType: GgmlType;
// This is only safe for types that include immediate values such as float/int/...
fn zeros() -> Self {
unsafe { std::mem::MaybeUninit::zeroed().assume_init() }
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()>;
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()>;
/// Dot product used as a building block for quantized mat-mul.
/// n is the number of elements to be considered.
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
/// Generic implementation of the dot product without simd optimizations.
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
}
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ4_0 {
pub(crate) d: f16,
pub(crate) qs: [u8; QK4_0 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ4_0>() == 18);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ4_1 {
pub(crate) d: f16,
pub(crate) m: f16,
pub(crate) qs: [u8; QK4_1 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ4_1>() == 20);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ5_0 {
pub(crate) d: f16,
pub(crate) qh: [u8; 4],
pub(crate) qs: [u8; QK5_0 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ5_0>() == 22);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ5_1 {
pub(crate) d: f16,
pub(crate) m: f16,
pub(crate) qh: [u8; 4],
pub(crate) qs: [u8; QK5_1 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ5_1>() == 24);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ8_0 {
pub(crate) d: f16,
pub(crate) qs: [i8; QK8_0],
}
const _: () = assert!(std::mem::size_of::<BlockQ8_0>() == 34);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ8_1 {
pub(crate) d: f16,
pub(crate) s: f16,
pub(crate) qs: [i8; QK8_1],
}
const _: () = assert!(std::mem::size_of::<BlockQ8_1>() == 36);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ2K {
pub(crate) scales: [u8; QK_K / 16],
pub(crate) qs: [u8; QK_K / 4],
pub(crate) d: f16,
pub(crate) dmin: f16,
}
const _: () = assert!(QK_K / 16 + QK_K / 4 + 2 * 2 == std::mem::size_of::<BlockQ2K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ3K {
pub(crate) hmask: [u8; QK_K / 8],
pub(crate) qs: [u8; QK_K / 4],
pub(crate) scales: [u8; 12],
pub(crate) d: f16,
}
const _: () = assert!(QK_K / 8 + QK_K / 4 + 12 + 2 == std::mem::size_of::<BlockQ3K>());
#[derive(Debug, Clone, PartialEq)]
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/k_quants.h#L82
#[repr(C)]
pub struct BlockQ4K {
pub(crate) d: f16,
pub(crate) dmin: f16,
pub(crate) scales: [u8; K_SCALE_SIZE],
pub(crate) qs: [u8; QK_K / 2],
}
const _: () = assert!(QK_K / 2 + K_SCALE_SIZE + 2 * 2 == std::mem::size_of::<BlockQ4K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ5K {
pub(crate) d: f16,
pub(crate) dmin: f16,
pub(crate) scales: [u8; K_SCALE_SIZE],
pub(crate) qh: [u8; QK_K / 8],
pub(crate) qs: [u8; QK_K / 2],
}
const _: () =
assert!(QK_K / 8 + QK_K / 2 + 2 * 2 + K_SCALE_SIZE == std::mem::size_of::<BlockQ5K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ6K {
pub(crate) ql: [u8; QK_K / 2],
pub(crate) qh: [u8; QK_K / 4],
pub(crate) scales: [i8; QK_K / 16],
pub(crate) d: f16,
}
const _: () = assert!(3 * QK_K / 4 + QK_K / 16 + 2 == std::mem::size_of::<BlockQ6K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ8K {
pub(crate) d: f32,
pub(crate) qs: [i8; QK_K],
pub(crate) bsums: [i16; QK_K / 16],
}
const _: () = assert!(4 + QK_K + QK_K / 16 * 2 == std::mem::size_of::<BlockQ8K>());
impl GgmlType for BlockQ4_0 {
const DTYPE: GgmlDType = GgmlDType::Q4_0;
const BLCK_SIZE: usize = QK4_0;
type VecDotType = BlockQ8_0;
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1525
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
let qk = Self::BLCK_SIZE;
if k % qk != 0 {
crate::bail!("dequantize_row_q4_0: {k} is not divisible by {qk}")
}
let nb = k / qk;
for i in 0..nb {
let d = xs[i].d.to_f32();
for j in 0..(qk / 2) {
let x0 = (xs[i].qs[j] & 0x0F) as i16 - 8;
let x1 = (xs[i].qs[j] >> 4) as i16 - 8;
ys[i * qk + j] = (x0 as f32) * d;
ys[i * qk + j + qk / 2] = (x1 as f32) * d;
}
}
Ok(())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
// quantize_row_q4_0
let qk = Self::BLCK_SIZE;
let k = xs.len();
if k % qk != 0 {
crate::bail!("{k} is not divisible by {}", qk);
};
let nb = k / qk;
if ys.len() != nb {
crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,)
}
for (i, ys) in ys.iter_mut().enumerate() {
let mut amax = 0f32;
let mut max = 0f32;
let xs = &xs[i * qk..(i + 1) * qk];
for &x in xs.iter() {
if amax < x.abs() {
amax = x.abs();
max = x;
}
}
let d = max / -8.0;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
for (j, q) in ys.qs.iter_mut().enumerate() {
let x0 = xs[j] * id;
let x1 = xs[qk / 2 + j] * id;
let xi0 = u8::min(15, (x0 + 8.5) as u8);
let xi1 = u8::min(15, (x1 + 8.5) as u8);
*q = xi0 | (xi1 << 4)
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/ggml.c#L2361C10-L2361C122
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q4_0_q8_0(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q4_0_q8_0(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q4_0_q8_0(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let mut sum_i = 0;
for j in 0..qk / 2 {
let v0 = (xs.qs[j] & 0x0F) as i32 - 8;
let v1 = (xs.qs[j] >> 4) as i32 - 8;
sum_i += v0 * ys.qs[j] as i32 + v1 * ys.qs[j + qk / 2] as i32
}
sumf += sum_i as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
}
Ok(sumf)
}
}
impl GgmlType for BlockQ4_1 {
const DTYPE: GgmlDType = GgmlDType::Q4_1;
const BLCK_SIZE: usize = QK4_1;
type VecDotType = BlockQ8_1;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
// ggml_vec_dot_q4_1_q8_1
let qk = QK8_1;
if n % qk != 0 {
crate::bail!("vec_dot_q4_1_q8_1: {n} is not divisible by {qk}")
}
let nb = n / qk;
if nb % 2 != 0 {
crate::bail!("vec_dot_q4_1_q8_1: {n}, nb is not divisible by 2")
}
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let mut sumi = 0i32;
for j in 0..qk / 2 {
let v0 = xs.qs[j] as i32 & 0x0F;
let v1 = xs.qs[j] as i32 >> 4;
sumi += (v0 * ys.qs[j] as i32) + (v1 * ys.qs[j + qk / 2] as i32);
}
sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
+ f16::to_f32(xs.m) * f16::to_f32(ys.s)
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
// quantize_row_q4_1
let qk = Self::BLCK_SIZE;
if ys.len() * qk != xs.len() {
crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,)
}
for (i, ys) in ys.iter_mut().enumerate() {
let xs = &xs[i * qk..(i + 1) * qk];
let mut min = f32::INFINITY;
let mut max = f32::NEG_INFINITY;
for &x in xs.iter() {
min = f32::min(x, min);
max = f32::max(x, max);
}
let d = (max - min) / ((1 << 4) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
ys.m = f16::from_f32(min);
for (j, q) in ys.qs.iter_mut().take(qk / 2).enumerate() {
let x0 = (xs[j] - min) * id;
let x1 = (xs[qk / 2 + j] - min) * id;
let xi0 = u8::min(15, (x0 + 0.5) as u8);
let xi1 = u8::min(15, (x1 + 0.5) as u8);
*q = xi0 | (xi1 << 4);
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1545
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK4_1 != 0 {
crate::bail!("dequantize_row_q4_1: {k} is not divisible by {QK4_1}");
}
let nb = k / QK4_1;
for i in 0..nb {
let d = xs[i].d.to_f32();
let m = xs[i].m.to_f32();
for j in 0..(QK4_1 / 2) {
let x0 = xs[i].qs[j] & 0x0F;
let x1 = xs[i].qs[j] >> 4;
ys[i * QK4_1 + j] = (x0 as f32) * d + m;
ys[i * QK4_1 + j + QK4_1 / 2] = (x1 as f32) * d + m;
}
}
Ok(())
}
}
impl GgmlType for BlockQ5_0 {
const DTYPE: GgmlDType = GgmlDType::Q5_0;
const BLCK_SIZE: usize = QK5_0;
type VecDotType = BlockQ8_0;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = Self::BLCK_SIZE;
if n % Self::BLCK_SIZE != 0 {
crate::bail!("vec_dot_q5_0_q8_0: {n} is not divisible by {qk}")
}
let nb = n / qk;
if nb % 2 != 0 {
crate::bail!("vec_dot_q5_0_q8_0: {n}, nb is not divisible by 2")
}
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(_n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let qh = LittleEndian::read_u32(&xs.qh);
let mut sumi = 0i32;
for j in 0..Self::BLCK_SIZE / 2 {
let xh_0 = (((qh & (1u32 << j)) >> j) << 4) as u8;
let xh_1 = ((qh & (1u32 << (j + 16))) >> (j + 12)) as u8;
let x0 = ((xs.qs[j] & 0x0F) as i32 | xh_0 as i32) - 16;
let x1 = ((xs.qs[j] >> 4) as i32 | xh_1 as i32) - 16;
sumi += (x0 * ys.qs[j] as i32) + (x1 * ys.qs[j + Self::BLCK_SIZE / 2] as i32);
}
sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
// quantize_row_q5_0
let k = xs.len();
if ys.len() * Self::BLCK_SIZE != k {
crate::bail!("size mismatch {k} {} {}", ys.len(), Self::BLCK_SIZE)
}
for (i, ys) in ys.iter_mut().enumerate() {
let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE];
let mut amax = 0f32;
let mut max = 0f32;
for &x in xs.iter() {
if amax < x.abs() {
amax = x.abs();
max = x;
}
}
let d = max / -16.;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
let mut qh = 0u32;
for j in 0..Self::BLCK_SIZE / 2 {
let x0 = xs[j] * id;
let x1 = xs[j + Self::BLCK_SIZE / 2] * id;
let xi0 = ((x0 + 16.5) as i8).min(31) as u8;
let xi1 = ((x1 + 16.5) as i8).min(31) as u8;
ys.qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
qh |= ((xi0 as u32 & 0x10) >> 4) << j;
qh |= ((xi1 as u32 & 0x10) >> 4) << (j + Self::BLCK_SIZE / 2);
}
LittleEndian::write_u32(&mut ys.qh, qh)
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1566
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK5_0 != 0 {
crate::bail!("dequantize_row_q5_0: {k} is not divisible by {QK5_0}");
}
let nb = k / QK5_0;
for i in 0..nb {
let d = xs[i].d.to_f32();
let qh: u32 = LittleEndian::read_u32(&xs[i].qh);
for j in 0..(QK5_0 / 2) {
let xh_0 = (((qh >> j) << 4) & 0x10) as u8;
let xh_1 = ((qh >> (j + 12)) & 0x10) as u8;
let x0 = ((xs[i].qs[j] & 0x0F) | xh_0) as i32 - 16;
let x1 = ((xs[i].qs[j] >> 4) | xh_1) as i32 - 16;
ys[i * QK5_0 + j] = (x0 as f32) * d;
ys[i * QK5_0 + j + QK5_0 / 2] = (x1 as f32) * d;
}
}
Ok(())
}
}
impl GgmlType for BlockQ5_1 {
const DTYPE: GgmlDType = GgmlDType::Q5_1;
const BLCK_SIZE: usize = QK5_1;
type VecDotType = BlockQ8_1;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = Self::BLCK_SIZE;
if n % Self::BLCK_SIZE != 0 {
crate::bail!("vec_dot_q5_1_q8_1: {n} is not divisible by {qk}")
}
let nb = n / qk;
if nb % 2 != 0 {
crate::bail!("vec_dot_q5_1_q8_1: {n}, nb is not divisible by 2")
}
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let qh = LittleEndian::read_u32(&xs.qh);
let mut sumi = 0i32;
for j in 0..Self::BLCK_SIZE / 2 {
let xh_0 = ((qh >> j) << 4) & 0x10;
let xh_1 = (qh >> (j + 12)) & 0x10;
let x0 = (xs.qs[j] as i32 & 0xF) | xh_0 as i32;
let x1 = (xs.qs[j] as i32 >> 4) | xh_1 as i32;
sumi += (x0 * ys.qs[j] as i32) + (x1 * ys.qs[j + Self::BLCK_SIZE / 2] as i32);
}
sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
+ f16::to_f32(xs.m) * f16::to_f32(ys.s)
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
// quantize_row_q5_1
let qk = Self::BLCK_SIZE;
if ys.len() * qk != xs.len() {
crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,)
}
for (i, ys) in ys.iter_mut().enumerate() {
let xs = &xs[i * qk..(i + 1) * qk];
let mut min = f32::INFINITY;
let mut max = f32::NEG_INFINITY;
for &x in xs.iter() {
min = f32::min(x, min);
max = f32::max(x, max);
}
let d = (max - min) / ((1 << 5) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
ys.m = f16::from_f32(min);
let mut qh = 0u32;
for (j, q) in ys.qs.iter_mut().take(qk / 2).enumerate() {
let x0 = (xs[j] - min) * id;
let x1 = (xs[qk / 2 + j] - min) * id;
let xi0 = (x0 + 0.5) as u8;
let xi1 = (x1 + 0.5) as u8;
*q = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 as u32 & 0x10) >> 4) << j;
qh |= ((xi1 as u32 & 0x10) >> 4) << (j + qk / 2);
}
LittleEndian::write_u32(&mut ys.qh, qh);
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1592
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK5_1 != 0 {
crate::bail!("dequantize_row_q5_1: {k} is not divisible by {QK5_1}");
}
let nb = k / QK5_1;
for i in 0..nb {
let d = xs[i].d.to_f32();
let m = xs[i].m.to_f32();
let qh: u32 = LittleEndian::read_u32(&xs[i].qh);
for j in 0..(QK5_1 / 2) {
let xh_0 = (((qh >> j) << 4) & 0x10) as u8;
let xh_1 = ((qh >> (j + 12)) & 0x10) as u8;
let x0 = (xs[i].qs[j] & 0x0F) | xh_0;
let x1 = (xs[i].qs[j] >> 4) | xh_1;
ys[i * QK5_1 + j] = (x0 as f32) * d + m;
ys[i * QK5_1 + j + QK5_1 / 2] = (x1 as f32) * d + m;
}
}
Ok(())
}
}
impl GgmlType for BlockQ8_0 {
const DTYPE: GgmlDType = GgmlDType::Q8_0;
const BLCK_SIZE: usize = QK8_0;
type VecDotType = BlockQ8_0;
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1619
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK8_0 != 0 {
crate::bail!("dequantize_row_q8_0: {k} is not divisible by {QK8_0}");
}
let nb = k / QK8_0;
for i in 0..nb {
let d = xs[i].d.to_f32();
for j in 0..QK8_0 {
ys[i * QK8_0 + j] = xs[i].qs[j] as f32 * d;
}
}
Ok(())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
// quantize_row_q8_0
let k = xs.len();
if k % Self::BLCK_SIZE != 0 {
crate::bail!("{k} is not divisible by {}", Self::BLCK_SIZE);
};
let nb = k / Self::BLCK_SIZE;
if ys.len() != nb {
crate::bail!(
"size mismatch {} {} {}",
xs.len(),
ys.len(),
Self::BLCK_SIZE
)
}
for (i, ys) in ys.iter_mut().enumerate() {
let mut amax = 0f32;
let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE];
for &x in xs.iter() {
amax = amax.max(x.abs())
}
let d = amax / ((1 << 7) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
for (y, &x) in ys.qs.iter_mut().zip(xs.iter()) {
*y = f32::round(x * id) as i8
}
}
Ok(())
}
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q8_0_q8_0(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q8_0_q8_0(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q8_0_q8_0(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let sum_i = xs
.qs
.iter()
.zip(ys.qs.iter())
.map(|(&x, &y)| x as i32 * y as i32)
.sum::<i32>();
sumf += sum_i as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
}
Ok(sumf)
}
}
impl GgmlType for BlockQ8_1 {
const DTYPE: GgmlDType = GgmlDType::Q8_1;
const BLCK_SIZE: usize = QK8_1;
type VecDotType = BlockQ8_1;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(_n: usize, _xs: &[Self], _ys: &[Self::VecDotType]) -> Result<f32> {
unimplemented!("no support for vec-dot on Q8_1")
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
// quantize_row_q8_1
let k = xs.len();
if ys.len() * Self::BLCK_SIZE != k {
crate::bail!("size mismatch {k} {} {}", ys.len(), Self::BLCK_SIZE)
}
for (i, ys) in ys.iter_mut().enumerate() {
let mut amax = 0f32;
let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE];
for &x in xs.iter() {
amax = amax.max(x.abs())
}
let d = amax / ((1 << 7) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
let mut sum = 0i32;
for j in 0..Self::BLCK_SIZE / 2 {
let v0 = xs[j] * id;
let v1 = xs[j + Self::BLCK_SIZE / 2] * id;
ys.qs[j] = f32::round(v0) as i8;
ys.qs[j + Self::BLCK_SIZE / 2] = f32::round(v1) as i8;
sum += ys.qs[j] as i32 + ys.qs[j + Self::BLCK_SIZE / 2] as i32;
}
ys.s = f16::from_f32(sum as f32) * ys.d;
}
Ok(())
}
fn to_float(_xs: &[Self], _ys: &mut [f32]) -> Result<()> {
unimplemented!("no support for vec-dot on Q8_1")
}
}
impl GgmlType for BlockQ2K {
const DTYPE: GgmlDType = GgmlDType::Q2K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q2k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q2k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q2k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
}
let mut sumf = 0.0;
for (x, y) in xs.iter().zip(ys.iter()) {
let mut q2: &[_] = &x.qs;
let mut q8: &[_] = &y.qs;
let sc = &x.scales;
let mut summs = 0;
for (bsum, scale) in y.bsums.iter().zip(sc) {
summs += *bsum as i32 * ((scale >> 4) as i32);
}
let dall = y.d * x.d.to_f32();
let dmin = y.d * x.dmin.to_f32();
let mut isum = 0;
let mut is = 0;
for _ in 0..(QK_K / 128) {
let mut shift = 0;
for _ in 0..4 {
let d = (sc[is] & 0xF) as i32;
is += 1;
let mut isuml = 0;
for l in 0..16 {
isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32);
}
isum += d * isuml;
let d = (sc[is] & 0xF) as i32;
is += 1;
isuml = 0;
for l in 16..32 {
isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32);
}
isum += d * isuml;
shift += 2;
// adjust the indexing
q8 = &q8[32..];
}
// adjust the indexing
q2 = &q2[32..];
}
sumf += dall * isum as f32 - dmin * summs as f32;
}
Ok(sumf)
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L279
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
const Q4SCALE: f32 = 15.0;
for (block, x) in group_for_quantization(xs, ys)? {
//calculate scales and mins
let mut mins: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16];
for (j, x_scale_slice) in x.chunks(16).enumerate() {
(scales[j], mins[j]) = make_qkx1_quants(3, 5, x_scale_slice);
}
// get max scale and max min and ensure they are >= 0.0
let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max));
let max_min = mins.iter().fold(0.0, |max, &val| val.max(max));
if max_scale > 0.0 {
let iscale = Q4SCALE / max_scale;
for (j, scale) in scales.iter().enumerate().take(QK_K / 16) {
block.scales[j] = nearest_int(iscale * scale) as u8;
}
block.d = f16::from_f32(max_scale / Q4SCALE);
} else {
for j in 0..QK_K / 16 {
block.scales[j] = 0;
}
block.d = f16::from_f32(0.0);
}
if max_min > 0.0 {
let iscale = Q4SCALE / max_min;
for (j, scale) in block.scales.iter_mut().enumerate() {
let l = nearest_int(iscale * mins[j]) as u8;
*scale |= l << 4;
}
block.dmin = f16::from_f32(max_min / Q4SCALE);
} else {
block.dmin = f16::from_f32(0.0);
}
let mut big_l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 16 {
let d = block.d.to_f32() * (block.scales[j] & 0xF) as f32;
if d == 0.0 {
continue;
}
let dm = block.dmin.to_f32() * (block.scales[j] >> 4) as f32;
for ii in 0..16 {
let ll = nearest_int((x[16 * j + ii] + dm) / d).clamp(0, 3);
big_l[16 * j + ii] = ll as u8;
}
}
for j in (0..QK_K).step_by(128) {
for ll in 0..32 {
block.qs[j / 4 + ll] = big_l[j + ll]
| (big_l[j + ll + 32] << 2)
| (big_l[j + ll + 64] << 4)
| (big_l[j + ll + 96] << 6);
}
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L354
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
for (block, y) in group_for_dequantization(xs, ys)? {
let d = block.d.to_f32();
let min = block.dmin.to_f32();
let mut is = 0;
for (y_block, qs) in y.chunks_exact_mut(128).zip(block.qs.chunks_exact(32)) {
// Step by 32 over q.
let mut shift = 0;
let mut y_block_index = 0;
for _j in 0..4 {
let sc = block.scales[is];
is += 1;
let dl = d * (sc & 0xF) as f32;
let ml = min * (sc >> 4) as f32;
for q in &qs[..16] {
let y = dl * ((q >> shift) & 3) as f32 - ml;
y_block[y_block_index] = y;
y_block_index += 1;
}
let sc = block.scales[is];
is += 1;
let dl = d * (sc & 0xF) as f32;
let ml = min * (sc >> 4) as f32;
for q in &qs[16..] {
let y = dl * ((q >> shift) & 3) as f32 - ml;
y_block[y_block_index] = y;
y_block_index += 1;
}
shift += 2;
}
}
}
Ok(())
}
}
impl GgmlType for BlockQ3K {
const DTYPE: GgmlDType = GgmlDType::Q3K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q3k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q3k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x03030303;
const KMASK2: u32 = 0x0f0f0f0f;
let mut aux8: [i8; QK_K] = [0; QK_K];
let mut aux16: [i16; 8] = [0; 8];
let mut sums: [f32; 8] = [0.0; 8];
let mut aux32: [i32; 8] = [0; 8];
let mut auxs: [u32; 4] = [0; 4];
for (x, y) in xs.iter().zip(ys.iter()) {
let mut q3: &[u8] = &x.qs;
let hmask: &[u8] = &x.hmask;
let mut q8: &[i8] = &y.qs;
aux32.fill(0);
let mut a = &mut aux8[..];
let mut m = 1;
//Like the GGML original this is written this way to enable the compiler to vectorize it.
for _ in 0..QK_K / 128 {
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = (q3_val & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 2) & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 4) & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 6) & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
q3 = &q3[32..];
}
a = &mut aux8[..];
LittleEndian::read_u32_into(&x.scales, &mut auxs[0..3]);
let tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & KMASK2) | (((tmp >> 4) & KMASK1) << 4);
auxs[3] = ((auxs[1] >> 4) & KMASK2) | (((tmp >> 6) & KMASK1) << 4);
auxs[0] = (auxs[0] & KMASK2) | (((tmp) & KMASK1) << 4);
auxs[1] = (auxs[1] & KMASK2) | (((tmp >> 2) & KMASK1) << 4);
for aux in auxs {
for scale in aux.to_le_bytes() {
let scale = i8::from_be_bytes([scale]);
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += (scale as i32 - 32) * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += (scale as i32 - 32) * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
}
}
let d = x.d.to_f32() * y.d;
for l in 0..8 {
sums[l] += d * aux32[l] as f32;
}
}
Ok(sums.iter().sum())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
for (block, x) in group_for_quantization(xs, ys)? {
let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16];
for (j, x_scale_slice) in x.chunks_exact(16).enumerate() {
scales[j] = make_q3_quants(x_scale_slice, 4, true);
}
// Get max scale by absolute value.
let mut max_scale: f32 = 0.0;
for &scale in scales.iter() {
if scale.abs() > max_scale.abs() {
max_scale = scale;
}
}
block.scales.fill(0);
if max_scale != 0.0 {
let iscale = -32.0 / max_scale;
for (j, scale) in scales.iter().enumerate() {
let l_val = nearest_int(iscale * scale);
let l_val = l_val.clamp(-32, 31) + 32;
if j < 8 {
block.scales[j] = (l_val & 0xF) as u8;
} else {
block.scales[j - 8] |= ((l_val & 0xF) << 4) as u8;
}
let l_val = l_val >> 4;
block.scales[j % 4 + 8] |= (l_val << (2 * (j / 4))) as u8;
}
block.d = f16::from_f32(1.0 / iscale);
} else {
block.d = f16::from_f32(0.0);
}
let mut l: [i8; QK_K] = [0; QK_K];
for j in 0..QK_K / 16 {
let sc = if j < 8 {
block.scales[j] & 0xF
} else {
block.scales[j - 8] >> 4
};
let sc = (sc | (((block.scales[8 + j % 4] >> (2 * (j / 4))) & 3) << 4)) as i8 - 32;
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
for ii in 0..16 {
let l_val = nearest_int(x[16 * j + ii] / d);
l[16 * j + ii] = (l_val.clamp(-4, 3) + 4) as i8;
}
}
}
block.hmask.fill(0);
let mut m = 0;
let mut hm = 1;
for ll in l.iter_mut() {
if *ll > 3 {
block.hmask[m] |= hm;
*ll -= 4;
}
m += 1;
if m == QK_K / 8 {
m = 0;
hm <<= 1;
}
}
for j in (0..QK_K).step_by(128) {
for l_val in 0..32 {
block.qs[j / 4 + l_val] = (l[j + l_val]
| (l[j + l_val + 32] << 2)
| (l[j + l_val + 64] << 4)
| (l[j + l_val + 96] << 6))
as u8;
}
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L533
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
const KMASK1: u32 = 0x03030303;
const KMASK2: u32 = 0x0f0f0f0f;
for (block, y) in group_for_dequantization(xs, ys)? {
//Reconstruct the scales
let mut aux = [0; 4];
LittleEndian::read_u32_into(&block.scales, &mut aux[0..3]);
let tmp = aux[2];
aux[2] = ((aux[0] >> 4) & KMASK2) | (((tmp >> 4) & KMASK1) << 4);
aux[3] = ((aux[1] >> 4) & KMASK2) | (((tmp >> 6) & KMASK1) << 4);
aux[0] = (aux[0] & KMASK2) | (((tmp) & KMASK1) << 4);
aux[1] = (aux[1] & KMASK2) | (((tmp >> 2) & KMASK1) << 4);
//Transfer the scales into an i8 array
let scales: &mut [i8] =
unsafe { std::slice::from_raw_parts_mut(aux.as_mut_ptr() as *mut i8, 16) };
let d_all = block.d.to_f32();
let mut m = 1;
let mut is = 0;
// Dequantize both 128 long blocks
// 32 qs values per 128 long block
// Each 16 elements get a scale
for (y, qs) in y.chunks_exact_mut(128).zip(block.qs.chunks_exact(32)) {
let mut shift = 0;
for shift_scoped_y in y.chunks_exact_mut(32) {
for (scale_index, scale_scoped_y) in
shift_scoped_y.chunks_exact_mut(16).enumerate()
{
let dl = d_all * (scales[is] as f32 - 32.0);
for (i, inner_y) in scale_scoped_y.iter_mut().enumerate() {
let new_y = dl
* (((qs[i + 16 * scale_index] >> shift) & 3) as i8
- if (block.hmask[i + 16 * scale_index] & m) == 0 {
4
} else {
0
}) as f32;
*inner_y = new_y;
}
// 16 block finished => advance scale index
is += 1;
}
// 32 block finished => increase shift and m
shift += 2;
m <<= 1;
}
}
}
Ok(())
}
}
impl GgmlType for BlockQ4K {
const DTYPE: GgmlDType = GgmlDType::Q4K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q4k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q4k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q4k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
let mut utmp: [u32; 4] = [0; 4];
let mut scales: [u8; 8] = [0; 8];
let mut mins: [u8; 8] = [0; 8];
let mut aux8: [i8; QK_K] = [0; QK_K];
let mut aux16: [i16; 8] = [0; 8];
let mut sums: [f32; 8] = [0.0; 8];
let mut aux32: [i32; 8] = [0; 8];
let mut sumf = 0.0;
for (y, x) in ys.iter().zip(xs.iter()) {
let q4 = &x.qs;
let q8 = &y.qs;
aux32.fill(0);
let mut a = &mut aux8[..];
let mut q4 = &q4[..];
for _ in 0..QK_K / 64 {
for l in 0..32 {
a[l] = (q4[l] & 0xF) as i8;
}
a = &mut a[32..];
for l in 0..32 {
a[l] = (q4[l] >> 4) as i8;
}
a = &mut a[32..];
q4 = &q4[32..];
}
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
//extract scales and mins
LittleEndian::write_u32_into(&utmp[0..2], &mut scales);
LittleEndian::write_u32_into(&utmp[2..4], &mut mins);
let mut sumi = 0;
for j in 0..QK_K / 16 {
sumi += y.bsums[j] as i32 * mins[j / 2] as i32;
}
let mut a = &mut aux8[..];
let mut q8 = &q8[..];
for scale in scales {
let scale = scale as i32;
for _ in 0..4 {
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
}
}
let d = x.d.to_f32() * y.d;
for l in 0..8 {
sums[l] += d * aux32[l] as f32;
}
let dmin = x.dmin.to_f32() * y.d;
sumf -= dmin * sumi as f32;
}
Ok(sumf + sums.iter().sum::<f32>())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
for (block, x) in group_for_quantization(xs, ys)? {
let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32];
for (j, x_scale_slice) in x.chunks_exact(32).enumerate() {
(scales[j], mins[j]) = make_qkx1_quants(15, 5, x_scale_slice);
}
// get max scale and max min and ensure they are >= 0.0
let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max));
let max_min = mins.iter().fold(0.0, |max, &val| val.max(max));
let inv_scale = if max_scale > 0.0 {
63.0 / max_scale
} else {
0.0
};
let inv_min = if max_min > 0.0 { 63.0 / max_min } else { 0.0 };
for j in 0..QK_K / 32 {
let ls = nearest_int(inv_scale * scales[j]).min(63) as u8;
let lm = nearest_int(inv_min * mins[j]).min(63) as u8;
if j < 4 {
block.scales[j] = ls;
block.scales[j + 4] = lm;
} else {
block.scales[j + 4] = (ls & 0xF) | ((lm & 0xF) << 4);
block.scales[j - 4] |= (ls >> 4) << 6;
block.scales[j] |= (lm >> 4) << 6;
}
}
block.d = f16::from_f32(max_scale / 63.0);
block.dmin = f16::from_f32(max_min / 63.0);
let mut l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 32 {
let (sc, m) = get_scale_min_k4(j, &block.scales);
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
let dm = block.dmin.to_f32() * m as f32;
for ii in 0..32 {
let l_val = nearest_int((x[32 * j + ii] + dm) / d);
l[32 * j + ii] = l_val.clamp(0, 15) as u8;
}
}
}
let q = &mut block.qs;
for j in (0..QK_K).step_by(64) {
for l_val in 0..32 {
let offset_index = (j / 64) * 32 + l_val;
q[offset_index] = l[j + l_val] | (l[j + l_val + 32] << 4);
}
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L735
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
for (block, y) in group_for_dequantization(xs, ys)? {
let d = block.d.to_f32();
let min = block.dmin.to_f32();
let q = &block.qs;
let mut is = 0;
let mut ys_index = 0;
for j in (0..QK_K).step_by(64) {
let q = &q[j / 2..j / 2 + 32];
let (sc, m) = get_scale_min_k4(is, &block.scales);
let d1 = d * sc as f32;
let m1 = min * m as f32;
let (sc, m) = get_scale_min_k4(is + 1, &block.scales);
let d2 = d * sc as f32;
let m2 = min * m as f32;
for q in q {
y[ys_index] = d1 * (q & 0xF) as f32 - m1;
ys_index += 1;
}
for q in q {
y[ys_index] = d2 * (q >> 4) as f32 - m2;
ys_index += 1;
}
is += 2;
}
}
Ok(())
}
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L928
impl GgmlType for BlockQ5K {
const DTYPE: GgmlDType = GgmlDType::Q5K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q5k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q5k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
let mut utmp: [u32; 4] = [0; 4];
let mut scales: [u8; 8] = [0; 8];
let mut mins: [u8; 8] = [0; 8];
let mut aux8: [i8; QK_K] = [0; QK_K];
let mut aux16: [i16; 8] = [0; 8];
let mut sums: [f32; 8] = [0.0; 8];
let mut aux32: [i32; 8] = [0; 8];
let mut sumf = 0.0;
for (y, x) in ys.iter().zip(xs.iter()) {
let q5 = &x.qs;
let hm = &x.qh;
let q8 = &y.qs;
aux32.fill(0);
let mut a = &mut aux8[..];
let mut q5 = &q5[..];
let mut m = 1u8;
for _ in 0..QK_K / 64 {
for l in 0..32 {
a[l] = (q5[l] & 0xF) as i8;
a[l] += if hm[l] & m != 0 { 16 } else { 0 };
}
a = &mut a[32..];
m <<= 1;
for l in 0..32 {
a[l] = (q5[l] >> 4) as i8;
a[l] += if hm[l] & m != 0 { 16 } else { 0 };
}
a = &mut a[32..];
m <<= 1;
q5 = &q5[32..];
}
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
//extract scales and mins
LittleEndian::write_u32_into(&utmp[0..2], &mut scales);
LittleEndian::write_u32_into(&utmp[2..4], &mut mins);
let mut sumi = 0;
for j in 0..QK_K / 16 {
sumi += y.bsums[j] as i32 * mins[j / 2] as i32;
}
let mut a = &mut aux8[..];
let mut q8 = &q8[..];
for scale in scales {
let scale = scale as i32;
for _ in 0..4 {
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
}
}
let d = x.d.to_f32() * y.d;
for l in 0..8 {
sums[l] += d * aux32[l] as f32;
}
let dmin = x.dmin.to_f32() * y.d;
sumf -= dmin * sumi as f32;
}
Ok(sumf + sums.iter().sum::<f32>())
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L793
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
for (block, x) in group_for_quantization(xs, ys)? {
let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32];
for (j, x_scale_slice) in x.chunks_exact(32).enumerate() {
(scales[j], mins[j]) = make_qkx1_quants(31, 5, x_scale_slice);
}
// get max scale and max min and ensure they are >= 0.0
let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max));
let max_min = mins.iter().fold(0.0, |max, &val| val.max(max));
let inv_scale = if max_scale > 0.0 {
63.0 / max_scale
} else {
0.0
};
let inv_min = if max_min > 0.0 { 63.0 / max_min } else { 0.0 };
for j in 0..QK_K / 32 {
let ls = nearest_int(inv_scale * scales[j]).min(63) as u8;
let lm = nearest_int(inv_min * mins[j]).min(63) as u8;
if j < 4 {
block.scales[j] = ls;
block.scales[j + 4] = lm;
} else {
block.scales[j + 4] = (ls & 0xF) | ((lm & 0xF) << 4);
block.scales[j - 4] |= (ls >> 4) << 6;
block.scales[j] |= (lm >> 4) << 6;
}
}
block.d = f16::from_f32(max_scale / 63.0);
block.dmin = f16::from_f32(max_min / 63.0);
let mut l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 32 {
let (sc, m) = get_scale_min_k4(j, &block.scales);
let d = block.d.to_f32() * sc as f32;
if d == 0.0 {
continue;
}
let dm = block.dmin.to_f32() * m as f32;
for ii in 0..32 {
let ll = nearest_int((x[32 * j + ii] + dm) / d);
l[32 * j + ii] = ll.clamp(0, 31) as u8;
}
}
let qh = &mut block.qh;
let ql = &mut block.qs;
qh.fill(0);
let mut m1 = 1;
let mut m2 = 2;
for n in (0..QK_K).step_by(64) {
let offset = (n / 64) * 32;
for j in 0..32 {
let mut l1 = l[n + j];
if l1 > 15 {
l1 -= 16;
qh[j] |= m1;
}
let mut l2 = l[n + j + 32];
if l2 > 15 {
l2 -= 16;
qh[j] |= m2;
}
ql[offset + j] = l1 | (l2 << 4);
}
m1 <<= 2;
m2 <<= 2;
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L928
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
for (block, y) in group_for_dequantization(xs, ys)? {
let d = block.d.to_f32();
let min = block.dmin.to_f32();
let ql = &block.qs;
let qh = &block.qh;
let mut is = 0;
let mut u1 = 1;
let mut u2 = 2;
let mut ys_index = 0;
for j in (0..QK_K).step_by(64) {
let ql = &ql[j / 2..j / 2 + 32];
let (sc, m) = get_scale_min_k4(is, &block.scales);
let d1 = d * sc as f32;
let m1 = min * m as f32;
let (sc, m) = get_scale_min_k4(is + 1, &block.scales);
let d2 = d * sc as f32;
let m2 = min * m as f32;
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
ys_index += 1;
}
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
ys_index += 1;
}
is += 2;
u1 <<= 2;
u2 <<= 2;
}
}
Ok(())
}
}
impl GgmlType for BlockQ6K {
const DTYPE: GgmlDType = GgmlDType::Q6K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q6k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q6k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q6k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
}
let mut aux8 = [0i8; QK_K];
let mut aux16 = [0i16; 8];
let mut sums = [0f32; 8];
let mut aux32 = [0f32; 8];
for (x, y) in xs.iter().zip(ys.iter()) {
let q4 = &x.ql;
let qh = &x.qh;
let q8 = &y.qs;
aux32.fill(0f32);
for j in (0..QK_K).step_by(128) {
let aux8 = &mut aux8[j..];
let q4 = &q4[j / 2..];
let qh = &qh[j / 4..];
for l in 0..32 {
aux8[l] = (((q4[l] & 0xF) | ((qh[l] & 3) << 4)) as i32 - 32) as i8;
aux8[l + 32] =
(((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i32 - 32) as i8;
aux8[l + 64] = (((q4[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i32 - 32) as i8;
aux8[l + 96] =
(((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i32 - 32) as i8;
}
}
for (j, &scale) in x.scales.iter().enumerate() {
let scale = scale as f32;
let q8 = &q8[16 * j..];
let aux8 = &aux8[16 * j..];
for l in 0..8 {
aux16[l] = q8[l] as i16 * aux8[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as f32
}
let q8 = &q8[8..];
let aux8 = &aux8[8..];
for l in 0..8 {
aux16[l] = q8[l] as i16 * aux8[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as f32
}
}
let d = x.d.to_f32() * y.d;
for (sum, &a) in sums.iter_mut().zip(aux32.iter()) {
*sum += a * d;
}
}
Ok(sums.iter().sum())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() * Self::BLCK_SIZE {
crate::bail!(
"quantize_row_q6k: size mismatch {} {} {}",
xs.len(),
ys.len(),
Self::BLCK_SIZE
)
}
let mut l = [0i8; QK_K];
let mut scales = [0f32; QK_K / 16];
let mut x = xs.as_ptr();
let l = l.as_mut_ptr();
unsafe {
for y in ys.iter_mut() {
let mut max_scale = 0f32;
let mut max_abs_scale = 0f32;
for (ib, scale_) in scales.iter_mut().enumerate() {
let scale = make_qx_quants(16, 32, x.add(16 * ib), l.add(16 * ib), 1);
*scale_ = scale;
let abs_scale = scale.abs();
if abs_scale > max_abs_scale {
max_abs_scale = abs_scale;
max_scale = scale
}
}
let iscale = -128f32 / max_scale;
y.d = f16::from_f32(1.0 / iscale);
for (y_scale, scale) in y.scales.iter_mut().zip(scales.iter()) {
*y_scale = nearest_int(iscale * scale).min(127) as i8
}
for (j, &y_scale) in y.scales.iter().enumerate() {
let d = y.d.to_f32() * y_scale as f32;
if d == 0. {
continue;
}
for ii in 0..16 {
let ll = nearest_int(*x.add(16 * j + ii) / d).clamp(-32, 31);
*l.add(16 * j + ii) = (ll + 32) as i8
}
}
let mut ql = y.ql.as_mut_ptr();
let mut qh = y.qh.as_mut_ptr();
for j in (0..QK_K).step_by(128) {
for l_idx in 0..32 {
let q1 = *l.add(j + l_idx) & 0xF;
let q2 = *l.add(j + l_idx + 32) & 0xF;
let q3 = *l.add(j + l_idx + 64) & 0xF;
let q4 = *l.add(j + l_idx + 96) & 0xF;
*ql.add(l_idx) = (q1 | (q3 << 4)) as u8;
*ql.add(l_idx + 32) = (q2 | (q4 << 4)) as u8;
*qh.add(l_idx) = ((*l.add(j + l_idx) >> 4)
| ((*l.add(j + l_idx + 32) >> 4) << 2)
| ((*l.add(j + l_idx + 64) >> 4) << 4)
| ((*l.add(j + l_idx + 96) >> 4) << 6))
as u8;
}
ql = ql.add(64);
qh = qh.add(32);
}
x = x.add(QK_K)
}
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L1067
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK_K != 0 {
crate::bail!("dequantize_row_q6k: {k} is not divisible by {QK_K}")
}
for (idx_x, x) in xs.iter().enumerate() {
let d = x.d.to_f32();
let ql = &x.ql;
let qh = &x.qh;
let sc = &x.scales;
for n in (0..QK_K).step_by(128) {
let idx = n / 128;
let ys = &mut ys[idx_x * QK_K + n..];
let sc = &sc[8 * idx..];
let ql = &ql[64 * idx..];
let qh = &qh[32 * idx..];
for l in 0..32 {
let is = l / 16;
let q1 = ((ql[l] & 0xF) | ((qh[l] & 3) << 4)) as i8 - 32;
let q2 = ((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i8 - 32;
let q3 = ((ql[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i8 - 32;
let q4 = ((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i8 - 32;
ys[l] = d * sc[is] as f32 * q1 as f32;
ys[l + 32] = d * sc[is + 2] as f32 * q2 as f32;
ys[l + 64] = d * sc[is + 4] as f32 * q3 as f32;
ys[l + 96] = d * sc[is + 6] as f32 * q4 as f32;
}
}
}
Ok(())
}
}
impl GgmlType for BlockQ8K {
const DTYPE: GgmlDType = GgmlDType::Q8K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q8k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q8k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q8k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK_K;
if n % QK_K != 0 {
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
}
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let sum_i = xs
.qs
.iter()
.zip(ys.qs.iter())
.map(|(&x, &y)| x as i32 * y as i32)
.sum::<i32>();
sumf += sum_i as f32 * xs.d * ys.d
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let k = xs.len();
if k % QK_K != 0 {
crate::bail!("quantize_row_q8k: {k} is not divisible by {QK_K}")
}
for (i, y) in ys.iter_mut().enumerate() {
let mut max = 0f32;
let mut amax = 0f32;
let xs = &xs[i * QK_K..(i + 1) * QK_K];
for &x in xs.iter() {
if amax < x.abs() {
amax = x.abs();
max = x;
}
}
if amax == 0f32 {
y.d = 0f32;
y.qs.fill(0)
} else {
let iscale = -128f32 / max;
for (j, q) in y.qs.iter_mut().enumerate() {
// ggml uses nearest_int with bit magic here, maybe we want the same
// but we would have to test and benchmark it.
let v = (iscale * xs[j]).round();
*q = v.min(127.) as i8
}
for j in 0..QK_K / 16 {
let mut sum = 0i32;
for ii in 0..16 {
sum += y.qs[j * 16 + ii] as i32
}
y.bsums[j] = sum as i16
}
y.d = 1.0 / iscale
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK_K != 0 {
crate::bail!("dequantize_row_q8k: {k} is not divisible by {QK_K}")
}
for (i, x) in xs.iter().enumerate() {
for (j, &q) in x.qs.iter().enumerate() {
ys[i * QK_K + j] = x.d * q as f32
}
}
Ok(())
}
}
// https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/ggml.c#L10605
pub fn matmul<T: GgmlType>(
mkn: (usize, usize, usize),
lhs: &[f32],
rhs_t: &[T],
dst: &mut [f32],
) -> Result<()> {
let (m, k, n) = mkn;
if m * k != lhs.len() {
crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len());
}
let k_in_lhs_blocks = (k + T::BLCK_SIZE - 1) / T::BLCK_SIZE;
let k_in_rhs_blocks = (k + T::VecDotType::BLCK_SIZE - 1) / T::VecDotType::BLCK_SIZE;
// TODO: Do not make this copy if the DotType is f32.
// TODO: Pre-allocate this.
let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks];
for row_idx in 0..m {
let lhs_b = &mut lhs_b[row_idx * k_in_lhs_blocks..(row_idx + 1) * k_in_lhs_blocks];
let lhs = &lhs[row_idx * k..(row_idx + 1) * k];
T::VecDotType::from_float(lhs, lhs_b)?
}
let lhs_b = lhs_b.as_slice();
for row_idx in 0..m {
let lhs_row = &lhs_b[row_idx * k_in_lhs_blocks..(row_idx + 1) * k_in_lhs_blocks];
let dst_row = &mut dst[row_idx * n..(row_idx + 1) * n];
let result: Result<Vec<_>> = dst_row
.into_par_iter()
.enumerate()
.with_min_len(128)
.with_max_len(512)
.map(|(col_idx, dst)| {
let rhs_col = &rhs_t[col_idx * k_in_rhs_blocks..(col_idx + 1) * k_in_rhs_blocks];
T::vec_dot(k, rhs_col, lhs_row).map(|value| *dst = value)
})
.collect();
result?;
}
Ok(())
}
impl GgmlType for f32 {
const DTYPE: GgmlDType = GgmlDType::F32;
const BLCK_SIZE: usize = 1;
type VecDotType = f32;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if xs.len() < n {
crate::bail!("size mismatch {} < {n}", xs.len())
}
if ys.len() < n {
crate::bail!("size mismatch {} < {n}", ys.len())
}
let mut res = 0f32;
unsafe { crate::cpu::vec_dot_f32(xs.as_ptr(), ys.as_ptr(), &mut res, n) };
Ok(res)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
ys.copy_from_slice(xs);
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
ys.copy_from_slice(xs);
Ok(())
}
}
impl GgmlType for f16 {
const DTYPE: GgmlDType = GgmlDType::F16;
const BLCK_SIZE: usize = 1;
type VecDotType = f16;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if xs.len() < n {
crate::bail!("size mismatch {} < {n}", xs.len())
}
if ys.len() < n {
crate::bail!("size mismatch {} < {n}", ys.len())
}
let mut res = 0f32;
unsafe { crate::cpu::vec_dot_f16(xs.as_ptr(), ys.as_ptr(), &mut res, n) };
Ok(res)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
// TODO: vectorize
for (x, y) in xs.iter().zip(ys.iter_mut()) {
*y = f16::from_f32(*x)
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
// TODO: vectorize
for (x, y) in xs.iter().zip(ys.iter_mut()) {
*y = x.to_f32()
}
Ok(())
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/mod.rs | #[cfg(feature = "metal")]
use crate::{backend::BackendStorage, DType};
use crate::{CpuStorage, Device, Result, Shape, Storage, Tensor};
use k_quants::*;
use std::borrow::Cow;
#[cfg(target_feature = "avx")]
pub mod avx;
pub mod ggml_file;
pub mod gguf_file;
pub mod k_quants;
#[cfg(feature = "metal")]
pub mod metal;
#[cfg(target_feature = "neon")]
pub mod neon;
#[cfg(target_feature = "simd128")]
pub mod simd128;
pub mod utils;
use half::f16;
pub use k_quants::GgmlType;
pub struct QTensor {
storage: QStorage,
shape: Shape,
}
impl Device {
fn qzeros(&self, elem_count: usize, dtype: GgmlDType) -> Result<QStorage> {
match self {
Device::Cpu => {
let storage = dtype.cpu_zeros(elem_count);
Ok(QStorage::Cpu(storage))
}
#[cfg(feature = "metal")]
Device::Metal(metal) => {
let size = elem_count * dtype.type_size() / dtype.block_size();
let buffer = metal.allocate_zeros(size)?;
Ok(QStorage::Metal(metal::QMetalStorage::new(
buffer,
metal.clone(),
dtype,
)))
}
#[cfg(not(feature = "metal"))]
Device::Metal(_metal) => {
crate::bail!("Metal feature not activated");
}
Device::Cuda(_cuda) => {
crate::bail!("Cuda ggml quantization not supported");
}
}
}
}
pub enum QStorage {
Cpu(Box<dyn QuantizedType>),
#[cfg(feature = "metal")]
Metal(metal::QMetalStorage),
}
impl QStorage {
fn block_size(&self) -> usize {
match self {
QStorage::Cpu(storage) => storage.block_size(),
#[cfg(feature = "metal")]
QStorage::Metal(storage) => storage.dtype().block_size(),
}
}
fn dtype(&self) -> GgmlDType {
match self {
QStorage::Cpu(storage) => storage.dtype(),
#[cfg(feature = "metal")]
QStorage::Metal(storage) => storage.dtype(),
}
}
fn size_in_bytes(&self) -> usize {
match self {
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
#[cfg(feature = "metal")]
QStorage::Metal(storage) => storage.buffer().length() as usize,
}
}
fn quantize(&mut self, src: &Storage) -> Result<()> {
match (self, src) {
(QStorage::Cpu(storage), Storage::Cpu(src)) => {
storage.from_float(src.as_slice::<f32>()?)?;
}
#[cfg(feature = "metal")]
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
_ => crate::bail!("Invalid dequantize storage locations do not match"),
}
Ok(())
}
fn dequantize(&self, elem_count: usize) -> Result<Storage> {
match self {
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
#[cfg(feature = "metal")]
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
}
}
fn data(&self) -> Result<Cow<[u8]>> {
match self {
QStorage::Cpu(storage) => {
let data_ptr = storage.as_ptr();
let size_in_bytes = storage.storage_size_in_bytes();
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
Ok(Cow::from(data))
}
#[cfg(feature = "metal")]
QStorage::Metal(_storage) => {
crate::bail!("not implemented");
}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GgmlDType {
F32,
F16,
Q4_0,
Q4_1,
Q5_0,
Q5_1,
Q8_0,
Q8_1,
Q2K,
Q3K,
Q4K,
Q5K,
Q6K,
Q8K,
}
impl GgmlDType {
pub(crate) fn from_u32(u: u32) -> Result<Self> {
let dtype = match u {
0 => Self::F32,
1 => Self::F16,
2 => Self::Q4_0,
3 => Self::Q4_1,
6 => Self::Q5_0,
7 => Self::Q5_1,
8 => Self::Q8_0,
9 => Self::Q8_1,
10 => Self::Q2K,
11 => Self::Q3K,
12 => Self::Q4K,
13 => Self::Q5K,
14 => Self::Q6K,
15 => Self::Q8K,
_ => crate::bail!("unknown dtype for tensor {u}"),
};
Ok(dtype)
}
pub(crate) fn to_u32(self) -> u32 {
match self {
Self::F32 => 0,
Self::F16 => 1,
Self::Q4_0 => 2,
Self::Q4_1 => 3,
Self::Q5_0 => 6,
Self::Q5_1 => 7,
Self::Q8_0 => 8,
Self::Q8_1 => 9,
Self::Q2K => 10,
Self::Q3K => 11,
Self::Q4K => 12,
Self::Q5K => 13,
Self::Q6K => 14,
Self::Q8K => 15,
}
}
/// The block dtype
pub fn cpu_zeros(&self, elem_count: usize) -> Box<dyn QuantizedType> {
match self {
Self::F32 => Box::new(vec![f32::zeros(); elem_count]),
Self::F16 => Box::new(vec![f16::zeros(); elem_count]),
Self::Q4_0 => Box::new(vec![BlockQ4_0::zeros(); elem_count / BlockQ4_0::BLCK_SIZE]),
Self::Q4_1 => Box::new(vec![BlockQ4_1::zeros(); elem_count / BlockQ4_1::BLCK_SIZE]),
Self::Q5_0 => Box::new(vec![BlockQ5_0::zeros(); elem_count / BlockQ5_0::BLCK_SIZE]),
Self::Q5_1 => Box::new(vec![BlockQ5_1::zeros(); elem_count / BlockQ5_1::BLCK_SIZE]),
Self::Q8_0 => Box::new(vec![BlockQ8_0::zeros(); elem_count / BlockQ8_0::BLCK_SIZE]),
Self::Q8_1 => Box::new(vec![BlockQ8_1::zeros(); elem_count / BlockQ8_1::BLCK_SIZE]),
Self::Q2K => Box::new(vec![BlockQ2K::zeros(); elem_count / BlockQ2K::BLCK_SIZE]),
Self::Q3K => Box::new(vec![BlockQ3K::zeros(); elem_count / BlockQ3K::BLCK_SIZE]),
Self::Q4K => Box::new(vec![BlockQ4K::zeros(); elem_count / BlockQ4K::BLCK_SIZE]),
Self::Q5K => Box::new(vec![BlockQ5K::zeros(); elem_count / BlockQ5K::BLCK_SIZE]),
Self::Q6K => Box::new(vec![BlockQ6K::zeros(); elem_count / BlockQ6K::BLCK_SIZE]),
Self::Q8K => Box::new(vec![BlockQ8K::zeros(); elem_count / BlockQ8K::BLCK_SIZE]),
}
}
/// The type size for blocks in bytes.
pub fn type_size(&self) -> usize {
use k_quants::*;
match self {
Self::F32 => 4,
Self::F16 => 2,
Self::Q4_0 => std::mem::size_of::<BlockQ4_0>(),
Self::Q4_1 => std::mem::size_of::<BlockQ4_1>(),
Self::Q5_0 => std::mem::size_of::<BlockQ5_0>(),
Self::Q5_1 => std::mem::size_of::<BlockQ5_1>(),
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L932
Self::Q8_0 => std::mem::size_of::<BlockQ8_0>(),
Self::Q8_1 => std::mem::size_of::<BlockQ8_1>(),
Self::Q2K => std::mem::size_of::<BlockQ2K>(),
Self::Q3K => std::mem::size_of::<BlockQ3K>(),
Self::Q4K => std::mem::size_of::<BlockQ4K>(),
Self::Q5K => std::mem::size_of::<BlockQ5K>(),
Self::Q6K => std::mem::size_of::<BlockQ6K>(),
Self::Q8K => std::mem::size_of::<BlockQ8K>(),
}
}
/// The block size, i.e. the number of elements stored in each block.
pub fn block_size(&self) -> usize {
match self {
Self::F32 => 1,
Self::F16 => 1,
Self::Q4_0 => k_quants::QK4_0,
Self::Q4_1 => k_quants::QK4_1,
Self::Q5_0 => k_quants::QK5_0,
Self::Q5_1 => k_quants::QK5_1,
Self::Q8_0 => k_quants::QK8_0,
Self::Q8_1 => k_quants::QK8_1,
Self::Q2K | Self::Q3K | Self::Q4K | Self::Q5K | Self::Q6K | Self::Q8K => k_quants::QK_K,
}
}
}
// A version of GgmlType without `vec_dot` so that it can be dyn boxed.
pub trait QuantizedType: Send + Sync {
fn dtype(&self) -> GgmlDType;
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage>;
fn storage_size_in_bytes(&self) -> usize;
fn as_ptr(&self) -> *const u8;
fn block_size(&self) -> usize;
#[allow(clippy::wrong_self_convention)]
fn from_float(&mut self, xs: &[f32]) -> Result<()>;
fn size(&self) -> usize;
}
impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
k_quants::matmul(mkn, lhs, self.as_slice(), dst)
}
fn size(&self) -> usize {
self.len() * core::mem::size_of::<T>()
}
fn from_float(&mut self, xs: &[f32]) -> Result<()> {
T::from_float(xs, self)
}
fn dtype(&self) -> GgmlDType {
T::DTYPE
}
fn block_size(&self) -> usize {
T::BLCK_SIZE
}
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage> {
let mut ys = vec![0.0f32; elem_count];
T::to_float(self.as_slice(), &mut ys)?;
Ok(CpuStorage::F32(ys))
}
fn storage_size_in_bytes(&self) -> usize {
self.len() * std::mem::size_of::<T>()
}
fn as_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
}
impl std::fmt::Debug for QTensor {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "QTensor[{:?}; {:?}]", self.shape, self.dtype())
}
}
fn check_shape(shape: &Shape, block_size: usize) -> Result<()> {
let dims = shape.dims();
if dims.is_empty() {
crate::bail!("scalar tensor cannot be quantized {shape:?}")
}
if dims[dims.len() - 1] % block_size != 0 {
crate::bail!(
"quantized tensor must have their last dim divisible by block size {shape:?} {}",
block_size
)
}
Ok(())
}
impl QTensor {
pub fn new<S: Into<Shape>>(storage: QStorage, shape: S) -> Result<Self> {
let shape = shape.into();
check_shape(&shape, storage.block_size())?;
Ok(Self { storage, shape })
}
pub fn quantize(src: &Tensor, dtype: GgmlDType) -> Result<Self> {
let shape = src.shape();
let block_size = dtype.block_size();
check_shape(shape, block_size)?;
let src = src.to_dtype(crate::DType::F32)?.flatten_all()?;
let elem_count = shape.elem_count();
if elem_count % block_size != 0 {
crate::bail!(
"tensor size ({shape:?}) is not divisible by block size {}",
block_size
)
}
let mut storage = src.device().qzeros(elem_count, dtype)?;
storage.quantize(&src.storage())?;
Ok(Self {
storage,
shape: shape.clone(),
})
}
pub fn dtype(&self) -> GgmlDType {
self.storage.dtype()
}
pub fn rank(&self) -> usize {
self.shape.rank()
}
pub fn shape(&self) -> &Shape {
&self.shape
}
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
let storage = self.storage.dequantize(self.shape.elem_count())?;
let none = crate::op::BackpropOp::none();
let is_variable = false;
crate::tensor::from_storage(storage, self.shape.clone(), none, is_variable)
.to_device(device)
}
pub fn storage_size_in_bytes(&self) -> usize {
self.storage.size_in_bytes()
}
pub fn data(&self) -> Result<Cow<'_, [u8]>> {
self.storage.data()
}
}
#[derive(Clone, Debug)]
pub enum QMatMul {
QTensor(std::sync::Arc<QTensor>),
Tensor(Tensor),
}
thread_local! {
static DEQUANTIZE_ALL: bool = {
match std::env::var("CANDLE_DEQUANTIZE_ALL") {
Ok(s) => {
!s.is_empty() && s != "0"
},
Err(_) => false,
}
}
}
impl QMatMul {
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
let dequantize = match qtensor.dtype() {
GgmlDType::F32 | GgmlDType::F16 => true,
_ => DEQUANTIZE_ALL.with(|b| *b),
};
let t = if dequantize {
let tensor = qtensor.dequantize(&Device::Cpu)?;
Self::Tensor(tensor)
} else {
Self::QTensor(qtensor)
};
Ok(t)
}
pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
Self::from_arc(std::sync::Arc::new(qtensor))
}
}
impl crate::CustomOp1 for QTensor {
fn name(&self) -> &'static str {
"qmatmul"
}
fn cpu_fwd(
&self,
storage: &crate::CpuStorage,
layout: &crate::Layout,
) -> Result<(crate::CpuStorage, Shape)> {
if !layout.is_contiguous() {
crate::bail!("input tensor is not contiguous {layout:?}")
}
let src_shape = layout.shape();
// self is transposed so n is first then k.
let (n, k) = self.shape.dims2()?;
if src_shape.rank() < 2 {
crate::bail!("input tensor has only one dimension {layout:?}")
}
let mut dst_shape = src_shape.dims().to_vec();
let last_k = dst_shape.pop().unwrap();
if last_k != k {
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
}
dst_shape.push(n);
let dst_shape = Shape::from(dst_shape);
#[allow(clippy::infallible_destructuring_match)]
let self_storage = match &self.storage {
QStorage::Cpu(storage) => storage,
#[cfg(feature = "metal")]
_ => crate::bail!("Invalid storage"),
};
let slice = storage.as_slice::<f32>()?;
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
let mut dst_storage = vec![0f32; dst_shape.elem_count()];
self_storage.matmul_t((dst_shape.elem_count() / n, k, n), slice, &mut dst_storage)?;
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
}
#[cfg(feature = "metal")]
fn metal_fwd(
&self,
storage: &crate::MetalStorage,
layout: &crate::Layout,
) -> Result<(crate::MetalStorage, Shape)> {
use crate::MetalError;
if !layout.is_contiguous() {
crate::bail!("input tensor is not contiguous {layout:?}")
}
let src_shape = layout.shape();
// self is transposed so n is first then k.
if src_shape.rank() < 2 {
crate::bail!("input tensor has only one dimension {layout:?}")
}
let (n, k) = self.shape.dims2()?;
let mut dst_shape = src_shape.dims().to_vec();
let (b, m) = match dst_shape.len() {
3 => (dst_shape[0], dst_shape[1]),
2 => (1, dst_shape[0]),
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
};
let last_k = dst_shape.pop().unwrap();
if last_k != k {
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
}
dst_shape.push(n);
let dst_shape = Shape::from(dst_shape);
let device = storage.device().clone();
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
let (buffer, dtype) = match &self.storage {
QStorage::Metal(metal) => (metal.buffer(), metal.dtype()),
_ => unreachable!("Cannot call metal matmul on non metal QTensor"),
};
let command_buffer = device.command_buffer()?;
candle_metal_kernels::call_quantized_matmul_t(
device.device(),
&command_buffer,
device.kernels(),
dtype.into(),
(b, m, n, k),
storage.buffer(),
layout.start_offset() * storage.dtype().size_in_bytes(),
buffer,
&dst,
)
.map_err(MetalError::from)?;
let dst_storage = crate::MetalStorage::new(dst, device, DType::F32);
Ok((dst_storage, dst_shape))
}
}
#[cfg(feature = "metal")]
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
fn from(value: GgmlDType) -> Self {
match value {
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
}
}
}
impl crate::Module for QMatMul {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
Self::QTensor(t) => xs.apply_op1_no_bwd(t.as_ref()),
Self::Tensor(w) => {
let w = match *xs.dims() {
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
_ => w.t()?,
};
xs.matmul(&w)
}
}
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/gguf_file.rs | //! Support for the GGUF file format.
//!
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md
use super::{GgmlDType, QTensor};
use crate::{Device, Result};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::collections::HashMap;
pub const DEFAULT_ALIGNMENT: u64 = 32;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
Gguf,
}
impl TryFrom<u32> for Magic {
type Error = crate::Error;
fn try_from(value: u32) -> Result<Self> {
let magic = match value {
0x46554747 | 0x47475546 => Self::Gguf,
_ => crate::bail!("unknown magic 0x{value:08x}"),
};
Ok(magic)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
GgufV1,
GgufV2,
GgufV3,
}
impl VersionedMagic {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = reader.read_u32::<LittleEndian>()?;
let magic = Magic::try_from(magic)?;
let version = reader.read_u32::<LittleEndian>()?;
let versioned_magic = match (magic, version) {
(Magic::Gguf, 1) => Self::GgufV1,
(Magic::Gguf, 2) => Self::GgufV2,
(Magic::Gguf, 3) => Self::GgufV3,
_ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
}
#[derive(Debug)]
pub struct TensorInfo {
pub ggml_dtype: GgmlDType,
pub shape: crate::Shape,
pub offset: u64,
}
impl TensorInfo {
pub fn read<R: std::io::Seek + std::io::Read>(
&self,
reader: &mut R,
tensor_data_offset: u64,
device: &Device,
) -> Result<QTensor> {
let tensor_elems = self.shape.elem_count();
let block_size = self.ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
)
}
let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
let mut raw_data = vec![0u8; size_in_bytes];
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
reader.read_exact(&mut raw_data)?;
super::ggml_file::qtensor_from_ggml(
self.ggml_dtype,
&raw_data,
self.shape.dims().to_vec(),
device,
)
}
}
#[derive(Debug)]
pub struct Content {
pub magic: VersionedMagic,
pub metadata: HashMap<String, Value>,
pub tensor_infos: HashMap<String, TensorInfo>,
pub tensor_data_offset: u64,
}
fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> {
let len = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let mut v = vec![0u8; len];
reader.read_exact(&mut v)?;
// GGUF strings are supposed to be non-null terminated but in practice this happens.
while let Some(0) = v.last() {
v.pop();
}
// GGUF strings are utf8 encoded but there are cases that don't seem to be valid.
Ok(String::from_utf8_lossy(&v).into_owned())
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ValueType {
// The value is a 8-bit unsigned integer.
U8,
// The value is a 8-bit signed integer.
I8,
// The value is a 16-bit unsigned little-endian integer.
U16,
// The value is a 16-bit signed little-endian integer.
I16,
// The value is a 32-bit unsigned little-endian integer.
U32,
// The value is a 32-bit signed little-endian integer.
I32,
// The value is a 64-bit unsigned little-endian integer.
U64,
// The value is a 64-bit signed little-endian integer.
I64,
// The value is a 32-bit IEEE754 floating point number.
F32,
// The value is a 64-bit IEEE754 floating point number.
F64,
// The value is a boolean.
// 1-byte value where 0 is false and 1 is true.
// Anything else is invalid, and should be treated as either the model being invalid or the reader being buggy.
Bool,
// The value is a UTF-8 non-null-terminated string, with length prepended.
String,
// The value is an array of other values, with the length and type prepended.
///
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
Array,
}
#[derive(Debug, Clone)]
pub enum Value {
U8(u8),
I8(i8),
U16(u16),
I16(i16),
U32(u32),
I32(i32),
U64(u64),
I64(i64),
F32(f32),
F64(f64),
Bool(bool),
String(String),
Array(Vec<Value>),
}
impl Value {
pub fn value_type(&self) -> ValueType {
match self {
Self::U8(_) => ValueType::U8,
Self::I8(_) => ValueType::I8,
Self::U16(_) => ValueType::U16,
Self::I16(_) => ValueType::I16,
Self::U32(_) => ValueType::U32,
Self::I32(_) => ValueType::I32,
Self::U64(_) => ValueType::U64,
Self::I64(_) => ValueType::I64,
Self::F32(_) => ValueType::F32,
Self::F64(_) => ValueType::F64,
Self::Bool(_) => ValueType::Bool,
Self::String(_) => ValueType::String,
Self::Array(_) => ValueType::Array,
}
}
pub fn to_u8(&self) -> Result<u8> {
match self {
Self::U8(v) => Ok(*v),
v => crate::bail!("not a u8 {v:?}"),
}
}
pub fn to_i8(&self) -> Result<i8> {
match self {
Self::I8(v) => Ok(*v),
v => crate::bail!("not a i8 {v:?}"),
}
}
pub fn to_u16(&self) -> Result<u16> {
match self {
Self::U16(v) => Ok(*v),
v => crate::bail!("not a u16 {v:?}"),
}
}
pub fn to_i16(&self) -> Result<i16> {
match self {
Self::I16(v) => Ok(*v),
v => crate::bail!("not a i16 {v:?}"),
}
}
pub fn to_u32(&self) -> Result<u32> {
match self {
Self::U32(v) => Ok(*v),
v => crate::bail!("not a u32 {v:?}"),
}
}
pub fn to_i32(&self) -> Result<i32> {
match self {
Self::I32(v) => Ok(*v),
v => crate::bail!("not a i32 {v:?}"),
}
}
pub fn to_u64(&self) -> Result<u64> {
match self {
Self::U64(v) => Ok(*v),
v => crate::bail!("not a u64 {v:?}"),
}
}
pub fn to_i64(&self) -> Result<i64> {
match self {
Self::I64(v) => Ok(*v),
v => crate::bail!("not a i64 {v:?}"),
}
}
pub fn to_f32(&self) -> Result<f32> {
match self {
Self::F32(v) => Ok(*v),
v => crate::bail!("not a f32 {v:?}"),
}
}
pub fn to_f64(&self) -> Result<f64> {
match self {
Self::F64(v) => Ok(*v),
v => crate::bail!("not a f64 {v:?}"),
}
}
pub fn to_bool(&self) -> Result<bool> {
match self {
Self::Bool(v) => Ok(*v),
v => crate::bail!("not a bool {v:?}"),
}
}
pub fn to_vec(&self) -> Result<&Vec<Value>> {
match self {
Self::Array(v) => Ok(v),
v => crate::bail!("not a vec {v:?}"),
}
}
pub fn to_string(&self) -> Result<&String> {
match self {
Self::String(v) => Ok(v),
v => crate::bail!("not a string {v:?}"),
}
}
fn read<R: std::io::Read>(
reader: &mut R,
value_type: ValueType,
magic: &VersionedMagic,
) -> Result<Self> {
let v = match value_type {
ValueType::U8 => Self::U8(reader.read_u8()?),
ValueType::I8 => Self::I8(reader.read_i8()?),
ValueType::U16 => Self::U16(reader.read_u16::<LittleEndian>()?),
ValueType::I16 => Self::I16(reader.read_i16::<LittleEndian>()?),
ValueType::U32 => Self::U32(reader.read_u32::<LittleEndian>()?),
ValueType::I32 => Self::I32(reader.read_i32::<LittleEndian>()?),
ValueType::U64 => Self::U64(reader.read_u64::<LittleEndian>()?),
ValueType::I64 => Self::I64(reader.read_i64::<LittleEndian>()?),
ValueType::F32 => Self::F32(reader.read_f32::<LittleEndian>()?),
ValueType::F64 => Self::F64(reader.read_f64::<LittleEndian>()?),
ValueType::Bool => match reader.read_u8()? {
0 => Self::Bool(false),
1 => Self::Bool(true),
b => crate::bail!("unexpected bool value {b}"),
},
ValueType::String => Self::String(read_string(reader, magic)?),
ValueType::Array => {
let value_type = reader.read_u32::<LittleEndian>()?;
let value_type = ValueType::from_u32(value_type)?;
let len = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let mut vs = Vec::with_capacity(len);
for _ in 0..len {
vs.push(Value::read(reader, value_type, magic)?)
}
Self::Array(vs)
}
};
Ok(v)
}
fn write<W: std::io::Write>(&self, w: &mut W) -> Result<()> {
match self {
&Self::U8(v) => w.write_u8(v)?,
&Self::I8(v) => w.write_i8(v)?,
&Self::U16(v) => w.write_u16::<LittleEndian>(v)?,
&Self::I16(v) => w.write_i16::<LittleEndian>(v)?,
&Self::U32(v) => w.write_u32::<LittleEndian>(v)?,
&Self::I32(v) => w.write_i32::<LittleEndian>(v)?,
&Self::U64(v) => w.write_u64::<LittleEndian>(v)?,
&Self::I64(v) => w.write_i64::<LittleEndian>(v)?,
&Self::F32(v) => w.write_f32::<LittleEndian>(v)?,
&Self::F64(v) => w.write_f64::<LittleEndian>(v)?,
&Self::Bool(v) => w.write_u8(u8::from(v))?,
Self::String(v) => write_string(w, v.as_str())?,
Self::Array(v) => {
// The `Value` type does not enforce that all the values in an Array have the same
// type.
let value_type = if v.is_empty() {
// Doesn't matter, the array is empty.
ValueType::U32
} else {
let value_type: std::collections::HashSet<_> =
v.iter().map(|elem| elem.value_type()).collect();
if value_type.len() != 1 {
crate::bail!("multiple value-types in the same array {value_type:?}")
}
value_type.into_iter().next().unwrap()
};
w.write_u32::<LittleEndian>(value_type.to_u32())?;
w.write_u64::<LittleEndian>(v.len() as u64)?;
for elem in v.iter() {
elem.write(w)?
}
}
}
Ok(())
}
}
impl ValueType {
fn from_u32(v: u32) -> Result<Self> {
let v = match v {
0 => Self::U8,
1 => Self::I8,
2 => Self::U16,
3 => Self::I16,
4 => Self::U32,
5 => Self::I32,
6 => Self::F32,
7 => Self::Bool,
8 => Self::String,
9 => Self::Array,
10 => Self::U64,
11 => Self::I64,
12 => Self::F64,
v => crate::bail!("unrecognized value-type {v:#08x}"),
};
Ok(v)
}
fn to_u32(self) -> u32 {
match self {
Self::U8 => 0,
Self::I8 => 1,
Self::U16 => 2,
Self::I16 => 3,
Self::U32 => 4,
Self::I32 => 5,
Self::F32 => 6,
Self::Bool => 7,
Self::String => 8,
Self::Array => 9,
Self::U64 => 10,
Self::I64 => 11,
Self::F64 => 12,
}
}
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = VersionedMagic::read(reader)?;
let tensor_count = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let metadata_kv_count = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let mut metadata = HashMap::new();
for _idx in 0..metadata_kv_count {
let key = read_string(reader, &magic)?;
let value_type = reader.read_u32::<LittleEndian>()?;
let value_type = ValueType::from_u32(value_type)?;
let value = Value::read(reader, value_type, &magic)?;
metadata.insert(key, value);
}
let mut tensor_infos = HashMap::new();
for _idx in 0..tensor_count {
let tensor_name = read_string(reader, &magic)?;
let n_dimensions = reader.read_u32::<LittleEndian>()?;
let mut dimensions: Vec<usize> = match magic {
VersionedMagic::GgufV1 => {
let mut dimensions = vec![0; n_dimensions as usize];
reader.read_u32_into::<LittleEndian>(&mut dimensions)?;
dimensions.into_iter().map(|c| c as usize).collect()
}
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
let mut dimensions = vec![0; n_dimensions as usize];
reader.read_u64_into::<LittleEndian>(&mut dimensions)?;
dimensions.into_iter().map(|c| c as usize).collect()
}
};
dimensions.reverse();
let ggml_dtype = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
let offset = reader.read_u64::<LittleEndian>()?;
tensor_infos.insert(
tensor_name,
TensorInfo {
shape: crate::Shape::from(dimensions),
offset,
ggml_dtype,
},
);
}
let position = reader.stream_position()?;
let alignment = match metadata.get("general.alignment") {
Some(Value::U8(v)) => *v as u64,
Some(Value::U16(v)) => *v as u64,
Some(Value::U32(v)) => *v as u64,
Some(Value::I8(v)) if *v >= 0 => *v as u64,
Some(Value::I16(v)) if *v >= 0 => *v as u64,
Some(Value::I32(v)) if *v >= 0 => *v as u64,
_ => DEFAULT_ALIGNMENT,
};
let tensor_data_offset = (position + alignment - 1) / alignment * alignment;
Ok(Self {
magic,
metadata,
tensor_infos,
tensor_data_offset,
})
}
pub fn tensor<R: std::io::Seek + std::io::Read>(
&self,
reader: &mut R,
name: &str,
device: &Device,
) -> Result<QTensor> {
let tensor_info = match self.tensor_infos.get(name) {
Some(tensor_info) => tensor_info,
None => crate::bail!("cannot find tensor info for {name}"),
};
tensor_info.read(reader, self.tensor_data_offset, device)
}
}
fn write_string<W: std::io::Write>(w: &mut W, str: &str) -> Result<()> {
let bytes = str.as_bytes();
w.write_u64::<LittleEndian>(bytes.len() as u64)?;
w.write_all(bytes)?;
Ok(())
}
pub fn write<W: std::io::Seek + std::io::Write>(
w: &mut W,
metadata: &[(&str, &Value)],
tensors: &[(&str, &QTensor)],
) -> Result<()> {
w.write_u32::<LittleEndian>(0x46554747)?;
w.write_u32::<LittleEndian>(2)?; // version 2.
w.write_u64::<LittleEndian>(tensors.len() as u64)?;
w.write_u64::<LittleEndian>(metadata.len() as u64)?;
for (name, value) in metadata.iter() {
write_string(w, name)?;
w.write_u32::<LittleEndian>(value.value_type().to_u32())?;
value.write(w)?;
}
let mut offset = 0usize;
let mut offsets = Vec::with_capacity(tensors.len());
for (name, tensor) in tensors.iter() {
write_string(w, name)?;
let dims = tensor.shape().dims();
w.write_u32::<LittleEndian>(dims.len() as u32)?;
for &dim in dims.iter().rev() {
w.write_u64::<LittleEndian>(dim as u64)?;
}
w.write_u32::<LittleEndian>(tensor.dtype().to_u32())?;
w.write_u64::<LittleEndian>(offset as u64)?;
offsets.push(offset);
let size_in_bytes = tensor.storage_size_in_bytes();
let padding = 31 - (31 + size_in_bytes) % 32;
offset += size_in_bytes + padding;
}
let pos = w.stream_position()? as usize;
let padding = 31 - (31 + pos) % 32;
w.write_all(&vec![0u8; padding])?;
let tensor_start_pos = w.stream_position()? as usize;
for (offset, (_name, tensor)) in offsets.iter().zip(tensors.iter()) {
let pos = w.stream_position()? as usize;
if tensor_start_pos + offset != pos {
crate::bail!(
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
)
}
let data = tensor.data()?;
let size_in_bytes = data.len();
w.write_all(&data)?;
let padding = 31 - (31 + size_in_bytes) % 32;
w.write_all(&vec![0u8; padding])?;
}
Ok(())
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/avx.rs | use super::k_quants::{
BlockQ2K, BlockQ3K, BlockQ4K, BlockQ4_0, BlockQ5K, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K,
};
use crate::Result;
use byteorder::{ByteOrder, LittleEndian};
use half::f16;
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
#[inline(always)]
pub(crate) unsafe fn sum_i16_pairs_float(x: __m256i) -> __m256 {
let ones = _mm256_set1_epi16(1);
let summed_pairs = _mm256_madd_epi16(ones, x);
_mm256_cvtepi32_ps(summed_pairs)
}
#[inline(always)]
pub(crate) unsafe fn mul_sum_us8_pairs_float(ax: __m256i, sy: __m256i) -> __m256 {
let dot = _mm256_maddubs_epi16(ax, sy);
sum_i16_pairs_float(dot)
}
#[inline(always)]
pub(crate) unsafe fn hsum_float_8(x: __m256) -> f32 {
let res = _mm256_extractf128_ps(x, 1);
let res = _mm_add_ps(res, _mm256_castps256_ps128(x));
let res = _mm_add_ps(res, _mm_movehl_ps(res, res));
let res = _mm_add_ss(res, _mm_movehdup_ps(res));
_mm_cvtss_f32(res)
}
#[inline(always)]
pub(crate) unsafe fn bytes_from_nibbles_32(rsi: *const u8) -> __m256i {
let tmp = _mm_loadu_si128(rsi as *const __m128i);
let bytes = _mm256_insertf128_si256::<1>(_mm256_castsi128_si256(tmp), _mm_srli_epi16(tmp, 4));
let low_mask = _mm256_set1_epi8(0xF);
_mm256_and_si256(low_mask, bytes)
}
#[inline(always)]
pub(crate) unsafe fn mul_sum_i8_pairs_float(x: __m256i, y: __m256i) -> __m256 {
let ax = _mm256_sign_epi8(x, x);
let sy = _mm256_sign_epi8(y, x);
mul_sum_us8_pairs_float(ax, sy)
}
#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
unsafe {
let mut acc = _mm256_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
let d = _mm256_set1_ps(f16::to_f32(x.d) * f16::to_f32(y.d));
let bx = bytes_from_nibbles_32(x.qs.as_ptr());
let off = _mm256_set1_epi8(8);
let bx = _mm256_sub_epi8(bx, off);
let by = _mm256_loadu_si256(y.qs.as_ptr() as *const __m256i);
let q = mul_sum_i8_pairs_float(bx, by);
acc = _mm256_fmadd_ps(d, q, acc);
}
Ok(hsum_float_8(acc))
}
}
#[inline(always)]
pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
unsafe {
let mut acc = _mm256_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
let d = _mm256_set1_ps(f16::to_f32(x.d) * f16::to_f32(y.d));
let bx = _mm256_loadu_si256(x.qs.as_ptr() as *const __m256i);
let by = _mm256_loadu_si256(y.qs.as_ptr() as *const __m256i);
let q = mul_sum_i8_pairs_float(bx, by);
acc = _mm256_fmadd_ps(d, q, acc);
}
Ok(hsum_float_8(acc))
}
}
#[inline(always)]
unsafe fn get_scale_shuffle(i: usize) -> __m128i {
const K_SHUFFLE: [u8; 128] = [
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7,
7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13,
13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
];
_mm_loadu_si128((K_SHUFFLE.as_ptr() as *const __m128i).add(i))
}
#[inline(always)]
unsafe fn get_scale_shuffle_k4(i: usize) -> __m256i {
const K_SHUFFLE: [u8; 256] = [
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
6, 7, 6, 7, 6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10,
11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 12, 13, 12, 13, 12, 13,
12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12,
13, 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15,
14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15,
];
_mm256_loadu_si256((K_SHUFFLE.as_ptr() as *const __m256i).add(i))
}
#[inline(always)]
unsafe fn get_scale_shuffle_q3k(i: usize) -> __m256i {
const K_SHUFFLE: [u8; 128] = [
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 11, 10, 11, 10, 11, 10, 11,
10, 11, 10, 11, 10, 11, 10, 11, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12,
13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15,
];
_mm256_loadu_si256((K_SHUFFLE.as_ptr() as *const __m256i).add(i))
}
#[inline(always)]
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
let qk = QK_K;
if n % qk != 0 {
crate::bail!("vec_dot_q6k_8k: {n} is not divisible by {qk}")
}
unsafe {
let m4 = _mm256_set1_epi8(0xF);
let m2 = _mm256_set1_epi8(3);
let m32s = _mm256_set1_epi8(32);
let mut acc = _mm256_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let mut q4 = x.ql.as_ptr();
let mut qh = x.qh.as_ptr();
let mut q8 = y.qs.as_ptr();
let scales = _mm_loadu_si128(x.scales.as_ptr() as *const __m128i);
let mut sumi = _mm256_setzero_si256();
for j in 0..QK_K / 128 {
let is = j * 4;
let scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is));
let scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
let scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
let scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
let q4bits1 = _mm256_loadu_si256(q4 as *const __m256i);
q4 = q4.add(32);
let q4bits2 = _mm256_loadu_si256(q4 as *const __m256i);
q4 = q4.add(32);
let q4bits_h = _mm256_loadu_si256(qh as *const __m256i);
qh = qh.add(32);
let q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bits_h, m2), 4);
let q4h_1 =
_mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bits_h, 2), m2), 4);
let q4h_2 =
_mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bits_h, 4), m2), 4);
let q4h_3 =
_mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bits_h, 6), m2), 4);
let q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
let q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
let q4_2 =
_mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
let q4_3 =
_mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_2 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_3 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
let q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
let q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
let q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
let p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
let p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
let p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
let p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
let p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
let p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
let p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
let p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
let p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
let p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
let p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
let p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
}
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
}
Ok(hsum_float_8(acc))
}
}
#[inline(always)]
unsafe fn mm256_set_m128i(a: __m128i, b: __m128i) -> __m256i {
_mm256_insertf128_si256(_mm256_castsi128_si256(b), a, 1)
}
#[inline(always)]
pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
}
unsafe {
let m3 = _mm256_set1_epi8(3);
let m4 = _mm_set1_epi8(0xF);
let mut acc = _mm256_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let dmin = -y.d * x.dmin.to_f32();
let mut q2 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
let mins_and_scales = _mm_loadu_si128(x.scales.as_ptr() as *const __m128i);
let scales8 = _mm_and_si128(mins_and_scales, m4);
let mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
let mins = _mm256_cvtepi8_epi16(mins8);
let prod =
_mm256_madd_epi16(mins, _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i));
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
let all_scales = _mm256_cvtepi8_epi16(scales8);
let l_scales = _mm256_extracti128_si256(all_scales, 0);
let h_scales = _mm256_extracti128_si256(all_scales, 1);
let scales = [
mm256_set_m128i(l_scales, l_scales),
mm256_set_m128i(h_scales, h_scales),
];
let mut sumi = _mm256_setzero_si256();
for scale in scales {
let q2bits = _mm256_loadu_si256(q2 as *const __m256i);
q2 = q2.add(32);
let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_2 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_3 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q2_0 = _mm256_and_si256(q2bits, m3);
let q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
let q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
let q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
let p0 = _mm256_maddubs_epi16(q2_0, q8_0);
let p1 = _mm256_maddubs_epi16(q2_1, q8_1);
let p2 = _mm256_maddubs_epi16(q2_2, q8_2);
let p3 = _mm256_maddubs_epi16(q2_3, q8_3);
let p0 =
_mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(0)), p0);
let p1 =
_mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(1)), p1);
let p2 =
_mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(2)), p2);
let p3 =
_mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(3)), p3);
let p0 = _mm256_add_epi32(p0, p1);
let p2 = _mm256_add_epi32(p2, p3);
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
}
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
}
Ok(hsum_float_8(acc))
}
}
#[inline(always)]
pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x03030303;
const KMASK2: u32 = 0x0f0f0f0f;
let mut aux = [0u32; 3];
unsafe {
let m3 = _mm256_set1_epi8(3);
let mone = _mm256_set1_epi8(1);
let m32 = _mm_set1_epi8(32);
let mut acc = _mm256_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let mut q3 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
LittleEndian::read_u32_into(&x.scales, &mut aux);
let scales128 = _mm_set_epi32(
(((aux[1] >> 4) & KMASK2) | (((aux[2] >> 6) & KMASK1) << 4)) as i32,
(((aux[0] >> 4) & KMASK2) | (((aux[2] >> 4) & KMASK1) << 4)) as i32,
((aux[1] & KMASK2) | (((aux[2] >> 2) & KMASK1) << 4)) as i32,
((aux[0] & KMASK2) | (((aux[2]) & KMASK1) << 4)) as i32,
);
let scales128 = _mm_sub_epi8(scales128, m32);
let all_scales = _mm256_cvtepi8_epi16(scales128);
let l_scales = _mm256_extracti128_si256(all_scales, 0);
let h_scales = _mm256_extracti128_si256(all_scales, 1);
let scales = [
mm256_set_m128i(l_scales, l_scales),
mm256_set_m128i(h_scales, h_scales),
];
// high bit
let hbits = _mm256_loadu_si256(x.hmask.as_ptr() as *const __m256i);
let mut sumi = _mm256_setzero_si256();
for (j, scale) in scales.iter().enumerate() {
// load low 2 bits
let q3bits = _mm256_loadu_si256(q3 as *const __m256i);
q3 = q3.add(32);
// Prepare low and high bits
// We hardcode the shifts here to avoid loading them into a separate register
let q3l_0 = _mm256_and_si256(q3bits, m3);
let q3h_0 = if j == 0 {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 0)), 0)
} else {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 4)), 4)
};
let q3h_0 = _mm256_slli_epi16(q3h_0, 2);
let q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
let q3h_1 = if j == 0 {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 1)), 1)
} else {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 5)), 5)
};
let q3h_1 = _mm256_slli_epi16(q3h_1, 2);
let q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
let q3h_2 = if j == 0 {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 2)), 2)
} else {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 6)), 6)
};
let q3h_2 = _mm256_slli_epi16(q3h_2, 2);
let q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
let q3h_3 = if j == 0 {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 3)), 3)
} else {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 7)), 7)
};
let q3h_3 = _mm256_slli_epi16(q3h_3, 2);
// load Q8 quants
let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_2 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_3 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we
// can use _mm256_maddubs_epi16, and then subtract. The high bit part has the 2
// already subtracted (and so, it is zero if the high bit was not set, and 2 if the
// high bit was set)
let q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
let q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
let q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
let q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
let p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
let p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
let p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
let p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
let p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
let p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
let p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
let p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
// multiply with scales
let p16_0 =
_mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(0)), p16_0);
let p16_1 =
_mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(1)), p16_1);
let p16_2 =
_mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(2)), p16_2);
let p16_3 =
_mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(3)), p16_3);
// accumulate
let p16_0 = _mm256_add_epi32(p16_0, p16_1);
let p16_2 = _mm256_add_epi32(p16_2, p16_3);
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
}
// multiply with block scale and accumulate
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
}
Ok(hsum_float_8(acc))
}
}
#[inline(always)]
pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
}
let mut utmp = [0u32; 4];
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
unsafe {
let m4 = _mm256_set1_epi8(0xF);
let mut acc = _mm256_setzero_ps();
let mut acc_m = _mm_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let dmin = -y.d * x.dmin.to_f32();
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
let mut q4 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
let mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(
utmp[3] as i32,
utmp[2] as i32,
utmp[1] as i32,
utmp[0] as i32,
));
let q8sums = _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i);
let q8s = _mm_hadd_epi16(
_mm256_extracti128_si256(q8sums, 0),
_mm256_extracti128_si256(q8sums, 1),
);
let prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
let sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
let scales = mm256_set_m128i(sc128, sc128);
let mut sumi = _mm256_setzero_si256();
for j in 0..QK_K / 64 {
let scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j));
let scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j + 1));
let q4bits = _mm256_loadu_si256(q4 as *const __m256i);
q4 = q4.add(32);
let q4l = _mm256_and_si256(q4bits, m4);
let q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
let q8l = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let p16l = _mm256_maddubs_epi16(q4l, q8l);
let p16l = _mm256_madd_epi16(scale_l, p16l);
sumi = _mm256_add_epi32(sumi, p16l);
let q8h = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let p16h = _mm256_maddubs_epi16(q4h, q8h);
let p16h = _mm256_madd_epi16(scale_h, p16h);
sumi = _mm256_add_epi32(sumi, p16h);
}
let vd = _mm256_set1_ps(d);
acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
}
let acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
let acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
Ok(hsum_float_8(acc) + _mm_cvtss_f32(acc_m))
}
}
#[inline(always)]
pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
}
let mut utmp = [0u32; 4];
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
unsafe {
let m4 = _mm256_set1_epi8(0xF);
let mzero = _mm_setzero_si128();
let mone = _mm256_set1_epi8(1);
let mut acc = _mm256_setzero_ps();
let mut summs = 0.0;
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let dmin = -y.d * x.dmin.to_f32();
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
let mut q5 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
let mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(
utmp[3] as i32,
utmp[2] as i32,
utmp[1] as i32,
utmp[0] as i32,
));
let q8sums = _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i);
let q8s = _mm_hadd_epi16(
_mm256_extracti128_si256(q8sums, 0),
_mm256_extracti128_si256(q8sums, 1),
);
let prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
let hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
summs += dmin * _mm_extract_epi32(hsum, 0) as f32;
let sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
let scales = mm256_set_m128i(sc128, sc128);
let hbits = _mm256_loadu_si256(x.qh.as_ptr() as *const __m256i);
let mut hmask = mone;
let mut sumi = _mm256_setzero_si256();
for j in 0..QK_K / 64 {
let scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j));
let scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j + 1));
let q5bits = _mm256_loadu_si256(q5 as *const __m256i);
q5 = q5.add(32);
//Similar to q3k we hardcode the shifts here to avoid loading them into a separate register
let q5l_0 = _mm256_and_si256(q5bits, m4);
let q5l_0_shift_input = _mm256_and_si256(hbits, hmask);
let q5l_0_right_shift = match j {
0 => _mm256_srli_epi16(q5l_0_shift_input, 0),
1 => _mm256_srli_epi16(q5l_0_shift_input, 2),
2 => _mm256_srli_epi16(q5l_0_shift_input, 4),
3 => _mm256_srli_epi16(q5l_0_shift_input, 6),
_ => unreachable!(),
};
let q5h_0 = _mm256_slli_epi16(q5l_0_right_shift, 4);
let q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
hmask = _mm256_slli_epi16(hmask, 1);
let q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
let q5l_1_shift_input = _mm256_and_si256(hbits, hmask);
let q5l_1_right_shift = match j {
0 => _mm256_srli_epi16(q5l_1_shift_input, 1),
1 => _mm256_srli_epi16(q5l_1_shift_input, 3),
2 => _mm256_srli_epi16(q5l_1_shift_input, 5),
3 => _mm256_srli_epi16(q5l_1_shift_input, 7),
_ => unreachable!(),
};
let q5h_1 = _mm256_slli_epi16(q5l_1_right_shift, 4);
let q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
hmask = _mm256_slli_epi16(hmask, 1);
let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
q8 = q8.add(32);
let p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
let p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
let p16_0 = _mm256_madd_epi16(scale_0, p16_0);
let p16_1 = _mm256_madd_epi16(scale_1, p16_1);
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
}
let vd = _mm256_set1_ps(d);
acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
}
Ok(hsum_float_8(acc) + summs)
}
}
#[inline(always)]
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
let qk = QK_K;
if n % qk != 0 {
crate::bail!("vec_dot_q8k_8k: {n} is not divisible by {qk}")
}
unsafe {
let mut acc = _mm256_setzero_ps();
for (xs, ys) in xs.iter().zip(ys.iter()) {
let mut sumi = _mm256_setzero_si256();
let x_qs = xs.qs.as_ptr();
let y_qs = ys.qs.as_ptr();
for j in (0..QK_K).step_by(32) {
let xs = _mm256_loadu_si256(x_qs.add(j) as *const __m256i);
let ys = _mm256_loadu_si256(y_qs.add(j) as *const __m256i);
let xs0 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(xs, 0));
let ys0 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(ys, 0));
sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(xs0, ys0));
let xs1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(xs, 1));
let ys1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(ys, 1));
sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(xs1, ys1));
}
let d = _mm256_set1_ps(xs.d * ys.d);
acc = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi), acc);
}
Ok(hsum_float_8(acc))
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/metal.rs | use super::{GgmlDType, QStorage};
use crate::{DType, MetalDevice, MetalStorage, Result};
use metal::Buffer;
use std::sync::Arc;
pub struct QMetalStorage {
dtype: GgmlDType,
device: MetalDevice,
buffer: Arc<Buffer>,
}
impl QMetalStorage {
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn buffer(&self) -> &Buffer {
&self.buffer
}
pub fn new(buffer: Arc<Buffer>, device: MetalDevice, dtype: GgmlDType) -> Self {
Self {
device,
buffer,
dtype,
}
}
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
let buffer = self.device.new_buffer_managed(self.buffer.length())?;
let command_buffer = self.device.command_buffer()?;
command_buffer.set_label("to_cpu");
let blit = command_buffer.new_blit_command_encoder();
blit.set_label("blit_to_cpu");
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
blit.end_encoding();
self.device.wait_until_completed()?;
let mut out = vec![0.0; elem_count];
match self.dtype {
GgmlDType::F32 => {
let vec: Vec<f32> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
f32::to_float(&vec, &mut out)?;
}
GgmlDType::F16 => {
let vec: Vec<half::f16> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
half::f16::to_float(&vec, &mut out)?;
}
GgmlDType::Q4_0 => {
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q4_1 => {
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q5_0 => {
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q5_1 => {
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q8_0 => {
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q8_1 => {
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q2K => {
let vec: Vec<crate::quantized::BlockQ2K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ2K::to_float(&vec, &mut out)?;
}
GgmlDType::Q3K => {
let vec: Vec<crate::quantized::BlockQ3K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ3K::to_float(&vec, &mut out)?;
}
GgmlDType::Q4K => {
let vec: Vec<crate::quantized::BlockQ4K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ4K::to_float(&vec, &mut out)?;
}
GgmlDType::Q5K => {
let vec: Vec<crate::quantized::BlockQ5K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ5K::to_float(&vec, &mut out)?;
}
GgmlDType::Q6K => {
let vec: Vec<crate::quantized::BlockQ6K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ6K::to_float(&vec, &mut out)?;
}
GgmlDType::Q8K => {
let vec: Vec<crate::quantized::BlockQ8K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ8K::to_float(&vec, &mut out)?;
}
}
let buffer = self.device.new_buffer_with_data(&out)?;
Ok(MetalStorage::new(buffer, self.device.clone(), DType::F32))
}
pub fn quantize(&mut self, src: &MetalStorage) -> Result<()> {
// Quantization only happens on CPU for now.
let src = src.to_cpu::<f32>()?;
let elem_count = src.len();
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
let mut qcpu_storage = crate::Device::Cpu.qzeros(elem_count, self.dtype)?;
qcpu_storage.quantize(&src)?;
let buffer = self.device.new_buffer_with_data(&qcpu_storage.data()?)?;
self.buffer = buffer;
Ok(())
}
}
pub fn load_quantized_metal<T: super::GgmlType + Send + Sync + 'static>(
device: &MetalDevice,
data: &[T],
) -> Result<QStorage> {
let buffer = device.new_buffer_with_data(data)?;
let device = device.clone();
Ok(QStorage::Metal(QMetalStorage {
dtype: T::DTYPE,
device,
buffer,
}))
}
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
let ptr = buffer.contents() as *const T;
assert!(!ptr.is_null());
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
slice.to_vec()
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/simd128.rs | use super::k_quants::{BlockQ2K, BlockQ4K, BlockQ4_0, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K};
use crate::Result;
use byteorder::{ByteOrder, LittleEndian};
use half::f16;
use core::arch::wasm32::*;
#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
unsafe {
let mut acc = f32x4_splat(0.0f32);
for (x, y) in xs.iter().zip(ys.iter()) {
let x1234 = v128_load(x.qs.as_ptr() as *const v128);
let x12 = v128_and(x1234, u8x16_splat(0x0F));
let x12 = i8x16_sub(x12, i8x16_splat(8));
let x34 = u8x16_shr(x1234, 4);
let x34 = i8x16_sub(x34, i8x16_splat(8));
let x1 = i16x8_extend_low_i8x16(x12);
let y1 = i16x8_load_extend_i8x8(y.qs.as_ptr());
let sum_xy = i32x4_dot_i16x8(x1, y1);
let x2 = i16x8_extend_high_i8x16(x12);
let y2 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(8));
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x2, y2));
let x3 = i16x8_extend_low_i8x16(x34);
let y3 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(16));
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x3, y3));
let x4 = i16x8_extend_high_i8x16(x34);
let y4 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(24));
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x4, y4));
let sum_xy = f32x4_convert_i32x4(sum_xy);
// f32x4_relaxed_madd is nightly only.
let d = f32x4_splat(f16::to_f32(x.d) * f16::to_f32(y.d));
let scaled = f32x4_mul(sum_xy, d);
acc = f32x4_add(acc, scaled)
}
let res = f32x4_extract_lane::<0>(acc)
+ f32x4_extract_lane::<1>(acc)
+ f32x4_extract_lane::<2>(acc)
+ f32x4_extract_lane::<3>(acc);
Ok(res)
}
}
#[inline(always)]
pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
unsafe {
let mut acc = f32x4_splat(0.0f32);
for (x, y) in xs.iter().zip(ys.iter()) {
let x1 = i16x8_load_extend_i8x8(x.qs.as_ptr());
let y1 = i16x8_load_extend_i8x8(y.qs.as_ptr());
let sum_xy = i32x4_dot_i16x8(x1, y1);
let x2 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(8));
let y2 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(8));
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x2, y2));
let x3 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(16));
let y3 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(16));
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x3, y3));
let x4 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(24));
let y4 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(24));
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x4, y4));
let sum_xy = f32x4_convert_i32x4(sum_xy);
// f32x4_relaxed_madd is nightly only.
let d = f32x4_splat(f16::to_f32(x.d) * f16::to_f32(y.d));
let scaled = f32x4_mul(sum_xy, d);
acc = f32x4_add(acc, scaled)
}
let res = f32x4_extract_lane::<0>(acc)
+ f32x4_extract_lane::<1>(acc)
+ f32x4_extract_lane::<2>(acc)
+ f32x4_extract_lane::<3>(acc);
Ok(res)
}
}
#[inline(always)]
pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
}
unsafe {
let mut sumf = f32x4_splat(0f32);
for (x, y) in xs.iter().zip(ys.iter()) {
let mut q2: &[_] = &x.qs;
let mut q8: &[_] = &y.qs;
let sc = &x.scales;
let mut summs = i32x4_splat(0);
for i in (0..(QK_K / 16)).step_by(4) {
let bsums = i32x4_load_extend_i16x4(y.bsums.as_ptr().add(i));
let scales = i32x4_shr(
i32x4(
sc[i] as i32,
sc[i + 1] as i32,
sc[i + 2] as i32,
sc[i + 3] as i32,
),
4,
);
summs = i32x4_add(summs, i32x4_mul(bsums, scales))
}
let summs = f32x4_convert_i32x4(summs);
let dall = y.d * x.d.to_f32();
let dmin = y.d * x.dmin.to_f32();
let mut isum = i32x4_splat(0);
let mut is = 0;
for _ in 0..(QK_K / 128) {
let mut shift = 0;
for _ in 0..4 {
let d = (sc[is] & 0xF) as i32;
is += 1;
let mut isuml = i16x8_splat(0);
for l in (0..16).step_by(8) {
let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(l));
let q2 = i16x8_load_extend_u8x8(q2.as_ptr().add(l));
let q2 = v128_and(i16x8_shr(q2, shift), i16x8_splat(3));
isuml = i16x8_add(isuml, i16x8_mul(q2, q8))
}
let dd = i32x4_splat(d);
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_low_i16x8(isuml), dd));
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_high_i16x8(isuml), dd));
let d = (sc[is] & 0xF) as i32;
is += 1;
let mut isuml = i16x8_splat(0);
for l in (16..32).step_by(8) {
let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(l));
let q2 = i16x8_load_extend_u8x8(q2.as_ptr().add(l));
let q2 = v128_and(i16x8_shr(q2, shift), i16x8_splat(3));
isuml = i16x8_add(isuml, i16x8_mul(q2, q8))
}
let dd = i32x4_splat(d);
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_low_i16x8(isuml), dd));
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_high_i16x8(isuml), dd));
shift += 2;
// adjust the indexing
q8 = &q8[32..];
}
// adjust the indexing
q2 = &q2[32..];
}
let isum = f32x4_convert_i32x4(isum);
sumf = f32x4_add(
sumf,
f32x4_sub(
f32x4_mul(isum, f32x4_splat(dall)),
f32x4_mul(summs, f32x4_splat(dmin)),
),
);
}
let sumf = f32x4_extract_lane::<0>(sumf)
+ f32x4_extract_lane::<1>(sumf)
+ f32x4_extract_lane::<2>(sumf)
+ f32x4_extract_lane::<3>(sumf);
Ok(sumf)
}
}
#[inline(always)]
pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
let mut utmp: [u32; 4] = [0; 4];
let mut scales: [u8; 8] = [0; 8];
let mut mins: [u8; 8] = [0; 8];
let mut aux8: [u8; QK_K] = [0; QK_K];
let mut sums = f32x4_splat(0f32);
unsafe {
for (y, x) in ys.iter().zip(xs.iter()) {
let q4 = &x.qs;
let q8 = &y.qs;
for j in 0..QK_K / 64 {
let q4_1 = v128_load(q4.as_ptr().add(32 * j) as *const v128);
let q4_2 = v128_load(q4.as_ptr().add(32 * j + 16) as *const v128);
v128_store(
aux8.as_mut_ptr().add(64 * j) as *mut v128,
v128_and(q4_1, u8x16_splat(0x0F)),
);
v128_store(
aux8.as_mut_ptr().add(64 * j + 16) as *mut v128,
v128_and(q4_2, u8x16_splat(0x0F)),
);
v128_store(
aux8.as_mut_ptr().add(64 * j + 32) as *mut v128,
u8x16_shr(q4_1, 4),
);
v128_store(
aux8.as_mut_ptr().add(64 * j + 48) as *mut v128,
u8x16_shr(q4_2, 4),
);
}
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
//extract scales and mins
LittleEndian::write_u32_into(&utmp[0..2], &mut scales);
LittleEndian::write_u32_into(&utmp[2..4], &mut mins);
let mut sumi = i32x4_splat(0);
for j in (0..QK_K / 16).step_by(4) {
let bsums = i32x4_load_extend_i16x4(y.bsums.as_ptr().add(j));
let (m1, m2) = (mins[j / 2] as i32, mins[j / 2 + 1] as i32);
let mins = i32x4(m1, m1, m2, m2);
sumi = i32x4_add(sumi, i32x4_mul(bsums, mins));
}
let mut aux32 = i32x4_splat(0i32);
for (scale_i, scale) in scales.iter().enumerate() {
let scale = i32x4_splat(*scale as i32);
for j in 0..4 {
let i = 32 * scale_i + 8 * j;
let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(i));
let aux8 = i16x8_load_extend_u8x8(aux8.as_ptr().add(i));
let aux16 = i16x8_mul(q8, aux8);
aux32 = i32x4_add(aux32, i32x4_mul(scale, i32x4_extend_low_i16x8(aux16)));
aux32 = i32x4_add(aux32, i32x4_mul(scale, i32x4_extend_high_i16x8(aux16)));
}
}
let aux32 = f32x4_convert_i32x4(aux32);
let d = f32x4_splat(x.d.to_f32() * y.d);
sums = f32x4_add(sums, f32x4_mul(aux32, d));
let dmin = x.dmin.to_f32() * y.d;
let dmin = f32x4_splat(dmin);
let sumi = f32x4_convert_i32x4(sumi);
sums = f32x4_sub(sums, f32x4_mul(sumi, dmin));
}
let sums = f32x4_extract_lane::<0>(sums)
+ f32x4_extract_lane::<1>(sums)
+ f32x4_extract_lane::<2>(sums)
+ f32x4_extract_lane::<3>(sums);
Ok(sums)
}
}
#[inline(always)]
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
}
let mut aux8 = [0i8; QK_K];
unsafe {
let mut sums = f32x4_splat(0f32);
for (x, y) in xs.iter().zip(ys.iter()) {
let q4 = &x.ql;
let qh = &x.qh;
let q8 = &y.qs;
let mut aux32 = f32x4_splat(0f32);
for j in (0..QK_K).step_by(128) {
let aux8 = aux8.as_mut_ptr().add(j);
let q4 = &q4.as_ptr().add(j / 2);
let qh = &qh.as_ptr().add(j / 4);
for l in (0..32).step_by(16) {
// aux8[l] = (((q4[l] & 0xF) | ((qh[l] & 3) << 4)) as i32 - 32) as i8;
let a8 = v128_or(
v128_and(v128_load(q4.add(l) as *const v128), u8x16_splat(0xF)),
u8x16_shl(
v128_and(v128_load(qh.add(l) as *const v128), u8x16_splat(3)),
4,
),
);
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
v128_store(
aux8.add(l) as *mut v128,
i8x16_narrow_i16x8(a8_low, a8_high),
);
// aux8[l + 32] =
// (((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i32 - 32) as i8;
let a8 = v128_or(
v128_and(v128_load(q4.add(l + 32) as *const v128), u8x16_splat(0xF)),
u8x16_shl(
v128_and(
u8x16_shr(v128_load(qh.add(l) as *const v128), 2),
u8x16_splat(3),
),
4,
),
);
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
v128_store(
aux8.add(l + 32) as *mut v128,
i8x16_narrow_i16x8(a8_low, a8_high),
);
// aux8[l + 64] = (((q4[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i32 - 32) as i8;
let a8 = v128_or(
u8x16_shr(v128_load(q4.add(l) as *const v128), 4),
u8x16_shl(
v128_and(
u8x16_shr(v128_load(qh.add(l) as *const v128), 4),
u8x16_splat(3),
),
4,
),
);
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
v128_store(
aux8.add(l + 64) as *mut v128,
i8x16_narrow_i16x8(a8_low, a8_high),
);
// aux8[l + 96] =
// (((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i32 - 32) as i8;
let a8 = v128_or(
u8x16_shr(v128_load(q4.add(l + 32) as *const v128), 4),
u8x16_shl(
v128_and(
u8x16_shr(v128_load(qh.add(l) as *const v128), 6),
u8x16_splat(3),
),
4,
),
);
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
v128_store(
aux8.add(l + 96) as *mut v128,
i8x16_narrow_i16x8(a8_low, a8_high),
);
}
}
for (j, &scale) in x.scales.iter().enumerate() {
let scale = f32x4_splat(scale as f32);
for offset in [0, 8] {
let aux16 = i16x8_mul(
i16x8_load_extend_i8x8(q8.as_ptr().add(16 * j + offset)),
i16x8_load_extend_i8x8(aux8.as_ptr().add(16 * j + offset)),
);
aux32 = f32x4_add(
aux32,
f32x4_mul(f32x4_convert_i32x4(i32x4_extend_low_i16x8(aux16)), scale),
);
aux32 = f32x4_add(
aux32,
f32x4_mul(f32x4_convert_i32x4(i32x4_extend_high_i16x8(aux16)), scale),
);
}
}
let d = f32x4_splat(x.d.to_f32() * y.d);
sums = f32x4_add(sums, f32x4_mul(aux32, d));
}
let sums = f32x4_extract_lane::<0>(sums)
+ f32x4_extract_lane::<1>(sums)
+ f32x4_extract_lane::<2>(sums)
+ f32x4_extract_lane::<3>(sums);
Ok(sums)
}
}
#[inline(always)]
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
let qk = QK_K;
if n % QK_K != 0 {
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
}
unsafe {
let mut acc = f32x4_splat(0.0f32);
for (xs, ys) in xs.iter().zip(ys.iter()) {
let x_qs = xs.qs.as_ptr();
let y_qs = ys.qs.as_ptr();
let mut sumi = i32x4_splat(0);
for j in (0..QK_K).step_by(8) {
let xs = i16x8_load_extend_i8x8(x_qs.add(j));
let ys = i16x8_load_extend_i8x8(y_qs.add(j));
let sum_xy = i32x4_dot_i16x8(xs, ys);
sumi = i32x4_add(sumi, sum_xy)
}
let d = f32x4_splat(xs.d * ys.d);
acc = f32x4_add(acc, f32x4_mul(f32x4_convert_i32x4(sumi), d))
}
let res = f32x4_extract_lane::<0>(acc)
+ f32x4_extract_lane::<1>(acc)
+ f32x4_extract_lane::<2>(acc)
+ f32x4_extract_lane::<3>(acc);
Ok(res)
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/ggml_file.rs | //! Support for the GGML file format.
#[cfg(feature = "metal")]
use super::metal::load_quantized_metal;
use super::{k_quants, GgmlDType, QStorage};
use crate::{Device, Result};
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
Ggjt,
Ggla,
Ggmf,
Ggml,
Ggsn,
}
impl TryFrom<u32> for Magic {
type Error = crate::Error;
fn try_from(value: u32) -> Result<Self> {
let magic = match value {
0x67676a74 => Self::Ggjt,
0x67676c61 => Self::Ggla,
0x67676d66 => Self::Ggmf,
0x67676d6c => Self::Ggml,
0x6767736e => Self::Ggsn,
_ => crate::bail!("unknown magic {value:08x}"),
};
Ok(magic)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
GgmlUnversioned,
GgmfV1,
GgjtV1,
GgjtV2,
GgjtV3,
}
impl VersionedMagic {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = reader.read_u32::<LittleEndian>()?;
let magic = Magic::try_from(magic)?;
if magic == Magic::Ggml {
return Ok(Self::GgmlUnversioned);
}
let version = reader.read_u32::<LittleEndian>()?;
let versioned_magic = match (magic, version) {
(Magic::Ggmf, 1) => Self::GgmfV1,
(Magic::Ggjt, 1) => Self::GgjtV1,
(Magic::Ggjt, 2) => Self::GgjtV2,
(Magic::Ggjt, 3) => Self::GgjtV3,
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
fn align32(&self) -> bool {
match self {
Self::GgmlUnversioned | Self::GgmfV1 => false,
Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct HParams {
pub n_vocab: u32,
pub n_embd: u32,
pub n_mult: u32,
pub n_head: u32,
pub n_layer: u32,
pub n_rot: u32,
pub ftype: u32,
}
impl HParams {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let n_vocab = reader.read_u32::<LittleEndian>()?;
let n_embd = reader.read_u32::<LittleEndian>()?;
let n_mult = reader.read_u32::<LittleEndian>()?;
let n_head = reader.read_u32::<LittleEndian>()?;
let n_layer = reader.read_u32::<LittleEndian>()?;
let n_rot = reader.read_u32::<LittleEndian>()?;
let ftype = reader.read_u32::<LittleEndian>()?;
Ok(Self {
n_vocab,
n_embd,
n_mult,
n_head,
n_layer,
n_rot,
ftype,
})
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Vocab {
pub token_score_pairs: Vec<(Vec<u8>, f32)>,
}
impl Vocab {
fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556
let mut token_score_pairs = Vec::with_capacity(n_vocab);
for _index in 0..n_vocab {
let len = reader.read_u32::<LittleEndian>()? as usize;
let mut word = vec![0u8; len];
reader.read_exact(&mut word)?;
let score = reader.read_f32::<LittleEndian>()?;
token_score_pairs.push((word, score))
}
Ok(Self { token_score_pairs })
}
}
fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
raw_data: &[u8],
size_in_bytes: usize,
dims: Vec<usize>,
device: &Device,
) -> Result<super::QTensor> {
let raw_data_ptr = raw_data.as_ptr();
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
let data: QStorage = match device {
Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
#[cfg(feature = "metal")]
Device::Metal(metal) => load_quantized_metal(metal, data)?,
#[cfg(not(feature = "metal"))]
Device::Metal(_metal) => {
crate::bail!("Metal backend requires `metal` feature")
}
device => unimplemented!("Implement quantized tensor for device {device:?}"),
};
super::QTensor::new(data, dims)
}
/// Creates a [Tensor] from a raw GGML tensor.
pub fn qtensor_from_ggml(
ggml_dtype: GgmlDType,
raw_data: &[u8],
dims: Vec<usize>,
device: &Device,
) -> Result<super::QTensor> {
let tensor_elems = dims.iter().product::<usize>();
let block_size = ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
)
}
let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size();
match ggml_dtype {
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
GgmlDType::Q4_0 => {
from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q4_1 => {
from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5_0 => {
from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5_1 => {
from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q8_0 => {
from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q2K => {
from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q3K => {
from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q4K => {
from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5K => {
from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q6K => {
from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
}
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
}
}
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
reader: &mut R,
magic: VersionedMagic,
device: &Device,
) -> Result<(String, super::QTensor)> {
let n_dims = reader.read_u32::<LittleEndian>()?;
let name_len = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
let mut dims = vec![0u32; n_dims as usize];
reader.read_u32_into::<LittleEndian>(&mut dims)?;
// The dimensions are stored in reverse order, see for example:
// https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/convert.py#L969
dims.reverse();
let mut name = vec![0u8; name_len as usize];
reader.read_exact(&mut name)?;
let name = String::from_utf8_lossy(&name).into_owned();
if magic.align32() {
let pos = reader.stream_position()?;
reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?;
}
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size();
// TODO: Mmap version to avoid copying the data around?
let mut raw_data = vec![0u8; size_in_bytes];
reader.read_exact(&mut raw_data)?;
match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
Ok(tensor) => Ok((name, tensor)),
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
}
}
pub struct Content {
pub magic: VersionedMagic,
pub hparams: HParams,
pub vocab: Vocab,
pub tensors: HashMap<String, super::QTensor>,
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(
reader: &mut R,
device: &Device,
) -> Result<Content> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
reader.seek(std::io::SeekFrom::Start(0))?;
let magic = VersionedMagic::read(reader)?;
let hparams = HParams::read(reader)?;
let vocab = Vocab::read(reader, hparams.n_vocab as usize)?;
let mut tensors = HashMap::new();
while reader.stream_position()? != last_position {
let (name, tensor) = read_one_tensor(reader, magic, device)?;
tensors.insert(name, tensor);
}
Ok(Self {
magic,
hparams,
vocab,
tensors,
})
}
pub fn remove(&mut self, name: &str) -> Result<super::QTensor> {
match self.tensors.remove(name) {
None => crate::bail!("cannot find tensor with name '{name}'"),
Some(tensor) => Ok(tensor),
}
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/utils.rs | use crate::Result;
pub(super) fn nearest_int(v: f32) -> i32 {
v.round() as i32
}
/// Validates that the input and output are the right size and returns an iterator which maps each
/// input region `xs` to its corresponding output block in `ys`. Each output region is guaranteed
/// to be `T::BLCK_SIZE` long.
pub(super) fn group_for_quantization<'a, 'b, T: super::k_quants::GgmlType>(
xs: &'b [f32],
ys: &'a mut [T],
) -> Result<Vec<(&'a mut T, &'b [f32])>> {
let block_size = T::BLCK_SIZE;
let dtype = T::DTYPE;
let expected_blocks = xs.len() / block_size;
let actual_blocks = ys.len();
// Validate that the input is the right size
if expected_blocks != actual_blocks {
crate::bail!("quantize {dtype:?}: expected {expected_blocks} blocks but only {actual_blocks} were provided!")
}
Ok(ys.iter_mut().zip(xs.chunks_exact(block_size)).collect())
}
/// Validates that the input and output are the right size and returns an iterator which maps each
/// input block `xs` to its corresponding output region in `ys`. Each output region is guaranteed
/// to be `T::BLCK_SIZE` long.
pub(super) fn group_for_dequantization<'a, 'b, T: super::k_quants::GgmlType>(
xs: &'a [T],
ys: &'b mut [f32],
) -> Result<Vec<(&'a T, &'b mut [f32])>> {
let block_size = T::BLCK_SIZE;
let dtype = T::DTYPE;
let actual_output_len = ys.len();
let expected_output_len = xs.len() * block_size;
// Validate that the output is the right size
if expected_output_len != actual_output_len {
crate::bail!("dequantize {dtype:?}: ys (len = {actual_output_len}) does not match the expected length of {expected_output_len}!")
}
// Zip the blocks and outputs together
Ok(xs.iter().zip(ys.chunks_exact_mut(block_size)).collect())
}
pub(super) fn get_scale_min_k4(j: usize, q: &[u8]) -> (u8, u8) {
if j < 4 {
let d = q[j] & 63;
let m = q[j + 4] & 63;
(d, m)
} else {
let d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
let m = (q[j + 4] >> 4) | ((q[j] >> 6) << 4);
(d, m)
}
}
pub(super) unsafe fn make_qx_quants(
n: usize,
nmax: i32,
x: *const f32,
ls: *mut i8,
rmse_type: i32,
) -> f32 {
let mut max = 0f32;
let mut amax = 0f32;
for i in 0..n {
let x = *x.add(i);
let ax = x.abs();
if ax > amax {
amax = ax;
max = x;
}
}
if amax == 0. {
// all zero
for i in 0..n {
*ls.add(i) = 0;
}
return 0.;
}
let mut iscale = -(nmax as f32) / max;
if rmse_type == 0 {
for i in 0..n {
let x = *x.add(i);
let l = nearest_int(iscale * x);
*ls.add(i) = (nmax + l.clamp(-nmax, nmax - 1)) as i8;
}
return 1.0 / iscale;
}
let weight_type = rmse_type % 2;
let mut sumlx = 0f32;
let mut suml2 = 0f32;
for i in 0..n {
let x = *x.add(i);
let l = nearest_int(iscale * x);
let l = l.clamp(-nmax, nmax - 1);
*ls.add(i) = (l + nmax) as i8;
let w = if weight_type == 1 { x * x } else { 1.0 };
let l = l as f32;
sumlx += w * x * l;
suml2 += w * l * l;
}
let mut scale = sumlx / suml2;
let mut best = scale * sumlx;
for _itry in 0..3 {
let iscale = 1.0 / scale;
let mut slx = 0f32;
let mut sl2 = 0f32;
let mut changed = false;
for i in 0..n {
let x = *x.add(i);
let l = nearest_int(iscale * x);
let l = l.clamp(-nmax, nmax - 1);
if l + nmax != *ls.add(i) as i32 {
changed = true;
}
let w = if weight_type == 1 { x * x } else { 1f32 };
let l = l as f32;
slx += w * x * l;
sl2 += w * l * l;
}
if !changed || sl2 == 0.0 || slx * slx <= best * sl2 {
break;
}
for i in 0..n {
let x = *x.add(i);
let l = nearest_int(iscale * x);
*ls.add(i) = (nmax + l.clamp(-nmax, nmax - 1)) as i8;
}
sumlx = slx;
suml2 = sl2;
scale = sumlx / suml2;
best = scale * sumlx;
}
for _itry in 0..5 {
let mut n_changed = 0;
for i in 0..n {
let x = *x.add(i);
let w = if weight_type == 1 { x * x } else { 1. };
let l = *ls.add(i) as i32 - nmax;
let mut slx = sumlx - w * x * l as f32;
if slx > 0. {
let mut sl2 = suml2 - w * l as f32 * l as f32;
let new_l = nearest_int(x * sl2 / slx);
let new_l = new_l.clamp(-nmax, nmax - 1);
if new_l != l {
slx += w * x * new_l as f32;
sl2 += w * new_l as f32 * new_l as f32;
if sl2 > 0. && slx * slx * suml2 > sumlx * sumlx * sl2 {
*ls.add(i) = (nmax + new_l) as i8;
sumlx = slx;
suml2 = sl2;
scale = sumlx / suml2;
best = scale * sumlx;
n_changed += 1;
}
}
}
}
if n_changed == 0 {
break;
}
}
if rmse_type < 3 {
return scale;
}
for is in -4..4 {
if is == 0 {
continue;
}
iscale = -(nmax as f32 + 0.1f32 * is as f32) / max;
let mut sumlx = 0.;
let mut suml2 = 0.;
for i in 0..n {
let x = *x.add(i);
let l = nearest_int(iscale * x);
let l = l.clamp(-nmax, nmax - 1);
let w = if weight_type == 1 { x * x } else { 1. };
let l = l as f32;
sumlx += w * x * l;
suml2 += w * l * l;
}
if suml2 > 0. && sumlx * sumlx > best * suml2 {
for i in 0..n {
let x = *x.add(i);
let l = nearest_int(iscale * x);
*ls.add(i) = (nmax + l.clamp(-nmax, nmax - 1)) as i8;
}
scale = sumlx / suml2;
best = scale * sumlx;
}
}
scale
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L224
pub(super) fn make_qkx1_quants(nmax: i32, ntry: usize, x: &[f32]) -> (f32, f32) {
let n = x.len();
let mut l = vec![0; n];
// Get min/max
let min = *x
.iter()
.take(n)
.min_by(|a, b| a.total_cmp(b))
.unwrap_or(&x[0]);
let max = *x.iter().max_by(|a, b| a.total_cmp(b)).unwrap_or(&x[0]);
// If min == max, all values are the same => nothing to do here
if max == min {
return (0.0, 0.0);
}
// Ensure min <= 0.0
let mut min = min.min(0.);
// Compute scale and inverse scale
let mut iscale = nmax as f32 / (max - min);
let mut scale = 1.0 / iscale;
for _ in 0..ntry {
let mut sumlx = 0.0;
let mut suml2 = 0;
let mut did_change = false;
for (i, value) in x.iter().enumerate().take(n) {
let li = nearest_int(iscale * (value - min)).clamp(0, nmax);
let clamped_li = li as u8;
if clamped_li != l[i] {
l[i] = clamped_li;
did_change = true;
}
sumlx += (value - min) * li as f32;
suml2 += li * li;
}
scale = sumlx / suml2 as f32;
let sum: f32 = x
.iter()
.take(n)
.zip(l.iter().take(n))
.map(|(xi, &li)| xi - scale * li as f32)
.sum();
min = sum / n as f32;
if min > 0.0 {
min = 0.0;
}
iscale = 1.0 / scale;
if !did_change {
break;
}
}
(scale, -min)
}
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L165
pub(super) fn make_q3_quants(x: &[f32], nmax: i32, do_rmse: bool) -> f32 {
let n = x.len();
let mut l = vec![0i8; n];
let mut max = 0.0;
let mut amax = 0.0;
for &xi in x.iter().take(n) {
let ax = xi.abs();
if ax > amax {
amax = ax;
max = xi;
}
}
if amax == 0.0 {
return 0.0;
}
let iscale = -(nmax as f32) / max;
if do_rmse {
let mut sumlx = 0.0;
let mut suml2 = 0.0;
for i in 0..n {
let li = (iscale * x[i]).round() as i32;
let li = li.clamp(-nmax, nmax - 1);
l[i] = li as i8;
let w = x[i] * x[i];
sumlx += w * x[i] * li as f32;
suml2 += w * (li * li) as f32;
}
for _ in 0..5 {
let mut n_changed = 0;
for i in 0..n {
let w = x[i] * x[i];
let mut slx = sumlx - w * x[i] * l[i] as f32;
if slx > 0.0 {
let mut sl2 = suml2 - w * (l[i] as i32 * l[i] as i32) as f32;
let mut new_l = (x[i] * sl2 / slx).round() as i32;
new_l = new_l.clamp(-nmax, nmax - 1);
if new_l != l[i] as i32 {
slx += w * x[i] * new_l as f32;
sl2 += w * (new_l * new_l) as f32;
if sl2 > 0.0 && slx * slx * suml2 > sumlx * sumlx * sl2 {
l[i] = new_l as i8;
sumlx = slx;
suml2 = sl2;
n_changed += 1;
}
}
}
}
if n_changed == 0 {
break;
}
}
for li in l.iter_mut() {
*li += nmax as i8;
}
return sumlx / suml2;
}
for i in 0..n {
let li = (iscale * x[i]).round() as i32;
l[i] = (li.clamp(-nmax, nmax - 1) + nmax) as i8;
}
1.0 / iscale
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/quantized/neon.rs | use super::k_quants::{
BlockQ2K, BlockQ3K, BlockQ4K, BlockQ4_0, BlockQ5K, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K,
};
use crate::Result;
use byteorder::{ByteOrder, LittleEndian};
#[allow(unused_imports)]
#[cfg(target_arch = "arm")]
use core::arch::arm::*;
#[allow(unused_imports)]
#[cfg(target_arch = "aarch64")]
use core::arch::aarch64::*;
#[inline(always)]
unsafe fn vdotq_s32(a: int8x16_t, b: int8x16_t) -> int32x4_t {
// TODO: dotprod
let p0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
let p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))
}
#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
let nb = n / qk;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
unsafe {
let mut sumv0 = vdupq_n_f32(0.0f32);
for i in 0..nb {
let x0 = &xs[i];
let y0 = &ys[i];
let m4b = vdupq_n_u8(0x0F);
let s8b = vdupq_n_s8(0x8);
let v0_0 = vld1q_u8(x0.qs.as_ptr());
// 4-bit -> 8-bit
let v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
let v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
// sub 8
let v0_0ls = vsubq_s8(v0_0l, s8b);
let v0_0hs = vsubq_s8(v0_0h, s8b);
// load y
let v1_0l = vld1q_s8(y0.qs.as_ptr());
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
let pl0 = vdotq_s32(v0_0ls, v1_0l);
let ph0 = vdotq_s32(v0_0hs, v1_0h);
sumv0 = vmlaq_n_f32(
sumv0,
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
x0.d.to_f32() * y0.d.to_f32(),
);
}
Ok(vaddvq_f32(sumv0))
}
}
#[inline(always)]
pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
let nb = n / QK8_0;
unsafe {
let mut sumv0 = vdupq_n_f32(0.0f32);
for i in 0..nb {
let x0 = &xs[i];
let y0 = &ys[i];
let x0_0 = vld1q_s8(x0.qs.as_ptr());
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
// load y
let y0_0 = vld1q_s8(y0.qs.as_ptr());
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
let p0 = vdotq_s32(x0_0, y0_0);
let p1 = vdotq_s32(x0_1, y0_1);
sumv0 = vmlaq_n_f32(
sumv0,
vcvtq_f32_s32(vaddq_s32(p0, p1)),
x0.d.to_f32() * y0.d.to_f32(),
);
}
Ok(vaddvq_f32(sumv0))
}
}
#[inline(always)]
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
let qk = QK_K;
if n % QK_K != 0 {
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
}
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
unsafe {
let mut sum_i = vdupq_n_s32(0);
let scale = xs.d * ys.d;
let xs = xs.qs.as_ptr();
let ys = ys.qs.as_ptr();
for i in (0..QK_K).step_by(16) {
let xs = vld1q_s8(xs.add(i));
let ys = vld1q_s8(ys.add(i));
let xy = vdotq_s32(xs, ys);
sum_i = vaddq_s32(sum_i, xy)
}
sumf += vaddvq_s32(sum_i) as f32 * scale
}
}
Ok(sumf)
}
#[inline(always)]
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
}
let mut sum = 0f32;
unsafe {
let m4b = vdupq_n_u8(0xF);
let mone = vdupq_n_u8(3);
for (x, y) in xs.iter().zip(ys.iter()) {
let d_all = x.d.to_f32();
let mut q6 = x.ql.as_ptr();
let mut qh = x.qh.as_ptr();
let mut q8 = y.qs.as_ptr();
let mut scale = x.scales.as_ptr();
let q8sums = vld1q_s16_x2(y.bsums.as_ptr());
let scales = vld1q_s8(scale);
let q6scales = int16x8x2_t(
vmovl_s8(vget_low_s8(scales)),
vmovl_s8(vget_high_s8(scales)),
);
let prod = vaddq_s32(
vaddq_s32(
vmull_s16(vget_low_s16(q8sums.0), vget_low_s16(q6scales.0)),
vmull_s16(vget_high_s16(q8sums.0), vget_high_s16(q6scales.0)),
),
vaddq_s32(
vmull_s16(vget_low_s16(q8sums.1), vget_low_s16(q6scales.1)),
vmull_s16(vget_high_s16(q8sums.1), vget_high_s16(q6scales.1)),
),
);
let isum_mins = vaddvq_s32(prod);
let mut isum = 0i32;
for _j in 0..QK_K / 128 {
let qhbits = vld1q_u8_x2(qh);
qh = qh.add(32);
let q6bits = vld1q_u8_x4(q6);
q6 = q6.add(64);
let q8bytes = vld1q_s8_x4(q8);
q8 = q8.add(64);
let q6h_0 = vshlq_n_u8(vandq_u8(mone, qhbits.0), 4);
let q6h_1 = vshlq_n_u8(vandq_u8(mone, qhbits.1), 4);
let shifted = vshrq_n_u8(qhbits.0, 2);
let q6h_2 = vshlq_n_u8(vandq_u8(mone, shifted), 4);
let shifted = vshrq_n_u8(qhbits.1, 2);
let q6h_3 = vshlq_n_u8(vandq_u8(mone, shifted), 4);
let q6bytes_0 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.0, m4b), q6h_0));
let q6bytes_1 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.1, m4b), q6h_1));
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.2, m4b), q6h_2));
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.3, m4b), q6h_3));
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
scale = scale.add(2);
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
scale = scale.add(2);
let q8bytes = vld1q_s8_x4(q8);
q8 = q8.add(64);
let shifted = vshrq_n_u8(qhbits.0, 4);
let q6h_0 = vshlq_n_u8(vandq_u8(mone, shifted), 4);
let shifted = vshrq_n_u8(qhbits.1, 4);
let q6h_1 = vshlq_n_u8(vandq_u8(mone, shifted), 4);
let shifted = vshrq_n_u8(qhbits.0, 6);
let q6h_2 = vshlq_n_u8(vandq_u8(mone, shifted), 4);
let shifted = vshrq_n_u8(qhbits.1, 6);
let q6h_3 = vshlq_n_u8(vandq_u8(mone, shifted), 4);
let q6bytes_0 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.0, 4), q6h_0));
let q6bytes_1 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.1, 4), q6h_1));
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.2, 4), q6h_2));
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.3, 4), q6h_3));
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
scale = scale.add(2);
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
scale = scale.add(2);
}
sum += d_all * y.d * ((isum - 32 * isum_mins) as f32);
}
}
Ok(sum)
}
#[inline(always)]
pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
}
let mut sumf = 0f32;
let mut utmp = [0u32; 4];
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
unsafe {
let m4b = vdupq_n_u8(0xF);
let mone = vdupq_n_u8(1);
let mtwo = vdupq_n_u8(2);
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let dmin = y.d * x.dmin.to_f32();
let q8sums = vpaddq_s16(
vld1q_s16(y.bsums.as_ptr()),
vld1q_s16(y.bsums.as_ptr().add(8)),
);
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
let mins8 = vld1_u8((utmp.as_ptr() as *const u8).add(8));
let mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
let prod = vaddq_s32(
vmull_s16(vget_low_s16(q8sums), vget_low_s16(mins)),
vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)),
);
let sumi_mins = vaddvq_s32(prod);
let mut scales = utmp.as_ptr() as *const u8;
let mut q5 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
let mut qhbits = vld1q_u8_x2(x.qh.as_ptr());
let mut sumi = 0i32;
for _j in 0..QK_K / 64 {
let q5bits = vld1q_u8_x2(q5);
q5 = q5.add(32);
let q8bytes = vld1q_s8_x4(q8);
q8 = q8.add(64);
let q5h_0 = vshlq_n_u8(vandq_u8(mone, qhbits.0), 4);
let q5h_1 = vshlq_n_u8(vandq_u8(mone, qhbits.1), 4);
let q5h_2 = vshlq_n_u8(vandq_u8(mtwo, qhbits.0), 3);
let q5h_3 = vshlq_n_u8(vandq_u8(mtwo, qhbits.1), 3);
qhbits.0 = vshrq_n_u8(qhbits.0, 2);
qhbits.1 = vshrq_n_u8(qhbits.1, 2);
let q5bytes_0 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.0, m4b), q5h_0));
let q5bytes_1 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.1, m4b), q5h_1));
let q5bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.0, 4), q5h_2));
let q5bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.1, 4), q5h_3));
let p0 = vdotq_s32(q5bytes_0, q8bytes.0);
let p1 = vdotq_s32(q5bytes_1, q8bytes.1);
sumi += vaddvq_s32(vaddq_s32(p0, p1)) * *scales as i32;
scales = scales.add(1);
let p2 = vdotq_s32(q5bytes_2, q8bytes.2);
let p3 = vdotq_s32(q5bytes_3, q8bytes.3);
sumi += vaddvq_s32(vaddq_s32(p2, p3)) * *scales as i32;
scales = scales.add(1);
}
sumf += d * sumi as f32 - dmin * sumi_mins as f32;
}
}
Ok(sumf)
}
#[inline(always)]
pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
}
let mut sumf = 0f32;
let mut utmp = [0u32; 4];
let mut scales = [0u8; 16];
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
unsafe {
let m4b = vdupq_n_u8(0xF);
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let dmin = y.d * x.dmin.to_f32();
let q8sums = vpaddq_s16(
vld1q_s16(y.bsums.as_ptr()),
vld1q_s16(y.bsums.as_ptr().add(8)),
);
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
let mins8 = vld1_u32(
[
utmp[1] & KMASK1,
((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4),
]
.as_ptr(),
);
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[0] &= KMASK1;
let mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
let prod = vaddq_s32(
vmull_s16(vget_low_s16(q8sums), vget_low_s16(mins)),
vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)),
);
sumf -= dmin * vaddvq_s32(prod) as f32;
LittleEndian::write_u32_into(&utmp, &mut scales);
let mut q4 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
let mut sumi1 = 0i32;
let mut sumi2 = 0i32;
for j in 0..QK_K / 64 {
let q4bits = vld1q_u8_x2(q4);
q4 = q4.add(32);
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
let q4bytes = int8x16x2_t(
vreinterpretq_s8_u8(vandq_u8(q4bits.0, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4bits.1, m4b)),
);
let p0 = vdotq_s32(q4bytes.0, q8bytes.0);
let p1 = vdotq_s32(q4bytes.1, q8bytes.1);
sumi1 += vaddvq_s32(vaddq_s32(p0, p1)) * scales[2 * j] as i32;
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
let q4bytes = int8x16x2_t(
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.0, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.1, 4)),
);
let p2 = vdotq_s32(q4bytes.0, q8bytes.0);
let p3 = vdotq_s32(q4bytes.1, q8bytes.1);
sumi2 += vaddvq_s32(vaddq_s32(p2, p3)) * scales[2 * j + 1] as i32;
}
sumf += d * (sumi1 + sumi2) as f32;
}
}
Ok(sumf)
}
#[inline(always)]
pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
}
let mut sumf = 0f32;
let mut utmp = [0u32; 4];
let mut aux = [0u32; 3];
const KMASK1: u32 = 0x03030303;
const KMASK2: u32 = 0x0f0f0f0f;
unsafe {
let m3b = vdupq_n_u8(0x3);
let m0 = vdupq_n_u8(1);
let m1 = vshlq_n_u8(m0, 1);
let m2 = vshlq_n_u8(m0, 2);
let m3 = vshlq_n_u8(m0, 3);
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let mut q3 = x.qs.as_ptr();
let qh = x.hmask.as_ptr();
let mut q8 = y.qs.as_ptr();
let mut qhbits = vld1q_u8_x2(qh);
let mut isum = 0i32;
// Set up scales
LittleEndian::read_u32_into(&x.scales, &mut aux);
utmp[3] = ((aux[1] >> 4) & KMASK2) | (((aux[2] >> 6) & KMASK1) << 4);
utmp[2] = ((aux[0] >> 4) & KMASK2) | (((aux[2] >> 4) & KMASK1) << 4);
utmp[1] = (aux[1] & KMASK2) | (((aux[2] >> 2) & KMASK1) << 4);
utmp[0] = (aux[0] & KMASK2) | ((aux[2] & KMASK1) << 4);
let mut scale = utmp.as_mut_ptr() as *mut i8;
for j in 0..16 {
*scale.add(j) -= 32i8
}
for j in 0..QK_K / 128 {
let q3bits = vld1q_u8_x2(q3);
q3 = q3.add(32);
let q8bytes_1 = vld1q_s8_x4(q8);
q8 = q8.add(64);
let q8bytes_2 = vld1q_s8_x4(q8);
q8 = q8.add(64);
let q3h_0 = vshlq_n_u8(vbicq_u8(m0, qhbits.0), 2);
let q3h_1 = vshlq_n_u8(vbicq_u8(m0, qhbits.1), 2);
let q3h_2 = vshlq_n_u8(vbicq_u8(m1, qhbits.0), 1);
let q3h_3 = vshlq_n_u8(vbicq_u8(m1, qhbits.1), 1);
let q3bytes_0 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(q3bits.0, m3b)),
vreinterpretq_s8_u8(q3h_0),
);
let q3bytes_1 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(q3bits.1, m3b)),
vreinterpretq_s8_u8(q3h_1),
);
let q3bytes_2 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.0, 2), m3b)),
vreinterpretq_s8_u8(q3h_2),
);
let q3bytes_3 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.1, 2), m3b)),
vreinterpretq_s8_u8(q3h_3),
);
let p0 = vdotq_s32(q3bytes_0, q8bytes_1.0);
let p1 = vdotq_s32(q3bytes_1, q8bytes_1.1);
let p2 = vdotq_s32(q3bytes_2, q8bytes_1.2);
let p3 = vdotq_s32(q3bytes_3, q8bytes_1.3);
isum += vaddvq_s32(p0) * *scale as i32
+ vaddvq_s32(p1) * *scale.add(1) as i32
+ vaddvq_s32(p2) * *scale.add(2) as i32
+ vaddvq_s32(p3) * *scale.add(3) as i32;
scale = scale.add(4);
let q3h_0 = vbicq_u8(m2, qhbits.0);
let q3h_1 = vbicq_u8(m2, qhbits.1);
let q3h_2 = vshrq_n_u8(vbicq_u8(m3, qhbits.0), 1);
let q3h_3 = vshrq_n_u8(vbicq_u8(m3, qhbits.1), 1);
let q3bytes_0 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.0, 4), m3b)),
vreinterpretq_s8_u8(q3h_0),
);
let q3bytes_1 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.1, 4), m3b)),
vreinterpretq_s8_u8(q3h_1),
);
let q3bytes_2 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.0, 6), m3b)),
vreinterpretq_s8_u8(q3h_2),
);
let q3bytes_3 = vsubq_s8(
vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.1, 6), m3b)),
vreinterpretq_s8_u8(q3h_3),
);
let p0 = vdotq_s32(q3bytes_0, q8bytes_2.0);
let p1 = vdotq_s32(q3bytes_1, q8bytes_2.1);
let p2 = vdotq_s32(q3bytes_2, q8bytes_2.2);
let p3 = vdotq_s32(q3bytes_3, q8bytes_2.3);
isum += vaddvq_s32(p0) * *scale as i32
+ vaddvq_s32(p1) * *scale.add(1) as i32
+ vaddvq_s32(p2) * *scale.add(2) as i32
+ vaddvq_s32(p3) * *scale.add(3) as i32;
scale = scale.add(4);
if j == 0 {
qhbits.0 = vshrq_n_u8(qhbits.0, 4);
qhbits.1 = vshrq_n_u8(qhbits.1, 4);
}
}
sumf += d * isum as f32;
}
}
Ok(sumf)
}
#[inline(always)]
pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
}
let mut sumf = 0f32;
let mut aux = [0u8; 16];
unsafe {
let m3 = vdupq_n_u8(0x3);
let m4 = vdupq_n_u8(0xF);
for (x, y) in xs.iter().zip(ys.iter()) {
let d = y.d * x.d.to_f32();
let dmin = -y.d * x.dmin.to_f32();
let mut q2 = x.qs.as_ptr();
let mut q8 = y.qs.as_ptr();
let sc = x.scales.as_ptr();
let mins_and_scales = vld1q_u8(sc);
let scales = vandq_u8(mins_and_scales, m4);
vst1q_u8(aux.as_mut_ptr(), scales);
let mins = vshrq_n_u8(mins_and_scales, 4);
let q8sums = vld1q_s16_x2(y.bsums.as_ptr());
let mins16 = int16x8x2_t(
vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))),
vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins))),
);
let s0 = vaddq_s32(
vmull_s16(vget_low_s16(mins16.0), vget_low_s16(q8sums.0)),
vmull_s16(vget_high_s16(mins16.0), vget_high_s16(q8sums.0)),
);
let s1 = vaddq_s32(
vmull_s16(vget_low_s16(mins16.1), vget_low_s16(q8sums.1)),
vmull_s16(vget_high_s16(mins16.1), vget_high_s16(q8sums.1)),
);
sumf += dmin * vaddvq_s32(vaddq_s32(s0, s1)) as f32;
let mut isum = 0i32;
let mut is = 0usize;
// TODO: dotprod
for _j in 0..QK_K / 128 {
let q2bits = vld1q_u8_x2(q2);
q2 = q2.add(32);
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
let mut q2bytes = int8x16x2_t(
vreinterpretq_s8_u8(vandq_u8(q2bits.0, m3)),
vreinterpretq_s8_u8(vandq_u8(q2bits.1, m3)),
);
isum += multiply_accum_with_scale(&aux, is, 0, q2bytes, q8bytes);
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
q2bytes.0 = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.0, 2), m3));
q2bytes.1 = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.1, 2), m3));
isum += multiply_accum_with_scale(&aux, is, 2, q2bytes, q8bytes);
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
q2bytes.0 = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.0, 4), m3));
q2bytes.1 = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.1, 4), m3));
isum += multiply_accum_with_scale(&aux, is, 4, q2bytes, q8bytes);
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
q2bytes.0 = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.0, 6), m3));
q2bytes.1 = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.1, 6), m3));
isum += multiply_accum_with_scale(&aux, is, 6, q2bytes, q8bytes);
is += 8;
}
sumf += d * isum as f32;
}
}
Ok(sumf)
}
#[inline(always)]
unsafe fn multiply_accum_with_scale(
aux: &[u8; 16],
is: usize,
index: usize,
q2bytes: int8x16x2_t,
q8bytes: int8x16x2_t,
) -> i32 {
let p1 = vdotq_s32(q2bytes.0, q8bytes.0);
let p2 = vdotq_s32(q2bytes.1, q8bytes.1);
vaddvq_s32(p1) * aux[is + index] as i32 + vaddvq_s32(p2) * aux[is + 1 + index] as i32
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/cpu/mod.rs | pub mod erf;
pub mod kernels;
trait Cpu<const ARR: usize> {
type Unit;
type Array;
const STEP: usize;
const EPR: usize;
fn n() -> usize;
unsafe fn zero() -> Self::Unit;
unsafe fn zero_array() -> Self::Array;
unsafe fn load(mem_addr: *const f32) -> Self::Unit;
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit;
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit;
unsafe fn vec_reduce(x: Self::Array, y: *mut f32);
unsafe fn from_f32(v: f32) -> Self::Unit;
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
}
trait CpuF16<const ARR: usize> {
type Unit;
type Array;
const STEP: usize;
const EPR: usize;
fn n() -> usize;
unsafe fn zero() -> Self::Unit;
unsafe fn zero_array() -> Self::Array;
unsafe fn load(mem_addr: *const f16) -> Self::Unit;
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit;
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit;
unsafe fn vec_reduce(x: Self::Array, y: *mut f32);
unsafe fn from_f32(v: f32) -> Self::Unit;
unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit);
}
use half::f16;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cfg(target_feature = "avx")]
pub mod avx;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cfg(target_feature = "avx")]
pub use avx::{CurrentCpu, CurrentCpuF16};
#[cfg(target_arch = "wasm32")]
#[cfg(target_feature = "simd128")]
pub mod simd128;
#[cfg(target_arch = "wasm32")]
#[cfg(target_feature = "simd128")]
pub use simd128::CurrentCpu;
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
#[cfg(target_feature = "neon")]
pub mod neon;
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
#[cfg(target_feature = "neon")]
pub use neon::CurrentCpu;
#[cfg(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
))]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f32(a_row: *const f32, b_row: *const f32, c: *mut f32, k: usize) {
let np = k & !(CurrentCpu::STEP - 1);
let mut sum = CurrentCpu::zero_array();
let mut ax = CurrentCpu::zero_array();
let mut ay = CurrentCpu::zero_array();
for i in (0..np).step_by(CurrentCpu::STEP) {
for j in 0..CurrentCpu::n() {
ax[j] = CurrentCpu::load(a_row.add(i + j * CurrentCpu::EPR));
ay[j] = CurrentCpu::load(b_row.add(i + j * CurrentCpu::EPR));
sum[j] = CurrentCpu::vec_fma(sum[j], ax[j], ay[j]);
}
}
CurrentCpu::vec_reduce(sum, c);
// leftovers
for i in np..k {
*c += *a_row.add(i) * (*b_row.add(i));
}
}
#[cfg(not(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
)))]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f32(a_row: *const f32, b_row: *const f32, c: *mut f32, k: usize) {
// leftovers
for i in 0..k {
*c += *a_row.add(i) * (*b_row.add(i));
}
}
#[cfg(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
))]
#[inline(always)]
pub(crate) unsafe fn vec_sum(row: *const f32, b: *mut f32, k: usize) {
let np = k & !(CurrentCpu::STEP - 1);
let mut sum = CurrentCpu::zero_array();
let mut x = CurrentCpu::zero_array();
for i in (0..np).step_by(CurrentCpu::STEP) {
for j in 0..CurrentCpu::n() {
x[j] = CurrentCpu::load(row.add(i + j * CurrentCpu::EPR));
sum[j] = CurrentCpu::vec_add(sum[j], x[j]);
}
}
CurrentCpu::vec_reduce(sum, b);
// leftovers
for i in np..k {
*b += *row.add(i)
}
}
#[cfg(not(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
)))]
#[inline(always)]
pub(crate) unsafe fn vec_sum(row: *const f32, b: *mut f32, k: usize) {
*b = 0f32;
for i in 0..k {
*b += *row.add(i)
}
}
#[cfg(target_feature = "avx")]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f16(a_row: *const f16, b_row: *const f16, c: *mut f32, k: usize) {
let mut sumf = 0.0f32;
let np = k & !(CurrentCpuF16::STEP - 1);
let mut sum = CurrentCpuF16::zero_array();
let mut ax = CurrentCpuF16::zero_array();
let mut ay = CurrentCpuF16::zero_array();
for i in (0..np).step_by(CurrentCpuF16::STEP) {
for j in 0..CurrentCpuF16::n() {
ax[j] = CurrentCpuF16::load(a_row.add(i + j * CurrentCpuF16::EPR));
ay[j] = CurrentCpuF16::load(b_row.add(i + j * CurrentCpuF16::EPR));
sum[j] = CurrentCpuF16::vec_fma(sum[j], ax[j], ay[j]);
}
}
CurrentCpuF16::vec_reduce(sum, &mut sumf);
// leftovers
for i in np..k {
sumf += (*a_row.add(i)).to_f32() * (*b_row.add(i)).to_f32();
}
*c = sumf;
}
#[cfg(not(target_feature = "avx"))]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f16(a_row: *const f16, b_row: *const f16, c: *mut f32, k: usize) {
// leftovers
let mut sum = 0.0;
for i in 0..k {
sum += (*a_row.add(i)).to_f32() * (*b_row.add(i)).to_f32();
}
*c = sum;
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/cpu/kernels.rs | pub trait VecOps: num_traits::NumAssign + Copy {
fn min(self, rhs: Self) -> Self;
fn max(self, rhs: Self) -> Self;
/// Dot-product of two vectors.
///
/// # Safety
///
/// The length of `lhs` and `rhs` have to be at least `len`. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
*res = Self::zero();
for i in 0..len {
*res += *lhs.add(i) * *rhs.add(i)
}
}
/// Sum of all elements in a vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len`. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) {
*res = Self::zero();
for i in 0..len {
*res += *xs.add(i)
}
}
/// Maximum element in a non-empty vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len` and positive. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_max(xs: *const Self, res: *mut Self, len: usize) {
*res = *xs;
for i in 1..len {
*res = (*res).max(*xs.add(i))
}
}
/// Minimum element in a non-empty vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len` and positive. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_min(xs: *const Self, res: *mut Self, len: usize) {
*res = *xs;
for i in 1..len {
*res = (*res).min(*xs.add(i))
}
}
}
impl VecOps for f32 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
super::vec_dot_f32(lhs, rhs, res, len)
}
#[inline(always)]
unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) {
super::vec_sum(xs, res, len)
}
}
impl VecOps for half::f16 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
let mut res_f32 = 0f32;
super::vec_dot_f16(lhs, rhs, &mut res_f32, len);
*res = half::f16::from_f32(res_f32);
}
}
impl VecOps for f64 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
}
impl VecOps for half::bf16 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
}
impl VecOps for u8 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
impl VecOps for u32 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
impl VecOps for i64 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
#[inline(always)]
pub fn par_for_each(n_threads: usize, func: impl Fn(usize) + Send + Sync) {
if n_threads == 1 {
func(0)
} else {
rayon::scope(|s| {
for thread_idx in 0..n_threads {
let func = &func;
s.spawn(move |_| func(thread_idx));
}
})
}
}
#[inline(always)]
pub fn par_range(lo: usize, up: usize, n_threads: usize, func: impl Fn(usize) + Send + Sync) {
if n_threads == 1 {
for i in lo..up {
func(i)
}
} else {
rayon::scope(|s| {
for thread_idx in 0..n_threads {
let func = &func;
s.spawn(move |_| {
for i in (thread_idx..up).step_by(n_threads) {
func(i)
}
});
}
})
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/cpu/avx.rs | use super::{Cpu, CpuF16};
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use half::f16;
pub struct CurrentCpu {}
const STEP: usize = 32;
const EPR: usize = 8;
const ARR: usize = STEP / EPR;
impl Cpu<ARR> for CurrentCpu {
type Unit = __m256;
type Array = [__m256; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
_mm256_setzero_ps()
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn from_f32(v: f32) -> Self::Unit {
_mm256_set1_ps(v)
}
unsafe fn load(mem_addr: *const f32) -> Self::Unit {
_mm256_loadu_ps(mem_addr)
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
_mm256_add_ps(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
_mm256_add_ps(_mm256_mul_ps(b, c), a)
}
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) {
_mm256_storeu_ps(mem_addr, a);
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
for i in 0..ARR / 2 {
x[2 * i] = _mm256_add_ps(x[2 * i], x[2 * i + 1]);
}
for i in 0..ARR / 4 {
x[4 * i] = _mm256_add_ps(x[4 * i], x[4 * i + 2]);
}
#[allow(clippy::reversed_empty_ranges)]
for i in 0..ARR / 8 {
x[8 * i] = _mm256_add_ps(x[8 * i], x[8 * i + 4]);
}
let t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), _mm256_extractf128_ps(x[0], 1));
let t1 = _mm_hadd_ps(t0, t0);
*y = _mm_cvtss_f32(_mm_hadd_ps(t1, t1));
}
}
pub struct CurrentCpuF16 {}
impl CpuF16<ARR> for CurrentCpuF16 {
type Unit = __m256;
type Array = [__m256; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
_mm256_setzero_ps()
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn from_f32(v: f32) -> Self::Unit {
_mm256_set1_ps(v)
}
#[cfg(target_feature = "f16c")]
unsafe fn load(mem_addr: *const f16) -> Self::Unit {
_mm256_cvtph_ps(_mm_loadu_si128(mem_addr as *const __m128i))
}
#[cfg(not(target_feature = "f16c"))]
unsafe fn load(mem_addr: *const f16) -> Self::Unit {
let mut tmp = [0.0f32; 8];
for i in 0..8 {
tmp[i] = (*mem_addr.add(i)).to_f32();
}
_mm256_loadu_ps(tmp.as_ptr())
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
_mm256_add_ps(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
_mm256_add_ps(_mm256_mul_ps(b, c), a)
}
#[cfg(target_feature = "f16c")]
unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit) {
_mm_storeu_si128(mem_addr as *mut __m128i, _mm256_cvtps_ph(a, 0))
}
#[cfg(not(target_feature = "f16c"))]
unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit) {
let mut tmp = [0.0f32; 8];
_mm256_storeu_ps(tmp.as_mut_ptr(), a);
for i in 0..8 {
*mem_addr.add(i) = f16::from_f32(tmp[i]);
}
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
let mut offset = ARR >> 1;
for i in 0..offset {
x[i] = _mm256_add_ps(x[i], x[offset + i]);
}
offset >>= 1;
for i in 0..offset {
x[i] = _mm256_add_ps(x[i], x[offset + i]);
}
offset >>= 1;
for i in 0..offset {
x[i] = _mm256_add_ps(x[i], x[offset + i]);
}
let t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), _mm256_extractf128_ps(x[0], 1));
let t1 = _mm_hadd_ps(t0, t0);
*y = _mm_cvtss_f32(_mm_hadd_ps(t1, t1));
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/cpu/simd128.rs | use super::Cpu;
use core::arch::wasm32::*;
pub struct CurrentCpu {}
const STEP: usize = 16;
const EPR: usize = 4;
const ARR: usize = STEP / EPR;
impl Cpu<ARR> for CurrentCpu {
type Unit = v128;
type Array = [v128; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
f32x4_splat(0.0)
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn from_f32(v: f32) -> Self::Unit {
f32x4_splat(v)
}
unsafe fn load(mem_addr: *const f32) -> Self::Unit {
v128_load(mem_addr as *mut v128)
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
f32x4_add(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
f32x4_add(f32x4_mul(b, c), a)
}
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) {
v128_store(mem_addr as *mut v128, a);
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
for i in 0..ARR / 2 {
x[2 * i] = f32x4_add(x[2 * i], x[2 * i + 1]);
}
for i in 0..ARR / 4 {
x[4 * i] = f32x4_add(x[4 * i], x[4 * i + 2]);
}
for i in 0..ARR / 8 {
x[8 * i] = f32x4_add(x[8 * i], x[8 * i + 4]);
}
*y = f32x4_extract_lane::<0>(x[0])
+ f32x4_extract_lane::<1>(x[0])
+ f32x4_extract_lane::<2>(x[0])
+ f32x4_extract_lane::<3>(x[0]);
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/cpu/neon.rs | use super::Cpu;
#[cfg(target_arch = "arm")]
use core::arch::arm::*;
#[cfg(target_arch = "aarch64")]
use core::arch::aarch64::*;
pub struct CurrentCpu {}
const STEP: usize = 16;
const EPR: usize = 4;
const ARR: usize = STEP / EPR;
impl CurrentCpu {
#[cfg(target_arch = "aarch64")]
unsafe fn reduce_one(x: float32x4_t) -> f32 {
vaddvq_f32(x)
}
#[cfg(target_arch = "arm")]
unsafe fn reduce_one(x: float32x4_t) -> f32 {
vgetq_lane_f32(x, 0) + vgetq_lane_f32(x, 1) + vgetq_lane_f32(x, 2) + vgetq_lane_f32(x, 3)
}
}
impl Cpu<ARR> for CurrentCpu {
type Unit = float32x4_t;
type Array = [float32x4_t; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
vdupq_n_f32(0.0)
}
unsafe fn from_f32(x: f32) -> Self::Unit {
vdupq_n_f32(x)
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn load(mem_addr: *const f32) -> Self::Unit {
vld1q_f32(mem_addr)
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
vaddq_f32(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
vfmaq_f32(a, b, c)
}
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) {
vst1q_f32(mem_addr, a);
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
for i in 0..ARR / 2 {
x[2 * i] = vaddq_f32(x[2 * i], x[2 * i + 1]);
}
for i in 0..ARR / 4 {
x[4 * i] = vaddq_f32(x[4 * i], x[4 * i + 2]);
}
*y = Self::reduce_one(x[0]);
}
}
| 0 |
hf_public_repos/candle/candle-core/src | hf_public_repos/candle/candle-core/src/cpu/erf.rs | #![allow(clippy::excessive_precision)]
// Code taken from https://github.com/statrs-dev/statrs
//! Provides the [error](https://en.wikipedia.org/wiki/Error_function) and
//! related functions
mod evaluate {
//! Provides functions that don't have a numerical solution and must
//! be solved computationally (e.g. evaluation of a polynomial)
/// evaluates a polynomial at `z` where `coeff` are the coeffecients
/// to a polynomial of order `k` where `k` is the length of `coeff` and the
/// coeffecient
/// to the `k`th power is the `k`th element in coeff. E.g. [3,-1,2] equates to
/// `2z^2 - z + 3`
///
/// # Remarks
///
/// Returns 0 for a 0 length coefficient slice
pub fn polynomial(z: f64, coeff: &[f64]) -> f64 {
let n = coeff.len();
if n == 0 {
return 0.0;
}
let mut sum = *coeff.last().unwrap();
for c in coeff[0..n - 1].iter().rev() {
sum = *c + z * sum;
}
sum
}
}
use std::f64;
/// `erf` calculates the error function at `x`.
pub fn erf(x: f64) -> f64 {
if x.is_nan() {
f64::NAN
} else if x >= 0.0 && x.is_infinite() {
1.0
} else if x <= 0.0 && x.is_infinite() {
-1.0
} else if x == 0. {
0.0
} else {
erf_impl(x, false)
}
}
/// `erf_inv` calculates the inverse error function
/// at `x`.
pub fn erf_inv(x: f64) -> f64 {
if x == 0.0 {
0.0
} else if x >= 1.0 {
f64::INFINITY
} else if x <= -1.0 {
f64::NEG_INFINITY
} else if x < 0.0 {
erf_inv_impl(-x, 1.0 + x, -1.0)
} else {
erf_inv_impl(x, 1.0 - x, 1.0)
}
}
/// `erfc` calculates the complementary error function
/// at `x`.
pub fn erfc(x: f64) -> f64 {
if x.is_nan() {
f64::NAN
} else if x == f64::INFINITY {
0.0
} else if x == f64::NEG_INFINITY {
2.0
} else {
erf_impl(x, true)
}
}
/// `erfc_inv` calculates the complementary inverse
/// error function at `x`.
pub fn erfc_inv(x: f64) -> f64 {
if x <= 0.0 {
f64::INFINITY
} else if x >= 2.0 {
f64::NEG_INFINITY
} else if x > 1.0 {
erf_inv_impl(-1.0 + x, 2.0 - x, -1.0)
} else {
erf_inv_impl(1.0 - x, x, 1.0)
}
}
// **********************************************************
// ********** Coefficients for erf_impl polynomial **********
// **********************************************************
/// Polynomial coefficients for a numerator of `erf_impl`
/// in the interval [1e-10, 0.5].
const ERF_IMPL_AN: &[f64] = &[
0.00337916709551257388990745,
-0.00073695653048167948530905,
-0.374732337392919607868241,
0.0817442448733587196071743,
-0.0421089319936548595203468,
0.0070165709512095756344528,
-0.00495091255982435110337458,
0.000871646599037922480317225,
];
/// Polynomial coefficients for a denominator of `erf_impl`
/// in the interval [1e-10, 0.5]
const ERF_IMPL_AD: &[f64] = &[
1.0,
-0.218088218087924645390535,
0.412542972725442099083918,
-0.0841891147873106755410271,
0.0655338856400241519690695,
-0.0120019604454941768171266,
0.00408165558926174048329689,
-0.000615900721557769691924509,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [0.5, 0.75].
const ERF_IMPL_BN: &[f64] = &[
-0.0361790390718262471360258,
0.292251883444882683221149,
0.281447041797604512774415,
0.125610208862766947294894,
0.0274135028268930549240776,
0.00250839672168065762786937,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [0.5, 0.75].
const ERF_IMPL_BD: &[f64] = &[
1.0,
1.8545005897903486499845,
1.43575803037831418074962,
0.582827658753036572454135,
0.124810476932949746447682,
0.0113724176546353285778481,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [0.75, 1.25].
const ERF_IMPL_CN: &[f64] = &[
-0.0397876892611136856954425,
0.153165212467878293257683,
0.191260295600936245503129,
0.10276327061989304213645,
0.029637090615738836726027,
0.0046093486780275489468812,
0.000307607820348680180548455,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [0.75, 1.25].
const ERF_IMPL_CD: &[f64] = &[
1.0,
1.95520072987627704987886,
1.64762317199384860109595,
0.768238607022126250082483,
0.209793185936509782784315,
0.0319569316899913392596356,
0.00213363160895785378615014,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [1.25, 2.25].
const ERF_IMPL_DN: &[f64] = &[
-0.0300838560557949717328341,
0.0538578829844454508530552,
0.0726211541651914182692959,
0.0367628469888049348429018,
0.00964629015572527529605267,
0.00133453480075291076745275,
0.778087599782504251917881e-4,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [1.25, 2.25].
const ERF_IMPL_DD: &[f64] = &[
1.0,
1.75967098147167528287343,
1.32883571437961120556307,
0.552528596508757581287907,
0.133793056941332861912279,
0.0179509645176280768640766,
0.00104712440019937356634038,
-0.106640381820357337177643e-7,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [2.25, 3.5].
const ERF_IMPL_EN: &[f64] = &[
-0.0117907570137227847827732,
0.014262132090538809896674,
0.0202234435902960820020765,
0.00930668299990432009042239,
0.00213357802422065994322516,
0.00025022987386460102395382,
0.120534912219588189822126e-4,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [2.25, 3.5].
const ERF_IMPL_ED: &[f64] = &[
1.0,
1.50376225203620482047419,
0.965397786204462896346934,
0.339265230476796681555511,
0.0689740649541569716897427,
0.00771060262491768307365526,
0.000371421101531069302990367,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [3.5, 5.25].
const ERF_IMPL_FN: &[f64] = &[
-0.00546954795538729307482955,
0.00404190278731707110245394,
0.0054963369553161170521356,
0.00212616472603945399437862,
0.000394984014495083900689956,
0.365565477064442377259271e-4,
0.135485897109932323253786e-5,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [3.5, 5.25].
const ERF_IMPL_FD: &[f64] = &[
1.0,
1.21019697773630784832251,
0.620914668221143886601045,
0.173038430661142762569515,
0.0276550813773432047594539,
0.00240625974424309709745382,
0.891811817251336577241006e-4,
-0.465528836283382684461025e-11,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [5.25, 8].
const ERF_IMPL_GN: &[f64] = &[
-0.00270722535905778347999196,
0.0013187563425029400461378,
0.00119925933261002333923989,
0.00027849619811344664248235,
0.267822988218331849989363e-4,
0.923043672315028197865066e-6,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [5.25, 8].
const ERF_IMPL_GD: &[f64] = &[
1.0,
0.814632808543141591118279,
0.268901665856299542168425,
0.0449877216103041118694989,
0.00381759663320248459168994,
0.000131571897888596914350697,
0.404815359675764138445257e-11,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [8, 11.5].
const ERF_IMPL_HN: &[f64] = &[
-0.00109946720691742196814323,
0.000406425442750422675169153,
0.000274499489416900707787024,
0.465293770646659383436343e-4,
0.320955425395767463401993e-5,
0.778286018145020892261936e-7,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [8, 11.5].
const ERF_IMPL_HD: &[f64] = &[
1.0,
0.588173710611846046373373,
0.139363331289409746077541,
0.0166329340417083678763028,
0.00100023921310234908642639,
0.24254837521587225125068e-4,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [11.5, 17].
const ERF_IMPL_IN: &[f64] = &[
-0.00056907993601094962855594,
0.000169498540373762264416984,
0.518472354581100890120501e-4,
0.382819312231928859704678e-5,
0.824989931281894431781794e-7,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [11.5, 17].
const ERF_IMPL_ID: &[f64] = &[
1.0,
0.339637250051139347430323,
0.043472647870310663055044,
0.00248549335224637114641629,
0.535633305337152900549536e-4,
-0.117490944405459578783846e-12,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [17, 24].
const ERF_IMPL_JN: &[f64] = &[
-0.000241313599483991337479091,
0.574224975202501512365975e-4,
0.115998962927383778460557e-4,
0.581762134402593739370875e-6,
0.853971555085673614607418e-8,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [17, 24].
const ERF_IMPL_JD: &[f64] = &[
1.0,
0.233044138299687841018015,
0.0204186940546440312625597,
0.000797185647564398289151125,
0.117019281670172327758019e-4,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [24, 38].
const ERF_IMPL_KN: &[f64] = &[
-0.000146674699277760365803642,
0.162666552112280519955647e-4,
0.269116248509165239294897e-5,
0.979584479468091935086972e-7,
0.101994647625723465722285e-8,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [24, 38].
const ERF_IMPL_KD: &[f64] = &[
1.0,
0.165907812944847226546036,
0.0103361716191505884359634,
0.000286593026373868366935721,
0.298401570840900340874568e-5,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [38, 60].
const ERF_IMPL_LN: &[f64] = &[
-0.583905797629771786720406e-4,
0.412510325105496173512992e-5,
0.431790922420250949096906e-6,
0.993365155590013193345569e-8,
0.653480510020104699270084e-10,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [38, 60].
const ERF_IMPL_LD: &[f64] = &[
1.0,
0.105077086072039915406159,
0.00414278428675475620830226,
0.726338754644523769144108e-4,
0.477818471047398785369849e-6,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [60, 85].
const ERF_IMPL_MN: &[f64] = &[
-0.196457797609229579459841e-4,
0.157243887666800692441195e-5,
0.543902511192700878690335e-7,
0.317472492369117710852685e-9,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [60, 85].
const ERF_IMPL_MD: &[f64] = &[
1.0,
0.052803989240957632204885,
0.000926876069151753290378112,
0.541011723226630257077328e-5,
0.535093845803642394908747e-15,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [85, 110].
const ERF_IMPL_NN: &[f64] = &[
-0.789224703978722689089794e-5,
0.622088451660986955124162e-6,
0.145728445676882396797184e-7,
0.603715505542715364529243e-10,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [85, 110].
const ERF_IMPL_ND: &[f64] = &[
1.0,
0.0375328846356293715248719,
0.000467919535974625308126054,
0.193847039275845656900547e-5,
];
// **********************************************************
// ********** Coefficients for erf_inv_impl polynomial ******
// **********************************************************
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0, 0.5].
const ERF_INV_IMPL_AN: &[f64] = &[
-0.000508781949658280665617,
-0.00836874819741736770379,
0.0334806625409744615033,
-0.0126926147662974029034,
-0.0365637971411762664006,
0.0219878681111168899165,
0.00822687874676915743155,
-0.00538772965071242932965,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0, 0.5].
const ERF_INV_IMPL_AD: &[f64] = &[
1.0,
-0.970005043303290640362,
-1.56574558234175846809,
1.56221558398423026363,
0.662328840472002992063,
-0.71228902341542847553,
-0.0527396382340099713954,
0.0795283687341571680018,
-0.00233393759374190016776,
0.000886216390456424707504,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.5, 0.75].
const ERF_INV_IMPL_BN: &[f64] = &[
-0.202433508355938759655,
0.105264680699391713268,
8.37050328343119927838,
17.6447298408374015486,
-18.8510648058714251895,
-44.6382324441786960818,
17.445385985570866523,
21.1294655448340526258,
-3.67192254707729348546,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.5, 0.75].
const ERF_INV_IMPL_BD: &[f64] = &[
1.0,
6.24264124854247537712,
3.9713437953343869095,
-28.6608180499800029974,
-20.1432634680485188801,
48.5609213108739935468,
10.8268667355460159008,
-22.6436933413139721736,
1.72114765761200282724,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x less than 3.
const ERF_INV_IMPL_CN: &[f64] = &[
-0.131102781679951906451,
-0.163794047193317060787,
0.117030156341995252019,
0.387079738972604337464,
0.337785538912035898924,
0.142869534408157156766,
0.0290157910005329060432,
0.00214558995388805277169,
-0.679465575181126350155e-6,
0.285225331782217055858e-7,
-0.681149956853776992068e-9,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x less than 3.
const ERF_INV_IMPL_CD: &[f64] = &[
1.0,
3.46625407242567245975,
5.38168345707006855425,
4.77846592945843778382,
2.59301921623620271374,
0.848854343457902036425,
0.152264338295331783612,
0.01105924229346489121,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 3 and 6.
const ERF_INV_IMPL_DN: &[f64] = &[
-0.0350353787183177984712,
-0.00222426529213447927281,
0.0185573306514231072324,
0.00950804701325919603619,
0.00187123492819559223345,
0.000157544617424960554631,
0.460469890584317994083e-5,
-0.230404776911882601748e-9,
0.266339227425782031962e-11,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 3 and 6.
const ERF_INV_IMPL_DD: &[f64] = &[
1.0,
1.3653349817554063097,
0.762059164553623404043,
0.220091105764131249824,
0.0341589143670947727934,
0.00263861676657015992959,
0.764675292302794483503e-4,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 6 and 18.
const ERF_INV_IMPL_EN: &[f64] = &[
-0.0167431005076633737133,
-0.00112951438745580278863,
0.00105628862152492910091,
0.000209386317487588078668,
0.149624783758342370182e-4,
0.449696789927706453732e-6,
0.462596163522878599135e-8,
-0.281128735628831791805e-13,
0.99055709973310326855e-16,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 6 and 18.
const ERF_INV_IMPL_ED: &[f64] = &[
1.0,
0.591429344886417493481,
0.138151865749083321638,
0.0160746087093676504695,
0.000964011807005165528527,
0.275335474764726041141e-4,
0.282243172016108031869e-6,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 18 and 44.
const ERF_INV_IMPL_FN: &[f64] = &[
-0.0024978212791898131227,
-0.779190719229053954292e-5,
0.254723037413027451751e-4,
0.162397777342510920873e-5,
0.396341011304801168516e-7,
0.411632831190944208473e-9,
0.145596286718675035587e-11,
-0.116765012397184275695e-17,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 18 and 44.
const ERF_INV_IMPL_FD: &[f64] = &[
1.0,
0.207123112214422517181,
0.0169410838120975906478,
0.000690538265622684595676,
0.145007359818232637924e-4,
0.144437756628144157666e-6,
0.509761276599778486139e-9,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x greater than 44.
const ERF_INV_IMPL_GN: &[f64] = &[
-0.000539042911019078575891,
-0.28398759004727721098e-6,
0.899465114892291446442e-6,
0.229345859265920864296e-7,
0.225561444863500149219e-9,
0.947846627503022684216e-12,
0.135880130108924861008e-14,
-0.348890393399948882918e-21,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x greater than 44.
const ERF_INV_IMPL_GD: &[f64] = &[
1.0,
0.0845746234001899436914,
0.00282092984726264681981,
0.468292921940894236786e-4,
0.399968812193862100054e-6,
0.161809290887904476097e-8,
0.231558608310259605225e-11,
];
/// `erf_impl` computes the error function at `z`.
/// If `inv` is true, `1 - erf` is calculated as opposed to `erf`
fn erf_impl(z: f64, inv: bool) -> f64 {
if z < 0.0 {
if !inv {
return -erf_impl(-z, false);
}
if z < -0.5 {
return 2.0 - erf_impl(-z, true);
}
return 1.0 + erf_impl(-z, false);
}
let result = if z < 0.5 {
if z < 1e-10 {
z * 1.125 + z * 0.003379167095512573896158903121545171688
} else {
z * 1.125
+ z * evaluate::polynomial(z, ERF_IMPL_AN) / evaluate::polynomial(z, ERF_IMPL_AD)
}
} else if z < 110.0 {
let (r, b) = if z < 0.75 {
(
evaluate::polynomial(z - 0.5, ERF_IMPL_BN)
/ evaluate::polynomial(z - 0.5, ERF_IMPL_BD),
0.3440242112,
)
} else if z < 1.25 {
(
evaluate::polynomial(z - 0.75, ERF_IMPL_CN)
/ evaluate::polynomial(z - 0.75, ERF_IMPL_CD),
0.419990927,
)
} else if z < 2.25 {
(
evaluate::polynomial(z - 1.25, ERF_IMPL_DN)
/ evaluate::polynomial(z - 1.25, ERF_IMPL_DD),
0.4898625016,
)
} else if z < 3.5 {
(
evaluate::polynomial(z - 2.25, ERF_IMPL_EN)
/ evaluate::polynomial(z - 2.25, ERF_IMPL_ED),
0.5317370892,
)
} else if z < 5.25 {
(
evaluate::polynomial(z - 3.5, ERF_IMPL_FN)
/ evaluate::polynomial(z - 3.5, ERF_IMPL_FD),
0.5489973426,
)
} else if z < 8.0 {
(
evaluate::polynomial(z - 5.25, ERF_IMPL_GN)
/ evaluate::polynomial(z - 5.25, ERF_IMPL_GD),
0.5571740866,
)
} else if z < 11.5 {
(
evaluate::polynomial(z - 8.0, ERF_IMPL_HN)
/ evaluate::polynomial(z - 8.0, ERF_IMPL_HD),
0.5609807968,
)
} else if z < 17.0 {
(
evaluate::polynomial(z - 11.5, ERF_IMPL_IN)
/ evaluate::polynomial(z - 11.5, ERF_IMPL_ID),
0.5626493692,
)
} else if z < 24.0 {
(
evaluate::polynomial(z - 17.0, ERF_IMPL_JN)
/ evaluate::polynomial(z - 17.0, ERF_IMPL_JD),
0.5634598136,
)
} else if z < 38.0 {
(
evaluate::polynomial(z - 24.0, ERF_IMPL_KN)
/ evaluate::polynomial(z - 24.0, ERF_IMPL_KD),
0.5638477802,
)
} else if z < 60.0 {
(
evaluate::polynomial(z - 38.0, ERF_IMPL_LN)
/ evaluate::polynomial(z - 38.0, ERF_IMPL_LD),
0.5640528202,
)
} else if z < 85.0 {
(
evaluate::polynomial(z - 60.0, ERF_IMPL_MN)
/ evaluate::polynomial(z - 60.0, ERF_IMPL_MD),
0.5641309023,
)
} else {
(
evaluate::polynomial(z - 85.0, ERF_IMPL_NN)
/ evaluate::polynomial(z - 85.0, ERF_IMPL_ND),
0.5641584396,
)
};
let g = (-z * z).exp() / z;
g * b + g * r
} else {
0.0
};
if inv && z >= 0.5 {
result
} else if z >= 0.5 || inv {
1.0 - result
} else {
result
}
}
// `erf_inv_impl` computes the inverse error function where
// `p`,`q`, and `s` are the first, second, and third intermediate
// parameters respectively
fn erf_inv_impl(p: f64, q: f64, s: f64) -> f64 {
let result = if p <= 0.5 {
let y = 0.0891314744949340820313;
let g = p * (p + 10.0);
let r = evaluate::polynomial(p, ERF_INV_IMPL_AN) / evaluate::polynomial(p, ERF_INV_IMPL_AD);
g * y + g * r
} else if q >= 0.25 {
let y = 2.249481201171875;
let g = (-2.0 * q.ln()).sqrt();
let xs = q - 0.25;
let r =
evaluate::polynomial(xs, ERF_INV_IMPL_BN) / evaluate::polynomial(xs, ERF_INV_IMPL_BD);
g / (y + r)
} else {
let x = (-q.ln()).sqrt();
if x < 3.0 {
let y = 0.807220458984375;
let xs = x - 1.125;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_CN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_CD);
y * x + r * x
} else if x < 6.0 {
let y = 0.93995571136474609375;
let xs = x - 3.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_DN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_DD);
y * x + r * x
} else if x < 18.0 {
let y = 0.98362827301025390625;
let xs = x - 6.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_EN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_ED);
y * x + r * x
} else if x < 44.0 {
let y = 0.99714565277099609375;
let xs = x - 18.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_FN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_FD);
y * x + r * x
} else {
let y = 0.99941349029541015625;
let xs = x - 44.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_GN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_GD);
y * x + r * x
}
};
s * result
}
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-metal-kernels/README.md | # candle-metal-kernels
This crate contains Metal kernels used from candle. | 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-metal-kernels/Cargo.toml | [package]
name = "candle-metal-kernels"
version = "0.3.3"
edition = "2021"
description = "Metal kernels for Candle"
repository = "https://github.com/huggingface/candle"
keywords = ["blas", "tensor", "machine-learning"]
categories = ["science"]
license = "MIT OR Apache-2.0"
[dependencies]
metal = { version = "0.27.0", features = ["mps"] }
once_cell = "1.18.0"
thiserror = "1"
tracing = "0.1.37"
[dev-dependencies]
half = { version = "2.3.1", features = [
"num-traits",
"use-intrinsics",
"rand_distr",
] }
rand = "0.8.5"
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/tmp/affine.rs | use candle_metal_kernels::{call_affine, Kernels};
use metal::objc::rc::autoreleasepool;
use metal::{Device, MTLResourceOptions};
use rand;
use std::any::type_name;
use std::time::Instant;
fn main() {
let device = Device::system_default().unwrap();
let kernels = Kernels::new();
let f32_1k = (0..1000).map(|_| rand::random::<f32>()).collect::<Vec<_>>();
let f32_10k = (0..10000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f32_100k = (0..100000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11} | {5: <11}",
"dtype", "kernel", "size", "runs", "total time", "avg time"
);
// f32
run_affine_bench(&device, &kernels, &f32_1k);
run_affine_bench(&device, &kernels, &f32_10k);
run_affine_bench(&device, &kernels, &f32_100k);
}
fn run_affine_bench<T: Clone>(device: &Device, kernels: &Kernels, v: &[T]) {
let command_queue = device.new_command_queue();
let options = MTLResourceOptions::StorageModeManaged;
let iterations = 10000;
let input = device.new_buffer_with_data(
v.as_ptr() as *const core::ffi::c_void,
core::mem::size_of_val(v) as u64,
options,
);
let mut output = device.new_buffer(core::mem::size_of_val(v) as u64, options);
let mul: f32 = 1.2345;
let add: f32 = 2.3456;
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_affine(
&device,
command_buffer,
&kernels,
"affine_float",
v.len(),
&input,
&mut output,
mul,
add,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
"affine",
v.len(),
iterations,
total_time,
total_time / iterations
);
}
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/tmp/unary.rs | use candle_metal_kernels::{call_unary_contiguous, call_unary_strided, unary, Kernels};
use half::{bf16, f16};
use metal::objc::rc::autoreleasepool;
use metal::{Device, MTLResourceOptions};
use rand;
use std::any::type_name;
use std::time::Instant;
fn main() {
let device = Device::system_default().unwrap();
let kernels = Kernels::new();
let f32_1k = (0..1000).map(|_| rand::random::<f32>()).collect::<Vec<_>>();
let f32_10k = (0..10000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f32_100k = (0..100000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f16_map = |v: &[f32]| v.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>();
let f16_1k = f16_map(&f32_1k);
let f16_10k = f16_map(&f32_10k);
let f16_100k = f16_map(&f32_100k);
let bf16_map = |v: &[f32]| v.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>();
let bf16_1k = bf16_map(&f32_1k);
let bf16_10k = bf16_map(&f32_10k);
let bf16_100k = bf16_map(&f32_100k);
let f32_ckernels = [
unary::contiguous::sin::FLOAT,
unary::contiguous::cos::FLOAT,
unary::contiguous::exp::FLOAT,
unary::contiguous::sqr::FLOAT,
unary::contiguous::sqrt::FLOAT,
unary::contiguous::neg::FLOAT,
unary::contiguous::copy::FLOAT,
];
let f32_skernels = [
unary::strided::sin::FLOAT,
unary::strided::cos::FLOAT,
unary::strided::exp::FLOAT,
unary::strided::sqr::FLOAT,
unary::strided::sqrt::FLOAT,
unary::strided::neg::FLOAT,
unary::strided::copy::FLOAT,
];
let f16_ckernels = [
unary::contiguous::sin::HALF,
unary::contiguous::cos::HALF,
unary::contiguous::exp::HALF,
unary::contiguous::sqr::HALF,
unary::contiguous::sqrt::HALF,
unary::contiguous::neg::HALF,
unary::contiguous::copy::HALF,
];
let f16_skernels = [
unary::strided::sin::HALF,
unary::strided::cos::HALF,
unary::strided::exp::HALF,
unary::strided::sqr::HALF,
unary::strided::sqrt::HALF,
unary::strided::neg::HALF,
unary::strided::copy::HALF,
];
let bf16_ckernels = [
unary::contiguous::sin::BFLOAT,
unary::contiguous::cos::BFLOAT,
unary::contiguous::exp::BFLOAT,
unary::contiguous::sqr::BFLOAT,
unary::contiguous::sqrt::BFLOAT,
unary::contiguous::neg::BFLOAT,
unary::contiguous::copy::BFLOAT,
];
let bf16_skernels = [
unary::strided::sin::BFLOAT,
unary::strided::cos::BFLOAT,
unary::strided::exp::BFLOAT,
unary::strided::sqr::BFLOAT,
unary::strided::sqrt::BFLOAT,
unary::strided::neg::BFLOAT,
unary::strided::copy::BFLOAT,
];
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11} | {5: <11}",
"dtype", "kernel", "size", "runs", "total time", "avg time"
);
// f32
run_unary_bench(&device, &kernels, &f32_1k, f32_ckernels, f32_skernels);
run_unary_bench(&device, &kernels, &f32_10k, f32_ckernels, f32_skernels);
run_unary_bench(&device, &kernels, &f32_100k, f32_ckernels, f32_skernels);
// f16
run_unary_bench(&device, &kernels, &f16_1k, f16_ckernels, f16_skernels);
run_unary_bench(&device, &kernels, &f16_10k, f16_ckernels, f16_skernels);
run_unary_bench(&device, &kernels, &f16_100k, f16_ckernels, f16_skernels);
// bf16
run_unary_bench(&device, &kernels, &bf16_1k, bf16_ckernels, bf16_skernels);
run_unary_bench(&device, &kernels, &bf16_10k, bf16_ckernels, bf16_skernels);
run_unary_bench(&device, &kernels, &bf16_100k, bf16_ckernels, bf16_skernels);
}
fn run_unary_bench<T: Clone>(
device: &Device,
kernels: &Kernels,
v: &[T],
contiguous: [unary::contiguous::Kernel; 7],
strided: [unary::strided::Kernel; 7],
) {
let command_queue = device.new_command_queue();
let options = MTLResourceOptions::StorageModeManaged;
let iterations = 10000;
let input = device.new_buffer_with_data(
v.as_ptr() as *const core::ffi::c_void,
core::mem::size_of_val(v) as u64,
options,
);
let mut output = device.new_buffer(core::mem::size_of_val(v) as u64, options);
// Contiguous
for kernel_name in contiguous {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_unary_contiguous(
device,
&command_buffer,
kernels,
kernel_name,
v.len(),
&input,
&mut output,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
v.len(),
iterations,
total_time,
total_time / iterations
);
}
// Strided
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
for kernel_name in &strided {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_unary_strided(
device,
command_buffer,
&kernels,
kernel_name,
&shape,
&input,
&strides,
offset,
&mut output,
0,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
v.len(),
iterations,
total_time,
total_time / iterations
);
}
}
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/tmp/cast.rs | use candle_metal_kernels::{call_cast_contiguous, Kernels};
use metal::objc::rc::autoreleasepool;
use metal::{Device, MTLResourceOptions};
use rand;
use std::any::type_name;
use std::time::Instant;
fn main() {
let device = Device::system_default().unwrap();
let kernels = Kernels::new();
let f32_1k = (0..1000).map(|_| rand::random::<f32>()).collect::<Vec<_>>();
let f32_10k = (0..10000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f32_100k = (0..100000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let contiguous_kernels = ["cast_u32_f32"];
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11} | {5: <11}",
"dtype", "kernel", "size", "runs", "total time", "avg time"
);
// f32
run_cast_bench(&device, &kernels, &f32_1k, &contiguous_kernels);
run_cast_bench(&device, &kernels, &f32_10k, &contiguous_kernels);
run_cast_bench(&device, &kernels, &f32_100k, &contiguous_kernels);
}
fn run_cast_bench<T: Clone>(
device: &Device,
kernels: &Kernels,
v: &[T],
contiguous: &[&'static str],
) {
let command_queue = device.new_command_queue();
let options = MTLResourceOptions::StorageModeManaged;
let iterations = 1000;
let input = device.new_buffer_with_data(
v.as_ptr() as *const core::ffi::c_void,
core::mem::size_of_val(v) as u64,
options,
);
let mut output = device.new_buffer(core::mem::size_of_val(v) as u64, options);
// Contiguous
for kernel_name in contiguous {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_cast_contiguous(
device,
&command_buffer,
kernels,
kernel_name,
v.len(),
&input,
&mut output,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.to_string(),
v.len(),
iterations,
total_time,
total_time / iterations
);
}
// Strided?
}
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/tmp/binary.rs | use candle_metal_kernels::{binary, call_binary_contiguous, call_binary_strided, Kernels};
use half::{bf16, f16};
use metal::objc::rc::autoreleasepool;
use metal::{Device, MTLResourceOptions};
use rand;
use std::any::type_name;
use std::time::Instant;
fn main() {
let device = Device::system_default().unwrap();
let kernels = Kernels::new();
let f32_1k = (0..1000).map(|_| rand::random::<f32>()).collect::<Vec<_>>();
let f32_10k = (0..10000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f32_100k = (0..100000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f16_map = |v: &[f32]| v.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>();
let f16_1k = f16_map(&f32_1k);
let f16_10k = f16_map(&f32_10k);
let f16_100k = f16_map(&f32_100k);
let bf16_map = |v: &[f32]| v.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>();
let bf16_1k = bf16_map(&f32_1k);
let bf16_10k = bf16_map(&f32_10k);
let bf16_100k = bf16_map(&f32_100k);
let f32_ckernels = [
binary::contiguous::add::FLOAT,
binary::contiguous::sub::FLOAT,
binary::contiguous::mul::FLOAT,
binary::contiguous::div::FLOAT,
];
let f32_skernels = [
binary::strided::add::FLOAT,
binary::strided::sub::FLOAT,
binary::strided::mul::FLOAT,
binary::strided::div::FLOAT,
];
let f16_ckernels = [
binary::contiguous::add::HALF,
binary::contiguous::sub::HALF,
binary::contiguous::mul::HALF,
binary::contiguous::div::HALF,
];
let f16_skernels = [
binary::strided::add::HALF,
binary::strided::sub::HALF,
binary::strided::mul::HALF,
binary::strided::div::HALF,
];
let bf16_ckernels = [
binary::contiguous::add::BFLOAT,
binary::contiguous::sub::BFLOAT,
binary::contiguous::mul::BFLOAT,
binary::contiguous::div::BFLOAT,
];
let bf16_skernels = [
binary::strided::add::BFLOAT,
binary::strided::sub::BFLOAT,
binary::strided::mul::BFLOAT,
binary::strided::div::BFLOAT,
];
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11} | {5: <11}",
"dtype", "kernel", "size", "runs", "total time", "avg time"
);
// f32
run_binary_bench(&device, &kernels, &f32_1k, f32_ckernels, f32_skernels);
run_binary_bench(&device, &kernels, &f32_10k, f32_ckernels, f32_skernels);
run_binary_bench(&device, &kernels, &f32_100k, f32_ckernels, f32_skernels);
// f16
run_binary_bench(&device, &kernels, &f16_1k, f16_ckernels, f16_skernels);
run_binary_bench(&device, &kernels, &f16_10k, f16_ckernels, f16_skernels);
run_binary_bench(&device, &kernels, &f16_100k, f16_ckernels, f16_skernels);
// bf16
run_binary_bench(&device, &kernels, &bf16_1k, bf16_ckernels, bf16_skernels);
run_binary_bench(&device, &kernels, &bf16_10k, bf16_ckernels, bf16_skernels);
run_binary_bench(&device, &kernels, &bf16_100k, bf16_ckernels, bf16_skernels);
}
fn run_binary_bench<T: Clone>(
device: &Device,
kernels: &Kernels,
v: &[T],
contiguous: [binary::contiguous::Kernel; 4],
strided: [binary::strided::Kernel; 4],
) {
let command_queue = device.new_command_queue();
let options = MTLResourceOptions::StorageModeManaged;
let iterations = 1000;
let input = device.new_buffer_with_data(
v.as_ptr() as *const core::ffi::c_void,
core::mem::size_of_val(v) as u64,
options,
);
let mut output = device.new_buffer(core::mem::size_of_val(v) as u64, options);
// Contiguous
for kernel_name in contiguous {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_binary_contiguous(
device,
&command_buffer,
kernels,
kernel_name,
v.len(),
&input,
&input,
&mut output,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.to_string(),
v.len(),
iterations,
total_time,
total_time / iterations
);
}
// Strided
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
for kernel_name in strided {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_binary_strided(
device,
command_buffer,
&kernels,
kernel_name,
&shape,
&input,
&strides,
offset,
&input,
&strides,
offset,
&mut output,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.to_string(),
v.len(),
iterations,
total_time,
total_time / iterations
);
}
}
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/lib.rs | use metal::{
Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
Device, Function, FunctionConstantValues, Library, MTLDataType, MTLSize, NSUInteger,
};
use std::collections::HashMap;
use std::ffi::c_void;
use std::sync::RwLock;
const AFFINE: &str = include_str!("affine.metal");
const INDEXING: &str = include_str!("indexing.metal");
const UNARY: &str = include_str!("unary.metal");
const BINARY: &str = include_str!("binary.metal");
const TERNARY: &str = include_str!("ternary.metal");
const CAST: &str = include_str!("cast.metal");
const REDUCE: &str = include_str!("reduce.metal");
const CONV: &str = include_str!("conv.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
const QUANTIZED: &str = include_str!("quantized.metal");
/// Most kernels apply similarly across the tensors
/// This creates a strategy that uses the maximum amount of threads per threadgroup (capped at the
/// actual total buffer length).
/// Then kernels can just do their op on their single point in the buffer.
fn linear_split(pipeline: &ComputePipelineState, length: usize) -> (MTLSize, MTLSize) {
let size = length as u64;
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), size);
let count = (size + width - 1) / width;
let thread_group_count = MTLSize {
width: count,
height: 1,
depth: 1,
};
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
(thread_group_count, thread_group_size)
}
fn set_param<P: EncoderParam>(encoder: &ComputeCommandEncoderRef, position: u64, data: P) {
<P as EncoderParam>::set_param(encoder, position, data)
}
/// Helper functions to create the various objects on the compute command encoder
/// on a single line.
/// Prevents getting wrong some arguments number and mixing length and size in bytes.
trait EncoderParam {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self);
}
macro_rules! primitive {
($type:ty) => {
impl EncoderParam for $type {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_bytes(
position,
core::mem::size_of::<$type>() as u64,
&data as *const $type as *const c_void,
);
}
}
};
}
primitive!(usize);
primitive!(i64);
primitive!(i32);
primitive!(u32);
primitive!(f32);
impl<T> EncoderParam for &[T] {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_bytes(
position,
core::mem::size_of_val(data) as u64,
data.as_ptr() as *const c_void,
);
}
}
impl EncoderParam for &Buffer {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data), 0);
}
}
impl EncoderParam for (&Buffer, usize) {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data.0), data.1 as u64);
}
}
impl EncoderParam for &mut Buffer {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data), 0);
}
}
impl EncoderParam for (&mut Buffer, usize) {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data.0), data.1 as u64);
}
}
macro_rules! set_params {
($encoder:ident, ($($param:expr),+)) => (
let mut _index = 0;
$(
set_param($encoder, _index, $param);
_index += 1;
)*
);
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Source {
Affine,
Indexing,
Unary,
Binary,
Ternary,
Cast,
Reduce,
Mfa,
Conv,
Quantized,
}
macro_rules! ops{
($($name:ident),+) => {
pub mod contiguous {
pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_f32"));
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_f16"));
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bf16"));
pub const I64: Kernel = Kernel(concat!(stringify!($name), "_i64"));
pub const U32: Kernel = Kernel(concat!(stringify!($name), "_u32"));
pub const U8: Kernel = Kernel(concat!(stringify!($name), "_u8"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_f32");
pub const HALF: Kernel = Kernel("copy_f16");
pub const BFLOAT: Kernel = Kernel("copy_bf16");
pub const I64: Kernel = Kernel("copy_i64");
pub const U32: Kernel = Kernel("copy_u32");
pub const U8: Kernel = Kernel("copy_u8");
}
}
pub mod strided {
pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_f32_strided"));
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_f16_strided"));
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bf16_strided"));
pub const I64: Kernel = Kernel(concat!(stringify!($name), "_i64_strided"));
pub const U32: Kernel = Kernel(concat!(stringify!($name), "_u32_strided"));
pub const U8: Kernel = Kernel(concat!(stringify!($name), "_u8_strided"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_f32_strided");
pub const HALF: Kernel = Kernel("copy_f16_strided");
pub const BFLOAT: Kernel = Kernel("copy_bf16_strided");
pub const I64: Kernel = Kernel("copy_i64_strided");
pub const U32: Kernel = Kernel("copy_u32_strided");
pub const U8: Kernel = Kernel("copy_u8_strided");
}
}
};
}
pub mod unary {
ops!(
cos, sin, exp, sqr, sqrt, neg, log, gelu, abs, ceil, floor, relu, round, erf, gelu_erf,
tanh, recip
);
}
pub mod binary {
ops!(add, sub, mul, div, min, max, eq, ne, le, lt, ge, gt);
}
#[derive(thiserror::Error, Debug)]
pub enum MetalKernelError {
#[error("Could not lock kernel map: {0}")]
LockError(String),
#[error("Error while loading library: {0}")]
LoadLibraryError(String),
#[error("Error while loading function: {0:?}")]
LoadFunctionError(String),
#[error("Failed to create compute function")]
FailedToCreateComputeFunction,
#[error("Failed to create pipeline")]
FailedToCreatePipeline(String),
#[error("Invalid matmul arguments {lhs_stride:?} {rhs_stride:?} {mnk:?}")]
MatMulNonContiguous {
lhs_stride: Vec<usize>,
rhs_stride: Vec<usize>,
mnk: (usize, usize, usize),
},
}
impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
fn from(e: std::sync::PoisonError<T>) -> Self {
Self::LockError(e.to_string())
}
}
type Libraries = HashMap<Source, Library>;
type Pipelines = HashMap<(&'static str, Option<ConstantValues>), ComputePipelineState>;
#[derive(Debug)]
pub struct Kernels {
libraries: RwLock<Libraries>,
pipelines: RwLock<Pipelines>,
}
impl Kernels {
pub fn new() -> Self {
let libraries = RwLock::new(Libraries::new());
let pipelines = RwLock::new(Pipelines::new());
Self {
libraries,
pipelines,
}
}
fn get_library_source(&self, source: Source) -> &'static str {
match source {
Source::Affine => AFFINE,
Source::Unary => UNARY,
Source::Binary => BINARY,
Source::Ternary => TERNARY,
Source::Indexing => INDEXING,
Source::Cast => CAST,
Source::Reduce => REDUCE,
Source::Conv => CONV,
Source::Quantized => QUANTIZED,
Source::Mfa => panic!("Invalid lib"),
}
}
/// Load the give library from its [`source`].
/// If this has been previously loaded it will just fetch it from cache.
pub fn load_library(
&self,
device: &Device,
source: Source,
) -> Result<Library, MetalKernelError> {
let mut libraries = self.libraries.write()?;
if let Some(lib) = libraries.get(&source) {
Ok(lib.clone())
} else {
let lib = match source {
Source::Mfa => {
let source_data = MFA;
device.new_library_with_data(source_data).map_err(|e| {
MetalKernelError::LoadLibraryError(format!(
"Candle metal requires macosx > 13.0 or higher, cannot load mfa: {e}"
))
})?
}
source => {
let source_content = self.get_library_source(source);
device
.new_library_with_source(source_content, &CompileOptions::new())
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?
}
};
libraries.insert(source, lib.clone());
Ok(lib)
}
}
fn load_function(
&self,
device: &Device,
source: Source,
name: &'static str,
constants: Option<FunctionConstantValues>,
) -> Result<Function, MetalKernelError> {
let func = self
.load_library(device, source)?
.get_function(name, constants)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
Ok(func)
}
/// Load the give pipeline
/// loads the library from source, then gets the function [`name`] from
/// that source
fn load_pipeline_with_constants(
&self,
device: &Device,
source: Source,
name: &'static str,
constants: Option<ConstantValues>,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
let key = (name, constants);
if let Some(pipeline) = pipelines.get(&key) {
Ok(pipeline.clone())
} else {
let (name, constants) = key;
let func = self.load_function(
device,
source,
name,
constants.as_ref().map(|c| c.function_constant_values()),
)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert((name, constants), pipeline.clone());
Ok(pipeline)
}
}
/// Load the give pipeline
/// loads the library from source, then gets the function [`name`] from
/// that source (without constants)
pub fn load_pipeline(
&self,
device: &Device,
source: Source,
name: &'static str,
) -> Result<ComputePipelineState, MetalKernelError> {
self.load_pipeline_with_constants(device, source, name, None)
}
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: unary::contiguous::Kernel,
length: usize,
input: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: unary::strided::Kernel,
shape: &[usize],
input: &Buffer,
strides: &[usize],
offset: usize,
output: &Buffer,
output_offset: usize,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
length,
num_dims,
shape,
strides,
(input, offset),
(output, output_offset)
)
);
let width: usize = shape.iter().product();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_binary_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: binary::contiguous::Kernel,
length: usize,
left: &Buffer,
right: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Binary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, left, right, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(left, metal::MTLResourceUsage::Read);
encoder.use_resource(right, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_binary_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: binary::strided::Kernel,
shape: &[usize],
left_input: &Buffer,
left_strides: &[usize],
left_offset: usize,
right_input: &Buffer,
right_strides: &[usize],
right_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Binary, name.0)?;
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
let width: usize = shape.iter().product();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
length,
num_dims,
shape,
left_strides,
right_strides,
(left_input, left_offset),
(right_input, right_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(left_input, metal::MTLResourceUsage::Read);
encoder.use_resource(right_input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_cast_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, (input, input_offset), output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_cast_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
shape: &[usize],
input: &Buffer,
input_strides: &[usize],
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
length,
shape.len(),
shape,
input_strides,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_reduce_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
out_length: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(length, elements_to_sum, (input, input_offset), output)
);
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
(elements_to_sum as u64 + 2 - 1) / 2,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_reduce_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
shape: &[usize],
strides: &[usize],
out_length: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let length: usize = shape.iter().product();
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
shape.len(),
shape,
strides,
elements_to_sum,
(input, input_offset),
output
)
);
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
elements_to_sum as u64,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_last_softmax(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
elements_to_sum: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(length, elements_to_sum, (input, input_offset), output)
);
let out_length = length / elements_to_sum;
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
elements_to_sum as u64,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_affine(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, add, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_affine_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
add,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_powf(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_powf_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_elu(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_elu_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_where_cond_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
cond: &Buffer,
(cond_stride, cond_offset): (&[usize], usize),
left: &Buffer,
(left_stride, left_offset): (&[usize], usize),
right: &Buffer,
(right_stride, right_offset): (&[usize], usize),
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Ternary, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let size: usize = shape.iter().product();
let rank = shape.len();
set_params!(
encoder,
(
size,
rank,
shape,
cond_stride,
left_stride,
right_stride,
(cond, cond_offset),
(left, left_offset),
(right, right_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(cond, metal::MTLResourceUsage::Read);
encoder.use_resource(left, metal::MTLResourceUsage::Read);
encoder.use_resource(right, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_index_select(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
ids_size: usize,
dim: usize,
input: &Buffer,
ids: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let src_dim_size = shape[dim];
let dst_el = ids_size * left_size * right_size;
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
ids_size,
input,
ids,
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_gather(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
ids_size: usize,
dim: usize,
input: &Buffer,
input_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let src_dim_size = shape[dim];
let dst_el = ids_size * left_size * right_size;
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
ids_size,
(input, input_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_scatter_add(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
src_shape: &[usize],
dst_shape: &[usize],
dim: usize,
input: &Buffer,
input_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = src_shape[..dim].iter().product();
let right_size: usize = src_shape[dim + 1..].iter().product();
let src_dim_size = src_shape[dim];
let dst_el = left_size * right_size;
let dst_dim_size = dst_shape[dim];
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
dst_dim_size,
(input, input_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_index_add(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
src_shape: &[usize],
dst_shape: &[usize],
ids_shape: &[usize],
dim: usize,
input: &Buffer,
input_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = src_shape[..dim].iter().product();
let right_size: usize = src_shape[dim + 1..].iter().product();
let src_dim_size = src_shape[dim];
let dst_el = left_size * right_size;
let dst_dim_size = dst_shape[dim];
let ids_dim_size = ids_shape[0];
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
dst_dim_size,
ids_dim_size,
(input, input_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[derive(Debug, PartialEq)]
pub enum Value {
USize(usize),
Bool(bool),
F32(f32),
U16(u16),
}
impl std::hash::Hash for Value {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
Value::F32(v) => v.to_bits().hash(state),
Value::USize(v) => v.hash(state),
Value::U16(v) => v.hash(state),
Value::Bool(v) => v.hash(state),
}
}
}
impl Value {
fn data_type(&self) -> MTLDataType {
match self {
Value::USize(_) => MTLDataType::UInt,
Value::F32(_) => MTLDataType::Float,
Value::U16(_) => MTLDataType::UShort,
Value::Bool(_) => MTLDataType::Bool,
}
}
}
/// Not true, good enough for our purposes.
impl Eq for Value {}
#[derive(Debug, Eq, PartialEq, Hash)]
struct ConstantValues(Vec<(usize, Value)>);
impl ConstantValues {
pub fn new(values: Vec<(usize, Value)>) -> Self {
Self(values)
}
fn function_constant_values(&self) -> FunctionConstantValues {
let f = FunctionConstantValues::new();
for (index, value) in &self.0 {
let ty = value.data_type();
match value {
Value::USize(v) => {
f.set_constant_value_at_index(
v as *const usize as *const c_void,
ty,
*index as u64,
);
}
Value::F32(v) => {
f.set_constant_value_at_index(
v as *const f32 as *const c_void,
ty,
*index as u64,
);
}
Value::U16(v) => {
f.set_constant_value_at_index(
v as *const u16 as *const c_void,
ty,
*index as u64,
);
}
Value::Bool(v) => {
f.set_constant_value_at_index(
v as *const bool as *const c_void,
ty,
*index as u64,
);
}
}
}
f
}
}
#[allow(clippy::too_many_arguments)]
pub fn call_gemm(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
(b, m, n, k): (usize, usize, usize, usize),
lhs_stride: &[usize],
lhs_offset: usize,
lhs_buffer: &Buffer,
rhs_stride: &[usize],
rhs_offset: usize,
rhs_buffer: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
assert!(rhs_stride.len() >= 2);
assert!(lhs_stride.len() >= 2);
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let a_trans = if lhs_m1 == 1 && lhs_m2 == k {
false
} else if lhs_m1 == m && lhs_m2 == 1 {
true
} else {
return Err(MetalKernelError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?;
};
let b_trans = if rhs_m1 == 1 && rhs_m2 == n {
false
} else if rhs_m1 == k && rhs_m2 == 1 {
true
} else {
return Err(MetalKernelError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?;
};
let d_trans = false;
let alpha = 1.0f32;
let beta = 0.0f32;
let batched = b > 1;
let fused_activation = false;
let fused_bias = false;
let (m_simd, n_simd, k_simd, m_splits, n_splits) = if m == 1 {
let m_simd = 8;
let n_simd = 8;
let k_simd = 64;
let m_splits = 1;
let n_splits = 1;
(m_simd, n_simd, k_simd, m_splits, n_splits)
} else {
let m_simd = 40;
let n_simd = 40;
let k_simd = 32;
let m_splits = 1;
let n_splits = 1;
(m_simd, n_simd, k_simd, m_splits, n_splits)
};
let constants = Some(ConstantValues::new(vec![
(0, Value::USize(m)),
(1, Value::USize(n)),
(2, Value::USize(k)),
(10, Value::Bool(a_trans)),
(11, Value::Bool(b_trans)),
(13, Value::Bool(d_trans)),
(20, Value::F32(alpha)),
(21, Value::F32(beta)),
(100, Value::Bool(batched)),
(101, Value::Bool(fused_activation)),
// Garbage
(102, Value::Bool(false)),
(103, Value::Bool(false)),
(113, Value::Bool(false)),
(50_000, Value::Bool(false)),
// End garbage
(200, Value::U16(m_simd)),
(201, Value::U16(n_simd)),
(202, Value::U16(k_simd)),
(210, Value::U16(m_splits)),
(211, Value::U16(n_splits)),
(50_001, Value::Bool(fused_bias)),
]));
let pipeline = kernels.load_pipeline_with_constants(device, Source::Mfa, name, constants)?;
let m_group = m_simd * m_splits;
let n_group = n_simd * n_splits;
let a_block_length = m_group * k_simd;
let b_block_length = k_simd * n_group;
let mut block_elements = a_block_length + b_block_length;
if (m % 8 != 0) && (n % 8 != 0) {
let c_block_length = m_group * n_group;
block_elements = std::cmp::max(c_block_length, block_elements)
}
if fused_bias {
if d_trans {
block_elements = std::cmp::max(block_elements, m_group);
} else {
block_elements = std::cmp::max(block_elements, n_group);
}
}
let bytes = match name {
"sgemm" => 4,
"hgemm" => 2,
other => {
return Err(MetalKernelError::LoadLibraryError(format!(
"{other} is not a valid kernel for gemm"
)));
}
};
let block_bytes = block_elements * bytes;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
encoder.set_threadgroup_memory_length(0, block_bytes.into());
encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger);
encoder.set_buffer(1, Some(rhs_buffer), rhs_offset as NSUInteger);
encoder.set_buffer(2, Some(output), 0);
// TODO Tensor D
let grid_z = b;
if batched {
let byte_stride_a: usize = lhs_stride[lhs_stride.len() - 3] * bytes as usize;
let byte_stride_b: usize = rhs_stride[rhs_stride.len() - 3] * bytes as usize;
let byte_stride_c = m * n * bytes as usize;
// TODO byte_stride_d
let byte_stride_d = 0;
let mut buffer: Vec<u64> = Vec::with_capacity(b * 4);
for i in 0..b {
buffer.push((i * byte_stride_a) as u64);
buffer.push((i * byte_stride_b) as u64);
buffer.push((i * byte_stride_c) as u64);
buffer.push((i * byte_stride_d) as u64);
}
encoder.set_bytes(
10,
(buffer.len() * core::mem::size_of::<u64>()) as NSUInteger,
buffer.as_ptr() as *const NSUInteger as *const c_void,
);
}
let grid_size = MTLSize {
width: divide(n, n_group.into()),
height: divide(m, m_group.into()),
depth: grid_z as NSUInteger,
};
let group_size = MTLSize {
width: 32 * (m_splits as u64) * (n_splits as u64),
height: 1,
depth: 1,
};
encoder.use_resource(lhs_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(rhs_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(grid_size, group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_im2col1d_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
(k_size, stride, padding, dilation): (usize, usize, usize, usize),
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Conv, name)?;
let l_out = (shape[2] + 2 * padding - dilation * (k_size - 1) - 1) / stride + 1;
let dst_el = shape[0] * l_out * shape[1] * k_size;
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
l_out,
k_size,
stride,
padding,
dilation,
shape,
strides,
(input, input_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_im2col_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
(h_k, w_k, stride, padding, dilation): (usize, usize, usize, usize, usize),
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Conv, name)?;
let h = shape[2];
let w = shape[3];
let h_out = (h + 2 * padding - dilation * (h_k - 1) - 1) / stride + 1;
let w_out = (w + 2 * padding - dilation * (w_k - 1) - 1) / stride + 1;
let dst_el = shape[0] * h_out * w_out * shape[1] * h_k * w_k;
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
h_out,
w_out,
h_k,
w_k,
stride,
padding,
dilation,
shape,
strides,
(input, input_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_upsample_nearest_2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
out_w: usize,
out_h: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Conv, name)?;
let dst_el = out_w * out_h * shape[0] * shape[1];
let scale_w = shape[2] as f32 / out_w as f32;
let scale_h = shape[3] as f32 / out_h as f32;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
out_w,
out_h,
scale_w,
scale_h,
shape,
strides,
(input, input_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[derive(Debug, Clone, Copy)]
pub enum GgmlDType {
Q4_0,
Q4_1,
Q5_0,
Q5_1,
Q8_0,
Q8_1,
Q2K,
Q3K,
Q4K,
Q5K,
Q6K,
Q8K,
F16,
F32,
}
pub fn call_quantized_matmul_t(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
dtype: GgmlDType,
(b, m, n, k): (usize, usize, usize, usize),
lhs: &Buffer,
lhs_offset: usize,
rhs: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
// Everything is in reverse
let ne00 = k as i64;
let ne01 = n as i64;
let ne02 = b as i64;
let ne03 = 1 as i64;
let nb00 = 0i64;
let nb01 = 0 as i64;
let nb02 = 0 as i64;
let ne10 = k as i64;
let ne11 = m as i64;
let ne12 = b as i64;
let ne13 = 1 as i64;
let nb10 = 0i64;
let nb11 = 0i64;
let nb12 = 0i64;
let ne0 = n as i64;
let ne1 = m as i64;
let r2: u32 = (ne12 / ne02) as u32;
let r3: u32 = (ne13 / ne03) as u32;
let (nth0, nth1, align) = match dtype {
GgmlDType::Q4_0
| GgmlDType::Q4_1
| GgmlDType::Q5_0
| GgmlDType::Q5_1
| GgmlDType::Q8_0
| GgmlDType::Q8_1 => {
let nth0 = 8;
let nth1 = 8;
let align = 8;
(nth0, nth1, align)
}
GgmlDType::Q2K => {
// Fixing a bug in Metal for GGML
let nth0 = 4;
let nth1 = 8;
let align = 4;
(nth0, nth1, align)
}
GgmlDType::Q4K => {
let nth0 = 4;
let nth1 = 8;
let align = 4;
(nth0, nth1, align)
}
GgmlDType::Q3K | GgmlDType::Q5K => {
let nth0 = 2;
let nth1 = 32;
let align = 4;
(nth0, nth1, align)
}
GgmlDType::Q6K => {
let nth0 = 2;
let nth1 = 32;
let align = 2;
(nth0, nth1, align)
}
GgmlDType::F16 | GgmlDType::Q8K => {
// Original implem uses rows
let nth0 = 32;
let nth1 = 1;
let align = 8;
(nth0, nth1, align)
}
GgmlDType::F32 => {
let nth0 = 32;
let nth1 = 1;
let align = 8;
(nth0, nth1, align)
}
};
let thread_groups_count = MTLSize {
width: divide(ne01 as usize, align),
height: ne11 as u64,
depth: (ne12 * ne13) as u64,
};
let threads_per_threadgroup = MTLSize {
width: nth0,
height: nth1,
depth: 1,
};
let name = match dtype {
GgmlDType::Q4_0 => "kernel_mul_mv_q4_0_f32",
GgmlDType::Q4_1 => "kernel_mul_mv_q4_1_f32",
GgmlDType::Q5_0 => "kernel_mul_mv_q5_0_f32",
GgmlDType::Q5_1 => "kernel_mul_mv_q5_1_f32",
GgmlDType::Q8_0 => "kernel_mul_mv_q8_0_f32",
GgmlDType::Q8_1 => "kernel_mul_mv_q8_1_f32",
GgmlDType::Q2K => "kernel_mul_mv_q2_K_f32",
GgmlDType::Q3K => "kernel_mul_mv_q3_K_f32",
GgmlDType::Q4K => "kernel_mul_mv_q4_K_f32",
GgmlDType::Q5K => "kernel_mul_mv_q5_K_f32",
GgmlDType::Q6K => "kernel_mul_mv_q6_K_f32",
GgmlDType::Q8K => "kernel_mul_mv_q8_K_f32",
GgmlDType::F16 => "kernel_mul_mv_f16_f32",
GgmlDType::F32 => "kernel_mul_mv_f32_f32",
};
let pipeline = kernels.load_pipeline(device, Source::Quantized, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
rhs,
(lhs, lhs_offset),
output,
ne00,
ne01,
ne02,
nb00,
nb01,
nb02,
ne10,
ne11,
ne12,
nb10,
nb11,
nb12,
ne0,
ne1,
r2,
r3
)
);
encoder.set_threadgroup_memory_length(0, 8192);
encoder.use_resource(lhs, metal::MTLResourceUsage::Read);
encoder.use_resource(rhs, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_groups_count, threads_per_threadgroup);
encoder.end_encoding();
Ok(())
}
fn divide(m: usize, b: usize) -> NSUInteger {
((m + b - 1) / b) as NSUInteger
}
#[cfg(test)]
mod tests;
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/unary.metal | #include <metal_stdlib>
#include <metal_math>
#
using namespace metal;
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
template <typename T> METAL_FUNC T sqr(T in){ return in * in; }
template <typename T> METAL_FUNC T recip(T in){ return T(1.0 / in); }
template <typename T> METAL_FUNC T neg(T in){ return -in; }
template <typename T> METAL_FUNC T erf(T in){
float x = (float) in;
// constants
float a1 = 0.254829592;
float a2 = -0.284496736;
float a3 = 1.421413741;
float a4 = -1.453152027;
float a5 = 1.061405429;
float p = 0.3275911;
// Save the sign of x
int sign = 1;
if (x < 0)
sign = -1;
x = fabs(x);
// A&S formula 7.1.26
float t = 1.0/(1.0 + p*x);
float y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);
return T(sign*y);
}
template <typename T> METAL_FUNC T id(T in) { return in; }
template <typename T> METAL_FUNC T gelu_erf(T x) {
return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2);
}
template <typename T> METAL_FUNC T gelu(T x) {
if (x > 5) {
return x;
}
T x_sq = x * x;
T x_cube = x_sq * x;
T alpha = x + static_cast<T>(0.044715) * x_cube;
T beta = (static_cast<T>(M_2_SQRTPI_F * M_SQRT1_2_F) * alpha);
return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + T(tanh(beta)));
}
template <typename T> METAL_FUNC T relu(T in){
if (in < 0) {
return 0;
}
return in;
}
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
kernel void FN_NAME( \
constant size_t &dim, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
output[tid] = TYPENAME(FN(float(input[tid]))); \
}\
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
output[tid] = TYPENAME(FN(float(input[get_strided_index(tid, num_dims, dims, strides)]))); \
}
#define UNARY_OP(NAME) \
UNARY(NAME, float, NAME##_f32, NAME##_f32_strided); \
UNARY(NAME, half, NAME##_f16, NAME##_f16_strided);
#define BFLOAT_UNARY_OP(NAME) \
UNARY(NAME, bfloat, NAME##_bf16, NAME##_bf16_strided);
UNARY_OP(cos)
UNARY_OP(sin)
UNARY_OP(sqr)
UNARY_OP(sqrt)
UNARY_OP(neg)
UNARY_OP(exp)
UNARY_OP(log)
UNARY_OP(gelu)
UNARY_OP(abs)
UNARY_OP(ceil)
UNARY_OP(floor)
UNARY_OP(round)
UNARY_OP(gelu_erf)
UNARY_OP(erf)
UNARY_OP(tanh)
UNARY_OP(recip)
UNARY_OP(relu)
UNARY(id, float, copy_f32, copy_f32_strided)
UNARY(id, half, copy_f16, copy_f16_strided)
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
UNARY(id, uint32_t, copy_u32, copy_u32_strided)
#if __METAL_VERSION__ >= 220
UNARY(id, int64_t, copy_i64, copy_i64_strided)
#endif
#if defined(__HAVE_BFLOAT__)
BFLOAT_UNARY_OP(cos)
BFLOAT_UNARY_OP(sin)
BFLOAT_UNARY_OP(sqr)
BFLOAT_UNARY_OP(sqrt)
BFLOAT_UNARY_OP(neg)
BFLOAT_UNARY_OP(exp)
BFLOAT_UNARY_OP(log)
BFLOAT_UNARY_OP(gelu)
BFLOAT_UNARY_OP(abs)
BFLOAT_UNARY_OP(ceil)
BFLOAT_UNARY_OP(floor)
BFLOAT_UNARY_OP(round)
BFLOAT_UNARY_OP(gelu_erf)
BFLOAT_UNARY_OP(erf)
BFLOAT_UNARY_OP(tanh)
BFLOAT_UNARY_OP(recip)
BFLOAT_UNARY_OP(relu)
UNARY(id, bfloat, copy_bf16, copy_bf16_strided)
#endif
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/affine.metal | #include <metal_stdlib>
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
using namespace metal;
#define AFFINE(FN_NAME, T) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
constant float &add, \
device const T *input, \
device T *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = T(fma(float(input[id]), mul, add)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
constant float &add, \
device const T *input, \
device T *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = T(fma(float(input[get_strided_index(id, num_dims, dims, strides)]), mul, add)); \
}
#define POWF(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[id], TYPENAME(mul))); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[get_strided_index(id, num_dims, dims, strides)], TYPENAME(mul))); \
}
#define ELU(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[id]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[get_strided_index(id, num_dims, dims, strides)]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
AFFINE(affine_f32, float)
AFFINE(affine_f16, half)
POWF(powf_f32, float)
POWF(powf_f16, half)
ELU(elu_f32, float)
ELU(elu_f16, half)
#if defined(__HAVE_BFLOAT__)
AFFINE(affine_bf16, bfloat);
POWF(powf_bf16, bfloat);
ELU(elu_bf16, bfloat);
#endif
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/conv.metal | template <typename T>
METAL_FUNC void im2col(
constant size_t &dst_numel,
constant size_t &h_out,
constant size_t &w_out,
constant size_t &h_k,
constant size_t &w_k,
constant size_t &stride,
constant size_t &padding,
constant size_t &dilation,
constant size_t *src_dims,
constant size_t *src_strides,
device const T *src,
device T *dst,
uint tid [[ thread_position_in_grid ]]
) {
// dst: (b_size, h_out, w_out, c_in, h_k, w_k)
// src: (b_size, c_in, h_in, w_in)
if (tid >= dst_numel) {
return;
}
const size_t b_in = src_dims[0];
const size_t c_in = src_dims[1];
const size_t h_in = src_dims[2];
const size_t w_in = src_dims[3];
const size_t dst_s4 = w_k;
const size_t dst_s3 = h_k * dst_s4;
const size_t dst_s2 = c_in * dst_s3;
const size_t dst_s1 = w_out * dst_s2;
const size_t dst_s0 = h_out * dst_s1;
size_t tmp_tid = tid;
const size_t b_idx = tmp_tid / dst_s0;
tmp_tid -= b_idx * dst_s0;
const size_t h_idx = tmp_tid / dst_s1;
tmp_tid -= h_idx * dst_s1;
const size_t w_idx = tmp_tid / dst_s2;
tmp_tid -= w_idx * dst_s2;
const size_t c_idx = tmp_tid / dst_s3;
tmp_tid -= c_idx * dst_s3;
const size_t h_k_idx = tmp_tid / dst_s4;
tmp_tid -= h_k_idx * dst_s4;
const size_t w_k_idx = tmp_tid;
size_t src_h_idx = h_idx * stride + h_k_idx * dilation;
size_t src_w_idx = w_idx * stride + w_k_idx * dilation;
if (src_h_idx < padding || src_h_idx >= h_in + padding) {
dst[tid] = static_cast<T>(0);
}
else if (src_w_idx < padding || src_w_idx >= w_in + padding) {
dst[tid] = static_cast<T>(0);
}
else {
src_h_idx -= padding;
src_w_idx -= padding;
const size_t src_i =
b_idx * src_strides[0]
+ c_idx * src_strides[1]
+ src_h_idx * src_strides[2]
+ src_w_idx * src_strides[3];
dst[tid] = src[src_i];
}
}
template <typename T>
METAL_FUNC void im2col1d(
constant size_t &dst_numel,
constant size_t &l_out,
constant size_t &l_k,
constant size_t &stride,
constant size_t &padding,
constant size_t &dilation,
constant size_t *src_dims,
constant size_t *src_strides,
device const T *src,
device T *dst,
uint tid [[ thread_position_in_grid ]]
) {
// dst: (b_size, l_out, c_in, l_k)
// src: (b_size, c_in, l_in)
if (tid >= dst_numel) {
return;
}
const size_t b_in = src_dims[0];
const size_t c_in = src_dims[1];
const size_t l_in = src_dims[2];
const size_t dst_s2 = l_k;
const size_t dst_s1 = c_in * dst_s2;
const size_t dst_s0 = l_out * dst_s1;
size_t tmp_dst_i = tid;
const size_t b_idx = tmp_dst_i / dst_s0;
tmp_dst_i -= b_idx * dst_s0;
const size_t l_idx = tmp_dst_i / dst_s1;
tmp_dst_i -= l_idx * dst_s1;
const size_t c_idx = tmp_dst_i / dst_s2;
tmp_dst_i -= c_idx * dst_s2;
const size_t l_k_idx = tmp_dst_i;
size_t src_l_idx = l_idx * stride + l_k_idx * dilation;
if (src_l_idx < padding || src_l_idx >= l_in + padding) {
dst[tid] = static_cast<T>(0);
}
else {
src_l_idx -= padding;
const size_t src_i = b_idx * src_strides[0] + c_idx * src_strides[1] + src_l_idx * src_strides[2];
dst[tid] = src[src_i];
}
}
template <typename T>
METAL_FUNC void upsample_nearest2d(
constant size_t &w_out,
constant size_t &h_out,
constant float &w_scale,
constant float &h_scale,
constant size_t *src_dims,
constant size_t *src_s,
device const T *src,
device T *dst,
uint tid [[ thread_position_in_grid ]]
) {
// src: (b_size, c_in, w_in, h_in)
const size_t c = src_dims[1];
const size_t w_in = src_dims[2];
const size_t h_in = src_dims[3];
if (tid >= src_dims[0] * c * w_out * h_out) {
return;
}
// TODO: Improve this.
const size_t b_idx = tid / (w_out * h_out * c);
const size_t c_idx = (tid / (w_out * h_out)) % c;
const size_t dst_w = (tid / h_out) % w_out;
const size_t dst_h = tid % h_out;
size_t src_w = static_cast<size_t>(dst_w * w_scale);
size_t src_h = static_cast<size_t>(dst_h * h_scale);
if (src_w >= w_in) {
src_w = w_in - 1;
}
if (src_h >= h_in) {
src_h = h_in - 1;
}
const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3];
dst[tid] = src[src_i];
}
#define IM2COL_OP(T, FN_NAME) \
kernel void FN_NAME( \
constant size_t &dst_numel, \
constant size_t &h_out, \
constant size_t &w_out, \
constant size_t &h_k, \
constant size_t &w_k, \
constant size_t &stride, \
constant size_t &padding, \
constant size_t &dilation, \
constant size_t *src_dims, \
constant size_t *src_strides, \
device const T *src, \
device T *dst, \
uint tid [[ thread_position_in_grid ]] \
) { \
im2col<T>(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, src_dims, src_strides, src, dst, tid); \
} \
#define IM2COL1D_OP(T, FN_NAME) \
kernel void FN_NAME( \
constant size_t &dst_numel, \
constant size_t &l_out, \
constant size_t &l_k, \
constant size_t &stride, \
constant size_t &padding, \
constant size_t &dilation, \
constant size_t *src_dims, \
constant size_t *src_strides, \
device const T *src, \
device T *dst, \
uint tid [[ thread_position_in_grid ]] \
) { \
im2col1d<T>(dst_numel, l_out, l_k, stride, padding, dilation, src_dims, src_strides, src, dst, tid); \
} \
#define UPSAMPLE_NEAREST2D_OP(TYPENAME, FN_NAME) \
kernel void FN_NAME( \
constant size_t &w_out, \
constant size_t &h_out, \
constant float &w_scale, \
constant float &h_scale, \
constant size_t *dims, \
constant size_t *strides, \
device const TYPENAME *src, \
device TYPENAME *dst, \
uint tid [[ thread_position_in_grid ]] \
) { \
upsample_nearest2d<TYPENAME>(w_out, h_out, w_scale, h_scale, dims, strides, src, dst, tid); \
} \
IM2COL_OP(float, im2col_f32)
IM2COL_OP(uint8_t, im2col_u8)
IM2COL_OP(uint32_t, im2col_u32)
IM2COL1D_OP(float, im2col1d_f32)
IM2COL1D_OP(uint8_t, im2col1d_u8)
IM2COL1D_OP(uint32_t, im2col1d_u32)
UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32)
UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8)
UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32)
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/quantized.metal | #include <metal_stdlib>
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
#define QK4_0 32
#define QR4_0 2
typedef struct {
half d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
#define QK4_1 32
typedef struct {
half d; // delta
half m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
#define QK5_0 32
typedef struct {
half d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
#define QK5_1 32
typedef struct {
half d; // delta
half m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
#define QK8_0 32
typedef struct {
half d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
enum ggml_sort_order {
GGML_SORT_ASC,
GGML_SORT_DESC,
};
// general-purpose kernel for addition, multiplication and division of two tensors
// pros: works for non-contiguous tensors, supports broadcast across all dims
// cons: not very efficient
kernel void kernel_add(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int64_t & offs,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10;
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
}
}
kernel void kernel_mul(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10;
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
}
}
kernel void kernel_div(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10;
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
}
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_add_row(
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant uint64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % nb];
}
kernel void kernel_mul_row(
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant uint64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig % nb];
}
kernel void kernel_div_row(
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant uint64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] / src1[tpig % nb];
}
kernel void kernel_scale(
device const float * src0,
device float * dst,
constant float & scale,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
}
kernel void kernel_scale_4(
device const float4 * src0,
device float4 * dst,
constant float & scale,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
}
kernel void kernel_relu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
kernel void kernel_tanh(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = precise::tanh(x);
}
constant float GELU_COEF_A = 0.044715f;
constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
// BEWARE !!!
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
// This was observed with Falcon 7B and 40B models
//
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_quick(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_silu(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_sqr(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tpig[[thread_position_in_grid]]) {
int64_t i3 = tpig.z;
int64_t i2 = tpig.y;
int64_t i1 = tpig.x;
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int64_t i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
dst_row[0] = row_sum;
}
kernel void kernel_soft_max(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant float & scale,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max
float lmax = -INFINITY;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
}
// find the max value in the block
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum += exp_psrc0;
pdst[i00] = exp_psrc0;
}
// This barrier fixes a failing test
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
threadgroup_barrier(mem_flags::mem_none);
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[tiisg];
sum = simd_sum(sum);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
pdst[i00] *= inv_sum;
}
}
kernel void kernel_soft_max_4(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant float & scale,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max
float4 lmax4 = -INFINITY;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
}
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
// This barrier fixes a failing test
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
threadgroup_barrier(mem_flags::mem_none);
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[tiisg];
sum = simd_sum(sum);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
pdst4[i00] *= inv_sum;
}
}
kernel void kernel_diag_mask_inf(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int & n_past,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i02 = tpig[2];
const int64_t i01 = tpig[1];
const int64_t i00 = tpig[0];
if (i00 > n_past + i01) {
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
} else {
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
}
}
kernel void kernel_diag_mask_inf_8(
device const float4 * src0,
device float4 * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int & n_past,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i = 2*tpig[0];
dst[i+0] = src0[i+0];
dst[i+1] = src0[i+1];
int64_t i4 = 4*i;
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
const int64_t i00 = i4;
for (int k = 3; k >= 0; --k) {
if (i00 + 4 + k <= n_past + i01) {
break;
}
dst[i+1][k] = -INFINITY;
if (i00 + k > n_past + i01) {
dst[i][k] = -INFINITY;
}
}
}
kernel void kernel_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * sum [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
// MEAN
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
sum[tpitg] += x[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const float mean = sum[0] / ne00;
// recenter and VARIANCE
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * y = dst + tgpig*ne00;
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
sum[tpitg] += y[i00] * y[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const float variance = sum[0] / ne00;
const float scale = 1.0f/sqrt(variance + eps);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = y[i00] * scale;
}
}
kernel void kernel_rms_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
float4 sumf = 0;
float all_sum = 0;
// parallel sum
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
sumf += x[i00] * x[i00];
}
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
all_sum = simd_sum(all_sum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = all_sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
all_sum = buf[tiisg];
all_sum = simd_sum(all_sum);
}
const float mean = all_sum/ne00;
const float scale = 1.0f/sqrt(mean + eps);
device float4 * y = (device float4 *) (dst + tgpig*ne00);
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
y[i00] = x[i00] * scale;
}
}
kernel void kernel_group_norm(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int32_t & n_groups,
constant float & eps,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t ne = ne00*ne01*ne02;
const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
int start = tgpig * gs;
int end = start + gs;
start += tpitg;
if (end >= ne) {
end = ne;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += ntg) {
tmp += src0[j];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float mean = tmp / gs;
tmp = 0.0f;
for (int j = start; j < end; j += ntg) {
float xi = src0[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float variance = tmp / gs;
const float scale = 1.0f/sqrt(variance + eps);
for (int j = start; j < end; j += ntg) {
dst[j] *= scale;
}
}
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]);
}
// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1]) + sumy * m;
}
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (sumy * -16.f + acc[0] + acc[1]);
}
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_1/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (acc[0] + acc[1]) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
//Note: This is a template, but strictly speaking it only applies to
// quantizations where the block size is 32. It also does not
// guard against the number of rows not being divisible by
// N_DST, so this is another explicit assumption of the implementation.
template<typename block_q_type, int nr, int nsg, int nw>
void mul_vec_q_n_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
int64_t ne00,
int64_t ne01,
int64_t ne02,
int64_t ne10,
int64_t ne12,
int64_t ne0,
int64_t ne1,
uint r2,
uint r3,
uint3 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * nsg + sgitg) * nr;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q_type * x = (device const block_q_type *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[16]; // src1 vector cache
float sumf[nr] = {0.f};
const int ix = (tiisg/2);
const int il = (tiisg%2)*8;
device const float * yb = y + ix * QK4_0 + il;
// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
float sumy = 0;
for (int i = 0; i < 8; i += 2) {
sumy += yb[i] + yb[i+1];
yl[i+0] = yb[i+ 0];
yl[i+1] = yb[i+ 1]/256.f;
sumy += yb[i+16] + yb[i+17];
yl[i+8] = yb[i+16]/16.f;
yl[i+9] = yb[i+17]/4096.f;
}
for (int row = 0; row < nr; row++) {
sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
}
yb += QK4_0 * 16;
}
for (int row = 0; row < nr; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0 && first_row + row < ne01) {
dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
}
}
}
kernel void kernel_mul_mv_q4_0_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mv_q4_1_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mv_q5_0_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mv_q5_1_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
}
#define NB_Q8_0 8
void kernel_mul_mv_q8_0_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nr = N_DST;
const int nsg = N_SIMDGROUP;
const int nw = N_SIMDWIDTH;
const int nb = ne00/QK8_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * nsg + sgitg) * nr;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[NB_Q8_0];
float sumf[nr]={0.f};
const int ix = tiisg/4;
const int il = tiisg%4;
device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
for (int ib = ix; ib < nb; ib += nw/4) {
for (int i = 0; i < NB_Q8_0; ++i) {
yl[i] = yb[i];
}
for (int row = 0; row < nr; row++) {
device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
float sumq = 0.f;
for (int iq = 0; iq < NB_Q8_0; ++iq) {
sumq += qs[iq] * yl[iq];
}
sumf[row] += sumq*x[ib+row*nb].d;
}
yb += NB_Q8_0 * nw;
}
for (int row = 0; row < nr; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0 && first_row + row < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
}
}
}
[[host_name("kernel_mul_mv_q8_0_f32")]]
kernel void kernel_mul_mv_q8_0_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
}
#define N_F32_F32 4
void kernel_mul_mv_f32_f32_impl(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F32_F32;
const int64_t im = tgpig.z;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
device const float * x = (device const float *) (src0 + offset0);
if (ne00 < 128) {
for (int row = 0; row < N_F32_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const float4 * x4 = (device const float4 *)x;
for (int row = 0; row < N_F32_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const float4 * y4 = (device const float4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
}
[[host_name("kernel_mul_mv_f32_f32")]]
kernel void kernel_mul_mv_f32_f32(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
}
#define N_F16_F16 4
kernel void kernel_mul_mv_f16_f16(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F16_F16;
const int64_t im = tgpig.z;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
device const half * x = (device const half *) (src0 + offset0);
if (ne00 < 128) {
for (int row = 0; row < N_F16_F16; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (half) x[i] * (half) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F16; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
device const half4 * y4 = (device const half4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
}
void kernel_mul_mv_f16_f32_1row_impl(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
device const half * x = (device const half *) (src0 + offset0);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
if (ne00 < 128) {
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
} else {
device const half4 * x4 = (device const half4 *) x;
device const float4 * y4 = (device const float4 *) y;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
[[host_name("kernel_mul_mv_f16_f32_1row")]]
kernel void kernel_mul_mv_f16_f32_1row(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
}
#define N_F16_F32 4
void kernel_mul_mv_f16_f32_impl(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F16_F32;
const int64_t im = tgpig.z;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
device const half * x = (device const half *) (src0 + offset0);
if (ne00 < 128) {
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const float4 * y4 = (device const float4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
}
[[host_name("kernel_mul_mv_f16_f32")]]
kernel void kernel_mul_mv_f16_f32(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
}
// Assumes row size (ne00) is a multiple of 4
kernel void kernel_mul_mv_f16_f32_l4(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int nrows = ne11;
const int64_t r0 = tgpig.x;
const int64_t im = tgpig.z;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
device const half4 * x4 = (device const half4 *) (src0 + offset0);
for (int r1 = 0; r1 < nrows; ++r1) {
device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
kernel void kernel_alibi_f32(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant float & m0,
constant float & m1,
constant int & n_heads_log2_floor,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
//const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
const int64_t k = i3*ne3 + i2;
float m_k;
if (k < n_heads_log2_floor) {
m_k = pow(m0, k + 1);
} else {
m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
}
device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
const float src_v = *(device float *)(src_row + i00*nb00);
device float * dst_v = (device float *)(dst_row + i00*nb0);
*dst_v = i00 * m_k + src_v;
}
}
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
thread float * cos_theta, thread float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
}
*cos_theta = cos(theta) * mscale;
*sin_theta = sin(theta) * mscale;
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
}
static void rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
}
typedef void (rope_t)(
device const void * src0,
device const int32_t * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]);
template<typename T>
kernel void kernel_rope(
device const void * src0,
device const int32_t * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int64_t i3 = tgpig[2];
const int64_t i2 = tgpig[1];
const int64_t i1 = tgpig[0];
const bool is_neox = mode & 2;
float corr_dims[2];
rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
device const int32_t * pos = src1;
const int64_t p = pos[i2];
const float theta_0 = (float)p;
const float inv_ndims = -1.f/n_dims;
if (!is_neox) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const T x0 = src[0];
const T x1 = src[1];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[1] = x0*sin_theta + x1*cos_theta;
}
} else {
for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
if (ic < n_dims) {
const int64_t ib = 0;
// simplified from `(ib * n_dims + ic) * inv_ndims`
const float cur_rot = inv_ndims*ic - ib;
const float theta = theta_0 * pow(freq_base, cur_rot);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
const int64_t i0 = ib*n_dims + ic/2;
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
kernel void kernel_im2col_f16(
device const float * x,
device half * dst,
constant int32_t & ofs0,
constant int32_t & ofs1,
constant int32_t & IW,
constant int32_t & IH,
constant int32_t & CHW,
constant int32_t & s0,
constant int32_t & s1,
constant int32_t & p0,
constant int32_t & p1,
constant int32_t & d0,
constant int32_t & d1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
const int32_t offset_dst =
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
kernel void kernel_upscale_f32(
device const char * src0,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int32_t & sf,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1/sf;
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
dst_ptr[i0] = src0_ptr[i0/sf];
}
}
kernel void kernel_pad_f32(
device const char * src0,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1;
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
if (i0 < ne00) {
dst_ptr[i0] = src0_ptr[i0];
} else {
dst_ptr[i0] = 0.0f;
}
}
return;
}
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
dst_ptr[i0] = 0.0f;
}
}
// bitonic sort implementation following the CUDA kernels as reference
typedef void (argsort_t)(
device const float * x,
device int32_t * dst,
constant int64_t & ncols,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]);
template<ggml_sort_order order>
kernel void kernel_argsort_f32_i32(
device const float * x,
device int32_t * dst,
constant int64_t & ncols,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]) {
// bitonic sort
int col = tpitg[0];
int row = tgpig[1];
if (col >= ncols) return;
device const float * x_row = x + row * ncols;
device int32_t * dst_row = dst + row * ncols;
// initialize indices
if (col < ncols) {
dst_row[col] = col;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int k = 2; k <= ncols; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
SWAP(dst_row[col], dst_row[ixj]);
}
} else {
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
SWAP(dst_row[col], dst_row[ixj]);
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
}
}
template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
kernel void kernel_leaky_relu_f32(
device const float * src0,
device float * dst,
constant float & slope,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
}
kernel void kernel_cpy_f16_f16(
device const half * src0,
device half * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f16_f32(
device const half * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f32_f16(
device const float * src0,
device half * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f32_f32(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f32_q8_0(
device const float * src0,
device void * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = src[j];
amax = MAX(amax, fabs(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dst_data[i00/QK8_0].d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = src[j]*id;
dst_data[i00/QK8_0].qs[j] = round(x0);
}
}
}
kernel void kernel_cpy_f32_q4_0(
device const float * src0,
device void * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < QK4_0; j++) {
const float v = src[j];
if (amax < fabs(v)) {
amax = fabs(v);
max = v;
}
}
const float d = max / -8;
const float id = d ? 1.0f/d : 0.0f;
dst_data[i00/QK4_0].d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = src[0 + j]*id;
const float x1 = src[QK4_0/2 + j]*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
dst_data[i00/QK4_0].qs[j] = xi0;
dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
}
}
}
kernel void kernel_cpy_f32_q4_1(
device const float * src0,
device void * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
float min = FLT_MAX;
float max = -FLT_MAX;
for (int j = 0; j < QK4_1; j++) {
const float v = src[j];
if (min > v) min = v;
if (max < v) max = v;
}
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
dst_data[i00/QK4_1].d = d;
dst_data[i00/QK4_1].m = min;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (src[0 + j] - min)*id;
const float x1 = (src[QK4_1/2 + j] - min)*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
dst_data[i00/QK4_1].qs[j] = xi0;
dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
}
}
}
kernel void kernel_concat(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
if (i02 < ne02) {
((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
src0_ptr += ntg.x*nb00;
} else {
((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
src1_ptr += ntg.x*nb10;
}
dst_ptr += ntg.x*nb0;
}
}
//============================================ k-quants ======================================================
#ifndef QK_K
#define QK_K 256
#else
static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
#endif
#if QK_K == 256
#define K_SCALE_SIZE 12
#else
#define K_SCALE_SIZE 4
#endif
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
} block_q2_K;
// 84 bytes / block
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
#if QK_K == 64
uint8_t scales[2];
#else
uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
#endif
half d; // super-block scale
} block_q3_K;
#if QK_K == 64
typedef struct {
half d[2]; // super-block scales/mins
uint8_t scales[2];
uint8_t qs[QK_K/2]; // 4-bit quants
} block_q4_K;
#else
typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
#endif
#if QK_K == 64
typedef struct {
half d; // super-block scales/mins
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
#else
typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
// 176 bytes / block
#endif
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
half d; // super-block scale
} block_q6_K;
// 210 bytes / block
//====================================== dot products =========================
void kernel_mul_mv_q2_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int ib_row = first_row * nb;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[32];
float sumf[N_DST]={0.f}, all_sum;
const int step = sizeof(block_q2_K) * nb;
#if QK_K == 256
const int ix = tiisg/8; // 0...3
const int it = tiisg%8; // 0...7
const int iq = it/4; // 0 or 1
const int ir = it%4; // 0...3
const int is = (8*ir)/16;// 0 or 1
device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
for (int ib = ix; ib < nb; ib += 4) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
}
device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
}
float dall = dh[0];
float dmin = dh[1] * 1.f/16.f;
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
qs += step/2;
sc += step;
dh += step/2;
}
y4 += 4 * QK_K;
}
#else
const int ix = tiisg/2; // 0...15
const int it = tiisg%2; // 0...1
device const float * y4 = y + ix * QK_K + 8 * it;
for (int ib = ix; ib < nb; ib += 16) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
}
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
qs += step/2;
sc += step;
dh += step/2;
}
y4 += 16 * QK_K;
}
#endif
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
}
}
}
[[host_name("kernel_mul_mv_q2_K_f32")]]
kernel void kernel_mul_mv_q2_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
}
#if QK_K == 256
void kernel_mul_mv_q3_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[32];
//const uint16_t kmask1 = 0x3030;
//const uint16_t kmask2 = 0x0f0f;
const int tid = tiisg/4;
const int ix = tiisg%4;
const int ip = tid/4; // 0 or 1
const int il = 2*((tid%4)/2); // 0 or 2
const int ir = tid%2;
const int n = 8;
const int l0 = n*ir;
// One would think that the Metal compiler would figure out that ip and il can only have
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
// with these two tales.
//
// Possible masks for the high bit
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
// Possible masks for the low 2 bits
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
const ushort4 hm = mm[2*ip + il/2];
const int shift = 2*il;
const float v1 = il == 0 ? 4.f : 64.f;
const float v2 = 4.f * v1;
const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + il;
const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0;
const int step = sizeof(block_q3_K) * nb / 2;
device const float * y1 = yy + ix*QK_K + y_offset;
uint32_t scales32, aux32;
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
thread const int8_t * scales = (thread const int8_t *)&scales32;
float sumf1[2] = {0.f};
float sumf2[2] = {0.f};
for (int i = ix; i < nb; i += 4) {
for (int l = 0; l < 8; ++l) {
yl[l+ 0] = y1[l+ 0];
yl[l+ 8] = y1[l+16];
yl[l+16] = y1[l+32];
yl[l+24] = y1[l+48];
}
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
device const half * dh = &x[i].d;
for (int row = 0; row < 2; ++row) {
const float d_all = (float)dh[0];
scales16[0] = a[4];
scales16[1] = a[5];
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
scales16[0] = a[il+0];
scales16[1] = a[il+1];
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
for (int l = 0; l < n; l += 2) {
const int32_t qs = q[l/2];
s1 += yl[l+0] * (qs & qm[il/2][0]);
s2 += yl[l+1] * (qs & qm[il/2][1]);
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
s4 += yl[l+16] * (qs & qm[il/2][2]);
s5 += yl[l+17] * (qs & qm[il/2][3]);
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
}
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[0] - 32);
sumf2[row] += d2 * (scales[2] - 32);
s1 = s2 = s3 = s4 = s5 = s6 = 0;
for (int l = 0; l < n; l += 2) {
const int32_t qs = q[l/2+8];
s1 += yl[l+8] * (qs & qm[il/2][0]);
s2 += yl[l+9] * (qs & qm[il/2][1]);
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
s4 += yl[l+24] * (qs & qm[il/2][2]);
s5 += yl[l+25] * (qs & qm[il/2][3]);
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
}
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[1] - 32);
sumf2[row] += d2 * (scales[3] - 32);
q += step;
h += step;
a += step;
dh += step;
}
y1 += 4 * QK_K;
}
for (int row = 0; row < 2; ++row) {
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
sumf1[row] = simd_sum(sumf);
}
if (tiisg == 0) {
for (int row = 0; row < 2; ++row) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
}
}
}
#else
void kernel_mul_mv_q3_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
const int row = 2 * r0 + sgitg;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
const int ix = tiisg/4;
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
const int iq = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4
float2 sum = {0.f, 0.f};
for (int i = ix; i < nb; i += 8) {
const float d_all = (float)(x[i].d);
device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
device const float * y = yy + i * QK_K + il;
const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
for (int l = 0; l < 4; l += 2) {
const uint16_t hm = h[l/2] >> iq;
sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
+ y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
+ y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
+ y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
}
}
const float sumf = sum[0] + sum[1] * 1.f/256.f;
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
}
}
#endif
[[host_name("kernel_mul_mv_q3_K_f32")]]
kernel void kernel_mul_mv_q3_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
}
#if QK_K == 256
void kernel_mul_mv_q4_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int ix = tiisg/8; // 0...3
const int it = tiisg%8; // 0...7
const int iq = it/4; // 0 or 1
const int ir = it%4; // 0...3
const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
//const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int first_row = r0 * N_DST;
const int ib_row = first_row * nb;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[16];
float yh[16];
float sumf[N_DST]={0.f}, all_sum;
const int step = sizeof(block_q4_K) * nb / 2;
device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
for (int ib = ix; ib < nb; ib += 4) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & kmask1;
sc16[1] = sc[2] & kmask1;
sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
device const uint16_t * q2 = q1 + 32;
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
(acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
(acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
(acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += step;
sc += step;
dh += step;
}
y4 += 4 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
}
}
}
#else
void kernel_mul_mv_q4_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int ix = tiisg/4; // 0...7
const int it = tiisg%4; // 0...3
const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = r0 * N_DST;
const int ib_row = first_row * nb;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[8];
float yh[8];
float sumf[N_DST]={0.f}, all_sum;
const int step = sizeof(block_q4_K) * nb / 2;
device const float * y4 = y + ix * QK_K + 8 * it;
uint16_t sc16[4];
for (int ib = ix; ib < nb; ib += 8) {
float2 sumy = {0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i] = y4[i+ 0]; sumy[0] += yl[i];
yh[i] = y4[i+32]; sumy[1] += yh[i];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & 0x000f;
sc16[1] = sc[0] & 0x0f00;
sc16[2] = sc[0] & 0x00f0;
sc16[3] = sc[0] & 0xf000;
float2 acc1 = {0.f, 0.f};
float2 acc2 = {0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
(acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
qs += step;
sc += step;
dh += step;
}
y4 += 8 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
}
}
}
#endif
[[host_name("kernel_mul_mv_q4_K_f32")]]
kernel void kernel_mul_mv_q4_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
}
void kernel_mul_mv_q5_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float sumf[2]={0.f};
const int step = sizeof(block_q5_K) * nb;
#if QK_K == 256
#
float yl[16], yh[16];
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = tiisg/4;
const int ix = tiisg%4;
const int iq = tid/4;
const int ir = tid%4;
const int n = 8;
const int l0 = n*ir;
const int q_offset = 32*iq + l0;
const int y_offset = 64*iq + l0;
const uint8_t hm1 = 1u << (2*iq);
const uint8_t hm2 = hm1 << 1;
const uint8_t hm3 = hm1 << 4;
const uint8_t hm4 = hm2 << 4;
uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
device const float * y1 = yy + ix*QK_K + y_offset;
for (int i = ix; i < nb; i += 4) {
device const uint8_t * q1 = x[i].qs + q_offset;
device const uint8_t * qh = x[i].qh + l0;
device const half * dh = &x[i].d;
device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
device const float * y2 = y1 + 128;
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
}
for (int row = 0; row < 2; ++row) {
device const uint8_t * q2 = q1 + 64;
sc16[0] = a[0] & kmask1;
sc16[1] = a[2] & kmask1;
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
float4 acc1 = {0.f};
float4 acc2 = {0.f};
for (int l = 0; l < n; ++l) {
uint8_t h = qh[l];
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
}
const float dall = dh[0];
const float dmin = dh[1];
sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += step;
qh += step;
dh += step/2;
a += step/2;
}
y1 += 4 * QK_K;
}
#else
float yl[8], yh[8];
const int il = 4 * (tiisg/8); // 0, 4, 8, 12
const int ix = tiisg%8;
const int iq = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4
device const float * y = yy + ix*QK_K + il;
for (int i = ix; i < nb; i += 8) {
for (int l = 0; l < 4; ++l) {
yl[l+0] = y[l+ 0];
yl[l+4] = y[l+16];
yh[l+0] = y[l+32];
yh[l+4] = y[l+48];
}
device const half * dh = &x[i].d;
device const uint8_t * q = x[i].qs + il;
device const uint8_t * h = x[i].qh + in;
device const int8_t * s = x[i].scales;
for (int row = 0; row < 2; ++row) {
const float d = dh[0];
float2 acc = {0.f, 0.f};
for (int l = 0; l < 4; ++l) {
const uint8_t hl = h[l] >> iq;
acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
+ yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
+ yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
}
sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
q += step;
h += step;
s += step;
dh += step/2;
}
y += 8 * QK_K;
}
#endif
for (int row = 0; row < 2; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
}
}
}
[[host_name("kernel_mul_mv_q5_K_f32")]]
kernel void kernel_mul_mv_q5_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
}
void kernel_mul_mv_q6_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const uint8_t kmask1 = 0x03;
const uint8_t kmask2 = 0x0C;
const uint8_t kmask3 = 0x30;
const uint8_t kmask4 = 0xC0;
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int im = tgpig.z;
const int row = 2 * r0 + sgitg;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float sumf = 0;
#if QK_K == 256
const int tid = tiisg/2;
const int ix = tiisg%2;
const int ip = tid/8; // 0 or 1
const int il = tid%8;
const int n = 4;
const int l0 = n*il;
const int is = 8*ip + l0/16;
const int y_offset = 128*ip + l0;
const int q_offset_l = 64*ip + l0;
const int q_offset_h = 32*ip + l0;
for (int i = ix; i < nb; i += 2) {
device const uint8_t * q1 = x[i].ql + q_offset_l;
device const uint8_t * q2 = q1 + 32;
device const uint8_t * qh = x[i].qh + q_offset_h;
device const int8_t * sc = x[i].scales + is;
device const float * y = yy + i * QK_K + y_offset;
const float dall = x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
}
#else
const int ix = tiisg/4;
const int il = 4*(tiisg%4);
for (int i = ix; i < nb; i += 8) {
device const float * y = yy + i * QK_K + il;
device const uint8_t * ql = x[i].ql + il;
device const uint8_t * qh = x[i].qh + il;
device const int8_t * s = x[i].scales;
const float d = x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 4; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
}
#endif
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
}
}
[[host_name("kernel_mul_mv_q6_K_f32")]]
kernel void kernel_mul_mv_q6_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
}
//============================= templates and their specializations =============================
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
float4x4 temp = *(((device float4x4 *)src));
for (int i = 0; i < 16; i++){
reg[i/4][i%4] = temp[i/4][i%4];
}
}
template <typename type4x4>
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
half4x4 temp = *(((device half4x4 *)src));
for (int i = 0; i < 16; i++){
reg[i/4][i%4] = temp[i/4][i%4];
}
}
template <typename type4x4>
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float md = -8.h * xb->d;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
}
}
template <typename type4x4>
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float m = xb->m;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
}
}
template <typename type4x4>
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
const float d = xb->d;
const float md = -16.h * xb->d;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + md;
reg[i/2][2*(i%2)+1] = d * x1 + md;
}
}
template <typename type4x4>
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
const float d = xb->d;
const float m = xb->m;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + m;
reg[i/2][2*(i%2)+1] = d * x1 + m;
}
}
template <typename type4x4>
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
device const int8_t * qs = ((device const int8_t *)xb->qs);
const half d = xb->d;
for (int i = 0; i < 16; i++) {
reg[i/4][i%4] = (qs[i + 16*il] * d);
}
}
template <typename type4x4>
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
const float d = xb->d;
const float min = xb->dmin;
device const uint8_t * q = (device const uint8_t *)xb->qs;
float dl, ml;
uint8_t sc = xb->scales[il];
#if QK_K == 256
q = q + 32*(il/8) + 16*(il&1);
il = (il/2)%4;
#endif
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * q = (device const uint8_t *)xb->qs;
device const uint8_t * h = (device const uint8_t *)xb->hmask;
device const int8_t * scales = (device const int8_t *)xb->scales;
#if QK_K == 256
q = q + 32 * (il/8) + 16 * (il&1);
h = h + 16 * (il&1);
uint8_t m = 1 << (il/2);
uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
((il/4)>0 ? 12 : 3);
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
const half ml = 4.h * dl;
il = (il/2) & 3;
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl *= coef;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
}
#else
float kcoef = il&1 ? 1.f/16.f : 1.f;
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
uint8_t m = 1<<(il*2);
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
}
#endif
}
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
}
template <typename type4x4>
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
device const uchar * q = xb->qs;
#if QK_K == 256
short is = (il/4) * 2;
q = q + (il/4) * 32 + 16 * (il&1);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.h;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
#else
q = q + 16 * (il&1);
device const uint8_t * s = xb->scales;
device const half2 * dh = (device const half2 *)xb->d;
const float2 d = (float2)dh[0];
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
#endif
const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
device const uint8_t * q = xb->qs;
device const uint8_t * qh = xb->qh;
#if QK_K == 256
short is = (il/4) * 2;
q = q + 32 * (il/4) + 16 * (il&1);
qh = qh + 16 * (il&1);
uint8_t ul = 1 << (il/2);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.h;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0;
const float qh_val = il<2 ? 16.f : 256.f;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
}
#else
q = q + 16 * (il&1);
device const int8_t * s = xb->scales;
const float dl = xb->d * s[il];
uint8_t m = 1<<(il*2);
const float coef = il<2 ? 1.f : 1.f/16.f;
const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
}
#endif
}
template <typename type4x4>
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * ql = (device const uint8_t *)xb->ql;
device const uint8_t * qh = (device const uint8_t *)xb->qh;
device const int8_t * scales = (device const int8_t *)xb->scales;
#if QK_K == 256
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
qh = qh + 32*(il/8) + 16*(il&1);
half sc = scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
#else
ql = ql + 16 * (il&1);
half sc = scales[il];
#endif
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
const half coef = il>1 ? 1.f/16.h : 1.h;
const half ml = d_all * sc * 32.h;
const half dl = d_all * sc * coef;
for (int i = 0; i < 16; ++i) {
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
reg[i/4][i%4] = dl * q - ml;
}
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
kernel void kernel_get_rows(
device const void * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb1,
constant uint64_t & nb2,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]]) {
//const int64_t i = tgpig;
//const int64_t r = ((device int32_t *) src1)[i];
const int64_t i10 = tgpig.x;
const int64_t i11 = tgpig.y;
const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
const int64_t i02 = i11;
for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
float4x4 temp;
dequantize_func(
((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
*(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
}
}
kernel void kernel_get_rows_f32(
device const void * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb1,
constant uint64_t & nb2,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]]) {
const int64_t i10 = tgpig.x;
const int64_t i11 = tgpig.y;
const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
const int64_t i02 = i11;
for (int ind = tiitg; ind < ne00; ind += tptg.x) {
((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
}
}
kernel void kernel_get_rows_f16(
device const void * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb1,
constant uint64_t & nb2,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]]) {
const int64_t i10 = tgpig.x;
const int64_t i11 = tgpig.y;
const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
const int64_t i02 = i11;
for (int ind = tiitg; ind < ne00; ind += tptg.x) {
((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
}
}
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
#define BLOCK_SIZE_K 32
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
#define THREAD_PER_BLOCK 128
#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
#define SG_MAT_ROW 8
// each block_q contains 16*nl weights
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
void kernel_mul_mm_impl(device const uchar * src0,
device const uchar * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne02,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
threadgroup uchar * shared_memory [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup half * sa = (threadgroup half *)(shared_memory);
threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
const uint r0 = tgpig.y;
const uint r1 = tgpig.x;
const uint im = tgpig.z;
// if this block is of 64x32 shape or smaller
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
simdgroup_half8x8 ma[4];
simdgroup_float8x8 mb[2];
simdgroup_float8x8 c_res[8];
for (int i = 0; i < 8; i++){
c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
short il = (tiitg % THREAD_PER_ROW);
const uint i12 = im%ne12;
const uint i13 = im/ne12;
uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
ushort offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
device const float * y = (device const float *)(src1
+ nb12 * im
+ nb11 * (r1 * BLOCK_SIZE_N + thread_col)
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
// load data and store to threadgroup memory
half4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
#pragma unroll(16)
for (int i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
+ (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
}
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2+nl-1)/nl : x;
y += BLOCK_SIZE_K;
threadgroup_barrier(mem_flags::mem_threadgroup);
// load matrices from threadgroup memory and conduct outer products
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
#pragma unroll(4)
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
#pragma unroll(4)
for (int i = 0; i < 4; i++) {
simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(2)
for (int i = 0; i < 2; i++) {
simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
}
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
#pragma unroll(8)
for (int i = 0; i < 8; i++){
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
}
}
}
if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
+ (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg == 0) {
for (int i = 0; i < n_rows; i++) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
*(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
}
}
}
}
}
// same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in src1ids
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
void kernel_mul_mm_id_impl(
device const uchar * src0,
device const uchar * src1,
thread short * src1ids,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne02,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
int64_t ne1,
constant uint & r2,
constant uint & r3,
threadgroup uchar * shared_memory,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup half * sa = (threadgroup half *)(shared_memory);
threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
const uint r0 = tgpig.y;
const uint r1 = tgpig.x;
const uint im = tgpig.z;
if (r1 * BLOCK_SIZE_N >= ne1) return;
// if this block is of 64x32 shape or smaller
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
simdgroup_half8x8 ma[4];
simdgroup_float8x8 mb[2];
simdgroup_float8x8 c_res[8];
for (int i = 0; i < 8; i++){
c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
short il = (tiitg % THREAD_PER_ROW);
const uint i12 = im%ne12;
const uint i13 = im/ne12;
uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
ushort offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
device const float * y = (device const float *)(src1
+ nb12 * im
+ nb11 * src1ids[r1 * BLOCK_SIZE_N + thread_col]
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
// load data and store to threadgroup memory
half4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
+ (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
}
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2+nl-1)/nl : x;
y += BLOCK_SIZE_K;
threadgroup_barrier(mem_flags::mem_threadgroup);
// load matrices from threadgroup memory and conduct outer products
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
for (int i = 0; i < 4; i++) {
simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
}
simdgroup_barrier(mem_flags::mem_none);
for (int i = 0; i < 2; i++) {
simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
}
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
for (int i = 0; i < 8; i++){
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
}
}
}
{
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * C = dst + (BLOCK_SIZE_M * r0) + im*ne1*ne0;
if (sgitg == 0) {
for (int i = 0; i < n_rows; i++) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
*(C + i + src1ids[j + r1*BLOCK_SIZE_N] * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
}
}
}
}
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
kernel void kernel_mul_mm(device const uchar * src0,
device const uchar * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne02,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
threadgroup uchar * shared_memory [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mm_impl<block_q, nl, dequantize_func>(
src0,
src1,
dst,
ne00,
ne02,
nb01,
nb02,
ne12,
nb10,
nb11,
nb12,
ne0,
ne1,
r2,
r3,
shared_memory,
tgpig,
tiitg,
sgitg);
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
kernel void kernel_mul_mm_id(
device const uchar * ids,
device const uchar * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne02,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const uchar * src00,
device const uchar * src01,
device const uchar * src02,
device const uchar * src03,
device const uchar * src04,
device const uchar * src05,
device const uchar * src06,
device const uchar * src07,
threadgroup uchar * shared_memory [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const uchar * src0s[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
// expert id
const int32_t id = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
// row indices of src1 for expert id
int64_t _ne1 = 0;
short src1ids[512];
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (((device int32_t *) (ids + i1*nbi1))[idx] == id) {
src1ids[_ne1++] = i1;
}
}
kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
src0s[id],
src1,
src1ids,
dst,
ne00,
ne02,
nb01,
nb02,
ne12,
nb10,
nb11,
nb12,
ne0,
_ne1,
r2,
r3,
shared_memory,
tgpig,
tiitg,
sgitg);
}
#if QK_K == 256
#define QK_NL 16
#else
#define QK_NL 4
#endif
//
// get rows
//
typedef void (get_rows_t)(
device const void * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb1,
constant uint64_t & nb2,
uint3, uint, uint3);
//template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
//template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
//
// matrix-matrix multiplication
//
typedef void (mat_mm_t)(
device const uchar * src0,
device const uchar * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne02,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
threadgroup uchar *,
uint3, uint, uint);
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
//
// indirect matrix-matrix multiplication
//
typedef void (mat_mm_id_t)(
device const uchar * ids,
device const uchar * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne02,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const uchar * src00,
device const uchar * src01,
device const uchar * src02,
device const uchar * src03,
device const uchar * src04,
device const uchar * src05,
device const uchar * src06,
device const uchar * src07,
threadgroup uchar *,
uint3, uint, uint);
template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
//
// matrix-vector multiplication
//
[[host_name("kernel_mul_mv_id_f32_f32")]]
kernel void kernel_mul_mv_id_f32_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_f32_f32_impl(
src0[id],
src1 + bid*nb11,
dst + bid*ne0,
ne00,
ne01,
ne02,
nb00,
nb01,
nb02,
ne10,
ne11,
ne12,
nb10,
nb11,
nb12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg);
}
[[host_name("kernel_mul_mv_id_f16_f32")]]
kernel void kernel_mul_mv_id_f16_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_f16_f32_impl(
src0[id],
src1 + bid*nb11,
dst + bid*ne0,
ne00,
ne01,
ne02,
nb00,
nb01,
nb02,
ne10,
ne11,
ne12,
nb10,
nb11,
nb12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg);
}
[[host_name("kernel_mul_mv_id_q8_0_f32")]]
kernel void kernel_mul_mv_id_q8_0_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_q8_0_f32_impl(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q4_0_f32")]]
kernel void kernel_mul_mv_id_q4_0_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q4_1_f32")]]
kernel void kernel_mul_mv_id_q4_1_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q5_0_f32")]]
kernel void kernel_mul_mv_id_q5_0_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q5_1_f32")]]
kernel void kernel_mul_mv_id_q5_1_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q2_K_f32")]]
kernel void kernel_mul_mv_id_q2_K_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_q2_K_f32_impl(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q3_K_f32")]]
kernel void kernel_mul_mv_id_q3_K_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_q3_K_f32_impl(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q4_K_f32")]]
kernel void kernel_mul_mv_id_q4_K_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_q4_K_f32_impl(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q5_K_f32")]]
kernel void kernel_mul_mv_id_q5_K_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_q5_K_f32_impl(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
[[host_name("kernel_mul_mv_id_q6_K_f32")]]
kernel void kernel_mul_mv_id_q6_K_f32(
device const char * ids,
device const char * src1,
device float * dst,
constant uint64_t & nbi1,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint64_t & nb1,
constant uint & r2,
constant uint & r3,
constant int & idx,
device const char * src00,
device const char * src01,
device const char * src02,
device const char * src03,
device const char * src04,
device const char * src05,
device const char * src06,
device const char * src07,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
const int64_t bid = tgpig.z/(ne12*ne13);
tgpig.z = tgpig.z%(ne12*ne13);
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
kernel_mul_mv_q6_K_f32_impl(
src0[id],
(device const float *) (src1 + bid*nb11),
dst + bid*ne0,
ne00,
ne01,
ne02,
ne10,
ne12,
ne0,
ne1,
r2,
r3,
tgpig,
tiisg,
sgitg);
}
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/tests.rs | use super::*;
use half::{bf16, f16};
use metal::{Buffer, Device, MTLResourceOptions};
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
let ptr = buffer.contents() as *const T;
assert!(!ptr.is_null());
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
slice.to_vec()
}
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
let options = MTLResourceOptions::StorageModeManaged;
let ptr = data.as_ptr() as *const core::ffi::c_void;
let size = (data.len() * std::mem::size_of::<T>()) as u64;
device.new_buffer_with_data(ptr, size, options)
}
fn device() -> Device {
Device::system_default().unwrap()
}
fn approx(v: Vec<f32>, digits: i32) -> Vec<f32> {
let b = 10f32.powi(digits);
v.iter().map(|t| f32::round(t * b) / b).collect()
}
fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> {
let b = 10f32.powi(digits);
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
}
fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> {
let b = 10f32.powi(digits);
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
}
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
call_unary_contiguous(
&device,
command_buffer,
&kernels,
name,
v.len(),
&input,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
}
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let left = new_buffer(&device, x);
let right = new_buffer(&device, y);
let output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
call_binary_contiguous(
&device,
command_buffer,
&kernels,
name,
x.len(),
&left,
&right,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, x.len())
}
fn run_strided<T: Clone>(
v: &[T],
kernel: unary::strided::Kernel,
shape: &[usize],
strides: &[usize],
offset: usize,
) -> Vec<T> {
let device = device();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
let kernels = Kernels::new();
call_unary_strided(
&device,
command_buffer,
&kernels,
kernel,
shape,
&input,
strides,
offset,
&output,
0,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
}
#[test]
fn cos_f32() {
let v = vec![1.0f32, 2.0, 3.0];
let results = run(&v, unary::contiguous::cos::FLOAT);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(approx(results, 4), vec![0.5403, -0.4161, -0.99]);
assert_eq!(approx(expected, 4), vec![0.5403, -0.4161, -0.99]);
let v = vec![1.0f32; 10_000];
let results = run(&v, unary::contiguous::cos::FLOAT);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
}
#[test]
fn cos_f32_strided() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let shape = vec![6];
let strides = vec![1];
let offset = 0;
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(
approx(results, 4),
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
);
assert_eq!(
approx(expected, 4),
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
);
// Contiguous
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let shape = vec![3, 2];
let strides = vec![2, 1];
let offset = 0;
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(
approx(results, 4),
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
);
assert_eq!(
approx(expected, 4),
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
);
// Transposed
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let shape = vec![3, 2];
let strides = vec![1, 3];
let offset = 0;
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(
approx(results, 4),
vec![0.5403, -0.6536, -0.4161, 0.2837, -0.99, 0.9602]
);
assert_eq!(
approx(expected, 4),
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
);
// Very large
let v = vec![1.0f32; 10_000];
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
}
#[test]
fn cos_strided_random() {
let v: Vec<_> = (0..10_000).map(|_| rand::random::<f32>()).collect();
let shape = vec![5_000, 2];
let strides = vec![1, 5_000];
let offset = 0;
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(approx(vec![results[0]], 4), approx(vec![expected[0]], 4));
assert_eq!(
approx(vec![results[1]], 4),
approx(vec![expected[5_000]], 4)
);
assert_eq!(approx(vec![results[2]], 4), approx(vec![expected[1]], 4));
assert_eq!(
approx(vec![results[3]], 4),
approx(vec![expected[5_001]], 4)
);
assert_eq!(
approx(vec![results[5_000]], 4),
approx(vec![expected[2_500]], 4)
);
}
#[test]
fn gelu_f16() {
let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect();
let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0];
let results = run(&v, unary::contiguous::gelu::HALF);
assert_eq!(approx_f16(results, 2), expected);
}
#[test]
fn gelu_f32() {
let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0];
let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0];
let results = run(&v, unary::contiguous::gelu::FLOAT);
assert_eq!(approx(results, 3), expected);
}
#[test]
fn binary_add_f32() {
let left = vec![1.0f32, 2.0, 3.0];
let right = vec![2.0f32, 3.1, 4.2];
let results = run_binary(&left, &right, binary::contiguous::add::FLOAT);
let expected: Vec<_> = left
.iter()
.zip(right.iter())
.map(|(&x, &y)| x + y)
.collect();
assert_eq!(approx(results, 4), vec![3.0f32, 5.1, 7.2]);
assert_eq!(approx(expected, 4), vec![3.0f32, 5.1, 7.2]);
}
#[test]
fn binary_ops_bf16() {
let lhs: Vec<bf16> = [1.1f32, 2.2, 3.3].into_iter().map(bf16::from_f32).collect();
let rhs: Vec<bf16> = [4.2f32, 5.5f32, 6.91f32]
.into_iter()
.map(bf16::from_f32)
.collect();
macro_rules! binary_op {
($opname:ident, $opexpr:expr) => {{
let results = run_binary(&lhs, &rhs, binary::contiguous::$opname::BFLOAT);
let expected: Vec<bf16> = lhs
.iter()
.zip(rhs.iter())
.map(|(x, y): (&bf16, &bf16)| $opexpr(*x, *y))
.collect();
assert_eq!(results, expected);
}};
}
binary_op!(add, |x, y| x + y);
binary_op!(sub, |x, y| x - y);
binary_op!(mul, |x, y| x * y);
binary_op!(div, |x, y| x / y);
binary_op!(min, |x: bf16, y| x.min(y));
binary_op!(max, |x: bf16, y| x.max(y));
}
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let options = MTLResourceOptions::StorageModeManaged;
let size = (v.len() * std::mem::size_of::<U>()) as u64;
let output = device.new_buffer(size, options);
call_cast_contiguous(
&device,
command_buffer,
&kernels,
name,
v.len(),
&input,
0,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
}
#[test]
fn cast_u32_f32() {
let v = vec![1u32, 2, 3];
let results = cast(&v, "cast_u32_f32");
let expected: Vec<_> = v.iter().map(|&v| v as f32).collect();
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
let v = vec![1.0f32, 2.0, 3.0];
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
let results: Vec<f32> = cast(&input, "cast_f16_f32");
assert_eq!(results, vec![1.0f32, 2.0, 3.0]);
let v = vec![1.0f32; 10_000];
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
let results: Vec<f32> = cast(&input, "cast_f16_f32");
assert_eq!(results.len(), 10_000);
assert_eq!(&results[..10], vec![1.0f32; 10]);
assert_eq!(results, vec![1.0f32; 10_000]);
}
#[test]
fn it_cast_bf16_u32() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
let output: Vec<u32> = cast(&input, "cast_bf16_u32");
let expected: Vec<u32> = (1..=3).map(|v| v as u32).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_bf16_f32() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
let output: Vec<f32> = cast(&input, "cast_bf16_f32");
let expected: Vec<f32> = (1..=3).map(|v| v as f32).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_u8_bf16() {
let input: Vec<u8> = (1..=3).map(|v| v as u8).collect();
let output: Vec<bf16> = cast(&input, "cast_u8_bf16");
let expected: Vec<bf16> = input
.iter()
.map(|v| bf16::from_f32(*v as f32))
.collect::<Vec<_>>();
assert_eq!(output, expected);
}
#[test]
fn it_cast_u32_bf16() {
let input: Vec<u32> = (1..=3).map(|v| v as u32).collect();
let output: Vec<bf16> = cast(&input, "cast_u32_bf16");
let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(*v as f32)).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_f32_bf16() {
let input: Vec<f32> = (1..=3).map(|v| v as f32).collect();
let output: Vec<bf16> = cast(&input, "cast_f32_bf16");
let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(*v as f32)).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_bf16_u8() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
let output: Vec<u8> = cast(&input, "cast_bf16_u8");
let expected: Vec<u8> = input.iter().map(|v| v.to_f32() as u8).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_bf16_f16() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
let output: Vec<f16> = cast(&input, "cast_bf16_f16");
let expected: Vec<f16> = input.iter().map(|v| f16::from_f32(v.to_f32())).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_f16_bf16() {
let input: Vec<f16> = (1..=3).map(|v| f16::from_f32(v as f32)).collect();
let output: Vec<bf16> = cast(&input, "cast_f16_bf16");
let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(v.to_f32())).collect();
assert_eq!(output, expected);
}
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
let size = v.len();
call_affine(
&device,
command_buffer,
&kernels,
"affine_f32",
size,
&input,
&output,
mul as f32,
add as f32,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
}
fn run_affine_strided<T: Clone>(
v: &[T],
shape: &[usize],
strides: &[usize],
mul: f64,
add: f64,
) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
call_affine_strided(
&device,
command_buffer,
&kernels,
"affine_f32_strided",
shape,
&input,
strides,
0,
&output,
mul as f32,
add as f32,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
let len: usize = shape.iter().product();
read_to_vec(&output, len)
}
#[test]
fn affine() {
let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
let mul = 1.5;
let add = 1.1;
let result = run_affine(&input, mul, add);
assert_eq!(result, vec![2.6, 4.1, 5.6, 7.1, 8.6, 10.1, 11.6, 13.1]);
let input = [1.0f32; 40_000];
let mul = 1.5;
let add = 1.1;
let result = run_affine(&input, mul, add);
assert_eq!(result, vec![2.6; 40_000]);
}
#[test]
fn affine_strided() {
let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
let mul = 1.5;
let add = 1.1;
let shape = [4];
let strides = [2];
let result = run_affine_strided(&input, &shape, &strides, mul, add);
// 1 on 2
assert_eq!(result, vec![2.6, 5.6, 8.6, 11.6]);
}
#[test]
fn index_select() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
let shape = [5, 2];
let ids = [0u32, 4, 2];
let dim = 0;
let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f32");
assert_eq!(result, vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]);
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
let shape = [2, 5];
let ids = [0u32, 1, 0];
let dim = 0;
let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f32");
assert_eq!(
result,
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
);
}
#[test]
fn index_select_f16() {
let embedding: Vec<_> = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
.into_iter()
.map(|x| f16::from_f32(x))
.collect();
let shape = [5, 2];
let ids = [0u32, 4, 2];
let dim = 0;
let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f16");
assert_eq!(
approx_f16(result, 4),
vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]
);
}
#[test]
fn index_select_is_u32_bf16() {
let embedding: Vec<bf16> = (1..=10).map(|x| bf16::from_f32(x as f32)).collect();
let shape = [5, 2];
let ids = [0u32, 4, 2];
let dim = 0;
let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_bf16");
assert_eq!(
approx_bf16(result, 4),
vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]
);
}
#[test]
fn index_select_is_u8_bf16() {
let embedding: Vec<bf16> = (1..=10).map(|x| bf16::from_f32(x as f32)).collect();
let shape = [5, 2];
let ids = [0u8, 4, 2];
let dim = 0;
let result = run_index_select(&embedding, &shape, &ids, dim, "is_u8_bf16");
assert_eq!(
approx_bf16(result, 4),
vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]
);
}
#[test]
fn index_select_dim1() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
let shape = [5, 2];
let ids = [0u32, 1, 0];
let dim = 1;
let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f32");
assert_eq!(
result,
vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0]
);
}
fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
embeddings: &[T],
shape: &[usize],
ids: &[I],
dim: usize,
name: &'static str,
) -> Vec<T> {
let device = Device::system_default().expect("no device found");
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let embeddings_buffer = new_buffer(&device, &embeddings);
let ids_buffer = new_buffer(&device, &ids);
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let dst_el = ids.len() * left_size * right_size;
let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
let kernels = Kernels::new();
call_index_select(
&device,
&command_buffer,
&kernels,
name,
shape,
ids.len(),
dim,
&embeddings_buffer,
&ids_buffer,
&dst_buffer,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&dst_buffer, dst_el)
}
#[test]
fn cos_f16() {
let v: Vec<f16> = [1.0f32, 2.0, 3.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect();
let results = run(&v, unary::contiguous::cos::HALF);
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]);
assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]);
}
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let options = MTLResourceOptions::StorageModeManaged;
let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
let dims = vec![v.len()];
let strides = vec![1];
call_reduce_strided(
&device,
command_buffer,
&kernels,
name,
&dims,
&strides,
out_length,
&input,
0,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, out_length)
}
fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
call_last_softmax(
&device,
command_buffer,
&kernels,
name,
v.len(),
last_dim,
&input,
0,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
}
#[test]
fn reduce_sum() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let out_length = 1;
let results = run_reduce(&v, out_length, "fast_sum_f32_strided");
assert_eq!(approx(results, 4), vec![21.0]);
}
#[test]
fn reduce_sum2() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let out_length = 2;
let results = run_reduce(&v, out_length, "fast_sum_f32_strided");
assert_eq!(approx(results, 4), vec![6.0, 15.0]);
}
#[test]
fn softmax() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_f32");
assert_eq!(
approx(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
);
let last_dim = 4096;
let n = 200;
let mut v = vec![0.0; n * last_dim];
for i in 0..n {
v[i * last_dim] = 20.0;
}
let results = run_softmax(&v, last_dim, "softmax_f32");
let results = approx(results, 4);
println!("{results:?}");
assert_eq!(
results.iter().map(|&s| s.round() as usize).sum::<usize>(),
n
);
assert_eq!(results[0], 1.0);
assert_eq!(results[1], 0.0);
assert_eq!(results[last_dim], 1.0);
assert_eq!(results[2 * last_dim], 1.0);
let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0];
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_f32");
assert_eq!(
approx(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
);
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let last_dim = 3;
let results = run_softmax(&v, last_dim, "softmax_f32");
assert_eq!(
approx(results, 4),
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
);
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect::<Vec<_>>();
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_f16");
assert_eq!(
approx_f16(results, 4),
vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
);
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
.iter()
.map(|v| bf16::from_f32(*v))
.collect::<Vec<_>>();
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_bf16");
assert_eq!(
approx_bf16(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
);
}
fn run_where_cond<I: Clone, T: Clone>(
shape: &[usize],
cond: &[I],
(cond_stride, cond_offset): (Vec<usize>, usize),
left_true: &[T],
(left_stride, left_offset): (Vec<usize>, usize),
right_false: &[T],
(_right_stride, _right_offset): (Vec<usize>, usize),
name: &'static str,
) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let length = cond.len();
let cond = device.new_buffer_with_data(
cond.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(cond) as u64,
options,
);
let left = device.new_buffer_with_data(
left_true.as_ptr() as *const core::ffi::c_void,
(length * core::mem::size_of::<T>()) as u64,
options,
);
let right = device.new_buffer_with_data(
right_false.as_ptr() as *const core::ffi::c_void,
(length * core::mem::size_of::<T>()) as u64,
options,
);
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_where_cond_strided(
&device,
command_buffer,
&kernels,
name,
shape,
&cond,
(&cond_stride, cond_offset),
&left,
(&left_stride, left_offset),
&right,
(&cond_stride, cond_offset),
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, length)
}
#[test]
fn where_cond() {
let shape = vec![6];
let cond = vec![0u8, 1, 0, 0, 1, 1];
let cond_l = (vec![1], 0);
let left_true = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let left_l = (vec![1], 0);
let right_false = vec![-1.0f32, -2.0, -3.0, -4.0, -5.0, -6.0];
let right_l = (vec![1], 0);
let results = run_where_cond(
&shape,
&cond,
cond_l,
&left_true,
left_l,
&right_false,
right_l,
"where_u8_f32",
);
assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]);
}
fn run_gemm<T: Clone>(
(b, m, n, k): (usize, usize, usize, usize),
lhs: &[T],
lhs_stride: Vec<usize>,
lhs_offset: usize,
rhs: &[T],
rhs_stride: Vec<usize>,
rhs_offset: usize,
) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let lhs = device.new_buffer_with_data(
lhs.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(lhs) as u64,
options,
);
let rhs = device.new_buffer_with_data(
rhs.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(rhs) as u64,
options,
);
let length = b * m * n;
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_gemm(
&device,
command_buffer,
&kernels,
"sgemm",
(b, m, n, k),
&lhs_stride,
lhs_offset,
&lhs,
&rhs_stride,
rhs_offset,
&rhs,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, length)
}
#[test]
fn gemm() {
let (b, m, n, k) = (1, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
assert_eq!(
approx(results, 4),
vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0]
);
let (b, m, n, k) = (2, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
assert_eq!(
approx(results, 4),
vec![
20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0, 344.0, 365.0, 386.0, 407.0, 488.0,
518.0, 548.0, 578.0
]
);
// OFFSET
let (b, m, n, k) = (2, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
// Manually set batch_size=1 and offset 12 elements * 4 the number of bytes for f32
let results = run_gemm((1, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 12 * 4);
assert_eq!(
approx(results, 4),
vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0]
);
}
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/reduce.metal | #include <metal_stdlib>
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
constant int THREADGROUP_SIZE = 2048;
#define ARGMIN(NAME, T, MAXVALUE) \
kernel void NAME( \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant size_t &el_to_sum_per_block, \
device const T *src, \
device uint *dst, \
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
uint block_dim [[ threads_per_threadgroup ]] \
) { \
\
threadgroup T shared_memory[THREADGROUP_SIZE]; \
threadgroup uint shared_indices[THREADGROUP_SIZE]; \
\
shared_memory[tid] = MAXVALUE; \
shared_indices[tid] = 0xFFFFFFFF; \
bool notset = true; \
/* \
// Elements summed in this block range from dst_id * el_to_sum_per_block \
// to (dst_id + 1) * el_to_sum_per_block. \
*/ \
size_t start_idx = dst_id * el_to_sum_per_block; \
size_t stop_idx = start_idx + el_to_sum_per_block; \
size_t idx = start_idx + tid; \
while (idx < stop_idx) { \
/* \
// TODO: Fast version for the contiguous case. \
*/ \
size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
if (notset || src[strided_i] < shared_memory[tid]) { \
shared_memory[tid] = src[strided_i]; \
/* Assume that the reduction takes place over the last dimension which is contiguous. */ \
shared_indices[tid] = idx % dims[num_dims - 1]; \
notset = false; \
} \
idx += block_dim; \
} \
\
threadgroup_barrier(mem_flags::mem_none); \
\
/* \
// reduction in shared memory \
*/ \
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s && shared_memory[tid + s] < shared_memory[tid]) { \
shared_indices[tid] = shared_indices[tid + s]; \
shared_memory[tid] = shared_memory[tid + s]; \
} \
threadgroup_barrier(mem_flags::mem_none); \
} \
\
if (tid == 0){ \
dst[dst_id] = shared_indices[0]; \
} \
} \
#define ARGMAX(NAME, T, MINVALUE) \
kernel void NAME( \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant size_t &el_to_sum_per_block, \
device const T *src, \
device uint *dst, \
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
uint block_dim [[ threads_per_threadgroup ]] \
) { \
\
threadgroup T shared_memory[THREADGROUP_SIZE]; \
threadgroup uint shared_indices[THREADGROUP_SIZE]; \
\
shared_memory[tid] = MINVALUE; \
shared_indices[tid] = 0xFFFFFFFF; \
/* \
// Elements summed in this block range from dst_id * el_to_sum_per_block \
// to (dst_id + 1) * el_to_sum_per_block. \
*/ \
size_t start_idx = dst_id * el_to_sum_per_block; \
size_t stop_idx = start_idx + el_to_sum_per_block; \
size_t idx = start_idx + tid; \
bool notset = true; \
while (idx < stop_idx) { \
/* \
// TODO: Fast version for the contiguous case. \
*/ \
size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
if (notset || shared_memory[tid] < src[strided_i]) { \
shared_memory[tid] = src[strided_i]; \
shared_indices[tid] = idx % dims[num_dims - 1]; \
notset = false; \
} \
idx += block_dim; \
} \
\
threadgroup_barrier(mem_flags::mem_none); \
\
/* \
// reduction in shared memory \
*/ \
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s && shared_memory[tid + s] > shared_memory[tid]) { \
shared_indices[tid] = shared_indices[tid + s]; \
shared_memory[tid] = shared_memory[tid + s]; \
} \
threadgroup_barrier(mem_flags::mem_none); \
} \
\
if (tid == 0){ \
dst[dst_id] = shared_indices[0]; \
} \
} \
#define REDUCE(FN, NAME, T, START) \
kernel void NAME( \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant size_t &el_to_sum_per_block, \
device const T *src, \
device T *dst, \
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
uint block_dim [[ threads_per_threadgroup ]] \
) { \
\
threadgroup T shared_memory[THREADGROUP_SIZE]; \
\
shared_memory[tid] = START; \
/* \
// Elements summed in this block range from dst_id * el_to_sum_per_block \
// to (dst_id + 1) * el_to_sum_per_block. \
*/ \
size_t start_idx = dst_id * el_to_sum_per_block; \
size_t stop_idx = start_idx + el_to_sum_per_block; \
size_t idx = start_idx + tid; \
while (idx < stop_idx) { \
/* \
// TODO: Fast version for the contiguous case. \
*/ \
size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
T x = shared_memory[tid]; \
T y = src[strided_i]; \
shared_memory[tid] = FN; \
idx += block_dim; \
} \
\
threadgroup_barrier(mem_flags::mem_none); \
\
/* \
// reduction in shared memory \
*/ \
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
T x = shared_memory[tid]; \
T y = shared_memory[tid + s]; \
shared_memory[tid] = FN; \
} \
threadgroup_barrier(mem_flags::mem_none); \
} \
\
dst[dst_id] = shared_memory[0]; \
} \
#define SOFTMAX(NAME, T) \
kernel void NAME( \
constant size_t &src_numel, \
constant size_t &el_to_sum_per_block, \
device const T *src, \
device T *dst, \
\
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
uint block_dim [[ threads_per_threadgroup ]] \
) { \
threadgroup float shared_memory[THREADGROUP_SIZE]; \
shared_memory[tid] = -INFINITY; \
size_t start_idx = dst_id * el_to_sum_per_block; \
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
size_t idx = start_idx + tid; \
\
\
float tmp = -INFINITY; \
while (idx < stop_idx) { \
tmp = MAX(tmp, float(src[idx])); \
idx += block_dim; \
} \
shared_memory[tid] = tmp; \
\
threadgroup_barrier(mem_flags::mem_threadgroup); \
\
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
} \
threadgroup_barrier(mem_flags::mem_threadgroup); \
} \
\
/* wait for shared_memory[0] to be filled */ \
threadgroup_barrier(mem_flags::mem_threadgroup); \
\
float _max = shared_memory[0]; \
\
/* prevent tid=0 from overwriting _max before other threads have written it */ \
threadgroup_barrier(mem_flags::mem_threadgroup); \
shared_memory[tid] = 0; \
\
idx = start_idx + tid; \
while (idx < stop_idx) { \
const float val = exp(float(src[idx]) - _max); \
dst[idx] = T(val); \
shared_memory[tid] += val; \
idx += block_dim; \
} \
threadgroup_barrier(mem_flags::mem_threadgroup); \
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
shared_memory[tid] += shared_memory[tid + s]; \
} \
threadgroup_barrier(mem_flags::mem_threadgroup); \
} \
\
const T inv_acc = T(1.0/shared_memory[0]); \
idx = start_idx + tid; \
while (idx < stop_idx) { \
dst[idx] *= inv_acc; \
idx += block_dim; \
} \
} \
REDUCE(x + y, fast_sum_f32_strided, float, 0)
REDUCE(x + y, fast_sum_u32_strided, uint, 0)
REDUCE(x + y, fast_sum_f16_strided, half, 0)
REDUCE(x + y, fast_sum_u8_strided, uint8_t, 0)
REDUCE(x * y, fast_mul_f32_strided, float, 1)
REDUCE(x * y, fast_mul_u32_strided, uint, 1)
REDUCE(x * y, fast_mul_f16_strided, half, 1)
REDUCE(MAX(x, y), fast_max_f32_strided, float, -HUGE_VALF)
REDUCE(MAX(x, y), fast_max_u32_strided, uint, 0)
REDUCE(MAX(x, y), fast_max_f16_strided, half, -HUGE_VALH)
REDUCE(MAX(x, y), fast_max_u8_strided, uint8_t, 0)
REDUCE(MIN(x, y), fast_min_f32_strided, float, HUGE_VALF)
REDUCE(MIN(x, y), fast_min_u32_strided, uint, 0xFFFFFFFF)
REDUCE(MIN(x, y), fast_min_f16_strided, half, HUGE_VALH)
REDUCE(MIN(x, y), fast_min_u8_strided, uint8_t, 0xFF)
ARGMIN(fast_argmin_f32_strided, float, HUGE_VALF)
ARGMIN(fast_argmin_f16_strided, half, HUGE_VALH)
ARGMIN(fast_argmin_u32_strided, uint, 0xFFFFFFFF)
ARGMIN(fast_argmin_u8_strided, uint8_t, 0xFF)
ARGMAX(fast_argmax_f32_strided, float, -HUGE_VALF)
ARGMAX(fast_argmax_f16_strided, half, -HUGE_VALH)
ARGMAX(fast_argmax_u32_strided, uint, 0)
ARGMAX(fast_argmax_u8_strided, uint8_t, 0)
SOFTMAX(softmax_f32, float)
SOFTMAX(softmax_f16, half)
#if __METAL_VERSION__ >= 220
REDUCE(x + y, fast_sum_i64_strided, int64_t, 0)
REDUCE(MIN(x, y), fast_min_i64_strided, int64_t, INT_MAX)
REDUCE(MAX(x, y), fast_max_i64_strided, int64_t, INT_MIN)
ARGMIN(fast_argmin_i64_strided, int64_t, INT_MAX)
ARGMAX(fast_argmax_i64_strided, int64_t, INT_MIN)
#endif
#if defined(__HAVE_BFLOAT__)
REDUCE(x + y, fast_sum_bf16, bfloat, 0)
REDUCE(x * y, fast_mul_bf16, bfloat, 1)
REDUCE(MAX(x, y), fast_max_bf16, bfloat, -HUGE_VALBF)
REDUCE(MIN(x, y), fast_min_bf16, bfloat, HUGE_VALBF)
ARGMIN(fast_argmin_bf16, bfloat, HUGE_VALBF)
ARGMAX(fast_argmax_bf16, bfloat, -HUGE_VALBF)
SOFTMAX(softmax_bf16, bfloat)
#endif
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/cast.metal | #include <metal_stdlib>
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
using namespace metal;
#define CAST(FN_NAME, FN_NAME_STRIDED, LEFT_TYPENAME, RIGHT_TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
output[tid] = static_cast<RIGHT_TYPENAME>(input[tid]); \
} \
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
output[tid] = static_cast<RIGHT_TYPENAME>(input[get_strided_index(tid, num_dims, dims, strides)]); \
} \
#define CAST_THROUGH(FN_NAME, FN_NAME_STRIDED, LEFT_TYPENAME, RIGHT_TYPENAME, IR_TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
output[tid] = static_cast<RIGHT_TYPENAME>(static_cast<IR_TYPENAME>(input[tid])); \
} \
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
output[tid] = static_cast<RIGHT_TYPENAME>(static_cast<IR_TYPENAME>(input[get_strided_index(tid, num_dims, dims, strides)])); \
} \
CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
CAST(cast_u8_f32, cast_u8_f32_strided, uint8_t, float)
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
#if __METAL_VERSION__ >= 220
CAST(cast_u8_i64, cast_u8_i64_strided, uint8_t, int64_t)
CAST(cast_u32_i64, cast_u32_i64_strided, uint32_t, int64_t)
CAST(cast_i64_f32, cast_i64_f32_strided, int64_t, float)
#endif
#if defined(__HAVE_BFLOAT__)
CAST(cast_bf16_u32, cast_bf16_u32_strided, bfloat, uint32_t)
CAST(cast_bf16_f32, cast_bf16_f32_strided, bfloat, float)
CAST(cast_u8_bf16, cast_u8_bf16_strided, uint8_t, bfloat)
CAST(cast_u32_bf16, cast_u32_bf16_strided, uint32_t, bfloat)
CAST(cast_f32_bf16, cast_f32_bf16_strided, float, bfloat)
CAST_THROUGH(cast_bf16_u8, cast_bf16_u8_strided, bfloat, uint8_t, float)
CAST_THROUGH(cast_bf16_f16, cast_bf16_f16_strided, bfloat, half, float)
CAST_THROUGH(cast_f16_bf16, cast_f16_bf16_strided, half, bfloat, float)
#endif | 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/binary.metal | #include <metal_stdlib>
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
using namespace metal;
#define BINARY(FN, TYPENAME, OUT_TYPENAME, FN_NAME, FN_NAME_STRIDED) \
kernel void FN_NAME( \
constant size_t &dim, \
device const TYPENAME *left, \
device const TYPENAME *right, \
device OUT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
TYPENAME x = left[tid]; \
TYPENAME y = right[tid]; \
output[tid] = OUT_TYPENAME(FN); \
}\
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *left_strides, \
constant size_t *right_strides, \
device const TYPENAME *left, \
device const TYPENAME *right, \
device OUT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
return; \
} \
TYPENAME x = left[get_strided_index(tid, num_dims, dims, left_strides)]; \
TYPENAME y = right[get_strided_index(tid, num_dims, dims, right_strides)]; \
output[tid] = OUT_TYPENAME(FN); \
}
#define BINARY_OP(FN, NAME) \
BINARY(FN, float, float, NAME##_f32, NAME##_f32_strided); \
BINARY(FN, half, half, NAME##_f16, NAME##_f16_strided); \
BINARY(FN, uint32_t, uint32_t, NAME##_u32, NAME##_u32_strided); \
BINARY(FN, uint8_t, uint8_t, NAME##_u8, NAME##_u8_strided);
#define INT64_BINARY_OP(NAME, FN) \
BINARY(FN, int64_t, int64_t, NAME##_i64, NAME##_i64_strided);
#define BFLOAT_BINARY_OP(FN, NAME) \
BINARY(FN, bfloat, bfloat, NAME##_bf16, NAME##_bf16_strided);
#define BINARY_OP_OUT(NAME, FN) \
BINARY(FN, float, uint8_t, NAME##_f32, NAME##_f32_strided); \
BINARY(FN, half, uint8_t, NAME##_f16, NAME##_f16_strided); \
BINARY(FN, uint32_t, uint8_t, NAME##_u32, NAME##_u32_strided); \
BINARY(FN, uint8_t, uint8_t, NAME##_u8, NAME##_u8_strided);
#define INT64_BINARY_OP_OUT(NAME, FN) \
BINARY(FN, int64_t, int8_t, NAME##_i64, NAME##_i64_strided);
BINARY_OP(x + y, add)
BINARY_OP(x - y, sub)
BINARY_OP(x * y, mul)
BINARY_OP(x / y, div)
BINARY_OP(MIN(x, y), min)
BINARY_OP(MAX(x, y), max)
BINARY_OP_OUT(eq, x == y)
BINARY_OP_OUT(ne, x != y)
BINARY_OP_OUT(le, x <= y)
BINARY_OP_OUT(lt, x < y)
BINARY_OP_OUT(ge, x >= y)
BINARY_OP_OUT(gt, x > y)
#if __METAL_VERSION__ >= 220
INT64_BINARY_OP(add, x + y)
INT64_BINARY_OP(sub, x - y)
INT64_BINARY_OP(mul, x * y)
INT64_BINARY_OP(div, x / y)
INT64_BINARY_OP(min, MIN(x, y))
INT64_BINARY_OP(max, MAX(x, y))
INT64_BINARY_OP_OUT(eq, x == y)
INT64_BINARY_OP_OUT(ne, x != y)
INT64_BINARY_OP_OUT(le, x <= y)
INT64_BINARY_OP_OUT(lt, x < y)
INT64_BINARY_OP_OUT(ge, x >= y)
INT64_BINARY_OP_OUT(gt, x > y)
#endif
#if defined(__HAVE_BFLOAT__)
BFLOAT_BINARY_OP(x + y, add)
BFLOAT_BINARY_OP(x - y, sub)
BFLOAT_BINARY_OP(x * y, mul)
BFLOAT_BINARY_OP(x / y, div)
BFLOAT_BINARY_OP(MIN(x, y), min)
BFLOAT_BINARY_OP(MAX(x, y), max)
#endif
| 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/ternary.metal | #include <metal_stdlib>
#
using namespace metal;
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
template<typename T, typename ID>
METAL_FUNC void where_cond(
constant size_t &numel,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides,
constant size_t *strides_t,
constant size_t *strides_f,
device const ID *ids,
device const T *t,
device const T *f,
device T *out,
uint i [[ thread_position_in_grid ]]
) {
if (i >= numel){
return;
}
uint strided_i = get_strided_index(i, num_dims, dims, strides);
uint strided_i_t = get_strided_index(i, num_dims, dims, strides_t);
uint strided_i_f = get_strided_index(i, num_dims, dims, strides_f);
out[i] = ids[strided_i] ? t[strided_i_t] : f[strided_i_f];
}
#define WHERE_OP(T, ID, FN_NAME) \
kernel void FN_NAME( \
constant size_t &numel, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant size_t *strides_t, \
constant size_t *strides_f, \
device const ID *ids, \
device const T *t, \
device const T *f, \
device T *out, \
uint i [[ thread_position_in_grid ]] \
) { \
where_cond<T, ID>(numel, num_dims, dims, strides, strides_t, strides_f, ids, t, f, out, i); \
} \
// WHERE_OP(float, int64_t, where_i64_f32)
// WHERE_OP(double, int64_t, where_i64_f64)
// WHERE_OP(uint8_t, int64_t, where_i64_u8)
// WHERE_OP(uint32_t, int64_t, where_i64_u32)
// WHERE_OP(int64_t, int64_t, where_i64_i64)
//
// WHERE_OP(float, uint32_t, where_u32_f32)
// WHERE_OP(double, uint32_t, where_u32_f64)
// WHERE_OP(uint8_t, uint32_t, where_u32_u8)
// WHERE_OP(uint32_t, uint32_t, where_u32_u32)
// WHERE_OP(int64_t, uint32_t, where_u32_i64)
WHERE_OP(float, uint8_t, where_u8_f32)
WHERE_OP(half, uint8_t, where_u8_f16)
WHERE_OP(uint8_t, uint8_t, where_u8_u8)
WHERE_OP(uint32_t, uint8_t, where_u8_u32)
#if __METAL_VERSION__ >= 220
WHERE_OP(int64_t, uint8_t, where_u8_i64)
#endif
#if defined(__HAVE_BFLOAT__)
WHERE_OP(bfloat, uint8_t, where_u8_bf16)
#endif | 0 |
hf_public_repos/candle/candle-metal-kernels | hf_public_repos/candle/candle-metal-kernels/src/indexing.metal | #include <metal_stdlib>
using namespace metal;
template<typename TYPENAME, typename INDEX_TYPENAME>
METAL_FUNC void index(
constant size_t &dst_size,
constant size_t &left_size,
constant size_t &src_dim_size,
constant size_t &right_size,
constant size_t &ids_size,
const device TYPENAME *input,
const device INDEX_TYPENAME *input_ids,
device TYPENAME *output,
uint tid [[ thread_position_in_grid ]]
) {
if (tid >= dst_size) {
return;
}
const size_t id_i = (tid / right_size) % ids_size;
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1));
const size_t right_rank_i = tid % right_size;
const size_t left_rank_i = tid / right_size / ids_size;
/*
// Force prevent out of bounds indexing
// since there doesn't seem to be a good way to force crash
// No need to check for zero we're only allowing unsized.
*/
const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i;
output[tid] = input[src_i];
}
# define INDEX_OP(NAME, INDEX_TYPENAME, TYPENAME) \
kernel void NAME( \
constant size_t &dst_size, \
constant size_t &left_size, \
constant size_t &src_dim_size, \
constant size_t &right_size, \
constant size_t &ids_size, \
const device TYPENAME *input, \
const device INDEX_TYPENAME *input_ids, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
index<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, ids_size, input, input_ids, output, tid); \
}
template<typename TYPENAME, typename INDEX_TYPENAME>
METAL_FUNC void gather(
constant size_t &dst_size,
constant size_t &left_size,
constant size_t &src_dim_size,
constant size_t &right_size,
constant size_t &ids_size,
const device TYPENAME *input,
const device INDEX_TYPENAME *input_ids,
device TYPENAME *output,
uint tid [[ thread_position_in_grid ]]
) {
if (tid >= dst_size) {
return;
}
const INDEX_TYPENAME input_i = input_ids[tid];
const size_t right_rank_i = tid % right_size;
const size_t left_rank_i = tid / right_size / ids_size;
const size_t src_i = (left_rank_i * src_dim_size + input_i) * right_size + right_rank_i;
output[tid] = input[src_i];
}
# define GATHER_OP(NAME, INDEX_TYPENAME, TYPENAME) \
kernel void NAME( \
constant size_t &dst_size, \
constant size_t &left_size, \
constant size_t &src_dim_size, \
constant size_t &right_size, \
constant size_t &ids_size, \
const device TYPENAME *input, \
const device INDEX_TYPENAME *input_ids, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
gather<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, ids_size, input, input_ids, output, tid); \
}
template<typename TYPENAME, typename INDEX_TYPENAME>
METAL_FUNC void scatter_add(
constant size_t &dst_size,
constant size_t &left_size,
constant size_t &src_dim_size,
constant size_t &right_size,
constant size_t &dst_dim_size,
const device TYPENAME *input,
const device INDEX_TYPENAME *input_ids,
device TYPENAME *output,
uint tid [[ thread_position_in_grid ]]
) {
if (tid >= dst_size) {
return;
}
const size_t right_rank_i = tid % right_size;
const size_t left_rank_i = tid / right_size;
for (unsigned int j = 0; j < src_dim_size; ++j) {
const size_t src_i = (left_rank_i * src_dim_size + j) * right_size + right_rank_i;
const INDEX_TYPENAME idx = input_ids[src_i];
const size_t dst_i = (left_rank_i * dst_dim_size + idx) * right_size + right_rank_i;
output[dst_i] += input[src_i];
}
}
# define SCATTER_ADD_OP(NAME, INDEX_TYPENAME, TYPENAME) \
kernel void NAME( \
constant size_t &dst_size, \
constant size_t &left_size, \
constant size_t &src_dim_size, \
constant size_t &right_size, \
constant size_t &dst_dim_size, \
const device TYPENAME *input, \
const device INDEX_TYPENAME *input_ids, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
scatter_add<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, dst_dim_size, input, input_ids, output, tid); \
}
template<typename TYPENAME, typename INDEX_TYPENAME>
METAL_FUNC void index_add(
constant size_t &dst_size,
constant size_t &left_size,
constant size_t &src_dim_size,
constant size_t &right_size,
constant size_t &dst_dim_size,
constant size_t &ids_dim_size,
const device TYPENAME *input,
const device INDEX_TYPENAME *input_ids,
device TYPENAME *output,
uint tid [[ thread_position_in_grid ]]
) {
if (tid >= dst_size) {
return;
}
const size_t right_rank_i = tid % right_size;
const size_t left_rank_i = tid / right_size;
for (unsigned int j = 0; j < ids_dim_size; ++j) {
const INDEX_TYPENAME idx = input_ids[j];
const size_t src_i = (left_rank_i * src_dim_size + j) * right_size + right_rank_i;
const size_t dst_i = (left_rank_i * dst_dim_size + idx) * right_size + right_rank_i;
output[dst_i] += input[src_i];
}
}
# define INDEX_ADD_OP(NAME, INDEX_TYPENAME, TYPENAME) \
kernel void NAME( \
constant size_t &dst_size, \
constant size_t &left_size, \
constant size_t &src_dim_size, \
constant size_t &right_size, \
constant size_t &dst_dim_size, \
constant size_t &ids_dim_size, \
const device TYPENAME *input, \
const device INDEX_TYPENAME *input_ids, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
index_add<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, dst_dim_size, ids_dim_size, input, input_ids, output, tid); \
}
INDEX_OP(is_u32_f32, uint, float)
INDEX_OP(is_u32_f16, uint, half)
GATHER_OP(gather_u32_f32, uint, float)
GATHER_OP(gather_u32_f16, uint, half)
SCATTER_ADD_OP(sa_u32_f32, uint, float)
SCATTER_ADD_OP(sa_u32_f16, uint, half)
#if defined(__HAVE_BFLOAT__)
INDEX_OP(is_u32_bf16, uint32_t, bfloat)
INDEX_OP(is_u8_bf16, uint8_t, bfloat)
INDEX_ADD_OP(ia_i64_bf16, int64_t, bfloat)
INDEX_ADD_OP(ia_u32_bf16, uint32_t, bfloat)
INDEX_ADD_OP(ia_u8_bf16, uint8_t, bfloat)
#endif
INDEX_ADD_OP(ia_u32_f16, uint32_t, half)
INDEX_ADD_OP(ia_u8_f16, uint8_t, half)
INDEX_ADD_OP(ia_i64_f32, int64_t, float)
INDEX_ADD_OP(ia_i64_u8, int64_t, uint8_t)
INDEX_ADD_OP(ia_i64_i64, int64_t, int64_t)
INDEX_ADD_OP(ia_i64_u32, int64_t, uint32_t)
INDEX_ADD_OP(ia_u32_f32, uint32_t, float)
INDEX_ADD_OP(ia_u32_u8, uint32_t, uint8_t)
INDEX_ADD_OP(ia_u32_i64, uint32_t, int64_t)
INDEX_ADD_OP(ia_u32_u32, uint32_t, uint32_t)
INDEX_ADD_OP(ia_u8_f32, uint8_t, float)
INDEX_ADD_OP(ia_u8_u8, uint8_t, uint8_t)
INDEX_ADD_OP(ia_u8_u32, uint8_t, uint32_t)
INDEX_ADD_OP(ia_u8_i64, uint8_t, int64_t)
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-flash-attn/build.rs | // Build script to run nvcc and generate the C glue code for launching the flash-attention kernel.
// The cuda build time is very long so one can set the CANDLE_FLASH_ATTN_BUILD_DIR environment
// variable in order to cache the compiled artifacts and avoid recompiling too often.
use anyhow::{Context, Result};
use std::path::PathBuf;
const KERNEL_FILES: [&str; 17] = [
"kernels/flash_api.cu",
"kernels/flash_fwd_hdim128_fp16_sm80.cu",
"kernels/flash_fwd_hdim160_fp16_sm80.cu",
"kernels/flash_fwd_hdim192_fp16_sm80.cu",
"kernels/flash_fwd_hdim224_fp16_sm80.cu",
"kernels/flash_fwd_hdim256_fp16_sm80.cu",
"kernels/flash_fwd_hdim32_fp16_sm80.cu",
"kernels/flash_fwd_hdim64_fp16_sm80.cu",
"kernels/flash_fwd_hdim96_fp16_sm80.cu",
"kernels/flash_fwd_hdim128_bf16_sm80.cu",
"kernels/flash_fwd_hdim160_bf16_sm80.cu",
"kernels/flash_fwd_hdim192_bf16_sm80.cu",
"kernels/flash_fwd_hdim224_bf16_sm80.cu",
"kernels/flash_fwd_hdim256_bf16_sm80.cu",
"kernels/flash_fwd_hdim32_bf16_sm80.cu",
"kernels/flash_fwd_hdim64_bf16_sm80.cu",
"kernels/flash_fwd_hdim96_bf16_sm80.cu",
];
fn main() -> Result<()> {
println!("cargo:rerun-if-changed=build.rs");
for kernel_file in KERNEL_FILES.iter() {
println!("cargo:rerun-if-changed={kernel_file}");
}
println!("cargo:rerun-if-changed=kernels/flash_fwd_kernel.h");
println!("cargo:rerun-if-changed=kernels/flash_fwd_launch_template.h");
println!("cargo:rerun-if-changed=kernels/flash.h");
println!("cargo:rerun-if-changed=kernels/philox.cuh");
println!("cargo:rerun-if-changed=kernels/softmax.h");
println!("cargo:rerun-if-changed=kernels/utils.h");
println!("cargo:rerun-if-changed=kernels/kernel_traits.h");
println!("cargo:rerun-if-changed=kernels/block_info.h");
println!("cargo:rerun-if-changed=kernels/static_switch.h");
let out_dir = PathBuf::from(std::env::var("OUT_DIR").context("OUT_DIR not set")?);
let build_dir = match std::env::var("CANDLE_FLASH_ATTN_BUILD_DIR") {
Err(_) =>
{
#[allow(clippy::redundant_clone)]
out_dir.clone()
}
Ok(build_dir) => {
let path = PathBuf::from(build_dir);
path.canonicalize().expect(&format!(
"Directory doesn't exists: {} (the current directory is {})",
&path.display(),
std::env::current_dir()?.display()
))
}
};
let kernels = KERNEL_FILES.iter().collect();
let builder = bindgen_cuda::Builder::default()
.kernel_paths(kernels)
.out_dir(build_dir.clone())
.arg("-std=c++17")
.arg("-O3")
.arg("-U__CUDA_NO_HALF_OPERATORS__")
.arg("-U__CUDA_NO_HALF_CONVERSIONS__")
.arg("-U__CUDA_NO_HALF2_OPERATORS__")
.arg("-U__CUDA_NO_BFLOAT16_CONVERSIONS__")
.arg("-Icutlass/include")
.arg("--expt-relaxed-constexpr")
.arg("--expt-extended-lambda")
.arg("--use_fast_math")
.arg("--verbose");
let out_file = build_dir.join("libflashattention.a");
builder.build_lib(out_file);
println!("cargo:rustc-link-search={}", build_dir.display());
println!("cargo:rustc-link-lib=flashattention");
println!("cargo:rustc-link-lib=dylib=cudart");
println!("cargo:rustc-link-lib=dylib=stdc++");
Ok(())
}
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-flash-attn/README.md | # candle-flash-attn
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-flash-attn/Cargo.toml | [package]
name = "candle-flash-attn"
version = "0.3.3"
edition = "2021"
description = "Flash attention layer for the candle ML framework."
repository = "https://github.com/huggingface/candle"
keywords = ["blas", "tensor", "machine-learning"]
categories = ["science"]
license = "MIT OR Apache-2.0"
readme = "README.md"
[dependencies]
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core" }
half = { version = "2.3.1", features = ["num-traits"] }
[build-dependencies]
bindgen_cuda = "0.1.1"
anyhow = { version = "1", features = ["backtrace"] }
[dev-dependencies]
anyhow = { version = "1", features = ["backtrace"] }
candle-nn = { path = "../candle-nn", features = ["cuda"] }
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim256_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 256>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim256<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim32_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 32>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim32<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/kernel_traits.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/algorithm/copy.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/layout/layout.h"
#include <cutlass/numeric_types.h>
using namespace cute;
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::half_t>
struct Flash_kernel_traits {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using Element = elem_type;
static constexpr bool Has_cp_async = true;
#else
using Element = cutlass::half_t;
static constexpr bool Has_cp_async = false;
#endif
using ElementAccum = float;
using index_t = uint32_t;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using MMA_Atom_Arch = std::conditional_t<
std::is_same_v<elem_type, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>;
using ValLayoutMNK = Layout<Shape<_1, _2, _1>>;
#else
using MMA_Atom_Arch = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
using ValLayoutMNK = Layout<Shape<_1, _2, _2>>;
#endif
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, elem_type>;
#else
using SmemCopyAtom = Copy_Atom<DefaultCopy, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<DefaultCopy, elem_type>;
#endif
};
// If Share_Q_K_smem is true, that forces Is_Q_in_regs to be true
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, bool Is_Q_in_regs_=false, bool Share_Q_K_smem_=false, typename elem_type=cutlass::half_t,
typename Base=Flash_kernel_traits<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
struct Flash_fwd_kernel_traits : public Base {
using Element = typename Base::Element;
using ElementAccum = typename Base::ElementAccum;
using index_t = typename Base::index_t;
static constexpr bool Has_cp_async = Base::Has_cp_async;
using SmemCopyAtom = typename Base::SmemCopyAtom;
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
static constexpr bool Share_Q_K_smem = Share_Q_K_smem_;
static constexpr bool Is_Q_in_regs = Is_Q_in_regs_ || Share_Q_K_smem;
// The number of threads.
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
using TiledMma = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using SmemLayoutAtomQ = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
// This has to be kBlockKSmem, using kHeadDim gives wrong results for d=128
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemLayoutKV = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
// This has to be kBlockN and not 8, otherwise we get wrong results for d=128
using SmemLayoutAtomVtransposedNoSwizzle = Layout<Shape<Int<kBlockKSmem>, Int<kBlockN>>,
Stride<_1, Int<kBlockKSmem>>>;
using SmemLayoutAtomVtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{}, SmemLayoutAtomVtransposedNoSwizzle{}));
using SmemLayoutVtransposed = decltype(tile_to_shape(
SmemLayoutAtomVtransposed{},
Shape<Int<kHeadDim>, Int<kBlockN>>{}));
// Maybe the VtransposeNoSwizzle just needs to have the right shape
// And the strides don't matter?
using SmemLayoutVtransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomVtransposedNoSwizzle{},
Shape<Int<kHeadDim>, Int<kBlockN>>{}));
// using SmemLayoutVtransposedNoSwizzle = decltype(SmemLayoutVtransposed{}.layout_fn());
using SmemLayoutAtomO = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemCopyAtomO = Copy_Atom<DefaultCopy, Element>;
using SmemCopyAtomOaccum = Copy_Atom<DefaultCopy, ElementAccum>;
static constexpr int kSmemQCount = size(SmemLayoutQ{});
static constexpr int kSmemKVCount = size(SmemLayoutKV{}) * 2;
static constexpr int kSmemQSize = kSmemQCount * sizeof(Element);
static constexpr int kSmemKVSize = kSmemKVCount * sizeof(Element);
static constexpr int kSmemSize = Share_Q_K_smem ? std::max(kSmemQSize, kSmemKVSize) : kSmemQSize + kSmemKVSize;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
// Using kBlockKSmem here is 6-10% faster than kBlockKGmem for d=128 because of bank conflicts.
// For example, for d=128, smem is split into 2 "pages", each page takes care of columns
// 0-63 and 64-127. If we have 16 threads per row for gmem read, when we write to smem,
// thread 0 - 7 will write to the first page and thread 8 - 15 will write to the second page,
// to the same banks.
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using Gmem_copy_struct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
DefaultCopy
>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(Copy_Atom<Gmem_copy_struct, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemTiledCopyO = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
static constexpr int kGmemThreadsPerRowP = kBlockN / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRowP == 0, "kNThreads must be a multiple of kGmemThreadsPerRowP");
using GmemLayoutAtomP = Layout<Shape <Int<kNThreads / kGmemThreadsPerRowP>, Int<kGmemThreadsPerRowP>>,
Stride<Int<kGmemThreadsPerRowP>, _1>>;
using GmemTiledCopyP = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
GmemLayoutAtomP{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
using GmemLayoutAtomOaccum = std::conditional_t<
kBlockKSmem == 32,
Layout<Shape <_16, _8>, // Thread layout, 8 threads per row
Stride< _8, _1>>,
Layout<Shape <_8, _16>, // Thread layout, 16 threads per row
Stride< _16, _1>>
>;
using GmemTiledCopyOaccum = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
GmemLayoutAtomOaccum{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
using GmemLayoutAtomRotcossin = GmemLayoutAtom;
using GmemTiledCopyRotcossin = decltype(
make_tiled_copy(Copy_Atom<UniversalCopy<uint64_t>, Element>{},
GmemLayoutAtomRotcossin{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per load
using GmemTiledCopyRotcossinCont = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
GmemLayoutAtomRotcossin{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per load
};
// Is_V_in_regs is an option to reduce smem usage, but will increase register pressue.
// No_double_buffer is another option to reduce smem usage, but will slow things down.
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_,
int AtomLayoutMSdP_=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=2,
bool Is_V_in_regs_=false, bool No_double_buffer_=false, typename elem_type=cutlass::half_t,
typename Base=Flash_kernel_traits<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
struct Flash_bwd_kernel_traits : public Base {
using Element = typename Base::Element;
using ElementAccum = typename Base::ElementAccum;
using index_t = typename Base::index_t;
static constexpr bool Has_cp_async = Base::Has_cp_async;
using SmemCopyAtom = typename Base::SmemCopyAtom;
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
static constexpr bool Is_V_in_regs = Is_V_in_regs_;
static constexpr bool No_double_buffer = No_double_buffer_;
// The number of threads.
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
static constexpr int AtomLayoutMSdP = AtomLayoutMSdP_;
static_assert(kNWarps % AtomLayoutMSdP == 0);
static_assert(kNWarps % AtomLayoutNdKV == 0);
static_assert(kNWarps % AtomLayoutMdQ == 0);
using TiledMmaSdP = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<AtomLayoutMSdP>, Int<kNWarps / AtomLayoutMSdP>, _1>>,
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using TiledMmadKV = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<AtomLayoutNdKV>, Int<kNWarps / AtomLayoutNdKV>, _1>>,
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using TiledMmadQ = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<AtomLayoutMdQ>, Int<kNWarps / AtomLayoutMdQ>, _1>>, // 2x4x1 or 4x2x1 thread group
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using SmemLayoutAtomQdO = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutQdO = decltype(tile_to_shape(
SmemLayoutAtomQdO{},
make_shape(Int<kBlockM>{}, Int<kHeadDim>{})));
using SmemLayoutAtomKV = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<kBlockM / kNWarps>, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutKV = decltype(tile_to_shape(
// SmemLayoutAtomQdO{},
SmemLayoutAtomKV{},
make_shape(Int<kBlockN>{}, Int<kHeadDim>{})));
using SmemLayoutAtomKtransposedNoSwizzle = Layout<Shape<Int<kBlockKSmem>, Int<kBlockN>>,
Stride<_1, Int<kBlockKSmem>>>;
using SmemLayoutAtomKtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{}, SmemLayoutAtomKtransposedNoSwizzle{}));
using SmemLayoutKtransposed = decltype(tile_to_shape(
SmemLayoutAtomKtransposed{},
make_shape(Int<kHeadDim>{}, Int<kBlockN>{})));
// Maybe the KtransposeNoSwizzle just needs to have the right shape
// And the strides don't matter?
using SmemLayoutKtransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomKtransposedNoSwizzle{},
make_shape(Int<kHeadDim>{}, Int<kBlockN>{})));
// using SmemLayoutKtransposedNoSwizzle = decltype(SmemLayoutKtransposed{}.layout_fn());
// TODO: generalize to other values of kBlockN
// TODO: what should be the Swizzle here? 3 is faster than 1, and 1 is faster than 2
// static constexpr int kPBlockN = kBlockN;
static_assert(kBlockN >= 64);
// TD [2023-03-19]: Idk why kPBlockN = 16 and kSwizzlePdS=3 is the fastest.
static constexpr int kPBlockN = 64;
static_assert(kPBlockN == 16 || kPBlockN == 32 || kPBlockN == 64);
// static constexpr int kSwizzlePdS = kPBlockN == 16 ? 1 : (kPBlockN == 32 ? 2 : 3);
static constexpr int kSwizzlePdS = 3;
using SmemLayoutAtomPdS = decltype(
composition(Swizzle<kSwizzlePdS, 3, 3>{},
Layout<Shape<Int<kBlockM>, Int<kPBlockN>>,
Stride<Int<kPBlockN>, _1>>{}));
using SmemLayoutPdS = decltype(tile_to_shape(
SmemLayoutAtomPdS{},
make_shape(Int<kBlockM>{}, Int<kBlockN>{})));
using SmemLayoutAtomPdStransposedNoSwizzle = Layout<Shape<Int<kPBlockN>, Int<kBlockM>>,
Stride<_1, Int<kPBlockN>>>;
using SmemLayoutAtomPdStransposed = decltype(
composition(Swizzle<kSwizzlePdS, 3, 3>{}, SmemLayoutAtomPdStransposedNoSwizzle{}));
using SmemLayoutPdStransposed = decltype(tile_to_shape(
SmemLayoutAtomPdStransposed{},
make_shape(Int<kBlockN>{}, Int<kBlockM>{})));
using SmemLayoutPdStransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomPdStransposedNoSwizzle{},
make_shape(Int<kBlockN>{}, Int<kBlockM>{})));
// using SmemLayoutPdStransposedNoSwizzle = decltype(SmemLayoutPdStransposed{}.layout_fn());
using SmemCopyAtomPdS = Copy_Atom<DefaultCopy, elem_type>;
using SmemLayoutAtomQdOtransposedNoSwizzle = Layout<Shape<Int<kBlockKSmem>, Int<kBlockM>>,
Stride<_1, Int<kBlockKSmem>>>;
using SmemLayoutAtomQdOtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{}, SmemLayoutAtomQdOtransposedNoSwizzle{}));
using SmemLayoutQdOtransposed = decltype(tile_to_shape(
SmemLayoutAtomQdOtransposed{},
make_shape(Int<kHeadDim>{}, Int<kBlockM>{})));
using SmemLayoutQdOtransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomQdOtransposedNoSwizzle{},
make_shape(Int<kHeadDim>{}, Int<kBlockM>{})));
// using SmemLayoutQdOtransposedNoSwizzle = decltype(SmemLayoutQdOtransposed{}.layout_fn());
using SmemLayoutAtomdKV = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutdKV = decltype(tile_to_shape(
SmemLayoutAtomdKV{},
make_shape(Int<kBlockN>{}, Int<kHeadDim>{})));
using SmemCopyAtomdKV = Copy_Atom<DefaultCopy, elem_type>;
using SmemLayoutAtomdQ = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutdQ = decltype(tile_to_shape(
SmemLayoutAtomdQ{},
make_shape(Int<kBlockM>{}, Int<kHeadDim>{})));
using SmemCopyAtomdQ = Copy_Atom<DefaultCopy, elem_type>;
static constexpr int kSmemQdOCount = size(SmemLayoutQdO{}) * (No_double_buffer ? 2 : 3); // Double buffer for sQ
static constexpr int kSmemKVCount = size(SmemLayoutKV{}) * 2;
static constexpr int kSmemdSCount = size(SmemLayoutPdS{});
static constexpr int kSmemPCount = size(SmemLayoutPdS{});
static constexpr int kSmemdQCount = size(SmemLayoutdQ{});
static constexpr int kSmemQdOSize = kSmemQdOCount * sizeof(Element);
static constexpr int kSmemKVSize = kSmemKVCount * sizeof(Element);
static constexpr int kSmemdSSize = kSmemdSCount * sizeof(Element);
static constexpr int kSmemPSize = kSmemPCount * sizeof(Element);
static constexpr int kSmemdQSize = kSmemdQCount * sizeof(Element);
static constexpr int kSmemSize = kSmemQdOSize
+ (!Is_V_in_regs
? kSmemKVSize + kSmemdSSize + std::max(kSmemPSize, kSmemdQSize)
: std::max(kSmemKVSize, kSmemKVSize / 2 + kSmemdSSize + std::max(kSmemPSize, kSmemdQSize)));
static constexpr int kSmemSize1colblock = kSmemQdOSize
+ (!Is_V_in_regs
? kSmemKVSize + kSmemdSSize + kSmemPSize
: std::max(kSmemKVSize, kSmemKVSize / 2 + kSmemdSSize + kSmemPSize));
static constexpr int kSmemSize1rowblock = kSmemQdOSize / 3 * 2 + kSmemKVSize / 2 * 3
+ kSmemdSSize + kSmemPSize;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
// Using kBlockKSmem instead of kHeadDim here to avoid bank conflicts, but doesn't seem
// to affect speed in practice.
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using Gmem_copy_struct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
DefaultCopy
>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(Copy_Atom<Gmem_copy_struct, elem_type>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemTiledCopydO = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
using GmemTiledCopydKV = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
using GmemTiledCopydQ = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
using GmemLayoutAtomdQaccum = std::conditional_t<
kBlockKSmem == 32,
Layout<Shape <_32, _8>, // Thread layout, 8 threads per row
Stride< _8, _1>>,
Layout<Shape <_16, _16>, // Thread layout, 16 threads per row
Stride< _16, _1>>
>;
using GmemTiledCopydQaccum = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
GmemLayoutAtomdQaccum{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
using GmemTiledCopydQaccumAtomicAdd = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
Layout<Shape <_8, _32>, // Thread layout, 8 threads per row
Stride<_32, _1>>{},
Layout<Shape < _1, _1>>{})); // Val layout, 1 val per store
};
////////////////////////////////////////////////////////////////////////////////////////////////////
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim224_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 224>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim224<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/alibi.h | #include <cmath>
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include "utils.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool Is_causal, typename Engine, typename Layout>
inline __device__ void apply_alibi(Tensor<Engine, Layout> &tensor,
const int col_idx_offset_,
const int max_seqlen_k,
const int row_idx_offset,
const int max_seqlen_q,
const int warp_row_stride,
const float alibi_slope) {
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout::rank == 2, "Only support 2D Tensor");
const int lane_id = threadIdx.x % 32;
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
if constexpr (Is_causal) { // Simpler, we add the same bias vector to all rows
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx;
}
}
}
} else { // Bias depends on both row_idx and col_idx
#pragma unroll
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
#pragma unroll
for (int i = 0; i < size<0, 0>(tensor); ++i) {
const int row_idx = row_idx_base + i * 8;
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx);
}
}
}
}
}
}
} // namespace flash
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/static_switch.h | // Inspired by
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
#pragma once
/// @param COND - a boolean expression to switch by
/// @param CONST_NAME - a name given for the constexpr bool variable.
/// @param ... - code to execute for true and false
///
/// Usage:
/// ```
/// BOOL_SWITCH(flag, BoolConst, [&] {
/// some_function<BoolConst>(...);
/// });
/// ```
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
[&] { \
if (COND) { \
constexpr static bool CONST_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr static bool CONST_NAME = false; \
return __VA_ARGS__(); \
} \
}()
#define FP16_SWITCH(COND, ...) \
[&] { \
if (COND) { \
using elem_type = cutlass::half_t; \
return __VA_ARGS__(); \
} else { \
using elem_type = cutlass::bfloat16_t; \
return __VA_ARGS__(); \
} \
}()
#define FWD_HEADDIM_SWITCH(HEADDIM, ...) \
[&] { \
if (HEADDIM <= 32) { \
constexpr static int kHeadDim = 32; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 64) { \
constexpr static int kHeadDim = 64; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 96) { \
constexpr static int kHeadDim = 96; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 128) { \
constexpr static int kHeadDim = 128; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 160) { \
constexpr static int kHeadDim = 160; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 192) { \
constexpr static int kHeadDim = 192; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 224) { \
constexpr static int kHeadDim = 224; \
return __VA_ARGS__(); \
} else if (HEADDIM <= 256) { \
constexpr static int kHeadDim = 256; \
return __VA_ARGS__(); \
} \
}()
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim256_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 256>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim256<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim64_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim64<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim128_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 128>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim128<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_launch_template.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include "static_switch.h"
#include "flash.h"
#include "flash_fwd_kernel.h"
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax>
__global__ void flash_fwd_kernel(Flash_fwd_params params) {
static_assert(!(Is_causal && Is_local)); // If Is_local is true, Is_causal should be false
flash::compute_attn<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params);
}
template<typename Kernel_traits, bool Is_dropout, bool Is_causal>
void run_flash_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr size_t smem_size = Kernel_traits::kSmemSize;
// printf("smem_size = %d\n", smem_size);
// Work-around for gcc 7. It doesn't like nested BOOL_SWITCH.
// https://github.com/kokkos/kokkos-kernels/issues/349
// https://github.com/HazyResearch/flash-attention/issues/21
const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
dim3 grid(num_m_block, params.b, params.h);
const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_k % Kernel_traits::kBlockN == 0 && params.seqlen_q % Kernel_traits::kBlockM == 0;
const bool is_even_K = params.d == Kernel_traits::kHeadDim;
const bool return_softmax = params.p_ptr != nullptr;
BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !Is_causal, Is_local, [&] {
BOOL_SWITCH(return_softmax, ReturnSoftmaxConst, [&] {
BOOL_SWITCH(params.alibi_slopes_ptr != nullptr, Has_alibi, [&] {
// Will only return softmax if dropout, to reduce compilation time.
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If return_softmax, set IsEvenMNConst to false to reduce number of templates
// If head dim > 128, set IsEvenMNConst to false to reduce number of templates
// If Is_local, set Is_causal to false
auto kernel = &flash_fwd_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && !ReturnSoftmaxConst && Kernel_traits::kHeadDim <= 128, IsEvenKConst, ReturnSoftmaxConst && Is_dropout>;
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, false, true, true, false>;
// printf("IsEvenMNConst = %d, IsEvenKConst = %d, Is_local = %d, Is_causal = %d, ReturnSoftmaxConst = %d, Is_dropout = %d\n", int(IsEvenMNConst), int(IsEvenKConst), int(Is_local), int(Is_causal), int(ReturnSoftmaxConst), int(Is_dropout));
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, true, true, false>;
// int ctas_per_sm;
// cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
// &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size);
// printf("smem_size = %d, CTAs per SM = %d\n", int(smem_size), ctas_per_sm);
kernel<<<grid, Kernel_traits::kNThreads, smem_size, stream>>>(params);
});
});
});
});
});
}
template<typename T>
void run_mha_fwd_hdim32(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 32;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim64(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 64;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
// Using 8 warps is 18% slower for seqlen=2k, 2 warps is 5% slower
// Using block size (64 x 256) is 27% slower for seqlen=2k
// Using block size (256 x 64) is 85% slower for seqlen=2k, because of register spilling
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
});
});
}
template<typename T>
void run_mha_fwd_hdim96(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 96;
// auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = true; // dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// These two are always slower
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 128, 4, true, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<96, 64, 128, 4, true, T>>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim128(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 128;
// auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = true; // dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
// and 128 x 32 (48 KB smem) is the fastest for non-causal since we get 2 CTAs per SM.
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// Using 8 warps (128 x 128 and 256 x 64) is 28% slower for seqlen=2k
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// 1st ones are good for H100, A100
// 2nd one is good for A6000 bc we get slightly better occupancy
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
}
});
});
}
template<typename T>
void run_mha_fwd_hdim160(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 160;
// auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = true; // dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
// For A100, H100, 128 x 32 is the fastest.
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
// and 128 x 64 with 8 warps is the fastest for non-causal.
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, T>>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim192(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 192;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, T>>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim224(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 224;
int device;
cudaGetDevice(&device);
int max_smem_per_block;
cudaError status_ = cudaDeviceGetAttribute(
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
// printf("max_smem_per_block = %d\n", max_smem_per_block);
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if (max_smem_per_block >= 2 * Headdim * (128 + 2 * 64)) { // 112 KB
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// We can't do 128 x 32 with 8 warps because with headdim 224, kBlockKSmem = 32.
// If we have N = 32, there are only 1024 elements to load at once, where each load
// is 8 elements. This means we can only use 128 threads and not 256 threads.
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim256(Flash_fwd_params ¶ms, cudaStream_t stream) {
constexpr static int Headdim = 256;
int device;
cudaGetDevice(&device);
int max_smem_per_sm, max_smem_per_block;
cudaError status_ = cudaDeviceGetAttribute(
&max_smem_per_sm, cudaDevAttrMaxSharedMemoryPerMultiprocessor, device);
status_ = cudaDeviceGetAttribute(
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
// printf("max_smem_per_sm = %d, max_smem_per_block = %d\n", max_smem_per_sm, max_smem_per_block);
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
// For A100, we want to run with 128 x 64 (128KB smem).
// For H100 we want to run with 64 x 64 (96KB smem) since then we can get 2 CTAs per SM.
if (max_smem_per_block >= 2 * Headdim * (128 + 2 * 64) && max_smem_per_sm < 4 * Headdim * (64 + 2 * 64)) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// 64 KB
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// 96 KB
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_api.cu | #include "flash_fwd_launch_template.h"
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) {
FP16_SWITCH(!params.is_bf16, [&] {
FWD_HEADDIM_SWITCH(params.d, [&] {
// if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0
run_mha_fwd_<elem_type, kHeadDim>(params, stream);
// } else {
// run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim>(params, stream);
// }
});
});
}
extern "C" void run_mha(
void *q_ptr,
void *k_ptr,
void *v_ptr,
void *o_ptr,
void *softmax_lse_ptr,
void *alibi_slopes_ptr,
int32_t *cu_seqlens_q_ptr,
int32_t *cu_seqlens_k_ptr,
uint32_t q_batch_stride,
uint32_t k_batch_stride,
uint32_t v_batch_stride,
uint32_t o_batch_stride,
uint32_t alibi_slopes_batch_stride,
uint32_t q_row_stride,
uint32_t k_row_stride,
uint32_t v_row_stride,
uint32_t o_row_stride,
uint32_t q_head_stride,
uint32_t k_head_stride,
uint32_t v_head_stride,
uint32_t o_head_stride,
uint32_t b,
uint32_t h,
uint32_t h_k,
uint32_t d,
uint32_t d_rounded,
float softmax_scale,
uint32_t seqlen_q,
uint32_t seqlen_k,
uint32_t seqlen_q_rounded,
uint32_t seqlen_k_rounded,
int is_bf16,
int is_causal,
int window_size_left,
int window_size_right
) {
Flash_fwd_params params;
// Reset the parameters
memset(¶ms, 0, sizeof(params));
// Set the pointers and strides.
params.q_ptr = q_ptr;
params.k_ptr = k_ptr;
params.v_ptr = v_ptr;
params.o_ptr = o_ptr;
params.softmax_lse_ptr = softmax_lse_ptr;
params.alibi_slopes_ptr = alibi_slopes_ptr;
// All stride are in elements, not bytes.
params.q_batch_stride = q_batch_stride;
params.k_batch_stride = k_batch_stride;
params.v_batch_stride = v_batch_stride;
params.o_batch_stride = o_batch_stride;
params.alibi_slopes_batch_stride = alibi_slopes_batch_stride;
params.q_row_stride = q_row_stride;
params.k_row_stride = k_row_stride;
params.v_row_stride = v_row_stride;
params.o_row_stride = o_row_stride;
params.q_head_stride = q_head_stride;
params.k_head_stride = k_head_stride;
params.v_head_stride = v_head_stride;
params.o_head_stride = o_head_stride;
// Set the dimensions.
params.b = b;
params.h = h;
params.h_k = h_k;
params.h_h_k_ratio = h / h_k;
params.seqlen_q = seqlen_q;
params.seqlen_k = seqlen_k;
params.seqlen_q_rounded = seqlen_q_rounded;
params.seqlen_k_rounded = seqlen_k_rounded;
params.d = d;
params.d_rounded = d_rounded;
// Set the different scale values.
params.scale_softmax = softmax_scale;
params.scale_softmax_log2 = softmax_scale * M_LOG2E;
params.p_dropout = 1.; // probability to keep
params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
params.rp_dropout = 1.f / params.p_dropout;
params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
params.is_bf16 = is_bf16;
params.cu_seqlens_q = cu_seqlens_q_ptr;
params.cu_seqlens_k = cu_seqlens_k_ptr;
params.p_ptr = nullptr; // used for `return_softmax`.
params.seqused_k = nullptr;
params.is_causal = is_causal;
params.window_size_left = window_size_left;
params.window_size_right = window_size_right;
params.is_seqlens_k_cumulative = true;
params.num_splits = 1;
cudaStream_t stream = 0; // Use the default stream.
run_mha_fwd(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim160_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 160>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim160<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_kernel.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <cute/algorithm/copy.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
#include "alibi.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool Is_first, bool Check_inf=false, typename Tensor0, typename Tensor1, typename Tensor2>
inline __device__ void softmax_rescale_o(Tensor0 &scores, Tensor1 &scores_max, Tensor1 &scores_sum,
Tensor2 &acc_o, float softmax_scale_log2) {
if (Is_first) {
flash::template reduce_max</*zero_init=*/true>(scores, scores_max);
flash::scale_apply_exp2(scores, scores_max, softmax_scale_log2);
flash::reduce_sum(scores, scores_sum);
} else {
Tensor scores_max_prev = make_fragment_like(scores_max);
cute::copy(scores_max, scores_max_prev);
flash::template reduce_max</*zero_init=*/false>(scores, scores_max);
// Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
#pragma unroll
for (int mi = 0; mi < size(scores_max); ++mi) {
float scores_max_cur = !Check_inf
? scores_max(mi)
: (scores_max(mi) == -INFINITY ? 0.0f : scores_max(mi));
float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
scores_sum(mi) *= scores_scale;
#pragma unroll
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale; }
}
flash::scale_apply_exp2(scores, scores_max, softmax_scale_log2);
Tensor scores_sum_cur = make_fragment_like(scores_sum);
flash::reduce_sum(scores, scores_sum_cur);
#pragma unroll
for (int mi = 0; mi < size(scores_sum); ++mi) { scores_sum(mi) += scores_sum_cur(mi); }
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename TiledCopy>
inline __device__ void write_softmax_to_gmem(
Tensor<Engine0, Layout0> const &tOrP, Tensor<Engine1, Layout1> &tPgP, TiledCopy gmem_tiled_copy_P
) {
// Reshape tOrP from (8, MMA_M, MMA_N) to (8, MMA_M * MMA_N)
Layout l = tOrP.layout();
Tensor tPrP = make_tensor(tOrP.data(), make_layout(get<0>(l), make_layout(get<1>(l), get<2>(l))));
CUTE_STATIC_ASSERT_V(size<2>(tPgP) == _1{});
CUTE_STATIC_ASSERT_V(size<1>(tPrP) == size<1>(tPgP));
#pragma unroll
for (int mi = 0; mi < size<1>(tPrP); ++mi) {
cute::copy(gmem_tiled_copy_P, tPrP(_, mi), tPgP(_, mi, 0));
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bidb, const int bidh, const int m_block) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kNWarps = Kernel_traits::kNWarps;
constexpr int MMA_M = kBlockM / decltype(size<0>(typename Kernel_traits::TiledMma::TiledShape_MNK{}))::value;
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
if (Is_causal || Is_local) {
n_block_max = std::min(n_block_max,
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
// printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
// }
}
// We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
// Otherwise we might read OOB elements from gK and gV.
if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
// Save seed and offset for backward. If we don't have this here, the 0-th thread block might
// exit early and no one saves the rng state.
// if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
// auto seeds = at::cuda::philox::unpack(params.philox_args);
// params.rng_state[0] = std::get<0>(seeds);
// params.rng_state[1] = std::get<1>(seeds);
// params.rng_state[0] = 0;
// params.rng_state[1] = 0;
// }
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
Tensor tOrO = make_tensor<Element>(shape(tOgO));
clear(tOrO);
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
#pragma unroll
for (int m = 0; m < size<1>(tOgO); ++m) {
const int row = get<0>(tOcO(0, m, 0));
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
}
return;
}
// if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
// We iterate over the blocks in reverse order. This is because the last block is the only one
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
+ m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
// We move K and V to the last block.
const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
+ (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
+ (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
+ m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.v_row_stride, _1{}));
Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
Shape<Int<kBlockM>, Int<kBlockN>>{},
make_stride(params.seqlen_k_rounded, _1{}));
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutQ{});
// Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
typename Kernel_traits::SmemLayoutKV{});
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopyP gmem_tiled_copy_P;
auto gmem_thr_copy_P = gmem_tiled_copy_P.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
Tensor tPgP = gmem_thr_copy_P.partition_D(gP);
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_M, MMA_K
//
// Copy Atom retiling
//
auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
// if (cute::thread0()) {smem_thr_copy_Q.print_all();}
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
// if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}
auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
// TODO: this might need to change if we change the mma instruction in SM70
Tensor scores_max = make_tensor<ElementAccum>(Shape<Int<2 * size<1>(acc_o)>>{});
Tensor scores_sum = make_fragment_like(scores_max);
//
// PREDICATES
//
// // Allocate predicate tensors for m and n
// Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
// Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});
// Construct identity layout for sQ and sK
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
// Tensor tScQ = thr_mma.partition_A(cQ); // (MMA,MMA_M,MMA_K)
// if (cute::thread0()) {
// print(tScQ.layout()); printf("\n");
// for (int i = 0; i < size(tScQ); ++i) {
// printf("%d ", get<0>(tScQ(i)));
// }
// printf("\n");
// for (int i = 0; i < size(tScQ); ++i) {
// printf("%d ", get<1>(tScQ(i)));
// }
// printf("\n");
// }
// Repeat the partitioning with identity layouts
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
// Allocate predicate tensors for k
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
// Set predicates for k bounds
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
}
// Prologue
Tensor tQrQ = make_fragment_like(tQgQ);
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
binfo.actual_seqlen_q - m_block * kBlockM);
if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }
// // Copy rmem to smem
// // copy(tQrQ, tQsQ);
// flash::cp_async_wait<0>();
// __syncthreads();
// // if (cute::thread(1, 0)) { print(tQsQ); }
// // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
// // if (cute::thread0()) { print(sQNoSwizzle); }
if (Kernel_traits::Share_Q_K_smem) {
flash::cp_async_wait<0>();
__syncthreads();
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
__syncthreads();
}
int n_block = n_block_max - 1;
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
binfo.actual_seqlen_k - n_block * kBlockN);
cute::cp_async_fence();
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
// __syncthreads();
if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
flash::cp_async_wait<1>();
__syncthreads();
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
}
// auto seeds = at::cuda::philox::unpack(params.philox_args);
// unsigned long long seed = std::get<0>(seeds);
// unsigned long long offset = std::get<1>(seeds) + (bidb * params.h + bidh) * 32 + tidx % 32;
unsigned long long seed = 0;
unsigned long long offset = 0;
clear(acc_o);
float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
// For performance reason, we separate out two kinds of iterations:
// those that need masking on S, and those that don't.
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = (!Is_causal && !Is_local)
? 1
: ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
#pragma unroll
for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
// Advance gV
if (masking_step > 0) {
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
} else {
// Clear the smem tiles to account for predicated off loads
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
cute::cp_async_fence();
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
smem_thr_copy_Q, smem_thr_copy_K
);
// if (cute::thread0()) { print(acc_s); }
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
// if (cute::thread0()) { print_tensor(scores); }
// We don't put the masking before the matmul S = Q K^T because we don't clear sK
// for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
// can produce Inf / NaN.
if (Has_alibi) {
flash::apply_alibi<Is_causal>(
scores,
n_block * kBlockN,
binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q,
kNWarps * 16,
alibi_slope
);
}
if (!Is_causal && !Is_local) {
if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
} else {
// Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n)
// Tensor taccScS = thr_mma.partition_C(caccS); // (MMA,MMA_M,MMA_N)
// static_assert(decltype(size<0>(taccScS))::value == 4);
// // Convert to ((2, 2), MMA_M, MMA_N) then take only the row indices.
// Tensor idx_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
// Tensor idx_rowcol = make_tensor(taccScS.data(), flash::convert_layout_acc_rowcol(taccScS.layout()));
// flash::apply_mask_causal_w_idx(scores, idx_rowcol, n_block * kBlockN, binfo.actual_seqlen_k,
// m_block * kBlockM);
// Idk why it's get<1> and not get<0> of the stride.
// if (cute::thread0()) { print(idx_row.layout()); print(stride<1>(idx_row)); printf("stride = %d \n", get<1>(stride<1>(idx_row))); }
// I can't get the stride from idx_row
flash::apply_mask_local</*HasWSLeft=*/Is_local>(
scores, n_block * kBlockN, binfo.actual_seqlen_k,
// m_block * kBlockM + get<0>(idx_row(0)),
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q, kNWarps * 16,
params.window_size_left, params.window_size_right
// m_block * kBlockM + (tidx / 32) * 16, kNWarps * 16
// m_block * kBlockM + (tidx / 32) * (kBlockM / kNWarps), 16
);
// if (cute::thread0()) { print_tensor(scores); }
}
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
// Advance gK
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
}
// TODO: when we have key_padding_mask we'll need to Check_inf
masking_step == 0
? softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal || Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
: softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
// Convert scores from fp32 to fp16/bf16
Tensor rP = flash::convert_type<Element>(scores);
// Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
// if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
int block_col_idx = n_block * (kBlockN / 32);
if (Return_softmax) {
Tensor tOrP_copy = make_fragment_like(tOrP);
cute::copy(tOrP, tOrP_copy);
flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
block_row_idx, block_col_idx, kNWarps
);
flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
tPgP.data() = tPgP.data() + (-kBlockN);
}
if (Is_dropout) {
flash::apply_dropout(tOrP, params.p_dropout_in_uint8_t, seed, offset,
block_row_idx, block_col_idx, kNWarps);
}
// if (cute::thread0()) { print(tOrP); }
flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
// if (cute::thread0()) { print(scores); }
// This check is at the end of the loop since we always have at least 1 iteration
if (n_masking_steps > 1 && n_block <= n_block_min) {
--n_block;
break;
}
}
// These are the iterations where we don't need masking on S
for (; n_block >= n_block_min; --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
// Advance gV
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
cute::cp_async_fence();
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
smem_thr_copy_Q, smem_thr_copy_K
);
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
// Advance gK
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
}
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
if (Has_alibi) {
flash::apply_alibi<Is_causal>(
scores,
n_block * kBlockN,
binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q,
kNWarps * 16,
alibi_slope
);
}
if (Is_local && n_block * kBlockN < (m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right) {
flash::apply_mask_local(
scores, n_block * kBlockN, binfo.actual_seqlen_k,
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
binfo.actual_seqlen_q, kNWarps * 16,
params.window_size_left, params.window_size_right
);
}
softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(scores);
// Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
// if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
int block_col_idx = n_block * (kBlockN / 32);
if (Return_softmax) {
Tensor tOrP_copy = make_fragment_like(tOrP);
cute::copy(tOrP, tOrP_copy);
flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
block_row_idx, block_col_idx, kNWarps
);
flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
tPgP.data() = tPgP.data() + (-kBlockN);
}
if (Is_dropout) {
flash::apply_dropout(tOrP, params.p_dropout_in_uint8_t, seed, offset,
block_row_idx, block_col_idx, kNWarps);
}
flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
}
// Epilogue
// Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
Tensor lse = make_fragment_like(scores_sum);
#pragma unroll
for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
float sum = scores_sum(mi);
float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
lse(mi) = (sum == 0.f || sum != sum) ? INFINITY : scores_max(mi) * params.scale_softmax + __logf(sum);
float scale = !Is_dropout ? inv_sum : inv_sum * params.rp_dropout;
#pragma unroll
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
}
// if (cute::thread0()) { print(acc_o_rowcol); }
// Convert acc_o from fp32 to fp16/bf16
Tensor rO = flash::convert_type<Element>(acc_o);
Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
// Partition sO to match the accumulator partitioning
auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tensor taccOrO = smem_thr_copy_O.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// sO has the same size as sQ, so we don't need to sync here.
if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tensor tOsO = gmem_thr_copy_O.partition_S(sO); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
__syncthreads();
Tensor tOrO = make_tensor<Element>(shape(tOgO));
cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor taccOcO = thr_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
static_assert(decltype(size<0>(taccOcO))::value == 4);
// Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
}
}
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
inline __device__ void compute_attn(const Params ¶ms) {
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
// them to have the same number of threads or have to traverse the attention matrix
// in the same order.
// In the Philox RNG, we use the offset to store the batch, head, and the lane id
// (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
// the attention matrix. This way, as long as we have the batch, head, and the location of
// the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim192_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim192<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/block_info.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
namespace flash {
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool Varlen=true>
struct BlockInfo {
template<typename Params>
__device__ BlockInfo(const Params ¶ms, const int bidb)
: sum_s_q(!Varlen || params.cu_seqlens_q == nullptr ? -1 : params.cu_seqlens_q[bidb])
, sum_s_k(!Varlen || params.cu_seqlens_k == nullptr || !params.is_seqlens_k_cumulative ? -1 : params.cu_seqlens_k[bidb])
, actual_seqlen_q(!Varlen || params.cu_seqlens_q == nullptr ? params.seqlen_q : params.cu_seqlens_q[bidb + 1] - sum_s_q)
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
, seqlen_k_cache(!Varlen || params.cu_seqlens_k == nullptr ? params.seqlen_k : (params.is_seqlens_k_cumulative ? params.cu_seqlens_k[bidb + 1] - sum_s_k : params.cu_seqlens_k[bidb]))
, actual_seqlen_k(params.seqused_k ? params.seqused_k[bidb] : seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew))
{
}
template <typename index_t>
inline __device__ index_t q_offset(const index_t batch_stride, const index_t row_stride, const int bidb) const {
return sum_s_q == -1 ? bidb * batch_stride : uint32_t(sum_s_q) * row_stride;
}
template <typename index_t>
inline __device__ index_t k_offset(const index_t batch_stride, const index_t row_stride, const int bidb) const {
return sum_s_k == -1 ? bidb * batch_stride : uint32_t(sum_s_k) * row_stride;
}
const int sum_s_q;
const int sum_s_k;
const int actual_seqlen_q;
// We have to have seqlen_k_cache declared before actual_seqlen_k, otherwise actual_seqlen_k is set to 0.
const int seqlen_k_cache;
const int actual_seqlen_k;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim128_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 128>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim128<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim32_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 32>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim32<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim96_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim96<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/philox.cuh | // Pytorch also has an implementation of Philox RNG: https://github.com/pytorch/pytorch/blob/8ca3c881db3e3510fcb7725389f6a0633c9b992c/torch/csrc/jit/tensorexpr/cuda_random.h
#pragma once
// Philox CUDA.
namespace flash {
struct ull2 {
unsigned long long x;
unsigned long long y;
};
inline __device__ uint2 mulhilo32(const unsigned int a, const unsigned int b) {
uint2 *res;
unsigned long long tmp;
asm ("mul.wide.u32 %0, %1, %2;\n\t"
: "=l"(tmp)
: "r"(a), "r"(b));
res = (uint2*)(&tmp);
return *res;
}
inline __device__ uint4 philox_single_round(const uint4 ctr, const uint2 key) {
constexpr unsigned long kPhiloxSA = 0xD2511F53;
constexpr unsigned long kPhiloxSB = 0xCD9E8D57;
uint2 res0 = mulhilo32(kPhiloxSA, ctr.x);
uint2 res1 = mulhilo32(kPhiloxSB, ctr.z);
uint4 ret = {res1.y ^ ctr.y ^ key.x, res1.x, res0.y ^ ctr.w ^ key.y, res0.x};
return ret;
}
inline __device__ uint4 philox(unsigned long long seed,
unsigned long long subsequence,
unsigned long long offset) {
constexpr unsigned long kPhilox10A = 0x9E3779B9;
constexpr unsigned long kPhilox10B = 0xBB67AE85;
uint2 key = reinterpret_cast<uint2&>(seed);
uint4 counter;
ull2 *tmp = reinterpret_cast<ull2*>(&counter);
tmp->x = offset;
tmp->y = subsequence;
#pragma unroll
for (int i = 0; i < 6; i++) {
counter = philox_single_round(counter, key);
key.x += (kPhilox10A);
key.y += (kPhilox10B);
}
uint4 output = philox_single_round(counter, key);
return output;
}
} // namespace flash
namespace {
class Philox {
public:
__device__ inline Philox(unsigned long long seed,
unsigned long long subsequence,
unsigned long long offset)
: STATE(0)
, seed_(seed)
, offset_(offset)
, key(reinterpret_cast<const uint2&>(seed)) {
//key.x = (unsigned int)seed;
//key.y = (unsigned int)(seed >> 32);
//counter = make_uint4(0, 0, 0, 0);
//counter.z = (unsigned int)(subsequence);
//counter.w = (unsigned int)(subsequence >> 32);
//STATE = 0;
//incr_n(offset / 4);
// key = reinterpret_cast<const uint2&>(seed);
ull2 * tmp = reinterpret_cast<ull2*>(&counter);
tmp->x = offset / 4;
tmp->y = subsequence;
// if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
// printf("Philox counter: %d, %d, %d, %d\n", counter.x, counter.y, counter.z, counter.w);
// }
}
__device__ inline uint4 operator()() {
// // if (STATE == 0) {
// uint4 counter_ = counter;
// uint2 key_ = key;
// // 7-round philox
// #pragma unroll
// for (int i = 0; i < 6; i++) {
// counter_ = flash::philox_single_round(counter_, key_);
// key_.x += (kPhilox10A);
// key_.y += (kPhilox10B);
// }
// // output = philox_single_round(counter_, key_);
// uint4 output = flash::philox_single_round(counter_, key_);
// // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
// // printf("Philox counter: %u, %u, %u, %u\n", counter.x, counter.y, counter.z, counter.w);
// // printf("Philox output: %u, %u, %u, %u\n", output.x, output.y, output.z, output.w);
// // }
// incr();
// // }
// // return a float4 directly
// // unsigned long ret;
// // switch(STATE) {
// // case 0: ret = output.x; break;
// // case 1: ret = output.y; break;
// // case 2: ret = output.z; break;
// // case 3: ret = output.w; break;
// //}
// // STATE = (STATE + 1) % 4;
// return output;
return flash::philox(seed_, offset_, offset_);
}
private:
unsigned long long offset_, seed_;
struct ull2 {
uint64_t x;
uint64_t y;
};
uint4 counter;
// uint4 output;
const uint2 key;
unsigned int STATE;
__device__ inline void incr_n(unsigned long long n) {
unsigned int nlo = (unsigned int)(n);
unsigned int nhi = (unsigned int)(n >> 32);
counter.x += nlo;
if (counter.x < nlo)
nhi++;
counter.y += nhi;
if (nhi <= counter.y)
return;
if (++counter.z)
return;
++counter.w;
}
__device__ uint4 incr128 (uint4 ctr)
{
uint4 res;
asm ("add.cc.u32 %0, %4, %8;\n\t"
"addc.cc.u32 %1, %5, %9;\n\t"
"addc.cc.u32 %2, %6, %10;\n\t"
"addc.u32 %3, %7, %11;\n\t"
: "=r"(res.x), "=r"(res.y), "=r"(res.z), "=r"(res.w)
: "r"(ctr.x), "r"(ctr.y), "r"(ctr.z), "r"(ctr.w),
"n"(1), "n"(0), "n"(0), "n"(0));
return res;
}
__device__ inline void incr() {
// if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
// printf("Counter before: %u, %u, %u, %u\n", counter.x, counter.y, counter.z, counter.w);
// }
counter = incr128(counter);
// if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
// printf("Counter after: %u, %u, %u, %u\n", counter.x, counter.y, counter.z, counter.w);
// }
}
static const unsigned long kPhilox10A = 0x9E3779B9;
static const unsigned long kPhilox10B = 0xBB67AE85;
// static const unsigned long kPhiloxSA = 0xD2511F53;
// static const unsigned long kPhiloxSB = 0xCD9E8D57;
};
} // namespace
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/softmax.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <cmath>
#include <cute/tensor.hpp>
#include <cutlass/numeric_types.h>
#include "philox.cuh"
#include "utils.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); mi++) {
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
summary(mi) = op(summary(mi), tensor(mi, ni));
}
}
}
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
#pragma unroll
for (int i = 0; i < size(dst); i++){
dst(i) = Allreduce<4>::run(src(i), op);
}
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
thread_reduce_<zero_init>(tensor, summary, op);
quad_allreduce_(summary, summary, op);
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
MaxOp<float> max_op;
reduce_<zero_init>(tensor, max, max_op);
}
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ inline void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
SumOp<float> sum_op;
reduce_(tensor, sum, sum_op);
}
// Apply the exp to all the elements.
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
// If max is -inf, then all elements must have been -inf (possibly due to masking).
// We don't want (-inf - (-inf)) since that would give NaN.
// If we don't have float around M_LOG2E the multiplication is done in fp64.
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
// max * log_2(e)) This allows the compiler to use the ffma
// instruction instead of fadd and fmul separately.
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
}
}
}
// Apply the exp to all the elements.
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
MaxOp<float> max_op;
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
max(mi) = max_op(max(mi), tensor(mi, ni));
}
max(mi) = Allreduce<4>::run(max(mi), max_op);
// If max is -inf, then all elements must have been -inf (possibly due to masking).
// We don't want (-inf - (-inf)) since that would give NaN.
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
sum(mi) = 0;
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
// max * log_2(e)) This allows the compiler to use the ffma
// instruction instead of fadd and fmul separately.
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
sum(mi) += tensor(mi, ni);
}
SumOp<float> sum_op;
sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
}
}
template <typename Engine, typename Layout>
inline __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const int max_seqlen_k,
const int col_idx_offset_ = 0) {
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout::rank == 2, "Only support 2D Tensor");
const int lane_id = threadIdx.x % 32;
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
if (col_idx >= max_seqlen_k) {
// Without the "make_coord" we get wrong results
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
tensor(mi, make_coord(j, nj)) = -INFINITY;
}
}
}
}
}
template <bool HasWSLeft=true, typename Engine, typename Layout>
inline __device__ void apply_mask_local(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
const int max_seqlen_k, const int row_idx_offset,
const int max_seqlen_q, const int warp_row_stride,
const int window_size_left, const int window_size_right) {
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout::rank == 2, "Only support 2D Tensor");
const int lane_id = threadIdx.x % 32;
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
#pragma unroll
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
#pragma unroll
for (int i = 0; i < size<0, 0>(tensor); ++i) {
const int row_idx = row_idx_base + i * 8;
const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left);
const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right);
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
if (col_idx >= col_idx_limit_right || (HasWSLeft && col_idx < col_idx_limit_left)) {
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
}
}
}
// if (cute::thread0()) {
// printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k);
// print(tensor(make_coord(i, mi), _));
// // print(tensor(_, j + nj * size<1, 0>(tensor)));
// }
}
}
}
template <typename Engine, typename Layout>
inline __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
const int max_seqlen_k, const int row_idx_offset,
const int max_seqlen_q, const int warp_row_stride) {
// Causal masking is equivalent to local masking with window_size_left = infinity and window_size_right = 0
apply_mask_local</*HasWSLeft=*/false>(tensor, col_idx_offset_, max_seqlen_k, row_idx_offset,
max_seqlen_q, warp_row_stride, -1, 0);
}
template <typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void apply_mask_causal_w_idx(
Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol,
const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset)
{
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 2, "Only support 2D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol));
CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
const int col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset + get<0>(idx_rowcol(mi, 0)));
#pragma unroll
for (int ni = 0; ni < size<1, 1>(tensor); ++ni) {
if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) {
tensor(mi, ni) = -INFINITY;
}
}
// if (cute::thread0()) {
// printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k);
// print(tensor(_, make_coord(j, ni)));
// // print(tensor(_, j + ni * size<1, 0>(tensor)));
// }
}
}
template <bool encode_dropout_in_sign_bit=false, typename Engine, typename Layout>
inline __device__ void apply_dropout(Tensor<Engine, Layout> &tensor, uint8_t p_dropout_in_uint8_t,
unsigned long long seed, unsigned long long offset,
int block_row_start, int block_col_start,
int block_row_stride) {
// tensor has shape (8, MMA_M, MMA_N / 2)
using T = typename Engine::value_type;
auto encode_dropout = [](bool keep, T val) {
return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0));
};
static_assert(decltype(size<2>(tensor))::value % 2 == 0);
const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t);
const uint32_t p_dropout_8bit_in_uint32_t = (uint32_t(p_dropout_8bit_in_uint16_t) << 16) | uint32_t(p_dropout_8bit_in_uint16_t);
// if (cute::thread0()) { printf("threshold2 = 0x%x\n", p_dropout_8bit_in_uint32_t); }
#pragma unroll
for (int m = 0; m < size<1>(tensor); ++m, block_row_start += block_row_stride) {
uint2 rowcol = make_uint2(block_row_start, block_col_start);
#pragma unroll
for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) {
// if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col = %d\n", m, n, int(rowcol.x), int(rowcol.y));}
uint4 random_uint4 = flash::philox(seed, reinterpret_cast<unsigned long long&>(rowcol), offset);
// if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n", random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);}
uint8_t (&rnd_8)[16] = reinterpret_cast<uint8_t (&)[16]>(random_uint4);
// Special implementation for 16-bit types: we duplicate the threshold to the
// low and high 16 bits of a 32-bit value, then use the f16x2 comparison instruction
// to get a mask. The low 16 bits of the mask will be either 0xffff or 0x0000,
// and the high 16 bits will be either 0xffff or 0x0000, depending on whether
// the random value is less than the threshold.
// We then do a bit-wise AND between the mask and the original value (in 32-bit).
// We're exploiting the fact that floating point comparison is equivalent to integer
// comparison, since we're comparing unsigned integers whose top 8-bits are zero.
if (!encode_dropout_in_sign_bit
&& (std::is_same<T, cutlass::half_t>::value || std::is_same<T, cutlass::bfloat16_t>::value)) {
uint16_t rnd_16[16];
#pragma unroll
for (int i = 0; i < 16; i++) { rnd_16[i] = uint16_t(rnd_8[i]); }
uint32_t (&rnd_32)[8] = reinterpret_cast<uint32_t (&)[8]>(rnd_16);
#pragma unroll
for (int j = 0; j < 2; j++) {
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
// if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j * 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); }
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
#pragma unroll
for (int i = 0; i < 4; i++) {
uint32_t mask;
asm volatile("set.le.u32.f16x2 %0, %1, %2;\n" : "=r"(mask) : "r"(rnd_32[j * 4 + i]), "r"(p_dropout_8bit_in_uint32_t));
tensor_uint32(i) &= mask;
}
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
}
} else {
#pragma unroll
for (int j = 0; j < 2; j++) {
#pragma unroll
for (int i = 0; i < 8; i++) {
tensor(i, m, n * 2 + j) = encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t, tensor(i, m, n * 2 + j));
}
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
}
}
// // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
// // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x, rnd_8.y, rnd_8.z, rnd_8.w);
// // }
}
}
}
} // namespace flash
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim160_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 160>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim160<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/kernel_traits_sm90.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/algorithm/copy.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/layout/layout.h"
#include <cutlass/numeric_types.h>
using namespace cute;
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::half_t>
struct Flash_kernel_traits_sm90 {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using Element = elem_type;
static constexpr bool Has_cp_async = true;
#else
using Element = cutlass::half_t;
static constexpr bool Has_cp_async = false;
#endif
using ElementAccum = float;
using index_t = uint32_t;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using MMA_Atom_Arch = std::conditional_t<
std::is_same_v<elem_type, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>;
using ValLayoutMNK = Layout<Shape<_1, _2, _1>>;
#else
using MMA_Atom_Arch = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
using ValLayoutMNK = Layout<Shape<_1, _2, _2>>;
#endif
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, elem_type>;
#else
using SmemCopyAtom = Copy_Atom<DefaultCopy, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<DefaultCopy, elem_type>;
#endif
};
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, bool Is_Q_in_regs_=false, bool Share_Q_K_smem_=false, typename elem_type=cutlass::half_t,
typename Base=Flash_kernel_traits_sm90<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
struct Flash_fwd_kernel_traits : public Base {
using Element = typename Base::Element;
using ElementAccum = typename Base::ElementAccum;
using index_t = typename Base::index_t;
static constexpr bool Has_cp_async = Base::Has_cp_async;
using SmemCopyAtom = typename Base::SmemCopyAtom;
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
static constexpr bool Share_Q_K_smem = Share_Q_K_smem_;
static constexpr bool Is_Q_in_regs = Is_Q_in_regs_ || Share_Q_K_smem;
// The number of threads.
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
using TiledMma = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using SmemLayoutAtomQ = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
// This has to be kBlockKSmem, using kHeadDim gives wrong results for d=128
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemLayoutKV = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
using SmemLayoutAtomVtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
// This has to be kBlockN and not 8, otherwise we get wrong results for d=128
Layout<Shape<Int<kBlockKSmem>, Int<kBlockN>>,
Stride<_1, Int<kBlockKSmem>>>{}));
using SmemLayoutVtransposed = decltype(tile_to_shape(
SmemLayoutAtomVtransposed{},
Shape<Int<kHeadDim>, Int<kBlockN>>{}));
// Maybe the VtransposeNoSwizzle just needs to have the right shape
// And the strides don't matter?
using SmemLayoutVtransposedNoSwizzle = decltype(SmemLayoutVtransposed{}.layout_fn());
using SmemLayoutAtomO = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemCopyAtomO = Copy_Atom<DefaultCopy, elem_type>;
static constexpr int kSmemQCount = size(SmemLayoutQ{});
static constexpr int kSmemKVCount = size(SmemLayoutKV{}) * 2;
static constexpr int kSmemQSize = kSmemQCount * sizeof(Element);
static constexpr int kSmemKVSize = kSmemKVCount * sizeof(Element);
static constexpr int kSmemSize = Share_Q_K_smem ? std::max(kSmemQSize, kSmemKVSize) : kSmemQSize + kSmemKVSize;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
// Using kBlockKSmem here is 6-10% faster than kBlockKGmem for d=128 because of bank conflicts.
// For example, for d=128, smem is split into 2 "pages", each page takes care of columns
// 0-63 and 64-127. If we have 16 threads per row for gmem read, when we write to smem,
// thread 0 - 7 will write to the first page and thread 8 - 15 will write to the second page,
// to the same banks.
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using Gmem_copy_struct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
DefaultCopy
>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(Copy_Atom<Gmem_copy_struct, elem_type>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemTiledCopyO = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
static constexpr int kGmemThreadsPerRowP = kBlockN / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRowP == 0, "kNThreads must be a multiple of kGmemThreadsPerRowP");
using GmemLayoutAtomP = Layout<Shape <Int<kNThreads / kGmemThreadsPerRowP>, Int<kGmemThreadsPerRowP>>,
Stride<Int<kGmemThreadsPerRowP>, _1>>;
using GmemTiledCopyP = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtomP{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
};
////////////////////////////////////////////////////////////////////////////////////////////////////
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim64_fp16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim64<cutlass::half_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim96_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim96<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/utils.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <cuda_fp16.h>
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include <cuda_bf16.h>
#endif
#include <cute/algorithm/copy.hpp>
#include <cute/algorithm/gemm.hpp>
#include <cutlass/array.h>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/numeric_types.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace flash {
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
inline __device__ uint32_t relu2(const uint32_t x);
template<>
inline __device__ uint32_t relu2<cutlass::half_t>(const uint32_t x) {
uint32_t res;
const uint32_t zero = 0u;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("max.f16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
#else
asm volatile( \
"{\n" \
"\t .reg .f16x2 sela;\n" \
"\t set.gtu.u32.f16x2 sela, %1, %2;\n" \
"\t and.b32 %0, sela, %1;\n"
"}\n" : "=r"(res) : "r"(x), "r"(zero));
#endif
return res;
}
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
template<>
inline __device__ uint32_t relu2<cutlass::bfloat16_t>(const uint32_t x) {
uint32_t res;
const uint32_t zero = 0u;
asm volatile("max.bf16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
return res;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
template<typename T>
inline __device__ uint32_t convert_relu2(const float2 x);
template<>
inline __device__ uint32_t convert_relu2<cutlass::half_t>(const float2 x) {
uint32_t res;
const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
asm volatile("cvt.rn.relu.f16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
return res;
}
template<>
inline __device__ uint32_t convert_relu2<cutlass::bfloat16_t>(const float2 x) {
uint32_t res;
const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
asm volatile("cvt.rn.relu.bf16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
return res;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct MaxOp {
__device__ inline T operator()(T const & x, T const & y) { return x > y ? x : y; }
};
template <>
struct MaxOp<float> {
// This is slightly faster
__device__ inline float operator()(float const &x, float const &y) { return max(x, y); }
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct SumOp {
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool A_in_regs=false, bool B_in_regs=false, typename Tensor0, typename Tensor1,
typename Tensor2, typename Tensor3, typename Tensor4,
typename TiledMma, typename TiledCopyA, typename TiledCopyB,
typename ThrCopyA, typename ThrCopyB>
inline __device__ void gemm(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
Tensor4 const& tCsB, TiledMma tiled_mma,
TiledCopyA smem_tiled_copy_A, TiledCopyB smem_tiled_copy_B,
ThrCopyA smem_thr_copy_A, ThrCopyB smem_thr_copy_B) {
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view)); // M
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
#pragma unroll
for (int i = 0; i < size<2>(tCrA); ++i) {
if (i < size<2>(tCrA) - 1) {
if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
}
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Tensor0, typename Tensor1, typename Tensor2, typename Tensor3,
typename TiledMma, typename TiledCopy, typename ThrCopy>
inline __device__ void gemm_A_in_regs(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsB,
TiledMma tiled_mma, TiledCopy smem_tiled_copy_B,
ThrCopy smem_thr_copy_B) {
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{}));
#pragma unroll
for (int i = 0; i < size<2>(tCrA); ++i) {
if (i < size<2>(tCrA) - 1) {
cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1));
}
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
template<typename Layout>
inline __device__ auto convert_layout_acc_rowcol(Layout acc_layout) {
static_assert(decltype(size<0>(acc_layout))::value == 4);
static_assert(decltype(rank(acc_layout))::value == 3);
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
// TD [2023-08-13]: Idk why but get<0, 1>(l) doesn't work for Cutlass 3.2, I'm getting
// "int_tuple.hpp(74): error: conversion to inaccessible base class"
// return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
return make_layout(make_layout(get<1>(get<0>(l)), get<1>(l)), make_layout(get<0>(get<0>(l)), get<2>(l)));
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Convert rowcol_layout from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
// if using m16n8k16, or to ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
template<typename MMA_traits, typename Layout>
inline __device__ auto convert_layout_rowcol_Aregs(Layout rowcol_layout) {
using X = Underscore;
static_assert(decltype(size<0, 0>(rowcol_layout))::value == 2);
static_assert(decltype(size<1, 0>(rowcol_layout))::value == 2);
constexpr int mma_shape_K = get<2>(typename MMA_traits::Shape_MNK{});
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
constexpr int MMA_N_divisor = mma_shape_K == 8 ? 1 : 2;
auto l = logical_divide(rowcol_layout, Shape<X, Shape<X, Int<MMA_N_divisor>>>{}); // ((2, MMA_M), (2, (2, MMA_N / 2)))
// TD [2023-08-13]: Same error as above on Cutlass 3.2
// return make_layout(make_layout(get<1, 0>(l), get<0, 0>(l), get<1, 1, 0>(l)),
// get<0, 1>(l),
// get<1, 1, 1>(l));
return make_layout(make_layout(get<0>(get<1>(l)), get<0>(get<0>(l)), get<0>(get<1>(get<1>(l)))),
get<1>(get<0>(l)),
get<1>(get<1>(get<1>(l))));
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename To_type, typename Engine, typename Layout>
inline __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
using From_type = typename Engine::value_type;
constexpr int numel = decltype(size(tensor))::value;
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
// HACK: this requires tensor to be "contiguous"
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Engine, typename Layout>
inline __device__ void relu_(Tensor<Engine, Layout> &tensor) {
constexpr int numel = decltype(size(tensor))::value;
static_assert(numel % 2 == 0);
using value_t = typename Engine::value_type;
// HACK: this requires tensor to be "contiguous"
Tensor tensor_uint32 = recast<uint32_t>(tensor);
#pragma unroll
for (int i = 0; i < size(tensor_uint32); ++i) {
tensor_uint32(i) = relu2<value_t>(tensor_uint32(i));
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// On SM80 and above, we can fuse fp32 -> fp16/bf16 conversion and relu into 1 instruction
template <typename To_type, typename Engine, typename Layout>
inline __device__ auto convert_type_relu(Tensor<Engine, Layout> const &tensor) {
using From_type = typename Engine::value_type;
static_assert(std::is_same_v<To_type, cutlass::half_t> || std::is_same_v<To_type, cutlass::bfloat16_t>);
static_assert(std::is_same_v<float, From_type>);
constexpr int numel = decltype(size(tensor))::value;
static_assert(numel % 2 == 0);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
// HACK: this requires tensor to be "contiguous"
Tensor tensor_float2 = recast<float2>(tensor);
Tensor out_uint32 = make_tensor<uint32_t>(tensor_float2.layout());
#pragma unroll
for (int i = 0; i < size(out_uint32); ++i) {
out_uint32(i) = convert_relu2<To_type>(tensor_float2(i));
}
Tensor out = make_tensor(make_rmem_ptr<To_type>(out_uint32.data()), tensor.layout());
#else
Tensor out = flash::convert_type<To_type>(tensor);
flash::relu_(out);
#endif
return out;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Blocks until all but N previous cp.async.commit_group operations have committed.
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
// (which is equivalent to commit_group then wait_group 0).
// Instead we just call cp.async.wait_group 0, which is slightly faster.
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
template <int N>
CUTE_HOST_DEVICE
void cp_async_wait() {
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
inline __device__ void copy(TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
// There's no case where !Clear_OOB_K && Clear_OOB_MN
static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
#pragma unroll
for (int m = 0; m < size<1>(S); ++m) {
if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
#pragma unroll
for (int k = 0; k < size<2>(S); ++k) {
if (Is_even_K || predicate_K(k)) {
cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
} else if (Clear_OOB_K) {
cute::clear(D(_, m, k));
}
}
} else if (Clear_OOB_MN) {
cute::clear(D(_, m, _));
}
}
// TD [2023-04-13]: Strange that the code below can cause race condition.
// I think it's because the copies are under an if statement.
// if (Is_even_K) {
// #pragma unroll
// for (int m = 0; m < size<1>(S); ++m) {
// if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
// copy(tiled_copy, S(_, m, _), D(_, m, _));
// } else if (Clear_OOB_MN) {
// clear(D(_, m, _));
// }
// }
// } else { // It's slightly faster in this case if iterate over K first
// #pragma unroll
// for (int k = 0; k < size<2>(S); ++k) {
// if (predicate_K(k)) {
// #pragma unroll
// for (int m = 0; m < size<1>(S); ++m) {
// if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
// copy(tiled_copy, S(_, m, k), D(_, m, k));
// } else if (Clear_OOB_MN) {
// clear(D(_, m, k));
// }
// }
// } else if (Clear_OOB_K) { // There's no case where !Clear_OOB_K && Clear_OOB_MN
// if (Clear_OOB_MN || Is_even_MN) {
// clear(D(_, _, k));
// } else {
// #pragma unroll
// for (int m = 0; m < size<1>(S); ++m) {
// if (!(Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN)) {
// clear(D(_, m, k));
// }
// }
// }
// }
// }
// }
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash.h | /******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <cuda.h>
#include <vector>
constexpr int TOTAL_DIM = 0;
constexpr int H_DIM = 1;
constexpr int D_DIM = 2;
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Qkv_params {
using index_t = uint32_t;
// The QKV matrices.
void *__restrict__ q_ptr;
void *__restrict__ k_ptr;
void *__restrict__ v_ptr;
// The stride between rows of the Q, K and V matrices.
index_t q_batch_stride;
index_t k_batch_stride;
index_t v_batch_stride;
index_t q_row_stride;
index_t k_row_stride;
index_t v_row_stride;
index_t q_head_stride;
index_t k_head_stride;
index_t v_head_stride;
// The number of heads.
int h, h_k;
// In the case of multi-query and grouped-query attention (MQA/GQA), nheads_k could be
// different from nheads (query).
int h_h_k_ratio; // precompute h / h_k,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Flash_fwd_params : public Qkv_params {
// The O matrix (output).
void * __restrict__ o_ptr;
void * __restrict__ oaccum_ptr;
// The stride between rows of O.
index_t o_batch_stride;
index_t o_row_stride;
index_t o_head_stride;
// The pointer to the P matrix.
void * __restrict__ p_ptr;
// The pointer to the softmax sum.
void * __restrict__ softmax_lse_ptr;
void * __restrict__ softmax_lseaccum_ptr;
// The dimensions.
int b, seqlen_q, seqlen_k, seqlen_knew, d, seqlen_q_rounded, seqlen_k_rounded, d_rounded, rotary_dim;
// The scaling factors for the kernel.
float scale_softmax;
float scale_softmax_log2;
// array of length b+1 holding starting offset of each sequence.
int * __restrict__ cu_seqlens_q;
int * __restrict__ cu_seqlens_k;
// If provided, the actual length of each k sequence.
int * __restrict__ seqused_k;
int *__restrict__ blockmask;
// The K_new and V_new matrices.
void * __restrict__ knew_ptr;
void * __restrict__ vnew_ptr;
// The stride between rows of the Q, K and V matrices.
index_t knew_batch_stride;
index_t vnew_batch_stride;
index_t knew_row_stride;
index_t vnew_row_stride;
index_t knew_head_stride;
index_t vnew_head_stride;
// The cos and sin matrices for rotary embedding.
void * __restrict__ rotary_cos_ptr;
void * __restrict__ rotary_sin_ptr;
// The indices to index into the KV cache.
int *__restrict__ cache_batch_idx;
// The dropout probability (probability of keeping an activation).
float p_dropout;
// uint32_t p_dropout_in_uint;
// uint16_t p_dropout_in_uint16_t;
uint8_t p_dropout_in_uint8_t;
// Scale factor of 1 / (1 - p_dropout).
float rp_dropout;
float scale_softmax_rp_dropout;
// Local window size
int window_size_left, window_size_right;
bool is_bf16;
bool is_causal;
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
bool is_seqlens_k_cumulative;
bool is_rotary_interleaved;
int num_splits; // For split-KV version
void * __restrict__ alibi_slopes_ptr;
index_t alibi_slopes_batch_stride;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Flash_bwd_params : public Flash_fwd_params {
// The dO and dQKV matrices.
void *__restrict__ do_ptr;
void *__restrict__ dq_ptr;
void *__restrict__ dk_ptr;
void *__restrict__ dv_ptr;
// To accumulate dQ
void *__restrict__ dq_accum_ptr;
void *__restrict__ dk_accum_ptr;
void *__restrict__ dv_accum_ptr;
// // To accumulate dK and dV in case we're splitting the bwd along seqlen_q
// dimension void *__restrict__ dk_accum_ptr; void *__restrict__
// dv_accum_ptr;
// The stride between rows of the dO, dQ, dK and dV matrices.
// TD [2022-04-16]: We're using 32-bit indexing to save registers.
// The code probably won't work for arrays larger than 2GB.
index_t do_batch_stride;
index_t do_row_stride;
index_t do_head_stride;
index_t dq_batch_stride;
index_t dk_batch_stride;
index_t dv_batch_stride;
index_t dq_row_stride;
index_t dk_row_stride;
index_t dv_row_stride;
index_t dq_head_stride;
index_t dk_head_stride;
index_t dv_head_stride;
// The pointer to the softmax d sum.
void *__restrict__ dsoftmax_sum;
bool deterministic;
index_t dq_accum_split_stride;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T, int Headdim> void run_mha_fwd_(Flash_fwd_params ¶ms, cudaStream_t stream);
template<typename T, int Headdim> void run_mha_fwd_splitkv_dispatch(Flash_fwd_params ¶ms, cudaStream_t stream);
template<typename T, int Headdim> void run_mha_bwd_(Flash_bwd_params ¶ms, cudaStream_t stream, const bool configure);
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim192_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim192<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/kernels/flash_fwd_hdim224_bf16_sm80.cu | // Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::bfloat16_t, 224>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim224<cutlass::bfloat16_t>(params, stream);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/tests/flash_attn_tests.rs | use anyhow::Result;
use candle::{DType, Device, IndexOp, Tensor, D};
fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
let b = 10f32.powi(digits);
let t = t.to_vec3::<f32>()?;
let t = t
.iter()
.map(|t| {
t.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect()
})
.collect();
Ok(t)
}
fn fa_acausal(q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32) -> Result<Tensor> {
let in_dtype = q.dtype();
let q = q.to_dtype(DType::F32)?;
let k = k.to_dtype(DType::F32)?;
let v = v.to_dtype(DType::F32)?;
let att = (q.matmul(&k.t()?)? * softmax_scale as f64)?;
let att = candle_nn::ops::softmax(&att, D::Minus1)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let output = att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?;
Ok(output)
}
#[test]
fn flash_attn_acausal() -> Result<()> {
let device = Device::new_cuda(0)?;
let q = Tensor::arange(0u32, 48, &device)?
.to_dtype(DType::F16)?
.reshape((1, 3, 2, 8))?;
let k = (&q / 40.)?;
let v = (&q / 50.)?;
let q = (&q / 30.)?;
let ys1 = fa_acausal(&q, &k, &v, 0.5)?;
let ys1 = ys1.i(0)?.to_dtype(DType::F32)?;
let ys2 = {
let q = q.transpose(1, 2)?;
let k = k.transpose(1, 2)?;
let v = v.transpose(1, 2)?;
candle_flash_attn::flash_attn(&q, &k, &v, 0.5, false)?.transpose(1, 2)?
};
let ys2 = ys2.i(0)?.to_dtype(DType::F32)?;
let diff = ys1.sub(&ys2)?.abs()?.flatten_all()?.max(0)?;
assert_eq!(ys1.dims(), &[3, 2, 8]);
assert_eq!(
to_vec3_round(ys1, 4)?,
&[
[
[0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238],
[0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322]
],
[
[0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605],
[0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684]
],
[
[0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955],
[0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023]
]
]
);
assert_eq!(ys2.dims(), &[3, 2, 8]);
assert_eq!(
to_vec3_round(ys2, 4)?,
&[
[
[0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238],
[0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322]
],
[
[0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605],
[0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684]
],
[
[0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955],
[0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023]
]
]
);
assert!(diff.to_vec0::<f32>()?.abs() < 1e-5);
Ok(())
}
#[test]
fn flash_attn_varlen() -> Result<()> {
let device = Device::new_cuda(0)?;
let q = Tensor::arange(0u32, 48, &device)?
.to_dtype(DType::F16)?
.reshape((3, 2, 8))?;
let k = (&q / 40.)?;
let v = (&q / 50.)?;
let q = (&q / 30.)?;
let seqlens_q = Tensor::new(&[0u32, 2u32], &device)?;
let seqlens_k = Tensor::new(&[0u32, 2u32], &device)?;
let ys = {
let q = q.transpose(0, 1)?;
let k = k.transpose(0, 1)?;
let v = v.transpose(0, 1)?;
candle_flash_attn::flash_attn_varlen(
&q, &k, &v, &seqlens_q, &seqlens_k, 32, 32, 0.5, false,
)?
.transpose(0, 1)?
};
let ys = ys.to_dtype(DType::F32)?;
assert_eq!(ys.dims(), &[3, 2, 8]);
assert_eq!(
to_vec3_round(ys, 4)?,
&[
[
[0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238],
[0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322]
],
[
[0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605],
[0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684]
],
[
[0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955],
[0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023]
]
]
);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/src/ffi.rs | use core::ffi::{c_int, c_void};
extern "C" {
pub(crate) fn run_mha(
q_ptr: *const c_void,
k_ptr: *const c_void,
v_ptr: *const c_void,
o_ptr: *const c_void,
softmax_lse_ptr: *const c_void,
alibi_slopes_ptr: *const c_void,
cu_seqlens_q_ptr: *const i32,
cu_seqlens_k_ptr: *const i32,
q_batch_stride: u32,
k_batch_stride: u32,
v_batch_stride: u32,
o_batch_stride: u32,
alibi_slopes_batch_stride: u32,
q_row_stride: u32,
k_row_stride: u32,
v_row_stride: u32,
o_row_stride: u32,
q_head_stride: u32,
k_head_stride: u32,
v_head_stride: u32,
o_head_stride: u32,
b: u32,
h: u32,
h_k: u32,
d: u32,
d_rounded: u32,
softmax_scale: f32,
seqlen_q: u32,
seqlen_k: u32,
seqlen_q_rounded: u32,
seqlen_k_rounded: u32,
is_bf16: c_int,
is_causal: c_int,
window_size_left: c_int,
window_size_right: c_int,
);
}
| 0 |
hf_public_repos/candle/candle-flash-attn | hf_public_repos/candle/candle-flash-attn/src/lib.rs | mod ffi;
use candle::backend::BackendStorage;
use candle::cuda_backend::cudarc::driver::DevicePtr;
use candle::cuda_backend::WrapErr;
use candle::{CpuStorage, DType, Layout, Result, Shape, Tensor};
use half::{bf16, f16};
pub struct FlashAttn {
pub softmax_scale: f32,
pub alibi_slopes: Option<Tensor>,
pub window_size_left: Option<usize>,
pub window_size_right: Option<usize>,
}
fn round_multiple(x: usize, m: usize) -> usize {
(x + m - 1) / m * m
}
impl FlashAttn {
fn cuda_fwd_t<
T: candle::cuda_backend::CudaDType + candle::cuda_backend::cudarc::driver::DeviceRepr,
>(
&self,
q: &candle::CudaStorage,
q_l: &Layout,
k: &candle::CudaStorage,
k_l: &Layout,
v: &candle::CudaStorage,
v_l: &Layout,
is_bf16: bool,
) -> Result<(candle::CudaStorage, Shape)> {
// https://github.com/Dao-AILab/flash-attention/blob/b252072409e69c25f2b9d473cc534e49b24decd2/csrc/flash_attn/flash_api.cpp#L187
let dev = q.device();
let out_shape = q_l.shape().clone();
let out_l = Layout::contiguous(&out_shape);
let q = q.as_cuda_slice::<T>()?;
let k = k.as_cuda_slice::<T>()?;
let v = v.as_cuda_slice::<T>()?;
let q = q.slice(q_l.start_offset()..);
let k = k.slice(k_l.start_offset()..);
let v = v.slice(v_l.start_offset()..);
let q_stride = q_l.stride();
let k_stride = k_l.stride();
let v_stride = v_l.stride();
let o_stride = out_l.stride();
let q_rank = q_stride.len();
let k_rank = k_stride.len();
let v_rank = v_stride.len();
let o_rank = o_stride.len();
if q_rank != 4 || k_rank != 4 || v_rank != 4 {
candle::bail!(
"flash-attn expects input tensors of rank 4 (q: {q_rank}, k: {k_rank}, v: {v_rank}"
)
}
if q_stride[q_rank - 1] != 1 {
candle::bail!("the last dim of q must be contiguous {q_stride:?}")
}
if k_stride[k_rank - 1] != 1 {
candle::bail!("the last dim of k must be contiguous {k_stride:?}")
}
if v_stride[v_rank - 1] != 1 {
candle::bail!("the last dim of v must be contiguous {v_stride:?}")
}
let (b_sz, seqlen_q, num_heads, head_size_og) = q_l.shape().dims4()?;
let (_b_sz, seqlen_k, num_heads_k, _head_size_og) = k_l.shape().dims4()?;
let expected_kv = (b_sz, seqlen_k, num_heads_k, head_size_og);
if expected_kv != k_l.shape().dims4()? {
candle::bail!("shape mismatch q {:?} and k {:?}", q_l.shape(), k_l.shape())
}
if expected_kv != v_l.shape().dims4()? {
candle::bail!("shape mismatch q {:?} and v {:?}", q_l.shape(), v_l.shape())
}
if head_size_og > 256 {
candle::bail!("only supports head dimension at most 256 (got {head_size_og})")
}
if head_size_og % 8 != 0 {
// TODO: Handle head sizes that are not a multiple of 8 via some padding.
candle::bail!("only supports head sizes that are a multiple of 8 (got {head_size_og})")
}
if num_heads % num_heads_k != 0 {
candle::bail!("number of k/v heads {num_heads_k} must divide number of heads in query {num_heads}")
}
let alibi_slopes_ptr = if let Some(alibi_slopes) = &self.alibi_slopes {
if alibi_slopes.dtype() != DType::F32 {
candle::bail!(
"DType mismatch alibi_slopes {:?}, expected {:?}",
alibi_slopes.dtype(),
DType::F32
);
}
let (alibi_slopes, alibi_slopes_layout) = alibi_slopes.storage_and_layout();
if num_heads != alibi_slopes_layout.shape().dims1()? {
candle::bail!(
"shape mismatch alibi_slopes {:?}, expected {:?}",
alibi_slopes_layout.shape(),
(num_heads)
);
}
let alibi_slopes = match &*alibi_slopes {
candle::Storage::Cuda(c) => c.as_cuda_slice::<f32>()?,
_ => candle::bail!("alibi_slopes must be a cuda tensor"),
};
let alibi_slopes = alibi_slopes.slice(alibi_slopes_layout.start_offset()..);
*alibi_slopes.device_ptr() as *const core::ffi::c_void
} else {
std::ptr::null()
};
// if window_size_left > self.max_seqlen_k or None => -1
let mut window_size_left = self
.window_size_left
.filter(|v| v <= &seqlen_k)
.map(|v| v as i32)
.unwrap_or(-1);
// if window_size_right > self.max_seqlen_k or None => -1
let mut window_size_right = self
.window_size_right
.filter(|v| v <= &seqlen_k)
.map(|v| v as i32)
.unwrap_or(-1);
let head_size = round_multiple(head_size_og, 8);
let head_size_rounded = round_multiple(head_size, 32);
let seqlen_q_rounded = round_multiple(seqlen_q, 128);
let seqlen_k_rounded = round_multiple(seqlen_k, 128);
let elem_count = out_shape.elem_count();
let dst = unsafe { dev.alloc::<T>(elem_count) }.w()?;
let softmax_lse = dev.alloc_zeros::<f32>(b_sz * num_heads * seqlen_q).w()?;
let is_bf16 = if is_bf16 { 1 } else { 0 };
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
let is_causal = if window_size_left < 0 && window_size_right == 0 {
1
} else {
0
};
if window_size_left < 0 && window_size_right >= 0 {
window_size_left = seqlen_k as i32;
}
if window_size_left >= 0 && window_size_right < 0 {
window_size_right = seqlen_k as i32;
}
unsafe {
let q_ptr = *q.device_ptr() as *const core::ffi::c_void;
let k_ptr = *k.device_ptr() as *const core::ffi::c_void;
let v_ptr = *v.device_ptr() as *const core::ffi::c_void;
let dst_ptr = *dst.device_ptr() as *const core::ffi::c_void;
let softmax_lse_ptr = *softmax_lse.device_ptr() as *const core::ffi::c_void;
ffi::run_mha(
q_ptr,
k_ptr,
v_ptr,
dst_ptr,
softmax_lse_ptr,
/* alibi_slopes_ptr */ alibi_slopes_ptr,
/* cu_seqlens_q_ptr */ std::ptr::null(),
/* cu_seqlens_k_ptr */ std::ptr::null(),
/* q_batch_stride */ q_stride[0] as u32,
/* k_batch_stride */ k_stride[0] as u32,
/* v_batch_stride */ v_stride[0] as u32,
/* o_batch_stride */ o_stride[0] as u32,
/* alibi_slopes_batch_stride */ 0,
/* q_row_stride */ q_stride[q_rank - 3] as u32,
/* k_row_stride */ k_stride[k_rank - 3] as u32,
/* v_row_stride */ v_stride[v_rank - 3] as u32,
/* o_row_stride */ o_stride[o_rank - 3] as u32,
/* q_head_stride */ q_stride[q_rank - 2] as u32,
/* k_head_stride */ k_stride[k_rank - 2] as u32,
/* v_head_stride */ v_stride[v_rank - 2] as u32,
/* o_head_stride */ o_stride[o_rank - 2] as u32,
/* b */ b_sz as u32,
/* h */ num_heads as u32,
/* h_k */ num_heads_k as u32,
/* d */ head_size as u32,
/* d_rounded */ head_size_rounded as u32,
/* softmax_scale*/ self.softmax_scale,
/* seqlen_q */ seqlen_q as u32,
/* seqlen_k */ seqlen_k as u32,
/* seqlen_q_rounded */ seqlen_q_rounded as u32,
/* seqlen_k_rounded */ seqlen_k_rounded as u32,
/* is_bf16 */ is_bf16,
/* is_causal */ is_causal,
/* window_size_left */ window_size_left,
/* window_size_right */ window_size_right,
)
}
let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev.clone());
Ok((dst, out_shape))
}
}
impl candle::CustomOp3 for FlashAttn {
fn name(&self) -> &'static str {
"flash-attn"
}
fn cpu_fwd(
&self,
_: &CpuStorage,
_: &Layout,
_: &CpuStorage,
_: &Layout,
_: &CpuStorage,
_: &Layout,
) -> Result<(CpuStorage, Shape)> {
candle::bail!("no cpu support for flash-attn")
}
fn cuda_fwd(
&self,
q: &candle::CudaStorage,
q_l: &Layout,
k: &candle::CudaStorage,
k_l: &Layout,
v: &candle::CudaStorage,
v_l: &Layout,
) -> Result<(candle::CudaStorage, Shape)> {
match q.dtype() {
candle::DType::F16 => self.cuda_fwd_t::<f16>(q, q_l, k, k_l, v, v_l, false),
candle::DType::BF16 => self.cuda_fwd_t::<bf16>(q, q_l, k, k_l, v, v_l, true),
dt => candle::bail!("flash-attn is only supported for f16/bf16 ({dt:?})"),
}
}
}
/// Flash-attention v2 layer.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
///
/// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`.
pub fn flash_attn(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
let window_size_left = None;
let window_size_right = if causal { Some(0) } else { None };
let op = FlashAttn {
softmax_scale,
alibi_slopes: None,
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
/// Flash-attention v2 layer.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `window_size_left` - Limit left attention to value tokens.
/// * `window_size_right` - Limit right attention to value tokens.
///
/// # Causal mask
///
/// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result
/// of `Q @ K^T`
///
/// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`.
pub fn flash_attn_windowed(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
window_size_left: Option<usize>,
window_size_right: Option<usize>,
) -> Result<Tensor> {
let op = FlashAttn {
softmax_scale,
alibi_slopes: None,
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
/// Flash-attention v2 layer.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`.
///
/// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`.
pub fn flash_attn_alibi(
q: &Tensor,
k: &Tensor,
v: &Tensor,
alibi_slopes: &Tensor,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
let window_size_left = None;
let window_size_right = if causal { Some(0) } else { None };
let op = FlashAttn {
softmax_scale,
alibi_slopes: Some(alibi_slopes.clone()),
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
/// Flash-attention v2 layer.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`.
/// * `window_size_left` - Limit left attention to value tokens.
/// * `window_size_right` - Limit right attention to value tokens.
///
/// # Causal mask
///
/// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result
/// of `Q @ K^T`
///
/// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`.
pub fn flash_attn_alibi_windowed(
q: &Tensor,
k: &Tensor,
v: &Tensor,
alibi_slopes: &Tensor,
softmax_scale: f32,
window_size_left: Option<usize>,
window_size_right: Option<usize>,
) -> Result<Tensor> {
let op = FlashAttn {
softmax_scale,
alibi_slopes: Some(alibi_slopes.clone()),
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
struct FlashAttnVarLen {
pub softmax_scale: f32,
pub max_seqlen_q: usize,
pub max_seqlen_k: usize,
pub seqlens_q: Tensor,
pub seqlens_k: Tensor,
pub alibi_slopes: Option<Tensor>,
pub window_size_left: Option<usize>,
pub window_size_right: Option<usize>,
}
impl FlashAttnVarLen {
fn cuda_fwd_t<
T: candle::cuda_backend::CudaDType + candle::cuda_backend::cudarc::driver::DeviceRepr,
>(
&self,
q: &candle::CudaStorage,
q_l: &Layout,
k: &candle::CudaStorage,
k_l: &Layout,
v: &candle::CudaStorage,
v_l: &Layout,
is_bf16: bool,
) -> Result<(candle::CudaStorage, Shape)> {
// https://github.com/Dao-AILab/flash-attention/blob/184b992dcb2a0890adaa19eb9b541c3e4f9d2a08/csrc/flash_attn/flash_api.cpp#L327
let dev = q.device();
let out_shape = q_l.shape().clone();
let out_l = Layout::contiguous(&out_shape);
let (seqlens_q, seqlens_q_layout) = self.seqlens_q.storage_and_layout();
let seqlens_q = match &*seqlens_q {
candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32!
_ => candle::bail!("seqlens_q must be a cuda tensor"),
};
let seqlens_q = match seqlens_q_layout.contiguous_offsets() {
Some((o1, o2)) => seqlens_q.slice(o1..o2),
None => candle::bail!("seqlens_q has to be contiguous"),
};
let (seqlens_k, seqlens_k_layout) = self.seqlens_k.storage_and_layout();
let seqlens_k = match &*seqlens_k {
candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32!
_ => candle::bail!("seqlens_k must be a cuda tensor"),
};
let seqlens_k = match seqlens_k_layout.contiguous_offsets() {
Some((o1, o2)) => seqlens_k.slice(o1..o2),
None => candle::bail!("seqlens_k has to be contiguous"),
};
let q = q.as_cuda_slice::<f16>()?;
let k = k.as_cuda_slice::<f16>()?;
let v = v.as_cuda_slice::<f16>()?;
let q = q.slice(q_l.start_offset()..);
let k = k.slice(k_l.start_offset()..);
let v = v.slice(v_l.start_offset()..);
let q_stride = q_l.stride();
let k_stride = k_l.stride();
let v_stride = v_l.stride();
let o_stride = out_l.stride();
let q_rank = q_stride.len();
let k_rank = k_stride.len();
let v_rank = v_stride.len();
let o_rank = o_stride.len();
if q_rank != 3 || k_rank != 3 || v_rank != 3 {
candle::bail!(
"flash-attn-varlen expects input tensors of rank 3 (q: {q_rank}, k: {k_rank}, v: {v_rank}"
)
}
if q_stride[q_rank - 1] != 1 {
candle::bail!("the last dim of q must be contiguous {q_stride:?}")
}
if k_stride[k_rank - 1] != 1 {
candle::bail!("the last dim of k must be contiguous {k_stride:?}")
}
if v_stride[v_rank - 1] != 1 {
candle::bail!("the last dim of v must be contiguous {v_stride:?}")
}
let (_total_q, num_heads, head_size_og) = q_l.shape().dims3()?;
let (total_k, num_heads_k, _head_size_og) = k_l.shape().dims3()?;
let expected_kv = (total_k, num_heads_k, head_size_og);
if expected_kv != k_l.shape().dims3()? {
candle::bail!("shape mismatch q {:?} and k {:?}", q_l.shape(), k_l.shape())
}
if expected_kv != v_l.shape().dims3()? {
candle::bail!("shape mismatch q {:?} and v {:?}", q_l.shape(), v_l.shape())
}
if head_size_og > 256 {
candle::bail!("only supports head dimension at most 256 (got {head_size_og})")
}
if head_size_og % 8 != 0 {
// TODO: Handle head sizes that are not a multiple of 8 via some padding.
candle::bail!("only supports head sizes that are a multiple of 8 (got {head_size_og})")
}
if num_heads % num_heads_k != 0 {
candle::bail!("number of k/v heads {num_heads_k} must divide number of heads in query {num_heads}")
}
let nseqlens_q = seqlens_q_layout.shape().dims1()?;
if nseqlens_q < 2 {
candle::bail!("seqlens_q should have a len >= 2 {nseqlens_q}")
}
let nseqlens_k = seqlens_k_layout.shape().dims1()?;
if nseqlens_k != nseqlens_q {
candle::bail!("seqlens_q and seqlens_k should have the same number of elements {nseqlens_q} <> {nseqlens_k}")
}
let batch_size = nseqlens_q - 1;
let alibi_slopes_ptr = if let Some(alibi_slopes) = &self.alibi_slopes {
if alibi_slopes.dtype() != DType::F32 {
candle::bail!(
"DType mismatch alibi_slopes {:?}, expected {:?}",
alibi_slopes.dtype(),
DType::F32
);
}
let (alibi_slopes, alibi_slopes_layout) = alibi_slopes.storage_and_layout();
if num_heads != alibi_slopes_layout.shape().dims1()? {
candle::bail!(
"shape mismatch alibi_slopes {:?}, expected {:?}",
alibi_slopes_layout.shape(),
(num_heads)
);
}
let alibi_slopes = match &*alibi_slopes {
candle::Storage::Cuda(c) => c.as_cuda_slice::<f32>()?,
_ => candle::bail!("alibi_slopes must be a cuda tensor"),
};
let alibi_slopes = alibi_slopes.slice(alibi_slopes_layout.start_offset()..);
*alibi_slopes.device_ptr() as *const core::ffi::c_void
} else {
std::ptr::null()
};
// if window_size_left > self.max_seqlen_k or None => -1
let mut window_size_left = self
.window_size_left
.filter(|v| v <= &self.max_seqlen_k)
.map(|v| v as i32)
.unwrap_or(-1);
// if window_size_right > self.max_seqlen_k or None => -1
let mut window_size_right = self
.window_size_right
.filter(|v| v <= &self.max_seqlen_k)
.map(|v| v as i32)
.unwrap_or(-1);
let head_size = round_multiple(head_size_og, 8);
let head_size_rounded = round_multiple(head_size, 32);
let seqlen_q_rounded = round_multiple(self.max_seqlen_q, 128);
let seqlen_k_rounded = round_multiple(self.max_seqlen_k, 128);
let elem_count = out_shape.elem_count();
let dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
let softmax_lse = dev
.alloc_zeros::<f32>(batch_size * num_heads * self.max_seqlen_q)
.w()?;
let is_bf16 = if is_bf16 { 1 } else { 0 };
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
let is_causal = if window_size_left < 0 && window_size_right == 0 {
1
} else {
0
};
if window_size_left < 0 && window_size_right >= 0 {
window_size_left = self.max_seqlen_k as i32;
}
if window_size_left >= 0 && window_size_right < 0 {
window_size_right = self.max_seqlen_k as i32;
}
unsafe {
let q_ptr = *q.device_ptr() as *const core::ffi::c_void;
let k_ptr = *k.device_ptr() as *const core::ffi::c_void;
let v_ptr = *v.device_ptr() as *const core::ffi::c_void;
let dst_ptr = *dst.device_ptr() as *const core::ffi::c_void;
let softmax_lse_ptr = *softmax_lse.device_ptr() as *const core::ffi::c_void;
let seqlens_q_ptr = *seqlens_q.device_ptr() as *const core::ffi::c_int;
let seqlens_k_ptr = *seqlens_k.device_ptr() as *const core::ffi::c_int;
ffi::run_mha(
q_ptr,
k_ptr,
v_ptr,
dst_ptr,
softmax_lse_ptr,
/* alibi_slopes_ptr */ alibi_slopes_ptr,
/* cu_seqlens_q_ptr */ seqlens_q_ptr,
/* cu_seqlens_k_ptr */ seqlens_k_ptr,
/* q_batch_stride */ 0,
/* k_batch_stride */ 0,
/* v_batch_stride */ 0,
/* o_batch_stride */ 0,
/* alibi_slopes_batch_stride */ 0,
/* q_row_stride */ q_stride[q_rank - 3] as u32,
/* k_row_stride */ k_stride[k_rank - 3] as u32,
/* v_row_stride */ v_stride[v_rank - 3] as u32,
/* o_row_stride */ o_stride[o_rank - 3] as u32,
/* q_head_stride */ q_stride[q_rank - 2] as u32,
/* k_head_stride */ k_stride[k_rank - 2] as u32,
/* v_head_stride */ v_stride[v_rank - 2] as u32,
/* o_head_stride */ o_stride[o_rank - 2] as u32,
/* b */ batch_size as u32,
/* h */ num_heads as u32,
/* h_k */ num_heads_k as u32,
/* d */ head_size as u32,
/* d_rounded */ head_size_rounded as u32,
/* softmax_scale*/ self.softmax_scale,
/* seqlen_q */ self.max_seqlen_q as u32,
/* seqlen_k */ self.max_seqlen_k as u32,
/* seqlen_q_rounded */ seqlen_q_rounded as u32,
/* seqlen_k_rounded */ seqlen_k_rounded as u32,
/* is_bf16 */ is_bf16,
/* is_causal */ is_causal,
/* window_size_left */ window_size_left,
/* window_size_right */ window_size_right,
)
}
let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev.clone());
Ok((dst, out_shape))
}
}
impl candle::CustomOp3 for FlashAttnVarLen {
fn name(&self) -> &'static str {
"flash-attn-varlen"
}
fn cpu_fwd(
&self,
_: &CpuStorage,
_: &Layout,
_: &CpuStorage,
_: &Layout,
_: &CpuStorage,
_: &Layout,
) -> Result<(CpuStorage, Shape)> {
candle::bail!("no cpu support for flash-attn")
}
fn cuda_fwd(
&self,
q: &candle::CudaStorage,
q_l: &Layout,
k: &candle::CudaStorage,
k_l: &Layout,
v: &candle::CudaStorage,
v_l: &Layout,
) -> Result<(candle::CudaStorage, Shape)> {
match q.dtype() {
candle::DType::F16 => self.cuda_fwd_t::<f16>(q, q_l, k, k_l, v, v_l, false),
candle::DType::BF16 => self.cuda_fwd_t::<bf16>(q, q_l, k, k_l, v, v_l, true),
dt => candle::bail!("flash-attn is only supported for f16/bf16 ({dt:?})"),
}
}
}
#[allow(clippy::too_many_arguments)]
/// Flash-attention v2 layer with variable-length batching.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q.
/// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v.
/// * `max_seqlen_q` - The maximum query sequence length for q in the batch.
/// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch.
///
/// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`,
/// `seqlen_1 + seqlen_2`, etc.
///
/// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`.
pub fn flash_attn_varlen(
q: &Tensor,
k: &Tensor,
v: &Tensor,
seqlens_q: &Tensor,
seqlens_k: &Tensor,
max_seqlen_q: usize,
max_seqlen_k: usize,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
let window_size_left = None;
let window_size_right = if causal { Some(0) } else { None };
let op = FlashAttnVarLen {
softmax_scale,
max_seqlen_q,
max_seqlen_k,
seqlens_q: seqlens_q.clone(),
seqlens_k: seqlens_k.clone(),
alibi_slopes: None,
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
#[allow(clippy::too_many_arguments)]
/// Flash-attention v2 layer with variable-length batching.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q.
/// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v.
/// * `max_seqlen_q` - The maximum query sequence length for q in the batch.
/// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch.
/// * `window_size_left` - Limit left attention to value tokens.
/// * `window_size_right` - Limit right attention to value tokens.
///
/// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`,
/// `seqlen_1 + seqlen_2`, etc.
///
/// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`.
///
/// # Causal mask
///
/// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result
/// of `Q @ K^T`
pub fn flash_attn_varlen_windowed(
q: &Tensor,
k: &Tensor,
v: &Tensor,
seqlens_q: &Tensor,
seqlens_k: &Tensor,
max_seqlen_q: usize,
max_seqlen_k: usize,
softmax_scale: f32,
window_size_left: Option<usize>,
window_size_right: Option<usize>,
) -> Result<Tensor> {
let op = FlashAttnVarLen {
softmax_scale,
max_seqlen_q,
max_seqlen_k,
seqlens_q: seqlens_q.clone(),
seqlens_k: seqlens_k.clone(),
alibi_slopes: None,
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
#[allow(clippy::too_many_arguments)]
/// Flash-attention v2 layer with variable-length batching.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`.
/// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q.
/// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v.
/// * `max_seqlen_q` - The maximum query sequence length for q in the batch.
/// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch.
///
/// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`,
/// `seqlen_1 + seqlen_2`, etc.
///
/// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`.
pub fn flash_attn_varlen_alibi(
q: &Tensor,
k: &Tensor,
v: &Tensor,
alibi_slopes: &Tensor,
seqlens_q: &Tensor,
seqlens_k: &Tensor,
max_seqlen_q: usize,
max_seqlen_k: usize,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
let window_size_left = None;
let window_size_right = if causal { Some(0) } else { None };
let op = FlashAttnVarLen {
softmax_scale,
max_seqlen_q,
max_seqlen_k,
seqlens_q: seqlens_q.clone(),
seqlens_k: seqlens_k.clone(),
alibi_slopes: Some(alibi_slopes.clone()),
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
#[allow(clippy::too_many_arguments)]
/// Flash-attention v2 layer with variable-length batching.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`.
/// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`.
/// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q.
/// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v.
/// * `max_seqlen_q` - The maximum query sequence length for q in the batch.
/// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch.
/// * `window_size_left` - Limit left attention to value tokens.
/// * `window_size_right` - Limit right attention to value tokens.
///
/// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`,
/// `seqlen_1 + seqlen_2`, etc.
///
/// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`.
///
/// # Causal mask
///
/// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result
/// of `Q @ K^T`
pub fn flash_attn_varlen_alibi_windowed(
q: &Tensor,
k: &Tensor,
v: &Tensor,
alibi_slopes: &Tensor,
seqlens_q: &Tensor,
seqlens_k: &Tensor,
max_seqlen_q: usize,
max_seqlen_k: usize,
softmax_scale: f32,
window_size_left: Option<usize>,
window_size_right: Option<usize>,
) -> Result<Tensor> {
let op = FlashAttnVarLen {
softmax_scale,
max_seqlen_q,
max_seqlen_k,
seqlens_q: seqlens_q.clone(),
seqlens_k: seqlens_k.clone(),
alibi_slopes: Some(alibi_slopes.clone()),
window_size_left,
window_size_right,
};
q.apply_op3(k, v, op)
}
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-kernels/build.rs | fn main() {
println!("cargo:rerun-if-changed=build.rs");
let builder = bindgen_cuda::Builder::default();
println!("cargo:info={builder:?}");
let bindings = builder.build_ptx().unwrap();
bindings.write("src/lib.rs").unwrap();
}
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-kernels/README.md | # candle-kernels
This crate contains CUDA kernels used from candle. Some of these implementations
come from the [dfdx crate](https://github.com/coreylowman/dfdx).
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-kernels/Cargo.toml | [package]
name = "candle-kernels"
version = "0.3.3"
edition = "2021"
description = "CUDA kernels for Candle"
repository = "https://github.com/huggingface/candle"
keywords = ["blas", "tensor", "machine-learning"]
categories = ["science"]
license = "MIT OR Apache-2.0"
[dependencies]
[build-dependencies]
bindgen_cuda = "0.1.1"
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/indexing.cu | // WARNING: THIS IS ONLY VALID ASSUMING THAT inp IS CONTIGUOUS!
// TODO: proper error reporting when ids are larger than v_size.
#include "cuda_utils.cuh"
#include<stdint.h>
template<typename T, typename I>
__device__ void index_select(
const size_t numel,
const size_t num_dims,
const size_t *info,
const I *ids,
const T *inp,
T *out,
const size_t left_size,
const size_t src_dim_size,
const size_t ids_dim_size,
const size_t right_size
) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
bool b = is_contiguous(num_dims, dims, strides);
for (unsigned int dst_i = blockIdx.x * blockDim.x + threadIdx.x; dst_i < numel; dst_i += blockDim.x * gridDim.x) {
unsigned int left_i = dst_i / (ids_dim_size * right_size);
unsigned int id_i = dst_i / right_size % ids_dim_size;
unsigned int right_i = dst_i % right_size;
unsigned int src_i = left_i * (src_dim_size * right_size) + ids[id_i] * right_size + right_i;
unsigned strided_i = b ? src_i : get_strided_index(src_i, num_dims, dims, strides);
out[dst_i] = inp[strided_i];
}
}
#define IS_OP(TYPENAME, INDEX_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const INDEX_TYPENAME *ids, \
const TYPENAME *inp, \
TYPENAME *out, \
const size_t left_size, \
const size_t src_dim_size, \
const size_t ids_dim_size, \
const size_t right_size \
) { index_select(numel, num_dims, info, ids, inp, out, left_size, src_dim_size, ids_dim_size, right_size); } \
template<typename T, typename I>
__device__ void gather(
const size_t numel,
const I *ids,
const T *inp,
T *out,
const size_t left_size,
const size_t src_dim_size,
const size_t ids_dim_size,
const size_t right_size
) {
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
size_t post = i % right_size;
size_t idx = ids[i];
size_t pre = i / (right_size * ids_dim_size);
size_t src_i = (pre * src_dim_size + idx) * right_size + post;
out[i] = inp[src_i];
}
}
#define GATHER_OP(TYPENAME, INDEX_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const INDEX_TYPENAME *ids, \
const TYPENAME *inp, \
TYPENAME *out, \
const size_t left_size, \
const size_t src_dim_size, \
const size_t ids_dim_size, \
const size_t right_size \
) { gather(numel, ids, inp, out, left_size, src_dim_size, ids_dim_size, right_size); } \
template<typename T, typename I>
__device__ void index_add(
const I *ids,
const size_t ids_dim_size,
const T *inp,
T *out,
const size_t left_size,
const size_t src_dim_size,
const size_t dst_dim_size,
const size_t right_size
) {
const size_t numel = left_size * right_size;
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
const size_t pre = i / right_size;
const size_t post = i % right_size;
for (unsigned int j = 0; j < ids_dim_size; ++j) {
const size_t idx = ids[j];
const size_t src_i = (pre * ids_dim_size + j) * right_size + post;
const size_t dst_i = (pre * dst_dim_size + idx) * right_size + post;
out[dst_i] += inp[src_i];
}
}
}
#define IA_OP(TYPENAME, INDEX_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const INDEX_TYPENAME *ids, \
const size_t ids_dim_size, \
const TYPENAME *inp, \
TYPENAME *out, \
const size_t left_size, \
const size_t src_dim_size, \
const size_t dst_dim_size, \
const size_t right_size \
) { index_add(ids, ids_dim_size, inp, out, left_size, src_dim_size, dst_dim_size, right_size); } \
template<typename T, typename I>
__device__ void scatter_add(
const I *ids,
const T *inp,
T *out,
const size_t left_size,
const size_t src_dim_size,
const size_t dst_dim_size,
const size_t right_size
) {
const size_t numel = left_size * right_size;
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
const size_t pre = i / right_size;
const size_t post = i % right_size;
for (unsigned int j = 0; j < src_dim_size; ++j) {
const size_t src_i = (pre * src_dim_size + j) * right_size + post;
const size_t idx = ids[src_i];
const size_t dst_i = (pre * dst_dim_size + idx) * right_size + post;
out[dst_i] += inp[src_i];
}
}
}
#define SA_OP(TYPENAME, INDEX_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const INDEX_TYPENAME *ids, \
const TYPENAME *inp, \
TYPENAME *out, \
const size_t left_size, \
const size_t src_dim_size, \
const size_t dst_dim_size, \
const size_t right_size \
) { scatter_add(ids, inp, out, left_size, src_dim_size, dst_dim_size, right_size); } \
#if __CUDA_ARCH__ >= 800
IS_OP(__nv_bfloat16, int64_t, is_i64_bf16)
IS_OP(__nv_bfloat16, uint32_t, is_u32_bf16)
IS_OP(__nv_bfloat16, uint8_t, is_u8_bf16)
GATHER_OP(__nv_bfloat16, int64_t, gather_i64_bf16)
GATHER_OP(__nv_bfloat16, uint32_t, gather_u32_bf16)
GATHER_OP(__nv_bfloat16, uint8_t, gather_u8_bf16)
IA_OP(__nv_bfloat16, int64_t, ia_i64_bf16)
IA_OP(__nv_bfloat16, uint32_t, ia_u32_bf16)
IA_OP(__nv_bfloat16, uint8_t, ia_u8_bf16)
SA_OP(__nv_bfloat16, int64_t, sa_i64_bf16)
SA_OP(__nv_bfloat16, uint32_t, sa_u32_bf16)
SA_OP(__nv_bfloat16, uint8_t, sa_u8_bf16)
#endif
#if __CUDA_ARCH__ >= 530
IS_OP(__half, int64_t, is_i64_f16)
IS_OP(__half, uint32_t, is_u32_f16)
IS_OP(__half, uint8_t, is_u8_f16)
GATHER_OP(__half, int64_t, gather_i64_f16)
GATHER_OP(__half, uint32_t, gather_u32_f16)
GATHER_OP(__half, uint8_t, gather_u8_f16)
IA_OP(__half, uint32_t, ia_u32_f16)
IA_OP(__half, uint8_t, ia_u8_f16)
SA_OP(__half, uint32_t, sa_u32_f16)
SA_OP(__half, uint8_t, sa_u8_f16)
#endif
IS_OP(float, int64_t, is_i64_f32)
IS_OP(double, int64_t, is_i64_f64)
IS_OP(uint8_t, int64_t, is_i64_u8)
IS_OP(uint32_t, int64_t, is_i64_u32)
IS_OP(int64_t, int64_t, is_i64_i64)
IS_OP(float, uint32_t, is_u32_f32)
IS_OP(double, uint32_t, is_u32_f64)
IS_OP(uint8_t, uint32_t, is_u32_u8)
IS_OP(int64_t, uint32_t, is_u32_i64)
IS_OP(uint32_t, uint32_t, is_u32_u32)
IS_OP(float, uint8_t, is_u8_f32)
IS_OP(double, uint8_t, is_u8_f64)
IS_OP(uint8_t, uint8_t, is_u8_u8)
IS_OP(uint32_t, uint8_t, is_u8_u32)
IS_OP(int64_t, uint8_t, is_u8_i64)
GATHER_OP(float, int64_t, gather_i64_f32)
GATHER_OP(double, int64_t, gather_i64_f64)
GATHER_OP(uint8_t, int64_t, gather_i64_u8)
GATHER_OP(uint32_t, int64_t, gather_i64_u32)
GATHER_OP(int64_t, int64_t, gather_i64_i64)
GATHER_OP(float, uint32_t, gather_u32_f32)
GATHER_OP(double, uint32_t, gather_u32_f64)
GATHER_OP(uint8_t, uint32_t, gather_u32_u8)
GATHER_OP(int64_t, uint32_t, gather_u32_i64)
GATHER_OP(uint32_t, uint32_t, gather_u32_u32)
GATHER_OP(float, uint8_t, gather_u8_f32)
GATHER_OP(double, uint8_t, gather_u8_f64)
GATHER_OP(uint8_t, uint8_t, gather_u8_u8)
GATHER_OP(uint32_t, uint8_t, gather_u8_u32)
GATHER_OP(int64_t, uint8_t, gather_u8_i64)
IA_OP(float, int64_t, ia_i64_f32)
IA_OP(double, int64_t, ia_i64_f64)
IA_OP(uint8_t, int64_t, ia_i64_u8)
IA_OP(int64_t, int64_t, ia_i64_i64)
IA_OP(uint32_t, int64_t, ia_i64_u32)
IA_OP(float, uint32_t, ia_u32_f32)
IA_OP(double, uint32_t, ia_u32_f64)
IA_OP(uint8_t, uint32_t, ia_u32_u8)
IA_OP(int64_t, uint32_t, ia_u32_i64)
IA_OP(uint32_t, uint32_t, ia_u32_u32)
IA_OP(float, uint8_t, ia_u8_f32)
IA_OP(double, uint8_t, ia_u8_f64)
IA_OP(uint8_t, uint8_t, ia_u8_u8)
IA_OP(uint32_t, uint8_t, ia_u8_u32)
IA_OP(int64_t, uint8_t, ia_u8_i64)
SA_OP(float, int64_t, sa_i64_f32)
SA_OP(double, int64_t, sa_i64_f64)
SA_OP(uint8_t, int64_t, sa_i64_u8)
SA_OP(int64_t, int64_t, sa_i64_i64)
SA_OP(uint32_t, int64_t, sa_i64_u32)
SA_OP(float, uint32_t, sa_u32_f32)
SA_OP(double, uint32_t, sa_u32_f64)
SA_OP(uint8_t, uint32_t, sa_u32_u8)
SA_OP(int64_t, uint32_t, sa_u32_i64)
SA_OP(uint32_t, uint32_t, sa_u32_u32)
SA_OP(float, uint8_t, sa_u8_f32)
SA_OP(double, uint8_t, sa_u8_f64)
SA_OP(uint8_t, uint8_t, sa_u8_u8)
SA_OP(uint32_t, uint8_t, sa_u8_u32)
SA_OP(int64_t, uint8_t, sa_u8_i64)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/cuda_utils.cuh | #include "compatibility.cuh"
#include<stdint.h>
#include<cmath>
// TODO: This is often used to check that the data is contiguous so that
// kernels can be easily mapped. However this only returns true for row
// major, if all the inputs are column major, we could apply the fast path
// too (but we wouldn't if some of them are row major and some column major).
__device__ bool is_contiguous(
const size_t num_dims,
const size_t *dims,
const size_t *strides
) {
size_t acc = 1;
for (unsigned int d = 0; d < num_dims; d++) {
unsigned int dim_idx = num_dims - 1 - d;
if (acc != strides[dim_idx]) {
return false;
}
acc *= dims[dim_idx];
}
return true;
}
__device__ unsigned int get_strided_index(
unsigned int idx,
const size_t num_dims,
const size_t *dims,
const size_t *strides
) {
unsigned int strided_i = 0;
for (unsigned int d = 0; d < num_dims; d++) {
unsigned int dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
__device__ unsigned int restrided(
const unsigned int strided_i,
const size_t num_dims,
const size_t *dims,
const size_t *strides,
const size_t *new_strides
) {
unsigned int idx = 0;
for (int d = 0; d < num_dims; d++) {
idx += (strides[d] == 0 ? 0 : (strided_i / strides[d]) % dims[d]) * new_strides[d];
}
return idx;
}
// Sourced from https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
// Input must be less than or equal to 2 ^ 16
// used in reductions
__device__ __forceinline__ unsigned int next_power_of_two(unsigned int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v++;
return v;
}
// Efficiently computes the sum of each chunk in "data" of size chunk_len, and
// stores the sums in out[i / chunk_len]
template<typename T>
__device__ void chunk_sum(
const size_t chunk_len,
const T data,
T* out
) {
__shared__ T buf[1024];
// assumes that threads where i >= numel have already exited
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int block_i = threadIdx.x;
// Fall back to atomicAdd if chunk_len is small to reduce overhead
if (chunk_len <= 2) {
atomicAdd(out + i / chunk_len, data);
return;
}
buf[block_i] = data;
unsigned int chunk_i = i % chunk_len;
unsigned int chunk_start = max((int)(block_i - chunk_i), 0);
unsigned int chunk_end = min((unsigned int)(block_i + chunk_len - chunk_i), blockDim.x);
chunk_i = block_i - chunk_start;
size_t max_chunk_len = min(chunk_end - chunk_start, blockDim.x);
size_t incr = next_power_of_two(max_chunk_len) >> 1;
__syncthreads();
// Uses sequential addressing as discussed in
// https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
for (; incr > 0; incr >>= 1) {
unsigned int block_i_2 = block_i + incr;
if (block_i_2 < chunk_end && chunk_i < incr) {
// This is sound because __syncthreads and the conditions above
// ensure that no data races occur
buf[block_i] += buf[block_i_2];
}
__syncthreads();
}
if (block_i == chunk_start) {
atomicAdd(out + i / chunk_len, buf[block_i]);
}
}
__device__ __forceinline__ bool isnang(float a) { return isnan(a); }
__device__ __forceinline__ bool isnang(double a) { return isnan(a); }
__device__ __forceinline__ float recipg(float a) { return 1.0 / a; }
__device__ __forceinline__ double recipg(double a) { return 1.0 / a; }
__device__ __forceinline__ float cosg(float a) { return cosf(a); }
__device__ __forceinline__ double cosg(double a) { return cos(a); }
__device__ __forceinline__ float sing(float a) { return sinf(a); }
__device__ __forceinline__ double sing(double a) { return sin(a); }
__device__ __forceinline__ float sqrtg(float a) { return sqrtf(a); }
__device__ __forceinline__ double sqrtg(double a) { return sqrt(a); }
__device__ __forceinline__ float powg(float a, float b) { return powf(a, b); }
__device__ __forceinline__ double powg(double a, double b) { return pow(a, b); }
__device__ __forceinline__ float tanhg(float a) { return tanhf(a); }
__device__ __forceinline__ double tanhg(double a) { return tanh(a); }
__device__ __forceinline__ float erfg(float a) { return erff(a); }
__device__ __forceinline__ double erfg(double a) { return erf(a); }
__device__ __forceinline__ float ceilg(float a) { return ceilf(a); }
__device__ __forceinline__ double ceilg(double a) { return ceil(a); }
__device__ __forceinline__ float floorg(float a) { return floorf(a); }
__device__ __forceinline__ double floorg(double a) { return floor(a); }
__device__ __forceinline__ float roundg(float a) { return roundf(a); }
__device__ __forceinline__ double roundg(double a) { return round(a); }
__device__ __forceinline__ float normcdfg(float a) { return normcdff(a); }
__device__ __forceinline__ double normcdfg(double a) { return normcdf(a); }
__device__ __forceinline__ float maxg(float a, float b) { return fmaxf(a, b); }
__device__ __forceinline__ double maxg(double a, double b) { return fmax(a, b); }
__device__ __forceinline__ float ming(float a, float b) { return fminf(a, b); }
__device__ __forceinline__ double ming(double a, double b) { return fmin(a, b); }
__device__ __forceinline__ float logg(float a) { return logf(a); }
__device__ __forceinline__ double logg(double a) { return log(a); }
__device__ __forceinline__ float expg(float a) { return expf(a); }
__device__ __forceinline__ double expg(double a) { return exp(a); }
__device__ __forceinline__ float absg(float a) { return fabsf(a); }
__device__ __forceinline__ double absg(double a) { return fabs(a); }
__device__ __forceinline__ float copysigng(float a, float b) { return copysignf(a, b); }
__device__ __forceinline__ double copysigng(double a, double b) { return copysign(a, b); }
__device__ __forceinline__ int64_t ming(int64_t a, int64_t b) { return min(a, b); }
__device__ __forceinline__ int64_t maxg(int64_t a, int64_t b) { return max(a, b); }
__device__ __forceinline__ uint32_t ming(uint32_t a, uint32_t b) { return min(a, b); }
__device__ __forceinline__ uint32_t maxg(uint32_t a, uint32_t b) { return max(a, b); }
__device__ __forceinline__ uint8_t ming(uint8_t a, uint8_t b) { return min(a, b); }
__device__ __forceinline__ uint8_t maxg(uint8_t a, uint8_t b) { return max(a, b); }
#if __CUDA_ARCH__ >= 530
__device__ __forceinline__ __half powg(__half a, __half b) { return __float2half(powf(__half2float(a), __half2float(b))); }
__device__ __forceinline__ bool isnang(__half a) { return __hisnan(a); }
__device__ __forceinline__ __half sqrtg(__half a) { return hsqrt(a); }
__device__ __forceinline__ __half cosg(__half a) { return hcos(a); }
__device__ __forceinline__ __half sing(__half a) { return hsin(a); }
__device__ __forceinline__ __half recipg(__half a) { __half one = 1.0; return one / a; }
__device__ __forceinline__ __half maxg(__half a, __half b) { return __hmax_nan(a, b); }
__device__ __forceinline__ __half tanhg(__half a) { return __float2half(tanhf(__half2float(a))); }
__device__ __forceinline__ __half erfg(__half a) { return __float2half(erff(__half2float(a))); }
__device__ __forceinline__ __half ceilg(__half a) { return __float2half(ceilf(__half2float(a))); }
__device__ __forceinline__ __half floorg(__half a) { return __float2half(floorf(__half2float(a))); }
__device__ __forceinline__ __half roundg(__half a) { return __float2half(roundf(__half2float(a))); }
__device__ __forceinline__ __half normcdfg(__half a) { return __float2half(normcdff(__half2float(a))); }
__device__ __forceinline__ __half ming(__half a, __half b) { return __hmin_nan(a, b); }
__device__ __forceinline__ __half logg(__half a) { return hlog(a); }
__device__ __forceinline__ __half expg(__half a) { return hexp(a); }
__device__ __forceinline__ __half absg(__half a) { return __habs(a); }
__device__ __forceinline__ __half copysigng(__half a, __half b) { return __float2half(copysignf(__half2float(a), __half2float(b))); }
#endif
#if __CUDA_ARCH__ >= 800
__device__ __forceinline__ __nv_bfloat16 powg(__nv_bfloat16 a, __nv_bfloat16 b) { return __float2bfloat16(powf(__bfloat162float(a), __bfloat162float(b))); }
__device__ __forceinline__ bool isnang(__nv_bfloat16 a) { return __hisnan(a); }
__device__ __forceinline__ __nv_bfloat16 sqrtg(__nv_bfloat16 a) { return hsqrt(a); }
__device__ __forceinline__ __nv_bfloat16 cosg(__nv_bfloat16 a) { return hcos(a); }
__device__ __forceinline__ __nv_bfloat16 sing(__nv_bfloat16 a) { return hsin(a); }
__device__ __forceinline__ __nv_bfloat16 recipg(__nv_bfloat16 a) { __nv_bfloat16 one = 1.0; return one / a; }
__device__ __forceinline__ __nv_bfloat16 maxg(__nv_bfloat16 a, __nv_bfloat16 b) { return __hmax_nan(a, b); }
__device__ __forceinline__ __nv_bfloat16 tanhg(__nv_bfloat16 a) { return __float2bfloat16(tanhf(__bfloat162float(a))); }
__device__ __forceinline__ __nv_bfloat16 erfg(__nv_bfloat16 a) { return __float2bfloat16(erff(__bfloat162float(a))); }
__device__ __forceinline__ __nv_bfloat16 ceilg(__nv_bfloat16 a) { return __float2bfloat16(ceilf(__bfloat162float(a))); }
__device__ __forceinline__ __nv_bfloat16 floorg(__nv_bfloat16 a) { return __float2bfloat16(floorf(__bfloat162float(a))); }
__device__ __forceinline__ __nv_bfloat16 roundg(__nv_bfloat16 a) { return __float2bfloat16(roundf(__bfloat162float(a))); }
__device__ __forceinline__ __nv_bfloat16 normcdfg(__nv_bfloat16 a) { return __float2bfloat16(normcdff(__bfloat162float(a))); }
__device__ __forceinline__ __nv_bfloat16 ming(__nv_bfloat16 a, __nv_bfloat16 b) { return __hmin_nan(a, b); }
__device__ __forceinline__ __nv_bfloat16 logg(__nv_bfloat16 a) { return hlog(a); }
__device__ __forceinline__ __nv_bfloat16 expg(__nv_bfloat16 a) { return hexp(a); }
__device__ __forceinline__ __nv_bfloat16 absg(__nv_bfloat16 a) { return __habs(a); }
__device__ __forceinline__ __nv_bfloat16 copysigng(__nv_bfloat16 a, __nv_bfloat16 b) { return __float2bfloat16(copysignf(__bfloat162float(a), __bfloat162float(b))); }
#endif
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/lib.rs | pub const AFFINE: &str = include_str!(concat!(env!("OUT_DIR"), "/affine.ptx"));
pub const BINARY: &str = include_str!(concat!(env!("OUT_DIR"), "/binary.ptx"));
pub const CAST: &str = include_str!(concat!(env!("OUT_DIR"), "/cast.ptx"));
pub const CONV: &str = include_str!(concat!(env!("OUT_DIR"), "/conv.ptx"));
pub const FILL: &str = include_str!(concat!(env!("OUT_DIR"), "/fill.ptx"));
pub const INDEXING: &str = include_str!(concat!(env!("OUT_DIR"), "/indexing.ptx"));
pub const REDUCE: &str = include_str!(concat!(env!("OUT_DIR"), "/reduce.ptx"));
pub const TERNARY: &str = include_str!(concat!(env!("OUT_DIR"), "/ternary.ptx"));
pub const UNARY: &str = include_str!(concat!(env!("OUT_DIR"), "/unary.ptx"));
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/conv.cu | #include "cuda_utils.cuh"
#include<stdint.h>
// Naive implementation of conv1d.
template <typename T, typename A>
__device__ void conv1d(
const size_t src_numel,
const size_t l_out,
const size_t stride,
const size_t padding,
const size_t dilation,
const size_t *info,
const T *src,
const T *kernel,
T *dst
) {
// src: (b_size, c_in, l_in)
// k: (c_out, c_in, k_size)
const size_t *src_dims = info;
const size_t *src_s = info + 3;
const size_t *k_dims = info + 6;
const size_t *k_s = info + 9;
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
const size_t k_size = k_dims[2];
const size_t c_out = k_dims[0];
const size_t c_in = src_dims[1];
const size_t l_in = src_dims[2];
if (dst_i >= src_dims[0] * c_out * l_out) {
return;
}
// TODO
const size_t b_idx = dst_i / (l_out * c_out);
const size_t dst_c_idx = (dst_i / l_out) % c_out;
const size_t dst_l = dst_i % l_out;
const size_t src_idx0 = b_idx * src_s[0];
A d = 0;
for (size_t offset = 0; offset < k_size; ++offset) {
size_t src_l = (stride * dst_l + offset) * dilation;
if (src_l < padding || src_l >= padding + l_in) {
continue;
}
src_l -= padding;
for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) {
const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + src_l * src_s[2];
const size_t k_idx = dst_c_idx * k_s[0] + src_c_idx * k_s[1] + offset * k_s[2];
d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]);
}
}
dst[dst_i] = static_cast<T>(d);
}
template <typename T>
__device__ void im2col1d(
const size_t dst_numel,
const size_t l_out,
const size_t l_k,
const size_t stride,
const size_t padding,
const size_t dilation,
const size_t *info,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// dst: (b_size, l_out, c_in, l_k)
// src: (b_size, c_in, l_in)
if (dst_i >= dst_numel) {
return;
}
const size_t *src_dims = info;
const size_t *src_s = info + 3;
const size_t b_in = src_dims[0];
const size_t c_in = src_dims[1];
const size_t l_in = src_dims[2];
const size_t dst_s2 = l_k;
const size_t dst_s1 = c_in * dst_s2;
const size_t dst_s0 = l_out * dst_s1;
size_t tmp_dst_i = dst_i;
const size_t b_idx = tmp_dst_i / dst_s0;
tmp_dst_i -= b_idx * dst_s0;
const size_t l_idx = tmp_dst_i / dst_s1;
tmp_dst_i -= l_idx * dst_s1;
const size_t c_idx = tmp_dst_i / dst_s2;
tmp_dst_i -= c_idx * dst_s2;
const size_t l_k_idx = tmp_dst_i;
size_t src_l_idx = l_idx * stride + l_k_idx * dilation;
if (src_l_idx < padding || src_l_idx >= l_in + padding) {
dst[dst_i] = static_cast<T>(0);
}
else {
src_l_idx -= padding;
const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_l_idx * src_s[2];
dst[dst_i] = src[src_i];
}
}
template <typename T>
__device__ void im2col(
const size_t dst_numel,
const size_t h_out,
const size_t w_out,
const size_t h_k,
const size_t w_k,
const size_t stride,
const size_t padding,
const size_t dilation,
const size_t *info,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// dst: (b_size, h_out, w_out, c_in, h_k, w_k)
// src: (b_size, c_in, h_in, w_in)
if (dst_i >= dst_numel) {
return;
}
const size_t *src_dims = info;
const size_t *src_s = info + 4;
const size_t b_in = src_dims[0];
const size_t c_in = src_dims[1];
const size_t h_in = src_dims[2];
const size_t w_in = src_dims[3];
const size_t dst_s4 = w_k;
const size_t dst_s3 = h_k * dst_s4;
const size_t dst_s2 = c_in * dst_s3;
const size_t dst_s1 = w_out * dst_s2;
const size_t dst_s0 = h_out * dst_s1;
size_t tmp_dst_i = dst_i;
const size_t b_idx = tmp_dst_i / dst_s0;
tmp_dst_i -= b_idx * dst_s0;
const size_t h_idx = tmp_dst_i / dst_s1;
tmp_dst_i -= h_idx * dst_s1;
const size_t w_idx = tmp_dst_i / dst_s2;
tmp_dst_i -= w_idx * dst_s2;
const size_t c_idx = tmp_dst_i / dst_s3;
tmp_dst_i -= c_idx * dst_s3;
const size_t h_k_idx = tmp_dst_i / dst_s4;
tmp_dst_i -= h_k_idx * dst_s4;
const size_t w_k_idx = tmp_dst_i;
size_t src_h_idx = h_idx * stride + h_k_idx * dilation;
size_t src_w_idx = w_idx * stride + w_k_idx * dilation;
if (src_h_idx < padding || src_h_idx >= h_in + padding) {
dst[dst_i] = static_cast<T>(0);
}
else if (src_w_idx < padding || src_w_idx >= w_in + padding) {
dst[dst_i] = static_cast<T>(0);
}
else {
src_h_idx -= padding;
src_w_idx -= padding;
const size_t src_i =
b_idx * src_s[0]
+ c_idx * src_s[1]
+ src_h_idx * src_s[2]
+ src_w_idx * src_s[3];
dst[dst_i] = src[src_i];
}
}
// Naive implementation of conv2d.
template <typename T, typename A>
__device__ void conv2d(
const size_t src_numel,
const size_t w_out,
const size_t h_out,
const size_t stride,
const size_t padding,
const size_t dilation,
const size_t *info,
const T *src,
const T *kernel,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, c_in, h_in, w_in)
// k: (c_out, c_in, h_k, w_k)
const size_t *src_dims = info;
const size_t *src_s = info + 4;
const size_t *k_dims = info + 8;
const size_t *k_s = info + 12;
const size_t h_k = k_dims[2];
const size_t w_k = k_dims[3];
const size_t c_out = k_dims[0];
const size_t c_in = src_dims[1];
const size_t h_in = src_dims[2];
const size_t w_in = src_dims[3];
if (dst_i >= src_dims[0] * c_out * w_out * h_out) {
return;
}
// TODO
const size_t b_idx = dst_i / (w_out * h_out * c_out);
const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out;
// NCHW layout.
const size_t dst_h = (dst_i / w_out) % h_out;
const size_t dst_w = dst_i % w_out;
const size_t src_idx0 = b_idx * src_s[0];
A d = 0;
for (size_t w_offset = 0; w_offset < w_k; ++w_offset) {
size_t src_w = stride * dst_w + w_offset * dilation;
if (src_w < padding || src_w >= w_in + padding) {
continue;
}
src_w -= padding;
for (size_t h_offset = 0; h_offset < h_k; ++h_offset) {
size_t src_h = stride * dst_h + h_offset * dilation;
if (src_h < padding || src_h >= h_in + padding) {
continue;
}
src_h -= padding;
for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) {
const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + src_h * src_s[2] + src_w * src_s[3];
const size_t k_idx = dst_c_idx * k_s[0] + src_c_idx * k_s[1] + h_offset * k_s[2] + w_offset * k_s[3];
d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]);
}
}
}
dst[dst_i] = static_cast<T>(d);
}
// Naive implementation of conv_transpose2d.
template <typename T, typename A>
__device__ void conv_transpose2d(
const size_t src_numel,
const size_t w_out,
const size_t h_out,
const size_t stride,
const size_t padding,
const size_t out_padding,
const size_t dilation,
const size_t *info,
const T *src,
const T *kernel,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, c_in, h_in, w_in)
// k: (c_in, c_out, h_k, w_k)
const size_t *src_dims = info;
const size_t *src_s = info + 4;
const size_t *k_dims = info + 8;
const size_t *k_s = info + 12;
const size_t h_k = k_dims[2];
const size_t w_k = k_dims[3];
const size_t c_out = k_dims[1];
const size_t c_in = src_dims[1];
const size_t h_in = src_dims[2];
const size_t w_in = src_dims[3];
if (dst_i >= src_dims[0] * c_out * w_out * h_out) {
return;
}
// TODO
const size_t b_idx = dst_i / (w_out * h_out * c_out);
const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out;
// NCHW layout.
const size_t out_y = (dst_i / w_out) % h_out;
const size_t out_x = dst_i % w_out;
const size_t src_idx0 = b_idx * src_s[0];
A d = 0;
for (int k_x = 0; k_x < (int)w_k; ++k_x) {
// let out_x = inp_x * p.stride + k_x * p.dilation - p.padding;
int inp_x_stride = (int)(out_x + padding) - k_x * dilation;
if (inp_x_stride < 0 || inp_x_stride % stride) {
continue;
}
int inp_x = inp_x_stride / stride;
if (inp_x >= w_in) continue;
for (int k_y = 0; k_y < (int)h_k; ++k_y) {
int inp_y_stride = (int)(out_y + padding) - k_y * dilation;
if (inp_y_stride < 0 || inp_y_stride % stride) {
continue;
}
int inp_y = inp_y_stride / stride;
if (inp_y >= h_in) continue;
for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) {
const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_y * src_s[2] + inp_x * src_s[3];
const size_t k_idx = src_c_idx * k_s[0] + dst_c_idx * k_s[1] + k_y * k_s[2] + k_x * k_s[3];
d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]);
}
}
}
dst[dst_i] = static_cast<T>(d);
}
template <typename T, typename A>
__device__ void avg_pool2d(
const size_t src_numel,
const size_t w_k,
const size_t h_k,
const size_t w_stride,
const size_t h_stride,
const size_t *info,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, c_in, w_in, h_in)
const size_t *src_dims = info;
const size_t *src_s = info + 4;
const size_t c = src_dims[1];
const size_t w_in = src_dims[2];
const size_t h_in = src_dims[3];
const size_t w_out = (w_in - w_k) / w_stride + 1;
const size_t h_out = (h_in - h_k) / h_stride + 1;
if (dst_i >= src_dims[0] * c * w_out * h_out) {
return;
}
// TODO: Improve this.
const size_t b_idx = dst_i / (w_out * h_out * c);
const size_t c_idx = (dst_i / (w_out * h_out)) % c;
const size_t dst_w = (dst_i / h_out) % w_out;
const size_t dst_h = dst_i % h_out;
const size_t src_idx0 = b_idx * src_s[0];
const float scale = 1.0 / (w_k * h_k);
A d = 0;
for (size_t w_offset = 0; w_offset < w_k; ++w_offset) {
size_t src_w = w_stride * dst_w + w_offset;
if (src_w >= w_in) {
continue;
}
for (size_t h_offset = 0; h_offset < h_k; ++h_offset) {
size_t src_h = h_stride * dst_h + h_offset;
if (src_h >= h_in) {
continue;
}
const size_t src_idx = src_idx0 + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3];
d += static_cast<A>(src[src_idx]);
}
}
dst[dst_i] = static_cast<T>(d * scale);
}
template <typename T>
__device__ void max_pool2d(
const size_t src_numel,
const size_t w_k,
const size_t h_k,
const size_t w_stride,
const size_t h_stride,
const size_t *info,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, c_in, w_in, h_in)
const size_t *src_dims = info;
const size_t *src_s = info + 4;
const size_t c = src_dims[1];
const size_t w_in = src_dims[2];
const size_t h_in = src_dims[3];
const size_t w_out = (w_in - w_k) / w_stride + 1;
const size_t h_out = (h_in - h_k) / h_stride + 1;
if (dst_i >= src_dims[0] * c * w_out * h_out) {
return;
}
// TODO: Improve this.
const size_t b_idx = dst_i / (w_out * h_out * c);
const size_t c_idx = (dst_i / (w_out * h_out)) % c;
const size_t dst_w = (dst_i / h_out) % w_out;
const size_t dst_h = dst_i % h_out;
const size_t src_idx0 = b_idx * src_s[0];
T d = 0;
bool set = false;
for (size_t w_offset = 0; w_offset < w_k; ++w_offset) {
size_t src_w = w_stride * dst_w + w_offset;
if (src_w >= w_in) {
continue;
}
for (size_t h_offset = 0; h_offset < h_k; ++h_offset) {
size_t src_h = h_stride * dst_h + h_offset;
if (src_h >= h_in) {
continue;
}
const size_t src_idx = src_idx0 + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3];
if (set) {
d = maxg(d, src[src_idx]);
}
else {
d = src[src_idx];
set = true;
}
}
}
dst[dst_i] = d;
}
template <typename T>
__device__ void upsample_nearest2d(
const size_t w_out,
const size_t h_out,
const double w_scale,
const double h_scale,
const size_t *info,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, c_in, w_in, h_in)
const size_t *src_dims = info;
const size_t *src_s = info + 4;
const size_t c = src_dims[1];
const size_t w_in = src_dims[2];
const size_t h_in = src_dims[3];
if (dst_i >= src_dims[0] * c * w_out * h_out) {
return;
}
// TODO: Improve this.
const size_t b_idx = dst_i / (w_out * h_out * c);
const size_t c_idx = (dst_i / (w_out * h_out)) % c;
const size_t dst_w = (dst_i / h_out) % w_out;
const size_t dst_h = dst_i % h_out;
size_t src_w = static_cast<size_t>(dst_w * w_scale);
size_t src_h = static_cast<size_t>(dst_h * h_scale);
if (src_w >= w_in) {
src_w = w_in - 1;
}
if (src_h >= h_in) {
src_h = h_in - 1;
}
const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3];
dst[dst_i] = src[src_i];
}
#define CONV1D_OP(TYPENAME, TYPEACC, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t src_numel, \
const size_t num_dims, \
const size_t stride, \
const size_t padding, \
const size_t dilation, \
const size_t *info, \
const TYPENAME *src, \
const TYPENAME *kernel, \
TYPENAME *dst \
) { \
conv1d<TYPENAME, TYPEACC>(src_numel, num_dims, stride, padding, dilation, info, src, kernel, dst); \
} \
#define CONV2D_OP(TYPENAME, TYPEACC, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t src_numel, \
const size_t w_out, \
const size_t h_out, \
const size_t stride, \
const size_t padding, \
const size_t dilation, \
const size_t *info, \
const TYPENAME *src, \
const TYPENAME *kernel, \
TYPENAME *dst \
) { \
conv2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, dilation, info, src, kernel, dst); \
} \
#define IM2COL1D_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t dst_numel, \
const size_t l_out, \
const size_t l_k, \
const size_t stride, \
const size_t padding, \
const size_t dilation, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
im2col1d<TYPENAME>(dst_numel, l_out, l_k, stride, padding, dilation, info, src, dst); \
} \
#define IM2COL_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t dst_numel, \
const size_t h_out, \
const size_t w_out, \
const size_t h_k, \
const size_t w_k, \
const size_t stride, \
const size_t padding, \
const size_t dilation, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
im2col<TYPENAME>(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, info, src, dst); \
} \
#define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t src_numel, \
const size_t w_out, \
const size_t h_out, \
const size_t stride, \
const size_t padding, \
const size_t out_padding, \
const size_t dilation, \
const size_t *info, \
const TYPENAME *src, \
const TYPENAME *kernel, \
TYPENAME *dst \
) { \
conv_transpose2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, out_padding, dilation, info, src, kernel, dst); \
} \
#define AVG_POOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t src_numel, \
const size_t w_k, \
const size_t h_k, \
const size_t w_stride, \
const size_t h_stride, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
avg_pool2d<TYPENAME, TYPEACC>(src_numel, w_k, h_k, w_stride, h_stride, info, src, dst); \
} \
#define MAX_POOL2D_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t src_numel, \
const size_t w_k, \
const size_t h_k, \
const size_t w_stride, \
const size_t h_stride, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
max_pool2d<TYPENAME>(src_numel, w_k, h_k, w_stride, h_stride, info, src, dst); \
} \
#define UPSAMPLE_NEAREST2D_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t w_out, \
const size_t h_out, \
const double w_scale, \
const double h_scale, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
upsample_nearest2d<TYPENAME>(w_out, h_out, w_scale, h_scale, info, src, dst); \
} \
#if __CUDA_ARCH__ >= 800
CONV1D_OP(__nv_bfloat16, float, conv1d_bf16)
CONV2D_OP(__nv_bfloat16, float, conv2d_bf16)
CONVT2D_OP(__nv_bfloat16, float, conv_transpose2d_bf16)
AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16)
MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16)
UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
IM2COL_OP(__nv_bfloat16, im2col_bf16)
IM2COL1D_OP(__nv_bfloat16, im2col1d_bf16)
#endif
#if __CUDA_ARCH__ >= 530
CONV1D_OP(__half, float, conv1d_f16)
CONV2D_OP(__half, float, conv2d_f16)
CONVT2D_OP(__half, float, conv_transpose2d_f16)
AVG_POOL2D_OP(__half, float, avg_pool2d_f16)
MAX_POOL2D_OP(__half, max_pool2d_f16)
UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16)
IM2COL_OP(__half, im2col_f16)
IM2COL1D_OP(__half, im2col1d_f16)
#endif
CONV1D_OP(float, float, conv1d_f32)
CONV1D_OP(double, double, conv1d_f64)
CONV1D_OP(uint8_t, uint8_t, conv1d_u8)
CONV1D_OP(uint32_t, uint32_t, conv1d_u32)
CONV2D_OP(float, float, conv2d_f32)
CONV2D_OP(double, double, conv2d_f64)
CONV2D_OP(uint8_t, uint8_t, conv2d_u8)
CONV2D_OP(uint32_t, uint32_t, conv2d_u32)
CONVT2D_OP(float, float, conv_transpose2d_f32)
CONVT2D_OP(double, double, conv_transpose2d_f64)
CONVT2D_OP(uint8_t, uint8_t, conv_transpose2d_u8)
CONVT2D_OP(uint32_t, uint32_t, conv_transpose2d_u32)
AVG_POOL2D_OP(float, float, avg_pool2d_f32)
AVG_POOL2D_OP(double, double, avg_pool2d_f64)
AVG_POOL2D_OP(uint8_t, uint8_t, avg_pool2d_u8)
AVG_POOL2D_OP(uint32_t, uint32_t, avg_pool2d_u32)
MAX_POOL2D_OP(float, max_pool2d_f32)
MAX_POOL2D_OP(double, max_pool2d_f64)
MAX_POOL2D_OP(uint8_t, max_pool2d_u8)
MAX_POOL2D_OP(uint32_t, max_pool2d_u32)
UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32)
UPSAMPLE_NEAREST2D_OP(double, upsample_nearest2d_f64)
UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8)
UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32)
IM2COL_OP(float, im2col_f32)
IM2COL_OP(double, im2col_f64)
IM2COL_OP(uint8_t, im2col_u8)
IM2COL_OP(uint32_t, im2col_u32)
IM2COL1D_OP(float, im2col1d_f32)
IM2COL1D_OP(double, im2col1d_f64)
IM2COL1D_OP(uint8_t, im2col1d_u8)
IM2COL1D_OP(uint32_t, im2col1d_u32)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/cast.cu | #include "cuda_utils.cuh"
#include<stdint.h>
template <typename S, typename T>
__device__ void cast_(
const size_t numel,
const size_t num_dims,
const size_t *info,
const S *inp,
T *out
) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
if (is_contiguous(num_dims, dims, strides)) {
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
out[i] = inp[i];
}
}
else {
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
unsigned strided_i = get_strided_index(i, num_dims, dims, strides);
out[i] = inp[strided_i];
}
}
}
template <typename S, typename T, typename I>
__device__ void cast_through(
const size_t numel,
const size_t num_dims,
const size_t *info,
const S *inp,
T *out
) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
if (is_contiguous(num_dims, dims, strides)) {
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
out[i] = static_cast<T>(static_cast<I>(inp[i]));
}
}
else {
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
unsigned strided_i = get_strided_index(i, num_dims, dims, strides);
out[i] = static_cast<T>(static_cast<I>(inp[strided_i]));
}
}
}
#define CAST_OP(SRC_TYPENAME, DST_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const SRC_TYPENAME *inp, \
DST_TYPENAME *out \
) { \
cast_<SRC_TYPENAME, DST_TYPENAME>(numel, num_dims, info, inp, out); \
} \
#define CAST_THROUGH_OP(SRC_TYPENAME, DST_TYPENAME, INT_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const SRC_TYPENAME *inp, \
DST_TYPENAME *out \
) { \
cast_through<SRC_TYPENAME, DST_TYPENAME, INT_TYPENAME>(numel, num_dims, info, inp, out); \
} \
#if __CUDA_ARCH__ >= 800
CAST_OP(__nv_bfloat16, __nv_bfloat16, cast_bf16_bf16)
CAST_OP(__nv_bfloat16, uint32_t, cast_bf16_u32)
CAST_OP(__nv_bfloat16, float, cast_bf16_f32)
CAST_OP(__nv_bfloat16, double, cast_bf16_f64)
CAST_OP(uint8_t, __nv_bfloat16, cast_u8_bf16)
CAST_OP(uint32_t, __nv_bfloat16, cast_u32_bf16)
CAST_OP(float, __nv_bfloat16, cast_f32_bf16)
CAST_OP(double, __nv_bfloat16, cast_f64_bf16)
CAST_THROUGH_OP(__nv_bfloat16, uint8_t, float, cast_bf16_u8)
CAST_THROUGH_OP(__nv_bfloat16, __half, float, cast_bf16_f16)
CAST_THROUGH_OP(__half, __nv_bfloat16, float, cast_f16_bf16)
#endif
#if __CUDA_ARCH__ >= 530
CAST_OP(__half, __half, cast_f16_f16)
CAST_THROUGH_OP(__half, uint8_t, float, cast_f16_u8)
CAST_OP(__half, uint32_t, cast_f16_u32)
CAST_OP(__half, float, cast_f16_f32)
CAST_OP(__half, double, cast_f16_f64)
CAST_OP(uint8_t, __half, cast_u8_f16 )
CAST_OP(uint32_t, __half, cast_u32_f16)
CAST_OP(float, __half, cast_f32_f16)
CAST_OP(double, __half, cast_f64_f16)
#endif
CAST_OP(uint32_t, uint32_t, cast_u32_u32)
CAST_OP(uint32_t, uint8_t, cast_u32_u8 )
CAST_OP(uint32_t, int64_t, cast_u32_i64 )
CAST_OP(uint32_t, float, cast_u32_f32)
CAST_OP(uint32_t, double, cast_u32_f64)
CAST_OP(uint8_t, uint32_t, cast_u8_u32)
CAST_OP(uint8_t, uint8_t, cast_u8_u8 )
CAST_OP(uint8_t, int64_t, cast_u8_i64 )
CAST_OP(uint8_t, float, cast_u8_f32)
CAST_OP(uint8_t, double, cast_u8_f64)
CAST_OP(int64_t, uint32_t, cast_i64_u32)
CAST_OP(int64_t, uint8_t, cast_i64_u8 )
CAST_OP(int64_t, int64_t, cast_i64_i64 )
CAST_OP(int64_t, float, cast_i64_f32)
CAST_OP(int64_t, double, cast_i64_f64)
CAST_OP(float, uint8_t, cast_f32_u8 )
CAST_OP(float, uint32_t, cast_f32_u32)
CAST_OP(float, int64_t, cast_f32_i64 )
CAST_OP(float, float, cast_f32_f32)
CAST_OP(float, double, cast_f32_f64)
CAST_OP(double, uint8_t, cast_f64_u8 )
CAST_OP(double, uint32_t, cast_f64_u32)
CAST_OP(double, int64_t, cast_f64_i64 )
CAST_OP(double, float, cast_f64_f32)
CAST_OP(double, double, cast_f64_f64)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/binary.cu | #include "binary_op_macros.cuh"
#include<stdint.h>
#if __CUDA_ARCH__ >= 800
BINARY_OP(__nv_bfloat16, badd_bf16, x + y)
BINARY_OP(__nv_bfloat16, bdiv_bf16, x / y)
BINARY_OP(__nv_bfloat16, bmul_bf16, x * y)
BINARY_OP(__nv_bfloat16, bsub_bf16, x - y)
BINARY_OP(__nv_bfloat16, bmaximum_bf16, maxg(x, y))
BINARY_OP(__nv_bfloat16, bminimum_bf16, ming(x, y))
BINARY_OP_OUT(__nv_bfloat16, uint8_t, eq_bf16, x == y)
BINARY_OP_OUT(__nv_bfloat16, uint8_t, ne_bf16, x != y)
BINARY_OP_OUT(__nv_bfloat16, uint8_t, lt_bf16, x < y)
BINARY_OP_OUT(__nv_bfloat16, uint8_t, le_bf16, x <= y)
BINARY_OP_OUT(__nv_bfloat16, uint8_t, gt_bf16, x > y)
BINARY_OP_OUT(__nv_bfloat16, uint8_t, ge_bf16, x >= y)
#endif
#if __CUDA_ARCH__ >= 530
BINARY_OP(__half, badd_f16, x + y)
BINARY_OP(__half, bdiv_f16, x / y)
BINARY_OP(__half, bmul_f16, x * y)
BINARY_OP(__half, bsub_f16, x - y)
BINARY_OP(__half, bmaximum_f16, maxg(x, y))
BINARY_OP(__half, bminimum_f16, ming(x, y))
BINARY_OP_OUT(__half, uint8_t, eq_f16, x == y)
BINARY_OP_OUT(__half, uint8_t, ne_f16, x != y)
BINARY_OP_OUT(__half, uint8_t, lt_f16, x < y)
BINARY_OP_OUT(__half, uint8_t, le_f16, x <= y)
BINARY_OP_OUT(__half, uint8_t, gt_f16, x > y)
BINARY_OP_OUT(__half, uint8_t, ge_f16, x >= y)
#endif
BINARY_OP(float, badd_f32, x + y)
BINARY_OP(double, badd_f64, x + y);
BINARY_OP(uint8_t, badd_u8, x + y);
BINARY_OP(uint32_t, badd_u32, x + y);
BINARY_OP(int64_t, badd_i64, x + y);
BINARY_OP(float, bdiv_f32, x / y)
BINARY_OP(double, bdiv_f64, x / y);
BINARY_OP(uint8_t, bdiv_u8, x / y);
BINARY_OP(uint32_t, bdiv_u32, x / y);
BINARY_OP(int64_t, bdiv_i64, x / y);
BINARY_OP(float, bmul_f32, x * y)
BINARY_OP(double, bmul_f64, x * y);
BINARY_OP(uint8_t, bmul_u8, x * y);
BINARY_OP(uint32_t, bmul_u32, x * y);
BINARY_OP(int64_t, bmul_i64, x * y);
BINARY_OP(float, bsub_f32, x - y)
BINARY_OP(double, bsub_f64, x - y);
BINARY_OP(uint8_t, bsub_u8, x - y);
BINARY_OP(uint32_t, bsub_u32, x - y);
BINARY_OP(int64_t, bsub_i64, x - y);
BINARY_OP(float, bminimum_f32, ming(x, y));
BINARY_OP(double, bminimum_f64, ming(x, y));
BINARY_OP(uint8_t, bminimum_u8, ming(x, y));
BINARY_OP(uint32_t, bminimum_u32, ming(x, y));
BINARY_OP(int64_t, bminimum_i64, ming(x, y));
BINARY_OP(float, bmaximum_f32, maxg(x, y));
BINARY_OP(double, bmaximum_f64, maxg(x, y));
BINARY_OP(uint8_t, bmaximum_u8, maxg(x, y));
BINARY_OP(uint32_t, bmaximum_u32, maxg(x, y));
BINARY_OP(int64_t, bmaximum_i64, maxg(x, y));
BINARY_OP_OUT(float, uint8_t, eq_f32, x == y)
BINARY_OP_OUT(double, uint8_t, eq_f64, x == y)
BINARY_OP_OUT(uint8_t, uint8_t, eq_u8, x == y)
BINARY_OP_OUT(uint32_t, uint8_t, eq_u32, x == y)
BINARY_OP_OUT(int64_t, uint8_t, eq_i64, x == y)
BINARY_OP_OUT(float, uint8_t, ne_f32, x != y)
BINARY_OP_OUT(double, uint8_t, ne_f64, x != y)
BINARY_OP_OUT(uint8_t, uint8_t, ne_u8, x != y)
BINARY_OP_OUT(uint32_t, uint8_t, ne_u32, x != y)
BINARY_OP_OUT(int64_t, uint8_t, ne_i64, x != y)
BINARY_OP_OUT(float, uint8_t, lt_f32, x < y)
BINARY_OP_OUT(double, uint8_t, lt_f64, x < y)
BINARY_OP_OUT(uint8_t, uint8_t, lt_u8, x < y)
BINARY_OP_OUT(uint32_t, uint8_t, lt_u32, x < y)
BINARY_OP_OUT(int64_t, uint8_t, lt_i64, x < y)
BINARY_OP_OUT(float, uint8_t, le_f32, x <= y)
BINARY_OP_OUT(double, uint8_t, le_f64, x <= y)
BINARY_OP_OUT(uint8_t, uint8_t, le_u8, x <= y)
BINARY_OP_OUT(uint32_t, uint8_t, le_u32, x <= y)
BINARY_OP_OUT(int64_t, uint8_t, le_i64, x <= y)
BINARY_OP_OUT(float, uint8_t, gt_f32, x > y)
BINARY_OP_OUT(double, uint8_t, gt_f64, x > y)
BINARY_OP_OUT(uint8_t, uint8_t, gt_u8, x > y)
BINARY_OP_OUT(uint32_t, uint8_t, gt_u32, x > y)
BINARY_OP_OUT(int64_t, uint8_t, gt_i64, x > y)
BINARY_OP_OUT(float, uint8_t, ge_f32, x >= y)
BINARY_OP_OUT(double, uint8_t, ge_f64, x >= y)
BINARY_OP_OUT(uint8_t, uint8_t, ge_u8, x >= y)
BINARY_OP_OUT(uint32_t, uint8_t, ge_u32, x >= y)
BINARY_OP_OUT(int64_t, uint8_t, ge_i64, x >= y)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/reduce.cu | #include "cuda_utils.cuh"
#include <cmath>
#include <stdint.h>
const int BLOCK_SIZE = 1024;
// TODO: Maybe add some fast_sum_f16_f32 variant that not only accumulate in f32
// but also expect a f32 output so that this can be used for normalization e.g.
// in softmax.
// Fast reduce sum kernel, this assumes that the dimensions to loop over are at
// the end, each block is responsible for populating one value in the output
// array. There are at most 1024 threads per block.
template <typename T>
__device__ void
fast_sum(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, T *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
shr[tid] = 0;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
shr[tid] += src[strided_i];
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s)
shr[tid] += shr[tid + s];
}
if (tid == 0)
dst[dst_id] = shr[0];
}
// Softmax implementation adapted from ggml.
// https://github.com/ggerganov/llama.cpp/blob/d59bd97065cd7ded6c4ecab54b1d5e0b1b11e318/ggml-cuda.cu#L4159
template <typename T, typename ACC>
__device__ void softmax(const T * x, T * dst, const int ncols) {
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int block_size = blockDim.y;
const int tid = threadIdx.y;
T max_val = -INFINITY;
for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col;
max_val = maxg(max_val, x[i]);
}
// find the max value in the block
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
max_val = maxg(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32));
}
ACC tmp = 0.;
for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col;
const T val = expg(x[i] - max_val);
tmp += static_cast<ACC>(val);
dst[i] = val;
}
// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
const ACC inv_tmp = 1. / tmp;
for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col;
dst[i] *= inv_tmp;
}
}
template <typename T>
__device__ void
fast_max(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, T *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
shr[tid] = -INFINITY;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
shr[tid] = maxg(shr[tid], src[strided_i]);
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s)
shr[tid] = maxg(shr[tid], shr[tid + s]);
}
if (tid == 0)
dst[dst_id] = shr[0];
}
template <typename T>
__device__ void
fast_min(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, T *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
shr[tid] = INFINITY;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
shr[tid] = ming(shr[tid], src[strided_i]);
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s)
shr[tid] = ming(shr[tid], shr[tid + s]);
}
if (tid == 0)
dst[dst_id] = shr[0];
}
template <typename T>
__device__ void
fast_argmin(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
__shared__ uint32_t shr_index[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
// Not sure how that works on uint32_t and uint8_t but it seems to do ok.
shr[tid] = INFINITY;
shr_index[tid] = 0xFFFFFFFF;
bool not_set = true;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
if (not_set || src[strided_i] < shr[tid]) {
shr[tid] = src[strided_i];
// Assume that the reduction takes place over the last dimension which is contiguous.
shr_index[tid] = idx % dims[num_dims - 1];
not_set = false;
}
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s && shr[tid + s] < shr[tid]) {
shr[tid] = shr[tid + s];
shr_index[tid] = shr_index[tid + s];
}
}
if (tid == 0)
dst[dst_id] = shr_index[0];
}
template <typename T>
__device__ void
fast_argmax(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
__shared__ uint32_t shr_index[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
shr[tid] = -INFINITY;
shr_index[tid] = 0xFFFFFFFF;
bool not_set = true;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
if (not_set || src[strided_i] > shr[tid]) {
shr[tid] = src[strided_i];
// Assume that the reduction takes place over the last dimension which is contiguous.
shr_index[tid] = idx % dims[num_dims - 1];
not_set = false;
}
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s && shr[tid + s] > shr[tid]) {
shr[tid] = shr[tid + s];
shr_index[tid] = shr_index[tid + s];
}
}
if (tid == 0)
dst[dst_id] = shr_index[0];
}
#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, ARGMIN_NAME, ARGMAX_NAME, SUM_NAME) \
extern "C" __global__ void ARGMIN_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
uint32_t *dst) { \
fast_argmin(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void ARGMAX_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
uint32_t *dst) { \
fast_argmax(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void MIN_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
TYPENAME *dst) { \
fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void MAX_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
TYPENAME *dst) { \
fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void SUM_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
TYPENAME *dst) { \
fast_sum(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
}
#define SUM_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, const size_t num_dims, const size_t num_sum_dims, \
const size_t *info, const TYPENAME *inp, TYPENAME *out) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
const size_t *sum_dims_l = info + 2 * num_dims; \
const size_t *sum_dims_s = info + 2 * num_dims + num_sum_dims; \
if (is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \
i += blockDim.x * gridDim.x) { \
size_t dst_index = i; \
for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \
size_t stride = sum_dims_s[nd]; \
size_t pre = dst_index / stride; \
size_t post = dst_index % stride; \
dst_index = (pre / sum_dims_l[nd]) * stride + post; \
} \
atomicAdd(out + dst_index, inp[i]); \
} \
} else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \
i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
size_t dst_index = i; \
for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \
size_t stride = sum_dims_s[nd]; \
size_t pre = dst_index / stride; \
size_t post = dst_index % stride; \
dst_index = (pre / sum_dims_l[nd]) * stride + post; \
} \
atomicAdd(out + dst_index, inp[strided_i]); \
} \
} \
}
#define SOFTMAX_OP(TYPENAME, ACC_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const TYPENAME *src, TYPENAME *dst, \
const int n_cols) { \
softmax<TYPENAME, ACC_TYPENAME>(src, dst, n_cols); \
} \
#if __CUDA_ARCH__ >= 800
SOFTMAX_OP(__nv_bfloat16, float, softmax_bf16)
SUM_OP(__nv_bfloat16, sum_bf16)
FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_argmin_bf16, fast_argmax_bf16, fast_sum_bf16)
#endif
#if __CUDA_ARCH__ >= 530
SOFTMAX_OP(__half, float, softmax_f16)
SUM_OP(__half, sum_f16)
FAST_OP(__half, fast_min_f16, fast_max_f16, fast_argmin_f16, fast_argmax_f16, fast_sum_f16)
#endif
SUM_OP(float, sum_f32)
SUM_OP(double, sum_f64)
SUM_OP(uint32_t, sum_u32)
SOFTMAX_OP(float, float, softmax_f32)
SOFTMAX_OP(double, double, softmax_f64)
FAST_OP(float, fast_min_f32, fast_max_f32, fast_argmin_f32, fast_argmax_f32, fast_sum_f32)
FAST_OP(double, fast_min_f64, fast_max_f64, fast_argmin_f64, fast_argmax_f64, fast_sum_f64)
FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_argmin_u32, fast_argmax_u32, fast_sum_u32)
FAST_OP(int64_t, fast_min_i64, fast_max_i64, fast_argmin_i64, fast_argmax_i64, fast_sum_i64)
FAST_OP(uint8_t, fast_min_u8, fast_max_u8, fast_argmin_u8, fast_argmax_u8, fast_sum_u8)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/affine.cu | #include "cuda_utils.cuh"
#include<stdint.h>
#define AFFINE_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *inp, \
TYPENAME *out, \
const TYPENAME mul, \
const TYPENAME add \
) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
if (is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
TYPENAME x = inp ? inp[i] : out[i]; \
out[i] = x * mul + add; \
} \
} \
else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
TYPENAME x = inp ? inp[strided_i] : out[i]; \
out[i] = x * mul + add; \
} \
} \
} \
#if __CUDA_ARCH__ >= 800
AFFINE_OP(__nv_bfloat16, affine_bf16)
#endif
#if __CUDA_ARCH__ >= 530
AFFINE_OP(__half, affine_f16)
#endif
AFFINE_OP(float, affine_f32)
AFFINE_OP(double, affine_f64)
AFFINE_OP(uint8_t, affine_u8)
AFFINE_OP(uint32_t, affine_u32)
AFFINE_OP(int64_t, affine_i64)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/fill.cu | #include<stdint.h>
#include "cuda_fp16.h"
template<typename T>
__device__ void fill_with(T *buf, T value, const size_t numel) {
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
buf[i] = value;
}
}
extern "C" __global__ void fill_u8(uint8_t *buf, uint8_t value, const size_t numel) { fill_with(buf, value, numel); }
extern "C" __global__ void fill_u32(uint32_t *buf, uint32_t value, const size_t numel) { fill_with(buf, value, numel); }
extern "C" __global__ void fill_i64(int64_t *buf, int64_t value, const size_t numel) { fill_with(buf, value, numel); }
extern "C" __global__ void fill_f16(__half *buf, __half value, const size_t numel) { fill_with(buf, value, numel); }
extern "C" __global__ void fill_f32(float *buf, float value, const size_t numel) { fill_with(buf, value, numel); }
extern "C" __global__ void fill_f64(double *buf, double value, const size_t numel) { fill_with(buf, value, numel); }
#if __CUDA_ARCH__ >= 800
#include <cuda_bf16.h>
extern "C" __global__ void fill_bf16(__nv_bfloat16 *buf, __nv_bfloat16 value, const size_t numel) { fill_with(buf, value, numel); }
#endif
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/compatibility.cuh | #include "cuda_fp16.h"
#include "cuda_bf16.h"
// Table showing which features are supported on which compute capability
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications
// FIXME: the minimum compute capabilities are just guesses since the table is not specific enough
#if (__CUDACC_VER_MAJOR__ < 12 || __CUDACC_VER_MINOR__ < 2) && __CUDA_ARCH__ < 800
__device__ __forceinline__ __half __hmax_nan(__half a, __half b) {
return __hisnan(a) ? a : (__hisnan(b) ? b : __hmax(a, b));
}
__device__ __forceinline__ __half __hmin_nan(__half a, __half b) {
return __hisnan(a) ? a : (__hisnan(b) ? b : __hmin(a, b));
}
#endif
#if __CUDA_ARCH__ < 600
// Copied from https://docs.nvidia.com/cuda/cuda-c-programming-guide/#atomic-functions
__device__ double atomicAdd(double* address, double val) {
unsigned long long int* address_as_ull = (unsigned long long int*)address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val +
__longlong_as_double(assumed)));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
#if __CUDA_ARCH__ < 700
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomicadd
// The 16-bit __half floating-point version of atomicAdd() is only supported by devices of compute capability 7.x and higher.
// Solution adapted from https://github.com/torch/cutorch/blob/master/lib/THC/THCAtomics.cuh#L96-L119
__device__ __half atomicAdd(__half *address, __half val) {
// unsigned int *address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
// unsigned int old = *address_as_ui;
// unsigned int assumed;
// bool unaligned = (size_t) address & 2;
// do {
// assumed = old;
// unsigned int hsum;
// hsum = unaligned ? (old >> 16) : (old & 0xffff);
// hsum = __half_as_ushort(__ushort_as_half(hsum) + val);
// old = atomicCAS(address_as_ui, assumed,
// unaligned ? (old & 0xffff) | (hsum << 16) : (old & 0xffff0000) | hsum
// );
// } while (assumed != old);
// return __ushort_as_half(unaligned ? (old >> 16) : (old & 0xffff));
}
#endif
__device__ __forceinline__ __half atomicMaxf(__half* address, __half val) {
#if __CUDA_ARCH__ < 700
// On older GPUs we do not have access to atomicCAS for shorts, so we have to do some trickery.
// Solution adapted from https://github.com/torch/cutorch/blob/master/lib/THC/THCAtomics.cuh#L96-L119
unsigned int *address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
bool unaligned = (size_t) address & 2;
do {
assumed = old;
unsigned int hmax;
hmax = unaligned ? (old >> 16) : (old & 0xffff);
hmax = __half_as_ushort(__hmax_nan(val, __ushort_as_half(hmax)));
old = atomicCAS(address_as_ui, assumed,
unaligned ? (old & 0xffff) | (hmax << 16) : (old & 0xffff0000) | hmax
);
} while (assumed != old);
return __ushort_as_half(unaligned ? (old >> 16) : (old & 0xffff));
#else
// Based on https://docs.nvidia.com/cuda/cuda-c-programming-guide/#atomic-functions
unsigned short int* casted_address = (unsigned short int*)address;
unsigned short int old = *casted_address;
unsigned short int assumed;
do {
assumed = old;
old = atomicCAS(casted_address, assumed, __half_as_ushort(__hmax_nan(val, __ushort_as_half(assumed))));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old);
return __ushort_as_half(old);
#endif
}
// atomicMax is not implemented for floats,
// solution copied https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ __forceinline__ float atomicMaxf(float * addr, float value) {
if (signbit(value)) {
return __uint_as_float(atomicMin((unsigned int *)addr, __float_as_uint(value)));
} else {
return __int_as_float(atomicMax((int *)addr, __float_as_int(value)));
}
}
__device__ __forceinline__ double atomicMaxf(double * addr, double value) {
if (signbit(value)) {
return __longlong_as_double(atomicMin((unsigned long long int *)addr, __double_as_longlong(value)));
} else {
return __longlong_as_double(atomicMax((long long int *)addr, __double_as_longlong(value)));
}
}
__device__ __forceinline__ __half atomicMinf(__half* address, __half val) {
#if __CUDA_ARCH__ < 700
// On older GPUs we do not have access to atomicCAS for shorts, so we have to do some trickery.
// Solution adapted from https://github.com/torch/cutorch/blob/master/lib/THC/THCAtomics.cuh#L96-L119
unsigned int *address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
bool unaligned = (size_t) address & 2;
do {
assumed = old;
unsigned int hmin;
hmin = unaligned ? (old >> 16) : (old & 0xffff);
hmin = __half_as_ushort(__hmin_nan(val, __ushort_as_half(hmin)));
old = atomicCAS(address_as_ui, assumed,
unaligned ? (old & 0xffff) | (hmin << 16) : (old & 0xffff0000) | hmin
);
} while (assumed != old);
return __ushort_as_half(unaligned ? (old >> 16) : (old & 0xffff));
#else
// Based on https://docs.nvidia.com/cuda/cuda-c-programming-guide/#atomic-functions
unsigned short int* casted_address = (unsigned short int*)address;
unsigned short int old = *casted_address;
unsigned short int assumed;
do {
assumed = old;
old = atomicCAS(casted_address, assumed, __half_as_ushort(__hmin_nan(val, __ushort_as_half(assumed))));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old);
return __ushort_as_half(old);
#endif
}
// atomicMin is not implemented for floats,
// solution copied https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ __forceinline__ float atomicMinf(float * addr, float value) {
if (signbit(value)) {
return __uint_as_float(atomicMax((unsigned int *)addr, __float_as_uint(value)));
} else {
return __int_as_float(atomicMin((int *)addr, __float_as_int(value)));
}
}
__device__ __forceinline__ double atomicMinf(double * addr, double value) {
if (signbit(value)) {
return __longlong_as_double(atomicMax((unsigned long long int *)addr, __double_as_longlong(value)));
} else {
return __longlong_as_double(atomicMin((long long int *)addr, __double_as_longlong(value)));
}
}
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/binary_op_macros.cuh | #include "cuda_utils.cuh"
#define BINARY_OP_OUT(TYPENAME, OUT_TYPENAME, FN_NAME, FUNC) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *dims_and_strides, \
const TYPENAME *lhs, \
const TYPENAME *rhs, \
OUT_TYPENAME *out \
) { \
const size_t *dims = dims_and_strides; \
const size_t *lhs_strides = dims_and_strides + 1 * num_dims; \
const size_t *rhs_strides = dims_and_strides + 2 * num_dims; \
bool lhs_cont = is_contiguous(num_dims, dims, lhs_strides); \
bool rhs_cont = is_contiguous(num_dims, dims, rhs_strides); \
if (lhs_cont && rhs_cont) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
TYPENAME x = lhs[i]; \
TYPENAME y = rhs[i]; \
out[i] = FUNC; \
} \
} else if (lhs_cont) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned int tmp_i = i; \
unsigned int rhs_i = 0; \
for (int d = num_dims - 1; d >= 0; d--) { \
unsigned int i_dim = tmp_i % dims[d]; \
rhs_i += i_dim * rhs_strides[d]; \
tmp_i /= dims[d]; \
} \
TYPENAME x = lhs[i]; \
TYPENAME y = rhs[rhs_i]; \
out[i] = FUNC; \
} \
} else if (rhs_cont) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned int tmp_i = i; \
unsigned int lhs_i = 0; \
for (int d = num_dims - 1; d >= 0; d--) { \
unsigned int i_dim = tmp_i % dims[d]; \
lhs_i += i_dim * lhs_strides[d]; \
tmp_i /= dims[d]; \
} \
TYPENAME x = lhs[lhs_i]; \
TYPENAME y = rhs[i]; \
out[i] = FUNC; \
} \
} else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned int tmp_i = i; \
unsigned int lhs_i = 0; \
unsigned int rhs_i = 0; \
for (int d = num_dims - 1; d >= 0; d--) { \
unsigned int i_dim = tmp_i % dims[d]; \
lhs_i += i_dim * lhs_strides[d]; \
rhs_i += i_dim * rhs_strides[d]; \
tmp_i /= dims[d]; \
} \
TYPENAME x = lhs[lhs_i]; \
TYPENAME y = rhs[rhs_i]; \
out[i] = FUNC; \
} \
} \
} \
#define BINARY_OP(TYPENAME, FN_NAME, FUNC) \
BINARY_OP_OUT(TYPENAME, TYPENAME, FN_NAME, FUNC)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/ternary.cu | #include "cuda_utils.cuh"
#include<stdint.h>
#define WHERE_OP(TYPENAME, ID_TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const ID_TYPENAME *ids, \
const TYPENAME *t, \
const TYPENAME *f, \
TYPENAME *out \
) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
const size_t *strides_t = info + 2*num_dims; \
const size_t *strides_f = info + 3*num_dims; \
if (is_contiguous(num_dims, dims, strides) \
&& is_contiguous(num_dims, dims, strides_f) \
&& is_contiguous(num_dims, dims, strides_t)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
out[i] = ids[i] ? t[i] : f[i]; \
} \
} \
else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
unsigned strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \
unsigned strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \
out[i] = ids[strided_i] ? t[strided_i_t] : f[strided_i_f]; \
} \
} \
} \
#if __CUDA_ARCH__ >= 800
WHERE_OP(__nv_bfloat16, int64_t, where_i64_bf16)
WHERE_OP(__nv_bfloat16, uint32_t, where_u32_bf16)
WHERE_OP(__nv_bfloat16, uint8_t, where_u8_bf16)
#endif
#if __CUDA_ARCH__ >= 530
WHERE_OP(__half, int64_t, where_i64_f16)
WHERE_OP(__half, uint32_t, where_u32_f16)
WHERE_OP(__half, uint8_t, where_u8_f16)
#endif
WHERE_OP(float, int64_t, where_i64_f32)
WHERE_OP(double, int64_t, where_i64_f64)
WHERE_OP(uint8_t, int64_t, where_i64_u8)
WHERE_OP(uint32_t, int64_t, where_i64_u32)
WHERE_OP(int64_t, int64_t, where_i64_i64)
WHERE_OP(float, uint32_t, where_u32_f32)
WHERE_OP(double, uint32_t, where_u32_f64)
WHERE_OP(uint8_t, uint32_t, where_u32_u8)
WHERE_OP(uint32_t, uint32_t, where_u32_u32)
WHERE_OP(int64_t, uint32_t, where_u32_i64)
WHERE_OP(float, uint8_t, where_u8_f32)
WHERE_OP(double, uint8_t, where_u8_f64)
WHERE_OP(uint8_t, uint8_t, where_u8_u8)
WHERE_OP(uint32_t, uint8_t, where_u8_u32)
WHERE_OP(int64_t, uint8_t, where_u8_i64)
| 0 |
hf_public_repos/candle/candle-kernels | hf_public_repos/candle/candle-kernels/src/unary.cu | #define _USE_MATH_DEFINES
#include<math.h>
#include<stdint.h>
#include "cuda_utils.cuh"
#define UNARY_OP(TYPENAME, FN_NAME, FUNC) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *inp, \
TYPENAME *out \
) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
if (is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
TYPENAME x = inp ? inp[i] : out[i]; \
out[i] = FUNC; \
} \
} \
else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
TYPENAME x = inp ? inp[strided_i] : out[i]; \
out[i] = FUNC; \
} \
} \
} \
template<typename T>
__device__ __forceinline__ T gelu_erf_fwd(T x) {
return x * normcdfg(x);
}
template<typename T>
__device__ __forceinline__ T gelu_fwd(T x) {
T x_sq = x * x;
T x_cube = x_sq * x;
T alpha = x + static_cast<T>(0.044715) * x_cube;
return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + tanhg(static_cast<T>(M_2_SQRTPI * M_SQRT1_2) * alpha));
}
template<typename T>
__device__ __forceinline__ T elu_fwd(T x, T alpha) {
if (x > static_cast<T>(0)) {
return x;
}
return alpha * (expg(x) - static_cast<T>(1));
}
template<typename T>
__device__ __forceinline__ T relu_fwd(T x) {
T zero = 0.;
return maxg(x, zero);
}
#define UNARY_OP1(TYPENAME, FN_NAME, FUNC) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME param, \
const TYPENAME *inp, \
TYPENAME *out \
) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
if (is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
TYPENAME x = inp ? inp[i] : out[i]; \
out[i] = FUNC; \
} \
} \
else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
TYPENAME x = inp ? inp[strided_i] : out[i]; \
out[i] = FUNC; \
} \
} \
} \
#if __CUDA_ARCH__ >= 800
UNARY_OP(__nv_bfloat16, ucopy_bf16, x)
UNARY_OP(__nv_bfloat16, uneg_bf16, -x)
UNARY_OP(__nv_bfloat16, urecip_bf16, recipg(x))
UNARY_OP(__nv_bfloat16, uexp_bf16, expg(x))
UNARY_OP(__nv_bfloat16, ulog_bf16, logg(x))
UNARY_OP(__nv_bfloat16, usin_bf16, sing(x))
UNARY_OP(__nv_bfloat16, ucos_bf16, cosg(x))
UNARY_OP(__nv_bfloat16, utanh_bf16, tanhg(x))
UNARY_OP(__nv_bfloat16, uerf_bf16, erfg(x))
UNARY_OP(__nv_bfloat16, uceil_bf16, ceilg(x))
UNARY_OP(__nv_bfloat16, ufloor_bf16, floorg(x))
UNARY_OP(__nv_bfloat16, uround_bf16, roundg(x))
UNARY_OP(__nv_bfloat16, unormcdf_bf16, normcdfg(x))
UNARY_OP(__nv_bfloat16, uabs_bf16, absg(x))
UNARY_OP(__nv_bfloat16, usqr_bf16, x*x)
UNARY_OP(__nv_bfloat16, usqrt_bf16, sqrtg(x))
UNARY_OP(__nv_bfloat16, ugelu_bf16, gelu_fwd(x))
UNARY_OP(__nv_bfloat16, ugelu_erf_bf16, gelu_erf_fwd(x))
UNARY_OP(__nv_bfloat16, urelu_bf16, relu_fwd(x))
UNARY_OP1(__nv_bfloat16, uelu_bf16, elu_fwd(x, param))
UNARY_OP1(__nv_bfloat16, upowf_bf16, powg(x, param))
#endif
#if __CUDA_ARCH__ >= 530
UNARY_OP(__half, ucopy_f16, x)
UNARY_OP(__half, uneg_f16, -x)
UNARY_OP(__half, urecip_f16, recipg(x))
UNARY_OP(__half, uexp_f16, expg(x))
UNARY_OP(__half, ulog_f16, logg(x))
UNARY_OP(__half, usin_f16, sing(x))
UNARY_OP(__half, ucos_f16, cosg(x))
UNARY_OP(__half, utanh_f16, tanhg(x))
UNARY_OP(__half, uerf_f16, erfg(x))
UNARY_OP(__half, uceil_f16, ceilg(x))
UNARY_OP(__half, ufloor_f16, floorg(x))
UNARY_OP(__half, uround_f16, roundg(x))
UNARY_OP(__half, unormcdf_f16, normcdfg(x))
UNARY_OP(__half, uabs_f16, absg(x))
UNARY_OP(__half, usqr_f16, x*x)
UNARY_OP(__half, usqrt_f16, sqrtg(x))
UNARY_OP(__half, ugelu_f16, gelu_fwd(x))
UNARY_OP(__half, ugelu_erf_f16, gelu_erf_fwd(x))
UNARY_OP(__half, urelu_f16, relu_fwd(x))
UNARY_OP1(__half, uelu_f16, elu_fwd(x, param))
UNARY_OP1(__half, upowf_f16, powg(x, param))
#endif
UNARY_OP(uint8_t, ucopy_u8, x)
UNARY_OP(uint32_t, ucopy_u32, x)
UNARY_OP(int64_t, ucopy_i64, x)
UNARY_OP(float, ucopy_f32, x)
UNARY_OP(double, ucopy_f64, x)
UNARY_OP(float, uneg_f32, -x)
UNARY_OP(double, uneg_f64, -x)
UNARY_OP(float, urecip_f32, recipg(x))
UNARY_OP(double, urecip_f64, recipg(x))
UNARY_OP(float, uexp_f32, expg(x))
UNARY_OP(double, uexp_f64, expg(x))
UNARY_OP(float, ulog_f32, logg(x))
UNARY_OP(double, ulog_f64, logg(x))
UNARY_OP(float, usin_f32, sing(x))
UNARY_OP(double, usin_f64, sing(x))
UNARY_OP(float, ucos_f32, cosg(x))
UNARY_OP(double, ucos_f64, cosg(x))
UNARY_OP(float, utanh_f32, tanhg(x))
UNARY_OP(double, utanh_f64, tanhg(x))
UNARY_OP(float, uerf_f32, erfg(x))
UNARY_OP(double, uerf_f64, erfg(x))
UNARY_OP(float, uceil_f32, ceilg(x))
UNARY_OP(double, uceil_f64, ceilg(x))
UNARY_OP(float, ufloor_f32, floorg(x))
UNARY_OP(double, ufloor_f64, floorg(x))
UNARY_OP(float, uround_f32, roundg(x))
UNARY_OP(double, uround_f64, roundg(x))
UNARY_OP(float, unormcdf_f32, normcdfg(x))
UNARY_OP(double, unormcdf_f64, normcdfg(x))
UNARY_OP(float, uabs_f32, absg(x))
UNARY_OP(double, uabs_f64, absg(x))
UNARY_OP(float, usqr_f32, x*x)
UNARY_OP(double, usqr_f64, x*x)
UNARY_OP(float, usqrt_f32, sqrtg(x))
UNARY_OP(double, usqrt_f64, sqrtg(x))
UNARY_OP(float, ugelu_f32, gelu_fwd(x))
UNARY_OP(double, ugelu_f64, gelu_fwd(x))
UNARY_OP(float, ugelu_erf_f32, gelu_erf_fwd(x))
UNARY_OP(double, ugelu_erf_f64, gelu_erf_fwd(x))
UNARY_OP(float, urelu_f32, relu_fwd(x))
UNARY_OP(double, urelu_f64, relu_fwd(x))
UNARY_OP1(float, uelu_f32, elu_fwd(x, param))
UNARY_OP1(double, uelu_f64, elu_fwd(x, param))
UNARY_OP1(float, upowf_f32, powg(x, param))
UNARY_OP1(double, upowf_f64, powg(x, param))
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-wasm-tests/README.md | Run the tests with:
```bash
RUST_LOG=wasm_bindgen_test_runner wasm-pack test --chrome --headless
```
Or:
```bash
wasm-pack test --chrome
```
If you get an "invalid session id" failure in headless mode, check that logs and
it may well be that your ChromeDriver is not at the same version as your
browser.
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-wasm-tests/webdriver.json | {
"moz:firefoxOptions": {
"prefs": {
"media.navigator.streams.fake": true,
"media.navigator.permission.disabled": true
},
"args": []
},
"goog:chromeOptions": {
"args": [
"--use-fake-device-for-media-stream",
"--use-fake-ui-for-media-stream"
]
}
}
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-wasm-tests/Cargo.toml | [package]
name = "candle-wasm-tests"
version.workspace = true
edition.workspace = true
description = "WASM tests for candle"
keywords.workspace = true
categories.workspace = true
[dependencies]
candle = { workspace = true }
rand = { workspace = true }
getrandom = { version = "0.2", features = ["js"] }
[dev-dependencies]
wasm-bindgen-test = "0.3.0"
| 0 |
hf_public_repos/candle/candle-wasm-tests | hf_public_repos/candle/candle-wasm-tests/tests/quantized_tests.rs | use candle::{
quantized::{self, k_quants, GgmlDType, GgmlType},
test_utils::to_vec2_round,
Device, Module, Result, Tensor,
};
use wasm_bindgen_test::*;
wasm_bindgen_test_configure!(run_in_browser);
#[wasm_bindgen_test]
fn quantized_matmul_neg() -> Result<()> {
let cpu = &Device::Cpu;
let (m, k, n) = (3, 64, 4);
let lhs = (0..(m * k))
.map(|v| v as f32 - (m * k) as f32 / 2.0)
.collect::<Vec<_>>();
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
let mut dst = vec![42.; 3 * 4];
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
let rhs = (0..k * n)
.map(|v| v as f32 - (k * n) as f32 / 3.0)
.collect::<Vec<_>>();
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
assert_eq!(
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
&[
243524.0, -19596.0, -285051.0, -549815.0, 23777.0, 21651.0, 19398.0, 18367.0,
-196472.0, 63012.0, 324585.0, 587902.0
]
);
let mm = tensor_lhs.matmul(&tensor_rhs)?;
assert_eq!(
to_vec2_round(&mm, 0)?,
&[
[244064.0, -20128.0, -284320.0, -548512.0],
[23563.0, 21515.0, 19467.0, 17419.0],
[-196939.0, 63157.0, 323253.0, 583349.0]
]
);
let qtensor = quantized::QTensor::new(quantized::QStorage::Cpu(Box::new(rhs_t)), (4, 64))?;
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
let res = matmul.forward(&tensor_lhs)?;
assert_eq!(
to_vec2_round(&res, 0)?,
&[
[243524.0, -19596.0, -285051.0, -549815.0],
[23777.0, 21651.0, 19398.0, 18367.0],
[-196472.0, 63012.0, 324585.0, 587902.0]
]
);
Ok(())
}
/// Creates a vector simillarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
fn create_ggml_like_vector(offset: f32) -> Vec<f32> {
const GGML_TEST_SIZE: usize = 32 * 128;
(0..GGML_TEST_SIZE)
.map(|i| 0.1 + 2.0 * (i as f32 + offset).cos())
.collect()
}
/// Very simple dot product implementation
fn vec_dot_reference(a: &[f32], b: &[f32]) -> f32 {
a.iter().zip(b).map(|(a, b)| a * b).sum()
}
/// Returns the error achieved by the GGML matmul unit test.
fn ggml_reference_matmul_error(dtype: GgmlDType) -> Result<f32> {
let err = match dtype {
GgmlDType::F16 => 0.000010,
GgmlDType::Q2K => 0.004086,
GgmlDType::Q3K => 0.016148,
GgmlDType::Q4K => 0.002425,
GgmlDType::Q5K => 0.000740,
GgmlDType::Q6K => 0.000952,
GgmlDType::Q4_0 => 0.001143,
GgmlDType::Q4_1 => 0.007784,
GgmlDType::Q5_0 => 0.001353,
GgmlDType::Q5_1 => 0.001363,
GgmlDType::Q8_0 => 0.000092,
// Not from the ggml repo.
GgmlDType::Q8K => 0.00065,
_ => candle::bail!("No GGML results for quantization type {dtype:?}",),
};
Ok(err)
}
/// Mirrores the GGML matmul unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> {
const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02;
let a = create_ggml_like_vector(0.0);
let b = create_ggml_like_vector(1.0);
let length = a.len();
let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE];
let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE];
T::from_float(&a, &mut a_quant)?;
T::VecDotType::from_float(&b, &mut b_quant)?;
let result = T::vec_dot(length, &a_quant, &b_quant)?;
let result_unopt = T::vec_dot_unopt(length, &a_quant, &b_quant)?;
let reference_result = vec_dot_reference(&a, &b);
if (result - result_unopt).abs() / length as f32 > 1e-6 {
candle::bail!(
"the opt and unopt vec-dot returned different values, opt {result}, unopt {result_unopt}"
)
}
let error = (result - reference_result).abs() / length as f32;
let ggml_error = ggml_reference_matmul_error(T::DTYPE)?;
if !error.is_finite() || error > GGML_MAX_DOT_PRODUCT_ERROR {
candle::bail!(
"Dot product error {} exceeds max error {}",
error,
GGML_MAX_DOT_PRODUCT_ERROR
);
}
// We diverge slightly due to different rounding behavior / f16 to f32 conversions in GGML
// => we use a slightly higher error threshold
const ERROR_LENIENCY: f32 = 0.00001;
if error - ERROR_LENIENCY > ggml_error {
candle::bail!(
"Dot product error {} exceeds ggml reference error {}",
error,
ggml_error
);
}
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q40() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ4_0>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q50() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ5_0>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q80() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ8_0>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q2k() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ2K>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q3k() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ3K>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q4k() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ4K>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q5k() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ5K>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q6k() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ6K>()?;
Ok(())
}
#[wasm_bindgen_test]
fn quantized_matmul_q8k() -> Result<()> {
ggml_matmul_error_test::<candle::quantized::k_quants::BlockQ8K>()?;
Ok(())
}
| 0 |
hf_public_repos/candle/candle-wasm-tests | hf_public_repos/candle/candle-wasm-tests/src/lib.rs | pub fn add(left: usize, right: usize) -> usize {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-nn/README.md | # candle-nn
| 0 |
hf_public_repos/candle | hf_public_repos/candle/candle-nn/Cargo.toml | [package]
name = "candle-nn"
version.workspace = true
edition.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
license.workspace = true
readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
candle = { workspace = true }
half = { workspace = true }
thiserror = { workspace = true }
intel-mkl-src = { workspace = true, optional = true }
num-traits = { workspace = true }
rayon = { workspace = true }
safetensors = { workspace = true }
serde = { workspace = true }
metal = { workspace = true, optional = true }
candle-metal-kernels = { workspace = true, optional = true }
[dev-dependencies]
anyhow = { workspace = true }
clap = { workspace = true }
[features]
default = []
accelerate = ["dep:accelerate-src", "candle/accelerate"]
cuda = ["candle/cuda"]
mkl = ["dep:intel-mkl-src", "candle/mkl"]
metal = ["candle/metal", "dep:candle-metal-kernels", "dep:metal"]
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/examples/basic_optimizer.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{DType, Device, Result, Tensor};
use candle_nn::{linear, AdamW, Linear, Module, Optimizer, ParamsAdamW, VarBuilder, VarMap};
fn gen_data() -> Result<(Tensor, Tensor)> {
// Generate some sample linear data.
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
Ok((sample_xs, sample_ys))
}
fn main() -> Result<()> {
let (sample_xs, sample_ys) = gen_data()?;
// Use backprop to run a linear regression between samples and get the coefficients back.
let varmap = VarMap::new();
let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::Cpu);
let model = linear(2, 1, vb.pp("linear"))?;
let params = ParamsAdamW {
lr: 0.1,
..Default::default()
};
let mut opt = AdamW::new(varmap.all_vars(), params)?;
for step in 0..10000 {
let ys = model.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
opt.backward_step(&loss)?;
println!("{step} {}", loss.to_vec0::<f32>()?);
}
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/examples/cpu_benchmarks.rs | /// This example contains some simple benchmarks so that it's easy to run them in perf etc.
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::quantized::GgmlType;
use candle::{CpuStorage, Device, Layout, Module, Result, Shape, Tensor, D};
use clap::{Parser, Subcommand};
const CHECK_CONV2D: bool = false;
trait Benchmark {
type PreProcessData;
type RunResult;
fn preprocess() -> Result<Self::PreProcessData>;
fn run_one(_: &Self::PreProcessData) -> Result<Self::RunResult>;
const ITERS: usize;
}
struct Im2Col {
h_k: usize,
w_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col {
fn hw_out(&self, h: usize, w: usize) -> (usize, usize) {
let h_out = (h + 2 * self.padding - self.dilation * (self.h_k - 1) - 1) / self.stride + 1;
let w_out = (w + 2 * self.padding - self.dilation * (self.w_k - 1) - 1) / self.stride + 1;
(h_out, w_out)
}
}
impl candle::CustomOp1 for Im2Col {
fn name(&self) -> &'static str {
"im2col"
}
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
let &Self {
h_k,
w_k,
stride,
dilation,
padding,
} = self;
let (b, c, h, w) = layout.shape().dims4()?;
let (h_out, w_out) = self.hw_out(h, w);
let slice = storage.as_slice::<f32>()?;
let src = &slice[layout.start_offset()..];
let mut dst = vec![0f32; b * h_out * w_out * c * h_k * w_k];
let (src_s0, src_s1, src_s2, src_s3) = {
let s = layout.stride();
(s[0], s[1], s[2], s[3])
};
// TODO: provide specialized kernels for the common use cases.
// - h_k = w_k = 1
// - padding = 0
// - stride = 1
// - dilation = 1
for b_idx in 0..b {
let src_idx = b_idx * src_s0;
let dst_idx = b_idx * h_out * w_out * c * h_k * w_k;
for h_idx in 0..h_out {
let dst_idx = dst_idx + h_idx * w_out * c * h_k * w_k;
for w_idx in 0..w_out {
let dst_idx = dst_idx + w_idx * c * h_k * w_k;
for c_idx in 0..c {
let dst_idx = dst_idx + c_idx * h_k * w_k;
let src_idx = c_idx * src_s1 + src_idx;
for h_k_idx in 0..h_k {
let src_h = h_idx * stride + h_k_idx * dilation;
if padding != 0 && (src_h < padding || src_h >= h + padding) {
continue;
}
let src_h = src_h - padding;
let src_idx = src_idx + src_h * src_s2;
let dst_idx = dst_idx + h_k_idx * w_k;
for w_k_idx in 0..w_k {
let src_w = w_idx * stride + w_k_idx * dilation;
if padding != 0 && (src_w < padding || src_w >= w + padding) {
continue;
}
let src_w = src_w - padding;
let src_idx = src_idx + src_w * src_s3;
let dst_idx = dst_idx + w_k_idx;
dst[dst_idx] = src[src_idx]
}
}
}
}
}
}
let storage = candle::WithDType::to_cpu_storage_owned(dst);
Ok((storage, (b * h_out * w_out, c * h_k * w_k).into()))
}
}
// Conv1d example as used in whisper.
struct Conv1d;
impl Benchmark for Conv1d {
type PreProcessData = (Tensor, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
let inp = Tensor::randn(0f32, 1., (1, 384, 3000), &Device::Cpu)?;
let w = Tensor::randn(0f32, 1., (384, 384, 3), &Device::Cpu)?;
Ok((inp, w))
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
d.0.conv1d(&d.1, 0, 1, 1, 1)
}
const ITERS: usize = 5;
}
// Conv2d example as used in stable-diffusion.
struct Conv2d;
impl Benchmark for Conv2d {
type PreProcessData = (Tensor, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
Ok((inp, w))
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
d.0.conv2d(&d.1, 0, 1, 1, 1)
}
const ITERS: usize = 5;
}
// Conv2d example as used in stable-diffusion, im2col implementation.
struct Conv2dIm2Col;
impl Benchmark for Conv2dIm2Col {
type PreProcessData = (Tensor, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
Ok((inp, w))
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
// d.0.conv2d(&d.1, 0, 1, 1, 1)
let (b, _, h, w) = d.0.dims4()?;
let (_, _, h_k, w_k) = d.1.dims4()?;
let op = Im2Col {
h_k,
w_k,
stride: 1,
dilation: 1,
padding: 0,
};
let (h_out, w_out) = op.hw_out(h, w);
let col = d.0.apply_op1_no_bwd(&op)?;
let res = col.matmul(&d.1.flatten_from(1)?.t()?)?;
let res = res
.reshape((b, h_out, w_out, ()))?
.permute((0, 3, 1, 2))?
.contiguous()?;
if CHECK_CONV2D {
let res2 = d.0.conv2d(&d.1, op.padding, op.stride, op.dilation, 1);
let diff = (&res - res2)?.sqr()?.mean_all()?;
println!("{diff}");
}
Ok(res)
}
const ITERS: usize = 5;
}
struct MatMul;
impl Benchmark for MatMul {
type PreProcessData = (Tensor, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
Ok((lhs, rhs))
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
d.0.matmul(&d.1)
}
const ITERS: usize = 100;
}
struct MatVec;
impl Benchmark for MatVec {
type PreProcessData = (Tensor, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
let lhs = Tensor::randn(0f32, 1., (1024 * 4, 1024 * 4), &Device::Cpu)?;
let rhs = Tensor::randn(0f32, 1., (1024 * 4, 1), &Device::Cpu)?;
Ok((lhs, rhs))
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
d.0.matmul(&d.1)
}
const ITERS: usize = 100;
}
// This benchmark is similar to:
// https://github.com/ggerganov/llama.cpp/blob/master/examples/benchmark/benchmark-matmult.cpp
struct QMatMul;
impl Benchmark for QMatMul {
type PreProcessData = (candle::quantized::QMatMul, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
let zeros = vec![candle::quantized::k_quants::BlockQ4_0::zeros(); 4096 * 11008 / 32];
let mm = candle::quantized::QTensor::new(
candle::quantized::QStorage::Cpu(Box::new(zeros)),
(4096, 11008),
)?;
let mm = candle::quantized::QMatMul::from_qtensor(mm)?;
let arg = Tensor::randn(0f32, 1., (128, 11008), &Device::Cpu)?;
Ok((mm, arg))
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
d.0.forward(&d.1)
}
const ITERS: usize = 100;
}
struct Softmax;
impl Benchmark for Softmax {
type PreProcessData = Tensor;
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
// Typical whisper tiny size.
let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
Ok(x)
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
candle_nn::ops::softmax(d, D::Minus1)
}
const ITERS: usize = 100;
}
struct SoftmaxLastDim;
impl Benchmark for SoftmaxLastDim {
type PreProcessData = Tensor;
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
// Typical whisper tiny size.
let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
Ok(x)
}
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
candle_nn::ops::softmax_last_dim(d)
}
const ITERS: usize = 100;
}
fn run<B: Benchmark>(iters: Option<usize>) -> Result<()> {
use std::hint::black_box;
let iters = iters.unwrap_or(B::ITERS);
let d = B::preprocess()?;
let start = std::time::Instant::now();
for _iter in 0..iters {
let _res = black_box(B::run_one(black_box(&d))?);
}
println!("{:?}", start.elapsed() / iters as u32);
Ok(())
}
#[derive(Subcommand, Debug, Clone)]
enum Task {
Conv1d,
Conv2d,
Conv2dIm2Col,
Matmul,
Matvec,
Qmatmul,
Softmax,
SoftmaxLastDim,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
pub struct Args {
/// The benchmark to be run.
#[command(subcommand)]
task: Task,
#[arg(long)]
iters: Option<usize>,
}
fn main() -> Result<()> {
let args = Args::parse();
match args.task {
Task::Conv1d => run::<Conv1d>(args.iters)?,
Task::Conv2d => run::<Conv2d>(args.iters)?,
Task::Conv2dIm2Col => run::<Conv2dIm2Col>(args.iters)?,
Task::Matmul => run::<MatMul>(args.iters)?,
Task::Matvec => run::<MatVec>(args.iters)?,
Task::Softmax => run::<Softmax>(args.iters)?,
Task::SoftmaxLastDim => run::<SoftmaxLastDim>(args.iters)?,
Task::Qmatmul => run::<QMatMul>(args.iters)?,
}
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/batch_norm.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Result;
use candle::{test_utils, DType, Device, Tensor};
use candle_nn::BatchNorm;
/* The test below has been generated using the following PyTorch code:
import torch
torch.manual_seed(19551105)
m = torch.nn.BatchNorm2d(5, affine=False)
input = torch.randn(2, 5, 3, 4)
output = m(input)
print(input.flatten())
print(output.flatten())
print(m.running_mean)
print(m.running_var)
*/
#[test]
fn batch_norm() -> Result<()> {
let running_mean = Tensor::zeros(5, DType::F32, &Device::Cpu)?;
let running_var = Tensor::ones(5, DType::F32, &Device::Cpu)?;
let bn = BatchNorm::new_no_bias(5, running_mean.clone(), running_var.clone(), 1e-8)?;
let input: [f32; 120] = [
-0.7493, -1.0410, 1.6977, -0.6579, 1.7982, -0.0087, 0.2812, -0.1190, 0.2908, -0.5975,
-0.0278, -0.2138, -1.3130, -1.6048, -2.2028, 0.9452, 0.4002, 0.0831, 1.0004, 0.1860,
0.5004, 0.5539, 0.9991, -0.2540, -0.0703, -0.3752, -0.1096, -0.2374, 1.0258, -2.2208,
-0.0257, 0.6073, -1.1627, -0.0964, -1.9718, 1.6577, 0.1931, -0.3692, -0.8011, 0.9059,
0.4797, 0.6521, -0.0165, -0.6683, -0.4148, 2.0649, -0.8276, 1.7947, -0.2061, 0.5812,
-1.3598, 1.6192, 1.0466, -0.4423, 0.4202, 0.1749, 0.6969, 0.2616, -0.0369, -1.4951,
-0.0814, -0.1877, 0.0267, 0.6150, 0.2402, -1.1440, -2.0068, 0.6032, -2.6639, 0.8260,
0.1085, -0.1693, 1.2805, 0.7654, -0.4930, 0.3770, 1.1309, 0.2303, 0.2949, -0.2634, -0.5225,
0.4269, 0.6341, 1.5736, 0.9827, -1.2499, 0.3509, -1.6243, -0.8123, 0.7634, -0.3047, 0.0143,
-0.4032, 0.0537, 0.7022, 0.8405, -1.2221, -1.6847, -0.0714, -0.1608, 0.5579, -1.5858,
0.4617, -0.6480, 0.1332, 0.0419, -0.9784, 0.4173, 1.2313, -1.9046, -0.1656, 0.1259, 0.0763,
1.4252, -0.9115, -0.1093, -0.3100, -0.6734, -1.4357, 0.9205,
];
let input = Tensor::new(&input, &Device::Cpu)?.reshape((2, 5, 3, 4))?;
let output = bn.forward_train(&input)?;
assert_eq!(output.dims(), &[2, 5, 3, 4]);
let output = output.flatten_all()?;
assert_eq!(
test_utils::to_vec1_round(&output, 4)?,
&[
-0.6391, -0.9414, 1.8965, -0.5444, 2.0007, 0.1283, 0.4287, 0.014, 0.4387, -0.4818,
0.1085, -0.0842, -1.6809, -2.0057, -2.6714, 0.8328, 0.2262, -0.1268, 0.8943, -0.0123,
0.3377, 0.3973, 0.8928, -0.5021, 0.0861, -0.2324, 0.0451, -0.0884, 1.2311, -2.1603,
0.1327, 0.7939, -1.055, 0.0589, -1.9002, 1.8912, 0.2918, -0.3253, -0.7993, 1.0741,
0.6063, 0.7955, 0.0617, -0.6536, -0.3754, 2.3461, -0.8284, 2.0495, -0.201, 0.6476,
-1.4446, 1.7665, 1.1493, -0.4556, 0.4741, 0.2097, 0.7723, 0.3031, -0.0186, -1.5905,
0.053, -0.0572, 0.165, 0.7746, 0.3862, -1.0481, -1.9422, 0.7624, -2.6231, 0.9933,
0.2498, -0.0381, 1.2061, 0.6327, -0.7681, 0.2004, 1.0396, 0.037, 0.109, -0.5125,
-0.8009, 0.2559, 0.4865, 1.5324, 1.1861, -1.1461, 0.5261, -1.5372, -0.689, 0.957,
-0.1587, 0.1745, -0.2616, 0.2156, 0.8931, 1.0375, -1.2614, -1.7691, 0.0015, -0.0966,
0.6921, -1.6605, 0.5866, -0.6313, 0.226, 0.1258, -0.9939, 0.5378, 1.3484, -2.0319,
-0.1574, 0.1568, 0.1034, 1.5574, -0.9614, -0.0967, -0.313, -0.7047, -1.5264, 1.0134
]
);
let bn2 = BatchNorm::new(
5,
running_mean,
running_var,
Tensor::new(&[0.5f32], &Device::Cpu)?.broadcast_as(5)?,
Tensor::new(&[-1.5f32], &Device::Cpu)?.broadcast_as(5)?,
1e-8,
)?;
let output2 = bn2.forward_train(&input)?;
assert_eq!(output2.dims(), &[2, 5, 3, 4]);
let output2 = output2.flatten_all()?;
let diff2 = ((output2 - (output * 0.5)?)? + 1.5)?.sqr()?;
let sum_diff2 = diff2.sum_keepdim(0)?;
assert_eq!(test_utils::to_vec1_round(&sum_diff2, 4)?, &[0f32]);
assert_eq!(
test_utils::to_vec1_round(bn.running_mean(), 4)?,
&[-0.0133, 0.0197, -0.0153, -0.0073, -0.0020]
);
assert_eq!(
test_utils::to_vec1_round(bn.running_var(), 4)?,
&[0.9972, 0.9842, 0.9956, 0.9866, 0.9898]
);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/one_hot.rs | use candle::{Result, Shape, Tensor};
use candle_nn::encoding::one_hot;
#[test]
fn test_i64_one_hot() -> Result<()> {
let device = candle::Device::Cpu;
let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?;
let depth = 4;
let on_value = 1.0;
let off_value = 0.0;
let one_hot = one_hot::<f32>(indices, depth, on_value, off_value)?;
let expected_matrix = [
[[1., 0., 0., 0.], [0., 0., 1., 0.]],
[[0., 1., 0., 0.], [0., 0., 0., 0.]],
];
assert_eq!(one_hot.shape(), &Shape::from((2, 2, depth)));
let matrix = one_hot.to_vec3::<f32>()?;
assert_eq!(matrix, expected_matrix);
Ok(())
}
#[test]
fn test_rank_3_one_hot() -> Result<()> {
let device = candle::Device::Cpu;
let indices = Tensor::new(
vec![
vec![vec![0i64, 1], vec![2, 3]],
vec![vec![3, 1], vec![1, -1]],
],
&device,
)?;
let depth = 4;
let on_value = 1.0;
let off_value = 0.0;
let one_hot = one_hot::<f32>(indices, depth, on_value, off_value)?;
let expected_matrix = Tensor::new(
vec![
vec![
vec![vec![1f32, 0., 0., 0.], vec![0., 1., 0., 0.]],
vec![vec![0., 0., 1., 0.], vec![0., 0., 0., 1.]],
],
vec![
vec![vec![0., 0., 0., 1.], vec![0., 1., 0., 0.]],
vec![vec![0., 1., 0., 0.], vec![0., 0., 0., 0.]],
],
],
&device,
)?;
assert_eq!(one_hot.shape(), expected_matrix.shape());
assert_eq!(one_hot.dims(), expected_matrix.dims());
let matrix = one_hot.get(1)?.to_vec3::<f32>()?;
let expected_matrix = expected_matrix.get(1)?.to_vec3::<f32>()?;
assert_eq!(matrix, expected_matrix);
Ok(())
}
#[test]
fn test_u8_one_cold() -> Result<()> {
let device = candle::Device::Cpu;
let depth = 4;
let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?;
let on_value = 0u8;
let off_value = 1;
// Note that the method does not require the turbofish operator, as the type is inferred from the on_value.
let one_cold = one_hot(indices, depth, on_value, off_value)?;
let expected_matrix = [[[0, 1, 1, 1], [1, 1, 0, 1]], [[1, 0, 1, 1], [1, 1, 1, 1]]];
assert_eq!(one_cold.shape(), &Shape::from((2, 2, depth)));
let matrix = one_cold.to_vec3::<u8>()?;
assert_eq!(matrix, expected_matrix);
Ok(())
}
#[test]
fn test_iter() -> Result<()> {
let device = candle::Device::Cpu;
let depth = 4;
let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?;
let matrix = indices.to_vec2::<i64>()?;
let (dim1, dim2) = indices.dims2()?;
let iter = (0..dim1).flat_map(|i| (0..dim2).map(move |j| (i, j)));
let mut v = vec![0; depth * dim1 * dim2];
for (i, j) in iter {
let idx = i * depth * dim2 + j * depth;
v[idx] = matrix[i][j];
}
for (i, row) in matrix.iter().enumerate() {
for (j, &value) in row.iter().enumerate() {
let idx = i * depth * dim2 + j * depth;
assert_eq!(v[idx], value);
}
}
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/optim.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::test_utils::{to_vec0_round, to_vec2_round};
use anyhow::Result;
use candle::{Device, Tensor, Var};
use candle_nn::{AdamW, Linear, Module, Optimizer, ParamsAdamW, SGD};
#[test]
fn sgd_optim() -> Result<()> {
let x = Var::new(0f32, &Device::Cpu)?;
let mut sgd = SGD::new(vec![x.clone()], 0.1)?;
let xt = x.as_tensor();
for _step in 0..100 {
let loss = ((xt - 4.2)? * (xt - 4.2)?)?;
sgd.backward_step(&loss)?
}
assert_eq!(x.to_scalar::<f32>()?, 4.199999);
Ok(())
}
/* The results of this test have been checked against the following PyTorch code.
import torch
from torch import optim
w_gen = torch.tensor([[3., 1.]])
b_gen = torch.tensor([-2.])
sample_xs = torch.tensor([[2., 1.], [7., 4.], [-4., 12.], [5., 8.]])
sample_ys = sample_xs.matmul(w_gen.t()) + b_gen
m = torch.nn.Linear(2, 1)
with torch.no_grad():
m.weight.zero_()
m.bias.zero_()
optimizer = optim.SGD(m.parameters(), lr=0.004, momentum=0.)
for _step in range(1000):
optimizer.zero_grad()
ys = m(sample_xs)
loss = ((ys - sample_ys)**2).sum()
loss.backward()
optimizer.step()
print(m.weight)
print(m.bias)
*/
#[test]
fn sgd_linear_regression() -> Result<()> {
// Generate some linear data, y = 3.x1 + x2 - 2.
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut sgd = SGD::new(vec![w.clone(), b.clone()], 0.004)?;
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
for _step in 0..1000 {
let ys = lin.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
sgd.backward_step(&loss)?;
}
assert_eq!(w.to_vec2::<f32>()?, &[[2.9983196, 0.99790204]]);
assert_eq!(b.to_scalar::<f32>()?, -1.9796902);
Ok(())
}
/* The following test returns the same values as the PyTorch code below.
import torch
from torch import optim
w_gen = torch.tensor([[3., 1.]])
b_gen = torch.tensor([-2.])
sample_xs = torch.tensor([[2., 1.], [7., 4.], [-4., 12.], [5., 8.]])
sample_ys = sample_xs.matmul(w_gen.t()) + b_gen
m = torch.nn.Linear(2, 1)
with torch.no_grad():
m.weight.zero_()
m.bias.zero_()
optimizer = optim.AdamW(m.parameters(), lr=0.1)
for _step in range(100):
optimizer.zero_grad()
ys = m(sample_xs)
loss = ((ys - sample_ys)**2).sum()
loss.backward()
optimizer.step()
print(m.weight)
print(m.bias)
*/
#[test]
fn adamw_linear_regression() -> Result<()> {
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let params = ParamsAdamW {
lr: 0.1,
..Default::default()
};
let mut opt = AdamW::new(vec![w.clone(), b.clone()], params)?;
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
for _step in 0..100 {
let ys = lin.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
opt.backward_step(&loss)?;
}
assert_eq!(to_vec2_round(w.as_tensor(), 4)?, &[[2.7257, 0.7097]]);
assert_eq!(to_vec0_round(b.as_tensor(), 4)?, 0.7873);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/layer_norm.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Result;
use candle::{test_utils, Device, Tensor};
use candle_nn::{LayerNorm, Module};
#[test]
fn layer_norm() -> Result<()> {
let device = &Device::Cpu;
let w = Tensor::new(&[3f32], device)?;
let b = Tensor::new(&[0.5f32], device)?;
let ln = LayerNorm::new(w, b, 1e-8);
let two = Tensor::new(&[[[2f32]]], device)?;
let res = ln.forward(&two)?.flatten_all()?;
assert_eq!(res.to_vec1::<f32>()?, [0.5f32]);
let inp = Tensor::new(&[[[4f32, 0f32]]], device)?;
let res = ln.forward(&inp)?;
assert_eq!(res.to_vec3::<f32>()?, [[[3.5f32, -2.5]]]);
let inp = Tensor::new(&[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]], device)?;
let res = ln.forward(&inp)?;
assert_eq!(
test_utils::to_vec3_round(&res, 4)?,
[[
[-3.1742, 0.5, 4.1742],
[-3.1742, 0.5, 4.1742],
[4.1742, 0.5, -3.1742]
]]
);
let mean = (res.sum_keepdim(2)? / 3.0)?;
// The average value should be `b`.
assert_eq!(mean.to_vec3::<f32>()?, [[[0.5], [0.5], [0.5]]]);
let std = (res.broadcast_sub(&mean)?.sqr()?.sum_keepdim(2)?.sqrt()? / 3.0)?;
// The standard deviation should be sqrt(`w`).
assert_eq!(
test_utils::to_vec3_round(&std, 4)?,
[[[1.7321], [1.7321], [1.7321]]]
);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/ops.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{test_utils::to_vec3_round, Device, Result, Tensor};
#[test]
fn softmax() -> Result<()> {
let device = &Device::Cpu;
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
let t0 = candle_nn::ops::softmax(&tensor.log()?, 0)?;
let t1 = candle_nn::ops::softmax(&tensor.log()?, 1)?;
let t2 = candle_nn::ops::softmax(&tensor.log()?, 2)?;
assert_eq!(
to_vec3_round(&t0, 4)?,
&[
// 3/5, 1/2, 4/11
[[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]],
// 2/5, 1/2, 7/11
[[0.4, 0.5, 0.6364], [0.8889, 0.2857, 0.4706]]
]
);
assert_eq!(
to_vec3_round(&t1, 4)?,
&[
// 3/4, 1/6, 4/13
[[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]],
// 2/10, 1/3, 7/15
[[0.2, 0.3333, 0.4667], [0.8, 0.6667, 0.5333]]
]
);
assert_eq!(
to_vec3_round(&t2, 4)?,
&[
// (3, 1, 4) / 8, (1, 5, 9) / 15
[[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]],
// (2, 1, 7) / 10, (8, 2, 8) / 18
[[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]]
]
);
let t2 = candle_nn::ops::softmax_last_dim(&tensor.log()?)?;
assert_eq!(
to_vec3_round(&t2, 4)?,
&[
// (3, 1, 4) / 8, (1, 5, 9) / 15
[[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]],
// (2, 1, 7) / 10, (8, 2, 8) / 18
[[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]]
]
);
Ok(())
}
#[test]
fn softmax_numerical_stability() -> Result<()> {
let dev = &Device::Cpu;
let xs = Tensor::new(&[1234f32, 0.], dev)?;
let softmax = candle_nn::ops::softmax(&xs, 0)?;
assert_eq!(softmax.to_vec1::<f32>()?, &[1f32, 0.]);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/loss.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::test_utils::to_vec0_round;
use candle::{Device, Result, Tensor};
/* Equivalent python code:
import torch
import torch.nn.functional as F
input = torch.tensor([
[ 1.1050, 0.3013, -1.5394, -2.1528, -0.8634],
[ 1.0730, -0.9419, -0.1670, -0.6582, 0.5061],
[ 0.8318, 1.1154, -0.3610, 0.5351, 1.0830]])
target = torch.tensor([1, 0, 4])
print(F.nll_loss(F.log_softmax(input, dim=1), target))
print(F.cross_entropy(input, target))
*/
#[test]
fn nll_and_cross_entropy() -> Result<()> {
let cpu = Device::Cpu;
let input = Tensor::new(
&[
[1.1050f32, 0.3013, -1.5394, -2.1528, -0.8634],
[1.0730, -0.9419, -0.1670, -0.6582, 0.5061],
[0.8318, 1.1154, -0.3610, 0.5351, 1.0830],
],
&cpu,
)?;
let target = Tensor::new(&[1u32, 0, 4], &cpu)?;
let log_softmax = candle_nn::ops::log_softmax(&input, 1)?;
let loss = candle_nn::loss::nll(&log_softmax, &target)?;
assert_eq!(to_vec0_round(&loss, 4)?, 1.1312);
let loss = candle_nn::loss::cross_entropy(&input, &target)?;
assert_eq!(to_vec0_round(&loss, 4)?, 1.1312);
Ok(())
}
/* Equivalent python code:
import torch
import torch.nn.functional as F
inp = torch.Tensor([[ 2.3611, -0.8813, -0.5006, -0.2178],
[ 0.0419, 0.0763, -1.0457, -1.6692],
[-1.0494, 0.8111, 1.5723, 1.2315],
[ 1.3081, 0.6641, 1.1802, -0.2547],
[ 0.5292, 0.7636, 0.3692, -0.8318]])
target = torch.Tensor([[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.],
[0., 0., 1., 0.]])
print(F.binary_cross_entropy_with_logits(inp, target))
*/
#[test]
fn binary_cross_entropy_with_logit() -> Result<()> {
let cpu = Device::Cpu;
let inp = [
[2.3611f32, -0.8813, -0.5006, -0.2178],
[0.0419, 0.0763, -1.0457, -1.6692],
[-1.0494, 0.8111, 1.5723, 1.2315],
[1.3081, 0.6641, 1.1802, -0.2547],
[0.5292, 0.7636, 0.3692, -0.8318],
];
let target = [
[0.0f32, 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.],
[0., 0., 1., 0.],
];
let inp = Tensor::new(&inp, &cpu)?;
let target = Tensor::new(&target, &cpu)?;
let loss = candle_nn::loss::binary_cross_entropy_with_logit(&inp, &target)?;
assert_eq!(to_vec0_round(&loss, 4)?, 0.8224);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/group_norm.rs | /* Equivalent PyTorch code.
import torch
from torch.nn.functional import group_norm
t = torch.tensor(
[[[-0.3034, 0.2726, -0.9659],
[-1.1845, -1.3236, 0.0172],
[ 1.9507, 1.2554, -0.8625],
[ 1.0682, 0.3604, 0.3985],
[-0.4957, -0.4461, -0.9721],
[ 1.5157, -0.1546, -0.5596]],
[[-1.6698, -0.4040, -0.7927],
[ 0.3736, -0.0975, -0.1351],
[-0.9461, 0.5461, -0.6334],
[-1.0919, -0.1158, 0.1213],
[-0.9535, 0.1281, 0.4372],
[-0.2845, 0.3488, 0.5641]]])
print(group_norm(t, num_groups=2))
print(group_norm(t, num_groups=3))
*/
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Result;
use candle::test_utils::to_vec3_round;
use candle::{Device, Tensor};
use candle_nn::{GroupNorm, Module};
#[test]
fn group_norm() -> Result<()> {
let device = &Device::Cpu;
let w = Tensor::from_vec(vec![1f32; 6], 6, device)?;
let b = Tensor::from_vec(vec![0f32; 6], 6, device)?;
let gn2 = GroupNorm::new(w.clone(), b.clone(), 6, 2, 1e-5)?;
let gn3 = GroupNorm::new(w, b, 6, 3, 1e-5)?;
let input = Tensor::new(
&[
[
[-0.3034f32, 0.2726, -0.9659],
[-1.1845, -1.3236, 0.0172],
[1.9507, 1.2554, -0.8625],
[1.0682, 0.3604, 0.3985],
[-0.4957, -0.4461, -0.9721],
[1.5157, -0.1546, -0.5596],
],
[
[-1.6698, -0.4040, -0.7927],
[0.3736, -0.0975, -0.1351],
[-0.9461, 0.5461, -0.6334],
[-1.0919, -0.1158, 0.1213],
[-0.9535, 0.1281, 0.4372],
[-0.2845, 0.3488, 0.5641],
],
],
device,
)?;
assert_eq!(
to_vec3_round(&gn2.forward(&input)?, 4)?,
&[
[
[-0.1653, 0.3748, -0.7866],
[-0.9916, -1.1220, 0.1353],
[1.9485, 1.2965, -0.6896],
[1.2769, 0.3628, 0.4120],
[-0.7427, -0.6786, -1.3578],
[1.8547, -0.3022, -0.8252]
],
[
[-1.9342, 0.0211, -0.5793],
[1.2223, 0.4945, 0.4365],
[-0.8163, 1.4887, -0.3333],
[-1.7960, -0.0392, 0.3875],
[-1.5469, 0.3998, 0.9561],
[-0.3428, 0.7970, 1.1845]
]
]
);
assert_eq!(
to_vec3_round(&gn3.forward(&input)?, 4)?,
&[
[
[0.4560, 1.4014, -0.6313],
[-0.9901, -1.2184, 0.9822],
[1.4254, 0.6360, -1.7682],
[0.4235, -0.3800, -0.3367],
[-0.3890, -0.3268, -0.9862],
[2.1325, 0.0386, -0.4691]
],
[
[-1.8797, 0.0777, -0.5234],
[1.2802, 0.5517, 0.4935],
[-1.0102, 1.5327, -0.4773],
[-1.2587, 0.4047, 0.8088],
[-1.9074, 0.1691, 0.7625],
[-0.6230, 0.5928, 1.0061]
]
]
);
Ok(())
}
| 0 |
hf_public_repos/candle/candle-nn | hf_public_repos/candle/candle-nn/tests/rnn.rs | #[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{test_utils::to_vec2_round, DType, Device, Result, Tensor};
use candle_nn::RNN;
/* The following test can be verified against PyTorch using the following snippet.
import torch
from torch import nn
lstm = nn.LSTM(2, 3, 1)
lstm.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 24.).reshape(12, 2).cos())
lstm.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 36.).reshape(12, 3).sin())
lstm.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1, 1, -0.5, 2]))
lstm.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1, 1, -0.5, 2]).cos())
state = torch.zeros((1, 3)), torch.zeros((1, 3))
for inp in [3., 1., 4., 1., 5., 9., 2.]:
inp = torch.tensor([[inp, inp * 0.5]])
_out, state = lstm(inp, state)
print(state)
# (tensor([[ 0.9919, 0.1738, -0.1451]], grad_fn=...), tensor([[ 5.7250, 0.4458, -0.2908]], grad_fn=...))
*/
#[test]
fn lstm() -> Result<()> {
let cpu = &Device::Cpu;
let w_ih = Tensor::arange(0f32, 24f32, cpu)?.reshape((12, 2))?;
let w_ih = w_ih.cos()?;
let w_hh = Tensor::arange(0f32, 36f32, cpu)?.reshape((12, 3))?;
let w_hh = w_hh.sin()?;
let b_ih = Tensor::new(
&[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1., 1., -0.5, 2.],
cpu,
)?;
let b_hh = b_ih.cos()?;
let tensors: std::collections::HashMap<_, _> = [
("weight_ih_l0".to_string(), w_ih),
("weight_hh_l0".to_string(), w_hh),
("bias_ih_l0".to_string(), b_ih),
("bias_hh_l0".to_string(), b_hh),
]
.into_iter()
.collect();
let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu);
let lstm = candle_nn::lstm(2, 3, Default::default(), vb)?;
let mut state = lstm.zero_state(1)?;
for inp in [3f32, 1., 4., 1., 5., 9., 2.] {
let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?;
state = lstm.step(&inp, &state)?
}
let h = state.h();
let c = state.c();
assert_eq!(to_vec2_round(h, 4)?, &[[0.9919, 0.1738, -0.1451]]);
assert_eq!(to_vec2_round(c, 4)?, &[[5.725, 0.4458, -0.2908]]);
Ok(())
}
/* The following test can be verified against PyTorch using the following snippet.
import torch
from torch import nn
gru = nn.GRU(2, 3, 1)
gru.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 18.).reshape(9, 2).cos())
gru.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 27.).reshape(9, 3).sin())
gru.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]))
gru.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]).cos())
state = torch.zeros((1, 3))
for inp in [3., 1., 4., 1., 5., 9., 2.]:
inp = torch.tensor([[inp, inp * 0.5]])
_out, state = gru(inp, state)
print(state)
# tensor([[ 0.0579, 0.8836, -0.9991]], grad_fn=<SqueezeBackward1>)
*/
#[test]
fn gru() -> Result<()> {
let cpu = &Device::Cpu;
let w_ih = Tensor::arange(0f32, 18f32, cpu)?.reshape((9, 2))?;
let w_ih = w_ih.cos()?;
let w_hh = Tensor::arange(0f32, 27f32, cpu)?.reshape((9, 3))?;
let w_hh = w_hh.sin()?;
let b_ih = Tensor::new(&[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1.], cpu)?;
let b_hh = b_ih.cos()?;
let tensors: std::collections::HashMap<_, _> = [
("weight_ih_l0".to_string(), w_ih),
("weight_hh_l0".to_string(), w_hh),
("bias_ih_l0".to_string(), b_ih),
("bias_hh_l0".to_string(), b_hh),
]
.into_iter()
.collect();
let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu);
let gru = candle_nn::gru(2, 3, Default::default(), vb)?;
let mut state = gru.zero_state(1)?;
for inp in [3f32, 1., 4., 1., 5., 9., 2.] {
let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?;
state = gru.step(&inp, &state)?
}
let h = state.h();
assert_eq!(to_vec2_round(h, 4)?, &[[0.0579, 0.8836, -0.9991]]);
Ok(())
}
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.